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Abstract

The generic programming paradigm has received considerable at-
tention since the publication of the C++ STL library [20].

The speci�cation of capabilities, which a programming language
must provide to support generic programming, has been examined in
detail in [26] and [31]. Especially in the area of computer algebra,
these requirements are extensive, because of the structural complexity
of the types and algorithms and the need for precision in declarations.

In this essay we propose a general approach to the design and im-
plementation of a type system. We then discuss how programming lan-
guage constructs can be described by means of the calculus, including
overload resolution, higher-order functions and type constructors with
contravariant argument positions together with automatic instantia-
tion of generic algorithms with bounded type variables (type classes).
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1 Introduction

The paradigm of generic programming, whatever the exact details of a par-
ticular de�nition may be, tends to exploit programming languages to their
fringe, if it is supported at all.

Therefore, it seems useful to investigate into the question, which spe-
ci�c features of a language are needed and to what extend for this style
of programming. Especially it is desirable to put these single features into
orthogonal categories and describe them independently from one another:
In this way it will be possible to change little decisions in one part without
a�ecting too much the rest of the system.

In principle, generic programming can be easily done in dynamically
typed languages, such as Scheme, but the arising (almost) total freedom
and lack of security can scarcely be called \support."

The main idea and intention of this essay can be pinned down in one
sentence:

The better we can express within the programming language the
ideas which are behind the scenes in writing programs, the better
the compiler will be able to assist and check our reasoning.

Basically, there are two parts we need to speak about in our programs:

1. The computational component (algorithm), incorporating our proce-
dure to solve the given problem.

2. The objects which our algorithms and data structures will be dealing
with.

Here, we not at all speak about the best choice for the �rst aspect, but
the latter one is in the focus of our interest. Since the aspect of describing
objects is part of the type system of a language, this essay can be seen as
related to questions of type theory. However, it is strongly heading towards
practical applications, not \beautiful" results.

In section 2 we analyze the devices of several outstanding languages, in
order to motivate the derivations later on, from a particular point of view.
Our goal is to have an explicit collection of problems to be solved, which
can be found in the intentions of the particular languages, i.e. the reasons
why they were invented.

What the �nal aim is, will become clear in section 3, where we abstract
from any speci�c language and try to capture the essence of their capabilities
of modeling.
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Building on this, section 5 will contain our system, with the core in sec-
tion 5.3, which is related towards to the well known programming language
features in section 7, where we give a translation for each feature separately
into our calculus, thereby showing that the other languages are no more
expressive with respect to the points under consideration.

The motivation for developing the system presented in this essay stems
from the author's work on the Such That language proposed by Sibylle
Schupp [26], the implementation of which was done in a prototypical form
in [14, 9]. The experiences in this project indicated that a more general
approach was necessary for the decision procedures used in the compiler.

2 Modeling in Programming Languages

In this section we want to brie
y motivate the strife for expressive pro-
gramming languages, not that much because we feel that was necessary,
but rather to collect e�orts already undertaken and gather their goals and
crucial ideas in one place.

2.1 Why Model Reality ?

Historically, the von Neumann architecture is the basis for modern com-
puting and the assembler/machine code used in this machine model has
in
uenced a great part of imperative programming style. With the arising
of larger pieces of software, most notably libraries, the need to communicate
the usage of software among programmers in terms of interfaces became
obvious.

If the intention of a library-designer can be expressed in the program-
ming language, then the correct usage of the library can be (partly) ensured
by the compiler, leading to more reliable programs and therefore better
software-development.

Furthermore, if the possible expressions in the programming language
model some sort of reality (e.g. mathematical notions), which �ts well the
purpose of the program being written, then no translation on the program-
mer's part is necessary when reading or writing interfaces.

2.2 Approaches along/through Programming Paradigms

Di�erent approaches have been taken to make these interface descriptions
both readable and checkable by a compiler for the programming language.
At the same time, the level of abstraction has been increased step-wise
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to allow for writing 
exible and generally useful software and freeing the
programmer from the burden of thinking \at machine level."

2.2.1 Imperative Programming

Extending the notion of the assembler-level manipulation of registers and
memory directly naturally yields what has been called the imperative lan-
guages, where memory is directly visible and can be therefore manipulated
by the programmer.

Although it has been argued that the style of programming is out-dated
and low-level, we would still like to include it into the discussion in the
present essay. As Milner [18, p.373] observes in his conclusions:

What is rather needed is a language design which pays more
respect to side e�ects; [...]

Furthermore, constructs such as looping and invariants have a semantics in
their own right and are used extensively in the community of algorithms-
research to give precise and elegant descriptions of procedures [6], [28], [23]
together with the rigorous analysis of computational bounds and correctness
of algorithms.

We summarize the discussion in the following features:

� assignment

� variables & parameters declared

� explicit representation

� transparent workings

� machine model near physical computer

2.2.2 OOP

Object-oriented programming originally started out with languages such as
Simula and SmallTalk in the �eld of physical simulation and with the
intuition, that once we describe precisely the properties and behaviour of a
single object and de�ne interactions among them, then we will be able to
create larger system from these building-blocks. This approach naturally
extends to any area, which is dominated by self-contained, largely indepen-
dent objects, which have an a-priori meaning by themselves, most notably
window-systems for graphical user interfaces (unlike e.g. the integers, which
receive their algebraic structure only when combined with other integers).
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The combination of both data items and operations on them into objects
tries to model notions of the real world in programs. It inherits the idea of
memory modi�cation from imperative languages but partly hides the details
in the abstraction of member-variables, whose exact address, for example,
are not known to the programmer and also the representation of the objects
themselves can be abstracted from in favour of a general object model,
describing the essential behavioural properties only.

Concerning the representation of an object's data, we observe that in
usual languages constructors of objects and the operations, i.e. methods,
have the following relation:

(arguments) -construct
representation
?

work on

operations

SmallTalk is typed only at run-time, i.e. a message sent to an object
can \go wrong" if the object is not able to process it. In the late 80's the
object-oriented paradigm has received a considerable attention which again
invoked a discussion about solid theoretical foundations.

A widely accepted model was born:

� Objects are records of data and functions.

� Objects can have a subtype-relation <:, which models (the semantical
notion of) inheritance and contains the intuitive idea that if message
m can be sent to object o2 and o1 <: o2, then m can also be sent to o1.

The details, however, were still more involved than had perceivably been
expected from the experiences with SmallTalk. This will be discussed in
the next section.

As in this essay we are mostly concerned with modeling, we want to
strongly emphasize at this point the relation of inheritance which, again
intuitively, has been derived from the observation that some objects are
special cases of other objects and that we want to be able to express this
relation within the programming language.

In connection with the CLU language (which is strictly speaking not
object-oriented) B. Liskov according to [32] seems to have introduced the
similar idea of substitutability, saying that in any situation a CLU cluster
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A may be taken in place of a cluster B i� A is substitutable for B. Because
of the resemblance, inheritance is often taken to express substitutability.

� (localized) assignment of member variables

� encapsulation

� combination of data and operations

� representation of data chosen by programmer (con-
structors compile to internal representation)

� subtyping/inheritance = isA-relation

2.2.3 Term Algebras

Universal algebra incorporates the notion of carrier sets, whose exact struc-
ture is neither known nor important to express properties about the struc-
tures under consideration.

To obtain an executable algorithm1, a model of the universal structure
must be found and the term-algebra, which is build inductively over (value-)
constructors for the di�erent sorts, serve well this purpose and impose a
tree/dag-like structure on any data item, which can be represented. It fol-
lows, that once a member of a sort has been constructed, it can be analyzed
to yield the constructor and its arguments again, given that appropriate
information has been stored.

On the negative side we remark that standardized construction inhibits
a specialized representation (e.g. compression), i.e. the diagram from OOP
now looks like this:

(arguments) -
representation

?

�pattern-matchfunctions

constr. result &%
'$
?

6

Therefore construction and pattern-matching are the essentially neces-
sary and su�cient operations on any value, which evolves into a uniform
description within programs.

1Distinguished from a generic algorithm schema in this context !
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� standardized construction and pattern-matching

� structural induction

� no information on representation

� sorts carry semantics

2.2.4 Order Sorted Algebra

Order sorted algebra adopts the term-algebra model of data but extends
it in two directions: First, rewriting techniques most naturally �t into the
picture as a model of computation (which yields a theory of many-sorted
algebra for computation). Second, it is observed that often in programming
practice, we need to talk about subsets of sets, which translates to subsorts,
which are assigned a restricted repertory of value-constructors.

Apart from the elegant description of certain situations, one of the mo-
tivations for describing programs in terms of equality of expressions (i.e.
rewriting equations), is the aim of veri�able programs, which is driven fur-
ther in the Tecton[19] language. The situation of library designers and
users, which has been sketched in the introductory passage, is addressed
again in the most rigorous interpretation, i.e. the equivalence of systems of
�rst-order formulae.

Goguen and Meseguer have been pursuing the development of OBJ[10],
[11] as a realization of these ideas and also the functional programming
paradigm, which will be discussed next, is connected interestingly [22]. OBJ
also provides an advanced system for grouping carrier-sets and functions to
allow to build structures and transform them into (view as) one another.

Parallel to the Haskell's type classes, OBJ has theories, which can be
instantiated with di�erent realizations, called objects and then subsequently
used to program further functions.

� relation < on sorts: set-theoretic inclusion, subset of
value-constructors allowed

� matching and rewriting as computation

� module systems for grouping functions and carrier-sets
to algebraic data types
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2.2.5 Functional/Applicative Programming

Super�cially, what constitutes the di�erence between many-sorted algebra
and functional programming, is the model of computation. Starting out
with the �-calculus, and extending it with term algebras as representation
of data (which is more convenient than pure �-terms in normal form (such as
the Church numerals)), the approach yields programming languages which
behave along the lines of mathematical intuition.

A second characteristic feature, which is also directly contained in the
�-calculus is the possibility of using higher-order functions, i.e. functions,
whose arguments can again be functions.

Programs here, in the pure form, consist of expressions only, together
with functional abstraction over one variable. What is totally invisible is the
representation of terms and functions, the underlying memory structure and
in some cases even the order of evaluation. Indeed, lazy-evaluation, which
consists of the two parts

1. no expression is evaluated unless absolutely necessary

2. no expression is evaluated more than once

is modeled after the mathematical model of terms: These stand for some
value, which is most of the time not interesting, but could be computed2 if
needed.

Because of the inductive structure of the calculus, it is possible to design
comprehensive type-systems, which provably ensure run-time type correct-
ness. We remind the reader of the series of languages starting out with ML
[18] and continuing with Haskell [30], [12], [21] and Gofer [16], [15]. While
ML introduced the idea of type-inference for types built inductively of type-
variables, simple types and the type-constructors!, �, [],... Unlike in OSA,
where sorts do not carry any structure besides that induced by the value
constructors, we �nd here that types are terms again.

With the presented algorithm W [18] it is possible to assign a type to
(correct) expressions without requiring declarations of variables, etc. by the
programmer. ML has unbounded type variables, i.e. it is in particular not
possible to introduce constraints on the instantiation.

Haskell extends the system by type classes, which describe sets of types
which have to provide operations (recall the universal algebra semantics with
carrier set and operations). Jones has shown in [16], [15] that an even more
general approach is possible for languages with type inference. Haskell's

2assuming that the required functions are e�ectively realized
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original system [30] involves type contexts, i.e. constraints on type variables
in the form of membership of a speci�c type class, which is written as

C a ) �(a)

where �(a) is a type involving the type variable. Jones identi�es a class C in
the context with a predicate � to be true for a substitution for the variable
and writes the above type as

f�(a) j a is a type such that �(a) holds g:

Inference rules about the predicates, as derived from class declarations, are
then given in the form

f�1; : : : ; �ng `̀ f�n+1; : : : ; �mg:

`̀ is also used to denote the transitive closure of the corresponding assump-
tions.

Accordingly, a type judgment consist of 4 parts:

P j A ` x : �

� A set of predicates which is currently valid for the type variables.

� An assignment of types to variables.

� The term to be typed.

� A type for the term.

Within this framework, a syntax-directed scheme for type inference can be
given, which has properties similar to Milner's algorithm W.

The whole work is however aimed towards a non ad-hoc overload reso-

lution and the implementation details [21], which make use of higher-order
functions and dictionary lookup at run-time, seem to incur a serious ine�-
ciency when contrasted with the careful design of C++ to decide most things
at compile time.3

It seems worthwhile to note that Standard ML [13] also incorporates
an extensive module system, and instantiations of modules can be roughly
compared to again building structures of sets and operations, which are fully
exploited only in Haskell's type classes.

3Of course, partial specialization techniques can be used in this context if desired.
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� simple structure ) proofs for program correctness

� no assignment

� rich theory: machine models, mathematical semantics

� extensive type-theory: type inference

� lazy-evaluation / order not predictable

� types are terms, built from constants, variables and
constructors (!, �, []).

2.2.6 Logic Programming

First-order logic formulae cannot only be used for a meta-description of
programs to allow for veri�cation, but also as a programming language itself.
Computation is then interpreted as a search for a proof, although the Prolog
depth-�rst search strategy with back-tracking and a cut-rule is not complete
in the strict sense of logic.

However, it seems still interesting for the later discussion of the Otter
system in our context, to note that in principle �rst-order systems with
equality allow to express rewrite-rules and are therefore Turing-complete,
provided that the search procedure is complete, i.e. it �nds a proof for
every provable formula4.

Following the predicate calculus (see [8]) the objects which the languages
talk about, are again terms and the predicates which describe properties of
terms, are the computational part. It follows that pattern matching and
term-algebras are again crucial concepts.

� pattern matching/uni�cation & terms

� logical inference as computation

2.2.7 Tecton

At a super�cial glance, a Tecton[19] program can well be confused with
programs written in OBJ, because again we can talk about (sub-)sorts, de-
clare functions and give requirements for these. However, there are two
major and crucial di�erences, which make Tecton unique among the lan-
guages in existence:

4Note the slight subtlety of \completeness" notions: In [8, p. 133] a theorem states
that a refutation is found by resolution if the set of clauses is unsatis�able. For satis�able
systems (i.e. the initial judgment is false) the procedure may well run forever).
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� The requirements are not necessarily constructive rules for reduction
and computation, but really describe (in full �rst-order logic) the min-

imal expected properties.

� The intention is to group together requirements and thereby reuse
proofs, which can be grouped in a similar fashion.

This is achieved by using already declared structures, here called con-

cepts, in new concepts as parts and superiors. If A is a part of B then
A is available for substitution by any concept, which ful�lls all the
requirements of A. In both cases, B can be treated as A by de�nition
of the language semantics. It follows that the question, whether A0

ful�lls the requirements for A can often be decided without looking at
the requirements, simply because A is a superior/part of A.

This approach can help minimize the impact on compiler-e�ciency
which would be noticed if theorem-proving in �rst-order logic was the
only basis for decisions and thus open the door to designing larger
software systems with meticulous compiler support.

Such a cascading description of requirements also suits well the idea of
generic programming, which we do not want to de�ne here, but which has
the intention of de�ning an algorithm in terms of the minimal requirements
of its parameters.

