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Chapter 1

Introduction

In the fight against cancer, radiotherapy is one of three weapons. It is applied together
with surgery and chemotherapy, or as a single modality. With a significant fraction of
cancer deaths associated with the failure to control the primary tumour, enhancing the
effectiveness of radiotherapy is a worthy goal. A recent study on prostate cancer produced
unambiguous evidence for the benefit of pushing the technical limits of conventional radio-
therapy with photons to achieve a higher therapeutic dose. The concomitant development
of ever faster computers, powerful imaging methods and sophisticated treatment units has
provided the means to overcome many long-standing limitations of radiotherapy.

The key stimulus for physicists to instigate renewed activities in radiotherapy optimiza-
tion was the concept of modulated as opposed to homogeneous radiation intensity (intensity
modulated radiotherapy, IMRT) [1, 2]. As the limitations of conventional therapy tech-
niques with multiple homogeneous photon beams are removed with this new technique,
established methods of treatment planning become unavailing. Novel biological and phys-
ical models for optimizing radiotherapy have to be conceived to keep up with the pace of
the technical and clinical development, which is in turn driven by novel software solutions.
As a consequence of this mutual stimulation, treatment planning is about to undergo a
metamorphosis to computer based treatment simulation embracing the fields of physics,
biology and medical sciences.

The invention of IMRT followed an analogy to image reconstruction in x-ray tomog-
raphy. Starting from a definition of the desired dose distribution, the modulated fluence
distribution was obtained by a formal inversion of the calculus of tomographic image re-
construction. Whilst the latter is a well defined problem in that the solution (the density
distribution of the image object) certainly exists, the solution of the former (the fluence
distribution which creates a certain dose distribution) may very well not exist.

Over the years, the development moved ever further away from the inverse problem
approach towards the concept of optimization. This evolution is expressed in efforts to
formulate rules for deviations from the dose prescription in case it is unattainable. Si-
multaneously, IMRT was increasingly understood as a chance to escalate tumour doses
beyond conventional limits. The majority of methods requires the prescription of a dose
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for the target (tumour) volume and a tolerance dose for a number of normal tissue vol-
umes (c.f. [3, 4, 5]). Very soon it became clear that at least some biological considerations
had to be included into the definition of both dose prescription and rules for its violation
[6,7,8,9,10, 11]. By today, prescriptions for partial volumes (dose-volume or dose-volume
histogram constraints) are regarded as standard [12, 13, 14, 15, 16].

The common feature of all dose-based approaches is that the optimum solution is defined
by the therapists with the specification of the prescription dose. However, the clinical
guidelines which govern conventional techniques may not apply equally well to IMRT.
The common understanding of an optimum dose distribution is shaped by the available
means. The hugely greater flexibility of IMRT requires a new definition of optimality
for radiotherapy. Undoubtedly, IMRT has the potential to improve on the cure rate of
established dose prescriptions, yet there is also the danger of unwanted side effects. For
a safe advancement of treatment, the modelling of normal tissue reactions to radiation in
the optimization process is crucial.

While dose-based optimization constitutes an attempt to bridge the gap between the
desired and the feasible dose distribution, the concept of evidence-based biological optimiza-
tion as introduced here aims to incorporate the biological knowledge and clinical evidence
of conventional radiotherapy to explore the potential of IMRT, yet stay on safe ground.
Consequentially, normal tissues move into the focus of the optimization concept.

Earlier attempts at biological optimization placed less emphasis on clinical aspects and
met with controversity (c.f. [6, 17, 18, 19, 20]) - the treatment objectives had been specified
in a less stringent form and by unspecific models. Nevertheless, this development draws
great inspiration from these earlier sources.

We understand evidence-based biological optimization as the inversion of the tradi-
tional planning scheme. Instead of conflicting prescriptions for therapeutic dose and dose
tolerance, the mazrimum possible therapeutic dose obtains as the result of rigorously limited
normal tissue tolerance doses. While the risk of side effects can be expressed in the lan-
guage of traditional clinical experience, the full potential of dose escalated treatments can
be explored without ad-hoc restrictions of the target prescription dose. This necessitates
the development of biological models which impose the rules according to which the dose
distribution is optimized. These rules are applied implicitly by therapists when prescribing
the dose and dealing with the feasibility gap of the dose prescription.

From the point of view of biological optimization of radiotherapy, intensity modulation
is a multiplication of the degrees of freedom of the problem rather than a new class of
problem. With each degree of freedom comes a number of restrictions and problems of
various nature which have to be taken into account to maintain maximum clinical utility

of the algorithm. The algorithm presented here constitutes an advance in three key issues:



e Evidence-based biological optimization: For radiotherapy optimization, bi-
ological models have to be employed which pertain to two classes of effects: the
response of tissues to the dose per treatment fraction and the response to inhomoge-
neous dose distributions. While tumour tissue response is fairly straightforward, the
dose-response of normal tissues is very involved. The modelling discriminates the tis-
sue specific variability of the relation between irradiated volume and dose tolerance.

e Monte Carlo dose computation: The modelling of radiation transport through
complex geometries is a central problem of IMRT. Field geometries are much more
irregular and smaller than in standard radiotherapy. IMRT has the potential to
generate dose distributions with accuracies of about one millimeter in very inhomo-
geneous regions of the body like the head and neck or the thorax. With smaller field
sizes, the modelling of scatter from the collimators or compensator filters becomes
more important. These effects can be modelled precisely with Monte Carlo meth-
ods. The simulation of radiation transport with these methods imitates the physical
processes at the price of significantly longer computation times. Nevertheless, Monte
Carlo dose computation was included into the algorithm with clinically acceptable
computation times.

e Clinical utility factors: A radiotherapy optimization algorithm can facilitate
clinical routine in two ways: treatment planning can become more intuitive, faster and
more standardized, and the dose application can become more practical, error tolerant
and verifyable. The method of treatment prescription was designed to accomodate
a data base for class solutions providing biological and clinical parameters. The
algorithm delivers technically feasible fluence distributions. The complexity of the
treatment is reduced to the least possible extent.



Chapter 2

Mathematical Modelling

For a non-linear optimization problem of the size of radiotherapy optimization, fortuitious
circumstances must come to aid the modelling. In the present development, this is the
linearity of the Boltzmann radiation transport equation which links incident energy fluence
to dose in the patient. The entire formalism relies on an adaption of the concept of Green’s
functions to the problem in hand. These ‘rays’ lie right at the foundation of the formalism
in the first section. The connection to the formalism of variational problems will be made
there which delineates the further development.

The second section deals with the simplification of the biological dose response by virtue
of a mean-field approximation which is expressed by the notion of objective measures. In
combination with the ray formalism this yields the concept of ray derivatives. This latter
concept is used to derive a powerful theorem in section three. This theorem identifies the
global solution of the radiotherapy optimization problem with an equilibrium condition of
the Lagrange density introduced in section two.

2.1 Definitions and Terminology

2.1.1 Fluence and Dose Spaces

The central quantity of radiotherapy certainly is the energy dose D(z,y, z) at some point
P = (z,9,2) € R® in the patient volume. We often use the term dose distribution if we
want to highlight the character of dose as a three-dimensional non-negative scalar field

D:R* =R, (z,y,2) =d . (2.1)

When we refer to dose space D, we think of the space of all dose distributions D, which
can be chosen as a subset of £, (R?) since the support of D is finite, yet dependent on the
actual patient.

The dose is a result of the energy flux due to particles like photons, electrons, positrons,
hadrons (or more exotic particles) through the patient. The incident particle fluence
®(v, E, ¢,0,u,v) is defined on tangent planes to the unit sphere centered at the iso-centre
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which is considered to enclose the entire support of D. It is a function of particle type v
and energy F, the angles ¢ € [0,27] and # € [0, 7] and the position in the tangent plane
(u,v) € R%.. With this definition, (u,v) is the offset of a parallel line to the radius (central
ray) impinging from solid angle Q2 = (¢, §). By using the term fluence distribution we high-
light the character of fluence as a five-dimensional scalar field for each particle quality v

:RY X S X R2 5 [0, Pruaa), (B, 6,0,u,0) > & . (2.2)

In the following, we will also often refer to fluence profiles which are fluence distributions
on a certain tangent plane and often with a certain energy spectrum and particle quality.
With fluence space F we have in mind the space of all fluence distributions which can also
be chosen as a subset of Lo(RT x Sy x R?).

2.1.2 The Absorption Operator

The link between fluence and dose space is mediated by the ‘energy absorption per mass
and fluence unit’ operator 7" which is the local energy dissipation of the Green‘s function
of the Boltzmann transport equation for the given patient. We define

T:F—=D, &-5Té=D . (2.3)

As a consequence of the linearity of the Boltzmann equation, 7 is a linear operator, and one
can also assume that all dose distributions are continuous since they are a solution of the
Boltzmann equation. The latter statement highlights the fundamental importance of the
feasibility gap for the inverse problem: the dose cannot assume different values on adjacent
points in the patient volume which would be necessary for undiscerning dose prescriptions,
even if negative fluences were allowed.

The most limiting factor of the radiotherapy optimization problem in this framework
becomes already apparent. Both fluence and dose space lack an inverse element with
respect to addition, and hence cannot support groups. Even if one cannot establish a
vector space structure of both spaces, it is worthwhile to introduce the notion of a basis in
fluence space. Since the time-invariant Boltzmann equation is a linear homogeneous partial
differential equation of first order, it can be inferred from the theorem of Picard-Lindel6f
that the corresponding operator 7T is injective, i.e. even if negative fluences are permitted,
a dose distribution which is zero everywhere can only be generated by a zero fluence. It is,
however, not surjective so that the image of F in D is sparse. While 7" could be inverted
in principle, the origin T~!D of any given dose distribution D will almost certainly not lie
in F.

The true value of the injectiveness of T lies in the fact, that any basis of F is also a
basis of the image of F in D and is not redundant. While one can thus freely go from
F to D, the opposite direction is hampered by the incompleteness of fluence space with
respect to 7. It is for this reason that the central position of dose is abandoned and the
foundations of the development laid in fluence space.
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2.1.3 The Ray Basis

The question of a suitable set of basis functions for fluence space is related to physical and
practical issues. Commonly, basis functions are designed for some special purpose, like
spherical harmonics. Often, basis functions are chosen to be orthogonal with respect to
some metric. In this case there is no a priori metric in fluence space, but one could use a
metric in dose space via 7. However, as will be shown, this clinically relevant metric on
dose space does not exist.

To the best of common knowledge, two dose distributions have to be considered biologi-
cally equivalent if they have equal dose-volume statistics for a homogeneous target volume.
If a metric were to reflect this fact, an infinite number of different dose distributions would
have no ‘distance’ from each other, in contradiction with the axiome of definiteness'. Al-
though it would be possible to restrict the dose space to a set of dose distributions with
unique dose-volume statistics, this is not feasible in practice and highly arbitrary. We
conclude that it is not necessary to take into account orthogonality in the construction of
a basis of fluence space. The downside lies in the fact that there is also no way to obtain
the linear coefficients by orthogonal projections.

It is important to notice that this basis need not span the entire fluence space F as
defined above. The space of all practically achievable fluences is subject to very stringent
limitations, such as continuous and differentiable profiles with finite penumbra. It is suffi-
cient to construct a basis which is complete for the applicable fluence space. Thereby, it is
ensured that the resulting fluence distribution is not grossly compromised by applicability
limitations.

Henceforth we consider as fluence space the subset Fg C F which is in the range of
a given basis B C F. The basis B can be enlarged to access a greater subset of F, e.g.
for a refinement of field discretisation. The range of B needs clarification. Usually, in
vector spaces all linear combinations of basis vectors lie in the vector space. In this case,
only those linear combinations are permitted which yield an element of F 2. Although in
practical computations one can choose the basis such that all linear coefficients have to
be non-negative, for theoretical considerations negative coefficients may be allowed. The
details of this basis are given in chapter 5.

The concept of a finite basis of elementary fluence distributions is a cornerstone of the
ray formalism. An element 7; of the basis B = {n,...n,} will be termed ray, its dose
distribution 7; = T'n; ray dose (at unit weight). B is called the ray basis. The image
of Fg : TFg C D is the subset of all practically feasible dose distributions. Since T’
is an injection, the {T;},i = 1,2,... form a basis of the accessible dose space Dy C D.
The linear coefficients ¢; of ® = Y, ¢;m; are often referred to as ray weights. Again, the
restriction applies that only those linear combinations are permitted which do not lead to
negative fluences. Notice that the ray doses are the equivalent of Green’s functions for

1Two elements a, b of a set have d(a,b) = 0 if and only if a = b
2Tt is for this reason that the notation Fg = span(B) is abandoned
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this special function space. We can consider the rays as ‘field modes’ or ‘single particle
states’ of radiotherapy optimization, their doses as their ‘charge’ by virtue of which they
are coupled to each other and to an external potential which is introduced below.

