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Zusammenfassung

Das Moor’sche Gesetz besagt, daß sich die Leistung von CPUs und die Speicherdich-
te alle 24 bzw. 18 Monate verdoppeln. Obgleich dieses Gesetz sich über viele Jahre
hinweg bewahrheitet hat, sagt es meist nur sehr wenig über die Leistungssteigerung
von Gesamtsystemen aus. Unter anderem hat sich in den letzten Jahren ein wesent-
lich steilerer Leistungsanstieg bei Graphiksystemen gezeigt. Ermöglicht wurde dies
durch die enorme Steigerung der Integrationsdichte1, die Einzelchiplösungen erlaubte,
den intensiven Einsatz von SDRAM Speichern und optimiertem Speicherzugriff. Da-
durch hat sich die Hardware der Graphiksysteme von teuren Großsystemen zu einem
Massenprodukt entwickelt.

Im Gegensatz dazu ist die Volumengraphik ein reiner Nischenmarkt mit sehr hohen
Anforderungen an Bildqualität, Flexibilität und Speicherbandbreite. Bis heute ist es
nicht möglich, diese Anforderungen mit allgemeiner Hardware oder Oberflächengra-
phikhardware in akzeptabler Weise zu erfüllen. Daher bedarf es noch immer speziell
entwickelter Hardware, um qualitativ hochwertige Bilder bei interaktiver Bildwieder-
holrate oder in Echtzeit zu erstellen.

In dieser Doktorarbeit werden algorithmische Optimierungen vorgestellt, die es er-
lauben, bedeutende Leistungssteigerung durch eine wesentlich verbesserte Ausnutzung
der vorhandenen Bandbreiten zu erreichen. Darüberhinaus werden zum einen Verbes-
serungen in den Datenpfaden vorhandener Architekturen vorgestellt, die deren Engpäs-
se umgehen bzw. reduzieren, zum anderen neue dedizierte Architekturen vorgestellt.

Für die Oberflächengraphikwerden Mechanismen zur Integration von Verdeckungs-
anfragen vorgestellt, die es ermöglichen, unsichtbare Geometrie zu verwerfen, ehe man
sie an die Bildgenerierungspipeline weiterleitet, und somit Bandbreite auf Seiten des
“Front bus” spart. Als eine logische Ergänzung dazu wird ein neuartiges Rasterisie-
rungsverfahren vorgestellt, das nur Fragmente in sichtbaren Bildbereichen erzeugt und
die verdeckten Bereiche überspringt. Auf diese Weise wird die Pipeline effizienter ge-
nutzt und es können entweder mehr Objekte dargestellt oder mehr Zyklen pro potentiell
sichtbarem Objekt verwendet werden (multi-pass).

Für die Volumengraphik werden erstmalig die meist verwendeten Algorithmen im
direkten Vergleich analysiert und deren Stärken und Schwächen gegenübergestellt.
Desweiteren werden neue Techniken präsentiert, die unter Verwendung von Oberflä-
chengraphikhardware und Multi-pass Verfahren Beleuchtungsrechnung und Klassifi-
zierung von Volumendaten ermöglichen. Ergänzend dazu werden Veränderungen am
Datenpfad vorgeschlagen, um Beleuchtungsrechnung und Klassifizierung in einem ein-
zigen Durchgang zu erreichen. Ein weiterer Beitrag ist der effiziente Einsatz einer neu-
artigen allgemeinen Einzelchip SIMD Architektur für die Volumenvisualisierung. Die-

1Board-to-chip Integration.
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se Lösung bietet einen höheren Grad an Flexibilität als Oberflächengraphikhardware
und ist dennoch in der Lage, mehrere Bilder pro Sekunde bei vergleichbarer Qualität
darzustellen. Als logischer Konsequenz aus den obigen Lösungsansätzen wird eine
neue und kostengünstige Architektur (Spezialhardware) für die Volumenvisualisierung
präsentiert. Diese verbindet überlegene Bildqualität mit einem hohen Grad an Fle-
xibilität durch die Verwendung rekonfigurierbarer Hardwarebausteine. Abschließend
wird die Softwareumgebung, mit deren Hilfe die überwiegende Anzahl der in dieser
Dissertation vorgestellten Resultate erarbeitet wurde, vorgestellt.



Abstract

Moore’s Law states that the processing power of CPUs and the capacity of memory
chips doubles every 24/18 months. While this law has proven to be valid for many
years, the overall system performance does not necessarily adhere to this law. But
computer graphics hardware has broken this law by surpassing performance growth
over the past years. This has been due to the dramatic board-to-chip integration, the
intensive use of SDRAM, and improved memory access patterns. At the same time,
dedicated polygon graphics hardware has evolved from expensive large scale systems
to a single chip commodity product.

In contrast, volume rendering is a niche market with high demands in image qual-
ity, flexibility, and memory bandwidth. So far, general purpose graphics hardware has
not been capable of satisfying these demands to an acceptable degree. Therefore, spe-
cial purpose hardware is required to accomplish high-quality images at interactive or
real-time frame-rates.

Within this dissertation, a set of algorithmic optimizations are developed, enabling
significant performance improvements due to a much better utilization of the available
bandwidth. Additionally, new architectural concepts circumventing the bottle-necks of
currently available general purpose graphics hardware are presented.

In the field of polygon rendering, a unique mechanism for hardware supported oc-
clusion queries to cull geometry prior to geometry transformation — saving bandwidth
on the front bus — is presented. As an orthogonal addition to this, a novel visibility
driven rasterization scheme is presented, saving processing cycles within the pipeline
by culling occluded geometry prior to rasterization. Thus, more objects can be ren-
dered or more cycles can be spent on multi-pass rendering of the potentially visible
objects.

With respect to volume rendering, this dissertation contributes the first side by
side comparison of different volume rendering algorithms identifying each algorithm’s
strengths and weaknesses. Furthermore, new techniques for using polygon graphics
hardware and multi-pass rendering are presented, enabling the combination of shading
and classification of volume data. Additionally, minor modifications to the data path
are proposed such that multi-pass rendering can be avoided, thus increasing the over-
all achievable frame-rate. Furthermore, we demonstrate how to efficiently use general
purpose hardware (a single-chip SIMD architecture) for volume rendering, providing
much more flexibility than dedicated polygon graphics hardware. As a summary of
the above described work, a novel low-cost special purpose hardware architecture that
achieves superior image quality while providing an incomparable degree of flexibility
is presented. Last but not least, Appendix A presents the rendering environment used
to produce most of the results of this dissertation.
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Chapter 1

Introduction

Graphics provides one of the most natural means of communicating
with a computer, since our highly developed 2D and 3D pattern-
recognition abilities allow us to perceive and process pictorial data
rapidly and efficiently. In many design, implementation, and construc-
tion processes today, the information pictures can give is virtually
indispensable. (...)
Interactive computer graphics is the most important means of produc-
ing pictures since the invention of photography and television; it has
the added advantage that, with the computer, we can make pictures not
only of concrete, “real-world” objects but also of abstract, synthetic
objects, such as mathematical surfaces of 4D, and of data that have
no inherent geometry, such as survey results. Furthermore, we are
not confined to static images. Although static pictures are a good
means of communicating information, dynamically varying pictures
are frequently even better — to coin a phrase, a moving picture is worth
ten thousands static ones.

James Foley and Andries van Dam, Introduction toFundamentals of
Interactive Computer Graphics, 1982.

Despite the fact, that this statement was made 20 years ago, it still holds for what
computer graphics is all about today. Then, interactive computer graphics was limited
to expensive machines while now it is widely available on almost every PC. To create
the perfect illusion of virtual three dimensional worlds or to visualize abstract infor-
mation as meaningful images, image synthesis aims for interactivity and highest image
quality.

Within this chapter, the basic concepts of polygon and volume rendering are sum-
marized and common terminology used throughout this dissertation is introduced. There-
after, the chapter outline is presented.
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1.1 Polygon Rendering

Polygon rendering is the synthesis of images from three dimensional scenes which are
represented as surfaces. Instead if using an implicit object description, surfaces are ap-
proximated by a set of polygons. The advantage of a polygonal approximation is that it
enables the development of dedicated graphics hardware capable of generating images
at interactive frame-rates. Indistinguishable and appealing images can be generated
using a sufficiently detailed approximation of the surface.

In computer graphics, the goal of image synthesis is photo-realism to generate a
true illusion. However, there are a number of issues in polygon rendering which pre-
vents it from reaching this goal. The most difficult one is the true simulation of global
light effects such as refraction, transmission, reflection, and resulting shadows. There-
fore, many approaches have been developed to approximate this behavior trading ac-
curacy for interactivity.

1.1.1 Illumination and Shading

Illumination and shading is a technique to greatly enhance the appearance of a geo-
metric object that is being rendered. Shading tries to model effects like shadows, light
scattering, and atmospheric attenuation. Generally, there are local, direct, and global
illumination models. Local illumination models perform shading considering only the
position of light source(s) and observer relative to the surface. Hence, occluded light
sources have the same impact as visible ones. Even though this is far from photo-
realism, it produces fairly good results and is the most frequently used illumination
technique in polygon rendering. In contrast to local illumination, global illumination
simulates the exchange of light between all objects in a scene. Hence, a point appears
dark if the light is occluded from this location and bright if the light is directly visible
or in case light is reflected onto it. Unfortunately, global illumination is quite expensive
and not yet feasible at interactive frame-rates. A good compromise between local and
global illumination are direct illumination methods. Instead of examining the global
exchange of light, for each point all light sources are probed for the directly incoming
light. This technique allows the integration of shadow effects while usually being less
costly than solving the global illumination1.

There are two shading models used within polygon rendering: Gouraud and Phong
Shading. While Gouraud shading performs the illumination calculation on a per vertex
base interpolating intensities across a triangle, Phong shading interpolates the surface
normal and performs illumination on a per pixel base. The problem with Phong shading
is that the interpolated normal needs to be normalized and mapped back into the world
coordinate system before the illumination can be computed. This is quite expensive
and the reason why current graphics hardware supports Gouraud shading. Gouraud
and Phong Shading use local illumination consisting of an ambient, a diffuse and a
specular component. While the ambient component is present at each position in the
scene, the diffuse component can be computed using the angle between the normal
vector at the given position and the vector to the light, simulating a lambertian reflector.
In contrast, the specular component depends on the angle between the light and the eye
position and specifies how much of a light source’s intensity is reflected. All three
components can be combined by weighting each of them differently, using material
properties. Additionally, light attenuation can be integrated to provide depth cueing.

1Direct illumination can be accomplished e.g. using projective textures.
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1.1.2 Geometry Transformation

The geometric part of the rendering process consists of several coordinate systems.
While objects are usually modeled in local coordinates, they are assembled to an entire
model or scene in world coordinates. Both steps are performed during the modeling
of a scene which is performed using CAD programs. Furthermore, light sources and
surface attributes such as texture, color, etc. are defined in world space.

In contrast to the local and world coordinate systems, the camera coordinate system
defines which part of the scene is displayed. It can be positioned anywhere in world
space and in any direction and orientation. However, graphics hardware does not use
the camera coordinate system to synthesize images, simply because it would require
complex floating point operations which would be extremely expensive. Therefore, the
image synthesis is performed in yet another coordinate system, the 3D or 2D screen
space coordinates. Generally, viewing transformations are performed in homogeneous
coordinates since all transformations on points and vectors can be handled as matrix
multiplication, including translation. To obtain a final 3D screen coordinate, the homo-
geneous coordinates need to be converted into Cartesian coordinates performing the
division byW. However, per vertex lighting needs to be performed before the perspec-
tive viewing transformation.

Geometry transformation also includes the clipping of the transformed triangles.
This can be done in the final 3D screen space coordinates but there are also approaches
to perform this in homogeneous coordinates. Polygons which do not intersect with
the view frustum can be eliminated using trivial reject mechanisms. The ones which
are partially inside/outside the view frustum need to be clipped properly. Finally, the
triangle setup needs to be performed by means of computing the partial increments in
x andy of all parameters needed across the triangle. This includes the increment of
the color components (Gouraud shading), the opacity, the depth value, and the texture
coordinates. The values of the triangle setup are passed on to the rasterization in fixed-
point format which suffices due to the axis aligned screen space coordinate system
(image plane is equal to the x/y-plane).

Until very recently, geometry transformation was done by the CPU and not sup-
ported by the graphics hardware. This has been due to the required floating point pre-
cision, however, modern graphics hardware also performs geometry transformation.

1.1.3 Rasterization

Rasterization is the process of converting transformed primitives (triangles) into pixel
values. To keep rasterization simple with respect to the required hardware, it is im-
plemented as incremental process avoiding expensive multiplications. Rasterization is
usually referred to as scan conversion since the primitives are traversed and converted
in scanline order.

Scan Conversion

While scan-converting a triangle, the color-, alpha-, and depth-value as well as texture
coordinates are generated for each pixel. Different triangle conversion schemes exist,
keeping the number of idle cycles as low as possible when moving from one scanline
to the next. Recently, scanline based rasterization has been extended to stamp based
rasterization; instead of moving from pixel to pixel, e.g. 2� 2 pixels are processed
in parallel moving the stamp across the triangle in scanline based order. This process
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exploits the texture and framebuffer coherence better than simple scanline based ras-
terization. Furthermore, it works well with modern SDRAM devices where graphics
hardware exploits the fast access within the opened page before moving to the next
page.

Texture Mapping

Texture mapping is the process of mapping a texture (e.g., an image) onto a surface. By
defining texture coordinates on a per vertex base, interpolated texture coordinates are
used to determine the footprint of the pixel in the texture2. Using the texture footprint,
a color- and possibly alpha-value can be filtered from the texture. To prevent aliasing
artifacts, textures can be generated at different resolutions and the appropriate texture
level is selected by the hardware, depending on the partial increments of the texture
coordinates. In addition to the color which is interpolated across the triangle (Gouraud
shading), texture mapping generates a second color. Different blending operations can
be selected to combine the two colors to a final fragment color.

While texture mapping was primarily introduced to map textures onto the surface
such that objects made of wood or marble can be displayed realistically, many other
applications have evolved. One can use textures to add shadow effects to an object
by pre-computing shadow textures. Reflections can be simulated by rendering a scene
from one camera — e.g. the floor — and using the resulting image as texture for the
floor such that it looks like a shiny and reflecting mirror.

Mainly driven by game developers exploiting texture mapping to achieve more
realistic images, computer graphics hardware developers have added multi-texture ca-
pabilities such that more than one texture can be applied per vertex. In extension to
two dimensional textures, three and four dimensional textures are now supported. E.g.,
three dimensional textures can be used to carve a surface object out of a texture block
which can be used for volumetric effects.

1.1.4 Framebuffer Operations

The result of the rasterization stage are fragments which consist of color and alpha
information as well as the two dimensional pixel coordinates. Within the framebuffer
stage, several per fragment operations can be applied to the fragments and tests are
performed to determine whether a fragment should be discarded. These test include
scissor-, alpha-, stencil-, and depth-test. Only in case that all these tests are passed, the
fragment color is combined with the color stored in the framebuffer.

The Scissor testcan be used to define a rectangular screen space area and only
fragments within this area pass. More important is theAlpha testallowing to discard
fragments which have an alpha-value that does not pass the alpha function (usually a
threshold). In contrast to the scissor test, thestencil testcan be used to enable or disable
individual pixels from being processed. The most important test is thedepth testwhich
enables hidden surface removal. In case the depth value of a fragment passes the depth
test — e.g. being smaller than the previously stored value — then the color-, alpha,
and depth-value are replaced. However, instead of replacing color and alpha, one can
also combine the values using any of the possible blending operations. This is useful
to enable semi-transparent surfaces. Finally, there is aditheringstage as well as some
other logic and masking operations before the fragments color is written into the actual
framebuffer.

2Generally, texture coordinates need to be corrected to account for perspective distortion.
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1.1.5 Summary

Interactive computer graphics based on polygon rendering has emerged into numerous
application fields from where it is indispensable. The goal of future graphics hardware
development is two-fold. On the one hand, the overall rendering bandwidth is to be
increased such that higher resolution displays can be driven as well as more complex
scenes be rendered. This includes the need for better algorithms to determine the po-
tentially visible polygons since for depth complex scenes the hidden surface removal
performed in the hardware is very expensive. On the other hand, it is important to de-
velop algorithms which can easily be mapped into hardware allowing a higher degree
of realism such as displacement mapping or per pixel lighting.
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1.2 Volume Rendering

Using surface primitives for image synthesis is a very powerful approach but when
looking beyond the objects surface, nothing will be behind or inside simply because
only the hull of the object is available and modeling all interior structures would be a
highly challenging task.

In contrast to polygon rendering, volume rendering is the synthesis of images from
structures which are represented as three dimensional sampled volume. Since volume
rendering deals with scanned, simulated, or measured data, photo-realism is not the
goal. In fact, the task is to synthesize meaningful images from volumetric data such
that the resulting two-dimensional image reveals useful insights to the user. Hence,
the difference between polygon and volume rendering are the underlying primitives as
well as the rendering approaches. Despite these differences, volume rendering borrows
rendering techniques such as shading and blending.

1.2.1 Volume Data Acquisition

Volumetric data can be computed, sampled, or modeled and there are many different
areas where volumetric data is available. Medical imaging is one area where volu-
metric data is frequently generated. Using different scanning techniques, internals of
the human body can be acquired using MRI, CT, PET, or ultrasound. Volume ren-
dering can be applied to color the usually scalar data and to assign a certain opacity
to the different structures (transparent, semi-transparent, or opaque) and hence, it can
give useful insights. Different applications evolved within this area such as cancer de-
tection, visualization of aneurisms, surgical planning, and even real-time monitoring
during surgery. Nondestructive material testing and rapid prototyping are other exam-
ples where frequently volumetric data is generated. Here, the structure of an object is of
interest to either verify the quality or to reproduce the objects. Industrial CT scanners
and ultrasound are mainly used for these applications.

The disadvantage of these acquisition devices is the missing color information since
scalar values represent density (CT), oscillation (MRI), echoes (ultrasound), and others.
For educational purposes where destructing the original object is acceptable, one can
slice the material and take images of each layer. This reveals color information which
so far can not be captured by the earlier mentioned acquisition devices. A well-known
example is the visible human project where this technique has been applied to a male
and a female cadaver. However, color is usually added during the visualization process.

Geoseismic data is probably one of the sources that generates the largest amount of
data. Usually, at least 10243 voxels (1 GByte and more) are generated and need to be
visualized. The most common application field is oil exploration where the costs can
be reduced tremendously by finding the right location where to drill the hole.

Another source of volumetric data are physical simulations where fluid dynamics
are simulated. This is often done using particles or sample points which move around
following physical laws resulting in unstructured points. These points can either be
visualized directly or resampled into any grid structure possibly sacrificing quality.

1.2.2 Grid Structures

Depending on the source from which the volumetric data origins, it can be given as a
Cartesian rectilinear grid, curvilinear grid, or maybe even completely unstructured.
While scanning devices mostly generate rectilinear grids (isotropic or anisotropic),
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physical simulations mostly generate unstructured data. Figure 1.1 illustrates these
different grid types for the 2D case. Depending on the underlying grid topology, dif-

(a) (b) (c)

Figure 1.1: Different grid structures: (a) Rectilinear. (b) Curvilinear. (c) Unstructured.

ferent algorithms can be used for rendering. While rendering on rectilinear grids is
referred to as volume rendering, rendering of curvilinear and unstructured grids is re-
ferred to as scientific visualization. Within this dissertation, the focus is on rectilinear
grids.

1.2.3 Classification

Classification is the stage that enables the user to find structures within volume data
without explicitly defining the shape and extent of that structure. It allows the user
to see inside an object and explore its inside structure instead of only visualizing the
surface of that structure, as done in polygon rendering.

In the classification stage, certain properties are assigned to a sample such as color
and opacity. Additionally, shading parameters indicating how shiny a structure should
appear can be assigned (material properties). Finding the right transfer function for the
opacity can be a very complex operation and has a major impact on the final 2D image.
In order to find the right transfer function(s), it is usually helpful to use histograms
illustrating the distribution of voxel values within the dataset.

The actual assignment of color, opacity, and other properties can be based on the
voxel value only, but other values can be taken as input parameters as well. Using the
gradient magnitude as further input parameter, samples within homogeneous space can
be interpreted differently than the ones within heterogeneous space [Lev88]. This is
a powerful technique when visualizing geoseismic data where the scalar values only
change noticeably in between different layers of the ground.

1.2.4 Segmentation

Empowering the user to see a certain structure using classification is not always pos-
sible. A structure can be some organ or tissue but is represented as a simple scalar
value. When looking at volumetric data acquired with a CT scanner, different types
of tissue — which similarly absorb X-rays — are mapped onto the same scalar value.
Therefore, no classification of density values can be found such that structures of sim-
ilar absorption properties can be properly separated. To separate such structures, the
voxels need to be labeled to possibly differentiate them during the rendering process,
requiring higher order knowledge. This process is referred to as segmentation and for
each segment, a different classification can be applied.

Depending on the acquisition method and the scanned object, it can be relatively
easy, hard, or even impossible to segment some of the structures automatically. Most



8 Introduction

algorithms are semi-automatic or optimized for segmenting a specific structure where
higher order knowledge about the shape can be exploited.

1.2.5 Illumination and Shading

Illumination and shading within volume rendering refers to the same illumination mod-
els and shading techniques as used in polygon rendering. The goal is to enhance the
appearance of rendered objects by simulating the effects of light interacting with the
object (see Section 1.1.1). Therefore, volume rendering borrows these techniques from
polygon rendering applying them to volumetric objects instead of surface elements.

As mentioned earlier, ambient, diffuse, and specular light components are com-
puted and combined by weighting each of them differently. The weighting depends
on the material properties. While tissue is less likely to result in reflected light, teeth
might reflect more light. Thus, it is important not to use material properties as global
constants but to include them in the classification such that the different structures in
the volume can be assigned different material properties.

To show the importance of illumination for the perception of rendered images, Fig-
ure 1.2 shows a skull without and with local illumination. In Figure 1.2 (b), the bone is
classified white using a strong specular component.

(a) (b)

Figure 1.2: Comparison of shading: (a) No illumination. (b) Local illumination.

1.2.6 Gradient Estimation

In order to perform shading, a normal is required to compute the diffuse and specular
components. However, volumetric data itself does not explicitly consist of surfaces
with associated normals but of sampled data being available on grid positions. This
grid of scalar values can be considered as a grey level volume and several techniques
have been investigated in the past to compute grey-level gradients from volumetric
data, which can be used for shading.

A frequently used gradient operator is the central difference operator. For each
dimension of the volume, the central difference of two neighboring voxels of a voxel
is computed which is an approximation of the local change of the gray value. Its filter
kernel can be written asGradientx;y;z = [�1 0 1]. Generally, the central difference
operator is a good low-pass filter and relatively cheap to compute since it requires only
six voxel values and three subtractions. However, very narrow structures can be missed
due to the central difference [LCN98]. Furthermore, the central difference gradient
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operator does not produce isotropic gradients which can be troublesome when using
the gradient magnitude as further input parameter to assign opacities.

The intermediate difference operator is very similar to the central difference op-
erator but has a smaller kernel. It can be written asGradientx;y;z = [�1 1]. The
advantage of the intermediate difference operator is that it detects high frequency de-
tail which can be lost when using the central difference operator. However, this also
leads to less appealing images when rendering datasets with a lot of noise. Similar
to the central difference gradient, the intermediate difference gradient is not isotropic.
Figure 1.3 illustrates the difference of central and intermediate difference operator for
a noisy dataset containing an aneurism.

(a) (b)

Figure 1.3: Two renderings of an aneurism dataset with high frequency noise using
different gradient estimation schemes: (a) Central difference gradient. (b) Intermediate
difference gradient.

A much better gradient operator is the Sobel operator which uses all 26 voxels that
surround one voxel. The Sobel gradient operator was developed for 2D imaging but
can easily be extended to 3D and applied to volume rendering. A nice property of the
Sobel gradient operator is that it produces nearly isotropic gradients but is expensive to
compute. It requires 27 voxel values, 54 multiplications, and 51 subtractions [Lic97].

A more detailed comparison of the resulting image quality of different gradient es-
timation schemes can be found in [THB+90] and different gradient estimation schemes
are compared in [Ben95].

1.2.7 Compositing

Compositing is the stage where all contributions to a pixel are combined into one final
pixel value. This can be expressed as an approximation of the well-known low-albedo
volume rendering integral, VRI [Bli82, Kru91, KH84, Max95]. The VRI analytically
computesIλ(x;~r), the amount of light of wavelengthλ coming from ray direction~r that
is received at location x on the image plane:

Iλ(x;~r) =

Z L

o
Cλ(s)µ(s)e

(�
R s
0 µ(t)dt)ds (1.1)

Here,L is the length of ray~r. If thinking of the volume as being composed of particles
with certain densities (or light extinction coefficients [Max95])µ, then these parti-
cles receive light from all surrounding light sources and reflect this light towards the
observer according to their specular and diffuse material properties. In addition, the
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particles may also emit light on their own. Thus, in Equation 1.1,Cλ is the light of
wavelengthλ reflected and/or emitted at locations in the direction of~r . To account for
the higher reflectance of particles with larger densities, one must weigh the reflected
color by the particle density. The light scattered at locations is then attenuated by the
densities of the particles betweensand the eye according to the exponential attenuation
function.

At least in the general case, the VRI can not be computed analytically [Max95].
Hence, practical volume rendering algorithms discretize the VRI into a series of se-
quential intervalsi of width ∆s.

Iλ(x;~r) =
L=∆s

∑
i=0

Cλ(si)µ(si)∆s
i�1

∏
j=0

e(�µ(sj )∆s) (1.2)

Using a Taylor series approximation of the exponential term and dropping all but the
first two terms results in the familiar compositing equation [Lev90].

Iλ(x;~r) =
L=∆s

∑
i=0

Cλ(si)α(si)
i�1

∏
j=0

(1�α(sj)) (1.3)

This is generally denoted as discretized VRI (DVRI), where the opacity is given as
α = 1:0� transparency. Due to the non linear behavior of the DVRI, all steps need to
be performed in sorted order.

For the front to back case, the discrete volume rendering integral can be written as:

Trans = 1.0; -- full
Inten = I[0]; -- initial value
for (i=1; i<n; i++) {

Trans *= T[i-1];
Inten += Trans * I[i];

}

The advantage is that the computation can be terminated once the transparency reaches
a certain threshold where no further contribution will be noticeable.

For back to front order, compositing is much less work since it is not necessary
to keep track of the remaining transparency. However, it requires that all samples are
processed and no early termination criteria can be exploited:

Inten = I[0]; -- initial value
for (i=0; i<n; i++) {

Inten = Inten + T[i] * I[i];
}

Instead of accumulating the color for each pixel over all samples using the volume ren-
dering integral, one can chose other compositing operators. Another famous operator
simply takes the maximum density value of all samples of a pixel and is known as
maximum intensity projection (MIP). This is frequently used in medical applications
dealing with MRI data (magnetic resonance angiography) visualizing arteries that have
been acquired using contrast agents. Two further common operators are (i) averaging
all values which contribute to one pixel or (ii) finding the first value which is above
a given threshold. The former one results in X-ray like images and the latter can be
accomplished by applying a binary opacity classification. Figure 1.4 illustrates the
volume rendering integral with almost binary classification versus maximum intensity
projection.
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(a) (b)

Figure 1.4: Compositing operators: Volume rendering integral with almost binary clas-
sification (a) and maximum intensity projection (b).

1.2.8 Filtering

Many volume rendering algorithms resample the volumetric data in a certain way using
rays, planes, or random sample points. These sample points rarely coincide with the
actual grid positions and require the interpolation of a value based on the neighboring
values at grid positions. There are numerous different interpolation methods and each
of them is controlled by an interpolation kernel. The shape of the interpolation kernel
provides the coefficients for the weighted interpolation sum. One dimensional interpo-
lation kernels can be applied to interpolate in two, three, and even more dimensions if
the kernel is separable. In the following, the most frequently used interpolation kernels
— which are all separable — are presented.

The nearest neighbor interpolation is the simplest and crudest method. The value of
the closest of all neighboring voxel values is assigned to the sample which results more
in a selection than filtering. Therefore, when using nearest neighbor interpolation, the
image quality is fairly low and when using magnification, a blobby structure appears.

Trilinear interpolation assumes a linear relation between neighboring voxels. The
achievable image quality is much higher than with nearest neighbor interpolation.
However, when using large magnification factors, three dimensional crosses (diamonds)
appear due to the nature of the trilinear kernel.

Better quality can be achieved using even higher order interpolation methods such
as cubic convolution or B-spline interpolation [Ben95]. However, there is a trade-off
between quality and computational cost as well as memory bandwidth. Cubic convo-
lution and B-spline interpolation require a neighborhood of 64 voxels and a significant
larger amount of computations than trilinear interpolation. Thus, trilinear interpolation
is usually a good trade-off with respect to achievable image quality and computational
costs.

1.2.9 Color filtering

The previously described classification and filtering steps can be performed in differ-
ent order, resulting in different image quality and characteristic artifacts. Generally,
both approaches — interpolation of data or color — are prone to aliasing if no appro-
priate sampling frequency is applied. Additionally, the different processing order can
possibly introduce artifacts.
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Interpolating scalar values can result in interpolated values which could be classi-
fied as structures which are not at all present in the data. This can only be circumvented
with a proper segmentation of the data but introduces high frequencies. On the other
hand, color interpolation by means of classification and shading of available voxel
values and interpolation of the resulting color values is prone to color bleeding when
interpolating color andα-value independently from each other [WMG98]:

Cλ =
N�1

∑
i=0

wi �Cλ;i (1.4)

α =
N�1

∑
i=0

wi �αi

A simple example of this is bone surrounded by flesh where the bone is classified
opaque white and the flesh is transparent but red. When sampling the corresponding
color volume, the interpolation of Equation 1.4 leads to color bleeding, as illustrated
in Figure 1.5(a). To obtain the correct color, one needs to multiply each color with the

(a) (b)

Figure 1.5: Color bleeding: (a) Independent interpolation of color and opacity values.
(b) Opacity weighted color interpolation. Images are courtesy of [WMG98].

corresponding opacity value before interpolating the color:

Cλ =
N�1

∑
i=0

wi �αi �Cλ;i (1.5)

The result is shown in Figure 1.5(b). While the color bleeding effect can be noticed
quite easily in colored images, it appears less obvious in grey-scale images where it
introduces darkening artifacts.