The decision to make full �rst-order logic available for the description,
encompasses the possibility to write totally correct programs, which can be
instantiated and thus reused arbitrarily by substitution of parts and the
resulting instances will again be correct.

� sorts with set-inclusion <

� not necessarily constructive description with full �rst-
order logic

� grouping of requirements and proof-obligation

� obliviate full theorem proving by su�cient syntactic
conditions

2.3 ProblematicModeling Situations in Di�erent Approaches

Whenever a language is designed to serve and model well a particular area of
application, it can be expected that it has drawbacks in other respects. Just
as the last section was not supposed to describe precisely the achievements
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of single approaches and the reasoning behind them, listing di�culties now
is not meant to provide a reason to condemn the languages, rather do we
again want to gather previous insights.

2.3.1 Records of Functions

We have described above that OOP has been derived from the wish to model
reality and in particular the observation, that some objects are special cases
of others.

In connection with the theoretical treatment of inheritance several prob-
lems have occurred and have been formalized by Cardelli [3], together with
Abadi [1], Castagna [4] and others. In the development of Eiffel and later
Sather the most imminent question has been discovered and practically
described; given two records of functions and data as the following

o1 = f
x : tx1
f : td1 ! tc1

g

o2 = f
x : tx2
f : td2 ! tc2

g

What are the restrictions on the occurring tX to perceive o2 as having
inherited from o1 (for short o2 <: o1) and overridden some of the members,
still in the sense that any message legal for o1 can also be sent to o2 ?

Essentially the following cases arise, depending on what manipulations
we allow to be performed on objects. We take the relation < to include,
somewhat abusing notation, both <: and usual convertibility of built-in
types. As a justi�cation, the two meanings cannot be confused, because
one applies when sending messages and the other when we execute a built-
in function.

reading x If a function may read a member variable and is expected to
work correctly afterwards, then certainly tx2 < tx1 for o2 < o1 (the
value of x2 must be substitutable for x1).

writing x If a function (outside of the objects) is allowed to write to x, then
we need tx2 > tx1, i.e. tx2 is less specialized. The reason is obvious:
In order to get substitutability of o2 for o1 any value assignable to x1
must be assignable to x2, i.e. x2 may not require more than x1.

Invoking f By the same reasoning as before, for the codomains we need
tc2 < tc1. Since calls to f are coded independent from whether the f of
o1 or o2 is invoked, f2 must accept at least the parameters acceptable
for o1, i.e. we need td2 > td1 (contrary to the codomain !).
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This characteristic behaviour, known as the co-/contravariance problem of
inheritance [4], has the consequence that a derived (=more specialized) ob-
ject may not override a method with a more specialized parameter list, which
is often needed, as soon as objects are not isolated entities [32].

One important special case of this situation shows up when a method
of an abstract base class (for instance Comparable) has a parameter of that
class (compare_to(Comparable y)). Cardelli investigates into this problem
of self-specialization. in [1, p.23] and �nds solutions for example in recur-
sive record types (the � operator) or by making self a special type name
with the desired properties by de�nition.5

Another possibility is to introduce 9 to bind type variables. The expres-
sions 9� < t1:X and 9� < t2:Y show the desired property with

(9� < t1:X) < (9� < t2:Y ) () (t1 < t2 ^X[t01=�] < Y [t02=�)

for all t01 < t1 and t02 < t2. However, then severe restrictions have to be
placed on the return value [1, p. 173].

In SmallTalk, where typing was only dynamic, these problems did not
arise until run-time and here the special knowledge of the programmer was
needed to avoid con
icts. Clearly however, the substitution principle is in
danger, once we replace a 8 by \special knowledge", which corresponds to
invariants on the object interactions.

2.3.2 OOP: Circle-Ellipse Dilemma

The preceding paragraphs have collected some theoretical problems, which
follow from the OOP approach if we want to introduce static type safety.
However, there are also well-known problems on the modeling part, i.e.
situations in which one wants to use inheritance for some reasons and yet
cannot assert substitutability for others.

Weihe [32] observes, that although apparently circles and ellipses have a
certain relation, we cannot easily model this relation by inheritance. Surely,
an ellipse is not a circle and also the converse is not true, if ellipses include
a function stretchXY which modi�es the radii independently.

For an explanation with respect to the current context, we suggest the
following reasoning: With a class, there are certain implicit invariants6 and
with respect to these the operation stretchXY is not closed when applied
to circles. Writing the functions explicitly, they should be declared as:

5Both the Tecton and the OSA approach do not incur these problems, because the
carrier sets are explicit in the sorts, and not implicit in the notion of \this object."

6In Eiffel/Sather we can make them explicit.
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for ellipses: ellipse�real�real! ellipse
for circles: circle �real�real ! ellipse

With this, we indeed can stretch circles, only we can't expect to get a
circle, but an ellipse !

Object-oriented languages fail to express this declaration, because the
�rst parameter is implicit in the receiver of the message (of type self)
and the last return value again is implicit in the modi�cation of member
variables. Because of the assumed self-specialization (see [1, p. 23]) in
inheritance, the return value for circles is inevitably circle, which has to
be avoided.

Recall however, that the self-type has been introduced to allow for
specialization of parameters in method-overriding. If we don't go that way,
then it has been suggested to treat inheritance as conversions|and this
yields the correct semantics: Coerce a circle to an ellipse, apply the ellipse-
operation stretch to get|an ellipse.

To make a sharper point, the choice is the following: The conversion
approach yields correct specialization behaviour for return parameters, the
implicit self-specialization gives us a desirable treatment for the argument

positions of methods.

2.4 Dependent Types

As long as the types of an object (now not in the OOP sense, but including
variable locations and constants) can be fully determined statically, one
could expect that it is only the complexity of the compiler which will increase
with more sophisticated language designs, but essentially every question will
be answered at compile time. However, this scope is quickly exceeded as soon
as we try to model precisely situations taken from mathematics. Now the
value, not only a static type, decides on the allowed operations on an object
{ and this value may not be known until the code is actually executed.

Immediately we �nd the following dilemma for a library designer when
writing a generally useful type for Z=nZ. The question is, speaking in C++

terms, whether n should be a static template-value parameter, or a dynamic
parameter to the value-constructor. The trade is between 
exibility and
e�ciency:

template <int n> class Mod {

Mod operator+(Mod &c) { ... };

...

};

13



class Mod {

int n;

Mod(int N) : n(N) { };

...

};

Worse than the probably small run-time penalty of the 
exible version with
dynamically determined n, is the restricted knowledge about n at compile
time. Having it a prime number, the class can also provide a = operator
which makes it an instance of a �eld, while in the general case, it is only
a ring7. Indeed, C++ cannot even check automatically that the n1=2 of the
two parameters to the + operator must be the same. Ada can insert such
run-time checks for dependent record types (whose type depends on the
value of record �elds) and even resolve, as an optimization, those checks at
compile-time, which only involve constants.

3 Preliminary Statement of Goals

The previous sections have concentrated on gathering examples of hot spots
in language design with respect to modeling capabilities. This section con-
tains observations derived from or related to those, but at a more abstract
level. The following remarks are neither intended nor appropriate to give
answers to detailed questions, but may well serve as a general guideline for
structuring a language.

3.1 Aspect: Emphasis on Orders

In the discussion in the literature, if a relation on types is introduced, it is
usually a preorder, i.e. it is taken to be re
exive and transitive or the tran-
sitive and re
exive closure is examined. Whenever directed acyclic graphs
can be used to represent the relation, which is true in OOP and OSA, these
assumptions imply antisymmetry, which means we deal with partial orders.
In OSA and functional programming [22] other desirable properties (such as
uniqueness of overload-resolution) are induced by further requirements, e.g.
that for any two sorts A,B there exists a C with A < C ^ B < C, which
leads to (upper) semi-lattices as the relation on types.

7Of course C++ itself does not, without using template specialization for every prime
number in the range of int, provide such reasoning capabilities, but a new language
should.
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Cardelli [3] and Castagna [4] have introduced the terms covariant and
contravariant for some expression X:

X covariant in � () X[s=�] < X[t=�] whenever s < t

and

X contravariant in � () X[s=�] < X[t=�] whenever t < s :

This de�nition is well-suited for examining expressions, because when com-
bining subexpressions to an expression via a constructor, the resulting ex-
pression will again be co- or contravariant and Pl�umicke [22] suggests simply
annotating each variable with + or � for this purpose (but only in the in-
ternal workings, not the language). Weber [31, p. 54] also goes into this
direction and divides all parameters of a (type-) constructor into the sets
S<; S>; S=, which also allows the programmer to require invariance.

Note however, that the notion of co-/contravariance has been induced
by the natural meanings of the 8 and 9 quanti�ers and! constructor when
we allow the user to include these into type-expressions. Also Reynolds
[24] suggested to do so, with the � and � product and sum types and �
type-variable abstractions. The bounds of the quanti�ers are stated as (for
example) 8(� < X) : Y (�). Contravariance of this expression is implicitly

connected with the 8 operator.
We will come back to this idea in a moment.
As another principle, we want to be able to give type information for the

interface only and then infer that the implementation, since it was written
for this interface, does not go wrong, if only the restrictions of the interface
are obeyed. Indeed, the only thing, which we can rely on in the description
of the type system at this point, is transitivity of the order-relation on types:

In OutInterface

??

??

66

66

Body

Call

We can exploit this observation by designing a type system, which only

relies on transitivity of < and does not have any other, often arti�cial rules
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(as e.g. in the C++ standard). Then writing a correct program can be
reduced to the task of avoiding the situation A > B < C, from which no
relation between A and C can be inferred.

The properties of < can be (almost) arbitrarily chosen and we think it
would be worthwhile to investigate several type systems from this point
of view. Whenever additional elements, such as built-in functions and
parameter-passing / method-sending strategies get involved, some proper-
ties of < may be induced indirectly { for example if built-in functions cannot
convert values, then < has to ensure that primitive data types are in the
correct representation before calling a built-in function. Similar reasoning
will be necessary for call-by-reference, call-by-value etc.

3.2 What Parameters can an Algorithm have ?

Aside from the previous discussion, Reynolds [24] describes, how the �-calculus
can be extended with another abstraction operator � for type-expressions,
not values (=terms). Transferring this idea to imperative programming,
gives us that generic procedures simply do have type parameters:

f(t1; : : : ; tl;x1; : : : ; xm; y1; : : : ; yn)

This is a procedure f with l type parameters, m value parameters and n
return values.

Although most imperative languages (except C++) do introduce type
parameters at an outer level, for example classes (Eiffel/Sather) or mod-
ules (Ada), we argue that the above notation is better suited to generic
programming and encourage statements of minimal requirements:

� We don't need to instantiate a whole package if we want one algorithm
(which is useful for large generic libraries).

� Since the programmer needs to state requirements for every algorithm
separately, he/she is more likely to analyze them in detail,
especially because

� Seldom two algorithms will have exactly the same requirements.

The approach yields several features as simple extensions to well-known
ideas:

� Instantiation of a generic algorithm corresponds to (compile-time or
link-time) partial evaluation.
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� Bounds on type parameters are truly types-of-types (if we allow the
type parameters to have the form t : c where c is a type class)

The most appealing consequence of this approach, however, is that the
strong distinction between type parameters, which are according to Weihe
[32] often implicitly associated with static checking, and value parameters,
which are evaluated at run-time, is ultimately lifted. Speaking metaphori-
cally, this paves one lane of the way to a generic language.

On the negative side, we ask the reader to recall how cumbersome generic
programming can be in Ada, simply because all type parameters must be
given explicitly. Therefore we argue for nesting the type classes within the
description of the value parameters, have the compiler instantiate them au-
tomatically, and then generate this explicit form of representation, suitable
for treatment by a simple substitution-scheme in the linker of our language.

3.3 Functions Returning Types

If we have now allowed types as parameters to algorithms, why shouldn't
we allow algorithms to return types ?

Of course, this possibility allows for computation with types such as in
while loops (!), but we expect it to be seldomly used or useful and therefore
don't discuss it in detail.

One very signi�cant example problem, the sequence-sorted sequence
dilemma as described in section 8.2, needs support of such functions how-
ever.

3.4 Overload Resolution

As Loos and Schupp observe in [27] overloading at least of function identi�ers
is essential to generic programming.

Essentially overload resolution must therefore ful�ll two tasks, according
to the algorithm-parameter view presented before:

� Select a unique function to be called for the overloaded identi�er in
the parse tree.

� Give the instantiation of the function's type variables, if any.

The �rst point can be handled by unique function names, given in the dec-
laration together with the overloaded identi�er or generated automatically
(name mangling). The second objective can be interpreted as computing an
algorithm's type parameters from its value parameters (see sec. 3.2). For
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Ada, Baker [2] has given a bottom-up algorithm, which accomplishes non-
generic overload resolution. In [14] we showed that this algorithm extends
naturally to the generic case, i.e. information on instantiation is propagated
up the parse tree by applying the substitution, which uni�es actual and for-
mal parameters also to the output of an algorithm. Essentially, we again
have a directed way of computation, and the algorithm can therefore be
expressed in the relation ! to be introduced, if we allow conditions on the
application of a rule (i.e. we can recursively check the parameters' types).

Section 7.2 gives the details.

3.5 Hierarchy of Objects

We have already mentioned that the above approach makes use of types-
of-types as bounds of type parameters. And indeed, this lifts yet another
restriction when carried out in full consequence: Types describe sets of
values, type-classes (see Haskell) describe sets of types. And we can write
this down as a hierarchy:

level 1 value
2

level 2 type
2

level 3 class

Whether it would be useful to extend this diagram further down by
classes of classes is a question of appropriate examples to be solved. For the
examples in section 7 we need to introduce a class computation, which con-
tains fragments of programs (including expressions). This class is connected
to types, because we want to give the type of the result and to value. If and
only if a computation reduces to a value, it is considered �nished and can
be used as a argument to a function call, for example.

In a later section, we will make use of the accomplished abstraction to
embed overload-resolution in the resulting decision system.

Note that with the introduction of levels, we have the possibility to
dispose of the common names and abstract from them to get a more uniform
system without the need for special cases. However, we must, by designing
the environment appropriately, ensure that the system behaves as expected
nevertheless.
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3.6 Partial Evaluation Strategies

We have already mentioned the relation between static instantiation of
generic procedures and partial evaluation. More abstractly speaking, the
goal must be two-fold:

� Take as many decisions as possible at compile-time time.

� Generate code to ensure that the other requirements are ful�lled at
run-time or throw a descriptive error-message (at least with a pointer
to the source-line and stack-trace) otherwise.

With this goal achieved, the design dilemma for the Z=nZ does not arise:
We can write the 
exible version, knowing that the compiler will infer the
more specialized code for n constant.

The special case is e�cient, the general case is possible.

3.7 No Implicit Statements

Again we remind the reader of the co-/contravariance problem: It arose,
because the quanti�ers were implicitly associated with the co-/contravariant
behaviour.

As the ultimate design goal for a language we state

� No declaration has more than one meaning.

� Every (useful) statement can be expressed.