2.1.4 The Variation Problem - Constrained Optimization

The fluence space Fz was established as the parameter space from which the solution of
the radiotherapy optimization problem will originate. The treatment philosophy requires
that certain normal tissue dose limits not be exceeded while the probability of treatment
failure is minimised. In the language of optimization this means that the optimum solution
has to meet a set of constraints while an objective function is minimised. The following is
concerned with the fundamental formulation of the problem; numerical methods to solve
it are the subject of chapter 6.
Commonly, an objective function

F:F—>R{ (2.4)

is defined to model a problem such that it attains its global minimum at the optimum
solution ®*. For the setup here, F' is a functional rather than a function. Frequently it is
required that F' is twice continuously differentiable with respect to its argument - in this
case it is required that the first and second wvariation of F' with respect to ®, in our sense

OF(®) . F(®=+en) — F(P)
on 11_1,% Te for all test rays n € B,® € F (2.5)
e 0*F(®) OF (P ) — OF(®)
Rt +en)—
T?]Q o 61—1;% +e for all test rays n € B’ dcF (26)

exists. In this case a necessary condition for optimality is that the first variation of F
vanishes and the second variation is positive definite for all test functions 7. It is important
to notice that the variation was defined here with respect to the ray basis B rather than
fluence space F. With this notion we emphasize the fact that the objective function may be
defined for a much greater parameter space, but the variation (and subsequent optimality
conditions) are restricted to the ray basis B. If an arbitrary fluence distribution ® meets
the optimality conditions with respect to B, it is not possible to improve it further within
the parameter space Fz. It need not be that ® € Fz. There may be an enlarged basis with
respect to which the fluence distribution is not optimum. By using the basis property, the
variation problem can be transformed into a vector function. If & = Y, ¢;n; is restricted
to Fp, the objective functional becomes a function of the linear coefficients ¢; and the
variation the gradient with respect to the vector ® = (¢1, ¢a, .. .).

This dichotomy between fluence (and its corresponding dose distribution) and the flu-
ence variations (as effected by the ray basis) is crucial for the further development. The
underlying dose distribution and its related fluence variations are regarded as separate
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entities, which is brought to bear on the optimization of beam angles, Monte Carlo dose
computation or consideration of physical constraints.

The objective function as a measure of treatment success is clearly related to the dose
distribution. In the following we use F (D) = F(T'®) as a shorthand notation when we are
not concerned with the aspect of radiation transport. In the next section a general concept
for the formulation of F(D) is given, and in chapter 3 the functional form is derived from
biological principles.

The optimization of the fluence is subject to a number of constraints, some of which
are also related to dose space when they correspond to normal tissue reactions. These
constraints

G:F—R§ (2.7)

are treated similarly to F, i.e. it is required that the first and second variation exists and
the notation G(D) = G(T'®) is used where appropriate. Other constraints act directly on
fluence space to take into account the limitations of the treatment equipment. Those will
be dealt with in chapter 4.

The optimization problem of radiotherapy then becomes

minimise  F(®P)
subject to Gl(q)) S 01, ceey GN((I)) S CN, Ck 2 0 (28)

where N constraints are taken into account. The special nature of the problem allows
some fundamental statements at this early point. Firstly, the objective is to maximise
the dose to the tumour, which translates into the minimisation of the objective function,
hence F' will be the only strictly decreasing function of fluence. Secondly, the normal
tissue constraints which are associated with the G will be strictly increasing functions of
fluence. Therefore, these constraints cannot be mutually exclusive. For any reasonable set
of constraints there will be a feasible solution of the problem, be it even zero fluence. In
practice, the solution may be unsatisfactory because the constraints were too stringent. In
general, not all constraints will be active, i.e. fluence limiting, at the optimum.

A non-linearly constrained optimization problem is commonly solved by transformation
into an unconstrained subproblem for which a great number of algorithms is available. This
is achieved by the method of (Lagrange-) multipliers which will be briefly motivated in the
following. Let L(®) be the objective function of the unconstrained problem which has a
solution ®* that solves problem eq.(2.8). Hence, %gl = 0, yet not necessarily % =0.
This is prohibited by any active constraint with G (®*) = Cy, i.e. even if F' could attain a
smaller value elsewhere, the solution is bound to the manifold defined by this constraint.
Any direction in which ®* could be changed (any feasible variation) must be orthogonal to
the normal vector of this manifold, for any variation in the direction of the gradient would
change the constraint. For all these feasible directions, it is required that the optimality

condition hold, i.e. the variation of F' must be zero. In the remaining directions, the
OF(®*)

2% is a linear combination of

gradient of F' need not vanish. Hence, the gradient
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the gradient vectors zx;gigp*) with linear coefficients Ay > 0,...,Ay > 0, the Lagrange
multipliers. If a constraint is not active, the corresponding multiplier is zero. The Lagrange
function reads N
L(®,)) = F(®) + > MGp(®). (2.9)
k=1
If the gradients of the constraints are linearly independent then there exists a unique
vector A\*. The solution of the constrained problem is a pair (®*, A\*). For more details
about Lagrange multiplier theory we refer to [21, 22]. The Lagrange multipliers may not be
taken as ‘penalty factors’ or ‘weights’ because they are a mere mathematical construction.
However, they convey relevant information about the rate of change of F' with respect to

changes of G = (G4, ...,Gy), consider

minimise  F(®)
subject to  G(®) <wu (2.10)

then
Vup(u) = —A(u) (2.11)

where p(u) is the optimum objective parameterised by u, i.e.
p(u) = F(®*(u)) (2.12)

(see [21], pp 277). This correlation provides the answer to an important question of treat-
ment planning: how much effect in the target volume can be gained if the risk of side-effects
is increased.

In practice, the unconstrained problem is solved for a sequence of vectors of Lagrange
multipliers which converges to A\*. The solution of the constrained problem is hampered
by the difficulties associated with the determination of the multipliers. Fortunately, the
radiotherapy optimization problem is well behaved in many aspects such as conditioning,
convexity, and above all, degeneracy. Many dose distributions are equivalent with respect
to the objective and constraint functions, so that a rather large set of solutions of eq.(2.8)
exists within numerical uncertainty. Because of degeneracy, the solution of the problem is
rather tolerant towards inexactf Lagrange multipliers.

2.2 Local Objective Measures

The inescapable complexity of biological modelling requires far-reaching approximations.
With an eye to physical, dose-based optimization, biology is forced into a scheme which
only clinical experience may eventually prove adequate.

By its physical nature, dose is a density function and supports, in mathematical terms,
a measure on R®. A measure assigns a non-negative real number to any set of its support
in a consistent ‘linear’ way. In that sense, a measure is an entirely local quantity in that
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the measure of a set is the sum of its constituent subsets. If the radiation effect rather
than the dose is regarded as a measure, one does of course make a far reaching assumption
about the non-linearities in spatial interactions of complication mechanisms. This does not
imply that long-range interactions cannot be dealt with, but there are certain difficulties
associated with, for example, ‘diffusion of radiation damage’: tissue damage wrought on a
confined volume may spread to adjacent tissues and thereby violate the linearity in volume
of a measure. However, the use of such a concept for radiotherapy optimization offers great
advantage: a local variety of ‘optimality’ may be found which reduces the complexity of
the problem. This concept is invoked later in this and in the next section.

In the following, a ‘linearisation in volume’ of the hypothetic biological objective func-
tion F is introduced by reducing it to an equivalent local biological measure3. The idea is
to substitute F' with a measure which is equivalent with respect to local variations of the
dose on a finite set containing ®*. The approximation is similar to mean-field techniques
in statistical mechanics where long-range interactions are combined to a background ef-
fect. This method works mainly because therapeutic dose distributions vary only slowly
on mesoscopic length scales where short-range effects could lead to a breakdown of the

approximation.

2.2.1 The Variation Density

We call p a measure on R" if p assigns a non-negative number, possibly oo, to each subset
of R™ such that:

1.
p@) =0 ; (2.13)
2.
uw(A) <u(B) ifACB ; (2.14)
3. If Ay, Ao, ... is a countable (or finite) sequence of sets then

w(0a) < S uca 2.15)
=1 i=1
with equality if the A; are disjoint sets.

A measure can be used to ‘weigh’ a volume if we envisage it as some kind of mass
density. Likewise, if u is the local radiation effect density, we may arrive at the total effect
by integrating it over the whole tissue volume. So, in case u(Z) is a finite function on a
closed set A, we find

uA) = [ p@ids* (2.16)

3 Although ‘local measure’ is a tautology, we use this term to stress the mathematical meaning in our

use of the word.
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where 1(A) is the ‘effect’ or ‘damage’ accumulated in the volume A.

It is this last property which becomes important in this formulation of the radiotherapy
optimization problem. Since the optimality condition relies primarily on the first variation
of the objective (or Lagrange) function with dose, for the purposes of optimization it is
sufficient to approximate F' with a function with equivalent first variation. By virtue of
the density nature of dose a local variation of the dose distribution defines a ‘variation
density’, which is a valid approximation for small variations of the dose distribution. By
integrating the variation density with respect to the local dose, an objective density can
be derived which is equivalent to the original objective function with respect to local
variations. A global variation of the dose distribution can be decomposed into locally
confined variations in subvolumes and subsequently their effect summed up; by this way a
first order approximation in dose mediates the measure quality of the objective function.
This highlights the fact that biological modelling for optimization need not achieve as high
a standard as for predicting treatment outcome.

First the notion of local variation of the objective function is introduced. Let {A4;} be
a decomposition of the support of D into disjoint sets called ‘test volumes’ and let F'(D)
be an objective function of the dose distribution. With x(A;) we denote the characteristic
function of A;, i.e. x(Z) =1if ¥ € A;, and else x(Z) = 0. If

lim F(D + ex(4,)) = lim F(D — ex(4,) (217)

holds for all D, we call F' continuous and if

OF(D)  F(D=ex(A)) — F(D)
AD(A) ~ BT e vol (A)) (2.18)

exists for all D, we call F locally differentiable*. In the following, F' is assumed to be
OF

continuous and differentiable. By letting A; — #, we arrive at the variation density D@
if F' is sufficiently well behaved (D is continuous and differentiable). The modulus of this
quantity behaves like a measure.

The optimality of the dose distribution is identified with a vanishing first variation of
the objective function. It can be seen, that this variation density rather than the objective
function itself plays an important role in the solution of the problem. In principle, if a
substitute objective function can be devised whose pointwise derivative with respect to dose
equals the variation density, the solutions of both optimization problems will be identical.
Thus, it is sufficient to define the objective by means of its variation density - that can be
integrated pointwise with respect to local dose D(Z) to yield an objective measure. In the

following we interprete
_ [9F(D)
~J oD (Z)

f(D(Z), %) dD'(Z) (2.19)

4This definition is not intended to follow rigorous mathematical standards and should be seen in con-
nection with the inevitable discretisation of the patient volume into voxels.
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as an ‘objective density’, where we take care that f(Z) > 0 and consequently refer to
F(D(@), 4) = [ f(D(@),7)da” (2.20)
A

as objective (function) of the volume A, and to

f(D(), A) Of(D(F),7) , 4

= =, “op@  © (2:21)
B OF(D(Z)) , 4
= |, ap@ dx (2.22)

as objective variation of the volume A. The integrand of eq. (2.21) is the variation density
of F.

Since the objective density originates in a variation of the objective functional, it need
not be a function of the local dose only. In fact, it may have a complex dependency on the
dose distribution and therefore change during the iterative approach to the optimum. This
may potentially cause problems if the response exhibits great variations for small varia-
tions of the dose, not unlike a critical behaviour. There are two arguments in favour of this
approximation. Firstly, the optimum solution will always correspond to low complication
probabilities, so that the effect of non-linearities will also be small. Secondly, the dose dis-
tribution close to the optimum will never be very inhomogeneous, especially on mesoscopic
length scales of the size of cell migration or diffusion of cytokines. Therefore, non-local
interactions act in front of a rather homogeneous backdrop and can be incorporated into
a mean-field approximation.

We will see in the third chapter, that several dose-response mechanisms can be very
well described with a local model. For yet other complication mechanisms, it may suffice
to take into account the global coupling by means of a single bias term in analogy with
mean-field approximations in many particle physics. An instance where the variation
density is not guaranteed to exist and thus also no objective density can be defined is
for complication mechanisms with a strong dynamic component, for example the time-
dependence of diffusion-like processes cannot be treated adiabatically (see chapter 3.2) or
the damage propagates along complicated geometric structures like blood vessels. To the
present day, no clear experimental evidence has been given that could support a model
with these intricate features.

2.2.2 The Variation Problem for Measures

With the introduction of objective densities, the radiotherapy optimization problem eq.
(2.8) now reads

minimise /V F(T(2)®) da®

subject to / g (T(2)®) d2® < Cp,k=1,2,...,. M
Vi
and  Gu(®) < Cpk=M+1,...,N (2.23)
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with D(Z) = T(Z)® and Cy > 0 being the total effect of constraint k. The volumes Vj
and Vr (target volume) delineate the support of the corresponding objective density g
respectively f. Notice that not all V; need to be different; in this case more than one
constraint is defined in a volume. In case V;, = Vr, a dose limiting constraint is defined
in the target volume. The additional constraints Gx(®),k = M + 1,..., N correspond to
physical restrictions of the fluence distribution.