1.2.10 Summary

Within this section, an overview of the core terminology and elements of volume ren-
dering have been presented. Varying classification, gradient estimation, shading, and
compositing results in extremely different visualizations. Also the selection of the filter
used to interpolate data or color has a strong influence on the resulting image. Depend-
ing on the target application, different combinations might be better than others and
one needs to be aware of the potential artifacts and misinterpretations.



1.3 Outline 13

1.3 Outline

The remainder of this thesis is divided into two parts, one for polygon rendering and
another for volume rendering.

Part A presents approaches for the efficient utilization of graphics hardware for
rendering. With the growing complexity and popular multi-pass rendering approaches,
the overall rendering bandwidth needs to be utilized efficiently. Besides view frus-
tum culling and visibility determination, occlusion culling has evolved as a popular
technique. While the available mechanisms are fairly limited, a simple low-cost mech-
anism is presented, extending OpenGL and the graphics hardware such that sophisti-
cated occlusion queries can be performed (Chapter 2). Furthermore, a visibility driven
rasterization scheme using a visibility mask is presented. It extends conventional ras-
terization by discarding objects and parts of objects which belong to occluded screen
space regions (Chapter 3). The advantages of visibility driven rasterization are its sim-
plicity and the fact that it fits well into stamp or tile based rasterization, requiring only
few modifications.

In part B, a side by side comparison and analysis of the four most popular volume
rendering algorithms is presented (Chapter 4). Since interactivity is mandatory for most
volume rendering applications, different avenues can be taken to trade quality versus
frame-rate. Thereafter, the limitations of texture mapping based volume rendering are
surveyed and it is shown how on-the-fly shading and classification can be accomplished
within the available graphics hardware using OpenGL and extensions only (Chapter 5).
Since, the required multi-pass rendering reduces the frame-rate, slight modifications of
the datapath within polygon graphics hardware are proposed such that true and high-
quality volume rendering could be accomplished in a single pass.

Another possible avenue for interactive volume rendering is parallel computing.
While most parallel systems are expensive, an optimized parallel ray caster has been
implemented on a low-cost single-chip SIMD architecture (Chapter 6). The programma-
bility enables higher flexibility than using dedicated graphics hardware (OpenGL), but
the memory interface remains one of the most troublesome issues.

To circumvent the limitations of general purpose hardware approaches, we devel-
oped our own special purpose volume rendering accelerator with superior image qual-
ity and flexibility (Chapter 7). Based on the results of Chapter 4, ray casting has been
selected as the algorithm of choice and a hardware architecture for high quality image
synthesis has been designed. The architecture is very flexible due to the utilization
of reconfigurable hardware elements (field programmable gate arrays) and fits into a
low-cost PCI card which can be plugged into any off the shelve PC. In contrast to other
approaches, the architecture supports true ray casting which is mandatory for immer-
sive applications and stereoscopic display.

Finally, Appendix A presents a cross-platform rendering environment based on
OpenGL and the Qt library. This library has been used for most of the work presented
throughout this dissertation.
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Chapter 2

Occlusion Culling Hardware

Hidden-line-removal and visibility are among the classic topics in computer graphics
and a large variety of algorithms are known to solve these visibility problems. While
the z-buffer approach is very simple to implement and supported by any state-of-the-art
graphics card, it is extremely costly to solve overall visibility since it operates on a per
pixel base. For each pixel, all stages of the graphics pipeline need to be passed — e.g.
geometry transfer, geometry transformation, rasterization, texturing, etc. — before fi-
nally performing the depth test. Especially when rendering scenes with high occlusion
depth1, the z-buffer approach performs poor since only a small part of the overall used
bandwidth is spend on finally visible pixel.

Over the past years, many techniques have been presented to cull geometry prior
to sending it to the graphics hardware. The most obvious one is view-frustum culling
which culls geometry outside the view frustum. Other approaches cull geometry that
is not visible. Generally, this can be accomplished using an aspect graph but for large
scenes this graph is fairly complex and expensive to compute. It is also troublesome to
update such a visibility graph for dynamic scenes. Therefore, another avenue that can
be taken is to not attempt to compute visibility but to determine objects which are def-
initely occluded. Even though interactive frame-rates have been reported for specific
cases, real-time frame-rates are hard to accomplish for the general case. For interactive
rendering of large polygonal objects, fast visibility queries are necessary to quickly
decide whether polygonal objects are occluded or need to be rendered. None of the nu-
merous published algorithms provide visibility performance for interactive rendering
of large models.

Within this chapter, a hardware mechanism for efficient occlusion culling support
is presented, providing more detailed query information then other approaches. Fur-
thermore, extensions to the OpenGL API are presented to ensure the wide availability
of such a hardware mechanism.

1Number of triangles contributing to a screen pixel. A high number indicates a high occlusion depth and
vice versa.
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2.1 Introduction

Visibility has been of special interest for walkthroughs of architectural scenes [ARB90,
TS91] and rendering of large models [L. 97, GBW90, ZMHH97]. Unfortunately, most
of these approaches are limited to cave-like scenes [L. 97] or do not provide interactive
rendering (more than 10 frames/second) of large models on mid-range graphics hard-
ware [ZMHH97]. There are several papers which provide a survey of visibility algo-
rithms. In [ZMHH97], Zhang provides a brief recent overview with some comparison.
Brechner surveys methods for interactive walk-throughs [Bre96]. In the following,
previous work on visibility algorithms that can possibly be implemented in hardware
is summarized.

Occlusion culling is a technique to cull geometry in order to accelerate the render-
ing process by removing redundant work from the graphics hardware. One of the first
hardware supported mechanisms of this type has been the PixelFlow system [MEP92].
Even though all geometry needs to be processed with respect to transformation, raster-
ization, and texturing, shading is performed for visible fragments only. This process
is calleddeferred shadingand enables the hardware to perform the expensive shading
operation on visible fragments only2. However, all other pipeline stages still need to
process all fragments.

Greene et al. proposed the hierarchical z-buffer algorithm [GKM93, Gre95]. After
subdividing the scene into an octree, each of the octants is culled to the view-frustum
as proposed in [GBW90]. Thereafter, the silhouettes of the remaining octants are scan-
converted into the framebuffer to check if these blocks are visible. If they are visible,
their content is assumed to be visible too; if they are not visible, nothing of their content
can be visible. The visibility query itself is performed by checking a z-value-image-
pyramid for changes. Usually, the respective levels of the z-value-image-pyramid are
searched for z-value changes, a feature which is commonly not supported in hardware.
In [GKM93], a hardware implementation of this query on a Kubota Pacific Titan 3000
workstation using a Denali GB graphics hardware is discussed. Still, most time of the
visibility query is spent performing this "Z query".

Xie and Shantz suggested a simplified two-level hierarchical z-buffer approach that
is more suitable for implementation in hardware [XS99]. The update of the hierarchy
is performed only once per frame. However, all the hierarchical z-buffer related ap-
proaches increase the hardware complexity significantly.

Zhang et al. presented hierarchical occlusion maps [ZMHH97]. An occluder
database is selected from the scene database. Using these occluders, screen bounding
boxes of the potential occludees of the scene database are tested for overlaps, using an
image hierarchy of the projected occluders (hierarchical occlusions maps). Basically,
two features of this algorithm are supported in hardware. First, the construction pro-
cess of the hierarchical occlusion maps can be supported by modern texture-mapping
hardware. Second, the alternative use of a z-buffer as the depth estimation buffer for
the overlap test.

In December 1997, Hewlett-Packard proposed an OpenGL extension for occlusion

2PixelFlow is based on SIMD arrays of processing elements which perform most operations. Pro-
grammable shading can therefore require many processing cycles which makes it anexpensive operation.
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culling [HP97]. Similar to the hierarchical z-buffer approach, graphic primitives, which
represent a more complex geometry, are rendered within an occlusion test mode to
determine their visibility. Depending on the result, all underlying geometry is rendered
or skipped. Shortly after this announcement, an almost identical approach has been
presented by SGI and is supported on their Visual PC [SGI99]. However, no hardware
details were disclosed.

The work presented in this chapter is based on the same idea as Hewlett-Packard’s
OpenGL extension for occlusion culling [HP97] and therefore very similar. However,
it has been developed independently from what was proposed by Hewlett-Packard,
goes much further, and was published slightly after the announcement of Hewlett-
Packard [HMB98, BMH98, BMH99].

2.2 General Approach

Given a three dimensional scene of polygons, one can find a spatial partitioning scheme
such that each of the partition entities contains a subset of polygons. The partitioning
scheme can either be disjoint (octree) or allow for spatial overlaps of the partition
entities (sloppy partitioning [MBH+99]). Instead of testing whether the actual poly-
gons are occluded, one can use the conservative assumption that polygons contained
within a partitioning entity must be occluded in case the partitioning entity itself is oc-
cluded [GKM93, Gre95]. The advantage of this approach is the reduced complexity of
the problem, potentially resulting in an overall slightly reduced culling efficiency due
to the chosen granularity.

In summary, the rendering process consists of the following steps: First, the parti-
tioning entities are processed by performing view-frustum culling. Second, the parti-
tioning entities are tested for occlusion. Finally, all polygons contained in the remain-
ing not occluded entities are sent to the graphics hardware for rendering. Figure 2.1

(a) (b)

Figure 2.1: Occlusion culling in a tree alley: (a) Initial view. (b) Birds view of (a),
occluded objects for view (a) are marked with yellow outlined bounding boxes.

illustrates the impact of occlusion culling: (a) shows the initial view of a tree alley and
(b) is a bird’s view of what can be seen from (a). All yellow outlined boxes in (b)
indicate occluded objects in view (a).
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When using such an approach, one needs to be able to quickly determine whether
a partitioning entity is occluded. For complex scenes, this is hard to accomplish in
software while current graphics hardware does not support such queries3. However,
visibility information is available in the graphics hardware at the depth test where the
comparison result indicates visibility or occlusion.

In earlier experiments, the stencil buffer was used to render partitioning entities
searching for footprints of the partitioning entity in the stencil buffer [HMB98, BM99].
For further culling, a visibility ratio was additionally calculated by counting all foot-
prints and dividing this number by the amount of total pixels of the 2D screen space
bounding box of the projected entity. This allows to applyAdaptive Occlusion Culling
which can be used to determine an appropriate level of detail of the geometry contained
in the partitioning entity. Due to the expensive access to the stencil buffer4, it was
obvious that dedicated hardware is required for interactive and real-time frame-rates.
Hardware support for occlusion culling should provide information about the general
visibility of the rendered objects but also more quantitative information such as num-
ber of pixels of the projection of the geometry, number of visible pixels, minimum and
maximum ofz-values, and many more [BMH98].

In the following, the necessary extensions to the hardware and to the OpenGL API
supporting quantitative queries is presented. The queries include the number of visible
pixels and the number of pixels within the projection of the object.

� Projection Hit Counter (PHC) . This is used to quantify all pixels which are
within the projection of the partitioning entity.

� Visible Hit Counter (VHC) . This counts the number of pixels of the projection
of the object which pass the depth test.

Furthermore, the queries are restrictable to a certain screen space area such that a screen
space subdivision can be realized. The proposed hardware and API extension is not
limited to these two counters and could easily be extended for even more sophisticated
queries.

2.3 Hardware Implementation

Each triangle that is rendered passes through the pipeline stages of the graphics sub-
system. First, a triangle is transformed, clipped, and per vertex lighting information
computed. Second, the triangle is scan-converted interpolating texture coordinates,
color, alpha, and depth values for each individual pixel. Finally after texturing, the
individual pixels are passed through the per fragment pipeline. This stage performs the
final operations on the data before the fragments are stored as pixels in the framebuffer.
Since the framebuffer update depends on some conditions, some tests which evaluate
arriving and previously stored z-values (for z-buffering) have to be carried out. Also,
blending of incoming pixel colors with stored colors, as well as masking and other
logical operations on pixel values are done in this stage of the pipeline. Figure 2.2
illustrates the per fragment pipeline of OpenGL.

3Parallel to this work, Hewlett-Packard announced the occlusion culling flag which provides such a query.
This is compared and discussed in Section 2.7.

4For this experiment, an SGI O2 has been used. The O2 uses a unified memory architecture where
reading of any buffer is relatively fast compared to other graphics hardware. Furthermore, the stencil buffer
is the buffer which can be read quickest of all framebuffers.
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Figure 2.2: Per fragment operations of OpenGL.

To establish the previously described quantitative occlusion information, it is nec-
essary to access the per fragment data. The PHC (projection hit counter) is incremented
whenever a fragment enters the per fragment pipeline. However, the VHC (visible hit
counter) requires the result of the depth test to be able to determine whether a pixel
is visible. In the following, the unit which generates the quantitative occlusion infor-
mation will be referred to asocclusion unit. This occlusion unit needs to be located
in the per fragment pipeline such that it can access the required data. Implementing
the occlusion unit is very cheap. All it takes are two registers, two counters, and a
little bit of logic, as illustrated in Figure 2.3. For each fragment, itsx andy address
are compared to determine whether the fragment resides within a user specified screen
space bounding box. In case the fragment belongs to a pixel within this bounding box,
the PHC is incremented. Furthermore, the VHC is incremented in case the fragment
passes the depth test, e.g. it would alter the frame-buffer. To ensure correct counting
of the projection area and visible pixels, backface culling must be enabled, otherwise
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Figure 2.3: Schematic description of the occlusion unit.

the amount of projection hits would be doubled while the amount of visible hits would
depend on the order the triangles are rendered5. Furthermore, the triangles of the par-
titioning entity need to be representing a convex object since concave objects would
again result in multiple projection and possibly multiple visible hits for a single pixel
(x;y). One could certainly design hardware which can handle the correct processing of
concave objects but would result in a more complex design and the restriction to convex
objects certainly is a good trade-off between functionality and hardware consumption.

Figure 2.3 schematically illustrates the implementation of an occlusion unit, ca-
pable of handling the quantitative query with respect to a certain screen space area
(Comp). In case the graphics hardware consists of more than one pixel pipeline, each
pixel pipeline will require an occlusion unit. Thus, when querying the information
from the occlusion unit, the collected data needs to be combined.

2.4 Extending OpenGL for Occlusion Queries

In order to exploit hardware extensions as proposed in the previous section, it is nec-
essary to provide a common interface to the user (API). In the following, this is shown
extending OpenGL but could be done equivalently for DirectX. The integration of oc-
clusion queries in OpenGL requires to extend the API by adding new types and calls,
but also reusing existing calls.

5In case the polygons are rendered in back to front order, the number of visible hits would double while
it would remain unchanged for rendering in front to back order. Since the rendering order depends on the
viewing direction, this would result in undesirable random results.
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Using already existing OpenGL calls with new parameters

In order to provide an occlusion mechanism, a new type needs to be provided.

GLenum GL_OCCLUSION_QUERIES

Occlusion queries can be enabled extending the available OpenGL callsglEnable
andglDisable .

void glEnable(GL_OCCLUSION_QUERIES)
void glDisable(GL_OCCLUSION_QUERIES)

This is similar to the way light sources are handled in OpenGL. On enabling the test
GL_OCCLUSION_QUERIES, the pipeline will be flushed to ensure that all available
data has been processed and is correctly rendered into the frame-buffer. Furthermore,
all fragments of geometry rendered with enabledGL_OCCLUSION_QUERIESpass
all fragment tests but will not alter the frame-buffer content, as described earlier. Indi-
vidual occlusion queries are enabled or disabled correspondingly.

GLenum GL_OCCLUSION_QUERYi

void glEnable(GL_OCCLUSION_QUERYi)
void glDisable(GL_OCCLUSION_QUERYi)

Again, this is similar to the way light sources are handled in OpenGL.i denotes the
index of the occlusion query which should be enabled/disabled. When enabling an
occlusion query, the counters of this query will be set to zero. Multiple occlusion
queries are possible at the same time using different screen space bounding boxes. The
maximum number of possible occlusion queries is specified by another type and the
maximum number of supported queries can be obtained using an existing call.

GLenum GL_MAX_OCCLUSION_QUERIES

void glGet(GL_MAX_OCCLUSION_QUERIES)

The maximum number of occlusion queries is important in case multiple occlusion
queries are used in parallel. How many queries are support depends on the implemen-
tation of OpenGL which is a matter of how many counters can be implemented at a
reasonable cost.

Adding new OpenGL calls

Besides enabling and disabling the previously described occlusion queries, it must be
possible to specify the screen space bounding box in which the occlusion query will be
sensitive to fragments. Therefore, a new type is necessary.

GLenum GL_2DBOX

Adding a new call which is again similar to specifying light sources, the screen space
bounding box can be specified.

void glOcclusionQueryiv(GL_OCCLUSION_QUERYi,
GL_2DBOX, values)

wherevaluesis an array of four ints needed to specify an axis aligned screen space
bounding box.
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GLint values[] = {Xmin, Ymin, Xmax, Ymax}

With the so far described calls, multiple occlusion queries can be specified as well as
enabled and disabled. Acquiring the data from the hardware can be done using two
new types, one for each counter.

GLenum GL_PROJECTION_HITS
GLenum GL_VISIBLE_HITS

To obtain the query result, a new call needs to be added.

glGetOcclusionQueryiv(GLenum query,
GLenum name,
GLint *params)

query is a symbolic name of typeGL_OCCLUSION_QUERYi where i can be any
value of 0� i < GL_MAX_OCCLUSION_QUERIES. name specifies the query pa-
rameter type which can be eitherGL_PROJECTION_HITSor GL_VISIBLE_HITS .
Finally, params contains an array of values but for the so far presented parameter
types (GL_PROJECTION_HITSand GL_VISIBLE_HITS ) only one parameter is
returned, indicating the number of determined hits. However, other query results pro-
viding a list of values could generally be supported.

Overall, the following sequence of calls enables determining the visibility of an
object (set of polygons):

1: GLint VHC, PHC;
2: GLint values[] = {0,0,1023,1023}; // full screen
3: glOcclusionQueryiv(GL_OCCLUSION_QUERY0,

GL_2DBOX, values);
4: glEnable(GL_OCCLUSION_QUERIES);
5: glEnable(GL_OCCLUSION_QUERY0);
6: Render() // geometry approximating

// the partitioning entity
7: glDisable(GL_OCCLUSION_QUERY0);
8: glDisable(GL_OCCLUSION_QUERIES);
9: glGetOcclusionQueryiv(GL_OCCLUSION_QUERY0,

GL_VISIBLE_HITS, VHC);
10: if (VHC > 0)

Render(); // geometry contained in
// the partitioning entity

Starting with the presented framework for occlusion queries, further query parameters
and results can easily be added. E.g., the minimum and maximum depth value of the
encountered hits could be collected and returned, as proposed in Section 2.2. This
would simply require to add another type.

GLenum GL_MINMAX_DEPTH

With this type, the depth information could be integrated into the API, extending the
parameters an occlusion query can return. Adding the minimum and maximumz-value
to the functionality of the occlusion unit (see Figure 2.3) is very simple and does not
require much hardware.
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2.5 Adaptive Occlusion Culling

Adaptive occlusion culling was first proposed by Zhang in [ZMHH97]. The basic idea
is that objects which only have a small number of not occluded pixels have a small
visual contribution to the final image. Therefore, if those objects are skipped, the
visual impression of the rendered scene will not be jeopardized. In their approach, the
user can specify a certain threshold used to determine which geometry is discarded
and which rendered. Using quantitative occlusion query information, it is possible to
determine the accurate percentage of an object’s visibility.

Visibility =
VHC
PHC

(2.1)

Instead of simply discarding geometry which has a visibility that is below a given
threshold, the visibility percentage can be used as additional parameter to determine
the level of detail (LoD) at which the geometry should be rendered. If only a small
percentage is visible, a simple representation of the object should suffice.

However, the relative visibility can be misleading since an object might be fully
visible while the partitioning entity used to perform the query is much larger. Hence,
the set of polygons used to describe the partitioning entity should be a good approx-
imation of the actual geometry contained in the entity. Nevertheless, in contrast to
previous approaches where the degree of visibility is determined using the minimal 2D
screen space bounding box [HMB98], the presented approach here is more accurate
because the actual pixels of the projection of the object (PHC) are used. Figure 2.4(a)
shows a zoomed view of Figure 2.1(a). While Figure 2.4(a) is rendered culling entirely
occluded objects only, (b) shows the image rendered culling all objects which have a
degree of visibility which is below 0.02 (see Equation 2.1).

(a) (b)

Figure 2.4: Adaptive occlusion culling can be used to further accelerate the rendering
by using the relative visibility to choose an appropriate level of detail. Partitioning
entities of culled objects are marked yellow: (a) Shows an image of the tree alley
culling only objects which are fully occluded. (b) Geometry with a relative visibility
of less than 0.02 is assumed to be occluded.

Overall, adaptive occlusion culling can be a good trade-off to further reduce the
number of rendered objects. Furthermore, it can be used for frame to frame coherency
to predict how the visibility of an object might change in the subsequent frame.
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2.6 Results

The presented hardware for occlusion queries is not yet implemented in any avail-
able polygon graphics hardware and hence, it is difficult to give accurate performance
estimates. However, Hewlett-Packard provides a simplified version of this occlusion
query returning a plain visible or occluded information for polygons being rendered in
a dedicated occlusion mode [HP97, HP97]. Therefore, the performance improvements
possible with the here presented detailed occlusion queries are expected to be better.
Nevertheless, tests using HP’s graphics accelerators can serve as a measure of the lower
bound.

In general, the hierarchical representation of a scene and its elements is of crucial
importance for the efficiency of such hardware supported screen space based occlu-
sion tests. The grainer a bounding box approximates the actual geometry contained
in the bounding box, the higher the risk to detect it as being visible even though the
content might be occluded. Finding good bounding boxes as well as a good spatial
hierarchy is an ongoing research topic [MBH+99]. In the following, summarized re-
sults are presented using SGI’s commercially available Optimizer tool. It can be used
to automatically generate a hierarchy of a given scene and produces a hierarchical rep-
resentation of groups polygons using an octree based subdivision scheme. For the
evaluation, two scenes were selected; a large city model and a surface representation
of a human ventricular system. Images of the two scenes are given in Figure 2.5 and
the polygon count is shown in Table 2.1. The experiments were conducted on an HP

Scene Polygons Raw Vfc Occ

Ventricle 270,882 4.6 5.3 13.6
City 1,408,152 0.9 1.4 11.8

Table 2.1: Performance improvements due to Hewlett-Packard’s occlusion culling.
Frame-rates are denotedRaw for no culling, Vfc for view frustum culling, andOcc
for occlusion culling.

B180/fx4 graphics workstation using a camera path leading through each scene. The
numbers given in Table 2.1 are averaged along the used camera paths. In average, the
performance improvements range from 150 to 740%. Using the more detailed occlu-
sion queries as proposed in this chapter could yield further performance improvement
since object with a lower visibility could be rendered at a lower level of detail.

2.7 Summary

A dedicated hardware supporting occlusion queries within the graphics subsystem has
been presented. By extending the OpenGL API in a straight forward manner, users can
be empowered to exploit this quantitative visibility information. Further extensions of
the possible return parameters can easily be integrated. Nevertheless, such an occlu-
sion query comes at a certain price. When enabling occlusion queries, all elements
in buffers (DisplayLists) and the pipeline (triangles, fragments) need to be processed
until completion (flush). Depending on the graphics subsystem, this needs some finite
time. After executing the rendering of the polygons approximating the partitioning en-
tity, one needs to disable the occlusion queries causing yet another buffer and pipeline
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(a) (b)

(c) (d)

Figure 2.5: Ventricular system: (a) Overview. (b) Inside view. City model: (c)
Overview. (d) Inside view.

flush. Overall, during these two flushes operations, rendering bandwidth is wasted and
one needs to carefully choose which partitioning entities are tested.

As mentioned earlier, Hewlett-Packard also proposed an occlusion test and a corre-
sponding extension to OpenGL [HP97, HP97]. However, this test is based on a simple
visible/occluded query which does not include such counters or more detailed query
information. Very recently, Hewlett-Packard also introduced to possibly extend this to
multiple occlusion tests within one pass which is also discussed within the OpenGL
ARB6. However, returning more detailed query information — as proposed in this
chapter — has not yet been proposed.

What can be concluded from Hewlett-Packard’s occlusion test is the cost due to
the pipeline flushes. Hewlett-Packard estimates that an occlusion test is equivalent
to rendering 190 (65) 25-pixel triangles on an fx6+ (fx2+) [Sev99]. The cost of the
here proposed quantitative occlusion query will be the same as for Hewlett-Packard’s
occlusion test.

6Architecture review board.
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Chapter 3

Visibility driven Rasterization

In the previous chapter, occlusion culling hardware enabling to cull geometry prior to
sending it to the graphics hardware has been presented. Within this chapter, an addi-
tional mechanism establishing local visibility information during the rendering of the
occlusion query is introduced. In case the partitioning entity has been detected visible,
the local visibility information can be exploited for accelerated rendering of the con-
tained geometry.

Visibility driven rasterization is capable of significantly increasing the rendering
performance of modern graphic subsystems. Instead of scan converting, texturing,
lighting, and depth-testing each individual pixel, a two-level visibility mask is inte-
grated within the rasterization stage enabling the removal of groups of pixels and trian-
gles from rasterization and the subsequent pipeline stages. Local visibility information
is stored within the visibility mask that is updated several times during the generation
of a frame. The update can easily be accomplished by extending already (in hardware)
available occlusion culling mechanisms (e.g., those of HP and SGI or the mechanism
which was proposed in the previous chapter), where it is possible to integrate the ad-
ditional functionality without any additional delay cycles. In addition to these existing
hardware based occlusion culling approaches — which cull only geometry contained
in bounding primitives determined asoccluded— visibility driven rasterization is able
to significantly accelerate the rendering of the geometry determined asvisible. How-
ever, the approach does not specifically rely on such occlusion culling hardware.
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3.1 Introduction

Over the last few years, the complexity and overall rendering bandwidth of graphics
subsystems has increased dramatically. Starting from large scale multi-chip systems
[Ake93, MBDM97], single chip solutions [Inc99, MMG+98a], and even full graph-
ics processing units (GPUs, which also integrate transformation, lighting, and setup
[nVi99]) are available. This trend is based on increased gate counts in integrated cir-
cuits and by new memory technologies. However, memory bandwidth and memory
access efficiency remain one of the most troublesome issues.

Numerous approaches have been presented to hide memory latency by caching
[AMSW97], prevent stall cycles by prefetching [IEP98], and interleave memory such
that stalls appear as infrequent as possible [MMG+98b]. Nevertheless, each pixel can
causememory stallsdue to memory accesses. Moreover, the dramatic board-to-chip
integration, enables more complex dynamic geometry andricher pixelsoperations
[Kir98]. Richer pixels comprise better filtering techniques, multi-texturing, and per
pixel shading models. The associated iterations over multiple light sources and ap-
plication of multi-texturing increases computational complexity as well as the overall
memory inefficiency per pixel, since the multiple memory accesses potentially cause
memory stalls. Thus, the processing of pixels becomes increasingly expensive and it is
exceedingly important to keep the amount of redundantly processed pixels as small as
possible.

Approaches to reduce the bandwidth and rendering problems include mesh simpli-
fication and compression, as well as visibility and occlusion culling. While the former
reduce the overall geometry load, the pixel complexity remains almost unchanged. In
contrast, visibility and occlusion culling address geometry and pixel complexity by
culling non-visible geometry. However, these algorithms either introduce high com-
putational costs or tend to be of limited efficiency in scenes with low depth complex-
ity. Therefore, the remaining rasterization and subsequent pixel processing load is
frequently beyond the interactive rendering capabilities of current graphics hardware.
Our novel visibility driven rasterization significantly reduces the remaining rasteriza-
tion load (after “traditional” occlusion culling [SGI99, SOG98] or what has been pre-
sented in the previous chapter), introducing a two-level visibility mask. This mask
enables the graphics hardware to reject triangles and groups of pixels in non-visible ar-
eas and requires only incremental modifications of the graphics subsystem. In analogy
to PixelFlow [MEP92], this can be referred to asdeferred fragment processingwith
a certain granularity determined by the number of times the visibility information is
established.

3.2 Rasterization

Visibility driven rasterizationrepresents a new scheme which extends current rasteriza-
tion. Based on a few polygons — e.g. representing the bounding box of many polygons
— binary screen-space oriented visibility information is generated and stored within
the rasterizer in avisibility mask. In case any portion of these polygons left traces
in the visibility mask, the established visibility information is exploited to cull sub-
sequently rendered triangles and portions of triangles which reside within not visible
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screen-space areas, as depicted in Figure 3.1.

(a) (b)

Figure 3.1: Four wheel hubs of cotton picker scene (see Figure 3.6). (a) Two of the
wheel hubs are partially occluded by the front wheel hubs. (b) The culled triangles of
the partially occluded wheel hubs are colored in red, the culled pixel groups are colored
in yellow. The black grid indicates the applied two-level visibility mask.

To accomplish a good visibility culling performance, the visibility information rep-
resented in the visibility mask should be updated several times. This is achieved by first
clearing the visibility mask and rendering a set of polygons — e.g., a bounding box or
other kinds of a convex hull — used to determine visibility. Therefore, visibility driven
rasterization can easily be combined with occlusion culling mechanisms as presented
in the previous chapter which already performs such a pipeline synchronization step.

The fragments of the rendered polygons which pass the depth test will cause the
corresponding bit of the visibility mask to be set. Thereafter, this visibility information
can be exploited during rendering of geometry that is located behind the polygons used
to establish the visibility. Hence, the visibility mask contains only coverage informa-
tion based on a set of polygons, but no depth information1. The depth information is
inherently given, since the geometry (to which the visibility mask is applied) is con-
tained or at least visually blocked by the geometry used to establish the visibility mask.
A simple example is to render a bounding box to establish the visibility mask and sub-
sequently render the contained geometry. As we do not store depth but pure visibility
information, the visibility mask is very compact.