3.8 Explicit Version of Co-/Contravariance

When we left co- and contravariance issues in the area of orders, the question
was not quite answered how the two issues are related.

Suppose we want to declare a type constructor t with two parameters:

t(�+ : A; �� : B)

Then for two instantiations [X1=�; Y1=�] and [X2=�; Y2=�] the resulting type
will be more specialized if X1 is more specialized than X2 or Y2 is more
specialized than Y1, i.e. we can lift a specialization \through" the application
of a constructor. Suppose we restrict ourselves to using < (and >) for
expressing the same information:

t(X1; Y1) < t(X2; Y2) where X1 < X2 ^ Y1 > Y2
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This means that we can reduce the decision to two other decisions, which
have the same structure as the original one. Because we can make the recur-
sion to < explicit in the conditions, the decision procedure for < does not
need to take into account the intricate properties of structural conversion.

A translation will be necessary for conveniently writing in the programs
(see sec. 4) but it will be straightforward.

Suppose we want to build an algorithm for deciding <. Once
we write rules as above to implement contravariant parameter
positions, a term from the left hand side of a judgment plays the
role of the right hand side of a sub-judgment: Y2 < Y1. Because
variables can now possibly be found left of <, it follows that
matching8 as a primitive operation for binding variables is not
enough; we will need uni�cation.

4 On Languages and Reduction

In this section we want to introduce a notion of languages for judgments,
which di�ers in some subtleties from classical languages of mathematical
logic; however, these di�erences will be useful once we employ them to de�ne
a programming language, simply because the restrictions are aimed in this
direction:

� Languages are focused on single judgments in a context and the context
cannot be expressed in the language itself. The rules �: left and
�: right from the Gentzen system for �rst order logic in [8, p.187]
shows this de�ciency directly:

�;� ! A;� B;�;� ! �

�; A � B;� ! �
�: left

A;� ! B;�;�

� ! �; A � B;�
�: right

Here (by soundness and completeness of the decision procedure) the
meta symbol ! can be used equivalently with the language symbol
�.

8which has been used in [14]
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4.1 Languages

Now suppose we want to construct a formal language in which one can
express judgments. Following the division in predicate or propositional logic,
we de�ne a language as a pair of a sets: The objects and relations, which
correspond to the terms and predicates resp. of the predicate calculus

L = (O;R)

Every relation r 2 R has an associated arity, which is written as an exponent,
if necessary. r can be interpreted as a predicate. Then the usual Boolean
connectives, such as ^;_;! are not part of the language itself, but they
are reintroduced on a meta-level later on, which aims at restricting the
language to the expressions necessary for our purpose and hand on problems
in theorem-proving for full predicate calculus to the inference machinery.

The judgments expressible in the language then are terms of the following
structure:

JL := fr(n)(o1; : : : ; on) j o1; : : : ; on 2 O ^ r(n) 2 Rg

Now judgments may be combined using the usual connectives ^;_;! with
the usual semantics; the resulting expressions are the formulae FL of the
language L.

The relations in R have to be characterized outside of the language and
may not be altered within the language. This de�nition will most probably
be done in terms of (non-deterministic) inference rules. In this way, the
properties of the relation may be hard-wired into a decision procedure, which
is also the usual form of implementing type systems.

For this description, we will have to introduce some sort of context , which
is a set of assumptions considered valid. These assumptions are formulae
over the judgments (in particular, they can include !, e�ectively intro-
ducing preconditions). The inference rules contain the procedures to apply
them. Generally speaking, a decision procedure for a language L will have
to determine if (and why) a judgment j 2 JL is valid in a context �, which
we write as

� j= j

Note that syntactically this language seems to be more constraint than
�rst-order predicate calculus, since the user cannot introduce new relations
(=predicates) directly and axiomatize them (by sentences of the logic). How-
ever, it is well possible to have a language LP = (OP ; RP ) where OP contains
all the predicate symbols one wants to use and RP incorporates a sound and
complete decision procedure for �rst-order formulae.
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4.2 Reduction

Given two languages L1 = (O1; R1) and L2 = (O2; R2), whose sets of
judgments are denoted by J1 and J2, a reduction is a triple of mappings
� = (�O;�R;��) with

�O : O1 ! O2

�R : R1 ! R2

�� : P(F1)! P(F2)

such that 8(o1; : : : ; on 2 O1; r
(n) 2 R1;� � F1)

1. �R(r
(n)) = r0(n) 2 R2

2. � j= r(o1; : : : ; on) () ��(�) j= �R(r)(�O(o1); : : : ;�O(on))

Such reductions are useful for two purposes:

� A given problem can be solved with a known more general, i.e. more
powerful technique.

� Bootstrapping: Having a simple language available, which unfortu-
nately cannot be used easily, one can de�ne \syntactic sugar" which
then is expressed in terms of the implemented language.

We will use both sorts of reduction: A simple, compilable language will be
used to give the semantics of a programming language (see Mini-Haskell), on
the other hand translating judgments to Horn-clauses can help experiment
easily with available theorem-provers (in our case Otter).

Another goal is to compare our type system to several others. One
example has already been alluded to in translating the co-/contravariance
properties to the relation < only.

If L is our system and L0 some other principle, e.g. an object-oriented
system with a class hierarchy, then there are two important points to be
ful�lled by a reduction � : L0 ! L:

1. � is simple in some sense. Since L will be computationally complete,
it is obvious that any other implementable system can be reduced to
L, i.e. as a program, which implements L0. However, this does not
allow any statements about whether our system captures the essential
features of the other one.

2. If L0 is decidable, then �(L0) � L should be decidable (although L
may not be).

3. If a judgment j 2 JL0 can be decided with algorithmic bounds O(f),
then �(j) 2 JL can be decided with the same bounds.
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5 A Unifying Approach

In this section of the essay we are going to describe a language LTE (for
typed execution), whose judgments can be used to model programming
language constructs as shown in section 7. These constructs not only imitate
traditional type checking, but extend it to support the desirable constructs
introduced in section 2.

There are essentially two ways of implementing the language LTE: We
can introduce proof-trees as in natural deduction with rules for the only judg-
ment ! or �nd a reduction to Horn-clauses and compute some examples.
Resolution together with appropriate search strategies ensures breadth-�rst
traversal of the inference tree and therefore completeness: Whenever the
program is legal, then for example type checking will terminate and yield a
proof containing the information, why the program is regarded correct.

However, in this approach we do not get

� precise error messages, which are essential to make a programming
language

� application-speci�c search strategies, which might yield a more e�-
cient type-checking process for frequent special cases.

Concerning the relation between speci�cation, compilation and what is ex-
pressible in the language, the unfortunate situation in most programming
languages is the following:

EXE

PROG meta-language-describe in

?

compile

The program is written down in a programming language, which is not
capable of expressing the desired speci�cation with the required precision.
Therefore, most of the crucial details of the speci�cation have to be moved
to comments for the human reader.
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EXE

PROG meta-language-describe in

?

compile

If now we have a meta-language available, which is capable of expressing
the needed speci�cation, then the compiler can check more of the correct
usage of a piece of software and since it can be done mechanically, the
speci�cation can be enforced.

5.1 On Well-Typing

It is customary [18], [30] to follow a three step process when introducing a
type system:

1. De�ne a pure language and operational semantics (for example the
untyped �-calculus)

2. De�ne what \well-typing" should mean

3. Show (as a theorem) that a well-typed program cannot \go wrong",
i.e. no extra run-time type checking is necessary.

We propose to go the opposite way:

1. De�ne which programs run correctly with all type information evalu-
ated at run-time.

2. Eliminate as much of the run-time checking as possible by static in-
ferences and show that only redundant requirements are eliminated.

In particular, we do not remove any checks of values, which are in general
only available at run-time, unless the values are constants. If we regard the
second step as \partly running the program", then the interpreter built for
the �rst goal is easily transformed to a compiler for the language { provided
that we can in
uence the process of proving correctness to separate static
and dynamic requirements. This cannot be accomplished when usingOtter

24



or similar systems, and another reason for building a specialized inference
system.

Some further thoughts on correctness can be found in section 8.3.1, which
bases the correctness of a whole program inductively on:

1. Correct usage of elementary operations on built-in types and type-
constructors

2. Interface-correctness, which consists of the requirements

(a) A function is called according to its interface

(b) Its body implements the interface speci�cation

The question, how the objects a speci�cation talks about can be de-
scribed in another implementable language and what impacts this has con-
cerning semantical restrictions is discussed in 8.6.

We see the justi�cation for this way of attack in the problems related
with incorporation of dynamic predicates (such as primality9 of n for Z=nZ)
into existing static type systems and in the relative simplicity of compiler-
construction and veri�cation (compiler-correctness theorem from functional
programming languages).

5.2 Hierarchical Objects

We have seen that it is useful to have several layers of objects, such as values,
types and type-classes. In this section we will attempt at a further abstrac-
tion, which will prove extremely useful for later applications to overload
resolution and execution.

So far, we have aimed at stating relations between objects for purposes of
abstraction, for example that a type is in a class. We would write down the
type as an object of level i =2 and the class of level j = 3. Strictly speaking,
it is not necessary that j = i+1, i.e. the levels follow in consecutive order, as
long as we don't leave out a level. Suppose we classify the di�erent kinds of
objects we want to talk about into sets Oi, where i 2 I and I is an arbitrary
index-set (the special case is I := f1; 2; 3g). The question is: Is there a
reordering of I, such that relations are only stated between Oi ! Oj where
i � j, i.e. using abstraction ?

This question, of course, is answered with yes, i� the directed graph

N := fOi gi2I ; E := f (k; l) j a statement �!l
kg is given g

9In an actual program, one would assert by a declaration that e.g. all numbers from a
system-list are prime and hand on this attribute through interfaces.
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is acyclic ([6, lemma 23.10]). Any topological sorting gives the desired re-
naming of I.

The following graph is the goal of this essay:

value term

type

class
?

?

��
�������

This picture has the following interpretation

� The usual hierarchy value-type-class is present.

� A term may reduce to a value via computation.

� A term may be asserted to yield a return type when executed (aiming
towards compilation).

Note that we cannot go \up" the dag with any edge. This requirement of
avoiding cycles can be motivated from two approaches:

� If the simple objects are arranged such that! represents some group-
ing into sets, what sense does it make to have objects that group
\themselves" ?

� Arranging sets into a hierarchy (see [7, p. 272]) avoids the occurrence
of set theoretic anomalies, and we certainly do not want them in a
programming language.

A path in a directed graph is de�ned inductively:

1. () is the empty path, which contains no vertex.

2. For any v 2 N , (v) is a path.

3. If (v1; : : : ; vn) is a path and (vn; v) 2 E, then (v1; : : : ; vn; v) is a path.

If p = (v1; : : : ; vk; : : : ; vl; : : : ; vn) is a path, then q = (vk; : : : ; vl) is a sub-path
of p, which is written as

p = (p1jqjp2)
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Note that possibly p1 = () or p2 = ().
If the graph is acyclic with �nite sets of vertices and edges, there are

only �nitely many paths, in particular every path has a �nite length and
the number of edges is �nite.

5.3 Typed Execution

Now we arrive at the most important part of this essay: The language LTE

which incorporates one possible notion of generic computation.
It seems easiest to give the objects, relations and inference-rules of the

language (according to section 4) and then to show what can be done with
them in examples and little lemmas.

In section 5.2 we have abstracted from our hierarchy of objects to obtain
a directed acyclic graph. We now make the paths of this graph the objects
of the language. These have the natural interpretation, which will also be
explicit in the programming language, of value, types and classes, but also
values which have types, types which are seen as member of a type class,
etc.

Note that these elements of the graph are parameters of a language, but
they are not part of, i.e. expressible within, the language. If they are to
be provided within a program, a meta-language must be invented, but since
they carry semantic information, it is expected that they are prede�ned and
unchangeable for a particular programming language.

Then let

G = (N;E)

be the directed acyclic graph describing the di�erent sets of simple ob-

jects (types, values, etc.) as the elements of N and E the directions of
abstraction/embedding/description/: : :.

OTE := f(x1; : : : ; xn) 2 v1 � � � � � vnj(v1; : : : ; vn) is a path inGg

If o = (x1; : : : ; xn) 2 v1 � � � � � vn is an object and the corresponding path
is p = (v1; : : : ; vn), then we write, abusing notation:

(x1; : : : ; xn) 2 (v1; : : : ; vn)

or

o 2 p
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On the programming language side, levels are separated by colons, and for
example a value x with a type t and class c is written as

:v x :t t :c c

Most of the time, since the starting point and direction is clear, we will write

x : t : c

as a readable, but context-sensitive variant. When one of the middle com-
ponents is meant to be left unspeci�ed, we write for example

x :: c

These compound language objects will come handy for three reasons:

� Although most rules will need to know only about one of the levels,
conversion rules for example are an important exception: If x is a
natural, then strictly speaking x is not an integer, but nat to int(x)
is, such that the conversion rule would be stated as

(x;nat)! (nat to int(x); int)

Otherwise, we are restricted to the notion of subsorts, which abstracts
from representation issues.

� Function calls can be expressed within the decision language, yielding
a general notion of overload resolution (see sec. 7.2).

� The ambiguous situations can be solved easily. Suppose we declare
the following variable:

x 2 nat

and later on want to put x into a sorted sequence. Since there are
several orderings for nat, we may want to make it explicit and write:

insert(x :: OrderedSet(�); s)

This expression indicates that x is the value-level, the type level is not
changed and the class level is overridden by OrderedSet(�), resulting
in the fully annotated parse tree

insert((x;nat;OrderedSet(�)); s)
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if s is a sequence.

It is therefore possible to write plenty of facts into the knowledge data-
base and still have a chance to make programs unambiguous.

In another situation, we might want to force a conversion:

f(x : int)

These additional annotations must of course be checked for validity.
Furthermore, to preserve the prescription of the user, we must intro-
duce the meta-rule that prescribed values must not be inferred i.e.
overridden.

The relations of the language are simply built along the edges of the given
graph. It is worth noting however, that the edges of the graph are not
judgments of the language by themselves.

If p; q is are paths of G then the judgments connected with these are

Jp;q := fo �!q
p o

0 j o 2 p; o0 2 qg

The relations of the language are therefore:

RTE :=
[

p;q paths of G

Jp;q

There are only �nitely many paths of G, therefore the union is �nite. Of
course the Jp;q may be in�nite, since they include user-de�ned objects, e.g.
elements of term-algebras.

Although there may be many relations�!q
p, we usually write!, because

the paths are clear from the compound objects on both sides.
For the inference rules we will make use of

� Context � as seen in sec. 4.1 is a set of assumptions, which here are
conditional rules

� = fa! b where fdi ! d0ig
n
i=1g

where plays the role of the logical connectives allowed in the general
setting.

