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Zusammenfassung

Mit der Formulierung der Quantenchromodynamik (QCD) als fundamentale Theo-
rie der starken Wechselwirkung zwischen den elementaren Bausteinen der hadro-
nischen Materie war die Hoffnung verbunden, eines der herausragenden Probleme
in der Physik zu lösen, das Confinement-Problem. Die Störungstheorie, welche
sich in anderen Teilen der Physik als höchst erfolgreich bewährt hat, erwies sich
jedoch in dem diesbezüglich interessanten physikalischen Bereich schnell als unan-
wendbar.

Die Gittereichtheorie ist ein nichtperturbativer Zugang zur Untersuchung der
Grundzustandseigenschaften quantisierter Eichtheorien. Hinsichtlich des Con-
finement-Problems besteht die Vermutung, daß der gluonische Teil der QCD
allein den grundlegenden Mechanismus für die Nichtexistenz freier farbgeladener
physikalischer Zustände in sich birgt, weswegen eine reine Yang–Mills-Theorie
auf dem Gitter betrachtet wird.

In dieser Arbeit wird ein möglicher Confinement-Mechanismus durch die Kon-
densation von Vortizes in zentrumsprojizierter Yang–Mills-Theorie beleuchtet —
basierend auf einer Idee aus den späten Siebziger-Jahren, welcher durch die For-
mulierung einer wohldefinierten Vorschrift, den Vortexgehalt einer Yang–Mills-
Konfiguration zu extrahieren, in den späten Neunziger-Jahren zu erneutem In-
teresse verholfen wurde. Frühere Versuche, auf dem Gitter formulierte Vortex-
Modelle im Kontinuumslimes zu betrachten, scheiterten am mangelnden Skalen-
verhalten der Vortizes. Die zentrumsprojizierte Yang–Mills-Theorie gibt jedoch
Anlaß zur Hoffnung, daß die in ihr definierten dünnen Vortizes, welche per Defi-
nition eine Dicke von einem Gitterabstand besitzen, lediglich die Relikte physika-
lischer, dicker Vortizes sind. Diese werden durch die Zentrumsprojektion dann
auf die dünnen Vortizes, auch Zentrumsvortizes genannt, abgebildet. Die Zen-
trumsprojektion bildet eine Yang–Mills-Konfiguration auf eine Konfiguration ab,
deren Basisvariablen Elemente aus dem Zentrum der Eichgruppe sind. Das rele-
vante Infrarotverhalten der Theorie wird dabei beibehalten. Die Zentrumsvor-
tizes als die resultierenden Freiheitsgrade nach der Projektion zeigen weiterhin
ein konsistentes Skalenverhalten im Sinne der Renormierungsgruppe, welches eine
notwendige Bedingung für die Existenz eines Kontinuumslimes der effektiven Vor-
textheorie ist.

Darüberhinaus wird in der zentrumsprojizierten Theorie ein Deconfinement-
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Phasenübergang reproduziert. Dieser erscheint bei einer Temperatur, welche iden-
tisch ist zur kritischen Temperatur in der vollen, unprojizierten Theorie. Die
räumliche und die temporale String-Tension werden mit hoher Genauigkeit repro-
duziert, wenn man den drastischen Einschnitt betrachtet, welche die Zentrums-
projektion für die volle Theorie darstellt.

Nach einer kurzen Einführung beginnt das erste Kapitel mit einer Darstellung
der geometrischen Begriffe, welche der Gitterformulierung von Eichtheorien zu-
grundeliegen. Ein kurzer Abriß über Gittereichtheorien im allgemeinen mitsamt
des zentralen Themenkreises der Renormierung wird gegeben.

Kapitel zwei beginnt mit einem kurzen Rückblick auf einige ZN -Gittermodelle.
Insbesondere wird das Wegner-Modell vorgestellt, da dessen Eigenschaften im
Hinblick auf die zentrumsprojizierte Yang–Mills-Theorie von großem Interesse
sind und das Modell einige Analogien aufweist. Die Bedeutung eines nicht-
trivialen Zentrums der Eichgruppe wird durchweg betont. Der Hauptteil des
zweiten Kapitels ist der Frage gewidmet, inwiefern Zentrumsvortizes physika-
lische Größen widerspiegeln und keine Gitterartefakte darstellen. Es werden da-
her Gitterrechnungen vorgestellt, welche sowohl zeigen, daß die durch die Zen-
trumsprojektion entstandenen Vortizes die relevanten Freiheitsgrade im Infrarot-
sektor der Theorie sind — zumindest hinsichtlich des Confinement-Phänomens —
als auch das perturbative Skalenverhalten einer definierten Vortex-Flächendichte
belegen. Diese als Vortex-Dominanz bezeichnete Eigenschaft wird als starker
Hinweis dafür angesehen, daß die Zentrumsvortizes physikalischer Natur sind.

Im dritten Kapitel wird das Verhalten der zentrumsprojizierten Yang–Mills-
Theorie bei endlichen Temperaturen untersucht. Nach einer kurzen, allgemeinen
Einführung in die Formulierung von Quantenfeldtheorien bei endlichen Tem-
peraturen werden einige topologische Eigenschaften von Eichtheorien auf dem
Torus diskutiert. Ziel dieser Betrachtungen ist es, die in der Gittereichtheorie so
wichtige Zentrumssymmetrie aus dem Transformationsverhalten von Eichfeldern
auf dem Torus in der Kontinuumstheorie mit verallgemeinerter Eichsymmetrie
abzuleiten. Diese Zentrumssymmetrie muß in der Natur nicht realisiert sein,
sondern kann auch in der spontan gebrochenen Phase vorliegen. Der Polyakov-
Loop-Operator als Ordnungsparameter für das Vorliegen dieser Symmetrie ist
gleichzeitig auch Ordnungsparameter für das Vorliegen einer Confinement-Phase
oder einer Deconfinement-Phase. Der Großteil des dritten Kapitels stellt dann
die Messungen vor, welche zur Untersuchung des Verhaltens der zentrumspro-
jizierten Yang–Mills-Theorie bei endlichen Temperaturen durchgeführt wurden.
Die Existenz eines Deconfinement-Phasenübergangs und damit die Gültigkeit der
Vortex-Dominanz auch über den Phasenübergang hinaus wird gezeigt.



Abstract

Ever since the conception of quantum chromodynamics (QCD) as the fundamen-
tal theory for the strong interaction between the basic matter constituents of the
hadronic world, the hope has been to explain one of the most challenging phe-
nomena in physics, the confinement problem. Due to the very nature of QCD as
a non-abelian gauge theory, calculational methods which are successful in other
parts of physics fail in the domain of interest.

Lattice gauge theory is a non-perturbative approach to the investigation of
the ground state properties of quantum gauge theories. With respect to the
confinement problem, the hypothesis is that the gluonic part of the theory alone
contains the basic mechanism for disallowing coloured physical states, which is
why pure Yang–Mills theory on the lattice is regarded.

In this work, a possible confinement mechanism due to the condensation of
vortices in Yang–Mills theory is illuminated, an idea dating back to the late
seventies but having experienced renewed interest in the late nineties due to an
advanced proposal to give a prescription to extract the vortex content of a Yang–
Mills configuration. Whereas earlier attempts to tackle the problem of translating
vortex models defined in a discretized space-time to the continuum theory were
not crowned with success, centre-projected Yang–Mills theory gives some promis-
ing indications that the vortices defined in the theory caricature vortices of finite
thickness in the continuum limit. In lattice theory, these hypothetical thick vor-
tices are mapped onto centre vortices, which by definition have the thickness of
one lattice spacing, by the method of centre-projection. This projection onto
centre degrees of freedom seems to retain the relevant low-energy properties of
lattice Yang–Mills theory. Moreover, the centre vortices, which are the result of
the projection, show the right scaling behaviour necessary for the centre-projected
theory to be taken to the continuum limit.

Furthermore, centre-projected Yang–Mills theory reproduces a deconfinement
phase at a critical temperature identical to the one obtained in the full, unpro-
jected theory. The spatial as well as the temporal string tension is reproduced to a
very high degree of accuracy concerning the drastic intervention centre projection
constitutes for the full theory.

After a short introduction, the first chapter begins with giving gauge theory
its due geometric foundation, as the lattice formulation, which is given a basic
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introduction after that, is based heavily on the geometric origin of gauge theories.
Chapter two begins with a short review of some lattice ZN models. In es-

pecial, the Wegner model is shortly presented as the results obtained there bear
some analogies to centre-projected Yang–Mills theory, which is then explained
in detail. The relevance of the centre of a unitary gauge group in the confine-
ment mechanism is emphasized throughout. The main part of the second chapter
is then devoted to the issue of the physicality contained within the centre vor-
tices. Therefore, lattice measurements are presented which indicate that centre
projection singles out vortices as degrees of freedom relevant in the infrared sec-
tor of Yang–Mills theory, exhibiting perturbative scaling behaviour in the weak
coupling limit. This property is called vortex dominance. A model based on ran-
domly distributed vortices is taken to show that correlations between the centre
vortices are important for the behaviour of the theory.

The third chapter is wholly devoted to the investigation of the finite tem-
perature properties of centre-projected Yang–Mills theory. Therefore, a short
introduction to general quantum field theory at finite temperatures is given, be-
fore the topological properties of Yang–Mills theory on the torus are discussed.
This is done to explain the occurrence of centre symmetry as part of a generalized
gauge symmetry, which is not necessarily realized in nature, but may be broken
spontaneously at a certain set of parameters. The Polyakov loop operator as an
order parameter distinguishing whether this symmetry is realized or not also dis-
tinguishes a confinement phase from a deconfinement phase of a gauge theory.
The better part of the third chapter then presents the measurements performed
to investigate the finite temperature properties of centre-projected Yang–Mills
theory. It is shown that a deconfinement phase transition is realized, and vortex
dominance is retained throughout the whole temperature range from T = 0 to
temperatures high above Tc.
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Chapter 1

Yang–Mills Theory on the Lattice

After a motivation of the objectives aimed for in this work, the basic
ingredients of the lattice formulation of Yang–Mills theory are intro-
duced. Crucial terms and connections are presented, which recur on
various occasions and need a clarified treatment. The geometrical set-
ting of gauge theories is shown, as the basic variables of lattice gauge
theories are of a deep geometric origin. Their formulation on a di-
cretized space-time as well as renormalization, which is a necessary
ingredient in quantized field theories, are explained. Eventually, some
conventions are given.

1.1 The Need for a Non-Perturbative Treatment

It is difficult not to keep regurgitating the phrases which are virtually the same
again and again. But it is simply the case that to our knowledge, quantum
field theory is the most fundamental theory available in the world of nature, at
least from the viewpoint of theoretical predictability. Of course, it may well be
that it eventually is proven to be an effective theory, with string theory being
a promising candidate for the underlying framework. But, should this be the
case, it nevertheless has justified its domain of applicability down to the small-
est distances available in present-day physical experiments. Its true impact is
disclosed in the microscopic world of atoms or even elementary particles, where
“everyday concepts” stemming from the perception of physical events available
to us in normal life must at least be thought over from a epistemological point of
view and reformulated, or eventually lose their meaning. These include classical
notions of the space-time point of an event or the presence of a particle, as well
as the change in time thereof, its trajectory. Eventually, the notion of a particle
itself must be recreated. We say that the microscopic world is dominated by the
quantum principle. In a way, quantum field theory is but an application of the
quantum principle to a certain model class, that of (3 + 1)-dimensional fields. In
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2 CHAPTER 1. YANG–MILLS THEORY ON THE LATTICE

(0 + 1) dimensions, we get ordinary quantum mechanics, and it is but fair to say
that especially non-relativistic quantum mechanics is mathematically one of the
most consistent and powerful theories ever conceived. Never has there been any
experimental result not being in accordance with its predictions.

Of course, it is incorrect to deduce from that, that the validity is lost in the
macroscopic world, but the correspondence priciple tells us that the larger the
scale, the less dominant are the quantum effects, and classical physics reaches its
domain of applicability. On even larger, cosmological scales, however, where the
only interaction playing a role is gravitation, corrections of a different kind are
necessary due to another prevailing principle in physics, the equivalence principle,
which identifies two seemingly so different concepts like gravitation and acceler-
ation. This identification of a dynamical and a kinetic quantity led to a total
geometrization of gravitation theory, terminating in the formulation of a theory
of space-time itself, the general theory of relativity, which finds its expression
within the realm of differential geometry.

It shall now not be recapitulated how and why merging the two theories re-
siding at the two most extreme endpoints of the length scale ends in a variety
of insurmountable problems. Every physicist knows that, and it would take us
too far astray. Quantum field theory, which is the general framework we will
be dealing with here, too, has its own problems, but they are not so much of
a conceptual nature. Rather, they are calculational in kind, as it is as yet not
known how to solve the two most important models in quantum field theory ex-
actly, namely quantum electrodynamics (QED), which is the jubilated quantum
theory for electrodynamics, and quantum chromodynamics (QCD), which sup-
posedly seems to be the fundamental quantum theory for the strong interaction
in the hadronic world. Disregarding the whole problem of renormalization for
the moment, by an exact solution we define a closed exact expression for the
correlation functions or Green functions, because it is they who constitute the
solution to the characteristic equations which mathematically are of a functional
kind. For QED, matters are not so bad, since nature gives us an instrument at
hand for finding approximate solutions to the problem by means of perturbation
theory, at least within our domain of interest. This domain is characterized by a
small value for the (renormalized) coupling constant e, identified with the electric
elementary charge, and within the framework of perturbation theory, quantities
interesting to us like the above-mentioned Green functions or the corresponding
generating functional itself, are expressed by a series expansion in e, and the
calculational results are in accordance with the experimental data to a degree of
precision unprecedented by any other theory in physics. In the end, this lucky
circumstance is due to the characteristic behaviour of the so-called beta function
of the theory, which, within the issue of renormalization, gives the advantageous
opportunity of defining a numerical value for the renormalized electric charge in
an asymptotic sense, i.e. for very large distances in space. Moreover, the renor-
malizational analysis reveals that the larger the distance, the more applicable
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and precise perturbation theory becomes.
In contrast, the conditions are not so lucky with the other fundamental model

quantum field theory, QCD: the theory for the interaction between quarks and
gluons, the hypothetical elementary components of the hadrons. The renormal-
izational analysis, as far as it is possible anyway, shows that perturbation theory
is getting better and better as the distances between interacting particles be-
come smaller and smaller. The reason is that the renormalized running coupling
constant (a contradiction in terms, of course, but it has found its way into the
language) tends to zero when the momentum transfer is increased. This be-
haviour is termed asymptotic freedom, and it expresses the fact that in the limit
of infinite momenta, QCD is in fact a theory of free quarks and gluons without
any interaction.

The issue interesting to us, namely when the two elementary particles are
separated by a fair distance, e.g. of the radius of an atom, is impossible to treat
perturbatively, so that even the beta function constituting a critical quantity in
the renormalizational analysis cannot be calculated any more with the means
at hand. Thus, in a way, perturbation theory yields its own limit of applica-
bility. Moreover, an asymptotic state for a quark or a gluon does not seem to
exist; they are confined within the hadrons, which are classified either as baryons,
when three valence quarks give the hadrons their quantum numbers including the
spin, or as mesons, when the quantum numbers are borrowed from a quark and
an antiquark. The gluons do not contribute anything to the internal quantum
numbers but provide the mechanism for binding all the valence quarks and the
pairs of virtually produced quarks and antiquarks together to hadrons, and most
probably contribute a significant part to the spin. But here we arrive at our
main problem: the idea of virtual pairs of particles and antiparticles stems from
perturbation theory, and we know that perturbation theory loses its validity at
distances comparable to the diameter of a nucleon, which is about 1 fm. Taking
also into account that quarks or gluons simply do not appear as free particles
possessing a definite mass, or anything like the equivalent of a charge, we are
forced to find a solution to the problem how a theory, which is composed of fun-
damental fermions (quarks), massless vector mesons (gluons) responsible for the
interaction between them and even themselves, and an internal degree of free-
dom with a local symmetry, the SU(3) gauge symmetry, is transformed, when
quantized, into an effective theory of hadrons. What is desired is something like
baryons as effective matter particles interacting with each other by an exchange
of mesons as effective intermediate particles in a first approximation, only much
more detailed and elaborated. This is the confinement problem, and it appears
to be one of the most intriguing problem in whole physics.

Therefore, analogues are looked for in similar model theories, which by con-
struction are simpler to solve, be it because the number of space-time dimensions
is reduced (many (1+1)-dimensional quantum field theories are exactly solvable,
for example), or because the degree of symmetry is increased. Thus, in supersym-
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metric models, attempts to tackle the problem of finding a solution have recently
been crowned with success, as it has been possible to calculate just the effec-
tive theory in various models, although the similarity in structure between the
supersymmetric models of the Seiberg–Witten type and QCD with fundamental
fermions is not overly distinct and overemphasized sometimes.

For the time being, theoretical physicists have buried their hope to find an
exact solution to the confinement problem soon. An exact solution would deliver
a closed form of all Green functions, propagators as well as vertex functions for
the whole range of the renormalized coupling constant g. Whereas perturbation
theory is only applicable for small g, which in turn applies in non-abelian gauge
theories like QCD for large momentum transfers or, equivalently, for small dis-
tances, in the opposite domain, i.e. large distances, a perturbative analysis breaks
down and no predictions are available. Therefore, it is self-evident to look for
non-perturbative methods to tackle the problem of solving for the Green functions
or the effective theory, which is expressed in the effective potential, for the case
of low momentum transfers, at least approximately. One of the most important
of these is the approach via lattice gauge theory, which on the one hand admits
a regularized formulation of a gauge theory, the regularization method being a
momentum cut-off, and therefore is free from any infinities. This does not mean,
however, that there is not any renormalization. Renormalization automatically
enters the game when dimensionful quantities are related with measurable observ-
ables on the lattice, which acquire their canonical dimension only by the lattice
spacing a with an initially undefined value. On the other hand, the discretiza-
tion of a continuum theory, which makes the mathematical vicinity of quantum
field theory and statistical physics even more obvious, opens up the powerful
approximative methods of statistical physics to the treatment, one of the most
important being the Monte Carlo method. By means of this method, the high-
dimensional integrals occurring in expectation values are numerically evaluated
by importance sampling, i.e. dominant contributions are preferred in a random
sampling of configurations.

In this work, Monte Carlo calculations will constitute the main tool for ex-
tracting physical statements. This is why the next section is devoted to a brief
review of the theoretical framework the following work is based upon.

1.2 A Brief Résumé of Lattice Gauge Theory

This section is intended to serve as a concise overview of the basic ingredients
of lattice gauge theories. In order to fully grasp the meaning of the quantities
inherent to the lattice formulation of a gauge theory, it is helpful to have a sound
grip on the geometrical setting of a continuum gauge theory, the lattice being
nothing else than a discretized version of space-time.

The concepts introduced below will recur many times in this work in various
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contexts, so the following is intended to lay the ground in a precise though en-
lightening way. Nothing new is presented, but the technical foundations are laid
on which the physical discussion starting in chapter 2 can be built up. Therefore,
the reader already familiar with the necessary concepts of lattice gauge theory,
its origin in the geometrical formulation of gauge theory, and its statistical treat-
ment, including renormalization on the lattice, may without loss of information
skip the chapter and perhaps just throw a glance upon section 1.3, where some
conventions are introduced.

1.2.1 The Geometrical Setting of a Gauge Theory

The notion of fibre bundles, and the topological considerations being made about
them is the natural framework for the mathematical formulation of a gauge the-
ory, although, historically, these two theories — fibre bundles and gauge theory
— have evolved separately for a long time until the early 1970s. A systematic
study of these aspects can be found in [Nak90, MM92] or [Nab97]. To be con-
crete, a fibre bundle B is a differentiable manifold that is locally isomorphic to
the direct product of two differentiable manifolds M×F , M being called the base
space and F being the standard fibre. Also the case of a discrete fibre like Z or
ZN may be considered. In this case the fibre bundle is called a covering manifold
of the base space.

M

φi

F

B

Figure 1: A fibre bundle B is locally the product of two manifolds M and
F , M being called the base space, and F the standard fibre. φi is the local
trivialization, which maps the product space M × F to the bundle space
B locally.

There must also exist a projection π : B → M , which is surjective. The fibre
is thus nothing but the inverse image of π. Moreover, a structure group G must
be given, acting on F from the left. Being a manifold, the base space must also
admit an open covering {Ui}. Together with the so-called local trivializations
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φi : Ui×F → π−1(Ui) a very special structure is given to the bundle by demanding
that in the overlap region of two open subsets Ui,Uj the transition functions
tij = φ−1

i φj be G-valued. For the transition functions tij the following consistency
conditions must hold:

tii ≡ 1 (1.1)

tij = t−1
ji (1.2)

tijtjk = tik. (1.3)

The last relation is called the cocycle condition. These relations are not indepen-
dent, since the first and third relation imply the second. If the bundle is trivial,
i.e. if it has the global structure B = M ×F , the structure group can be reduced
to the trivial group {1}.

If a different local trivialization φ′ is given, we can define a gauge transfor-
mationf ∈ G by f = φ−1φ′. For later use, we denote the function space of all
continuous gauge transformations f : π−1(Ui) → π−1(Ui) as G.

A local section is defined to be a smooth map σi : Ui → F . For example, in
the case that F is a vector space, it can be recognized to constitute nothing but
a vector field on Ui.