3.2.1 Visibility Mask

The visibility mask is the core element of visibility driven rasterization. Each bit of
it represents a certain area of the screen space. A set bit indicates that the geometry
used to establish the visibility information is at least partially visible within this area,
otherwise it is occluded. A certain granularity has to be selected for the subdivision

1Note that for best culling performance, geometry should be rendered sorted front to back.
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of the screen space into areas and the efficiency of a subdivision scheme depends on
the scenes to be rendered. Generally, selecting very large areas per bit of the visibility
mask results in a high probability to detect mostly visible areas where no geometry can
be culled from rasterization. On the other hand, selecting a bit for each pixel of the
screen space does not achieve significant performance improvement since at best only
idle pipeline cycles can be gained. Furthermore, the finer the visibility mask, the more
storage is required (e.g., a viewport of 1024�1024 pixels and one bit per area of 8�8
pixels would require 2 KByte to store such a visibility mask). Since the visibility mask
has to be accessed at the processing speed of the rasterizer without introducing stall
cycles, it must be implemented either as a large register file or as an SRAM module,
possibly on-chip. All things considered, the granularity is a trade-off between storage
(chip real estate) and culling efficiency.

In the following, rectangular areas (tiles) of sizen�m are employed for each bit
of the visibility mask. The optimal values forn (in x) andm (in y) are evaluated in
Section 3.4.1, using different polygonal scenes from “real world” applications. To
facilitate an efficient implementation in hardware,n andm are chosen as powers of
two. Furthermore, since register files and SRAMs are organized as addressable space
of four, eight, 16, or 32 bit entries, 16 bit entries are selected for simplified matters.
By storing the information of a group of tiles in a single entry of the visibility mask
(here 4�4 = 16 neighboring tiles), a two-level hierarchy is obtained. This two-level
hierarchy can be exploited to cull triangles more efficiently. The visibility mask is
empty in case the visibility hit counter (VHC) — as presented in the previous chapter
— is zero. In case of VHC> 0, the contained geometry would be rendered possibly
using an appropriate LoD and the content of the visibility mask can be exploited during
rendering of the contained geometry.

3.2.2 Culling Triangles

The screen space nature of the visibility mask requires that triangles are first trans-
formed and clipped. Once screen space coordinates are available, it can be determined
whether a triangle resides within a single tile of the visibility mask by testing the ad-
dress of the vertices of the triangle. In case the triangle is entirely contained and the
corresponding bit in the visibility mask indicates non-visibility, it can safely be culled
since it resides within a non-visible tile (trivial reject I). Depending on the size of tiles
and triangles, it occurs more or less frequently that triangles extend over two or more
tiles. In this case, the trivial reject I mechanism will fail. To further increase the culling
efficiency, a second test can be added culling triangles which reside within a group of
tiles (4�4 tiles = tile group) exploiting the previously described two-level hierarchy
of the visibility mask. Thus, if the entire tile group is non-visible then the triangle is
culled (trivial reject II). Figure 3.1(b) shows triangles culled due to trivial reject I and
II colored red. Please note that for both trivial reject mechanisms, the perspective di-
vision of thex andy components is necessary. Only if the triangle can not be culled,
the perspective division for thez component is required. Please note that trivial reject
I and II are performed in ”parallel“ and a triangle is discarded in case the logicalor of
the two test results is ”1“.

Figure 3.2 illustrates the two-level hierarchy and the trivial reject mechanisms. In
this example, none of the triangles are culled by testing them against single tiles (trivial
reject I). However, if all four tile groups are non-visible, all but triangle ”B“, which
emerges over two tile groups, are culled (trivial reject II). All triangles which can not
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Figure 3.2: Four tile groups: Each tile represents the area ofn�mpixels on the screen.
The visibility information of a tile group (16 tiles, 4�4) is stored in one entry of the
visibility mask.

be culled are sent to the rasterization stage, including some partially or entirely non-
visible triangles which are addressed in the following section.

Generally, culling of triangles from the graphics subsystem results in improved per-
formance if the stages from which load is removed can exploit this additionally avail-
able bandwidth. Therefore, to achieve good performance using visibility driven ras-
terization, the graphics subsystem must be designed with respect to this culling mech-
anism, e.g., accommodate the bandwidth of the rasterizer and the subsequent pixel
processing stages and integrate look-ahead logic for the skipping. Nevertheless, for
current graphics subsystems, performance improvements are already achievable for (i)
larger triangles (by reducing fill-rate limitations) and (ii) when using multi-texturing
(by reducing memory stalls due to page misses).

3.2.3 Culling Groups of Pixels

The triangles which pass trivial reject I and II are sent to the rasterization stage, even
though they are not necessarily fully visible. Further bandwidth can be saved on the
subsequent pipeline stages by removing groups of pixels of these triangles. Figure 3.3
illustrates one of the frequent cases where a remaining triangle covers one or more non-
visible tiles. During rasterization, the groups of pixels associated with those tiles can
safely be culled (see yellow pixels of triangles in Figure 3.1(b)). To exploit the resulting
idle cycles in existing graphics subsystems, the rasterization continues within visible
tiles, after skipping the non-visible tiles. Depending on the implemented rasterization
scheme (scanline or stamp based), this requires more subtlety and cleverness which is
discussed in the following.

3.3 Hardware Issues

Generally, a rasterizer performs several setup calculations per triangle (such as edge
increments for color, texture coordinates, depth value, etc.) and subsequently gen-
erates pixels in a certain order. For many years, this was performed in a scanline
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Figure 3.3: The triangles covering several non-visible tiles of a single tile group (a), of
multiple tile groups (b).

based order by stepping along the edges and incrementally generating all pixels be-
tween two edge points. Partially driven by the experiences gained in the PixelFlow
project [MEP92, EMPG97], stamp based rasterization recently became popular. A
stamp of e.g., 2�2 pixels is moved across a triangle, potentially generating up to four
pixels in each cycle by evaluating three edge equations for each pixel of the stamp
[MMG+98b, MM00]. Unfortunately, graphics chip companies do not publish details
on such implementations. One of the few valuable sources are [MMG+98b, MM00]
indicating that tile based rasterization and visibility driven rasterization could be nicely
combined.

Scanline and stamp based rasterization finally generate pixels including interpo-
lated color, texture coordinates, depth value, etc. In contrast tovisibility driven ras-
terization, the above described rasterization is referred to as ascurrent rasterization.
Figure 3.4 illustrates the schematic components of a current rasterization scheme. Ad-
ditionally, the extensions needed for visibility driven rasterization are included.

3.3.1 Establishing Visibility Information

From the set of polygons used to establish visibility information, all pixels which pass
the depth buffer test are used to set their corresponding bit of the visibility mask. The
address of the tile group and the mask to obtain the corresponding bit can easily be gen-
erated. Furthermore, accessing, setting, and writing a bit works well in architectures
where at best one pixel passes the depth test per cycle. However, in graphics architec-
tures consisting of multiple pixel pipelines, access conflicts need to be resolved. An
obvious solution would be to replicate the visibility mask for each pixel pipeline but
this increases the overall hardware implementation costs. Alternatively, the accesses
can be synchronized by adding a small FIFO buffer to each pixel processing pipeline
which stores the tile ID2 and applying a processing priority given by the number of
entries in each FIFO. When reading the value from a FIFO, all other FIFOs having an
ID that belongs to the same visibility mask entry need to be combined by performing
a logical OR operation of the mask bits. To prevent stall cycles due to a full FIFO,
each FIFO has a controller that impedes IDs from entering the FIFO, if one of the en-
tries in the FIFO already has the same ID. This mechanism works well as long as the
number of pixels per tile is larger than the number of pixels generated per cycle by the

2The ID is a composition of address of the visibility mask entry and the corresponding mask for the
specific individual bit.
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Figure 3.4: Current and visibility driven rasterization. Yellow areas and green blocks
and arrows indicate additionally needed resources for visibility driven rasterization.

rasterizer.
Generally, modern pixel pipelines operate on neighboring pixels of the same trian-

gle which prevents conflicts while addressing the visibility mask as long as the screen
space alignment of the pixel pipelines does not conflict with the tile borders of the
visibility mask. Since powers of two are very common, conflicts should be entirely
avoidable without requiring FIFOs.

3.3.2 Culling Triangles

Implementing the two described trivial reject mechanisms in hardware is straight for-
ward. Trivial reject II requires the address of the tile group which is computed bylog n
shift operations ofxaddress, andlog mshift operations ofyaddressfor each vertex of the
triangle. If the resulting bit patterns are identical for all three vertices, the triangle re-
sides within one tile group and assembling the bit patterns generates the address of the
corresponding entry in the visibility mask. Finally, non-visibility is given in case the
entry is zero and trivial reject II succeeds. Trivial reject I is evaluated by decoding the
corresponding tile of the tile group and checking the resulting bit for non-visibility.

A schematic implementation of this mechanism requiring few hardware compo-
nents is shown in Figure 3.5. Here, tiles of 16� 16 pixels and tile groups of 4� 4
are used for a viewport of 1024�1024 pixels. This results in a visibility mask of 256
entries and an overall size of 4 Kbit which can either be realized as a large register file
or an SRAM memory module, possibly on-chip.



36 Visibility driven Rasterization

Vertex 1:
Yaddr:

Xaddr:

Vertex 2:
Yaddr:

Xaddr:

Vertex 3:
Yaddr:

Xaddr:

16 bit

Visibility mask

=

=

&
=

16 bit
Trivial 

Reject II
Trivial 
Reject I

&

&
1

1 bit

1 bit

1 bit

1 bit

1
8 bit

8 bit

4 bit

M
U

X

’0’

Figure 3.5: Implementation of the trivial reject I and II mechanisms. Logic for tiles
of 16� 16 pixels and tile groups of 4� 4 tiles is shown. Only very basic and cheap
bit operations are required: Test if triangle resides in one tile group (blue arrows), in a
single tile (red arrows and subsequent AND), and compare with bit and bit pattern of
corresponding visibility mask entry (green arrows).

3.3.3 Culling Groups of Pixels

Removing groups of pixels from the subsequent processing stages during rasterization
can be integrated by checking the bit of the corresponding tile in the visibility mask
of the pixels to be generated. However, besides avoiding memory stalls possibly due
to processing of these pixels, only moderate additional performance improvements are
likely. To achieve significant additional performance improvement, the rasterization
process must be modified such that skipping non-visible tiles can be accomplished
without latency such that the pipeline is always processing potentially visible pixels.
This skipping mechanism is not trivial, since rasterization is usually performed in an
incremental manner and skipping is dependent on the implemented rasterization ap-
proach.

In a scanline based rasterization approach [Kug96, WEWL99], multiplications are
avoided as often as possible, except in the setup phase. Therefore, while generating
pixels between two edge points along a scanline, color, depth, and other increments
(∆R;∆G;∆B;∆Z) are added to the current values stored in registers (span iteration). A
step of a power of two can easily be achieved by shifting the corresponding∆ incre-
ment. Steps of 3;5;6;7 etc. are more difficult to implement. By generating an array of
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increment values (∆;2�∆;3�∆; etc.) during the rasterization setup phase, the according
increment could be chosen to quickly skip non-visible tiles.

For stamp based rasterization, McCormack et al. mention that the stamp may also
be constrained to generate all fragments in a 2n by 2m rectangular ”chunk“ before
moving to the next chunk3 [MMG+98b]. Very recently, the authors presented a tile
based rasterization scheme [MM00] which indicates that visibility driven rasterization
based on tiles would nicely fit together. Therefore, it seems to be feasible to integrate
skipping of an occluded tile without introducing any idle cycles.

In summary, it is not straight forward to incorporate the required skipping mech-
anism into common scanline based rasterization. However, it fits perfectly into more
recent stamp based rasterization and thus, enabling additional performance improve-
ments.

3.4 Results

For the simulation of the potential benefits of visibility driven rasterization, the MESA
3D graphics library — an Open Source implementation of the OpenGL graphics API
— has been extended. The extensions follow the terminology used in the previous
chapter. For visibility driven rasterization, three new types are necessary.

GLenum GL_VISIBILITY_MASK
GLenum GL_GENERATE_VISIBILITY_MASK
GLenum GL_APPLY_VISIBILITY_MASK

To ensure proper visibility information, the visibility mask needs to be cleared before
it is established.

void glClear(GL_VISIBILITY_MASK)

Establishing the visibility information can be enabled or disabled reusing existing
OpenGL calls.

void glEnable(GL_GENERATE_VISIBILITY_MASK)
void glDisable(GL_GENERATE_VISIBILITY_MASK)

Fragments of subsequently rendered polygons do affect the content of the visibility
mask. For each fragment which passes the depth test, the corresponding bit of the
visibility mask is set. Note thatGL_GENERATE_VISIBILITY_MASK could auto-
matically be enabled while performing an occlusion test as presented in the previous
chapter (GL_OCCLUSION_QUERIES).

Once the visibility mask is established, it can be used during rendering by enabling
GL_APPLY_VISIBILITY_MASK . Thus, the difference between rendering without
and with enabledGL_APPLY_VISIBILITY_MASK is that the latter one employs
visibility driven rasterization.

void glEnable(GL_APPLY_VISIBILITY_MASK)
void glDisable(GL_APPLY_VISIBILITY_MASK)

3The authors state that“(...) chunking is not cheap due to three additional 600-bit save states and
associated multiplexers.“but in a later publication refine this statement“(...) we recently discovered that we
could have used a single additional wait state.“
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Please note that the rendering of the bounding box, as presented in the previous chapter,
could potentially be accelerated in caseGL_GENERATE_VISIBILITY_MASK and
GL_APPLY_VISIBILITY_MASK are both enabled.

The following code excerpt illustrates the use of these two calls. Alpha, depth,
and stencil test have to be set appropriately such that all fragment reach the occlusion
unit (see previous chapter) and the visibility mask. Lines 6 through 9 are used to
establish the visibility mask of the geometry approximating the partitioning entity. In
case anything is visible (line 12), the visibility mask can be applied while rendering the
geometry contained in the partitioning entity (lines 13 through 15).

1: GLint VHC;
2: GLint values[] = {0,0,1023,1023}; // full screen
3: glOcclusionQueryiv(GL_OCCLUSION_QUERY0,

GL_2DBOX, values);
4: glEnable(GL_OCCLUSION_QUERIES);
5: glEnable(GL_OCCLUSION_QUERY0);
6: glEnable(GL_ESTABLISH_VISIBILITY_MASK);
7: Render(); // geometry approximating

// the partitioning entity
8: glDisable(GL_ESTABLISH_VISIBILITY_MASK);
9: glDisable(GL_OCCLUSION_QUERY0);

10: glDisable(GL_OCCLUSION_QUERIES);
11: glGetOcclusionQueryiv(GL_OCCLUSION_QUERY0,

GL_VISIBLE_HITS, VHC);
12: if (VHC > 0) {
13: glEnable(GL_APPLY_VISIBILITY_MASK)
14: Render() // geometry contained in

// the partitioning entity
15: glDisable(GL_APPLY_VISIBILITY_MASK)
16: }

3.4.1 Experiments

To measure the potential efficiency of visibility driven rasterization using the above
described extension of MESA, a set of diverse scenes has been selected (see Table 3.1
and Figure 3.6). Each scene is organized in a subdivision tree where the geometry
is stored in the leaf nodes of the tree. Thus, the leaf nodes represent the partitioning
entities which are tested.

Scenes Source #Triangles #Leaf Nodes

Cotton picker CAGD 10,605,158 13,257
Screwdriver CAGD 156,424 83
Ventricular System MRI 270,882 266
Cathedral CAGD 391,868 133

Table 3.1: Set of scenes used to evaluate the potential benefits of visibility driven ras-
terization.

In a first step, view-frustum culling is applied to all entities (leaves) of the subdivi-
sion tree and the remaining entities are sorted in front to back order. Thereafter, these
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(a) (b) (c)

(d) (e) (f)

Figure 3.6: Images of different scenes: (a-c) Cotton picker. (b) Close-up of (a). (c)
Further close-up of (a) showing the spindles drums. (d) Screwdriver; top: screwdriver
with complete chassis; middle: one chassis part removed; bottom: close-up of middle
image. (e) Interior view of ventricular system. (f) Interior view of cathedral.

entities are tested for occlusion by rendering their axis aligned bounding box. The
entire geometry of an entity (leaf) is culled, if no contribution to the visibility mask
is detected (VHC is zero). Otherwise, the geometry is rendered applying the visibil-
ity mask. In this step, the three earlier described rejection mechanisms are performed
(trivial reject I, II, and pixel groups) and the culled triangles and pixels are measured
to obtain the potential culling efficiency. The average of the remaining triangles and
pixels is shown in Table 3.2. Note that all reported culling performance is achieved
additionally to “traditional” occlusion culling approaches like [GKM93, ZMHH97].
Furthermore, the numbers in Table 3.2 and Figures 3.7- 3.9 are referring to the num-
ber of triangles and pixels after clipping of the triangles which belong to the geometry
nodes that are only partially located within the view-frustum.

Cotton picker Screwdriver Ventricle Cathedral

tris 547.596 43.874 10.054 10.933
pix 2.572.241 1.227.566 3.214.565 5.020.633
pix1 2.429.600 1.088.365 2.971.471 4.972.707
pix2 1.271.809 537.875 1.758.939 3.224.297

Table 3.2: Number of triangles and pixels remaining after view-frustum culling, oc-
clusion culling, and clipping (tris and pix). Furthermore, remaining pixels after trivial
reject I and II (using a tile size of 16�16 pixels (pix1)) and the finally remaining pixels
after culling of pixel groups (pix2).
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Cotton Picker

The cotton picker is a “real world” model from an industrial CAGD modeling pack-
age containing 13,257 individual parts in its assembly list (see Figure 3.6(a-c)). Based
on this assembly list, the subdivision tree has been generated. Most of the geometric
complexity is located in the six spindle compartments (1.633,137 triangles each) con-
taining the spindle drums (694,113 triangles each) which collect the cotton flakes. The
drums are usually occluded by covers and chassis parts. However, from a frontal point
of view, all spindle drums are at least partially visible which decreases the potential
culling benefits for traditional occlusion culling approaches. All results are averaged
over a sequence of frames of twelve arbitrary views (on a sphere centered around the
datasets), where the cotton picker is always completely contained in the view-frustum.

Screwdriver

Similar to the cotton picker, the screwdriver scene is a “real world” model from an
industrial CAGD modeling package. It contains 83 individual parts in its assembly list,
where the chassis consists of two parts, occluding most of the geometry of this model
(see Figure 3.6(d)). Based on the assembly list, the subdivision tree has been generated.
The sequence of frames uses twelve arbitrary views (on a sphere centered around the
datasets), where the screwdriver is always completely contained in the view-frustum.

Ventricular System

The ventricular system (ventricles) is extracted from a pre-segmented MRI volume
dataset using Marching Cubes (see Figure 3.6(e)). The associated subdivision tree has
been generated by an octree decomposition of the volume dataset. It is a typical iso-
surface model generated from a volumetric representation with a high occlusion depth
for interior views and very regular shaped triangles of similar (object space) size. The
sequence of frames consist of 150 individual viewpoints which are located inside of
the ventricular system along a camera path.

Cathedral

The cathedral is an architectural CAGD scene modeled with a customized modeling
package (see Figure 3.6(f)). It contains numerous long and narrow triangles of vari-
ous sizes. The subdivision tree has been generated from the unordered triangles of the
model by an automatic subdivision generator. The tall nave and transept of the build-
ing impede efficient results using traditional bounding box based occlusion culling
approaches due to missing of suitable occluders. The sequence of frames consist of
100 individual viewpoints which are located inside the cathedral.

3.4.2 Trivial Reject I

Using trivial reject I, all triangles residing within a single tile are culled. Figure 3.7
shows the improvements possible due to trivial reject I for different tile sizes, after
view-frustum and occlusion culling. While up to only 20% of the remaining triangles
are culled for the cathedral, almost 40% are culled for the other scenes. The relatively
low cull-rate for the cathedral is due to the columns and arches, which are poor occlud-
ers. Nevertheless, the triangles behind these occluders are culled using visibility driven
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Figure 3.7: Cull-rate for trivial reject I relative to the triangles which remain after
view-frustum and occlusion culling depending on tile size.

rasterization, while traditional occlusion culling can only cull them by applying a finer
subdivision of the scene. However, only a certain amount of occlusion culling tests can
be performed interactively, due to the relative high costs of the occlusion query (see
Summary of Chapter 2).

Generally, the peak performance of trivial reject I depends on the size of the trian-
gles of each scene. On average, the cotton picker has very small triangles (2.4 pixels)
— due to the spindle drums within the spindle compartments — and therefore, small
tiles achieve the best cull-rates. In contrast, the cathedral and the ventricles consist of
large triangles (on average 180 and 465 pixels) and for small tiles these triangles reside
frequently across multiple tile groups and hence, can not be culled with trivial reject
I only. The screwdriver consists of triangles with on average 149 pixels and achieves
best results with tiles of 16�16 to 64�64.

3.4.3 Trivial Reject I and II

While trivial reject I can only be applied to single tiles, trivial reject II exploits the
second level of the visibility mask by testing 16 entries for non-visibility. The results
of trivial reject I and II are shown in Figure 3.8. Compared to trivial reject I, the
maximum cull-rates hardly increase4. However, for the screwdriver, cathedral, and
ventricles the cull-rate function is stretched, achieving better cull-rates for a broader
set of tile sizes. The stretched cull-rate function is mandatory to determine tile sizes
which are efficient for a wide range of different polygonal scenes (e.g., the screwdriver
achieves good results already with tiles of 8�8 pixels, the cathedral with 16�16, and
the ventricles with 32�32). Overall, between 20% and 40% of the remaining triangles
can be culled using trivial reject I and II.

It can also be observed that for the cotton picker model, visibility driven rasteri-
zation performs best with small tile sizes. This is due to the large majority of very

4Most of the culled triangles are quite small, hence only limited pixel savings are obtained (see Table 3.2).
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Figure 3.8: Cull-rate for trivial reject I and II relative to the triangles which remain
after view-frustum and occlusion culling depending on tile size.

small triangles modeling the highly detailed elements (e.g., spindle drums in the spin-
dle compartments). However, industrial CAGD rendering applications (e.g., EAI Vis
MockUp) use a lower level of detail of a multi-resolution representation of the model,
which significantly increases the average triangle size. This larger average triangle size
results in a cull-rate function drop off at larger tiles, resulting in similar culling curves
as for the other scenes.

3.4.4 Culling Groups of pixels

In contrast to trivial reject I and II — which reduce the number of triangles and hence,
the setup in the rasterizer — culling groups of pixels removes only load from the pixel
processors (fill-rate). Figure 3.9 shows the additional cull-rate of pixels remaining after
view-frustum and occlusion culling, and trivial reject I and II.

Not surprisingly, culling pixel groups works best for smallest tiles and decreases as
the size of the tiles increases. For the screwdriver, cathedral, and ventricles, tiles of up
to 16�16 pixels achieve almost the same cull-rate as tiles of 2�2 pixels. Only for the
cotton picker, tiles of at most 8�8 should be used to maintain a high culling efficiency.
This is due to the large number of very small triangles rendered, which does not exploit
level-of-detail selection.

3.4.5 Discussion

Generally, tiles of 16� 16 and 32� 32 achieve good cull-rates, while maintaining a
good cost/performance ratio. For these two tiles sizes 4Kbit and 1Kbit (512 and 128
Bytes) respectively are needed to store the visibility mask. This is a size which can still
be integrated into graphics subsystems using either a large register file or an on-chip
SRAM. For the presented scenes, such visibility masks facilitate the culling of up to
40% of all remaining triangles (after “traditional” view-frustum and occlusion culling
and clipping) and hence, no rasterization setup needs to be performed for these trian-
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Figure 3.9: Cull-rate for culling pixel groups relative to the triangles which remain
after view-frustum and occlusion culling, trivial reject I, and trivial reject II depending
on tile size. Absolute values are given in Table 3.2 (pix2).

gles. Additionally, visibility driven rasterization culls between 40% and 55% percent
of all further remaining pixels (after both trivial rejects).

Overall, integrating visibility driven rasterization into graphics subsystems has the
ability to significantly improve and potentially double the frame-rates for the presented
datasets. Moreover, the ability to cull triangles and pixels from the pixel processors is
increasingly important when using multi-texturing, where systems are mostly fill-rate
limited.

Further improvements for trivial reject II can be accomplished by extending the
two-level hierarchy to a three- or four-level hierarchy with a few more logic operations
(e.g., with the proposed 16 bit, a three-level visibility mask can be realized by addi-
tionally checking whether the triangle resides entirely within one of the four disjoint
2�2 tile subgroups). This could naturally be extended to a four-level hierarchy, using
a register file with 64 bit entries. The advantage would be that starting out with each
bit of the visibility mask representing tiles of 8�8 pixels, even tiles of 64�64 pixels
would be covered with the same visibility mask. Hence, the impact of trivial reject II
can be increased even more by investing a little bit more logic.

Tiles consisting of pixel spans are feasible as well choosingm= 1. However, addi-
tional experiments showed that spans result in an inefficient average triangle and pixel
culling performance, and therefore, squared tiles which are a power of two are suited
best.

3.5 Summary

A novel visibility driven rasterization scheme, capable of accelerating the rendering of
scenes with a high depth complexity has been presented. A small and compact two-
level visibility mask has been introduced to represent visibility information, enabling
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a rasterization scheme which can remove a significant number of triangles before ras-
terization setup and pixel groups during rasterization, in addition to “traditional” view-
frustum and occlusion culling techniques.

For a visibility mask of 16� 16 pixels, storing the information of 4� 4 tiles in
one entry of the visibility mask, only 4 Kbit of memory are required, while being able
to cull up to 40% of the geometry and 55% of the pixels in “real world” datasets.
The saved bandwidth can either be invested into richer pixel operations such as multi-
texturing, or in rendering more polygons, if there is sufficient bandwidth available
on the vertex bus. Removing triangles from the rasterization and subsequent pipeline
stages will be of even stronger importance once higher order primitives, e.g. NURBS or
subdivision surfaces, are sent right to the graphics subsystem. Higher order primitives
will reduce the traffic on the front bus (vertex transfer) and hence, the per fragment
operations are a potential bottleneck.

Future work should focus on how to avoid enabling and disabling the visibility
mask (occlusion queries) without the need of flushing the pipeline to ensure proper
processing of triangles. The associated synchronization costs could be eased, inter-
leaving the rendering of the bounding geometry and the actual geometry.
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Chapter 4

A Comparison of Volume
Rendering Algorithms

Despite of the long history of volume rendering, there has not been a side by side com-
parison of different volume rendering methods so far, even though such a comparison
could reveal some guidelines on which method performs best under certain conditions
of different applications. The reason for this missing comparison might be that there
are simply too many approaches and agreeing on a common set of core techniques
might lack generality. Furthermore, different institutions have certain expertise but not
necessarily access to implementations of other techniques, simply because there are
only few available packages that provide source code. Yet another difficulty is defining
a common framework such that the methods can really be compared side by side.

In order to determine the pros and cons, as well as avenues for future research, a
comparison for the volume rendering algorithms which have become rather popular for
rendering datasets described on uniform rectilinear grids is performed. The four algo-
rithms are: ray casting, splatting, shear-warp, and hardware assisted texture mapping.
For a direct side by side comparison, a common viewing framework has been devel-
oped, allowing to generate identical views for each method (see Appendix A). Fur-
thermore, all algorithm-independent image synthesis parameters such as light sources,
transfer functions, and optical model are kept constant to enable a fair comparison of
the rendering results.
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4.1 Introduction

Numerous volume rendering methods exist and for each of these methods a large vari-
ety of optimizations has been presented. A side by side comparison of all the existing
approaches could easily fill an entire book but would probably not give many insights
due to the overwhelming amount of information and the large parameter set. Generally,
there are two avenues that can be taken:

1. The volumetric data is first converted into a set of polygonal iso-surfaces (e.g.,
via Marching Cubes [LC87]) and subsequently rendered with polygon graphics
hardware. This is referred to as indirect volume rendering (IVR).

2. The volumetric data is directly rendered without the intermediate conversion
step. This is referred to as direct volume rending (DVR) [DH92, Sab88, UK88].

The former assumes (i) that a set of extractable iso-surfaces exists, and (ii) that with
the infinitely thin surface the polygon mesh models the true object structures at rea-
sonable accuracy. However, this is not always the case and some examples are: (i)
amorphous cloud-like phenomena, (ii) smoothly varying flow fields, or (iii) structures
of varying depth (and varying transparencies of an iso-surface), that attenuate travers-
ing light corresponding to the material thickness. But even if both of these assumptions
are met, the complexity of the extracted polygonal mesh can overwhelm the capabil-
ities of the polygon subsystem, and a direct volume rendering may prove to be more
efficient [PSL+98], especially when the object is complex or large, or when the iso-
surface is interactively varied and the repeated polygon extraction overhead must be
figured into the rendering cost [BM99].

Within this chapter, the comparison focuses on the direct volume rendering ap-
proach, in which four techniques have emerged as the most popular: Ray casting [TT84,
Lev88], splatting [Wes90], shear-warp [LL94], and 3D texture-mapping hardware-
based approaches [CCF94]. However, a direct comparison of the Marching Cubes
approach and ray casting has been performed earlier, examining the required compu-
tations, storage, as well as the resulting image quality [BM99]. Furthermore, others
compared different gradient filters for ray casting and Marching Cubes [THB+90].

4.2 Common Theoretical Framework

All four surveyed algorithms obtain colors and opacities in discrete intervals along a
linear path and composite them in front to back or back to front order, computing the
DVRI which was presented earlier (see Section 1.2.7).