There are only four inference rules, which are quite general:
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[axiom]

� = � [ fa0 ! b0 where fci ! dig
n
i=1g

9� : a = a0� ^ b0� = b^
81 � i � n : � j= ci� ! di�

(uja)! (ujb)
8(uja); (ujb) 2 OTE

[trans]
A! B B ! C

A! C
8A;B;C 2 OTE

[forget]
� j= (pjq)! (p)

[init]
� j= X� ! Y �

� j= X
�;�
! Y

Remarks:

� The main ideas from section 3 are present:

{ ! is a preorder

{ Substitutions are possible

{ They are computed by uni�cation, allowing for contravariant po-
sitions (see page 20)

� To be able to modify the start and endpoint of an inference by suitable
substitutions, we introduce the special symbol

�;�
! with two substitu-

tions. Note that [init] can be applied only once at the root of the proof
tree, since all the other judgments involve only !.

We refer to the given �, � as the initial substitutions of the judgment.
These can be used to instantiate variables on the left hand side of a
judgment, which we identi�ed in section 3.8 as a major obstacle in
introducing contravariant behaviour.

� The substitution � in [axiom] generates an \appropriate" instance of
a rule in �. Since it is also applied to the left hand sides of the
preconditions, formally we need only ! instead of the more general
�i;�i! when checking those without losing expressiveness. Also, the �i
may contain a substitution for variables x 2 Vars(b0) � Vars(a0); this
specialization may then be used in some other part of the proof tree.

� Checking the conditions � j= ci ! di of an axiom merely requires
building another proof-tree recursively, i.e. no structurally new judg-
ments arise.
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� In constructing a proof-tree, there is a lot of guesswork involved, since
we need to pin down

{ the intermediate B for [trans]

{ the local specializations �

{ the initial substitutions �, �

We devote section 5.4 to �nding a deterministic way of computing these
elements of a proof-tree. Essentially, we have to give an incremental
way of �nding the substitutions from the requirements encountered
during construction. Note the similarity to the problem of �nding a
most general uni�er in the Unification Theorem [25, p.33].

� [forget] contains re
exivity of ! for q = ().

� The [forget] rule is used to shorten an objects tail, which corresponds
simply to a loss of information, and doesn't really contribute to the
proof. Unfortunately it can clutter up a tree considerably. Suppose

we have proof-trees both A! B and B0 ! C and want to prove
A! C. Now B is a bit longer than B0, so that we need to use [forget].

[trans]
[forget]

A! B
B = (bjb0)! (b) = B0

A! B0 B0 ! C

A! C

In section 5.4 we will therefore consider a simpler but equivalent system
with modi�ed [re
ex], [trans] and [axiom] rules.

� In later sections we will unroll the \hidden" in
uences of the � and �
on later [axiom] rules in the proof tree. We believe that the presenta-
tion with \guesswork" is clearer and the principle ideas become more
obvious. The tedious details of which local uni�cation steps in
uence
which previously computed substitutions would rather obstruct the
simple underlying scheme.

5.4 Decision Language : Inference-trees

We have abstractly de�ned by now a system for expressing type-correct
execution. However, we are missing an e�cient way of constructing a proof
tree without too much \guesswork". This will be done in three steps:

1. Eliminate the need for [forget] by incorporating it to the other rules.
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2. Linearize proof-trees by considering only the leaves, i.e. the trees with-
out [trans] and [init]

3. Find the substitutions incrementally by local uni�cation.

5.4.1 Eliminating the [forget] rule

For facilitating proofs, we replace our system by the following, equivalent
one. The [forget] rule is incorporated into the other rules and itself degen-
erates to the [re
ex] rule, which used to be a special case of [forget]. We
have given the other system �rst, because we believe that re
ects better the
principal ideas.

The new axiom rule is a concatenation of [forget],[axiom] and [forget],
[trans] now incorporates two [forget] rules.

[axiom]

� = � [ fa0 ! b0 where fci ! dig
n
i=1g

9� : a = a0� ^ b0� = (bjb002)
81 � i � n : � j= ci� ! di�

(ujaju2)! (ujb)
8(ujaju2); (ujb) 2 OTE

[trans]
a! (bjb1) b! (cjc1)

(aja1)! (c)
8A;B;C 2 OTE

[re
ex]
� j= A! A

[init]
� j= X� ! Y �

� j= X
�;�
! Y

Remarks:

� What we have done is to augment any application of [axiom],[trans]
with a possibly trivial application of [forget].

� We need [re
ex] now, because otherwise an object could not be related
to itself (in the empty context, i.e. without writing rules).

� The [forget] rule can be retrieved by applying [re
ex] and [trans]:

T [re
ex]

[trans]

where T is some proof tree.
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� We can w.l.o.g. assume that [re
ex] appears in no proof tree except
of the trivial one for

[re
ex] [re
ex]

[trans]

i.e. �nding the relation (aja0) ! (a). In all other positions, [re
ex]
does not contribute to the proof.

5.4.2 Linearizing Proofs

The essence of the proof-trees are the applications of [axiom], where the rules
from � are really exploited. In this section we want to consider the sequence
of leaves, read from left to right, as the means of describing derivations.

In the previous section, we have given a system, in which proof-trees
have a very regular structure. Since [re
ex] can be assumed to appear only
in trivial cases, the leaves are [axiom] rules and the inner nodes are build
by [trans]. In this structure, basically in every derivation step, there is a
hidden [forget]; we introduce a special notation

a B b

to be equivalent to

a = (a1ja2)! (a1) = b

For the relation B we have the simple property: For all objects a; b; c

a B b B c ) a B c

The second essential step is the application of an [axiom] rule, which we
write as

A)� B

About global substitutions, there is a simple observation to be stated:

Lemma 1 In the derivation system for !, we have

8�; � : A
�;�
! B () A� ! B�

This follows directly from the fact, that [init] is only applicable once per
proof-tree, i.e. in the root.

The following lemma seems very useful for an implementation. It says
that instead of reading the whole proof-tree, it is enough to read the leaves
from left to right. Therefore, the data structures for holding proof steps can
be considerably simpler.
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Lemma 2 Let X
�;�
! Y be a judgment and � a context. Then the following

two statements are equivalent:

1. There exists a proof-tree without the use of conditional rules for

� j= X
�;�
! Y :

2. There are objects fXi;X
0

i ;X
00

i g
n
i=1, such that X� B X1, Xn = Y �

81 � i � n� 1 : Xi B X 0

i )� X
00

i B Xi+1:

where )� never uses a conditional rule.

Proof: We �rst show that the claimed sequence can be constructed from a
proof tree.

By lemma 1, it is equivalent to show the claim for the relation X 0 ! Y 0

where X 0 = X�,Y 0 = Y �.
For the trivial tree proving X 0 = (aja0)! (a) = Y 0 we simply set n = 1

X1 = a. Then X 0 B X1 B Y 0.
W.l.o.g. we now assume that [re
ex] is not used in the tree, i.e. there are

only [axiom] and [trans] rules, where exactly the [axiom] are the leaf nodes
and [trans] are the inner nodes.

Structural induction gives the general result.
Base: Let X 0, Y 0 be objects with X 0 ! Y 0. If the proof tree consists of a
leaf, then it looks as follows.

[axiom]
� = � [ fa0 ! b0g a0� = a b0� = (bjb01)

(ujaja2)! (ujb)
for some
substitution �

Therefore X 0 = (ujaja2), Y
0 = (ujb) and with n = 1

X 0 = (ujaja2) B (uja))� (ujb) B (ujb) = Y 0

by de�nition of )�.
Step: All we need to do is cut out of the middle of the two chains some
redundant B relation.

The root of the tree now consists of an application of [trans]:

[trans]
a! (bjb1) b! (cjc1)

(aja1)! (c)

Therefore X 0 = (aja1), Y
0 = c. By the induction hypothesis we can �nd

fAi; A
0

i; A
00

i g
l
i=1 and fBi; B

0

i; B
00

i g
m
i=1 with

(a) B A1 B A0

1 � � � )� A
00

l�1 B Al = (bjb1)
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and

(b) B B1 B B0

1 � � � )� B
00

m�1 B Bm = (cjc1) :

Because

A00

l�1 B Al = (bjb1) B (b) B B1 B B0

1

and therefore by the property of B

A00

l�1 B Al B B0

1

Therefore, we can choose the Xi as follows:

Xi :=

8<
:

Ai i < l
Al i = l

Bi�l+1 l + 1 � i � l +m

Conversely, given a sequence as above, it is easy to build a proof-tree, since
the operations )�;B allowed in sequences can be emulated by the [axiom],
[trans] rules only, if we handle the special case A B B separately as above.
In this direction, we do not need to pay attention to how many B we use.
2

Obviously, this lemma changes the structure of our proofs. If no conditional
rules are allowed and if we incorporate the B operation into a i , then a
proof has this form:

i i i i i i)� )� )� )�� � �

Towards an implementation, it is clear that if there is a sequence proving

� j= A
�;�
! B, then it can be build from the beginning to the end (induction

on the length of the sequence) the next subsections gives the details.

5.4.3 Incremental Computation of Substitutions

In the preceeding discussion we have always assumed that the applicable
inference rules and the substitutions occurring in the [init] and [axiom] rules
are given non-deterministically when building a proof-tree. We will dispose
of the latter requirement in this subsection, which unveils the inner depen-
dencies between the global and local substitutions. However, we do assume
that we know the sequence of rules to be applied. The goal is to compute
the most general substitutions using a uni�cation step locally. In fact, given
a sequence (r1; : : : ; rn) � � (without conditional rules) we can retrieve the
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essential requirements on the corresponding �i as a system of equations over
the X 00

i and Xi+1 from lemma 2.
The following de�nition \�nds" these equations (if they exists) and re-

spects the B relation. Now we can �nd the equations induced by a given
sequence of rules:

De�nition 1 Let A, B be sets of equations over terms. Then

A
�
[ B :=

n
fail A = fail _B = fail
A [B otherwise

Let R = (ai ! bi)
n
i=1 � � be a sequence of unconditional rules and X, Y

compound objects and fvijg, fuhg nodes in the graph of classes.

Then the function equ(X;Y;R) is de�ned inductively on the length of

R:

n = 0 If

X = (x1;: : : ;xm;: : : ;xn) 2 (vi1 ;: : : ;vim ;: : : ;vin)
Y = (y1;: : : ;ym) 2 (vi1 ;: : : ;vim)

then

equ(X;Y;R) := fxj = yjg
m
j=1

otherwise

equ(X;Y;R) := fail

n > 1 If

X = (x1;: : : ; xl; : : : ; xm; : : : ;xn) 2 (vi1 ;: : : ; vil ; : : : ;vim ;: : : ;vin)
a1 = (y1;: : : ;yl�m+1) 2 (vil ;: : : ;vim)

and

b1 = (z1;: : : ;zk) 2 (u1;: : : ;uk)

then let

E1 := fxs+l�1 = ysg
l�m+1
s=1

and

E2 := equ( (x1; : : : ; xl; z1; : : : ; zk) ; Y; (ai ! bi)
n
i=2)
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and de�ne

equ(X;Y;R) := E1
�
[ E2

If the above conditions are not met, de�ne

equ(X;Y;R) := fail

Remarks:

� An equation system over simple terms can then be solved, if possible,
by the uni�cation algorithm [25] and this algorithm �nds the most
general solution possible, i� it exists.

� From the de�nition of equ we see that only those equations are in-
cluded into the system, which must in any case be solved, i.e. without
even looking at possible conditions of the rules involved.

The substitution resulting from the system (if it exists) is very useful, since
it contains �i and the initial �, � we have been looking for.

Lemma 3 The following statements are equivalent:

1. There are objects fXi;X
0

i ;X
00

i g
n
i=1, such that X� B X1, Xn = Y �

81 � i � n� 1 : Xi B X 0

i )� X
00

i B Xi+1

where )� never uses a conditional rule. (see lemma 2)

2. There is a sequence R = (ai ! bi)
n
i=1 � � of unconditional rules with

8i 6= j : (Vars(ai) [ Vars(bi)) \ (Vars(aj) [ Vars(bj)) = ; and X, Y
compound objects for which equ(X;Y;R) has a (most general) solu-

tion.

Furthermore, the two forms of a proof can be constructively obtained from

one another.

Proof: (1) ) (2): Since each )� stands for one application of axiom, the
given proof induces a sequence of (unconditional) rules (ai ! bi)

n
i=1 � � to-

gether with suitable substitutions �i. W.l.o.g. we can assume that dom(�i) �
(Vars(ai) [ Vars(bi) (since �i is applied only locally) and after a renaming
8i 6= j : (Vars(ai) [ Vars(bi)) \ (Vars(aj) [ Vars(bj)) = ;. Because then
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variables of di�erent rules are disjoint and the �i, � and � are substitutions
(i.e. the variables do not occur in the respective terms)


 := � [ � [
n[
i=1

�i

is a substitution. Also 
 solves S := equ(X;Y; (ai ! bi)
n
i=1): The system S

of equations over simple objects (terms) comprises by de�nition of equ only
parts of the Xi, X

0

i and X 00

i which are equal up to B and the application of
the respective �i � 
.

(2) ) (1): Now let R = (ai ! bi)
n
i=1 � � given and 
 the solution of

S := equ(X;Y; (ai ! bi)
n
i=1).

We set the desired substitutions

� := 

Vars(X)

� := 

Vars(Y)

�i := 

Vars(ai)[Vars(bi)

From the de�nition of equ we can �nd the X 0

i, X
00

i and the desired equalities
hold, since S comprises the necessary equations by de�nition of equ.

Between the applications of [axiom] in)�, we �nd the following sequence
of B operations10

X 00

i�1 B Xi B X 0

i

which can be shortened to

X 00

i�1 B X 0

i

Therefore we can simply choose Xi := X 0

i. 2

5.4.4 Non-deterministic Path�nding

Although after the last subsection it is clear how to verify that a sequence of
rules is a proof (or determine why it fails if it is not), there is still a source
of non-determinism left in the approach: Of course we could simply say that
the set of all sequences of rules is enumerable and then check them one by
one | but this is very costly, and most sequences will fail locally, i.e. the

10Recall that this has been chosen to be redundant, since we had to emulate all possible
[forget] steps in the proof trees (see page 32)
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right hand side of a rule doesn't even \look like" the left hand side of the
following rule. However, given a binary predicate quickReject on terms,
which returns true if the terms would never unify, and determines this very
quickly, we can build a tree of paths, where every node represents one of
the X from the de�nition of equ and the children are possible continuations
with di�erent rules from the data base, whose left hand side and term of the
node agree w.r.t. quickReject, applied.

5.4.5 Generalization to Conditional Rules

As a consequence of the preceding subsections, we conclude that given terms
X and Y , we can determine all proofs with length smaller than a given N ,
as long as there are no conditional rules involved. However, remarks 5.4.3
are already geared towards a top-down approach to conditional rules, i.e.
use the three steps

1. Find a path

2. Verify path

3. Iteratively prove all conditions occurring on the path with the substi-
tutions found so far applied.

4. Apply the substitutions found in the recursion step to the path.

There are two important remarks to be made concerning completeness of
the search process:

Remarks:

� It is easy to �nd reasonable examples of data bases, where (3) involves
an in�nity recursion, for example if accidentally no applicable rules
without preconditions are given for a occurring judgment. Therefore,
the checking of preconditions is not a simple recursive procedure, but
must be incorporated into the general breadth-�rst search for trees.

