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Abstract

In this thesis, new and improved methods for the visualization of four-dimensional
spacetimes are presented.

The first part of this thesis deals with the flat spacetime of special relativity. A unified
physical basis for special relativistic visualization is established. Issues of illumination,
color vision, transformation of properties of light, and the kinematics of accelerating
bodies are discussed. In particular, a derivation of the transformation of radiance is
included.

Rendering techniques for special relativistic visualization are presented. Previously
known techniques—special relativistic polygon rendering and special relativistic ray
tracing—are described in a unified framework. It is shown how relativistic effects on
illumination can be incorporated in these techniques and it is demonstrated that visual
perception is dominated by the searchlight and Doppler effects. Relativistic radios-
ity, texture-based relativistic rendering, and image-based relativistic rendering are pro-
posed as new rendering methods. Relativistic radiosity can visualize effects on illumi-
nation up to arbitrary accuracy for scenes made of diffuse materials. Radiosity is well
suited for interactive walk-throughs, but also for high-quality images. Texture-based
relativistic rendering utilizes the texture-mapping hardware to implement the relativis-
tic transformations. It is most appropriate for interactive applications which visualize
special relativistic effects on both geometry and illumination. Image-based relativistic
rendering closes the gap between well-known non-relativistic image-based techniques
and relativistic visualization. Image-based rendering does not require laborious three-
dimensional modeling and achieves photo-realism at high rendering speeds. Image-
based relativistic rendering allows to generate photo-realistic images of rapidly moving
real-world objects with great ease and is a powerful tool to produce movies and snap-
shots for both entertainment and educational purposes.

Interactive virtual environments for the exploration of special relativity are intro-
duced. The first environment is a simple “relativistic flight simulator” which runs on
a standard PC or graphics workstation. The second system is a sophisticated immer-
sive virtual environment which exploits multi-pipe and multi-processor architectures.
Parallelization of the relativistic transformation results in the same frame rates for rel-
ativistic rendering as for standard non-relativistic rendering. Therelativistic-vehicle-
controlmetaphor is introduced for navigating at high velocities. This metaphor contains
a physics-based camera control and provides both active and passive locomotion.

The second part of the thesis deals with curved four-dimensional spacetimes of gen-
eral relativity. Direct visualization of what an observer would see in a general relativistic
setting is achieved by means of non-linear ray tracing. A generic system is presented
for ray tracing in spacetimes described by a single chart. The suitability of ray tracing
as a visualization tool is demonstrated by means of two examples—the rigidly rotating
disk of dust and the warp metric. Extensions to single-chart ray tracing are proposed
to incorporate the differential-geometric concept of an atlas. In this way, spacetimes of
complex topologies can be considered. An example is included, showing the visualiza-
tion of a wormhole.

Ray tracing is applied to the field of gravitational lensing. It is shown how the vi-
sualization of standard lensing can be included in a ray tracing system. Furthermore,
ray tracing allows to investigate deflecting objects beyond the approximations of stan-
dard lensing. For example, large angles of deflections can be considered. Thecaustic
finder is proposed as a numerical method to identify two-dimensional caustic structures
induced by a gravitational lens.

The inner geometry of two-dimensional spatial hypersurfaces can be visualized by
isometric embedding in three-dimensional Euclidean space. A method is described
which can embed surfaces of spherical topology. This embedding scheme supports
sampled metric data which may originate from numerical simulations.

Finally, a specific application in classical visualization is described. Classical visu-
alization means the visual representation of data from relativistic simulations without
taking into account the curvature of spacetime. An algorithm for the adaptive trian-
gulation of height fields is developed in order to achieve a good mesh quality, even in
areas where the underlying function has high gradients. Height field visualization is
exemplarily applied to data from neutron star simulations.
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Imagination is more important than knowledge.
Knowledge is limited. Imagination encircles the world.

“What Life Means to Einstein: An Interview by George
Sylvester Viereck,” for the October 26, 1929 issue of

The Saturday Evening Post.
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Chapter 1

Introduction

We perceive our world by means of our senses. Interaction
with our surroundings is based on material and energy trans-
port, for example, by sound or light waves or by scents. The
senses are our “detectors” for these transferring “substances”.
Visual perception is the most pronounced of these senses. We
receive light radiated by objects of the surrounding scene and
extract a wide range of information, such as shape of ob-
jects, color, emotions from facial expressions, etc. The eye
accomplishes the physical detection of the incoming light, but
the more complex and more interesting processing of the raw
measurements is performed in the brain. Only the cognitive
ability of our brain allows us to comprehend our environment.

The neurophysiological processing of visual information is
a topic far beyond the scope of this thesis. For more infor-
mation on this subject I refer to Mallot[96] and to a compre-
hensive overview on neurophysiology of visual perception by
Spillmann and Werner[149]. A related field is computer vi-
sion, on which numerous textbooks[49, 69, 75, 98] are avail-
able.

Visualization has the task to graphically represent informa-
tion in a way that a human being can grasp this information.
It is a highly interdisciplinary field of research. First, the con-
text in which the information is gathered has to be taken into
account. In this thesis, the underlying models are based on
the physics of relativity and the mathematics of differential
geometry. Other fields of application require different mod-
els; typical applications concern engineering, medical imag-
ing, molecular biology, or social sciences. Secondly, visual-
ization makes use of computer graphics to actually render the
visual representation. Thirdly, the way the human user pro-
cesses and understands information has to be considered, a
fact that relates visualization to the previously mentioned neu-
rophysiology of visual perception.

In this thesis, I focus on the first two points. In particular, I
investigate how the physical properties and the mathematical
structure of four-dimensional spacetime, which is the basis for
special and general relativity, can be taken into account in the
visualization process and how the corresponding images can
be efficiently rendered on a graphics system.

1.1 Principles, Methods, and
Techniques

Visualization has a long tradition, starting well before the ad-
vent of the computer era. To understand scientific and tech-
nical data graphical tools were already used back in the 18th
and 19th centuries. For example, contour plots, height fields,

or color coding allowed to visualize scalar data in maps and
atlases. Collections of arrows displayed vector fields, such as
the magnetic field. The visualization techniques were essen-
tially restricted to two-dimensional fields. With the invention
of the computer and its graphical abilities, more sophisticated
visualization techniques have become possible, in particular,
regarding the presentation of data of higher dimension and
of higher-order tensor fields. Moreover, time-dependent phe-
nomena can now be taken into account as well.

The brain builds a model of real objects seen by a human
being. The visualization principle is to render objects which
cannot be observed directly in order to enable us to grasp their
meaning. The reason why the object cannot be directly per-
ceived can be multifaceted. It might be too small to be seen,
for example, a molecule or other microscopic objects; or it
might be too far away, such as a neutron star; it might be too
dangerous or even lethal, as it is the case for imaging diag-
nosis of the human body; it might be hidden by an obstacle,
such as a deposit of oil and gas; it might be hardly visible or
invisible, such as a flow in a fluid; and so on. The goal of vi-
sualization is to map these “objects” to types of items which
are familiar to the viewer.1 So far, only the geometry of three-
dimensional objects has been implied. Visualization can be
extended to time-dependent, dynamic, or higher-dimensional
objects as well, thus expanding the class of presented data.

The topic of this thesis is the visualization of spacetimes
and information from relativistic physics. In our everyday life
we do not deal with relativistic effects. We are able to measure
only very restricted kinds of information from physical rela-
tivistic systems. Most of the processes which are governed by
relativistic effects take place either in the microscopic scales
of elementary particles or in the macroscopic scales of ob-
jects in remote areas of the universe. The data we register
from astrophysical objects is essentially restricted to the infor-
mation carried to the earth by photons. Therefore, we obtain
two-dimensional images—the direction of the incoming pho-
tons and their spectral energy distribution. The time intervals
of our measurements are tiny compared to the time scales of
most cosmological or astrophysical processes. To sum up, we
are restricted to two-dimensional data as opposed to an obser-
vation of the full four-dimensional, spatial and temporal infor-
mation about the physical system.

Therefore, it is essential to make use of a mathematical and
physical model to interpret the data. Very often, we do not
even visualize data from measurements, but rather from nu-

1“Objects” is put within quotation marks, since they might cover a
wide range of abstractness, reaching from real materialized objects to
abstract mathematical models.
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merical simulations.
In relativistic physics, visualization has to deal with ab-

stract and non-intuitive concepts. Relativity is based on four-
dimensional spacetime. Spacetime is a curved Lorentzian
manifold. To put it another way, we have to address
the following fundamental problems. First, we live in a
three-dimensional world. How can we understand a four-
dimensional manifold? Secondly, we are used to flat geom-
etry. How can we grasp a curved spacetime? Thirdly, how can
we develop an intuitive understanding of a manifold without
a positive definite metric? (A Lorentzian manifold does not
have a positive definite metric; it allows distances of positive,
negative, or null square length). Fourthly, spacetime allows
complex topologies. How can we represent these topologies?

The problem is to find familiar visual analogies to support
comprehension. One approach is to visualize what an observer
would actually see when he or she is watching a relativistic
object. This procedure is in tradition of thegedanken exper-
iments, which were frequently used by Einstein. This direct
visual approach is a key concept in this thesis. Nevertheless,
I show more abstract visualization techniques as well, such as
isometric embedding or classical visualization.

1.2 Goals

This thesis intends to present new or improved and extended
methods for visualizing phenomena in four-dimensional
spacetimes. These techniques are developed for the specific
needs of the theory of relativity. In particular, the following
goals are aspired.

There already exist techniques for relativistic visualization.
However, the supported types of physical systems and phe-
nomena are restricted to specific classes. I intend to take into
account wider classes of physical processes by improving ex-
isting visualization techniques and proposing new ones.

I specifically address issues of time-dependency, dynam-
ics, and interactivity. Previous work is focused on static
systems or uniformly moving, precalculated objects. In this
way, additional means of information transfer offered by time-
dependent visualization are wasted. I propose that interactive
systems should be employed wherever possible. Interactiv-
ity means that the user can interact with the system, i.e., that
she or he can steer the system, change parameters, or move
objects with prompt feedback. In this context, the issue of
human–computer interfaces is addressed and new interaction
techniques specific to relativity are proposed. Furthermore, I
focus on performance in general and rendering performance
in particular to allow for real-time applications.

Another goal is the production of high-quality images, es-
pecially for publication in print media, TV, video, and movies.
This goal is achieved by various means, such as adaptive re-
finement, adequate sampling, or use of image-based modeling.

Moreover, the software design of the developed programs
is based on an object-oriented framework. Several layers of
abstraction in the design allow for easy extensibility and high
usability. The development of generic visualization methods
takes priority over specialized implementation of single phys-
ical systems. In the same context, platform-independency is
pursued. Moreover, standard file formats are supported for in-
put and output whereever applicable. All these steps aim at
usability of the software even in a longer term.

1.3 Outline

The thesis is split into two major parts. The visualization in
special relativity is investigated in the first part. The second
part addresses curved spacetimes of general relativity.

Spacetime is flat within special relativity. Therefore, visu-
alization is mathematically less elaborate and computationally
less expensive than in general relativity. With the computer
power available today, many special relativistic visualization
techniques can be run in real-time and thus allow interactiv-
ity. In general, the visualization of general relativity is much
more costly and prohibits real-time applications. Part One and
Part Two of this work are connected by the fact that a locally
Lorentzian frame of reference can always be found, even in
curved spacetime. Therefore, many results from special rela-
tivity can be extended to general relativity.

Part One extends over Chapters 2–7. First, it deals with
basics of color vision, radiometry, illumination, and special
relativity. It is followed by an extensive discussion of special
relativistic rendering methods. Then, interaction techniques
and virtual environments for special relativity are proposed.
The first part closes with a summary and an outlook on possi-
ble future work in the field of special relativistic visualization.

Part Two contains Chapters 8–13. Three fundamentally dif-
ferent types of visualization are discussed. The first visualiza-
tion method is ray tracing in curved spacetime. Analogously
to the visualization idea of Part One, ray tracing simulates the
visual perception within curved spacetime. Here, I specifi-
cally address the issue of gravitational lensing. The second
technique gives an abstract account of a curved manifold by
isometric embedding of a two-dimensional hypersurface. The
third method uses classical visualization to show data from
simulations or measurements. Part Two ends with a brief sum-
mary and a description of future work in the field of general
relativistic visualization.

Chapter 14 concludes both parts of the thesis.
The Appendix contains some detailed information. An ex-

plicit derivation of the transformation of radiance between two
inertial frames of reference is presented. Then, the imple-
mented gravitational lenses are described. A documentation
of the developed software and the accompanying video fol-
lows. Variable name conventions and notations are included
as well.
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Chapter 2

Introduction to the Visualization of Special Relativity

Einstein’s special theory of relativity is widely regarded as a
difficult and hardly comprehensible theory, even today—more
than ninety years after its publication[44] in 1905. One im-
portant reason for this is that the properties of space, time, and
light in relativistic physics are totally different from those in
classical, Newtonian physics. In many respects, they are con-
trary to human experience and everyday perception, which is
based on low velocities.

In the real world, mankind is limited to very small veloci-
ties compared to the speed of light. For example, the speed of
light is a million times faster than the speed of an airplane and
40,000 times faster than the speed at which the Space Shut-
tle orbits the earth. Even in the long term, there is no hope
of achieving velocities comparable to the speed of light for
extended macroscopic objects. Mankind is only able to accel-
erate microscopic particles up to velocities comparable to the
speed of light, for example, electrons, protons, etc. in high-
energy accelerators. In nature, there exist some extended rel-
ativistic objects such as QSOs (quasi-stellar objects), jets, or
accretion phenomena. However, most of them are too far away
to be spatially resolved by contemporary telescopes and thus
do not provide illustrations of special relativity.

Therefore, computer simulations are the only means of vi-
sually exploring the realm of special relativity. The first part
of this work intends to present different kinds of visualiza-
tion techniques which help to improve the comprehension of
special relativity. These techniques will enable us to experi-
ence special relativity, including phenomena such as Lorentz
contraction, time dilation, aberration, finite speed of light,
the Doppler effect, and the searchlight effect. This approach
should help to improve the intuition of physicists. It gives
a good motivation for newcomers and students to learn more
about the theory. Moreover, it is an ideal means for dissemi-
nating special relativity to the public and thus supports popu-
larizing physics.

2.1 Historical Remarks

Remarkably, the issue of visual perception in special relativ-
ity was ignored for a long time, or wrong interpretations were
given. Einstein writes in his original work on the special the-
ory of relativity[44]:

“Ein starrer Körper, welcher in ruhendem Zustand
ausgemessen die Gestalt einer Kugel hat, hat also
in bewegtem Zustande—vom ruhenden System aus
betrachtet—die Gestalt eines Rotationsellipsoides

mit den Achsen

R

r
1�

� v
V

�2
;R;R:

Während also dieY- und Z-Dimension der Kugel
(also auch jedes starren K¨orpers von beliebiger
Gestalt) durch die Bewegung nicht modifiziert er-
scheinen, erscheint dieX-Dimension im Verh¨altnis
1 :
p

1� (v=V)2 verkürzt, also um so st¨arker, je
größerv ist.”

According to Miller[105], the translation into English is:

“A rigid body which, measured in a state of rest,
has the form of a sphere, therefore has in the state
of motion—viewed from the resting system—the
form of an ellipsoid of revolution with the axes

R

r
1�

� v
V

�2
;R;R:

[remark: V is the speed of light,v the velocity
of the sphere, andR the radius of the sphere].
Thus, whereas theY- and Z-dimensions of the
sphere (and therefore of every rigid body of ar-
bitrary form) do not appear modified by the mo-
tion, theX dimension appears shortened in the ra-
tio 1 :

p
1� (v=V)2, i.e, the greater the valuev, the

greater the shortening.”

The difference betweenseeingand measuringis crucial.
Measurements are performed at all relevant sample points si-
multaneously with respect to the reference frame of the ob-
server. Seeing, however, is based on the photons which ar-
rive simultaneously at the observer’s camera. These photons
are usually not emitted simultaneously (with respect to the ob-
server’s frame of reference) because of the finite speed of light.

Einstein uses the words “betrachtet” (view, regard, or con-
sider) and “erscheinen” (appear) in his paper and hence does
not clearly express the difference between measuring and see-
ing. However, there are other publications which definitely
give a wrong account of visual perception within relativity.
For example, Gamow equates the Lorentz contraction and the
visual perception of moving bodies in his book “Mr Tompkins
in Wonderland”[55, 56].

Apart from a previously disregarded article by Lampa[91]
in 1924 about the invisibility of the Lorentz contraction, it
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was only in 1959 that the first correct solutions to the is-
sue of visual perception within special relativity were pre-
sented by Penrose[126] and Terrell[159]. Later, more de-
tailed descriptions of the geometrical appearance of fast mov-
ing objects were given by Weisskopf[177], Boas[17], Scott
and Viner[144], and Scott and van Driel[143]. These papers
derive and explain the following basic properties of the ap-
pearance of rapidly moving objects. Usually, these objects do
not appear to be contracted but rather rotated and distorted.
Straight lines perpendicular to the direction of motion appear
to be hyperbolae, straight lines parallel to the direction of mo-
tion remain straight lines.

2.2 Previous Work

Hsiung and Dunn[76] were the first to use advanced visual-
ization techniques for image shading of fast moving objects.
They proposed an extension of normal three-dimensional ray
tracing. This technique accounts for relativistic effects on the
apparent geometry as seen by the observer. Hsiung et al.[78]
investigated relativistic ray tracing in more detail and included
the visualization of the Doppler effect. Hsiung et al.[77] used
the temporal variation of the color of objects in the scene for
the visualization of relativistic time dilation.

Hsiung et al.[79] introduced thetime-bufferfor fast visual-
ization of relativistic effects. The time-buffer method resem-
bles the normal z-buffer and can be mapped onto it. The time-
buffer technique allows for relativistic polygon rendering, a
scan-line method. It is based on the apparent shapes of objects
as seen by a relativistic observer. Gekelman et al.[57], Chang
et al.[23], and Betts[14] investigated the polygon rendering ap-
proach in detail and gave a comprehensive presentation. The
kinematics of special relativity was described, for example, by
Ruder et al.[138].

Relativistic effects on illumination is a subject that is often
ignored in previous work. Most authors concentrate their ef-
forts on geometrical appearance and, apart from the Doppler
effect, neglect relativistic effects on the lighting model. Chang
et al.[23] and Betts[14] presented effects on illumination, but
they included some misinterpretations of the special theory of
relativity which lead to incorrect images. Respective correc-
tions can be found in our papers[175, 176].

Acceleration in the visualization of special relativity is an-
other subject widely neglected. The article by Gekelman et
al.[57] is the only other work known to me which addresses
the issue of acceleration in special relativistic rendering. How-
ever, Gekelman et al. did not describe acceleration in detail.
They mentioned the trajectory of an accelerated cube. In their
description, an integral along the trajectory of every point on
the object needs to be solved numerically, which is time con-
suming and leads to a polygonal approximation of the trajec-
tory. Furthermore, for this calculation, the velocity has to be
known for all relevant times, but Gekelman et al. gave no de-
scription of how this velocity could be determined.

2.3 Outline

In Chapter 3, the physical and psychophysical basis of color
vision is briefly described. Definitions of radiometric terms
are summarized. The psychophysics of colorimetry and typi-
cal and useful spectral power distributions are presented. I dis-

cuss local illumination as the basis for all shading algorithms.
In this way, a physically sound foundation for the treatment of
color in the subsequent presentation of rendering techniques
is established.

In Chapter 4, the physical basis of special relativistic visu-
alization is established. The focus is on the transformation of
properties of light, such as the aberration of light, the Doppler
effect, and the searchlight effect. These effects determine the
extensions required for special relativistic image generation.
Moreover, the kinematics of a point particle within special rel-
ativity is described.

In Chapter 5, rendering techniques for special relativity are
presented. In the first two sections, the two methods previ-
ously available—relativistic polygon rendering and relativis-
tic ray tracing—are described. The following methods have
been developed during the work for this thesis. The relativis-
tic extension of radiosity allows rendering of diffusely reflect-
ing scenes. Texture-based relativistic rendering utilizes con-
temporary computer graphics hardware in order to visualize
relativistic effects on geometry and illumination in real-time.
Image-based relativistic rendering generates panoramas and
movies based on data acquired by standard cameras, which
allows to produce photo-realistic images with great ease.

In Chapter 6, interaction techniques in special relativistic
visualization are investigated. Acceleration of the relativistic
observer is used as the basis for a new navigation technique,
the relativistic-vehicle-controlmetaphor. An implementation
of an immersive virtual environment for special relativity is
described.

Chapter 7 concludes the first part of the thesis and gives an
outlook on possible future work.



Chapter 3

Color Vision and Illumination

3.1 Radiometry

In this section, the basic terms of radiometry are defined to
establish a firm foundation for the discussion of illumination
in the remaining parts of this work. The respective SI units are
provided as well. A more detailed presentation can be found,
for example, in Glassner’s book[59]. The units are defined by
Le Système International d’Unit´es (the International System
of Units) [37].

The unit of radiant energy Qis Joule. Radiant poweror
radiant fluxis

Φ :=
dQ
dt

[W] ;

with the unit Watt.Radiant intensityis defined as

I :=
dΦ
dΩ

�
W
sr

�
;

wheredΩ is the element of solid angle as seen by the observer.
Intensity also is the measure for radiant power leaving a point
light source. Accordingly, the measure for radiant power leav-
ing a point light source in an element of solid angledΩ and
in a wavelength intervaldλ is called wavelength-dependent
intensityIλ:

Iλ :=
dΦ

dΩdλ

�
W

srm

�
: (3.1)

The energy arriving at a surface elementdA is calledirradi-
ance Ei ,

Ei :=
dΦ
dA

�
W
m2

�
:

Wavelength-dependent irradianceEi
λ is the radiant power per

unit area in a wavelength interval:

Ei
λ :=

dΦ
dAdλ

�
W
m3

�
:

The measure of flux leaving a surface is calledradiant exi-
tance Mor radiosity B,

M � B :=
dΦ
dA

�
W
m2

�
:

A quadratic law of distance applies to a point-like light source,
i.e.,M ∝ 1=r2 with the distancer. Even for a finite size of the
source, this law is a valid approximation in most applications.

RadianceL is defined as

L :=
dΦ

dA?dΩ
=

dΦ
dAdΩ?

�
W

srm2

�
:

Either the area projected along the direction of light,dA?, is
used or the projected element of solid angle,dΩ?. Radiance
can be expressed in terms of intensity, irradiance, or exitance:

L =
dI

dA?
=

dEi

dΩ?

=
dM
dΩ?

�
W

srm2

�
:

Radiation transport in vacuo leaves radiance invariant. If
the interaction between radiation and matter is minimal—if
absorption, scattering, and luminescence can be neglected—
radiance is constant as well, for example for visible light in
air.

The Poynting vector~S is connected with radiance by



~S



=

Z
LdΩ:

In the remaining parts of this work, wavelength-dependent ra-
diance,

Lλ :=
dΦ

dA?dΩdλ
;

is of great importance, since the dependency on wavelength
has to be taken into account in many calculations. Accord-
ingly, frequency-dependent radiance is defined

Lν :=
dΦ

dA?dΩdν
;

with the frequencyν. Energy-dependent radiance is

LE :=
dΦ

dA?dΩdE
:

Please note thatE denotes energy, not irradiance.

3.2 Colorimetry

This thesis deals with the visualization of physical phenom-
ena. Therefore, the presentation of these effects in a way that
can be perceived by the human eye is an important goal. One
essential part is the perception of color, i.e., the power spec-
trum of the incoming light has to be connected to the human
perception.

Colorimetry deals exactly with the problem of measure-
ment of colors. Colorimetry is a part of psychophysics,
which, in general, investigates the sensual feedback to under-
lying stimuli. A comprehensive introduction to colorimetry
can be found in Judd and Wyszecki[83] and Wyszecki and
Stiles[184].
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3.2.1 Additive Mixture of Colors

Grassmann summarizes the basics of color vision in the fol-
lowing three laws, cf. Judd and Wyszecki[83, page 45]:

� The human eye can distinguish only three kinds of dif-
ference or variation.

� If, of a three-stimulus mixture, one stimulus is steadily
changed, the color of the mixture steadily changes.

� Stimuli of the same color produce identical effects in
mixtures regardless of their spectral composition.

These laws are based on additive mixture of colors, which
adds up the responses to stimuli for each component. There
exist three different basis colors. Red, green, and blue are
the most prominent basis colors. The relative radiances of the
three components are called thetristimulus values R;G;B. The
tristimulus values are normalized so that white hasR= G =
B= 1.

The tristimulus values can be combined to form the corre-
sponding color. The basic colors are calledprimaries~R; ~G;~B.
To put it another way, tristimulus values are components of an
element in a three-dimensional tristimulus-color space whose
basis functions are the three primaries. The additive mixture
of a color~C is

~C(R;G;B) = R~R+G~G+B~B:

Negative tristimulus values cannot be generated by additive
mixture, since stimuli cannot be subtracted. However, nega-
tive components can be eliminated by addition. For example,

~C= R~R+G~G�B~B

can be re-formulated to

B~B+~C = R~R+G~G:

Here,B~B and~C are added and then compared toR~R+G~G.
In this sense, the tristimulus-color space can be regarded as a
vector space with three basis vectors~R, ~G, ~B.

3.2.2 Transformation of Primaries

So far, only the primaries red, green, and blue have been used.
Since the primaries are basis vectors of a three-dimensional
vector space, a change to another basisf~Piji = 1;2;3g is pos-
sible. The vectors of the new basis have to be linearly inde-
pendent, i.e., a primary must not be reproduced by a mixture
of the two remaining primaries. If the old primaries are repre-
sented by the new primaries according to

~R=
3

∑
i=1

Pi;R~Pi;

~G=
3

∑
i=1

Pi;G~Pi ;

~B=
3

∑
i=1

Pi;B~Pi;

then the transformation from old coordinates(R;G;B) to new
coordinates(C1;C2;C3) of an arbitrary color~C is

0
@C1

C2
C3

1
A=

0
@P1;R P1;G P1;B

P2;R P2;G P2;B
P3;R P3;G P3;B

1
A
0
@R

G
B

1
A :

The change of basis is described by the matrix

M =

0
@P1;R P1;G P1;B

P2;R P2;G P2;B
P3;R P3;G P3;B

1
A :

The transformation from new to old coordinates is accom-
plished by the inverse matrixM�1.

In 1931, the CIE (Commission Internationale de l’Éclair-
age) introduced a reference system for color measurements.
This system uses the norm primaries~X;~Y;~Z. The norm pri-
maries cannot be produced by physical power spectra and thus
are called virtual primaries. An advantage of the XYZ system
is that all physical colors are represented by an additive mix-
ture of the norm primaries, i.e., that the tristimulus values are
positive-definite. A motivation for the specific choice of norm
primaries is given in Sect. 3.2.4.

3.2.3 Chromaticity

The terms

r =
R

R+G+B
; g=

G
R+G+B

; b=
B

R+G+B
;

are calledchromaticitiesof a color with respect to the RGB ba-
sis. Accordingly, the chromaticities with respect to a generic
basisf~Pi ji = 1;2;3g are

ci =
Ci

∑3
j=1Cj

; i = 1;2;3;

whereCi are the corresponding tristimulus values. They de-
scribe the type of the corresponding color on a chromaticity di-
agram, which is a hypersurface containing the three primaries
in the tristimulus-color space. Figure 3.1 shows the standard
CIE 1931 chromaticity diagram for the system of XYZ norm
primaries.

3.2.4 Color-Matching Functions

By color-matching experiments with men and women with
normal color vision, the tristimulus values of the spectral col-
ors were measured with respect to a fixed set of primaries.
These measurements can be used to determine the tristimulus
values from the spectral power distribution in order to generate
the final output on the monitor.

The red primary~R at 700.0 nm wavelength, the green pri-
mary ~G at 546.1 nm wavelength, and the blue primary~B at
435.8 nm wavelength are the standard choice of basis vectors.
Thecolor-matching functionsyield the spectral values in the
range of visible light. In general, they are denotedf̄i(λ) for
i = 1;2;3. The spectral color of wavelengthλ is

~C(λ) =
3

∑
i=1

f̄i(λ)~Pi:
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Figure 3.1: CIE 1931 chromaticity diagram.

In the case of the RGB system, the color-matching func-
tions are denoted ¯r(λ), ḡ(λ), b̄(λ). The graphs of the color-
matching functions for the primaries red, green, and blue are
displayed in Fig. 3.2. The respective values are tabulated in
Wyszecki and Stiles[184, Table I(3.3.3)].

An arbitrary stimulus in the form of the wavelength-
dependent radianceLλ generates the tristimulus valuesCi ,

Ci =
Z

supp( f̄i)

Lλ(λ) f̄i(λ)dλ; i = 1;2;3: (3.2)

For the color-matching functions of the CIE, the support is
[380 nm;780 nm]. In the RGB system, the color-matching
function for red is negative for an extended interval in the
domain. Therefore, the respective spectral colors cannot be
reproduced by an additive mixture of the~R, ~G, ~B primaries.
Figure 3.3 shows thespectrum locusand thepurple line in
a chromaticity diagram. The spectrum locus is the set of all
spectral colors. The short and long wavelength regions are
connected by the purple line. Figure 3.3 shows that the spec-
trum locus is outside the gamut of the primaries~R, ~G, ~B for
wavelengths between 380 nm and 550 nm.

As mentioned before, the CIE (Commission Internationale
de l’Éclairage) introduced a reference system for color mea-
surements. This system uses the norm primaries~X, ~Y, ~Z and
the corresponding color-matching functions ¯x; ȳ; z̄. Since ¯y
equals the luminous-efficiency function,Y reflects the lumi-
nance of the light stimulus. The primaries~X, ~Y, ~Z lie outside
the spectrum locus, cf. Fig. 3.3. They cannot be produced by
physical power spectra and thus are called virtual primaries.

The standard color-matching functions of the CIE XYZ
system are the basis for many color-processing applications,
including all implementations for this thesis. Nevertheless, I
would like to point out that there exist more recent and im-
proved measurements of color vision, for example, by Stock-
man et al.[153]. An up-to-date investigation of the neurophys-
iology of color perception can be found in Teufel[160].

400 500 600 700
/nmλ

λ

λ

g(  )

b(  )
λr(  )

Figure 3.2: Color-matching functions for the primary stimuli red
(700.0 nm), green (546.1 nm), and blue (435.8 nm). The units of the
primary stimuli are of radiant power ratios 72.1:1.4:1.

3.2.5 Mappings in Tristimulus-Color Space

In the previous section, it is shown that, in many cases, spec-
tral colors cannot be reproduced by an additive mixture of the
~R, ~G, ~B primaries. Figure 3.4 visualizes the problem. The
colors which can be physically produced lie inside the spec-
trum locus. Contemporary computer monitors can thus gener-
ate only a small part of these colors.

In addition to the chromaticity, the luminosity can lie out-
side the displayable range. In general, one needs to investigate
how an arbitrary color~C can be mapped into the set of dis-
playable colors. If the color is given with respect to the RGB
system, one has to find a mapping of the color~C into the RGB
unit cube. A continuous functionG for this (color) gamut
mappinghas to be determined in a way that color perception
comes close to the original values:

G : R3 �! [0;1]3; ~C 7�! ~C0 = G(~C):

Stone et al.[154] investigate gamut mapping for reproduc-
tion on paper. They splitG in two steps. The first step repre-
sents a transformation of tristimulus-color space in a way that
most of the colors can be reproduced. Possible types of trans-
formation are translation, scaling, rotation around the gray
axis (axis from black point to white point), and desaturation by
adding white. The parameters are interactively controlled by
the user, whose color perception is essential for adjusting these
parameters. In the second step, the colors which still cannot be
reproduced are clipped. Unfortunately, this technique cannot
be used in most relativistic visualization methods because this
type of user interaction is undesirable in an automated visual-
ization process and is too time consuming. Furthermore, the
method needs the complete image to be known and thus does
not allow progressive image generation.

Therefore, only simpler gamut mapping procedures are
used in the relativistic visualization techniques. They are
based on standard methods, cf. the description in Hall[66] or
Glassner[59]. The fastest method is color clamping, which
clamps the tristimulus values to zero or one, respectively. An-
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Figure 3.3: Chromaticity diagram with the primaries ~X, ~Y, ~Z and the
spectral colors for red, green, and blue.

other method is desaturation by adding white. If the resulting
color is too bright, the tristimulus values are uniformly scaled
so that the maximum value equals one. These two methods
change brightness. The third method is another type of de-
saturation which keeps the brightness constant as long as the
maximum brightness is not exceeded.

These methods are compared in Fig. 3.5. Unfortunately,
the color reproduction on paper is also subject to gamut map-
ping problems. Therefore, the reproduced colors are not com-
pletely correct.

3.2.6 Curved Color Spaces

From the previous discussion, there is overwhelming evidence
that the manifold of perceived colors is three-dimensional.
The Grassmann’s laws imply three different types of stim-
uli. Psychological specifications of color use three param-
eters, such as hue, chroma, and lightness. The structure of
the cones in our eyes also indicates that the color manifold is
three-dimensional.

However, the internal structure of perceptual color space is
not determined by the fact that the space is three-dimensional.
What are the intrinsic properties of this manifold? In partic-
ular, in which way do we perceive color differences? Color
space has to be equipped with an internal structure which
makes it a curved manifold. Please note that this internal
structure is independent of the law of additive color mixture.
The addition of colors is caused by adding physical stimuli,
which is a linear operation under normal conditions of vision
and thus yields the properties of the vector space mentioned
in previous sections. The internal structure, however, is based
on perceptible color differences: How do we decide that two
colors are different, what is the measure for that difference?

Silberstein[147] concludes that the internal structure of
color space is described by a metric of Riemannian type.
Ashtekar et al.[6] present an abstract derivation of the Rie-
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Figure 3.4: Chromaticity diagram with the gamut of the NTSC monitor
primaries ~R, ~G, ~B and the primaries ~R*, ~G*, ~B* which can be produced by
usual phosphors. Major parts of the physically possible colors cannot be
displayed on computer monitors because the spectrum locus lies outside
the supported color gamut.

mannian structure of color space, based only on the assump-
tion that the essential features of perceived colors are com-
pletely captured in three absorption coefficients. Therefore,
it is widely accepted that perceptual color space is equipped
with a Riemannian metric.

The perceptible color difference is expressed in terms of the
line elementds, with

ds2 =
3

∑
i; j=1

gi j dCi dCj ;

wheregi j is the metric tensor anddCi is the differential of the
color coordinateCi . An introduction to the mathematics of
curved manifolds can be found in Sect. 9.1.

The difficult task is to actually measure this metric by
means of investigating normal color vision of human be-
ings. First efforts to formulate an appropriate line ele-
ment go back to Helmholtz[70]. Other metrics were pro-
posed by Schr¨odinger[142] and Stiles[151]. More details
and references to further metrics can be found in Judd and
Wyszecki[83].

A more pragmatic approach does not explicitly specify the
metric of color space, but introduces non-linear mappings
from standard color coordinates, such asRGBor XYZ, to new
coordinates. The new coordinate system is intended to be a
perceptually uniform color space. However, a completely lin-
ear color space has not been developed yet. The unsuccessful
attempts have, on the contrary, supported the suspicion that a
strictly linear color space cannot possibly be developed. Nev-
ertheless, some good approximations have been found. Promi-
nent ones are the L*u*v and the L*a*b systems, cf. Judd and
Wyszecki[83].
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Figure 3.5: Gamut mapping methods for the reproduction of the spectrum of visible light. In addition to the spectrum itself, the figure displays the
colors which have to be added or subtracted in order to achieve the respective reproduction. The first block shows color clamping at zero and one. In
the middle block, the negative RGB values are removed by adding white. Bright colors are displayed by uniform scaling of the tristimulus values. The
last block is reproduced by using desaturation at constant brightness.

3.3 Reconstruction of the Power
Spectrum

In many applications of relativistic visualization, it is not suf-
ficient to consider only three tristimulus values. In fact, often
the spectral power distribution of the light has to be taken into
account, for example, when color changes due to the Doppler
effect or gravitational redshift have to be calculated.

Unfortunately, common input data does not comprise the
full power spectrum, but only the tristimulus values because
the materials in geometric modeling are normally specified
by tristimulus values and image-based modeling makes use of
cameras which provide RGB information only. The full power
spectrum has to be reconstructed from the tristimulus values in
these cases.

In this section, prominent spectral power distributions and
their representation with respect to basis functions are de-
scribed. The basis function representation is used to build a
reconstruction scheme which computes a spectral power dis-
tribution from given tristimulus values.

3.3.1 Spectral Power Distributions

Peercy[125] describes in detail how a finite set of orthonor-
mal basis functions can be used to represent radiance. The
orthonormality condition can be omitted and an arbitrary set
of basis functions can be used if no projection onto the ba-
sis functions is needed. In this representation, wavelength-
dependent radiance is

Lλ(λ) =
nL

∑
j=1

l jLλ; j(λ); (3.3)

with the set of basis functions,fLλ; j(λ)j j 2 N;1 � j � nLg,
and the coefficients of the vector representation,l j .

The Planck distribution is the first example of a basis func-
tion. It describes the blackbody radiation and thus has a direct
physical meaning and a widespread occurance in nature. The

Planck distribution is

Lλ(λ;T) =
2hc2

λ5

1
exp(hc=kTλ)�1

; (3.4)

where T is the temperature in Kelvin,k is the Boltzmann
constant, andh is the Planck constant. The color values for
blackbody radiation lie inside the RGB color gamut for all
temperatures, cf. Fig. 3.6. A Planck spectrum is changed
by the Doppler effect or gravitational redshift to another
Planck spectrum of a different temperature, cf. Peebles and
Wilkinson[124]. Therefore, the blackbody radiation can be
reproduced on a computer monitor for all relevant physical
systems and scenarios.

Various other sets of basis functions are described in the
literature, such as box functions[67], Fourier functions[58],
Gaussian functions with adapted width[156], and delta
functions[58].

3.3.2 Reconstruction Process

Unfortunately, the mapping from the space of all power dis-
tributions into tristimulus space is not injective. There are in-
finitely many spectra associated with a single color. This phe-
nomenon is calledmetamerism. However, a possible spectrum
can always be determined and metamerism gives considerable
freedom of doing so.

Two different reconstruction schemes are presented in this
section. The first makes use of the representation via basis
functions. First, a set of three new basis functions is chosen.
Second, the tristimulus values corresponding to each single
basis function are determined, i.e., the representation of the
new basis functions with respect to the original basis. Third,
the matrix representing the transformation from the original
basis to the new basis is constructed according to Sect. 3.2.2.
This matrix allows to compute the weights for the three basis
functions from given tristimulus values. In this way, the power
spectrum can be calculated from the color values.