Iλ(x;~r) =
L=∆s

∑
i=0

Cλ(si)α(si)
i�1

∏
j=0

(1�α(sj)) (4.1)

However, the algorithms can be distinguished by the order in which the colorsCλ(si)
and opacitiesα(si) are calculated in each intervali, and how wide the interval width
∆s is chosen. The position of the shading and classification operator in the volume
rendering pipeline also affectsCλ(si) andα(si). For this purpose, the pre-shaded and
pre-classified volume rendering pipeline can be distinguished from the post-shaded
and post-classified volume rendering pipeline. In the pre-shaded and pre-classified
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pipeline, the grid samples are shaded and classified before the ray sample interpola-
tion takes place. In the following, this is denoted as Pre-DVRI (pre-shaded and pre-
classified DVRI) and the computation ofCλ(si) and α(si) are performed following
Equation 4.1 by generating colors based on the colors at the surrounding grid loca-
tions. The left column of Figure 4.1 shows images of the fuel dataset1 using Pre-
DVRI. Pre-DVRI generally leads to blurry images for zoomed views where excessive

Figure 4.1: Images of the fuel dataset using Pre- (left column) and Post-DVRI (right
column). Excessive blurring can be noticed for the Pre-DVRI, especially for zoomed
views.

color interpolation takes place. The blurriness can be eliminated by switching the or-
der of shading and classification which influences the ray sample interpolation. In this
case, the original density volume f is interpolated and the resulting sample values at
locationsi is f (si). The resulting expression is termed Post-DVRI (post-shaded and
post-classified DVRI).

Iλ(x;~r) =
L=∆s

∑
i=0

Cλ(Shade( f (si)))α( f (si))
i�1

∏
j=0

(1�α( f (sj))) (4.2)

whereCλ andα are the classification results andShadeis the shading function.
The resulting Post-DVRI images are shown in the right column of Figure 4.1. Since

in Post-DVRI the raw volume densities are interpolated and the result used to index the
classification for color and opacity, fine detail in the classification is readily expressed
in the final image on a per sample (pixel) base.

However, one should note that Post-DVRI is not without problems. Due to the
interpolation of density values, one might obtain interpolated values being classified
as a structure that is not present at this location (partial volume effect). This can be

1The dataset is described in Section 4.4.4.
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avoided using segmentation but can add severe stair casing artifacts due to introduced
high-frequency.

4.3 Distinguishing Features of the Algorithms

The comparison focuses on the conceptual differences between the algorithms, and not
so much on absolute performance. Since numerous implementations for each algorithm
exist — mainly providing acceleration — the most general implementation for each
was selected, employing the most popular components and parameter settings. The
conceptual differences of the four algorithms are summarized in Table 4.1.

Ray casting Splatting
Rendering Post-DVRI
Sampling rate freely selectable
Sample evaluation point sampled averaged across∆s
Filter kernel trilinear Gaussian
Precision floating point
Voxels considered all relevant
Acceleration early ray termination early splat elimination

shear-warp 3D Texture Mapping
Rendering Pre-DVRI
Sampling rate fixed [1:0;1:73] freely selectable
Sample evaluation point sampled
Filter kernel bilinear trilinear
Filtering opacity-weighted colors no opacity-weighted colors2

Precision floating point 8 – 12 bits
Voxels considered mostly relevant all
Acceleration RLE opacity encoding graphics hardware

Table 4.1: Distinguishing features of ray casting, splatting, shear-warp, and 3D texture
mapping.

4.3.1 Ray Casting

Of all volume rendering algorithms, ray casting has seen the largest body of publi-
cations over the years. Researchers have used Pre-DVRI [Lev90, Lev88] as well as
Post-DVRI [AHH+94, HPP+96, THB+90]. The density and gradient (Post-DVRI),
or color and opacity (Pre-DVRI), in each DVRI interval are generated via point sam-
pling, most commonly by means of a trilinear filter of neighboring voxels (grid points)
to maintain computational efficiency, and subsequently composited. Ray samples are
mostly spaced apart in equal distances∆s, but one can also jitter the sampling positions

2Due to semi-transparent rendering and the limited precision of the hardware, opacity weighted colors
are frequently too small when using lowα-values. Hence, opacity weighted colors are not used within this
comparison.
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to eliminate patterned sampling artifacts, or apply space-leaping [DH92, YS93] for ac-
celerated traversal of empty regions. For strict iso-surface rendering, recent research
analytically computes the location of the iso-surface, when the ray steps into a voxel
that is traversed by one [PSL+98]. But in the general case, the Nyquist theorem which
states that one should choose∆s< 1:0 (e.g., one voxel length) if the frequency content
in the sample’s local neighborhood is unknown needs to be taken into account. The
C(si), α(si), and f (si) terms in Equations 4.1 and 4.2 are written as:

Cλ(si) = Cλ(i∆s)

α(si) = α(i∆s) (4.3)

f (si) = f (i∆s)

The used implementation of ray casting performs Post-DVRI and follows Equations 4.2
but Pre-DVRI could easily be accomplished. Note thatα needs to be normalized for
∆s 6= 1:0 [LCN98]. The only algorithmic optimization exploited in the implementation
is early ray termination, where rays can be terminated once the accumulated opacity
has reached a value close to unity. All samples and corresponding gradient components
are computed on the fly by trilinear interpolation of the respective grid data.

4.3.2 Splatting

Splatting was first proposed by Westover [Wes90] and represents voxels as overlapping
basis functions. These basis functions are commonly Gaussian kernels with amplitudes
scaled by the voxel values. An image is generated by projecting these basis functions
to the screen. The screen projection of these radially symmetric basis function can
be efficiently achieved by the rasterization of a precomputed footprint lookup table.
Here, each footprint table entry stores the analytically integrated kernel function along
a traversing ray. A major advantage of splatting is that only voxels relevant to the im-
age3 must be projected and scan converted. This can tremendously reduce the volume
data that needs to be both processed and stored [MSHC99]. Nevertheless, depending
on the zooming factor, each splat can cover up to hundreds of pixels which need to be
processed.

The preferred splatting approach [Wes90] accumulated the voxel kernels within
volume slices most parallel to the image plane by sorting the kernel centers. This was
inaccurate due to the overlapping kernels, did not allow for the variation of the DVRI
interval distance∆s, and prone to severe variations of brightness in animated viewing.
Image aligned splatting [MC98] eliminates most of these drawbacks by processing the
voxel kernels within slabs of width∆s, aligned parallel to the image plane: all voxel
kernels that overlap a slab are clipped to the slab and summed into a sheet buffer,
followed by compositing the current sheet with the previous sheet. Efficient kernel
slice clipping is achieved by analytical pre-integration of an array of kernel slices.
Even though kernels do still overlap within sheet buffers, their sheet buffer sections
are correctly integrated and the inaccuracy due to the kernel overlap gets smaller with
decreasing slab width∆s. Both Pre-DVRI and Post-DVRI [MMC99] are possible, and
theC(si), α(si), and f (si) terms in equations 4.1 and 4.2 are written as:

Cλ(si) =

R (i+1)∆s
i∆s Cλ(s)ds

∆s
3Relevant voxels are all voxels which are classified as not transparent. These are identified by checking

all voxels which needs to be done every time the classification changes.
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α(si) =

R (i+1)∆s
i∆s α(s)ds

∆s
(4.4)

f (si) =

R (i+1)∆s
i∆s f (s)ds

∆s

Splatting replaces the point sample of ray casting by a sample average across∆s. This
introduces additional low-pass filtering reducing aliasing, especially in iso-surface ren-
derings and when∆s> 1:0. However, when splatting data values and not color, classi-
fication is an unsolved problem since the original data value, e.g. density, is smoothed,
accumulated, and then classified. This aggravates the so-called partial volume effect
and solving this is still a topic of future research.

The used splatting implementations uses a concept similar to early ray termination
to reduce the amount of redundant processing. This is referred to as early splat elimi-
nation and can be accomplished using a conservative screen occlusion map [MSHC99]
which can be established convolving the opacity values. For efficient culling, the oc-
clusion map is update every time a sheet buffer is completed. The main operations of
splatting are the transformation of each relevant voxel center into screen space, fol-
lowed by an index into the occlusion map to test for visibility, and in case it is visible,
the rasterization of the voxel footprint into the sheetbuffer. The dynamic construction
of the occlusion map requires a convolution operation after each sheet-buffer compos-
ite, which is a costly operation. Although early splat elimination reduces the cost of
footprint rasterization for invisible voxels, their transformation must still be performed
to determine their coordinates to perform the occlusion test. This is different from early
ray termination where the ray can be stopped and subsequent voxels are not processed.

4.3.3 Shear-Warp

Shear-warp was proposed by Lacroute and Levoy [LL94] and is still one of the fastest
software volume renderers. It achieves its speed by employing a clever encoding
scheme in object and screen space. In a pre-processing step, the volume is RLE-
encoded based on pre-classified opacities. Since this encoding scheme is axis aligned,
it requires the construction of a separate encoded volume for each axis. Depending
on the largest component of the viewing vector, the appropriate encoded volume is
used. The rendering is performed using a ray casting-like scheme, which is simpli-
fied by shearing the appropriate encoded volume such that the rays are perpendicular
to the volume slices. The rays obtain their sample values using bilinear interpolation
within the traversed volume slices. During rendering, a screen space RLE-encoding
is exploited and updated whenever a pixel does not alter its value any further4. In a
final warping step, the image on the volume-parallel baseplane is transformed onto the
screen plane. Since the shear-warp algorithm performs bilinear interpolation within
volume slices only, the DVRI interval distance∆s is view-dependent. It varies from
1:0 for axis-aligned views to

p
2 for edge-on views to

p
3 to corner-on views, and can

not be varied to allow for super-sampling along the ray. Thus, the Nyquist theorem is
potentially violated.

The Volpack distribution from Stanford5 (a volume rendering package using the
shear-warp algorithm) only provides Pre-DVRI (with opacity weighted colors), but
conceptually Post-DVRI is also feasible, however, without opacity classification if

4This occurs when either the pixel opacity reaches the maximum value or the corresponding ray leaves
the volume.

5http://www-graphics.stanford.edu/software/volpack
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shear-warp’s fast opacity-based encoding is used. With respect to Equations 4.1 and
4.2, theC(si), α(si), and f (si) are written similar to ray casting, but with the added
constraint that∆s is dependent on the view direction.

Cλ(si) = Cλ(i∆s)

α(si) = α(i∆s) (4.5)

f (si) = f (i∆s)

∆s =

s�
dx
dz

�2

+

�
dy
dz

�2

+1 (4.6)

where[dx;dy;dz]T is the normalized viewing vector, reordered such thatdzis the major
viewing direction. In Volpack, the number of rays sent through the volume is limited to
the number of pixels in the baseplane (e.g., the resolution of the volume slices in view
direction). Larger viewports are achieved by bilinear interpolation of the resulting
image (after back-warping of the baseplane), resulting in a very low image quality if
the size of the view-port is significantly larger than the volume resolution. This can be
fixed by using a scaled volume with a higher resolution.

4.3.4 3D Texture Mapping Hardware

Within this section, only a short introduction to 3D texture mapping is provided and
more details are disclosed in Section 5. The use of 3D texture mapping was popular-
ized by Cabral [CCF94] for non-shaded volume rendering. The volume is loaded into
texture memory and the hardware scan converts polygonal slices parallel to the view-
plane. Usually, slices are blended in back to front order, due to the missing accumula-
tion buffer forα. The interpolation filter is a trilinear function6 and the slice distance
∆s can be chosen arbitrarily. A number of researchers have added shading capabili-
ties [GK96, DKC+98, MHS99, WE98]. Pre-DVRI [GK96] and Post-DVRI [DKC+98,
MHS99, WE98] are possible but Post-DVRI sacrifices speed and accuracy. The ren-
dering itself is brute-force, without any opacity-based termination acceleration. The
drawback of 3D texture mapping is that larger volumes require swapping of volume
bricks in and out of the limited-sized texture memory (usually a few MBytes for smaller
machines). Fortunately, 3D texture mapping recently became popular in PC based
graphics hardware and increasingly more texture memory is available. Texture map-
ping hardware interpolates samples in similar ways to ray casting and hence theC(si),
α(si), and f (si) terms in Equations 4.1 and 4.2 are written as:

Cλ(si) = Cλ(i∆s)

α(si) = α(i∆s) (4.7)

f (si) = f (i∆s)

4.4 Common Experimental Framework

Unfortunately, not all parameters influencing the rendering process can be equally set
for all four algorithms, e.g. texture mapping hardware operates on fixed-point data

6On SGI’s RE 2 and IR architectures, also quadlinear interpolation is available to perform interpolation
between mipmap levels.



54 A Comparison of Volume Rendering Algorithms

while the software implementations use floating point. In the following, the general
setup for the comparison as well as the differences which can not be circumvented are
described.

4.4.1 Viewing

Comparing images of different volume rendering algorithms requires a common cam-
era model and parameter set to be used across all rendering methods. A view is char-
acterized by the type of projection which is either parallel or perspective, the location
of the camera position, the view direction, the view-up vector as well as the opening
angle of the camera. For the comparison, a common volume rendering framework has
been developed (see Appendix A), allowing to provide identical view points for all al-
gorithms. Only the shear-warp algorithm is not able to handle a viewing described by
gluLookAt() but requires rotational angles7. This is the reason why some of the images
generated using the shear-warp algorithm do not perfectly match.

Both rendering quality and expense are likely to be dependent on viewpoint, mag-
nification, as well as image size. Within this chapter, the focus is on viewports of 2562

pixels only. More detail of this comparison including other viewport sizes, magnifica-
tions, and animations can be found in [MHB+00].

4.4.2 Shading

For the comparison, the Phong illumination model has been chosen belonging to the
category of local illumination models (see Section 1.1.1). The Phong illumination
model can be written as:

Cλ = Classλ(v)� (kaIa+kdNLIL)+ks(NH)ns� IL (4.8)

whereCλ is the resulting color of wavelengthλ, v is the density value (grid or interpo-
lated), Classλ is the classification,IL is the color of the light source,N is the gradient,
H is the so-called half vector,ns the exponential factor to determine the size of the
reflection highlight, andka, kd, andks are the ambient, diffuse, and specular material
properties.

Ray casting, splatting, and shear-warp use the Phong illumination model. However,
the shear-warp implementation uses a look-up table based shading technique which
does not allow for specular highlights, as described above. A specular highlight reflects
the light of the light source but shear-warp replacesIL by Classλ[ f ], as it can be seen
in Figure 4.4(middle column) when looking at the specular highlights on the neghip8.

For 3D texture mapping, the entire specular term is dropped because it depends not
only on the light source(s) but also on the view point. Since the view point changes fre-
quently, it would require to re-compute the three dimensional texture for every frame,
which would prevent interactivity.

4.4.3 Compositing

As described earlier in Section 1.2.7, compositing can be performed in either front
to back or back to front order. While the order does not affect the image quality, it
certainly influences the rendering time because back to front compositing does not

7At least the publicly available implementation of VolPack.
8The neghip dataset is described in Section 4.4.4.
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enable early ray termination or early splat elimination. However, front to back does
require an accumulatedα-channel which is not available in OpenGL. Therefore, the
3D texture mapping based approach performs back to front compositing while all other
algorithms perform front to back compositing.

4.4.4 Datasets

A meaningful comparison requires highlighting different aspects of the algorithms
from different perspectives. Thus, an appropriate selection of datasets is of crucial
importance for the comparison. Five real-world datasets of different origin as well as
one synthetic dataset were selected for the comparison (see Table 4.2).

Dataset Size Relevant voxels Compactness Pixel content
[1K] ([%])

Vessels 2563 79 (0.5) low low
Neghip 643 208 (79.3) high medium
Skull 2563 1,385 (8.2) medium low
Fuel 643 33 (12.5) medium medium

Shockwave 642�512 1,245 (59) high high
MLob 413 35 (51) high low

Table 4.2: Real-world datasets of comparison. MLob denotes Marschner-Lobb.

A volumetric object can be characterized by the amount of relevant material con-
tained in its convex hull, which is referred to as compactness. A highly compact object,
such as a brain or an engine block, fills a large percentage of its enclosing space. On
the other hand, a highly dispersed object, such as a blood vessel tree, has relatively
few relevant voxels within its convex extent. Thus, the compactness of a volume is not
always pre-defined, but can be altered by the opacity transfer function. E.g., a formerly
compact MRI head, may turn into a sparse and dispersed blood vessel tree, depending
on the classification.

Apart from compactness, another useful measure is the amount of voxel material
that contributes to a pixel. This will be referred to as the pixel content. Depend-
ing on the selected classification, the pixel content can be completely different. For
semi-transparent renderings of a particular object significantly more object voxels are
considered than for opaque renderings. The pixel content as described in Table 4.2,
results from the classification applied during rendering (see Figures 4.2, 4.3, and 4.4)
and denotes the average amount of contributions per pixel.

Using the definition of compactness and pixel content, the different datasets are
introduced:

Fuel injection: Physical simulation of fuel being injected into a cylinder of an en-
gine filled with air. This is a semi-transparent, but compact, representation that
requires many samples to be taken for each pixel.

Neghip: Physical simulation of a high potential protein representing the electron prob-
ability around each atom (blue is high, green is medium, and red is low). This
dataset is highly compact.
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Skull: Rotational biplane X-ray (rotational angiography) scan of a human head. Bones
and teeth are well scanned. The classification of the data into skull and teeth
yields moderate compactness. The opacity classification also enables early ray
termination, and many voxels are occluded.

Blood vessel:Rotational biplane X-ray (rotational angiography)scan of a human brain
where a contrast agent has been injected into the blood to capture the blood ves-
sel. This dataset is characterized by its very low compactness and pixel content.

Shockwave: Simulation of an unsteady interaction of a planar shockwave with a ran-
domly perturbed contact discontinuity, rendered with a highly translucent opac-
ity (α). All voxels potentially contribute to the display.

Marschner-Lobb [ML94]: High frequency test dataset, rendered as an iso-surface.
This dataset is synthetic and used to assess rendering (filtering) quality in a quan-
titative manner.

4.4.5 Assessment of Image Quality

It is difficult to evaluate rendering quality in a quantitative manner. Often, images of
competing algorithms are simply put side by side, appointing the human visual sys-
tem (HVS) to be the judge. It is well known that the HVS is less sensitive to some
errors (stochastic noise) and more to others (regular patterns), and interestingly, some-
times images with small numerical errors, e.g., RMS, are judged as worse by a human
observer than images with larger numerical errors. So it seems that the visual compar-
ison is more appropriate than the numerical, since after all images are generated for
the human observer and not for error functions. In that respect, an error model that
involves the HVS characteristics would be more appropriate than a purely numerical
one. But nevertheless, to perform such a comparison one still needs the true volume
rendered image, obtained by analytically integrating the volume via Equation 1.3 (ne-
glecting the prior reduction of the volume rendering task to the low-albedo case). As
was pointed out by Max [Max95], analytical integration can be done when assuming
thatC(s) andµ(s) are piecewise linear. This is, however, somewhat restrictive on clas-
sification. Hence, visual quality assessment are employed only.

Additional to the real-world datasets, a particularly challenging dataset was cho-
sen for visual quality assessment: the Marschner-Lobb function [ML94]. This three-
dimensional function is made of a combination of sinusoids and contains very high fre-
quencies. However, 99.8% of these are frequencies which are just below the Nyquist
limit (half the Nyquist rate). It is extremely sensitive to filter and sampling inaccuracies
and has been used at many occasions for reconstruction error evaluations [MMMY97].

4.5 Results

Before one goes ahead and compares rendering times and quality, one needs to realize
that not all evaluated volume renderers were created with identical priorities in mind.
While shear-warp and 3D texture mapping hardware were devised to maximize frame-
rates on the expense of rendering quality, ray casting and image-aligned splatting have
been devised to achieve images of high quality, not to be compromised by acceleration
strategies employed. To account for this, the four renderers need to be subdivided into
two groups:
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High-performance volume renderers: Shear-warp and 3D texture mapping hardware.
These renderers use the Pre-DVRI optical model. Shear-warp with and 3D tex-
ture mapping without opacity weighted color interpolation.

High-quality volume renderers: Splatting and ray casting. These renderers use the
Post-DVRI optical model.

All presented results were generated on a SGI Octane (R10000 CPU, 250MHz) with
250 MBytes main memory and MXE graphics with 4MBytes of texture memory. The
graphics hardware is only used by the 3D texture mapping approach.

Figure 4.2, 4.3, and 4.4 show a comparison of different images of the selected
datasets varying the applied magnification levels. For the high-performance render-
ers, we observe that the image quality achieved with 3D texture mapping shows se-
vere color-bleeding artifacts — as expected —, due to the non-opacity weighted col-
ors [WMG98]. The limited precision in the hardware, prevents the usage of opacity
weights colors when using semi-transparent classification. Furthermore, 3D texture
mapping shows stair casing artifacts which can be reduced by increasing the number
of slices. Volpack’s shear-warp performs much better, with quality similar to ray cast-
ing and splatting whenever the resolution of the image matches the resolution of the
baseplane (full view on vessels and skull in Figure 4.2). For the other images, the
rendered baseplane image is of lower resolution than the screen image and magnified
using bilinear interpolation in the warping step, which leads to excessive blurring. A
draw-back which is not visible in the orthogonal views is the angle dependent sampling
distance which can result in significant aliasing in the form of stair casing.

Looking at the high-quality renderers, the Marschner-Lobb dataset renderings for
ray casting and splatting demonstrate the differences of point sampling (ray casting)
and sample averaging (splatting). While ray casting’s point sampling misses some
detail of the function at the crests of the sinusoidal waves, splatting averages across
the waves and renders them as blobby rims (right column of Figure 4.3). For the other
datasets the averaging effect is more subtle, but still visible. For example, ray casting
renders the skull and the magnified vessel with somewhat crisper detail than splatting
does. Even though the quality of ray casting and splatting is comparable, there are
still subtle differences in the images rendered by each algorithm. These differences are
most apparent for the fuel, neghip, and shockwave datasets. For example, the red cloud
is completely missing in the image rendered by splatting and the purple core of the fuel
injection is much larger when using splatting, see middle column in Figure 4.4. This
is due to the Gaussian filtering and accumulation within sheet buffers, resulting in a
slight shift in the density values9.

Even though the implementations of the algorithms have not been optimized for
speed, some analysis can be performed. For each dataset, an animation has been gen-
erated measuring the overall rendering time. Table 4.3 shows the results averaged per
frame (more details on the rendering times can be found in [MHB+00]).

Generally, 3D texture mapping and shear-warp take sub-second rendering times.
While texture mapping is back to front and hence brute force, shear-warp exploits
run-length encoding and early ray termination. Thus, shear-warp performs better on
datasets with low pixel content and/or few relevant voxels than on others: it takes
shear-warp roughly three times longer to render the translucent shockwave than the

9In Post-DVRI splatting, classification is an unsolved problem since the original data value is smoothed,
accumulated, and then classified. This aggravates the so-called partial volume effect and is still topic of
future research.
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Fuel Neghip Skull Vessel Shockwave
Ray casting 4.96 8.15 7.78 12.31 3.02
Splatting 1.41 7.35 11.09 1.87 21.77
Shear-warp 0.09 0.24 0.27 0.09 0.91
Texture Mapping 0.06 0.04 0.71 0.71 0.14

Table 4.3: Rendering times for each dataset given in seconds. The numbers are aver-
aged over a set of screen fitting views.

opaque skull, although both have about the same number of relevant voxels. Note that
3D Texture mapping is slower for large datasets (skull, vessel) which exceed the 4
MBytes of texture memory of the SGI Octane/MXE and require texture swaps.

In contrast, ray casting and splatting are in the order of seconds for all presented
images. However, since splatting processes only relevant voxels, it is quite fast when
rendering the vessel dataset. In this case, it is roughly half the speed of 3D texture map-
ping. Generally, compactness does not have a major effect on splatting but a high pixel
content can be very expensive in case the early splat elimination can not be exploited
which corresponds to semi-transparent rendering as for the shockwave dataset.

Ray casting shows its strength for medium and highly compact datasets with a high
pixel content, e.g. the shockwave dataset. In contrast, a high number of non-relevant
samples can dominate the rendering time of ray casting, as observed with the vessel
and fuel datasets. In both cases, most of the rays are cast solely through non-relevant
voxels, wasting render time. This is different with the skull dataset, where early ray
termination skips most of the volume. The associated costs of early ray termination
are low, since it is a simple comparison of theα-value with a specified threshold. In
contrast, splatting’s early splat elimination has high associated costs, and that is why
splatting takes considerably longer to render the skull dataset.

The shockwave dataset — where the low opacity of all voxels prevents both early
ray termination and early splat elimination – exposes the differences in cost for trilin-
ear interpolation vs. footprint mapping. Since the rendering time for ray casting is
almost seven times lower than that of splatting, it can be concluded that the mapping
of footprint kernels is costlier than trilinear interpolation, at least at moderate screen
sizes. When moving to larger screen size, splatting scales better because the amount of
relevant voxels is independent of image dimension [MHB+00]. The increases in ren-
dering time are due to (i) larger footprints to be rasterized and (ii) larger sheetbuffers
to be convolved to update the occlusion map. Thus, datasets with many sheets (large
depth) and many visible footprints will be more sensitive to screen size increases. For
ray casting, the number of trilinear interpolations and compositings are linearly related
to screen size. No further major dependencies exist.

4.6 Summary

Generally, 3D texture mapping and shear-warp have sub-second rendering times for
moderately-sized datasets. While the quality of the display obtained with the main-
stream 3D texture mapping approach is limited and can be improved as demonstrated
in Chapter 5, the quality of shear-warp rivals that of the much more expensive ray cast-
ing and splatting when the object magnification is about unity. Handling higher mag-
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nifications is possible by relaxing the condition that the number of rays must match the
resolution of the volume. Although higher interpolation costs will be the result, the
rendering frame rate will most likely still be high (especially if view frustum culling
is applied). A more serious concern is the degradation of image quality at off-axis
views. In these cases, one could use a volume with extra interpolated slices, which is
Volpack’s standard solution for higher image resolutions. But the fact that shear-warp
requires an opacity-encoded volume makes interactive classification variation a chal-
lenge. In applications where these limitations do not apply, shear-warp proves to be a
very useful algorithm for volume rendering.

The side-by-side comparison of splatting and ray casting yielded interesting results
as well: image-aligned splatting offers a rendering quality similar to that of ray casting.
It produces smoother images due to the z-averaged kernel and the anti-aliasing effect of
the larger Gaussian filter. It is hence less likely to miss high-frequency detail. However,
ray casting is faster than splatting for datasets with a low number of non-contributing
samples. On the other hand, splatting is better for datasets with a small number of
relevant voxels and sheetbuffers. Since the quality is so similar and the same transfer
functions yield similar rendering results, one could build a renderer that applies either
ray casting or splatting, depending on the number of relevant voxels and the level of
compactness of the dataset.

For ray casting, the problem areas are the transparent regions in front of the opaque
object portions, while for splatting the problem areas are the non-transparent regions
behind the opaque object portions. This may be a compromising fact for splatting,
since large datasets may have a lot more material hidden in the back than empty re-
gions in front. In addition, a great number of powerful techniques exist for ray casting
to guide rays quickly through irrelevant volume regions: bounding volumes, space-
leaping, multi-resolution grid traversal, and others. It has yet to be determined if these
techniques also work well with highly irregular objects such as the blood vessel dataset,
where splatting performs better.
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Figure 4.2: First through fourth row are ray casting, splatting, shear-warp, and 3D
texture mapping showing the skull dataset at different magnifications.
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Figure 4.3: First through fourth row are ray casting, splatting, shear-warp, and 3D
texture mapping showing the blood vessel dataset at different magnifications (column
1 and 2) and the Marschner-Lobb dataset (column 3).
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Figure 4.4: First through fourth row are ray casting, splatting, shear-warp, and 3D tex-
ture mapping showing the fuel (column 1), neghip (column 2), and shockwave dataset
(column 3). It can clearly be noticed that for splatting there is a difference in the clas-
sification which is due to the classification performed on smoothed and accumulated
voxel values in the sheet buffers. For 3D texture mapping, the color bleeding is fairly
obvious and for shear-warp crosses appear (as a result of the bilinear filtering).



Chapter 5

Enabling Shading and
Classification for 3D Texture
Mapping Based Volume
Rendering

3D texture mapping has become one of the most popular techniques used for volume
rendering. Soon after the release of the first graphics workstation with hardware sup-
port for three dimensional textures (RealityEngine), their potential application for vol-
ume rendering was presented. Its favorite advantage is the achievable interactivity
which is very important for many volume rendering applications and due to the hard-
ware support.

Despite of its high frame-rates, 3D texture mapping has certain disadvantages since
it is primarily designed for polygon graphics and not for volume graphics. While sam-
ple interpolation is very similar, shading is performed on a per vertex base but volume
rendering requires shading on a per sample base. Furthermore, classification requires
a lookup to obtain color andα values for interpolated volume samples and is available
on a few architectures only.

In the following, the current state of the art is reviewed and an approach presented
enabling the integrating of shading functionality into 3D texture mapping based volume
rendering. Furthermore, it is demonstrated how multiple classification spaces can be
enabled to apply “intelligent lenses”. Finally, the ideal datapath for graphics hardware
to enable accurate shading including multiple light sources is proposed.
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5.1 Introduction

Using standard OpenGL 3D texture mapping functionality, any geometry defined using
vertices and corresponding texture coordinates is rendered such that values on the ge-
ometry surface are trilinearly interpolated from the 3D texture data. To ensure that the
regions of the geometry within the 3D texture are processed correctly, clipping planes
can be applied [GK96]. Operating on transparent data requires that planes intersecting
with the 3D texture are correctly blended into the framebuffer. Usually, planes are pro-
cessed in back-to-front order, however, front-to-back order can be used as well but the
accumulated opacity needs to be stored for each pixel1. Figure 5.1 depicts the overall
process of volume rendering using 3D texture mapping.

Figure 5.1: Basic slicing mechanism applied in 3D texture mapping based volume
rendering (image is courtesy of [WE98]).

Utilizing 3D texture mapping for volume rendering is very fast due to the hardware
support. Any three-dimensional grid data can be classified, possibly shaded, and stored
as a three dimensional texture [CCF94, CN93, GK96, WGW94]. Alternatively, density
values [SDWE98] and gradients can be stored as three-dimensional texture [EMPG97,
WE98, DKC+98], which requires scaling the gradient components ([�1;1]) to fit into
the range of the texture data ([0;1]). This is achieved by normalizing the gradients at
grid positions, adding one, and dividing them by two.

5.2 Classification and Shading

Classification and shading are two of the most important elements in volume render-
ing. Classification is the stage of assigning color values and possibly other material
properties to a sample based upon its scalar value (see Section 1.2.3). Shading can be
used to enhance the visual quality of the rendered images by providing another cue
to the human visual system (see Section 1.1.1). While shading is already available in
polygon graphics hardware, it has so far only been applied to vertices2 but not on a per
sample base as it would be needed for volume rendering.