It now turns out that the topological properties of bundles may all be found
out by considering the so-called principal bundle P , which as its standard fibre
has the structure group G itself. Other bundles like, e.g., vector bundles may
then be constructed as associated bundles Bass = P × V/G, with V a vector
space, in that case.

The connection to physics is achieved when we identify the base space M with
space-time or a suitable subspace of it. The structure group G then is nothing but
the gauge group like U(1) or SU(N). The gauge group, therefore, plays a double
role: being the standard fibre, it represents the set of gauge transformations
possible at each space-time point (gauge freedom). On the other hand, as the
structure group of the principal bundle, it encodes the topological structure of
the physical configuration, which, e.g., stem from certain boundary conditions
on the gauge fields, as explained below. The choice of a local trivialization is
referred to in physics as the choice of a local gauge. The topological non-triviality
can be extracted from defining overlap regions Ui ∩ Uj of an open covering {Ui}
of the base manifold and determining the transition functions tij [WY75a].1

In order to give a precise mathematical meaning to the physical gauge field,
the notion of a connection must now be introduced. The idea is to separate the

1In the case of a Dirac monopole, e.g., the overlap region can be chosen to be homotopically
equivalent to S1. The maps S1 → U(1) are classified according to which first homotopy class
they belong. The set of all first homotopy classes form the first homotopy group π1(U(1)) ∼= Z
and can be labelled by an integer m ∈ Z, which is the magnetic charge of the monopole. If
m = 0, the resulting principal bundle is trivial. For m = 1 the resulting bundle is S3, and the
projection π : S3 → S2 is the well-known Hopf map.
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tangent space of the bundle TuP at a point u ∈ P into a so-called vertical part VuP
and a horizontal part HuP in a systematic and unique way: TuP = VuP ⊕HuP .
The vertical subspace is naturally given as the subspace of TuP tangent to the
fibre G, thus being isomorphic to the Lie algebra g of the structure group G.
This leaves open the residual freedom to define the complement of VuP . This is
exactly where the idea of a connection comes in: a connection one-form ω is a
projection of TuP onto the vertical component VuP ∼= g, for every u ∈ P , and in
a continuous way. According to the choice of ω, a different component of TuP is
projected out. Then the horizontal part HuP is just the kernel of ω:

ker ω = {v ∈ TuP |ω(v) = 0} = HuP. (1.4)

H P

T Pu

u
V Pu u

Figure 2: At each point u ∈ P , the tangent space to P is split into the
canonically defined vertical part VuP and the horizontal part HuP defined
by the connection.

Now let σi be a local section defined on each Ui. The pulled-back2 one-form
Ai ≡ σ∗i ω is then called a local connection form and exactly represents what we
know from physics as a gauge potential. Note that ω and Ai are Lie-algebra-
valued. Although we know from physical situations where it is not possible
to define a smooth gauge potential A over the whole base space M as in the
case of a Dirac monopole, the connection one-form ω, also called the Ehresmann
connection, is per definitionem everywhere continuous on M . The reason for the
difference of behaviour lies in the fact that the pull-back σ∗ is in general not
well-defined over the whole of M , because a global section σ exists if and only if
the bundle P is trivial.

Having introduced a connection one-form, we are now in a position to define
quantities like covariant derivative, curvature, and parallel transport. Let φ :
TP⊗. . .⊗TP → g a Lie-algebra-valued r-form. φ is called vertical if ker φ = HP
and horizontal if ker φ = V P . Similarly, Hv denotes the horizontal component

2Remember: If f : M → N is a mapping from one space to another, the pull-back f∗ denotes
the induced reverse mapping between the respective dual tangent spaces f∗ : T ∗N → T ∗M .
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of a vector v ∈ TuP and V v its vertical component. Let v1, . . . , vr+1 ∈ TuP . The
covariant derivative Dφ of φ is defined as

Dφ(v1, . . . , vr+1) ≡ dφ(Hv1, . . . , Hvr+1). (1.5)

We will come back to the covariant derivative if we encounter associated bundles.

The curvature two-form Ω is defined as the covariant derivative of the con-
nection one-form ω, i.e. Ω ≡ Dω. It satisfies the Bianchi identity

DΩ ≡ 0. (1.6)

Just as the connection one-form also has a local form, the same is true for the
curvature: When σ is a local section, the pulled-back two-form F ≡ σ∗Ω is
called the local curvature form, and it is the same F that is known from physics
as the field strength tensor.3 Its expression in terms of the above defined local
connection is

F = dA + A ∧ A. (1.7)

Note that Ω and F , too, are Lie-algebra-valued. The Bianchi identity in its local
expressions reads

DF := dF + A ∧ F ≡ 0, (1.8)

where D is the covariant derivative operator in its local form, acting on a g-valued
p-form on M in the above way.

It must be understood, however, that the above-defined curvature generalizes
the intuitive notion of curvature that is known from Riemannian geometry in
so far as the Riemann curvature is the curvature form belonging to the frame
bundle of a Riemannian manifold, where the fibres are the set of local SO(N)
transformations, N being the dimension of the manifold. But in general, the
curvature one-form Ω has nothing to do with the curvature of the bundle P seen
as a Riemannian manifold!

It shall briefly be shown how a gauge transformation translates into the math-
ematical language. For that reason, consider that the connection one-form ω was
introduced to uniquely separate the tangent space TuP at a point u ∈ P into
a horizontal and a vertical part. That means, given an open covering {Ui} the
condition

ωi = ωj on Ui ∩ Uj (1.9)

must hold. From that, a compatibility condition can be derived, which dictates
how the local connection one-forms must behave if equation (1.9) for the Ehres-
mann connection is to hold. Remember that in the overlap region Ui ∩ Uj there

3Although the same symbol F is used both for the local curvature form and the standard
fibre, the respective meaning should be clear from the context.
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may be a change of coordinates φi → φj, with the transition functions tij elements
of G. One arrives at [Nak90]:

Aj = t−1
ij Aitij + t−1

ij dtij

⇐⇒ A′ = g−1Ag + g−1dg, (1.10)

if we regard the transition functions as operators giving rise to a gauge trans-
formation. Analogously, it can be shown that a similar compatibility condition
yields the transformation law for the local curvature two-form:

Fj = t−1
ij Fitij

⇐⇒ F ′ = g−1Fg, (1.11)

which shows that in a gauge theory, the field strength transforms with the adjoint
representation of the gauge group. Note that this gauge transformation has noth-
ing to do with choosing another gauge, but is necessary because the base space
must be covered with more than one open patch and the bundle has non-trivial
topology. On the other hand, choosing another gauge also results in determining
new transition functions. In this case, the overlapping region is the whole base
manifold itself. Therefore, the transformation law is exactly the same.

The important concept of parallel transport can now be provided by the
horizontal lift of a curve γ lying in the base space M . Given that curve, a
horizontal lift of γ, denoted by γ̃, is defined to be a curve in the bundle P with
the starting point anywhere on the same fibre where γ begins, but the tangent
vector of which is horizontal everywhere.

V Pv
v

V Pu

u
H Pu

H Pv

γ∼

Figure 3: A horizontal lift γ̃ of a curve γ ∈ M is horizontal everywhere.

Clearly, πγ̃ = γ. If t → γ(t) and t → γ̃(t) are parametrizations of the original
and lifted curve, respectively, σi is a local section, and gi(t) is an element of G
we can derive a differential equation connecting the two curves (once again, for
a detailed derivation see [Nak90, GS87]):

γ̃(t) = σi(γ(t))Ui(γ(t)). (1.12)
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If the tangent vectors at σi(γ(t)) were horizontal everywhere, Ui(t) would always
be the identity element 1. From that, one gets

dUi(t)

dt
= −Ai(γ̇(t))Ui(γ(t))

⇐⇒ Ui[γ] = P exp

(
−

∫ γ(t)

γ(0)

〈Ai(γ(t)), dx〉
)

, (1.13)

where P is the so-called path-ordering operator, reflecting the fact that the inte-
grand has, in general, non-abelian group elements, so that a naive line integration
is not possible. Thus, the exponential form of equation (1.13) is to be taken only
formally. Ui[γ] is called the parallel transport operator, reflecting the fact that
the lifted curve is everywhere “parallel” to the horizontal direction on P , which
in turn is defined by the connection one-form ω.

For two concatenated curves γ1, γ2, the following property holds:

Ui[γ2 ◦ γ1] = Ui[γ2]Ui[γ1], (1.14)

where ◦ denotes the concatenation, and the product on the right hand side is the
group product.

Although the stress is put on principal fibre bundles, associated bundles nat-
urally emerge if matter fields are included. As explained above, a vector field
φ : M → V on a manifold M can be considered as a section of a vector bundle
Bvec = P × V/G. The structure group G then acts on φ from the left, the same
as we have it in physics: if we perform a gauge transformation, the matter field
transforms like φ → R(G)φ, with R being a representation into the set of linear
operators acting on V , denoted as R : G → GL(V ). The covariant derivative
is also defined in a natural way, with the connection one-form now replaced by
a representation R : g → GL(V ). Let s be a local section of a vector bundle
V , γ(t) a curve on M going through p0, and X the tangent vector of γ at p0.
This defines a vector field along the curve γ according to s(t) = s(γ(t)). In the
principal bundle B, γ̃(t) would be the lifted curve to γ(t), connected to γ(t) by
equation (1.12). It is horizontal everywhere. In the associated vector bundle
Bvec, we define horizontality of a vector field s along the curve γ according to

s(t) = R(Ui(γ(t)))s0, (1.15)

where R is the above-defined representation of G, s0 = s(γ(0)), and Ui is the
path-ordering operator (1.13). Therefore, if s is horizontal (or, parallel), it solves
the differential equation

ds(t)

dt
= −r(Ai(γ̇(t)))s(γ(t)) (1.16)

or DXs :=
ds(t)

dt
+ r(Ai(γ̇(t)))s(γ(t)) = 0, (1.17)
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where DX is the covariant derivative operator along X acting on s, and r is the
induced representation of g.

The whole concept of covariant derivative stresses the fact that there is not
any notion of a preferred local trivialization of the bundle. Without a local trivi-
alization, an ordinary derivative does not have an intrinsic meaning. The reader
may perhaps be reminded of ordinary Riemannian geometry, where Christoffel
symbols must be added to the ordinary derivative to get a geometrically mean-
ingful quantity, the Christoffel symbols and the ordinary derivative by themselves
being not tensorial quantities, but coordinate-dependent entities. The Christoffel
symbols in Riemannian geometry are the coefficients of the local connection one-
form of the frame bundle, where the structure group SO(N) is isomorphic to the
set of all possible orthonormal frames at a point p ∈ M . The covariant derivative
therefore takes into account that, dependent on the trivialization chosen, the tan-
gent spaces to the bundle are assigned a different orientation towards each other.
One can understand the parallel transport as “turning around” any vector field,
tensor field, p-form etc. until the change of relative orientation of the tangent
spaces is compensated, and the real change of the field can be measured.

Let us now return to the principal bundles and the notion of lifted curves.
One might ask what happens if the curve γ on the base manifold is closed? It
turns out, of course, that the lifted curve γ̃ need not be so. Instead, the initial
and final points γ̃i, γ̃f will generally differ by a group element W ∈ G. The set of
all such group elements can be shown to form a subgroup of the structure group
G called the holonomy group H. Clearly, a non-trivial holonomy group is due
to the curvature of the bundle, as is formulated in the Ambrose–Singer theorem:
the Lie algebra h of the holonomy group Hu at a point u ∈ P is identical to the
subalgebra of g spanned by the elements of the form Ωu(v, w), where Ωu is the
curvature two-form at u and v, w ∈ HuP . The group element W itself is then
(formally) given by

W [γ] = P exp

(
−

∫

γ

〈A, dx〉
)

, (1.18)

where the index i is suppressed. Later on, when going to lattice gauge theory,
a discretized version of W will be identified with the Wilson loop, or, if the
curve closes in a non-trivial way4, the Polyakov loop. It can be shown that the
knowledge of all elements W [γ] of the holonomy group Hu at a point u ∈ P
contains the complete physical information of a gauge configuration, whereas it
is known that the gauge potential A has spurious degrees of freedom, and the
field strength F has too few.5 This understanding can be taken as a starting

4e.g. due to some periodic boundary conditions on the base space M
5In an abelian gauge theory, the field strength F contains at least all the local information of

the physical configuration, the Aharonov–Bohm effect being a global phenomenon. In a Yang–
Mills theory F does not even locally specify the physical situation uniquely, a fact sometimes
referred to as the Wu–Yang ambiguity [WY75b].
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point for a reformulation of Yang–Mills theory in terms of gauge invariant loop
variables (see e.g. [GP96]), and indeed, when investigating lattice gauge theory
in the next section, the above-mentioned Wilson loops take on a prominent role.

In the case of an infinitesimal loop, the path-ordering operator may be dropped,
and the relation between holonomy group and curvature can be made manifest
[GS87]:

W [γinf] = exp

(
−

∫

γinf=∂Ainf

〈A, dx〉
)

(1.19)

= 1−
∫

Ainf

〈dx, F dx〉+O(l3), (1.20)

where A is the infinitesimal area in the base space bounded by γ, and l is the
infinitesimal length of γ.

The problem of Gribov ambiguities shall also shortly be touched upon in its
geometrical context (see [MM92]). Until now we have concentrated on bundles
P which describe the geometrical situation of a space-time M as base manifold
and a structure group G as the set of gauge transformations possible along any
fibre. Each possible bundle corresponds to a definite physical situation of different
topological type, such as magnetic monopoles with different magnetic charge, or
different k-instanton configurations. The topological sector is encoded in the
topological properties of P . We will now deal with A(P ), the set of all possible
connection one-forms on P . We say that ω1, ω2 ∈ A are gauge equivalent if
there exists a gauge transformation f ∈ G such that ω2 = f ∗ω1. This way,
G defines an action on A, and we denote the orbit space M = A/G as the
moduli space of gauge potentials on P . The moduli space is thus isomorphic to
the physical configuration space, each point in M corresponding to a different
physical configuration residing in the same topological sector. A can be given
the structure of an infinite-dimensional principal fibre bundle over M. We know
that the choice of a gauge connection is defined by a gauge fixing functional
F [ω] in the way that F [ω] ≡ 0 picks out a certain ω, or, as is usually said,
fixes the gauge. Thus, a local section s is defined on A by F . This section s
can locally be equipped with a Riemannian structure by defining a metric on it.
The determinant of this metric can in turn be shown to be proportional to the
Faddeev–Popov determinant [BV79]

∆[ω] =
δF [f ∗ω]

δf

∣∣∣∣
F [ω]≡0

. (1.21)

But as we know, the Faddeev–Popov determinant has zeroes, so at these points
p ∈ s where this is the case we have a coordinate singularity similar to the
situation of the hedgehog theorem6 on the sphere. And similar to the case of

6“You cannot comb a hedgehog!”
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the sphere, it can be shown that no global section exists on A whenever certain
boundary conditions on ω are imposed which imply the compactification of M =
R4 to S4 [Sin78]. From a different view, with ∆[ω] acquiring a zero value, the
gauge-fixing functional F does not change under an infinitesimal change in ω
under the action of f0 ∈ G0, the set of small gauge transformations, which belong
to the component connected to the identity element 1. Therefore, the tangent
space to s is getting tangent to the fibre given by the orbit of G0, too, and the
gauge orbits are not transversal any more.

A

0G 

M

Figure 4: A simplified illustration of the Gribov problem. The solid lines
constitute the gauge orbits of G0. The dashed lines constite local sections
of A. At the marked points, the gauge orbits are not transversal any more,
and a Gribov horizon is reached.

The region of the configuration space where the degeneracy of ∆[ω] takes place
the first time when starting from a regular point in s is called a Gribov horizon.
It encloses a region Ω where the Faddeev–Popov determinant has a definite sign,
called a Gribov region. If ∆[ω] is positive, Ω is called the first Gribov region,
and ∂Ω the first Gribov horizon. As figure 4 illustrates, in a somewhat simplified
viewing, the Gribov horizon constitutes the set of fixed points under the action
of G0. These fixed points, however, are nevertheless connected by a set of gauge
transformations, called the fundamental modular group Γ(M) of M . These are
the large gauge transformations. Γ(M), in amost all interesting cases, is a dis-
crete group, which eventually is responsible for M not possessing the structure
of a manifold, but that of an orbifold. The action of Γ on A leads to a mul-
tiplication of gauge potentials all satisfying the functional condition F [ω] ≡ 0,
but nevertheless are connected by a gauge transformation. These are the Gribov
copies omnipresent in non-abelian gauge theories [Gri78].

The reason why we dwell upon Gribov copies so much at this early point is
that later on, we will encounter them again when the issue of fixing the maximal
centre gauge on the lattice is treated.
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1.2.2 The Transition to the Lattice

Now that a concise review of the mathematical framework of gauge theories
has been given, the stage is set for the formulation of the lattice version of it.
As we are dealing with static, external charges only, pure Yang–Mills theory is
regarded. A detailed treatment of quantum fields on the lattice can be found in
[MM94, Rot97] or, of course, [Cre83].

As mentioned earlier, what in our sense is denoted by a lattice is nothing
else but a discretized version of space-time. Nevertheless, throughout this work,
though being mathematically rather sloppy, the term space will be used for de-
noting the lattice, and when considering certain global aspects like gauge-fixing,
for example, we treat our lattice like a differentiable manifold.

There are, in principle, two advocated ways to formulate a lattice field theory.
On the one hand, there is the Euclidean formulation, where space-time is taken
to be locally isomorphic to R4, and is discretized in all four dimensions. On
the other hand, there is the Hamiltonian formulation, where a continuous time
variable is kept and only three-dimensional space is discretized [KS75]. Here we
will only consider a four-dimensional Euclidean lattice.

Then the universe consists of single points denoted by x, called sites. Its
topology is usually given by specifying certain boundary conditions. Throughout
this work, periodic boundary conditions are used, i.e.,

x + N(µ)aµ = x, (1.22)

where aµ is a unit vector pointing in one of the four directions (µ = 1 . . . 4), and
N(ν)a is the lattice size in this direction, a being the lattice constant. This results
in the space-time lattice being topologically equivalent (homeomorphic) to a 4-
torus T 4.7 It is important to stress, however, that periodic boundary conditions
on the space-time manifold do not necessarily imply periodic boundary conditions
on the quantum fields defined on the manifold. Indeed, as will be commented
upon in chapter 3, apart from the usual anti-periodic boundary conditions on
spinor fields on a torus (when fermions are included), there is a certain freedom
in fixing the behaviour of gauge fields in overlapping regions of local charts when
pure Yang–Mills theory is considered.

A gauge theory on the lattice is not defined by the gauge field Aµ(x) itself,
but by the bilocal quantity

U(y, x) = P exp

(∫

C
−gAµ(x)dxµ

)
(1.23)

defined in the previous section as the parallel transport operator from x to y
along the curve C. On the lattice, the smallest unit is called a link, as pictorially

7Note, however, that the metric used in our lattice is flat (Euclidean), so that it is still a
space with zero curvature. Topology does not dictate local geometry, but it allows us to use a
flat metric, because a torus is a parallelizable manifold, with its Euler characteristic χ = 0 as
a necessary condition.
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it links two adjacent points x and x + µ := x + aµ, and is denoted by Uµ(x). A
lattice definition of the gauge field Aµ(x), which is by no means unique, can then
be given by:

Uµ(x) = exp (−agAµ(x)) . (1.24)

As before, Uµ(x) is an element of the gauge group.
All properties shown in the previous section to hold for the parallel trans-

port operators now also hold in the discretized case, e.g. those concerning the
concatenation of curves: if C1 and C2 are curves, with U(C1), U(C2) the corre-
sponding parallel transport operators, then U(C) = U(C2)U(C1) is the operator
corresponding to the concatenated curve C = C2◦C1, the product being the group
product.

If the curves are closed in a trivial way (see the previous section), the opera-
tors are called Wilson loops. The smallest Wilson loop constructable is called a
plaquette, and is denoted by

Pµν(x) = U †
ν(x)U †

µ(x + ν)Uν(x + µ)Uµ(x). (1.25)

x

y

U (x)µ

P  (y)

µ

P  (y)µν

µ

ν

Figure 5: The lattice as a discretized universe.

The use of the bilocal operators Uµ(x) allows the construction of gauge in-
variant quantities on the lattice. Consider a gauge transformation Ω(x) acting
on the link variables according to

Uµ(x) 7→ UΩ
µ (x) = Ω(x + µ)Uµ(x)Ω†(x). (1.26)

As can be seen, the elementary gauge invariant quantity is the plaquette, because
the transformed links are along a closed line, and the transformation matrices
cancel against each other. In general, Wilson loops are gauge invariant operators.8

8Loops along topologically non-trivial cycles, Polyakov loops, need not be so. More about
that in chapter 3.
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With the basic gauge invariant variables at hand, it is now easy to find a
gauge invariant action necessary for formulating the gauge theory. In principle,
as Wilson loops of any size are gauge invariant objects, a variety of actions are
conceivable. The simplest choice is the Wilson action [Wil74]

S[Uµ] = β
∑
Pµν

(
1− 1

2N
(TrPµν + TrP−1

µν )

)
(1.27)

= β
∑
Pµν

(
1− 1

N
ReTrPµν

)
(1.28)

for an SU(N) gauge theory. β is a parameter to be determined from the demand
for the correct continuum limit. Here the sum over plaquettes Pµν is meant to
include every plaquette only with one orientation:

∑
Pµν

=
∑

x

∑
1≤µ≤ν≤4

(1.29)

=
1

2

∑
x,µ,ν

. (1.30)

Apart from being gauge invariant, the action functional (1.28) is easily seen to
be real and positive.

