
New Bounds on The Encoding of Planar
Triangulations

Stefan Gumhold
WSI-2000-1

ISSN 0946-3852

March 9, 2000

Wilhelm-Schickard-Institut f¨ur Informatik
Graphisch-Interaktive Systeme
Auf der Morgenstelle 10, C9

D-72076 Tübingen
Tel.: +49-7071-2975463
Fax: +49-7071-295466

e-mail: gumhold@uni-tuebingen.de

Abstract
Compact encodings of the connectivity of planar triangulations is a very important subject

not only in graph theory but also in computer graphics. In 1962 Tutte determined the number of
different planar triangulations. From his results follows that the encoding of the connectivity of
planar triangulations with three border edges andv vertices consumes in the asymptotic limit for
v !1 at least3:245v+o(log(v)) bits. Currently the best compression method with guaranteed
upper bounds is based on the encoding ofCRLSE-Edgebreaker strings and consumes no more
than3:67 bits per vertex.

In this report we improve these results to3:552 bits per vertex. We also present a new coding
scheme for the split indices in a different encoding method - the Cut-Border Machine. We describe
an encoding with an upper bound of4:92 bits per vertex. Finally, we introduce a Cut-Border data
structure which allows for linear coding and decoding algorithms.

Contents

1 Introduction 2

2 The Cut-Border Machine 3
2.1 Cut-Border Machine Encoding 3
2.2 Split Index Encoding in 1.87 Bits per Vertex . 4
2.3 Upper Bound of 4.92 Bits per Vertex. 8
2.4 Linear Coding and Decoding Time . 9

3 Improved Edgebreaker Coding 12
3.1 Spiral Reversi Decoding of Edgebreaker Symbols 12
3.2 3.557 Bits per Vertex Encoding of Edgebreaker String 13
3.3 Using More Constraints for 3.552 Bits per Vertex Encoding 15

4 Conclusion and Future Work 17

1

2

1

v3 v

v

Figure 1: Sample triangulation with the three external verticesv1; v2 andv3.

1 Introduction

In this report we deal with the encoding of planar triangulations with three border edges as defined
by Tutte in [10]. Figure 1 shows an example of a planar triangulation with the three border vertices
v1; v2 andv3. Two planar triangulations are defined to be equal, if there exists a bijection between
their connectivity graphs that maps all border vertices of the first triangulation to the border vertices
with the same indices of the second triangulation. Tutte enumerated all different planar triangulations
and showed in this way that an optimal encoding uses at least3:245 bits per vertex for a sufficiently
large number of vertices. So far the best encoding schemes [1] and [9] consumed4 bits. The latter –
the Edgebreaker scheme – could be improved to3:67 bits per vertex [8].

Planar triangulations are a special case of closed manifold triangle meshes where the genus of
the triangle mesh is zero. As most encoding schemes for planar triangulations can be extended to
manifold triangle meshes with border, the schemes are also important in the representation of surface
models and have been studied extensively [2, 6, 3, 5].

The algorithmic scheme of the cut-border machine [5] is very simple. It visits the triangles of an
edge-connected component of a triangle mesh in an order defined by the triangle mesh itself. The
same traversal is used for encoding and decoding the connectivity – triangle by triangle – into one
operation symbol for each triangle. By the use of arithmetic coding and conditional probabilities,
the cut-border machine allows to encode the connectivity of typical triangle meshes to an average
of 1:9 bits per triangle [4]. As one of the operation symbols – the split symbol – also includes a
distance from the current location in the mesh, it is not obvious whether the operation symbols can
be encoded in linear time and space in terms of the number of vertices in the triangle mesh. For
planar triangulation this is true. We describe a modified version of the cut-border machine in section
2, which encodes the connectivity of planar triangle meshes with less than4:92 bits per triangle.

The Edgebreaker encoding scheme improves upon the cut-border machine in the way that it
allows to avoid encoding the split indices by making the symbol, which closes a compression loop,
more expensive. Overall it allows to compress the connectivity with less bits. The Edgebreaker
scheme translates the connectivity of a planar triangle mesh into a string over the five symbols
CRLSE and the best coding scheme for these strings has been so far the coding presented in [8] to
3:67 bits per vertex. In section 3 we improve this result to3:552 bits per vertex.

2

a) ”new vtx” : � b) ”forward” : ! c) ”backward” :

d) ”split i” : 1i e) ”close” : r
def
=!

Figure 2: Five possible different operations for encoding one triangle and their corresponding sym-
bols. The so far encoded triangles are shaded in a light green, the cut-border edges are bold and dark
green, the gate before the operation is the bold dark arrow, the currently encoded triangle is brown
and the new gate(s) after the operation is/are yellow.

2 The Cut-Border Machine

In this section we present a new variant of the Cut-Border Machine which consumes no more than 6
bits per vertex for the encoding of planar triangulations.

First we give a short review of the Cut-Border Machine encoding (section 2.1), followed by
a new encoding of the indices of the split operation in section 2.2 and we complete the encoding
scheme with the limit of4:92 bits per vertex in section 2.3. At the end of this section in 2.4 we
present a data structure for the cut-border which allows for linear time encoding and decoding with
the cut-border machine.

