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Abstract

We relate Schumpeter’s notion of creative destruction to asset pricing,
thereby offering a novel explanation of size and value premia. We argue
that small-value firms are more likely to be destroyed by serendipitous in-
vention activity, and investors demand higher expected returns for bearing
that risk. Large-growth stocks provide protection against creative destruc-
tion, so they receive expected return discounts. An ICAPM that accounts
for creative destruction risk explains a considerable part of the cross-sectional
return variation of size- and book-to-market-sorted portfolios. The estimated
risk compensations associated with creative destruction are economically and
statistically significant.
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1 Introduction

Small stocks have earned higher average returns than large stocks, and stocks with

high book-to-market (B/M) ratio – value stocks – consistently have yielded higher

average returns than growth stocks, with their low B/M ratio. These facts are insuf-

ficiently captured by empirical implementations of the static Capital Asset Pricing

Model. The Fama-French three-factor model accounts for size and value premia,

but it leaves the identity of the fundamental risk represented by the Fama-French

factors HML and SMB uncertain.

By introducing Schumpeter’s notion of creative destruction into the asset pric-

ing literature, the present study seeks to test a novel explanation of size and value

premia. Specifically, we posit that serendipitous invention activity can render busi-

ness models based on current technology rapidly obsolete. This process creates a

systematic risk that is reflected in sizable expected return compensations.

The “process of industrial mutation [...] that incessantly revolutionizes the eco-

nomic structure from within, incessantly destroying the old one, incessantly creating

a new one” (Schumpeter, 1961, p. 83) occurs throughout history. Means of trans-

portation, for example, developed within a century from horse carriages to railroad,

then automobiles and airplanes. Recent inventions in the field of information tech-

nology have challenged traditional business models in the music, media, and news-

paper industries. Although inventions are pivotal for economic growth, they also

represent a fundamental risk for existing firms and their investors, namely, the risk

that their underlying business model will become obsolete.

We derive and estimate a two-factor asset pricing model in the spirit of Merton’s

(1973) Intertemporal Capital Asset Pricing Model (ICAPM). Our proposed model

includes the wealth portfolio return and invention activity as priced factors; we refer

to it as a Creative Destruction Risk Asset Pricing Model (CDRM). Using size- and
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B/M-sorted portfolios as test assets, we find economically and statistically signifi-

cant expected return compensations associated with the Schumpeterian risk factor

invention activity. For the small-value portfolio, for example, we estimate that seven

additional percentage points of expected return are required each year to compen-

sate for creative destruction risk. Previous research concurs that small-value firms

are under distress, in that they are less productive and have a higher default proba-

bility (c.f. Chan and Chen, 1991; Fama and French, 1995; Vassalou and Xing, 2004;

Zhang, 2005). These firms therefore are less likely to weather invention-induced

technological changes. An investment in large-growth stocks provides some protec-

tion against creative destruction risk, which our model reflects by estimating an

expected return discount of two percentage points for the large-growth portfolio.

The empirical performance of the CDRM when we test it on size- and B/M-

sorted portfolios is quite good. It achieves a cross-sectional R2 of up to 71 per-

cent, which is remarkably high given the model’s parsimonious parametrization.

Using an invention-mimicking portfolio as an alternative risk factor proxy further

sharpens the results. The CDRM passes various robustness and plausibility checks.

Sign and size of the estimated price of the risk associated with invention activ-

ity correspond with the invention-mimicking portfolio’s mean excess return (as de-

manded by Lewellen et al., 2010). Furthermore, the estimated ICAPM-implied co-

efficient of relative risk aversion is economically plausible (≈ 1.2), as required by

Maio and Santa-Clara (2012). The mimicking portfolio version of the CDRM is

successful for pricing the Fama-French factors, a result consistent with the inter-

pretation that the Fama-French factors represent creative destruction risk. For the

main analysis, we adopt a long-run perspective using annual data from 1927 to 2008.

The conclusions remain unchanged when we use postwar data sampled at quarterly

frequency instead.
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Our study connects several strands of literature. First, it bridges creative de-

struction – a familiar notion in economic growth theory (e.g. Segerstrom et al., 1990;

Grossman and Helpman, 1991; Aghion and Howitt, 1992; Helpman and Trajtenberg,

1994) – and asset pricing. Accordingly, we contribute to the literature that inves-

tigates the effects of technological innovations on asset prices (cf. Nicholas, 2008;

Hsu, 2009; Comin et al., 2009; Pástor and Veronesi, 2009; Gârleanu et al., 2012b).

The paper by Gârleanu et al. (2012a) is most closely related to ours. They propose

a general-equilibrium overlapping-generations model in which innovation erodes the

human capital of older workers, thus creating a “displacement risk factor”. Since the

rents of technological innovations are earned by future cohorts of investors, existing

agents cannot use financial markets to avoid the displacement effect.

Second, we incorporate creative destruction risk into Merton’s (1973) ICAPM,

to argue that investment opportunities change when inventions render existing busi-

nesses obsolete. In this sense, we extend existing empirical tests of the ICAPM

(e.g. Campbell, 1993, 1996; Campbell and Vuolteenaho, 2004; Brennan et al., 2004).

Third, our study complements the literature that aims to explain the value pre-

mium. For example, in Zhang’s (2005) model, costly reversibility and a counter-

cyclical price of risk generate the value premium, and Petkova and Zhang (2005)

show that time-varying risk moves in the appropriate direction to explain the value

premium. Fourth, we extend studies that associate size- and B/M-ratios with firm-

specific measures of distress (e.g. Chan, Chen, and Hsieh, 1985; Chan and Chen,

1991; Fama and French, 1995) by proposing a connection to an aggregate distress

factor.

The remainder of this paper is organized as follows. In Section 2 we introduce

a theoretical framework that relates invention activity to asset prices. Section 3

contains a description of the data, and we motivate the choice of the risk factor
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proxy. We discuss econometric issues in Section 4.1 and present the results of our

main empirical analysis in Section 4.2. Here we adopt a long-run perspective using

annual data. In Section 4.3.1 we introduce an invention-mimicking portfolio that we

use for robustness checks and model specification tests. With Section 4.3.2 we test

our model on quarterly postwar data. We conclude in Section 5.

2 Theoretical framework

Our theoretical framework links Schumpeter’s notion of creative destruction to asset

pricing. It formalizes the idea that certain inventions may turn into what Schumpete-

rian growth theory has dubbed General Purpose Technologies (GPTs), acknowledg-

ing their pervasive impact in a wide range of sectors (cf. Helpman and Trajtenberg,

1994). Although GPTs foster economic growth, they also render established tech-

nologies and the business models built on them obsolete. Inventions thus represent

a latent threat for investments in extant businesses. How do investors account for

the ambivalent nature of inventions, and what are the implications for asset pricing?

Instead of working in a general equilibrium setup, as in Gârleanu et al. (2012a),

we address this question within Merton’s (1973) ICAPM framework. The resulting

conditional beta model allows estimation and testing using standard empirical asset

pricing techniques.

Consider a setting in which a business i generates a random payoff Xi,t+1, and

where Nt inventions occur during t− 1 and t, each of which may destroy business i

with probability πi. When πi is small and Nt is large, the number of inventions

Di,t+1 that destroy business i is conditionally Poisson distributed, with λi,t = πiNt.