� There may be more than one proof for a judgment, i.e. the solutions
possibly found in (3) involve copying of the parent proof-sequence
before (4).

It should be possible to choose the order of operations, such that \short"
proofs come out �rst. For example, one could give priority to proofs with
minimal overall length, i.e. the length of the path plus the sum over all
lengths of subproofs induced by conditions.
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5.4.6 Selecting the Best Proof

Since we can obtain all proofs, possibly only one by one if there are in�nitely
many, for a judgment, we assign weights to each of them and �nally select
the lightest. Such decisions would in general be used to minimize run-
time penalties of needed predicate calls (for verifying a dynamic condition
not statically determined by an invariant). Furthermore, there could be
hierarchies on functions in the sense that preferences could be stated, such
that if calls to several functions are possible in the same position of an
expression tree, the one with the highest precedence is actually chosen (�
C++ template specialization).

Since most of the programming language constructs and also the objects
one would be able to talk about, are also available in existing programming
languages, we do expect that most judgments have only �nitely many proofs.
In this situation it is not di�cult to accumulate them and afterwards �nd
the best proof w.r.t. the given priorities. If the sequence of proofs doesn't
stop by itself, there are several possible strategies:

1. Set an arti�cial breakpoint and don't accept proofs with total length
longer than a given N . This works only if the proofs are guaran-
teed to come out monotonically non-decreasing. The actual threshold
could be �ne-tune by pragmas for every program part, possibly single
statements.

A warning is issued when the stop is forced. If this is a rare case, the
programmer won't have troubles in examining the compiler's decision,
which will in any case correct, but possibly not optimal.

2. Issue an error if there are proofs not examined yet and make the user
specify with AS clauses (see section 7.12) her intentions more clearly
until no long proofs occur.

In fact, another pragma makes this choice a strict variant to the �rst
strategy.

However, there is an important special case where the initial judgment � j=

A
�;�
! B has the following properties:

� A does not contain variables.

� Only one rule in � applies to A and the resulting A0 has this property,
too.
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This automatically yields a deterministic proof in the following cases, in
which the set of rules �

� is an encoding of deterministic inference system e.g. the �-calculus

� describe a simple type system, e.g. OSA

� describe a program, where no overloading and coercion is used in (it
may use instantiation, though)

5.5 Language Variations/Extensions

5.5.1 Run-time Checks

So far we have considered an interpreter-approach for typed-execution of
programs. To get a compiler out of it, we need to draw a line of separa-
tion between compile-time and run-time, or static and dynamic decisions.
Because of the generality of LTE, this choice is (almost) arbitrary.

A similar situation arises in the technique of partial specialization, where
we simply declare some of the input parameters static and some dynamic
and let the interpreter run, until it cannot make any further reductions,
because dynamic values are needed.

It seems appropriate to use the following guide-lines (recall that we have
divided up the simple objects into classes):

� Most classes contain objects, which are not themselves created at run-
time. The aim is to introduce a single class, i.e. a node in the graph
of simple objects, named values, whose objects are the arguments and
results of computations at run-time. If they happen to be known
statically, however, they can well be evaluated by the inference process
directly and without implementation overhead.

� There is a class predicates, which contains symbolic expressions for
predicates on values. These predicates exist twice: As terms just as
in LTE and as executable boolean functions, which can be inserted by
the compiler, where necessary. Example:

DEF odd(x:int) := ((x%2)=1)

� For typed execution, the context must reduce a function call directly
to the expression, which de�nes the function, e.g.

+(x:int,y:int) -> int_plus(x,y)

to resolve overloading for +. Now we rather reduce to a special term:
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+(x:int,y:int) -> CALL(int_plus(x,y))

CALL itself will not be further reduced, but the compiler will know that
a function call is to be emitted. This is only a minor change in the
translation from our programming language to the decision language
LTE.

Furthermore, it would be helpful to give a second name to a func-
tion which uniquely identi�es it11. The overload resolution consists of
applying rules to an expression until only unique names appear.

The compilation of an expression, which could be evaluated within LTE,
proceeds in three steps.

� Translate the expression to LTE

� Construct a inference sequence for the expression.

� Eliminate as many proof-obligations as possible, i.e. prove most of the
judgments of a conditional rules.

� Emit an error message, if there are proof-obligations which cannot be
expressed by dynamic predicates.

� Generate code from the CALL terms and insert the executable parts
of the objects from the predicate class according to the inference-
sequence.

If carried out in this generality, the procedure not only yields automatic
exceptions when a speci�cation such as odd(x:int) is violated. It also allows
us to defer any decisions concerning the program-
ow to the evaluation of
run-time predicates:

� overload resolution (for correctness)

� choosing the more specialized function (for e�ciency)

The main idea can be visualized as follows: Suppose somewhere within the
inference sequence, we use a conditional rule:

i i)�

i i?)�

i iX)�

11If this name is compiler-generated according to a special function, this process is called
\name mangling".
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One of the proof-obligations can be checked statically and is marked, the
other proof obligation must be expressed by dynamic predicates.

5.5.2 Binary Predicates

Making restrictions on single values, types, etc. is what is possible in most
programming languages to some degree. The speci�cation of relations be-
tween several objects can be embedded in LTE most naturally within the
predicates class, too. Again, the same threads of reasoning about static/dynamic
decisions can be carried out, with the same result: The border line is arbi-
trary and the solution is general.

5.6 The Problem of Error-Messages

Doing inference does not automatically yield an intelligible description of
why and where a proof failed or also, in case the user wishes to understand
better his program's behaviour, to explain the decision taken.

This requires dependencies between messages from the system, which
can be expressed very well in a language with hyper-links, such as HTML.
In our view, a good system should at least provide the following:

� Failure/Success in a message part (i.e. a hyper-link) is visible without
following it.

� There are di�erent symbols attached to links, according to the mean-
ing, e.g. message A explains B, B is one possible inference from A.

� Links are used meaningfully to structure the level of detail that is
given in the error-message.

� The generated structure is not purely hierarchical, but there are cross-
references and short-cuts to messages at as deeper nesting level. Heuris-
tics about frequent errors can be used to guide the user.

6 The Otter Proof System

Otter[17] is a Horn-clause theorem prover with additional features which
lead towards logic programming, such as demodulation (rewriting) of terms,
built-in functions and predicates for boolean and machine-precision integer
values and bit-�elds.

Why we think that using this tool for experiments could be helpful, can
be justi�ed with four observations:
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� Unlike in term-rewriting,

{ non-determinism of the set of rules is expected and supported
(breadth �rst search)

{ matching (uni�cation) takes place only at the topmost level and
not in the middle of terms (which is the main reason why [5] must
assume that type-constructors are covariant)

� The � in our [axiom] rule can be determined by repeated uni�cation
(yielding the most general uni�er, which can be further instantiated
afterwards). Otter provides this tool and also applies � to the whole
rule as de�ned by [axiom].

� Horn clauses with exactly one positive literal can be regarded as rules
with one conclusion and several preconditions, just as in our rules.

� Otter is extremely fast. All examples except those containing actual
computation, were checked in less than 50ms (!) on a Pentium/266
(64MB RAM). and even larger data-bases with mostly unusable rules
won't do too much harm, because of the built-in term-indexing scheme.

The encoding of ! is done by having one single predicate in the input
�les, called rel. The objects, which are arguments to the predicate, are
represented by terms of the structure

o$(x,t,c)

where x represents a value, t a type and c a class. Since Otter has no idea
about our [forget] rule, we must emulate it and use distinguished constants
no_c for \no class given" and no_v for \no value given" at the c and x
positions resp.

Terms, which represent computations to be done, are written as

tm$(f, x1, ..., xm)

where m is the arity of the operator f . In principle, we could have enlarged
the o$() expression and introduced no_t, but we think that this, although
it is not a direct translation of !, is more readable in the example codes.

The parser of the programming language simply needs to
count arguments to generate the appropriate terms !

Therefore, there is conceptually a two step translation
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1. From the program code

2. to the ! calculus

3. to the Ottter input

One drawback of this approach is that at the very end, we cannot tell
Otter which literal is to be resolved �rst in a clause, which might give many
\undesired" and \useless" inference steps for our particular application.

To keep the examples short, we give the structure of the otter �les we
used here:

set(neg_hyper_res).

set(pretty_print).

set(hyper_res).

set(prolog_style_variables).

clear(back_sub).

clear(for_sub).

assign(max_proofs, 10).

assign(max_seconds, 20).

list(usable).

% put the general inference rules here

end_of_list.

list(sos).

% ask the current question here

end_of_list.

We found that the choice of inference techniques (binary-,hyper-, negative-
hyper-resolution) had an impact on the run-time for the proof, but not
on completeness (basically because we assume the functionality of binary
resolution only). However, it turned out that binary resolution tended to
generate many more useless and redundant inferences and the other two
techniques sometimes stopped with an empty set of support for wrong pro-
grams.

A typical inference rule we would write looks like this:
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% preconditions and evaluation of parameters

-rel(_X1, o$( .... )) |

...

-rel(_Xn, o$( .... )) |

% object inference

rel(o$( ... ), o$( ... ))

where the preconditions correspond directly to the conditional judgments of
the !-system.

If there is exactly one positive and one negative literal in the clause, it can
be viewed providing a possible replacement of a precondition or conclusion
of another rule. However, in such a resolution, the other clause will not be
shortened, i.e. a proof is not found. This can only be achieved using a single
positive literal, and this construct can be read as a (programming language)
variable/constant/: : : declaration.

7 Translation of Programming Language Constructs

In this section we show how to express several programming language con-
structs, such that they can be easily combined. This can be achieved by
using several classes of simple objects. The graph pertaining to the lan-
guage is build step by step. We start with the general class term, which
is attached to terms by the parser. They represent computations yet to
be evaluated (at run-time). A second class is value, which contains both
integers and booleans (which are treated as built into the system). The
values will be extended to contain value-constructors in section 7.8. Also,
terms containing only unique function names with checked parameters are
regarded as values, since they could be reduced using rewriting. The next
two classes of the sequence are type and type class, which serve to identify
the type of values and the (more abstract) group, which the type belongs to
(e.g. Integers, seen as a monoid with + and 0).

In the following we will introduce a programming language with the fea-
tures considered useful especially in the �eld of computer algebra. Although
we are not aware of any existing language supporting all of them, we think
that with the approach presented here, i.e. a reduction to LTE, they can
be implemented and a compiler to a simple untyped language can be built
(see section 8.3.1). For the description of the single constructs we will use
terminology taken from literature on programming languages.

For the sake of readability, we do not follow the recursive de�nitions fully
(i.e. in an systematic way), for example we abbreviate
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o$(_l, list(o$(no_v, int, no_c), no_c)

as

o$(_l, list(int), _c2)

knowing that int stands for some type in this syntactic position. This is
intended just for the human reader, but could obviously avoided in a formal
translation.

7.1 Notation for LTE

The rules of LTE have a simple structure, which we want to emphasize by
using a special notation. In section 5.3 we have already introduced the
objects of the language together with : as a meta-symbol for notational
convenience. For example we write

:C1
x1 :C2

x2 : : : :Ck
xk

for a compound object

(x1; x2; : : : ; xk) 2 C1 � C2 � � � � �Ck

where (C1; C2; : : : ; Cn) is a path in the graph of classes.
Since from the context of the examples it will be clear what path is taken,

we omit the explicit subscript of : and write

x : t : C

if x is a value of type t in class C. This simpli�cation is further supported
by the usual convention of naming variables:

� Values are at the end of the latin alphabet: x; y; : : : .

� Types are denoted by lower-case s; t.

� Classes are upper-case letter at the beginning of the alphabet: A;B;C; : : : .

The terms do not �t well into this scheme, and so we do not abbreviate
them, writing:

:T f(x1; : : : ; xn)
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A rule, which can be used during an application of the [axiom] inference
rule, has the structure:

A! B P1 ! Q1
...

Pn ! Qn

Here A ! B is the main relation between objects A and B and the
Pi ! Qi are preconditions. The variables are supposed to be quanti�ed at
rule level, according to the de�nition of [axiom].

During the description to follow, we will give the required rules in both
the above short-hand notation and the translation to the Otter[17] sys-
tem and brie
y indicate how the rules can be obtained systematically as a
(simple, syntactic) translation from the programming language.

7.2 Function Calls and Overload Resolution

The goal is to provide an expression of declared functions, which in most
languages have a form similar to

function name(x1:t1, ... xn:tn) : t = term

where term is the body of the function, name identi�es the function (prob-
ably it is overloaded) and the xi are parameters of type ti. This can be
reinterpreted in a sentence like

If xi is of type ti for all 1 � i � n, then a term tn$(name, x1, ..., xn)

can be replaced by term and evaluating the resulting expression
yields a value of type t.

For obtaining compilation, term would be an mangled version of the over-
loaded name. The unique identi�er does itself not appear on a left hand side
of a rule.

Note further that assumptions could be recursively stated about the ti
such as in

f(x:list(alpha:orderedSet(p:(alpha,alpha)->bool))):t(alpha)

which would be readily \linearized" or unrolled with a simple recursive func-
tion as:

If x is a list over a type � and � is an ordered set with parameter
(relation) f , and f is a function from �� � to bool, then f can
be evaluated to some value of type t(�).
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If the unique (mangled) name for f is F , the syntactic translation required
to obtain an LTE rule, would yield:

:T f(x)! F (x) : t(�) �! orderedSet(p)
p! p0 : ((�; �) ! bool)

Here ! is the function space (type-) constructor and p is the predicate
realizing an order.

The function calls in the programming language are char-
acterized by

� call-by-value ) eager evaluation

� one return value

� implicit coercion (and subsorts) (see sec. 7.4)

Section 7.10 discusses how to include reference-
parameters naturally and obtain the desired constraints
(no conversions apply).

An example with parameterized data types is given by a modular \="
function. The predicate is_prime is easily written down in Otter, but not
in the calculus so far. Of course, it is infeasible to implement a run-time
predicate for primality testing; we have chosen the example nevertheless to
give a motivation for section 8.5.

The programming language declaration

function '/'(x:mod(n:PrimeInt), y:mod(n:PrimeInt)):mod(n).

can be written down in LTE as follows:

:T =(x; y)! div mod(n1; x
0; y0) x! x0 : mod(n1)

y ! y0 : mod(n2)
n1 ! n01 : Int
n2 ! n02 : Int
INT EQUAL(n01, n

0

2)

PRIME INT(n01)

Note that the main deduction makes the type-parameter n a parameter to
the primitive procedure.

The �rst four preconditions serve two purposes:

1. Evaluate parameters (or obtain translation when compiling)
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2. Type-check by requiring a certain result

In Otter, the example can be written almost identically. Recall the we use
the predicate rel to denote !.

%% a -> (x, mod(n1))

-rel(_a, o$(_av, mod(_n1))) |

%% b -> (y, mod(n2))

-rel(_b, o$(_bv, mod(_n2))) |

%% n1 -> o$(n1', int)

-rel(_n1, o$(_nn1, int)) |

%% n1 -> o$(n1', int)

-rel(_n2, o$(_nn2, int)) |

%% Extra attributes

-is_prime(_nn1) |

-$NOT($NE(_nn1,_nn2))

%% consequence is evaluation of a term

| rel(t2$(div, _a, _b), o$(div_mod(_nn1,_av, _bv), mod(o$(_nn1,int)))).