It is to be checked that the Wilson action really reduces to the Yang–Mills
action in the naive or classical continuum limit where the lattice spacing goes
to zero: a → 0. Using (1.24) for the link variable and definition (1.25) for the
plaquette, together with the Baker–Campbell–Hausdorff formula, an expression
can be derived establishing the connection between the plaquette and the field
strength at x (see also equation (1.20)):

Pµν(x) = exp
(−a2gFµν(x) + . . .

)
(1.31)

= 1− a2gFµν +
1

2
a4g2F a

µνF
b
µνT

aT b + . . . , (1.32)

where a is the colour index. Therefore

trPµν = N +
1

4
a4g2F a

µνF
a
µν + . . . , (1.33)

=⇒ β

2

∑
x,µ,ν

(1− 1

N
trPµν) −−→

a→0
−

∫
d4xβ(

g2

8N
F a

µνF
a
µν), (1.34)

which, if β = 2N
g2 , reduces to the usual Yang–Mills action.

For the plaquette variables Pµν , the Bianchi identity introduced in 1.2.1 de-
livers the following important relation:

∏
Pµν∈C

Pµν(x) = 1, (1.35)
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where C is a three-dimensional cube.
After having defined the field variables and an action the next step is quan-

tizing the theory, which means specifying the functional integral.
In the continuum we would write down the formal expression

〈O〉 =
1

Z

∫
Dµ[Aµ] O(Aµ) e−SYM[Aµ] (1.36)

with Z =

∫
Dµ[Aµ] e−SYM[Aµ] (1.37)

for the expectation value of some observable O(Aµ), where SYM[Aµ] is the Yang–
Mills action, and the integration measure Dµ[Aµ] = DAµ∆FPf(F [Aµ]) includes
the Faddeev–Popov determinant ∆FP and a weight function f of the gauge-fixing
functional F . The integral is meant to be a functional integral over all configu-
rations of the gauge field.

Let us now consider the case of lattice gauge fields. On a lattice the expecta-
tion value of an observable O(Uµ) is analogously written as

〈O〉 =
1

Z

∫
Dµ[Uµ] O(Uµ) e−S[Uµ] (1.38)

with Z =

∫
Dµ[Uµ] e−S[Uµ], (1.39)

where Z is the partition function of the theory, and Dµ[Uµ] is an appropriately
chosen integration measure.

As each link variable Uµ(x) is an element of the gauge group G = SU(N),
the domain of integration is the set {conf} = {Uµ|R4 → G}. Accordingly, the
preferable integration measure is the functional Haar measure:

Dµ[Uµ] = DUµ (1.40)

=
∏
x,µ

dUµ(x) (1.41)

with dUµ(x) being the invariant group measure or Haar measure, which is uniquely
defined by the following properties:9

right invariance:

∫

G

f(U)dU =

∫

G

f(UU ′)dU for all U ′ ∈ G (1.42)

left invariance:

∫

G

f(U)dU =

∫

G

f(U ′U)dU for all U ′ ∈ G (1.43)

normalization:

∫

G

dU = 1. (1.44)

9In general, there is a left-invariant group measure and a right-invariant group measure. But
for all groups of interest here these two are equivalent [Gil74].
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Some important properties of the functional integral are worth mentioning
here: first of all, in a strict sense, it is not a functional integral any more. The
discretization of space-time has turned it from a nondenumerably infinite dimen-
sional functional integral to a denumerably infinite dimensional Riemann integral.
Furthermore, virtually all calculations assume a finite volume, so that eventually
one ends up with a finite dimensional Riemann integral, which, at least in prin-
ciple, is exactly solvable. Nevertheless, even for numerical computations, the
dimension of the integral is too high — typically of the order of 104 to 106 —
which means that specially adapted methods have to be called on. Analytically,
some few techniques like the strong coupling expansion or the weak coupling ex-
pansion exist to calculate expectation values like (1.38), each with their distinct
domain of applicability, depending on the value of the parameter β in (1.28).10

The method used throughout this work, is the Monte Carlo method, an introduc-
tion of which is given in [MM94], for example.

Yet another consequence arises due to the possibility of using the Haar mea-
sure as integration measure. As mentioned before, this can be done because each
domain of integration is the group itself and thus compact. In calculations of
expectation values according to (1.38) the volume of the gauge group factors out
and is irrelevant as long as it is finite. Because of the normalization (1.44) the
infinite volume limit does not pose any new problems. Therefore the expressions
(1.38,1.39) are formally still valid in the continuum limit even without including
a gauge-fixing factor like in (1.36,1.37), where the domain of integration even in
the lattice regularized form is the non-compact set of gauge potentials.

Nevertheless, although gauge-fixing is not mandatory, it is allowed, and even
advantageous sometimes. In this work, great importance will be attached to
fixing the gauge in several ways, the possible choices of gauge being introduced
in the next chapter. On the lattice, gauge-fixing is equivalent to changing the
values of certain link variables in such a way that gauge invariant quantities do
not change their values. This means that either link variables along a tree11 have
their values fixed, in which case it can be shown that there always exists a gauge
transformation which exactly yields the prescribed configuration, or (as is done
throughout the second chapter of this work) a gauge transformation is performed
on the lattice sites to change the values of the link variables according to the
prescription of a given gauge-fixing functional. For the former, the maximum of
gauge fixing can be achieved if the link variables with prescribed values form a
maximal tree, so that no additional gauge fixing is possible. In any case, fixing
the gauge does not alter the values of gauge invariant quantities like the Wilson
loop. A detailed calculation can be found in [MM94].

The third important property is known as Elitzur theorem [Eli75]. The state-
ment is that on an infinite lattice — the finite lattice case being trivial to that

10See [Cre83] for details and references therein.
11A tree is a connected set of link variables not containing any closed loop.
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respect — a gauge symmetry cannot be spontaneously broken. This has impor-
tant consequences for the study of the phase structure of a gauge theory: any
order parameter suitable for distinguishing different phases of a lattice gauge the-
ory must be non-local. In especial, the expectation value of a single link vanishes
identically in any phase: 〈U〉 ≡ 0, and is therefore inappropriate. For reviews
including proofs, see e.g. [Gro88, ID89].

1.2.3 Wilson Criterion and Confinement on the Lattice

The aim of using lattice calculations, either analytical or numerical, is to gain
insight into the non-perturbative properties of gauge theories. In particular, the
QCD ground state is of special interest for at least one reason: to explain quark
confinement. In pursuit of an explanation of that effect with the means at hand,
one is now led to formulate a lattice version of QCD, which means defining a
fermion field on the lattice, in addition to the already defined gauge field, to
which the fermions are to be coupled in a gauge covariant way.

However, it shall now not be dwelt any further on the implementation of quark
fields on the lattice as the subject is somewhat outside the main line of reasoning
in this work, and can be studied in depth in [MM94], for example. Moreover,
the general belief is that for the issue of quark confinement, it is not necessary to
define dynamical fermions on the lattice, and the information whether quarks are
confined or not is entirely encoded in the ground state of the Yang–Mills gauge
field in terms of the yet-to-be-defined Wilson criterion.

In the following we derive the relation between Wilson loops and the static
quark potential. For the arguments to be formulated more easily, we temporarily
turn to the Euclidean space continuum. The argument is usually given within
the framework of the Hamiltonian picture and goes as follows (see e.g. [MM94,
MO81]): the Hamiltonian H of our pure gauge system is given by

Ĥ =
1

2

∫
d3x (Êa

i Êa
i + B̂a

i B̂
a
i ), (1.45)

where Êa
i , B̂a

i are the non-abelian electric and magnetic field strength, respec-
tively.

A static external charge is defined to transform according to the fundamental
representation of the gauge group G = SU(N):12

[R(Ω)Ψ]α = ΩαβΨβ, (1.46)

where Ω ∈ G and α, β = 1 . . . N . There is a superselection rule: owing to
the gauge invariance of the Hamiltonian H, sectors with different distributions

12The given definition expresses the restriction to the consideration of fundamental quarks
only.
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of external static charges decouple completely. We consider a static external
charge at x, which is described by a state vector |Ψ〉 ∈ Hx. In our functional
representation, the basic variables are the parallel transport operators {U(y,x)},
so let Ψ[U ] = 〈U |Ψ〉.

Now let Hxy be the Hilbert space of states with a static external quark at x
and an antiquark at y, and |Ψ〉 ∈ Hxy be arbitrary. Accordingly, |Ψ〉 transforms
under a gauge transformation Ω ∈ G as follows:

[R(Ω)Ψ]αβ = Ωαγ(x)Ω−1
βδ (y)Ψγδ. (1.47)

Let {|Ψ(n)〉} be a complete set of eigenvectors of the Hamiltonian Ĥ: Ĥ|Ψ(n)〉 =
En|Ψ(n)〉. We denote the distance between quark and antiquark by R = |y − x|.
Due to rotational invariance, the energy E0 of the ground state |Ψ(0)〉 will only
be a function of R, and is called the static quark potential :

V (R) := E0(R) = min
Hxy

Ĥ. (1.48)

For an arbitrary state |Ψ〉 ∈ Hxy the potential V (R) can be obtained by
means of

〈Ψ|e−TĤ |Ψ〉 =
∑

n

|〈Ψ(n)|Ψ〉|2e−TEn (1.49)

−−−→
T→∞

|〈Ψ(0)|Ψ〉|2e−TV (R), (1.50)

if |Ψ〉 has non-vanishing overlap with the ground state: 〈Ψ(0)|Ψ〉 6= 0. T is the
Euclidean time. As an arbitrary state |Ψ〉 ∈ Hxy we take

Ψ[U ]αβ = Uαβ(y,x)Ψvac, (1.51)

where Ψvac is the gauge invariant vacuum wave functional, and Uαβ(y,x) corre-
sponds to a straight path between x and y. Now we silently switch back to the
lattice formulation.

Then, we can calculate 〈Ψ|e−TĤ |Ψ〉 directly as:

〈Ψ|e−TĤ |Ψ〉 =
1

Z

∫
DU〈Ψ|U〉〈U |e−TĤ |Ψ〉e−S[U ] (1.52)

=
1

Z

∫
DUU †

αβ(x + Ta4,y + Ta4)Uαβ(x,y)e−S[U ] (1.53)

With a little sleight-of-hand, we can convert this equation into the expectation
value of the Wilson loop along a closed contour. Bearing in mind that we still
have the gauge freedom to prescribe the value of a tree of link variables, we choose
the axial gauge, in which all timelike links are defined to be unity: U4(x) = 1.
In a strict sense, this is not quite correct, as on a finite lattice, as we usually
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consider, this implies the prescription of the value of a gauge invariant quantity,
namely the Polyakov loop. However, on a large lattice, this only leads to some
negligible error. Thus, we have

〈Ψ|e−TĤ |Ψ〉 =
1

Z

∫
DUtr U(CR,T )e−S[U ] (1.54)

= 〈tr U(CR,T )〉 =: W (R, T ), (1.55)

and, together with equation (1.50) we can derive

V (R) = − lim
T→∞

1

T
log W (R, T ). (1.56)

We now have a criterion at hand to decide whether external static quarks are
confined or not, called the Wilson criterion: it is clear that the behaviour of V (R)
at large R is the decisive factor. If V is linearly rising in R in the asymptotic
regime R →∞, quarks can never be liberated. The condition for this is a leading
order area law for the Wilson loop expectation value. Let A = RT be the area
enclosed by the cycle belonging to the Wilson loop W (R, T ). Then an area law
means

W (R, T ) = e−κA+(subleading terms) (1.57)

=⇒ V (R) −−−→
R→∞

κR, (1.58)

where κ is called the string tension. In the case of vanishing string tension, the
subleading terms become important, and generally the Wilson loop expectation
value then exhibits the so-called perimeter law. Let P = 2(R+T ) be the perimeter
of the above cycle. Then a perimeter law means

W (R, T ) = e−µP+(next-to-leading-order terms) (1.59)

=⇒ V (R) −−−→
R→∞

const, (1.60)

i.e. asymptotically V (R) approaches a constant value, which can be regarded as
the self-energy of a free quark-antiquark pair.

It shall just be stated here that in a lattice gauge theory with any arbitrary
gauge group V (R) cannot rise faster than linearly with R asymptotically [Sei78],
but at least has to approach a constant value at infinity [SY82], so the Wilson
loop expectation value always has an area law as an upper bound and a perimeter
law as a lower bound.

In Monte Carlo calculations, where the investigation of the Yang–Mills ground
state properties and the extraction of the string tension κ are among the fore-
most tasks, it is not the Wilson loop expectation value W (R, T ) direct which
is measured13. As we have just learned, apart from certain restrictions on the

13In fact, a Monte Carlo calculation is nothing else but a numerical measurement.
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asymptotics, the general behaviour of W (R, T ) can be quite complicated. In
addition, as the bare coupling is reduced and the continuum limit approached,
the perimeter piece actually diverges and dominates for any loop of fixed size in
unrenormalized lattice units. To eliminate this distraction, it is convenient to
consider ratios of loops with different area but same perimeter. In particular, in
the Creutz ratios, defined by [Cre83]

χ(R, T ) = − log

(
W (R, T )W (R− 1, T − 1)

W (R, T − 1)W (R− 1, T )

)
, (1.61)

the perimeter dependence and any constant factors in the Wilson loops cancel.
Whenever W (R, T ) is dominated by an area law, χ(R, T ) serves as an estimator14

for the string tension, i.e. χ → a2κ when RT large, or in the limit β → 0.

1.2.4 Renormalization and Extraction of Physical Quan-
tities

It shall now be explained how physical information can be extracted from treating
the lattice as a statistical system. Renormalization is a necessary ingredient of
performing calculations within a quantized field theory. Thus, in the following,
it shall be briefly outlined how it is done withing the framework of lattice gauge
theory, where a certain familiarity with perturbative renormalization is assumed.
For a more detailed treatment, the reader is referred to the literature [MM94,
Cre83, Rot97]. The lattice is taken to be extended to infinity (infinite volume
limit), in order to have a clear understanding of taking the continuum limit.

In view of equations (1.38,1.39) for the expectation value of an observable,
and the partition function, respectively, it is clear that methods borrowed from
statistical physics are appropriate instruments for exploiting the properties of a
lattice gauge system. Eventually, however, what is actually the aim is investigat-
ing the properties of a continuum gauge theory, and we regard the lattice gauge
system only as a regularized version of it.

The outline of reasoning is as follows: the lattice gauge theory is treated as
a statistical system, the statistical fluctuations of which mimick the quantum
fluctuations of the underlying quantum theory. The lattice spacing a serves as
a coordinate space cut-off, so Λ = 1/a is the usual momentum cut-off. Initially,
an observable O is a function of the lattice variables and of the undefined lattice
spacing a:15

O = O(Uµ; a). (1.62)

Its expectation value is a functional of the lattice configuration {Uµ}, and a
function of the lattice spacing a and bare parameter β:

〈O〉 = 〈O〉(a, β), (1.63)

14See the definition of an estimator in the next section.
15On a finite lattice, it would also depend on N(µ), the lattice extension in the µ direction.
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β entering through the partition function of the lattice system. Remember that
β is essentially the inverse of the bare coupling constant: β = 2N/g2.

This lattice observable, also called an estimator, should of course have a well-
defined meaning in the naive continuum limit where a simply goes to zero: a → 0.
The prescription which estimator is to take to represent the lattice version of a
continuum observable is not unique, as with the action itself. So-called improved
estimators, and improved actions, are of great importance. They differ from
the usual estimators by having an improved convergence behaviour in the limit
a → 0, as terms are included which cancel some of the next-to-leading-order terms
in expansions like (1.32) [Sym83a, Sym83b]. A closer inspectation, however, lies
completely outside the scope of this work and the main line of reasoning.

As in the usual perturbative treatment of quantum field theory, when extract-
ing physical information from the system, the bare quantities have to be replaced
by renormalized quantities in a well-defined way, the prescription in which way
this replacement is to be made is called a renormalization scheme. As the lattice
spacing a can initially be taken to be of any size (there is no natural fundamental
scale), its meaning is as unphysical as the meaning of any arbitrary scale µ which
enters a quantum theory through a regularization procedure. It is important
that there is any scale at all. In the end, a will be assigned a physical value by
renormalization.

The expectation value of any estimator O representing a physical observable
with canonical dimension d is the product of a dimensionless function f(β), as
the {Uµ} themselves are dimensionless, and as many powers of a as needed to
build up the canonical dimension d:

〈O〉(a, β) = f(β)a−d, (1.64)

with a essentially representing an inverse cut-off scale not having been assigned
any value yet, and the bare inverse coupling β not having any physical meaning.

Physical quantities are identified with the above expectation values for any
value of β, which in turn gives rise to a renormalization-scheme-dependent rela-
tion between a and β, but in an asymptotic sense, as will be explained in short:

〈O〉(a, β) −−→
a→0

Ophys. (1.65)

Depending on the renormalization scheme chosen, Ophys is defined to be a physi-
cally measurable quantity.

In general, there is an infinity of renormalization schemes. In QED, one
usually fixes the physical electron mass and the coefficient of the long-range
Coulomb force to acquire a certain value, e.g. the one which is measured in the
laboratory at “infinity” — practically at a macroscopic distance from the source
— which in turn means at a momentum p = 0.

In a confining theory such as QCD is hoped to be, the choice is less obvious.
For pure Yang–Mills theory, a popular selection, and the one selected through-
out this work, is the string tension, i.e. the coefficient of the Wilson loop area
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law, which, as shown in the previous section, equals the coefficient of the asymp-
totically linear potential between static external sources with quark quantum
numbers.16 Experimentally it is gained from the study of the so-called Regge
trajectories : it is observed that in a diagram where the angular momenta of the
mesons are drawn against their masses, the values acquired lie approximately on
straight lines, the slope of which is just the string tension. In a model where two
quarks connected by a spinning string revolve around each other with the speed
of light, this fact can be explained in a quite simple way (see e.g. [CL84]).

Formula (1.65) states that the lattice observable 〈O〉 has a well-defined con-
tinuum limit, but not in the naive sense that on dimensional grounds, the lattice
quantity tends to the continuum version if a → 0. a is the lattice spacing, i.e. the
minimum distance between two space-time points in the physical universe! It
acquires a value only after renormalization of the observable 〈O〉. This requires
a functional dependency between the the bare coupling constant g and a. Such a
relation is delivered by means of the beta function β̃(gR) of the theory under con-
sideration. Together with the renormalization of an arbitrary physical quantity,
the physical scale a is uniquely determined.

In a mass-independent scheme like the MS scheme (see [IZ80, Ami84]), the
beta function is defined by

β̃(gR) = lim
a→0

a
∂

∂a
gR(g, µr, a), (1.66)

where a is the inverse momentum cut-off, or, a space-time cut-off, µr is some
fixed renormalization point, the value of which determines the renormalization
scheme, and g is the bare coupling constant. As can be seen, the beta function
is defined in the limit where the cut-off is removed. The beta function has been
perturbatively calculated for various theories, mostly up to two loops or more,17

and the series is usually written as

β̃(gR) = −(β0g
3
R + β1g

5
R + β2g

7
R + . . .). (1.67)

The coefficients in the MS scheme are:

β0 =
1

(4π)2

11C2(A)

3
(1.68)

β1 =
1

(4π)4

34C2(A)2

3
(1.69)

β2 =
1

(4π)6

2857C2(A)3

54
, (1.70)

16Another possible choice would be the energy of the lowest excited state, the mass gap,
identified with the glueball mass.

17The first successful two-loop calculations have been done in [Jon74, Cas74], the formidable
three- and four-loop calculations are done in [TVZ80].
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where C2(A) is the coefficient of the second-degree Casimir operator of the group
in the adjoint representation and defined by C2(A)δab = tr[τaτb] (for details see
[O’R86]). Although the beta function is in general scheme-dependent, β0 and
β1 are scheme-independent. For further details on the various renormalization
schemes, as well as the issue of scheme dependence of the renormalization group
equations and the beta function, see e.g. [Mut98, Pok87].

With the help of definition (1.66) the desired connection between a and g can
now been established: as the renormalized coupling gR is held fixed,

0 = a
d

da
gR = a

∂gR

∂g

dg

da
+ a

∂gR

∂a
(1.71)

=⇒ β̃(gR)
a→0
= −a

dg

da
, (1.72)

where an implicit dependence of β̃ on µr is assumed, and in the last step it has
been used that in the presence of an ultraviolet cut-off

gR(g, µr, a) = g + A(µr, a)g3, (1.73)

where A(µr, a) stems from one-loop perturbation theory and all higher terms have
been dropped (see e.g. [Pok87, IZ80]). But there is still the renormalized coupling
gR to be eliminated from the above relation, because we need an equation relating
bare quantities. We observe, however, that

β̃(g) = β̃(gR) + (g − gR)
dβ̃

dgR

+ . . . (1.74)

= β̃(gR) +O(g5
R), (1.75)

in view of equations (1.73) and (1.67). Therefore, the first two coefficients of the
“bare” and the “renormalized” beta functions coincide, and we may safely con-
sider the two functions as equal, as long as the renormalized coupling gR is small
— otherwise, the perturbative expansion would be invalid, anyway. Eventually
we get:

β̃(g)
a→0
= −a

dg

da
. (1.76)

This means that the perturbatively calculated beta function delivers the ap-
proximate physical extension of the lattice spacing a in the neighbourhood of
a = 0, where the relation becomes exact. This can be seen from another point
of view, too: eventually we are interested in the continuum limit of the theory.
Thus, we have to look for a set of parameters (which, in this case, is β ∼ 1

g2 )

where the correlation length ξ ∼ 1
a

of physical quantities becomes infinite, i.e. we
are looking for critical points in the parameter space. Critical points are points
that reflect a second-order phase transition of the lattice, when regarded as a
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statistical system. They are also fixed points of the renormalization group, and
distinguish themselves by zeroes in the corresponding beta functions:

gc critical =⇒ β(g)|g=gc = 0,

which is compatible with equation (1.76). Put differently, the continuum limit
is the second-order phase transition, which is what has to be looked for. Fur-
ther details concerning critical phenomena in statistical systems can be found in
[Ami84, BDFN92, ID89].