For the corresponding Lagrange function we obtain

L(®,\) = /

F(T®) da? Mﬂ/ T®) da® + i MGH(®)  (2.24)
Vi (T®) dx +k¥10k ngk( x kG -

k=M+1
where the biological constraints are normalised to unity. The physical constraints are
dealt with in a variety of ways which will be the subject of chapter 4. Until then, they
are stripped from the Lagrange function. The definition of the Lagrange density I(®) is
straightforward

UZ,@,2) = f(T@)®)x(Vr) + > = 9x(T(Z)®)x(Vi)- (2.25)

In this formulation, a number of issues concerning the uniqueness of the solution and
the existence of local minima can easily be addressed. One fundamental theorem of opti-
mization theory states that a convex function assumes a unique minimum on a convex set.
(For definitions of convexity of functions and sets see [21, 23]). Since convexity is preserved
in addition, hence integrals, the Lagrange function is convex if all functions f and g are
convex. For a twice differentiable function of one variable, convexity is tantamount to a
positive definite second derivative, which can be easily checked. The objective density f is
always convex. The parameter space Fg is also convex. As a consequence, together with
the injectiveness of 7', the radiotherapy optimization problem has a single (global) minium
if all g, are convex, which is often the case as is shown in chapter 3. However, this does not
mean that there exists a unique solution in practice. The reason is, that the integrals are
rather insensitive to minute changes of the objective density, in particular when a slight
increase in one region is compensated for by a slight decrease in another. The approx-
imate solution as obtained from an algorithm will therefore be sensitive to pertubations
depending on the degree of degeneracy of the Lagrange function.

2.2.3 The Ray Derivative

The variation of the Lagrange function with respect to a ray can be captured by a powerful
intuitive picture if the measure properties are included. Starting with eq.(2.24) we find for
the variation of L with respect to the weight ¢, of ray n
OL(D)  OL(D) oD
o¢, 0D ¢,

/ %T(@ ndz®. (2.26)
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Again, it is important to notice that the ray n need not contribute to the dose distribution
D. We find that the variation of L is affected only by those volumes which lie in the path
of the ray; this is a consequence of the ‘linearisation’ induced by the introduction of a
Lagrange density. Although this may seem obvious from the point of view of dose based
optimization, for a biological objective function this originates only from the approximation
leading to the measure quality of the objective.

Eq.(2.26) can be seen as a ‘dose weighted mean effect’ along the path of the ray. The
ray ‘picks up’ negative and positive contributions to the variation density and sums them
weighted with the dose at these points; only if this balance is even, the variation vanishes.
The intuitive picture that beam directions which align to the greatest extension of a target
volume are favourable, or that the beam should enter from the direction where the target
volume is closest to the surface is formalised in this concept of a ray derivative. The
potential of a ray to improve on a given dose distribution is a linear combination of the
effect that has already been accumulated along its path and the dose deposited by this ray.

In case the dose distribution is comprised of the basis rays 7;, we introduce the shorthand
notation

(@)’ _ /81 (D(F)) 9D(7) 5 (2.27)

0P oD 0¢;
_ [9LD@) 1
= /T’Tz(x) dz”. (2.28)

This equation governs the practical computation of the optimum dose distribution. How-
ever, eq.(2.26) also is of practical importance, because the dose distribution need not be a
linear combination of the rays. This earlier equation can be used to determine refinements
of the ray basis, like a finer decomposition of the beams or in the form of additional beams.
The latter leads to the question of beam angle optimization, and seen together with clinical
issues, the necessary number of beams.

2.3 The Global Relaxation Theorem

The original setting of fluence space does not know finitely many beam directions. However,
both in computations and most treatment applications the number of beams is limited
to a number between 3 and 100. If this were taken into account for the optimization,
it would become a discrete combinatorical optimization problem with a continuous sub-
problem. This would increase the complexity tremendously, not in the least because an
abundance of local minima would emerge®. Also, the optimization of beam angles and
fluence profiles cannot be separated, as we will see later. As a consequence, to evaluate
each beam arrangement, a full optimization of the fluence profiles has to be run.

5This problem is caused mainly because the set of all n beam arrangements is not convex: the super-
position of two n beam plans can be anything from an n to a 2n beam plan.
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These difficulties may make it appear poorly justified to expend so much effort on what
may be such a small gain. Indeed, the high degeneracy of the radiotherapy optimization
problem causes the attainable minimum objective to saturate for as few as 5 to as many
as 15 beams in virtually all cases. The true problem lies in the fact that the saturation
threshold is patient dependent and close to the threshold, beam angle optimization does
yield a considerable gain in difficult cases located in the head or thorax. Especially in the
head, non-coplanar beams can be indispensable with the result that a technique relying
on coplanar beam angles will waste chances for tumour cure. In many cases the search
for solutions with few beams is predominantly driven by the clinical requirement for short
treatment times and may lose importance with improvements in technology.

A common misnomer lies in the notion that finding a suitable set of beam angles is an
optimization problem®. In the framework of our ray formalism, beam angle optimization is
tantamount to picking the ‘best’ set of basis rays B which are bundled to beams from certain
angles. It is similar to an approximation problem: a truly optimum dose distribution of
rays using the whole fluence space is to be approximated by few beams such that the loss
expressed in the changee of the objective function is acceptable. Degeneracy is exploited
here: it is not necessary to approximate the fluence distribution, which would be quite
difficult, but the dose distribution which supports the only relevant measure of ‘proximity’
of dose distributions, the objective function. Normal tissue constraints enter the balance
indirectly by causing a certain increase of the objective function by shielding since they are
never violated by an optimum dose distribution. Once the basis is chosen, the radiotherapy
optimization problem can be solved - we bear in mind that optimum in this context means
optimum with respect to this particular basis.

Obviously, the global optimum dose distribution cannot be generated. Also, due to
degeneracy, it is not indicated to accumulate too much information about it. The following
propositions give a number of criteria which characterise the global optimum without
computing it, and aid in the search for a suitable basis.

2.3.1 Optimality for a Reduced Fluence Space

The first proposition gives a necessary criterion for optimality of a dose distribution without
the need to know the ray doses T so that this criterion can also be applied to dose
distributions for which the fluence distribution is not known.

ProOPOSITION I. If the dose distribution D* is a solution of eq.(2.23) with the Lagrange
multipliers \* then

dl(D*(Z)) 3
— 22 DX = 0. 2.2
/ 3D (&) dz® =0 (2.29)
Proof: Consider 2Z2P") which must vanish for k = 1.

oKk
Of course, it will not be possible to obtain A* without the knowledge of the basis

which created D*. The true value of this proposition lies in the fact that it can be used

6The more adequate term ‘customisation’ has been proposed.[24]
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to verify whether two dose distributions obtained from different ray basis sets and the
global solution are degenerate. If L is convex, then for two dose distributions D7, D with
equivalent Lagrange multipliers \*

KL(D?, ) + (1 — £)L(DS, X*) > L(kD! + (1 — k) D}, \*). (2.30)

If equivalence holds and the condition of proposition I is met, it can be supposed all convex
combinations are degenerate to the global optimum and are solutions of eq.(2.23). If they
are, either of the sets By, B, yields a suitable beam angle optimized basis. Otherwise, other
basis sets need to be created. In that sense, proposition I is a ‘termination criterion’ for

an iterative basis refinement.

2.3.2 Global Relaxation

The last proposition gave a necessary condition that a dose distribution is optimum with
respect to its basis. To verify that a given dose distribution is equivalent to the global
optimum there is no other way than to use rays from all possible angles as test functions.
This is impractical for finely grained rays. However, it is possible to exploit a quality of the
optimum dose distribution for a heuristic method which speeds up the selection of suitable
beam angles.

Turning back to the Lagrange function, we recall that all normal tissue constraints
are an increasing function of dose, whereas the objective function is the only decreasing
function of dose. So in the ray derivatives, all positive contributions to the integral stem
from constraints, whereas all negative contributions stem from the target volume. Since
at the optimum every ray derivative is a balanced sum of normal tissue and target volume
terms, the modulus of each contribution is equal. The fortuitious detail is that many
rays overlap in any given point in the target volume so that the volume centered at this
point contributes to the negative terms of many ray derivatives, and thus also to the
positive terms. In a highly symmetric setting the normal tissue dose load as expressed by
the positive contributions to all ray derivatives is equivalent for every ray. The optimum
solution can thus be seen as an equilibrium state of all rays: the variations of the objective
function (and the constraints) have relaxed to the common ground state; in that sense,
every ray which contributes to the dose distribution has equal ‘importance’.

We formalise this finding in the following proposition. With [.], we denote the positive
(belonging to normal tissue), with [.|_ we denote the modulus of the negative (belonging
to the target volume) part of the ray derivative. Let Bg,(z) be a basis of conical rays which
originate from every point of the unit sphere centered at ¥ € Vr with ray diameter r in
the plane containing 7 perpendicular to the ray.

PRoOPOSITION II. Let D* = T'®* \* be the solution of eq.(2.23) with respect to F.
Let ng € Bg,) be the ray impinging on 7 from solid angle 2. Let BQQ( ) be the set of all
rays 7o € Bg,(z with non-zero fluence, i.e. for every point P with n(P) > 0 it holds that

z
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®*(P) > 0. Then for all rays nq

D* OL(D* L(D*
min {/ of (D7) Tnq dms} < [ ( )] < max la ( )] (2.31)
”968’52(5) S7(Z) oD O0da n UQEB’SZ@-) 0pa | _
where S, (Z) is the ball with radius r centered at .
Proof: For every ray nq € By, we have
oL oL
[_] _ [_] (2.32)
9ba).  |96n]_
since for these rays the optimality condition holds. The second inequality follows. Also,
with of of oL
— | Tnq dz® < —| Tng dz® < —] 2.33
-/Sr(a':‘) oD ia supp(Tna) oD e 8¢Q _ ( )

follows the first inequality since S, (%) C supp(T'nq).

This proposition gives upper and lower boundaries for the ray derivative of the normal
tissue constraints. It is the formal expression of the intuitive view that the damage to
the normal tissue has to be spread evenly to obtain the best treatment plan. This view
is implicit in many treatment techniques, most clearly in rotational irradiation’. From a
different perspective, the proposition can be interpreted as ‘Only if the tolerance of all
normal tissues is exploited to the same extent, the effect to the target can be optimum’.
At the global optimum, the fluence distribution is relaxed in the sense that all rays fulfill
the ‘equilibrium’ conditions of proposition II, i.e. not only are all ray derivatives zero if the
rays contribute to the solution, but also are all positive contributions to the ray derivatives
within a given interval whose width depends on the patient geometry.

The definitive measure for the impact of a given ray n on the normal tissue is the ray
AL(D* \*)
¢y
respect to any ray. If

derivative [ L which can of course be computed for any dose distribution and with

0oy, 0oy,

this ray does not contribute to the dose distribution D*. If a relatively coarse ray is used

[M] . lwl (2.34)

as a test function, this may be taken as indicative of a ‘bad’ or ‘good’ angle of incidence.
However, this should be taken with care: if the ray is decomposed into a number of smaller
rays, the condition eq.(2.34) may only apply to a few, so that on total the given beam angle
may well be included into the ray basis. An example: while an unmodulated field may
exceed the tolerance of some high risk structure and should not be chosen, a modulated
field may spare this structure completely. As a consequence, the best beam angles of a ray
basis depend on the size of its constituent rays.

In general practice, proposition II will be applied to approximations of the optimum
dose distribution and Lagrange multipliers. The import of proposition II were limited if the

"Whereas the rationale of rotational irradiation and the proposition agree for a convex Lagrange density,
they do not for a non-convex setting where ‘evenly spread damage’ may not mean ‘evenly spread dose’
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Lagrange multipliers had to be known exactly. However, it will generally be sufficient for
the selection of beam angles to work with an approximation of the multipliers. Unless the
patient geometry is irregular to a degree that a satisfying therapy will barely be possible,
the boundaries of proposition II will be fairly tight. If, however, the first inequality is
violated, the dose distribution is not a good approximation to the optimum. The main
purpose is to motivate a heuristic method for the selection of beam angles.

2.3.3 Annotations to Beam Angle Optimization

In the following we give a recipe how a suitable few-beams basis can be constructed when
a good approximation to the optimum solution is known. This solution D*, \* may be
obtained from a basis with significantly more beams than clinically practical; it is only im-
portant that this solution is close to the ‘equilibrium’ in the sense of the above proposition
II.