In the event that business i is destroyed, Di,t+1 > 0, and Xi,t+1 equals zero. If the
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business survives, the expected payoff of business i, conditional on time t information

is assumed to be positive. Therefore, we can write

Et[Xi,t+1] = exp(−Ntπi) Et[Xi,t+1|Di,t+1 = 0], (1)

where Et[·] denotes the expected value conditional on time t information, and exp(−Ntπi) =

Pt[Di,t+1 = 0] the conditional survival probability of business i. Since more inven-

tions have a chance of destroying business i, the conditional expected payoff of

business i decreases with an increasing number of inventions, viz

∂Et[Xi,t+1]

∂Nt

= −πi · exp(−Nt · πi) Et[Xi,t+1|Di,t+1 = 0] < 0. (2)

The negative effect of invention activity on conditional expected payoffs is stronger

for businesses with higher πi, provided the conditional survival probability is suffi-

ciently high.1

The notion that high πi businesses are more exposed to the risk of creative

destruction connects the present study to a literature that identifies small-value firms

as distressed. For example, Vassalou and Xing (2004) report a higher default risk for

value stocks, and Fama and French (1995) find that value stocks are less profitable

than growth stocks. Both Chan et al. (1985) and Vassalou and Xing (2004) evince

that small firms have a higher default risk. Chan and Chen (1991) show that small

firms tend to operate with a low production efficiency. Those distressed businesses

may not survive invention-induced technological changes, in which case the negative

impact of invention activity on payoffs appears stronger for small-value stocks. This

1Assuming that Et[Xi,t+1|Di,t+1 = 0] > 0,

∂2
Et[Xi,t+1]

∂πi∂Nt

= (πiNt − 1) exp(−Ntπi) Et[Xi,t+1|Di,t+1 = 0]

is positive for πiNt = λi,t > 1, that is, for Pt(Di,t+1 = 0) = exp(−πiNt) > exp(−1) = 0.37.
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train of thought establishes the link between idiosyncratic distress, reflected in πi,

and the Schumpeterian risk factor invention activity.

We use Merton’s (1973) Intertemporal CAPM to formalize the link between cre-

ative destruction risk and asset pricing. That is, we regard invention activity as a

state variable that affects investment opportunities through its potentially destruc-

tive effects on extant businesses. Suppose that a representative agent with an infinite

life span maximizes a standard utility function U = Et

∑
∞

j=0 δ
ju(ct+j), where δ is

the subjective discount factor.2 He consumes ct of his wealth Wt and invests the

remainder into a portfolio of assets that yields the gross return RW,t =
∑n

i=1wi,tRi,t,

where Ri,t are gross returns, and wi,t are portfolio weights that sum to 1. The next

period’s wealth then emerges as Wt+1 = RW,t+1(Wt − ct). Following Fama (1970),

we can write the investor’s maximization problem as

maxEt

∞∑

j=0

δju(ct+j) = maxu(ct) + δEt[V (Wt+1, Nt+1)], (3)

where V (Wt+1, Nt+1) denotes the maximized value of the utility function at time t+1.

Invention activity determines how much the investor benefits from the maximization,

and it thus enters the value function. In ICAPM terms, invention activity is a state

variable that accounts for shifts in the investment opportunity set.

From the first-order conditions of Equation (3), it follows that the stochastic

discount factor (SDF), which prices payoffs through pi,t = Et[mt+1Xi,t+1], can be

expressed as

mt+1 = δ
VW (Wt+1, Nt+1)

VW (Wt, Nt)
, (4)

2The following exposition draws on Cochrane (2005), Ch. 9.
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where VW denotes the partial derivative of the value function with respect to wealth.

We can then derive the following approximation for the conditional expected excess

return of asset i,3

Et[r
e
i,t+1] ≈ rratcovt

[
rei,t+1,

∆Wt+1

Wt

]
+ γN,tcovt

[
rei,t+1,

∆Nt+1

Nt

]

= γ′

tcovt[ft+1, r
e
i,t+1], (5)

where rei,t+1 = Ri,t+1 − R
f
t+1, with R

f
t+1 the risk-free rate, rrat = −WtVWW (Wt,Nt)

VW (Wt,Nt)
,

γN,t = −NtVWN (Wt,Nt)
VW (Wt,Nt)

, ft+1 =
(

∆Wt+1

Wt
,
∆Nt+1

Nt

)
′

, and γt = (rrat, γN,t)
′.

Alternatively, we can use

Et[r
e
i,t+1] ≈ βW,i,tλW,t + βN,i,tλN,t = β ′

i,tλt, (6)

where βi,t = (βW,i,t, βN,i,t)
′ = vart[ft+1]

−1covt[ft+1, r
e
i,t+1], and

λt =



λW,t

λN,t


 = vart[ft+1]



rrat

γN,t


 . (7)

The SDF then can be approximated by

mt ≈ b0,t + bW,t

∆Wt+1

Wt

+ bN,t

∆Nt+1

Nt

. (8)

Equation (6) is the conditional beta representation of a creative destruction risk

asset pricing model (CDRM), which accounts for the possibility that investments

with greater exposure to creative destruction risk require compensation in the form

of a higher expected return. Because serendipitous invention activity poses a generic

3For that purpose, write the investor’s optimization problem in continuous time, such that
Equation (5) emerges as a discrete time approximation of the expected return representation in
continuous time.
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threat to investments in existing firms, we would expect that γN,t = −NtVWN (Wt,Nt)
VW (Wt,Nt)

<

0. Put differently, a payoff equal to the value of de-meaned invention growth has a

positive price, viz

p

[
∆Nt+1

Nt

− Et

[
∆Nt+1

Nt

]]
= −λN,t > 0, (9)

such that stocks with negative invention betas must offer higher expected returns.

The CDRM thus formalizes the idea that creative destruction associated with and

rooted in invention activity is a systematic risk for extant businesses; it is neither

traded nor entirely insurable. This notion warrants some discussion.

First, this Schumpeterian view of invention activity does not necessarily apply

to the efforts of R&D departments, whose work is directed toward protecting and

improving the firm’s products to gain or maintain a competitive edge. Their effort

is distinct from the potentially destructive side of undirected invention activity that

we accentuate.

Second, new business models may arise, as few of the myriad of inventions

serendipitously turn into GPTs, but those that do generally are not discernible

when they occur, so even savvy venture capitalists cannot reap profits from them.

In the same vain, in the overlapping-generations model of Gârleanu et al. (2012a),

existing agents cannot use financial instruments to hedge against the downside ef-

fects of technological innovations. Economic rents are reaped by future generations,

who can invest in those businesses that inventions will create, while existing agents

have to bear the erosion of their human capital.

Third, the CDRM does retain the paradigm that the covariance of asset returns

with changes in wealth/consumption determines equilibrium expected returns. Yet

those parts of W that result from investments in extant businesses are imperiled

8



by invention-induced creative destruction. The CDRM thus corrects the potential

mis-pricing that might result from the sole use of the wealth portfolio return in the

SDF in Equation (8) and the expected return-beta representation (6).

3 Data

To conduct an empirical assessment of whether creative destruction risk matters

for asset pricing, we need a proxy for invention activity. R&D expenditures come

to mind, but these data measure cost, not outcomes. We instead choose patenting

activity as an outcome-oriented proxy, drawing on Jovanovic and Rousseau (2005)

who associate patenting activity with the arrival and spread of GPTs. To obtain

suitable data we contacted the U.S. Patent and Trademark Office (USPTO), which

granted us access to its master file of issued patents. The data contain an entry for

each patent issued at a specific date, spanning the period from 1790 to 2008. Even

though the USPTO data offer more detail (for recent periods at least), we compute

the obvious proxy for invention activity, Nt, as the number of patents issued between

t−1 and t. The net growth rate of patenting activity, denoted pg, then approximates

∆N
N

in Equation (5).

One could imagine a more sophisticated proxy for invention activity. For exam-

ple, because certain inventions exert a greater future impact than others, one could

try to filter out those patents that emerged as significant ex post. Tracking subse-

quent patent citations is indeed important for measuring the technological impact of

a specific invention (Nicholas, 2008). However, this issue loses some relevance when

accounting for creative destruction risk in asset pricing. In hindsight, one could

observe the success or failure of an invention and try to measure its subsequent

impact. However, we are interested in the ex ante probability that an invention

will destroy existing businesses. This is the threat that owners face and it seems
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prudent to assume that no investor can envision, at the time of its issuance, a spe-

cific patent’s future impact. Laser technology, for example, revolutionized medicine,

media, warfare, and telecommunication alike; it exemplifies the serendipitous effects

of an invention, which were unforeseeable ex ante (Townes, 2003). Accordingly, we

believe that the overall number of patents is a suitable indicator to capture our

notion of creative destruction risk.