Equation (1.76) can be solved for a(β), with the perturbative expansion (1.67)
of β̃(g) being inserted. To first order the result is (β = 2N

g2 ):

a(β) = a′ exp

(
−β − β′

4Nβ0

)
, (1.77)

the value of the integration constant a′ being dependent on the renormalization
scheme, and β′ is such that a(β′) = a′. As mentioned above, a preferable quantity
to fix the scale in lattice gauge theories is the string tension κ. On dimensional
grounds, κ = 1

a′2 , a(βκ) = 1/
√

κ, so:18

a2(β) =
1

κ
exp

(
−β − βκ

2Nβ0

)
. (1.78)

The second-order result is

a2(β) =
1

κ

(
βκβ0 + 2Nβ1

ββ0 + 2Nβ1

)− β1
β2
0

exp

(
−β − βκ

2Nβ0

)
. (1.79)

Now that the scale a is fixed by means of the renormalization scheme above,
expectation values of observables 〈O〉 which are calculated on the lattice can be
assigned physical values by simply comparing the bare value

〈O〉(a(β), β) (1.80)

with the bare value of the quantity used for renormalization, in our case the string
tension

κphys = lim
a→0

〈κ〉(a(β), β). (1.81)

In other words, equation (1.81) is solved for a, which in turn is inserted in equation
(1.80).

The following discussion is a central issue in this work, as it shows the way
to distinguish possible lattice artifacts from real estimators, which do have a
continuum limit.

18Note that, in principle, κ only has to be proportional to 1
a′2 , but any proportionality

constant can be absorbed in a redefinition of β′.
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The differential relation (1.76) between the beta fuction of the theory and the
physical scale a is, as has been shown, the more valid, the smaller a is, i.e. in
the neighbourhood of a fixed point of the renormalization group. In this work,
we are interested in SU(N) Yang–Mills theory, with the beta function given by
(1.67). Together with (1.73) and the fact that fixed points correspond to zeroes
of the beta function, it is at once clear that in order to reach the continuum
limit, we have to study the behaviour of the observable under consideration in
the limit β → ∞, as one trivial fixed point, the Gaussian fixed point, is the
point gR = g = 0.19 If the estimator 〈O〉 which is calculated on the lattice
corresponds to a physical observable, it must tend to a constant value Ophys in
the limit β → ∞. On the other side, if it does not, it most probably is a lattice
artifact, a quantity which is measurable when defined on the lattice, but does not
possess any well-defined continuum counterpart, and thus is bare of any physical
meaning. This realization is of vital importance when it comes to the discussion of
the physicality of centre vortices, or the objects caricatured by them, respectively,
in the next chapter.

1.3 Definitions and Conventions

In this work SU(2) Yang–Mills theory on the lattice is studied. Although the
central statements and experiences are expected to hold for SU(N) theory in
general, we will, for the sake of simplicity, confine ourselves to the case of two
colour degrees of freedom.

The first two coefficients of the beta function are:

β0 =
11

24π2
(1.82)

β1 =
17

96π4
. (1.83)

The one-loop, and two-loop solutions, respectively, for a(β) then are:

a2(β) =
1

κ
exp

(
−6π2

11
(β − 2)

)
(one-loop) (1.84)

a2(β) =
1

κ

(
11 + 34π2

11
2
β + 34π2

)− 102
121

exp

(
−6π2β

11

)
(two-loop). (1.85)

The string tension κ is arbitrarily taken to be κ = (440 MeV)2, which is
approximately the value acquainted by the study of the Regge trajectories as
explained in the previous section. The actual value is not of any great importance,
as SU(2) theory is a model theory, anyway, and any observables calculated with

19Other fixed points may well exist, but are as yet not known.
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that value taken as a reference value for renormalization can easily be rescaled if
the value of κ changes.

In addition, we make use of the relation

c} = 3.1615 · 10−26 Jm (1.86)

= 197.327 fm MeV. (1.87)

In natural units, where c = } = 1, we get the relation:

197.327 fm MeV = 1. (1.88)

If the lattice spacing a is given a definite value by means of renormalization as
explained in the previous section, the temperature scale is also defined on an
asymmetric lattice by virtue of relation (1.88).



Chapter 2

Centre Dominance and Vortex
Condensation

Various model theories, which stress the role of the variables belonging
to the centre of unitary gauge group, are briefly reviewed. There, spin
models like the Ising model as well as gauge models like the Wegner
model, exhibit a certain similarity in the behaviour. In especial, in the
four-dimensional Wegner model, vortices occur as collective degrees
of freedom due to the presence of a non-trivial centre of the gauge
group. In Yang–Mills theory, a projection method is presented which
extracts in a certain way the vortex content of a gauge configuration.
These thin vortices exhibit perturbative scaling behaviour signalling an
underlying structure of the full, unprojected theory, containing thick
vortices of physical meaning. A toy model shows that for the generic
behaviour of unprojected Yang–Mills theory to be reproduced, some
kind of interaction between these thin vortices must be considered.

After the preliminaries of the first chapter, which were meant to set the stage
for what is to follow, we shall now embark on the main point of this chapter and
the central issue of this thesis, the possible mechanisms of the confinement of
quarks. Although it is as central as quark confinement is, the subject of gluon
confinement is deferred from this work, as the confinement criteria used are not
applicable to this case.

Thus, whereas in the previous chapter, various technicalities and employments
to extract physical information have been presented, dynamical as well as topo-
logical properties of the Yang–Mills ground state are in the foreground of this
chapter.

As has already been mentioned on a previous occasion, the issue of quark
confinement will be dealt with without any dynamical quarks at all in this work.
This means that we assume that at the heart of a yet unknown confinement
mechanism, purely gluonic properties dominate, which needs a justification.

29
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Indeed, as is known from a perturbative treatment, and has been indicated
in the previous chapter, a calculation of the one-loop beta function β(g) of QCD
reveals that the fermionic contribution leads to a tendency away from the typi-
cal non-abelian behaviour of β(g), and with enough quark flavours at hand, no
asymptotic freedom would be got.

When the lattice-regularized Yang–Mills theory was invented in the 70s, var-
ious numerical as well as analytical efforts were made to trace the cause of the
non-existence of coloured asymptotic states. The former have already been pre-
sented, and in this section some of the necessarily scarce analytical results shall be
summarized, but not for the sake of historical interest. Several vital notions and
expressions will find their introduction in a review-like embedding, but will be-
come rediscovered as well as reexamined within the framework of centre-projected
Yang–Mills theory in section 2.3. But first, some important group-theoretical
aspects of gauge theory are explained, especially the issues of faithfulness of rep-
resentations, the homomorphism theorem of group theory, and some topological
aspects of Lie groups.

2.1 Gauge Groups and Their Topology

Gauge theories by definition have as a central constructive element a local con-
tinuous symmetry. The symmetry group is a Lie group, i.e. a group which has at
the same time all the properties of a differentiable manifold. For the most known
theories the associated gauge group is a unitary group like U(1) or SU(N).

A representation R is a map from the gauge group G to the set of linear
operators acting on a vector space V :

R : G → GL(V ) (2.1)

g 7→ R(g) (2.2)

The dimension of the vector space V is called the dimension dR of the representa-
tion. If the representation is a bijective map, it is called a faithful representation.
If the vector space V is the tangent space to G at the identity element 1, the Lie
algebra, the representation is called the adjoint representation RA:

RA : G → GL(g) (2.3)

g 7→ RA(g). (2.4)

The fundamental representation is the lowest-dimensional faithful representation.
It therefore is an group isomorphism, and the fundamental representation shares
all group-theoretical and topological properties of the group itself. In a certain
sense it actually defines the group.

The vector spaces acted on by the gauge group are constituted by the fields the
Lagrange density L defining the theory under consideration is constructed with.
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Whereas matter fields are transformed by the fundamental representation, the
gauge fields are transformed by the adjoint representation. Let us now state a very
important theorem of group theory, the homomorphism theorem (see e.g. [Gil74,
O’R86]): let φ be a homomorphism, i.e. a surjective map, from a group G to a
group G′, and ker φ its kernel, i.e. Im ker φ = {1}. Then G/ ker φ is isomorphic
to G′:

G/ ker φ ' G′. (2.5)

As seen from G′, G is called a covering group of G′, and G′ is a subgroup of
G. For example, take G = SU(2) and G′ = SO(3). In quantum mechanics
courses, it is learnt that there is a two-to-one mapping from SU(2) to SO(3).
The kernel of this mapping consists of two elements: {1,−1}. Now identify each
element of SU(2) with the one which one gets by multiplying it with −1, and one
gets a coset SU(2)/Z2 which is isomorphic to SO(3). If, as in this example, the
covering group is simply connected, it can be shown to be unique, and it is called
the universal covering group of G′. Every group possesses a universal covering
group [Gil74].

It is also important to note that ker φ is not only a subset of G, but a subgroup
of G, moreover an invariant subgroup. For there also exists a theorem which states
that with H being a subgroup of G, the coset G/H, too, is a subgroup of G if
and only if H is an invariant subgroup of G. Thus we get a decomposition of G
as follows:

G = H ∧G/H, (2.6)

where the product ∧ denotes the semi-direct product of the two groups.1 Seen
from the topological point of view, the reason why it is the semidirect product
and not the direct product × is because this decomposition is valid only locally
but not globally (see the discussion of fibre bundles in chapter 1).

In the case of the unitary groups, the situation is as follows: all non-abelian
special unitary groups SU(N) are simply connected and constitute their own
universal covering group, whereas in the case of the abelian group U(1), the
universal covering group is isomorphic to R.

An important application of the homomorphism theorem is its application to
the adjoint representation RA(SU(N)) of the unitary groups. It has the following
properties:

RA(SU(N)) ' PSU(N) = SU(N)/ZN (2.7)

π1(SU(N)) ' 0 ⇐⇒ π1(SU(N)/ZN) ' ZN , (2.8)

where PSU(N) is called a projective unitary group, π1 denotes the first homotopy
group or fundamental group of the group manifold, ZN is the cyclic group of the

1Remember: a well-known example for a semi-direct product group is the Poincaré group
ISO(3, 1) which has as subgroups the Lorentz group SO(3, 1) and the translation group T4, but
which is not the direct product group.
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order N , and 0 stands for the trivial group. Starting from the fundamental
representation, the adjoint representation can explicitly be determined:

G → RA(G) (2.9)

U 7→ Rij(U) = 2Tr(UτiU
†τj), (2.10)

τi being the generators of the group in the fundamental representation.
This all means that the adjoint representation does not distinguish between

group elements that differ by an element of the centre Z(G) of the group, which
consists of all elements of G that commute with all other elements of G. For the
unitary groups, Z(SU(N)) ' ZN , so this is the cause for the popular saying that
“gluons are blind to the centre of the gauge group”. On a compact manifold,
these circumstances have important implications on the topology of gauge fields,
as will be further depicted in the next chapter.

2.2 Confinement by Vortex Condensation in ZN

models

In the beginning of the 1970s, lattice regularization was realized as an invaluable
tool for the investigation of the non-perturbative properties of quantum field
theories. Pure gauge theories, especially, and their phase structure, became the
centre of interest of numerous analytical, as well as numerical considerations,
as by the time quantum chromodynamics as a non-abelian gauge theory has
crystallized out into a serious explanation model for the strong interaction.

On a discrete space-time lattice the notion of continuity is lost. Remarkably,
this gives us more freedom in formulating a gauge theory. But although a gauge
model with a discrete gauge group does not have a classical continuum limit, this
does not necessarily carry over to the quantum theory. If the system exhibits
a second-order phase transition at an appropriate zero of its beta function, one
should be able to define a continuum quantum field theory (see the exposition in
1.2.4).

Thus, at first, discrete gauge groups were considered, due to the simplicity of
their treatment, and as a testing ground for new techniques. The cyclic groups
ZN , which are discrete subgroups of the continuous unitary groups U(N), played
a very important role and still do. As will be recognized later, the centre of a
gauge group seems to be of vital importance for the question of confinement of
static quarks, and the centre of a special unitary group SU(N) happens to be
just the cyclic group ZN : Z(SU(N)) = ZN , consisting of the elements

ZN = {e2πik/N |k = 0 . . . N − 1}, (2.11)

(cf. the previous section).
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At a very early point of time it was realized that there exist certain astound-
ing similarities between a ZN spin model (Heisenberg model) in d dimensions
and a ZN gauge model (Wegner model) in 2d dimensions [Weg71]. For instance,
the d-dimensional Z2 model (Ising model) is known to have a non-trivial phase
structure. There exists a critical temperature Tc below which a phase transition
towards spontaneous magnetization occurs. The magnetization thus serves as a
local order parameter. For the sake of lucidity, we confine ourselves on a short ex-
position of the d = 2 case. On a larger scale regions with different magnetization
are found, the Weiss domains. The boundaries between different regions (Peierls
contours), which are closed lines, effectively play the role of degrees of freedom
of the statistical system under consideration, and due to the symmetries of the
system, they are the only (collective) excitations. The four-dimensional Z2 gauge
model also offers the possibility to define vortex-like structures which turn out to
be the only possible excitations respecting the symmetries. In three dimensions
monopoles instead of vortices appear. Unlike a ZN spin model, however, a gauge
theory does not admit a local order parameter due to the Elitzur theorem. Thus,
to distinguish different phases, a non-local order parameter like the Wilson loop
expectation value W (R, T ) is needed to be pulled up.

For the sake of comparison, let us first recall some properties of the two-
dimensional Ising model (for a more detailed review, see e.g. [Gro88]). The basic
variables, denoted by σ(x) ∈ {±1} are attached to the lattice sites, or vertices.
A link variable u(x, y) is defined by the product of two adjacent vertex variables
σ(x), σ(y):

u(x, y) = σ(x)σ(y). (2.12)

Figure 6: The two-dimensional Ising model. The Peierls contours separate
regions with spin up from regions with spin down.

As depicted in figure 6, the set of link variables {u−|u− = −1} with negative value
form closed paths on the dual lattice. These closed paths are the Peierls contours,
which separate regions with spin up from regions with spin down. They are the
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only excitations in the Ising model, because a configuration {σ} is determined
by its Peierls contours up to a global spin rotation σ 7→ −σ. In other words, the
d = 2 Ising model is in fact a “contour theory”.

The two-point correlation function 〈σ(x)σ(y)〉 is determined by the probabil-
ity distribution of Peierls contours that wind either around x or around y. If pn

is the probability that there are n such contours, then

〈σ(x)σ(y)〉 =
∑

n

(−1)npn. (2.13)

A detailed analytical study [Rue99] yields that the absence of spontaneous mag-
netization and the exponential fall-off of the correlation function obtain in the
high temperature phase where there is a condensation of the domain walls, so
that long Peierls contours are abundant.2 Conversely, at low temperatures, long
Peierls contours are very rare, since the creation of such a contour costs energy
E proportional to its length, and the entropy S, which is also proportional to the
length, cannot make up for this since its contribution to the chemical potential
µ = E − TS of a contour is suppressed by a factor T ∼ β−1. In other words,
short contours winding around x do not have any information about the other
point y in 〈σ(x)σ(y)〉. They can therefore not produce a fall-off as y →∞.

The situation in the Z2 Wegner model in d = 3, 4 dimensions is quite anal-
ogous [Weg71]. As we are dealing with a gauge theory, the basic variables are
now link variables Uµ(x) ∈ {±1}. For an action, the Wilson action is chosen.3

The usual definition of a plaquette variable Pµν (see chapter 1) is a product of
numbers, i.e. Pµν ∈ {±1}, too. As a consequence of the Bianchi identity (see
equation (1.35)), one has for every cube C:

∏
Pµν∈C

Pµν(x) = 1, (2.14)

which means that the set of plaquettes {P−|P− = −1} with negative value form
closed paths (d = 3) or closed surfaces (d = 4), respectively, on the dual lattice.
In four dimensions these surfaces constitute the vortex world-sheets, and these
are again the only (collective) excitations of the model, because a configuration
{Uµ} is determined by its vortices up to a gauge transformation.

2This explanation is also known as the Peierls argument.
3This shows that the Wilson action had already been in use before its employment for

Yang–Mills theory.
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Figure 7: Plaquettes Pµν with value −1 in the Z2 model, labelled with a
dot. They form closed paths on the dual lattice (not shown in the figure).

The analogue of the two-point correlation function in the d = 2 Ising model
here is the Wilson loop expectation value 〈tr W (C)〉. It is determined by the
probability distribution of vortices that wind around the path C. If pn is the
probability that there are n of them,

〈tr W (C)〉 =
∑

n

(−1)npn. (2.15)

Again, a thorough analytical calculation [Rue99] yields that at strong bare cou-
pling (β → 0), vortices condense so that long ones abound, which leads to an area
law for 〈tr W (C)〉. At weak bare coupling (β → ∞), however, long vortices are
very rare, for the same reason as discussed for Peierls contours in the Ising model.
Therefore, the only vortices that contribute to the Wilson loop expectation value
(2.15) are those which wind tightly around C. But these are only able to produce
a perimeter law:

〈tr W (C)〉 −−−→
P→∞

e−µP , (2.16)

where P is the perimeter of the Wilson loop. In other words, they do not have
any information about the size of the area enclosed by C.

Consider now the intersection of a vortex world-sheet Σvortex with a timelike
hyperplane K in four dimensions. By definition, it consists of spacelike plaquettes
with Pij(x) = −1. Therefore, if we take into account that

a2gFij(x) = 1− Pij(x), (2.17)

where the connection between the plaquette variable and the field strength es-
tablished in chapter 1 has been used, we see that there is thus a quantum of
magnetic flux passing through each of these plaquettes. If, without any loss of
generality e.g. i, j = 2, 3, we have B1 = − 2

a2g
. If P23 had been +1, B1 would
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be zero. The intersection of a vortex world sheet with a timelike hyperplane is
therefore identified as a magnetic flux loop.

It is useful to internalize the four-dimensional Z2 Wegner model, which is
of special interest to us: we have an area law for the Wilson loop expectation
value 〈tr W (C)〉 in the strong (bare) coupling regime (β → 0), because of the
condensation of long vortices, which in a three-dimensional time slice are magnetic
flux loops. At weak (bare) coupling (β → ∞), a condensate of small vortices
leads to a perimeter law for 〈tr W (C)〉, as those are the only one contibuting to
〈tr W (C)〉, winding tightly around C. We will encounter this situation again in
the centre-projected Yang–Mills theory at finite temperatures in chapter 3.

In the Mack–Petkova model [MP79, MP80, MP82a], SU(2) Yang–Mills the-
ory on the lattice is investigated from a general point of view, but with a slightly
modified Wilson action, which amounts to restricting the admissible configura-
tions {Uµ(x)}. Based on the ideas originating in [tH78, tH79] on the connection
between vortex condensation and singular gauge transformations changing the
topology of the configuration — which will further be exposed in chapter 3 —
a sufficient condition for an area law behaviour of the Wilson loop expectation
value W (R, T ) is deduced via a re-interpretation of the SU(2) theory as a Z2 the-
ory in the presence of “thick” vortices, which are SU(2)/Z2 degrees of freedom.
Analytical [M81] as well as lattice Monte Carlo calculations [MP82b] have been
performed in order to substantiate the hypothesis of quark confinement due to
the condensation of vortices. The difficulty, however, turned out to be taking the
results obtained for the strong coupling limit (β → 0) over to the continuum limit
β → ∞, so that the question still had not been settled. In the next section, we
will encounter a prescription to extract the vortex content of a given Yang–Mills
configuration which exhibits the desired scaling behaviour.

It is useful to note at this point that the notion of a “thick vortex” in contrast
to a “thin vortex”, which has been considered so far and which by definition
has a thickness of one lattice spacing only, is necessary if a vortex-like structure
shall be carried over to the continuum theory. Indeed, as early as in [Yaf80] the
necessity of the “spreading” of the magnetic flux is stressed as a key feature for
confinement due to an area law behaviour for the Wilson loop expectation value.

2.3 The Emergence of Vortices in Yang–Mills

Theory

It shall now be embarked upon the issue of how the considerations made above
on ZN degrees of freedom and vortices turn into something of vital importance
for lattice SU(N) gauge theory with standard Wilson action, and how vortex
configurations enter into the non-abelian SU(N) gauge field. A particular as-
signment of vortices to a given Yang–Mills lattice configuration is presented, the
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centre projection, originating from an idea by [DFGO97], and further developed
in [DFG+98, FGOa, FGO99, BFGO]. Whereas in the mean-time, first calcu-
lations are being done for an SU(3) gauge group [FGOb], we shall concentrate
further on the SU(2) case. First, because it is simpler from the calculational
point of view, and no principal differences are expected for the more realistic
case of SU(3), as the mechanism presented is independent of the rank of the
group. Second, because in this work, great importance is attached to the issue
of finite-temperature field theory and the question of the realization of a possible
deconfinement phase transition within the framework of a model SU(2) theory.
This will be the subject of the third chapter.