2.1 Cut-Border Machine Encoding

The Cut-Border Machine translates the connectivity of a planar triangulation into a sequence of five
different symbols. One of the symbols induces the inclusion of an additional index.

The encoding algorithm is a region growing algorithm, which stores at any time all vertices and
edges of the planar triangulation, which divide the so far encoded triangles from the not yet encoded
triangles. These vertices and edges form a set of closed loops, which is called thecut-border. Before
encoding starts, the cut-border is initialized to one loop containing the external edges and vertices.

Triangles are encoded at a specific cut-border edge which is called thegate. Each time a triangle
has been encoded at the gate, the gate is set to another cut-border edge in a predetermined way. In
the beginning the gate is set to the external edgev1v2. Figure 2 shows the different operations and
their symbols:

3

� ”new vertex” (�): The newly encoded triangle is formed upon the gate with a new vertex. The
gate is set to the right newly introduced cut-border edge.

� ”forward” (!): The gate is connected to the next edge on the cut-border and the gate is set to
the only newly added cut-border edge.

� ”backward” (): The gate is connected to the previous edge on the cut-border and the gate
is set to the only newly added cut-border edge.

� ”split i” (1i): The newly encoded triangle splits the current loop of the cut-border into two
loops. The indexi specifies the third vertex. Deviating from the index definition in the original
work we denote the index of the gate vertices with�1, the neighboring vertices with�2 and
so on, such that the smallest valid vertices are�3 and the absolute value of the vertex index
defines the length of the shorter cut-border loop. After the split operation the gate is set in
both loops to the respectively new cut-border edges.

� ”close” (r): The close operation eliminates the current cut-border loop and activates the
gate of the cut-border loop, which was split off latestly. The close operation can be encoded
with the!-symbol as both encoding and decoding algorithms know the length of the current
cut-border loop.

The encoding is done, when the last available cut-border loop closes. The encoding permutes the
vertices. The sample triangulation in Figure 1 is encoded to the string

���!���!!!�1r!r;

when the edgev1v2 is used as initial gate. During decompression the cut-border is updated in exactly
the same way as during compression and the planar triangulation with the permuted vertices can be
reconstructed. For a more detailed description of the Cut-Border Machine see [5].

2.2 Split Index Encoding in 1.87 Bits per Vertex

In this section we show how to encode the indices for the split operation with proofably no more
than1:87 bits per vertex. For this we describe different variable length coding schemes for signed
indices. Theorem 2.1 states that the split indices do not consume more than1:87 bits per vertex in
the cut-border loop independent of the sequence of split operations.

There are two important ideas which contribute to the linear storage space consumption of the
split indices. Firstly, the indices are encoded with variable length, such that an indexi is encoded
with no more than a constant number times the binary logarithm ofi. The second idea is that split
indices defining vertices on the current cut-border loop before the gate are encoded with negative
indices. In this way all split operations, which cut away small parts of the current loop also consume
few bits.

2.2.1 Variable Length Index Coding Schemes

Figure 3 illustrates three different simple variable length codings for signed indices. All three cod-
ings begin with one bit for the sign of the index. Coding scheme a) encodes each bit with two bits
– the bit of the index and an additional control bit specifying whether further bits follow. In scheme
a) indices�3 and�4 are encoded with one sign bit, one index bit and one control bit. The indices
�5 : : :� 10 are encoded with five bits and so on. Scheme b) packs the index bits in bundles of two
index and one control bit. Finally, the third scheme c) mixes both approaches and simple arithmetic
coding. The first three bit bundle specifies the two lowest significant bits or equivalently the remain-
der of the index when divided by four. The second bundle encodes a remainder of a fourth of the
index divided by three. Using arithmetic coding this bundle can be encoded withlb3 + 1 � 2:585
bits. The index divided by twelve is encoded with two bit bundles as in scheme a).

4

Figure 3: Three different variable length coding schemes for signed indices.

For all of the three schemes in figure 3 the storage spaceI�2fa;b;cg for encoding an indexi obeys
the relation

8i � 3 : I(i) � �lbi+ 1; (1)

with the different values for�� as given on the right of figure 3. Let us justify the validity of
relation 1 exemplary for scheme c). The problematic indices are the ones which force the usage of
a new bundle. In scheme c) these are the indices�3;�7;�15;�27; : : : ; 12 � 2k + 3; : : :. The first
bundle consumes with the sign four bits, the second bundlelb3 + 1 bits and each following bundle
further two bits. Thus for the indices�3 one must check4 � �clb3 + 1, for the indices�7 check
4 + lb3 + 1 � �clb7 + 1 and for the remaining problematic indices relation 1 is valid, iff

8k � 0 : 4 + lb3 + 1 + 2(k + 1) � �clb
�
12 � 2k + 3

�
+ 1: (2)

Solving the equal case of this relation fork yields no real solution and the relation holds true for
k = 0. Therefore, it must hold true for all values ofk. Similar arguments show the validity of
relation 1 for the varible length coding schemes a) and b).