Yet patents still represent an imperfect proxy for the kind of invention activity

that we are interested in. A considerable share of patenting activity aims solely to

preserve extant businesses and their products. Ideally, one would filter out those

protective/conservative patents, to focus on genuinely undirected, potentially de-

structive inventions. However, this intricate task would need to be based on assail-

able assumptions, which we chose to forgo. By using an unrefined proxy, we also

avoid the criticism of going fishing for a factor that proves to be ex post empirically

significant.

We use the simple return of the value-weighted NYSE, AMEX and NASDAQ

traded stocks, denoted rW , as a proxy for ∆W
W

. The test assets in our main analysis

are the excess returns (over the one-month T-Bill rate) of the 25 size- and B/M-

sorted Fama-French portfolios. We use both value-weighted (VWP) and equally-

weighted (EWP) portfolios. These data are retrieved from Kenneth French’s finan-

cial data library, which is also the source for the Fama-French factors SMB and

HML.4 excess return of a “size” investment strategy that is long in small stocks and

short in large stocks. For details on the construction of SMB and HML from six

base portfolios, see Fama and French (1993).

4See http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html, accessed
March 22, 2013. N.b. that due to frequent changes in the CRSP base data, newer downloads will
yield somewhat different return series.
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For our main analysis, we use annual data, starting from 1927, the first year for

which Fama-French portfolios are available, and running until 2008, the final date

in our USPTO master file. We adopt this long-run, low frequency perspective for

two reasons. First, our proxy for invention activity is prone to measurement errors.

The number of patents recorded during a certain period depends on the USPTO’s

institutional settings and backlogs in the patent issuing process. These disturbances

become aggravated at higher sampling frequencies. Second, a longer time-series can

capture more periods of creative destruction.

[Insert Table 1 about here]

[Insert Table 2 about here]

In Table 1 we report descriptive statistics on patenting growth, market return, and

the two Fama-French factors; Figure 1 shows a time-series plot of these data. The

average return of the market portfolio proxy amounts to 11.4 percent per year. The

average excess returns of the size and value investment strategies are 3.6 percent

(SMB) and 5.1 percent (HML), respectively. Considerable size and value effects

become also apparent in Table 2, which reports the means and standard deviations

of the excess returns of the size- and B/M-sorted test portfolios. From left to right,

value firms earn more on average than growth firms; from top to bottom, small firms

earn more on average than large firms. The small-growth VWP, with an average

annual excess return of 3.7 percent, is a notorious exception.

[Insert Figure 1 about here]

A descriptive analysis of the time-series of patenting growth, HML and SMB reveals

some interesting empirical facts. As Table 1 shows, patenting growth exhibits no

serial correlation and averages at 2.4 percent annually with a standard deviation
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comparable to that of SMB and HML. Furthermore, patenting growth is negatively

correlated with the Fama-French factors. Figure 1 depicts several patenting activity

peaks during the 1950s and 1960s, when inventions in the field of electronics, petro-

chemicals, and aviation emerged, as well as the late 1990s, reflecting inventions in

the field of information systems. Bursts of patenting activity tend to be accompa-

nied by low HML and SMB returns. In contrast, periods marked by low invention

activity, such as the 1970s, tend to be associated with higher SMB and HML returns.

4 Estimation results and discussion

4.1 Empirical methodology

Similar to any conditional asset pricing model, the conditional CDRM derived above

is subject to the Hansen-Richard critique. It is not empirically testable without fur-

ther assumptions. To avoid this concern, we could follow Cochrane (1996), and

specify the time-varying SDF parameters in Equation (8) as affine functions of in-

struments available at time t. Doing so would yield a scaled factor model that can

be conditioned to empirically useable moment conditions. However, at this stage we

do not want to mix the effects of scaling variables with the Schumpeterian risk-factor

invention activity. Instead, we assume that an unconditional beta representation of

the conditional CDRM in Equation (6) exists, such that

E[rei,t] = βW,iλW + βN,iλN = β ′

iλ, (10)
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where βi = (βW,i, βN,i)
′ = var(ft)

−1cov(ft, r
e
i,t) and λ = (λW , λN)

′ = E[λt].
5 Using

the risk factor proxies, we now have ft = (rW,t, pgt)
′. Alternatively, we can write

Equation (10 ) in its SDF representation,

E[mtr
e
i,t] = 0 (11)

mt = b0 + bW rW,t + bNpgt. (12)

The unconditional moment restrictions in Equation (11) can be tested using the

first-stage Generalized Method of Moments (GMM) J-statistic, and time-series re-

gressions of the test assets’ excess returns on the factor proxies and a constant yield

estimates of βW,i and βN,i in Equation (10). The estimated betas serve as explanatory

variables in a cross-sectional regression that uses the average excess returns of the

test assets as dependent variables, and that estimates λW and λN as cross-sectional

regression slopes.

For statistical inference we follow Cochrane (2005), who suggests treating this

two-pass regression setup as an instance of GMM. The GMM approach offers the

following advantages. First, statistical inference can be based on somewhat less re-

strictive assumptions than Shanken’s (1992) more widely used formulas.6 Second,

we can assess the statistical significance of the estimated risk compensations asso-

ciated with creative destruction (β̂N,i · λ̂N) using the joint covariance matrix of the

first- and second-step estimates delivered by GMM theory (cf. Hansen, 1982), and by

5Unless the data generating process is i.i.d., a conditional beta representation Et[r
e
i,t] = β′

i,tλt

does not necessarily imply an unconditional counterpart E[rei,t] = β′

iλ. The conditions for the
existence of the latter, given the former are outlined for the single factor case by Singleton (2006),
and Lewellen and Nagel (2006). Similar conditions can be stated for conditional two-factor models
such as the CDRM of Equation (6). We assume that these conditions are fulfilled and base our
econometric work on the unconditional beta representation (10) and the unconditional moment
conditions (11).

6There is no need to assume independence of factors and first-step regression disturbances, and
one can account for serial correlation among the regression residuals.
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applying the delta method. Third, the GMM approach can be extended to account

for the initial estimation of the weights of a mimicking portfolio, and for convenient

model specification tests (see Section 4.3). The methodological details appear in the

Appendix.7

4.2 Explaining size and value premia with the CDRM

Table 3 (VWP) and Table 4 (EWP) display the results of the first-step time-series

regressions. Panels A report the beta estimates, the associated t-statistics, and the

time-series R2. The invention betas vary considerably across test assets following

a clear-cut cross-sectional pattern. Large negative β̂N cluster in the upper right

corner of the respective panels, where small and high B/M portfolios are located.

The small-value portfolio has the strongest negative exposure to invention activity,

whereas the invention betas for the large-growth portfolios are positive. Panels B

of Table 3 and Table 4 show that the estimates of λN have the presumed negative

sign, and they are statistically significant with p-values of 1.8 percent (WVP) and

1.2 percent (EWP), respectively.8

[Insert Table 3 about here]

[Insert Table 4 about here]

[Insert Table 5 about here]

In a recent paper, Maio and Santa-Clara (2012) recommend checking the plausibility

of the estimated ICAPM-implied relative risk aversion coefficients (rra) to exploit

their relation to the factor risk premia λ (see Equation 7). Assuming constant

7A GAUSS program that implements these procedures and that produces the results reported
herein is available on request.

8Unless noted otherwise, the reported p-values were obtained from a t−test of the null hypothesis
that the true parameter is zero.
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relative risk aversion, and that γN,t = γN , as well as that the unconditional CDRM

(10) holds, we can use the estimate9



r̂ra

γ̂N


 =

[
1

T

T∑

t=1

f ∗

t f
∗
′

t

]−1


λ̂W

λ̂N


 . (13)

Using the results from Table 3 (VWP), we obtain r̂ra = 1.22 (s.e. 0.58), which is

an economically plausible estimate. The same holds for the EWP-based results of

Table 4, which imply r̂ra = 1.02 (s.e. 0.61).