5.2.1 Classification

The classification of volume data is used to assign a color and anα-value to each scalar
and is generally achieved using a lookup where the scalar value serves as index. When

1This can be circumvented when using colors being pre-multiplied withα but introduces inaccuracies for
semi-transparent rendering due to the limited precision.

2Per pixel shading has recently become popular and can be accomplished combining textures and the
color matrix [Hei99]. Unfortunately, the normals used for shading are not yet the ones which are interpolated
from a three dimensional texture nor can this be combined with classification.
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using 3D texture mapping for volume rendering, volume samples are available right
after the texturing stage. To accomplish classification, one can use a SGI extension
of OpenGL (GL_TEXTURE_COLOR_TABLE_SGI) which allows to treat the value
of each channel (RGBα) as an index into a color table. The value of each channel is
replaced by the corresponding entry of the color table and passed on to the fragment
pipeline, as indicated in Figure 5.2.

3D Texture Mapping
(density texture)

Fragment

GL_TEXTURE_COLOR_TABLE_SGI

Figure 5.2: Classification using the OpenGL extension of SGI.

Despite of the simplicity and usefulness of this extension, it has certain limitations.
First, the extension is not part of core OpenGL and currently supported only by SGI,
HP3, and very recently on ATI’s Radon chip. Second, due to the circumstances that
each channel is treated independently, one needs to replicate the scalar value four times
and store it as RGBα texture. This tremendously increases the amount of memory
needed. Furthermore, this method can not be combined with shading since no gradient
information can be computed from the volume stored as three dimensional texture.

5.2.2 Shading Iso-Surfaces

Shading iso-surfaces of volumetric data has been first presented by Westermann et al.
[WE98]. In their approach, scalar values and gradients are stored as three dimensional
texture. During rendering of slicing planes, for each pixel the first interpolated sample
above the iso-value is stored in the framebuffer using the iso-value as a threshold for
the α-channel. After rendering all slicing planes, the framebuffer holds a full image
containing the density values (in theα-channel) and the corresponding gradients (in
the RGB-channels). In a final step, the content of the framebuffer is copied onto itself.
During this copying process, the values are read from the framebuffer and sent down
the pixel pipeline where the color matrix is applied to the pixel values. Additionally,
the post color matrix scale and bias is used to obtain a diffuse as well as an ambient
intensity.

In order to obtain the shading intensity, the color matrix needs to be initialized
containing the light vector components, as illustrated in the following equation:

Mcol =

0
BB@

Lx Ly Lz 0
Lx Ly Lz 0
Lx Ly Lz 0
0 0 0 �1

1
CCAMrot

0
BB@

2 0 0 �1
0 2 0 �1
0 0 2 �1
0 0 0 1

1
CCA

The matrix to the left ofMrot is required to calculate the scalar product of gradient
(stored in RGB) and light vector.Mrot represents the current viewing transformation,
needed to keep the light relative to the observer. Multiplying the matrix with a vector

3The fx10 graphics system of HP provides this extension.
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containing the interpolated gradient calculates the diffuse shading intensity (Id) for all
three color channels. EvaluatingI = Ia+kd � Id results in the final intensity, which can
be accomplished using thepost-color matrix scale and biasstage (scale bykd and bias
by Ia), which comes right after the color matrix, see Figure 5.3.

Pixel

Pixel

GL_COLOR_MATRIX

post color matrix scale & bias

Figure 5.3: Shading using color matrix.

The above described method achieves impressive results at interactive frame-rates
but has some limitations. The method requires that theα value of the fragment multi-
plied with the color matrix is set to one, otherwise no correct result is obtained since the
gradient needs to be scaled back from[0;1] to [�1;1]. This prevents semi-transparent
representation because theα channel can not be used for other purposes. Furthermore,
this shading technique is limited to one directional light source only and monochrome
shading since all three color channels are needed for the gradient components.

5.2.3 Shading and Classifying Volume Data

The previously described classification and shading techniques can not be combined
since classification using GL_TEXTURE_COLOR_TABLE_SGI requires the scalar
value to be present in all four channels which prevents storing gradients together with
the scalar value. Furthermore, semi-transparent rendering — one of the strength of
volume rendering — is not possible due to the requirement of setting theα value to
one.

To circumvent these limitations, a new approach has been developed. Similarly
to [WE98], gradients and density values are stored in a three dimensional texture map.
However, the restriction of being limited to opaque rendering only is circumvented by
re-scaling the gradient vector from[0;1] to [�1;1] right at the beginning of the pixel
pipeline. This can be accomplished using the scale and bias functionality of the pixel
transfer operations since values within the pipeline are not clamped back to[0;1] until
they enter the per fragment operation stage. Therefore, there is no need to set the
α-value to one and hence, it can be used for semi-transparent rendering.

The computation of the diffuse shading intensity is again done using the color ma-
trix. However, the color matrix needs to be initialized differently since it is necessary
to compute the scalar product (diffuse shading intensity) but also keep the interpolated
density values for classification. This is achieved by the following initialization of the
color matrix:

Mcol =

0
BB@

0 0 0 1
Lx Ly Lz 0
0 0 0 0
0 0 0 �1

1
CCAMrot
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The fragments containing the interpolated gradient and density are then — during copy-
ing the pixels — multiplied with the color matrix which results in:

Mcol
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2
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Id
0
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where< L;Nrot > denotes the scalar product of the light vector and gradient. The
density value of the red channel (D) could be used to perform the classification and
obtain a RGBα quadruple which needs to be multiplied withId � kd intensity (diffuse
term) plus an ambient termIa�ka. Unfortunately, evaluating the shading equation is not
feasible in hardware, since the remaining pipeline stages do not provide the functional
units. However, it can be achieved using a pixel texture.

Pixel textures are an extension to OpenGL (GL_SGIX_PIXEL_TEXTURE) which
enables the interpretation of pixel-values as texture coordinates. R, G, B, andα can
be used as texture coordinates s, t, r, and q. Pixel textures take place right at the
conversion of pixels to fragments and in case pixel textures are enabled, the color of
the fragment is replaced by the result of a texture mapping operation. This process is
depicted schematically in Figure 5.4.

Fragment

Pixel-Group

pixel_texture_enableSelect

Pixel2Fragment Conversion

GL_PIXEL_TEX_GEN_SGIX

Figure 5.4: Pixel textures within the graphics subsystem.

Thus, the missing step of finally performing classification and evaluating the shad-
ing equation is accomplished applying a two dimensional pixel texture. The pixel
texture can be addressed using the interpolated density (D) and the calculated diffuse
intensity (Id) as s and t texture coordinates respectively (R and G channel), which re-
sults in a two dimensional pixel texture. Despite of the fact that only the diffuse shading
term is calculated, ambient intensity (Ia) can be included as well as differentka andkd

factors, possibly for each density valueD. This enables to include different material
properties for the different density values. In one dimension the pixel texture represents
the classification and in the second dimension the classification values are scaled and
biased by an ambient term. Thus, for eachD andkd, the pixel texture contains a tuple
< RGBα > and these tuples are computed using the following equation:2
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α = α(D)

The pixel texture needs to be re-generated whenever the classification, or the factors
ka and kd (ka + kd = 1:0) are changed by the user. However, due to its small size
(2D, 65K entries), the pixel texture can be calculated interactively. Additionally, when
changing the number of slicing planes, the opacity can be adjusted very quickly by
simply updating theα-values of the 2D pixel texture. This is different to approaches
storing a shaded and classified volume in texture memory because each time one of the
above mentioned parameters or the light source changes, the entire 3D texture has to
be recalculated. The latter can clearly not be accomplished at interactive frame-rates.

With this new pixel texture based approach, it is possible to generate (i) a colored
and shaded iso-surface by applying the shading and classification step only to the final
image or (ii) colored and shaded volume data by applying the shading and classification
step to all slicing planes. Sample images are given in Figure 5.12.

5.3 Multiple Classification Spaces

As mentioned earlier, classification is one of the key features in volume rendering but
the limitation of a single transfer function can be quite severe. Any material surrounded
by a second material can only be visualized by classifying the surrounding material as
transparent. However, when exploring the data, understanding the 3D relationship of
both materials can be very important.

A simple way of realizing classification spaces are clipping planes and clipping ge-
ometry which have been introduced earlier [Ake93, GK96, WE98]. The major draw-
back of clipping planes or clipping geometry is that they simply clip fragments. This is
equivalent to classifying the corresponding samples fully transparent but does not en-
able any other classification within this area/space. Clipping planes are enabled using
the available hardware mechanisms and clipping geometry is realized by determining
the cross-section of each plane with the geometry using the stencil buffer to enable or
disable rendering of individual pixels.

This scheme can be extended to dual classification spaces using two different pixel
textures. In the first pass, all pixels inside the cross-section are rendered using the
first pixel texture and during a second pass the other pixels are rendered using the
second pixel texture. This enables the application ofvolumetric lenseswhich can be
extremely useful for certain volume rendering applications. Figure 5.5 shows a few
examples of using simple clipping versus classification spaces. Figure 5.5(a) shows the
neghip128 dataset using a spherical clipping geometry discarding the fragments which
reside within the lens while Figure 5.5(b) uses different classification within the lens
than outside. Figure 5.5 (c) shows the silicium dataset where the samples inside a cube
have been clipped. In contrast, Figure 5.5 (d–f) show renderings where different classi-
fication is applied inside and outside of a cubic clipping geometry. Further examples of
multiple classification spaces enabling “intelligent lenses” are depicted in Figure 5.12.

Generally, more than two classification spaces can be accomplished using more
than two rendering passes. However, the use of multi-pass rendering sacrifices speed
since each plane needs to be rendered more than once.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.5: Clipping and multiple classification spaces for the neghip and the silicium
dataset: (a,c) Simple clipping geometry. (b,d-f) Two classification spaces.

5.4 Results

In this section, different datasets used for rendering and resulting images with and
without shading are presented. Furthermore, timing results including an analysis of the
rendering time is given. All tests have been performed on a SGI Octane MXE with 4
MBytes of texture memory. Finally, a careful analysis of the error made in computing
the scalar product from interpolated gradients is given.

5.4.1 Datasets

Several datasets of different size and characteristic have been chosen carefully to high-
light the impact of the texture memory size. Since density values and gradients are
stored in texture memory, datasets of up to 128�128�64 voxels fit entirely into the
texture memory of an Octane. Larger datasets require bricking and result in a reduced
frame-rate. Due to the requirements of texture mapping, the datasets have to be ad-
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justed in size such that each dimension is a power of two. The datasets are presented
in Table 5.1, including their size and number of bricks. All datasets consist of 8 bit
voxel data. The neghip64, silicium, and lobster fit within the 4 MBytes of texture
memory available on the Octane while the neghip128 and engine need to be split into
bricks. Except the engine dataset, all datasets have been taken from the VolVis package
[AHH+94].

Dataset MByte bricks Size
neghip64 1 1 64�64�64
silicon 2 1 128�64�64
lobster 4 1 128�128�64
neghip128 8 2 128�128�128
engine 32 8 256�256�128

Table 5.1: Test datasets. Due to the requirement of texture mapping each dataset has to
be sized to a power of two. The size of each dataset includes voxel data plus gradient.

5.4.2 Images

All datasets have been rendered using classification only as presented in Section 5.1
(referred to as the classical method) and using the color matrix and pixel texture com-
bining shading and classification (referred to as ColMatPixTex).

Figure 5.6 (a) and (b) are images of the neghip64 dataset. While the three dimen-
sional structure can be well understood using ColMatPixTex (b), no depth nor spatial
extend can be extracted when using classification only (a). The images generated ren-
dering the silicium dataset are shown in Figure 5.6 (c) and (d). Again, without shading
(c) hardly any structure can be conceived. In contrast, using shading and classification
reveals the structure comprehensively (d). Figure 5.6 (e) and (f) show images gener-
ated from the lobster dataset. Three different materials can be classified: Resin, shell,
and meat of the lobster each classified green, white, and red respectively. Figure 5.6
(e) clearly lacks any illustration of the three dimensional character of the data, while
Figure 5.6 (f) reveals the shape of the lobster and its shell. Finally, the engine dataset
depicted in Figure 5.6 (g) and (h) contains an engine block, iron material, and noise
around it. Using the classical approach (Figure 5.6 (g)), the structure of the engine
block is exposed to a limited extend. In contrast, color matrix and pixel texture based
shading and classification reveals the structure of the different materials much better
(see Figure 5.6 (h)).

5.4.3 Timings

For a proper analysis of the bottle-necks, rendering time was measured for different
settings. Furthermore, the rendering time has been split in two different steps:

Render-time I which is the time consumed to slice the three dimensional texture and
to write the interpolated planes from the pixel buffer into main memory using
glReadPixels().
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.6: Classical method (left column) and ColMatPixTex (right column). (a,b)
Neghip64. (c,d) Silicon. (e,f) Lobster. (g,h) Engine.
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Render-time II reveals the time needed to perform the shading and classification us-
ing glDrawPixels()4.

Table 5.2 shows the timings for all datasets with varying viewport size. SinceglDraw-

Dataset viewport slices time time I time II Image

neghip64 256�256 64 0.34 0.07 0.25 Figure 5.6 (b)
neghip64 512�512 64 0.96 0.25 0.71 -

silicium 325�163 64 0.34 0.07 0.25 Figure 5.6 (d)
silicium 650�326 64 0.87 0.24 0.63 -

lobster 256�256 64 0.39 0.10 0.29 Figure 5.6 (f)
lobster 512�512 64 1.23 0.34 0.89 -

neghip128 256�256 128 0.73 0.23 0.51 -
neghip128 512�512 128 2.08 0.58 1.50 -

engine 256�256 128 1.05 0.48 0.57 Figure 5.6 (h)

engine 512�512 128 2.77 0.95 1.82 -

Table 5.2: Timing results of the different datasets.time is the overall time needed
to render one frame.time I is the time spent slicing the 3D texture and writing the
slices into main memory whiletime II reveals the time spent on color matrix and pixel
textures (glDrawPixels()). Num slicesindicates the number of slices taken for the
presented views (column Image).

Pixels()is required, the interpolated slices are copied into main memory and immedi-
ately sent back to the graphics pipeline without altering them. Between 60 and 80% of
time I is spent reading the slices into main memory and only 20 to 40% are used for
rendering (3D texture mapping). Even worse, sending the values back to the graphics
subsystem takes over 90% of time II and only 10% are spent on the pixel texture and
per fragment operations. Hence, efficient support of pixel textures usingglCopyPix-
els() is mandatory to achieve interactive frame-rates (� 10 frames). The color matrix
is already part of the imaging subsystem of OpenGL 1.2 and pixel textures will be sup-
ported on future SGI platforms, not limited to IMPACT systems. It would certainly be
a great feature if pixel textures would be supported by one of the next OpenGL releases,
not only for volume rendering [Hei99].

Another interesting property is the frame-time relative to the size of the viewport.
Once enlarging the viewport by a factor of four, the rendering time only increases by a
factor between 2:6 (engine and silicium) and 3:2 (lobster). Obviously,glReadPixels()
andglDrawPixels()are more efficient the larger the selected area. Furthermore, texture
mapping itself is more efficient for larger screen sizes, which is due to the higher cache
hit ratio during texture memory accesses (fill-rate).

Despite the different volume size of neghip64, silicium, and lobster, the frame-rates
are very similar which is due to the used views consisting of 64 slices (Z direction).
When changing the view for the silicium or lobster, the number of required slicing
planes increases (X or Y dimension) increasing the overall render time. Nevertheless,
the texture memory access seems to be very efficient since frame-rate of neghip64 and

4In general, pixel textures are supported forglCopyPixels()andglDrawPixels()but their current imple-
mentation as OpenGL 1.1 extension only supports the latter one.



5.4 Results 73

lobster hardly differ, despite the large difference in the size of the datasets (neghip64:
64�64�64, lobster: 128�128�64).

It can also be observed that the texture swapping mechanism — extensively using
the system bus of the Octane — is very efficient. Comparing the frame-rate of the
neghip128 and the engine (in both cases 128 slices are rendered), only a small differ-
ence can be noticed, despite the fact that the engine needs to be split into eight bricks
while the neghip requires only two bricks.

In general, the results show that pixel textures are very valuable for texture map-
ping based volume rendering. However, interactive frame-rates can only be achieved
if pixel textures are either applicable during the rendering process or if they can be ap-
plied usingglCopyPixels()instead of a subsequent combination ofglReadPixels()and
glDrawPixels(). Since a large number of applications using pixel textures have been
presented, chances are high that it will soon be supported by other graphics hardware
vendors at a better performance.

5.4.4 Analysis

Despite its good visual results, the presented method to combine semi-transparent and
diffuse shaded rendering of volumetric data has one drawback. Generally, the images
look darker than images rendered in software using the same operations. There are two
reasons for the difference:

1. Limited precision of the graphics hardware

2. Incorrect result of the scalar product

While the impact of the limited precision (8 bit) will diminish within the next gener-
ations of graphics subsystems5, the computation of the scalar product is based on in-
terpolated gradients. The basic assumption is that one can compute the scalar product
using the interpolated gradient and a matrix multiplication. While the matrix multi-
plication is generally correct and performed at highest precision (floating point), the
interpolation of the gradients frequently results in not normalized gradients. Therefore,
the scalar product does not represent the correct angle between light vector and sample
gradient. To keep the error in an acceptable range, the gradients need to be normalized
before storing them as 3D texture. Nevertheless, the remaining error can still be high.
Figure 5.7 illustrates a dataset as well as the resulting normalized central difference gra-
dients. Even though Figure 5.7 uses a binary dataset for demonstration purposes, this
would also apply for non binary datasets, i.e., assuming that red voxels represent ‘1‘
instead of ‘255‘ (for eight bit volume data). The same gradient field would be obtained
since gradients need to be normalized before storing them as texture map. Note that
the central difference gradient needs to be normalized not only because of the reason
mentioned above but also to avoid gradients which are larger than one6.

The resulting scalar product of the matrix multiplication is of range[�1;1] but
is clamped to the interval[0;1] before the per fragment operation stages are reached.
The clamping of negative values to zero corresponds naturally to no diffuse light being
present on the backside of an object.

Figure 5.8 illustrates the resulting scalar product using trilinear interpolation across
the red-plane depicted in Figure 5.7 (a). The correct result is shown in Figure 5.8 (a)

5SGI’s latest Octane systems (VPro graphics) operates on 12 bit data per channel.
6The central difference gradient operator is anisotropic and thus, the length of the resulting gradients
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Figure 5.7: Setup for measuring the shading quality: (a) Dataset consisting of a cube
(green). (b) Normalized central difference gradients for red plane in (a); empty voxels
are displayed white and occupied voxels are displayed red.

and obtained by normalizing the interpolated gradient prior to computing the scalar
product. Figure 5.8 (b), shows the result obtained without normalizing the interpolated
gradient. Despite the fact that the two functions are somewhat similar, their absolute
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Figure 5.8: Trilinear interpolation of gradients which are (a) normalized before com-
puting the scalar product (b) not normalized.

values differ significantly. The reasons for this are the high frequency change in gra-
dients as well as the bilinear interpolation used. The actual error made is given by the
difference of the two graphs, as shown in Figure 5.9 (a). While this case only covers
two-dimensional gradients (Figure 5.7 (b)) being interpolated bilinearly, the case of
true trilinear interpolation is given when moving the red plane in Figure 5.7 (a)) right
between the topmost volume slice containing the cube and the one above. The resulting
error graph is depicted in Figure 5.9 (b). Generally, the graphs in Figure 5.9 show that
the error can be very high, in the worst case close to 100%. These cases occur only
in areas where the gradient changes rapidly (high frequencies) but even low frequency
datasets can result in high frequency gradients due to the required normalization of the
gradients before storing them as a 3D texture map. Thus, the impact of computing the
scalar product based on not normalized interpolated gradients depends on the dataset
and the resulting normalized gradient field. For high frequency gradient fields, the er-
ror will be high which favors central difference gradients over intermediate difference
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Figure 5.9: Error made by not normalizing the gradients before computing the scalar
product (cosine): (a) Across red plane as shown in Figure 5.7. (b) Assuming the red
plane to be located between the topmost volume slice containing the cube and the slice
above such such that real 3D gradients are interpolated.

gradients because it is the better low-pass filter.

Even though the potential error is quite high, this does not allow drawing conclu-
sions on the final image quality since these cases might be rare in real world datasets.
Thus, a software implementation with and without vector normalization prior to diffuse
shading is used for analysis and allows to separate the shading error from the overall
darkening, which happens additionally due to the frequent discretization in the graphics
hardware. Figure 5.10 illustrates the resulting images for different datasets. The differ-
ence images are scaled for printing reasons but the individual pixel difference is quite
high: the maximum pixel difference for the final pixel value is 82 for the neghip, 74 for
the skull, and 128 for the arteries. Large differences can be observed in areas where
neighboring grid gradients vary a lot and where small changes have a strong impact
which depends on the light source direction. The neghip consists of an almost contin-
uous 3D function with few high frequency areas and only in these areas a noticeable
error is made. In contrast, the skull dataset consists of reconstructed bone and teeth
surrounded by low frequency noise, which results in a strong gradient change around
the bone and teeth surface. Hence, the largest error is noticeable along the edges of the
bone and teeth. Finally, the artery dataset consists of high frequencies which results in
the highest error of all three datasets.

Despite of the actual error, the rendered images look fairly good which is due to
the mostly equal error distribution (skull and arteries). Thus, the goal of shading —
which is an enhancement of the three dimensional character of the object — is still
clearly accomplished and the images provide good quality. Therefore, shading using
the scalar product of not normalized sample gradients is acceptable, as long as the three
dimensional gradient field does not contain too many high frequencies. However, one
should note that the images of Figure 5.10 are computed in software at floating point
precision illustrating the impact of the wrong scalar product only. Images rendered
with real hardware still look darker due to the frequent discretization of the values
within the pipeline (see right column of Figure 5.6).
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Figure 5.10: Error in the final images: Correct images (left column), images obtained
without normalizing the interpolated gradients (middle column), and scaled difference
images (right column). (a-c) Neghip. (d-f) Skull. (g-i) Arteries.

5.5 Summary

Polygon rendering and volume rendering have many things in common. Unfortunately,
the datapath of polygon rendering hardware is different than what would be needed to
efficiently use the same hardware for volume rendering. By exploiting OpenGL and
different extensions, it is feasible to accomplish volume rendering with on the fly com-
putation of shading effects but one sacrifices speed. While shaded and colored iso-
surfaces can still be accomplished at interactive frame-rates, shaded semi-transparent
rendering including classification reduces the frame-rate to a few frames per second
due to the frequent copying of slices. The analysis of rendering times showed that this
should improve whenglCopyPixels()is supported for pixel textures but some limita-
tions remain, e.g. one directional light source only.

Ideally, one would like to store a volume as a three dimensional texture of scalar
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values and gradient components. Instead of using a matrix multiplication which in-
troduces inaccuracies and is limited to one light source, it would be preferable to di-
rectly use the interpolated gradient to address a cube map (ARB_texture_cube_map).
By initializing such an environment map containing the accumulated intensity of all
light sources, accurate shading could be accomplished. At the same time, the den-
sity value would need to be used to address a one dimensional color table similar to
GL_TEXTURE_COLOR_TABLE_SGI containing RGBα values. By multiplying the
shading intensity with the classified RGB values, one could realize high quality volume
rendering. A schematic of the needed dataflow is illustrated in Figure 5.11.

RGBA

Intensity

R’G’B’ATriangles

1 channel

3 channels
Cube Map

Color Table

Combine3D TexMap

Figure 5.11: High quality volume rendering including shading and classification could
be enabled in one pass if the datapath would allow to use different parts of the fragment
to address different textures.

Looking at what is already available on different platforms, it appears to be only
a matter of time. The cube map is already available on nVidia’s GeForce chip but the
texture coordinates s,t,u are used as input and not the content of the fragment channels.
This is simply a matter of multiplexing the right data lines using the texturing output
of one texturing unit as input for the second one (subsequent texturing as extension
to multi-texturing). The texture color table is currently supported on SGI machines
and HP’s fx10 but each channel is treated individually. An extension that allows a
RGBα lookup table addressed by one channel would solve this. Finally, multiplying
the resulting shading intensity with the color and adding an ambient term could be done
similar to the texture combiners available on nVidia’s GeForce chip.
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Figure 5.12: Color plate: (a–c) Engine block (grey), metal (red), and CT noise (blue).
Cubic lens is used to reveal inside information, different classifications have been ap-
plied for the two classification spaces. (d–f) Silicon block; Center (yellow), hull (grey),
and outer hull (purple). Cubic lens is used to enhance the relationship of the different
areas. (g–i) Lobster consisting of meat (red) and shell (white), surrounded by resin
(green). Lens reveals local information removing the resin by applying different classi-
fication. (j–l) Silicon block; Different light directions are selected to show the shading
effect.



Chapter 6

A SIMD Approach for Volume
Rendering

Software volume rendering systems usually lack the computational power to accom-
plish real-time or even interactive frame-rates for the general case. However, exploiting
optimizations such as space leaping, early ray termination, smart memory organization,
and others, noticeable speed-ups are feasible for certain datasets. One example is the
shear-warp algorithm presented earlier in Chapter 4.

Parallel volume rendering has drawn a lot of attention and there are several different
approaches. Distributed memory systems usually require replication of volume data or
data partitioning schemes. This is not necessary for shared memory systems but shared
memory systems usually do not scale well once a certain number of nodes is exceeded.
A different avenue are SIMD machines which are usually distributed memory archi-
tectures but all processing elements perform the same task in every cycle, each having
some local memory as well as a large shared memory. Generally, most of these systems
are quite costly due to their high production costs.

Pixelfusion’s FUZIONTM150 is a single-chip SIMD architecture with a total of
1536 processing elements, implemented on an AGP card. Each processing element
runs at 200 MHz and has 2 KBytes of local memory and the entire architecture provides
a high bandwidth memory bus which is connected to RambusTM memory modules. In
the following, an optimized implementation of a parallel ray caster performing trilinear
interpolation of data and gradients, Phong shading, and compositing is presented. The
implemented parallel volume rendering algorithm on this machine provides flexibility
with respect to the performed computations and is quite competitive to earlier presented
large scale solutions.
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6.1 Introduction

Due to the high complexity of volume rendering, parallel processing is very promising
to accomplish significant speed-ups. Depending on the available system architecture,
different approaches have to be taken. Generally, one can classify systems by their
memory architecture resulting in shared memory, distributed memory, and distributed
shared memory. When implementing a volume renderer, the following observations
can be made: For distributed memory systems, object space partitioning is frequently
used. Data replication and communication is prevented by assigning each node a cer-
tain part of the volume [Hsu93, Neu93, LWMT97b, LWMT97a]. On the other hand,
image space partitioning schemes are more often used on shared memory architectures
since the entire data resides within shared memory space [NL92, MPHK93, Lac95].
There have also been hybrid approaches were data is distributed across nodes using
an image space partitioning scheme [CM93, AGS95, Lef93]. These approaches have
different ways of keeping volume data communication low. Finally, Palmer et al. pre-
sented an object and image space partitioning scheme on a distributed shared memory
architecture [PTT97].

SIMD systems (single instruction multiple data) usually belong to the category of
distributed memory architectures and are well suited to implement volume rendering
algorithms. Vézina et al. presented an iso-surface rendering approach running on
a SIMD MasPar MP-1 [VFR92]. Using 16K processors — each equipped with 16
KBytes of memory —, their implementation achieved three frames per second for a
1283 volume and a viewport of 128�128 pixels. Hsu et al. implemented a segmented
ray casting approach on a DECmpp 12000/Sx [Hsu93]. On a 4K processor system
with 4-bit ALUs, an image of 128�128 of a 1283 dataset could be rendered in 0.82
seconds using using trilinear sample interpolation but no shading. Wittenbrink et al.
presented a permutation warping providing almost constant run-time for all viewing
angles [WS93]. On a SIMD MasPar MP-1 system of 16K processors, 2 frames per
second were reported using trilinear interpolation. A refined implementation achieves
14 frames per second on a 1283 dataset [Wit98]. Finally, Kreeger et al. proposed
a SIMD programmable architecture for volume processing estimated to provide real-
time frame-rates but the system has not been built and would be quite costly[KK98].

6.2 The FUZIONTM 150 chip

The FUZIONTM architecture1 is implemented on a single-chip — the FUZIONTM150
— which connects to several external interfaces, as depicted in Figure 6.1. The core of
the FUZIONTM150 chip is a large SIMD array containing a total of 1536 processing
elements (PEs). The PEs are split into six equally sized blocks containing 256 PEs
each, so-called FUZIONTM blocks. Generally, instructions and data reside in the lo-
cal off-chip memory which is realized as RambusTM memory modules. Instructions
are fetched from the memory and then decoded (sequenced) into microcode which can
be executed on the PEs. The FUZIONTM bus connects the SIMD array, the instruc-
tion fetch and decode, an embedded CPU, video input, and video output. The local
RambusTM memory and the FUZIONTM150 chip are located on an AGP card which
can be plugged into any PC. The FUZIONTM150 chip itself is controlled by a thread
manager (see Figure 6.2) itself controlled by the embedded CPU (ARC). The thread

1Due to a non disclosure agreement with Pixelfusion, the description of the FUZIONTM architecture can
only be of limited detail.
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Figure 6.1: The FUZIONTMarchitecture.
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Figure 6.2: The thread manager.

manager can either access the local memory via the channel controller or perform oper-
ations on the SIMD array which is handled by the array controller. The array controller
(see Figure 6.3) interprets incoming instructions using an instruction table. If the in-
struction is to be performed on the PEs, the instruction sequencer translates the instruc-
tion into a sequence of micro-instructions which are then executed by the PEs. Any
other instruction that does involve data I/O is handled by the load/store controller issu-
ing the necessary signals to access the main memory (RambusTM) and synchronizing
the read/write operations of the PEs.

Consolidation of reads prevents redundant memory accesses when reading the same
memory region from different PEs. This also implies that applications need to be writ-
ten such that consolidation can be exploited saving bandwidth and yielding higher per-
formance.

