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1 Introduction

In this article we develope a discrete version of the Malliavin calculus as it
was done by Holden et al. in [8, 7]. A minor modification of the interpretation
of some definitions gives us the possibility to formulate and to proof the
Clark-Ocone formula in this discrete setting. The notation is much inspired by
Meyer’s toy Fock space as it is found in [14, 13, 15]. This finite calculus has its
analog in the Maassen kernel calculus of quantum stochastics [12, 9]. There the
non-causal non-quantum stochastic calculus is contained as a special case [10].
This approach uses the symmetric space over the space of square integrable
functions over the Lebesgue space [6]. Fundamental to the discrete calculus
is the Wick product of random variables [5]. This allows an easy definition of
the Skorohod integral. For this article we had most profit from [8].

2 Basic Definitions, Notations and Facts
Let be N € N and set At = % Then we take the set
A=1{0,AL...,(N - 1At}

as a discrete version of the finite time line [0, 1]. As measure p on A we take the

. . . A
uniform counting measure, i.e. for A C A we have p(A) = |N_| The measure
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algebra is the potential set of A. So the triple (A, P(A),u) is our discrete
version of the Lebesgue space ([0, 1], B, A).
Next we introduce the set

Q={wjw: A= {-1,+1}}

and think of each w as a Bernoulli random variable. On P(Q) we take the
uniform probability measure P, i.e. for S C ©Q we have P(5) = % = |2iN|

With respect to P we form L*(§), P) with the inner product
(X, V) =) X(w) (w).
wE

Tt is dim L%(Q, P) = 2V since we have a basis of characteristic functions to

each atom w € Q scaled with the factor v/2V.

Definition 2.1 For A € P(A) we define the functions x4 : @ — R by

xa(w) = [Leaw(s)- <

Proposition 2.2 The set {x4}acp(a) is an orthonormal system in L*(€), P).
PROOF: First note that for A, B € P(A)

xa@xsw) = [Jws) [Je= [[ «(s)=xaanw).

SEA teEB seAAB

Thus we see that
{(x4:XxB) Z XanB(w
weN
For A = B we obtain ) o xp(w)P(w) =1 and for A # B we have to show
that >~ cq xo(w)P(w) = 0 with C = AA B # (). But x¢ has as only possible
values -1 and +1 depending how often w has value -1 on (. Summing over
w it is enough to show, that the product y¢(w) =[],z w(s) is in the half of
the cases -1. Suppose that |C| = n then the product is -1 if an odd number of
-1’s occures in Hsecw(s) and +1 for an even number of -1’s. Thus we show

that 37, (5) = 2k (74
v (o ()£
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Corollary 2.3 {xa}acp(a) is a basis for L*(Q, P).

PRrOOF:
f{xa}aep(n) = tP(A) = 2V = dim L*(Q2, P).

O
Notation 2.4 As shorthand notation we set
P,={Ae€PA):|A] =n}, P=PA)=U,P,.
And for X € L*(Q, P) we call
X=) X(Aya=>_ > X(A)xa
the Walsh decomposition of X. <
Proposition 2.5 Let be X =37, » X(A)xa. Then E[X] = X(0).
PROOF:
EIX] =% > X(A)xa(w)Pw) =Y X(A) Y xa(w)P(w) = X(0)
wEQ AEP A€P WwEQ
since 1n the proof of the preceeding proposition we have seen that
0, A£0
Y xalw)Pw) = { o
wER 17 A - @
O

Definition 2.6 Letbe X =3, » X(A)xa andY =3, Y(B)xp random
variables. Then the Wick product X oY is defined by

XoV =Y (Y X(AY(B))xc.
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Remark 2.7
(1)

X AUB, ZfAﬂB:@

4O — .
Xa©xs { 0, otherwise

(2) f AN B = then x4 xB=X4"XB-

Lemma 2.8 (L*(Q, P),+,¢) is a commutative ring with unit xg.