The minimal value for� can be achieved by an arithmetic variable length coding scheme. Again
the first bit is used for the sign. To the absolute value of each index a subinterval of the unit interval
is assigned, the length of which corresponds to the frequency�i of the encoded index. In arithmetic
coding the consumed bitsbi of a symbol or indexi relates to the frequency via the formula

�i = 2�bi : (3)

From relation 1 we assume thatbi = �minlbi. As all frequencies of the different indices must sum
up to one this yields a condition for�min

1 =
X
i�3

2��minlbi =
X
i�3

1

i�min
: (4)

This equation is hard to solve for�min, but with the integral
R

1
�min

we could proof the following
relation

1:589 < �min < 1:59: (5)

An arithmetic coder that achieves�min requires arbitrary precision arithmetic and therefore is not
able to encode and decode symbols in constant time. We did not find a simple coding scheme to
improve on�c = 2:03 but there probably is one. For the remainder we will stick to�c.

2.2.2 Upper Bound on Index Coding

Theorem 2.1 For any planar triangle mesh withv vertices the indices of the split operations in the
cut-border representation can be encoded with less than� = 1:87v bits.

5

Proof: For the coding of the indices of the1-symbols we want to use the coding scheme of figure
3 c). The index coding does not depend on the order of the encoded symbols. Therefore we can
rearrange the symbols in the following manner. Let

��!���14�! ���! ��13r �!r���1�3�! rr

be a sample cut-border string. Then we rearrange it by extracting all� symbols to the front:

����������������!14! ! 13r !r1�3! rr:

By going through the cut-border symbols in reverse order, we can keep track of the lengths of the
cut-border loops and determine new indices for the split operations. At a close operation the current
length is pushed on a stack and a new length of three is generated. At a forward and a backward
operation the current loop length is increased by one. At each split operation a new split index is
determined for the operation symbol. The absolute value of the new index is smaller length among
the current length and the latestly pushed length. It is positive if the current length is smaller, negative
otherwise. The split operation is reversed by popping one length, decrementing it by one and adding
it to the current length. Finally, each new vertex operation decreases the current length by one, such
that if the beginning of the rearranged cut-border symbol sequence is reached, exactly one length
remains, which is equal to three. Thus the cut-border sequence with the new split indices is

����������������!1�8! ! 13r !r1�3! rr:

By construction of the new split indices the resulting sequence is a valid traversal description for
the Cut-Border Machine. Furthermore the absolute values of the new indices of each split symbols
can only be greater or equal to the original indices as during the reverse tracking of the lengths the
missing new vertex operations can only increase the tracked lengths.

There actually exists a planar triangulation producing the rearranged sequence, but this is not
important for this proof and requires further mathematical techniques. It is though important that
we can now restrict our considerations to the situation when at the beginning of the encoding one
cut-border loop with all vertices is built, which is recursively split. LetL(v) be the maximal storage
space consumed by the indices of split operations arising during the encoding of a cut-border loop
with v vertices. Then all possible split operations performed on the loop yield the recursive formula
for L(v)

L(v) =
i=d v2 e
max
i=3

fIc(i) + L(i) + L(v � i+ 1)g : (6)

L(v) is the maximum storage space over all possible split operations. The absolute value of the
split indexi runs from three to

�
v
2

�
and can be encoded withI(i) bits. Additionally, the maximum

storage space of the two remaining loopsL(i) andL(v � i + 1) have to be included. A loop with
three or four vertices cannot be split further, for the split of a loop with five vertices there is only one
possibility and a loop with six vertices can be split with13 or1�3. Therefore, it holds

L(3) = L(4) = L(5) = 0 L(6) = 1: (7)

To proof the theorem we have to show the validity of the relationL(v) � � � v for all v. It is
obviously true forv < 7 if � � 1. As equation 6 contains the storage space for the indexi, we have
to prove for the remaining values ofv an even stronger upper bound

U(v)
def
= � � v � (�lbv +
) ; (8)

i.e. we want to prove the relation
8v � 7 : L(v) � U(v): (9)

To abbreviate the proof we just guess the values of�; � and
 to be1:87; �c = 2:03 and4:92. The
values were chosen in a way thatU(6) = 1. But we still have to consider all special cases wherei
or v assumes the values3; 4 or 5.

6

Cut-border loops of length six to nine can be split into two loops of length less than six. For
the6; 7; 8 and9-vertex loops we introduce special coding schemes for the indices of split operations
performed on these loops. This is possible as the cut-border machine knows the length of the current
loop during encoding and decoding. For a split operation on a loop withl � 6 vertices, there arel�4
different split indices. Using arithmetic coding the different indices can be encoded withlb(l � 4)
bits. A seven vertex loop can be split in three different ways (13;1�3 and14). The three cases
can be encoded withlb3 < 1:585 bits. The resulting loops are of length less or equal five and
thereforeL(7) < 1:585 as no further indices need to be encoded. The eight vertex loop has four
possible splits, which are encodable in two bits. As the eight vertex loop can be split into a three
vertex and a six vertex loop, an additional bit might be needed. ThusL(8) = 2+L(6) = 3. Finally,
the nine vertex loop split index consumeslb5 bits and we getL(9) = lb5+L(7) < 3:91. Gathering
these cases we state

L(7) < 1:585 < U(7) > 2:4

L(8) = 3 < U(8) > 3:8

L(9) < 3:91 < U(9) > 5:3

Next we consider the inductive step for the cases wherei is less or equal five in equation 6 and
show