6.2.1 Processing Elements (PEs)

The core of the FUZIONTM150 chip is the SIMD array with its 1536 PEs. Each PE
runs at 200 MHz internal clock frequency. The ALU is 8 bit wide and has a set of
internal and external registers and in addition to fixed point operations on 16 bit and 32
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Figure 6.3: The Array controller (RF denotes register file).

bit, floating point are also supported. However, these operations are emulated by the
8 bit ALU which can require many cycles for completion. The number of cycles per
instruction strongly depends on the instruction itself. Therefore, one needs to carefully
determine the required data precision as well as the appropriate set of instructions.

The PEs are organized in a one dimensional array which is split into six blocks
(FUZIONTM block) providing buffers between those blocks. The interconnect of the
PEs is named swazzle path and enables direct communication and data exchange of
neighboring PEs operating at full PE speed (200 MHz). Furthermore, each PE is con-
nected to a data bus such that data can be transfered to and from other devices over the
FUZIONTM bus. This is handled by the earlier mentioned array controller. The local
2 KByte of embedded DRAM memory of each PE is running at 50 MHz which is four
times slower than the ALU. However, register to memory transfers can be setup and
while the data is transfered, other operations can be performed.

6.2.2 Conditional branches

Due to the nature of SIMD, all PEs perform the identical operation in each cycle.
However, for most applications conditional branches (if ... else ... ) are un-
avoidable requiring different operations on different PEs. Since this is not feasible in
a SIMD architecture, conditional branches are realized such that all PEs that do not
fulfill the condition are deactivated. After processing the instruction sequence of the
if branch, active PEs are deactivated and inactive PEs are re-activated before exe-
cuting theelse branch. Hence, all instructions in both branches are executed and
performance is potentially wasted. Therefore, an algorithm should avoid conditional
executions whenever it is possible. Generally, up to five nestedif -conditions are sup-
ported on the FUZIONTM150 but further ones can easily be emulated.
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6.2.3 Performance

The FUZIONTM150 chip provides a tremendous computational power. All 1536 PEs
together are capable of performing 1.5 Teraops2 or over 3 Gigaflops3 per second. The
on-chip system bus can deliver a bandwidth of up to 600 GBytes per second while the
external memory bus to and from the RambusTM memory has a peak bandwidth of
6.4 GBytes per second. Despite this theoretical peak performance, it is not guaranteed
that this performance can be reached. Algorithms need to be designed for this highly
parallel architecture and reaching the peak performance can be hard to accomplish or
might not be feasible at all, depending on the application and its implementation.

6.2.4 Development Environment

Pixelfusion provided cooperation partners a programming environment which is very
similar to Microsoft’s Visual Studio (C++). The debugger allows tracking the state of
each PE as well as the content of its memory and the FUZIONTM compiler generates
an instruction stream (C++ ostream) which is executed by the cycle accurate simulator
translating it into microinstructions etc. For reasonably interactive simulation times,
the simulation can be spawned on up to seven PCs. One PC simulates the instruc-
tion decoding and each FUZIONTM block (256 PEs) can be simulated on a different
machine. For the presented implementation, two PCs were used — a Pentium III run-
ning at 600 MHz and one running at 700 MHz — simulating roughly 1400 cycles (7
µseconds) in one second. Thus, the simulation of one second of the FUZIONTM150
chip required approximately 40 hours real time.

Programming the SIMD array to perform the parallel ray casting algorithm was
done strictly in assembler using the currently available set of instructions. Unfortu-
nately, not all of the instructions were fully documented which made code development
a tedious process but this project was Pixelfusion’s first cooperation with an external
partner. The tools used were a prototype development environment and Pixelfusion is
currently developing a C compiler (based on ANSI C with extensions for SIMD data
types) and an integrated development environment including a suite of tools such as as-
sembler, linker, debugger, profiler, simulators and so on. This Software Development
Kit (SDK) will be available with the next generation of IP products.

6.2.5 A Historical Note

Almost two decades ago, the well-known Pixel-Planes project was started by Fuchs
et al. [FP81]. The first architecture of Pixel-Planes utilized fully customized VLSI-
chips containing a SIMD array of compact pixel processors operating in parallel and
allowing programmable shading. For better load balancing, more frame-buffer mem-
ory per pixel, higher quality, etc. successor architectures were built yielding to Pix-
elFlow [MEP92]. PixelFlow consists of multiple boards, each containing 64 EMCs
(logic-enhanced memory chips) as well as control and communication circuits. Each
SIMD chip contains an array of 256 PEs and memory [MEP92]. Depending on the ren-
dering workload, each board of the PixelFlow architecture does perform compositing

2Additional to the PE operations, there is a Linear Expression Evaluator (Ax+By+C) which performs
another four operations per PE per cycle. Thus a total of 5 * 200MHz * 1.5K integer operations can be
performed.

3This assumes 100 cycles for a floating point operation. Thus a total of 0:01�200MHz * 1.5K floating
point operations can be performed.
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and either shading or rasterization. PixelFlow has been a joint project of Division Ltd
and the university of North Carolina Chapel Hill. Later on, Hewlett-Packard joined the
project and the first prototype was built [EMPG97]4.

PixelFusion Ltd. was set up in 1997 to take the Pixel-Planes architecture to the
mass-market. The company has made many innovative improvements to the basic ar-
chitecture in order to develop its single-chip SIMD solution, the FUZIONTM150 chip.
The chip was targeted at the graphics market but, due to rapid changes in this market,
Pixelfusion has decided not to take this part to production. However, the next genera-
tion architecture will include further enhancements, such as more flexible PE memory
addressing and an improved ALU, which will address some of the shortcomings noted
in this paper.

6.3 Parallel Ray Casting

The main design issues for the parallel implementation of a volume rendering algo-
rithm is the equal load balance for all 1536 processing elements. Therefore, the algo-
rithm of choice is a permutation of the shear-warp algorithm [LL94]5. Starting from
an intermediate baseplane — the face of the volume which is most perpendicular to the
viewing direction — parallel viewing rays are traced through the volume. To improve
the image quality compared to the common shear-warp implementation, trilinear inter-
polation is applied instead of bilinear interpolation. Figure 6.4 illustrates the relation of
rays, volume, baseplane, and viewplane for two different viewing angles. The size of

Volume

Rays

Sample

Baseplane

Viewplane

(a) (b)

Figure 6.4: Baseplane oriented ray casting: (a) Orthogonal view. (b) Slanted view.
Rays which leave the volume are automatically re-entering the volume in wrap around
fashion.

the intermediate image on the baseplane depends on the viewing angle. As illustrated
in Figure 6.4(b), for each ray that leaves the volume on one side, a new ray is cast into
the volume on the other side. The one to one mapping of samples to voxels ensures that
for each scanline, a total ofn rays is active at any time, wheren denotes the size of the
volume (n3 voxels). For a volume of 2563 voxels, six scanlines are computed in par-
allel, one per FUZION block. However, the implementation is not limited to volume
sizes which are a power of two.

4In this version, each board was equipped with 32 EMCs.
5A very similar permutation is used in the CUBE-4 architecture [PK96].
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The ray casting process itself includes trilinear sample interpolation, gradient es-
timation, Phong shading using one light source, and blending. After processing one
sample and computing the new sample location, oneif -branch needs to be performed
to check whether any PE traces a ray that left the volume. In this case, the pixel is com-
pleted and the PE will be initialized for the ray which enters the volume on the other
side. Mapping the image from the baseplane onto the viewplane is done using texture
mapping. A full OpenGL 1.1 implementation for the FUZIONTM150 has been devel-
oped by PixelFusion. Computer graphics was originally the primary target market but
this has shifted to specialized co-processor markets providing high-performance data
processing silicon and IP6.

6.3.1 Analysis

So far, no AGP card with the FUZIONTM150 chip is available and first samples are
expected by fourth quarter 2000. Nevertheless, an estimate of the overall performance
can be made using the cycle accurate simulator of the FUZIONTM150 chip. In the
following, the rendering stages are split and analyzed.

The processing of a sample includes trilinear interpolation of the sample value.
Using fixed-point arithmetic, this requires 116 cycles for a full trilinear interpolation
while it takes 2905 cycles using floating-point. The reason for this significant differ-
ence is the 8 bit ALU. Floating point operations as well as operations on 16 or 24
bit fixed-point operations need to be emulated by sequential microcode which can be
quite expensive. Therefore, any code needs to be tuned avoiding floating point oper-
ations wherever possible. The developed implementation of the ray caster uses fixed
point arithmetic only with a neglectable degradation of the image quality.

The gradient is computed using a modified version of the intermediate difference
gradient estimation scheme [Kni94]. For a given sample position, the closest voxel on
each face of the subcube is computed performing six bilinear interpolations. The local
difference is taken from these six values. Even though this is not the ideal intermediate
difference gradient, it still achieves good image quality at reasonable cost. Fetching the
eight surrounding voxels takes 1840 cycles which is 40% of the overall time needed
per sample. Other gradient estimation schemes could provide higher shading qual-
ity but would require a larger voxel neighborhood significantly increasing the overall
rendering time.

Classification is performed on a per sample base and includes the assignment of an
RGBα-tuple per 8 bit density sample. This requires to store a table of 1 KByte in the
local memory of each processing element. Due to the addressing scheme of the local
memory, the table needs to be arranged in eight tables, each containing 128 values.
This is due to the limited addressing arithmetic available. On the FUZIONTM150 chip,
one can only use a fixed base address with a relative offset which is 5 bit wide.

One of the most expensive computational operations is the evaluation of the Phong
shading model due to the required normalization of the gradient vector. Additionally,
two scalar products are required, one for the diffuse and one for the specular compo-
nent. Even though this accounts for one directional light source only, it needs approx-
imately 1500 cycles or 33% of the time spent per sample. This could be improved
by implementing a faster square root computation because the existing one takes 862
cycles which is quite slow. While own instructions consisting of a set of micro instruc-
tions can potentially be developed, the required tools are not (yet) publicly accessible.

6http://www.pixelfusion.com
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Finally, the blending of the color value with the already accumulated pixel color
is performed using a special fixed-point arithmetic. Color and opacity values are 8 bit
[0:::255] representing the interval[0;1:0]. Therefore, one needs to compute(a�b)=255
instead of(a� b)=256. While the latter can be simplified to(a� b) >> 8 and used
to trilinearly interpolate sample values because the 8 bit weights represent the interval
[0;1:0[, the former is more expensive7.

Overall, the cycle count for each computation stage is summarized in Table 6.1.
Fetching data from memory as well as the gradient normalization consume roughly

Task Time
[cycles] [%]

Fetching data from external memory 39.3
All eight voxels 1840

Trilinear sample interpolation 2.5
Seven linear interpolations 116
Shading 32.4
Gradient computation 144
Gradient normalization 862
Diffuse scalar product 231
Specular scalar product 231
Phong evaluation 46
Classification 3.4
Accessing classification data 159
Compositing 2.4
Blending of color andα 110
Test for exiting the volume: 19.3
Top 135
Bottom 135
Right 135
Left 135
Other tests approx. 400
Overall number of cycles per voxel: 4679 100

Table 6.1: Cycle per computation. The rightmost column denotes the percentage of the
time needed per sample.

58% of the overall time. Shading could be accelerated using an environment map
[vSSB95] but unfortunately, such an environment map would require 1.5 KByte. This
is not feasible on the FUZIONTM150 chip since only 2 KBytes of memory are avail-
able and the look-up tables for the classification already consume 1 KByte. However,
on a successor system with 3 or 4 KBytes of memory, this could reduce the overall
time spend per sample by approximately 25%. The third most expensive part is the test
whether a ray leaves the volume on one of the four side faces (each side 135 cycles) or
on the back which includes some other tests (400 cycles). All these tests are of type
if...else... which is expensive on a SIMD machine.

As mentioned in Section 6.3, the implemented permutation of the shear-warp al-

7The simplification of(a�b)=255 avoiding the division is presented in more detail in Section 7.2.3.



6.4 Results 87

gorithm uses trilinear interpolation which is more costly than the original shear-warp.
However, the costs are almost neglectable when looking at what can be saved when us-
ing bilinear interpolation only. Instead of fetching eight values, only four values would
need to be fetched which saves 920 cycles. The trilinear interpolation could be reduced
to a bilinear interpolation but would hardly be noticeable since it consumes only 2.5%
of the overall render time. All other operations including the shading, classification,
and compositing would not change. As a result, only the reduced data transfer saves
cycles, translating into a performance gain of approximately 20% when using bilinear
instead of trilinear interpolation.

6.4 Results

While software based shear-warp implementations use run-length encoding and early
ray termination to speed-up the rendering, the presented parallel implementation does
not exploit these optimizations. One reason is the difficulty to integrate such techniques
into the SIMD concept. E.g. to keep the memory accesses regular, early ray termination
could only be exploited if all PEs detected early ray termination, This could possibly be
accomplished changing scanline based rendering to tile based rendering (16�16 rays).
However, checking all PEs for their status is an expensive operation and due to the
granularity of 256 rays, early ray termination is likely to be less efficient. Furthermore,
performance gains due to early ray termination are only expectable for iso-surface ren-
dering but not for semi-transparent classification.

Without exploiting any algorithmic optimizations, the presented implementation
accomplishes a constant frame-rate which depends only on the size of the dataset. A
total of 4679 cycles per sample per PE results in 1500 samples which are computed
in parallel. Using the processing clock of 200 MHz, this translates into 26 frames per
second for a volume data of 1283 voxels which is 85% more than reported by [Wit98]
using 16K processors. Table 6.2 summarizes the frame-rate for different dataset sizes.

Dataset size Memory Processing cycles Frames
[voxel] [MByte] [in thousand] [per second]

2563 48 50.000 4.0
1283 6 7.500 26.7
643 <1 900 222.2

Table 6.2: Frame-rate for different dataset sizes.

In order to demonstrate the visual quality of the trilinear permutation of the shear-
warp algorithm, a dataset of a human foot has been rendered using different volume
resolutions. The resulting baseplane images are presented in Figure 6.5. The baseplane
image is the one that is finally be mapped onto the viewplane. Thus, the final image
quality depends mainly on the quality of the baseplane image and the higher the dataset
resolution, the higher the final image quality. However, there is a trade-off between
quality and render time.
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(a) (b) (c)

Figure 6.5: Baseplane image of differently sized datasets: (a) 642 (b) 1282 (c) 2562.

6.5 Summary

A trilinear permutation of the well-know shear-warp algorithm running on a highly
parallel SIMD architecture containing 1536 processing elements has been presented.
The implementation achieves four frames per second for medical datasets of 2563 vox-
els. This frame-rate is constant because it does not depend on the dataset nor on the
classification; neither run-length encoding nor early ray termination is used.

A careful analysis of the instruction set showed that floating point operations need
to be avoided to accomplish a good performance. The analysis of cycles per volume
rendering operation identified three main bottle-necks. First, the memory access to
fetch eight voxels for each processing element consumes 39% of the time and can
hardly be optimized any further. Second, the shading computation consumes 32%
of the time due to the normalization of the gradient and the two scalar products. This
could be reduced if more local memory would be available to store an environment map
for shading but would require 3 or 4 KBytes of local memory instead of the available
2 KBytes. Finally, the evaluation whether a ray terminates and needs to re-enter the
volume takes 19% of the time. This is also hard to optimize since these tests slow down
the SIMD architecture.

Using bilinear interpolation instead of trilinear interpolation as well as assuming
that more memory would be available to store an environment map, an upper limit of
eight frames per second is to be expected with the current implementation. Compared
to a software implementation as well as other earlier reported parallel implementations,
this is quite competitive, especially since no algorithmic optimizations are exploited.

FUZIONTM150 is the first commercially available SIMD solution providing a tremen-
dous number of processing elements on a single chip. Since it is a programmable sys-
tem, it can be used for a large variety of other applications even though one needs to
carefully map an algorithm onto such a system to accomplish a good performance. It
would certainly be an enrichment if such systems would become more popular and
widely available. With respect to volume rendering, it is capable to provide good
image quality at a sustained frame-rate. In applications where interactive change of
classification is mandatory, it is faster than an equivalent software based shear-warp
implementation since the run length encoding exploiting the classification is generally
a time consuming pre-processing step.



Chapter 7

VIZARD II:
Special Purpose Hardware for
Volume Rendering

As shown in the previous chapters, several available hardware systems can be used
to accelerate volume rendering. Each of them has certain advantages such as broad
availability (OpenGL graphics hardware) or massive parallelism (FUZIONTM 150).
However, both do not provide the full desired functionality nor are the memory inter-
faces ideal with respect to volume rendering. This is due to the fact that these systems
have not been designed for volume rendering in the first place.

Real-time frame-rates at highest image quality and flexibility at moderate costs
can only be accomplished using dedicated volume rendering hardware.VIZARD II
is a special purpose volume rendering accelerator. Flexibility and moderate costs are
guaranteed by using a DSP, reconfigurable hardware (FPGA), and SDRAM dual in-
line memory modules (DIMMs) which can be chosen appropriately. The flexibility —
namely reconfigurable hardware — allows faster redesign cycles and lower costs than
designing an ASIC. Furthermore, it uniquely enables the implementation of different
algorithms, e.g. segmentation or iso-surface extraction using the same hardware plat-
form.

In the following, previous work in the field of special purpose volume rendering
hardware is reviewed. Thereafter, the VIZARD II system, its architecture, as well
as the components are introduced and a analysis of the system bottle-necks is given.
Finally, different enhancements are presented to accelerate the rendering using space
leaping and to enable 16 bit voxel values.
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7.1 Introduction

Despite its long history, volume rendering is still a challenging task due to its high
bandwidth and computation requirements. Within this section, an overview on present
previous work on special purpose volume rendering hardware is given.

The Cube architecture has certainly the longest history and the largest body of
publications [BKX90, BKX92, KMS+96, PK96, BK97, OPL+97, PHK+99]. The ar-
chitecture uses template based ray casting [YK92, SS92] and an optimized memory
interface which ideally fetches each voxel exactly once per frame [CK95]. The archi-
tecture consists of a number of processing pipelines which perform buffering, sam-
ple interpolation, gradient estimation, shading, and compositing. The volumetric data
is distributed over a set of memory modules. A memory interleaving scheme called
skewing [CK95] is used to guarantee conflict free access to any axis-aligned beam
of voxels. The skewing scheme assigns all voxels to memory modulei which full-
fill x+ y+ z mod n= i, wheren is the number of operational pipelines of the sys-
tem. While the Cube-3 architecture used a voxel bus to distribute the voxels from the
voxel memories to the processing pipelines, Cube-4 removed this burden of having a
global voxel bus by connecting each processing pipeline to exactly one memory mod-
ule [KMS+96, PK96]. The only available implementation of the Cube family is the
VolumePro system [PHK+99] which itself uses yet another memory scheme. SDRAM
memory chips are used and skewing is applied to subcubes while voxels within the
subcube are read in burst-mode, resorted, and assigned to the processing pipelines on-
chip. All Cube architectures share the principle of using a baseplane to generate the
image, similar to the shear-warp algorithm [LL94]. Using a one to one mapping of
samples to voxels, each pipeline receives a single voxel in every cycle. The processing
pipelines are locally connected such that the required voxel information is exchanged
between neighboring pipelines which favors scalability. The final image is obtained by
warping the baseplane image onto the view plane which can be done using 2D texture
mapping. VolumePro is a single chip system implementing four parallel processing
pipelines and achieves 30 frames per second for a dataset of 2563 voxels1, currently
the fastest volume rendering accelerator available. Despite the excellent performance,
the system has a number of disadvantages which are inherent to the architecture. Only
parallel projections are possible since the local connectivity of the pipelines does not
enable to access the necessary data of diverging rays. However, perspective projec-
tion is mandatory for immersive applications as frequently needed in the medical field.
One could emulate perspective projection similar in the way it is achieved when using
texture mapping2 but this requires a tremendous bandwidth which would significantly
reduce the frame-rate. Furthermore, oversampling in screen space (on the baseplane)
causes a high penalty since multiple baseplane images with different offsets need to be
rendered and then interleaved pixel by pixel before warping this higher quality base-
plane image. Finally, scalability across multiple chips seems to be extremely costly
due to the large amount of pins of each pipeline, which is roughly between 400 and
500.

Virtual Reality in Medicine (VIRIM) uses an object-order volume rendering archi-
tecture [GPR+94, dBHG+96]. The VIRIM architecture performs rendering in a two

1Generally, VolumePro delivers 500 million interpolated and shaded samples per second.
2Each polygon/slice is perspectively correct distorted.
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steps. First, a geometry processor resamples the volume data and second, sample val-
ues are shaded and blended. The latter one is realized as a DSP board enabling high
flexibility. Resampling the volume data is performed in top to bottom scanline order
and for each scanline all samples of the corresponding plane are trilinearly interpolated.
For better performance, an eight way interleaved memory scheme is used which has a
maximum transfer rate of 640 MBytes per second. Each of the eight values passes a
lookup to assign an opacity value before interpolation. While the sample value is trilin-
early interpolated, the gradient consists only of two components which are determined
using a local difference filter within the plane. This is possible since the light sources
are directional and within the same plane (at 0 and 45 degrees). A maximum of 36
million trilinear interpolated samples and gradients are then passed to the DSP board
which consists of several DSPs. A peak transfer rate of 240 MBytes per second can
be achieved. The programmability of the DSPs allows the implementation of different
algorithms such as MIP, ray casting, or ray tracing [MMSE91]. VIRIM has been the
first operational interactive special purpose volume rendering accelerator. It achieves
between one and four frames per second for a 2563 volume. The disadvantages of the
system are its large size and the high costs (approximately 100 K US$), Furthermore,
monochrome images are generated and color is interpolated which results in blurry im-
ages for zoomed views and the shading quality is reduced due to the local difference
gradient, limited to two dimensions. However, the architecture provides parallel and
perspective projections and is therefore suited for immersive applications.

While the Cube architecture consists of an optimized memory interface with dedi-
cated processing pipelines, VIRIM has been built for highest flexibility but has a less
efficient memory interface than Cube. These two architectures represent the two main
avenues that can be taken when designing volume rendering hardware. Many more
architectures have been presented but only the most relevant of them are summarized:

Doggett et al. [Dog95] proposed the use of a warp array performing the viewing
rotation and a ray array containing all rays to be processed. The idea is to implement
the viewing rotation using process elements which reduce the 3D ray casting to a 2D
ray casting requiring simple shift operations only. However, the required hardware is
very complex and the implementation of a full ray array was expensive at that time.
The volume memory is double buffered and for a HDL implementation 15 frames per
second for 3842 rays onto a 2563 dataset were estimated.

Lichterman et al. [Lic95] proposedDIV 2A, a system of eight ray casting processors
which are connected in a ring fashion. The volume data is split into subcubes which
are distributed across the eight processors such that data required at the borders of
subcubes is most likely available in one of the two connected processors. For 2563

voxels, a performance of 20 frames per second has been estimated but the current
status of the project is unknown.

Knittel et al. [Kni94] proposed an architecture that uses an eight way interleaved
memory performing either fast (reduced intermediate difference gradient) or high qual-
ity rendering (central difference gradient). Furthermore, a custom implementation of a
square root unit is used to implement high quality shading. An estimate of 20 frames
per second for 2563 voxels using eight parallel ray casting units running at 60 MHz has
been estimated but would require complex custom hardware (ASIC).

Knittel et al. [Kni95] also proposed to build a PCI based volume rendering acceler-
ator. The system uses the main memory of a PC class machine to store a pre-classified
and pre-shaded volume dataset. The CPU computes the intersection of the ray and the
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volume while the PCI-card performs the ray casting. To drastically reduce the DMA
traffic on the PCI bus, a redundant block truncation coding (RBC) is used. This block
truncation scheme uses 32 bit to represent a 3�2�2 neighborhood of twelve voxels.
Two representative intensity values are stored in 16 bit (8 bit each) and twelve bit are
used to decode which of the two values belongs to the twelve voxel positions. The re-
maining four bit can be used for segmentation. Hence, for the interpolation of a sample,
only one word needs to be fetched via DMA. Furthermore, due to the discretization of
the voxels, the trilinear interpolation can be reduced to lookup and a single multiplica-
tion and subtraction. The lookup requires a table of 220 entries for a 4 bit interpolation
weight (two times eight bit voxel plus four bit). However, this simplified interpolation
and reduced memory bandwidth has its price: Limited image quality and monochrome
images. Since DMA introduces latency, an additional on-board cache has been added.
The cache uses the Manhattan distance to address the cache line and the address in x,y,
and z of the voxel position as cache tag to check for valid cache entries. The cache
performs well for zoomed views exploiting ray to ray coherence. Furthermore, a space
leaping mechanism based on distance coding using octants selects the appropriate mul-
tiple of the ray increment stored in a SRAM. To circumvent delays due to the latency
introduced by space leaping, two visualization units operate in parallel, each handling
one ray. Using a single visualization unit, the system was estimated to achieve 2:5 to
5 frames per second for a 2563 dataset and 2562 rays. Pre-processing time was in the
order of 15 minutes and moderate image quality was achieved. The first implemen-
tation of this system [KS97] — namedVIZARD— achieved for a similar view three
frames per second using two acceleration boards, each equipped with two visualiza-
tion engines. The bottle-necks of the system were identified as FPGA-technology (too
small and slow), PCI-bus, and CPU (calculating the ray entry points).

All of the so far described architectures make use of SDRAM to store the volume
data while only one approach using RDRAM (RambusTM memory modules) has been
presented [dBGHM96]. Despite the fact that RDRAM could be used for volume ren-
dering, it is too expensive and difficult to implement. Furthermore, modern SDRAM
technology using double data rate or higher clocked memory modules performs equal
or better than RDRAM because non regular access patterns can be handled more effi-
ciently.

Many other architectures have been proposed but only VIRIM, VIZARD, and Vol-
umePro were built. The discrepancy of proposals and real implementations seems to be
based on two reasons: First, volume rendering has high bandwidth and computational
requirements and a useful solution must provide features such as oversampling in each
dimension, interactive classification, high image quality, cut planes, segmentation, etc.
To incorporate all or most of these features into a hardware design is a challenging task
and has yet not been solved to an satisfactory degree. Second, designing hardware has
been a cost and labor intense process which has been difficult for universities. How-
ever, this has changed due to several reasons. First, the broad availability of high level
hardware description language based design flows on the PC platform allow complex
designs. Second, the capacity and speed of Field Programmable Gate Arrays (FPGA)
has increased drastically, thus enabling the rapid prototyping of complex systems. Fi-
nally, ready to use PCI cores have relieve hardware designers from dealing with the
time critical aspects of the PCI protocol, such that one can fully concentrate on the
system functionality.

Our goal has been set to develop a PCI based volume rendering accelerator which
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is based on reconfigurable hardware, thus enabling implementations of different algo-
rithms (flexibility), not necessarily restricted to volume rendering applications.

7.2 System Overview

The VIZARD II is a special purpose PCI card consisting of several components. The
main design goal has been the implementation of a ray casting algorithm as well as
high flexibility to enable future changes and other implementations. In the following,
the underlying algorithm, the architecture, and the implemented units are described.

7.2.1 Volume Rendering Algorithm

The first algorithm implemented on the VIZARD II system mainly follows the work
presented in [Lev89], implementing a full ray casting pipeline. Rays are cast through
a volumetric, possibly non-uniform, regular dataset. To ensure high image quality,
sampling needs to be freely selectable in each dimension. Segmented datasets can
be processed or arbitrary classification planes applied and high precision blending is
used to guarantee highest image quality for semi-transparent rendering. Furthermore,
different rendering modes such as MIP, unshaded, shaded, etc. are supported.

Starting with the viewing parameters such as eye position, view direction, view
up vector, etc., the position of the view plane is calculated. For each pointPi; j of the
view plane, a ray is cast into the volume and tested if it hits the volume data. There
are either no, one, or two intersection points depending on the position ofPi; j and
the increment vector. Further intersection points can exist, one for each classification
plane. Classification planes allow the user to apply different classification functions on
each half space introduced by a classification plane. Each classification plane doubles
the amount of classification spaces, each possibly requiring its own classification table.
Alternatively to classification planes, segmentation can be used to label voxels. The
voxel label is used to determine the right classification table during rendering (see
Section 1.2.4).

A sample is generated by trilinearly interpolating the eight neighboring voxels on
the grid. In a similar fashion, the gradient at sample location is computed. Instead of
computing gradients at voxel location on the fly — which would results in a 32 gradient
neighborhood per sample for a central difference gradient operator — gradients are
considered to be a voxel property. This is similar to surface rendering where a normal
is a vertex property and not computed from neighboring triangles on the fly. Another
reason for this is that numerous gradients operators exist but each of them would require
a different memory interface to deliver the required data.

As it is described in the previous work section, memory access is a crucial aspect
in all volume rendering architectures. Derived from [Kni93] and similar to VIRIM
[GPR+94] and others, an eight-way interleaved memory is used for the VIZARD II
system. In contrast to previous approaches, SDRAM DIMMs are used to allow dif-
ferent volume memory sizes without the need of fabricating a new PCI card. Since
DIMMs come in modules providing a 64 bit data bus (72 bit including eight parity
bits), four DIMMs are used spending 32 bit per voxel and replicating volume data in
one dimension.

Classification is performed using the sample value for the look-up into the clas-
sification table and paging between different classification tables is realized using the
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segmentation index or an index determined by the sample position relative to the classi-
fication planes. The result of addressing the two 32 bit SRAMs is a (r,g,b,α, ka, kd, ks)
tuple. Phong shading is performed using the gradient at sample position and a look-up
table based shading technique as presented in [VF94, vSSB95]. The tables3 require 3
KBytes of memory and only need to be computed when the illumination parameters
change, e.g. the direction of the lights. The obtained diffuse and specular shading in-
tensities are multiplied with the material properties and with the color of the classified
sample. Currently, only white light sources are supported but this could be extended
using RGB instead of intensity as table entries for the specular component.

As a last step, each classified and shaded sample needs to be composed with the
previously accumulated color. The final pixel of a ray is obtained once the last pixel of
the ray is composed or once the accumulated opacity is higher than a certain threshold,
for exampleα� 0:98. When using maximum intensity projection, all samples need to
be processed until the highest value is found.