A simple approach models three RGB values by the
line spectrum consisting of the corresponding primaries at
700.0 nm, 546.1 nm, and 435.8 nm. The peaks are weighted
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Figure 3.6: Chromaticity diagram with the Planck spectrum locus. The
Planck spectrum locus is inside the displayable gamut for all tempera-
tures.

by the respective tristimulus values. Unfortunately, discontin-
uous changes in color can appear if a primary is shifted out of
the visible spectrum. Noticeable changes might appear even
for a small frequency shift. For example, the blue primary
can be shifted out of the visible spectrum by the Doppler ef-
fect for a velocity as low as 13 percent of the speed of light.
Therefore, a set of wide-spread basis functions can provide a
smoother transition of colors.

The other reconstruction scheme is based on the dominant
wavelength model[51] and does not use a representation via
basis functions. The dominant wavelength model is useful be-
cause it provides a smooth change of color and brightness for
a wide range of frequency-shifting. Figure 3.7 shows an ex-
ample of a spectral power distribution with a dominant wave-
length. The corresponding spectral power distribution consists
of a spike at the dominant wavelength and of a uniform distri-
bution, i.e., white light. The luminance and excitation purity
determine the levels of the two parts of the spectrum. The
excitation purity corresponds to the saturation of the color,
the luminance to the brightness. The location of the domi-
nant wavelength spike depends on the hue of the color. The
parameters for the dominant wavelength model can be com-
puted from RGB values according to [51]. In contrast to the
original implementation of the dominant wavelength model,
the uniform part of the spectrum is not restricted to the range
of visible wavelengths, but comprises a larger interval. In this
way, the spectrum is still present after frequency-shifting.

3.4 Local Illumination

Local illumination describes the reflectance properties of a
small patch of a surface. It is always possible to find a lo-
cal Lorentz frame. Therefore, the local illumination known
from standard computer graphics can be adopted even for rel-
ativistic rendering, as long as all physical properties are trans-
formed to the local reference frame before the illumination
calculation.

dominant wavelength

λ

L λ

Figure 3.7: Spectral power distribution illustrating dominant wavelength.

The reflection of a material is described by the spectralbidi-
rectional reflectance distribution function(BRDF),

fλ;r(λ;φr ;θr ;φi ;θi) =
dLr

λ(λ;φr ;θr ;φi ;θi)

dEi
λ(λ;φi ;θi)

=
dLr

λ(λ;φr ;θr ;φi ;θi)

Li
λ(λ;φi ;θi)cosθi dΩi

;

whereLi
λ is the incident wavelength-dependent radiance,Ei

λ
is the wavelength-dependent irradiance, andLr

λ is the reflected
wavelength-dependent radiance. Figure 3.8 illustrates the ge-
ometry of the quantities needed for the computation of radi-
ance.

By integrating over all directions of the incident radiation,
thereflectance equationis obtained:

Lr
λ(λ;φr ;θr)

=
Z

Ωincident

fλ;r(λ;φr ;θr ;φi ;θi)L
i
λ(λ;φi ;θi)cosθi dΩi ; (3.5)

whereΩincident is the incident hemisphere. The BRDF and the
reflectance equation are the basis of local illumination. Fur-
ther information on this topic can be found, for example, in
Glassner’s book[59].

The three simplest and often used shading models are
the Lambertmodel, thePhongmodel, and theBlinn-Phong
model.

The Lambert model applies to a perfectly diffuse surface.
The BRDF is constant for all wavelengths and all directions.
The value of the BRDF isfλ;r = 1=π.

The Phong model[128] represents highlights by an expo-
nentiated cosine law. The reflected light is modeled as a
cone centered around the reflection direction with exponen-
tially decreasing intensity. Suppose that the angle between
reflection vector and viewing vector is given byα. Then,
the reflected light is modulated by(cosα)ke; ke is the rough-
ness or shininess exponent. Blinn[16] proposes a modifica-
tion of Phong shading which avoids the computation of the
reflection vector and thus is slightly faster. Neither the Phong
nor the Blinn-Phong model is normalized, even the energy-
conservation condition is ignored.

TheCook-Torranceshading model[28] is based on a phys-
ical model of a surface. The surface is assumed to consist
of small mirrors, the microfacets, which are randomly ori-
ented. The distribution of the microfacets is parameterized by
a roughness term. Reflectance itself is based on Fresnel’s for-
mulas and hence depends on wavelength. The Cook-Torrance
model is a physical shading model. Descriptions and ref-
erences to more advanced local illumination models can be
found, for example, in Glassner[59].
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Figure 3.8: Geometry for the BRDF. The normal vector ~N points upwards. The direction of the incident light is described by (φi;θi), the direction of the
reflected light is described by (φr;θr). The projected solid angle is denoted dΩi cosθi .





Chapter 4

Physical Basis of Special Relativistic Visualization

In this chapter, the mathematical and physical basis of spe-
cial relativity is introduced in so far as needed for the under-
standing of special relativistic visualization. A detailed pre-
sentation can be found in numerous text books, for example
[35, 107, 108, 135].

4.1 Lorentz Transformation

The Lorentz transformation relates two inertial frames of ref-
erence. It is a basic element of the special theory of relativity.

The time coordinatet and the three spatial coordinates
(x;y;z) describe a point inspacetimeand can be combined to
form theposition four-vector

xµ = (t;x;y;z) = (x0;x1;x2;x3); µ= 0;1;2;3:

Throughout this thesis, units are used in which the speed of
light c equals 1.

The line element is

ds2 = dt2�dx2�dy2�dz2

= ηµνdxµdxν:

The Greek indices are from the setf0;1;2;3g. The Einsteinian
sum convention is used. TheMinkowski metricis

ηµν =

0
B@

1 0 0 0
0 �1 0 0
0 0 �1 0
0 0 0 �1

1
CA :

The Lorentz transformationis a linear and homogeneous
transformation of Minkowski coordinates,

xµ 7�! xµ0 = Λµ
νxν;

which leaves the metricηµν invariant. From the previous
equation follows

Λµ
ν =

∂xµ0

∂xν :

The inverse Lorentz transformation is

xµ0 7�! xµ = Λν
µxν0;

with

Λν
µ =

∂xµ

∂xν0 :
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Figure 4.1: Minkowski diagram showing two frames of reference, S and
S0 respectively. The translation of the origins of the two coordinate sys-
tems is explicitly marked. The different velocities of the reference frames
cause the rotations of the axes of S0. Spatial rotation is not considered
because the Minkowski diagram shows only one spatial dimension. The
projection of an event onto the axes yields the coordinates (te ;ze) and
(t0e ;z

0

e) of the event in the two respective frames of reference. This pro-
vides a geometric interpretation of the Poincaré transformation.

The Lorentz transformations form the Lorentz groupL. L is
partitioned in four separate pieces which are characterized by
detΛµ

ν and Λ0
0. In the remaining parts of this work, only

proper (detΛµ
ν = 1) and orthochronous (Λ0

0 � 1) Lorentz
transformationsL"+, which conserve spatial and temporal ori-
entation, are considered. The Lorentz transformation connects
two inertial frames of reference and leaves the speed of light
invariant. The Lorentz transformation can be regarded as a
change of coordinate systems between the associated inertial
frames.

The Poincar´e group consists of the linear inhomogeneous
transformations which leaveηµν invariant. The Lorentz trans-
formation is extended to the Poincar´e transformation by in-
cluding translations of frames of reference,

xµ 7�! xµ0 = Λµ
νxν +aµ:

Figure 4.1 shows a geometric approach to the Poincar´e trans-
formation in the form of a Minkowski diagram. Here, the
Minkowski diagram is a spacetime diagram without the co-
ordinatesx andy.

In general, afour-vector is defined according to its prop-
erties under Lorentz transformations. A contravariant four-
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vector is defined as a quantity which has four components
(b0;b1;b2;b3) relative to every coordinate system and whose
components are transformed in the same way as the position
coordinates(x0;x1;x2;x3), i.e.,

bµ0 = Λµ
νbν:

A covariant four-vectoraµ is transformed according to

bµ
0 = Λµ

νbν:

The inner product between two four-vectors,

aµbµ = ηµνaµbν = ηµνaνbµ = aµbµ;

is aLorentz scalar, i.e., it is invariant under Lorentz transfor-
mations. A four-vector is characterized by its square length,
aµaµ. The four-vector isspacelikefor a negative square length,
timelikefor a positive square length, andlightlike if the square
length is zero.

Proper time is defined as the time measured by a co-moving
clock. Differential proper time,

dτ =
dt
γ

=
q

1�β2 dt;

is a Lorentz scalar. The velocity parameters are defined as

β = v;

γ =
1p

1�β2
;

with v being the absolute value of the velocity. The classi-
cal, three-dimensional velocity can be generalized to the four-
velocity,

uµ =
dxµ

dτ
:

The four-velocity is connected to the classical velocity,~v =
(vx;vy;vz), by

uµ = (u0;u1;u2;u3) = γ(1;vx;vy;vz): (4.1)

Accordingly, the four-acceleration is

aµ =
duµ

dτ
=

d2xµ

dτ2 : (4.2)

The Lorentz transformation depends on parameters for the
separating velocity and the rotation of the two frames of ref-
erence. The Poincar´e transformation possesses additional pa-
rameters for translation. The Lorentz transformation due to
a separating velocity is calledLorentz boost. The general
Lorentz boost, cf. [107, page 69], is described by the sym-
metric 4�4 matrixΛµ

ν whose components are

Λ0
0 = γ;

Λ0
j = Λ j

0 =�βγnj ;

Λ j
k = Λk

j = (γ�1)njnk+δ jk;

where~n = (n1;n2;n3) is the normalized direction of motion,
δ jk is the Kronecker symbol, andj ;k 2 f1;2;3g. Rotations
can be computed as in the non-relativistic three-dimensional
case. Translation in spacetime is analogous to translation in
normal three-dimensional space and is based on component-
wise addition.

Figure 4.2: Relativistic aberration of light. The left image shows some
of the light rays registered by an observer at rest. The right image shows
the same light rays with the observer moving upwards at β = 0.9.

4.2 Aberration of Light and Doppler
Effect

In this section, the Lorentz transformation is applied to the di-
rection and wavelength of a photon. This yields the relativistic
aberration of light and the Doppler effect.

The relativistic aberration of light causes a rotation of the
direction of light when one is changing from one inertial frame
of reference to another. The aberration of light is sufficient
to completely describe the apparent geometry seen by a fast
moving camera. Figure 4.2 illustrates the aberration of light.

The Doppler effect accounts for the transformation of
wavelength from one inertial frame of reference to another and
causes a change in color.

The frequency and direction of propagation of a photon are
described by thefour-wave vector

kµ = (ω;~k):

The normal three-dimensional wave vector~k points into the
direction of propagation and has lengthk = 2πλ�1, with λ
being the wavelength of the photon. The circular frequency
ω is related to the frequencyν of the photon byω = 2πν.
Wavelength and frequency are related byλ = ν�1. Only light
propagation in vacuo is regarded.

Let us consider two inertial frames of referenceS andS0,
with S0 moving with velocityv along thez axis of S. The
Lorentz transformation along thezaxis connects framesSand
S0.

In reference frameS, consider a photon with circular fre-
quencyω and the direction determined by spherical coordi-
nates(θ;φ), as shown in Fig. 4.3. The respective four-wave
vector is

kµ = (ω;ωcosφsinθ;ωsinφsinθ;ωcosθ):

Via the Lorentz transformation, the four-wave vector in
frameS0 can be obtained. Moreover, inS0, the photon is de-
scribed by the circular frequencyω0and the direction (θ0;φ0).
By comparing the two formulations, one can read off the ex-
pressions for the relativistic aberration of light,

cosθ0 =
cosθ�β

1�βcosθ
; φ0 = φ; (4.3)

and for the Doppler effect,

ω0 =
ω
D
: (4.4)
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Figure 4.3: A photon with wave vector~k.

The Doppler factorD is defined as

D =
1

γ(1�βcosθ)
= γ(1+βcosθ0): (4.5)

Expressed in wavelengths, the Doppler effect is

λ0 = Dλ: (4.6)

4.3 Searchlight Effect

The searchlight effect is based on the transformation of ra-
diance from one inertial frame of reference to another. The
transformation of radiance increases the brightness of objects
ahead when the observer is approaching these objects at high
velocity.

4.3.1 Transformation of Radiance

Frequency-dependent radiance is transformed from one frame
of reference to another according to

L0ν(ν
0;θ0;φ0) =

1
D3 Lν(ν;θ;φ): (4.7)

Similarly, wavelength-dependent radiance is transformed ac-
cording to

L0λ(λ
0;θ0;φ0) =

1
D5 Lλ(λ;θ;φ): (4.8)

By integrating over all wavelengths, the transformation of ra-
diance is obtained:

L0(θ0;φ0) =
1

D4 L(θ;φ): (4.9)

A derivation of these relations can be found in our paper[175]
or, alternatively, in Appendix A.

Effects of relativistic illumination in general and the search-
light effect in particular are discussed in the context of special
relativistic visualization in our papers[175, 176].

4.3.2 Incident Irradiance from a Point Light
Source

For a surface patch on the object, the wavelength-dependent
irradianceEi0

λ (λ
0) coming from a moving point light source is

Ei0
λ (λ

0) =
1

D5

cosα0

r 02
Iλ(λ); (4.10)

with the angleα0 between the vector normal to the surface and
the direction of the incident photons, and with the apparent
distancer 0 of the light source from the surface patch. These
quantities are measured in the reference frame of the mov-
ing observer, whereas the wavelength-dependent intensityIλ
is measured in the reference frame of the light source. Ac-
cordingly, the frequency-dependent irradiance is

Ei0
ν (ν

0) =
1

D3
cosα0

r 02
Iν(ν); (4.11)

and the integrated, wavelength-independent irradiance is

Ei0 =
1

D4
cosα0

r 02
I : (4.12)

A derivation of these equations is presented in Appendix A
or in our paper[175]. Note that, for an isotropic point source
in one frame of reference, we get an anisotropic source in the
other frame of reference due to the implicit angular depen-
dency in the Doppler factorD.

4.4 Transformation of Photon Field

Because of the relativity principle all inertial frames of refer-
ence are equally valid to describe a physical scenario. There-
fore, one can choose an inertial frame which is best suited for
the respective application. When calculating special relativis-
tic images, one could consider a static scene with a fast mov-
ing observer, or a static camera with rapidly moving objects.
In this section, I investigate the first approach in more detail.
I denote this approach asexocentricview because a reference
frame outside the camera is adopted. The other approach is
considered in Sect. 4.6.

The basic idea of the exocentric approach is as follows.
In the first step, all illumination calculations are performed
with respect to the outside frame. In the second step, the
relevant information about the light reaching the observer is
transformed into the frame of the observer. This information
is represented by the so-called plenoptic function[1]. The full
plenoptic functionP(x;y;z;t;θ;φ;λ) is the radiance of the light
depending on the direction(θ;φ) in spherical coordinates, the
spatial position(x;y;z), the timet, and the wavelengthλ. Po-
larization is usually neglected. The plenoptic function is a
compact representation of the relevant information about the
photon field.

The reduced three-parameter plenoptic functionP̃(θ;φ;λ)
is defined as the full plenoptic function evaluated at the posi-
tion (x;y;z) and timet.

4.4.1 Transformation of the Plenoptic
Function

The transformation of the reduced plenoptic function is deter-
mined by the relativistic aberration of light, the Doppler effect,
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and the searchlight effect. These effects can be combined to
form the transformation of the plenoptic function fromSto S0:

P̃0(θ0;φ0;λ0) =
1

D5 P̃(θ;φ;λ)

=
1

D5 P̃

�
arccos

cosθ0+β
1+βcosθ0

;φ0;
λ0

D

�
(4.13)

By inverting Eqs. (4.3) and (4.4), the parametersθ, φ, andλ
have been substituted by terms containingθ0, φ0, andλ0.

Usually, the direction of motion is not identical to thezaxis.
Therefore, additional rotations of the coordinate system have
to be considered before and after the aberration transforma-
tion. These rotations are identical to the standard rotations
in three-dimensional Euclidean space. By including these ro-
tations, the complete Lorentz transformation of the reduced
plenoptic function is obtained. Note that the transformed
plenoptic functionP̃0 depends only on the original plenoptic
functionP̃ and on the observer’s velocity and direction of mo-
tion.

For the Lorentz transformation of the complete plenoptic
functionP, the respective four-positions at which the plenop-
tic function is evaluated have to be related by the Poincar´e
transformation.

4.5 Inter-Frame Relationships for
Events

An alternative way of describing a special relativistic image is
based on the transformation of emission events between two
frames of reference. It makes use ofinter-frame relationships.

Let us investigate the generation of a snapshot taken by the
relativistic observer. At the time of image production, the ob-
server is moving with velocity~v = (vx;vy;vz) with respect to
reference frameS. S is the frame of the outside world. Frame
S0 is the rest frame of the observer. A single point light source
which is at rest inS is considered. Figure 4.4 shows the asso-
ciated Minkowski diagram. The linef(t;xe;ye;ze)jtg denotes
the world line of the point light source. The intersection of
the backward light cone with the world line of the light source
is denoted byE. E is the emission four-position of the light
reaching the observer at pointO. The emission eventE and
the absorption eventO are related by a lightlike connection.
Notated with four-vectors, this fact is expressed by

(xµ
o�xµ

e)(xoµ�xeµ) = 0; (4.14)

wherexµ
e denotes the coordinates ofE andxµ

o the coordinates
of O in S. Once the intersection of the backward light cone
with the world line of the light source is determined, the coor-
dinates ofE with respect to frameS0 can be computed. In the
diagram this can be done graphically as shown by the dotted
lines. This corresponds to the Poincar´e transformation fromS
to S0.

In frameS, the time coordinate ofE can be computed with
the use of Eq. (4.14),

(x0
o�x0

e) =
q

(x1
e�x1

o)
2+(x2

e�x2
o)

2+(x3
e�x3

o)
2: (4.15)

Causality demands to choose only the positive sign of the root,
i.e., the intersection with the backward light cone is considered
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Figure 4.4: Minkowski diagram showing the frame of the observer S0

and the frame of the outside world S. The light source is at rest in frame
S. The coordinates (te 0;ze

0) of the emission event E are determined by
projection onto the axes of S0.

and the forward light cone is neglected. With the Poincar´e
transformation, the coordinates of the emission event inS0 can
then be calculated.

Light travels along straight lines in four-dimensional space-
time relative to every coordinate system and so does it with
respect to the restriction to the three space coordinates. There-
fore, the space coordinates(x1

e
0
;x2

e
0
;x3

e
0
) determine the direc-

tion of the incoming light in the reference frame of the ob-
server and represent the apparent position of the light source
as seen by the observer.

Here, the direction of the incoming light is identical to the
one obtained by the relativistic aberration of light. In the fol-
lowing section, the results of both calculations are matched ex-
plicitly. In contrast to the transformation of the plenoptic func-
tion in the previous section, the transformation of the emission
event provides additional depth information. This difference
plays a decisive role in the comparison of the various render-
ing methods in Chapter 5.

Special relativistic effects on illumination are determined
by the Doppler and searchlight effects. These are applied to
the spectral power distribution of the incoming light after the
transformation of the position of the emission event.

4.6 Equivalence of Exocentric and
Egocentric View

One basic feature of special relativity is the absence of a sin-
gle universal frame of reference and of a universal time. Any
inertial frame is equally valid to describe the physical world.
Therefore, an egocentric point of view (the camera is at rest
and the objects are moving) and an exocentric point of view
(the objects are at rest and the camera is moving) are totally
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Figure 4.5: Minkowski diagrams for egocentric view (a) and exocentric view (b).

equivalent.
Nevertheless, I would like to explicitly show how both

points of view can be matched. Only the issues related to
the geometrical appearance are discussed. The Doppler and
searchlight effects are neglected because they are usually pre-
sented in only one way, equivalent to the exocentric point of
view.

The following considerations are based on relations be-
tween the observer’s rest frameS0 and the objects’ rest frame
S. Without loss of generality let the origins of the two frames
coincide at the event of image production, the axes be aligned,
and the observer be moving withβ along the positivezaxis of
S. Then, the two frames of reference are related to each other
by the Lorentz boost along thezaxis.

4.6.1 Direction of Incoming Light

First, it will be shown that the direction of the incoming light
is identical for both points of view. The light emitted by a
single point light source is considered. Figure 4.5 shows the
respective Minkowski diagrams.

According to Eq. (4.15), the event of light emission is

xµ
E = (�

q
x2

E +y2
E +z2

E;xE;yE;zE);

in S, if the light source is located at the spatial position
(xE;yE;zE). The componentx0

E reflects the time of flight from
the emission event to the absorption event at the camera. Al-
ternatively, the emission event can be expressed in spherical

coordinates,

xµ
E = (�rE; rE cosφE sinθE; rE sinφE sinθE; rE cosθE);

(4.16)

with rE =
q

x2
E +y2

E +z2
E.

In S0, the emission event is obtained by the Lorentz trans-
formation,

xµ
E
0
= (�γ(rE +βzE);xE;yE;γ(zE +βrE)):

The comparison to the analog of Eq. (4.16) in the observer’s
frame of reference yields the transformed angles:

cosθ0 =
cosθ�β

1�βcosθ
; φ0 = φ;

for the direction of the corresponding outgoing light. There-
fore, the direction of the light rays is identical for the egocen-
tric and the exocentric point of view, which is based on the
aberration equation (4.3).

4.6.2 Visibility

The next concern is the issue of visibility. If one object is
hidden by another object in one frame of reference, is it as well
hidden in all other frames? Is it allowed to compute visibility
in Sand then use the result inS0?

Light travels along straight lines in four-dimensional space-
time with respect to every frame. The order of emission events
along a light ray is independent of the chosen frame of ref-
erence, so the visibility property is not changed by Lorentz
transformations.
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Figure 4.7: Exocentric view, three snapshots for β = 0.7.

The explicit calculation is as follows. Let us consider two
emission eventsE1 andE2. In S, let E2 be hidden byE1. The
respective coordinates are related by

xµ
E2

=Cxµ
E1
; (4.17)

with a constantC > 1. With the use of the Lorentz transfor-
mation, the coordinates of the emission events inS0 follow:

xµ
E2

0
=Cxµ

E1

0
:

Combined with the fact that the aberration formula (4.3) is
invertible, the invariance of visibility under Lorentz transfor-
mation is proven. Since the inverse Lorentz transformation is
just a Lorentz transformation with opposite direction of mo-
tion, the invariance of invisibility is valid for the transforma-
tion from S0 to Sas well.

After all these abstract calculations, how can it be explained
that we are able to look “around” relativistic objects and see
their back? Figures 4.6 and 4.7 clarify the situation for the
example of a moving cube. In the egocentric view, Fig. 4.6,
the camera is at rest and the cube is moving withβ = 0:7 to
the left. The cube is Lorentz-contracted along the direction of
motion. Here, the back of the cube becomes visible because
the cube outruns the light rays emitted from its back. In the
exocentric view, Fig. 4.7, the cube is at rest and the camera
is moving with β = 0:7 to the right. Here, the back of the
cube becomes visible because the observer is behind the cube
when she or he is registering the incoming light. The rightmost
image in Fig. 4.7 also illustrates the direction of the light ray
based on aberration in order to allow a direct comparison to
the egocentric view.

4.6.3 Apparent Rotation

The apparent rotation of fast moving objects is closely related
to the explanation in the previous subsection. In the egocentric
view, an object seems to be rotated because light emitted from
the normally invisible back of the object is outrun by the object
and can thus reach the observer. In the exocentric view, the

observer is already behind the object and can thus see its back.
However, from the observer’s point of view the object seems to
still be ahead because of the aberration of the incoming light.
Seeing the back side of an object is interpreted as an apparent
rotation of the object.

4.6.4 Summary

It has been shown that the egocentric and exocentric views are
equivalent with respect to the apparent geometry in special
relativistic rendering. The main difficulty in matching both
views is to transform all physical components of the system,
especially the position of the observer and the objects.

Usually, the egocentric view is regarded more natural and
hence is a widely used model of explanation. In fact, I deem
the exocentric view to be more appropriate for the following
reasons. First, the exocentric view allows for the transforma-
tion of all relevant information about the light field in one op-
eration. Secondly, an accelerated motion of the observer can
be incorporated in the exocentric view without any modifica-
tion, as described in Chapters 5 and 6. Thirdly, the exocen-
tric view better reflects the physical reality. There is no di-
rect interaction between the observer and remote objects. All
the information about the surrounding environment is carried
to the observer via photons. The generation of a snapshot is
based on a local interaction between the photons and the de-
tector (camera). Therefore, it is closer to physics to transform
the photons reaching the observer than to transform emission
events far away from the camera.

4.7 Acceleration of a Point Particle

In this section, the kinematics of a point particle within spe-
cial relativity is described. Acceleration has to be taken into
account, for example, in interaction techniques or in the ani-
mation of scene objects.

The kinematics of a particle is described by the equations
of motion, Eq. (4.2),

aµ =
duµ

dτ
=

d2xµ

dτ2 :

FrameS is the inertial frame of the outside world, frameS0

is a co-moving frame with respect to the accelerated particle.
Let us assume that the acceleration in the frame of the particle
is given. From the three-acceleration(ax

0;ay
0;az

0) the four-
acceleration in frameS0 is obtained by

aµ0 = (0;ax
0;ay

0;az
0):

The four-acceleration is transformed into frameS by the as-
sociated Lorentz transformation. The equations of motion
resemble those of classical physics. The quantitiesaµ, uµ,
xµ, andβ are functions ofτ. The Lorentz transformation of
the four-acceleration into frameS causes a mixture of space
and time components, resulting in a coupled system of ordi-
nary differential equations. There exist well-known numerical
methods for solving this initial value problem, for example,
the Runge-Kutta method[130]. Finally, the four-velocities and
four-positions along the trajectory of the particle are obtained
with respect toS.
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Figure 4.8: World line of a particle with a short phase of acceleration.
The Minkowski diagram displays the coordinate grids of the reference
frames before and after the phase of acceleration.

Please note that special relativity is perfectly capable of de-
scribing acceleration as long as gravitation is ignored. (Grav-
itation is the domain of general relativity.) The fact that the
kinematics of particles in high energy particle accelerators can
be described by special relativity is only one experimental ev-
idence for this statement. In the storage ring HERA (Hadron-
Electron Ring Accelerator) at DESY[38], for example, elec-
trons and positrons are accelerated up to an energy of 30 GeV,
which yields a velocity of approximatelyβ = 0:99999999985.
The circular motion of these particles in the storage ring is
caused by acceleration by electromagnetic fields. The calcu-
lation of this acceleration and of the collision experiments is
based on special relativity and is in perfect agreement with the
experiment.

Lorentz transformations are restricted to inertial frames of
reference. However, a co-moving inertial frame can be found
at every point in spacetime even for an accelerating object. In
this way, expressions known from inertial frames of reference
can be used. The concept of co-moving frames of reference
enables us to deal with acceleration in special relativity. Fig-
ure 4.8 illustrates co-moving frames for a particle before and
after a short phase of acceleration.





Chapter 5

Rendering Techniques for Special Relativity

Rendering a single image is a basic part in special relativis-
tic visualization. In this chapter, the generation of a snapshot
taken by a relativistic observer is investigated.

In the first two sections, well-known relativistic polygon
rendering and relativistic ray tracing are described. Then, the
relativistic extension of the radiosity method, texture-based
relativistic rendering, and image-based relativistic rendering
are presented. These three techniques have been developed
during the work for this thesis.

5.1 Special Relativistic Polygon
Rendering

Special relativistic polygon rendering was introduced by Hsi-
ung et al.[79]. They proposed the so-calledtime-bufferfor
fast visualization of relativistic effects. The time-buffer tech-
nique resembles the normal z-buffer and can be mapped onto
it. Relativistic polygon rendering is a scan-line method which
is based on the apparent shapes of objects as seen by a rela-
tivistic observer. Gekelman et al.[57] and Chang et al.[23] in-
vestigated the polygon rendering approach in detail and gave
a comprehensive presentation. Relativistic polygon render-
ing utilizes the transformation of emission events according
to inter-frame relationships, as described in Sect. 4.5.

5.1.1 Static Scene

First, a simple scenario in which the objects of the scene are
at rest relative to each other is considered. The user, i.e., the
observer, is moving freely through this virtual world.

Let us investigate the creation of a snapshot taken by the
relativistic observer. At the time of image production, the ob-
server is moving with velocity~v = (vx;vy;vz) with respect to
reference frameSobj. Sobj is the frame of reference of the ob-
jects. FrameSobserveris a co-moving reference frame with re-
spect to the observer, i.e., at the moment of image generation,
it has the same velocity and direction of motion as the ob-
server. In Sect. 4.5,Sobj is denotedSandSobserveris denoted
S0.

First, only a single point light source which is at rest inSobj
is considered. In Fig. 5.1, the associated Minkowski diagram
is shown. The linef(t;ze)jtg denotes the world line of the
point light source. The intersection of the backward light cone
with the world line of the light source is denoted byE. E is
the emission four-position of the light reaching the observer
at pointO. Once this position in spacetime is determined, the
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Figure 5.1: Minkowski diagram showing the world line of an accelerated
observer with the co-moving reference frame Sobserver. The light source
is at rest in reference frame Sobj. E is the emission position of the light
reaching the observer in O. The coordinates (te 0;ze

0) of the emission
event E are determined by projection onto the axes of Sobserver.

coordinates ofE with respect to frameSobserverare computed
by the Poincar´e transformation fromSobj to Sobserver.

In the following, the primed coordinates are with respect to
Sobserverand the unprimed coordinates are with respect toSobj.
According to Eq. (4.15), the time coordinate ofE in frameSobj
is given by

�
x0

o�x0
e

�
=
q

(x1
e�x1

o)
2+(x2

e�x2
o)

2+(x3
e�x3

o)
2; (5.1)

wherexµ
e denotes the coordinates ofE andxµ

o the coordinates
of O with respect toSobj. According to the Poincar´e transfor-
mation described in Sect. 4.1, the coordinates of the emission
event inSobs can then be calculated. The space coordinates
(x1

e
0
;x2

e
0
;x3

e
0
) determine the direction of the incoming light in

the reference frame of the observer and represent the apparent
position of the light source as seen by the observer.

For polygon rendering, a solid three-dimensional object can
be represented by an approximation using a triangle mesh.
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The vertices of the triangles hold information such as color,
material properties, surface normal, etc., and can be treated
like the point light source above. The relativistic transforma-
tion can be applied to all vertices. This yields a completely
new object which approximates the emission positions of the
surface of the object in the reference frame of the observer.
According to Gekelman et al.[57], this virtual surface is de-
notedphoto-surface.

Standard computer graphics processing can be used for
hidden-surface removal and the projection of the photo-
surfaces onto the image plane. Hidden-surface removal tech-
niques such as z-buffer give correct results, since the spatial
distance of an emission event is directly related to its temporal
distance, cf. Eq. 5.1. In frameSobserver, the vertices associ-
ated with “newer” events will correctly hide vertices associ-
ated with “older” ones.

After this geometrical transformation of a vertex the rela-
tivistic effects on illumination can also be included by apply-
ing the Doppler and searchlight effects. The spectral power
distribution associated with the vertex is transformed fromSobj
to Sobserverwith the use of Eqs. (4.6) and (4.8). The final RGB
colors are determined by Eq. (3.2).

5.1.2 Moving Scene Objects and Accelerated
Observer

Relativistic polygon rendering can easily be extended to in-
corporate moving objects. Figure 5.2 shows the Minkowski
diagram for a typical situation where two scene objects are
moving relative to each other. As long as all scene objects
are uniformly moving, the respective world lines are straight.
Then, the intersection between the backward light cone start-
ing at the observer and the world lines of the objects can be
calculated by a scheme similar to the one described in the pre-
vious subsection.

The rendering process is extended as follows. The scene
is partitioned into groups of objects which are moving at the
same velocity. For each group, the relative velocity with re-
spect to the observer determines the creation of the photo-
surfaces. These photo-surfaces are rendered as in the previous
subsection. As mentioned before, the depth information of
the photo-surface also carries the information about the emis-
sion time with respect to the frame of the observer. Therefore,
standard hidden-surface removal by the z-buffer gives rise to
correct visibility calculations. In this way, arbitrary inertial
motions of objects cause no extra computational costs.

Relativistic polygon rendering could be further extended to
take accelerating objects into account. However, this impli-
cates two major problems. First, the world line of an acceler-
ating object is bent. The world line has to be represented in a
more complex way, for example, by a list of key positions in
spacetime. Therefore, intersection computation can no longer
be performed according to Eq. (5.1) and becomes much more
time-consuming. Secondly, a reasonable model for describing
the acceleration of extended objects has to be developed. In
Sect. 4.7, only the kinematics of an accelerating point particle
is described. The physically correct description of an acceler-
ating extended object is more complicated because the inter-
nal forces which hold the object together have to be consid-
ered. For extremely high acceleration, the internal forces are
too weak to keep the structure of the object stable. Therefore,
it might be difficult to develop a model which is based on the
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Figure 5.2: Minkowski diagram showing the world lines of two scene
objects moving relative to each other. E1 denotes the emission event on
the first object, E2 the emission event on the second object.

equations of state for standard materials.
Nevertheless, the treatment of an accelerated camera can

be included into the relativistic polygon rendering algorithm
without any modification because the computation of the tra-
jectory of the camera and relativistic rendering are completely
separate processes. In fact, relativistic rendering is not sensi-
tive to acceleration of the camera. The production of a snap-
shot is only determined by the position, velocity, and direction
of motion of the observer and by the standard camera param-
eters. The rendered image is identical to the image seen by a
co-moving observer. However, acceleration affects the motion
of the camera and thus its position and speed. Although the
generation of a single snapshot is not altered by acceleration,
the appearance of a film sequence is heavily influenced by the
changing velocity and position of the camera due to accelera-
tion. The acceleration of the observer plays an important role
in the discussion of navigation techniques and virtual environ-
ments in Chapter 6.

5.1.3 Shadowing and Moving Light Sources

In traditional computer graphics, there exist a couple of al-
gorithms to determine shadowing, for example, scan-line
generation[5, 18], shadow volumes[32], shadow polygons[7],
or shadow z-buffer[181]. However, these algorithms cannot be
used in special relativistic rendering because they neglect the
propagation delay of light signals and the Lorentz contraction.

Within special relativity, shadows can be correctly calcu-
lated by further utilizing inter-frame relationships of space-
time events. This scheme also allows for moving light sources.
Figure 5.3 shows the Minkowski diagram for a typical case of
shadow casting. The problem is to determine the incoming
light for a point on the illuminated surface of an object. The
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Figure 5.3: Minkowski diagram showing the world lines of a light source
and a blocking object. E denotes the emission event at the light source,
A the absorption event at the illuminated object. B is the blocking event,
i.e., the absorption event at the intercepting object.

respective four-position is calledA, as for absorption. Its co-
ordinates are known from the intersection calculations from
Sects. 5.1.1 and 5.1.2. The emission event at the light source
is denotedE. The object is shadowed atA if an intercepting
object is able to block the light fromE at a blocking event
B. The issue of shadow casting is reduced to the question
whether there exists such a blocking event or not. As shown
in Fig. 5.3, the illuminated object, the blocking object, and
the light source can move at different velocities. They have a
finite relative velocity.

The shadow casting algorithm is split in two steps. In the
first step, the apparent positions of the light source and the
possibly blocking object as seen by the illuminated object are
determined. This calculation is analogous to Sect. 5.1.1. The
light source and the blocking object may move at different
velocities. This is considered in the computation of their re-
spective apparent positions. In the second step, it is checked
whether the connecting lineAE between the illuminated ob-
ject and the light source is intersected by the blocking object.
This can be done by explicit calculation of the intersection.
Another option utilizes a depth buffer (z-buffer) in order to
detect whether the apparent position of the light source lies be-
hind the apparent position of the blocking object. The z-buffer
method resembles the visibility test as described for moving
objects in Sect. 5.1.2.

5.1.4 Local Illumination

In standard computer graphics, the local reflectance properties
of a surface are described by the BRDF, cf. Sect. 3.4. The
BRDF measures reflection with respect to the rest frame of

the surface. Therefore, standard methods for local illumina-
tion can be adopted for special relativistic rendering, as long
as all relevant parameters are transformed into the rest frame
of the surface. These parameters are the direction of the inci-
dent light, the viewing direction (the outgoing light), and the
wavelength-dependent radiance.

This transformation has to be performed for every point
on the illuminated surface and hence is very time-consuming.
Moreover, this transformation is not supported by graphics
hardware, so rendering has to be done in software.

However, there are two important special cases which do
not require further relativistic lighting transformation. In both
cases, the objects of the scene and the light sources are at
rest relative to each other. The first case is ambient lighting.
Since illumination is independent of the viewing vector and
the lighting vector, it does not need a transformation of these
vectors. The second case is diffuse reflection of light from
infinitely far light sources (directional light). Diffuse reflec-
tion depends on the angle between the lighting vector and the
normal vector, but is independent of the viewing vector. As
long as the light source and the scene object are at rest relative
to each other, the angle between the lighting vector and the
normal vector is not changed by relativistic transformation.

5.1.5 Visualization of Photo-Surface

In Sect. 5.1.1, the calculation of the apparent position of
an object as seen by a moving observer is described. This
calculation can be regarded as a mapR~xo;~vo

from the three-
dimensional Euclidean space of the scene objects to the three-
dimensional space of the photo-objects (photo-surfaces),

R~xo;~vo
: R3 �! R

3:

The mapR~xo;~vo
depends on the position~xo and the velocity~vo

of the observer.
The image of a surface under the mapR~xo;~vo

yields the
photo-surface. This photo-surface can be used to visualize the
generation of relativistic pictures, in addition to the realistic,
physical rendering. The photo-surface can be viewed from
positions other than the physical position~xo. For correct ren-
dering of the photo-surface, the respective normal vectors are
required. Since the mapR~xo;~vo

is differentiable onR3nf0g, the
transformation of a normal vector~n at the point~p is obtained
by

N~xo;~vo
(~p) : R3 �! R

3; ~n 7�! (DR~xo;~vo
(~p)�1)T~n;

whereDR~xo;~vo
(~p) is the differential ofR~xo;~vo

at the point~p. In
general, the transformation of a normal vector is given by the
transposed inverse matrix which describes the transformation
of the coordinates of the points, cf., for example, Encarnac¸ão
et al.[46].