A lattice configuration {Uµ(x)} is characterized by the link variables Uµ(x),
which take values in the gauge group, in our case SU(2). Gauge transformations
Ω(x) act on the link variables as follows:

Uµ(x) 7→ Ω(x + µ)Uµ(x)Ω†(x). (2.18)

We are now interested in a very special gauge transformation, namely that
which maximizes the central components of {Uµ(x)}, or more precisely:

Uµ(x) 7→ UΩ = Ω(x + µ)Uµ(x)Ω†(x) (2.19)

such that ∑
x,µ

tr
[
UΩ

µ (x)
]2 !

= max., (2.20)

which is a functional condition on Ω(x). Another, equivalent condition is to find
a gauge transformation Ω(x) that maximizes the following functional:

Uµ(x) 7→ UΩ = Ω(x + µ)Uµ(x)Ω†(x) (2.21)

such that ∑
x,µ,i

tr
[
UΩ

µ (x)σiU
Ω†

µ(x)σi

]
!
= max., (2.22)

as this functional differs from the previous one only by an unimportant constant.
σi are just the Pauli matrices, which are the SU(2) generators in the fundamental
representation. The gauge thus defined is called the maximal centre gauge MCG.

If the desired transformation Ωc is found, the transformed configuration {U c
µ(x)}

has the identical physical content as the untransformed one. Therefore, no ap-
proximation or simplification has been achieved so far. The far-reaching interven-
tion now enters the game with the total neglect of the non-central components of
the link variables U c

µ(x), or, in other words, the link variables U c
µ(x) are projected

onto the central component Z(U c
µ(x)):

U c
µ(x) 7→ Z(U c

µ(x)) = zµ(x) (2.23)

with zµ(x) ∈ Z2. (2.24)
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As a result of this procedure of gauging and projecting, a given SU(2) lattice
gauge configuration has been mapped onto a Z2 lattice gauge configuration, and
this mapping is called the centre projection P :

{Uµ(x)} P7→ {zµ(x)}, (2.25)

The resulting Z2 gauge theory is expected to be totally different, however, from
the Z2 Wegner model described in section 2.2. Whereas in the Wegner model, the
Wilson action defined in terms of Z2 variables has been used, what has been done
here is starting from a full Yang–Mills configuration and singling out degrees of
freedom that deem important to us, by numerical construction. After that, we
deliberately neglect the other degrees when calculating observables.

Now having a Z2 configuration at hand, we know already that the only collec-
tive degrees of freedom are thin vortices, which by definition have the thickness of
one lattice spacing. Reflecting the fact that these vortex degrees of freedom arise
from the centre projection P of a given Yang–Mills configuration, the vortices
are also called P-vortices. In the next section, some properties of the P-vortices
will be illuminated, the most important one being the scaling behaviour of the
planar vortex density.

Some words are in order here to mention some methodological details. Firstly,
we comment upon the gauge-fixing algorithm used. We have introduced the max-
imal centre gauge as condition (2.20) or (2.22) for the Yang–Mills configuration.
In numerical lattice calculations of the Monte Carlo type, these functional condi-
tions, which apply to the gauge configuration as a whole, are impossible to meet
exactly. Therefore, as a numerical approximation, iterative algorithms are used
to fulfil conditions (2.20) or (2.22) in localized regions on the lattice by turns, one
at a time. In this work, the gauge fixing condition is solved exactly for the links
adjacent to a single lattice point. Subsequently, every lattice point is swept over
and iteratively, the whole lattice configuration is converging towards the global
solution.

The second point concerns the difference between the direct centre gauge and
the indirect centre gauge [DFG+98]. In this work, what is meant by maximal cen-
tre gauge is always direct centre gauge, so we need not explain it. By performing
the indirect centre gauge, one first fixes another gauge in an intermediate step,
namely the maximally abelian gauge MAG, defined by the functional condition
on the link variables

∑
x,µ

tr
[
UΩ

µ (x)σ3U
Ω†

µ(x)σ3

]
!
= max. (2.26)

In a subsequent step, the gauge configuration is replaced by the so-called abelian
projected configuration {UA

µ (x)} by replacing each link variable Uµ(x) with an
abelian link variable UA

µ (x) defined by setting all off-diagonal elements to zero.
Afterwards, this abelian theory undergoes the same gauge-fixing and projection
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procedure towards the centre-projected theory as before. In other words, in order
to obtain a Z2 configuration, a two-fold projection is applied:

{Uµ(x)} PA7→ {UA
µ (x)} P7→ {zµ(x)}, (2.27)

where PA denotes the abelian projection. The importance of the abelian projec-
tion has its origin in the hypothesis of the dual Meissner effect, an idea proposed
first in the mid-1970s and at the beginning of the 1980s in [Man76, tH81, tH82].
The idea thereby roughly is that confinement is due to the condensation of Dirac
magnetic monopoles which emerge as gauge artifacts in various kinds of abelian
gauges, thus inducing the confinement of colour-electric charges, similar to the
behaviour of a superconductor of the second kind in the so-called Shubnikov
phase, where the magnetic flux of an external magnetic field is either repelled
from the superconducting medium, or, two hypothetical magnetic monopoles are
confined to each other and bound by a linear potential. We will briefly comment
on magnetic monopoles within the vortex picture in chapter 4.

2.4 Perturbative Scaling and the Continuum

Limit

In the last section we have arrived at a mapping which relates a given Yang–Mills
configuration {Uµ(x)} to a Z2-vortex configuration {zµ(x)}, the centre projection
P . One may well wonder whether this very truncated configuration encloses the
same physical information (which, as one assumes rightly in advance, it does
not) or whether at least this reduction of degrees of freedom is not so dramatic
in effect as one might estimate from the typical values of the link variables before
and after the projection P (see below).

In order to get a feeling for in how far the resulting Z2-vortex configuration
is useful for calculating physical quantities, the centre-projected string tension
κc is addressed, which is calculated by means of the Creutz ratios introduced in
the last chapter. To be specific, the following procedure is executed: a set of
equilibrated Yang–Mills lattice configurations {Uµ(x)} is centre-projected. The
centre-projected configurations {zµ(x)} are then taken for the usual algorithms
for measuring the Creutz ratios and the string tension. This inspection has first
been done by [DFGO97] and their results shall just be reproduced at this point.
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Figure 8a/b: Creutz ratios χ(R,R) calculated from the full Yang–Mills
configuration vs. centre-projected Creutz ratios. The elimination of the
contributions of the perturbative gluon exchange can explicitly been seen.

Figures 8a and 8b are a plot of Creutz ratios χ vs. bare inverse coupling β,
extracted from Wilson loops formed by the full Yang–Mills configuration and the
centre-projected Z2 configuration, respectively. The lattice size was chosen to be
104. In a Creutz ratio plot of a Yang–Mills lattice measurement like figure 8a
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the deviation of the curves from the scaling line is due to the perturbative gluon
exchange in the weak coupling regime β →∞ (see e.g. [Cre83]). What is rather
striking is that χ(R, R) for R > 2 in figure 8b practically lie on top of each other,
and, moreover, on the same scaling line that usually is just the envelope of the
Creutz ratios as in figure 8a! The centre projection seems to virtually “sweep
away” the short-distance Coulomb potential, and the remaining linear potential
is revealed in the short-distance region β →∞.

In [DFGO97] another interesting observation was made: let the Creutz ratios
χ(R,R) be calculated in the usual way using the full, unprojected SU(2) gauge
configuration {Uµ(x)}. But for the calculation of χ(R,R), drop all those Wilson
loops, which are not pierced by a Z2-vortex in the corresponding centre-projected
configuration {zµ(x)}. This selection process turns out to be so dramatic, that
the string tension κ extracted from the Creutz ratios drops to zero! The hypoth-
esis is that the Yang–Mills configuration therefore seems to contain vortex-like
structures already in the full, unprojected theory. By the centre-projection P
these thick vortices are squeezed into the thin P-vortices of the resulting Z2-
configuration. Of vital importance here is the scaling behaviour of the planar
vortex density shown below, as this is a necessary condition to rule out the pos-
sibility that these thin vortices are nothing else than lattice artifacts, bare of
any physical relevance. One has to bear in mind, however, that thin vortices
alone do not survive the continuum limit, themselves being objects of infinitesi-
mal thickness. The situation reminds somewhat of the notions depicted already
in [MP79] and [Yaf80], where the necessity of the “spreading” of magnetic flux
is regarded in order to be able to take the theory over to the continuum limit
β →∞. We will come back to that point below. The relevance of the Z2 degrees
of freedom in SU(2) lattice Yang–Mills theory, together with their properties as
objects of physical relevance discussed below, is called centre dominance or vortex
dominance, as vortices are the only degrees of freedom in a Z2 theory.

Now if it is the hypothetical thick vortices that ought to constitute the un-
derlying physical quantity to the P-vortices, which only arise when the centre
projection makes the thick vortices shrivel up to infinitesimally thin chords, there
might remain some physicalness in the vortex configuration throughout the whole
process of centre projection. To this point, the planar vortex density, defined as
the number of P-vortices piercing a unit area within some two-dimensional hyper-
plane has been investigated [LRT98, LTER99]. To be specific, we have considered
the planar vortex density at different values of the bare inverse coupling constant
β.

In order to get a more explicit picture of the vortex structure of the centre-
projected theory, we again visualize the vortex distribution in a three-dimensional
timeslice, comparing two different “resolutions” of the lattice due to a different
choice of β, which leads to a different physical size of the lattice constant a (see
chapter 1).
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Figure 9a/b: Visualization of the vortex structure of a centre-projected
Yang–Mills configuration {zµ(x)} at two different values of the bare inverse
coupling β. Upper: β = 2.5. Lower: β = 3.0.

In figures 9a and 9b two generic Z2 configurations for β = 2.5 and β = 3.0 are
shown for a 103 cube of a 104 lattice. The initial observation is that the vortex
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conglomeration is more dilute in the case of β = 3.0 than in the case of β = 2.5.
This behaviour is anticipated if it is assumed that an underlying structure of
thick vortices as physical objects in the full, unprojected theory exists. This,
however, is just a subjective estimate, and does not yet exclude the possibility
that the vortex structure emerging after centre projection is just a lattice artifact.
Therefore we have measured the planar vortex density ρ, defined as

ρa2 =
N̄

L2
, (2.28)

where N̄ is the mean number of vortices piercing a two-dimensional (L × L)-
hyperplane.

The following data have been obtained by using lattices of size 124 and 164

[LTER99]. For these lattice sizes, the finite-size dependence of dimensionless
quantities is negligible compared with the statistical errors. However, as is well-
known, considerable finite-size effects persist in the extraction of the mass scale,
as. e.g. encoded in the lattice spacing a as a function of β [FHK93]. Taking as
a renormalization scale the string tension κc = (440 MeV)2 extracted from the
Creutz ratios of the centre-projected configuration, we extract κca

2(β = 2.3) =
0.12(3). In a large-scale analysis [FHK93] an interpolation of the numerical data
with the help of one-loop scaling to the renormalization point β = 2.3 reveals
κca

2 = 0.136 for a 104 lattice, κca
2 = 0.121 for a 164 lattice, and κca

2 = 0.107 for
a 324 lattice. Compatible with this, we use κca

2(β = 2.3) = 0.12 as a reference
scale for assigning physical units to measured quantities. When finite-size effects
are mentioned below, this always refers to the aforementioned difficulty in defining
the mass scale at a given β.

In order to extract vortex properties, we fix the SU(2) configurations to the
maximal centre gauge MCG as decribed in the previous section. To eliminate
the influence of Gribov copies as explained below, random gauge transformations
after the gauge-fixing procedure are performed, this procedure being repeated
several times. It turns out that three of these runs are sufficient at zero tem-
perature. In the next chapter we will see that close to the deconfinement phase
transition, an increasing influence of the Gribov copies makes up to six iterations
necessary.

The scale dependence of the vortex density is shown in figure 10. We find
a perfect scaling behaviour of the planar vortex density ρ in the range β ∈
[2.25, 2.55] for lattice sizes 124, 164. We finally extract ρ = 3.6 ± 0.2 fm−2. The
relatively large error in ρ stems from the inherent uncertainty in the determination
of the scale due to the aforementioned finite-size effects.
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Figure 10: Scaling of the planar density ρ of vortex intersection points
with a given space-time plane.

Note in corrigendum: The value above, which is larger than the one quoted
in [LRT98], is in agreement with the one in [DFG+98] within the error bars. The
faulty estimate, at first given for ρ given in [LRT98], was due to the fact that
the Coulomb part of the full zero temperature static quark potential had been
underestimated, which subsequently led to an overestimate of the reference scale.
As a consequence, mass scales given in [LRT98], and also in [ELRT98], should
be rescaled upwards by a factor of 1.35. Note also that the corrected value
of κc/ρ = 1.4 ± 0.1 — as opposed to the old value of κc/ρ = 2.5 — implies
that a model of randomly distributed intersection points of vortices with a two-
dimensional hyperplane (random vortex model, see next section) overestimates,
rather than underestimates, the string tension as a function of the planar vortex
density ρ, as such a model leads to a value of κc/ρ = 2 as explained in the next
section. However, this does not affect the motivation for the lattice measurements
in [ELRT98] nor their validity, up to the aforementioned necessary rescaling of
the mass scale. There, correlations of an attractive type were observed between
vortex intersection points as presented in the next section, and it seems plausible
that such correlations curtail the randomness of the distribution of these points,
thus reducing the string tension κc. Indeed, in section 3.4, it will become clear
that it is a pairing of the vortex intersection points which ultimately leads to
deconfinement.

Note on the effect of Gribov copies on the scaling behaviour: As
has been explained in 1.2.1, a gauge-fixing functional F [Aµ] — under certain
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boundary conditions — never has a unique solution, but admits an infinite set of
solutions called Gribov copies. For lattice gauge theory, where the basic variables
are the link variabels Uµ(x), which in a way are the integrated quantities to the
gauge field Aµ, this means that a gauge-fixing functional condition like (2.20) or
(2.22) need not be valid globally in function space, but can admit local solutions
for the gauge configuration {UΩ

µ (x)}. As shown in [KT99], if the maximal centre
gauge is fixed after a previous gauge-fixing to Landau gauge, centre dominance is
lost. The explanation for this apparent inconsistency is that the previous fixing to
Landau gauge drives the gauge configuration too far away from the configuration
corresponding to the absolute maximum of the gauge-fixing functional in (2.20)
or (2.22). A subsequent gauge-fixing by means of some kind of local gauge-
fixing algorithm like the one used in this work then inevitably leads to a gauge
configuration constituting in general only a local maximum of the gauge-fixing
functional in (2.20) or (2.22). To eliminate the effect of Gribov copies as much as
possible, we perform a certain number of random gauge transformation after each
process of fixing the maximal centre gauge, and then fix the gauge again. This
procedure is repeated several times, and eventually, out of the set of configurations
all constituting a local maximum to (2.20) or (2.22), the one with the largest
value for the functional is chosen as the “valid” configuration, whereby the effect
of Gribov copies is minimized. It must be stressed, however, that the existence of
Gribov copies does not change anything about the validity of the whole concept
of centre projection, as strictly the functional conditions (2.20,2.22) are naturally
solved by the absolute maximum alone.

The issue of Gribov copies in lattice gauge theories has first been investigated
in [Sha84] and their influence on lattice Monte Carlo measurements has first been
investigated for SU(3) Yang–Mills theory in Landau gauge in [MPR91].

2.5 Random Vortex Model and Correlations

The results found so far indicate that much of the physical information of a lattice
Yang–Mills configuration is encoded in a vortex-like structure which emerges
when the configuration is submitted to the centre projection. The resulting vortex
theory is not (yet) exactly known in the sense that the functional form of an
effective action has been found. Neither is known whether these thick vortices,
should they really exist, are the only structures in the Yang–Mills ground state,
although they might dominate. But the effects of such an effective action can be
measured by considering correlations in the positions of vortices, which eventually
yield information about the interaction of the vortices. This, in turn, has a vital
impact on the confining properties of the vortex vacuum, in view of equation
(2.15). For this reason the two-point correlation function c(r) has been measured
which will be defined in the following.

Before that, a very simple toy model shall be considered which will be found to
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already contain very important properties of the centre vortex theory as measured
on the lattice by means of Monte Carlo calculations. As expressed by (2.15), the
Wilson loop expectation value is determined by pn, the probability that the area
A enclosed by the Wilson loop W (C = ∂A) is pierced by vortices n times, which
we call the intersection probability. For the random vortex model it shall be
assumed that the vortices do not interact. Let us consider a four-dimensional
L4-lattice. The probability p that a vortex piercing through a two-dimensional
(L × L)-hyperplane also pierces A is assumed to be p = A/L2. If N vortices
pierce through L2, then the probability pn that precisely n ≤ N vortices pierce
A is

pn =

(
N

n

)
pn(1− p)N−n. (2.29)

Hence, the Wilson loop expectation value can explicitly be calculated to be

〈tr W (C)〉rand =
∞∑

n=0

(−1)npn

= (1− 2p)N . (2.30)

But, as presented in the previous section, our lattice calculations revealed that
the planar vortex density ρa2 = N̄/L2 is a physical quantity. We therefore obtain
in the continuum limit

〈tr W (C)〉rand = lim
N→∞

(
1− 2ρA

N

)N

= exp(−2ρA). (2.31)

Equation (2.31) yields an area law, from which the string tension

κrand = 2ρ ≈ (535 MeV)2, (2.32)

based on a value for the planar vortex density ρ of 3.6/fm2 (see the previous
section). The value turns out to be about 48% too high, an indication that
the vortices must not be considered as free, but correlations between them are
obviously significant.

Consider a two-dimensional (L× L)-hyperplane, which is pierced by vortices
at the intersection points, which are, due to their definition, neither part of the
lattice, nor part of the dual lattice. Rather, it is the plaquette pierced by the
vortex which is distinguished. Nevertheless, the meaning of the intersection points
is clear.

We introduce a quantity sj, with j labelling all the different plaquettes in
the lattice: sj is 1, if plaquette j is pierced by the vortex, and 0 otherwise. The
lattice average 〈s〉 is independent of j due to homogeneity and isotropy, at least
in the continuum limit. It is nothing else but the dimensionless part of the planar
vortex density:

〈s〉 = ρa2. (2.33)
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Consider now the correlation function4

cij =
〈sisj〉
〈s〉2 , (2.34)

where in the following, the plaquettes i and j lie in the same hyperplane with
one of the two hyperplane coordinates equal [ELRT98]. Neglecting the obliquely
situated pairs of intersection points does not mean a breach of isotropy, only a
loss of statistical data. Let the two points lie l lattice spacings apart, so that
their distance is r = la. 〈cij〉 will only depend on r and henceforth be denoted as
c(r). It is the probability that two intersection points are found to be separated
by the distance r, which is why c(r) is also called the radial distribution function.
From another point of view, it can be interpreted as the conditional probability
that an intersection point is found at a distance r, provided that at r = 0 there
already exists one such point. A value of c(r) ≡ 1 would imply zero correlation,
which is the case for the random vortex model. Any value different from that
implies the higher correlations, the higher the deviation from 1 is. The distance
scales over which the deviations persist give a rough estimate of the range of the
vortex interaction.

Since we assume the planar vortex density to be a physical quantity, the radial
distribution function c(r) might also behave like one. Therefore, in order to verify
the scaling behaviour of c(r), it is necessary to examine the correlation function
at different bare couplings β, where it is crucial to take into account the running
of the lattice spacing a(β) entering the physical distance r = la.

In order to estimate the statistical errors as well as the influence of systematic
errors, three methods have been used to extract a(β) in physical units:

• Firstly, we have measured the dimensionless string tension estimator κca
2(β)

for values of β within the scaling window 2 < β < 2.8. Using κc =
(440 MeV)2, this procedure directly yields a(β) in physical units.

• Secondly, we have assumed the validity of the perturbative scaling law,
equation (1.84) from the last chapter, i.e. we have assumed “ideal scaling”
and have extracted a(β) from that.

• Thirdly, we have extracted a(β) from measuring the dimensionless planar
vortex density estimator ρa2(β) within the scaling window, and using ρ =
3.6/fm2 as physical reference scale.

Within the statistical error bars, all three methods of extrapolating to the
continuum limit should yield the same results. The figures 11a and 11b show our
numerical results for the radial distribution function c(r).

4cij is related to the correlation coefficient r in statistics by cij = r + 1.
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Figure 11a/b: The renormalized radial distribution function c(r) Left:
Renormalization by “ideal scaling”. Right: All three methods of renormal-
ization contrasted with each other.

We have used 104 and 124 lattices in order to estimate the finite size effects.
Calculations with both lattice sizes yield the same results within the statistical
error bars. In figure 11a, the renormalization has been done assuming “ideal
scaling”. The crucial observation is that the result indeed indicates that the
radial distribution function c(r), just like the planar vortex density ρ, exhibits
the right scaling behaviour and hence behaves like a physical quantity.

In figure 11b, all three methods of renormalization are contrasted with each
other for a 104 lattice.

The shape of the radial distribution function c(r) plotted in figures 11a,b
reveals that an attractive interaction operates between the vortices. Note that
the range of this interaction constitutes a rather vaguely defined notion. One way
of defining it is to look for the first cross-over of the radial distribution function
below unity.5 For the present data, the cross-over is at rcr ≈ 0.6 fm, where it
must be noted that in this region the statistical errors are already of the same
magnitude as the deviation from unity. The value rcr ≈ 0.6 fm must be regarded
as an upper limit on the interaction range. Another possible definition would
arise from the fit of an exponential decay law to the data, whence one could
extract a typical screening length. In this case this would lead to a lower limit
to the interaction range of about rcr ≈ 0.2 fm.