Table 5 shows that the estimated risk compensations associated with creative

destruction risks (β̂N,i · λ̂N) are economically substantial. Large positive and statis-

tically significant β̂N,i · λ̂N cluster where small and high B/M portfolios are located,

while the estimated risk compensation associated with creative destruction risk is

negative for the large-growth portfolios. Using value-weighted test portfolios, we es-

timate an additional expected excess return compensation of 6.8 percentage points

per annum for the small-value portfolio (p-value 0.3 percent). For the large-growth

portfolio, we estimate an expected return discount of−2.0 percentage points (p-value

7.6 percent). These results are more pronounced for equally-weighted portfolios

(Panel B in Table 5): for the small-value portfolio we estimate an 11.3 percentage

point risk compensation (p-value 0.06 percent), whereas we predict a−2.4 percentage

points expected return discount (p-value 1.8 percent) for the large-growth portfolio.

These differences in the expected excess return compensation for portfolios with the

highest positive versus the lowest negative exposure to creative destruction risk are

highly significant. The p-values are 0.3 percent (VWPs) and 0.01 percent (EWP).

9Since then

E(λt) = λ =

[
λW

λN

]
= E

[
Et[f

∗

t+1f
∗
′

t+1]
] [

rra

γN

]
,

where f∗

t+1 = ft+1 −Et[ft+1]. Assuming that Et[ft+1] = E[ft+1] suggests the estimate in Equation
(13).
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These results are consistent with our reasoning that small-value stocks have a

high destruction probability πi and are thus imperiled by bursts in invention ac-

tivity, and that investors must be compensated for bearing that risk. By contrast,

large-growth firms, which are characterized by strong earnings growth and high

profitability ratios, are more likely to withstand periods of creative destruction. An

investment in large-growth stocks thus provides protection against creative destruc-

tion risk, hence the expected return discount.

[Insert Table 6 about here]

Table 6 and Figures 2 and 3 illustrate the results of a comparison of the empirical fit

of the CDRM with the static CAPM and the Fama-French (1995) model. The static

CAPM, for which we use the same wealth portfolio proxy, constitutes a special case

of the CDRM, for which the investment opportunity set is unaffected by invention

activity. The Fama-French model with SMB, HML, and the excess return of the

wealth portfolio proxy (reW ) as risk factors is the obvious benchmark.

Such a comparison should not be seen as a race for the best goodness of fit. As

Cochrane (2008) recognizes, portfolio-based models such as the Fama-French model

have a head start when estimated using size- and B/M-sorted portfolios, which

exhibit a correlation structure that is well captured by three principal components

(cf. Lewellen et al., 2010). Static CAPM and the Fama-French model instead serve

as reference points for assessing the ability of the CDRM to empirically account for

size and value premia.10

Table 6 reports the λ-estimates and J-test results for the three models, along with

the cross-sectional R2. The results for the static CAPM and Fama-French model

are unsurprising. Panel A (VWP) and Panel B (EWP) of Table 6 show that the R2

10Estimation of static CAPM and Fama-French model makes use of the GMM approach towards
two-pass regression described above.
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of the static CAPM are quite low, 24 percent for VWP and 49 percent for EWP,

and the J-tests reject the CAPM at conventional levels of significance. The Fama-

French model’s R2 are considerably higher, at 71 percent (VWP) and 83 percent

(EWP). The J-tests reject the Fama-French model at five percent, but not at the

one percent significance level. The CDRM also delivers a substantial improvement

over the static CAPM, with R2 increases of 27 percentage points (VWP) and 24

percentage points (EWP). The CDRM’s R2 are remarkably high, considering the

parsimonious use of a single non-financial factor. The J-test results for the CDRM

are similar – in terms of being borderline cases – to those of the Fama-French model.

[Insert Figure 2 about here]

[Insert Figure 3 about here]

Figures 2 (VWP) and 3 (EWP) illustrate the models’ goodness of fit by depict-

ing the average excess returns against the model-implied excess return estimates.

The Panel A plots reveal the notorious deficiency of the static CAPM to account

for cross-sectional average return differences across size- and B/M-sorted portfolios.

The Fama-French model (Panel B) is naturally more successful, but the CDRM

(Panel C) also improves the empirical fit considerably. The similarity of the CDRM’s

and Fama-French model’s pricing error plots for the equally-weighted portfolios is re-

markable. The CDRM does a particularly good job in pricing small-value portfolios.

We have argued above that small-value firms are those with the highest risk of be-

coming obsolete through creative destruction. The premium for creative destruction

risk corrects, to some extent, for the resulting mis-pricing of the CAPM.11

11Both Fama-French model and CDRM cannot account for the small average excess return
of the small-growth portfolio, which poses a long-standing challenge for empirical asset pricing
(cf. Campbell and Vuolteenaho, 2004; Yogo, 2006). D’Avolio (2002), Mitchell et al. (2002) and
Lamont and Thaler (2003) document limits to arbitrage due to short-sale constraints, which may
be the reason that it is difficult to price the small-growth portfolio.
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4.3 Robustness checks

4.3.1 Mimicking portfolio CDRM and model specification tests

The results reported in the previous section evince that creative destruction risk

has a role in asset pricing. However Lewellen et al. (2010) add the caveat that

achieving small pricing errors on the size- and B/M-sorted test portfolios should not

be overemphasized. They call for greater diligence when assessing a model’s ability

to account empirically for value and size premia. We therefore subject the CDRM to

additional model specification tests. However, these tests require the risk factors to

be excess returns, which is not the case for the CDRM, in that invention growth will

not have a zero price. We therefore replace the risk factor proxy patenting growth

by the excess return of its mimicking portfolio (cf. Breeden et al., 1989).

Following Vassalou (2003), we obtain the mimicking portfolio weights from a

projection of invention growth on the space spanned by the excess returns (over the

one-month T-Bill rate) of the six base assets that are used to construct HML and

SMB (for details see Fama and French, 1993).12 This entails an OLS estimation of

the regression equation,

pgt = γ0 +

6∑

i=1

γbr
e
B,i,t + vt, (14)

where reB,i,t denotes the excess return of base asset i. The maximum correlation port-

folio that mimics patenting growth uses the estimated slope coefficients as portfolio

weights. The mimicking portfolio’s excess return

reM,t =

6∑

i=1

γ̂ir
e
B,i,t (15)

12These data come from Kenneth French’s data library.
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then serves as an alternative proxy for invention growth. The factor-mimicking

portfolio retains the pricing information of the original factor, but it is less prone to

measurement error, and it conveniently comes in the form of an excess return.

[Insert Table 7 about here]

[Insert Table 8 about here]

Table 7 shows that the estimated mimicking portfolio weights are jointly significant,

though multicollinearity limits estimation precision.13 The pattern of the portfolio

weights still is noteworthy: the invention-mimicking portfolio takes long positions

in large and growth stocks and is short in small and value stocks, which is quite

the opposite of HML and SMB. Furthermore, Table 8 shows that the mean of reM,t

is negative. The invention-mimicking portfolio can thus be interpreted as a hedge

against creative destruction risk.

After replacing patenting growth with the invention-mimicking portfolio’s ex-

cess return reM,t from Equation (15), we re-estimate the parameters of the modified

expected return-beta representation of the CDRM,

E[rei,t] = βW,iλW + βM,iλM = β̃ ′

iλ̃, (16)

where β̃i = (βW,i, βM,i)
′ = var[f̃t]

−1cov[f̃t, r
e
i,t], f̃t =

(
rW,t, r

e
M,t

)
′

, and λ̃ = (λW , λM)′.

We refer to Equation (16) as the Mimicking Portfolio CDRM. Since reM,t is an excess

return, it follows that λM = E[reM,t], a fact that Lewellen et al. (2010) suggest using

for a model specification test. Their test statistic is the difference between λ̂CS
M , the

estimate of λM from the second step of the two-pass regression, and the time-series

estimate λ̂TS
M = 1

T

∑T

t=1 r
e
M,t. Large absolute deviations of ∆λ̂ = λ̂CS

M − λ̂TS
M from

zero indicate model misspecification.