The visualization of the photo-surface by adopting an out-
side view can also be found in our paper[134].

5.1.6 Rendering Pipeline

In the relativistic polygon rendering approach, photo-surfaces
are computed and then rendered with standard computer
graphics algorithms. This rendering technique can be mapped
onto the rendering pipeline used by contemporary graphics
hardware. A description of rendering pipelines can be found,



26 Chapter 5: Rendering Techniques for Special Relativity

Clipping

Map to Viewport

Rasterization

DisplayLighting

Relativistic Transformation

Scene Traversal

Viewing Transformation

Modeling Transformation

Figure 5.4: Relativistic rendering pipeline for z-buffer and Gouraud
shading.

for example, in Foley et al.[51]. Figure 5.4 shows the mod-
ified, relativistic rendering pipeline. The black box contains
the relativistic extension, the white boxes represent the non-
relativistic rendering pipeline. Only the relativistic transfor-
mation of the vertex coordinates is added to the original ren-
dering pipeline. Visibility testing is based on the z-buffer, il-
lumination is based on Gouraud shading.

The three-dimensional scene is normally organized in a
scene graph. The scene graph is an acyclic directed graph
which contains geometry, transform, property, and group
nodes. The structure of the scene graph is very well suited
for the needs of standard non-relativistic graphics.

However, the relativistic transformation does not commute
with standard, affine transformations. Hence, the scene graph
has to be “flattened” by expanding it to a tree and applying all
modeling transformations. Shared instancing of scene objects
is lifted by adding copies of these objects. (Shared instancing
occurs for objects having more than one parent in the scene
graph). By using a flattened scene tree, the rendering pipeline
is simplified and does not require any modeling transforma-
tion. Therefore, the relativistic transformation can be com-
puted before the standard rendering pipeline is applied.

Unfortunately, lighting calculation in the hardware-sup-
ported rendering pipeline cannot be changed and the full lo-
cal illumination scheme presented in Sect. 5.1.4 cannot be ap-
plied. Therefore, only the two special cases of ambient light-
ing and diffuse reflection of directional light can be used, cf.
Sect. 5.1.4.

5.1.7 Discussion

Relativistic polygon rendering can be mapped onto the nor-
mal rendering pipeline. It makes use of graphics hardware
and allows rendering at interactive frame rates. This makes
relativistic polygon rendering most suitable for real-time ap-
plications, cf. the implementation of a virtual environment for
special relativity in Chapter 6.

However, relativistic polygon rendering suffers from re-
duced rendering quality compared to the other rendering tech-
niques. The relativistic transformation of the vertices,R~xo;~vo

,
is non-linear. Therefore, artifacts are introduced by the linear
connection between the transformed vertices through straight

Figure 5.5: Photo-surface of a sphere with β = 0.95 at different times.
The observer is moving upwards and is symbolized by a small sphere.

Figure 5.6: Photo-surface of a cube with β = 0.95 at different times. The
observer is moving upwards and is symbolized by a small sphere.

edges. These artifacts, which appear mainly at the boundaries
of the objects, can be reduced by a fine remeshing of the orig-
inal meshes in a preprocessing step or by an adaptive subdi-
vision scheme during runtime. Another shortcoming of rela-
tivistic polygon rendering is the restriction to a limited set of
illumination models.

5.1.8 Implementation and Results

In this thesis, special relativistic polygon rendering is imple-
mented as an object-oriented C++ program. Rendering is
based on standard OpenGL 1.1[183]. A detailed description
of the system can be found in Appendix C.1. An extension of
this implementation which is described in Chapter 6 utilizes
multi-processor and multi-pipe architectures and is based on
IRIS Performer[137, 42].

Figure 5.7 gives an example of special relativistic render-
ing. Here, the scene is illuminated by Planck radiation and
the objects are colorless Lambertian reflectors. Figure 5.7(b)
visualizes the apparent geometry due to the relativistic aberra-
tion of light and shows the blueshift due to the Doppler effect.
A dominant geometric effect is the increased apparent field of
view—the objects seem to move away. Furthermore, straight
lines which are perpendicular to the direction of motion be-
come distorted to hyperbolae. It can be seen that the outline
of a sphere remains spherical, a fact proven by Penrose[126].

In Fig. 5.7(c), for the transformation of radiance to be dis-
played, the overall illumination has to be reduced to one thou-
sandth compared to that in Figs. 5.7(a) and (b). Due to the
transformation of radiance the objects ahead are extremely
bright. This demonstrates that the visual perception of fast
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(a) (b) (c)

Figure 5.7: Visualization of the Doppler effect and the transformation of radiance for a scene which is illuminated by Planck radiation with a temperature
of 2800 K. The left image shows a non-relativistic view on the test scene. Picture (b) illustrates the Doppler effect. The viewer is moving with β = 0.9 into
the test scene. The apparent geometry of the objects is changed according to the relativistic aberration of light. Image (c) shows the same situation with
the completely relativistic transformation of wavelength-dependent radiance being included. Here, the overall illumination is reduced to one thousandth
of that in (a) and (b).

moving objects is substantially determined by the relativistic
effects on illumination.

In addition to realistic, physical rendering, the photo-
surface can be used to visualize the generation of relativistic
images. The photo-surface can be viewed from positions other
than the physical one. Figures 5.5 and 5.6 show the photo-
surface of a sphere and a cube. The observer is represented by
a small sphere. The photo-objects are stretched along the di-
rection of motion because the effects of the finite speed of light
supersede the Lorentz contraction. This outside point of view
clarifies the rendering of the relativistic images. Please note
that the photo-surface of a sphere is not spherical, although
the projection of this photo-surface yields a spherical outline
on the rendered images.

5.2 Special Relativistic Ray Tracing

Standard non-relativistic ray tracing is performed in three-
dimensional space and one may think of relativistic ray tracing
as ray tracing in four-dimensional spacetime. This is true for
the general approach explained in Sect. 5.2.2.

However, in the special case of static scenes, we can per-
form the task with ray tracing in three dimensions. This ap-
proach to special relativistic ray tracing was proposed by Hsi-
ung and Dunn[76]. Their technique accounts for relativistic
effects on the apparent geometry as seen by the observer. Hsi-
ung et al.[78] investigated relativistic ray tracing in more detail
and included the visualization of the Doppler effect.

5.2.1 Static Scene

First, we restrict ourselves to a simple scenario in which the
objects of the scene are at rest relative to each other. The user
may move at high velocity through this virtual world. Let us
investigate the creation of a snapshot taken by the relativistic
observer.

Standard non-relativistic ray tracing is based on a sampling
of the image plane. Light rays are traced from the observer
through the pixels on the image plane into the scene. The
principle is illustrated in Fig. 5.8. Reflection and refraction
rays—secondary rays—are recursively examined when rays
intersect objects. Various local illumination models are used
in order to compute the light intensity on the object surface
at every ray–object intersection point. The specific intensities
along the rays contribute to the final pixel intensity and color.
The visualization process can be split in two main parts: inter-
section calculation and local illumination.

An object-oriented concept is supposed for the standard
three-dimensional ray tracing program in which all relevant
parts of the visualization system are represented by objects.
The relativistic extension of the original functionality can be
included by subclassing.

Figure 5.9 shows the basic structure of such an idealized ray
tracer. The image plane is sampled by theSample Man-
ager , which uses theProjector to generate aRay cor-
responding to the considered pixel. TheRay communicates
with theScene in order to find intersections with scene ob-
jects, calculate secondary rays and shadow rays, and deter-
mine illumination. Finally, the resulting color is stored in the
image by theSample Manager .

The relativistic extension of this ray tracing system is based
on the exocentric view, as described in Sect. 4.4. In the first
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Figure 5.8: Ray tracing principle.

step, the direction of the incoming light ray is determined with
respect to the frame of the observer,Sobserver, by theSample
Manager and theProjector . This calculation is identical
to the non-relativistic situation because the observer is at rest
in Sobserver. In the second step, the direction of the light ray
is transformed from the frame of the observer to the frame of
the objects,Sobj, by applying the aberration of light, Eq. (4.3).
The starting point for the ray inSobj results from the Poincar´e
transformation of the original eyepoint according to Sect. 4.1.
These extensions are included in the modifiedProjector .
In the third step, standard ray tracing is performed with the
transformed light ray inSobj. In the fourth step, the search-
light and Doppler effects, Eqs. (4.6) and (4.8), are applied to
the intermediate result from step three. This transformation is
implemented in theProjector . In this way, the image as
seen by the relativistically moving observer is obtained.

In contrast to relativistic polygon rendering, the relativis-
tic transformation affects the direction of the light ray and not
the apparent position of the scene objects. Therefore, the arti-
facts induced by the non-linear transformation in the polygon
rendering approach are avoided in the ray tracing approach.
Hence, relativistic ray tracing is very well suited for the pro-
duction of high-quality images and movies.

5.2.2 Four-Dimensional Ray Tracing

So far, only static scenes are supported. The full spatial and
temporal information about the scene objects has to be con-
sidered in order to include animated and moving objects. This

Ray

Projector

Sample Manager

Scene

Figure 5.9: Structure of the ray tracing system.

leads to a completely relativistic approach in which ray trac-
ing is performed in flat four-dimensional spacetime. To the
author’s knowledge, this four-dimensional approach to special
relativistic ray tracing has not yet been considered in the liter-
ature.

In the object-oriented framework from the previous sec-
tion, four-dimensional special relativistic rendering requires
the following extensions.

First, a standardRay in three dimensions is replaced by
a straightRay in four dimensions, i.e, the starting point and
the direction of the ray possess one temporal and three spatial
coordinates.

Secondly, the rayProjector has to generate four-dimen-
sional rays. The four-dimensional starting position (event) and
the spatial direction of the ray are known from the camera pa-
rameters. The four-direction of a light ray has to be lightlike,
thus requiring zero length of the vector. In this way, the tem-
poral coordinate of the direction is fixed.

Thirdly, the objects in theScene have to be aware of their
motion through spacetime, i.e., they have to know their spatial
and temporal positions. The intersection between light rays
and objects is computed in four-dimensional spacetime. The
intersections correspond to emission, absorption, or transmis-
sion events.

In order to calculate local illumination for an intersection
event at an object, the direction of the light ray and the spec-
tral power distribution which is transported along the light ray
have to be transformed in the reference frame of the respective
object. The system has to be aware of the current reference
frame in which properties of light are measured.

The proposed concept of four-dimensional special relativis-
tic ray tracing allows for moving and animated objects. In con-
trast to standard ray tracing, the spatial shape and the motion
of an object is not separated, but stored together in the scene
graph. Since flat spacetime is a special case of curved space-
time, special relativistic ray tracing is a special case of general
relativistic ray tracing. Ray tracing in curved spacetime is in-
vestigated in detail in Chapter 9.

5.2.3 Implementation and Results

Special relativistic ray tracing is implemented as an object-
oriented C++ program. It is based on the non-relativistic ray
tracing systemRayViS[64]. RayViScontains a standard ray
projection unit which generates light rays corresponding to a
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Figure 5.10: Special relativistic ray tracing. The left image gives a non-relativistic view on the scene. The right image shows the same scene as seen
by an observer moving at β = 0.8, the searchlight effect being included.

given pixel on the image plane. The ray projection unit is sub-
classed to incorporate the relativistic transformation of light
from the reference frame of the camera to the frame of the
objects, which allows for static scenes.

The implementation of four-dimensional special relativis-
tic ray tracing is subsumed in the general case of ray tracing
in curved four-dimensional spacetime, cf. Chapter 9. In gen-
eral relativistic ray tracing, four-dimensional descriptions for
the light rays, the objects, and the ray projectors are included,
covering the extensions for special relativistic ray tracing as
well.

A detailed documentation of the implementation of three-
dimensional and four-dimensional special relativistic ray trac-
ing can be found in Appendix C.3.

Figure 5.10 gives an example of special relativistic ray trac-
ing. The left image depicts a non-relativistic view on the
scene. In the right image, the scene is reproduced as seen
by an observer moving atβ = 0:8. The aberration of light
and the searchlight effect are visualized. The observer is sup-
posed to detect incoming radiation of all wavelengths with
equal efficiency. The displayed images result from the mea-
sured overall radiance. Hence, the searchlight effect is based
on the transformation of wavelength-independent radiance ac-
cording to Eq. (4.9). The Doppler effect is not visualized in
the gray-scale image.

5.3 Special Relativistic Radiosity

Non-relativistic radiosity is a global illumination technique
which is based on energy conservation or energy equilibrium

and accounts for the interaction of diffuse light between ob-
jects in the scene. The radiosity method was originally devel-
oped for image synthesis by Goral et al.[61] and Nishita and
Nakamae[118]. An introduction to radiosity can be found, for
example, in Cohen and Wallace[27].

In this section, radiosity is extended to incorporate special
relativistic rendering. The aspects of illumination are empha-
sized in order to achieve photo-realism in special relativistic
visualization. Here, photo-realism is regarded as the extension
of the normal meaning of photo-realism in the sense that a fast
moving camera would actually record pictures very similar to
the computer-generated pictures.

As mentioned before, computer simulations are the only
possible way to visually explore special relativity. In contrast
to non-relativistic image synthesis, there is no way of veri-
fying and comparing computer generated relativistic images
with reality. Radiosity, however, is an excellent and reliable
basis for physically correct visualization of special relativity
because radiosity can determine diffuse illumination up to ar-
bitrary accuracy.

5.3.1 Rendering Algorithm

The radiosity method is split in two distinct phases. The first
phase employs an object space algorithm, solving for the ra-
diosity at discrete surface patches, and is independent of the
viewer position. In the second phase, a renderer computes a
particular view from the complete solution. Both a projec-
tion method, such as polygon rendering, and ray tracing are
suitable for rendering. This splitting in two phases makes ra-
diosity a method most useful for walk-throughs because the
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Figure 5.11: Special relativistic radiosity. The objects are illuminated by blackbody radiation at temperatures of 2600 K, 5800 K, and 15000 K. Image
(a) shows the test scene at low speed, image (b) visualizes apparent geometry at β = 0.6, image (c) adds the visualization of the Doppler effect, and
image (d) shows completely special relativistic rendering. In image (d), the overall brightness is reduced to ten percent of that in the other images.

second phase can be supported by graphics hardware.
Only stationary scenes are considered in the relativistic ren-

dering process. Hence, the photon field with respect to the
frame of reference of the objects is calculated in the stan-
dard non-relativistic radiosity computation. The relativistic
extension is restricted to the second phase only, i.e., the view-
dependent rendering process. The properties of light are trans-
formed into the frame of reference of the fast moving observer
as described in the previous sections. Relativistic effects are
computed either by relativistic polygon rendering or relativis-
tic ray tracing.

The radiosity method is based on the assumption that all
surfaces are perfectly Lambertian. For this situation, radiance
L and radiosityB are related by the following equation:

B=
dΦ
dA

=

Z
hemisphere

dΦ
dAdΩ?

dΩ?

=

Z
hemisphere

LcosθdΩ = πL;

with the quantities defined in Chapter 3. In this way, radios-
ity B, which is calculated in the first phase of the rendering

process, is directly related to radiance. Hence, the transforma-
tion of wavelength-dependent radiance can be applied in the
view-dependent rendering phase as described in the previous
sections.

5.3.2 Implementation and Results

The implementation of the relativistic radiosity approach is
based on the non-relativistic radiosity programRadioLab
[148]. Ray tracing is used for the calculation of form fac-
tors, radiosity matrices are solved by Southwell iteration or
shooting.

Both ray tracing and polygon rendering are implemented to
generate a particular view. Polygon rendering is based on stan-
dard OpenGL 1.1[183], which is supported by modern com-
puter graphics hardware. Both Planck spectra with arbitrary
temperatures and line spectra at the RGB primary wavelengths
can be used. The computation of RGB tristimulus values from
blackbody radiation is highly accelerated by calculating and
storing tristimulus values for blackbody radiation in a range
of temperatures in advance.

Results can be found in Fig. 5.11. The scene objects are il-
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Table 5.1: Rendering performance for polygon rendering (PR) and ray
tracing (RT). All measurements are in seconds per frame.

PR RT

non-relativistic 0.25 5.8
relativistic geometry 0.30 5.9
fully relativistic 56.70 169.0
fully relativistic, precalculated

tristimulus values
0.42 6.1

luminated by blackbody radiation at temperatures of 2600 K,
5800 K, and 15000 K. Figure 5.11(a) shows a non-relativistic
view of the test scene, Fig. 5.11(b) presents the apparent ge-
ometry atβ = 0:6, and Fig. 5.11(c) adds the visualization of
the Doppler effect. The Doppler effect introduces noticeable
blueshift. Figure 5.11(d) shows completely relativistic ren-
dering, including the searchlight and Doppler effects. I em-
phasize that the overall brightness of the last image had to be
reduced for reproduction by ninety percent compared to the
other images, since the searchlight effect causes an enormous
increase of radiance in the direction of motion. This demon-
strates the importance of relativistic effects on the illumination
model.

Table 5.1 compares rendering performance for polygon ren-
dering (PR) and ray tracing (RT) on a Windows NT work-
station with a Pentium II processor (350 MHz) and a Perme-
dia 2 graphics board. Rendering resolution is 700�700 pix-
els. The test scene is depicted in Fig. 5.11 and contains 70,114
patches and 50,939 vertices. Normal non-relativistic rendering
is compared to the following relativistic visualizations: geom-
etry only, completely relativistic rendering (including search-
light and Doppler effects), and completely relativistic render-
ing with precalculated tristimulus values.

The performance measurements show that relativistic ren-
dering causes only minimal extra computational costs if pre-
computed tristimulus values are used. Hence, interactive ex-
ploration of special relativity via radiosity is possible.

5.4 Texture-Based Special
Relativistic Rendering

In this section, a texture mapping approach is described as
a new means of visualizing the special relativistic effects on
both geometry and illumination. Texture-based visualization
of apparent geometry was proposed in my paper[169], the ex-
tension for relativistic illumination in my paper[170].

The physical basis of this rendering technique consists of
the relativistic aberration of light, the Doppler effect, and the
searchlight effect, which can be combined in the transforma-
tion of the plenoptic function, cf. Sect. 4.4. The rendering
method makes extensive use of the functionality available on
high-end graphics workstations[109], such as texture objects,
pixel textures, and three-dimensional textures. These features
are exploited through OpenGL and its extensions.

Unlike the relativistic polygon rendering approach, texture-
based relativistic rendering does not transform the coordinates
or the color information of the vertices, but transforms the im-
ages which are rendered in the normal, non-relativistic way.
Therefore, the standard rendering pipeline is not changed and

only an additional step is added at the end of the rendering pro-
cess. The relativistic transformation is performed on the image
plane by texture mapping. This transformation is split in two
phases. The first phase determines the geometrical effects by
using standard two-dimensional texture mapping. The second
phase implements the Doppler and searchlight effects by using
pixel textures and three-dimensional texture mapping. These
texture operations are supported by modern computer graphics
hardware and hence interactive frame rates can be achieved.

5.4.1 Idea

The physical basis for texture-based relativistic rendering is
the Lorentz transformation of properties of light, cf. Sect. 4.4.
Suppose that the photon field is known at one point in space-
time, i.e., at a point in three-dimensional space and at an ar-
bitrary but fixed time. This photon field is measured in one
frame of reference which is denotedSobj.

Now consider an observer, i.e., a camera, at this point in
spacetime. In the following, the generation of a snapshot taken
by this camera is investigated. The observer is not at rest rel-
ative toSobj, but is moving at arbitrary speed relative toSobj.
However, the observer is at rest in another frame of reference,
Sobserver. The photon field can then be calculated with respect
toSobserverby the Lorentz transformation fromSobj to Sobserver.
Finally, the transformed photon field is used to generate the
picture taken by the observer’s camera.

Now we restrict ourselves to static scenes, i.e., all scene ob-
jects and light sources are at rest relative to each other and rel-
ative toSobj. Here, all relevant information about the photon
field—namely direction and wavelength-dependent radiance
of the incoming light—can be determined by standard com-
puter graphics algorithms, since the finite speed of light can
be neglected in all calculations for the static situation. With
this information and with the use of the equations for the rela-
tivistic aberration of light and for the Doppler and searchlight
effects, the picture seen by the relativistic observer can be gen-
erated. In this way, the relativistic effects on geometry, color,
and brightness are taken into account.

5.4.2 Representation of the Photon Field

The relevant information about the photon field is the direc-
tion of the light and the spectral power distribution in the form
of the wavelength-dependent radiance. This is the informa-
tion about the full plenoptic functionP(θ;φ;x;y;z;t;λ) at a
single point(x;y;z;t) in spacetime, effectively leaving a three-
parameter functioñP(θ;φ;λ). The polarization of light is ne-
glected.

The functionP̃ can be sampled and stored in the form of an
image projected onto the unit sphere, with the camera being
at the midpoint of the sphere. This image is calledradiance
map. According to Sect. 4.4, the direction of an incoming
light ray is determined by the spherical coordinates(θ;φ) of
the corresponding point on the sphere.

As described in Sect. 3.3.1, the wavelength-dependent ra-
diance can be represented by a vector with respect to a fixed
set ofnL basis functions. Therefore, each point of the radiance
map holdsnL components for the wavelength-dependent radi-
ance. Here, no projection onto the basis functions is needed.
Therefore, the orthonormality condition can be omitted and an
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arbitrary set of basis functions can be used. In this representa-
tion, the wavelength-dependent radiance is

Lλ(λ) =
nL

∑
j=1

l jL j(λ); (5.2)

with the set of basis functions,fL j (λ)j j 2 N;1� j � nLg, and
the coefficients of the vector representation,l j .

For the display on the screen, three tristimulus values
such as RGB are calculated from the wavelength-dependent
radiance, cf. Sect. 3.2.4. For example, the RGB values
(CR;CG;CB) can be obtained by

Ci =
Z

Lλ(λ) f̄i(λ)dλ; i = R;G;B; (5.3)

where f̄i(λ) are the respective color-matching functions for
RGB.

How can the radiance map be generated for the non-
relativistic situation, i.e., a camera at rest in the frame of the
objects,Sobj? Since perspective projection is restricted to a
field of view of less than 180Æ, the complete radiance map
cannot be created in a single step by using standard computer
graphics hardware. Hence, the covering of the whole sphere
is accomplished by projecting several images which are taken
with differing orientations of the camera. A similar method is
used for reflection and environment mapping.

Usually, images do not provide an arbitrary number of
channels in order to store thenL components for the photon
field. However, several radiance maps which contain three
standard RGB channels each can be combined to represent the
complete photon field.

5.4.3 Apparent Geometry

Let us assume that the photon field is known for an observer
at rest in the frameSobj. Now consider the same situation with
the moving observer. The photon field has to be changed by
the Lorentz transformation fromSobj to Sobserver. This trans-
formation is split in two parts—in the relativistic aberration
of light and in the transformation of wavelength and radiance.
Accordingly, the relativistic part of the rendering algorithm
consists of two phases which determine apparent geometry
and relativistic illumination.

The relativistic aberration of light yields a transformation of
(θ;φ) to (θ0;φ0) according to Eq. (4.3). The resulting distortion
of the image mapped onto the sphere is illustrated in Fig. 5.12.

Usually, the direction of motion is not identical to thezaxis.
Therefore, additional rotations of the coordinate system have
to be considered. The complete mapping of the coordinates
of a point(u;v) in the original image to the spherical coordi-
nates(θ0;φ0) of the corresponding point seen by the moving
observer is

Tmapping= Trot, bÆTaberrationÆTrot, aÆTproj

: [0;1]� [0;1] �! S2: (5.4)

S2 is the unit sphere. The mapTproj projects the rendered im-
age onto the sphere and determines the corresponding coordi-
nates on the sphere. The coordinates of the pixels are in the
interval [0;1]. The rotationTrot, a considers that the direction
of motion differs from thez axis of the sphere. The actual

Figure 5.12: Effect of the relativistic aberration of light on the texture
mapped onto the unit sphere. The left sphere shows the mapping with-
out distortion, the right sphere illustrates the distortion for β = 0.9. The
direction of motion points towards the north pole of the sphere.

relativistic transformation is accomplished byTaberrationwith
the use of Eq. (4.3). Finally,Trot, b describes the rotation of
the observer’s coordinate system relative to the direction of
motion.

The relativistic rendering process has to generate the tex-
ture coordinates for the mapping of the non-relativistic images
onto the unit sphere surrounding the moving observer. With
the inverse mapT�1

mapping, the texture coordinates can be calcu-

lated from the spherical coordinates(θ0;φ0) in the coordinate
system of the observer. The rotationsTrot, a and Trot, b need
not explicitly be calculated, but can be absorbed into the view
matrix of the renderer.

5.4.4 Relativistic Illumination

The Doppler and searchlight effects account for the relativis-
tic effects on illumination. According to (4.6) and (4.8), both
effects depend on the Doppler factorD. Therefore, in addition
to the photon field, the information about the Doppler factors
has to be known.

Here, I introduce the termDoppler factor map. Analo-
gously to the radiance map, the Doppler factor map holds
the Doppler factors for various directions. The Doppler fac-
tor map is a one-parameter map because, for a given velocity,
the Doppler factor depends only on the angleθ0.

With Eqs. (5.2) and (5.3), the tristimulus valuesC0
i for each

pixel in the frameSobservercan be calculated by

C0
i =

Z
f̄i(λ0)L0λ(λ

0)dλ0 =
Z

f̄i(λ0)
nL

∑
j=1

l jL
0
λ; j(λ

0)dλ0

=
nL

∑
j=1

Xi; j (l j ;D); (5.5)

with

Xi; j(l j ;D) =
Z

f̄i(λ0)l jL
0
λ; j (λ

0)dλ0 ; i = R;G;B;

j = 1: : :nL: (5.6)

The transformedL0j(λ
0) are computed from the originalL j(λ)

according to (4.6) and (4.8). TheC0
i andXi; j can be combined

to form the three-component vectors~C0 and~Xj .
The function ~Xj (l j ;D) can be represented by a three-

component look-up table (LUT) depending on the two vari-
ablesl j andD. This LUT can efficiently be implemented by
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Figure 5.13: Structure of the relativistic rendering process.

using pixel textures. Pixel textures assign texture coordinates
on a per-pixel basis instead of a per-vertex basis. Pixel textures
are specified in the same way as normal three-dimensional tex-
tures. With a pixel texture being activated, all pixels which are
drawn from main memory into the frame buffer are interpreted
as texture coordinates, i.e., each RGB color triple is mapped
into the texture and then the interpolated texture values are
actually drawn.

The LUT for each function~Xj(l j ;D) is stored in a three-
dimensional RGB texture. A two-dimensional texture would
be sufficient for a two-parameter function. OpenGL, however,
does not support two-dimensional pixel textures. Therefore, a
third—a dummy—dimension which is set to one is included.
The LUTs do not change for a fixed set of basis functionsL j .
Therefore, the respective pixel textures can be built in a pre-
processing step, thus not impairing rendering performance.

Finally, the relativistic transformation of wavelength and
radiance is implemented as follows. Another sphere, now tex-
tured by the Doppler factor map, is rendered in addition to
the sphere resulting from Sect. 5.4.3. The Doppler factors are
stored in a previously unused, separate channel, such as the
α channel. The final RGB values are evaluated according to
Eq. (5.5) by iterating over thenL channels which contain the
vectorsl j , by applying the corresponding pixel textures, and
by adding up the results.

If nL is greater than three, more than one radiance map is
used to hold thenL channels, and the whole process above
has to be performed several times depending on the number of
different radiance maps.

5.4.5 Rendering Process

Figure 5.13 shows the structure of the relativistic rendering
process. In addition to normal non-relativistic rendering, two
phases for the relativistic transformation are appended to the
rendering pipeline.

The geometric effects are taken into account in the first
phase represented by the white and gray boxes in the diagram.
This phase resembles the implementation of reflection or en-

vironment mapping onto a sphere. The main difference is lo-
calized in the calculation of the texture coordinates. The op-
erations represented by white boxes work on the back buffer
of the normal frame buffer. The operations shown as gray
boxes work on an additional, off-screen frame buffer. For ex-
ample, pbuffers (SGIX pbuffer extension) can be used as
off-screen frame buffers.

In the gray part, the textures for a spherical mapping are
generated. Here, the standard non-relativistic rendering pro-
cess is performedn times;n is the number of textures mapped
onto the sphere and depends on the viewing angle and the ori-
entation that are used for the rendering of the texture images.
The OpenGL commandglCopyTexImage2D transfers the
results of non-relativistic rendering from the frame buffer to
texture memory. Texture objects (glBindTexture ) allow
fast access to the stored textures.

In the white part, the texture coordinates are calculated
with the use ofT�1

mapping. Then, the textured sphere is actu-
ally drawn. The relativistic transformation is absorbed into the
calculation of the texture coordinates. For rendering the inter-
mediate image which contains the visualization of apparent
geometry, a picture is taken from inside the sphere. Note that
the viewpoint has to be at the midpoint of the sphere, whereas
the orientation is not restricted and allows for viewing into ar-
bitrary directions.

The relativistic effects on illumination are taken into ac-
count in the second phase represented by the black boxes. This
phase works on the back buffer of the standard frame buffer.
Another sphere, now textured by the Doppler factor map, is
rendered into theα channel and blended with the result of the
previous rendering steps. Then, the complete RGBα buffer is
read into main memory.

The last part is iterated three times, for the respective three
color channels which hold the corresponding valuesl j . A
color matrix (SGI color matrix extension) is set, which
shifts the current color channel to the red channel and theα
channel to the green channel. Now, the current values ofl j
are stored in the red channel and the corresponding Doppler
factors in the green channel. Then, the pixel texture which
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(a) (b)

(c) (d)

Figure 5.14: Example of texture-based special relativistic rendering. Image (a) shows a non-relativistic view of the tunnel-like test scene. The scene
emits blackbody radiation at 3500 K, 5900 K, and 10000 K. In (b)–(d), the observer is moving towards the end of the tunnel with β = 0.6. Picture (b)
shows the visualization of apparent geometry, (c) illustrates the Doppler effect, and (d) presents the complete transformation of illumination. In (d), the
overall intensity is reduced to 10 percent of that in (a)–(c) in order to keep the intensities in the displayable range.

transforms(l j ;D) to displayable RGB values is applied. Fi-
nally, the operations in the rasterization stage are performed
by drawing the image back into the frame buffer. These re-
sults are added up by a blending operation in order to obtain
the final image.

So far, the rendering process supports up to three different
basis functionsL j . A larger number ofnL can be implemented
by iterating the whole rendering process several times with
varying sets of basis functions and by adding up the results.

5.4.6 Implementation and Results

The relativistic rendering algorithm is implemented in C++
and runs on top of a standard OpenGL renderer. OpenGL ver-
sion 1.1 with pbuffer (SGIX pbuffer ), pixel texture (gl-
PixelTexGenSGIX ), and color matrix (SGI color ma-
trix ) extensions is used. The implementation runs on an SGI
Octane with Maximum Impact graphics and 250MHz R10000
processor.

A restricted implementation makes use of standard Open-

GL 1.1 only. This version runs on any graphics board with
standard OpenGL 1.1. It allows the visualization of apparent
geometry only, but not of the Doppler and searchlight effects.
Both implementations are described in Appendix C.2.

An example of texture-based relativistic rendering can be
found in Fig. 5.14. It illustrates the aberration of light, the
Doppler effect, and the searchlight effect. The latter is very
prominent and causes an extreme change of brightness.

In the current implementation, a constant number of six tex-
tures is used to cover the whole sphere. The six textures orig-
inate from the projection of the six sides of a cube onto the
sphere. The texture coordinates will only be recalculated if the
velocity changes. Three arbitrary basis functionsL j are sup-
ported. The following performance measurements are based
on the test scene from Fig. 5.14 and a window size of 800�600
pixels.

On an SGI Octane with Maximum Impact graphics and
250MHz R10000 processor, a frame rate of 7.6 fps is achieved
for the relativistic visualization of apparent geometry and of 4
fps for the visualization of geometry and illumination. Ap-
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Table 5.2: Rendering performance on an SGI Onyx2 and on an SGI
Visual Workstation 320.

Onyx2 Visual WS

image size 5122 10242 5122 10242

frame rate (in fps) 7.1 4.9 10.0 5.9

time portion for:
normal rendering process 50% 38% 59% 52%
transfer frame/tex buffer 21% 41% 11% 26%
others 29% 21% 30% 22%

proximately 30% of the total rendering time is used for ren-
dering the non-relativistic images, 10% for transferring these
images from the frame buffer to texture memory, 40% for the
pixel operations, and 20% for the remaining tasks.

The restricted implementation, which visualizes apparent
geometry only, runs on any graphics board with OpenGL
1.1. Hence, a comparison between different architectures
is possible. Table 5.2 shows performance measurements on
an SGI Onyx2 system with an InfiniteReality graphics board
and a MIPS R10000/195MHz processor, and on an SGI Vi-
sual Workstation 320 with a Cobalt graphics board and an
Intel Pentium III/500 MHz processor. The time portions for
the non-relativistic rendering process and for the data trans-
fer from the frame buffer to texture memory are given. The
image and texture sizes are 512�512 or 1024�1024 pixels,
respectively.

For the visualization of apparent geometry, rendering speed
is limited by the time for generating the non-relativistic images
and transferring the non-relativistic images from the frame
buffer to texture memory. For typical scenes, the first factor
is determined by the pixel fill-rate. The second factor favors
the UMA (unified memory architecture) of the Visual Work-
station, which holds both texture memory and frame buffer
in one universal memory. Texture-based relativistic rendering
benefits from a high bandwidth between frame buffer and tex-
ture memory.

5.4.7 Issues and Limitations

In the texture mapping approach, the sphere surrounding the
observer is represented by a triangle mesh. The texture coor-
dinates which are computed for the pixels inside each trian-
gle by the usual perspective correction scheme differ from the
true values. However, these errors do not impair the quality of
the relativistic image as long as the angular span under which
each single triangle is viewed is not too wide. The errors are
independent of the geometry of the scene objects and can be
controlled by choosing an appropriate size for the triangles
representing the sphere, which is an important advantage over
the relativistic polygon rendering approach. In the example
depicted in Fig. 5.14, the whole sphere is tessellated by 5120
triangles, guaranteeing a good image quality for velocities as
high asβ = 0:99.

One problem with texture-based relativistic rendering
arises because of the properties of the aberration of light. The
aberration equation does not conserve the element of solid an-
gle. Therefore, the relativistic mapping does not conserve the
area of an element on the sphere. The image is scaled down
in the direction of motion, whereas the image gets magnified

in the opposite direction. This magnification can reveal an in-
appropriate resolution of the texture. Conversely, aliasing ef-
fects can occur in the direction of motion because the texture
images are not filtered in the current implementation. These
problems could be reduced by adapting the texture size to the
relativistic distortion which depends on the observer’s velocity
and direction of motion. The best solution is anti-aliasing by
means of texture filtering. However, it is not clear how filter-
ing could be efficiently implemented on available hardware.

Another problem could be the limited resolution of the
RGBα channels, which might cause color aliasing effects
whose extent depends on the chosen basis functionsL j and
the interval of the used Doppler factors. These color alias-
ing effects are usually not very prominent for a depth of eight
bits per channel, which is available on current hardware. They
should completely disappear on future hardware supporting
ten or twelve bits per channel.

5.5 Image-Based Special Relativistic
Rendering

The special relativistic rendering methods presented so far
use a standard geometry-based representation of three-dimen-
sional scenes and thus require cumbersome geometrical mod-
eling and costly rendering.

In this section, an image-based approach to special rela-
tivistic rendering is proposed[174]. This approach overcomes
problems of geometry-based rendering and has the following
important advantages: No three-dimensional geometric mod-
eling is needed, rendering costs are negligible, and photo-
realism is easily achieved. Photo-realism and easy modeling
make image-based relativistic rendering a method very well
suited for video and movie productions.

In Sect. 4.4, it is shown how the plenoptic function is af-
fected by changing frames of reference. All relativistic ef-
fects on image generation can be covered by a modification of
the plenoptic function. Therefore, the full three-dimensional
information about the scene is not required for relativistic
rendering. In this framework, only one additional step is
appended to the normal non-relativistic rendering pipeline,
which is otherwise left unchanged. Therefore, the relativistic
transformation can easily be incorporated in all known image-
based rendering methods.

5.5.1 Previous Work on Image-Based
Rendering

A lot of research has been conducted in the field of non-
relativistic image-based rendering.QuickTime VR[24] is a
well-known method for image-based rendering which uses
panorama pictures. Other image-based techniques utilize view
interpolation[25] or view morphing[145]. Debevec et al.[36]
present hybrid geometry and image-based rendering.

Most research on image-based rendering investigates clever
methods to acquire, store, retrieve, and/or interpolate the
plenoptic function. McMillan and Bishop[101] define plenop-
tic modeling as generating a continuous five-dimensional
plenoptic function from a set of discrete samples. The
lumigraph[62] and light fields[93] propose a smart four-
dimensional parameterization of the plenoptic function if the
scene is constrained to a bounding box. Shum and He[146]
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present a three-dimensional plenoptic function which is called
concentric mosaics. For a fixed viewpoint, the plenoptic func-
tion reduces to a two-dimensional panorama, for example, a
cylindrical panorama[24] or a spherical panorama[157].

5.5.2 Overview

One basic feature of special relativity is the absence of a sin-
gle universal frame of reference and of a universal time. Any
inertial frame is equally valid to describe the physical world.

Often an egocentric point of view is adopted to derive the
properties of relativistic rendering, i.e., the camera is at rest
and the objects are moving. Here, I rather take an exocentric
point of view. The objects are considered to be at rest and the
observer—the camera—is moving at high speed.

The essence of all image-based rendering methods is the
evaluation of the plenoptic function, cf. Sect. 4.4. Let us re-
strict ourselves to a static world in which all objects and light
sources are at rest relative to each other and relative to the ob-
jects’ frame denotedSobj. In Sobj, the plenoptic function can
be determined by standard image-based rendering algorithms,
since the finite speed of light can be neglected in this static
situation.

First, consider the generation of a snapshot taken by a cam-
era at rest inSobj. The spatial position of the camera is(x;y;z)
and the time ist. All the information needed for this snapshot
is contained in the reduced three-parameter plenoptic function
P̃(θ;φ;λ), which is evaluated at the respective position and
time.

Then, let us bring special relativity back into the game.
Consider another observer that is moving relative to the ob-
jects. His or her rest frame is denotedSobserver. This observer
is taking a snapshot at the same position and time as the first
observer that is at rest inSobj. In Sect. 4.4, the plenoptic func-
tion for this moving observer is derived.