As already pointed out, constructing such an ‘optimized’ basis is an approximation
problem: how can the relaxation property be met approximately with the smallest number
of fields. With B, we denote the set of all rays 7; € B which belong to a field which
impinges from a solid angle 2. With Q € Fpzo we denote the beam composed of these rays,
which can itself be understood as a ray. It is essential to measure the relative ‘importance’
of a beam to the dose distribution, maybe by

AL = L(D* — kTQ) — L(D"). (2.35)

where 0 < k < 1 is some weighting parameter. The problem with this approach is that
there may emerge solutions with negative total fluence. A better way would be

Qopt = arg Jnax L(D* — kTQ) (2.36)
= arg max L|(1-k)D*+ Kn'efzg\gﬂ T (2.37)
= arg Qrél}l_llglg L((1—&)D* + kTQ) (2.38)
= arg min L((1-K)D) + 5 / oua (;D“)D )70 da? (2.39)

where we expand the Lagrange function to first order in the test fluence and use the fact that
the ray derivative will be dominated by the negative (target volume) term. Of course, this
chain of arguments is impossible to prove and constitutes an abuse of notation for the sake
of clarity. The result implies the intuitive picture that the beam which causes the greatest
variation of the objective function on top of some bias dose distribution should be included
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into the basis. It is important to see the role of the bias dose distribution: it generates
the proper background of normal tissue dose load which determines the proximity to the
optimum by virtue of the relaxation property. The parameter x mediates a redistribution
of normal tissue dose from many rays to few beams according to the effect in the target
volume of these beams.

In practice, the problem is to choose suitable test rays {2 which in this picture would
have to be intensity modulated beams. This can be accomplished by constructing the
beam as a set of its constituent rays 7; and determining the optimum fluence distribution
o = (¢1, P2, - ..) in a run of the fluence optimization with the basis of this beam.

In the following, an iterative scheme for the selection of the optimum set of beam angles
is devised.

1. Find D*, \* with respect to some basis B. Set B’ = () and 0 < k' < 1. Number of
beams k£ = 0.

2. k=k+1

3. Find the best beam angle Q* by

Ok = i i L((1 — k*)D* Tn;o; 2.41
argmin oo, L= kD) +Zi: i3 (2.41)

4. Bt = B1u Bk

5. Find

k<1 | {¢imeBr}

KL = argmax{ min L ((1 — k)D* + ;Tni@) <(1+ e)L(D*)} (2.42)

6. If Kk =1 exit. Else goto 2.

The maximum deviation of the few-field solution from the optimum is denoted by e.

The advantage of this algorithm over search schemes including simulated annealing is
that the computation time goes with N2 if N is the number of beams as compared to a”
for some a. Nevertheless, computation times will be too long for routine clinical use. The
gain of beam angle optimization may often not justify the effort, especially if class solution
based arrangements of beams are available. The benefit of beam angle optimization may
eventually lie in generating these class solutions.



Chapter 3

Biological Objective Modelling

The traditional measures of treatment success and side effects in radiotherapy are tumour
control probability (TCP) and normal tissue complication probability (NTCP). It is erro-
neous to believe that these quantities have to be employed for biological radiotherapy
optimization - as has been sketched, an equivalent objective density is more expedient.

The mechanics of normal tissue response to therapeutic radiation can be intricate. As
the process propagates in time and space, non-linear coupling and feedback loops may
take effect. Not only is it very difficult to monitor microscopic changes in vivo, but there
is also significant variability in individual response so that a comprehensive theory for
a population of patients can only deliver estimated values. These difficulties have led
to a tradition of phenomenological descriptions of dose response which tried to integrate
the limited biological knowledge and the diffuse clinical experience with the aim to give
predictive assays of treatment success [25, 26, 27, 28, 29, 30, 31]. Using these models
would be rash: they had not been designed for radiotherapy optimization and are not
ideally suited.

The complexity of the evolution in time and space necessitates far reaching approxi-
mations. For time evolution, it is almost always assumed that the dose-response can be
modelled in the limit of infinite time and complete relaxation to the final state. Although
this is a gross oversimplification of acute responding tissues, to our knowledge no suitable
model has been devised to describe these. The propagation in space may often be entirely
trivial, but in some cases it may be tied to complex geometric patterns or be affected by
mesoscopic and macroscopic interactions. Due to the lack of biological data, any approach
to model these non-local volume dependencies must be avid to follow clinical experience,
often at the cost of poorly satisfying model assumptions.

Intensity modulated radiotherapy offers the possibility for radically altered treatment
concepts. The present development was designed to exert control on side-effects. For
this reason, the therapeutic dose to the target is limited by the tolerance of the normal
tissue, which can be set to the equivalent of conventional treatments. Furthermore, the
specification of treatment objectives should be intuitive and should allow the creation of a
data base of class solutions to standardise treatments. This is achieved with the notion of

20
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universal iso-effects which are used to prescribe the dose to normal tissues.

3.1 Complication Limited Tumour Control:
Iso-Effects

A classical score function of radiotherapy is the probability of uncomplicated tumour con-
trol Py
M
P, = TCP x [[(1 — NTCP;) (3.1)
i=1
for M complications [32, 33, 34, 35, 36]. An attempt to maximise P, may sometimes
lead to inacceptable complication probabilities, although this will occur rarely. However,
the general lack of control over the result of the optimization is not in accordance with
the common treatment philosophy. One can amend eq.(3.1) with a set of weight factors
Ai,t=1,2,..., M, and taking logarithms yields

N
log P =10og TCP + ) \;log(1 — NTCP)) (3.2)
i=1
from where one can immediately go to eq.(2.24) by multiplying with —1. With this heuristic
argument the treatment objectives are established as log-probabilities. With hindsight, this
choice is backed up by the resulting expediency of the TCP and certain NTCP objective
densities.

The prescription of the treatment objectives is accomplished by defining the maximum
permissible total effect for each complication, following eq.(2.20). This quantity is most
conveniently expressed in terms of the iso-effect which relates the effect of the given dose
distribution to standardised conditions. The meaning of the iso-effect depends on the
complication in question; for some complications an iso-effective dose can be defined which
is the homogeneous dose to some reference volume which causes the same effect as the given
dose distribution. For other complications the iso-effect is the percentage of the maximum
damage or the destroyed fraction of the organ volume. The iso-effect is the key to the
biological modelling as presented here because it enables an intuitive and unambiguous
translation of the treatment rationale to numerical quantities.

Some concepts pertinent to biological modelling are given in greater detail in Appendix A.

3.2 A Classification of Normal Tissue Constraints

Regarding the transition from complication log-probabilities to the objective measures used
for optimization, the fundamental question is how long-range and non-local interactions
can be taken into account. Only if a complication mechanism is entirely local and does
not show any propagation of damage (or repair) at all, a measure which depends on the
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local dose alone is a valid approximation. Only then, the functional form of the measure
will not change during optimization. For all other complication mechanisms, the objective
density would have to be updated with each change of the dose distribution.

At the other end of the spectrum are complications which are only set off if a certain
threshold of some global quantity is exceeded. In this case one can assume that it is
sufficient to approximate all non-local effects by their behaviour at the critical threshold
- although they take effect for all levels of damage or dose, only close to the onset of the
complication they will have a detectable impact. In this case the local measure is also
independent of the actual dose distribution, but the local effect is always overestimated far
away from the critical threshold!. The global coupling can be expressed by a factor which
can be absorbed in the Lagrange multiplier.

These two extreme positions are currently available for biological optimization. As
yet, clinical evidence is not clear as to how valid these approximations are. At present
they seem to afford sufficient means to tailor the dose distributions according to clinical
experience, but the fundamental lack of clinical data also prevents this approach from
full-blown biological optimization.

The terminology for the two types of complication as outlined above stems from the
tolerance of tissues towards partial damage.

An NTCP function P(D) and its corresponding constraint function G(D) = —log(1l —
P(D)) is called serial, if for all volumes A C R* and all D € {D € D: D(Z € A) = o<} ,
the condition

lim P(D) = 1 (3.3)
volA—0
VOlllArgoG'(D) = o0 (3.4)

holds. All NTCP functions and constraint functions which do not conform to this definition
are called parallel.

This definition tries to capture one of the most evasive concepts of radiotherapy, the
biological volume effect. This concept describes the tissue specific increase in dose tolerance
with a reduction of the irradiated volume. The volume effect has quite profound importance
for radiotherapy optimization because it defines the shape of the optimum dose distribution
in the normal tissues. The dose distributions are commonly characterized in the form of a
(differential or cumulative) dose volume histogram (DVH). The width of the dose-volume
distribution function in the differential histogram respectively the slope in the cumulative
is determined by the volume effect: the greater the tolerance towards partial overdose, the
wider/shallower can be the histogram; in the most extreme form of parallel complications
the differential histogram will show two isolated peaks at low and high dose. The greatest
advantage of biological optimization over dose based objectives is that each tissue can be
equipped with its particular volume effect, whereas else all tissues are treated alike.

IThat is, in the absence of negative feedback loops.
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3.3 The Treatment of Time-Dependent Effects

The temporal evolution of radiation damage occurs on several time scales. While primary
DNA repair mechanisms are activated within minutes, the repair can be completed within
hours. Sublethal damage or incomplete repair may preserve DNA damage for days and
weeks. The repopulation of tissues with stem cells and reconfiguration of the tissue matrix
may take months and years.

For these reasons, the assessment of both treatment success and morbity can only be
performed after the total dose was applied; hence, the total dose forms a natural measure of
clinical evidence. Since the single dose per treatment fraction D, may vary, it is necessary
to relate total dose to a standard course of treatment, commonly in Dy, = 2 Gy fraction
doses.

In this simplified picture, all processes on short time scales are treated as instantaneous
and all changes to the fractionation scheme are judged by their long term effect. Acute
reactions and complications which seem to imply critical behaviour (e.g. pneumonitis) are
not amenable to this scheme directly, whereas the model applies very well to tumours. The
time dependence enters the computations by virtue of the number of fractions Ny, where
a constant dose per fraction is assumed.

The standard time-independent model of cell kill assumes that a certain amount of dose
kills (or sterilizes) a constant fraction of cells

p = exp(—aDy,) (3.5)

where p is the probability of cell survival and « the cell sensitivity. This law does not take
into account that cells may retain a higher sensitivity due to sublethal damage to their
DNA after repair has completed, which leads to an expansion of @ in Dy,

B

(67

Dyaz)). (3.6)

This is the standard ‘Linear-Quadratic’ model [37, 38, 39]. If the total dose D is applied
in Ny, fractions, it can be transformed into the equivalent dose in 2 Gy fractions via

p =exp(—aDj, — ﬂD?z) = exp(—aD, (1 +

1+ B_D_
ol (3.7)
1+ 2Gy§

The parameter 5 may be significantly smaller for some tumours than for their surrounding
normal tissues. If this is the case, a reduction of the fraction dose results in a better sparing
of the normal tissues respectively in a higher tumour dose, see also figure 7.2.

The L-Q model does not take into account the effect that DNA repair mechanisms may
need a threshold damage to be initiated. This so-called hypersensitivity to low doses per
fraction is expressed by the induced repair model [40, 41]

P = exp (—ozR [1+(Z—Z—1)exp (—NfDDCﬂ D_ijf)j) (3.8)
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with ag being the sensitivity for large doses per fraction when repair is fully active, ag being
the increased sensitivity below the activation threshold and D¢ being the critical activation
dose. This model predicts a significantly lower probability of cell survival for doses around
0.5 Gy if the parameter a is large. This effect is potentially of great importance for tissues
with a low dose tolerance where the dose per fraction is always in the critical range. This
effect has been found for certain tumours and less expressed for lung and kidney tissue in
vivo [42, 43]. The modelling of normal tissue dose response is most notably affected by
this effect for radiation pneumonitis where the optimum dose distribution may be highly
dependent on the fraction number.

10° —— i
e
\\
~.
.
N
AN
\\
logp 10 | o |
«
. . \‘\
—— time—-independent ~
------------------ induced repair
- L_Q

0.0 1.0 2.0 3.0 4.0 5.0
Dose [Gy]

Figure 3.1: The probability of cell survival as a function of single fraction dose for a frac-
tionated treatment. The time-independent model does not take into account any ‘latency’
effects. The L-@) model accounts for incomplete repair of DNA damage which results in
an apparently higher cell sensitivity for larger dose fractions. The induced repair model
assumes that the DNA repair mechanisms are inactive if the damage stays below a certain
threshold, which also results in an apparently higher cell sensitivity for very small dose
fractions.

Although treatment morbidity could be reduced by smaller doses per fraction, this
should not lead to a longer course of treatment. The reason is that the number of tumour
cells is replenished due to repopulation with the effect that towards the end of the treatment
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a growing share of the daily dose is needed to decimate the clonogenes to the number of
the previous day. Repopulation with a constant rate v leads to
P = exp <’YNf:c —aD(1+ §£$)> (3.9)
in combination with the L-Q-model. More elaborate models with accelerated repopulation
may be used [44, 45].
The adiabatic treatment of the time evolution allows to construct time-independent

tumour and normal tissue dose response models in the following three sections. For want
of relevant models for acute reactions, these cannot yet be included adequately into the
optimization. For these complications, both the biological constraints and the generic DVH
constraints can be utilised to express the clinical evidence.

3.4 Tumour Control

The failure of radiotherapy is the survival of a single clonogenic tumour cell. While this
assumption is certainly on the safe side, modelling the expected value of surviving clono-
genic cells for optimization purposes can be perilous because the spatial distributions of
cell density and cell sensitivity have to be known. If some partial volume of the tumour is
assumed to show a better response to radiotherapy than the residual, the optimum solution
will increase the dose to the latter at the expense of the dose to the former, especially if
dose-limiting constraints are present. Hence, an attempt to model the local probability of
cell survival should excercise caution.