It must be borne in mind that the planar correlations measured here still
represent a rather unspecific yardstick for the structure of the vortex vacuum.
They subsume a variety of more detailed effects; not only are they sensitive to
the actual interaction between neighbouring vortices, but also e.g. to the shape
distributions of the individual vortices in the directions orthogonal to the plane

5Note that such a cross-over has to exist, since an appropriate integral over c(r) must
reproduce the total number of intersection points.
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under consideration. Further investigations of the effects due to curvature terms
are shortly commented upon in the chapter 4.
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Chapter 3

Centre Dominance at Finite
Temperature

Field theory at finite temperatures is reviewed. The topological con-
sequences of the formulation of a gauge theory in a finite volume
is explained. The invariance of the gauge field under gauge trans-
formations taking their value in the centre of the gauge group leads
to the possibility of twisted boundary conditions on the gauge fields.
The most general regular gauge transformation compliant with these
boundary conditions can be translated to a composition of a normal
gauge transformation and a centre-valued flip of some set of link vari-
ables in lattice gauge theory. The respective invariance properties of
a certain non-local operator, the Polyakov loop operator, allow to de-
fine an order parameter for a symmetric state and a state with spon-
taneously broken centre symmetry, denoting the confinement phase
and the deconfinement phase, respectively. It is shown that the vortex
dominance continues to hold also above the deconfinement phase tran-
sition, which is induced by the transition between a percolating and a
non-percolating phase of the vortex line clusters.

In chapter 2 convincing results were presented which substantiate the picture of a
Yang–Mills vacuum containing vortex-like structures, which by centre projection
— effectively a reduction of degrees of freedom — come to light.

Much evidence has been gathered that, at least with respect to the confine-
ment properties of the Yang–Mills ground state, the centre degrees of freedom are
of vital importance1, as the full string tension is produced with the Z2 variables
alone.

An interesting question now is, and will be the second main point in this work,
in how far the existence of a deconfinement phase above a critical temperature
Tc can be explained within the framework of the centre vortex picture.

1One may indeed punningly speak of central importance in a literal sense!
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Therefore, after giving a brief survey on the formalism of finite-temperature
field theory and its realization in lattice gauge theory, something is said about
the very likely existence of a deconfinement phase in QCD and a quark–gluon
plasma, before in section 3.4 the Monte Carlo results of our lattice measurements
will be presented.

3.1 Finite Temperature in Field Theory

Let us recall field theory from the point of view of statistical physics. The fol-
lowing presentation is essentially in the line of [BL93], but can be taken from
any standard text book on quantum field theory at finite temperature. There the
fundamental quantity is the partition function

Z = Tr e−βĤ , (3.1)

where Ĥ is the Hamilton operator of the system, and β = 1
kT

is essentially the
inverse of the temperature T , apart from the unimportant Boltzmann constant
k, which is set to 1 in most cases.

In Hamiltonian field theory, the basic quantity is the field operator φ̂H(~x, t)
in the Heisenberg picture. Its eigenstates are defined by

φ̂H(~x, t)|φ(~x, t)〉 = φ(~x)|φ(~x, t)〉. (3.2)

The relation to the Schrödinger picture field operators φ̂S(~x) := φ̂H(~x, t = 0) is
given by

φ̂S(~x)|φ(~x, t = 0)〉 := φ(~x)|φ(~x)〉, (3.3)

so at t = 0 the eigenvector systems of φ̂S and φ̂H coincide. It is the eigenstates of
the Schrödinger picture field operator which have to be taken for evaluating the
trace, as these constitute a complete orthonormal frame for the Hilbert space of
the system at any time:

Z =

∫

φ(~x)

〈φ(~x), t = 0|e−βĤS |φ(~x), t = 0〉, (3.4)

where the integral symbolizes the fact that the the eigenvalues of the field opera-
tors form a continuum, not a discrete set. Let us now remember that the propaga-
tor, i.e. the matrix element of the time evolution operator U(t′, t′′) = T e−iĤS(t′−t′′)

in position space (T being the time-ordering operator), is just

〈φ′′(~x), t′′|φ′(~x), t′〉 = 〈φ′′(~x), t = 0|e−iĤ(t′′−t′)|φ′(~x), t = 0〉 (3.5)

∼
∫
Dφ

∫
Dπ exp

(
i

∫ t′′

t′
dt

∫
d3x

(
π

∂φ

∂t
−H(π, φ)

))
,

(3.6)
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where π(~x, t) is the canonically conjugate field function of φ(~x, t), and the path
integral is taken over all functions π and over functions φ which satisfy the bound-
ary conditions

φ(~x, t = t′′) = φ′′(~x) (3.7)

φ(~x, t = t′) = φ′(~x). (3.8)

If the two expressions (3.4) and (3.6) are compared with each other, the func-
tional integral expression for the partition function Z can easily be established:

Z ∼
∫

φ(~x)

∫
Dφ

∫
Dπ exp

(∫ β

0

dτ

∫
d3x

(
iπ

∂φ

∂t
−H(π, φ)

))
, (3.9)

where φ and π are now functions of ~x and τ = it, and φ satisfies the boundary
conditions

φ(~x, τ = β) = φ(~x, τ = 0) (3.10)

= φ(~x), (3.11)

i.e. any eigenfunction of φ̂(~x).
Therefore, we can rewrite (3.9) as

Z ∼
∫
Dφ

∫
Dπ exp

(∫ β

0

dτ

∫
d3x

(
iπ

∂φ

∂t
−H(π, φ)

))
, (3.12)

where the integration is done over all periodic functions with φ(~x, τ = β) =
φ(~x, τ = 0).

The transition from the Hamiltonian formulation to the Lagrangian formula-
tion can now be carried out in the case that H(π, φ) admits a separation of the
variables π and φ. More precisely, if H(π, φ) is of the form

H(π, φ) =
π2

2
+ V (φ), (3.13)

the π integral is Gaussian and therefore trivial.2 Then

Z = Ñ(β)

∫
Dφ

∫
exp

(
−

∫ β

0

dτ

∫
d3x

(L(φ, ∂̄µφ)
))

, (3.14)

with ∂̄µ = (i
∂

∂τ
, ~∇). (3.15)

Ñ(β) contains both the constant stemming from the Gaussian π-integral, and
the normalization factor, which up to equation (3.12) had been dropped.

2In the case that H(π, φ) is separable, but not of the specific type (3.13), the π integration
can also be separated away and, at least in priciple, been done, but one does not end up with
the Lagrangian formalism.
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To sum up, what has been learnt is that the partition function of a quantum
field theory at a finite temperature T ∼ 1

β
is expressed by a functional integral

over functions in a four-dimensional Euclidean space, with one dimension being
of finite extent (β) and compact, due to the periodic boundary conditions (3.10).
Space-time is therefore topologically equivalent to R3 × S1.

This situation is translated to gauge theory, which we now want to study
at finite temperature. For the sake of generality, and because of the practical
realization in actual lattices taken for Monte Carlo calculations, we consider the
case with all four dimensions compactified, i.e. space-time is homeomorphic to a
four-torus T 4. Apart from finite-size effects in the scaling behaviour of physical
quantities which we will not be interested in at the moment, the compactification
of the base manifold, if we stick to the geometrical language, has important
consequences for the gauge freedom of the Yang–Mills system. In the following,
some short consideration about the topology of gauge fields on the torus ought
to be in order.

3.2 The Topology of Gauge Fields on the Torus

Periodicity of space-time does not necessarily imply periodicity of the fields de-
fined on it if the fields are not any measurable quantities. This is well-known for
the case of a fermion field, where anti-periodic boundary conditions are indeed
necessary to be compatible, eventually, with the spin-statistics theorem. In the
case of a gauge theory, there is even an entire set of boundary conditions available,
all compliant to the physical requirement that measurable quantities should be
periodic in space-time. This was in thoroughness investigated by [tH78, tH79],
and a short summary of his results shall be given. For a more comprehensive
account of the situation of gauge fields defined on compact manifolds, especially
tori, see [GA].

Let us consider a four-dimensional torus T 4, a two-dimensional hyperplane of
which is sketched in figure 12. Firstly, we are considering continuum gauge theory,
so our basic field variables are the local gauge fields A(x) = Aa(x)τa, which in the
language of geometry, define a section in an associated vector bundle over T 4, the
vector space being the Lie algebra of the gauge group, and the structure group
SU(N) acting on the A(x) from the left, but in the affine-adjoint representation,
which is isomorphic to the adjoint representation. The index µ is dropped as the
space-time vector properties of A(x) are irrelevant to this discussion:

A(x) 7→ [Ω̃(x)]A(x) (3.16)

:= Ω(x)A(x)Ω†(x) + iΩ(x)∂Ω†(x) (3.17)

Aa(x) 7→ [Ω(x)]abAb(x)− [Ω(x)]abθb(x) (3.18)

with [Ω(x)]ab = tr
(
Ω†(x)τaΩ(x)τ b

)
(3.19)

= exp
(
iθc(x)fabc

)
, (3.20)



3.2. THE TOPOLOGY OF GAUGE FIELDS ON THE TORUS 55

where Ω(x) denotes the gauge transformation as SU(N) element in the fun-

damental representation, and [Ω(x)] in the adjoint representation, while [Ω̃(x)]
symbolizes the affine-adjoint transformation operator.

µ

ν

A(x)

Figure 12: A two-dimensional slice of the four-dimensional torus. The
ticks symbolize the identification of the respective opposite sides, resulting
in the toroidal topology T 2 of the slice.

A(x) is a differentiable vector field in every open subset U or patch of T 4,
but in general not on the entire manifold. In overlapping regions (cf. chapter 1)
U1∩U2, A1 and A2 must be related by an element of the structure group SU(N)
which can always be reduced to PSU(N) = SU(N)/ZN , because A transforms
according to the adjoint representation. Let us regard the two-dimensional hy-
perplane of figure 12 and let N(µ) (N(ν)) be the extent in the µ (ν) direction.
Then, in particular,

A(x + N(µ)) =: A(x + µ) = [Ω̃(µ)]A(x). (3.21)

The cocycle condition of chapter 1, equation (1.3), now implies that, in particular,

A(x + µ + ν) = [ ˜Ω(ν)(x + µ)][Ω̃(µ)(x)]A(x)

= [ ˜Ω(µ)(x + ν)][Ω̃(ν)(x)]A(x), (3.22)

=⇒ [Ω̃(ν)][Ω̃(µ)] = [Ω̃(µ)][Ω̃(ν)], (3.23)

as the first equality holds for every connection A. But [Ω̃(µ)], [Ω̃(ν)] are elements
of the affine-adjoint representation, which is isomorphic to SU(N)/ZN , so that
for the elements of the gauge group SU(N) the following, more general, relation
holds:

Ω(ν)Ω(µ) = Ω(µ)Ω(ν)zµν , (3.24)

zµν belonging to the centre of the gauge group: zµν ∈ Z(SU(N)) = ZN , and if
zµν 6= 1 the gauge configuration is said to have twisted boundary conditions.
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Note an important difference to the situation sketched in chapter 1, where it
was explained that in a principal fibre bundle, the connection one-form is always
differentiable in the entire bundle, whereas here there are overlap regions U1, U2,
where the gauge fields A1,A2 need only be connected by a gauge transformation.
Here he gauge fields play the role of a vector field, transforming according to
the adjoint representation of the gauge group. It is an associated bundle to the
adjoint bundle, the principal bundle with a structure group SU(N)/ZN . If zµν is
not zero, there is an obstruction to lift an SU(N)/ZN bundle to an SU(N) bundle
over T 4.3 This obstruction is related to the second homology group of the torus
with coefficients in Z(SU(N)) = ZN , which is not trivial. In the SU(2) case we
have the second Čech cohomology group H2(T 4;Z2) and its special elements, the
second Stiefel–Whitney classes, which are both non-trivial with twisted boundary
conditions. In other words, the existence of a more general set of boundary
conditions is due to the invariance of the gauge fields to the group centre ZN .
This leads to a generalized set of regular gauge transformations, as we will see
below. A general introduction to obstruction theory and the problem of lifting
of maps can be found in [Spa66]. For a deeper treatise of the special problem of
gauge theories on compact manifolds see e.g. [Sed82].

In the fundamental representation, zµν is of the form

zµν = e
2πi
N

nµν , (3.25)

nµν being called the twist tensor. It is antisymmetric and thus has six integer
entries which are defined modulo N . They are usually denoted by

mi =
1

2
εijknjk (3.26)

ki = n0i, (3.27)

and have a certain similarity to the electric and the magnetic field embedded
inside the field strength tensor, and are not without reason called the total elec-
tric and total magnetic flux vectors in T 4, respectively. The reason will become

clear below. It is clear that nµν defines N
D(D−1)

2 = N6 (for D = 4 dimensions)
topological classes of gauge configurations. Note that these classes disappear if
a field in the fundamental representation of SU(N) is added to the system, as
these fields would make unacceptable jumps at the boundary.

Now let Ω(x) be a gauge transformation acting on the system, Ω(x) ∈ {T 4 →
SU(N)}. The most general gauge transformation in compliance with the in-
variance of physical states, i.e. one which leaves the twist tensor invariant, is a

3Remember: given a map f : X1 → Y and a map g : X2 → Y , does there exist a map
h : X2 → X1, such that f ≡ gh? The map h is then called a lift of f .
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ZN -periodic transformation for which the following relation must hold:

A(x) → [Ω̃(x)]A(x) (3.28)

with [ ˜Ω(x + µ)] = [Ω̃(x)] (3.29)

but Ω(x + µ) = Ω(x)zµ, (3.30)

with zµ := e2πikµ/N ∈ ZN . In this case, Ω(x) is called a regular gauge transforma-
tion.

One may also define a particular kind of singular gauge transformations [tH78,
tH79], which are well-defined everywhere except on a (D− 2)-dimensional closed
submanifold Σ. In the D = 4 case, they produce an integer unit of magnetic or
electric flux, dependent on the type of three-dimensional slice one considers. We
denote a gauge transformation singular along a closed hypersurface Σ by ΩΣ(x).
In a three-dimensional slice K, this hypersurface defines a curve C ′ (see figure
13). The restriction of ΩΣ(x) on K is called the disorder operator or ’t Hooft loop
and denoted by Ω(C ′).

K

C’

Figure 13: C′ is the intersection of the singularity hypersurface Σ with
the three-dimensional slice K. The restriction of the singular gauge trans-
formation ΩΣ(x) on K is the ’t Hooft disorder operator Ω(C′) and can be
understood as the creation operator of a magnetic flux loop if K is spatial.

One may verify that for consistency of the theory, the following commutation
relations between the Wilson loop operator W and the ’t Hooft loop operator Ω
must hold [tH78]:

[W (C),W (C ′)] = 0 (3.31)

[Ω(C), Ω(C ′)] = 0 (3.32)

W (C)Ω(C ′) = Ω(C ′)W (C)z, (3.33)
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where z is an element of the centre Z(SU(N)) = ZN of the gauge group SU(N),
and either C or C ′ is null-homotopic. The Wilson loop and the ’t Hooft loop are
dual to each other. In a three-dimensional time slice, W (C) creates an integer
unit of electric flux4 along C, and Ω(C ′) creates an integer unit of magnetic flux
along C ′, the integer value itself being dependent on z. If the ’t Hooft loop is null-
homotopic, the twisted boundary conditions are not changed. But if the ’t Hooft
loop belongs to a non-trivial homotopy class, nµν is changed by integer units
in some entry. Thus, a singular gauge transformation may change the twisted
boundary conditions of the configuration. It should be clear by now why the
integer-valued quantities mi, ki have been called total magnetic and electric flux,
respectively.

Now, we will turn again to an SU(N) gauge theory defined on a lattice.
Here, the basic variables — the link variables Uµ(x) — are bilocal operators
and elements of the gauge group itself. Elements of the centre Z(SU(N)) of
the gauge group SU(N) act non-trivially on them. In the following we will now
concentrate on the effect of a ZN -periodic gauge transformation on the lattice.
The effect of a ZN -periodic gauge transformation is very simple to visualize. For
simplicity, consider a two-dimensional hyperplane homeomorphic to T 2 sliced
out of T 4. Looking at figure 14 it is easy to realize that a gauge transformation
with Ω(x1, x2 = a2) = zΩ(x1, x2 = 0) has the same effect as a periodic gauge
transformation Ω0(x) plus a flip of all link variables U2(x1, x2 = a2 − 1) by the
same centre element z:

U2(x1, x2 = a2 − 1) 7→ zU2(x1, x2 = a2 − 1). (3.34)

µ

ν

z z z z z

Figure 14: A gauge transformation which is ZN -periodic in the ν-direction
can be decomposed as an periodic gauge transformation, accompanied by
a zν-flip of every link variables at a fixed xν .

4cf. the interpretation of the Wilson loop as a quark-antiquark world-line in chapter 1



3.2. THE TOPOLOGY OF GAUGE FIELDS ON THE TORUS 59

But this flip leaves the plaquette variables Pµν(x) invariant, so this transformation
is a symmetry transformation, as the action (1.28) is unchanged.5 Therefore, also
in lattice gauge theory, centre symmetry is a symmetry of the action.

However, as is well-known, a symmetry of the action need not be a symmetry
of the ground state. The case of a ferromagnetic system below the Curie temper-
ature is a well-known example. Out of an ensemble of possible states all related
to each other by a symmetry transformation, only one is chosen to be realized by
nature. In our case the symmetry at hand is not even a continuous one, let alone
a local one, but a global discrete symmetry, which can be spontaneously broken.
In order to determine whether the symmetric or the spontaneously broken phase
is realized, an order parameter is needed. This order parameter must be a non-
local one, due to the same reasons given in the first chapter for the choice of the
Wilson loop expectation value 〈tr W (C)〉, but that alone is not enough. Every
plaquette and therefore every Wilson loop W (C) that is null-homotopic is invari-
ant under centre transformations and therefore not a means for distinguishing
the two possible phases. The expectation value 〈tr L〉 of the Polyakov loop L(~x),
however, which is defined by

L(~x) = P
N4−1∏
x4=0

U4(~x, x4), (3.35)

is suited. The Polyakov loop defines a path C winding once around the torus in
the time direction, and under a ZN -periodic gauge transformation it transforms
as

L(~x) 7→ z4L(~x), (3.36)

z4 being defined as in (3.30), where the 4-direction is chosen to be the time
direction.

From now on, we will take the time direction to be compactified to S1, the
three space directions being regarded as infinite. The reason is that using lat-
tice calculations, one tries to find out how the properties of the physical system
change if the temperature is driven up, but still in the infinite (three-)volume
limit. Thus, everything that has been stated so far about ZN -periodic gauge
transformations and centre symmetry only applies to the time direction. For
argumentational purpose, our space-time is then R3 × S1, even though in real
numerical lattice Monte Carlo calculations only finite lattices can be realized.
Thus, in a strict sense, numerical lattice calculations never are at infinite volume,
or at zero temperature. The point, however, is whether the extent Ni(i = 1, 2, 3)
in the three space directions is large enough if the correlation length ζ is taken
as a scale. If Ni À ζ, even a finite lattice can be taken to be a realization of a
zero-temperature, or infinite-volume, lattice. To realize a lattice at a finite tem-
perature T , an asymmetric lattice with N4 < Ni(i = 1, 2, 3) is used. But for the

5Necessarily, only if the extent in each of the directions is greater than one lattice unit!
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finite temperature to take effect, N4 has to comparable to the correlation length
ζ. If this is the case, then the temperature can be calculated with the use of the
renormalization procedure presented in chapter 1.

To understand the appropriateness of 〈tr L〉 as an order parameter for dis-
tinguishing a centre-symmetrical phase from a non-symmetrical one, one must
merely remember that centre symmetry is a symmetry of the action, i.e. in ex-
pectation values of the form

〈tr L〉 =

∫
DUtr L(U)e−S[U ] (3.37)

a certain value of L(U) contributes as much as a centre-transformed one zL(U).
Therefore, because of

∑
k zk = 0, in a symmetric phase the expectation value

must be zero, whereas in a spontaneously broken phase, it may well acquire a
non-zero value:

〈tr L〉 = 0 (symmetric phase) (3.38)

〈tr L〉 6= 0 (spontaneously broken phase). (3.39)

Whether or not, and if, by which choice of parameters, the one or the other phase
is realized, now is a question addressed to numerical lattice calculations, as an
analytical treatment is momentarily outside the scope of the possible. In the next
section the role of 〈tr L〉 within the context of quark liberation is illuminated, with
the phase transition hinted at in the last few paragraphs being identified with the
deconfinement phase transition within the context of pure Yang–Mills theory.

In [tH78] instead of choosing the expectation value of the Polyakov loop op-
erator, that of the above-defined disorder operator Ω(C) was proposed as an
additional order parameter for determining the phase being realized by the sys-
tem, arguing on general grounds. The existence of at least three possible phases
was conjectured, and consequent analytical calculations [Tom81] supported the
picture.

Let us just summarize at last that by studying the behaviour of the Polyakov
loop expectation value, one may verify whether at a definite point in parameter
space, i.e. at the phase transition point, the original SU(N) symmetry is broken
spontaneously down to a mere SU(N)/ZN symmetry. This spontaneous sym-
metry breaking does not contradict Elitzur’s theorem, however, as the broken
symmetry group acts globally on the fields.