Once the plenoptic functioñP(θ;φ;λ) with respect toSobj

is transformed tõP0(θ0;φ0;λ0) with respect toSobserver, the nor-
mal rendering process can generate the image seen by the fast
moving camera becausẽP0(θ0;φ0;λ0) is the plenoptic function
at rest relative to this camera. (The primed quantities are with
respect toSobserver.) Therefore, all relativistic effects are iso-
lated in the form of the Lorentz transformation of the plenoptic
function. The locality property of this transformation allows
us to generate relativistic images without knowledge of the
depth, or three-dimensional, information about the surround-
ing scene. Due to the relativity principle the transformation of
the plenoptic function can account for both a fast camera and
rapidly moving objects.

5.5.3 Relativistic Rendering

Image-based relativistic rendering extends the standard non-
relativistic techniques by a transformation of the plenoptic
function according to the previous section. This extension
is located at the end of the rendering pipeline, just before
the final image is generated. All other parts of the rendering
pipeline are unaffected.

In the following, some variations of relativistic rendering
are described. In particular, they address the issue of miss-
ing data, since the wavelength dependency of the plenoptic
function can usually not be measured. In most cases, data
for image-based rendering is acquired by cameras which are

not sensitive to the full power spectrum of the incoming light;
standard cameras register light in the visible range only. Fur-
thermore, the information about the recorded spectrum is re-
duced to tristimulus values such as RGB.

Completely Relativistic Rendering

If the wavelength-dependent plenoptic functionP̃(θ;φ;λ) is
provided in the non-relativistic situation, the transformed
plenoptic functionP̃0(θ0;φ0;λ0) can be computed according
to Sect. 4.1. It is important that̃P(θ;φ;λ) is known for an
extended range of wavelengths, so thatP̃0(θ0;φ0;λ0) can be
evaluated for wavelengths in the visible range after Doppler-
shifting.

Each pixel on the image plane has corresponding spheri-
cal coordinates(θ0;φ0), which are transformed to(θ;φ) in the
objects’ frame. Therefore, a wavelength-dependent radiance
L0λ(λ

0) can be associated with each pixel. For the final display
on the screen, three tristimulus values such as RGB have to
be calculated from this wavelength-dependent radiance. The
RGB values(CR;CG;CB) can be obtained by

Ci =
Z

L0λ(λ
0) f̄i(λ0)dλ0; i = R;G;B;

cf. Sect. 3.2.4.

Apparent Geometry

The relativistic effects on the apparent geometry can be visu-
alized by using only a partial transformation of the plenoptic
function. Here, only the effects of the aberration of light are
taken into account and the searchlight and Doppler effects are
neglected, i.e., only the direction(θ;φ) of the incoming light
is transformed and all other effects are ignored.

This visualization technique is useful when the full spectral
information of the plenoptic function is not available, since
this information is not needed for the visualization of apparent
geometry. Nevertheless, even this restricted relativistic render-
ing provides some insight into the special theory of relativity
and creates impressive visual effects, as shown in Sect. 5.5.5.

Reconstruction of the Power Spectrum

In most cases, data for image-based rendering does not com-
prise the full power spectrum, but only three RGB values. The
power spectrum has to be reconstructed from RGB values in
order to include the relativistic effects on geometry and illu-
mination, cf. Sect. 3.3. With the reconstructed wavelength-
dependent plenoptic function, the fully relativistic image can
be generated, as described above.

Rendering of a Film Sequence

So far, the generation of just a single snapshot has been inves-
tigated. But how can a film sequence with a fast camera be
produced?

In principle, it works the same way as in the non-relativistic
situation. The path of the camera is discretized into a finite set
of positions. For every element of this set the plenoptic func-
tion is evaluated. Therefore, the plenoptic function has to be
known at these positions. Then, the relativistic transformation
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is computed and the corresponding image is generated. Fi-
nally, a list of snapshots which represent the film sequence is
obtained.

For the film to be physically sound, not just the genera-
tion of each single snapshot has to be correct, but also the
path of the camera itself. As long as the camera is moving
uniformly—at constant speed and with a constant direction
of motion—the camera is trivially placed at equidistant posi-
tions. However, even an accelerated camera can be described
by special relativity. In Sect. 4.7, it is shown how the trajec-
tory of an accelerating observer can be computed. Therefore,
the positions and velocities of the camera for each snapshot
can be calculated, and image-based relativistic rendering can
be performed. This method is valid because the generation of
a single image is only determined by the position and veloc-
ity of the viewer and by the standard camera parameters, but
not by the “history” of the trajectory or the acceleration of the
observer.

Our everyday experience is based on length scales in the
range of meters, time scales in the range of seconds, and veloc-
ity scales in the range of meters per second, i.e., the velocities
we are used to are approximately eight orders of magnitude
smaller than the speed of light. Lengthl , time t, and velocity
v are related byv = dl=dt. Therefore, one has to change the
length, time, or velocity scales in order to notice relativistic
effects. For example, the time scales could be reduced to the
orders of 10�8 seconds. We can think of playing a respective
recording at super slow-motion, so that we are able to watch
processes which involve time spans of only 10�8 seconds. An-
other option is to artificially reduce the speed of light in vacuo,
for example, to walking speed. An instructive illustration of
reduced speed of light can be found in Mr Tompkins’ world
by Gamow[56]1. In the third approach, length scales are in-
creased to the range of light seconds.

The change of scales is the reason why only static scenes
are supported. The real-world camera image is recorded using
the true values for the length, time, and velocity scales. In
particular, the true speed of light is effectively infinite in all
practical situations. The relativistic simulation of a dynamic
scene would use images which are instantaneously transported
from the object to the camera, instead of the correct, retarded
images which take into account the reduced speed of light.

5.5.4 Magnification and Anti-Aliasing

The aberration of light does not conserve the element of solid
angle. In fact, the infinitesimal solid angle is transformed ac-
cording to

dΩ0

dΩ
=

sinθ0

sinθ
dθ0

dθ
dφ0

dφ
=

d(cosθ0)
d(cosθ)

dφ0

dφ

=
d(cosθ0)
d(cosθ)

= D2; (5.7)

with the use of Eq. (4.3) for the aberration of light and
Eq. (4.5) for the Doppler factor.

Therefore, the transformation of the plenoptic function
causes a magnification opposite to the direction of motion,
whereas objects ahead are scaled down. The demand for a

1Please note that the illustrations of Mr Tompkins’ world do not
show visual perception within special relativity, but only the measure-
ments of Lorentz-contracted lengths.

higher resolution towards the back has to be taken into account
when the original data for the plenoptic function is acquired.
In the rendering process, the sampled data is accessed by bi-
linear interpolation.

The image contraction for the front view might cause alias-
ing effects, especially for extremely high velocities. These
effects can be reduced by standard supersampling and postfil-
tering on the image plane.

Since the sampled plenoptic function can be stored in the
form of a two-dimensional texture for the coordinatesθ and
φ, anti-aliasing can alternatively be based on texture filter-
ing techniques. Texture mapping can be considered as the
process of calculating the projection of a screen pixel onto
the texture image—which is calledfootprint—and computing
an average value which best approximates the correct pixel
color. There exist a couple of filtering methods, of which
MIPmapping[182] is the most prominent. This standard tech-
nique supports only a quadratic footprint. Hence, it is not very
well suited for our application. The mapping by the aberration
equation can generate prolate, anisotropic, and distorted foot-
prints because it substantially changes the angleθ, whereas it
leaves the angleφ invariant.

Therefore, techniques which support more complex foot-
prints are required. Summed-area tables[33] (SAT), for exam-
ple, allow prolate rectangular footprints. The idea of rectangu-
lar axes-aligned footprints has been adopted for the relativistic
situation. In contrast to SAT, the computation of prefiltered
data tables is left out, since each texture is used only once in
the rendering process. Filtering provides fair image-quality,
even for velocities as high asβ = 0:99 and for images with
high spatial frequencies. Respective examples are shown in
the following section. The main advantage of a rectangular
footprint over more complex footprints is faster computation
and rendering.

Fast footprint MIPmapping[81] is based on quadrilateral
footprints and makes use of precomputed MIPmaps and
weighting tables. Quadrilateral footprints are an improved ap-
proximation compared to rectangular axes-aligned footprints.
They support anisotropic, rotated, and distorted footprints.
Despite the associated complexity, fast footprint MIPmapping
should be able to achieve good rendering performance.

5.5.5 Implementation and Results

The relativistic panorama viewerImagine(IMAge-based spe-
cial relativistic rendering enGINE) can read panoramas in the
LivePictureformat[94]. This format is similar toQuickTime
VR, but uses a spherical projection instead of a cylindrical pro-
jection. Therefore, a complete 4π sterad view is supported.

The interactive viewer is written in C++ and is based on
standard OpenGL 1.1[183] andQGLViewer[131]. The im-
plementation is due to Kobras[85]. The virtual camera is
surrounded by a sphere onto which the panorama texture is
mapped. Texture mapping hardware is used to achieve high
rendering performance. The relativistic effects on the apparent
geometry are implemented by transforming the texture coordi-
nates according to the relativistic aberration of light. The non-
interactive part of the viewer uses software rendering to im-
plement completely relativistic visualization by reconstruct-
ing the spectrum according to Sect. 3.3. Texture filtering as
described in the previous section is not implemented yet.

Another implementation isOff-Terdingen, which is an off-
screen, batch job-oriented relativistic movie renderer. The im-
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(a) (b) (c)

Figure 5.16: Image (a) shows the non-relativistic view, image (b) the apparent geometry for β = 0.99, and image (c) completely relativistic rendering
with β = 0.3. The overall intensity in (c) is reduced to one half of that in (a) and (b) to avoid extreme clamping of the final RGB values.

Figure 5.15: Digital video camera mounted on fork arm.

plementation is also due to Kobras[85]. It is able to produce
movies of relativistic flights through real-world scenes. It is
a C++-based software renderer which stitches and blends se-
ries of views taken by different cameras in order to generate
a sequence of images for a relativistic flight. The parameters
and orientations of the cameras are supplied manually.Off-
Terdingenprovides anti-aliasing by means of texture filtering

with rectangular footprint. Additionally, standard supersam-
pling on the image plane can be applied. The data of the orig-
inal images is accessed by bilinear interpolation.

Adequate data acquisition for the non-relativistic panorama
is an issue, since relativistic image-based rendering demands
higher quality of the initial data than standard panorama tech-
niques. First, the resolution of the original images has to suf-
fice the magnification by the aberration formula, Eq. (5.7),
when the observer looks into the backward direction. Sec-
ondly, a complete 4π sterad panorama should be recorded.
Most commercial panorama systems, however, are based on
cylindrical projection, for example,QuickTime VR.

Therefore, a camera system which can automatically film a
4π sterad field of view was built. A standard digital video cam-
era is mounted on a fork arm which was originally designed
for a telescope. Figure 5.15 shows the fork arm with camera.
The fork arm is controlled by a mobile computer. Due to the
specific geometry of the fork arm the camera can be placed in
a way that avoids parallax artifacts when the camera is turned
in different directions. The camera system is DV-based. Im-
ages are transferred to the mobile computer via an IEEE 1394
(Firewire) link. The calibrated image data is stitched byOff-
Terdingento render spherical panoramas or relativistic views.

Figures 5.16–5.19 provide examples of image-based rela-
tivistic rendering. Figure 5.16 shows a long corridor. Fig-
ure 5.16(a) provides the non-relativistic view of the scene.
Figure 5.16(b) illustrates the effects on apparent geometry
when the viewer is rushing into the scene withβ = 0:99. A
dominant effect is the increased apparent field of view—the
objects seem to move away. Furthermore, straight lines which
are perpendicular to the direction of motion become distorted
to hyperbolae.

Figure 5.16(c) shows completely relativistic rendering with
β = 0:3. Here, the power spectrum is reconstructed using the
dominant wavelength model. Changes in brightness due to the
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searchlight effect and color changes due to the Doppler effect
are noticeable. The searchlight effect heavily brightens the
image, so the overall intensity has to be reduced to one half
of that in Figs. 5.16(a) and 5.16(b) in order to avoid extreme
clamping of the final RGB values.

Figure 5.17 shows the apparent geometry for a snapshot
of Yosemite Valley atβ = 0:95. It exhibits the same effects
as in Fig. 5.16, for example the distortion of straight lines to
hyperbolae.

Figure 5.18 compares non-relativistic view, apparent ge-
ometry, and completely relativistic visualization of an outside
scene, analogously to Fig. 5.16. Figure 5.18(c) shows notice-
able blueshift due to the Doppler effect and increased bright-
ness due to the searchlight effect.

Figure 5.19 compares filtering and supersampling tech-
niques. This example shows the visualization of apparent ge-
ometry atβ = 0:99. Figure 5.19(a) is rendered without filter-
ing and supersampling. Aliasing effects are noticeable, espe-
cially on the ceiling. Figure 5.19(b) illustrates filtering with
a rectangular footprint, as described in Sect. 5.5.4. Aliasing
artifacts are attenuated by texture filtering. In Fig. 5.19(c), fil-
tering and 2�2 supersampling are combined, yielding a better
image quality than mere filtering. This indicates that more so-
phisticated footprints might improve filtering quality.

The accompanying video presents further examples of rela-
tivistic visualization. Parts of the video were shown on TV in
a broadcast on Einstein and special relativity[132]. A detailed
description of the video can be found in Appendix D.1.3.
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Figure 5.17: Flight through Yosemite Valley with β = 0.95.

(a) (b) (c)

Figure 5.18: Image (a) shows the non-relativistic view, image (b) the apparent geometry for β = 0.9, and image (c) completely relativistic rendering
with β = 0.2. The overall intensity in (c) is reduced to 10 percent of that in (a) and (b) to avoid extreme clamping of the final RGB values.

(a) (b) (c)

Figure 5.19: Comparison of filtering and supersampling techniques for the visualization of apparent geometry at β = 0.99. Image (a) is rendered
without filtering and supersampling, image (b) illustrates filtering with rectangular footprint, and image (c) documents the combination of filtering and
2�2 supersampling.



Chapter 6

Virtual Environments for Special Relativity

Computer simulations are the only means of visually explor-
ing special relativity. The intent of this chapter is to present
virtual environments which allow the user to submerge into
the world of special relativity. They will enable us to expe-
rience special relativity right in front of our eyes, including
phenomena such as Lorentz contraction, time dilation, aberra-
tion, and finite speed of light.

In addition to the issues related to normal non-relativistic
virtual environments, the relativistic environment essentially
has two extra demands.

First, a computational model for relativistic rendering is
needed. Here, relativistic polygon rendering from Sect. 5.1
is used. An additional step is introduced into the render-
ing pipeline to account for relativistic effects. A parallel im-
plementation of the relativistic transformation is presented.
Therefore, on a multi-processor system, relativistic visualiza-
tion is achieved at the same frame rates as non-relativistic ren-
dering.

Secondly, a new means of interacting with the virtual envi-
ronment has to be established. The focus is on an appropriate
camera control mechanism. Therelativistic-vehicle-control
metaphor is introduced for navigating at high velocities. The
intent of the virtual environment is to be as close as possible
to an important part of today’s physics. Therefore, the camera
control should be based on physical laws. Therelativistic-
vehicle-controlmetaphor consists of both active and passive
locomotion. Passive locomotion is implemented in the form
of traveling in a fast vehicle. The user controls the move-
ments of the vehicle by supplying information about the cur-
rent acceleration. Furthermore, the user can walk within the
virtual environment, which accounts for direct, active locomo-
tion. Image generation in the non-relativistic situation is influ-
enced by viewpoint and viewing direction. Relativistic render-
ing, however, depends on the current velocity of the viewer as
well. Therefore, tracking of both position and velocity has to
be considered in the virtual environment.

The relativistic-vehicle-controlmetaphor and the sophisti-
cated parallelized rendering process are major parts of an im-
mersive virtual environment for special relativity. In Sect. 6.2,
a simplified virtual environment is presented. This “relativis-
tic flight simulator” can be regarded as a preliminary stage of
the fully evolved immersive virtual environment.

6.1 Previous and Related Work

A lot of research has been conducted on issues related to vir-
tual environments. An overview can be found, for example, in

Holloway and Lastra[74] and Earnshaw et al.[41]. Cruz-Neira
et al.[34] present the CAVE, a surround-screen, projection-
based, immersive virtual environment, which is also a model
for the virtual environment in Sect. 6.4.

A number of researchers have addressed issues related to
user interaction in general. A survey is given by Hand[68] and
Mine[106]. Robinett and Holloway[136] describe the main
actions in virtual worlds under control of a manual input de-
vice. Hinckley et al.[72] focus on interaction techniques rely-
ing on free-space three-dimensional input devices. Jacoby and
Ellis[82] give a summary of menus in virtual environments.

This chapter is focused on the issues of navigation and lo-
comotion in virtual environments. Ware and Osborne[164]
describe three interaction metaphors which they calleyeball-
in-hand, scene-in-hand, and flying-vehicle-control. For the
flying-vehicle-control, the velocity of the vehicle is controlled
by the displacement of the input device. The flying-vehicle
metaphor serves as the basis for the development of the
relativistic-vehicle-controlmetaphor presented in this chapter.

Mackinlay et al.[95] present a targeted movement technique
which moves the user towards a point of interest with a speed
logarithmically related to the distance from the target.

Turner et al.[161] describe the physically basedvirtual-
camerametaphor for controlling the camera motion. They
describe an abstract physical model of a camera object with
parameters such as mass, moment of inertia, and friction co-
efficients. The trajectory of the camera is determined by clas-
sical, Newtonian mechanics. Some of these ideas are adopted
for the relativistic situation.

6.2 Relativistic Flight Simulator

6.2.1 System Design

Since relativistic visualization is inherently connected with
motion, a relativistic virtual environment has to provide some
kind of fly or drive mode. In this section, a straightforward
extension of well-known interaction techniques to special rel-
ativity is described. The interactive environment approximates
an airplane environment. The aim is to develop a simple “rela-
tivistic flight simulator” which can be implemented on a stan-
dard graphics workstation or PC.

This flight simulator is a preliminary stage of the more so-
phisticated immersive virtual environment from Sect. 6.4. The
flight simulator is a fishtank-type virtual environment. The
user sits in front of the computer monitor and rather looks
from the outside onto the virtual world than from the inside of
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Figure 6.1: Relativistic flight simulator.

an immersive environment such as a CAVE or a head-mounted
display.

The following scenario is proposed. The user resides in
a fast spaceship which enables him or her to explore a static
virtual world. The motion of the ship is controlled by user in-
put. Controls to accelerate and decelerate in the current flight
direction are provided. Moreover, the user can change the di-
rection by accelerating to the left or right. Finally, a rotation
around the current direction of motion is possible. The screen
always points into the direction of motion, i.e., the orientation
of the ship is changed by lateral acceleration in a way that the
front window is turned towards the direction of motion.

Perception in the relativistic world is very different from
our normal experience and thus needs the user’s full atten-
tion. Navigation is hence based on the well-known principle
of flight simulators to make steering as easy as possible.

User interaction, being an essential part of the virtual en-
vironment, requires the consideration of the accelerated ob-
server. Since the spaceship is assumed to be small compared
to the length scales of the virtual world and the scales of accel-
eration, it can be regarded as a point particle. Therefore, the
description of an accelerating point particle can be adopted
from Sect. 4.7. User input provides the three-acceleration of
the spaceship with respect to the co-moving reference frame
Sobserver, thus the equation of motion (4.2) yields an initial
value problem for a system of ordinary differential equations.
The initial values are the starting position and velocity of the
observer. This system is solved numerically, cf. Sect. 4.7, and
provides the trajectory of the accelerated observer parameter-
ized by its proper time.

Relativistic polygon rendering is supported by graphics
hardware and achieves interactive frame rates required by real-
time simulations. Therefore, this rendering technique is em-
ployed in the relativistic flight simulator.

6.2.2 Implementation and Results

The system is implemented as an object-oriented C++ pro-
gram. Rendering is based on standard OpenGL 1.1[183] and
supports level-of-detail. Arbitrary scenes in the VRML 1.0 file
format[12] are accepted. In a preprocessing step, the fine tri-
angulation of the surface patches is performed. The meshing
can be controlled interactively and individually for each sur-
face in a radiosity program calledRadioLab[148]. A detailed
program description can be found in Appendix C.1. A previ-
ous version of the relativistic flight simulator is described in
[134, 167].

Various input devices are supported and were tested. The
first kind of input device is the keyboard. On one hand, the
steering via keyboard is not very intuitive because it allows
input only at discrete steps. On the other hand, keyboards are
commonly available. A standard mouse offers more intuitive
steering, but is restricted to two degrees of freedom. Spaceball
and spacemouse offer three translational degrees of freedom,
which can perfectly be mapped to the three directions of accel-
eration. However, both input devices are not widely available.

In Fig. 6.1, an example of a relativistic simulation in the
flight simulator is shown.

6.3 Relativistic-Vehicle-Control
Metaphor

An immersive virtual environment provides a variety of inter-
action devices. The interaction techniques developed for the
relativistic flight simulator in the previous section can be ex-
tended and improved to exploit the advanced technical facili-
ties available in an immersive virtual environment such as the
CAVE. Since relativistic visualization is inherently connected
with motion, a relativistic virtual environment has to provide
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Figure 6.2: Sketch of the virtual environment. The user can walk within
a moving cube-shaped vehicle, whose motion is controlled by user in-
put. Both position and velocity of the head of the user are tracked and,
together with the underlying motion of the vehicle, determine relativistic
rendering. Reference frame Sobs is associated with the user, reference
frame Svehicle with the vehicle, and reference frame Sworld with the outside
objects.

some kind of fly or drive mode. I introduce therelativistic-
vehicle-controlmetaphor[171] for interacting with the virtual
world. Further on, the elements of this metaphor are pre-
sented.

The following scenario is proposed. The user resides in a
fast vehicle which enables her or him to explore a static vir-
tual world. Similarly to the previous section, the motion of the
vehicle is controlled by user input. The spatial input device
offers three translational degrees of freedom, which determine
the acceleration of the vehicle in the respective directions. The
user can turn the vehicle around the axis of motion by rotating
the mouse around this axis. The front screen always points
into the direction of motion, i.e., the orientation of the vehicle
is changed by lateral acceleration in a way that the front win-
dow is turned towards the direction of motion. In this way, the
vehicle behaves very similarly to a car or plane. The other im-
portant element of interaction is that the user can freely walk
within this vehicle.

The movement of the vehicle yields passive locomotion, the
movement of the person yields active, direct locomotion. The
situation is depicted in Fig. 6.2.

This scenario introduces an additional frame of reference.
In the following, the reference frame of the objects is denoted
asSworld, the reference frame of the vehicle asSvehicle, and the
reference frame of the user asSobs.

Data from the three-dimensional input device determines
the acceleration of the surrounding vehicle. The spatial mid-
point of the cube-shaped vehicle is chosen as the reference
point of frameSvehicle. The acceleration due to user input af-
fects the trajectory of this reference point. The treatment of the
accelerated point particle in Sect. 4.7 is adopted for the refer-
ence point. The path of the reference point through spacetime
can be calculated with the method in Sect. 4.7. It is assumed
that the coordinate systemSvehicle is a co-moving frame with
respect to the reference point. In this way, the parameters for
the frame of the vehicle,Svehicle, are known at every moment
in time.

The normal three-position of the user within the vehicle is
measured by a head tracking device. The three-velocity is

calculated by taking the difference of consecutive positions.
With Eq. (4.1), the measured three-position and three-velocity
determine the four-position and four-velocity with respect to
frame Svehicle. The Lorentz transformation fromSvehicle to
Sworld yields the four-position and four-velocity of the user
with respect to the coordinate system of the objects. The
Lorentz transformation accounts for the relativistically correct
addition of velocities and for the Lorentz contraction of the
measured distances.

Finally, the four-position and four-velocity of the user’s
head represent the parameters to accomplish relativistic poly-
gon rendering from Sect. 5.1. In this way, the images are gen-
erated as seen by the user.

In order to notice relativistic effects on the apparent geom-
etry one has to change the “speed of light” or use different
time and length scales in the virtual world. For example, the
dimensions of the vehicle could be scaled to the range of light
seconds, cf. Sect. 5.5.3. Eventually, the “speed of light” is
comparable to the user’s walking speed. Therefore, the mea-
sured velocity of the user has to be limited to the speed of light
by a filter.

To sum up, therelativistic-vehicle-controlmetaphor con-
sists of two main parts. The first element is a fast virtual ve-
hicle whose motion is governed by the relativistic equations
of motion. The second part is the consideration of the user’s
movement within the vehicle. In the non-relativistic limit,
therelativistic-vehicle-controlmetaphor resembles theflying-
vehicle-controlmetaphor. At low speed, the main extension of
the relativistic-vehicle-controlmetaphor is a physically moti-
vated velocity control which is based on the acceleration sup-
plied by the user. The relativistic situation requires the follow-
ing extensions: solving the relativistic equations of motion,
tracking of the user’s speed, and relativistic transformation of
the user’s position and velocity.

6.4 Immersive Virtual Environment

The CAVE[34] and head-mounted displays are typical ex-
amples of immersive virtual environments. Therelativistic-
vehicle-controlmetaphor directly maps to these immersive
environments. Therefore, navigation in the special relativis-
tic virtual environment is based on therelativistic-vehicle-
controlmetaphor. In the following, I will particularly consider
CAVE-like environments, although the developed interaction
elements are applicable to head-mounted displays as well.

Besides camera navigation control, application control
plays an important role in a user-interactive environment. Ap-
plication control is the communication between user and sys-
tem which is not part of the actual virtual environment. In the
proposed environment, application control is implemented in
the form of a three-dimensional menu floating in the virtual
world. The menu is an object which is at rest in the vehicle
and which is not subject to relativistic transformation. Menu
choices are selected with a virtual laser pointer. Figures 6.4
and 6.5 show the menu during a typical simulation. In order to
save space in the virtual world and avoid unnecessary cover-
ing of scene objects, less frequently used options are put into
separate submenus which are only displayed when needed.

The menus offer several options. For example, various
tracking models can be chosen. First, the physically correct
position and velocity tracking can be used, as described above.
Secondly, tracking of only the position is supported, which re-



44 Chapter 6: Virtual Environments for Special Relativity

App 3App 0

Cull 2Cull 1

Period = 1 / Frame Rate

Draw 0

Cull 0

Process 3

Process 2

Process 1

Time

Draw 1

App 2App 1

Figure 6.3: Multi-processing model of IRIS Performer. App n is the ap-
plication process for the n-th frame, Cull n and Draw n are the respec-
tive culling and draw processes. The vertical lines are frame bound-
aries, which are used to synchronize the various stages in the rendering
pipeline.

sembles normal tracking techniques. Thirdly, tracking can be
disabled, leaving the user with passive locomotion induced by
the motion of the vehicle. The miscellaneous tracking tech-
niques can be useful to make step-by-step acquaintance with
the relativistic world. In addition to a fly mode with accelera-
tion in all spatial dimensions, a drive mode which suppresses
vertical acceleration is implemented. This constraint helps to
navigate through flat scenes and can give the impression of
walking. The user can hold the simulation at any time to take
a three-dimensional “snapshot”. Moreover, the user can adopt
an unphysical outside position in order to visualize the photo-
objects, cf. Sect. 5.1.

6.4.1 Implementation and Results

The implementation of the relativistic virtual world runs in
the CUBE[71], which is similar to the CAVE immersive vir-
tual environment. The CUBE is a classical four-side back-
projection system consisting of three walls and a floor. Stereo
shutter glasses are used to achieve three-dimensional imagery.
A magnetic tracking device mounted on the glasses provides
information about the position and orientation of the user. A
three-dimensional mouse is used as spatial input device with
six degrees of freedom. The CUBE is driven by an SGI Onyx2
system with 14 R10000 CPUs and three InfiniteReality pipes.

The implementation is an extension of the non-relativistic
COVER renderer[133]. Rendering is based on IRIS Performer
[42, 137]. Relativistic polygon rendering provides the rel-
ativistic extensions. It can be mapped onto the Performer-
based rendering pipeline and thus is supported by graphics
hardware. The geometry nodes of Performer are extended and
made aware of special relativity by subclassing. The derived
geometry nodes hold both the original vertices and the trans-
formed vertices which are actually rendered.

For optimal performance, Performer-based multi-processor
and multi-pipe support is used. The flow through the rendering
pipeline is modeled into application, culling, and draw stages,
which are partitioned into separate processes. This enables the
three stages to work in parallel. Figure 6.3 shows a diagram of
the multi-processor model. The application stage handles user
input and carries out the relativistic transformation, the culling
stage traverses the visual database, accomplishes view frustum
culling, and creates Performer-based display lists, the draw
stage generates the actual image. The number of processes
for the culling and the draw stages depends on the number
of graphics subsystems. The application stage, however, is

Figure 6.4: Immersive virtual environment for special relativity. In this
simulation, the user is approaching a model of Saturn at high speed. A
virtual menu is located on the left wall.

always handled by a single process.
The relativistic transformation is performed in the applica-

tion process for two reasons. First, in non-relativistic simula-
tions, the draw process takes much more time than the applica-
tion and culling processes. Therefore, no further work should
be done in the draw process. Secondly, the relativistic trans-
formation is independent of the orientation of the camera, thus
several culling and draw processes in a multi-pipe system can
use the same transformed vertices, which are computed only
once per frame.

As shown in Fig. 6.3, the application, culling, and draw
processes work on three different frames at the same time. In
order to separate the effects of these processes the transformed
vertices are held in so-called flux buffers, i.e., each process
works on its own copy of the vertex buffer. The flux buffers
are cycled through during frame changes.

Depending on the kind of scene and the graphics perfor-
mance, the relativistic transformation in the application stage
might delay the culling and draw stages. Therefore, an ad-
ditional multi-threading model which computes the relativis-
tic transformation synchronously to the application process is
implemented. The application process creates extra processes
which are synchronized at frame boundaries by semaphores.
Since computation time for each vertex is constant, load bal-
ancing is based on the number of vertices. Furthermore, the
transformation of a vertex is independent of the other vertices
and allows parallelism on a per-vertex basis.

In this way, the rendering pipeline is extended by an addi-
tional transformation of the vertices which is processed con-
currently to the other stages. Therefore, rendering perfor-
mance is limited by the draw process and the graphics hard-
ware only, and the same frame rates are achieved for relativis-
tic rendering as for non-relativistic rendering.

Scene data is supplied as a polygonal representation of sur-
faces. All common three-dimensional file formats are sup-
ported. As mentioned in Sect. 5.1.1, a fine remeshing of the
surfaces should be employed in a preprocessing step in order
to improve rendering quality.

As described in the previous section, the three-velocity of
the user is basically calculated by taking the difference of con-
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Figure 6.5: Simple box-shaped test scene with menu.

secutive positions measured by a head tracking device. Unfor-
tunately, input from magnetic tracking devices is affected by
much noise. Therefore, the velocity calculated from consecu-
tive positions of the head is quite inaccurate. Since relativistic
image generation is very sensitive to velocity changes, unac-
ceptable fluctuations in the rendered images would be caused
by this method. To overcome this problem, the mean value
of the velocity in the lastn frames is used instead. The de-
fault value forn is four. The drawback of this filter is a higher
latency with respect to direct velocity tracking.

Figures 6.4–6.6 show snapshots taken during typical simu-
lations. Very interesting effects occur when the velocity is be-
ing changed due to acceleration. Objects seem to move away
from the user when he or she is increasing the speed towards
the objects. Conversely, the objects are apparently coming
closer when the speed is being decreased. An example is de-
picted in Fig. 6.6. The top image in Fig. 6.6 shows the begin-
ning of a phase of acceleration. Using the three-dimensional
mouse, the user applies a forward accleration. The middle and
the bottom snaphshots are taken at later points in time. Due
to the increased aberration of light the background objects be-
come more distorted and seem to move away.

The effects of acceleration can be explored in two ways.
First, there is an indirect approach by controlling the motion
of the surrounding vehicle. Secondly, the user can directly
change the velocity by walking through the virtual environ-
ment. Here, the interaction takes full advantage of velocity
tracking.

Several students of physics and other sciences had the op-
portunity to use the relativistic virtual environment. Some of
them were first time users of a CAVE-like environment who
took some time to get used to stereo viewing and handling
the three-dimensional mouse. Afterwards, they needed only
a few minutes to become familiar with the relativistic inter-
action techniques. The restriction to acceleration in only two
dimensions proved to be very helpful for the beginners. Direct
locomotion was reported to be an intuitive means of interac-
tion. The spatial limitations of the CUBE and the missing
haptic feedback were found disturbing. Unfortunately, these
are technical limitations that cannot be overcome by software
design.

Performance measurements for an Onyx2 system with 14

Figure 6.6: Acceleration of the vehicle. The three snapshots are taken
during a phase of acceleration. The respective velocities are β = 0.8,
0.9188, and 0.9832.

R10000/195MHz CPUs are documented in Table 6.1. Two In-
finiteReality pipes are used for rendering onto four screens in
stereo. The size of a single screen is 1024�915 pixels. All
frame rates are measured in frames per second. The frame
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Table 6.1: Rendering performance on an Onyx2 system.

scene 1 scene 2 scene 3

number of vertices 21,198 135,907 20,786
number of triangles 18,770 113,397 19,864
non-relativistic rendering 14.2 fps 7.1 fps 19.0 fps
relativistic rendering,

single-threaded
14.2 fps 2.6 fps 14.2 fps

relativistic rendering,
multi-threaded

14.2 fps 7.1 fps 19.0 fps

number of additional
threads

0 2 1

rates for normal non-relativistic rendering, for relativistic ren-
dering with no extra threads for the relativistic transformation,
and for relativistic rendering with multi-threading are com-
pared. The last row shows the number of the additional threads
needed for the multi-threaded relativistic transformation. The
test scenes are depicted in Fig. 6.4 (scene 1), Fig. 6.6 (scene
2), and Fig. 6.5 (scene 3).

The performance measurements show that the same frame
rates are achieved for relativistic rendering as for non-rela-
tivistic rendering. The frame rates are upheld during the whole
simulation. The large test scene 2 is included to show the
performance of relativistic rendering under heavy load. Nor-
mally, a minimal frame rate of 15 frames per second should be
reached in order to achieve a continuous and smooth progress
of images and to avoid dizziness due to high latency.

Appendix D.1.1 describes a video that was recorded in the
CUBE during a typical simulation. It gives a good impression
of the relativistic virtual environment and, in particular, of the
navigation techniques.



Chapter 7

Special Relativistic Visualization:
Summary and Open Questions

In the first part of this thesis, the visualization of special rela-
tivity has been discussed in full detail. The physical and psy-
chophysical basis of color vision has been briefly described in
order to establish a firm foundation for the treatment of color
in the relativistic rendering methods. A unified physical basis
of special relativistic visualization has been presented, with
the focus being on the transformation of properties of light,
such as the aberration of light, the Doppler effect, and the
searchlight effect.

Different types of rendering techniques have been de-
scribed and implemented. Relativistic ray tracing and rela-
tivistic polygon rendering had been known before, whereas
the four-dimensional extension of ray tracing, relativistic ra-
diosity, texture-based relativistic rendering, and image-based
relativistic rendering have been developed during the work for
this thesis. In the next section, the properties of these differ-
ent rendering techniques are summarized and their advantages
and disadvantages are compared.

Previous work was essentially limited to the geometrical
appearance of fast moving objects. Except for a few papers
related to the Doppler effect, relativistic effects on illumina-
tion were completely ignored or treated incorrectly. I have de-
rived all relevant transformation properties of light which are
needed for a correct implementation of relativistic shading. It
has been shown how all rendering techniques can be enriched
to incorporate the visualization of illumination effects. In fact,
it has been demonstrated that the visual appearance of fast
moving objects is essentially dominated by the Doppler and
searchlight effects.

Interaction is the second major topic of the first part of
this thesis. Previous work lacked any reference to interaction
methods within special relativity. Only still images or movies
with uniformly moving observers were presented.

An accelerated observer has been described, based on a so-
lution of the relativistic equation of motion. Acceleration of
the observer is a prerequisite for user navigation. I have pro-
posed a simple relativistic flight simulator and an immersive
virtual environment for special relativity, both allowing an in-
tuitive approach to special relativity.

The relativistic-vehicle-controlmetaphor has been devel-
oped as an interaction technique for immersive virtual envi-
ronments. Therelativistic-vehicle-controlmetaphor is a phys-
ically based camera control technique that supports both pas-
sive and active locomotion. Relativistic tracking of the po-
sition and velocity of the user has been introduced. Further-
more, it has been shown how the rendering pipeline can be ex-

tended to perform the relativistic transformation concurrently
to the other parts of the rendering process. In this way, the
same frame rates can be achieved for relativistic rendering
as for non-relativistic rendering, permitting real-time applica-
tions in virtual environments.

In conclusion, I have developed rendering techniques which
are improved with respect to performance, image quality, and
simulated physical phenomena. Furthermore, I have proposed
interaction and navigation techniques adequate for special rel-
ativity. The combination of both aspects allows an intuitive,
yet physically correct approach to special relativity.

Special relativistic visualization is not only qualified to im-
prove the intuition of physicists and to support education, but
has proven to be a most successful means for communicat-
ing scientific ideas to the public; the implemented visualiza-
tion techniques were used to produce images for a number
of popular-science publications[19, 20, 22, 97, 112, 113, 116,
129, 162].

7.1 Comparison of Rendering
Techniques

Relativistic polygon rendering extends the normal rendering
pipeline by a relativistic transformation of the vertex coordi-
nates for the triangle meshes representing the scene objects.
The relativistic transformation is added to the beginning of
the rendering pipeline. Therefore, computer graphics hard-
ware can be utilized for rendering in real-time. The frame
rate is usually limited by the floating point performance of
the processor due to the transformation of the vertices and by
the polygon rate of the graphics board due to a high number
of polygons for the finely remeshed surface representations.
The relativistic transformation can be parallelized on a per-
vertex basis, so the relativistic extensions do not impair per-
formance. The same rendering speeds are achieved for rela-
tivistic rendering as for standard non-relativistic rendering on
a typical multi-processor and multi-pipe architecture. Since
the full three-dimensional structure of the scene objects is pre-
served, moving and animated objects are possible. Further-
more, an unphysical outside view can be adopted to display
the photo-surface, allowing for another type of visualization.