13This is a common result in mimicking-portfolio regressions (cf. Lamont, 2001; Vassalou, 2003).
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To obtain the limiting distribution of the test statistic ∆λ̂, we have to account

for three peculiarities: the mimicking portfolio weights are estimated, the beta es-

timates come from a subsequent time-series regression step, and λ̂CS and λ̂TS are

correlated. Therefore, we collect all model-implied moment restrictions, namely,

the orthogonality conditions from the regression that gives the portfolio weights,

those from the time-series regressions that yield the beta estimates, and the mo-

ment conditions that identify λ̂CS
M and λ̂TS

M . We can then conceive of the problem as

an instance of GMM. GMM theory gives the limit distribution and the asymptotic

covariance matrix of the estimates, from which follows the distribution of ∆λ̂ under

the null hypothesis that λM = E[reM,t]. The Appendix outlines the methodological

details.

[Insert Table 9 about here]

[Insert Table 10 about here]

Tables 9 (VWP) and 10 (EVP) report the estimation results for the Mimicking

Portfolio CDRM. The pattern of beta estimates and the risk compensations corre-

spond to those of the main analysis (cf. Tables 3 and 4), except that the Mimicking

Portfolio CDRM even improves the estimation precision. The risk compensation

estimates associated with creative destruction also become more significant, from

both economic and statistical perspectives (compare Table 11 with Table 5).

Figure 4 shows that the Mimicking Portfolio CDRM further improves the good-

ness of fit, and also a remarkable similarity between the pricing error plots of Fama-

French model and CDRM. This is also reflected in the CDRM’s cross-sectional R2,

which come close to the values from the Fama-French model: 81.1% vs. 83.4% for

EVPs and 65.4% vs. 70.5% for VWPs. The explanation for these sharpened re-

sults is that the invention-mimicking portfolio alleviates measurement errors in the

patenting data.
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[Insert Figure 4 about here]

Using value-weighted portfolios as test assets, we obtain λ̂CS
M = −0.021 (p-value

0.5 percent). With an average excess return of the mimicking portfolio of λ̂TS
M =

−0.017 (p-value 6.4 percent), ∆λ̂ is not significantly different from zero (p-value 56.1

percent). Using EVPs as test assets reveals no evidence of model misspecification

either. In this case, λ̂CS
M = −0.026 (p-value 0.4 percent), and the p-value for ∆λ̂ is

33.5 percent.

Lewellen et al. (2010) also argue that a model that aims to explain size and value

premia should not be evaluated solely on the 25 size- and B/M-sorted portfolios; it

also requires an assessment of whether it can price HML and SMB, too. However, a

two-pass regression of the CDRM that uses the Fama-French factors as test assets

cannot deliver testable restrictions because the number of test assets equals the

number of risk factors. We circumvent this problem by using the Mimicking Portfolio

CDRM and the statistic ∆λ̂ for a model specification test. Using the two Fama-

French factors instead of size- and B/M-sorted portfolios as test assets, we obtain a

similar but less precise estimate λ̂CS
M = −0.024 (p-value 11.4 percent). Furthermore,

∆λ̂ = −0.007, which is, given a p-value of 69.2 percent, not significantly different

from zero.

We conclude this section by noting that that none of the model specification

tests provides evidence against the CDRM. Considering that it also passes Maio

and Santa-Clara’s (2012) plausibility check, by delivering an economically sensible

relative risk aversion estimate, the empirical results reported so far strengthen the

conclusion that creative destruction indeed plays a role in asset pricing.
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4.3.2 Postwar sample

We have adopted a long-run, low frequency perspective to capture more periods

of creative destruction and avoid measurement errors in the patenting data. How-

ever, most empirical tests of asset pricing models instead use postwar data sampled

at quarterly frequencies. To achieve comparable results, as well as provide an ad-

ditional robustness check, we also estimate the CDRM using quarterly data from

1950:Q1-2008:Q4. We report the results for the value-weighted size- and B/M-sorted

portfolios; the results are quite similar for equally-weighted test assets. Furthermore,

we use the Mimicking Portfolio CDRM in order to alleviate measurement errors in

the patenting data, which are aggravated at higher sampling frequencies.

[Insert Table 12 about here]

[Insert Table 13 about here]

The results in Tables 12 and 13 confirm the conclusions of the main analysis. In-

vention growth betas exhibit the same cross-sectional pattern as in Table 3. Large

negative invention betas cluster where small and high B/M portfolios are located,

and the sole positive, statistically significant invention beta estimate refers to the

large-growth portfolio. Again, λ̂M is negative and statistically significant. Table

13 shows that the cross-sectional pattern, size, and statistical significance of the

estimated compensations for creative destruction risk are comparable to those in

the long-run/low-frequency analysis (cf. Table 13 with Panel A of Table 5). Panel

B of Table 12 further shows that the test statistic ∆λ̂ is not significantly different

from zero, so the CDRM passes Lewellen et al’s (2010) model specification test.

Overall, the storyline based on the higher frequency, postwar sample results remains

unchanged. Neither the Great Depression nor World War II drive the conclusions

regarding the role of creative destruction risk in asset pricing.
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5 Conclusion

Consider the range of technological changes in the past century. Creative destruc-

tion processes have been pivotal for economic growth, but they also have presented

substantial risks for investments in extant firms. Imagine a John Doe, born in 1940,

who started to work at the age of 20, and then started investing. This investment

start would have occurred in the midst of the technological revolution of the 1950s

and 1960s. Assuming a retiring age of 65, J.D. then would have started to consume

his savings in 2005, after the peak of an information technology wave. At this point,

he would still have had a life expectancy of 19 years.14 During the course of his life,

among the myriad of inventions, some have turned into General Purpose Technolo-

gies, and a plethora of businesses have become obsolete because of them. Creative

destruction thus has posed a considerable risk for J.D.’s past investments, and it

will continue to be in his retirement years.

As our study shows, part of the cross-sectional return differences across size- and

B/M-sorted portfolios can be explained as premia for bearing or hedging against

creative destruction risk. The empirical results presented in this paper suggest it

is a risk for which investors demand sizable expected return compensations. Our

findings thus extend prior studies that have identified small-value firms as under

distress. An investment in small-value firms, with their operational inefficiencies

and lower likelihood of weathering GPT-induced changes, exposes investors to the

risk of creative destruction, and in return, investors demand compensation. An

investment in large-growth firms instead provides some protection against creative

destruction risk.

14Total population life expectancy in the United States, 2005. Source: National Vital Statistics
Reports, Vol. 58, No. 10, March 3, 2010.
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Our conclusions are consistent with several findings related to size and value ef-

fects. They emphasize that HML and SMB are measures of distress (e.g. Chan et al.,

1985; Chan and Chen, 1991; Fama and French, 1995; Vassalou and Xing, 2004), and

they augment the findings of Liew and Vassalou (2000) and Vassalou (2003), who

show that HML and SMB forecast GDP growth. The same process that triggers

economic growth also threatens existing businesses.

Just as Fama (1991, p. 1610) concluded, “In the end, I think we can hope for a

coherent story that [...] relates the behavior of expected returns to the real economy

in a rather detailed way”, we hope that our study adds a useful paragraph to such

a story, relating asset prices to a fundamental risk: the risk of creative destruction.
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A Appendix: Details on statistical inference

Cochrane (2005) proposes treating the two-pass regression method that is used to

estimate linear factor models as an instance of GMM, which amounts to collecting

the moment conditions and their implicit weighting within two regressions. We

briefly review Cochrane’s idea as it applies to estimating the unconditional CDRM

and then turn to the extensions presented in the main text.