We had to trick Otter by writing $NOT($NE(_nn1,_nn2)), because it
knows about equivalence, and would unify _x and _y in $EQ(_x,_y) which
is not the desired e�ect: The two terms must evaluate to the same object,
but they need not be identical.

Writing o$(div_mod(_nn1,_av, _bv), mod(o$(_nn1,int)) as the con-
sequence of the rule states two things:

� The return value is mod(o$(_nn1,int))

� The function can be evaluated by reducing (without types)
div_mod(_nn1,_av, _bv)

This means that overloading has been resolved, assuming that div_mod
is a unique name and no recursive nesting of parameters occurs in
this call, so the expression has been simpli�ed and can be treated by
a simple rewriting system or for code generation (annotated syntax
tree!)

Of course, we have to say how the constants t0$ are evaluated and write12,
for example:

:T 2! 2 : Int

or in Otter
12Overloading is possible !
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%% evaluate constants

rel(t0$(2), o$(2,int)).

rel(t0$(3), o$(3,int)).

rel(t0$(5), o$(5,int)).

Now assume the user has given local variables and a simple term:

var a : mod(2+3).

var b : mod(5).

EVAL a/b.

When evaluating the term a=b, there are additional things to be computed,
for example 2 + 3, which in an environment of overloadable constants is by
no means \trivially" 5 and of type integer !

It turns out though, that all of these considerations can be automatically
found and handled by the LTE rules given so far. All that the parser needs
to do to create a judgments upon �nding EVAL is to expand the de�nitions
of a and b. Strictly speaking, even this is not necessary: We could instead
have given the rules

:T a! mangled a : mod(2 + 3)

:T b! mangled b : mod(5)

and make this expansion automatic.13 To help Otter a bit, the expanded
version was used:

%% div(a:mod(2+3), b:mod(5)) ->? val : type

-rel(t2$(div, o$(a, mod(t2$(plus, t0$(2), t0$(3)))),

o$(b, mod(t0$(5)))),

o$(_ret, _t))

| $ans(_ret, _t).

The proof found by Otter is

---------------- PROOF ----------------

1 []

rel(o$(_x,_t),o$(_x,_t)).

2 []

is_prime(5).

13The decision depends on whether we regard variable declarations as some program-
meta-structure, which must accordingly handled by the parser, or as just another language
construct to be translated to LTE.
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3 []

-rel(_a,o$(_av,mod(_n1))) |

-rel(_b,o$(_bv,mod(_n2))) |

-rel(_n1,o$(_nn1,int)) |

-rel(_n2,o$(_nn2,int)) |

-is_prime(_nn1) |

-$NOT($NE(_nn1,_nn2)) |

rel(t2$(div,_a,_b),o$(div_mod(_nn1,_av,_bv),

mod(o$(_nn1,int)))).

4 []

rel(t0$(2),o$(2,int)).

5 []

rel(t0$(3),o$(3,int)).

6 []

rel(t0$(5),o$(5,int)).

7 []

-rel(_a,o$(_av,int)) |

-rel(_b,o$(_bv,int)) |

rel(t2$(plus,_a,_b),o$($SUM(_av,_bv),int)).

8 []

-rel(t2$(div,o$(a,mod(t2$(plus,t0$(2),t0$(3)))),

o$(b,mod(t0$(5)))),o$(_ret,_t)) |

$ans(_ret,_t).

9 [binary,8.1,3.7]

$ans(div_mod(A,B,C),mod(o$(A,int))) |

-rel(o$(a,mod(t2$(plus,t0$(2),t0$(3)))),o$(B,mod(D))) |

-rel(o$(b,mod(t0$(5))),o$(C,mod(E))) |

-rel(D,o$(A,int)) |

-rel(E,o$(F,int)) |

-is_prime(A) |

-$NOT($NE(A,F)).

109 [binary,9.1,1.1]

$ans(div_mod(A,a,B),mod(o$(A,int))) |

-rel(o$(b,mod(t0$(5))),o$(B,mod(C))) |

-rel(t2$(plus,t0$(2),t0$(3)),o$(A,int)) |

-rel(C,o$(D,int)) |

-is_prime(A) |

-$NOT($NE(A,D)).

166 [binary,109.1,1.1]

$ans(div_mod(A,a,b),mod(o$(A,int))) |
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-rel(t2$(plus,t0$(2),t0$(3)),o$(A,int)) |

-rel(t0$(5),o$(B,int)) |

-is_prime(A) |

-$NOT($NE(A,B)).

186 [binary,166.2,6.1]

$ans(div_mod(A,a,b),mod(o$(A,int))) |

-rel(t2$(plus,t0$(2),t0$(3)),o$(A,int)) |

-is_prime(A) |

-$NOT($NE(A,5)).

189 [binary,186.1,7.3]

$ans(div_mod($SUM(A,B),a,b),mod(o$($SUM(A,B),int))) |

-is_prime($SUM(A,B)) |

-$NOT($NE($SUM(A,B),5)) |

-rel(t0$(2),o$(A,int)) |

-rel(t0$(3),o$(B,int)).

194 [binary,189.3,4.1]

$ans(div_mod($SUM(2,A),a,b),mod(o$($SUM(2,A),int))) |

-is_prime($SUM(2,A)) |

-$NOT($NE($SUM(2,A),5)) |

-rel(t0$(3),o$(A,int)).

196 [binary,194.3,5.1,demod]

$ans(div_mod(5,a,b),mod(o$(5,int))) |

-is_prime(5).

197 [binary,196.1,2.1]

$ans(div_mod(5,a,b),mod(o$(5,int))).

------------ end of proof -------------

The last inference from 196 removes the last precondition, the primality of 5
and yields the expected annotated parse tree div_mod(5,a,b), which could
be passed to a code generator or reduction system.

7.3 Subsorts

When computing in term algebras, a subsort s0 < s contains the terms
constructed using a subset of the constructors available in s. However, the
essential way of representation is the same, so we can easily state this fact
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as: 14

:t s
0 ! :t s

In Otter we have to give the entire path:

-rel(o$(_x, _t, _c), o$(_x, s', _c)) |

rel(o$(_x, _t, _c), o$(_x, s, no_c)).

This rule says that we can simply change the tag of value _x. Note that this
can be done also if s has parameters, and we can even (recursively) impose
conditions on the parameters.

If we can have conditions, however, we can even insert retracts (cf. [10]).
For example, for the relation between naturals and integers we get the two
rules:

x : nat! x : int

x : int! x : nat HTBN(x)! TRUE

where HTBN is a run-time predicate (inserted automatically into the code
if this rule is used, see sec. 5.5.1) and the abbreviation stands for \Happens
To Be a Natural".

An important phenomenon called \structural coercion" and treated by
Weber [31, sec. 4.2.5] extensively, can also be modeled in LTE. In particular,
using the observations from section 3.8, we can even express contravariant
parameter positions in the following way:

Suppose type constructor15 T is contravariant in a parameter (which is
the only one for ease of presentation). In the programming language, this
could be naturally expressed by saying:

declare variance T((-)s).

All we have to do is write

:t T (s)!:t T (t) t! s :

For the covariant case, we would obtain the rule

declare variance T((+)s).

and

:t T (s)!:t T (t) s! t :

One could think of making covariant behaviour a default, since this seems
to be the most frequent case in practice.

14Note that here the paths start at the type level.
15In fact, value or type-class constructors could be used as well, since LTE doesn't make

a di�erence in the treatment
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7.4 Conversion

Now we show that tagging objects with other sorts is a special case of yet
another construct, known as conversion/coercion in the imperative program-
ming world. This notion includes the idea that if we want to compile an
imperative language without the assumption, that all data is represented as
terms, then in general it will be necessary to change the representation as
well, which is traditionally done by inserting functions into the parse tree.

Besides this rather ugly low-level detail, there are in the author's opin-
ion two theoretical reasons to make the conversion an explicit part of the
language description:

� If subsorts represent an embedding, the corresponding homomorphisms
may be neglected by convention in mathematical texts { but not in a
precise description of a program.

� A conversion \forgets" part of the information about a value, for ex-
ample the knowledge that an integer was an integer before it was
embedded to the reals { and this should be explicit somewhere.16

A programming language may want to (but few actually do) provide a
declaration:

conversion s -> t by function [ if conditions ].

where s and t are types and function is the unique name of the applica-
ble function. In the case of re-tagging, this is simply the generic identity
function.

Of course, s could be recursively nested, and conditions can give further
requirements, which to the best of the author's knowledge is found nowhere
else in this generality.

It is straightforward to see that LTE's expression for the above declara-
tion is

x : s! function(x) : t conditions

unrolled

where unrolled stands for further conditions contained in the nested s.
Most notably, the conditions can involve statements about structural

conversion:

conversion vector(s) -> vector(t) by (lambda(x) map(f, x))

if s -> t by f.

16Section 8.2 makes use of this \forgetful operation" again.
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One example in Otter is

% x : nat -> nat_to_int(x) : int

-rel(o$(_x,_t), o$(_x1, nat))

| rel(o$(_x,_t), o$(n2i(_x1), int)).

% x : int -> int_to_real(x) : real

-rel(o$(_x,_t), o$(_x1, int))

| rel(o$(_x,_t), o$(i2r(_x1), real)).

Together with a simple overloaded function neg int -> int and real -> real

% neg(x) -> neg_r(x1) : real

% where x -> x1 : real

-rel(_a, o$(_x, real)) |

rel(t1$(neg, _a), o$(neg_r(_x), real)).

% neg(x) -> neg_i(x1) : int

% where x -> x1 : int

-rel(_a, o$(_x, int)) |

rel(t1$(neg, _a), o$(neg_i(_x), int)).

These clauses can of course be written more nicely as

x : nat! n2i(x) : int
x : int! i2r(x) : real
:T neg(a)! neg i(a) : int a! x : int
:T neg(a)! neg r(a) : real a! x : real

We can ask the question about all the interpretations of the negation of a
natural, i.e. we have to judge

:T neg(c : nat)! x : t

which is equivalent to

-rel(t1$(neg, o$(c,nat)), o$(_x,_t))| $ans(_x,_t).

This yields the proofs:

----- PROOF ----- 13 [binary,12.1,5.1] $ans(neg_i(n2i(c)),int).

----- PROOF ----- 16 [binary,15.1,5.1] $ans(neg_r(i2r(n2i(c))),real).

----- PROOF ----- 20 [hyper,12,5] $ans(neg_i(n2i(c)),int).

----- PROOF ----- 22 [hyper,15,5] $ans(neg_r(i2r(n2i(c))),real).

This means that we can get either a �nal result of type int or real and
furthermore the parse-tree is annotated with the conversion functions, such
that it can be directly compiled.
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7.5 Higher-order functions

Functions as values are useful in many situations, especially for computing
in structures such as rings or ordered sets. In this section we show that
functional values are no special case: They can even be converted ! (Note
that they have one co- and one contravariant position).

Unfortunately, we will have to state conversion rules for every arity we
want to use, but since the automatic translation from the programming
language handles this, it should not be too cumbersome. To get the full
bene�ts from higher-order functions, we will need to make use of closures,
which construct a function from a term. The apply operation must be
changed to handle the substitution. 17 For a unary function the rule would
be (! is the function space constructor):

f : (a! b)! (�v:w) : (a0 ! b0) v : a0 ! v0 : a
f(v0) : b! w : b0

The idea behind the construction is:

1. Convert the variable v18, neglecting the fact that it is a variable, from
a0 to a (contravariantly)

2. Apply f to the resulting term and convert this, which is now of type
b, to b0 (covariantly)

3. Close the resulting term to yield a function.

In Otter the approach looks like this

%% lambda abstraction is done in de Bruijn notation

-rel(o$(v(0), _a1), o$(_v, _a)) |

-rel(o$(apply(_f, _v), _b), o$(_f1, _b1)) |

rel(o$(_f, func(_a,_b)), o$( lambda(_f1), func(_a1, _b1))).

To get hold of functions as values, the declared functions must be made
available via rules. Suppose a function is declared as:

function f(x:s):t = ...

17The de Bruijn notation is one way out of the necessity of generating fresh variables
within the calculus, but adjusting variable numbers by one is necessary during functional
abstraction and �-reduction.

18v is a variable of the programming language, not of LTE. Therefore it is type-set in
roman font and treated as a constant in the inferences.
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If F is the unique, mangled name of f , then the rule to be inserted to the
database is

:T f ! GLOBAL(F ) : (s! t)

Whenever an f appears in a term, it can now be interpreted as a reference
to the function. The wrapper GLOBAL is used to distinguish the unique name
F , which in the �nal code ends up to be a call to F , from a CLOSURE, which is
possibly a temporary object and cannot be called directly (for the handling
of closures in stack machines see e.g. [29, p.221]). In the examples, this
distinction is not carried out �rmly for the sake of readability:

rel(t0$(f), o$(lambda(f_nat_int(v(0))), func(nat,int), no_c)).

That function conversion works can be seen in the following examples. With
the knowledge (conversion rules) about int, real, nat as above and the
function f , which we leave as a symbol for this example, we can ask the
question:

% f : func(int,int) ->? f' : func(nat,real)

-rel(o$(f, func(int,int)), o$(_X, func(nat,real)))

| $ans(_X).

The proof yields the expected behaviour:

----- PROOF ----- 35 [hyper,25,1]

$ans(lambda(i2r(apply(f,n2i(v(0)))))).

The new function is

i2r � f � n2i

written as a closure in de Bruijn notation.

Note that in the special case of subsorts, the identity functions
need not even be mentioned in the nat->int and int->real

rules, and therefore they would not show up in the �nal result,
which would be $ans(lambda(apply(f,v(0))))$ The apply

could be optimized away by �-reduction.

We can also go back to the list example: We can convert a whole list by
mapping the conversion functions for the elements to the lists, which can be
stated as:

l : list(�)! map((�v:c); l) : list(�) v : �! c : �
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%% a conversion : list<alpha> -> list<beta> if alpha->beta

%% can be done by mapping of the conversion function

-rel(o$(v(0), _alpha), o$(_conv, _beta)) |

rel(o$(_x, list(_alpha)), o$(map(lambda(_conv), _x), list(_beta))).

The technique is again to convert the de Bruijn variable v(0) and get a term,
which we close and map. The map would be stated by the user in the body
of the conversion declaration and solves the problem of structural coercion,
i.e. how in general to construct the conversion function.

Now we can compute the example:

%% Check that list<nat> can be converted to list<real>

%% x : list(nat) -> X : list(real)

-rel(o$(l, list(nat)), o$(_ll, list(real)))

| $ans(_ll).

with the solution

----- PROOF ----- 43 [neg_hyper,21,1]

$ans(map(lambda(i2r(n2i(v(0)))),l)).

The new list is built by mapping i2r � n2i to the list.
In [24, p. 127] Reynolds makes the statement

At �rst sight, functions that accept polymorphic functions seem
exotic beasts of dubious utility. But the work of a number of
researchers sugests (sic!) that such functions may be the key to
a novel programming style.