Image artifacts are a disadvantage of relativistic polygon
rendering. They are introduced by the linear connection be-
tween the transformed vertices through straight edges. The
error depends on the angular span under which each single
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triangle is viewed and might become very large for objects
closely passing by. The artifacts can be reduced by a fine
remeshing of the original objects in a preprocessing step or
by an adaptive subdivision scheme during runtime. Another
problem is the inappropriate handling of relativistic illumina-
tion. Only ambient lighting and special cases of diffuse reflec-
tion are correctly modeled. Advanced shading techniques can-
not be mapped onto the hardware-assisted relativistic polygon
rendering pipeline. Furthermore, the Doppler and searchlight
effects have to be computed in software and are not supported
by graphics hardware. Therefore, the performance advantage
is lost for the visualization of relativistic illumination.

In conclusion, the main application of relativistic polygon
rendering is real-time simulation of apparent geometry, partic-
ularly in virtual environments.

Special relativistic ray tracing can be organized in two
subclasses. The first subclass is just an enriched three-
dimensional ray tracer taking into account the motion of the
camera. The light sources and the scene objects have to be at
rest relative to each other. A relativistic three-dimensional ray
tracer is easily implemented. Existing non-relativistic systems
need only minimal changes in the ray projection unit to allow
for the aberration of light and the Doppler and searchlight ef-
fects at the position of the observer. The second subclass is a
four-dimensional ray tracer taking into account the complete
spacetime information for all objects, light rays, and intersec-
tion calculations. The implementation is more complex, since
all data structures for rays and intersections have to include
spacetime coordinates. Four-dimensional ray tracing allows
to visualize moving objects.

Both ray tracing approaches generate images of high qual-
ity. They do not introduce any relativistic artifacts, as opposed
to relativistic polygon rendering. All relativistic effects on il-
lumination can be correctly visualized. The major deficiency
of ray tracing are high computational costs, which do not per-
mit real-time applications. However, ray tracing allows easy
parallelization, thus reducing the overall rendering times.

To sum up, ray tracing is best suited for the production of
high-quality images, in particular, for high-resolution illustra-
tions and movies.

Relativistic radiosity is split in two steps. The first step
solves for the radiosity at discrete surface patches in object
space and is independent of the viewer position and velocity.
In the second step, a renderer computes a particular view from
the complete solution. Both polygon rendering and ray tracing
are suitable for rendering. Therefore, the areas of application
depend on the chosen rendering system.

Radiosity with polygon rendering is ideal for walk-
throughs at high velocities. It does not introduce the illumi-
nation artifacts that might be present in relativistic polygon
rendering, since radiosity is restricted to diffuse materials. In
addition, the geometric artifacts are less prominent because a
fine meshing of the surfaces is already required for the radios-
ity computations. Therefore, the main application of radiosity
with polygon rendering are interactive walk-throughs and, to
some extent, production of illustrations and movies.

Ray-traced radiosity has the burden of high computational
costs. Hence, it is essentially limited to the production of high-
quality images and movies showing scenes made of diffuse
materials.

Texture-based relativistic rendering utilizes the texture-
mapping hardware to implement the aberration of light and
the Doppler and searchlight effects. In contrast to relativistic

polygon rendering, the relativistic transformation is appended
at the end of the rendering pipeline. In this way, every pixel in
the image plane is affected by the relativistic transformation.

Texture-based relativistic rendering does not need any mod-
ification of the scene or the core rendering method. It does
not increase the number of triangles of the scene objects to be
rendered. It has no extra computational costs per vertex. It
does not introduce the geometric artifacts present in relativis-
tic polygon rendering. Most importantly, a physically correct
model for the calculation of illumination is implemented.

The frame rate for the texture approach is limited by the
pixel fill-rate, by the operations in the rasterization stage, and
by the bandwidth between frame buffer and texture memory
and between frame buffer and main memory. Since an in-
creased pixel fill-rate is important for other computer graphics
applications such as volume rendering, there will be a contin-
uous effort of hardware developers to achieve higher pixel fill-
rates. On the tested hardware, both the texture-mapping and
the polygon rendering approaches achieve comparable frame
rates, allowing interactive applications.

Relativistic texture mapping, however, requires high-
performance graphics hardware. Particularly demanding is the
implementation of the searchlight and Doppler effects, which
needs pixel texture hardware. Texture-based rendering is lim-
ited to the visualization of high-speed motion through static
scenes. Moving scene objects cannot be considered. Another
drawback are sampling and aliasing artifacts, both for color
and geometry. Color aliasing will be significantly reduced by
frame buffers with increased color channels depths. Geome-
try aliasing could be avoided by texture filtering. However, it
is not clear how filtering could be efficiently implemented on
available hardware. Finally, relativistic texture-mapping can-
not be parallelized by using multiple processors, since it is
purely based on graphics hardware.

Therefore, texture-based relativistic rendering is most ap-
propriate for interactive applications which visualize special
relativistic effects on both geometry and illumination.

Image-based relativistic rendering closes the gap between
well-known non-relativistic image-based techniques and rela-
tivistic visualization. I have shown how all relativistic effects
on image generation can be covered by the Lorentz transfor-
mation of the plenoptic function. Therefore, only slight modi-
fications of existing rendering techniques are required to in-
corporate the physically correct rendering of super-fast ob-
jects. Existing methods can be extended for relativistic visual-
ization by adding the Lorentz transformation of the plenoptic
function to their rendering pipelines.

The advantages of image-based relativistic rendering are
essentially those of standard image-based rendering. Labo-
rious three-dimensional modeling is dispensable; data is ac-
quired by standard cameras. Photo-realism is easily achieved.
Rendering performance is high. Image-based relativistic
rendering can be applied to both real-world and computer-
generated images. In this way, even non-relativistic programs
which do not allow modifications of their rendering engine can
be used to generate relativistic images.

One limitation of image-based relativistic rendering is the
restriction to static scenes. Another issue is the acquisition of
image data for large viewing angles, especially, when produc-
ing movies.

Image-based relativistic rendering allows to generate pho-
to-realistic images of rapidly moving real-world objects with
great ease. Therefore, it is a powerful tool to produce movies
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Table 7.1: Comparison of rendering techniques.

RT3 RT4 PR TBR IBR

performance - - ++ + +
relativistic illumination + + - + +
moving objects - + + - -
image quality + + - o ++
movie production + + - - o
interactivity - - + + +

and snapshots for both entertainment and educational pur-
poses. Due to high rendering performance, even interactive
applications are possible.

The comparison of the special relativistic rendering meth-
ods is summarized in Table 7.1. The names of the techniques
are abbreviated as follows: RT3 (three-dimensional ray trac-
ing), RT4 (four-dimensional ray tracing), PR (polygon render-
ing), TBR (texture-based rendering), and IBR (image-based
rendering). The qualities of the respective methods are graded
from perfect (++), via good (+) and satisfactory (o) to insuf-
ficient (-). Relativistic radiosity is missing in the table. It is
subsumed in the properties for ray tracing or polygon render-
ing, depending on the chosen rendering method.

7.2 Future Work

Future work might cover further development and improve-
ment of rendering techniques. The performance of relativistic
polygon rendering could be increased by adopting methods
from non-relativistic rendering, such as occlusion culling and
multi-resolution algorithms. Moreover, the implementation
of an adaptive subdivision scheme would reduce the artifacts
which are caused by the non-linear relativistic transformation
of the vertices.

In the texture-mapping approach, the issue of rendering per-
formance and image quality could be addressed as well. A
limiting part in the rendering process is the pixel fill-rate for
the generation of the radiance map. The number of textures
can be reduced if only that part of the sphere actually viewed
by the relativistic observer is covered by textures. In addition,
the resolution of the textures could be adapted to the magnifi-
cation by the aberration of light. This will increase rendering
speed and enhance image quality. Texture filtering is highly
desirable, but it is not clear how filtering could be supported
by existing hardware. The situation might change with the
development of improved graphics boards.

Image-based relativistic rendering lacks a practical system
for data acquisition in movie productions, which also is the
case for most other image-based rendering methods. The de-
veloped robot-based camera system is too slow to be useful
for sampling panoramas along a camera path. The problem
can be approached twofold. The first approach targets at an
improvement of the data-collecting apparatus. Either a system
of several miniature CCD cameras could be coupled to cover
a large field of view, or an optic which widens the field of
view to an appropriate extent could be employed. The second
approach utilizes sophisticated reconstruction methods which
allow to interpolate between panoramas taken at widely sepa-
rated camera positions.

The following ideas could be pursued to improve the vir-
tual environments and the interaction techniques. A second,
exocentric view on the virtual world could be helpful to im-
prove navigation and enrich the physical understanding. Sim-
ilarly to the world-in-miniature (WIM) technique by Stoakley
et al.[152], an outside view which is displayed in addition to
the egocentric view could be investigated. In addition, space
exclusion, i.e., collision detection, could serve as a visual feed-
back technique to improve navigation.

A challenging task is the investigation of the acceleration
of extended bodies. A physical model for the accelerated mo-
tions of such objects would lead to a physics-based implemen-
tation of animation within special relativity.
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Chapter 8

Introduction to the Visualization of General Relativity

In Einstein’s general theory of relativity, the geometrical prop-
erties of the four-dimensional manifold of space and time are
determined by gravitation. A common problem in general rel-
ativity is that many terms depend on the chosen coordinate
system and do not have a direct physical interpretation. For
example, this is the case for the spatial and temporal coordi-
nates or the metric itself. Therefore, I specifically focus on
visualization techniques which represent geometrical proper-
ties and are independent of coordinate systems.

The first part of this thesis has exclusively dealt with the
visualization of special relativity, i.e., flat spacetimes, which
cannot describe gravitation. This second part extends visual-
ization techniques to curved spacetimes of general relativity,
which include gravitational phenomena.

In this thesis, the visualization of special relativity is re-
stricted to the display of visual perception by a fast moving
observer. The visualization of general relativity covers a wider
field of principal visualization techniques because the geome-
try of curved spacetimes is much more complex than the ge-
ometry of the flat Minkowski space. The basic visualization
techniques are the following.

First, the direct visual appearance of objects under the influ-
ence of a gravitational field is investigated. This is in the tra-
dition of special relativistic visualization. Ray tracing in four-
dimensional curved spacetime is the state-of-the-art technique
to visualize the appearance of objects within a gravitational
field. It reverses the way of the light rays by tracing them
from the observer back in time into a scene of objects. In this
context, I specifically address gravitational lensing effects and
caustics caused by gravitational fields.

Secondly, the geometry of curved spacetime itself is visu-
alized. Here, not the full four-dimensional spacetime is con-
sidered, but only a two-dimensional spatial hypersurface. The
geometry of such a two-dimensional surface is displayed by
embedding in flat three-dimensional space.

Thirdly, classical visualization is pursued. In the context of
this thesis, classical visualization means the visual represen-
tation of data from relativistic simulations without taking into
account the curvature of spacetime. Techniques known from
other fields of scientific visualization can be adapted in order
to illustrate quantities specific to relativistic systems.

8.1 Previous Work

In the physics and computer graphics literature, there are
some articles concerned with the appearance of objects un-
der the influence of gravitational light deflection. Usually,

only well-known metrics are investigated, which are provided
in closed form. The first example is the Schwarzschild so-
lution for a spherically symmetric static distribution of mat-
ter. For example, Nollert et al.[121] and Ertl et al.[48], in-
vestigate the appearance of a neutron star under orthographic
projection. A graphically more sophisticated visualization
of the Schwarzschild metric is presented by Nemiroff[114].
Kraus[88] also considers light deflection around a neutron
star by means of ray tracing. Nollert et al.[120] give a
comprehensive presentation of general relativistic ray tracing.
Gröller[63] proposes a generic approach to non-linear ray trac-
ing as a visualization technique.

Bryson[21] presents a virtual environment for the visual-
ization of geodesics in general relativity. He shows examples
of the Schwarzschild and Kerr solutions. This approach is dif-
ferent from ray tracing because geodesics are not used to pro-
vide color information for pixels on the image plane, but the
whole trajectory of a photon in spacetime is displayed. This
technique has the disadvantage of depending on a chosen co-
ordinate system.

Classical visualization of relativistic data is investigated by
Lehle[92] in detail. Since classical visualization makes use
of standard techniques from other fields of scientific visual-
ization, there exists ample previous and related work, cf., for
example, the textbook by Nielson et al.[117].

8.2 Outline

In Chapter 9, general relativistic ray tracing is described, in-
cluding the basic physical and mathematical aspects of light
propagation in curved spacetimes. I present a generic object-
oriented relativistic extension to standard ray tracing in three-
dimensional flat space. The focus is on the suitability of ray
tracing as a visualization technique in gravitational research;
two explicit examples are shown in detail—namely the visual-
ization of the rigidly rotating disk of dust and the warp drive.
Finally, an extension to the visualization of non-trivial topolo-
gies is proposed. The spacetime of a simple wormhole is im-
plemented as an example.

The following chapter specifically deals with gravitational
lensing. I present a brief overview of standard lensing theory
and some examples of visualization of standard lensing. An
extension to ray tracing is developed to incorporate visualiza-
tion of standard lensing.

Then, two alternative means of visualizing gravitational
lenses are proposed. The first technique directly utilizes ray
tracing in order to show how a gravitating body affects the ap-
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pearance of background objects. Images and results are com-
pared to standard methods from image synthesis in gravita-
tional lensing. A second visualization technique is proposed
which allows to find caustic surfaces and thus some charac-
teristic properties of light propagation under the influence of
gravitation.

In Chapter 11, the visualization of the inner geometry of
two-dimensional surfaces is investigated. A numerical method
for the isometric embedding of surfaces with spherical topol-
ogy is described. The application of this visualization tech-
nique to data from numerical relativistic simulations is demon-
strated.

Chapter 12 deals with classical visualization in general rela-
tivity. A well-known visualization technique—height fields—
is improved to achieve better image quality for a specific ap-
plication in the simulation of neutron stars.

Chapter 13 summarizes the second part of the thesis and
gives an outlook on possible future work.



Chapter 9

General Relativistic Ray Tracing

Gravitation determines the geometrical properties of the four-
dimensional manifold of space and time. As a consequence
of the influence of the gravitational field created by a massive
object, for example a black hole, the propagation of light is
considerably affected. Conversely, the study of the properties
of light rays conveys information about the underlying geo-
metrical structures.

In this chapter, ray tracing in four-dimensional curved
spacetime is presented as a technique to visualize the appear-
ance of objects under the influence of gravitation. Large sets
of light rays are considered and represented in a very compact
form in order to give an intuitive and geometric approach. Ray
tracing is based on geometric optics. It reverses the way of the
light rays by tracing them from the observer (camera) back in
time into a scene of objects, where the bending of light rays
has to be considered.

A common problem in general relativity is that many terms
depend on the chosen coordinate system and do not have a di-
rect physical interpretation. Although an abstract geometric
and coordinate-free formulation of curved spacetime is feasi-
ble, most calculations and numerical simulations are based on
coordinates. A major advantage of ray tracing is its indepen-
dence of the coordinate system, even though the underlying
data is given in specific coordinates. The final images are re-
sults of agedanken experiment: what would an observer see,
what would a camera measure? Hence, the images have an
immediate physical meaning and are coordinate-free. The re-
sulting pictures are observables and independent of the chosen
coordinate system. This is an important feature and advantage
in the realm of general relativity.

General relativistic ray tracing is presented as a tool in grav-
itational physics in my paper[172].

9.1 Theoretical Background

In this section, only a very brief overview on the mathemati-
cal and physical background of light propagation within gen-
eral relativity can be given. A detailed presentation of general
relativity can be found, for example, in Misner et al.[107] or
Weinberg[166].

9.1.1 Spacetime as a Manifold

General relativity describes spacetime as a curved manifold.
The mathematics of differential geometry provides a frame-
work for such curved manifolds.

A manifold is described by a collection of coordinate
charts. A coordinate chart is a map from an open set in the
manifold to an open set of the coordinate system, which pro-
vides a way of expressing the points of a small neighborhood
on a manifold as coordinates. The map must be one-to-one
and, in fact, must be a diffeomorphism on a smooth manifold.
In general, a single coordinate chart does not suffice to cover
the whole manifold. For example, a manifold of non-trivial
topology cannot be described by a single coordinate system.
Therefore, the concept of anatlas is introduced. An atlas
is a set of consistent coordinate charts on a manifold, where
consistent means that the transition functions of the charts are
smooth. To sum up, an atlas corresponds to a collection of
maps, each of which shows a piece of the manifold.

Length measures on the manifold are expressed by thefirst
fundamental formor themetric tensor. The metric tensor,gµν,
at a point in the manifold gives rise to the infinitesimal dis-
tanceds, with the line element

ds2 = gµν dxµdxν;

wheredxµ is an infinitesimal distance in theµ direction of the
coordinate system. Here and in the following, the Einsteinian
sum convention is applied, i.e., summation over double index
variables is implied.

Spacetime is apseudo-Riemannianmanifold; its metric is
not positive definite. In fact, for any single point in spacetime,
there exists a coordinate transformation which brings the met-
ric tensor at that point to the form of the flat Minkowski met-
ric: spacetime is aLorentzianmanifold. Physically speaking,
this means exactly the equivalence principle, i.e., that one can
always find a local inertial frame of reference.

9.1.2 Geodesics

Paths of objects under the influence of gravitation are identical
to geodesics. Geodesics are the “straightest” lines in curved
spacetime and have extreme lengths. Geodesics are solutions
to a set of ordinary second-order differential equations, the
geodesic equations,

d2xµ

dλ2 + Γµ
νρ

dxν

dλ
dxρ

dλ
= 0; (9.1)

whereλ is an affine parameter for the geodesic line and the co-
ordinatesxµ describe the location of the points on the geodesic
line. The Christoffel symbolsΓµ

νρ are determined by the met-
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ric according to

Γµ
νρ =

1
2

gµα
�

dgαν
dxρ +

dgαρ
dxν �

dgνρ
dxα

�
;

with gµα being the inverse ofgµα.
Geodesics can be partitioned into three classes. Depend-

ing on their length, they are denoted timelike, spacelike, or
lightlike geodesics. Massive objects move along timelike
geodesics, whereas photons move along lightlike geodesics.

9.1.3 Light Propagation

Ray tracing is focused on the propagation of light through
spacetime. It is based on geometric optics, wave effects are
neglected. In this framework, the propagation of electromag-
netic waves is represented by light rays. Light rays are identi-
cal to lightlike (or null) geodesics and obey the null condition,

gµν
dxµ

dλ
dxν

dλ
= 0: (9.2)

The fact that light rays are null geodesics can be explicitly de-
rived from Maxwell’s equations within general relativity. The
following presentation follows Schneider et al.[141, Chap-
ter 3]

In general, Maxwell’s equations cannot be solved explicitly
in curved spacetimes. The ray tracing application, however, is
focused on a specific kind of electromagnetic waves which is
nearly plane and monochromatic on a scale that is large com-
pared to a typical wavelength, but small compared to the typi-
cal radius of curvature of spacetime. The light investigated in
ray tracing is a superposition of the electromagnetic “locally
plane” waves. These “locally plane” waves can be represented
by an approximate solution of Maxwell’s equations in a short-
wave approximation:

Fµν �ℜ
n

e
i
ε S
�

Aµν +
ε
i
Bµν

�
+O

�
ε2
�o

; (9.3)

whereε�1S is the phase, i.e., a real scalar field, andAµν and
Bµν are skew-symmetric, complex tensor fields. The book-
keeping parameterε serves to identify orders of magnitude and
can be absorbed intoSandBµν at the end of the calculations.
Fµν is the electromagnetic field tensor.

For an observer moving along the world linexµ(τ) with
proper timeτ and four-velocityuµ = dxµ=dτ, the circular fre-
quencyω of the wave is defined as

ω =�
dS
dτ

=�S;µuµ = kµuµ;

with ε = 1 being supposed. The four-wave vector is

kµ =�S;µ:

Maxwell’s equations are solved by employing Eq. (9.3) in the
asymptotic limitε ! 0. By inspecting terms of orderε and
ε�1, we obtain that

kµkµ = 0; (9.4)

i.e., that the wave vector is a null vector, cf. Eq. (9.2), and that
the phase obeys the eikonal equation,

gµνS;µS;ν = 0:

Based on the wave vector, the light rayxµ(λ) is defined by

dxµ

dλ
= kµ;

whereλ is an affine parameter. By differentiating the tangent
vectorkµ of a light ray covariantly along the light ray, we ob-
tain from Eq. (9.4)

kµkν
;µ = gνηkµkη;µ = gνηkµkµ;η =

1
2

gνη �kµkµ
�

;η = 0:

kµ is a gradient ofS, thereforekη;µ = kµ;η. The final result,

kν
;µkµ = 0; (9.5)

is the geodesic equation for light rays. When expressed in
terms of Christoffel symbols, the above equation is identical
to the alternative form of the geodesic equation (9.1).

The null geodesics are of great importance because they
determine the causal structure of spacetime, i.e., they separate
regions which cannot have any causal influence on a given
point in spacetime.

9.1.4 Frequency Shift and Transformation of
Specific Intensity

An observer moving with four-velocityuµ registers a circular
frequency of an electromagnetic wave,

ω = kµuµ: (9.6)

The wave vectorkµ undergoes a parallel transport along the
light ray according to the geodesic equation (9.5). For exam-
ple, the geodesic equation has to be solved forkµ to find the
frequency shift of a photon traveling through the spacetime of
a gravitational field.

Usually, three types of frequency shift are distinguished:
Doppler shift, cosmological redshift, and gravitational red-
shift. This distinction is somewhat artificial, since the change
of frequency can be treated in the unified framework of gen-
eral relativity, as described above. Nevertheless, the differen-
tiation can help to understand the physical origins of redshift.
Doppler shift is attributed to a motion of the observer or the
light source, cosmological redshift to the expansion of the uni-
verse. Gravitational redshift is caused by the influence of a
gravitational source. In the case of a time-independent metric
with g0i = 0, the quantity

ωlocaljg00j
1=2 = const.

is conserved. In this way, the change of frequency can conve-
niently be calculated.

The transformation of specific intensity can be derived
on the grounds of kinetic theory and Liouville’s theorem
in curved spacetime. A presentation of kinetic theory can
be found, for example, in work by Ehlers[43] and Misner
et al.[107, Chapter 22.6]. Specific intensity is identical to
frequency-dependent radiance used in Part One. This change
of notation takes into account the different usage in the litera-
ture in the fields of general relativity and computer graphics.

Let us consider a swarm of particles (massive or massless)
which move through spacetime on geodesic world lines, with-
out colliding. A local Lorentz observer measures a volume in
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phase space,V = VxVp, covered by the particles. The par-
ticles are located in the three-dimensional spatial volumeVx
and have momenta in the rangeVp. Liouville’s theorem in
curved spacetime states that the phase-space volumeV occu-
pied by a given set of particles is independent of the location
along the world line of the particles. Moreover, the volumeV
is independent of the local Lorentz frame in which it is mea-
sured.

The number density in phase space is defined as

N = N=V ;

whereN denotes the number of particles. Liouville’s theorem
implies thatN is conserved along a particle’s path through
spacetime,

dN (x(λ); p(λ))
dλ

= 0;

wherex(λ) is the four-position andp(λ) the four-momentum
of the particle. For the application to light propagation, the
number density in the local Lorentz frame is expressed in
terms of the specific intensityIν and the frequencyν of the
light,

N = h�4 Iν
ν3 ;

whereh is Planck’s constant.
This means that the ratioIν=ν3 is invariant from observer

to observer and from event to event along the photon’s world
line:

Iν=ν3 = const. (9.7)

The frequency shift and the transformation of specific inten-
sity can therefore be treated simultaneously in the ray tracing
implementation in order to model shift in color and brightness.
Observe that this result is identical to the searchlight effect in
flat spacetime. It is the generalization of the transformation
of specific intensity (frequency-dependent radiance) to curved
spacetime.

9.2 Ray Tracing in a Single Chart
Spacetime

In this section, ray tracing in a restricted class of spacetimes is
presented. The considered spacetimes have to be described by
a single chart, i.e., a single coordinate system. In this way, a
standard three-dimensional Euclidean ray tracing system can
be easily extended to incorporate general relativistic render-
ing.

An object-oriented concept is supposed for the standard
three-dimensional ray tracing program in which all relevant
parts of the visualization system are represented by objects,
cf. Sect. 5.2. The extension of the original functionality can
be included by subclassing.

Figure 9.1 shows the basic structure of such an idealized ray
tracer. The image plane is sampled by theSample Man-
ager , which uses theProjector to generate aRay cor-
responding to the pixel under consideration. TheRay com-
municates with theScene in order to find intersections with
scene objects, calculate secondary rays and shadow rays, and
determine illumination. Finally, the resulting color is stored in
the image by theSample Manager .

In this object-oriented framework, relativistic rendering re-
quires the following four extensions.

Integration of Photon Path
Description of Spacetime

Sample Manager

Projector

Scene

Ray

Ray

Figure 9.1: Structure of the ray tracing system.

First, the standardRay class representing a straight light
ray in three dimensions is replaced by a class representing a
bent light ray in four dimensions. This bent ray is approxi-
mated by a polygonal line whose points possess one temporal
and three spatial coordinates.

Secondly, the description of theScene objects has to be
extended from three spatial coordinates to four spacetime co-
ordinates. By including the temporal coordinate, moving and
animated objects can be represented. The description of the
light ray and the object utilizes the restriction to a single chart
because both are described by a single four-dimensional coor-
dinate system.

Thirdly, the standard rayProjector has to be modi-
fied. The new ray projector generates a light ray whose ini-
tial position in spacetime and initial spatial direction are de-
termined by the position, orientation, and field of view of the
observer’s camera and by the coordinates of the correspond-
ing pixel on the image plane. The time component of the ini-
tial direction is fixed by the null condition (9.2). Therefore,
the geodesic equations (9.1) yield an initial value problem for
ordinary differential equations. There exist well-known nu-
merical methods for solving this problem, cf., for example,
Numerical Recipes[130].

The projector communicates with the solver for the
geodesic equations (9.1) and, in this way, provides the in-
terface to the physics of spacetime. The system of ordi-
nary differential equations can be solved by numerical inte-
gration. The standard technique in the implemented system
is the Runge-Kutta method of fourth order with adaptive step
size control, but other methods which are better suited for the
numerics of a specific problem can be included as well. The
integrator solves the geodesic equation both for the position in
spacetime,xµ, and the tangent vector,kµ. In this way, the path
of the photons is known and can be used to perform calcula-
tions of intersection with scene objects.

Fourthly, the transported wave vector can be used to model
frequency and intensity changes in the registered light. Equa-
tion (9.6) provides the frequency shift, Eq. (9.7) yields the
transformed specific intensity. TheProjector takes into
account the modified power spectrum of the incoming light in
order to return the transformed tristimulus values to theSam-
ple Manager .

The advantage of this modular and object-oriented con-
cept is a freedom of choice of the simulated system, com-
bined with a complete, sophisticated rendering environment
and only minimal extra implementation costs. Any physical
configuration can be examined by replacing the module which
supplies the information about the metric and the Christoffel
symbols.
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Figure 9.2: Ray tracing in Schwarzschild metric.

9.2.1 Implementation and Results

The implementation of general relativistic ray tracing is based
onRayViS[64], which is an object-oriented and easily extensi-
ble ray tracing program written in C++. InRayViS, all relevant
parts of the visualization system are derived from abstract base
classes which allow the extension of the original functionality
by subclassing. The current implementation of general rela-
tivistic ray tracing does not support changes in color or bright-
ness due to shifts in frequency or specific intensity of photons.
Secondary rays and shadow rays are neglected as well. A de-
tailed documentation of the relativistic extension can be found
in Appendix C.3.

In standard three-dimensional ray tracing, rendering time
is significantly determined by the computation of the intersec-
tions between rays and objects. This is not true for general rel-
ativistic ray tracing because here the generation of bent light
rays by solving the geodesic equations plays a dominant role.
In typical applications, general relativistic ray tracing is two
to four magnitudes slower than non-relativistic ray tracing.

Therefore, parallelization is an urgent need for general rel-
ativistic ray tracing. Fortunately, the computation of the null
geodesics and the ray–object intersections for one pixel is in-
dependent of those for the other pixels. Hence, parallelization
is performed on a per-pixel basis and utilizes a domain decom-
position on the image plane. The granularity can be as fine as
a single line on the image plane in order to achieve good load
balancing. The implementation makes use of MPI[104] and
thus is platform-independent. It scales well, even up to a sev-
eral hundred nodes on a massive-parallel architecture such as
the CRAY T3E.

Figure 9.2 shows results of general relativistic ray tracing
for the Schwarzschild metric. A portrait of Einstein moves be-
hind the gravitational source to illustrate the bending of light.
The Schwarzschild metric is only a test case for general rel-
ativistic ray tracing. Physically more interesting and more
complex spacetimes are discussed in detail in the following
two sections.

9.3 Visualization of the Rigidly
Rotating Disk of Dust

In this section, the visualization of the general relativistic
rigidly rotating disk of dust is investigated. This project is
joint work with the group for gravitational theory at the Uni-
versity of Jena, in particular, with Marcus Ansorg. Results can
also be found in our paper[173].

The general relativistic gravitational field created by the
rigidly rotating disk of dust was first studied numerically in
1971 by Bardeen and Wagoner[11]. The global analytical so-
lution of Einstein’s field equations for this object was found in
1995 by Neugebauer and Meinel[115]. Their explicit expres-
sions for the metric coefficients can be used to create a direct
numerical implementation of the geodesic equation.

9.3.1 The Metric

Einstein’s field equations for the rigidly rotating disk of dust
can be reduced to a single non-linear complex partial differ-
ential equation—the so-called Ernst equation—for which a
boundary value problem has to be solved[47, 87]. Neugebauer
and Meinel succeeded in solving this problem by means of
the inverse scattering method, a technique known from soliton
theory.

In Weyl-Papapetrou coordinates(ρ;ζ;φ;t), the metricgµν
assumes the form

0
BB@

e2(k�U) 0 0 0
0 e2(k�U) 0 0
0 0 �a2e2U +ρ2e�2U �ae2U

0 0 �ae2U �e2U

1
CCA ;

with
gµν;φ = gµν;t = 0;

and withgµν possessing reflection symmetry with respect to
the planeζ = 0, i.e.,

gµν(ρ;ζ) = gµν(ρ;�ζ):

The resulting field equations turn out to be equivalent to the
Ernst equation,

ℜ f

�
f;ρρ + f;ζζ +

f;ρ
ρ

�
= f 2

;ρ + f 2
;ζ;

for the Ernst potentialf which is defined by

f = e2U + ib with b;ζ =
e4U

ρ
a;ρ; b;ρ =�

e4U

ρ
a;ζ:

The remaining metric functionk can be calculated from the
functionsU anda by quadratures.

Neugebauer and Meinel found the Ernst potential for
the rigidly rotating disk of dust in terms of ultraelliptic
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Figure 9.3: Visualization of the rigidly rotating disk of dust. The relativistic parameter µ is 0.1, 0.7, 3, from left to right.

functions[115]. In their expressions, the Ernst potential de-
pends on a parameterµwhich is related to the angular velocity
Ω and the radiusρ0 of the disk by

µ= 2Ω2ρ2
0e�2V0 with V0(µ) =U(ρ = 0;ζ = 0;µ):

The parameterµ runs on the interval[0;µ0] with µ0 =
4:62966: : :. Forµ� 1, the Newtonian limit of the Maclaurin
disk is obtained;µ! µ0 andρ0 ! 0 yields the extreme Kerr
solution. Forµ> µe� 1:69, the disk creates an ergoregion in
which the metric function(�e2U ) is positive.

9.3.2 Visualization Results

The properties of the corresponding geometry of spacetime
can be studied, for example, by investigating the trajectories
of particles, i.e., the timelike geodesics[4]. General relativistic
ray tracing serves as another tool for examining solutions to
Einstein’s field equations. The following fields of application
are explored in detail for the example of the rigidly rotating
disk of dust, but might be useful for other metrics as well.

First, visualization allows a compact representation of a
vast number of null geodesics which are used as another
means of probing the gravitational field. Secondly, there is
great interest in “seeing” the results of theoretical work in or-
der to gain some intuitive approach to these results. Thirdly,
the communication of the theoretical research to the public
should be facilitated.

These visualization techniques can be applied to the exam-
ple of the rigidly rotating disk of dust. Respective results are
presented in the following.

Outside View

The first and straightforward approach to visualizing a given
gravitational field is to adopt an outside position. Figure 9.3
illustrates such an outside view. The three images show the
disk with varying parameterµ.

The left image presents an almost Newtonian, classical sit-
uation withµ= 0:1. The top side of the disk is colored blue.
An artificial “pie slice” texture is applied in order to visualize
rotational distortions. The middle image shows a slightly rel-
ativistic case withµ= 0:7. Due to gravitational light bending
both the top and the bottom faces are visible simultaneously.

The bottom side is colored green and brown. The right image
shows a more relativistic situation withµ= 3. Here, multiple
images of the top and the bottom emerge. Moreover, rotational
distortions caused by frame dragging (a general relativistic ef-
fect) and by the finite speed of light and the rotation of the disk
are prominent.

The outside view gives a first, intuitive approach to the
gravitating object. It is most useful for presenting the the-
oretical research to the public. For example, pictures of
the rigidly rotating disk of dust were published in a scien-
tific calendar[40] edited by the DFG (Deutsche Forschungs-
gemeinschaft).

Parameter Study

After these first visualization steps a systematic investigation
of the properties of the light rays in the metric of the rigidly
rotating disk of dust is required in order to obtain reliable sci-
entific results. Therefore, a sampling of the parameter space
for the null geodesics has to be considered.

The null geodesics are determined by two types of parame-
ters. Parameters of the first kind describe the gravitating body.
The properties of the disk of dust are completely determined
by the parameterµ. The position of the observer and the direc-
tion of the incoming light constitute parameters of the second
kind.

The sampling of the direction of the light rays is imple-
mented in the form of a 4π sterad camera, i.e., an observer
looking in all directions simultaneously. Here, the projection
onto a virtual sphere surrounding the observer is used instead
of the standard projection onto an image plane. Therefore,
the parameter space is completely sampled by generating 4π
sterad images for various values ofµ and positions of the ob-
server.

The produced panorama images are viewed with a simple,
external, OpenGL-based rendering program which maps these
images onto a sphere. The viewpoint is located at the center of
the sphere. The viewing direction can be interactively changed
by the user.

The parameter study confirms the qualitative results from
the previous subsection, i.e., multiple images of the top and
the bottom side and rotational distortions. In addition, new
interesting results are found for observers that are closer to
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Figure 9.4: Fractal-like structures and self-similarity in the gravitational field of the rigidly rotating disk of dust with µ = 3. The observer is located on
the symmetry axis and is zooming in on the image.

the disk of dust. These results are described in the following
subsection.

Fractal-Like Structure

An interesting result of the parameter study is the existence of
fractal-like structures created by the gravitational field of the
rigidly rotating disk of dust. Figure 9.4 shows a typical exam-
ple. Here, the position of the observer and the parameterµ= 3
are fixed. The observer is located on the axis of symmetry and
is looking towards the edge of the disk. The leftmost picture
shows a snapshot with a wide angle field of view. Parts of the
top side of the disk are visible in the lower part of the picture.
An image of the bottom side is found directly above this first
image of the top side. Further above, alternating images of the
top and the bottom faces follow. The pictures to the right doc-
ument increased zooming in on the original picture, whereas
the rightmost image shows a part of the leftmost image which
has a size approximately ten orders of magnitude smaller than
the original image. This series reveals self-similarity and a
fractal-structure.

Normally, Poincar´e sections are used to investigate the sta-
bility of a physical system, for example, the properties of time-
like geodesics[4]. For a description of Poincar´e sections, I
refer to the numerous textbooks on non-linear dynamics and
chaos, for example, Alligood et al.[3] or Ott[122]. Poincar´e
sections require the investigation of bound orbits. However,
bound orbits of photons are hard to find or sometimes do not
even exist. Therefore, Poincar´e sections are usually not appli-
cable to null geodesics. Conversely, ray tracing can be em-
ployed in this setting in order to give indications about the
behavior of the system.

General relativity is an excellent example for a non-linear
dynamic theory. However, the standard measures of chaos are
based on metrical properties of phase space and thus depend
on the chosen observer. Therefore, gauge-dependent measures
of chaotic behavior such as Lyapunov exponents should be re-
placed by invariant measures such as fractal dimensions. Frac-
tal methods are applied within general relativity, for exam-
ple, by Dettmann et al.[39] or Cornish and Levin[30]. The
chaotic behavior of geodesics can be investigated by fractal
methods. An example is the examination of the geodesics in
the Einstein-dilaton-Maxwell two-center spacetimes[29], the
relativistic analog of the two fixed-centers problem. The ray-
tracing approach could be extended to incorporate techniques
for measurements of fractal dimensions.

9.4 Visualization of the Warp Metric

The visualization of the warp drive metric is another exam-
ple of general relativistic ray tracing. The warp metric is a
dynamic metric which does not conserve the energy of test
particles and photons traveling through spacetime.

Alcubierre’s solution[2] of Einstein’s field equations allows
to travel faster than the speed of light as measured in an out-
side, flat region of spacetime. Basically, the warp drive con-
structs a warp bubble which separates two flat parts of space-
time. The warp bubble is able to move faster than the speed
of light as measured in an outside, flat region of spacetime. A
spaceship which is at rest inside the warp bubble would then
travel faster than the speed of light.

The view from inside the warp spaceship was indepen-
dently investigated by Clark et al.[26]. Their scenario is re-
stricted to an observer inside the warp bubble. They focus on a
physical interpretation of the warp metric, whereas the generic
ray tracing approach of this thesis rather addresses visualiza-
tion issues and enables us to adopt any observer position.

9.4.1 The Metric

The warp drive spacetime is described by the line element

ds2 = dt2� (dx�vs f (r)dt)2�dy2�dz2;

wherevs = dxs=dt is the velocity of the warp bubble moving
along a trajectoryxs(t). A measure for the radial distance from
the center of the spacetime distortion is

r =
q

(x�xs)2+y2+z2:

The function f (r) has to be normalized to unit value at the
center of the warp bubble. It rapidly falls off at some finite
radiusR, i.e., at the boundary of the warp bubble, and asymp-
totically approaches zero at large distance. The explicit form
for f (r) in Alcubierre’s paper is

f (r) =
tanh[σ(r +R)]� tanh[σ(r�R)]

2tanh(σR)
:

This “top hat” function has an almost constant valuef � 1
aroundr = 0. It falls rapidly from f � 1 to f � 0 around
r = R, where the width of the drop-off region is determined
by the constantσ. In this way, the spacetime within the warp



9.4 Visualization of the Warp Metric 61

Figure 9.5: Visualization of the warp metric. The warp bubble and the spaceship are moving at a speed of v = 1.5c in the left and middle image, and
v = 2.5c in the right image.

bubble and outside the warp bubble is roughly flat; extreme
curvature is limited to the boundary of the bubble.