8i 2 f3; 4; 5g : Ic(i) + L(i) + L(v � i+ 1) � U(v): (10)

In the following we apply equations 1, 7 and 8 as denoted above the less or equal signs

8i 2 f3; 4; 5g :

Ic(i) + L(i) + L(v � i+ 1)

(1,7)
� �clbi+ 1 + L(v � i+ 1)

(9,8)
� �clbi+ 1 + � � (v � i+ 1)� (�clb(v � i+ 1) +
)

(8)
= U(v)� (i� 1)�+ lbi+ 1 + �clb

v

v � i+ 1
:

From the last expression we learn that equation 10 holds true, iff anything in the last expression
besidesU(v) is less or equal zero

(10) ()

8i 2 f3; 4; 5g : (i� 1)� � lbi+ 1 + �clb
v

v � i+ 1
()

8i 2 f3; 4; 5g : v � (i� 1)=
�
1� 2�

(i�1)��lbi�1
�c

�
(=

v � 7:

The last step was performed by plugging in the values for�; �c andi and proves equation 10.
With all the preliminaries we can finally attack equation 9 and prove it by induction. That is we

validate equation 9 forv under the assumption that equation 9 holds true for allv0 < v. We start
with equation 6:

L(v) =
i=d v2e
max
i=3

fIc(i) + L(i) + L(v � i+ 1)g

(10)

� max

(
U(v);

i=d v2 e
max
i=6

fIc(i) + L(i) + L(v � i+ 1)g

)

7

If U(v) is the maximum, equation 9 holds true and therefore we do neglect the outer maximum in
what follows. We can now plug in the inductive assumption:

L(v)
(9)

�
i=d v2e
max
i=6

fIc(i) + U(i) + U(v � i+ 1)g

(1;8)

� U(v) + 1 + ��
 + �c
i=d v2e
max
i=6

�
lb

v

v � i+ 1

�
:

We skipped some simple algebra in the second step. The term inside the logarithmic function evalu-
ates always to a value greater one and less than two, becausei�1 is always less thanv=2. Therefore
the logarithmic expression is always less as one and we get

L(v) � U(v) + 1 + ��
 + �c = U(v);

what proves equation 9 and together with equation 7 the theorem.
�

For a better variable length index coding scheme with� = �min theorem 2.1 can be improved
to 1:54 bits per vertex with only one change in the proof: the special coding must also be applied to
ten vertex loops.

2.3 Upper Bound of 4.92 Bits per Vertex

It is left to discuss how the different symbols�;!; ;1 andr are encoded. As there aret = 2v�2
triangles in a planar mesh, there are2v � 3 symbols to be encoded. As there arev � 3 �-symbols,
the�-symbol is encoded with one bit, contributingv � 3 bits to the overall storage costs. There are
two further constraints which can be exploited.

1. If the current cut-border loop has three vertices only the new vertex and the close operations
are possible.

2. After a new vertex operation no backward may follow.

As the close operation may only arise in the situation of the first constraint, it can be encoded with
one bit, i.e. if the current cut-border loop contains only three vertices, one bit encodes whether a
close or a new vertex operation follows.

To fully exploit both constraints, we define the constant� as the number of bits, which are
consumed for encoding a triangle not introduced by a new vertex operation. With this definition all
symbols without the split indices are encoded with less than(�+1)v bits. Table 1 shows all possible
cases of subsequent symbols which might arise at the current gate position and the number of bits,
that may be consumed by each case in the columns “bound”. Here we included the observation

bits case bound case bound

2 � ! �
3 1 2� � 1 �! � + 1
4 �1 2� ��! � + 2
5 ��1 2� + 1 ���! � + 3
...

...
...

...
...

Table 1:

8

that each1-operation forces oner-operation, which can be encoded with one bit. Thus each1-
operation may consume2� � 1 bits.

From the maximum number of bitsb in the column ”bound”, the frequency� of each case can
be computed from2�b. The sum over the frequencies of all cases in table 1 must yield one. This
condition yields an equation for� and� computes to2, which is rather an accident but simplifies
the encoding of symbols. In table 1 the cases are arranged in rows, such that each row contains all
cases with the same number of bits given in the first column. For each bit number starting with two
bits, there are exactly two cases. Thus a case is encoded in two parts. First the rowr is encoded with
r�1 one bits followed by a zero bit and then one bit selects the column. We can conclude the whole
discussion with the following theorem.

Theorem 2.2 A planar triangle mesh withv vertices can be encoded with the cut-border encoding
scheme with less than4:92v bits.

If a better variable length index coding scheme is found an upper bound of4:5400 bits per vertex
can be shown.

As the coding of the symbols without the split indices consumes only3 bits per vertex and an
optimal coding consumes at least3:245 bits, it is worth while to check whether the split indices
can be encoded even better. The best coding scheme we can imaging, which does not allow for a
linear time coding algorithm exploits the knowledge of the current loop length better and works as
follows: we use the loop storage spaceL(3 : : : 6) from equation 7. For the loop of lengthv > 6
we assumeL(v) is the same for all possible split operations. We distinguish the split operation
with index i = 3 : : : v � 2, such that we do not need to handle a sign. Finally, we calculateL(v)
recursively from the arithmetic coding equation which sets the sum of the frequencies of all possible
split operations for one loop lengthv to one:

8v > 6 : 1 =
v�2X
i=3

2�(a�L(i)�L(v+1�i)):

We calculated the fractionL(v)=v for v = 3 : : : 100 and the resulting plot converges to1:15 and
crosses1. Thus it seems to be impossible to encode a planar triangulation with less than four bits
per vertex with the cut-border encoding scheme.