7.2.2 Architecture

A schematic overview of the VIZARD II system architecture is given in Figure 7.1.
The VIZARD II system architecture has been designed for a ray casting algorithm

FPGA
SRAM1

DIMM1

DIMM0

DIMM2

DIMM3

SRAM0

SDRAM
DSP

bridge
PCI DSP SDRAM

Figure 7.1: VIZARD II system architecture: The second DSP (dashed block) is op-
tional.

and therefore has a dedicated memory interface to provide optimal voxel access for
arbitrary rays. A local bus is used to transfer data within the system, but also to enable
data transfer to and from the outside world (PCI bridge). The main component is the
reconfigurable FPGA chip. It controls two SRAM and four DIMMs. Furthermore,
there is one DSP and a SDRAM which is the external memory of the DSP. A second
DSP and SDRAM are optional and not needed for the implementation of ray casting4.

3One for the diffuse and one for the specular intensity which can be eye point independent.
4The VIZARD II board has been designed in a joint project with Phillips Research Hamburg including

an implementation of a volume reconstruction algorithm which needs the second DSP.
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7.2.3 PCI-Board

The VIZARD II system is implemented as a long PCI board with most components run-
ning at 100 MHz (FPGA, DIMMs, and SRAMs), the DSP runs at 80 MHz. While the
backside is used to plug-in the DIMMs, the front side holds all logical units, as there
are: one PCI interface chip (PLX), up to two DSPs (Analog Devices SHARC), one
DIMM per DSP, one FPGA chip (XILINX Virtex XCV1000), and two 32 bit SRAM
memories (see Figure 7.2). Additionally, there are pins on the board which are con-
nected to the SHARC links, a specialty of the used DSPs. These links run at 80 MHz
and can be connected to any other DSP to allow communication and data transfer be-
tween other DSPs. Thus, a system consisting of multiple boards and an additional
video board could be built, such that the image can be delivered directly to the video
controller without needing to transfer it over the PCI bus. Such a video board could
also handle Gaussian filtering of the image before displaying it. Finally, there are con-
nectors such that additional power can be supplied. This is necessary since the PCI bus
does not supply sufficient power to drive all logic available on the board, mainly the
SDRAM DIMMs which need a lot of power during refresh cycles.

(a)

(b)

Figure 7.2: The VIZARD II PCI card: (a) Front view (b) Back view.

PCI Interface

Instead of designing a PCI interface from scratch, an off-the shelf component is used.
The two main options when buying a PCI bus interface are ASICs or PCI cores for
FPGAs. The latter offers more flexibility but also requires FPGA space. Instead of
using a second FPGA chip, a ready PCI interface chip of PLX Technologies has been
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chosen. The PCI 9054 offers master and slave capabilities as well as simple driver
models which can easily be extended. A reconfigurable PCI interface solution is not
necessary since the additional buffering can be done on the FPGA or in the SDRAM
of the DSP.

DSP

The DSP (digital signal processor) is a SHARC ADSP-21160 running at 80 MHz.
With its two internal fully parallel pipelines, it provides a peak performance of 600
MFLOPS. It is a 32 bit core, capable of 32 bit fixed-point or 40 bit floating point
computations. Furthermore, it has a dual-ported 4 Mbit on-chip SRAM, an integrated
I/O processor, and six SHARC links running at 80 MHz which can be connected to
other SHARC DSPs. The board comes with one DSP but a second one can be added.

The DSP is mainly used for setup calculations which includes the traversal of the
viewplane as well as the computation of the intersection of each ray with the volume
dataset (Pentry). To ensure highest precision, floating point arithmetic is used. An
advantage of the ADSP 21160 are its SIMD capabilities and the completion of each
floating point operation within a single cycle. This includes division as well as the
computation of 1p which is frequently needed. The algorithm used for the calcula-

tion of the intersection points of ray and volume is a modified version of the algorithm
of Woo [Gla90, Woo90]. In short, for each ray the three potential volume faces are
determined using basic compare operations. In each dimension, a division by the ray
increment is needed to obtain the relative distance. The maximum of all three values
determines the intersection point. Two further multiplications are needed to determine
the intersection coordinates. The ray exit (Pleave) does not need to be computed since
this is performed on the FPGA by testing the ray position against the volume bound-
aries. However, when using classification planes, additional intersection calculations
are needed for each classification plane, as illustrated in Figure 7.3.

Pentry

Pleave

P1
P2

P3

Pentry PleaveP1 P2 P3

n1 n2 n3 n4

Figure 7.3: Ray intersecting the volume and three classification planes.
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Since classification planes are not necessarily axis aligned, they can have arbitrary
orientation. This aggravates the task of finding the intersection point but an optimized
algorithm [Kir92, Geo92] requires nine MULT, eight ADD, one DIVIDE, and seven
compares. The algorithm computes the orthogonal distance of a point to the plane and
then scales this distance by the scalar product of ray direction and plane normal.

In a final step, the hit points are sorted and the number of samples to be taken for
each ray segment is determined. Computing the Euclidean distance(s) can be done
efficiently due to the SIMD capabilities and the fast square root instruction. It is esti-
mated that up to three classification planes can be computed for roughly 15 frames per
second using 2562 rays. Higher frame-rates could be accomplished using both DSPs.
However, the next generation VIZARD board will use a larger FPGA chip providing
enough gates to perform the intersection calculations on-chip using division tables.

To be capable of distinguishing between the classification of samples without know-
ing about the position of the cut planes at the sample classification stage, it is necessary
to parameterize the ray and forward the parameters with the data. Therefore a tuple
< ci ;ni > is assigned to each ray segment, whereci denotes the classification table and
ni the number of samples to be taken along ray segmenti. A maximum of up to four
tuples is send to the Ray Processing Unit (RPU). The use of ray segments removes
3D spatial computations from the RPU simplifying the hardware implementation. By
incrementing the ray position and decrementing the sample counter, the corresponding
classification table index can be fed through the pipeline to later on select the correct
classification table. Up to three classification planes result in up to eight classification
spaces. The first implementation deals with 8 bit voxel data requiring 2 KBytes per
classification table and providing 64 bit per entry (R,G,B,α,ka,kd,ks). The classifica-
tion tables are stored in the external on-board SRAMs.

Memory Interface

The PCI board contains off the shelf SDRAM DIMMs in which the volume data is
stored. DIMMs were the first choice since they are relatively cheap and allow to use
different memory configurations on the same board. However, this comes at a certain
price: First, the DIMM slots cover a large PCB area5 and are therefore placed on the
backside of the PCB, and second, they provide a 64 bit data bus. As a result, data is
replicated such that each DIMM entry holds a 32 bit voxel and the subsequent voxel in
z direction. Inx andy, voxels are interleaved across four DIMMs. This allows to fetch
eight voxels in parallel which is needed for trilinear interpolation. Looking at modern
SDRAM devices, it could be worth removing the replication and making use of DDR
SDRAM instead6, but one would sacrifice flexibility.

Generally, ray casting suffers from arbitrary memory access due to the impre-
dictable ray traversal. To still obtain a good performance, the volumetric data is stored
in a cubic fashion. The goal is to keep the needed data in the caches of the SDRAMs
while a ray is cast. The caches of four DIMMs can hold as much as 128 Kbit which
allows to store a total of 16�16�16 voxels of 32 bit within the available cache space.
For a dataset of 64�64�64 voxels, this translates into 4�4�4 subcubes, as illustrated
in Figure 7.4.

As long as samples are taken within such a subcube (163 voxels), the optimal mem-
ory access rate can be reached, which is 10 ns for the selected DIMMs. Only when

5Laptop SDRAM DIMMs are used and placed flat on the PCB board.
6XILINX already offers VHDL models of DDR SDRAM controllers for their Virtex FPGA series.
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Z
Y

X64x64x64 voxels subcube of 16x16x16 voxels

Figure 7.4: Memory organization scheme.

crossing the border of two subcubes, a cache miss will occur and cause a time penalty.
This is illustrated in Figure 7.5 for the two dimensional case. While casting the ray

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

Y

X

DIMM 1

DIMM 0

DIMM 2

DIMM 3

n-1 n n+1

Cache (row j)Cache (row i)

Figure 7.5: Crossing of cache borders.

until samplen�1, the values will be available across the cache lines of the DIMMs.
However, for samplen the cache lines of DIMM 0 and 2 will need to be pre-charged
and a new row can be activated. Depending on the used DIMM, this process takes be-
tween 30 and 90 ns. Once these rows have been activated samplen can be processed.
Unfortunately, DIMM 1 and 3 will stall for samplen+1 since they need to pre-charge
and activate a new row. Hence, crossing such a cache border results in two subsequent
cache misses7 which significantly increases the average sample access time from 10 ns
to roughly 20 ns, but can vary depending on the sampling rate. The higher the sampling
frequency, the less the relative penalty of stalling due to the higher cache efficiency. In
the three dimensional case, up to three subsequent stalls can occur when crossing cache
boundaries.

Fortunately, subsequent stalling of different memory modules can be hidden by in-
terleaving the pre-charge and activate cycles using FIFO buffers. Figure 7.6 illustrates

7Depending on the sampling rate and the sample location this does not necessarily happen within two
subsequent steps.
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this schematically for the case depicted in Figure 7.5. To accomplish interleaving of
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Figure 7.6: Cycles needed for crossing of cache borders without (a) and with interleav-
ing of pre-charge and row activate (b).

stall cycles, address and data FIFOs are used for each of the four DIMMs. Hence,
while one or more DIMMs stall, the address generation continues and voxels can be
delivered from the data FIFOs. The address generation will stall when at least one of
the address FIFOs is full and the ray processing will stall when at least one data FIFO
is empty. With a FIFO depth of 16, an average memory access time of 12.7 ns can be
achieved while the sampling rate is one. For a sampling rate of 0.5, this improves to
11.3 ns due to the better cache locality [DMK99].

FPGA (XILINX Virtex XCV1000)

The Field Programmable Gate Array (FPGA) is the core of the VIZARD II system.
Most of the previously described memories (DIMMs and SRAMs) are connected with
the FPGA. The entire RPU is implemented in the FPGA as well as further control units.
While the I/O Control buffers in and outcoming data, the instruction decoder (InDer)
controls the download of volume data, shader tables, classification tables, and ray data
as well as the upload of finished pixels. A schematic overview of the FPGA, its logical
units, and connections is given in Figure 7.7. In the following, the task of each unit,
the required data exchange, and the control flow will be described in more detail.

I/O Control

The FPGA is not capable of controlling the local bus of the board. Instead, it is im-
plemented as memory mapped device such that the DSP can write into it, similar to a
memory. Therefore, communication between DSP and FPGA is accomplished using
two DMA lines each consisting of a DMA request and a DMA acknowledge. The I/O
Control is responsible for handling this protocol such that data can be transfered from
the DSP to the FPGA and vice versa.

Status Control

The status control is fairly small but important for debugging of the design. It contains
a full 32 bit register which stores information of the status of the design. This includes
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Figure 7.7: The FPGA toplevel components consisting of I/O Control (I/O Ctrl),
Instruction Decoder (InDer), Status Control (Status Ctrl), and Ray Processing Unit
(RPU). Data lines are black, address lines blue, and control lines red.

the current processed command, a flag in case a time-out has occurred, bits for refresh
of DIMMs, and many others. In case of a dead-lock, one can still read this 32 bit
register from the DSP to get a hint what went wrong.

Instruction Decoder (InDer)

The DSP needs to send different data down to the FPGA in order to provide all neces-
sary information. Some of this data changes on a per frame base while other is valid
for many frames. The current set of instructions includes the following operations:

� Download data to DIMM:Parameters are DIMM id, base address where to start,
and number of voxels to download. Thus, parts of a volume can be replaced and
multiple volumes stored.

� Download shader tables:Either the diffuse or the specular table is replaced.

� Download classification table:Parameter is index of the table to be downloaded.

� Download dataset info:Parameters are the minimum and maximum of the vol-
ume bounding box, the number of subcubes in all three dimensions, and render
mode (shaded/unshaded, MIP, etc.).

� Process ray:The following words are interpreted as ray entry point, ray incre-
ment, and number of samples to be taken per ray segment.
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All instructions are followed by a number of data words which are then interpreted
correspondingly.

The InDer is realized as a state-machine that accepts an instructions if the instruc-
tion is valid, namedGrandCentral. For each instruction, the responsible instruction
state-machine is given control to process the subsequent incoming data. Once the in-
struction has been completed, control is given back to the GrandCentral, as illustrated
in Figure 7.8. The individual instruction state machines control the corresponding
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Figure 7.8: The Instruction Decoder (InDer): Depending on the incoming instruction,
the corresponding state-machine receives control and returns control to GrandCentral
after completion.

memory modules, and multiplex the read/write addresses as well as data lines.

Ray Processing Unit (RPU)

The ray processing unit traces a given ray through the volume and returns a final pixel
value after the last sample within the min/max bounding box has been processed. It
consists of several units, as illustrated in Figure 7.9. Theray casting unit(RC) gen-
erates the coordinates of the samples along a ray and the corresponding control infor-
mation. Using the integer part of the sample coordinate, the individual addresses for
the four DIMMs are generated in theaddress unit(AU). Since the DIMM access intro-
duces latency, the corresponding control information is fed through a FIFO to ensure
data alignment over time while the memories read the specified voxels. Thetrilinear
interpolation unit(TIU) generates sample values and gradients which are sent to the
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Figure 7.9: Ray processing unit (RPU) consisting of ray casting unit (RC), address unit
(AU), trilinear interpolation unit (TIU), shader unit (SU), classification unit (Class),
combiner, compositing unit (compos), and FIFOs.

shader unit(SU) to perform the computation of the diffuse and specular intensities.
Parallel to this, the density value is fed through a shift-register before being interpreted
as color and material properties (classification unit(Class)). The cycle aligned shading
intensity and classification data is used in thecombiner unit(CU) to perform Phong
shading. Finally, all values along the ray are blended in thecompositing unitwhich can
be done using blending or MIP.

Ray casting Unit

A ray is specified by its entry point in the volumePenter, the ray increment vector
Rdir , and possibly up to four ray segments (< ci ;ni >), as described in Section 7.2.3.
Each ray segment is represented as a tuple containing the classification tableci and the
number of samplesni . The position ofPenter is stored in a register and in each cycle
the position is shifted by adding the ray increment until the position is not anymore
inside the volume. To prevent stair-casing artifacts, the position tracking needs to be
performed at a high precision (16 fractional bits) while only less precision needs to be
used for the trilinear interpolation (8 fractional bits). Parallel to the position increment-
ing process, the number of samples for the current ray segment is decremented and the
tuple of the subsequent ray segment fetched in case zero has been reached. The integer
part of the current ray position, its fractional values, and the classification index are
forwarded to the address unit.

Address Unit

The memory interleaving scheme — as described earlier in Section 7.2.3 — influences
the address generation. Generally, the address unit receives the coordinates of the lower
left corner voxel of the sample. The addressx;y;zof the lower left corner voxel (Pre f ) is
used to determine the corresponding subcube address (sc(x);sc(y);sc(z)) and the offset
inside the subcube (sco(x);sco(y);sco(z)).

sc(x) = x slr 4;

sc(y) = y slr 4;

sc(z) = zslr 4;

sco(x) = (x slr 1) and 7;
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sco(y) = (y slr 1) and 7;

sco(z) = zand 15;

Due to the memory interleaving, the computation scheme results only on correct values
for DIMM 3. For the other memory modules, the subcube and offset address inx and
y need to be performed slightly different, requiring two additional incrementers.

DIMM2 ! sc(x+1); sco(x+1)

DIMM1 ! sc(y+1); sco(y+1)

DIMM0 ! sc(x+1); sco(x+1); sc(y+1); sco(y+1)

Basically, for DIMM 2(x+1;y;z) is needed, for DIMM 1(x;y+1;z), and for DIMM 0
(x+1;y+1;z) which affects the offset but possibly also the subcube address. Finally,
the linear address for each DIMM can be computed using its subcube address and
offset.

addr = ((sc(z)�SC_IN_X�SC_IN_Y+sc(y)�SC_IN_X+sc(x)) sll 10)

+(sco(z) sll 6)+(sco(y) sll 3)+sco(x)

where SC_IN_X (SC_IN_Y) is the number of subcubes inx (y).

Adding the offsets (DIMM row entry) is accomplished by concatenating the bits of
the three offsets (scoz;scoy;sco) but the subcube address (DIMM row) requires a few
multiplications and adders. The latter one can only be simplified for datasets where the
size is restricted to a power of two. In this case, one can also simply concatenate the
subcube addresses (scz;scy;scx) to obtain the DIMM address.

Trilin Unit

Different filter kernels can be used to obtain interpolated results. With respect to avail-
able logic and memory bandwidth, VIZARD II has been designed to perform trilinear
interpolation since higher order interpolation schemes require more voxel values and
more logical units (see Section 1.2.8). The trilinear interpolation has a separable ker-
nel and can therefore be split into seven linear interpolations resulting in four linear
interpolations in one dimension, two in the second dimension, and one in the third di-
mension. Figure 7.10 schematically illustrates the trilinear interpolation computing a
sample and the corresponding gradient at positionP(x;y;z). The position can be split
into an integer partPre f which denotes the lower left corner of the interpolation cube
and the fractional parts being represented as 8 bit weightswx;wy;wz. A weight of 1:0
would result in another base address which means that the 8 bit of each weight repre-
sent the interval[0:0;1:0[. This simplifies the implementation of the interpolation since
voxel value and weight can simply be multiplied, shifting the result by 8 bit to the right
(slr 8).

Due to the memory organization, data is replicated inzdirection but interleaved inx
andy direction. Hence, the hardwired datapaths requires that the linear interpolation in
x andy are inverted depending on the address ofP(x;y;z). This can easily be detected
checking the lowest bit ofP(x;y;z) in x/y (Px(0)=Py(0)). Multiplexing the weights and
their inverse is one solution but since the weights aren bit representing a number in the
interval [0;1[, the inverse would requiren+1 bit to be able to correctly represent 1:0.
As a result, the multipliers would be enlarged. Fortunately, there is another solution
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Figure 7.10: Trilinear interpolation.

which turns out to be cheaper because the linear interpolation can be written in two
ways.

flinear(a;b;weight) = a� (1:0�weight)+b�weight (7.1)

= a+weight� (b�a) (7.2)

While Equation 7.1 requires two multiplications and one adder (assuming 1:0�weight
is available), Equation 7.2 requires only one multiplication but two adders. To circum-
vent multiplication of signed numbers, two cases can be differentiated.

if (a>=b)
result = a - weight*(a-b);

else
result = a + weight*(b-a);

This requires a simple compare operation (�) but ensures that only the final adder
needs to handle signed numbers (one additional bit), but the result itself can never be
a negative value. The earlier mentioned inversion of the linear interpolation can be
incorporated by extending the multiplexing of the inputs using the lowest bit of the
address of the samples position (flip).

if ((a>=b) xor (flip))
...

It might appear that all these optimizations are subtle and without much impact but it
turned out that the optimized linear interpolation unit is almost 25% smaller than the
straight forward implementation using signed representations computing 1:0�weight.
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Taking into account that the trilinear interpolation unit is the biggest of all units con-
taining using a total of 28 linear interpolations8, this is an important saving as shown
in Section 7.3.1.

Shader Unit

The shader unit performs the correct computation of the diffuse and specular light in-
tensities present at a given sample position. This could be performed by computing vec-
tor and scalar products but implementing a square root unit is expensive and not trivial.
Therefore, it is performed using cube-mapping, a technique where the environment is
mapped onto the six faces of a cube. By mapping the diffuse light intensities of all light
sources onto the cube faces, the diffuse light intensity can be determined by comput-
ing the intersection of the gradient vector with one of the cube faces [vSSB95, Hir99].
The same mechanism can be applied for specular light sources but requires some more
subtleness since it requires to compute the reflected vector to address a specular cube
map [VF94, vSSB95], making the specular table independent from the eye position.
Thus, instead of performing expensive vector operations, the corresponding sample on
the cube map can be determined and used.

Figure 7.11 illustrates a Phong shaded sphere using a cube map of different size.
The middle column is generated using 16�16 entries and achieves quite satisfactory
results while consuming 1.5 KByte of memory [Hir99] only. However, when using
a high exponent for the specular highlight, it is necessary to increase the resolution
of the tables. The VIZARD II system implements cube map based shading using the
BlockRAM available on the Virtex FPGA. For 16�16 entries per face, three to four
BlockRAMs are needed9.

Classification Unit

The interpolated sample value (8 bit) is taken as an index into a classification table
stored in two SRAM chips. Each SRAM has a 32 bit data bus and both can be addressed
individually. In the current design, the same address for both SRAMs resulting in 64 bit
of classification data. This includes red, green, blue,α, ka, kd, ks using 8 bit for each,
except forα which is 16 bit for high precision when using semi-transparent rendering.
Additional to the resulting classification data, the original density value is forwarded
to the combiner unit and possibly used in the compositing in case maximum intensity
projection is enabled.

Combiner Unit

While the classification unit delivers the color and material properties of a sample,
the shader generates a diffuse and a specular intensity. The combiner multiplies these
values implementing Phong shading.

C = ka� Ia+kd � Id �Cclassified(sample)+ks� Is (7.3)

whereka, kd, andks are the material properties,Ia, Id, andIs are the ambient, diffuse,
and specular intensities, andCclassified(sample) is the resulting classified color of the
sample value. Currently, the specular light component is assumed to be white but could

8Four trilinear interpolations, one for the sample interpolation and one for each gradient component.
9A memory efficient implementation requires three and a logic efficient implementation four Block-

RAMs.
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(a) (b) (c)
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Figure 7.11: Shading quality of a Phong shaded sphere: (a-c) Shading using cube map:
(a) Cube map of 256�256 entries. (b) Cube map of 16�16 entries. (c) Cube map of
8�8 entries. (d-f) Difference images to sphere shaded using floating point precision:
(d) Error of (a), magnification 200. (e) Error of (b), magnification 50. (f) Error of (c),
magnification 10.

easily be extended to colored light sources spending 24 bit color intensity information
instead of 8 bit monochrome intensity in the specular shader table. The same applies
for the ambient color which is also assumed to be white but can be multiplied with
any user defined color. Three color components, the density value, and the opacity are
forwarded to the compositing unit.

In contrast to the trilin unit where simple fixed-point arithmetic is applied10, the
combiner requires a more subtle type of fixed-point arithmetic. All parameters (color,
material, and intensity) use unsignedn bit numbers ([0:::2n�1]) representing the full
interval[0:0;1:0] including 1:0. Jim Blinn presented in his article “Three Wrongs make
a Right” [Bli98] how to compute the correct result. For two unsignedn bit numbersa
andb of interval[0:0;1:0], one has to compute the following.

tmp = a�b+2n�1 (7.4)

result = (tmp+(tmp>> n))>> n

Overall this requires onen bit multiplier, two 2�nbit adders, and two shifters which are
simply hardwired bit selections. This works since theerror made is always below what
can be represented with a number ofn bit. When multiplying numbers with different
bit width, the larger one can be discretized or the smaller one extended using repeated

10Generally, two values can be multiplied and the result shifted in case one of the two operands represents
the interval[0:0;1:0] and the other one represents the interval[0:0;1:0[.
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fractions [Bli98]. Repeated fractions work by repeating a number as often as needed to
expand it to a certain number of bits. This ensures an equal distribution of the original
set of values onto the larger set even though not all values are used. One can look at this
as perspectively projecting an interval of values onto a larger interval. The advantages
of this fixed-point arithmetic are its accuracy and simplicity with respect to hardware
implementation.

Instead of using the arithmetic described in Equation 7.4 and 7.5, it is also possible
to spend one more bit such thatka, kd, andks represent[0:0;1:0] using[0:::2n]. How-
ever, memory space is wasted and the multipliers are enlarge by two bits because they
only come in units of even sized operands11.

Compos Unit

All colored samples of a ray need to be combined into a final pixel value. This is either
done using MIP projection or a discretized version of the common volume rendering
line integral, as described earlier by Equation 1.3 in Section 1.2.7. While MIP is a
very simple operation and does not introduce a hard to solve bottle-neck, computing
the discretized volume rendering line integral is the most difficult part of the entire ar-
chitecture with respect to its hardware implementation. For each sample, the following
computations are necessary.

coloracc = coloracc+(1�αacc)�colorsample�αsample (7.5)

αacc = αacc+(1�αacc)�αsample (7.6)

While the problem is not obvious in software, Looking at this from a hardware im-
plementation point in a fully pipelined design, it requires several sequential operations
(one 16 bit multiplication and one 16 bit add, see Equations 7.5 and 7.6) before the next
sample value can be accepted. This is referred to ascompositing problem. Due to the
combinatorial delay of the multiply and accumulate operation, an estimated clock-rate
of 44 MHz can be achieved on a XILINX Virtex XCV1000 FPGA (speedgrade 6)12.
This simply determines the maximum clock-rate of the design which unfortunately is
slower than the memory modules and therefore valuable bandwidth is wasted.

One limited solution to thecompositing problemcould be to reduce the precision
using 8 bit instead of 16 bit. However, this would result in unacceptably low image
quality for semi-transparent rendering and is not scalable. The precision of the ac-
cumulated color andα has a strong impact on the final image quality, especially for
semi-transparent rendering. Figure 7.12 depicts four images of the neghip dataset ren-
dered using 6, 8, 10, and 16 bits internal accumulation precision. Even though 10
bits seem to be sufficient, the maximum difference is up to 10% of the color channel’s
range. The 16 bit image has a maximum difference of 1% in pixel values compared to
the image rendered using floating point arithmetic.

Thus, the only solution to the compositing problem is interleaving of rays similar
to multi-threading. Such a concept has been introduced earlier but for a different pur-
pose solving the high memory access latency when using space leaping based on an
externally stored distance volume [BHM99]. However, the latency of the compositing
problem is much smaller and by interleaving 3�3 rays only, a design running at 100

11This applies for the optimized XILINX components running at a high frequency (> 100 MHz).
12This is certainly faster on an ASIC but for FPGAs, logical operations need to be mapped on CLB slices

which has longer signal paths.
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Figure 7.12: Precision of the accumulated color andα: (a) 6 bits. (b) 8 bits. (c) 10 bits.
(d) 16 bits.

MHz can be accomplished on a XILINX Virtex XCV1000. More rays could be inter-
leaved to also reduce memory page crossings but comes at a certain price. It requires
re-ordering logic to first process all rays within the same subcube. This re-ordering
needs to be undone just before the compositing to again provide enough cycles for the
compositing calculation before the subsequent sample of the same ray arrives. Fur-
thermore, early ray termination can only be exploited on a group of rays since fewer
rays would introduce idle cycles. Therefore, the less rays are interleaved, the higher
the efficiency of early ray termination. However, early ray termination has an average
performance gain of around 10-40 % for outside views. Higher efficiency factors are
only exploitable in endoscopic applications where early ray termination can result in
speedups in the order of one magnitude. Hence, the optimal granularity of number of
interleaved rays depends on the dataset and chosen classification but needs to be at least
3�3.

The fixed-point arithmetic à la Jim Blinn is also used in the compositing unit.
Again, values are represented asn bit where the full data range represents the inter-
val [0:0;1:0] which can not be handled by a simple multiplication followed by a shift
operation.
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7.3 Analysis and Performance

By the end of this dissertation, no fully functional board was available due to delays in
the production of the board. Several components of the board have not been available
for weeks of even months. This has been due to the booming semi-conductor indus-
try which made it difficult to get several basic board components. Furthermore, the
first board built was too thick for the PCI slot making another revision unavoidable.
However, the first running implementation is expected by the end of 2000.

7.3.1 Logic Consumption

All units have been designed in VHDL and all time critical components of the archi-
tecture have been synthesized using Exemplar Leonardo Spectrum synthesis tools and
a Virtex XCV1000 FPGA (speedgrade 6) as target. For verification of the synthesis
results, a VHDL model of each synthesized unit has been integrated into the original
testbench and simulated. The resulting percentage of chip coverage as well as maxi-
mum clock-rate of these units are summarized in Table 7.1. The by far largest unit is

Unit CLB chip area clock-rate
[slices] [%] [MHz]

InDer 45 0.37 132

RayCaster 253 2.06 140
Address 405 3.29 100
Trilin 2069 16.84 85
Shader 383 8.12 59
Classify 20 0.02 306
Combiner 146 1.19 62
Compos 1210 9.85 44

Table 7.1: Space consumption and clock-rate per unit for a speedgrade -6 on a XILINX
Virtex XCV1000 which has a total of 12400 CLB slices.

the Trilin which is due to the numerous linear interpolations. It consists of 28 linear
interpolation units plus shift-registers. Thereafter follows the compositing unit which
needs to accumulate three color channels at 16 bit precision using correct fixed-point
arithmetic, as presented in Section 7.2.3. Almost the same amount of logic is needed
for shader unit which needs to compute the reflection vector and implements two cube
maps. All other units are neglectable with respect to their size.

7.3.2 On-chip Memory Allocation

Besides its 12400 CLB slices, a XILINX Virtex XCV1000 provides 32 4 Kbit Block-
RAMs which are dual read and write. The BlockRAMs are used to implement the
shader tables as well as the data and address FIFOs. For the current setting using a
shader table of 16�16 entries, a total of four BlockRAMs is needed, The other Block-
RAMs are used to implement the FIFOs. However, moving to the next larger chip
of XILINX (Virtex XCV1000E, 1600E, 2000E, etc.) more BlockRAM is available
allowing to possibly implement larger shader tables using 32� 32 entries or higher
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or possibly implementing two RPUs to enable oversampling without much additional
cost.

Generally, the VIZARD II system is rather memory bound than logic bound since
many tables and FIFOs need to be stored on-chip and the number of BlockRAMs is
limited. Alternatively, CLB cells could be used as memory but this is less efficient.

7.3.3 Bandwidth Analysis

The PCI bus running at 33 MHz is only heavily used during downloading the volume
data onto the card. While static datasets or fixed sequences of volumes can be stored
initially on the card, real time volume updates of entire volumes is not possible since it
would require more bandwidth on the front bus.

