
1

Wilhelm-Schickard-Institut für Informatik
Graphisch-Interaktive Systeme
Auf der Morgenstelle 10/C9

D-72076 Tübingen
Tel.: +49 7071 29-75462
Fax: +49 7071 29-5466

email: schilling@uni-tuebingen.de
URL: http://www.gris.uni-tuebingen.de/~andreas

 copyright 1997 by WSI-GRIS
printed in Germany

Antialiasing of
Environment-Maps

Andreas G. Schilling

ISSN 0946-3852
WSI-97-14

WSI/GRIS

2

Abstract
Environment-maps, like texture maps or any other
maps consisting of discretely stored data have to be
properly filtered, if they are being resampled in the
process of rendering an image. For environment
maps, this is especially important, as the sampling
rate is subject to extreme changes due to the
curvature of the reflecting surfaces. However, for
the same reason, the antialiasing is especially
difficult to perform, as the sampling rate has to be
determined for each pixel. We introduce a method
to perform this calculation and determine the
parameters for anisotropic filtering of the
environment map. The principles that are used to
perform this antialiasing can be applied for
antialiasing reflected textures in general e.g. in ray
tracing.

Problem
Environment mapping is an excellent tool to
enhance the quality of computer generated images.
Although approximations are used (theoretically for
each point of an object, a different environment
map should be used), the pictures rendered with
environment mapping often achieve a visual quality
similar to ray-traced pictures. Unfortunately,
antialiasing of environment maps is difficult. The
sampling rate on the environment map can change
by orders of magnitudes within the same object due
to changes of the curvature of the object.
Traditionally, the filtering, which often is performed
with mip-maps, has to be adjusted manually to get
the desired effect. If no anisotropic antialiasing is
possible, artifacts are unavoidable. A simple
example is the environment mapping on a cylinder,
which has a curvature only in one direction. In this
direction we get a very low sampling rate, which
requires massive filtering. In the other direction,
parallel to the axis of the cylinder, the sampling rate
is higher and less filtering would be required.
If environment mapping is combined with bump
mapping, even more realistic images are possible.
On the other hand, the antialiasing is becoming
more difficult, as a bumpy surface reflects incoming
rays into a larger sector of space which corresponds
to a larger area of the environment map.

Solution
The intersection of the reflection of the pixelwide
viewing beam and the environment map will be
called footprint in this paper (Fig. 1). The size and
shape of this footprint depends on three factors:

• the angular range of viewing rays covered by
one pixel (Fig. 2)

• the curvature of the reflecting surface (Fig. 3),
and

• the scattering of the viewing rays caused by the
bump map on the reflecting surface (Fig. 4).

Fig. 1: Environment mapping

We will calculate and combine these contributions
using linear approximations. The result will be a
matrix, that describes the footprint with an ellipse.
The main axes of this ellipse are then used to
perform anisotropic filtering of the environment
map, using for example the footprint assembly
method [3].
The contributions of the first two factors can be
combined, as they are related in a fixed way. One of
the contributions can compensate the other one or
their results can add up. An example for the
compensation would be a parabolic mirror, viewed
from its focal point: the change in the direction of
the viewing ray from pixel to pixel is compensated
by the change of the normal direction, so that the
reflected rays are parallel. We account for that by
calculating the combined contribution of the first
two factors. For the third factor, however, we have
to assume that it is independent from the first two
ones, as we know nothing about the location of the
different normal directions within the area of the
bump map covered by the pixel.

Fig. 2: First contribution, caused by dv. Reflecting
object is plain.

3

Fig. 3: Second contribution, caused by dn. Viewing
rays are parallel.

Fig. 4: Third contribution caused by roughness of
bump map. Viewing rays are parallel and
underlying surface is plain.