Although the warp metric is in total agreement with gen-
eral relativity, there exist some issues related to energy condi-
tions and causality. Known forms of classical matter obey the
weak energy condition(WEC), i.e.,Tµνuµuν � 0, whereTµν
is the stress-energy tensor of matter anduµ an arbitrary time-
like vector (four-velocity). By continuity, the WEC holds for
null vectors as well. The WEC implies that the energy density
measured by any observer has to be non-negative. The warp
metric, however, requires “exotic matter”, which violates the
WEC. It is known that renormalized stress-energy tensors of
quantum fields can violate the WEC. For example, the Casimir
effect produces negative energy densities. Therefore, it has not
yet been ruled out that “exotic matter” might be generated, but
so far it is not clear whether such types of material can exist at
all.

Another problem is causality. The warp drive allows to
travel faster than light with respect to an outside frame of ref-
erence. Hence, a time machine could be constructed, with
fundamental problems of determinism and causality. Ford
and Roman[52] and Pfenning and Ford[127] discuss some is-
sues related to energy conditions and causality. In the follow-
ing, these fundamental issues are not considered, but the warp
drive is visualized as it is. In fact, it might be worthwhile to
study extreme spacetimes such as the warp drive in order to
achieve a deeper understanding of the physics of gravitation.

9.4.2 Implementation and Results

The warp drive is implemented as a module in the general rel-
ativistic ray tracing concept withinRayViS, cf. Appendix C.3.
The steep drop-off at the boundary of the warp bubble causes
problems for the numerical integration of the null geodesics.
The warp module uses Runge-Kutta with adaptive step size
control to achieve an acceptable accuracy.

The overall accuracy of the numerical integration is tested
by checking the null condition for the wave vector at the end
of the light ray. Additionally, a specific check of the global
accuracy can be enabled. Here, the light rays are reversed in
time and direction when they leave the computational region.
If the numerical integration is satisfactory, the reversed light
rays will exactly return to the observer. A textured object can

Figure 9.6: Numerical accuracy of ray tracing for the warp metric with
v = 1.5c. The upper image indicates numerical problems, occuring for a
relative error ε = 10-5. The computation of the lower image is based on
ε = 10-8.

be positioned right behind the observer to visualize the quality
of the numerical integration. Normal intersection calculations,
now based on the original ray and the reversed ray, provide an
image of the textured object. An unperturbed image indicates
high accuracy, whereas cracks in the image signalize numeri-
cal inaccuracies.

Figure 9.5 compares numerical integration for relative er-
rors ofε = 10�5 andε = 10�8, respectively. The error crite-
rion ε determines the maximal relative error in a single step of
the numerical integration. The spacetime is described by the
warp metric atv = 1:5c. The upper image reveals numerical
problems, especially in the region of the warp bubble. In con-
trast, the lower image does not display any numerical errors.

Figure 9.5 shows examples of the visualization of the warp
metric. Here, the warp spaceship travels in front of the earth



62 Chapter 9: General Relativistic Ray Tracing

and moon, and Saturn. The light deflection at the warp bubble
causes astonishing visual distortions on the background ob-
jects. In addition to this outside view, a position inside the
warp bubble can be adopted, cf. Sect. 10.3. The accompany-
ing video shows further visualizations with an outside viewing
position, cf. Appendix D.1.5.

Images of the warp drive visualization were also shown
at “Seven Hills”[13], an exhibition which intends to give an
inkling of what the future of mankind may look like in the
dawning millennium. A leading-edge topic of physics like the
visualization of the warp metric is well suited for such an ex-
hibition and allows to communicate aspects of a complex sci-
entific content to a wide public.

9.5 Spacetimes of Non-Trivial
Topology

Not only do Einstein’s field equations allow curved spacetimes
but also spacetimes of various topologies. In this section, ray
tracing of spacetimes of non-trivial topologies is proposed.
This technique is specifically applied to the visualization of
wormholes, which are a prominent example for spacetimes of
complex topology, but it is not restricted to wormholes.

Since spacetimes of non-trivial topology cannot be de-
scribed by a single coordinate system, a collection of several
charts is required. The idea is to extend the general relativistic
ray tracing from the previous section to incorporate the differ-
ential geometric concept of an atlas with several charts. This
enables us to visualize spacetimes of non-trivial topologies.
Moreover, it can be useful even for ray tracing of spacetimes
with flat topology. Here, the quality of numerical integration
of null geodesics can be improved by choosing several coordi-
nate systems which are adapted to the numerics in the respec-
tive regions of the spacetime.

Differential geometry and Einstein’s field equations can
even handle non-orientable manifolds. Non-orientability im-
plies that a right-handed body which travels through space-
time might return left-handed. It is generally believed that the
CP-invariance violations observed in particle experiments for-
bid a non-orientable universe, cf. the discussion by Zel’dovich
and Novikov[185]. Nevertheless, the investigation of non-
orientable manifolds might be interesting in order to gain
further understanding of the geometry of spacetime. Non-
orientable spacetimes have not been implemented yet, but
could be considered in future work.

9.5.1 Theoretical Description of Wormholes

In general, a wormhole is regarded as a connection between
two asymptotically flat parts of spacetime. They might be used
to travel to faraway galaxies in acceptable time spans.

Flamm[50] recognized that the spherically symmetric vac-
uum solutions by Schwarzschild represent a connection be-
tween different regions of spacetime. Possible roles of
Schwarzschild wormholes and other wormholes were dis-
cussed by Weyl[179], Einstein and Rosen[45], and Wheeler
[180]. The Schwarzschild wormhole has some disadvantages
which rule it out as being a mechanism for space travel. For a
reasonably sized wormhole, the tidal forces are too big to be
sustained by a vehicle or person. Only one-directional traver-
sal is possible because a horizon and an anti-horizon are con-
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Figure 9.7: Embedding diagrams for a wormhole. The upper diagram
shows a wormhole connecting two regions of a single universe, the lower
diagram shows a wormhole connecting two different universes.

nected. Furthermore, a Schwarzschild wormhole is unstable
against small perturbations.

Morris and Thorne[111] and Morris et al.[110] propose an-
other metric which avoids the above problems. Their worm-
hole is traversable, i.e., it possesses no horizons. It exerts only
little acceleration and tidal forces onto the traveler. It is stable
against small perturbations. Therefore, it is specifically suited
for space travel. Figure 9.7 shows embedding diagrams for a
wormhole which connects two distant regions of a single uni-
verse or two different universes, respectively.

The wormhole metric has the general Schwarzschild form,

ds2 = e2Φ(r)dt2� (1�b(r)=r)�1dr2

� r2(dθ2+sin2 θdφ2):

The spatial shape of the wormhole is determined byb(r). The
redshift functionΦ(r) represents a Newtonian gravitational
potential which takes effect in addition to the spatial curva-
ture. The radial coordinater is not unique because it has a
minimal radiusrt at the throat and increases with the distance
to the throat on both sides of the wormhole. By employing the
radial proper length,

l =
Z r

rt

dr0

�
p

1�b(r 0)=r 0
;

one obtains unique coordinates and the following form for the
metric:

ds2 = e2Φ(r)dt2�dl2� r2(dθ2+sin2 θdφ2);

where 1�b(r)=r � 0.
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Figure 9.9: Flight through a wormhole connecting two different universes. From left to right, the position of the observer is described by r = 5/2rt, 5/3rt,
and 4/3rt.
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Figure 9.8: Embedding of the throat of a wormhole.

The functionΦ has to be finite everywhere to guarantee the
absence of horizons. The spacetime should by asymptotically
flat, which implies

b
r
! 0 as l !�∞:

Figure 9.8 shows the embedding diagram of the throat of a
wormhole for an example choice ofb(r). Morris and Thorne
give three explicit choices for the functionsΦ andb. Their
first class of wormholes has zero tidal force, i.e.,Φ = 0 every-
where. The second class has a finite radial cutoff for exotic
matter. The third class limits exotic matter to the throat vicin-
ity.

The traversable Morris-Thorne wormhole has some major
deficiencies. First, it requires an energy-stress tensor repre-
senting exotic matter, i.e., it violates the weak energy condi-
tion. Secondly, the wormhole enables us to realize time travel.
This initiates deep problems related to causality. In this way,
the wormhole has similar fundamental problems as the warp
drive. In the following, these issues are not considered, but the
wormhole is visualized as it is.

9.5.2 Ray Tracing Concept

An atlas can be taken into account by the following conceptual
extensions of the single chart ray tracing system.

The root node of the scene graph has to be a special type
of node which represents the wholeSpacetime . Space-

time contains a list ofCharts andChart Boundaries .
The Chart itself is a node in the scene graph. It contains
further subnodes with object descriptions with respect to the
associated coordinate system. These subnodes are identical to
the scene objects in the single chart ray tracer. TheChart
Boundary represents the boundary of a coordinate system
and provides the functionality for the transition from one co-
ordinate system to the other, i.e., the transformation of points
in spacetime and tangent vectors.

The integration of the null geodesics takes into account
the information of theSpacetime . Whenever aChart
Boundary is crossed, the current position and tangent vector
of the light ray is transformed from the old coordinate system
into the new coordinate system and integration is continued in
the new coordinates. Hence, theRay is represented by polyg-
onal lines associated withCharts .

After the generation of the light ray, the intersection calcu-
lations are performed. TheProjector communicates with
the Scene via Ray to find ray–object intersections. The
root node of theScene is a Spacetime node. Space-
time delegates the intersection computation to the respective
subnode—theChart . TheChart forwards the intersection
computation to its scene subnodes. The scene subnode per-
forms the intersection calculation in local coordinates, i.e., this
calculation is the same process as in the single chart ray tracer.

In intermediate calculations, extensive usage of vectors is
made. The concept of a vector allows for the requirements
of differential geometry by including the coordinates of the
vector itself, the coordinates of the footpoint, and a reference
to the associatedChart .

9.5.3 Implementation and Results

The current implementation of non-trivial spacetimes within
RayViSis limited to a restricted class of static wormholes with

l(r) =�(r� rt);

wherert is the radial coordinate of the throat. Here, two flat
spacetimes are connected by a throat of infinitesimal length.

This implementation was developed by Mellinger[102]. A
detailed presentation of the implementation and further results
can be found in his thesis. The full implementation of an atlas
for four-dimensional spacetime is planned in future work.
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Figure 9.10: Visualization of both ends of the wormhole connecting a single universe. The left image shows the situation as seen by the observer. In
the right image, both mouths of the wormhole are marked red. The right mouth intersects the checkered ground and is only partly visible. The green
line is a qualitative representation of an exemplary light ray that crosses the wormhole.

Figures 9.9 and 9.10 show the visualization of a worm-
hole spacetime. In Fig. 9.9, the observer is traveling through
a wormhole connecting two different universes. The travel
starts in a universe which does not contain any visible objects.
An increasing field of view is covered by the second universe
when the observer is approaching the throat of the wormhole.
The position of the observer is described by the radial coor-
dinate,r, with respect to the radial coordinate of the throat,
rt .

In Fig. 9.10, a wormhole connecting a single universe is de-
picted. The left image shows the situation as seen by the ob-
server located at an outside position. Both ends of the worm-
hole are visible for the observer. In the right image, the mouths
of the wormhole are marked red. The right mouth intersects
the checkered ground and is only partly visible. The green line
is a qualitative representation of an exemplary light ray which
enters the right mouth of the wormhole, traverses the worm-
hole, leaves the left mouth, and finally hits the surface of the
spherical scene object.



Chapter 10

Gravitational Lensing

Gravitational fields bend light rays and can thus play the role
of a lens—a gravitational lens. Gravitational lensing was early
predicted by Einstein. In fact, the light deflection measured
during the total eclipse of the sun in 1919 was the first ex-
perimental evidence for general relativity. Today gravitational
lenses are a hot topic in astronomy and are extensively used for
observations in various ways. A comprehensive presentation
of gravitational lensing can be found in the book by Schnei-
der et al.[141]. The review article by Fort and Mellier[53] is
focused on gravitational lensing by clusters of galaxies.

Figure 10.1 shows the first confirmed case of gravitational
lensing. In 1979, the QSOs (quasi-stellar objects) 0957+561 A
and B were identified by Walsh et al.[163] as a double image
of the same source. QSO 0957+561 has a redshift ofz= 1:41,
the lens has a redshift ofz= 0:36

The main difference between optical lenses and gravita-
tional lenses is that the deflection caused by a typical, spher-
ically convex, optical lens increases with the distance of the
ray from the optical axis, whereas the deflection caused by
a gravitational lens decreases with the impact parameter. A
standard optical lens has a focal point onto which rays paral-
lel to the optical axis are focused. In contrast, a gravitational
lens has no focal point. However, the qualitative behavior of a
gravitational lens can be described by its caustic surfaces. A
gravitational lens might bend light rays in a way that the light
emitted by the same source can follow different trajectories to
reach the observer, i.e., the light source is projected onto mul-
tiple points on the observer’s image plane. A caustic surface
separates regions where the image multiplicity changes.

Lensing theory is based on a couple of assumptions and ap-
proximations which are explained in the next section. Based
on this footing, astrophysical lenses can be examined to ob-
tain information about the lens, such as its mass distribution,
or about the background object, i.e., the observed data is ana-
lyzed to reconstruct the properties of the lens or the source.

In this chapter, a different approach is pursued. I target at
visualizing a known gravitational field to gain further insight
in its characteristics. Therefore, the focus is on image synthe-
sis instead of image analysis.

The outline is as follows. I start with a brief summary of
the theoretical background of standard lensing theory. Some
examples of visualization of standard lensing are presented. A
simple extension to ray tracing is developed to incorporate vi-
sualization of standard lensing. Then, two alternative means
of visualizing gravitational lenses are proposed. For both tech-
niques, the approximations underlying standard lensing theory
are dropped and the geodesic equations are completely solved.

The first technique directly utilizes general relativistic ray

Figure 10.1: Double QSO 0957+561 (from Keel[84], University of Al-
abama).

tracing. Here, objects are placed around the gravitational lens
as image sources. The mapping of these background objects
reveals distortions due to gravitational light deflection and a
possible multiplicity of points in the image plane. In this way,
it discloses some information about the structure of the lens
and, in particular, its caustics.

The second technique targets at a more systematic analy-
sis of the caustic surfaces. The deficiency of the first method
is that the background objects are only two-dimensional and
thus cannot visualize the caustic surfaces embedded in three-
dimensional space. This problem can be overcome by a three-
dimensional volumetric object which determines the image
multiplicity for points lying inside.

10.1 Theoretical Background

The following summary of facts from standard gravitational
lensing theory is based on Schneider et al.[141]. Please refer
to their book for more detailed information.

The simplest gravitational lens is a static spherical body of
massM. This Schwarzschild lens causes a deflection of light
rays by the Einstein angle,

α̂ =
2RS

ξ
;

with the impact parameterξ, the Schwarzschild radiusRS =
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Figure 10.2: General lensing system.

2GM, and the gravitational constantG. This relationship is
based on the linearized Schwarzschild metric and is valid for
small angles of deflection, which is equivalent to the condition
ξ� RS.

The general lensing situation is depicted in Fig. 10.2. The
lens is located aroundL. The line throughL and the observer
O is the optical axis of the system. The sourceSwould have
the angular positionβ if gravitational light deflection was ab-
sent. Actually, the light is deflected by an angleα̂, so the
source is observed at the angleθ. The source sphereSs has
radiusDs and is centered around the observer. The lens or
deflection sphere,Sd, has radiusDd. The “sky” of the ob-
server,So, is located in the vicinity of the observer in order
to quantify the angular positions ofθ andβ. In a cosmologi-
cal setting, all geometric terms, such as sphere, line, or radius,
refer to the three-dimensional spatial hypersurface of constant
curvature of the background Friedmann-Lemaître model and
the distances are assumed to be angular-diameter distances.

Standard lensing theory is based on the following assump-
tions and approximations. The gravitational field has to be
weak. Therefore, only small deflection angles have to be con-
sidered and the tangent planes to the spheresDs andDd can be
used instead of the spheres themselves. The angular positions
~θ and~β are regarded as two-dimensional vectors inSo. Fur-
thermore, the matter distribution has to be nearly stationary,
i.e., the velocity of the matter in the lens has to be well below
the speed of light. All these conditions are satisfied for most
astrophysical situations. However, some phenomena, such as
black holes, require more accurate modeling.

Based on the above assumptions, the lens equation de-
scribes the relationship between the unlensed position angle
~β and the image position~θ:

~β =~θ�
Dds

Ds
~̂α
�
~ξ
�
; (10.1)

where~ξ = Dd~θ is the impact parameter measured in the lens
plane. For a geometrically thin lens, the deflection angle is

determined by

~̂α
�
~ξ
�
= 4G

Z
Σ
�
~ξ0
� ~ξ�~ξ0

j~ξ�~ξ0j2
d2ξ0; (10.2)

where the integration extends over the lens plane,d2ξ0 is a
surface element in the lens plane, andΣ(~ξ0) is the surface mass
density.

The lens equation allows to calculate the true position~β for
a given image position~θ, as long as the deflection laŵ~α(~ξ)
is provided. In most applications, however, the lens equation
has to be inverted, since we want to compute the image posi-
tion from a given source position. Different approaches to this
issue are presented in the context of lens visualization in the
next section.

As already mentioned in the discussion of general relativis-
tic ray tracing, the termIν=ν3 is constant along a light ray, cf.
Eq. (9.7). The redshift is identical for the images of a single
source, and so are the respective specific intensities. The radi-
ant flux of an image of an infinitesimal source is the product
of the specific intensity and the solid angle∆Ω covered by the
image on the “sky”. The specific intensity is identical for the
lensing situation and the unlensed case. Therefore, the ratio
of the radiant fluxes for a small image and its corresponding
unlensed source is solely determined by the ratio of the re-
spective solid angles. The magnification factor is

µ=
∆Ω

(∆Ω)0
=

����det
∂β
∂θ

����
�1

;

where the 0-subscript denotes quantities in the absence of a
lens. The magnification is governed by the determinant of the
Jacobian matrix of the lens mapping.

Critical curves are defined as regions in the lens plane
where the Jacobian vanishes and the magnification factor di-
verges. This does not imply that the image is infinitely bright
because a weighted sum for extended sources has to be com-
puted and effects of wave optics have to be considered for
point-like sources. Nevertheless, the image of a source be-
comes much brighter when it is approaching a critical curve.

The mapping of a critical curve under the lens equation is
calledcaustic. The number of images changes by two if, and
only if, the source crosses a caustic. Moreover, any transparent
mass distribution with finite total mass and with a weak gravi-
tational field produces one single image of a point source if the
source is sufficiently misaligned with the lens. In conclusion,
such a mass distribution produces an odd number of images
for a point-like source. This is not true for lenses which have
points of infinite surface density, such as black holes.

10.2 Visualization in Standard
Lensing Theory

The standard problem is the inversion of the lens equation,
i.e., to find all the images for a given position of the source.
In some simple cases, this problem can be solved analytically.
In general, however, we have to find all the roots of the two-
dimensional system of lens equations by means of numerical
methods.

Frutos-Alfaro[54] describes an interactive system for visu-
alizing gravitational lenses. If the lens equation reduces to a
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Figure 10.3: Visualization of gravitational lensing. The lens is a perturbed isothermal sphere. The source consists of colored circles and moves from
left to right. The top row shows images of the source and the critical curve (blue) in the image plane. The bottom row illustrates the corresponding
positions of the source and the caustics (yellow) in the source plane.

one-dimensional polynomial function, he either computes the
roots of the lens equation exactly (for polynomials of degree
less than four) or he uses the Bairstow method for iterative
root-finding (for polynomials of higher degrees). In all other
cases, the image of a source is computed according toray
shooting[141]. Ray shooting can be considered as a special
case of ray tracing. It maps a uniform grid of points in the
lens plane onto the source plane according to the lens equa-
tion. The grid points adopt the color of the points which they
hit on the source plane. Since each of these mappings can be
associated with a light ray, ray shooting can be regarded as a
subclass of ray tracing which does not generate secondary rays
or shadow rays.

Figure 10.3 shows an example of lens visualization. The
images were produced by the interactive system due to Frutos-
Alfaro[54]. The deflecting body is an isothermal sphere with a
quadrupole perturbation, cf. Appendix B. The source consists
of colored circles. The top row shows images of the source in
the image plane and the critical curve which is marked blue.
The bottom row illustrates the corresponding positions of the
source and the caustics in the source plane. From left to right,
the source moves across the caustic, increasing the number of
images by two.

10.3 Direct Application of Ray
Tracing

As mentioned in the previous section, ray shooting is a spe-
cial case of ray tracing. Hence, the visualization of standard
lensing can be easily incorporated into a general relativistic
ray tracer. Two direct applications of general relativistic ray
tracing are investigated.

10.3.1 Standard Lensing

The first application implements visualization of standard
lensing. This yields the same results as described in the previ-
ous section. The software architecture for ray tracing in single
chart spacetime is utilized, cf. Sect. 9.2. Again, the idealized

structure of ray tracing, Fig. 9.1, is the basis for the visual-
ization system. The following extensions of non-relativistic
Euclidean ray tracing are required.

First, the standardRay class representing a straight light
ray is replaced by a class representing a bent light ray. This
bent ray is expressed by a polygonal line consisting of two
straight parts. The first part reaches from the observer to the
lens plane, the second part from the lens plane through the
source plane to infinity.

Secondly, the standard rayProjector has to be modi-
fied. The new ray projector generates the two-piece polygo-
nal line described above. The physics of the lens is supplied
by describing the deflection angle. The implemented types of
lenses and the underlying physical models are documented in
Appendix B.

The implementation of the visualization of standard lensing
is based onRayViS. Appendix C.3 contains a detailed program
documentation.

Figure 10.4 shows the visualization of the Chang-Refsdal
lens, based on ray tracing. The Chang-Refsdal lens is a su-
perposition of a Schwarzschild lens and a larger-scale matter
distribution, such as a galaxy. A description of the Chang-
Refsdal lens can be found in Appendix B.

10.3.2 Strong Light Deflection

The second application of general relativistic ray tracing im-
plements visualization of strong deflection. This application
needs no further extension of the software already developed
for general relativistic ray tracing in Chapter 9.

Lensing is visualized via the effects of the lens on the vi-
sual appearance of background objects. The main task is to
find an appropriate choice for the background objects. For ex-
ample, a planar surface with a textured structure can be posi-
tioned behind the lens, resembling the visualization technique
described in Sect. 10.2. The texture enables us to recognize
visual distortions induced by the lens.

In other cases, the observer is located close to the lens, for
example, close to the horizon of a black hole or even inside
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Figure 10.4: Visualization of the Chang-Refsdal lens, based on ray trac-
ing.

Figure 10.5: Strong deflection of light by a Schwarzschild lens.

the region of the gravitating object. Here, a sphere surround-
ing the observer can be used as a background object. If the
sphere reaches into asymptotically flat spacetime and its radius
is large enough, the image of the sphere yields the perceived
“sky”.

Figure 10.5 is a typical example of the visualization of grav-
itational lensing via the appearance of a background object.
The lens is a Schwarzschild lens, the background object is a
checkered plane. The observer, the lens, and the midpoint of
the plane lie on a line. The distance from the observer to the
lens equals the distance from the lens to the source plane. The
Einstein ring is present between the violet and red tiles. Note
that here the geodesic equation is completely integrated and
no lensing approximation is applied.

Figure 10.6 is a another example of the visualization of
gravitational lensing. The lens is a rigidly rotating disk of dust
with µ= 0:1. The observer is close to the symmetry plane of
the system. The rotation of the disk induces frame dragging,
causing asymmetric distortions on the background texture.

Figure 10.7 documents the view from inside the warp bub-
ble of the Alcubierre metric, as defined in Sect. 9.4. A check-
ered “sky” surrounds the observer and the bubble. The images
show panoramas with a vertical field of view of 120 degree.
The horizontal axis covers 360 degree. The center of the im-

Figure 10.6: Gravitational lensing by a rigidly rotating disk of dust with
µ = 0.1.

age corresponds to viewing perpendicular to the direction of
motion. The backward view is located at the left part of the
image, the forward view at the right part. The velocities in the
three images arev= 0:9c, 1:5c, and 4c, from top to bottom.

The “sky” is compressed in the forward direction. This be-
havior is qualitatively similar to the relativistic aberration of
light in special relativity. For velocities above the speed of
light, a part of the backward “sky” is no longer visible. A
conical-shaped region from which no photons can reach the
observer is generated behind the warp bubble. The spaceship
literally outruns these photons. The middle and lower image
in Fig. 10.7 reveal this behavior by contracting parts of the
texture in the backward direction to a single point. Artifacts
of the numerical integration of the geodesics are noticeable
around the backward view forv= 4c.

10.4 Caustic Finder

So far, only the visual distortions of background objects have
been used to visualize the structure of the lens. As mentioned
before, caustics appropriately describe the qualitative behavior
of lenses. A systematic visualization of caustics improves the
understanding of lensing.

Grid search[141] is a numerical method which enables us
to determine caustics. It uses a triangulation of a regular grid
in the lens plane. The triangles are mapped onto the source
plane via the lensing equation. In the source plane, every point
can be associated with the triangles containing this point. The
first application allows tracing points on the source plane back
to the lens plane. More importantly, the second application
counts the number of image multiplicities in the source plane.
The number of triangles attached to a point in the source plane
is identical to the respective image multiplicities. The caustic
lines can be identified by investigating changes of multiplicity
in the source plane.

Grid search examines the two-dimensional source plane
only and thus is restricted to one-dimensional caustic lines.
I adopt some ideas of grid search and alter and extend them to
take into account two-dimensional caustic surfaces in three-
dimensional space. The respectivecaustic finderfor two-
dimensional caustic surfaces is presented in the following sec-
tion.



10.4 Caustic Finder 69

front rightback leftright

Figure 10.7: View from inside the warp bubble. The velocity of the
spaceship is v = 0.9c, 1.5c, and 4c, from top to bottom.

10.4.1 Algorithm

The restriction to a two-dimensional source plane is dropped.
A source volume is utilized instead. The ray shooting prin-
ciple is adopted, cf. Sect. 10.2. Rays are traced from the ob-
server through the image plane into the scene. A clearly de-
fined lens plane is no longer necessary.

A triangle mesh in the image plane cannot be used, since it
is problematic to handle the mapping of a triangle in the source
volume. In fact, each pixel in the image plane is mapped to
the source volume to identify image multiplicities. The source
volume itself is partitioned into a three-dimensional grid. Each
voxel can be associated with the crossing rays and the corre-
sponding pixels in the image plane. The number of rays at-
tached to a voxel does not directly determine the image mul-
tiplicities. The main problem is to decide whether two rays
cross the same voxel because of caustics or only because they
are nearby already in the image plane. I propose the Euclidean
or the angular distance in the image plane as a criterion to dis-
tinguish multiplicities. In a typical example with 5002 pixels
in the image plane and a 2563 source volume, a standard value
for the criterion lies between 10 and 20 pixels difference.

Two light rays crossing the same voxel of thecaustic finder
are counted as multiple images, only if they satisfy this mini-
mal distance in the image plane. This method might introduce
some artifacts. On one hand, multiple images might be incor-
rectly counted if the distance criterion is chosen too small. On
the other hand, rays might be identified as single images, even
if they represent multiple images. In particular, this can be the
case for rays close to a critical curve on the lens plane. How-
ever, similar problems might occur in the original grid search
method as well. The accuracy of both techniques can be im-
proved by increasing the sampling rates.

Figure 10.8: Caustic structure for the Chang-Refsdal lens. White rep-
resents regions of the source with multiple images, black represents re-
gions without image multiplicities.

The actual algorithm for thecaustic finderis as follows. A
specific volume object is included in the scene graph. This
volume object stores the number and the initial directions of
the light rays crossing a voxel of the object. The ray tracing
process is performed in the usual way, i.e., bent light rays are
generated according to the metric and ray–object intersections
are determined. Whenever a voxel of thecaustic finderis tra-
versed during intersection tests, a counter is incremented and
the position of the pixel on the image plane corresponding to
the current ray is attached to this voxel.

In a post processing step, each single voxel is evaluated and
the number of rays coming from different areas of the image
plane are accumulated. In this way, unintentional counting
of nearby rays which cross the same voxel is avoided. The
minimal required distance on the image plane is specified by
the user. Currently, only a regular grid is implemented as a
caustic finder, but other mesh structures could be employed as
well.

The scalar field containing the image multiplicities is writ-
ten to file and visualized by an external program. There exist
numerous techniques for direct volume visualization, such as
ray casting or shear-warp factorization[90]. Shear-warp ren-
dering is mainly used for interactive explorations, whereas the
ray casting program provides images of higher quality, for ex-
ample, for illustrations.

In contrast to general relativistic ray tracing from the previ-
ous chapter, thecaustic finderprovides coordinate-dependent
data. This might cause interpretation problems in regions of
high curvature. Therefore, this visualization technique is best
suited for almost flat parts of spacetime, for example, behind
the gravitational lens at adequate distance. High computa-
tional and memory costs for a fine sampling of the volume
grid are another issue. In future work, this problem could be
overcome by utilizing an adaptive grid.
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Figure 10.9: Caustics of the Chang-Refsdal lens for different lens pa-
rameters. The caustic lines are based on analytical considerations.

10.4.2 Implementation and Results

Thecaustic finderis implemented as an extension to general
relativistic ray tracing inRayViS. Both surface and volume ob-
jects are supported inRayViS. A standard volume object is
subclassed to additionally store the image multiplicities. Cur-
rently, only a regular grid is implemented as acaustic finder,
but other mesh structures could be employed as well. A de-
tailed program documentation can be found in Appendix C.3.

Figure 10.8 shows the structure of the caustics for the
Chang-Refsdal lens. Here, the shear perturbation of the
Schwarzschild lens contains a rotational part. White repre-
sents regions of the source with multiple images, black repre-
sents regions without image multiplicities. These two regions
are separated by caustic lines. The diamond-shaped caustic is
noticeable.

In this application, thecaustic finderconsists of a thin vol-
ume which lies in the source plane. The grid has a size of
128�128�2 voxels. In this way, the volumetriccaustic finder
emulates standard methods which identify caustic lines. The
source plane in Fig. 10.8 is identical to the source plane in
Fig. 10.4.

Figure 10.9 shows the caustics for the Chang-Refsdal lens
without shear rotation. Here, the caustics originate from ana-
lytical calculations. This demonstrates that the numerical re-
sult of thecaustic finderis in agreement with the analytical
result.

Figure 10.10 visualizes the structure of the caustic surfaces
for the Chang-Refsdal lens. The lens is identical to the one
in Fig. 10.8. However, here thecaustic finderconsists of a
volume which reaches from the lens plane backwards. The
grid has a size of 128�128�256 voxels. In contrast to the
visualization of caustic lines in Figs 10.8 and 10.9, caustic
surfaces are shown.

The scalar field containing the image multiplicities was
written to file and visualized by an external volume rendering
program based on shear-warp factorization. The figure does
not directly display image multiplicities, but utilizes the gra-
dient of the scalar field in order to classify opacities and colors.
Hence, the caustics become noticeable because they indicate
a change of image multiplicity. Blue denotes a high gradient,
red a smaller gradient. The higher gradients in the vicinity of
cusps is caused by thecaustic findermethod. Based on the

Figure 10.10: Volumetric caustic structure for the Chang-Refsdal lens.

sampling of the image plane, more rays cross a voxel at the
cusp than a voxel of the same size which is located at other
parts of the caustic. This does not imply that the cusp has a
higher image multiplicity.
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Visualization of Inner Geometry by Embedding

Since we live in a world of almost flat spacetime, we are
not used to curved geometries and have not developed an in-
tuitive understanding of the inner structure of curved four-
dimensional manifolds. However, an equivalent surface for
a two-dimensional surface can be found in three-dimensional
Euclidean space. Equivalent means that the representing sur-
face has the same topology and inner geometry as the original
one. The inner geometry is determined by the metric. The
equivalent surface is an isometric embedding of the original
surface in three-dimensional Euclidean space. We are able
to deal with lengths and geometry in three-dimensional Eu-
clidean space and hence have an intuitive comprehension of
the geometry of the embedded surface.

Isometric embedding with co-dimension one is a mapping
from ann-dimensional manifold to ann-dimensional surface
in (n+1)-dimensional space which preserves distances, i.e.,

ds2(n) = ds2(n+1);

whereds2
(n) means the line element in then-dimensional man-

ifold and ds2
(n+1) means the line element on the surface in

(n+ 1)-dimensional space. In our specific case, the dimen-
sion of the surface isn= 2 and the three-dimensional space is
Euclidean.

Suppose that the embedded two-surface is given by a para-
metric representation~r(~x). Then, the isometry condition
yields the relationship,

ds2(2) =< d~x;d~x>(2)= gi j (2)dxi dxj

!
=< d~r;d~r >(3)=<~r;i ;~r; j >(3) dxi dxj ;

which results in a constraint for the partial derivatives of~r(~x):

<~r;i ;~r; j >(3)
!
= gi j (2): (11.1)

The scalar product< �; � >(3) is the standard scalar product
in three-dimensional Euclidean space. Within this Chapter,
lower case Latin indices are from the setf1;2g.

This system of partial differential equations is not directly
tractable. It is not clear of what type the differential equations
are, for example, whether they are hyperbolic or elliptic. The
type depends on the actual data for the metric, and a differ-
ent type might require a different kind of numerical method.
Moreover, numerical methods for partial differential equations
are usually based on a discretization of the problem domain.
The idea is to directly solve the embedding problem on the

mesh of the triangulated surface itself, i.e., the discretization
for solving the differential equations and the representation
of the surface are identical. This approach was proposed by
Schmidt[140] and Nollert and Herold[119].

11.1 Embedding of a Triangulated
Two-Surface

Any manifold can be partitioned into a set of simplices by
triangulation. In the case of a two-dimensional surface, the
simplices are triangles. The following construction of the em-
bedding surface is based on a triangulated mesh representation
rather than a parameterized representation. In this way, the un-
knowns are the coordinates of the vertex points~ri =~r(~xi), not
the continuous map~r(~x). A system of algebraic equations has
to be solved instead of a system of partial differential equa-
tions.

The basic idea is to relate the given metric of the two-
dimensional surface to the distance between each single pair
of mesh vertices connected by a triangle edge, i.e.,

j~ra�~rbj
2 �

����
Z tb

ta
ds

����
2

; (11.2)

which is integrated along a path in the embedded surface with
the starting point~x(ta) =~xa and the ending point~x(tb) =~xb.

However, this first approximation induces a systematic er-
ror because the Euclidean distance of two vertices is not iden-
tical to the actual distance along the path in the surface. The
Euclidean distance is always shorter than the length of the
connecting path, since the Euclidean distance is the shortest
connection in the three-dimensional space, whereas the con-
necting path has to lie in the two-surface. Furthermore, the
evaluation of the integral has to be done numerically and in-
troduces additional computational costs.

11.2 Conditions on Triangle Mesh

The systematic error and the numerical problems in Eq. (11.2)
can be solved by the following computational scheme.

The right hand side of Eq. (11.2) is changed in a way that
allows to compute the Euclidean distance of two vertices, es-
sentially based on the inner geometry of the original surface.
Let us consider two vertices connected by a path in two-
dimensional coordinate space. A point on the path can be
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expressed by a Taylor series expansion around the midpoint
of the path~r(t0), i.e.,

~r(t) =~r(t0)+h~̇r(t0)+
1
2

h2~̈r(t0)+
1
6

h3
...
~r (t0)+O

�
h4
�
;

where the path is parameterized byt, h is the distance from the
midpoint in parameter space, and a dot means a differentiation
with respect tot. By applying the Taylor series to the distance
between two vertices~ra and~rb, we obtain

j~r(ta)�~r(tb)j
2 = 4h2 <~̇r(t0);~̇r(t0)>

+
4
3

h4 <~̇r(t0);
...
~r (t0)>+O

�
h6
�
;

with the parameter for the midpoint,t0 = (ta + tb)=2, and
the distance in parameter space,h = (tb� ta)=2. The scalar
product is assumed to be the standard scalar product in three-
dimensional Euclidean space.

The dot differentiations of~r are

~̇r = ~r;i ẋ
i ;

~̈r = ~r;i j ẋ
i ẋ j +~r;i ẍ

i ;
...
~r = ~r;i jk ẋi ẋ j ẋk+3~r;i j ẍ

i ẋ j +~r;i
...
xi :

With the following relations for the partial derivatives of~r,

<~r;i ;~r; j > = gi j ;

<~r;i ;~r; jk > = Γi jk ;

<~r;i ;~r; jkl > = Γi jk;l�<~r;il ;~r; jk >;

we finally obtain

j~ra�~rbj
2 = 4h2gi j ẋ

i ẋ j

+
4
3

h4[(Γi jk;l�<~r;il ;~r; jk >)ẋi ẋ j ẋkẋl

+3Γi jk ẋi ẍ j ẋk+gi j ẋ
i ...x j ]+O

�
h6
�
: (11.3)

The term<~r;il ;~r; jk > depends on the outer curvature. It has
to be calculated by using the embedded surface. In the fol-
lowing section, an iterative scheme which yields intermediate
and approximate solutions of the embedding problem is pre-
sented. The intermediate solution for the surface can be used
to approximately determine the term depending on the outer
curvature. The other terms in Eq. (11.3) are based on the inner
geometry only.

11.2.1 Spherical Topology

So far, the relationship between two vertices connected by a
triangle edge has been discussed. How is a system of equa-
tions obtained to determine the geometry of a whole embed-
ded mesh?

Let the vector~R= (~r1;~r2; : : :~rn) contain the unknown co-
ordinates of then vertices constituting the triangle mesh. The
vector~F contains the residues of the conditions on an edge,
i.e., the difference between left hand side and right hand side
of Eq. (11.3). Hence, we have to solve a system of non-linear
algebraic equations.

The solution is computed by using the Newton–Raphson
method[130], which reduces a system of non-linear algebraic

equations to an iterative solution of linear algebraic equations.
Based on the Taylor expansion,

~F(~R+δ~R) = ~F(~R)+
∂~F(~R)

∂~R
δ~R+O

��
δ~R
�2
�
;

we obtain a linear system for the correctionsδ~R,

δ~R=�J�1~F ; (11.4)

with the Jacobi matrix,

J =
∂~F(~R)

∂~R
: (11.5)

Equation (11.4) is iterated until the specified accuracy is
achieved. The iteration scheme starts with an initial guess for
~R. The current implementation supports manifolds of spheri-
cal topology only. Hence, the initial surface is a sphere.