The generic GMM problem considered by Hansen (1982) involves finding the θ̂

that solves

aT (θ̂)gT (θ̂) = 0, (A-1)

where θ̂ is a (P × 1)-vector of parameter estimates, and gT (θ̂) =
1
T

∑T

t=1 ut(θ̂). ut(·)

is an (M × 1)-vector of random functions, such that E[ut(θ0)] = 0, where θ0 denotes

the true parameter vector. Moreover, aT (·) is of dimension P × M , i.e., P linear

combinations of the sample moments gT (θ̂) are set to zero.

In the two-pass regression framework for the CDRM using K test assets, we have

ut(θ) =







ε1,t
...

εK,t


⊗




1

ft




re1,t − βW,1λW − βN,1λN

...

reK,t − βW,KλW − βN,KλN




, (A-2)

where εi,t = rei,t − αi − β ′

ift, ft = (rW,t, pgt)
′, and βi = (βW,i, βN,i)

′ for i = 1, . . . , K.

The parameter vector θ is thus given by

θ = [α1, . . . , αK , βW,1, . . . , βW,K, βN,1, . . . , βN,K , λW , λN ]
′

.
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Furthermore,

aT (θ) =




0 · · · 0

I3K
...

. . .
...

0 · · · 0

0 · · · 0 βW,1 · · · βW,K

0 · · · 0 βN,1 · · · βN,K




, (A-3)

where I3K is the 3K dimensional identity matrix. If θ̂ −→
p

θ0, we can use the result

that for the estimate θ̂, which solves Equation (A-1), we have

√
T (θ̂ − θ0) −→

d
N

(
0, [ad]−1aSa′

[
[ad]−1

]
′

)
, (A-4)

where aT −→
p

a, S = E [ut(θ0) · ut(θ0)
′], d = E

[
∂ut(θ)
∂θ′

∣∣∣
θ0

]
(cf. Hansen, 1982).15

For applied work, we use

v̂ar(θ̂) =
(âd̂)−1âŜâ′((âd̂)−1)′

T
, (A-5)

where

â = aT (θ̂), d̂ =
∂gT (θ)

∂θ′

∣∣∣∣
θ=θ̂

, Ŝ =
1

T

T∑

t=1

ut(θ̂)ut(θ̂)
′.

The t-statistics reported in Tables 9 and 10 are based on these formulas.

Since GMM theory gives the joint covariance matrix of the estimates, we can

apply the delta method to obtain the limit distribution and asymptotic variance

of the risk compensation estimates, e.g. those associated with creative destruction,

β̂N,i · λ̂N . The t-statistics reported in Table 11 are obtained this fashion.

Section 4.3.1 extends this approach to account for an initial estimation of the

weights of a mimicking portfolio and for the computation of the cross-sectional and

15Assuming serially uncorrelated ut(θ0) and that regularity conditions hold.
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time-series estimates of λM . Conceiving of the problem as an instance of GMM, we

collect all moment conditions, which now imply

ut(θ) =




vt




1

reB,t




γ′reB,t − λTS
M



ε1,t
...

εK,t


⊗




1

ft




re1,t − βW,1λW − βM,1λ
CS
M

...

reK,t − βW,KλW − βM,Kλ
CS
M




, (A-6)

where

vt = pgt − γ0 − γ′reB,t,

reB,t =
(
reB,1,t, . . . , r

e
B,6,t

)
′

,

γ = (γ1, . . . , γ6)
′,

εi,t = rei,t − αi − β ′

ift,

βi = (βW,i, βM,i)
′

,

ft =
(
rW,t, γ

′reB,t

)
′

,

such that

θ =
(
γ0, γ1, . . . , γ6, α1, . . . , αK , βW,1, . . . , βW,K , βM,1, . . . , βM,K , λW , λCS

M , λTS
M

)
′

.
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Furthermore,

aT (θ) =




0 · · · 0

I3K+8
...

. . .
...

0 · · · 0

0 · · · 0 βW,1 · · · βW,K

0 · · · 0 βN,1 · · · βN,K




. (A-7)

Using (A-6) and (A-7) in Equation (A-5) ensures proper inference for the risk com-

pensation and λ-estimates, as well as for the derivation of the limit distribution of

Lewellen et al.’s (2010) test statistic ∆λ̂ = λ̂CS
M − λ̂TS

M under the null hypothesis

that λ = E[reM,t]. Our main analysis uses the excess returns of the Fama-French

portfolios as test assets; in this case, K = 25. We also use SMB and HML as test

assets, in which case K = 2. The test statistics reported in Tables 9, 10, 11, 12 and

13 make use of this procedure.

In all instances, we conceive the sequence of (two or three) regressions as a

generic GMM problem and thus find θ̂ that solves Equation (A-1). Computing

the parameter estimates in this fashion may be somewhat cumbersome, and it is

not necessary in the first place. The estimates are identical to those obtained by

performing the regressions subsequently.

A GAUSS program, which contains an implementation of the procedures de-

scribed above, is available on request.
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Table 1: Risk Factor Proxies: Descriptive Statistics
The table reports the means (percentage), standard deviations, first-order autocor-
relations (ρ), and correlations of the market return proxy (rW ), SMB, HML, and
patenting growth (pg). The sample period is 1927-2008, and the sampling frequency
is annual.

Correlations

Mean×100 Std. Dev.×100 rW HML SMB ρ

rW 11.4 20.7 0.04

HML 5.1 14.0 0.12 -0.01

SMB 3.6 14.4 0.40 0.08 0.28

pg 2.4 13.7 -0.06 -0.21 -0.21 0.00
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Table 2: Portfolio Excess Returns: Descriptive Statistics
The table shows the summary statistics for yearly excess returns (percentage) of the
25 size- (vertical) and B/M- (horizontal) sorted portfolios from 1927-2008.

Panel A: Value-Weighted Portfolios

Mean Std. Dev.

Low 2 3 4 High Low 2 3 4 High

Small 3.7 9.5 13.0 16.0 18.7 38.2 35.3 34.1 37.0 40.2

2 7.2 11.9 13.4 14.7 15.4 32.3 31.4 30.3 32.7 33.2

3 8.4 11.1 12.4 12.7 14.3 30.6 27.5 26.8 27.7 32.1

4 8.0 9.1 10.8 12.0 13.1 24.1 25.4 26.3 27.3 34.5

Big 7.2 7.1 8.3 8.5 10.0 21.5 19.5 22.1 25.2 31.8

Panel B: Equally-Weighted Portfolios

Mean Std. Dev.

Low 2 3 4 High Low 2 3 4 High

Small 6.9 14.6 16.5 19.8 25.8 41.6 42.8 38.6 47.0 51.0

2 7.3 12.6 14.8 15.0 15.6 35.2 34.0 33.3 35.1 35.1

3 7.9 11.4 12.7 13.1 15.1 30.0 29.3 27.6 28.0 32.4

4 7.9 9.2 10.9 12.2 13.5 24.6 26.1 27.2 28.2 36.6

Big 6.6 8.2 9.1 9.7 10.8 21.3 20.4 24.1 27.0 32.9
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Table 3: CDRM: Time-Series and Cross-Sectional Regression
Results - Value-Weighted Portfolios
Panel A reports the beta estimates that result from time-series regressions of excess
returns on the CDRM risk factors. Test assets are the 25 value-weighted portfolios
sorted by size (vertical) and book-to-market value (horizontal). The sample period is
1927-2008, and the sampling frequency is annual. The t-statistics are formulated for
the null hypothesis that the true parameter is zero. The table also displays the R2

of each time-series regression. Panel B reports the estimated λ from a cross-sectional
regression of average excess returns on estimated betas. For details on statistical
inference, see the Appendix.