3.3 The Deconfinement Phase Transition

It is generally believed that from a certain critical temperature Tc upwards the no-
tion of hadrons as effective degrees of freedom under the influence of the strong
interaction breaks down. Furthermore, the belief is that at the same critical
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temperature chiral symmetry is restored. This means that in the deconfinement
phase, i.e. above the critical temperature, the QCD degrees of freedom and the
physical degrees of freedom are supposed to be identical. The hadronic mat-
ter is expected to undergo a phase transition into a quark–gluon plasma, where
the characteristic low-energy features like confinement and spontaneous chiral
symmetry breaking are lost, and the behaviour of matter is dominated by the
asymptotic freedom of QCD.

This phase transition is expected to occur at some temperature Tc ≈ mπ, mπ

being the pion mass, where copious thermal production of pions sets in. Although
neither any rigorous theoretical argument nor reliable experimental data exist to
substantiate this hypothesis, some indications exist by which one is led to this
supposition. For a review of this topic see e.g. [Shu88].

The problem to solve therefore is: does QCD predict a deconfinement phase
transition, and if so, what is the nature of it? Lacking any analytical method to
tackle the problem, one has to resort to lattice Monte Carlo calculations, which
allow, at least in principle, to obtain an answer to the question.

At zero temperature, the potential of a static quark-antiquark pair at a
distance R can be determined by studying the Wilson loop expectation value
W (R, T ) in the limit of large Euclidean times T → ∞ as has been explained
in 1.2.3, with the lattice extent in the time direction being infinite. At finite
temperatures the lattice has a finite extent in the time direction, and this limit
cannot be taken any more. Thus, the Wilson loop no longer plays the role of an
order parameter.

Fortunately, we have already come across a substitute for it, the Polyakov
loop L(~x). It has already been shown in the previous section that it has the
properties of an order parameter distinguishing a centre-symmetric phase from a
spontaneously broken one. Now, it shall be shown that these two phases also have
dramatically different physical properties. The centre-symmetric phase being a
confinement phase for static external quarks, and the spontaneously broken phase
being a deconfinement phase. So, at this stage, it will be deduced that centre
symmetry indeed plays a crucial role in the confinement mechanism.

The argument given in the following is rather qualitative and similar in nature
to the one in 1.2.3. For a more detailed discussion, the reader shall be referred to
[Pol78, Sus79]. We consider continuum theory at finite temperature, i.e. space-
time is isomorphic to R3×S1. We get for the partition function of a system with
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one static external quark at ~x, which is represented by a state |Ψ(~x)〉 ∈ Hx:

Z ∼ Tr e−βĤ (3.40)

=
∑

n

〈Ψvac|Ψ(n)(~x, 0)tr e−βĤΨ†
(n)(~x, 0)|Ψvac〉 (3.41)

=
∑

n

〈Ψvac|tr e−βĤΨ(n)(~x, β)Ψ†
(n)(~x, 0)|Ψvac〉 (3.42)

∼ 〈Ψvac|tr e−βĤΨ(0)(~x, β)Ψ†
(0)(~x, 0)|Ψvac〉 (3.43)

= 〈Ψvac|tr e−βĤL(~x)|Ψvac〉 (3.44)

= 〈tr L(~x)〉, (3.45)

where |Ψvac〉 is the vacuum state, Ψ†
(n)(~x, 0) is the creation operator of a static

external quark with n labelling the eigenstates of Ĥ, and β ∼ 1
T
. In the last

line the periodic boundary conditions have been used, the line before is due to
renormalization effects (see [Pol78, Sus79]). Note that the expectation value is
calculated for the canonical ensemble.

Eventually, we see that the expectation value of the Polyakov loop, 〈tr L〉, is
proportional to the free energy F of the system containing a single static external
quark:

〈tr L〉 ∼ Tr
(
e−βĤPe−

R β
0 dτ Â4(~x,t)

)
(3.46)

= e−βF . (3.47)

It is now clear how a vanishing or a non-vanishing Polyakov loop expectation value
has to be interpreted physically: for 〈tr L〉 to be zero, an infinite free energy is
needed, which means that such a state is impossible. To be more precise: it is not
so much that the required free energy is infinity – this would be a phenomenon
well-known in quantum physics and could be overcome by just redefining the zero
level of the energy, just like the renormalization of the zero point energy of the
harmonic oscillator by subtracting the infinite part. It is the fact that the free
energy of the system without a single quark is zero already without additional
renormalization, which means that there is an infinite mass gap between the two
states, and this makes the one-static-quark state impossible!

Consider now the correlation function

Γ(R) = 〈tr L(~x)L†(~0)〉 (3.48)

with R = |~x−~0|. (3.49)

If the correlations at large values of R tend to zero, i.e. if Γ obeys the cluster
decomposition principle:

〈tr L(~x)L†(~0)〉 −−−−−→
|~x−~0|→∞

|〈tr L〉|2, (3.50)
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then

〈tr L〉 = 0 (3.51)

=⇒ Γ(R) = e−βV (R) = 0 (confinement) (3.52)

and

〈tr L〉 6= 0 (3.53)

=⇒ Γ(R)

|〈tr L〉|2 = e−βV (R) −−−→
R→∞

const. (deconfinement), (3.54)

where V (R) is the static quark potential introduced in chapter 1. The last equa-
tion is due to the Wilson loop formula (1.56), and, in a strict sense, only valid in
the limit T →∞, which can never be reached at a finite temperature.

Altogether we have established the desired connection between the sponta-
neous breaking of centre symmetry and the deconfinement phase transition.

Now that the importance of the Polyakov loop expectation value as an order
parameter for confinement has been clarified, it remains to investigate lattice
Yang–Mills theory from this angle. This has first been done by [MS81a, MS81b,
KPS81] for SU(2) gauge theory. The results have been reproduced by our own
measurements and are included in figure 15 in the next section.

3.4 Centre Dominance at Finite Temperature

3.4.1 Centre Projection and the Deconfinement Phase
Transition

The interesting question now is: is the deconfinement phase transition also repro-
duced in centre-projected lattice Yang–Mills theory? We therefore have measured
〈tr L〉 with centre-projected configurations {zµ(x)} and contrasted the result with
the one obtained in full, unprojected Yang–Mills theory in figure 15.
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Figure 15: The expectation value 〈trL〉 of the Polyakov loop operator.
The triangles show the results for the centre-projected configurations, the
crosses for full, unprojected Yang–Mills theory.

The measurements have been performed on a (123 × 3)-lattice with the bare
inverse coupling β varying between [2.0, 2.6]. By varying β instead of Nt we have
a finer means of tuning the inverse temperature 1/T = Nta(β).

The renormalization of this measurement has been done by assigning a physi-
cal value for the lattice spacing a through the scale defined by the centre-projected
string tension κc = (440 MeV)2. As can be deduced from figure 15, at a physical
temperature Tc ≈ 260 MeV, 〈tr L〉 acquires a non-zero value in an abrupt way. It
is, however, not possible to tell from this picture that there exists a phase transi-
tion, be it a continuous or a discontinuous one. In order to find an answer to this
question, very large lattices have to be taken in order to reduce the finite-size
effects, bearing in mind that in a strict sense, there cannot be a phase transition
in a finite system.

The actual value of 〈tr L〉 is of course different for the unprojected and the
centre-projected case, respectively. However, this is of no importance, as long as
it is not zero, and in any formula 〈tr L〉 enters only together with a proportionality
constant.

In order to nail down the transition point more precisely, we define it to be
the point at which the mean variation ∆〈tr L〉 has its maximum.
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Figure 16: The deconfinement phase transition signalled by the mean
deviation ∆〈trL〉 of the Polyakov loop.

Figure 16 shows the result for the same measurement as in figure 15. The big filled
dots constitute measurement points taken with a coarse increase of β between
2.0 and 2.6, whereas the filled diamonds are taken with a finer stepping of 0.01
between β = 2.20 and β = 2.40. The crosses, finally, constitute the measurement
points taken on a centre-projected lattice of the same size. The figure clearly
shows the transition point to occur at exactly the same temperature for both the
centre-projected and the full, unprojected theory, i.e. at about 260 − 270 MeV
taking the string tension to be κ = (440 MeV)2 as a renormalization scale. As the
absolute values of the mean deviations ∆〈tr L〉 for the centre-projected configura-
tion has been different, the respective graph has been scaled down in y-direction
by a factor of three, which, however, has no interpretative consequences, but only
enhances the visual perception. Also, note again that the tick values given for the
temperature scale do not have any importance, as an initially arbitrary value for
a hypothetical SU(2) string tension was chosen, the β-dependence of the lattice
spacing a and thus of the temperature T being extracted from zero temperature
string tension measurements.
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3.4.2 The String Tension at Finite Temperature

Since centre elements of the gauge group commute with each other, the Polyakov
loop correlator evaluated with centre-projected configurations is equal to the Wil-
son loop of identical spatial width and extending along the entire time direction.
Therefore, at finite temperature, centre vortices contribute to the static quark
potential in the same way as they do at zero temperature. The question to be
answered is whether, at finite temperature, vortices still provide the entire long-
range static quark potential, i.e. if centre dominance prevails above Tc, or if other
effects become important. This would mean that centre vortices lose their role
as relevant infrared collective degrees of freedom.

We have tested this empirically [LTER99]. On the one hand, we have eval-
uated Polyakov loop correlation function Γc(R) = 〈tr L(~x)L†(~0)〉 defined in the
previous section, using centre-projected links on a 123×Nt lattice with Nt = 5, 6, 7
for different β ∈ [2.26, 2.4], i.e. different inverse temperatures 1/T = Nta(β) were
achieved by varying β. The β-dependence of the lattice spacing a and thus of the
temperature T has been extracted from zero temperature string tension measure-
ments. While these measurements are thus fraught with sizeable uncertainties
due to finite-size effects in a(β), the statistical fluctuations still turn out to be
the dominant source of error.

The centre-projected temporal string tension6 κc(T ) as a function of the tem-
perature T was extracted from the above-defined correlation function Γc(R) by
fitting a linear law to the potential V (R) of relation (3.54). A Coulomb term
is not necessary, since, as will be illustrated by an example below, centre pro-
jection removes the perturbative Coulomb part from V (R) just as at T = 0
[DFGO97, LTER99]. In addition, however, it should be kept in mind that the
static quark potential at finite temperature in general also contains a logarith-
mic dependence on R [BFH+93]. Thus, fitting a purely linear law to V (R) does
not yield the coefficient of the linear term, which, by definition constitutes the
string tension κc; instead, on obtains an “effective” string tension, which provides
a good parametrization of the long-range static quark potential in the limited
range of separations accessible to lattice experiments. Since the accuracy of our
measurements is limited, we cannot separate the linear and logarithmic parts of
the potential, and we thus quote instead the effective string tension in the sense
explained above. In full Yang–Mills theory this quantity is known to behave as
follows: it retains its zero-temperature value to within approximately 10 % up to
the temperature 0.8Tc, where Tc is the deconfinement phase transition tempera-
ture, and then quickly drops to zero. For the SU(2) theory, we have only been
able to find some rather sparse older data to substantiate this [KL84]. On the
other hand, for full SU(3) QCD including dynamical fermions, new high-precision
measurements exist [DKKL99], which corroborate the aforementioned behaviour
of the effective string tension.

6This is the physical string tension.
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Our results for the centre-projected theory are displayed in the plot of figure
17a. We find that within the error bars, the centre-projected string tension κc(T )
reproduces the behaviour of the full string tension κ(T ) quoted above. Thus, we
observe centre dominance in the long-range part of the static quark potential at
finite temperatures T < Tc, all within the framework of our accuracy and the
limited range of separations available.

Figure 17a/b: Left: The centre-projected string tension κc(T ); the four
lowest-temperature points on the 123 × 5 lattice are measured at β < 2.3,
and thus may already be subject to systematic scaling violations. Right:
The static quark potential at two sample temperatures, as extracted from
Polyakov loop correlators in a centre-projected configuration, in units of
the zero-temperature string tension. Note that the string tension is denoted
by σ in this picture.

Moreover, the centre-projected string tension κc signals the deconfinement phase
transition to occur at Tc = 260 ± 10 MeV, where the input scale was the zero
temperature centre-projected string tension of κc(0) = (440 MeV)2. This value
is in complete accordance to the results obtained for the transition point by a
measurement of the Polyakov loop expectation value 〈tr L〉 in the centre-projected
theory in the previous subsection, and in good agreement with the high-precision
measurements of [BFH+93]. Again it can be seen that the transition to the
deconfined phase with a vanishing string tension κc = 0 is accurately reproduced
by the centre-projected theory.
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As a further illustration, we also calculated the Polyakov loop correlation
function Γc(R) defined in the previous section, using in particular β = 2.3 for a
123×Nt lattice, and β = 2.4069 for a 163×Nt lattice, while varying the number
of lattice points Nt in time direction, in order to obtain different inverse temper-
atures 1/T = Nta(β). The β values and lattice sizes in both cases correspond
to a physical size of the spatial cube of Ls = Nsa(β) ≈ 1.9 fm, while the lattice
spacing changes by a factor a(β = 2.3)/a(β = 2.4069) = 4

3
. This particular

choice of parameters allows to test the scaling behaviour of the lattice observ-
ables with vastly diminished fluctuations due to finite size effects. Of course, the
overall uncertainty in the mass scale remains (cf. the discussion above). In the
case of Γc(R) this does not turn out to be crucial; the statistical fluctuations are
the main source of error. However, when measuring vortex densities (see next
subsection), this method substantially improves the observed scaling properties,
since the statistical errors are not so dominant.

Using the Monte Carlo results for Γc(R) in the centre-projected theory, the
static quark potential V (R) at diverse temperatures both below and above the
deconfinement phase transition was extracted (cf. equation (3.54)). Two exam-
ples, corresponding to Nt = 3.6 for β = 2.3 and Nt = 4.8 for β = 2.4069, are given
in figure 17b. For T < Tc, the potential rises linearly even at small distances. As
observed previously for the case of zero temperature (see chapter 2), the centre
projection removes the short-range Coulomb interaction.

3.5 Vortex Polarisation and Percolation

3.5.1 Anisotropy of Vortices

Given this success of the vortex picture, the question of the nature of the de-
confinement phase transition in this picture poses itself. One of the simplest
hypotheses would appear to be the following: while the centre vortices, by con-
struction, are one lattice spacing thick (thin vortices), they represent smooth
configurations in the original gauge fields before the centre projection is applied,
with a physical thickness in the continuum limit (see chapter 2). Possibly vor-
tices running perpendicularly to the time direction are simply too thick to fit
into the space-time manifold of time extent 1/T for T > Tc. This would mean
that the temporal planar vortex density ρt vanishes. Vanishing density of such
points precludes fluctuations in the number of such points, making an area law
decay of Γc(R) impossible. In order to test this scenario, we have measured ρt at
different temperatures T . We have taken the same parameter set for β and Nt

as in section 3.4, i.e. β = 2.3 for a 123×Nt lattice and β = 2.4069 for a 163×Nt

lattice while varying the extent in time direction Nt in order to obtain different
inverse temperatures 1/T = Nta(β). The result for the vortex density is shown
in figure 18a.
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Figure 18a/b: Left: The spacelike and timelike planar vortex densities
ρs and ρt. Right: The ratio ρt/ρs.

Evidently, while ρt experiences a drop as the temperature increases past Tc, its
behaviour is smooth, and at T ≈ 2Tc, it still retains roughly a third of its zero
temperature value. Thus, the hypothesis advanced above of deconfinement being
due to a vanishing of ρt was too simplistic. There still exists a non-vanishing
temporal planar vortex density above Tc, but the random character of the dis-
tribution of these vortices must disappear for deconfinement to be realized. We
will come back to this presently.

Before doing so, note that for comparison, we have also measured the spatial
planar vortex density ρs. The ratio ρt/ρs is shown in figure 18b. For low temper-
atures, ρs and ρt coincide, as they must, due to Euclidean O(4) invariance. At
temperatures slightly above Tc, ρs decreases along with ρt. At higher tempera-
tures, however, ρs begins to increase. This seems consistent with a simple picture
of the spatial intersection points still being distributed randomly, which leads
to a linear relation between the spatial planar density ρs and the corresponding
spatial string tension κs extracted from spacelike Wilson loops (cf. the discus-
sion on the random vortex model in chapter 2, in especial equation (2.32)). This
spatial string tension in turn is known to behave like

√
κs ∼ g2(T )T for T ≥ 2Tc,

according to arguments based on the method of dimensional reduction [AP81],
and their verification in lattice experiments [BFH+93]. As mentioned above, in
the case of the temporal planar vortex density ρt, this simple random picture
must by contrast become invalid above Tc.

We have learned now that it is necessary to inspect more closely the properties
of vortices piercing the area spanned by the two Polyakov loops entering the
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correlation function Γc(R). A necessary condition for an area law suppression of
the loop correlator expectation value is an ever better mutual cancellation, as the
area spanned by the Polyakov loops is increased, between configurations where
the area is pierced an even or an odd number of times by vortices, respectively. We
have therefore measured the probabilities of these two cases as a function of the
temperature for an area of spatial width 0.9 fm. For β = 2.3, this corresponds to
6 lattice spacings in a 123×Nt lattice, whereas for β = 2.4069, it corresponds to 8
lattice spacings in a 163×Nt, i.e. in both cases the distance between the Polyakov
loops is half the linear extent of the lattice universe. The result of these Monte
Carlo experiments is shown in figure 19, which displays the fraction p(T ) of cases
where an area specified as above is pierced an even number of times by vortices.
This quantity exhibits a sharp transition at the deconfinement temperature Tc ≡
280 MeV. If p 6→ 1

2
for large areas, there cannot be an area law decay of the

Polyakov loop correlation function Γc(R) and therefore deconfinement occurs.

Figure 19: Fraction p of cases in which an area spanned by two Polyakov
loops is pierced by vortices an even number of times, as a function of the
temperature T .

The clear signal of the deconfinement transition exhibited by the ratio p above is
not surprising, since it constitutes nothing but a slightly more physical variant of
the usual order parameter given by the Polyakov loop expectation value 〈tr L〉.
The centre-projected Polyakov loop correlation function Γc(R) is given in terms
of p as follows:

〈tr L(~x)L†(~y)〉 = p · 1 + (1− p) · (−1) = 2p− 1. (3.55)
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Thus, p corresponds, up to a rescaling and a shift, to the correlation function
Γc(R) itself.

Therefore, in defining the probability p, we have not really introduced a new,
distinct, order parameter for the deconfinement phase transition. Rather, the
vortex picture simply provides an alternative language for describing Γc(R) by
characterizing the manner in which vortex intersection points occur in the area
spanned by the two Polyakov loops. The deconfinement transition occurs when
the intersection points begin to show up predominantly in pairs of finite separa-
tion above Tc, whereas they are distributed randomly below Tc.

3.5.2 Vortex Clustering and Percolation

As we have just seen, there exists a substantially non-zero temporal density of
vortex intersection points. Therefore, deconfinement must be due more sepcifi-
cally to a correlation between these intersection points, such that the distribution
of these points ceases to be sufficiently random to generate an area law. It shall
now shortly be motivated that a correlation conducive to confinement occurs if
vortices only tend to form clusters smaller than some maximal size, i.e. if they
do not tend to percolate.

Consider a lattice universe of some finite extent, and let us assume that the
vortex intersection points come in pairs at most a distance d apart. Then the
only pairs that can contribute a factor of (−1) to a planar Wilson loop are those
whose midpoints lie in a strip of width d centred on the trajectory of the loop.

d
d

Figure 20: A vortex cluster of extension d defines the maximum distance
of a pair of intersection points. The thick-edged square is a Wilson loop.
Left: In a vortex percolation phase, the whole Wilson loop is pierced more
or less with equal probability. Right: In a non-percolating phase, only the
vortex clusters distributed near the perimeter of the Wilson loop contribute
a factor of (−1) with a probability p.
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Let p be the probability that a pair which satisfies this condition actually does
contribute (−1). This probability is an appropriate average over the distances
of the midpoints of the pairs from the Wilson loop, their angular orientations,
the distribution of separations between the points making up the pairs, and the
local geometry of the Wilson loop up to the scale d. The probability p does,
however, not depend on the macroscopic extent of the Wilson loop. A pair which
is placed at random on a slice of the universe of area L2 contributes a factor of
(−1) to the Wilson loop with the probability pA/L2, where A is the area of the
above-defined strip. To leading order, A = Pd, with P being the perimeter of
the Wilson loop.7 Now, placing N pairs on a slice of the universe of area L2 at
random, the probability that n of them contribute a factor of (−1) to the Wilson
loop is

PN(n) =

(
N

n

)(
pPd

L2

)n (
1− pPd

L2

)N−n

, (3.56)

and, consequently, the expectation value 〈tr W 〉 of the Wilson loop in the limit
of large lattice sizes is

〈tr W 〉 =
N∑

n=0

(−1)nPN(n) −−−→
N→∞

exp (−ρpPd) , (3.57)

where ρa2 = 2N/L2 is the planar vortex density. One thus observes a perimeter
law if the space-time extent of vortices or vortex networks is bounded. For con-
finement in order to be realized, the vortex clusters must extend over the entire
space-time manifold, in other words, percolation must take place. Conversely,
therefore, in the deconfinement phase, vortices must cease to be of arbitrary
length, in a sense to be made more precise below, within this hypothetical pic-
ture. The main result of the following exposition is that this seems indeed to be
the case, implying that the deconfinement phase transition can be characterized
as a vortex percolation transition. In order to test whether this type of mechanism
is at work, we investigated the extent of the vortex clusters [ELRT].