The inversion ofJ in Eq. (11.4) is only possible ifJ has
rank 3n, i.e., if we have 3n independent equations for the 3n
unknown coordinates of then vertices. In general, this is not
the case. For example, let us consider the topology of a closed
two-manifold. Euler’s formula describes the relationship be-
tween the number of verticesV, edgesE, and facesF , and
genusG (number of “holes”) for a closed two-manifold:

V�E+F = 2(1�G):

The sphere is the simplest closed two-manifold; it has genus
G= 0. If the sphere is tessellated by subdividing a tetrahedron,
the number of vertices isV = n and the number of edgesE =
3n�6. Hence, six equations are missing to allow a solution to
Eq. (11.4).

Six additional conditions can be imposed on the triangle
mesh by prohibiting translations of the mesh as a whole,

n

∑
i=1

δ~ri = 0;

and rotations of the mesh,

n

∑
i=1

~ri �δ~ri = 0;

whereδ~ri is the correction for vertexi.
These conditions are directly added to the system of linear

equations or the vector~F , respectively. Therefore, the embed-
ding problem for two-surfaces of spherical topology can be
approached by iteratively solving linear systems.

Surfaces of topologies other than spherical cannot be han-
dled in this way. They require different types of additional
conditions, for example, induced by boundary conditions.
These conditions could be investigated in future work.

11.3 Implementation and Results

The implementation is joint work with Stefan Kulla1. It makes
use of an object-oriented framework. The program is written

1Institute for Astronomy and Astrophysics at the University of
Tübingen.
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Figure 11.1: Embedding surface. The left image shows the visualization
of the surface itself, the right image shows the underlying triangle mesh.

in C++. It is based on libraries by Gumhold[65] for handling
connectivity in triangle meshes. So far, only the embedding
of spherical surfaces has been implemented. A program doc-
umentation can be found in Appendix C.4.

Although there exists an implementation of the embed-
ding program by Schmidt[140], we decided to realize a com-
pletely new implementation for the following reasons. First,
the old program is written in C and does not support the object-
oriented programming model, a fact which makes it hard to in-
tegrate modern software engineering concepts. Secondly, the
previous implementation does not allow for the visualization
of sampled, numerically calculated metrics. However, numeri-
cal computation of metric data is prevailing in gravitational re-
search. Thirdly, the old implementation does not allow adap-
tive subdivision of the triangle mesh.2

Figure 11.1 shows a result of the developed object-oriented
embedding program. The sampled input data is given at
equidistant values ofθ and φ and shows the two-surface of
the horizon in a numerical relativity simulation.

11.4 Discussion

The chosen discretization of the partial differential equations
on a triangle mesh can introduce wrong solutions. On the
mesh, there exist a concave and a convex solution for the
position of a vertex, in contrast to the continuous parameter-
ized representation, which allows only the true solution. Fig-
ure 11.2 illustrates that the lengths of the connecting edges are
identical in both cases. However, since the iterative scheme
starts with a smooth, spherical solution as initial guess, the al-
gorithm tends to converge towards the true, smooth solution.
Nevertheless, additional conditions could be investigated in
future work in order to prevent the wrong solutions, for exam-
ple, by including information about the curvature of the mesh
in the system of equations.

So far, only surfaces of spherical topology are supported.
Surfaces of toroidal and, in particular, flat topology provide
very interesting insight in relativistic investigations. A typi-
cal example is a flat, meridional cutting surface through the
equator of a black hole or neutron star. In these cases, how-
ever, the relationship between the number of vertices and

2Adaptive subdivision is now supported by the underlying data
structures, whereas control of subdivision is not yet implemented in
the interative Newton–Raphson solver.

Figure 11.2: Concave and convex solution.

edges is different from that in spherical topology. Different
types of boundary conditions are required to achieve a well-
conditioned system of equations. These conditions could be
investigated in future work.

If the surface has parts of negative Gaussian curvature, a
global embedding in Euclidean space might not be feasible,
whereas it is guaranteed that a surface (of spherical topology)
with positive Gaussian curvature can be embedded. Global
embedding of manifolds with negative Gaussian curvature
could be realized by two different methods.

The first method partitions the surface in subsections which
can be embedded. The problem is to reduce the number of
such subsections. Moreover, these pieces have to be connected
in a visually pleasant way in order to provide a comprehensi-
ble visualization for the user.

The second method rather uses a hyperbolic background
space than a Euclidean background space. For a two-dimen-
sional surface which is embedded in a three-dimensional man-
ifold of constant curvatureK0, the internal curvatureKint and
the external curvatureKext are related by

Kint = Kext+K0;

cf. Spivak[150, pages 104 and 136]. The external curvature of
an embedded two-surface is the product of the two principal
curvaturesλ1 andλ2:

Kext = λ1λ2:

The respective internal curvature depends on the inner geom-
etry only and can be expressed in terms of the Riemann tensor
Ri jkl and the metricgi j , i.e.,

Kint =
R1212

det(gi j )
:

Negative internal curvature can be absorbed by a negative cur-
vature of the background space in order to achieve a positive
external curvature of the embedded surface. As mentioned be-
fore, a positively curved two-surface of spherical topology can
always be embedded globally. The main problem is to find a
good visualization of hyperbolic space which can be compre-
hended by the user.





Chapter 12

Classical Visualization

In the context of this thesis,classical visualizationmeans
the visual representation of data from relativistic simulations
without taking into account the curvature of spacetime. Tech-
niques known from other fields of scientific visualization can
be utilized to illustrate quantities which are specific to rela-
tivistic systems.

A prominent difference between relativistic and Newtonian
mechanics is abandoning a formal separation of space and
time. The mathematical formulation of relativity makes ex-
tensive use of covariant descriptions of physical quantities.
Therefore, we have to deal with four-dimensional tensors or
tensor fields of various orders, especially with Lorentz scalars
(tensor of zeroth order), four-vectors (tensors of first order),
and second order tensors. The conversion of the abstract ten-
sor concept to a comprehensible visual representation is in-
vestigated by Lehle[92] in detail. His extensive discussion of
classical visualization shall not be extended to broader range
in this chapter.

I rather focus on a specific topic of classical visualiza-
tion which uses height fields to visualize scalar fields on a
two-dimensional domain. As an application, data from nu-
merical simulations of neutron star oscillations by Ruoff[139]
are visualized adequately. The data is available as a three-
component field on a three-dimensional domain. Each single
component is stored in the form of coefficients for spherical
harmonics. The components are to be visualized separately
because they do not represent a single geometric structure. In
this way, the problem is reduced to the visualization of a scalar
field in three dimensions.

As proposed by Lehle[92], standard techniques imple-
mented in the commercial visualization systemAVS Ex-
press[8] were tested. Volume rendering and isosurface visual-
ization do not work out very well for this specific application
because they show the position of test particles, but fail to vi-
sualize the induced perturbations of spacetime. In fact, height
fields on hyperplanes cut through the three-dimensional do-
main prove to show the wave structures in which relativists are
most interested. However, the height field created by standard
visualization modules shows poor quality because an adap-
tive generation of the underlying mesh is not supported. Fig-
ure 12.3 shows the problem by means of an example mesh.

12.1 Triangulation of Height Fields

The areas of poor mesh quality are restricted to regions of high
gradients of the scalar field. Hence, image quality can be im-
proved by an adaptive refinement of the mesh in these areas.

Figure 12.1: Red refinement.

The triangulation of the height field is generated by the fol-
lowing adaptive subdivision scheme. The mesh itself repre-
sents a sampling of the true height field, i.e., the true values of
the underlying function.

The algorithm starts with a rectilinear grid representing the
domain of the height field. A typical number of sample points
is 502. The rectilinear grid is transformed into a triangle mesh
by splitting each rectangle into two triangles. The height pro-
file of the mesh yields the scalar function values. Without loss
of generality, thex andy coordinates of a vertex hold the coor-
dinates of the triangulation of the domain and thezcoordinate
holds the function value—up to scalings along the coordinate
axes.

The original mesh is refined by adaptive subdivision. For
each triangle, it is checked whether a subdivision is needed or
not. This decision is based on an abstract error criterion which
is explicitly specified in an actual implementation. A straight-
forward criterion is the deviation of the true height of an inner
point from the height of the triangle at that point. In the cur-
rent implementation, four points (midpoints of three edges,
midpoint of the triangle) are tested for a maximally permitted
deviation.

Whenever a triangle violates the error criterion, it is sub-
divided according to ared refinementor aregular refinement.
Figure 12.1 illustrates red refinement. One triangle is split into
four new triangles which arise from the connection between
points inserted at the midpoints of the edges of the original
triangle. Red refinement preserves the angles of the original
triangle and does not create extremely acute or obtuse angles,
which cause ill-conditioned linear interpolation within the tri-
angle and thus poor quality of the rendered mesh.

The subdivision scheme is recursively iterated until the de-
sired accuracy or a maximal subdivision level is reached. In
a second step, the hanging nodes (t-vertices) are eliminated.
Hanging nodes occur when a new vertex is inserted, but con-
nected to the vertices of only one of the two adjacent triangles.
Hanging nodes cause cracking of the mesh and thus poor im-
age quality. Hanging nodes are eliminated by agreen refine-
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Figure 12.3: Visualization of neutron star data. The left image shows regular sampling, the right image shows adaptive refinement for the same data
set.

Figure 12.2: Green refinement.

mentor anirregular refinement. Figure 12.2 illustrates green
refinement. If more than one hanging node is attached to a sin-
gle edge, all of these nodes are connected to the opposite ver-
tex. This closing scheme is different from the standard clos-
ing scheme in red/green refinement, which prevents hanging
nodes of order larger than one. Our closing method produces
less triangles, but might result in acute or obtuse angles. A
more detailed presentation of standard red/green refinement
can be found, for example, in work by Bank et al.[9, 10].

12.2 Implementation and Results

The implementation of adaptively triangulated height fields
makes use of an object-oriented framework. The program
is written in C++. It is based on triangle mesh libraries by
Gumhold[65]. The libraries manage the geometry and con-
nectivity of the subdivision meshes. The height field is repre-
sented by an abstract base class which implements the subdi-
vision scheme and the error criterion on which adaptive refine-
ment is based. Time-dependent data is supported. The func-
tional relationship between the two-dimensional domain and
the values of the graph is defined in a derived class. An exam-
ple is a class representing a height field based on coefficients
for spherical harmonics. A detailed program documentation
can be found in Appendix C.5.

Figure 12.3 gives an example of height field visualization.
The scalar data is visualized by employing both a height field
and color coding simultaneously. In this way, the values of
the scalar field can be recognized by the user more clearly, in

particular, when the time-dependent evolution of the field is
shown.

Figure 12.3 shows the visualization of results from a neu-
tron star simulation[139]. It visualizes a particle which travels
around a neutron star and excites the neutron star to oscilla-
tions by gravitational interaction and to coupled emission of
gravitational waves. The underlying computation is based on
a multipole expansion of the particle. Each multipole gener-
ates its own oscillation. Summing over all multipoles yields
the overall oscillation pattern.

Only the difference between the true metric and the under-
lying metric of the neutron star is visualized, i.e., only the
perturbation of the spacetime which is induced by the parti-
cle. One component of the metric perturbations is displayed.
The particle travels in thex-y plane. The cutting surface lies
in the x-y plane as well. The neutron star itself is located at
the midpoint of the plane. When the particle is approaching
the neutron star, emission of gravitational waves is induced.
These waves are superimposed onto the gravitational field of
the particle.

Other terms describing the metric perturbation and the time
evolution of the system are shown on the accompanying video,
cf. Appendix D.1.7.

The produced images demonstrate that an adaptive refine-
ment is indispensable for height fields representing scalar data
with high gradients. Nevertheless, the implemented subdivi-
sion method might cause some artifacts. The first kind of ar-
tifacts is caused by a principle problem in all sampling algo-
rithms. A rapid change in the scalar field between two sam-
pling points might be ignored. This can only be overcome if
more information about the behavior of the underlying func-
tion is available, such as its derivatives. The second kind of
artifacts is induced by the closing scheme, which can produce
acute and obtuse triangles for hanging nodes of order larger
than one. Isotropic refinement gives rise to the third kind of
artifacts. Red refinement generates similar triangles in the pro-
jection onto the domain, but elongated triangles for the sur-
face of the height field, especially around peaks. The problem
could be overcome by anisotropic refinement, as proposed by
Kornhuber and Roitzsch[86] in the context of numerical meth-
ods for partial differential equations.
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General Relativistic Visualization:
Summary and Open Questions

In this second part of the thesis, visualization techiques for
curved spacetimes have been discussed. The mathematical
structure of curved Lorentzian manifolds is more complex
than the structure of the flat spacetime in special relativity.
Therefore, a wide variety of visualization approaches has been
proposed, reaching from direct representation of visual per-
ception by ray tracing via visualization of inner geometry
by embedding to classical visualization of metric quantities.
Properties as well as advantages and disadvantages of each
approach are discussed in the following sections. Open ques-
tions and possible future work are also described.

13.1 Ray Tracing and Gravitational
Lensing

Ray tracing renders the visual perception of an observer in
curved spacetimes. The method is based on geometric op-
tics, where the process of time is reversed. Hence, rays are
traced from the eyepoint back into the scene to find intersec-
tions with objects, yielding the color of the incoming light for
each pixel. Ray tracing employs agedanken experiment. It
represents what we could see within a general relativistic set-
ting. Therefore, the ray traced images are observables of an
experiment. They have a direct and evident physical mean-
ing. Most importantly, they are independent of the coordinate
system which is used to accomplish the computations.

General relativistic ray tracing in a single chart had been
used before. The development of this technique is rather ad-
vanced and sophisticated; single chart ray tracing is in a con-
solidation stage. A contribution of this thesis is the description
of an open, flexible, and modular ray tracing system. Within
an object-oriented framework, single chart general relativis-
tic ray tracing needs only few extensions to a standard three-
dimensional Euclidean ray tracer. Previous implementations
were specifically designed and developed for general relativis-
tic visualization. Therefore, they lacked the extensive func-
tionality of a complete ray tracing system. Another advan-
tage of the presented implementation is a generic description
of scene objects and their motion through spacetime. More-
over, the modular software design allows the simple integra-
tion of new metrics and physical systems. Finally, a parallel
implementation has been described. Due to high computation
costs, parallelization is indespensable, especially for extensive
parameter studies and film production.

The flexible design achieves a good usability of ray tracing

as a tool in gravitational research. I have focused on appropri-
ate fields of application and demonstrated them by means of
some examples. Ray tracing illustrates the effects of gravita-
tional light bending on scene objects. The properties of space-
time are probed by a vast number of null geodesics, which
can even lead to such interesting findings as fractal structures.
Ray tracing can be used for investigating null geodesics, where
standard tools like Poincar´e sections fail. In addition, ray trac-
ing allows to communicate results of gravitational research to
colleagues and the public. A disadvantage of ray tracing is the
restriction to illustrations from a single viewpoint. However,
I have shown that an extensive parameter study can system-
atically sample the space of viewpoints in order to permit a
thorough examination of the properties of spacetime.

Ray tracing has been specifically investigated as a tool for
gravitational lensing. It has been shown how models of stan-
dard lensing theory can be included in a ray tracing system.
Several prominent lenses have been implemented. It has been
demonstrated how ray tracing can even be applicable to strong
light deflection, which is ignored by standard lensing. Further-
more, a method for finding caustic surfaces has been proposed.
It utilizes the infrastructure of the ray tracer to identify regions
of different image multiplicity. Caustic surfaces illustrate the
qualitative behavior of a gravitational source and give insight
from another perspective than ray tracing. A disadvantage is
the dependency on a coordinate system.

An extension of ray tracing in a single chart to multiple
charts of an atlas has been developed. In this way, non-trivial
topologies can be considered. Moreover, the quality of the
numerical integration of null geodesics can be improved by
choosing several, adequate coordinate systems. The current
implementation allows to visualize a simple static wormhole.
In future work, a generic implementation of an atlas could be
pursued. In this way, spacetimes of complex topologies and
even non-orientable manifolds could be investigated.

Another issue of future work is the extension to general rel-
ativistic direct volume rendering. The adaption of standard
three-dimensional ray casting should be straightforward. The
only fundamental change is the introduction of bent rays in-
stead of straight rays. A much more complex approach would
realistically model radiation transport by Monte-Carlo simu-
lations.

Up to now, general relativistic ray tracing is far away from
being a real-time application. Due to the ever increasing
computational power of processors and the wider availabil-
ity of massive-parallel computers, however, a chance has been
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opened for interactivity. In addition to increasing computer
power, rendering performance has to be improved by bet-
ter algorithms, for example, by exploiting coherence between
frames, by pre-computation of some data for null geodesics,
and by caching strategies. Moreover, the computational com-
plexity could be reduced by restricting the supported class of
spacetimes, in particular, by utilizing possible symmetries.

13.2 Embedding

The inner geometry of a two-dimensional spatial hypersur-
face can be visualized by embedding in flat three-dimensional
space. The problem of embedding can be formulated by
means of partial differential equations. Partial differential
equations have to be discretized to make them tractable for
numerical methods. The described embedding algorithm uses
the same mesh for descritizing the embedding problem and for
the representation of the embedded surface itself.

Embedding provides a visualization that is independent of
the underlying coordinate system. A key application is the em-
bedding of hypersurfaces of spacetimes from numerical simu-
lations, for example, the horizons of black holes.

So far, only surfaces of spherical topology are supported. In
future work, the embedding of manifolds of different topolo-
gies could be pursued, especially, of flat and toroidal topolo-
gies. Corresponding boundary conditions have to be formu-
lated to achieve a well-conditioned system of equations.

Another issue is the visualization of surfaces with negative
Gaussian curvature. In many cases, these surfaces cannot be
embedded globally. This problem could be approached in two
ways. In the first way, the negative curvature is “absorbed”
by embedding in a hyperbolic background space. The second
method partitions the surface into smaller parts which can be
embedded. These parts have to be glued together in a second
step.

13.3 Classical Visualization

Classical visualization means the visual representation of data
from relativistic simulations without taking into account the
curvature of spacetime. Techniques known from other fields
of scientific visualization can be utilized to illustrate quantities
specific to relativistic systems. This approach has been evalu-
ated in detail before. Therefore, I have focused on a specific
visualization technique which needs improvements within a
particular setting.

This visualization method represents scalar data on a two-
dimensional domain via height fields. A scheme for an adap-
tive triangulation and refinement of the mesh representing the
height field has been described. Adaptive remeshing generates
meshes and final images of good quality, whereas the num-
ber of triangles is kept small and interactive frame rates in
the rendering of the mesh are possible. Adaptive refinement
is required in areas of high gradients; for example, spheri-
cal harmonics of typical physical problems can produce fairly
high gradients. The actual visualization combines both height
fields and color coding. In this way, wave propagation in time-
dependent data is clearly noticeable.

In future work, mesh quality could be further improved by
applying other subdivision schemes, especially anisotropic re-
finement.
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Conclusion

New and improved methods for the visualization of the
flat four-dimensional spacetime of special relativity and the
curved four-dimensional spacetimes of general relativity have
been presented. Special relativity and general relativity are
connected by the fact that a local Lorentz frame can always be
found, even in curved spacetime. Therefore, ideas and results
from special relativity can be adopted in a local scale within
general relativity. Nevertheless, the mathematical structure of
curved spacetime is much more complex than the structure
of the flat Minkowski spacetime. Hence, general relativistic
visualization comprises a wider range of fundamental visual-
ization techniques.

One principal visualization method shows the environment
as seen by an observer situated in the simulated system. This
conceptually simple approach is a modern type of agedanken
experiment. Both general relativistic ray tracing and the de-
scribed techniques for special relativistic visualization are
based on this footing.

Special relativistic radiosity, texture-based special relativis-
tic rendering, and image-based special relativistic rendering
have been introduced as novel rendering methods. A four-
dimensional extension of special relativistic ray tracing has
been developed. It has been shown how relativistic effects
on illumination can be incorporated in all known render-
ing techniques. It has been demonstrated that the Doppler
and searchlight effects dominate visual perception. Further-
more, navigation techniques for special relativity, especially
the relativistic-vehicle-controlmetaphor, and virtual environ-
ments have been proposed. With the contributions of this the-
sis, special relativistic visualization has achieved a highly de-
veloped and refined stage. I think that further improvement is
restricted to changes in details. Since all fundamental render-
ing approaches from standard non-relativistic computer graph-
ics have been adapted to the special relativistic situation, it
will be difficult to find totally new special relativistic rendering
techniques. However, in my opinion there is one great chal-
lenge left: how can we describe accelerating extended bodies
on physical grounds, how can animation be included in special
relativistic visualization?

Like special relativistic visualization, general relativistic
ray tracing directly renders visual perception. Ray tracing of
single chart spacetimes also is in a highly refined state. A com-
plete and practical ray tracing system has been developed. By
means of two examples, I have demonstrated that ray tracing
can be used as an applicable visualization tool for gravitational
physics. Moreover, gravitational lensing has been shown to be
a field of application for general relativistic ray tracing. The
caustic finderhas been proposed as a numerical method based

on ray tracing. There still remain interesting possible improve-
ments. I think that both the complete implementation of an
atlas and real-time rendering could significantly advance gen-
eral relativistic ray tracing.

General relativistic visualization offers further and more
abstract fundamental visualization techniques besides direct
rendering of visual perception. The inner geometry of
two-dimensional spatial hypersurfaces can be visualized by
embedding. The implemented method provides isometric
embedding of surfaces with spherical topology into three-
dimensional Euclidean space. I regard embedding as a very
intuitive and appealing principal visualization approach. The
developed algorithms represent only a first example; a much
wider class of surfaces representing interesting physical sys-
tems should be included, in particular, because embedding is
specifically suited for visualizing data from simulations in nu-
merical relativity.

In classical visualization, the connection between relativis-
tic quantities and standard visualization techniques had been
investigated before. The development of classical visualiza-
tion is tightly connected to the development of standard tech-
niques in other fields of visualization. The visualization of
two-dimensional and three-dimensional scalar fields as well
as the visualization of two-dimensional, second order tensor
fields can almost perfectly be accomplished by existing tech-
niques. In this thesis, height field visualization has been en-
hanced by adaptive subdivision. Principal challenges concern
the visualization of tensor fields of higher dimension or higher
order. Respective advances would also help other fields of vi-
sualization.

In my opinion, visualization presents a most appropriate
approach to complex theories such as Einstein’s theory of rel-
ativity. Visualization allows to extend our perception beyond
our everyday experience and thus provides an intuitive under-
standing of scientific models. I think that intuition is partic-
ularly improved by establishing a tight link between the user
and the visualization environment. Therefore, real-time appli-
cations and interactivity should be employed whenever pos-
sible; human-computer interfaces and the inclusion of real
world elements play an ever increasing role. In conclusion,
scientists benefit from an intuitive and better understanding
of research data. Moreover, visualization has proven to be a
very successful means of communicating scientific ideas and
results to the public.





Appendix A

Special Relativistic Transformation of Radiance and
Irradiance

A.1 Derivation of the Transformation
of Radiance

The following derivation of the searchlight effect is based
on a photon-counting technique. A similar approach can be
found in articles by Peebles[124], McKinley[99, 100], and
Kraus[89].

Let us consider two inertial frames of reference,S andS0,
with S0 moving with velocityv along thez axis ofS. Suppose
the observerO is at rest relative toS and the observerO0 is
moving with speedv along thez axis ofS. The usual Lorentz
transformation along thez axis connects framesSandS0.

In reference frameS, consider a photon with circular fre-
quency ω, wavelengthλ, energyE, and wave vector~k =
(ωsinθcosφ;ωsinθsinφ;ωcosθ) with spherical coordinates
θ andφ

In frame S0, the circular frequency isω0, the wave-
length is λ0, the energy isE0, and the wave vector is~k0 =
(ω0 sinθ0 cosφ0;ω0 sinθ0 sinφ0;ω0 cosθ0). The expressions for
the Doppler effect and the aberration connect these two repre-
sentations, cf. Chapter 4:

λ0 = λ D; (A.1)

ω0 = ω=D; (A.2)

E0 = E=D; (A.3)

cosθ0 =
cosθ�β

1�βcosθ
; (A.4)

φ0 = φ; (A.5)

D =
1

γ(1�βcosθ)
; (A.6)

whereD is the Doppler factor,γ = 1=
p

1�β2 andβ = v.
Radiance is the radiant power per unit of foreshortened area

emitted into a unit solid angle. A detector at rest inS will
measure the energy-dependent radiance

LE(E;θ;φ) =
dΦ

dE dA?dΩ
;

whereΦ is the radiant power or radiant flux,E is the energy,
dΩ is the solid angle, anddA? is the areadA of the detec-
tor projected along the radiation direction(θ;φ). The radiant
flux Φ is the radiant energy per unit time. Accordingly, the

θ z

θdt cos

dA

k

dA

Figure A.1: Photons with propagation direction along the wave vector~k.
The area of the detector is denoted dA and is perpendicular to the z axis,
dA? is the projection of dA along the radiation direction. The shaded
volume dV contains the photons passing dA between time t0 and time
t0 + dt.

wavelength-dependent radiance is

Lλ(λ;θ;φ) =
dΦ

dλdA?dΩ
; (A.7)

with the wavelengthλ.
In reference frameS, consider a group of photons,dN in

number, with energies betweenE and E+ dE and propaga-
tion directions in the element of solid angledΩ around(θ;φ).
Here, the energy-dependent radiance is

LE(E;θ;φ) =
dN E

dE dA?dΩdt
;

or

dN=
LE(E;θ;φ)

E
dE dA?dΩdt:

We choose the areadA to be perpendicular to thezaxis so that

dA? = dAcosθ:

Thez component of the velocity of the photons is cosθ. The
photons passingdA between timet0 and timet0+dt are con-
tained in the shaded volumedV in Fig. A.1:

dV = dAdtcosθ:

Consider another areadÃ having the same size and orien-
tation asdA. Still in reference frameS, supposedÃ is moving



82 Chapter A: Special Relativistic Transformation of Radiance and Irradiance
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Figure A.2: Photons with propagation direction along the wave vector
~k. The area dÃ is moving with velocity v along the z axis. The shaded
volume dṼ contains the photons passing dÃ between t0 and t0 + dt.

with velocity v along thez axis. The photons passingdÃ be-
tweent0 and t0 + dt are contained in the shaded volume in
Fig. A.2:

dṼ = dAdt(cosθ�v) =
cosθ�β

cosθ
dV:

The ratio of the number of photons passingdÃ in the time
intervaldt and the number of photons passingdA is the same
as the ratio of the volumedṼ and the volumedV:

dÑ =
LE(E;θ;φ)

E
dE dΩdt cosθdÃ

cosθ�β
cosθ

: (A.8)

Now consider the same situation in reference frameS0. The
areadÃ is at rest inS0. The time interval is

dt0 = dt=γ: (A.9)

The number of photons counted does not depend on the frame
of reference, i.e.,

dÑ = dÑ0 =
L0E(E

0;θ0;φ0)
E0

dE0 dΩ0 dt0 cosθ0dÃ0: (A.10)

From Eqs. (A.8) and (A.10) we obtain

LE(E;θ;φ)
L0E(E

0;θ0;φ0)
=

E
E0

dE0

dE
dΩ0

dΩ
dt0

dt
cosθ0

cosθ�β
dÃ0

dÃ
: (A.11)

Since the areadÃ is perpendicular to the separating velocity,
it is not changed by Lorentz transformations:

dÃ0 = dÃ: (A.12)

With Eqs. (A.4) and (A.5), the transformed solid angle is

dΩ0

dΩ
=

sinθ0

sinθ
dθ0

dθ
=

d(cosθ0)
d(cosθ)

=
1

γ2(1�βcosθ)2
= D2:

(A.13)
Using Eqs. (A.3), (A.4), (A.9), (A.12), (A.13), and (A.11), we
obtain

LE(E;θ;φ)
L0E(E

0;θ0;φ0)
= D3 =

E3

E03
:

Please observe that this result is the special relativistic case of
a generalized property in curved spacetime, Eq. (9.7).

With the relation between energy and wavelength,

λ =
hc
E
; dλ =�

hc

E2 dE;

and with

Lλ(λ;θ;φ) jdλj= LE(E;θ;φ) jdEj;

we get

Lλ(λ;θ;φ) = LE(E;θ;φ)
E2

hc
:

Ultimately, then, the transformation expression for the
wavelength-dependent radiance is

Lλ(λ;θ;φ)
L0λ(λ

0;θ0;φ0)
= D5: (A.14)

From this equation the transformation law for the following in-
tegrated quantity is easily obtained. With the use of Eq. (A.1),
the transformed radiance is

L(θ;φ) =
Z ∞

0
Lλ(λ;θ;φ)dλ

= D4
Z ∞

0
L0λ(λ

0;θ0;φ0)dλ0

= D4L0(θ0;φ0): (A.15)

A.2 Incident Irradiance

In this section, the derivation of Eqs. (4.10) and (4.12) is pre-
sented.

First, consider a finite light source which is at rest in frame
S. With Eq. (A.7), the radiant flux emitted by the light source
can be obtained in terms of the wavelength-dependent radi-
ance:

dΦ = Lλ(λ)dAlight
?

dΩobj dλ; (A.16)

wheredAlight
?

is the area of the projected surface patch of the
light source anddΩobj is the solid angle of the illuminated
surface patch of the object as seen from the position of the
light source.

Now consider the same situation in frameS0 in which the
object is at rest. The radiant flux on the surface patch of the
object is

dΦ0 = L0λ(λ
0)dAobj0

?
dΩlight0 dλ0; (A.17)

with the projected areadAobj0

?
on the object and the solid angle

dΩlight0 of the surface patch of the light source as seen from
the position of the object. Using Eqs. (A.14) and (A.17), we
obtain

dΦ0 =
1

D5 Lλ(λ)dAobj0

?
dΩlight0 dλ0:

With the definition in Eq. (3.1), the incident irradiance emitted
from the small solid angledΩlight0 onto the surface patch of the
object is

dEi0
λ (λ

0) =
dΦ0

dAobj0 dλ0
=

Lλ(λ)
D5

dAobj0

?

dAobj0
dΩlight0 : (A.18)
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Figure A.3: Geometry of the surface patch of the light source in its rest frame S. The solid angle is given by dΩlight = dAlight
?

=r2. The distance between
the light source at emission time and the surface patch of the object at absorption time is denoted r.

The areadAobj0 of the surface patch is related to the projected

areadAobj0

?
by

dAobj0

?
= dAobj0 cosα0; (A.19)

with the angleα0 between the surface normal and the incident
light.

With Eq. (A.13), the solid angledΩlight0 is transformed into
the frameS of the light source. Furthermore,dΩlight0 is ex-
pressed in terms of the projected area on the light source and
of the distance between the light source and the surface patch,
as shown in Fig. A.3:

dΩlight0 = D2 dΩlight = D2 dAlight
?

r2 = dAlight
?

�
D
r

�2

: (A.20)

The lightlike connection of the emission event at the light
source and the absorption event at the object has the same di-
rection as the wave vector that describes the photons. There-
fore, the distancer is transformed in the same way as the cir-
cular frequencyω, see Eq. (A.2). By following this reasoning
or by explicit Lorentz transformation of the separating vector
between the emission event and the absorption event, we get:

r 0 = r=D: (A.21)

Using Eqs. (A.18), (A.19), (A.20), and (A.21), we ob-
tain the incident wavelength-dependent irradiance originating
from a small area of the light source:

dEi0
λ (λ

0) =
1

D5

cosα0

r 02
Lλ(λ)dAlight

?
:

By integrating over the area of the whole light source, we get
the wavelength-dependent irradiance produced by this finite
light source:

Ei0
λ (λ

0) =
Z

1
D5

cosα0

r 02
Lλ(λ)dAlight

?
: (A.22)

Now, consider a very small, yet finite light source de-
scribed by its wavelength-dependent intensityIλ. With

Eqs. (3.1) and (A.16), the wavelength-dependent radiance and
the wavelength-dependent intensity from the areadAlight

?
are

related by
dIλ(λ) = Lλ(λ)dAlight

?
: (A.23)

With Eq. (A.22) and after integrating over the area of the small
light source, we find the wavelength-dependent irradiance on
the object:

Ei0
λ (λ
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Z
1
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cosα0
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Lλ(λ)dAlight

?

=
1

D5

cosα0

r 02

Z
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=
1

D5

cosα0

r 02
Iλ(λ):

This equation holds even for the limit of an infinitesimal light
source. Therefore, we obtain the wavelength dependent irra-
diance due to a point light source:

Ei0
λ (λ

0) =
1

D5

cosα0

r 02
Iλ(λ):

Accordingly, the irradiance is

Ei0 =
1

D4

cosα0

r 02
I ;

whereI is the intensity of the light source.





Appendix B

Implemented Gravitational Lenses

In this chapter, the gravitational lenses which have been im-
plemented as visualization modules inRayViSare described.
I briefly present the underlying models for the distribution of
surface mass density and the resulting deflection angles. More
detailed information on the lensing models can be found, for
example, in Schneider et al.[141] and Frutos-Alfaro[54]. The
actual implementation is documented in Sect. C.3.

In the following section, models of axially symmetric
lenses are presented. Due to their simplicity, axially symmet-
ric lenses are frequently discussed in the literature, for exam-
ple, as first, simple models of observed gravitational lensing
or in statistical gravitational lensing. In Sect. B.2, quadrupole
lenses are considered. They are created by a superposition of
the gravitational field of a symmetric lens and a quadrupole
perturbation. They describe a combination of a symmetric
lens and a larger matter distribution, for example, a star within
a larger galaxy.

B.1 Axially Symmetric Lenses

An axially symmetric lens has a volume density which is in-
variant with respect to rotations about the optical axis. In par-
ticular, any spherical mass distribution is axially symmetric.

For axially symmetric lenses, the lens equation (10.1) re-
duces to a one-dimensional form because all light rays are
contained in the plane defined by the observer, the center of
the lens, and the source. By applying the surface mass den-

sity Σ
�
~ξ
�
= Σ

�
j~ξj
�

to the deflection angle for a general lens,

Eq. (10.2), and by integrating over the lens plane, we obtain
the deflection for an axially symmetric lens,

α̂(ξ) =
4G
ξ

2π
Z ξ

0
ξ0Σ

�
ξ0
�

dξ0 =
4GM(ξ)

ξ
: (B.1)

The mass enclosed by a circle of radiusξ is denotedM(ξ).
The deflection angle is just the Einstein angle for the enclosed
massM(ξ).

B.1.1 Point Lens

The Schwarzschild lens represents the deflection by a point
mass, cf. Chapter 10. The deflection angle is

α̂(ξ) =
4GM

ξ
:

B.1.2 Singular Isothermal Sphere

The singular isothermal sphere[15] has the surface mass den-
sity

Σ(ξ) =
σ2

v

2G
ξ�1:

This lens model has infinite mass density at the center and in-
finite total mass. Nevertheless, the singular isothermal sphere
reproduces the matter distribution of galaxies quite well, espe-
cially for larger values ofξ. The parameterσv is the line-of-
sight velocity dispersion of stars in the galaxy.

With the use of Eq. (B.1), we obtain the deflection angle

α̂(ξ) = 4πσ2
v:

B.1.3 Non-Singular Isothermal Sphere

The model of the singular isothermal sphere can be general-
ized by taking into account the core radius of the galaxy[73].
The singularity in the mass density of the singular isothermal
sphere is removed by adding the core radiusrc. The mass den-
sity of the resulting non-singular isothermal sphere is

Σ(ξ) =
σ2

v

2G
1p

ξ2+ r2
c

:

The deflection angle is

α̂(ξ) = 4πσ2
v

p
ξ2+ r2

c � rc

ξ
:

B.1.4 Hubble Model

The Hubble model[15] is an empirical model for a galactic
lens. Its mass density is

Σ(ξ) =
Σ0

(1+ξ=r0)
2 ;

wherer0 is the length scale andΣ0 is the mass density at the
center of the galaxy. The deflection angle is

α̂(ξ) = 8πGΣ0r2
0

1
ξ

�
ln

�
ξ+ r0

r0

�
�

ξ
ξ+ r0

�
:
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B.1.5 King Model

The King model[15] is a semi-empirical model for a galactic
lens. Its mass density is

Σ(ξ) =
Σ0

1+ξ2=r2
c
;

whererc is the core radius andΣ0 is the mass density at the
center of the lens. The deflection angle is

α̂(ξ) = 4πGΣ0r2
c

1
ξ

ln

�
ξ2+ r2

c

r2
c

�
:

B.1.6 Spiral Lens

The mass density for a spiral galaxy[80] is given by

Σ(ξ) = Σ0e�ξ=ξ0;

whereξ0 is the length scale andΣ0 is the mass density at the
center of the galaxy. The deflection angle is

α̂(ξ) = 8πG
ξ0

ξ

�
�(ξ+ξ0)e

�ξ=ξ0 +ξ0

�
:

B.2 Quadrupole Lenses

Quadrupole lenses are created by a superposition of the grav-
itational field of a symmetric lens and a quadrupole pertur-
bation. The symmetric matter distribution is perturbed by a
larger-scale gravitational field which is approximated by Tay-
lor terms up to second order.

In general, the deflection angle of a perturbed system can
be formulated as

~̂α
�
~ξ
�
= ~̂αA

�
~ξ
�
+~̂αP

�
~ξ
�
; (B.2)

where~̂αA

�
~ξ
�

is the axially symmetric part and̂~αP

�
~ξ
�

is the

perturbed part.
The Taylor expansion of the perturbation up to quadratic

terms yields

~̂αP

�
~ξ
�
= ~̂αP(0)+Q

�
~ξ
�
;

if the coordinate system is chosen in a way that its origin coin-
cides with the center of the axially symmetric lens. The matrix
Q is the quadrupole matrix. If the orientation of the coordinate
system is chosen appropriately, the quadrupole matrix takes
the diagonal form,

Q =

�
κP+ γP 0

0 κP� γP

�
; (B.3)

whereκP is a measure for the mass density andγP is a measure
for the shear.

B.2.1 Chang-Refsdal Lens

The perturbation of the gravitational field of a point mass is
called Chang-Refsdal lens. A prominent example of a per-
turbed Schwarzschild lens is microlensing, i.e., lensing by a

single star in a galaxy. The Chang-Refsdal lens yields the de-
flection angle

~̂α
�
~ξ
�
= 2RS

~ξ
ξ2 +Q

�
~ξ
�
:

The quadrupole matrix is defined in Eq. (B.3).
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Program Documentation

C.1 Special Relativistic Polygon
Rendering

The implementation of special relativistic polygon rendering
is calledVirtual Relativity. The two main objectives of the
Virtual Relativityproject are high performance for interactive
real-time simulations and portability.