Panel A: Time-Series Regressions

Low 2 3 4 High Low 2 3 4 High

β̂W tW

Small 1.428 1.394 1.359 1.412 1.539 10.16 12.69 14.29 9.34 9.86

2 1.314 1.306 1.235 1.317 1.327 13.38 11.14 11.67 10.69 11.88

3 1.283 1.175 1.131 1.151 1.248 10.79 13.45 14.81 16.50 10.70

4 1.064 1.079 1.136 1.122 1.374 20.50 11.66 14.40 14.18 9.10

Big 0.969 0.898 0.965 1.068 1.286 26.03 36.66 14.83 12.86 10.55

β̂N tN

Small -0.187 -0.270 -0.329 -0.426 -0.461 -1.27 -1.90 -2.48 -2.67 -2.47

2 -0.170 -0.216 -0.296 -0.291 -0.295 -1.34 -1.91 -2.42 -2.05 -2.07

3 -0.073 -0.228 -0.212 -0.292 -0.267 -0.69 -2.26 -1.94 -2.54 -1.84

4 0.070 -0.137 -0.164 -0.261 -0.153 1.07 -1.73 -1.66 -2.72 -1.10

Big 0.138 -0.044 -0.049 -0.105 -0.141 1.86 -0.92 -0.72 -1.26 -1.40

R2

Small 61.1 69.2 71.4 67.0 67.1

2 72.7 76.3 74.5 72.6 71.6

3 76.3 80.9 79.1 78.0 67.7

4 83.7 79.2 81.8 75.8 69.3

Big 87.2 91.6 82.2 78.5 71.3

Panel B: Cross-Sectional Regression

λ̂W 0.066 tW 2.84

λ̂N -0.148 tN -2.36
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Table 4: CDRM: Time-Series and Cross-Sectional Regression
Results - Equally-Weighted Portfolios
Panel A reports the beta estimates that result from time-series regressions of excess
returns on the CDRM risk factors. Test assets are the 25 equally-weighted portfolios
sorted by size (vertical) and book-to-market value (horizontal). The sample period is
1927-2008, and the sampling frequency is annual. The t-statistics are formulated for
the null hypothesis that the true parameter is zero. The table also displays the R2

of each time-series regression. Panel B reports the estimated λ from a cross-sectional
regression of average excess returns on estimated betas. For details on statistical
inference, see the Appendix.

Panel A: Time-Series Regressions

Low 2 3 4 High Low 2 3 4 High

β̂W tW

Small 1.498 1.671 1.451 1.625 1.740 10.79 12.35 11.56 5.78 6.48

2 1.388 1.363 1.310 1.371 1.363 10.39 8.65 8.81 8.40 9.67

3 1.259 1.214 1.165 1.158 1.261 12.16 10.77 13.89 15.80 10.76

4 1.085 1.104 1.172 1.165 1.456 19.23 11.51 13.66 14.26 8.46

Big 0.981 0.931 1.069 1.133 1.277 31.19 24.98 19.03 11.58 9.74

β̂N tN

Small -0.237 -0.338 -0.405 -0.522 -0.603 -1.36 -1.97 -2.69 -2.43 -2.40

2 -0.250 -0.249 -0.336 -0.335 -0.305 -1.90 -2.02 -2.49 -2.24 -2.04

3 -0.067 -0.249 -0.219 -0.283 -0.288 -0.63 -2.26 -2.10 -2.51 -1.99

4 0.055 -0.144 -0.176 -0.277 -0.164 0.83 -1.76 -1.84 -2.78 -1.14

Big 0.125 -0.077 -0.128 -0.106 -0.178 2.70 -1.63 -1.68 -1.15 -1.69

R2

Small 57.3 68.0 64.5 55.3 54.1

2 68.9 71.2 69.8 68.9 67.5

3 76.0 76.7 79.0 76.9 68.0

4 83.7 78.5 81.7 76.9 69.1

Big 90.9 90.4 86.4 76.7 66.2

Panel B: Cross-Sectional Regression

λ̂W 0.061 tW 2.52

λ̂N -0.187 tN -2.90
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Table 5: CDRM: Risk Compensations
The table shows estimated expected excess return compensations (percentage) that

are associated with market risk (β̂W · λ̂W ) and creative destruction risk (β̂N · λ̂N ).
Test assets are the 25 portfolios sorted by size (vertical) and book-to-market value
(horizontal). The sample period is 1927-2008, and the sampling frequency is annual.
Panel A shows the results for value-weighted Fama-French portfolios; Panel B shows
the results for equally-weighted Fama-French portfolios. The delta method is used to
compute the t-statistic for a test that the respective risk compensation is zero. For
details on statistical inference, see the Appendix.

Panel A: Value-Weighted Portfolios

Low 2 3 4 High Low 2 3 4 High

β̂W · λ̂W × 100 tW

Small 9.4 9.2 9.0 9.3 10.2 2.76 2.70 2.73 2.56 2.57

2 8.7 8.6 8.2 8.7 8.8 2.67 2.59 2.63 2.59 2.66

3 8.5 7.8 7.5 7.6 8.2 2.62 2.69 2.66 2.72 2.64

4 7.0 7.1 7.5 7.4 9.1 2.75 2.64 2.68 2.72 2.55

Big 6.4 5.9 6.4 7.1 8.5 2.79 2.82 2.75 2.72 2.80

β̂N · λ̂N × 100 tN

Small 2.8 4.0 4.9 6.3 6.8 1.20 2.02 2.59 2.87 2.81

2 2.5 3.2 4.4 4.3 4.4 1.38 2.13 2.84 2.55 2.60

3 1.1 3.4 3.1 4.3 3.9 0.73 2.45 2.55 2.88 2.20

4 -1.0 2.0 2.4 3.9 2.3 -0.93 1.85 1.96 2.72 1.25

Big -2.0 0.6 0.7 1.5 2.1 -1.81 0.87 0.76 1.30 1.34

Panel B: Equally-Weighted Portfolios

Low 2 3 4 High Low 2 3 4 High

β̂W · λ̂W × 100 tW

Small 9.2 10.2 8.9 10.0 10.7 2.43 2.35 2.38 2.14 2.17

2 8.5 8.4 8.0 8.4 8.4 2.32 2.26 2.29 2.26 2.33

3 7.7 7.4 7.1 7.1 7.7 2.38 2.36 2.37 2.42 2.37

4 6.7 6.8 7.2 7.1 8.9 2.43 2.37 2.39 2.43 2.27

Big 6.0 5.7 6.6 6.9 7.8 2.49 2.49 2.46 2.42 2.47

β̂N · λ̂N × 100 tN

Small 4.4 6.3 7.6 9.8 11.3 1.27 2.34 3.39 3.23 3.42

2 4.7 4.7 6.3 6.3 5.7 2.09 2.46 3.45 3.24 2.97

3 1.3 4.7 4.1 5.3 5.4 0.68 2.77 2.85 3.21 2.64

4 -1.0 2.7 3.3 5.2 3.1 -0.76 2.03 2.19 3.33 1.35

Big -2.3 1.5 2.4 2.0 3.3 -2.37 1.64 1.94 1.29 1.76
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Table 6: Model Comparison: CAPM, Fama-French, and
CDRM
The table reports the λ estimates for CAPM, Fama-French model, and CDRM. Test
assets are the 25 size and book-to-market sorted portfolios, and the sample period is
1927-2008 at annual frequency. The t-statistics (in parentheses) are formulated for
the null hypothesis that the true parameter is zero. The table also reports the p-values
of the first-stage GMM J-statistics and the cross-sectional R2, both in percentages.
The cross-sectional R2 come from a regression of average realized excess returns on
betas and a constant

Panel A: Value-Weighted Portfolios

λ̂W λ̂HML λ̂SMB λ̂N p-val. R2

CAPM 0.090 0.3 24.1
(3.91)

Fama-French 0.068 0.060 0.035 2.6 70.5
(2.89) (3.73) (2.04)

CDRM 0.066 -0.148 1.4 51.3
(2.84) (-2.36)

Panel B: Equally-Weighted Portfolios

λ̂W λ̂HML λ̂SMB λ̂N p-val. R2

CAPM 0.096 0.5 49.4
(4.21)

Fama-French 0.061 0.066 0.049 2.2 83.4
(2.45) (4.05) (3.28)

CDRM 0.061 -0.187 3.2 73.1
(2.52) (-2.90)
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Table 7: Weights of the Invention-Mimicking Portfolio
The table shows the results of a time-series regression, pgt = γ0 +

∑6

i=1
γir

e
B,i,t + vt,

used to estimate the weights of the invention-mimicking portfolio. Base assets are the
six portfolios sorted by size and book-to-market (small-growth, small-neutral, small-
value, big-growth, big-neutral and big-value (Fama and French, 1993)). The sample
period is 1927-2008, at annual frequency. Coefficient estimates are reported on the
left-hand side. The t-statistics (right-hand side) are formulated for the null hypothesis
that the true parameter is zero. The table also displays the R2 and p-value of a Wald
test of the null hypothesis that γ1 = γ2 = ... = γ6 = 0.