2.4 Linear Coding and Decoding Time

In the original work [5] the data structure for the cut-border has been implemented as linked lists
and the split operation could neither be encoded nor decoded in linear time yielding a running time
worse thanO(n lnn). The advantage of the linked list data structure has been that the gate could
be updated after each operation arbitrarily. In this way the compression rates could be improved
for regular meshes. In this paper we focus on an optimal upper bound for the encoding of planar
triangulations and do not intend to compress regular triangle meshes with better ratios. For this goal
we present a new data structure which ensures constant time updates after each operation but restricts
the choice of the gate position.

Figure 4 shows the new data structure. It consists of a vertex stack, a loop stack and two markers.
The vertex stack is extended by the markersps andpe defining the current loop. On the loop stack
marker pairs of loops, which have been pushed during a split operation, are stored together with the
split vertex. The current gate is always the edge between the vertex before thepe marker and the
vertex after theps marker. In figure 4 the different loops on the vertex stack are visually separated
with black blocks, just for the convenience of the reader.

Figure 5 shows how the data structure is updated after each of the five operations.

new vertex: There are two possible situations for a new vertex operation. Either (figure 4 a) the
ps marker points to the beginning of the vertex stack / is identical to the latestly pushedp0e marker

9

Figure 4: Cut-border data structure, consists of two stacks and two pointers.

(denoted by the black block) or (figure 4 b) some vertices have been removed at the front of the
stack by forward operations. In case a) the new vertexX is pushed onto the vertex stack and thepe
marker is moved behind vertexX . Thus the new gate was implicitly chosen to beXB. In case b)
the new vertexX is inserted beforeps andps is moved beforeX . In this way the empty vertices at
the beginning of the loop can be refilled and the cut-border stack is kept as small as possible. After
case b) the gate is chosen differently as before. In order to be able to consider the constraints needed
for the efficient encoding, we switch the symbols of the forward and backward operations after case
b) has been arosen.

forward: During the forward operation (figure 4 c) the vertexB is removed from the beginning of
the current loop by moving theps marker one position to the right. The empty vertex location will
be filled during the next new vertex operation. The gate is implicitly chosen to beAC.

a)�: append b) �: insert

c)!: delete previous d) : delete next

e)1: push loop f) r: pop loop

Figure 5: Update of the optimized data structure after all five different cut-border operations.

10

backward: The backward operation (figure 4 d) just pops one vertex from the stack and movespe
one position to the left, implicitly choosing the gate to beAC.

split: During a split operation (figure 4 e) the current loop is split into two loops by settingps to p0s
and introducing two new markersp0e andps before the split vertexX . The primed markers together
with the split vertexX are pushed onto the loop stack such that the pushed loop can be restored after
the right loop has been encoded. In order to findX in constant time we store with each mesh vertex
a pointer to the corresponding cut-border vertex. This works as no operation invalidates any of the
pointers, i.e. as long as a cut-border vertex exists, it is at the same vertex stack location. The gate
location of the right loop after the split operation isAX and the pushed gate location of the other
loop isXB.

close: The close operation (figure 4 f) eliminates the current loop of three vertex indices from the
vertex stack. If the loop stack is empty, the planar triangulation has been completely encoded /
decoded. Otherwise the top loop on the loop stack is popped together with the corresponding split
vertex, which is inserted after the poppedpe marker and the marker is moved once to the right.
Please notice, that theX vertex will be on the same vertex stack location as during the encoding of
the removed loop and therefore the pointer from the mesh vertex to the cut-border vertex needs no
update.

Finally, the computation of the split indices can be performed by simple pointer arithmetic in
constant time1. It is obvious, that the variable length coding schemes in figure 3 can be encoded
and decoded in time linear to the encoding size and we can conclude this section with the following
theorem:

Theorem 2.3 With the cut-border machine a panar triangulation withv vertices2 can be encoded
to less than4:92v bits inO(v) time and the triangulation can be decoded inO(v) time.

1Here we assumed that the number of vertices in the mesh can be represented by the pointer/integer format of the used
computer. This must be the case as we need to store the mesh itself somehow.

2, that can be stored in memory,

11

3 Improved Edgebreaker Coding

cut-border edgebreaker
name symb. name symb.

new vertex � C
forward ! right R
backward left L
split 1 split S
close r end E

Table 2: Translations between the cut-border and the edgebreaker symbols.

The edgebreaker encoding scheme is nearly equivalent to the cut-border machine except that it
does not encode the split indices. Table 2 gives translations between the cut-border symbols and the
edgebreaker symbols. By encoding theC-symbol with one bit and all other symbols with three bit,
the edgebreaker scheme allows to encode any planar triangulation with no more than four bits per
vertex3. In [8] the upper bound for the storage space is improved to 3.67 bits per vertex. Section
3.1 describes a simple linear line decoding algorithm also called Spiral Reversi [7]. Then we show
in section 3.2 how to encode the edgebreaker symbol string with no more than3:557 bits per vertex
and in section 3.3 with3:552 using a reverse coding scheme.