PRrROOF: straightforward. O

Definition 2.9 (discrete analoga)

e A stochastic process is a family of random variables (X )sen, i.e. a map
X : Q@ x A = R such that for each fized s € A the map X(-,s) is in
L*(Q, P).

e The Brownian motion B is the random walk

B:QxA—=R, Blw,t)= Zw(s)\/ﬁ

s<t

e The white noise W over (A, u) is the map

W:Q x P(A) = R, W(w,A):Zw(S).

s€EA

S

Fort € A we set Wiy(w) = W(w,{t}) = %.
o The forward increment of B is defined by
AB; = AB(w,t) = B(w,t + At) — Blw,t) = w(t)y/AL
Thus the derivative of the Brownian motion is the while noise:

ABy wy/AL _ wi

At AL AT

- Wt.



o Let be (X)sen an adapted (whatsoever this means) stochastic process.
Then the 1t6 integral is defined by

/XdB — /Xsst =Y X, AB, =) X, W,AL

<

Now we will establish a discrete version of the Wiener-1t6 decomposition
for random variables X € L*(Q, P). Let be X = 37, ., X(A)xa the Walsh
decomposition of X. Then we define for n > 0 the symmetric function X,, on

A" by

n/2p1)=1 ift. 4t fori % i
Xn(h,---,tn):{(At n )T X ({ty, ..t )), it #tjfor i #

0, otherwise

where X ({t1,...,1,}) is the Walsh component to A = {ty,...,t,}. For n =0
we set Xo = X(0) = E[X]. Then we get

X = Y X(Axa = Y Y X(A)xa

AeP n AEP,

= > ) X({tr, ot Pwlt) - w(t)

7 {t1,0tn}EPn

= > Y nlXa(t, ) A w(t) - w(t)

= > > Xu(tieoosta)AB(t) - AB(t).

The last term is nothing else than the discrete Wiener-1to decomposition.

3 Conditional expectations

Notation 3.1 For B C A we denote by Fg the o-algebra on € generated by
the random variables {w(s) : s € B}. <

For example for each s € A we have
Frg = {04 w(s) = —1h {wwls) = 11,0},
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Since this are the atomic g-algebras we can construct every Fpg out of them:
Fp=0—alg[{{w:w(s) = =1}, {w:w(s) = +1}|s € B}|.

Proposition 3.2 Lel be X =3, X(A)xa and Fp given. Then the con-
ditional expectation of X with respect to Fg is given by

Fel= Y X(A)ya.

ACB

E[X

ProOOF: That ZAcB X(A)xa is Fp-measurable is evident. Further we
have to prove that for every H € Fp it holds

/ E[X|}'B]dP:/ XdP .
weH weH

The left hand side is

/ EIXIFP = 303 X(A)xa)Pe)

= Y X(A) Y xaw)Pw)

and the right hand side is

/WEHXdP = ) ) X(A)xa(w)P(w)

= ) X(4)) xa(w)P(w).

So it is sufficient to show that for H € Fp and for every A ¢ B we have
D xalw)P(w) =0.
weH

If A ¢ B then there exists an so € A with sqg € B. But this shows that we
can divide the set H into two parts

H, ={we H:w(sg) =—1} and H} ={we H:w(so) =41}



and H = H_ UH;'; Furthermore for each w™ € H_ there exists exactly
one wt € H} such that w™(s) = w'(s) for all s € A\ {so}. This shows
§H_ = §H} and therefore )7 xa(w)P(w) = 0. Thus we have proven that

XdP =Y X(A))  ya(w)P(w) = / E[X|Fg]dP
weH
for every H € Fpg. O

The formula shows that the conditional expectation of X with respect to
Fp depends only on those Walsh components x4 such that A C B.
We observe that

Xoxp = <ZX(A>XA><>XB

= ZX(A)XA'XB = FE[X|Fp:]- xs. (1)

ACB*¢

With that observation it follows easily
Proposition 3.3 Let be X,Y € L*(Q, P). Then

XoV = Y Y(A)E[X|Fslxa
= D X(A)EY|Falxa
- ;;A(X(A)E[Ymc +Y(A)EIX|F ).