The efficacy of radiation depends on several factors which influence cell survival: the
spatial distributions of cell sensitivity, oxygenation status, cell doubling times and cell den-
sity. All of these quantities are difficult to determine in practice, so that some assumptions
have to be made to bias the result towards the safe side.

The objective measure can be found from the standard Poisson model of TCP [46, 47]
to be

f(D(@)) = p(@) exp(—a(Z)D(Z)) (3.10)
where the spatial dependence of the relative cell density p and the sensitivity « is indicated.
Of course, the cell survival probability may be amended by the factors introduced in the
previous section. Inter-patient heterogeneity has little effect on the objective measure
although values for o may vary significantly. However, only relative values of the objective
function are of concern. Quite to the contrary, the computation of absolute TCP values
would depend very sensitively on inter-patient variability of «.

The iso-effect is the homogeneous dose to the total volume which yields the same
expected value of surviving clonogenes for an average sensitivity o’

D = ?71 log (1 /v [ (@) dx?’) . (3.11)

This quantity is of merely informative character and does not affect the optimization.
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3.5 Serial Complications

For many serial complications, especially if they show a predominantly local dose response
mechanism, a generic phenomenological model applies. This model is discussed in Ap-
pendix B. The objective density

9(D(@)) = (Dg)>k (3.12)

follows from this model with some reference dose dy and the volume effect parameter k.
The iso-effective dose is the k-norm of the dose distribution

Dot = do (1 % /V 9(D(@)) dx3) v (3.13)

The volume effect parameter k£ determines the steepness of the dose response. The greater
k, the less dose tolerance can be gained from a reduction of the irradiated volume, see
figure 3.2.

This objective measure takes into account inter-patient variability directly by its func-
tional form, see Appendix B. A special trait of this objective is that the volume effect does
not depend on the iso-effect with the result that the typical shape of the DVH does not
vary with the iso-effective dose. This facilitates an intuitive use of the constraint.

The model does not apply to inhomogeneous tissues, like the vascular structure or the
heart. It may be used for complications involving damage to blood vessels, but in this case
the whole volume would have to be assumed homogeneous. This leads to an overestimation
of radiation effect for the embedding tissue matrix. In view of clinical safety these possible
minute overall gains in dose tolerance should not be exploited anyhow.

3.6 Parallel Complications

Following the definition of parallel constraints, the dose to some partial volume of the
organ in question can be arbitrarily high without causing this particular complication
(other complications of the same organ may well be triggered!). If the complication is a
genuine loss of function as for the parotids or the liver, this subvolume is termed ‘functional
reserve’. In other cases, like pneumonitis it appears more favourable to think of a ‘critical
damage’ if loss of function is just a consequence of the complication, and if the mechanism
involves the entire organ or body.

In any case, the requirement to spare a certain fraction of the organ volume leads to a
non-convex constraint. In principle this may lead to a non-convex Lagrange function, but
the seriousness of the problem depends crucially on the nature of the objective measure.
Since the integral of the objective density over the sub-critical fraction of the volume has
to be finite even for arbitrarily high doses, the objective measure has to be a finite function
and thus be of sigmoidal shape. For mildly non-convex functions such as introduced here, it
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Figure 3.2: A prostate case study with an overlap of rectum and planning target volume.
The volume effect parameter was varied from k = 4,8,12,16, i.e. from a rather pronounced
tolerance against hot spots to a very distinct threshold behaviour. The iso-effect in all cases
was Deg = 65 Gy. Whereas a significant volume effect allows to treat the overlap region to
the same dose as the remaining PTV, a strict volume threshold results in an underdosage
in the PTV, yet better sparing of the rectum. The case shown here is a clinical example
where trade-offs between PTV and rectum often have to be made because of the proximity
of these volumes.

may be conjectured that the Lagrange function is largely convex, and due to the degeneracy
saddle points and local minima are virtually undetectable.

The functional form of these local dose-response mechanisms is extremely difficult to
determine. The choice here is guided by mathematical expediency rather than biological

9(D(%)) = (1 + < D@))’“) ) (3.14)

where k£ and d, are parameters which determine the shape of the sigmoidal logit-function.

insight

The sigmoidal shape of the local dose response can be supported in case of pneumonitis by
experimental findings [48, 49], yet the logit function is no more than a template. In fact,
for photon therapy the shape of the sigmoidal function is not of great importance. Recall
that the ray derivative is the dose-weighted mean of the local response: the value of this
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integral depends essentially on the fraction of the volume below and above the threshold
dose dy, where the response is close to 0 respectively close to 1.

The sigmoidal shape of the local dose response if sufficient to model a parallel com-
plication mechanism with its corresponding volume effect. The heuristic argument may
be linked to biological models by assuming that the complication mechanism is a critical
process similar to a phase transition with the mean damage

v = /V 9(D(7))da? (3.15)

as critical parameter. Taking the analogy further, one obtains

NTCP (D) (9 5 ”)K (3.16)

with some critical exponent k and some critical damage 6. The global coupling which was
assumed in the phase-transition model leads to a prefactor (6 — v(D)) ! by virtue of the
transformation of the functional into an objective density eq.(2.19), see also Appendix A.
This prefactor depends on the current dose distribution and has to be updated during op-
timization. It can be absorbed into the Lagrange multiplier and handled during the search
for the proper multipliers. This is reflected in the update rule for Lagrange multipliers in
chapter 6.2.
The iso-effect is the mean damage

Ve = 1/V /V 9(D (7)) dz® (3.17)

which is bounded by 0 < veg < 1. Although this could be inverted into a homogeneous
total organ dose, we refrain from this step because there is no clinical experience for total
irradiation of organs expressing a parallel complication mechanism.

A parallel constraint aims to redistribute the dose into low dose subvolumes and subvol-
umes above the threshold dose. As a consequence, the dose per fraction varies significantly
across the organ volume. If this organ shows low-dose hypersensitivity, the two effects
counteract. This is most pronounced for radiation pneumonitis. It is very unsatisfactory
that most clinical findings do not take into account this (fairly recently discovered) effect
with the consequence that to stay close to clinical experience, hypersensitivity should not
be used for optimizations involving lung tissue for the time being.

3.7 Generic DVH Constraints

In case the treatment objectives cannot be formulated as a biological model or the dose-
volume statistics as represented in the dose-volume histograms are to be manipulated
directly, two generic dose-volume histogram constraints can be utilised. They are the
equivalent of the serial and parallel constraints with the difference that they do not balance
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Figure 3.3: A typical DVH for a parallel complication mechanism, in this case pneumonitis.
The threshold dose for the sigmoidal local dose-response was set to 15 Gy, the iso-effect
(the mean damage) was set to 30%. The DVH shows the characteristic kink at about these
values; some fraction of the volume smaller than 30% can be exposed to a higher dose.

high and low dose volumes according to some inherent dose-volume relation. In other words,
the biological volume effect depends on the current threshold dose and iso-effect defined
by the planner.

The equivalent of the serial model is the quadratic overdose penalty

9(D(@)) = ©(D() — do)(D(&) — do)* (3.18)

with maximum dose threshold dy. ©(.) is the Heaviside function. The corresponding
iso-effect is the rms-overdose

dﬁ:%+¢UVAﬂMﬂMﬁ. (3.19)

This constraint can be used if the maximum dose to the target volume should be limited.

The equivalent of the parallel model is the volume restricted overdose constraint. This
constraint limits the volume to V, per cent which receives in excess of dy Gy. The objective
measure is heuristically defined as

0 : D (.f) <dy—1
g(D(%)) = 1/2(D(%) —dy+1)? : dy— 1< D(z) <dy (3.20)
15— (D(@) —do+1)t : dy < D(Z)
The iso-effect is the volume which receives more than dy Gy.
The characteristics of the physical constraints can be seen in figure 7.1.



Chapter 4

Physical Constraint Modelling

In the sense that planning is regarded as comprehensive treatment optimization, physical
modelling can achieve more than ensure the practical feasibility of fluence profiles. The
optimization touches the clinical fields of efficiency, safety and quality assurance together
with the physical fields of dosimetry, device design and error tolerance. The radiother-
apy optimization problem affords substantial latitude to shape the result in an expedient
fashion.

Whilst a number of ‘hard’ limitations have to be dealt with rigorously by means of
constraints or dedicated radiation transport models, neither the necessity nor the gain of
other stipulations may be easily justified or evaluated. Nevertheless these ‘soft’ limita-
tions appear desirable from a pragmatic point of view. Contrary to real constraints the
soft, constraints may be violated if they compromise the result unduly; therefore they are
characterised by their effect on the optimum objective function.

4.1 Minimum Fluence Constraints

The restriction of fluence space to non-negative fluences was implicit in all prior consider-
ations. The practical implementation of this constraint can be done by means of barrier
functions or projection operators whereby the latter are not suitable for all optimization
algorithms. The minimum fluence constraint translates into constraints of the ray weights
of the current ray basis. Only in the special case that these fluence distributions do not
‘overlap’ and are positive semi-definite, these ray weights have to be non-negative. In all
other cases, the ray weights may be negative as long as the non-negativity of the total
fluence is ensured.

Depending on the treatment technique, the minimum fluence at a point within the field
perimeter may be a function of maximum fluence across the field and collimator transmis-
sion or solely dependent on absolute parameters like dose rate and leaf velocity. The latter
applies to the sliding window dynamic MLC technique [50, 51|, whereas the former applies
to the static MLC (step&shoot) technique [52, 53] with or without physical compensators
or physical compensators alone. Also, it may be necessary to employ Megavoltage portal
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imaging to control patient setup which increases the minimum fluence within the field out-
line further. At any rate, the minimum fluence is never exactly zero. This facilitates the
use of barrier functions.

4.1.1 The Method of Barrier Functions

These functions are added to the objective function and are devised to increase with the
violation of a constraint. In case the minimum violates the constraint, it is shifted towards
the feasible set. These barrier functions are only exact if an associated multiplier is let to
infinity which can spoil the condition of the problem; if a mild violation of the constraint
is acceptable, it is preferrable to keep this multiplier as small as possible. Commonly, a
mild violation of a positive minimum fluence constraint does not have any impact on the
dose distribution.

The barrier function which showed the best performance was a fourth-order polynomial

n

G= ;®(¢min,i - ¢z)(¢z - ¢min,i)4 (4-1)
=
where ¢pi, ; is the minimum weight and ©(.) the Heaviside step function. The correspond-
ing multiplier is set to the sum of all normal tissue Lagrange multipliers. The minimum
weight ¢piy, ; may change during the optimization if it is a fraction of the maximum fluence
of the corresponding field. If the basis consists of overlapping rays, the minimum weight
may become negative. In this case, the barrier applies to the total fluence of all rays.

4.1.2 The Method of Projection Operators

Projection operators map a fluence distribution to the closest feasible fluence distribution;
in this case any ray weight which is below the minimum weight is set to the minimum
weight. Projection operators are only used as a fall-back because they disturb the con-
vergence of the main optimization algorithm used here. In addition to the projection, the
ray which violated the minimum weight constraint can be removed from the active set of
optimization parameters and its weight value fixed to the minimum.

4.2 Profile Smoothing as a Soft Constraint

The optimum fluence profiles are smooth in the sense that they do not show erratic vari-
ations (noise) and a clear relation of fluence modulations to anatomical structures. De-
pending on the grain of the decomposition of the fields into rays the fluence distribution
may nevertheless show significant jumps.

Due to the high degeneracy of the problem, a serious perturbation of the solution due to
noise may occur if the convergence limits of the algorithm are not set very low. Although
the problem could be solved by lower convergence limits, this method is inefficient because
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the dose distribution will not improve despite the longer computation times. An additional
soft constraint which acts as a ‘noise filter’ would be a preferable solution. Technically, such
a constraint reduces the search space to the ‘desirable’ solutions. Appendix C is concerned
with the definition of ‘desirability’ by virtue of a soft constraint which minimises the area
of the surface given by the two-dimensional fluence profile.

Another source of erratic fluence jumps are discretisation and dose computation arte-
facts. It may be conjectured that these artefacts cannot be controlled by a soft constraint
as used here. The performance of such a device may deteriorate if it is stretched to balance
these artefacts since there is no a prior: reason to assume that a fluence profile should be
a minimum surface.

The smoothing constraint multiplier is by default set to about 10~% of the objective
function at the minimum. This value was found experimentally as the onset of dominance
of the smoothing over the ‘anatomical’ fine structure of the profiles. At an acceptable
convergence threshold the elements of the gradient of the Lagrange function are in the range
of 1073...1075 which means that the smoothing constraint and the biological constraints
including the objective function are of equal magnitude at the optimum.

If the smoothing constraint multiplier is increased further, the optimum is more and
more determined by the minimum surface condition. While this could be used to generate
more clinically expedient fluence profiles, it appears arbitrary because it is not specific to
treatment technique. However, the smoothed fluence profiles are almost always feasible
for a dynamic MLC application together with a suitable minimum fluence constraint; to
enforce feasibility, an additional projection operator would be necessary. Minimum surface
smoothing should never exceed the role of a numerical tuning device.