Combining the features

� function-conversion (with co/contravariance)

� structural coercion (of lists)

� generic functions with instantiation

we get the following, quite sophisticated, example where we want to convert
a generic function head, which we have obtained from a global function
declaration, to a specialized version:

% head : func(list(_alpha), _alpha) ->? F : func(list(int), real)

-rel(o$(head, func(list(_alpha), _alpha)),

o$(_f, func(list(int), real )))

| $ans(_f).
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Note that in most systems, this does not work, because apparently � has to
be two di�erent types. It works in the ! calculus, because we have strictly
sequentialized the uni�cation and inference relation.

As can be expected, there are two structurally di�erent solutions: We can
either convert the list and then apply the generic function, or we can apply
the function and then convert the result. In any case, head is instatiated
with both � as the same type, such that the requirement from its declaration
is not violated:

----- PROOF ----- 38 [hyper,25,1]

$ans(lambda(apply(head,map(lambda(i2r(v(0))),v(0))))).

----- PROOF ----- 54 [binary,53.1,1.1]

$ans(lambda(i2r(apply(head,v(0))))).

If the function is not a closure, i.e. it is a symbol de�ned by another rule,
the apply rule (for binary functions) can be readily stated as:

:T APPLY(f; x; y)! r : t f ! f 0 : ((a; b)! c) (*)
x! x0 : a
y ! y0 : b
:T f 0(x0 : a; y0 : b)! r : t

Note that in line (�) we make an assumption, which is satis�ed by the way
we gave access to global functions: The \value" part of the function object
is a unique name for the function, usable in terms.

This structure has been derived from the Otter input used in the next
example

-rel(_f, o$(_f1, func2(_t1,_t2,_t3))) |

-rel(_x, o$(_x1, _t1)) |

-rel(_y, o$(_y1, _t2)) |

%% force eval for transitivity

-rel(t2$(_f1, o$(_x1, _t1), o$(_y1, _t2)), o$(_ret, _tret)) |

rel(t3$(apply, _f, _x, _y), o$(_ret, _tret) ).

It conceptually proceeds in these steps (line-wise)

1. Evaluate the function value

2. Evaluate the �rst argument

3. Evaluate the second argument
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4. Evaluate the function (which is supposed to be a function symbol)

5. Return the value

If the function is:

rel(t0$(plus), o$(plus_i_i_i, func2(int,int,int))).

The the evaluation is:

-rel(t3$(apply, t0$(plus), t0$(3),t0$(4)),

o$(_x, _t))

| $ans(_x,_t).

and yields

----- PROOF ----- 51 [hyper,39,1,1,demod]

$ans(7,int).

We can be slightly more e�cient when using the knowledge about our [trans]
rule, whichOtter does not have. Strictly speaking, the inference rule could
be stated as

:T APPLY(f; x; y)! :T f 0(x0 : a; y0 : b) f ! f 0 : ((a; b)! c)
x! x0 : a
y ! y0 : b

The di�erence is that we do not within the rule evaluate the term

:T f 0(x0 : a; y0 : b)

but do the type checking only and rely on the [trans] rule to proceed in the
inference with the derivation

:T f 0(x0 : a; y0 : b)! r : t

by itself.

7.6 Object-Oriented Programming

Having higher-order functions, the \records of functions" model can be di-
rectly translated to LTE. A few technicalities need to be discussed:

� An object consists of a tuple (d; f1; : : : ; fn) where d is the accumulated
data and the fi are functions. This organization yields essentially the
same structure as the C++ virtual table-approach.
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� Base-class conversion simply copies the derived classes data and those
operations which also apply to the base class. This is where the co-
/contravariance behaviour comes up.

� For method dispatching, we introduce a special symbol

DISP(f; o; x1; : : : ; xn):

f is a symbolic name (string), which is mapped to a slot fi via LTE

rules checking the e�ective type of the object to dispatch.

� The parser must basically only convert the method-dispatch syntax.
x.f(y); to DISP(f,x,y) to make it accessible to the ! system.

7.7 Integrating Structures

Now that we have higher-order functions and type classes, we can easily
introduce mathematical structures, where the carrier-sets, special constants,
and operations are simply parameters to a type class.

Most notably, there is no di�erence in treating the third or second com-
ponent of a o$() encoding, or in the !-system, there is no di�erence be-
tween elements of paths. Therefore, we can get type classes with co- and
contravariant parameter positions, just as we did before for functions. One
example is: Treat the integers as a monoid. This can certainly done in two
distinct ways (see section 7.12) one of which is:

:t int! :t int : Monoid(+int : ((int; int)! int); 0int : int)

In a programming language, most of the information is redundant: The
value and type components are not changed. Therefore it makes sense to
devise a syntax construct as:

structure of type t is C.

For the above example, depending on whether we want to allow overloaded
identi�ers in this special situation, we would write:

structure of type int is Monoid(+,0).

Since non-determinism is present in the inference process, several statements
about a single type can be made independently from one another.

In Otter this assertion looks as follows
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%% say that the integers are a monoid with +,0

-rel(o$(_x, _t, _c1), o$(no_v, int, _c)) |

rel(o$(_x, _t, _c1),

o$(no_v, int, MON(o$(plus_i_i_i, func2(int,int,int), no_c),

o$(0,int,no_c)))).

A question with it's proof is of course:

-rel(o$(no_v,int, no_c), o$(no_v, _t, MON(_f, _n))) | $ans(_f,_n).

The proof is:

----- PROOF ----- 40 [binary,39.1,1.1]

$ans(o$(plus_i_i_i,func2(int,int,int),no_c),o$(0,int,no_c)).

Although such a question by itself is useless, note that a term

-rel(_T, o$(no_v, _t, MON(_f, _n)))

could well be generated from a function interface such as

function fold(x:list(T : Monoid(op, neutral))) -> T

To play a bit with the expressiveness at this point, the designer might want
to make very clear that fold traditionally expects an explicit argument, we
could have written:

function fold(x:list(T), T : Monoid(op, neutral)) -> T

where the second parameter is a type parameter stating what the list should
be regarded as.

7.8 Data Construction and Destruction

Since Otter knows how to match terms, it can easily deal with value con-
struction and destruction, for example the basic list functions are readily
de�ned:

%% Lists can be constructed using cons and null

%% null -> null : list(_alpha)

rel(t0$(null), o$(null, list(_alpha), no_c)).

%% cons(a,b) -> co(A, B) : list(alpha)

%% where a -> A : alpha

%% b -> B : list(alpha)

-rel(_a, o$(_a1, _alpha, _c1)) |
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-rel(_b, o$(_b1, list(_alpha), _c2)) |

rel(t2$(cons, _a, _b), o$(co(_a1, _b1), list(_alpha), no_c)).

%% Deconstruction using is_null, car, cdr

-rel(_l, o$(co(_car, _cdr), list(_alpha), _c)) |

rel(t1$(car, _l), o$(_car, _alpha, no_c)).

-rel(_l, o$(co(_car, _cdr), list(_alpha), _c)) |

rel(t1$(cdr, _l), o$(_cdr, list(_alpha), _c)).

-rel(_l, o$(null, list(_alpha), _c)) |

rel(t1$(is_null, _l), o$(true, bool, no_c)).

-rel(_l, o$(co(_x,_y), list(_alpha), _c)) |

rel(t1$(is_null, _l), o$(false, bool, no_c)).

Note that the value component of an object contains untyped, internal con-
structors. Again in the area of stack machines [29, p.221], the internal rep-
resentation of a constructor on the heap, when applied to the appropriate
arguments, is

(i; x1; : : : ; xn)

where i is a numerical tag to dynamically identify the data structure for
purposes of pattern matching.

That the approach works together with conversion can be seen in trying
to introduce integers into a list of reals (the tail is given here explicitly and
the other t0$ evaluate only to integer constants):

-rel(t2$(cons, t0$(3),

t2$(cons, t0$(2),

t2$(cons, o$(1, real, no_c),

t0$(null)))),

o$(_l, _t, _c))

| $ans(_l, _t).

%%-------- PROOF -------- 3288 [hyper,3280,16] // 3.5 sec

%%$ans(co(i2r(3),co(i2r(2),co(1,null))),list(real)).

All but the last value need to be converted.
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7.9 Calling and Computing with Generic Functions

A lot of the text has been aimed towards compilation. Now we want to
justify the name LTE | A language for typed execution. We evaluate the
recursive length function directly.

The function in a programming language would be written as

function length(l:list(alpha)) : int =

(if (null? L)

0

(+ 1 (length (cdr L))))

When translated to Otter, as usual the arguments are type checked �rst,
then the body is evaluated and then the result is returned as the consequence
of the the inference rule:

%% Eval argument

-rel(_l, o$(_ll, list(_alpha), _c)) |

%% Eval body

-rel(t3$(if, t1$(is_null, o$(_ll, list(_alpha), _c)),

o$(0, int, no_c),

t2$(plus, t0$(1),

t1$(length, t1$(cdr, o$(_ll,

list(_alpha),

_c))))),

o$(_le, int, no_c)) |

%% return result

rel(t1$(length, _l), o$(_le, int, no_c)).

Please note the the body does not contain any annotation except the usual
number of arguments and could have been produced directly by a parser !

The question was

-rel(t1$(length,

t2$(cons, t0$(2),

t2$(cons, t0$(3),

t2$(cons, t0$(4),

t0$(null))))),

o$(_l, int, _c))

| $ans(_l).

and again could have been syntactically generated.
Of course, we have to de�ne how we evaluate the if-then-else con-

struction:
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%% (if x y z) -> y

%% where x -> true : bool

-rel(_I, o$(true, bool, _c1)) |

-rel(_TH, o$(_x, _t, _c)) |

rel(t3$(if, _I, _TH, _E), o$(_x, _t, _c)).

%% (if x y z) -> z

%% where x -> false : bool

-rel(_I, o$(false, bool, _c1)) |

-rel(_E, o$(_x, _t, _c)) |

rel(t3$(if, _I, _TH, _E), o$(_x, _t, _c)).

Some remarks seem appropriate:

� Obviously the boolean predicate will be evaluated more than once,
but this doesn't matter in a purely functional context, about which
we have been talking so far and which seems most appropriate for a
high-level treatment.

� The then and else branches might be (partially) evaluated, before
the boolean decision value is known. This doesn't lead to real con-

icts, such as segmentation violations here, because inference is silently
stopped, i.e. the clause is discarded from the set of support, when no
further resolution is possible.

� We never run into endless loops because of breadth-�rst search, but it
can be very ine�cient.

� If we could direct Otter's search and insist on proving the �rst goal
before any others, we dispose of both

{ the ine�ciency

{ the \instability"

Despite these remarks, Otter found a proof

----- PROOF ----- 10538 [binary,10537.1,1.1]

$ans(3).

It turns out that when length is given an evaluated argument, the inference
is much faster:

-rel(t1$(length, o$(co(4,co(3,co(2,co(1, null)))),

list(int), no_c)),
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o$(_l, int, _c))

| $ans(_l).

%-------- PROOF -------- 468 [neg_hyper,461,1]

%$ans(4).

Again, the remark seems in place, that we have to explicitly force the evalu-
ation of the body within the rule only because Otter does not know about
the transitivity of !. In LTE the formulation could have been done slightly
more elegant and also closer to the intention of the function:

:T length(l)! :T (if; (null? l0); 0; (1 + (length(cdr l0)))) : int
j l! l0 : List(�)

The only check, before the length term is replaced by the body of the func-
tion, is the type-check of the argument. The return type is known from a
previous check of the body, so we can use untyped reduction for the body.

7.10 Assignment Operations

ML has introduced the notion of a ref type, which serves as a wrapper
around values to make them assignable. A similar system can be used
here,too: We start out with a value of type LOC(alpha) where alpha is any
type. Such values can be passed around just like any other object in our
calculus.

When needed, they can be automatically dereferenced via a simple rule

x : LOC(�)! DEREF(x) : �

% x : LOC(alpha) -> deref(x) : alpha

-rel(_X, o$(_x, LOC(_alpha), _c)) |

rel(_X, o$(deref(_x), _alpha, _c))

providing the compiler again automatically with the full information, i.e.
tree annotation, which is necessary for direct code generation.

Since the value is wrapped up in LOC, none of the other value inference
rules will apply, as for example conversions. This yields the desired seman-
tics: A reference parameter to a function (i.e. an inout parameter) has
invariant behaviour|it is neither co- nor contravariant.

One question is how to obtain such references. Most easily, we can make
a term referring to a variable yield a location. The declaration

var x : t .

must be translated by the parser to

:T x! mangled x : LOC(t)
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7.11 Sequencing

Once variables are accessible, sequencing of operations makes sense and can
easily be done via a special term SEQ(x,y)which assumes that x is evaluated
before y (if we restrict ourselves to compilation, not evaluation, then again
this doesn't matter, since variable-modi�cations won't be done anyway).

7.12 Directing the Interpretation

Often it will be necessary to \push" the inference process into the right
direction, for example when ambiguities arise. That we don't need any
extra mechanism on a meta-level can be seen by the following simply AS

rule:

AS(X;Y )! Y X ! Y

-rel(_X, o$(_y, _t, _c)) |

rel(AS(_X, o$(_y, _t, _c)).

We have to use a general _X instead of o$(_x,_S, _D) because _X may well
contain a term tn$ still to be evaluated.

The idea is that many ways might lead to the ful�llment of the precon-
dition, but only the one which is given by the user is passed on to the next
inference step. Since the second argument can contain variables, we may
leave parts of the speci�cation open or have them retrieved by the system
for convenience, although we could also give them precisely with more e�ort.
This corresponds to \loose" mathematical thinking: Treating the integers
\as a ring" with the usual understanding of how and why the integers form
a ring.

7.13 User De�nable Types

High-level languages feature a mechanism for de�ning abstract data types,
i.e. (1) a type name, (2) a (private) representation, (3) a collection of
functions operating on the representation.

In LTE, type names need not be introduced explicitly, so there is no real
need to express that part of a declaration. However, it might be good for
reasons of e�ciency in the inference process. Suppose a datatype is declared
as

declare data t((+)s:b) = ...
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The new data type t has one (type) parameter s with bound b and covariant
behaviour. Whenever an interface of a function uses this data type t, it
must explicitly repeat the bound of s. This is particularly useful in the case
of generic programming, because it requires and allows a precise statement
of local preconditions. The inference process however, cannot make use of
the knowledge, that no type t can be build without the parameter having
bound b. This invariant is therefore checked over and over again, even if the
bound is the same as in the declaration!

The solution is again to have a unique encapsulation of t, say T (s) where
no bounds are present. A correct type expression t(s0) where s0 ful�lls the
bound s, can be changed to this internal format. In the interface of a func-
tion, one would use the keyword usual to indicate that no special bounds
are needed.

In rules of LTE this looks as follows

:T t(s)! :t T (s) s! b
:T T (s)! :t t(s)

function f(x: usual t(s)) = ...

would be expressed as

:T f(x)! : : : x! T (s)

The semantics without using T is retained in connection with the above
conversion rules, so indeed internal names of types are only a technique of
\wrapping up invariants".