The calculation of the three
contributions
The calculation of the first two contributions is
performed by calculating the effect on the u - v -
coordinates in the environment map, if the viewing
ray is moved by one pixel in x or y direction. This
effect is expressed by the derivatives of the
environment map coordinates from the screen
coordinates, which are grouped into the following
matrix:

D =



















∂
∂

∂
∂

∂
∂

∂
∂

u

x

u

y
v

x

v

y

(1)

The points of a unit circle are transformed by this
matrix into an ellipse; if this ellipse is centered
around the u - v -coordinates of the center ray of
the pixel, it describes the footprint in the
environment map caused by a circular pixel. The
quadratic form for the description of this ellipse is

()u v
u

v
K1 2

1 1+
− 






 = (2)

with

K D D1 2+ = T (3)

The index „1+2“ denotes the relation to effects 1
and 2 (Fig. 2 and Fig. 3). The first task to be solved
is to calculate the derivatives contained in the above

matrix. We will perform this calculation for
∂
∂

u

x
;

the other derivatives are evaluated analogously.
For the derivatives, we first look at the calculation
of the reflected ray and the u - v -coordinates for
the environment map.
First some definitions1:
The viewing ray has the direction v (which should
not be mistaken for the environment map coordinate
v). The viewing ray is reflected at the surface with
surface normal n n e emod b b= + +1 1 2 2 . The

reflected ray can then be expressed as

v n v n v nr mod mod mod= −2
2

(4)

Neitherv nornmod needs to be normalized. We get:

v v nr mod= 2
. For the calculation of the

environment map coordinates we use a cubical
arrangement of the environment maps and assume
that the coordinates are only dependent on the
direction of the reflected ray. The coordinates u
and v are thus calculated by dividing the two
smaller components of vr by its largest component.

Thus the absolute value ofvr cancels out.

1 We will use the following notation: Identity

matrix: I =














1 0 0

0 1 0

0 0 1

,

dot product:

a b a bT
x x y y z za b a b a b= = + + ,

outer product:

ab a bT
x x x y x z

y x y y y z

z x z y z z

a b a b a b

a b a b a b

a b a b a b

= =
















4

For greater flexibility, we can rotate the

environment map cube by using v Avr r
′ =

instead of vr , where A is a simple 3x3 rotation

matrix. In the following we will omit A for the
sake of simplicity.

We can now write:

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

u

x

u

x xr

r r

mod

mod= +








v
v
v

v v
n

n
 (5)

If the x-component vr x, of vr

r x

r y

r z

v

v

v

=
















,

,

,

is the one

with the largest absolute value (we will assume that
for the following; other cases are treated
analogously) we get:

()∂
∂

u

v
u

r r xv
= −1

1 0
,

(6)

In eq. (5), the first summand in the brackets denotes
the contribution shown in Fig. 2. As we can write
for the (unnormalized) viewing vector:

v = −














x

y

z0

(7)

with z0 being the focal distance,
∂
∂
v
x

is the same

constant vector (
∂
∂
v
x

=














1

0

0

) for all pixels of the

screen.

For
∂
∂
v
v

r we get:

∂
∂
v
v

n n n Ir = −2
2

(8)

The second addend in the brackets in denotes the
contribution shown in Fig. 3.

For
∂

∂
nmod

x
we can use the value of

∂
∂
n
x

, as the

roughness of the bump map is considered

separately2.
∂
∂
n
x

is the change of the (unnormalized)

surface normal, when we proceed by one pixel to
the right. If n is interpolated across a polygon, this
is a constant vector. This is true even if the
interpolation is performed with perspective
correction, as we need no normalized n and can
omit the perspective division.

For
∂
∂
v
n

r we get:

∂
∂

v
n

n v I

n v v n

r

mod
mod

mod mod

=

+ −

2

2 2

(9)

With eq. (1-9) we can express K1 2+ of eq. (3),

which describes the footprint of the pixelbeam in
the environment map caused by the aperture of the
pixel beam and the curvature of the object. The
factor that is not yet considered is the bump map,
which can
• change the curvature of the surface, and
• scatter the pixel beam in multiple directions by

small bumps.
To make things easier, we consider both effects
independent of the underlying surface by using the
roughness pyramids described in Appendix A. The
roughness matrix B gives us a mapping from the
unit circle to an ellipse that describes the
distribution of perturbation vectors for the
perturbation of the surface normals within one
texel-area of the chosen resolution of the bump

2 This could be changed at the expense of higher
effort by considering the curvature of the filtered
Bump-Map already in this stage and adding it to

x∂
∂n

. Of course, in this case, this curvature may not

be contained in the roughness pyramid. In the ideal

case,
∂

∂
nmod

x
 and

y∂
∂ modn

 would be determined

such, that for the regarded area A with centerpoint

),(00 yx the Integral

dxdy
yx

yx

y
yy

x
xxyx

y
yy

x
xxyx

A

2

unfilteredmod,

unfilteredmod,

mod
0

mod
000filteredmod,

mod
0

mod
000filteredmod,

),(

),(

)()(),(

)()(),(

n

n

nn
n

nn
n

−

−+−+

−+−+

∫
∂

∂
∂

∂
∂

∂
∂

∂

is minimized.