Generally, data is send to the board and stored in the SDRAM memory of the DSP.
This is necessary because the FPGA is a memory mapped device which can only be
controlled by the DSP but not by the PCI interface chip. Therefore, a dataset is first
send over the PCI bus to the on-board SDRAM and then transfered from the SDRAM
to the DIMMs. The transfer of a dataset of 2563 voxels over the PCI bus takes roughly
0.15 seconds assuming that replication is generated on the FPGA and 0.30 seconds if
replicated data is transfered. The transfer of the data from SDRAM to the DIMMs is
in the same order. The PCI bus as well as the local board bus are 32 bit wide. While
the PCI bus runs at 33 MHz, the local board bus runs at 50 MHz.

The classification tables are also sent over the PCI bus but are neglectable since they
are only 2 KBytes in size. Even if the classification changes for every frame, 30 frames
per second would require 60 KByte/s bandwidth which can easily be handled. The
same applies for the two shader tables which are 3 KBytes in size. They are computed
by the DSP and do not need to be transfered over the PCI bus. However, in case the
light sources would be modified in every frame, the computations on the DSP become
the bottle-neck since ray intersections and shader tables need to be computed several
times per second. This bottle-neck can be reduced using the second DSP.

Transferring an entire image back to the host requires 65 KByte/s which results in
almost 8 MByte/s for 30 frames per second. This can also be handled by the PCI bus
and does not introduce any bottle-neck.

The overall performance limitation of the system is given by its memory interface.
The used DIMMs run at 100 MHz and need 70 nsec for a pre-charge and row activate.
In average, this results in 12.7 nsec for each sample. Thus, 80 million samples can be
generated per second. For a one to one mapping of samples to voxels, this results in
a maximum of 5 frames/s. However, for zoomed views it will be higher and early ray
termination can further increase the frame-rate. Possible acceleration and optimization
techniques are presented in the subsequent sections.

7.4 Further Implementation Enhancements

The VIZARD II system is capable of delivering interactive frame-rates for datasets of
2563 voxels where each voxel has 32 bit (8 bit voxel and 8 bit per gradient component).
Further improvements with respect to speed or how to store more information with the
voxel but still being able to obtain shaded images are necessary. In the following, space
leaping and indexed gradients are presented.
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7.4.1 Space Leaping

One of the most severe problems for ray casting architectures is the waste of compu-
tation cycles and I/O bandwidth, due to redundant sampling of empty space. While
several techniques exist for software implementations to skip these empty regions, few
are suitable for hardware implementation. The few which have been presented either
require a tremendous amount of logic or are not feasible for high frequency designs
(e.g. running at 100 MHz), where latency is one of the biggest issues. The archi-
tectures mentioned in Section 7.1 either do not provide space leaping functionality
[PHK+99, MKS98, DMK99, RS99] or require an entire distance volume to be pre-
computed [KS97] and stored [BHM99]. However, distance volumes come at a certain
cost since an additional volume needs to be stored. This increases the memory require-
ments significantly and is impractical for larger volumes.

In the following, a much simpler algorithm for space leaping is presented without
requiring an entire distance volume.

Basic Algorithm

The volume is subdivided into subcubes and for each subcube it is determined whether
the subcube is empty or not. This information is stored in an occupancy map containing
a single bit per subcube; a very space efficient representation of the volume. While
casting a ray, the corresponding bit of the occupancy mask is checked for each sample
position. If the entry in the occupancy map indicates a non-empty subcube, sampling
along the ray is simply continued in uniform manner. Otherwise, all samples within this
subcube can safely be skipped. Determining the distance value is done similar to the
algorithm used to compute the ray/volume intersection (see Section 7.2.3). Basically,
for each dimension the coordinate of the possible intersection point and the relative
distance are computed. The desired result is the minimum value and is used to multiply
the ray increment.

dist= min
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�
;

�
Dy

Vy

�
;

�
Dz

Vz

��
(7.7)

whereDi is the coordinate of the possible intersection andVi the ray increment, both in
dimensioni.

The advantage of the occupancy map is its simple generation which can be done
very fast by scanning once over the entire volume. VIZARD II provides an extremely
high memory bandwidth capable of scanning a 2563 dataset in 20 ms13, allowing inter-
active control of classification to work with the space leaping approach.

Hardware Implications

The additional costs in terms of computational hardware to implement this space leap-
ing algorithm are quite modest. To avoid calculating the exact distance in 3D space,
only the relative distance along each axis is calculated, as described earlier. For sub-
cubes of 163 voxels, three 4 bit subtractions are necessary to determine the potential
intersection coordinatesDx, Dy, andDz (see Equation 7.7). Secondly,Dx;Dy andDz are
divided by the ray incrementsVx;Vy andVz. To reduce the complexity of this division,
the inverse ofVx;Vy andVz can be pre-calculate and stored. For parallel projection, this
is needed once per frame but once per ray for perspective projection. Alternatively, an

13The memory of the VIZARD II architecture is eight times interleaved. Hence, a volume dataset of 16
Msamples read from 100MHz SDRAM can be scanned 50 times per second.
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adaptive division table for the possible range of values could be used. The resulting
distance value is obtained by multiplyingDx;Dy andDz by 1=Vx;1=Vy and 1=Vz which
requires three multipliers of 8�8 bits. Finally three compares are necessary to deter-
mine the minimum of all three values (dist of Equation 7.7). The resulting value is used
to scale the ray increment which is then added to the current position. Parallel to the
computation of the increment value, the occupancy map is checked and either the mul-
tiplied increment or the uniform increment is used based on the bit in the occupancy
map.

The logic to implement the described skip calculator requires 124 CLB slices of
a XILINX Virtex XCV1000 FPGA, utilizing 1% of the FPGA logic as well as one
BlockRAM to store the occupancy map of 4 Kbit. The clock frequency of the result-
ing pipeline is well above 100 MHz and adds eight cycles of latency to the address
computation. Therefore, the processing of eight or more rays will be sufficient to ac-
commodate latency. As described earlier, rays need to be interleaved to enable the
compositing stage to run at 100 MHz (see Section 7.2.3) To minimize memory stalling
effects when using several rays, anOvertaking FIFOcan be introduced, as presented
by [Dog00]. The Overtaking FIFO reorders the memory addresses of different rays in
order to minimize page changes in the memory.

Experiments

A set of five different real-world datasets is used to demonstrate the efficiency of the
presented space leaping approach. Images of the datasets are shown in Figure 7.13
and the characteristics are summarized in Table 7.2. While fuel and neghip are both

Dataset Size Source Occupied voxels

fuel 643 simulation 5,24 %
neghip 643 simulation 46,38 %
foot 2563 CT-anio 28,94 %
skull 2563 CT 88,42 %
vessel 2563 CT-anio 1,01 %

Table 7.2: Set of datasets which have been used to evaluate the space leaping approach.
Occupied voxels are voxels with value> 0.

results of physical simulations with different number of occupied voxels, the other
three datasets origin from medical acquisition devices. The skull is a very compact
block of occupied voxels and due to noise, only a few unoccupied voxels — further
on referred to as empty voxels — exist. In contrast, the vessel dataset contains narrow
structures which are present across the entire dataset but a large number of voxels is
empty. Finally, the foot dataset is a relatively compact block of occupied voxels with
few noise.

The percentage of empty voxels in each dataset is given in Table 7.2, but does not
directly reveal an estimate of the potential gain that can be expected. The efficiency of
space leaping depends only on the percentage of empty subcubes. Figure 7.14 shows
the percentage of subcubes which can be skipped for different subsube sizes without
and with exploiting the given classification14(Figure 7.13(c,d,h-j) illustrate the applied

14All voxel values which are classified fully transparent are considered empty.
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(a) (b)

(c) (d)

(e) (f) (g)

(h) (i) (j)

Figure 7.13: Test datasets: (a,b) and (e-g) have been rendered visualizing all occu-
pied voxels. The other images were rendered applying a meaningful classification, as
exploited in Figure 7.14(b).
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classification). Obviously, the smaller the subcubes, the higher the percentage of sub-
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Figure 7.14: Percentage of subcubes which can be skipped. (a) Only empty voxels are
exploited. (b) Classification is additionally exploited.

cubes which can be skipped. However, for each subcube at least one sample needs to
be processed. Therefore, space leaping performance is not necessarily best for smallest
subcube sizes. For the selected datasets, moderate improvements can be reported when
skipping empty voxels only. However, when exploiting the given classification much
higher improvements can be reported, especially for the noisy medical datasets.

Estimated Results and Discussion

Performance gains are generally limited to those parts of rays, which pass through
empty subcubes. For a thorough analysis, an animation of 72 frames was generated
for all five datasets, rotating around the center of the dataset starting with the views
given in Figure 7.13. For each frame, the number of cycles needed to generate the
image were measured using (i) no optimization, (ii) early ray termination, and (iii)
space leaping with different subcube sizes. Table 7.3 shows the corresponding averaged
frame-rates using a memory access time per voxel of 12.7ns, as described in [DMK99].
Generally, early ray termination is not a very efficient acceleration technique, unless
the viewpoint is close to a highly opaque object covering large areas of the screen-
space. For the presented views, performance gains due to early ray termination vary
from almost zero for the fuel dataset to 25% for the neghip dataset. The only exception
is the skull dataset, where a 90% performance gain is accomplished due to the screen
filling opaque skull.

Space leaping based on skipping empty subcubes only, gives poor speed-ups for
datasets with a high percentage of occupied voxels. This is illustrated with the skull
dataset where 88% of all voxels are occupied (see Table 7.2). A similar observation
can be made for the foot dataset. Only for the fuel dataset performance gains of 280%
can be observed which are due to the large areas of non-occupied voxels surrounding
the compact union of occupied voxels. Generally, much higher frame-rates can be
accomplished exploiting the given classification. This results in performance gains
ranging from 200% for the neghip dataset to 375% for the vessel dataset (additional
to early ray termination). The performance gain for the neghip is only 200%, since a
large number of samples still contributes to the final image. Overall, for the presented
datasets of 2563 voxels, frame-rates well above 15 frames can be accomplished.
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Acceleration none ERT 43 83 163 323

‘0’ 16.1 16.4 27.3 41.9 45.8 16.4fuel
class 16.1 16.3 28.4 47.3 45.2 16.3
‘0’ 18.6 23.7 28.1 27.9 23.7 23.7neghip
class 18.6 23.3 36.2 46.2 31.5 23.3
‘0’ 4.4 5.3 7.3 7.7 7.1 6.5foot
class 4.4 5.3 9.0 14.4 19.1 16.8
‘0’ 4.3 8.2 8.2 8.2 8.2 8.2skull
class 4.3 7.8 12.9 17.3 16.0 10.8
‘0’ 4.3 4.7 7.8 10.4 10.7 8.3vessel
class 4.3 4.6 8.0 13.3 17.3 12.0

Table 7.3: Frame-rates for the five datasets skipping empty voxels only (‘0’) and ex-
ploiting the given classification (class). The frame-rates are averaged over 72 frames.
Accelerationnonestands for processing all samples along all rays andERTstands for
early ray termination.

While achieving good speed-ups additional to early ray termination, the selection
of the appropriate subcube size is dataset and classification dependent. As a rule of
thumb, a subcube size of 83 is suited for the smaller datasets (643) and subcubes of 163

for the larger datasets (2563), even though for a few cases slightly higher frame-rates
can be achieved for the next smaller or larger subcube size. Finding heuristics for the
best suited subcube size is still subject of further research.

Overall, the presented space leaping approach achieves significant acceleration of
the ray casting process without requiring an entire distance volume. With only 4Kbit
of SRAM needed for the occupancy map and a simple skipping mechanism, a small
latency is introduced computing the next sample position. This latency is significantly
lower than pre-computing and storing a distance volume in the external volume mem-
ory [BHM99]. The latency due to the calculation of the new skipping value can be
accommodated by interleaving the processing of eight rays, even in an FPGA design
running at 100 MHz. Furthermore, the amount of extra logic required for the presented
space leaping mechanism is less than 1% (130 CLBs) and one BlockRAM of a XILINX
Virtex XCV1000 FPGA.

7.4.2 Indexed Gradients

Even though gradients should be a per voxel property as normals are a per vertex prop-
erty in polygon graphics, storing the gradient comes at a certain price. Using 8 bit per
gradient component leaves 8 bits for the voxel value in case 32 bit are available per
voxel. In order to store 12 bit voxels, the gradient components need to be reduced to 6
bit and further reduction would be unavoidable to store additional segmentation infor-
mation. However, shading based on gradient components with six or less bit is of low
quality which prevents high image quality. One solution would be to provide more bits
per voxel which is costly but could be accomplished using DDR SDRAM. However, it
would reduce the overall cache space such that only 8�16�16 voxels would fit in the
caches of the DIMMs. Another approach could be to compute gradients on the fly but
depending on the gradient estimation scheme, different bandwidth requirements would
arise possibly reducing the overall frame-rate.
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To circumvent the high bandwidth and connectivity requirements, a gradient look-
up table is introduced. In contrast to storing the full gradient at voxel location, a smaller
gradient index is stored. The gradient at sample location is hence calculated by per-
forming eight gradient look-ups for the surrounding voxel locations and interpolating
the resulting x,y, and z component of the returned gradients. A gradient table can be
generated by uniformly subdividing a sphere in a grid of longitudes and latitudes or
by starting with a good approximation of a sphere and recursively subdividing this.
The granularity of the subdivision depends on the size of the gradient table. Figure
7.15 illustrates the partitioning of the sphere using longitudes and latitudes for a table
containing 512 entries. The advantage of such a scheme is that it does not require any

Figure 7.15: Quantization of the gradient space.

pre-processing. While downloading the volume data onto the VIZARD II board, all
voxels are passed through the FPGA to the DIMMs. Thus, the corresponding index
could be computed and stored on the fly.

With the described gradient look-up, it is feasible to reduce the storage require-
ments per voxel from 32 bits (voxel plus three gradient components) to 17 bits (voxel
plus gradient index). Hence, up to 16 bit voxel values can be used leaving 7 bit for
segmentation. The angular error due to the disretization of the gradients depends on
the size of the used gradient table and the chosen quantization scheme. Table 7.4 shows
the error made for different gradient table sizes using the subdivision scheme, as shown
in Figure 7.15. Note that the maximum angular gradient error decreases continuously

Table entries Average error Maximum error
[degree] [degree]

64 8.5 21.1
128 4.6 15.8
256 5.9 11.6
512 2.3 7.9

1024 2.9 5.5
2048 1.2 3.9

Table 7.4: Error of quantized gradients for the lobster dataset.

with increasing size of the gradient table whereas the average gradient error does not
decrease continuously. This is due to the non uniform distribution of gradients within
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the dataset as well as the gradients stored in the table. For a table size of 64, 256, 1024,
etc. entries, an even number of latitudes is chosen excluding the gradients within the
equatorial plane. A more uniform subdivision scheme than longitudes and latitudes
would result in smaller errors. Nevertheless, the average angular error is already fairly
small for a gradient table containing 512 entries.

Figure 7.16(a) shows the image of a lobster rendered with a gradient table contain-
ing 512 entries. Additionally, Figure 7.16(b) shows the magnified difference image

(a) (b)

Figure 7.16: Dataset of a lobster seen from below. (a) Rendered using a gradient
look-up containing 512 entries. (b) Magnified difference image to correct gradient
calculation.

compared with the original correct gradient calculation. The resulting difference is
small and does not result in a noticeable loss of image quality.

Overall, the described pre-calculation and mapping of gradients onto a look-up
table sacrifices gradient accuracy but still achieves high image quality for appropriate
table sizes. However, there are also disadvantages of this method: First, there is no
information about the length of the gradient since the index only points to a normalized
gradient. This would additionally need to be stored together with the gradient index.
Second, since trilinear interpolation is used, eight lookups would need to be performed
every cycle. With respect to an implementation on a XILINX Virtex XCV1000 FPGA,
this is not feasible due to the limited amount of BlockRAMs. However, when moving to
the Virtex E-series (Virtex XCV1000E or higher), the number of available BlockRAMs
increases and enables the integration of the presented indexed gradients scheme.

7.4.3 Other Potential Applications

The underlying VIZARD II board provides a high degree of flexibility, not only due to
its high memory bandwidth but also by using DPSs and an FPGA chip with a large
number of reconfigurable blocks. Even though hardware software co-design tools
would be the ideal solution to remove the burden from the user to write and synthe-
size VHDL code, but a pipeline running at 100 MHz still requires strong hardware
skills.

There is a number of potential applications for the VIZARD II systems within the
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field of volume rendering and medical visualization as well as other fields. Compared
to the presented ray casting implementation, the following designs are fairly small and
can re-use quite a lot of the already designed components.

� On the fly gradient estimation

� Noise filtering

� Segmentation

� Integration of iso-surfaces

Real-time data acquisition devices demand on the fly rendering of volumetric data since
data is generated within fractions of a second. Therefore, pre-computation of gradients
is hardly feasible and the integration of on the fly gradient estimation mandatory. Since
all data passes through the FPGA chip, the gradients could already be computed while
downloading the volume data into the DIMMs. Alternatively, a gradient estimation
scheme based on eight voxels could be implemented [Kni95].

Within the scope of volume rendering, pre-filtering of volume data is very impor-
tant. Usually, a low-pass filter is moved across the volume data but the main bottle-neck
of such algorithms is the memory access. On the VIZARD II board, this could be done
several times per second due to the highly interleaved memory organization.

Segmentation algorithms are frequently used in medical applications. Usually, seed
point based filling or flooding algorithms are used, possibly combined with knowledge
about shape and/or size of the object to be segmented. Using one or more seed points,
surrounding voxels are incrementally flooded as long as they fulfill a certain criteria
based upon the density value. Again, the main bottle-neck of these algorithms is the
memory bandwidth which could be provided on the VIZARD II system.

Finally, volume rendering using sampling based methods such as ray casting, splat-
ting, or texture mapping, are not capable of finding a precise iso-surface. The combina-
tion of a rasterizer and polygon graphics is promising but due to the nature of modern
graphics systems, accessing the content of the framebuffer several times per second
(color and depth) is not feasible. Easier and simpler to realistic is the computation of
precise iso-surfaces using ray casting which could be mixed with volumetric rendering.

7.5 Summary

VIZARD II is a special purpose hardware accelerator for true ray casting and high
image quality. With its highly optimized memory interface, it is capable of generat-
ing up to 80 million trilinearly interpolated samples and gradients per second using
one processing pipeline only. Each sample is Phong shaded using per sample material
properties and composed at high precision to ensure highest image quality. By inte-
grating the proposed space leaping approach into the design, 15-20 frames per second
can be achieved for medical datasets of 2563 voxels.

The strong advantage of using programmable and reconfigurable components, is
the short design cycle which enables to change a design within hours. Furthermore,
besides ray casting, other algorithms are feasible on the same board and hence, are
superior to ASIC solutions. With respect to volume rendering, ASICs do not provide
a clear advantage because volume rendering algorithms are memory bandwidth lim-
ited and FPGA designs running at full memory speed are feasible. However, this will
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change once volume rendering becomes a larger market such that the costs of designing
and fabricating an ASIC will amortize.

The future of special purpose hardware for volume rendering will mainly depend
on the future developments in the field of the polygon graphics hardware. 3D texture
mapping offers similar functionality (trilinear filtering) but with less quality. Further-
more, several important components such as shading and support for segmentation
are missing. Generally, special purpose hardware such as VIZARD II will always be a
step ahead since it is able to deliver functionality which is not supported in main stream
(graphics) hardware. Special purpose hardware frequently serves as stimuli for what is
put into the next generation main stream hardware.
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Appendix A

A Cross-Platform Rendering
Environment

For quite a number of years, working in the field of computer graphics has been a task
that mainly involved expensive SGI machines, a low-level graphics API such as IrisGL,
and maybe even a high level graphics API such as OpenInventor. During the last few
years, PC-class machines invaded the market and as a result of an enlarged market
as well as due to rapid advances in memory and processing technology, workstation
graphics has almost been replaced by PC systems with PCI and AGP based graphics
cards.

From a programmer’s perspective, the wide availability of graphics cards has cer-
tainly a lot of advantages, but the disadvantage is that one has to deal with a larger
number of common operating systems (Windows derivatives, IRIX, HP-UX, Solaris,
Linux, etc.), as well as with different graphics APIs (OpenGL and Direct 3D). Once
selecting one platform and API, one is limited to this avenue which might be a dead
end possibly within a short period of time.

While GLUT is an OpenGL package available on most operating systems, it is
limited with respect to modularity and GUI development. Furthermore, it does not offer
navigation models. Within this chapter, a rendering environment providing different
navigation models is presented. To obtain modularity and cross platform portability,
the Qt graphics user interface toolkit — providing easily extendable GUI components
— is used for the GUI development.
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A.1 The Qt library

Qt1 is a multi-platform graphics user interface toolkit based on C++. Due to its avail-
ability on all major operating systems, it enables programmers to efficiently build GUI
applications that run on different platforms. As any other GUI library, it consists of a
large variety of different GUI elements which can be used to build applications. One of
the nice properties is that the GUI elements provide the typical look and feel for each
platform. Furthermore, Qt comes with a superb documentation and open source pack-
ages — such asdoxygen— allow to generate such documentation for own-developed
classes.

The main difference to other GUI libraries is the handling of events within Qt.
Generally, this process is calledsignal/slot mechanismwhich provides an excellent
framework for component-based programming: Any object is able toemitanysignal.
On the other hand, objects can provideslotswhich are able to receive signals depending
on whether they areconnectedto the emitting object. Hence, emitted signals will only
have an impact in case they are connected to a slot of another object.

Despite all comfort and richness of Qt, the signal/slot-mechanism comes at a certain
price. It requires a pre-compilation step performed bymoc (meta object compiler)
needed to compile signals, slots, emit()-calls, and connects into common class member
methods which are executed sequentially. However, for the presented purposes, this
has not been a limiting factor.

A.2 QGLViewer

Navigating through three dimensional scenes is not only a problem of the frequently
missing collision detection to possibly prevent object penetration, it is also not trivial
to handle six degrees of freedom with a simple mouse or the keyboard. Commonly,
almost every programmer starts implementing its own camera model interpreting the
mouse events as rotations, translations, and others. Besides the fact that this is a good
exercise to understand the general principles of viewing in computer graphics, it is
tedious to implement all kinds of navigation models.

The goal was set to develop a library consisting of a set of classes which provide an
user interface, handling the input of mouse and keyboard as camera controls. By doing
this, the viewing process controlled by mouse and keyboard events is strictly separated
from the actual rendering. Hence, any renderer (render object) can be connected to
such a GUI without the need of re-implementing the navigation model. Thus, one can
start writing OpenGL code right away and simply use one of the navigation models.
Another advantage is that the navigation models can simply be exchanged without
the need of implementing them all. Therefore, the library provides a high degree of
extensibility since more navigation models can be added and provided to other users.

The Qt library provides an OpenGL widget (QGLWidget) which is derived from
the base class of all Qt widgets (QWidget). Additionally, it has two members which
control the display format of the OpenGL context (QGLFormat) as well as the context
itself (QGLFormat), as illustrated in Figure A.1.

Whenever the QGLWidget is resized or needs to be redrawn, Qt will call the corre-
sponding methods of QGLWidget. To encapsulate this behavior and be able to connect
this to other objects using signals, the class QSignalWidget is derived overloading these
methods and emitting corresponding signals. To enable a set of viewers with different

1Qt can be downloaded from http://www.troll.no
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QFrame QGLWidget

QWidget

QGLContext

QGLFormat

QGLViewer QSignalWidget

Figure A.1: Structural class diagram of the QGLViewer: QSignalWidget and
QGLViewer (green) are needed in addition to the Qt classes (black).

navigation behavior, a general interface for all viewers has been designed: the ab-
stract base-class QGLViewer. This class includes the common interface as well as one
object of type QSignalWidget which is the OpenGL rendering area. Hence, any gen-
eralization of QGLViewer can provide its own individual GUI graphics user interface
including different buttons as well as the actual drawing area (QSignalWidget). Signals
emitted by the object QSignalWidget are connected to the QGLViewer and not emitted
to the “outside” world. The QGLViewer first performs a few initializations steps and
emits a few generic signals which are needed to toggle the actual rendering. Thus, the
viewing control (navigation) is entirely separated from the rendering.

As mentioned earlier, different viewers can be implemented deriving them from
QGLViewer. Figure A.2 shows an UML [BRJ99] structural diagram of the generaliza-
tions of the QGLViewer.

QGLWalkViewer

QGLFlyViewer

QGLExaminerViewer

.....

QGLViewer

Figure A.2: Generalizations of QGLViewer: QGLViewer is the abstract base-class.
Dashed boxes indicate viewers which are not yet implemented.

Generally, there are two types of signals emitted by the QGLViewer: one type is
affecting the actual rendering and the other type allows the picking of objects (see
Figure A.3).

Signals that affect the rendering are init(), resize(), and redraw(). The latter is
emitted whenever a redraw of the scene is required, due to a change of the camera or
due to moved windows. For picking there is one signal which emits the mouse event
(pressed, moved, released) containing the coordinates within the rendering area. In
case the connected renderer supports picking or manipulating the scene database, the
signal can be used to perform certain actions to modify the elements of the scene.
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emitSignal(Select)

QGlViewer

emitSignal(View)

...

"connect" CRenderer

...
pick()

init()
resize()
redraw()

Figure A.3: Connecting a renderer to a viewer. There are signals for viewing as well
as for picking.

One example application that provides different viewers is SGI’s OpenInventor.
It provides four different navigation models calledExaminer, Fly, Plane, andWalk.
This concept has been borrowed for the implementation of the QGLExaminerViewer,
a generalization of the base-class (QGLViewer) providing examination functionality.
The GUI of the QGLExaminerViewer is shown in Figure A.4.

Figure A.4: The QGLViewer GUI provides six degree navigation, parallel and perspec-
tive viewing, and many other features such as drag and drop of cameras across different
applications and picking mechanisms.

The QGLViewer library is available fromhttp://www.qglviewer.deand is licensed
under the terms of the GPL.
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A.3 VolRen

VolRenis a volume rendering framework integrating different volume rendering tech-
niques in one application. Rather than developing the fastest and most efficient im-
plementations, the goal was to enable the integration of different volume rendering
algorithms. Thus, the impact of various gradient estimation techniques, filters, dis-
cretization, etc. onto the image quality can be examined and compared. Most of the
images presented throughout the chapters of this dissertation have been generated with
VolRen or renderers being based on the QGLViewer package.

Figure A.5 shows a structural diagram of the available rendering classes. There is
an abstract base-classCVolRen, as well as its currently available four derived imple-
mentations (generalizations). Furthermore, different ray casters (generalizations) are

CSplat CTexMap CMarchingCubeCRaycast

CSpaceLeapRaycast

CShadowRaycast

CVolRen

Figure A.5: Structural class diagram of VolRen: CVolRen is the abstract base-class of
the volume rendering applications and currently four different generalizations exist as
well as two further generalizations of the ray caster.

derived from the classCRaycastto enable space leaping or direct illumination in addi-
tion to local illumination. Each of these classes accepts a set of parameters to enable
or disable certain rendering options.

The volume rendering application handles all the above described algorithms. Sim-
ilar to the previously described QGLViewer, it is based on Qt. The application itself
is split into the volume rendering applicationQVolRenAppand the GUI, handled in
QVolRenGUI. This follows the paradigm of separating the document (data) from the
view of the document. In addition to this central application and its two classes, there
is a set of further classes and modules which allow further interaction. These are the
volume class (CVolume), look-up tables for classification (CLut), further renderers to
enable slicing planes (QSlicer), an editor for the transfer function (QClassification),
a histogram (QHistogram), and a geometric library containing points, vectors, matri-
ces, etc. Some of the user interface components are shown in Figure A.6, e.g. the
QGLViewer is integrated as a component of the VolRen GUI. Furthermore, it shows
the Marching Cube rendering of a human foot. Below are two renderings of the same
foot using ray casting and two different classifications. One exhibits the bone only
and the other one bone and tissue. In the lower left, the classification GUI is depicted.
Finally, the display options for the OpenGL window are displayed on the top left.

The overall structural relationship diagram of the core classes of VolRen is illus-
trated in Figure A.7. The core element is the QVolRenApp which handles all the signals
of QVolRenGUI. It administrates the different resources as volume data, classification
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Figure A.6: Graphical user interface of VolRen: It consists of a main window which
contains the QGLViewer in which the iso-surface of a CT scan of a human foot can
be seen. Below are two views generated using ray casting. To the left is the GUI for
Marching Cube preferences as well as the classification GUI.

table, list of light sources, and other GUI elements. For rendering, the required data is
provided to the rendering object which can be any of the ones depicted in Figure A.5.

A.4 Summary

The early decision2 of using OpenGL as well as the Qt library for the development en-
vironment turned out to be quite good. Within the last two years, the Qt library became
more and more popular across all platforms and is frequently used within industry as
well as academia. The KDE Linux desktop — fully based on the Qt library — might
serve as an example. Also the selection of OpenGL graphics API and not Direct 3D
was satisfactory since it is still around and very popular. Since the foundation of the
OpenGL ARB — an organization of industrial partners to further extend and develop
OpenGL —, OpenGL version 1.2 has been released and many extensions have been
added.

QGLViewer provides a set of classes for camera control, as well as comfortable
user interface that allows controlling the viewing parameters via mouse and buttons.
QGLViewer is object oriented and programmed in C++ such that the programmer can

2Beginning 1998.
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CVolRen

CVolume CLut

QVolRenApp

QHistogram

QClassification

QSlicer

GLSlice

QVolRenGUI

CList

CList

CLightSource
1*

1*

Figure A.7: Class diagram of the VolRen application: Aggregations are one to one if
not depicted differently.

simply instantiate such a viewer and connect it to the own render routines. Thus, this
saves time when implementing OpenGL based rendering algorithms and allows to ex-
change navigation models developed by other people.

Based on the QGLViewer, a modular component based volume rendering frame-
work VolRen has been developed. The design of VolRen has rather been driven by
modularity than efficiency (run-time), such that different rendering approaches and
optimization techniques can easily be integrated and evaluated. Most of the images
presented throughout this dissertation as well as comparisons of different filters, shad-
ing techniques, compositing schemes, etc. have been rendered using VolRen.

Releasing VolRen under the terms of GPL is currently in progress.
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