PRrOOF: The first and the second term follow immediately from equation (1).
The last is just the average of the first two. O

The next observation is implicitly contained in the remark that y, ¢ yp =
xa-xg if AN B =0, but the interpretation now has another flavour.

Proposition 3.4 Let be A,B C A and X,Y € L*(Q, P). Assume ANB =10
and that X 1s Fs-measurable and Y is Fg-measurable. Then

XoVY=X-Y.



PRrOOF: The measurability assumption shows that the walsh decomposi-
tions of X and Y are

X =Y X(C)yc and Y = Y X(D)yp.

CCA DCB

Thus
XoY = M AX(C)Y(D):C CADCB,CND=0}xoun
c,D

= Z{X<C>Y(D):OCA’DCB}X0AD = X-Y.

c,D

Definition 3.5 Fort € A we set

Fi: = o—alg[{w(s)|s < t}]
= o—alg{{w:w(s) = -1}, {w:w(s) = +1}|s < t}]

and call this the past algebra. (Note thal w(t) is nol contained in the gene-
rating set.) A random variable X is said to be Fi-adapted if

E[X

Fl=X.
This means that the walsh decomposition of X has the form

X= Y X(A)xa with[0,t[={s € A:s<1}.

AcC[o¢[

A stochastic process (Xs>320 is adapted if the random variable X; is F;-
adapted for each t € A. <

Thus for a Fi-adapted random variable all walsh coefficients X(A) with
max A > { are zero. Also the Ito integral of an adapted process makes sense
since the product of the walsh components X;(A)x4 of X; and the forward
increment AB; = x{37/Al of the Brownian motion are well defined.



Corollary 3.6 For every process (X)sea with Walsh decomposition X; =
Yoaca X(A;t)xa one has

EIXJF] = Y X(Ait)xa= Y X(Ajt)xa. (2)
Acloq] mzé(CAA<t
Proo¥: Follows from proposition 3.2 and the definition. O

4 Discrete Skorohod integral

Definition 4.1 Let be X : Q@ x A = R a stochastic process. The Skorohod
integral of X with respect to the Brownian motion B is defined by

/XcSB — /XséBs — Z)g o AB,.

sEA

As an easy consequence we have

/XSJBS =) X,oxVAt=Y X, o W,AL.

SEA SEA

So we see that the Skorohod integral is the Lebesgue integral of the transfor-
med process by Wick multiplication with white noise.

Remark 4.2

(1) Ifthe stochastic process X is adapted then the Skorohod integral reduces
to the Tto integral.

(2) T X, =3 cp X(A;5)xa is the Walsh decomposition of X, and trans-
forming this into the corresponding discrete Wiener-1t6 decompositi-
on then the Skorohod integral is roughly speaking Integration with
>, - AB; over the parameter s.



PRrOOF of (1): Take A < s as notation for max A < s. Since X is adapted
we have the Walsh decomposition X, = >7,  X(A;5)x4. Hence A and {s}

are disjoint and we obtain

/XS(SBS = ZZX(A;S)XAOX{S}\/E

s A<s
= Y Y X(A;s)xa -y AL
s A<s

/XcSB = ) X,oxmVAL
S {0 9) SRIRII PR

s n AP

_Z Z Z Xn(tl,...,tn;S)X{tl,...,tn}At% OX{S}\/E

B (1 eytn) EAP

with X, (+; s) the symmetric functions in the Wiener-It6 decomposition of Xj.
Now we rename the parameter s = ¢, and introduce the symmetric functions
Xoug1 of n 4+ 1 arguments by

)?nH(t],...,th) = 0 if {; =1; for some 1 # 7 and
Xn-l-l(tla"'atn-l-l) -

1 n
(Xn(t1,...,tn;s) + ZXn(t],...,tk_],s,tk+1,...,tn;tk))

n+1

otherwise.
Then one obtains changing the sum over s inside

/X(SB Z Z )/;’n+1(t17 . 7tn+1)X{t1 ..... tn+1}At"_-2l-_1

n (tlv 7n+1 eAn+1

Z Y Xl b)) AB(L) - AB(Lag).