3.1 Spiral Reversi Decoding of Edgebreaker Symbols

The decoding algorithm as described in [7] interprets the string of edgebreaker symbols in reverse
order. For this it deletes the tailingE-symbol from the string, reverts the string and adds anS-symbol
to the end. Thus the string representation of the sample in figure 1 is mapped to

CCCFCCCFFFCSEFE 7! FESCFFFCCCFCCCS

In this way the tailingS-symbol marks the end of the string representation.
The decoding algorithm knows, that the encoding ended with anE-operation. Therefore, it

recreates the triangle encoded by the tailingE-operation and initializes the cut-border to one single
loop surrounding this triangle. The gate location is chosen arbitrarily and dummy vertex indices are
used for all newly introduced vertices.

Then the decoding algorithm iterates through the symbols of the string representation and per-
forms all encoded operations in an inverse fashion. This is clear for theC-, R- andL-operations: in
figure 2 interpret the white triangles as the so far decoded triangles, the brown triangle as the cur-
rently decoded triangle, the yellow arrow as the current gate location and the dark green arrow as the
new gate location after the next triangle has been decoded. After eachC-operation the neighborhood
of the new vertex is completely decoded and a new final vertex index is assigned to this vertex. In
this way the vertices are assigned indices in the reverse order in which they have been encoded.

It only remains to explain the decoding of theE- andS-operations. Each time anE-symbol is
encountered, the current loop is pushed onto a stack together with the current gate location and a
new loop is generated with a single triangle and an arbitrary gate location. When anS-symbol is
found, one loop together with its gate location is popped from the stack and is merged together with
the current loop at the current gate location inserting a triangle as depicted in figure 2 d). In figure
2 d) the greenish yellow arrow (the left one) represents the gate of the popped loop in the decoding
algorithm and the pushed loop in the encoding algorithm. During the merging the two dummy
vertices of the different loops where the two gates touch are identified in all incident triangles. The

3Each symbol introduces one triangle. There are twice as many triangles as vertices. Each vertex corresponds to exactly
oneC symbol. This sums up tov + 3v = 4v bits.

12

new gate location is set according to the dark green arrow in figure 2 d). If anS-symbol is found
when the stack of loops is empty, thisS-symbol is the marker of the end of the string and decoding
is complete.

Theorem 3.1 The connectivity of planar triangulation withv vertices and3 external edges can be
encoded with a unique string of length2v over five different symbols in linear time inv, from which
the original connectivity can be decoded also in time linear inv.

3.2 3.557 Bits per Vertex Encoding of Edgebreaker String

In this section we use two constraints of the edgebreaker string to improve the4v bit encoding to
lb3 + 2 � 3:586 and then to3:557 bits per vertex.

The first constraint is that after aC-symbol neither anL- nor anE-symbol may follow, as other-
wise the two successive symbols would encode the same triangle twice. We can use this constraint
in the following manner. First we notice that theC-symbols constitute half of all the symbols and
therefore should be encoded with one bit or in an arithmetic setting with a frequency of1

2 . Next we
assume that all other symbols may consume the same number of bits� and therefore correspond to
the same frequency�� = 2�� 2 [0; 1]. Table 3 shows the different possible cases (compare table 1
for the Cut-Border Machine cases). If we use arithmetic coding, we end up with the equation

1 = 4�� + 2��
X
i�1

1

2i
= 6�� : (11)

From this�� computes to16 and� to lb6 < 2:585. As there arev C-symbols andv symbols of
other type and theC-symbols consume 1 bit and the others� bit, we end up with less than3:585 bits
per vertex. Coding and decoding of the symbols is also very simple. The unit interval is subdivided
into 6 equal sized sub-intervals assigned to the casesR;L; S;E;C+R;C+S. In theC+-cases the
number ofC-symbols is encoded with the same number of one bits followed by a zero bit.

The second constraint, which has not been considered yet, makes use of the knowledge of the
length of the cut-border. The observation is that during encoding the current cut-border loop is
at least of length three. Thus two successiveC symbols increase the length to at least five and a
following R will reduce the length to not less than four, what prohibits a followingE symbol, as
this can only appear if the current cut-border loop has exactly length three. To take this constraint
into account, we introduce the concept of theconditional unity. Let us introduce this concept with
the example of the first constraint. For the first symbol there are the five possibilitiesCRLSE.
But after aC-symbol has been encoded, only three possibilities are left (CRS). Thus under the
condition of a precedingC-symbol the unity is split into the frequencies for the symbolsCRS. In

case bits freq. case bits freq.

L � �� E � ��

R � �� S � ��

CR � + 1 1
2�� CS � + 1 1

2��

CCR � + 2 1
4�� CCS � + 2 1

4��

CCCR � + 3 1
8�� CCCS � + 3 1

8��
...

...
...

...

Table 3: Different cases of possible the edgebreaker sequences considering the constraint, that no
E- norL-symbol may follow uponC.