Vortices constitute closed two-dimensional surfaces in four space-time dimen-
sions. Taking a fixed time slice or space slice, they are one-dimensional loops. In
the following, specifically the size of vortex loop clusters in either time or space
slices will be investigated. In this way, the relevant information is exhibited more
clearly than by considering the full two-dimensional surfaces in four-dimensional
space-time.

Given a centre-projected lattice configuration {zµ(x)} in a three-dimensional
slice, the corresponding vortices can be constructed on the dual lattice as fol-
lows: as a definite example, consider a fixed time slice. Then the vortices are
represented by lines made up of links on the dual lattice.8 Particularly, consider

7Subleading corrections are induced by the local loop geometry.
8The definition of the objects dual to one another is of course dependent on the dimension
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a plaquette on the original lattice, lying e.g. in the z = z0-plane, and extending
from x0 to x0 + a and from y0 to y0 + a. By definition, if the links making up
this plaquette multiply to −1, then a thin vortex pierces that plaquette. This
means that a certain link on the dual lattice is part of a vortex, namely the one
connecting the dual lattice points (x0+ a

2
, y0+ a

2
, z0− a

2
) and (x0+ a

2
, y0+ a

2
, z0+ a

2
).

Having constructed the vortex configuration on the dual lattice, one can pro-
ceed to define the vortex clusters. Starting from that link, one tests which ad-
jacent links, i.e. links which share a dual lattice site with the first link, are also
part of the vortex. This is repeated with all new members of the cluster until all
links making up the cluster have been found. This way, it is possible to separate
the different vortex clusters.

Given the vortex clusters, their extension can be measured. Consider all pairs
of links in a cluster and evaluate the distance in between each of the pairs. The
maximal such distance defines the extension of that cluster. In figures 21–24,
histograms are displayed, in which, for every cluster, the frequency distribution
of the total number of constituent links is shown. The histograms are normalized
such that the integral over the distribution function gives unity.

Constructed this way, the histograms give a very transparent characteriza-
tion of typical vortex configurations. The content of each bin represents the
percentage of the total vortex length in the configurations, i.e. the vortex ma-
terial available, which is organized into clusters of the corresponding extension.
Accordingly, these distributions will be referred to as vortex material distibutions
in the following. In a percolating phase, the vortex material is peaked at the
largest extension possible in a lattice universe under consideration.9 In a non-
percolating phase, the vortex material distribution is peaked at a finite extension
independent of the size of the lattice universe. Figures 21–23 pertain to space
slices, whereas figure 24 further below summarizes analogous results for time
slices. The extension, given on the horizontal axis, is measured in units of the
maximal extension possible, namely

√
2 · (12/2)2 + (Nt/2)2 lattice spacings on a

space slice of the given lattice.

D of the embedding manifold. In our case, D = 3 as we consider a three-dimensional time slice
as our surrounding space.

9Note that, due to periodic boundary conditions, this maximal extension in a
Ns × Ns × Nt space slice of the four-dimensional space-time lattice, for example, is√

(Ns/2)2 + (Ns/2)2 + (Nt/2)2 lattice spacings.
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Figure 21a/b: Left: 123×8 lattice at β = 2.4, equivalent to a temperature
of T = 0.7Tc. Right: 123 × 7 lattice at β = 2.4, equivalent to T = 0.8Tc.

Figure 22a/b: Left: 123 × 6 lattice at β = 2.4, equivalent to T = 0.9Tc.
Right: 123 × 5 lattice at β = 2.4, equivalent to T = 1.1Tc.
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Figure 23a/b: Left: 123 × 4 lattice at β = 2.4, equivalent to T = 1.4Tc.
Right: 123 × 3 lattice at β = 2.4, equivalent to T = 1.8Tc.

In space slices of the lattice universe, one observes a transition from a percolating
to a non-percolating phase at the Yang–Mills deconfinement phase transition.
Below Tc, the vortex material distribution is strongly peaked at the maximal
extension possible; when the temperature rises above Tc, however, the distribution
becomes concentrated at short lengths. The behaviour in the vicinity of the
deconfinement temperature Tc deserves a more detailed discussion. While the
contents of the bin of maximal extension fall sharply between T = 0.8Tc and
T = 1.1Tc, a residual one quarter of vortex material remains concentrated in
loops of maximal extension at the temperature identified as T = 1.1Tc. This is
too large a proportion to let pass by without further consideration. In [ELRT],
we have repeated the measurement at T = 1.1Tc on a 163 × 3 lattice, and again
did not find a depletion of the bin of maximal extension. On the other hand, one
should be aware that there is a considerable uncertainty — of the order of 10 %
— in the overall physical scale in these lattice experiments, affecting in particular
the identification of the deconfinement temperature Tc itself, as has already been
discussed in detail earlier in this chapter. At the present level of accuracy, T =
1.1Tc cannot be considered significantly separated from Tc; one cannot state with
confidence that the measurement formally identified with a temperature T =
1.1Tc must unambiguously be associated with the deconfinement phase. Note that
also in standard string tension measurements via the Polaykov loop correlation
function Γ(R), one does not attain a sharper signal of the deconfinement phase
transition if one uses comparable lattice sizes and statistics. Indeed, earlier in
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the last section, we still extracted a string tension of about 10 % of the zero-
temperature value at the temperature formally identified as T = 1.1Tc.

10

In balance, it is argued that a percolation transition in space slices occurs
together with the deconfinement phase transition, both in view of the strong
heuristic arguments connecting the two phenomena in the centre vortex picture,
and in view of the drastic change in the vortex material distribution between T =
0.8Tc and T = 1.1Tc. The latter suggests that the vortex material distribution
can in practice be used as an alternative order parameter for the deconfinement
phase transition. When the vortices rearrange at the transition temperature to
form a non-percolating phase, the vortex intersection points defined above occur
in pairs less than a maximal distance d apart. This leads to a perimeter law for
the Polyakov loop correlation function, and therefore to deconfinement.

Consider now by contrast the vortex material distribution obtained in time
slices.
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Figure 24: Vortex material distribution measured in time slices of 123×Nt

lattices at β = 2.4. Bins corresponding to three different temperatures
are shown simultaneously: Nt = 3, equivalent to T = 1.85Tc, Nt = 5,
equivalent to T = 1.1Tc, and Nt = 7, equivalent to T = 0.8Tc.

10Clearly, in all measurements at finite temperature performed on a finite-sized lattice, dis-
cretization effects do not permit a phase transition to be realized in a strict sense. A theoret-
ically discontinuity in a plot of the Polyakov loop expectation value 〈trL〉, for instance, will
always be smeared to a continuous graph.
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According to figure 24, this distribution is strongly peaked at the maximal pos-
sible extension at all temperatures, even above Tc. Thus, vortex line clusters in
time slices always percolate; there is not any marked change in their properties as
the temperature rises above Tc. Note that this does not entail any consequences
for the behaviour of the Polyakov loop correlation function Γc(R), since Polyakov
loops do not lie within time slices. However, the persistence of vortex percolation
into the deconfined phase when time slices are considered represents one way of
understanding the persistence of the spatial string tension κs above Tc. Given
percolation, it seems plausible that intersection points of vortices with spatial
Wilson loops continue to occur sufficiently randomly to generate an area law.

There is another, complementary way of understanding the spatial string
tension κs, which will be discussed in detail in the next subsection.

Moreover, note that figures 21–24 together imply that the vortices, regarded
as two-dimensional surfaces in four-dimensional space-time, percolate both in
the confinement and in the deconfinement phase, albeit in an anisotropic way.
Only by considering a three-dimensional slice does one filter out the percolation
transition in the topology of vortex configurations. It should be emphasized
that the percolation of the two-dimensional vortex surfaces in four-dimensional
space-time in the deconfinement phase does not negate the heuristic picture of
deconfinement put forward above. Given that vortex line clusters in space slices
cease to percolate in the deconfined phase, intersection points of vortices with
timelike planes necessarily come in pairs less than a maximal distance d apart,
regardless of whether the different vortex line clusters do ultimately connect if
one follows their world sheets into the additional spatial dimension. It is the
pair correlation of the intersection points which induces the deconfinement phase
transition.

3.5.3 Winding Vortices in the Deconfinement Phase

In order to gain a more detailed picture of the deconfinement phase, it is useful
to carry out the following analysis. Consider again the space slice of the lattice
universe, in which vortex clusters have a short extension above Tc. In particular,
consider lattices of time extent Nt · a with odd Nt, a being the lattice spacing;
in the following numerical experiment Nt = 3. On such a lattice, the vortex
material distribution is measured analogously to the the measurements above,
but with one slight modification: the bins of the histograms are not defined by
the cluster extension, but simply by the number of dual lattice links contained
in the clusters.
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Figure 25: Vortex material distribution in space slices as a function of
the total vortex line length contained in the clusters. β = 2.4 which is
equivalent to a temperature T = 1.85Tc. There is a residual but insignif-
icant proportion of vortex clusters containing more than 20 dual lattice
links not displayed in the plot.

It turns out that, in the deconfinement phase, specifically at T = 1.85Tc, roughly
55 % of the vortex material is concentrated in clusters made up of an odd number
of links, cf. figure 25. On a lattice with Nt = 3, these are necessarily vortex
loops which wind around the lattice in time direction by virtue of the periodic
boundary conditions, where the loops containing an odd number of links larger
than 3 exhibit residual transverse fluctuations in the spatial directions, as also
visualized in figure 26 below.

One thus obtains a quite specific characterization of the short vortices appear-
ing in the deconfinement regime. This phase can evidently be visualized largely
in terms of short winding vortex loops with residual transverse fluctuations if one
considers a space slice of the lattice universe. Note that this picture also explains
the partial vortex polarization observed in density measurements, shown in 3.5.1.
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Figure 26: Visualization of typical vortex configurations. Upper: On a
symmetric lattice, which corresponds to zero temperature. Lower: On an
asymmetric lattice, which corresponds to a finite temperature.
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Chapter 4

Conclusions and Outlook

On the basis of the measurements presented in this work, a detailed description
of the confinement and deconfinement phases of Yang–Mills theory within the
framework of centre vortices emerges.

In the confinement phase, vortex line clusters in space slices of the lattice uni-
verse percolate. This allows intersection points of vortices with planes bounded
by two Polyakov loops to occur sufficiently randomly to generate an area law.
By contrast, in the deconfinement phase, typical vortex configurations in space
slices of the lattice universe are characterized by short vortex loops, which are
winding to a large part in the Euclidean time direction. This causes intersec-
tion points of vortices with planes containing Polyakov loop correlators to occur
in pairs less than a maximal distance d apart, which leads to a perimeter law.
Simple analytical model arguments clarifying the emergence of this qualitative
difference have been presented. In summary, the deconfinement phase transition
in the vortex picture can thus be understood as a transition from a percolating
to a non-percolating phase.

It should be emphasized that the percolation properties of vortices focussed
on in 3.5.2 are more stringently related to confinement than the polarization
properties. There is not any a priori logical connection between the observed
partial vortex polarization by itself and deconfinement. On the one hand, even
in presence of a significant polarization, confinement would persist as long as the
vortex loops retain an arbitrarily large length, namely by winding sufficiently
often around the Euclidean time direction. On the other hand, even in an ensem-
ble without any polarization, deconfinement will occur if the vortices are orga-
nized into many small isolated clusters. Therefore, vortex polarization should be
viewed more as an accompanying effect than the direct cause of deconfinement.
Of course, a correlation between the absence of percolation in space slices of the
lattice universe and vortex polarization is not surprising. If the fluctuations of
the vortex loops in spatial directions are curtailed, e.g. due to a phase contain-
ing many short vortices winding in the time direction becoming favoured, then
clearly the connectivity of vortex clusters in the spatial directions is reduced, and
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they may cease to percolate. In this sense, polarization indirectly can facilitate
deconfinement. However, the percolation concept is related much more directly,
and with much less ambiguity, to the question of confinement. Since the Wilson
loop expectation value should be independent of the choice of area which one may
regard it to span, it is conceptually sounder not to consider densities occurring
in such areas, but global properties of the vortices such as their linking number
with the Wilson loop. The probability of the occurrence of a particular linking
number is strongly influenced by the connectivity of the vortex networks. Corre-
spondingly, there is a clear signal of the phase transition in the vortex material
distributions displayed in 3.5.2; these quantities can be used as alternative order
parameters for the phase transition. By contrast, the vortex densities seem to
behave smoothly across the deconfinement phase transition as shown in 3.5.1.

Turning to the spatial string tension, there are two complementary ways to
qualitatively account for its persistence in the deconfinement phase of Yang–Mills
theory. If one considers a time slice of the lattice universe, the associated vortex
line configurations do not display any marked change of their clustering proper-
ties across the deconfinement transition. Even in the deconfinement phase, vortex
loops in time slices percolate. In view of this, it seems plausible that intersec-
tion points of vortices with spatial Wilson loops continue to occur sufficiently
randomly to generate an area law. It should be noted, however, that this perco-
lation is qualitatively different from the one observed in the confinement phase
in that it only occurs in the three space dimensions, whereas the configurations
are relatively weakly varying in the Euclidean time direction. In other words,
in the deconfinement phase, one finds a dimensionally reduced percolation phe-
nomenon only visible either in the whole four-dimensional space-time manifold,
or in three-dimensional time slices thereof.

On the other hand, if one considers space slices of the lattice universe, the de-
confinement phase is characterized largely by short vortex loops winding around
in time direction. However, these short vortices can pierce the area spanned by
a large spatial Wilson loop an odd number of times, even far from its perimeter.
This should be contrasted with the picture one obtains for the Polyakov loop
correlation function Γc(R). There, shortness of vortices implies that their in-
tersection points with the plane containing the Polyakov loop correlator occur in
pairs less than a maximal distance d apart, leading to a perimeter law behaviour of
Γc(R), and therefore to deconfinement. For spatial Wilson loops, this mechanism
is inoperative due to the existence of the winding vortices. On the contrary, if
one assumes the locations of the various winding vortices to be uncorrelated, one
obtains precisely the heuristic model of 2.5, in which vortex intersection points
are distributed randomly in the plane containing the Wilson loop, leading to an
area law. Therefore, finite length vortex loops do not contradict the existence of
a spatial string tension.

Of course, there is not any reason to expect the locations of the winding vor-
tices to be completely uncorrelated in the high-temperature Yang–Mills ensemble.
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In fact, comparing the values for the spatial string tension κs from [BFH+93] and
the relevant density ρs of vortex intersection points in planes extending in two
spatial directions as in 3.5.1, the ratio κs/ρs acquires a value of about κs/ρs ≈ 3
at T ≈ 2Tc. This should be contrasted with the value κ = 2ρ obtained in the
random vortex model discussed in 2.5. If one further takes into account that
a sizeable part of ρs is still furnished by non-winding vortex loops, then one
should actually use the density ρ′s < ρs corresponding to winding vortices only
in the above consideration. This yields an even larger ratio κs/ρ

′
s. Therefore,

the winding vortices in the deconfinement phase seem to be subject to sizeable
correlations.

While the relevant characteristics of the vortex configurations in the different
regimes have been described in detail in this work, the present understanding of
the underlying dynamics in the vortex picture is still tenuous. There are, however,
some indications that the deconfining percolation transition can be understood
in terms of simple entropy considerations. Increasing the temperature implies
shortening the Euclidean time direction of the lattice universe. This means that
the number of possible percolating vortex configurations decreases simply due to
the reduction of space-time volume. At the same time as the number of possible
percolating vortex clusters is reduced, the number of available short vortex con-
figurations is enhanced by the emergence of a new class of short vortices at finite
temperatures, namely the vortices winding in time direction. In view of this, it
seems plausible that a transition to a non-percolating phase is facilitated as the
temperature is raised. This picture ought to be compared with the analytical cal-
culations performed for the Z2 Wegner model [Weg71], or for the Mack–Petkova
model [MP79, MP80, MP82a] in the strong coupling limit, as indicated in 2.2,
which led to similar results.

There are two pieces of evidence supporting this explanation, one of which
has already been given above. Namely, the deconfinement phase indeed contains
a large proportion of short winding vortices. More than half of the vortex ma-
terial is transferred to the newly available class of short winding vortices in the
deconfinement phase. The second piece of evidence is related to the behaviour of
stiff random surfaces in four space-time dimensions [Eng]. This model assumes
that the vortices are random surfaces associated with a certain action cost per
unit area and a penalty for curvature of the vortex surface. By construction, eval-
uating the partition function of this model simply corresponds to counting the
available vortex configurations under certain constraints imposed by the action.
The cost per surface area effectively imposes a certain mean density of vortices,
while the curvature penalty imposes an ultraviolet cut-off on the fluctuations of
the vortex surfaces. Beyond this, no further dynamical information enters. It
turns out that already this simple model generates a percolation phase transi-
tion analogous to the one observed here for the P-vortices of centre-projected
Yang–Mills theory. This suggests that the deconfining percolation transition of
centre-projected Yang–Mills theory can be understood in similarly simple terms,
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without any need for detailed assumptions about the form of the full centre vortex
effective action.

To sum up, centre projection has provided a means for reducing the degrees
of freedom of SU(N) Yang–Mills theory in a way that the infrared behaviour
of the full, unprojected Yang–Mills theory is reproduced to a high degree. In
this work, Monte Carlo measurements have been presented for the SU(2) case,
but first calculations have already been performed for the SU(3) gauge group in
[FGOb]. The resulting ZN theories bear many analogues to various ZN models
which admit analytical calculations. The centre vortex theory, however, has the
unique property to exhibit perturbative scaling behaviour. This is a necessary
condition for the theory to possess a continuum limit. But it must be borne in
mind that the additional condition of the spreading of the magnetic flux, which
has been realized very early already, is crucial for the formulation of a continuum
theory. To date, however, the continuum structure of these “thick vortices” is
not known. Indications exist that already at the level of the maximally abelian
gauge on the lattice, a rudimentary vortex structure may exist [Ten]. Also, there
is a high degree of correlation between the localizations of magnetic monopoles
in the maximally abelian gauge and centre vortices in the maximal centre gauge,
a fact which has already been mentioned in [DFG+98], and realized to hold even
above the deconfinement phase transition [Ten].

Very recently, an investigation into the topology of the two-dimensional vortex
surfaces in four-dimensional space-time has been reported in [BFGO], including
the case of finite temperatures. The investigation focusses on properties such as
orientability and genus of the vortex surfaces, and changes in these characteris-
tics as one passes the phase transition. At the moment, developments are being
undertaken to construct a continuum vortex theory merging some of the aspects
considered on centre-projected lattice Yang–Mills theory [ERb, ERa]. As a part
of these considerations, the construction of a non-vanishing topological charge
by means of vortices and magnetic monopoles alone is performed. A fractional
topological charge is induced by the intersection of vortex sheets and magnetic
monopole world-lines. The existence of fractional topological charge in configura-
tions that are singular nature in two-dimensional hypersurfaces has already been
shown in [FHP81, FHP82], but the connection between these two approaches is
as yet totally unclear.



Appendix A

Useful Formulae for SU(N)
Gauge Groups

In the following, τi are the generators of the SU(N) gauge group.

[τa, τb] = ifabcτc (A.1)

{τa, τb} =
1

N
δab1+ dabcτc (fund. repr.) (A.2)

1

2
ifabc = tr([τa, τb]τc) (A.3)

1

2
dabc = tr({τa, τb}τc) (fund. repr.) (A.4)

Trace rules for fundamental representation:

tr[τa] = 0 (A.5)

tr[τaτb] =
1

2
δab (A.6)

tr[τaτbτc] =
1

4
(dabc + ifabc) (A.7)

tr[τaτbτcτd] =
1

4N
δabδcd +

1

8
(dabe + ifabe)(dcde + ifcde) (A.8)

Trace rules for adjoint representation ((τa)bc = −ifabc):

tr[τa] = 0 (A.9)

tr[τaτb] = Nδab (A.10)

tr[τaτbτc] =
N

2
ifabc (A.11)

tr[τaτbτcτd] = δabδcd + δadδbc +
N

4
(dabedcde − dacedbde + dadedbce) (A.12)
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Sum rules:

dabcdabc =

(
N − 4

N

)
(N2 − 1) (A.13)

fabcfabc = N(N2 − 1) (A.14)

dabb = 0 (A.15)

dabcddbc = (N − 4

N
)δad (A.16)

fabcfdbc = Nδad (A.17)

fabrfcdr =
2

N
(δacδbd − δadδbc)

+dacrddbr − dadrdbcr (A.18)

fadefbeffcfd =
N

2
fabc (A.19)

fabrfcdr + facrfdbr + fadrfbcr = 0 (A.20)

fabrdcdr + facrddbr + fadrdbcr = 0 (A.21)

Explicit values for structure constants of the su(3) algebra:

a b c 2fabc a b c 2dabc a b c 2dabc

1 2 3 2 1 1 8 2/
√

3 3 6 6 −1
1 4 7 1 1 4 6 1 3 7 7 −1

1 5 6 −1 1 5 7 1 4 4 8 −1/
√

3

2 4 6 1 2 2 8 2/
√

3 5 5 8 −1/
√

3

2 5 7 1 2 4 7 −1 6 6 8 −1/
√

3

3 4 5 1 2 5 6 1 7 7 8 −1/
√

3

3 6 7 −1 3 3 8 2/
√

3 8 8 8 −2/
√

3

4 5 8
√

3 3 4 4 1

6 7 8
√

3 3 5 5 1
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