Chapter 5

Radiation Transport Modelling

The conflicting requirements of dose computation for radiotherapy optimization are not
equally well met by any single algorithm. Whilst phenomenological models can be very
expeditious by specific approximations, the highest accuracy can only be achieved with
Monte Carlo methods. The particular requirements of IMRT lend a new angle to the
assessment of the merits of Monte Carlo methods. Small, irregular and MLC constrained
fields make heuristic dose models difficult to develop. Also, adverse effects of electron
scatter at low density interfaces in the patient can be compensated for by modulations of
the primary fluence.

It was a design objective of the radiotherapy optimization algorithm to combine the
benefit of Monte Carlo and phenomenological models. Under the constraints of clinical
conditions a purely Monte Carlo based algorithm does not appear feasible at present. The
hybrid method proposed here has an advantage of a few orders of magnitude in computation
time over a pure Monte Carlo approach with no conceivable practical disadvantage. The
technical considerations in the following section and appendix D apply equally to the hybrid
and the pure Monte Carlo method.

5.1 Technical Aspects

Some practical limitations and numerical issues have such a fundamental impact on the
performance of a dose computation model and its compatibility to the optimization engine
that they need to be considered before the formulation of the method. They affect primarily
the discretisation of the dose space D and the design of the ray basis B.

The sampling of the dose distribution with a limited number of points is a very intricate
problem. After all, it is the dose distribution of a narrow ray which has to be sampled
for a large number of independent rays. For a ray diameter of a few millimeters this
results in a sampling point density of more than 1 per cubic millimeter, which leads to
a presently intractable problem of 107 to 10® sampling points. It becomes already clear
that the dose distribution will always be undersampled within the limits of present day
computer hardware.

33
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It appears straightforward to reduce the number of sampling points and concentrate
them in regions of interest or high dose gradients. A number of problems are associated
with this approach. Firstly, each single ray has to be modelled in a sound way, which can
not be achieved by taking samples only in regions of large variation of the beam dose, let
alone the total dose distribution. With IMRT, it is rarely the case that the position of
all in-field fluence gradients can be guessed from the start. Furthermore, the ray must be
sampled by an equivalent density of points in each subvolume of the patient in order that all
objectives are equally represented in the computation of the ray derivatives. This rules out
inhomogenous and anisotropic (if couch angles are permitted) sampling in a large part of
the patient volume. Secondly, the dose computation grid must be expedient for voxel-based
Monte Carlo computation methods. This excludes hexagonal grids and narrows down the
choice to cubic grids.

By its nature, dose is a density. Thus, each sampling point represents an integral of
absorbed energy over some small volume around this point, divided by the size of this
volume. This equals the way a voxel-based Monte Carlo algorithm computes the dose.
Since the ray derivatives are weighted dose integrals, a volume based definition of the dose
computation is only natural and ensures energy conservation.

At contrast, phenomenological models could be based on point doses which can cause
serious definition problems in combination with the undersampling of dose space!. Dose
computation is numerically more stable if it is based on an average over some volume. The
larger this volume, the less prone to discretisation artefacts is the dose computation. Thus,
to some extent it is possible to alleviate the problem of undersampling at the cost of some
blurring of the gradients of the dose distribution. Notice that these sampling volumes need
not be space filling; it is entirely sufficient if the average dose is computed in some small
ball centered at the vertex of a cubic grid.

The stable computation of the ray derivatives is of paramount importance for the
performance of the radiotherapy optimization algorithm (see appendix D). In essence, the
dose computation has to ensure that all rays are represented in an equivalent fashion. The
design of the ray basis can assist in the solution of this problem of phenomenological dose
models. The ray basis was devised to construct the space of all practically achievable
fluence distributions. This precludes the use of piecewise constant, discontinuous functions
such as the characteristic functions on some regular decomposition of the cross-section of
the beam. Of course, it is virtually impossible to define the shape of the proper penumbra
of some small field for arbitrary positions in the field. However, the essential quality of a
ray basis is not accuracy, but self-consistency and completeness.

One can construct a self-consistent ray basis by the notion that a certain number of
rays have to add up to a homogeneous fluence. Let h(z,a) be the one-dimensional fluence

LConsider a ray whose fluence rises from say 20% to 80% within 1 mm. If the dose computation were
point based, the ray derivatives would be extremely sensitive to geometrical variations; in this case by up
to a factor 4 for shifts within a range of 1 mm.
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profile of a ray with width a. Then by

h(z,(2n+ 1)a) = Zn: h(z + ia,a) (5.1)

t=—n

the shape of the ray can be determined if for some n = n,
Ve € [—a/2,a/2] : h(z, (2n, + 1)a) =1 (5.2)

where n, is the smallest such number. The number n, describes the number of rays
necessary to reconstruct a locally homogeneous dose. It can be seen that h(z,a) = 0 for
|z| > nra. The fluence distribution of a ray may then be considered as the product of
two functions h(x,y,a,b) = h(z,a) h(y,b) for some width a,b. If the rays are arranged
on a rectangular grid with gridlines at multiples of a, b, the ray basis consists of functions
h(x —ia,y — jb, a,b) centred at each vertex (i, j) of the grid. It is important to notice that
the property of self-consistency translates to the ray dose by virtue of the linearity of the
energy absorption operator 7T'.

It is more expedient to create a self-consistent cross-profile of the ray dose by some
function which complies to eq.(5.1) rather than computing the dose distribution for such
a ray fluence profile. The hypothetical ray fluence is then the ‘inverse’ of the such defined
ray dose; since the fluence distribution of a ray is never needed, it need not be determined.
The ray dose exhibits rather shallow radial gradients because the effects of both photon
penumbra and electron transport are incorporated into the model. The shallow gradients
of these self-consistent ray doses also help to overcome the problem of the sensitivity of
the dose sampling. The concept of self-consistent ray doses does not account in detail for
secondary photon scatter or diffuse scatter sources in the linac head. These contributions
to the total dose are considered implicitely in the ray dose distributions. Thus, in numerical
practice a ray dose will not represent a physical dose distribution of a small fluence element,
but can be considered as a constituent of a physical dose distribution of an extended
intensity modulated field. This approximation is valid in view of the small influence a
modulation of the primary photon fluence on the fluence of secondary photons, and the
huge computational effort to compute this phantom scatter.

For the phenomenological dose model in the next section, these two countermeasures
against undersampling of the dose distribution and discretisation artefacts are used: dose
averaging over small balls centred at the vertices of a cubic grid, and the use of a basis of
self consistent rays which incorporate some penumbra into their fluence- and dose profile.

5.2 Finite Size Cone Pencil Beams

The most widely used algorithms in clinical routine belong to a family of methods for dose
computation which are based on a convolution of (primary or secondary) photon fluence
and dose deposition kernels which incorporate electron and photon interactions. In one
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way or other, most convolution algorithms [18, 54, 55, 56, 57, 58, 59, 60, 61, 62] resort
to approximations to meet the clinical computation time requirements. Under partial
consideration of heterogeneities of electron density a ‘dose spread kernel’ is convolved with
the incident photon fluence. Several algorithms [18, 59, 60, 61] collapse the convolution
along the ray axis and consequently use a decomposition of the dose into a direct product
of a function which varies with depth and a kernel which depends on the distance to the
ray axis alone. These algorithms are usually termed ‘pencil beam’ methods.

In essence, this model equates dose with the kinetic energy released by primary photon
interactions to electrons per unit mass (KERMA) and is only strictly valid in case secondary
electron equilibrium holds. The influence of heterogeneities on the track of the primary
photons is taken into account by density corrections to the radiological depth of a point
rather than its geometric depth.

In addition to the conceptual approximations, for a fast implementation allowances have
to be made. Most pencil beam algorithms use Fourier transform for convolutions which
necessitates coordinate transforms and precludes the use of space variant kernels. Pencil
beam convolution methods reach a global accuracy of a few per cent, with local aberrations
due to electron scatter of up to ten per cent. The following implementation of a pencil
beam model shares the same deficiencies yet pursues a different arithmetic method.

The challange for the dose computation is constituted by the need to compute and store
the dose distributions of several thousand rays separately, not in the bulk of a field. In the
same way as the conventional pencil beam kernel can be understood as the ray dose of a
parallel photon flux of infinitesimal width, the ray dose distribution can be understood as
the kernel of a finite size pencil beam algorithm. The convolution becomes the sum over
all constituent rays, weighted with their respective weight.

To compute the ray dose distribution, a local dose average of the self-consistent ray
profiles over the sampling volume S (a sphere centred at the origin) has to be performed

d(F, Z) = /S h(z — 19,y — 1y, a,b) H(Z — 2) dz® (5.3)

where h is the dose cross-profile and ¢ the depth-dose function at a source distance Z. This
integral again has the form of a convolution. However, if Fast Fourier transform were used,
this could only be done on a temporary coordinate grid which would have to be much
finer than the dose sampling grid. The dose computation is very time critical, since the
convolution would have to be performed some 107 times for the typical treatment case. For
this reason, tabulated convolution values would provide a significant gain.

It is expedient to reduce the dimension of the convolution table to the least possible
number. Consider a conical ray is traced through a cubic dose grid. Let the dose at each
vertex be the average over a ball with diameter equal to the grid pitch. Since the ray is
conical and the sampling volume spherical, the dose at each vertex of the dose grid does
not depend on the orientation of the ray. Indeed, there are only two relevant variables: the
distance of the point to the source Z and the distance of the point to the ray axis r = |7].
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The dependence on radiological depth can be treated by a separate factor by virtue of the
common approximation of depth-independent scatter kernels.

The dose to a point Z can then be computed by

1

PO =76y

t(RD(Z)) dcr(r(Z), Z(Z)) (5.4)

where the first factor corresponds to the inverse-square law, ¢ is the depth-dose curve for
the given photon energy at the radiological depth RD of #, and dcr is the convolution
table. The convolutions of the ray with the sampling spheres with respect to R can be
precomputed for all Z. The three dimensional integral can be reduced analytically to an
elliptic integral which can be tabulated.

The ray dose profile h(Z) can be determined from measurements or Monte Carlo simu-
lations. A function which fulfills the reconstruction condition eq.(5.1) can be fitted to the
data. The reconstruction number n, will be influenced by practical considerations. It may
appear advisable to truncate the ray dose distribution at some distance from the central
axis to save computation time during the optimization. Notice that the ray derivative is
an integral over the support of the ray dose; if secondary photons were to be taken into
account in their entirety, this integral would stretch over the whole patient volume.

The fit function which was used by default with n, = 2 was

1 — 3ks — ki(exp(ko(z/a — 2))+

) exp(ka(z/a —4)) +exp(—k(z/a+2))) : |z|]<a
R(r,a) = kiexp(—kox/a)+ ks : a<|z|<2a (5:5)
0 : |z|>2a
with
- % (exp(—ks) + exp(—3ks) — 2 exp(—4ky))" (5.6)
ks = —kyexp(—4ks). (5.7)

The parameter k5 is determined by a depth-dependent fit to a Monte Carlo computed ray
(see figure 5.1).

The drawback of this method is that the conical rays cannot be arranged to be space
filling. The best compromise can be found by using a hexagonal discretisation of the fluence
profiles. With this arrangement, about 5 per cent of the beam cross-section are not covered
by rays. Since the rays overlap, the fluence is not zero in these regions. However, because
the dose grid is generally too coarse to resolve the irregularity of the fluence, this does not
cause problems. In some sense, the undersampling of the dose distribution is exploited by
the dose model to gain time. The computation of a ray dose takes about 10 ms on modern
computer equipment for a dose grid of (2mm)3.
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Figure 5.1: A one parameter fit of the self consistent ray cross profile eq.(5.5) to a Monte
Carlo computed ray dose for a conical ray (15 MV) of 5 mm diameter in 10 cm depth. An
even better correspondence could be generated by using a second exponential for the tails

[59].
5.3 Intensity Modulation and Monte Carlo

The benefit of Monte Carlo dose computation lies in the fact that the entire path of the
photons, from the source through the collimators into the patient, can be simulated; at
the same time, a more homogeneous dose distribution can be delivered if electron scatter
across low density surfaces is compensated for by primary fluence.

The rationale for separating the optimization process into a stage which allows inter-
ference by the therapist and a stage which runs the Monte Carlo dose engine is the high
computational cost of solving a constrained problem as compared to an unconstrained
problem. The meanderings of the algorithm during determination of the Lagrange multi-
pliers A* which solve the constrained problem would literally waste an enormous number
of Monte Carlo particle histories. The first stage procures the proper set of Lagrange mul-
tipliers, so that during the second stage only minor adjustments of the multipliers have to
be made.