13

we can re-formulate the said as follows

1 = 4�� +
1

2
1C (12)

1C = 2�� +
1

2
1C : (13)

In these equations1C denotes the conditional unity for the condition that aC symbol is preceding.
Solving the system of equations yields the same result�� = 1

6 . With the concept of the conditional
unity all equations look just like a partitioning of the unit interval.

cond: follow equation

3 RLSEC 1 = 4��+
1
214;C

4 C RSC 14;C= 2��+
1
215;C

5 C RSC 15;C= (14 + 1) ��+
1
216;C

6 C RSC 16;C= (15 + 1) ��+
1
217;C

...
...

...
...

...
...

i C RSC 1i;C= (1i�1 + 1) ��+
1
21i+1;C

...
...

...
...

...
...

4 RLSC 14 = 3��+
1
215;C

5 RLSC 15 = (2 � 14 + 1) ��+
1
216;C

6 RLSC 16 = (2 � 15 + 1) ��+
1
217;C

...
...

...
...

...

i RLSC 1i =(2 � 1i�1 + 1) ��+
1
21i+1;C

...
...

...
...

...

Table 4: Conditional unities including first and second constraint.

With all this preliminaries we can attack the second constraint. Here we not only want to ac-
count for precedingC-symbols but also for the minimal length of the current cut-border loop. If the
minimal length is for example known to be at least four, the conditional unity is denoted by14;C if a
C-symbol is preceding and14 otherwise. For each condition we just have to enumerate all possible
succeeding symbols and the resulting post-conditions and can easily write down the corresponding
equation as shown in table 4. The first column contains the known minimal length of the current
cut-border loop. The second column tells whether aC-symbol is preceding. The third column enu-
merates all symbols which can appear under the precondition in the same order they are accounted
for in the equations in the last column. Let us explain the equation for the conditional unity if no
C is preceding and the minimal loop length is six. Then the symbolsRLSC may follow, notE as
the current loop is too long. The symbolsR andL each yield the post-condition of no precedingC
and a minimal loop length of five as both of them eliminate one vertex from the cut-border. This
is represented by the term2 � 15 � �� . After a split symbol nothing about the length of the current
cut-border loop is known, which is accounted for be the term�� . Finally, a new vertex operation
C will increase the loop length by one and therefore the right side of the equation also contains the
term 1

217;C , where the12 represents the frequency of theC-symbol.
We solved the set of equations with a computer algebra program for different restrictionslmax of

the minimal loop length. If we for example restrict the minimal loop length by six, we replace in the

14

lmax � �� 14;C 15;C 16;C

5 2:56256 :169275 :645798 :614494
6 2:55779 :169846 :641316 :603290 :591385
7 2:55677 :169955 :640358 :600895 :586446
9 2:55651 :169986 :640111 :600277 :585172

lmax 17;C 18;C 19;C 14 15

5 :815073
6 :811152 :741053
7 :581919 :810313 :738612
9 :579478 :5773922 :576739 :810098 :737983

lmax 16 17 18

5
6
7 :711977
9 :710618 :700273 :696429

Table 5: Results for different restrictionslmax for the precondition on the current loop length.

equation for16;C the17;C on the right side with16;C . This is valid as if the loop length is at least
of length seven then it is also longer than six. Table 5 gives the results for different values oflmax

and also the values for the conditional unities, which allow to build an arithmetic coder.� converges
very fast to2:557 and we conclude this section with the following theorem.

Theorem 3.2 With the encoding scheme described in this section a planar triangulation withv
vertices can be encoded and decoded in linear time to less than3:557v bits.

3.3 Using More Constraints for 3.552 Bits per Vertex Encoding

If we apply the techniques of the previous section to the reverse decoding, we can consider more
constraints. During reverse decoding eachE operation starts a cut-border loop with three vertices.
During decoding each new vertex operationC decreases the current cut-border loop by one vertex
and theR andL operations increase the loop by one. AC operation is never allowed, when the
current cut-border loop is of length three or if the previous operation was anL operation. Thus in
order to keep track of the current cut-border loop length we define two types of conditional unities.
For all i � 3 : 10i is the unity under the condition that the current cut-border loop is of lengthi and
1
0
i;L is the unity under the additional condition that the previous symbol wasL. Finally, we define
1
0
L to be the unity when nothing about the loop length is known except thatL has been the previous

symbol. Using these unities to built a system of equations similar to the one in table 4 we can achieve
again a value of� = 2:557.

After a split operation during reverse decoding the last two cut-border loops are merged and we
do not know anything about the loop length with the so far described approach. But it is actually
feasible to keep track of the lengths of two successive cut-border loops as long as they are short
and we define the conditional unities10j;i and10j;i;L for all all i; j � 3. The indexi represents the
loop length of the current cut-border loop andj of the previous loop. With the new unities a sub-
sequence ofEESCCC can be correctly excluded as the first twoE operations would create two
loops of length three each, the split concatenates these two loops to one loop of length five and the
three new vertex operationsC would reduce the loop length to two what is not possible.