5

map. We are, however not primarily interested in
the perturbation of the normals, but in the resulting
perturbation of the reflected viewing ray vr or,

more precisely, in the perturbation of the original
environment map coordinates that result from the
perturbation of vr . Using a linear approximation,

the ellipse of perturbation vectors to the normal
vector can be transformed into an ellipse in the
u - v -space of environment map coordinates, that
results of the normal vector perturbation. The
needed transformation can be written as:

M
v

v

v
n

=

















∂
∂
∂
∂

∂
∂

u

v
r

r

r

mod

, (10)

which is a 3x2 Matrix. We have already calculated
the needed expressions in eq. (6) and (9). Applying
the transformation to D renders a 2x2 Matrix:

()′ =B M e e B1 2 , (11)

which describes the reflection ellipse in the u - v -
space of environment map coordinates.

K B B3 = ′ ′T (12)

is the roughness covariance matrix transformed into
the environment map and represents the missing
contribution to the footprint resulting from the
bump map. As the contributions are assumed to be
independent of each other, the covariance matrix
can simply be added to the contribution described
by K1 2+ :

K K K= ++1 2 3 (13)

The approximated footprint of the pixel-beam in the
environment map coordinates u - v is so described
by the quadratic form

11 =− xKxT , (14)
where K contains the three factors that contribute
to the size and shape of the pixel beam: the original
angle of the pixel beam, the curvature of the object
before bump mapping, and the roughness of the
bump map. In order to employ anisotropic filtering
for antialiasing the environment map, we have to
find the main axes of the ellipse, which requires that

the eigenvectors r1 and r2 and the eigenvalues λ1
2

and λ2
2 of K are determined:

K R R=






 =







 −a b

b c

λ
λ

1
2

2
2

10

0
, (15)

with

()R r r= 1 2

and

R
r

r
− =









1 1

2

T

T

We use the following equations:

()λ1
2 2 21

2
4= + + − +a c c a b() , (16)

and

()λ2
2 2 21

2
4= + − − +a c c a b() (17)

The eigenvectors are determined via table-lookup
with the following equations:

()
()r1 =

−








cos

sin

α
α

(18)

()
()r2 =









sin

cos

α
α

(19)

with

()tan 2
2α =
−
b

c a
, (20)

where α is restricted to be between - 45o and 45o.
We address a table with this value, that contains

about ten different values for ()sin α and for

()cos α , distributed evenly over the angular range.

The association of the eigenvalues and eigenvectors
does, however, not relate to the above indices. But
it can be found easily: r1 belongs to the larger

eigenvalue, if c a− > 0 (the term c a− is
already used three times in eq. (16),(17) and (20)
above).
With λ λ1 2> and r1 being the eigenvector that

belongs to the eigenvalue λ1
2

, the parameters for

footprint assembly [3] are: λ1 1r as stepping

direction and -length, and λ2 for the calculation of

the mipmap level.

Further work
The presented algorithms perform position
independent environment mapping. They can easily
be extended to account for the object position,
which means, that the environment cube is not any
more considered to have infinite size. This would
be especially advantageous, if nested environment
cubes with partly transparent environment maps
would be used.
The first order curvature should not be included in
the roughness pyramid but should be added directly
to the curvature of the underlying surface (see
footnote 2 on page 4.
The antialiasing algorithms are suitable for an
efficient hardware implementation, which would
allow the generation of properly filtered,

6

environment mapped images of bump mapped
objects in real time.

Conclusion
We have presented a method for antialiasing
environment maps. The combination of bump and
roughness maps with environment mapping
provides the means to produce realistic effects, that
have been missing up to now, often enough even in
ray-traced images, e.g. small scrapes in glossy
surfaces, rough surfaces seen from the distance,
waves on a water-surface, seen from enough
distance, etc.. Photo-realistic images of comparable
quality can not be generated comparably fast and
efficient; up to now, the only alternative is ray-
tracing with costly antialiasing like massive
supersampling. The principles, shown in this paper
can of course also be applied to antialias textures in
ray-tracing.