In appendix D, the details of the IMMC technique are given. The method is essentially
independent of the optimization algorithm and the Monte Carlo code. The implementa-
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tion of the Monte Carlo code EGS4 follows [63]. The phenomenological algorithm used to
compute the ray derivatives has to fulfill certain accuracy conditions to ensure that the
descend property of the gradient optimization algorithm still holds. The very same condi-
tions apply if a Monte Carlo algorithm were used to compute the ray doses. It must be
noted that to obtain a statistical uncertainty in the order of the systematical error of the
phenomenological dose model, a disproportionately high number of particles would have
to be simulated; this for no obvious gain. Since the Monte Carlo dose computation has to
include the collimators to bring to bear its full accuracy, the ray doses which were naturally
computed without the collimators would not add up to the total dose distribution.



Chapter 6
The Optimization Engine

With the biological and physical modelling as described in the preceding chapters, radio-
therapy optimization poses a large-scale optimization problem with nonlinear constraints,
yet of a predominantly convex nature if the beam angles are fixed. Hence, if only fluence
profiles for predefined beam directions are to be obtained, the most suitable optimization
engine can be selected from a great variety of gradient based algorithms.

There is a number of independent classes of algorithms for the solution of such an
optimization problem [21, 64]. Since execution time is of prime importance for the clin-
ical application of an radiotherapy optimization algorithm, allowances have to be made
where possible. The most elementary approach aims to determine the Lagrange mul-
tipliers and minimize the Lagrange function straight away. Although this method has
significant methodological deficiencies, it is amenable to many accelerating heuristics. The
more sophisticated SQP [21] (sequential quadratic programming) class algorithms await
thorough testing in the context of this development and may need considerable fine-tuning
despite their conceptual superiority to match the speed of the simple method of Lagrange
multipliers [19].

The method of multipliers transforms the constrained optimization problem into a se-
quence of unconstrained sub-problems with varying Lagrange multipliers. The algorithm
tries to construct the Lagrange multipliers A* which solve the problem from the solutions
of the trial sub-problems. The next section describes the algorithm which solves the un-
constrained problem, section two is devoted to the heuristics which are used to estimate
the Lagrange multiplier updates.

6.1 Solution of the Unconstrained Sub-Problem

A great number of algorithms for the solution of unconstrained optimization problems has
been devised [21, 22, 23, 65]. The special requirements of the radiotherapy optimization
problem narrow down the choice considerably. Due to the size and structure of the problem
(number of parameters ~ 10%...10*) the computation of the Hessian matrix of second
derivatives is very time consuming; the memory requirement of some 64 MB does not
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preclude its use on modern computers. Likewise, the computation of a gradient vector
is much more expensive than an evaluation of the objective function. However, even the
latter usually requires a complete recalculation of the current dose distribution.

These considerations influence the choice of algorithm although the total performance
can only be assessed in numerical trials. The special nature of the radiotherapy optimiza-
tion problem with its high degeneracy certainly affects algorithms which make use of the
Hessian more than simple gradient techniques. To some extent the statement is valid that
the algorithm predominantly has to separate out and solve the non-degenerate sub-problem
to be most efficient.

A number of algorithms was tried: steepest descend algorithms with fixed and vari-
able step size, quasi-Newton algorithms with and without line searches and a variety of
conjugate gradient algorithms. In general, the Polak-Ribiere [65, 66] method of conjugate
gradients was the most successful for reasonable starting points. Although other conjugate
gradient methods were tested [67], none could gain a clear advantage over this method.
The algorithm was implemented with a line search according to Brent [65, 68]. The line
search does not use gradient information but multiple objective function calls instead.
Since the ratio of computational cost of a gradient computation to an evaluation of the
objective function is approximately 10:1, a slightly higher number of objective function
calls is acceptable. Restarts in the direction of steepest descend were performed if the
maximum change in a ray fluence exceeded a certain threshold, thereby indicating that
the search directions were no longer aligned with the principal descent directions of the
objective function. The termination criterion is met if the fractional change

L((I)Ic) _ L((I)IH—I)
L(@k+1)

<€ (6.1)

falls below a threshold € ~ 1073. Most notably, the conjugate gradient method needed
a number of iterations which was at most 5 per cent of the number of optimization
parameters'. This indicates that the conjugate gradient algorithm separates the non-
degenerate sub-problem very well.

For rather crude starting points, like homogeneous fluence distributions, the search
direction updates become dominated by the directions of largest initial decrease. In this
case, a steepest descent algorithm can descend faster than a conjugate gradient method.
This is a consequence of the fact that the Hessian matrix varies strongly during the first
iterations so that the conjugacy of search directions, which relies on an invariant Hessian,
cannot unfold its potential. Once a satisfactory starting position for the conjugate gradient
algorithm has obtained, the steepest descent method is terminated. This scheme reflects the
varying ratio of efficiency to computational cost for gradient computations and objective
function evaluations during the approach to the minimum.

'Tf the Hessian were not singular, the number of iterations would be at least equal to the number of
optimization parameters.
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The quasi-Newton method of [69] which was successfully applied to radiotherapy opti-
mization did not perform well in this setting. The reason is that this problem has a highly
singular Hessian close to the minimum and the Hessian has more off-diagonal entries. Ap-
proximating the matrix by its diagonal elements degrades the curvature information to an
extend which disturbs rather than accelerates convergence. Other quasi-Newton schemes
like BFGS or DFP [19, 22, 23] could potentially yield a small gain for the solution of the
unconstrained problem. However, the greatest acceleration will result from replacing the
method of multipliers with a superior handling of the biological constraints.

6.2 Determination of the Lagrange Multipliers

The essential drawback of the method of multipliers is the cumbersome search for the
Lagrange multipliers A* which solve the constrained problem. The overall convergence
properties of the algorithm are determined by the convergence of a set of estimated La-
grange multipliers A' — X\*,1 = 1,2,... in an outer loop of the optimization which solves
the unconstrained problem at each pass for the current Lagrange multipliers \'. The con-
vergence of the Lagrange multipliers is frequently only linear, so that a significant amount
of time is lost in this outer loop.

However, the special properties of the radiotherapy optimization problem allow to ap-
ply this technique despite its inefficiency. Firstly, due to the convexity and monotonicity
properties of objective and constraint functions, the latter can be seen as their own barrier
functions?. Secondly, due to the high degeneracy of the problem, the value of the objective
function is very insensitive to the Lagrange multiplier estimates, although the correspond-
ing fluence may be influenced comparatively strongly by variations of the multipliers. As
a consequence, the method of Lagrange multipliers is capable of delivering a feasible and
acceptable solution in a reasonable time, whereas the proper solution of the constrained
problem is nigh impossible on clinical time scales with this method. An Augmented La-
grangian technique [21, 22, 70, 71] may provide an advantage over the simple Lagrange
function, yet this remains to be tested.

The update of the current Lagrange multipliers employs a first-order rule which is
applied at the termination of the inner loop, the solution of the unconstrained problem.
The update rule derives from the sensitivity relation eq.2.11. The estimate of the new
Lagrange multipliers is accurate to O(]®' — ®*|?) where ®' is the fluence which minimizes
the Lagrange function with the multipliers A'. Let F(d;),G(d,) be the objective and a
given constraint function and let df, be the iso-effective homogeneous dose of D. Let
F'(ds), G'(d,) be derivatives of F,G with respect to the iso-effective dose ds,. At the

2This is in fact the point of view of dose-based optimization where quadratic penalty functions are
employed to produce a slightly perturbed solution of a problem which is restricted by maximum dose
constraints on normal tissues.
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minimum

F'(d;) ~ NG'(d,) (6.2)

for the current multiplier A (which is only a number here). Similarly, for the constrained

solution,

F'(d}) = \*G'(dy). (6.3)
Since F' is an exponential function, one has F'(d}) = F'(dy)exp(—a(d} — df)) . By
G(d;) = 1 and dividing eq.(6.2) and (6.3) one obtains

A G'(dy)

3 = o(—old; — ) mrmsy

X (6.4)

where d} —d; can be set to 0, or be replaced with dj —d,. This equation defines the update
AFL = X* for all constraints for which an iso-effective dose can be defined.

For parallel complications, where some global interaction has to be taken into account,
the update is governed by the rule

A* 0-1

3 = ew(—ald) ~ 46D g =gy

i (6.5)

in case the global coupling is assumed to show a phase-transition like behaviour at the
mean damage 0/v* = ©, where v* is the (prescribed) upper bound to the mean damage v.
Generally, all coupling mechanisms may use the rule

S = exp(—ald; — dp)) % = exp(—a(d; — d))G(D). (6.6)

Since all normal-tissue constraints are inequality constraints, the Lagrange multipliers
are always non-negative. If a constraint does not belong to the active set, its multiplier
is 0. In practice, the constraints are removed from the active set if their multiplier is
below some threshold after the multiplier updates. The multiplier updates are sensitive to
the termination criterion of the inner optimization loop which naturally delivers only an
approximation to the solution D' for a given set of multipliers \!. If the updates do not
appear to be stable, the convergence threshold of the inner loop is forced down to provide
better estimates. The algorithm terminates if the result of an inner loop is feasible with
respect to the constraints and the multiplier updates are within certain bounds [1—¢, 1+€].
The penalties for the barrier functions and soft fluence constraints are not subject to these
update rules; their handling is described in chapter 4.



Chapter 7

Applications

The current state of biological and clinical knowledge makes it impossible to provide suf-
ficient models or data for a full-blown biological optimization which does not require the
definition of treatment objectives by the therapist. Although there is still some uncertainty
as to the applicability of the concepts of time/fractionation and volume effects to all tissues,
it can be shown that these effects do have an impact on the optimum dose distribution.
The method of evidence based biological optimization offers a radically different design
of clinical studies, with an intuitive definition of treatment objectives in terms of limited
morbidity. If advantage is taken of the individual patient’s potential for dose escalation,
clinical radiotherapy gains an entirely new quality. Also, the physical modelling can be
shown to improve on the clinical quality of treatment plans. Of the following sections each
highlights a particular aspect of the optimization model with a clinical example in hand.

7.1 Physical or Evidence-Based Biological
Optimization?

Within the confinements of standard conformal radiotherapy, the prescription of the target
dose and the limits of normal tissue tolerance could be outlined by a few points in the DVHs
of the respective volumes. At best, the degrees of freedom of the treatment technique
afforded a feasible solution to the treatment prescription. The introduction of IMRT
removed these limitations and led to a multiplication of the possibilities to shape the
dose distribution. Whereas for standard techniques a few limiting points in the DVH were
sufficient to define the treatment objectives, for IMRT these few points leave substantial
uncertainty about the shape of the dose distribution. It is an inevitable consequence of
the potential of IMRT, that the rules which lead to the prescription of the treatment doses
have to be incorporated into the formulation of the objectives of the algorithm. Only then
the arbitrary definition of DVH limiting points can be abandoned.

In essence, the definition of the treatment objectives has to offer sufficient means to
specify the quality of the dose distribution. This can be done by physical or biological
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Figure 7.1: A comparison of three normal tissue constraints for the rectum of a prostate
case, as in figure 3.2. The dose-volume constraints result in a kink in the DVH at 65 Gy,
40% of the volume and a mazimum dose of about 80 Gy. The quadratic overdose penalty
does not take effect for doses below its threshold of 72 Gy so that the dose prescription
s considerably exceeded. Both generic DVH constraints do not model the volume effect
in a consistent way. The biological serial constraint with a volume effect parameter k =
8 delivers a DVH which is in accordance with the clinical experience that went into the
definition of the DVH limiting points without further stipulations on the dose distribution.

indices, yet in either case implicit assumptions about the dose-response of each tissue are
made. In case a dose-based penalty function is used which is common to all organs at
risk, all organs are assumed to have the same dose-response mechanism. The definition of
DVH limiting points is highly arbitrary and rarely sufficient. As an example, figure 7.1
shows a comparison of dose-based and biological objective functions. This figure should be
seen in combination with figure 3.2, page 27, which was generated from the same clinical
prostate case. The latter figure demonstrates how the concept of dose-volume effect which
is implicit in many clinical decisions influences the shape of the DVH. In the figure, one
DVH is constrained by three limiting points (65 Gy, 40%), (72 Gy, 30%) and (75 Gy, 5%).
It can be deduced from the stair stepped appearance of this DVH that these three points
are not sufficient to define the treatment objectives. At the same time, the prescription
of a volume-effect and a tolerance dose for the biological constraint leads to a DVH which
approximately fulfills the DVH limits. Obviously, the quadratic overdose penalty is not
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capable of modelling the volume effect of the rectum since the DVH corresponds to a much
higher tolerance towards high doses.

The example was chosen because the volume effect of the rectum is frequently exploited
in dose escalated prostate treatment to increase the dose to a small target volume. Most
treatment protocols permit some higher dose to some smaller volume than would be toler-
ated for the whole rectum. These considerations become a part of the automated treatment
planning process represented by any IMRT algorithm. The concept of evidence based bi-
ological optimization allows to express clinical experience in the volume effect parameter
and the iso-effect prescription in a reproducible manner.