Table 6 gives the different kinds of equations parametrized over the loop lengths of the current
loop with lengthi and the previous loop with lengthj. In order to calculate the different conditional

15

cond: follow equation

RLSEC 1 = (1 + 1
0

L + 1 + 1
0

3)�� + 1

2

3 RLSE 1
0

3 = (104 + 1
0

4;L + 1 + 1
0

3;3)��

i RLSEC 1
0

i =(10i+1 + 1
0

i+1;L + 1 + 1
0

i;3)�� +
1

2
1
0

i�1

j; 3 RLSE 1
0

j;3 = (10j;4 + 1
0

j;4;L + 1
0

j+2 + 1
0

3;3)��

j; i RLSEC 1
0

j;i = (10j;i+1 + 1
0

j;i+1;L + 1
0

j+i�1 + 1
0

i;3)��

+ 1

2
1
0

j;i�1

L RLSE 1
0

L = (1 + 1
0

L + 1 + 1
0

3)��

3 L RLSE 1
0

3;L = (104 + 1
0

4;L + 1 + 1
0

33)��

i L RLSE 1
0

i;L = (10i+1 + 1
0

i+1;L + 1 + 1
0

i;3)��

j; i L RLSEC 1
0

j;i;L= (10j;i+1 + 1
0

j;i+1;L + 1
0

j+i�1 + 1
0

i;3)��

Table 6: Conditional unities accounting for the constraints induced by two successive loops.

lmax llmax � ��
7 4 2:55197 0:17052
11 5 2:55122 0:17061
17 6 2:55102 0:17063

Table 7: Results for different restrictionslmax for the precondition on the current loop length and
llmax for the precondition on the length of the previous and the current loop.

unities and the value for�� we restricted the maximal loop length for10i to i � lmax and the loop
lengths for10j;i to i � llmax. The resulting values for�� and� are shown in table 7.

Theorem 3.3 With the encoding scheme described in this section a planar triangulation withv
vertices can be encoded and decoded in linear time to less than3:552v bits.

16

4 Conclusion and Future Work

In this report we showed that the Cut-Border Machine can be modified in order to encoded and
decode planar triangulations in linear time to less than4:92 bits per vertex, although the split indices
are encoded. Without the split indices the Cut-Border Machine allows to encode the operation
symbols to3 bits per vertex what is less than the optimum of3:245 bits per vertex. Therefore we
estimated the minimal storage space consumed by the split indices. The estimation of about1:15
bits per vertex suggests that it is not possible to achieve an optimal encoding of planar triangulations
with the Cut-Border Machine.

Therefore we showed how to improve the encoding of the Edgebreaker operation symbols by the
use of arithmetic coding, which allows to take more constraints into account in an optimal fashion.
In this way we could present a coding scheme which consumes no more than3:552 bits per vertex.
Here we considered the constraints implied by the length of the current cut-border loop and the
length of the previously pushed loop and, finally, the well known constraint that anL-symbol may
not be preceded by aC-symbol.

In future work we want to investigate what constraints are not yet considered, how they could
improve the encoding and whether they can be considered at all. We also try to find a coding scheme
between the Cut-Border Machine and the Edgebreaker which has a better potential for optimal en-
coding.

17

References

[1] R. C. Chuang, A. Garg, X. He, and M. Kao. Compact encodings of planar graphs via canonical
orderings and multiple parentheses. InProceedings of the 25th International Colloquium on
Automata, Languages and Programming, pages 118–129, 1998.

[2] Michael F. Deering. Geometry compression. In Robert Cook, editor,SIGGRAPH 95 Con-
ference Proceedings, Annual Conference Series, pages 13–20. ACM SIGGRAPH, Addison
Wesley, August 1995. held in Los Angeles, California, 06-11 August 1995.

[3] M. Denny and C. Sohler. Encoding a triangulation as a permutation of its point set. InPro-
ceedings of the 9th Canadian Conference on Computational Geometry, pages 39–43, August
1997. held in Ontario, August 11-14.

[4] Stefan Gumhold. Improved cut-border machine for triangle mesh compression. InErlangen
Workshop ’99 on Vision, Modeling and Visualization, Erlangen, Germany, November 1999.
IEEE Signal Processing Society.

[5] Stefan Gumhold and Wolfgang Straßer. Real time compression of triangle mesh connectivity.
In Michael Cohen, editor,SIGGRAPH 98 Conference Proceedings, Annual Conference Series,
pages 133–140. ACM SIGGRAPH, Addison Wesley, July 1998.

[6] Hugues Hoppe. Progressive meshes. In Holly Rushmeier, editor,SIGGRAPH 96 Conference
Proceedings, Annual Conference Series, pages 99–108. ACM SIGGRAPH, Addison Wesley,
August 1996. held in New Orleans, Louisiana, 04-09 August 1996.

[7] Martin Isenburg and Jack Snoeyink. Spirale reversi: Reverse decoding of the edgebreaker
encoding. Technical Report TR-99-08, Department of Computer Science, University of British
Columbia, October 4 1999. Mon, 04 Oct 1999 17:52:00 GMT.

[8] Davis King and Jarek Rossignac. Guaranteed 3.67V bit encoding of planar triangle graphs.
pages 146–149, 1999.

[9] J. Rossignac. Edgebreaker: Connectivity compression for triangle meshes.IEEE Transactions
on Visualization and Computer Graphics, 5(1), 1999.

[10] W. Tutte. A census of planar triangulations.Canadian Journal of Mathemetics, 14:21–38,
1962.

18