Example Images

Appendix A: The representation of
bump maps.
In this appendix, we describe the representation of
the bump and roughness masks we use. Bump
mapping, even without antialiasing or environment
mapping is not commonly used in real-time systems
due to its heavy demands on the computing
resources. This is partly, because the traditional
approach to bump mapping [2] includes the
calculation of the derivatives of the bump function.

Fig. 5: Representation of bump map with offset
vectors.

Bump mapping with Precalculated
Derivatives
A possible solution that avoids the calculation of
the derivatives of the bump function is to store
precalculated derivatives [3,1]. Besides saving the
calculation, this has the advantage, that the scaling
of bump maps is as simple as the scaling of rgb-

textures. If traditional bump maps are scaled with
an unknown factor, it is impossible to calculate the
derivatives any more. The most difficult problem
that remains to be solved is to find an appropriate
local coordinate system for each sample point,
which consists of the normal vector of the surface in
this point and the two tangential directions, for
which the derivatives of the bump function have to
be calculated (we have the same problem with the
traditional representation of the bump maps). Once
this coordinate system has been established, the
calculation of the new normal vector is performed
by adding the offset vector specified by the
precalculated derivatives in the local coordinate
system to the surface normal.

The Local Coordinate System
We use a local coordinate system n , e1 , e2 that

meets two conditions:
• the directions of the axes are a continuous

function of the location.
• the coordinate system is an orthogonal system.

The local coordinate system is derived from the
normal vector n and a main direction h . The unit
vectors e1 and e2 are perpendicular to n . With

the help of h they are defined such, that e2 is

perpendicular to h and e1 is in the plane of n
and h [3]. The main direction h can be
interpolated across triangles or be a constant vector
for a whole object. A good example is the mapping
onto a sphere like e.g. the earth with spherical
coordinates. The direction of the axis of the earth
would serve as h and we would get e1 pointing

always in west-east direction, and e2 in south north

direction. An important advantage of a constant
main direction h is that besides the normal vector,
no other vector needs to be interpolated across
triangles. In addition, the coordinate system can be
calculated in hardware in the rasterizer/shader and
needs not to be calculated at all vertices by a setup
process.

The perturbed normal vector is then expressed as

n n e emod b b= + +1 1 2 2 .

The calculation of the local coordinate system
n , e1 , e2 from the interpolated normal vector n I

and the main direction h is performed using the
following formula (Fig. 6):

n
n
n

= I

I

, e
h n
h n1 = ×

×
, e n e2 1= × .

In this way, we get two tangential vectors:

7

• e2 in the plane defined by n and h , and

• e1 perpendicular to that plane.

If the vectors need not be normalized, we multiply

the three vectors by n I for simpler calculation

and get:

n n nI I= , e n
h n
h n

n1 I I= ×
×

,

e n n e2 1I I= × .

Fig. 6: The construction of the local coordinate
system for the bump map using a main direction
h .

The roughness information for the bump map is
stored in a roughness pyramid, that is calculated
from the covariance matrices of b1 and b2 within

the area represented by one texel (or better:
roughxel). If the covariance matrix is

K =
− − −

− − −

















= 







= =

= =

∑ ∑
∑ ∑

1 1 1
2

0
1 1 2 2

0

1 1 2 2
0

2 2
2

0

n

b b b b b b

b b b b b b

a b

b c

i
i n

i i
i n

i i
i n

i
i n

() ()()

()() ()

,
..

, ,
..

, ,
..

,
..

,
• the roughness pyramid stores the matrix B with

BB KT = .

We get a favorable representation, if we choose

B =








d d

d
1 2

30

and store the three numbers d1 , d2 and d3 , where

d1 and d3 can be chosen to be nonnegative.

d a
b

c1

2

= − ,

d
b

c
2 = , and

d c3 = .

We have now the parameters of an ellipse, that
describes the distribution of the perturbation vectors
and by this the distribution of the normal vectors.

Bibliography
[1] Bennebroek, K., Ernst, I., Rüsseler, H., Wittig,

O., Design Principles of Hardware-based Phong
Shading and Bump Mapping, in Proceedings of
the 11th Eurographics Workshop on Graphics
Hardware, Poitiers Aug. 1996.

[2] Blinn, J., Simulation of Wrinkled Surfaces,
SIGGRAPH 78, pp 286-292.

[3] Schilling, A., Knittel, G., Straßer, W., Texram:
A Smart Memory for Texturing, Computer
Graphics & Applications, May 1996, pp. 32-41.