As IMRT allows higher target doses and prescriptions are changed towards dose es-
calated treatments, the issue of dose fractionation becomes important. If the course of
treatment is prolonged to accomodate a greater number of standard dose fractions, re-
population of the tumour with clonogenes can offset the effect of a higher total dose. At
the same time, as a consequence of better sparing, the dose per fraction to the normal
tissues might even decrease. With dose escalation, there is a need to reconsider fraction-
ation schemes. For this reason, fractionation effects need to be taken into account by the
optimization algorithm. These effects are more important for normal tissues since a wide
range of dose per fraction sizes is covered. Figure 7.2 shows a comparison of two fraction-
ation schemes for an extensive lung tumour with an escalated dose of 70 Gy to a boost
volume. The normal fractionation scheme was 2 Gy per fraction, the other an ‘accelerated
hyperfractionated scheme’ of 70 fractions of 1 Gy administered twice a day. It can be
seen that due to the great difference in (8/0)tumour = 10 Gy to (8/a)ng = 2.5 Gy, the
hyperfractionated scheme maintains a more homogeneous boost dose - the better toler-
ance of lung of this scheme is exploited to redistribute the dose to the target volume more
homogeneously. As a consequence, fractionation effects have an impact on the optimum
physical dose which goes beyond a mere rescaling.
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Figure 7.2: A lung case with a prescription of 70 Gy to the boost volume and 55 Gy to the
PTV. The normal fractionation scheme was 35 fractions of 2 Gy, whereas the accelerated
hyperfractionated scheme was 1 Gy twice daily. The shift in the curves which show physical
dose is caused by the smaller sensitivity of tissues for smaller dose fractions. The biologi-
cally equivalent DV Hs for the lungs would coincide. However, the dose distribution in the
boost volume s more homogeneous for the hyperfractionated scheme which shows that the
algorithm uses the greater tolerance of the lungs to re-distribute the dose. The biologically
equivalent dose to the boost volume was equivalent in both cases.
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7.2 The Clinical Benefit of Monte Carlo Optimization

Arguably, Monte Carlo dose computation has the potential to be more accurate than any
phenomenological model. It has been pointed out that Monte Carlo verification compu-
tations provide a clinical benefit[72, 73, 74]. At contrast with standard 3D conformal
planning, IMRT can gain from the better accuracy of the Monte Carlo computed dose dis-
tribution by fine tuning the fluence distributions. A Monte Carlo verification computation
provides an estimate of the adverse effects of scatter, yet optimization results on the basis
of Monte Carlo possess a different quality: they demonstrate what can be done clinically to
counteract the physical effects which would go unnoticed with phenomenological models.

Right Eye and Optic Nerve

Brain Stem

Figure 7.3: A beam’s eye view corresponding to the fluence distribution of figure 7.4. The
field is tangential to the sphenoidal sinuses at the lower part of the PTV.

The example is a schwannoma of the optical nerve (figure 7.3, 7.5) which stands for
a class of paranasal target volumes with a genuine tumour-air interface. The complex
geometry of the skull with bone/soft tissue/air interfaces leads to an overestimation of
dose in the target, or underestimation of scatter in critical structures by phenomenological
algorithms. The vicinity of organs with no significant volume effects prompts sharp dose
gradients, and together with a clear tumour outline (in this case) and tight margins of the
PTV, any reduction of the dose to the PTV is clinically significant.
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Figure 7.4: The fluence distribution as obtained from the pencil-beam optimization (above)
and the Monte Carlo optimization (below). The Monte Carlo profile shows compensation
for the electron scatter in the third quadrant and the fourth quadrant of the field corre-
sponding to the position of the sphenoidal and frontal sinuses, see figure 7.3.
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Right Eye

Brain Stem

Figure 7.5: The beam’s eye view corresponding to the fluence distribution of figure 7.6. The
beam passes through the nose which causes a dose re-buildup region in the PTV.

The arrangement of four beams followed clinical practice ((—58°, —41°), (90°, —57°),
(102°,39°), (—34°,38°)), the fluence matrices had a resolution of 1.25 x 1.6mm? which is
feasible with micro-multileaf collimators. The photon energy was 6 MV, about 60 million
histories were simulated. Compared to the pencil beam optimization results, the Monte
Carlo profiles show clear evidence of the compensation of lateral electron scatter by in-
creasing the primary fluence along tangents to the low density surfaces (see figure 7.4,
7.6).

VOI Ciso [Gy] | k | PB [Gy] | VERI [Gy] | IM/MC [Gy]
PTV 70 72.7 62.8 70.9
Chiasm 35 10 34.9 34.1 35.3
Nerve (r) 35 10 2.7 5.8 7.4
Eye (r) 15 6 | 4.1 5.4 8.4
Eye (1) 40 6 39.8 38.8 40.8
Brainstem 30 8 3.7 2.6 4.1
Brain 36 8 36.4 35.3 36.4

Table 7.1: The prescribed iso-effective doses Cis, and the volume effect parameters
k for the volumes of interest (VOIs) involved in the planning study. The resulting iso-
effective doses for the pencil beam optimization (PB), the Monte Carlo verification (VERI)
and the Monte Carlo optimization (IM/MC) show that essentially the dose in the PTV
was overestimated. A large dose reduction in the PTV even in small volumes leads to a
considerable reduction of iso-effective tumour dose.
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Figure 7.6: The fluence distribution as obtained from the pencil-beam optimization (above)
and the Monte Carlo optimization (below). The Monte Carlo profile shows compensation
for the electron scatter in the fourth quadrant of the field corresponding to the position of
the sphenoidal and frontal sinuses, see figure 7.4.
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Table 7.1 gives the optimization results for the pencil beam optimization, the Monte
Carlo verification of the pencil beam dose, and the Monte Carlo optimization. The small
field sizes and low energy of 6 MV produce dose re-buildup and lateral scatter regions
with extensions of about 1 cm. Since the diameter of the PTV is in the range of 4 cm, a
significant volume is affected by these effects. Consequently, the reduction in iso-effective
dose to the PTV is in the range of 10 Gy. This dose cannot be fully restored by the Monte
Carlo optimization since in the presence of active, dose limiting constraints the dose can
only be redistributed, yet usually not increased. However, the benefit is significant and
restores the tumour dose to 71 Gy. Since the beam arrangement largely avoided the organs
at risk, only the chiasm, the affected eye and the brain were dose limiting together with a
dose homogeneity constraint on the PTV.

The optimization did not take into account the influence of scatter from the leaves of
the micro-MLC. It can be expected that this will yield a further advantage for the Monte
Carlo optimization.
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Figure 7.7: A comprison of the dose distributions of PTV and chiasm for the pencil beam
optimization (PB), the Monte Carlo verification (MC veri) and the Monte Carlo opti-
mization (IM/MC). The PTV verification shows a pronounced underdosage to 10% of the
volume, and some underdosage to about 50% of the volume. The IM/MC optimization
restores the dose to the most exposed volumes, however, since the fluence can only be redis-
tributed in the presence of active constraints, it cannot fully restore the pencil beam dose.

The dose to the chiasm was unchanged safe the underestimation of scatter by the pencil
beam algorithm.
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7.3 Enhanced Clinical Utility of Fluence Profiles

The clinical application of IMRT has to meet high quality standards. Regardless of the
details of the implementation of intensity modulation at the treatment machines, smooth
fluence profiles offer significant clinical advantages for an error tolerant application of ra-
diation. For the static techniques, where the leaves of the MLC move to the configuration
of the next field segment while the radiation is interrupted, smooth profiles lead to fewer
field segments, a better efficiency and shorter treatment times.

Figure 7.8: A CT slice image of the colon-rectum example case. The PTV (black) en-
compasses the local lymph nodes and overlaps with the small bowel (white). The multiply
concave shape of the PTV and the close proximity to the organ at risk necessitate heavily
modulated fields.

The static MLC technique is implemented at the William Beaumont Hospital, Detroit,
with the help of a software module which translates the output of a radiotherapy optimiza-
tion algorithm into a piecewise constant fluence profile suitable for static MLLC application.
In March 2000 the WBH embarked on IMRT of colon-rectal cancer which generally ne-
cessitates rather complex fluence distributions. The smoothness of the fluence profiles as
produced by the algorithm described here facilitated a treatment within clinically accept-
able time [75]. This patient was probably also the first treated with a biologically optimized
plan.

Figure 7.8 shows a slice image of a target volume of a similar case where the prime
organ at risk (small bowel) and the PTV are closely entwined. This case was part of a
study which preceded the first treatment. The goal of the optimized treatment was both to
reduce the volume of the small bowel receiving a high dose and intermediate dose in order
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to avoid the complication of acute diarrhea. The PTV consists of the tumour bed and the
locally involved pelvic lymph nodes. The standard treatment involves five coplanar fields

with 72 degrees spacing.
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Figure 7.9: A comparison of DVHs for the minimum surface smoothing and the clustering of
rays into static MLC field segments. While the PTV receives an equivalent dose, the DVH of
small bowel exhibits the stair stepped appearance which is typical for discrete homogeneous
fields at low fluences. A tramslation of the smoothed fluence profiles to static MLC' field
segments would not have preserved the high level of dose homogeneity in the PTV.

In figure 7.10 and 7.11 the fluence distributions of two fields are shown. The resolution
of the fluence matrices corresponds to a clinical MLC of 1 cm leaf width in the isocentre and
a discretisation of 2.1 mm in leaf direction. While the output of the smooth fluence profiles
greatly diminishes the deterioration of plan quality due to the translation of the fluence
profile into static MLC field segments, this step is still problematic. A full solution of the
MLC problem can only be found if the creation of MLC field segments is fully included
into the optimization. The results compare favourably with the translator output: the
reduction in tumour dose is barely noticable, the number of field segments is about 20%
lower. The method is the subject of future work [76].
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Figure 7.10: The fluence profile of the posterior-anterior field with the minimal surface
smoothing constraint (above) and with direct optimization of a piecewise constant fluence
suitable for static MLC application (below). The difference from a simple translation into
a piecewise constant fluence can be seen in the third quadrant of the field, where a small
field segment was created in the optimization which is not present in the upper profile.
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Figure 7.11: The fluence profile of the anterior oblique field, again with minimal surface
smoothing (above) and direct optimization of the static MLC field segments (below). In this
instance, the lower field s bimodal, which ensures a rapid application.



Chapter 8

Conclusion

The development set out here formulates the task of planning intensity modulated radio-
therapy as a comprehensive optimization problem, including biological treatment objec-
tives, measures for enhanced clinical utility and Monte Carlo radiation transport codes.

In its most general form, radiotherapy optimization is a variation problem. The treat-
ment outcome as a functional of the fluence distribution is subject to a number of restric-
tions. To make the problem numerically tractable, a ray formalism is introduced which is
a generalization of the method of Green’s functions. A ray is the constituent entity of a
practically feasible fluence distribution. It is shown that the functionals of dose which cor-
respond to biological objectives can be expressed in the form of a ‘radiation effect density’
by virtue of a mean field approximation. This approximation can be motivated by a sep-
aration of biological interactions according to length scales; microscopic and macroscopic
interactions can be treated explicitely whereas mesoscopic interactions can be taken into
account by the mean-field approximation for photon therapy. A classification of normal
tissue dose response mechanisms along these lines is given and specific effect functions are
devised.

A dose computation algorithm is described which was specifically designed for the use
in an optimization algorithm. The dose distribution of some 103 to 10* rays is precomputed
and stored. The algorithm can be combined with Monte Carlo dose computation to form
a very time efficient hybrid technique. A proof of convergence of the method is given. The
clinical benefit of Monte Carlo dose computation is significant for tumours located close
to low density interfaces. The modelling of the fluence distributions also incorporates a
method which generates smooth fluence profiles. In an additional step, the complicated
restrictions of multi-leaf collimators are included into the optimization. The full realization
of these constraints as well as the treatment of the beam shaping elements with Monte Carlo
methods during optimization are the subject of future work.

The treatment of physical and technical aspects of IMRT in the present optimization
algorithm has the potential to establish IMRT as an alternative to conventional therapy for
a large group of patients. The clinical introduction of the technique has been protracted by
dosimetry problems and treatment time limitations which were entirely due to the neclect of
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application constraints in early implementations of IMRT planning algorithms. The careful
design of the dose computation algorithm and the introduction of a smoothing operation
reduced the treatment complexity significantly and led to a considerable improvement
of treatment quality. The full handling of application constraints will eventually allow to
reduce treatment complexity even further and could help to establish IMRT for everybody’.

The concept of evidence based biological optimization constitutes a novel approach to
treatment planning. It was conceived to deal with the hugely increased freedom to shape
the dose distribution afforded by IMRT. The incentive of dose escalation to the tumour is
to increase chances for cure by making use of this freedom. However, this can only be done
if normal tissue effects are kept at the levels of conventional radiotherapy. Thus, the success
of IMRT depends crucially on the capability of planning to express normal tissue reactions
in a way which makes the advanced treatment comparable to the established. Evidence
based biological optimization provides the means to achieve this. The complicated interplay
of time/fractionation and volume effects of normal tissues makes dose based treatment
planning intractable for radically new treatment concepts. In the quest for providing the
best treatment, the next logical step is the individualized description of target volumes
and prescription of target doses and dose fractions [77, 78, 79]. IMRT and evidence based
biological optimization are no more, yet no less than the prerequisites to successfully meet
the challenge of creating image guided, adaptive radiotherapy.
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