Virtual Relativity is implemented in C++. The following
libraries are used: OpenGL or Mesa; QvLib, ImageMagick,
and Glut; TclTk or MFC (Microsoft Foundation Classes).
MFC is available for Window 9x and Windows NT only,
the other libraries are available for Windows 9x, Windows
NT, Linux, and Unix. Rendering is based on OpenGL 1.1
[183] or, alternatively, Mesa[103]. QvLib[155] allows to
read three-dimensional scenes in the VRML 1.0 format[12].
VRML 1.0 is based on the OpenInventor[178] file format.
ImageMagick[31] provides a transparent interface to all stan-
dard two-dimensional image formats. It is used for reading
texture information and writing rendered images and movies.

Three different kinds of user front ends toVirtual Relativity
are available. The first front end uses Glut[60], which pro-
vides a simple interface to OpenGL, including window han-
dling, pop-up menus, and support of input devices. The Glut
implementation ofVirtual Relativitymainly serves as a sim-
ple experimental cross-platform environment. It lacks a so-
phisticated design of graphical elements, for example, a menu
bar and dialog boxes. The second front end provides a com-
plete platform-independent GUI (graphical user interface). It
is based on TclTk[158] for the GUI elements and Togl[123]
for the handling of the OpenGL rendering context. The third
front end is specific to Windows 9x and Windows NT and is
based on MFC.

C.1.1 Scene Graph

Virtual Relativitysupports VRML 1.0 except for the geomet-
ric primitives sphere, cone, cylinder, and cube. These have
to be replaced by a polygonal representation in the form of
indexed face sets. The following types of nodes are added
to the VRML format:RELmaterialConstant , RELma-
terialPlanck , RELmaterialRGB , andRELmateri-
alSampled . These nodes describe the spectral dependency
of the reflectance or emission properties of a material. They
correspond to perfectly Lambertian reflection, blackbody ra-
diation, a sum of Gaussian spectra with a given RGB value,
and a sampled spectrum, respectively.

VRML organizes the three-dimensional scene in a scene
graph. The scene graph is an acyclic directed graph which

contains geometry, transform, property, and group nodes. The
structure of the scene graph is very well suited for the needs
of standard non-relativistic graphics.

However, the relativistic transformation does not commute
with standard affine transformations. Hence, the scene graph
has to be “flattened” by expanding it to a tree and applying all
modeling transformations. Shared instancing of scene objects
is lifted by adding copies of these objects. (Shared instancing
occurs for objects having more than one parent in the scene
graph). By using a flattened scene tree, the rendering pipeline
is simplified and does not require any modeling transforma-
tions. Therefore, the relativistic transformation can be com-
puted before the standard rendering pipeline is applied.

C.1.2 Program Structure

The connection and data flow between the major parts ofVir-
tual Relativityis illustrated in Fig. C.1.

User-specific parameters are stored inParameters .
Init evaluates these parameters and sets the respective prop-
erties in the main parts of the program.

RelObserver represents the relativistic observer and is
the central element of relativistic computations. It holds
the information about the four-position, four-velocity, proper
time, and orientation of the observer. Based on this data,
RelObserver calculates the transformation of the vertices
and the Doppler factors. It computes the trajectory of the ob-
server through spacetime by solving the equation of motion.

The scene graph is described in Sect. C.1.1. The root of the
scene graph is a group nodeDvGroup .

Window handling and viewing functionality are imple-
mented in the abstract base classDvViewer . Simple-
GlutViewer is derived fromDvViewer and implements
the Glut interface described above. Accordingly,Togl-
Viewer and MfcViewer implement the TclTk/Togl and
MFC versions, respectively. All these viewers allow the user
to steer the relativistic vehicle via keyboard or (space-) mouse.

The handling of rendering is accomplished byDvDis-
playManager , which also provides the connection to
the relativistic observer (RelObserver ), the scene graph
(DvGroup ), and the viewer (DvViewer ). A timer function
initiates the calculation of new positions of the observer in
equidistant time intervals. In this way, the motion of the user
through the virtual world is established.

The following standard methods are implemented in
DvDisplayManager in order to improve image quality.
Supersampling provides anti-aliasing on the image plane, cf.,
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Figure C.1: Structure of Virtual Relativity.

for example, Watt[165]. The implementation uses the accu-
mulation buffer of OpenGL, cf. Woo et al.[183]. Textures
are prefiltered by MIPmapping, which is directly supported by
OpenGL. Effects of a finite time of exposure can be simulated
by temporal supersampling (motion blur). Here, intermediate
images corresponding to different time steps which all lie in-
side the exposure time are generated. The intermediate images
are combined by using the accumulation buffer. A depth-of-
field effect is implemented by supersampling of the viewing
frustum. Once again, the accumulation buffer is employed to
blend the intermediate images.

DisplayPanel displays information about the current
position, velocity, and acceleration at the bottom line of
the screen. Picture2D provides an interface to two-
dimensional image files, enabling us to write pictures and
movies. It is based on ImageMagick and supports all common
image file formats.

C.2 Texture-Based Special
Relativistic Rendering

The implementation of texture-based special relativistic ren-
dering is based on the rendering and viewing modules of the
previous section. It uses OpenGL, QvLib, ImageMagick, and
Glut. QvLib allows to read three-dimensional scenes in the
VRML 1.0 format. ImageMagick provides a transparent in-
terface to standard two-dimensional image formats. The user
front end and window handling is based on Glut.

Two versions of texture-based rendering are available.
The first version supports the visualization of apparent ge-
ometry and the Doppler and searchlight effects. It re-
quires OpenGL 1.1 with pbuffer (SGIX pbuffer ), pixel tex-
ture (glPixelTexGenSGIX ), and color matrix (SGI co-

lor matrix ) extensions. It runs on an SGI Octane with
Maximum Impact graphics.

The second version provides the visualization of apparent
geometry only. This restricted implementation makes use of
standard OpenGL 1.1 only and runs on any graphics board
with standard OpenGL 1.1.

In both versions, a constant number of six textures is used
to cover the whole sphere. The six textures originate from
the projection of the six sides of a cube onto the sphere. The
texture coordinates are only recalculated if the velocity has
changed.

The restricted version is located in the directoryAberra-
tion . Most of the specific functionality is isolated in the new
display managerAberrationDisplayManager , which
is derived from the standard display managerDvDisplay-
Manager . The extended display manager initializes the gen-
eration of the non-relativistic images in the back buffer of the
frame buffer. It transfers this data from the frame buffer to
texture memory viaglCopyTexImage2D . Texture objects
(glBindTexture ) allow fast access to the stored textures.
Finally, the textured sphere elements are drawn in order to
generate the relativistic image as seen by the user.

The aberration formula and the corresponding mapping
of texture coordinates, Eq. 5.4, is implemented in the class
Aberration . The sphere onto which the textures are
mapped is represented bySphere . Sphere allows to re-
fine its triangulation by subdivision and render itself into the
frame buffer.

The classAberrationViewer is derived from the stan-
dard implementationDvViewer . It provides usual viewer
functionality, such as changes of viewing direction and steer-
ing of the relativistic vehicle.

The complete implementation of apparent geometry and
the Doppler and searchlight effects is located in the directory
AberrationSearchlight . Two further, derived classes
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of the display manager are included. The classAberra-
tionDisplayManagerPbuffer is derived fromAber-
rationDisplayManager . It allows to render the inter-
mediate, non-relativistic images to the pbuffer instead of the
frame buffer. In this way, the resolution of the textures is in-
dependent of the resolution of the frame buffer.

The class AberrationDisplayManagerIllum is
derived from AberrationDisplayManagerPbuffer .
It enables the visualization of the Doppler and searchlight ef-
fects. It generates the pixel textures which represent the func-
tions Xi; j (l j ;D) defined in Eq. (5.6). Three arbitrary basis
functionsL j are supported. The rendering process is struc-
tured as in Fig. 5.13. Essentially, rendering of the Doppler
factor map and applying the pixel textures is added to the ren-
dering pipeline. The Doppler factor map and the pixel textures
are represented bySearchlight .

C.3 Extensions to RayViS

The implementation of relativistic ray tracing is based on
RayViS[64]. RayViSwas originally designed as a visualization
tool based on linear three-dimensional ray tracing.

Due to the object-oriented framework ofRayViSextension
for relativistic rendering can be included in the existing sys-
tem. Therefore, only the parts specific to the theory of rela-
tivity have to be added to the system; the rest of the rendering
functionality can be adopted without changes, such as texture
handling, image file I/O, scene graph management, etc.

C.3.1 Parallelization

In standard three-dimensional ray tracing, rendering time is
significantly determined by the computation of intersections
between rays and objects. Ray tracing has the burden of low
rendering speed, since it is not supported by graphics hard-
ware. The issue of rendering performance is even more prob-
lematic for general relativistic ray tracing, which is a couple
of magnitudes slower than non-relativistic ray tracing. In gen-
eral relativistic ray tracing, the generation of bent light rays by
solving the geodesic equations plays a dominant role. There-
fore, parallelization is an urgent need, especially for the pro-
duction of high-resolution images, movies, and extensive pa-
rameter studies.

Fortunately, the computation of the null geodesics and the
ray–object intersections for one pixel is independent of those
for the other pixels. Hence, parallelization is performed on a
per-pixel basis and utilizes domain decomposition on the im-
age plane. The granularity can be as fine as a single line on
the image plane in order to achieve good load balancing. The
implementation makes use of MPI[104] and thus is platform-
independent.

The standard main program forRayViSis located in the di-
rectorymain/CmdLine . The implementationclrvs.cxx
(command lineRayViS) provides a command line-oriented in-
terface to the ray tracer. It evaluates command line parameters,
loads the scene description in theRayViSformat (.rvs), and ini-
tializes the sample manager. Then, the whole image plane is
sampled and the final image is saved to file. In this form, the
program is processed sequentially.

The parallel version ofRayViS is located in the direc-
tory main/MpiCmd . The main programMpiCmd.cxx re-
placesclrvs.cxx . Nodes (processors) are organized in two

classes: one master node and an arbitrary number of slave
nodes. The master node controls the parallelization of the ren-
dering process. It computes the domain decomposition, dis-
tributes rendering tasks to the slave nodes, and collects their
results. Whenever a task is completed by a slave node, the
master node assigns the next unrealized task to this slave node
in order to avoid idling and bad load balancing. Finally, the
master node combines the intermediate results to form the
complete image and write it to file.

The computational domain is the image plane. It is decom-
posed by the master node in rectangular subimages of equal
size. Each subimage has the width of a full line, i.e., the max-
imum number of tasks is limited by the number of lines. The
number of tasks is provided by the user via the command line
parameter-tasks . It determines the granularity and thus the
quality of load balancing.

The maximum speedups for a parallel program is limited
by Amdahl’s law,

s=
Ts+Tp

Ts+Tp=n
;

wheren is the number of processors,Ts is the time span in
which the program is processed sequentially, andTp is the time
span in which the program can run in parallel. The speedup
describes the ratio between the execution time of the single-
processor program and the multi-processor program. This
speedup is only achieved if the processors have enough jobs
to execute and do not idle, i.e., if optimal load balancing is
accomplished. Another goal is to attain a high degree of par-
allelization, i.e., to minimize the timeTs.

The current implementation of parallelRayViSprovides al-
most optimal parallelization. The time for sequential execu-
tion, Ts, is limited to reading the parameters and the scene
data in a preprocessing step and to combining and writing the
final image in the postprocessing step. The time for both steps
is of the order of one second in most cases. Typical values
for general relativistic ray tracing,Tp = 104 sec andTs < 10
sec, allow very good relative speedups ofs=n > 0:8 even on
massive-parallel machines with serveral hundred processors.
Load balancing is a more important issue, since processors
idle at the end of the rendering process, when no further jobs
are available but other processors have not finished their tasks
yet. In these cases, the granularity has to be reduced by the
user.

C.3.2 Movie Production

One important application of ray tracing is the production of
movies. The following issues have to be taken into account.

First, a camera path has to be represented in order to pro-
vide motion through scenes. Secondly, movies have higher
demand with respect to image quality. Spatial aliasing on
the image plane causes flickering and thus is more disturbing
in a movie than a fixed image. Moreover, temporal aliasing
artifacts have to be taken into account. In this implementa-
tion, spatial aliasing is reduced by supersampling on the im-
age plane. Temporal aliasing is avoided by temporal super-
sampling (motion blur), which assumes a finite exposure time.

All these measures further increase rendering time; the pro-
duction of high-quality movies is associated with high com-
putational costs. Therefore, an adequate implementation of
multi-processor architectures, clusters, or network of worksta-
tions is required.
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The standard main program inmain/CmdLine is re-
placed by implementations for movie production. The sequen-
tial version is located in the directorymain/CmdLineSeq ,
the parallelized version in the directorymain/MpiCmdSeq .
Both versions are structured as follows.

The abstract classRvsMpiTaskManager manages all
rendering tasks, the camera parameters, and the scene graph.
The tasks comprise rendering of intermediate image (for mo-
tion blur) or intermediate subimages (in the parallel version).
The camera parameters are determined by the motion along
the camera path. In addition, changing scene objects (anima-
tion) can be considered as well.

Classes derived fromRvsMpiTaskManager actually
implement the camera path and the handling of the scene
graph. The following classes are provided.RvsMpiTask-
ManagerFiles contains a list of scene files (.rvs) describ-
ing camera parameters and scene objects.RvsMpiTask-
ManagerRotation implements a camera rotating on a cir-
cle around a fixed point. Here, the scene is static.RvsMpi-
TaskManagerSrtLinear provides a uniformly moving
observer for special relativistic visualization.RvsMpiTask-
Manager4DTimeLinear implements a uniformly moving
observer or object in four dimensions, for example for general
relativistic visualization of dynamic spacetimes and scenes.

C.3.3 Special Relativistic Rendering

The implementation of three-dimensional special relativis-
tic ray tracing is located in the directoryDev. The class
RvsProjectorSRT provides the ray projector for special
relativity. The relativistic aberration of light is implemented
by an extension of the ray projector. The direction and the
starting point of a light ray are first computed in the reference
frame of the camera and then transformed into the frame of
the objects. The searchlight effect is taken into account in the
pixel sampling function. This function yields the final RGB
color for the respective pixels and thus allows the modifica-
tion of brightness according to the searchlight effect.

The special relativistic ray projector can be included in the
scene description according to the following syntax:

ProjectorSRT f

background <real> <real> <real>
beta <real>
dir <real> <real> <real>
pos <real> <real> <real>
searchlighteffect <real> g .

The velocity of the observer is given bybeta , the direc-
tion of motion by dir , and the current position bypos .
The parametersearchlighteffect determines the ex-
ponent in the equation for the transformation of radiance,
Eqs. (4.8) or (4.9). A value of 0 yields the visualization of
apparent geometry only. A value of 4 allows the visualiza-
tion of apparent geometry and searchlight effect, based on the
transformation of wavelength-independent radiance, Eq. (4.9).
This type of visualization models an observer detecting radi-
ation of all wavelengths with equal efficiency. An example
is shown in Fig. 5.10. A value of 5 forsearchlightef-
fect reproduces theD�5 dependency in the transformation
of wavelength-dependent radiance, Eq. (4.8).

C.3.4 Four-Dimensional Scene Objects

Although the object-oriented framework ofRayViSallows the
extension for general relativistic ray tracing, most basic types
of scene objects had to be implemented in order to have a prac-
tical system at hand. All primitive objects had to be made
aware of temporal dependency.

In the directoryObj/Poly , objects describing various
kinds of triangles have been included. The implemented
classes areRvs4DFlatTriangle , Rvs4DPhongTex-
Triangle , Rvs4DPhongTriangle , Rvs4DPlanar-
Surf , andRvs4DTriangle . The syntax in the scene de-
scription is analogous to the three-dimensional counterparts.

The following solid objects are included in the directory
Obj/SolObj : RvsSol4DBackground , RvsSol4D-
Cylinder , RvsSol4DEllipsoid , RvsSol4DRigid-
Disc , andRvsSol4DRing . Cylinder and ellipsoid are anal-
ogous to the three-dimensional examples.RvsSol4DRing
does not have a three-dimensional analog. It is included for
convenience, especially for the design of Saturn rings. The
syntax is:

Sol4DRing f

base <real> <real> <real>
top <real> <real> <real>
radii <real> <real>
radii <real> <real> g .

The midpoint of the top and the bottom surface and the outer
and inner radii have to be supplied. By specifying two differ-
ent values for the radii, an ellipsoidal shape is achieved.

An object representing a rigidly rotating disk is specified by

Sol4DRigidDisc f

center <real> <real> <real>
radius <real>
rmue <real> g .

The size and position of the disk is determined bycenter
andradius . The relativistic parameterµ fixes the rotational
velocity, cf. Sect. 9.3.

Within general relativity, a scene object is not only deter-
mined by its spatial extent, but also by its motion through
spacetime. Both the temporal and spatial “behavior” have
to be known. The four-dimensional scene objects presented
above do not allow direct description of their motion, since
their syntax is based on the syntax of the three-dimensional
static analogs.

Animation of objects is introduced indirectly. A new state
variable is added to the functionality of the scene graph. This
state variable holds the current description of motion, simi-
larly to other state variables such as the current texture. A
four-dimensional object is associated with the current motion.
The intersection calculations, which are computed by a scene
object, take into account this motion through spacetime.

The implementation is located in the directoryObj/St
(st=spacetime). RvsStMotion is the abstract base class
for all motions through spacetime. Only uniform motion is
currently implemented. The syntax for the classRvsStMo-
tionConstVelocity is:

SpacetimeMotionConstVelocity f

t <real>
velocity <real> <real> <real> g .



C.3 Extensions to RayViS 91

The parametert determines the time when the origin of the
object coordinates coincides with the origin of the global co-
ordinate system. The second parameter is the velocity.

C.3.5 Implemented Spacetimes

The implementation of the physics of spacetime is located
in the directoryPhysics . The modules provide solvers
for geodesic equations in the respective spacetimes, i.e.,
they return a polygonal approximation of the light ray for
given initial parameters. The implemented modules com-
prise Schwarzschild metric, warp metric, and the metric of
the rigidly rotating disk of dust. The numerical integration
is based on Runge-Kutta method of fourth order with adaptive
step size control.

In the directoryRay, the interface between the ray pro-
jectors and physics is implemented. The classesRvsPro-
jectorPolRay and RvsProjectorPolRay4D repre-
sent ray projectors for bent light rays in three and four di-
mensions, i.e., for static spacetimes and dynamic spacetimes,
respectively. They provide interfaces to the actual ray gen-
erators, which communicate with the geodesic solvers. The
current implementation of the ray projectors does not support
changes in color or brightness due to shifts in frequency or
specific intensity of photons. Secondary rays and shadow rays
are neglected as well.

Corresponding to the modules inPhysics , the following
ray generators are included in the directoryRay.

The Schwarzschild metric is represented byRvsPolRay-
GenSchwarzschildMetric and has the syntax:

PolRayGenSchwarzschild f

maxpoints <real>
mass <real>
epsilon <real>
corner <real> <real> <real>
corner <real> <real> <real> g .

The maximum number of points for a single light ray, the mass
of the gravitational source, the allowed integration errorε, and
the computational region are supplied.

RvsPolRay4DGenRigidDisc is the interface to the
spacetime of the rigidly rotating disk of dust. Its syntax is:

PolRay4DGenRigidDisc f

maxpoints <real>
rmue <real>
epsilon <real>
rmax <real>
[filename <pathname>
[generate]] g .

The maximum number of points for a single light ray, the pa-
rameterµ, the allowed integration errorε, and the radius of
the computational region are supplied. The geodesic solver
in Physics accelerates the evaluation of the metric coeffi-
cients, which are needed in the form of Christoffel symbols in
the geodesic equation. The metric coefficients are represented
by Chebyshev polynomials, whose coefficients are calculated
in a preprocessing step. In this way, the time consuming eval-
uation of integrals and ultraelliptic functions for the metric co-
efficients can be avoided in the rendering process. The Cheby-
shev coefficients can be saved to file and reloaded in later cal-
culations, preventing unnecessary computations. If only the

parameterfilename is supplied, the Chebyshev coefficients
are loaded from file. If bothfilename andgenerate are
supplied, the Chebyshev coefficients are generated and written
to file.

RvsPolRay4DGenWarpMetric represents the warp
metric. The syntax is:

PolRay4DGenWarpMetric f

maxpoints <real>
radius <real>
sigma <real>
epsilon <real>
hmin <real>
corner <real> <real> <real>
corner <real> <real> <real>
[accuracycheck]
<spacetime motion> g .

The maximum number of points for a single light ray, the ra-
dius of the warp bubble, and the parameterσ are supplied, cf.
Sect. 9.4. The quality of integration is determined by the tar-
geted maximum error,epsilon , and by the minimum step
size,hmin . The computational box is described by its two
corner points. The optional parameteraccuracycheck en-
ables a specific check of the accuracy of the numerical inte-
gration. Here, the light rays are reversed when they intersect
the computational region. The distance of the reversed ray
from the camera position is a measure for the inaccuracy of
the numerics. The motion of the warp bubble is described by
<spacetime motion> .

C.3.6 Standard Lensing

Standard lensing theory is based on (almost) static physical
systems. Hence, a four-dimensional description is not re-
quired. Light rays are represented by a polygonal approxi-
mation (RvsPolRay ) in three spatial dimensions. The lens-
ing models are implemented as modules for the ray genera-
tor. They are located in the directoryPhysics/Gravita-
tionalLens . The physics of the implemented lensing mod-
els is described in Appendix B.

The classRvsPolRayGenGravitationalLens is the
abstract base class for all lensing modules. It computes the
light rays consisting of two straight parts. The first part
reaches from the observer to the lens plane, the second part
from the lens plane through the source plane to infinity. De-
rived classes implement the specific laws for the deflection
angle, cf. Eq. (10.2).

The implementation of axially symmetric lenses is based
on the derived classRvsPolRayGenGravitational-
AxialLens . It reduces the general two-dimensional
deflection law to the one-dimensional deflection law for
symmetric lenses, Eq. (B.1). Derived classes actually imple-
ment the specific law for the deflection angle. The following
axially symmetric lens models are available: Schwarzschild
lens (RvsPolRayGenGravitationalPointLens ),
singular isothermal sphere (RvsPolRayGenGravita-
tionalSingularIsothermalSphere ), non-singular
isothermal sphere (RvsPolRayGenGravitational-
NonSingularIsothermalSphere ), Hubble model
(RvsPolRayGenGravitationalHubbleLens ), King
model (RvsPolRayGenGravitationalKingLens ),
and spiral lens model (RvsPolRayGenGravitational-
SpiralLens ).
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Quadrupole lenses are based on the classRvsPol-
RayGenGravitationalQuadrupoleLens . This class
splits the expression for the deflection angle in a symmetric
part and a perturbed part, according to Eq. (B.2). The per-
turbed part is actually implemented in this class. The sym-
metric part is implemented in derived classes. The perturbed
Schwarzschild lens (RvsPolRayGenGravitational-
ChangRefsdalLens ) is an example of a quadrupole lens.

C.3.7 Caustic Finder

The implementation of the three-dimensionalcaustic finderis
located in the directoryCaustics .

The central managing class isCaRaySpace , represent-
ing thecaustic finder. It aggregates objects representing the
region covered by thecaustic finder, the computational grid,
and the traversal function for the volume (CaVolTrav ). So
far, only box-shaped regions (CaBoxReg) and regular grids
are supported.CaVolRegularGrid only counts the num-
ber of rays which touch each of its voxels. The derived class
CaVolDirRegularGrid recognizes the distance of two
rays on the image plane in order to avoid incorrect counting of
image multiplicities. Volume traversal can be based on float-
ing point arithmetic (CaVolDDATrav ) or Bresenham algo-
rithm (CaVolBresTrav ).

The sample managerCaSimpleSmplMgr adds an object
of the ray space to the intersection tests with the generated
light rays. The ray space traverses the volume grid by means
of the traversal object. Finally, the volumetric scalar field con-
taining the image multiplicities is written to file.

The main programCausticsMain provides a command
line-oriented interface to the ray tracer and thecaustic finder.
It evaluates command line parameters, loads the scene descrip-
tion in theRayViSformat, and initializes the sample manager.
Then, the whole image plane is sampled and the final volume
data is saved to file.

C.4 Isometric Embedding

The implementation of isometric embedding makes use of an
object-oriented framework. The program is written in C++. It
is based on mesh libraries by Gumhold[65] for handling con-
nectivity in triangle meshes.

Basis data types represent a point (Vertex ), an edge
(Edge), and the whole mesh (EdgeNet ), including connec-
tivity and geometry. The mesh class is due to Gumhold.

The classEdgeSphere is derived fromEdgeNet and
represents the triangulation of a sphere. The sphere is the start-
ing point for the Newton method which solves the embedding
problem.

The classEmEdgeNet is derived fromEdgeSphere . It
implements the main functionality of the embedding algo-
rithm. It fills the elements of the Jacobi matrix, Eq. (11.5), and
iterates the Newton method, Eq. (11.4). The matrix is solved
by singular value decomposition, as presented in Numerical
Recipes[130].

The abstract classMetric represents the metric of the
two-dimensional surface to be embedded. The classes
MetricEllipsoid andMetricSampled implement the
metric of an ellipsoid and a sampled metric, respectively. The
sampled metric calculates intermediate values by linear inter-
polation.

Meshes resulting from intermediate steps of the Newton
method or the final mesh can be written to a VRML 1.0 file
by means of the output classOutputVRML .

C.5 Adaptive Subdivision of Height
Fields

The implementation of adaptively triangulated height fields
is written in C++. It is based on a triangle mesh library by
Gumhold[65]. This library provides a classSubdivision-
TriangleMesh , which represents a triangle mesh. This
mesh can be subdivided and hanging nodes can be eliminated.

The height field is represented by the abstract class
GraphSubdivisionMesh . This class implements the sub-
division scheme, the error criterion on which adaptive refine-
ment is based, and additional color coding of the scalar values.
The functional relationship between the two-dimensional do-
main and the values of the graph is defined in a derived class.

SphericalHarmonicsMesh is such a derived class. It
represents a height field based on coefficients for spherical
harmonics. Time-dependent data is supported. The coeffi-
cients are managed by the classField . This class reads the
coefficients from file and constructs data structures for fast
access to the coefficients. Since the coefficients are given at
discrete radii only,Field obtains the values at intermedi-
ate radii by linear interpolation.SphericalHarmonics
implements the functional definition of spherical harmonics.
SphericalHarmonicsMesh evaluates the values of the
graph by looking up the corresponding coefficients inField
and by using the function definitions of the spherical harmon-
ics.
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Supplementary Video Material

Additional video material accompanies the thesis. The videos
are available on tape and on CD-ROM. The films show fur-
ther examples of relativistic visualization and reveal time-
dependent properties. Table D.1 gives an overview of the con-
tents of the video tape. The starting times are stated in order
to conveniently locate a specific video.

D.1 Detailed Description of the
Videos

D.1.1 An Immersive Virtual Environment for
Special Relativity

This video gives a good impression of the immersive virtual
environment for special relativity, as presented in Sect. 6.4.
The video was recorded during a typical simulation in a
CAVE-like environment.

The first sequence shows a simulation with Saturn, see
Fig. 6.4. Acceleration in all three dimensions is used, there
are no constraints on the movement of the viewpoint. The
second scene is a box-shaped room which contains simple ob-
jects such as a cube, sphere, torus, etc., see Fig. 6.5. Textures
are attached to all objects to visualize relativistic effects on
the surface. Acceleration is restricted to the horizontal plane.
The focus is on how the user can control the movement of the
vehicle. No tracking is used. The third sequence also uses
the box-shaped room. Here, the difference between tracking
of position and tracking of velocity and position is presented.
The last simulation takes place in a virtual gallery, cf. Fig. 6.6.

The rendered images are results of a perspective projection
which depends on the position of the user’s head. The position
of the video camera is different from the user’s position, which
causes apparent cracks along the screen boundaries. The user,

Table D.1: Contents of the video.

Time Title

00:10 Introduction
01:26 An Immersive Virtual Environment for Special Relativity
06:04 Speed Limit 1 079 252 849 km/h
10:00 Image-Based Special Relativistic Rendering
12:37 Visualization of the Rigidly Rotating Disk of Dust
15:00 Visualization of the Warp Drive
16:15 Visualization of the Chang-Refsdal Lens
17:27 Neutron Star Oscillations

however, perceives a correct three-dimensional world. The
three-dimensional menu is at rest in the CUBE and is subject
to the perspective projection onto the screens but not to rela-
tivistic transformations. The video was recorded with a shutter
speed of only six Hertz. This causes some artifacts, especially
when the rendered images are rapidly changing. This video
was shown at the WSCG 2000 conference[171].

D.1.2 Speed Limit 1 079 252 849 km/h

This video shows special relativistic flights through various
scenes. Only the apparent geometry is visualized, the search-
light and Doppler effects are neglected. The introductory se-
quence displays a traffic sign we pass by at high velocity.
The sign reads a speed limit of 1 079 252 849 km/h—the
speed of light. The next sequences contain high-speed flights
through simplified models of the Brandenburg Gate and an
NaCl lattice. Relativistic illustrations of the Eiffel Tower, the
earth, Saturn, and a spaceship follow. This video was shown
at the Computer Animation Festival of the GI Jahrestagung
’98[168].

D.1.3 Image-Based Special Relativistic
Rendering

This video presents examples of image-based special relativis-
tic visualization, cf. Sect. 5.5. Here, only the relativistic ef-
fects on apparent geometry are taken into account.

The first part of the video shows a relativistic trip across the
Deutzer bridge in Cologne. This movie was produced with
the use ofOff-Terdingen. The recordings of three cameras
were stitched together to form the final movie. The film was
shown on TV as part of a broadcast on Einstein and special
relativity[132]. The first sequence shows the non-relativistic
situation. The second sequence presents the relativistic case.
The observer accelerates from non-relativistic speed to a max-
imum velocity ofβ = 0:9. The black stripes at the top and bot-
tom sides are caused by missing data in the original recording.
In the third sequence, the relativistic and the non-relativistic
views are compared.

The second part of the video illustrates the interactive rel-
ativistic panorama viewerImagine. It was recorded from
the computer screen during a simulation on an SGI Onyx2
with InfiniteReality graphics board. First, the non-relativistic
viewer is shown. Then, the velocity is increased and snap-
shots of a relativistic flight can be seen. Finally, the camera
leaves its physically correct position and an outside view onto
the virtual sphere surrounding the observer is adopted.



94 Chapter D: Supplementary Video Material

D.1.4 Visualization of the Rigidly Rotating
Disk of Dust

In this video, the visualization of the rigidly rotating disk of
dust is presented, cf. Sect. 9.3. The visual appearance of the
disk as seen by a realistic observer is calculated by using gen-
eral relativistic ray tracing of the photons emitted by the disk
and registered by the observer.

The first part of the video shows the image of the disk of
dust as seen by an observer. The observer is looking at the disk
from an outside position which lies in almost flat spacetime
while the relativistic parameterµ is increased. For sufficiently
relativistic disks, multiple and distorted images appear. Due to
gravitational light bending both the top and the bottom faces
are visible simultaneously. An artificial “pie slice” texture is
applied both to the top and the bottom side of the disk in order
to visualize rotational distortions. In this way, the effects of
frame dragging become noticeable.

In the second part of the video, the position of the observer
and the parameterµ= 3 are fixed. The observer is located on
the axis of symmetry and is looking towards the edge of the
disk. The sequence starts with a wide angle field of view. Parts
of the top side of the disk are visible in the lower part of the
picture. An image of the bottom side is found directly above
this first image of the top side. Further above, alternating im-
ages of the top and the bottom faces follow. Further pictures
document increasing zooming in on the original picture. This
series reveals self-similarity and a fractal-like structure in parts
of the ray-traced images.

This video was shown at Journ´ees Relativistes ’99[173].

D.1.5 Visualization of the Warp Drive

This video visualizes a spaceship equipped with a warp drive
according to Alcubierre[2], cf. Sect. 9.4. The warp drive con-
structs a warp bubble which separates two flat parts of space-
time. The warp bubble is able to move faster than the speed
of light as measured in an outside flat region of spacetime. A
spaceship which is at rest inside the warp bubble would then
travel faster than the speed of light.

The visual appearance of the spaceship and the background
objects is calculated by using general relativistic ray tracing.
In this video, the spaceship travels in front of the earth and
moon, Mars, Jupiter, and Saturn, at velocities of 0:8c, 1:5c, or
2:5c. The light deflection at the warp bubble causes astonish-
ing visual distortions on these background objects.

The visualizations of this video were also shown at the ex-
hibition “Seven Hills”[13].

D.1.6 Visualization of the Chang-Refsdal
Lens

This video presents the visualization of gravitational lens-
ing, cf. Chapter 10. The deflecting body is a Chang-Refdal
lens. The Chang-Refdal lens is a Schwarzschild lens with a
quadrupole distortion, cf. Sect. B.2.

The first sequence shows the image of a moving source un-
der the influence of the gravitational lens. The second se-
quence shows the same situation in the lens plane. Both the
source and the caustic structure are displayed. In the third
sequence, the image and the source plane are visible simulta-
neously. The last sequence shows the two-dimensional caustic
structure. The caustic was numerically generated by means of

the caustic finder. Rendering is based on shear-warp factor-
ization.

D.1.7 Neutron Star Oscillations

This video visualizes a particle which travels around a neutron
star on a hyperbolic path. The particle excites the star to os-
cillations by gravitational interaction and to coupled emission
of gravitational waves. The underlying computation is based
on a multipole expansion of the particle[139]. Each multipole
generates its own oscillation. Summing over all multipoles
yields the overall oscillation pattern. The perturbation of the
metric can be decomposed into two terms. The first term is
a conformal factor. The second term describes the deviation
from the conformally flat metric.

The data is visualized by using both a height field and color
coding, as presented in Chapter 12. Only the difference of
the true metric and the underlying metric of the neutron star
is visualized, i.e., only the perturbation of the spacetime in-
duced by the particle. The quality of the triangle mesh repre-
senting the height field is increased by adaptive refinement, as
opposed to regular sampling.

The first part of the film shows the time evolution of the
conformal factor (metric component “t”) in thex-y plane.
The first sequence specifically visualizes the triangulation by
marking the triangle edges with a wireframe. The second se-
quence shows the surfaces by smooth shading. In both se-
quences, the particle travels in thex-y plane. In the beginning,
the gravitational field of the particle is visible. The particle
is smeared out because only ten orders of the multipole ex-
pansion are taken into account. The neutron star itself is lo-
cated at the midpoint of the plane. When the particle is ap-
proaching the neutron star, emission of gravitational waves is
induced. These waves are superimposed onto the gravitational
field of the particle. The neutron star keeps oscillating and
emitting characteristic gravitational waves, mainly consisting
of f-mode and some p-modes, after the particle left the neutron
star.

The second part of the film shows the time evolution of the
second term (metric component “s”). Again, both wireframe
rendering and smooth shading are included. The spiral emis-
sion of gravitational waves, while the particle is orbiting the
neutron star, and the subsequent oscillations of the neutron
star are most prominent.



Appendix E

Conventions and Notation

Throughout this thesis, units are used in which the speed of
light c= 1 and the gravitational constantG= 1. In some cases,
c andG are explicitly included for clarity.

The Einsteinian sum convention applies to indices con-
tained twice in an expression. In the context of general rela-
tivity, lower case Greek letters cover an index range of 0: : :3,
whereas lower case Latin letters cover an index range of 1: : :3.
Partial derivatives might be marked by commas, for example,
f;µ. Covariant derivatives are represented by semicolons, for
example,f;µ.

The indicesν, E, andλ in frequency-dependent radiance
Lν, energy-dependent radianceLE, and wavelength-dependent
radianceLλ just indicate that radiance depends on the respec-
tive quantity. The respective parameters have to be provided
separately, for example,Lλ(λ0) is the wavelength-dependent
radiance for the wavelengthλ0.

References to program code, classes, variables, file and
directory names, and syntax descriptions are set intype
writer font.

E.1 Variable Names

The following variable and function names are connotated
with specific meaning.

Variable Meaning

A area
~a acceleration
aµ four-acceleration
b chromaticity for blue
b̄ color-matching function for blue
B tristimulus-value for blue,

radiosity
~B blue primary
β velocity,

unlensed position of the source
c speed of light
ci chromaticity for a color
~C color
Ci tristimulus value for a color
D Doppler factor
Dd distance of the deflector (gravitational

lens)
Ds distance of the source in gravitational

lensing

Variable Meaning

Dds distance between gravitational lens and
source

f̄i color-matching function
Fµν electromagnetic field tensor
g chromaticity for green
ḡ color-matching function for green
G gravitational constant,

tristimulus-value for green
~G green primary
E energy
Ei irradiance
Ei

λ wavelength-dependent irradiance
ηµν Minkowski metric

γ velocity parameter
Γµ

νρ Christoffel symbol
h Planck constant
I radiant intensity
Iν frequency-dependent radiant intensity,

specific intensity
Iλ wavelength-dependent radiant intensity
k Boltzmann constant
~k wave vector
kµ four-wave vector
L radiance
Lν frequency-dependent radiance
Lλ wavelength-dependent radiance
LE energy-dependent radiance
λ wavelength

Λµ
ν matrix for Lorentz transformation

M radiant excitance
µ magnification factor,

relativistic parameter for rigidly rotat-
ing disk of dust

N number of particles
N number density in phase space
ν frequency
ω circular frequency
Ω solid angle

to be continued...
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...continued

Variable Meaning
~Pi primary color
φ spherical coordinate
Φ radiant power or radiant flux
Q radiant energy
r radial distance,

chromaticity for red
r̄ color-matching function for red
R tristimulus-value for red
RS Schwarzschild radius
~R red primary
S phase
~S Poynting vector
t time
θ spherical coordinate,

position of the image in gravitational
lensing

τ proper time
v velocity
uµ four-velocity
V volume in phase space
x chromaticity for X in the CIE system
x̄ color-matching function for X in the

CIE system
X tristimulus-value for X in the CIE

system
~X X primary in the CIE system
ξ impact parameter in gravitational

lensing
y chromaticity for Y in the CIE system
ȳ color-matching function for Y in the

CIE system
Y tristimulus-value for Y in the CIE

system
~Y Y primary in the CIE system
z chromaticity for Z in the CIE system
z̄ color-matching function for Z in the

CIE system
Z tristimulus-value for Z in the CIE

system
~Z Z primary in the CIE system
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