Concerning the separation of representation and usage, Ada has devel-
oped a sophisticated module system, and the the concept of encapsulation
seems to be adaptable to our situation without too much e�ort. Especially,
a module (or even a single declaration) might incorporate a private area,
within which the values of type t can be treated as equivalent to their rep-
resentation (a conversion function). Everywhere else an encapsulated value
of type t must be modi�ed using the functions within the private area.

8 Extensions and Further Thoughts

8.1 Towards Type Inference

The Hindley/Milner system for type inference for expressions without re-
quiring the variables in the leaves to be declared. It has not yet been tried
to translate this process, i.e. the inference rules found in [18], to LTE.
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The reason why we think that it could be possible is the following: The
overload resolution rule proceeds up the parse-tree and annotates it with
expressions. However, uni�cation makes it possible to instantiate a variable
in a node after the node has been visited. If we tag all leaves to have
distinct type variables as types, then these will be instantiated as soon as a
condition upon the structure of their type is found. Together with a general
rule for �-application, which forces the �rst parameter to have a function
type and uni�es the argument with the argument position of this function,
the inference process could well simulate algorithm W.

8.2 Solving a Longstanding Problem

In July '98 the author has posed the following challenge, which seems harder
than Stepanov's min/max test, to generic programming languages :

Given two type classes, Sequence and OrderedSequence

(or Sequence{ordered} with attributes). Obviously they are
related in most respects, for example for printing, iteration,...
However, they don't share the append operation.

Can their relation be captured in the language ?

The crucial, and in itself most discouraging observation is, that they are not
related by the generally available substitutability notion.

If append is a function, then it certainly cannot be asserted: For ex-
ample appending element 1 at the end of the OrderedList (which is an
instance of the OrderedSequence) [2; 3; 4] certainly violates the de�nition
of OrderedList

But making append an operation, which comes along with the class, does
not help either, because still it could applied to a OrderedList value and
destroy the invariant.

The observation leading to a solution can be stated in two ways:

1. The assertion about a type class indirectly and implicitly (which we
wanted to avoid strictly !) in
uences the type of a value.

2. The situation can be referred back to the circle-ellipse dilemma, where
an operation stretch changed the self type, which is by de�nition
not possible in OOP languages.

The way we solved the circle-ellipse dilemma was to replace the notion of
substitutability by a forgetful operation, which we identi�ed with the well-
known concept of embedding or conversion.
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At this point, all we have to do is introduce higher order conversions. In
the language LTE, they can be expressed as:

x : t : OrderedSequence! x : nonOrdered(t) : Sequence

The nonOrdered is a function from types to types which we had been think-
ing about in section 3.3. We said there, that this function may contain even
while loops, and be Turin-complete on the domain of types (instead of other
values, which in LTE is an arti�cial distinction).

There is basically two ways to implement the required function:

1. For every type, which is an OrderedSequence, the function returns the
corresponding type without the invariant. Note that this might even
make a more general scheme necessary, if representation is changed
during the process, e.g. from red-black-trees to lists:

x : t : OrderedSequence! nonOrdV(x : t) : nonOrdT(t) : Sequence

The �rst function needs needs the type as well to determine, which
changes will be needed.

2. If the invariants are stated in the form of symbolic attributes, the
nonOrdered function would fetch the list of attributes from the type,
loop over it, and kill the undesired attributes.

LTE allows us to use either version and it is a matter of taste, which one to
prefer.

Note that the forgetful statement is valid regardless of which algorithms
are declared, and therefore the idea can be considered as general as the
substitution principle.

8.3 The Program Structure

Of course what has been given so far does not yield a programming language.
What is in particular missing is the derivation of the context � from the
syntactical program structure.

What we are aiming at is a set of modules, which consist of de�nitions
of functions, some of which may be value constructors, but for a �rst sketch
we treat them equal. The interfaces of the function, as a !-rule, will be
automatically derived from the de�nition and bound to the body by means
of a compiler-generated, program-wide unique name. This solves the linking
problem imminent in C/C++.
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8.3.1 Compiling Generic Functions

For the compilation process, in which the information given in the declara-
tion of a function together with the declaration of local variables must be
converted, such that inferences in the compilation of the body can be made.
In particular this means that

� all variables, including type variables, are regarded as constants

� local variables are given just as input-value parameters are, making
their location open for read/write via the LOC types.

The interface-translation discussed so far yields a structure like:

% parameters = preconditions

-rel( ... ) |

-rel( ... ) |

-rel( ... ) |

% body = evaluation

rel( ... ).

When compiling a function, the single declarations of input parameters and
local variables will be sequentially inserted into the environment. For ex-
ample, a local variable would be declared as:

var x : int;

which would be translated, recalling that the name may be overloaded and
denotes a memory location, as:

x -> (&local_x) : LOC(int)

where &local_x stands for the address within the stack frame. 19

The body of the function must of course yield a value of a type according
to the return type, which makes for a clause similar to the initial judgments
we have given in all our examples.

Overall, the Otter-version of a function-compilation looks like this:

19Strictly speaking, there will be di�erent LOC types, for example LOC STACK, LOC GLOBAL,
... according to the addressing schemes known on the (abstract) machine model, for which
we compile. Accordingly, there will be di�erent DEREF functions, which emit code for stack
references, global references, ...
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% parameters = declarations = assertions

rel( ... ) .

rel( ... ) .

rel( ... ) .

% body = evaluation : Show that the output interface is respected

-rel( ... ).

As now we see the interface from the other side, i.e. from inside, the proof-
obligations are reversed:

� We can assume that the input requirements are met and

� must show that the output is correctly produced.

Since the type variables can be arbitrarily instantiated, we cannot make any
assumptions except their declared minimal requirements and treat them as
constants, as we do with any other input parameters.

We call the two forms given above the inner and outer translation of an
interface.

Two most interesting, yet not very profound observations in the theo-
retical direction arise immediately:

� Looking at the Horn-clauses, the inner translation of an interface is
the negation of the outer translation.

This can be well explained by the similarity between our ! relation
and the logical implication) with respect to the property that there
is a number of preconditions, which must all be satis�ed to yields one
conclusion.

� Concerning the treatment of variables as constants, Milner [18, p. 362]
has observed a similar property: Only the variables bound in function
declarations (via let) (which he calls the generic variables of the ex-
pressions), are free for substitution, the others are treated as constants!

8.3.2 A Module System

How can a pre-compilation of a generic function be accomplished ? Ob-
viously, one can compile the body of a generic function with respect to
the inner translation of the interface. Respecting the remarks in section 3.2
about parameters of algorithms, a module on disk will consists of two blocks:
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1. The outer translations of the interface of all functions are at the be-
ginning. When a module is imported, they are simply merged with
the existing rules in the � of another module.

Each of the rules has the form:

o_name(X) -> u_name(X,Y) : type

where conditions

The overloaded name is replaced by an expression in the unique name
and is asserted to have a type (because the real return value is not
known at compile time).

2. The bodies of the functions are placed in the module as templates
ready for untyped substitution and code generation20.

8.4 Run-time Well-Typing

Inductively, since every function body satis�es the inner translation of its
interface, and there are no interfaces without uniquely determined bodies,
nothing can go wrong in the calling sequence of a function.

The induction base for this proof are of course the built-in primitive
types, which must be stated as:

o_name(X) -> BUILT_IN(name, X) : type

hoping that the compiler-constructor knows what he's doing (but this can
be veri�ed).

Via this little scheme, we could in principle, if only our programming lan-
guage receives a rigorous treatment, have a result saying that computation
can't go wrong, just as in Milner's \Theory of Polymorphism".

8.5 Symbolic Attributes as Restrictions

In [26] Schupp points out that it is very desirable to be able to modify
declared types by further attributes locally. Instead of declaring a type
MonicPolynomial, one would rather prefer to write Polynomialfmonicg. Es-
pecially when many di�erent attributes and subsets of these are needed, it
is necessary to deal with these situations e�ciently.

20One may want to re-examine the overload-resolution process when doing optimiza-
tions, because after substitution, the more specialized types in the body may give rise to
a more specialized, and e�cient resolved expression
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However, during the discussion of attributes, we should keep in mind
not to assign a semantical meaning to any of LTE's constructs. Rather,
LTE is designed such that we can easily reduce the semantical questions of
a programming language to the o�ered inference mechanisms.

Recall that types are represented by terms, i.e. a type is described
by a constructor, possibly with arguments. A type carries two pieces of
information: First, it describes a set of values (on a symbolical level, not
necessarily with representation). Second, the algebraic properties of this set
are determined in terms of applicable functions since the type is used in
overload resolution. In the translation to LTE, the types form a class in the
graph of simple objects, with possibly several parent classes, the \natural"
class being values.

1. Although the present discussion is carried out in terms of types and
values, it should be clear that it easily generalizes to any relationship
in the LTE graph.

2. Not every attribute is applicable to every type.

3. The meaning of an attribute may vary with the type it is applied to.

4. Attributes behave like set-theoretic restrictions to the value set in the
sense of comprehensions

tfag � fx 2 t j a(x)g

5. Therefore semantically attributes belong to a parent node in LTE's
graph, which may not be unique. A further constraint on the applica-
bility is imposed.

6. With this explanation, attributes represent additional information,
which may be neglected in some cases.

7. Attributes are not only assertions, but also requirements, depending
on whether they appear on the left-hand-side or right-hand-side of a
judgment.

8. The value, to which the predicate applies, may not be directly acces-
sible, as for example in the question, whether we can infer

Vector(intfpositiveg)! Vector(intfnonZerog)
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9. Conceptually, attributes are sets. The simple uni�cation used so far
to solve the system of equations generated by equ (see section 5.4.3)
does not have the capability to deal with such sets. Therefore, we will
have to extend LTE's capabilities.

10. The order of attributes may be important, if the applicability of an
attribute (and the corresponding predicate, which is a boolean function
with a signature) depends on other attributes. This leads to type
descriptions such as

tfAgfBg � � � fZg

where the A;B; : : : ; Z are sets of attributes. Some of the attributes
may be migrated to the left (if no dependencies arise) thus possibly
leaving empty sets which can be deleted.

11. The problem with substitutability, which we pointed out in section 8.2
is not solved by introducing attributes. Neglecting an attribute is a
truly forgetful operation, which is automatically included in the se-
mantics of an attribute without requiring further LTE rules.

From this list we conclude that further attention is necessary to avoid pre-
maturely introducing rules which con
ict with the concepts described so
far. Speci�cally, the need for attributes can be seen as a motivation for
examining forgetful operations systematically.

8.6 Veri�cation Issues

One goal of the generic programming paradigm is to verify programs on a
high level and to instantiate them correctly then later on. Since algorithms
are veri�ed in terms of e.g. �rst order predicate calculus, it would be desir-
able to connect our system to a veri�er. This is in fact quite simple, at least
from a bird's view perspective.

The initial idea is similar to the embedding of arbitrary predicates in
section 5.5.2 : We de�ne as equivalent a construct from LTE and a construct
from an arbitrary other language for judgments.

Just like �nding a homomorphism between algebraic structures,
this step re
ects back proof obligations of the other language
to LTE. The inferences made via ! must respect the relations
between the foreign objects and this is, besides the usual \no
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program goes wrong", a very strong, profound andmost desirable

goal for the rigor of the semantic de�nition.

LTE is designed for computation, for making decisions in a sym-
bolic and e�cient way, and on purpose does not carry any higher
semantic meaning by itself, to allow for a later assignment as de-
sirable. It has been constructed to carry out the inference steps
needed, but not to understand why they are correct and with
respect to what logical system.

We are convinced at this point, that Tecton is the ideal language for
this purpose and believe that especially the e�ort taken in completing a
standard libtec will make the combination easy. The reasons why the
language concept �t so seamlessly with LTE's main ideas are the following:

� Tecton knows the concept of substitution and assigns the same mean-
ing to it as LTE.

� Tecton's requirements are intended to be handed on to a theorem
prover directly.

� Tecton makes no implicit substitutions. The situation of �nding
proper instantiations for the parts of a concept can be dealt with anal-
ogously to the way we can compute the type parameters to algorithms
and make them explicit (section 3.2).

� Inference rules in � and Tecton are related by the following diagram,
which must commute for a properly de�ned language:

C1 C2

O1 O2

re�nes
=)

!

k k

In a �nal system, one could have a compilation mode, which spills out pre-
cisely all the proof-obligations connected to the inference rules given in LTE,
i.e. the programming language, in terms of their Tecton equivalents. The
substitutions in the form of with clauses are generated.

This yields a input text to the Tecton system, which can be checked
o�-line and once-and-for-all with as much computational power as needed,
the compilation time for the program is not a�ected. Having that all the
inferences in LTE are legal and \certi�ed" within the Tecton framework,
we know that the resulting compiled program is not only correct with respect
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to the inference rules given, but with respect to �rst-order predicate calculus
or whatever machinery will be necessary.

Why we have put an emphasis on the libtec, is that all the exam-
ple concepts and re�nement-relations between them, are available from the
beginning and can be (almost directly, i.e. without modi�cation except syn-
tax) used in a proper library of LTE inferences, which in turn can be used
in programs.

9 Conclusion

In this essay, we have treated the problem of designing a programming
language from a novel perspective. Instead of giving rules, which we want
the objects expressible in the language to obey, in a meta-language and
implementing these meta-rules in a compiler one by one, we have given a
language for typed execution LTE, which provides essentially only one basic
inference rule. The introduced relation ! can be semi-decided using the
well-known techniques of

� uni�cation

� breadth-�rst search in an inference tree

and we conjecture that the subset of rules and judgments arising from the
translation of programs, is decidable, given an application-speci�c search
strategy. The following programming language constructs have been shown
to be directly expressible in LTE with their usual semantics:

� type checking with subtyping and type classes

� overload resolution with run-time decisions, i.e. dependent types

� partial specialization by constant folding, possibly with the same func-
tion bodies, which are later on compiled into the executable

� higher-order functions

� contravariant positions in both type- and type-class constructors

� automatic instantiation of type variables

� recursive checking of parameter-preconditions, including value-predi-
cates and n-ary predicates

� explicitly controllable structural subtyping
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� the \records of functions" object model

One of the remarkable points is that there is absolutely no di�erence in
the complexity of types and type classes, making any arti�cial distinctions
between these in the implementation super
uous.

We have presented a three step model of compilation:

1. Programming language

2. ! calculus

3. Object code

Since LTE can be \compiled", i.e. the results of the inference process can
be fed directly to the code generator and the parser translating the pro-
gramming language to LTE can act on syntactical considerations only, we
conclude that the above features could be e�ectively realized in a language
along the lines of the system described, given that a decision procedure is
implemented.

As extensions, which seem plausible to be realized, we have presented
a module system, which includes the pre-compilation of generic functions
to a point, where only syntactic substitutions are necessary to generate
instances (linking process). They contain a set of LTE inference rules, which
are simply merged to an existing data base when the module is imported.
The connection to the Tecton[19] system for having veri�ed programs has
been sketched.
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