(tl ..... tn+1)EAn+1
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O

So one sees that the discrete Skorohod integral recovers formally the pro-
perties of the continuous one.

5 Discrete Malliavin derivative

In this section we will develop a discrete version of the Malliavin derivative.
For this purpose we introduce an “integrated” Malliavin derivative, called the
Malliavin process.

Notation 5.1 The discrete Cameron-Martin space C' M is the space of sto-
chastic processes X : 2 x A — R with inner product

AX, AY, | !
Z( Y ) At] _ EXS:E[AAS-A}Q].

(X,Y)em=FE

<

For the definition of the Malliavin process and the Malliavin derivative we
need the following notation:

Notation 5.2 For s € A and w € Q we define w} and w] by
WE (1) = w(t) for t #s
3 +1 for t =5
<

Definition 5.3 For every random variable X € L*(Q, P) we define the Mal-
liavin process (DyX)i>0 by the family (D)o of operators on L*(, P)

DX() = 53 (X(w) - X(w]) VAL

s<t
The Malliavin derivative (DtX)tgo of X s the derivative of the Malliavin

process:
+ - —_
DtX((.u) _ ADtX(“) _ X(wt ) X(wt ) )
At 2/ At
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This two families of operators can be viewed as two operators
D: L*(Q,P)— CM and D:L*(Q,P)— CM.

Remark 5.4 The Malliavin derivative acts on the discrete Wiener-1t6 de-
composition as just leaving aside one of the integrations over B.

PROOF:

Pt = BT X it A

n (t1<...<tn)EA"

+ o —_
Z Z n!Xn(tl,... )At_X{tl, ,tn}(wt) X{tl,...,tn}(wt )
AVIAN

no(t1 <<t ) EA™

Z Z ”!Xn(th...,tn)Atnz_] .

n (t1<...<tn)EA?

ST @ I e

Se{t],...,t } .Se{t1,...,tn}

= Y Y nlXu(t,... ) AT Xyt (@)

n (t1<...<tp)EAT
t€{ty,...,tn}

> > WX (b b, AT X3 (W)

no(t <<ty 1 )EART

= ) > nXa(t, e bass ) AB() - AB(ta).

n (tlv ln— 1 EA" 1

a

So the discrete Malliavin derivative acts on the discrete Wiener-Ito de-
composition of a random variables as expected from the continuous case.

Remark 5.5 Holden et al. in their article [8] called D, X the Malliavin de-

rivative. This seems to be the wrong way around since the Cameron-Martin

AR X Dy X acts in the right way on the chaos decompo-

increment D, X =
sition. Furthermore with our Malliavin derivative D, X we establish a discrete
version of the Clark Ocone formula.

12



One sees that Dyxg = 0. In quantum mechanics xy is the vacuum state and
Dy is the one particle creation operator at time ¢.

Proposition 5.6
DtX:X'Wt+XOWt.

Proor: If X = EAEP X(A)xa then

X(u)"’) 1
> X(A)xan(w)(At)72 .
A = T

te

But since x4 - Wy = x4 0 W, if A and {t} are disjoint we get

X - Wt + Xo Wt =
D X(Apax(A)7F = D X(A)ya o xn(H)7E
AeP A€P
ZX JXanq(AL)” P - ZX )X augy(At)~ 2
AeP AEP
tEA
= Y X(A)xayp(At)77.
AEP
tEA
Thus the proposition follows. O

6 Discrete Malliavin divergence

In this section we define the discrete Malliavin divergence and show that the
Malliavin divergence is the adjoint operator to the Malliavin process.

Definition 6.1 The Malliavin divergence § is an operator from C'M into
L*(2, P) defined for a process Y =Y; by

§Y = AYQ

teEA

oABt /—53
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Remark 6.2 If Y, = st XAt for some process X, then

§ (Z XsAt> = Z Xﬁt o AB; = /XéB.

s<t teEA

This means that the discrete divergence of the discrete Lebesgue integral of
a process is nothing else than the discrete Skorohod integral of that process.

Proposition 6.3 D and § are adjoint operalor in the following sense:
(X,0Y)r20p) = DX, Yoy VX € L(Q,P), VY e CM.

ProoF: First we note that
0, A#0
S xaPle) = M7y

We show that the left hand side is equal to the right hand side. Let be X =
Y oacp X(A)xa and the AY, = 3", AY(B;s)xp the walsh decompositions
of the random variables X respectively AY;.

\/E<X, 6Y)r2ap) = FZ EIX - (
— % Z E[X - Z AY(B;s)xB © X{s}]

BeP

)]

= Y E <ZX(A)XA>' Y AY(B;s)xpugs

AeP BeP
<¢B

Y Y Y E[X(A)AY(B;s)xpuisadl

s BEP AeP

_ Z Z Z ZX A)AY (B; s)xBufsyas(w)

s 1’367D AEP we

= ) Z X(BU {s})AY(B;s).

s BeP
s¢B
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Now we calculate the right hand side:

VAUDX, Y )ou = /ALE]Y DX - AY]

= B> | [ 22 X(Axa '(ZAY(B;S)XB>

s A€P BeP
SEA

Z Z Z X(A>AY(BS S)XBA(A\{s})

s Ae7’ BeP

= > Y D) X(MAY(Bis)xaah(w)

wER s AEP BEP

= 203 X XAULHAY(Bis)xmaa()

wEN s AEP BeP

= ZZX AU {s})AY(A;s).

s A€73

Thus we obtain the result. O

7 Discrete Clark-Ocone formula

Now we are prepared to proof the discrete version of the Clark-Ocone formula.
The continuous Clark-Ocone formula for random variables F' looks like this:

F = E[F] +/E[DtF|}}]d,Bt

and can be proven under certain conditions for F'. The integral here is an 1to6
integral. In the discrete version we have'nt any condition since there are’nt
any convergence problems for sums or integrals. The discrete Clark-Ocone
formula reads as follows.

Theorem 7.1 Let be X € L*(Q, P). Then it holds
X = E[X]+ Y E[DX|F]-AB,.

teEA
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ProOF: Let be X = 37,5 X(A)xa the Walsh decomposition of X.
First remember from proposition 2.5 that E[X] = X(0). We show that
Yoien EIDX|F]- AByis equal to X — X (). We use the following expression
for D, X:

D X(w) = X(wt;\/_g(w;) = ZQX\/(% (xa(wf) = xa(wi))

Z)\(/(A—I?XA\&}(W) = Z%M(w)-

tEA t¢

Since the conditional expectation with respect to F; cuts the Walsh com-
ponents x4 with A ¢ [0, [, that means it must be max A < ¢, we obtain

X(Au{t}) X(Au{t})
E[DX|F] = — = X4 = — = X4
tgA/?XG;A<t At ZIZ:j<t At

Now we integrate this with ), - AB; and since A and {t} are disjoint using
XA X{t} = Xau{} we get

ZE[DtX|ft]ABt = Z Z AU{IL} 5 X4- X{t}\/>

teEA tEA A€P
max ALt

= Z Z (AU{t}) XAu{f}

tEA AEP
max ALt

= Z Z X(A)xa = Z X(A)xa

tEA A€P AeP\D

max A=t

— X = X().

Thus the proof of the theorem is done. a
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