Portfolio Weights t

Growth Neutral Value Sum Growth Neutral Value

Small 0.098 -0.244 -0.090 -0.236 Small 1.14 -1.31 -0.63

Big 0.243 -0.099 0.092 0.236 Big 2.01 -0.44 0.54

Sum 0.341 -0.343 0.002

R2 (%) 10.3

p-val.(%) 1.5
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Table 8: Invention-Mimicking Portfolio: Descriptive Statistics
The table reports descriptive statistics for the invention-mimicking portfolio. It shows
the portfolio’s mean excess return, its standard deviation, and its correlation with the
market excess return (reW ), and the Fama-French factors HML and SMB. The sample
period is 1927-2008, at annual frequency.

Mean×100 -1.7

Std. Dev.×100 4.4

Correlation with: reW -0.21

HML -0.67

SMB -0.66
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Table 9: Mimicking Portfolio CDRM: Time-Series and Cross-
Sectional Regression Results - Value-Weighted Portfolios
Panel A reports the beta estimates that result from time-series regressions of the test
assets’ excess returns on the invention-mimicking portfolio’s excess return, reM , and the
return of the wealth portfolio proxy, rW . Test assets are the 25 value-weighted Fama-
French portfolios sorted by size (vertical) and book-to-market value (horizontal). The
sample period is 1927-2008, and the sampling frequency is annual. The t-statistics
are formulated for the null hypothesis that the true parameter is zero. Panel A also
displays the R2 of each time-series regression. Panel B reports the estimated λ from a
cross-sectional regression of average excess returns on the estimated betas, as well as
∆λ̂ = λ̂cs − λ̂ts, and the associated p-value of a test that ∆λ̂ is significantly different
from zero. Statistical inference takes into account that the parameters are estimated
via three subsequent regressions that yield the mimicking portfolio weights, the beta
estimates, and the lambda estimates. For details on statistical inference, see the
Appendix.

Panel A: Time-Series Regressions

Low 2 3 4 High Low 2 3 4 High

β̂W tW

Small 1.391 1.306 1.236 1.256 1.371 9.17 8.03 6.47 5.48 5.57

2 1.268 1.218 1.124 1.186 1.203 10.34 8.25 7.01 6.26 6.04

3 1.265 1.105 1.046 1.053 1.125 11.66 9.78 8.75 7.68 5.64

4 1.082 1.028 1.066 1.043 1.286 17.08 10.16 10.35 7.86 7.32

Big 1.018 0.899 0.933 1.026 1.233 14.29 33.51 14.71 11.73 8.76

β̂M tM

Small -1.021 -2.230 -3.110 -3.937 -4.232 -0.93 -2.13 -2.83 -2.86 -2.88

2 -1.210 -2.198 -2.791 -3.236 -3.086 -1.44 -2.55 -3.01 -2.92 -2.54

3 -0.474 -1.816 -2.137 -2.501 -3.040 -0.54 -2.63 -3.10 -2.95 -2.39

4 0.472 -1.279 -1.740 -2.042 -2.136 0.75 -1.94 -2.57 -2.25 -1.71

Big 1.249 -0.027 -0.775 -1.064 -1.318 3.12 -0.11 -1.34 -1.41 -1.16

R2

Small 62.0 75.5 85.1 85.6 85.2

2 74.8 84.5 88.5 89.3 86.2

3 76.7 87.7 89.7 91.0 83.1

4 84.2 83.4 89.2 84.5 76.1

Big 92.7 91.5 84.4 81.5 74.1

Panel B: Cross-Sectional and Time-Series λ

λ̂W 0.061 tW 2.60

λ̂cs
M -0.021 tcsM -2.80

λ̂ts
M -0.017 ttsM -1.85

∆λ̂ -0.005 p-val. (%) 56.1
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Table 10: Mimicking Portfolio CDRM: Time-Series and Cross-
Sectional Regression Results - Equally-Weighted Portfolios
Panel A reports the beta estimates that result from time-series regressions of the
test assets’ excess returns on the invention-mimicking portfolio’s excess return, reM ,
and the return of the wealth portfolio proxy, rW . Test assets are the 25 equally-
weighted Fama-French portfolios sorted by size (vertical) and book-to-market value
(horizontal). The sample period is 1927-2008, and the sampling frequency is annual.
The t-statistics are formulated for the null hypothesis that the true parameter is
zero. Panel A also displays the R2 of each time-series regression. Panel B reports
the estimated λ from a cross-sectional regression of average excess returns on the
estimated betas, as well as ∆λ̂ = λ̂cs − λ̂ts, and the associated p-value of a test
that ∆λ̂ is significantly different from zero. Statistical inference takes into account
that the parameters are estimated via three subsequent regressions that yield the
mimicking portfolio weights, the beta estimates, and the lambda estimates. For details
on statistical inference, see the Appendix.

Panel A: Time-Series Regressions

Low 2 3 4 High Low 2 3 4 High

β̂W tW

Small 1.430 1.575 1.312 1.437 1.531 8.20 8.14 5.87 4.47 4.45

2 1.322 1.263 1.188 1.230 1.226 8.42 7.02 6.23 5.67 5.43

3 1.234 1.132 1.075 1.056 1.135 12.06 8.31 8.38 7.32 5.66

4 1.094 1.048 1.099 1.082 1.365 17.63 9.64 9.91 7.86 7.25

Big 1.014 0.913 1.017 1.068 1.214 20.52 21.82 14.24 9.37 7.78

β̂M tM

Small -1.766 -2.489 -3.531 -4.750 -5.298 -1.34 -2.07 -2.66 -2.47 -2.64

2 -1.737 -2.504 -3.079 -3.495 -3.372 -1.65 -2.34 -2.78 -2.80 -2.52

3 -0.626 -2.086 -2.248 -2.574 -3.115 -0.74 -2.49 -3.00 -2.92 -2.40

4 0.253 -1.397 -1.818 -2.153 -2.208 0.43 -2.03 -2.56 -2.43 -1.70

Big 0.882 -0.473 -1.285 -1.573 -1.582 3.00 -1.58 -2.40 -1.81 -1.31

R2

Small 60.0 73.1 78.0 72.0 71.5

2 72.5 80.3 83.7 85.7 83.3

3 76.7 84.8 90.2 90.6 83.7

4 83.8 83.3 89.2 85.9 75.5

Big 93.5 91.1 91.2 82.7 69.9

Panel B: Cross-Sectional and Time-Series λ

λ̂W 0.055 tW 2.19

λ̂cs
M -0.026 tcsM -2.86

λ̂ts
M -0.017 ttsM -1.85

∆λ̂ -0.010 p-val. (%) 33.5
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Table 11: Mimicking Portfolio CDRM: Risk Compensations
The table reports estimated expected excess return compensations (percentage) that
are implied by the mimicking portfolio version of the CDRM. Test assets are the 25
portfolios sorted by size (vertical) and book-to-market value (horizontal). The sample
period is 1927-2008, and the sampling frequency is annual. Panel A shows the results
for value-weighted Fama-French portfolios; Panel B shows the results for equally-
weighted Fama-French portfolios. The delta method is used to compute the t-statistic
for a test that the respective risk-compensation is zero. Statistical inference takes into
account that the parameters are obtained by three subsequent regressions that yield
the mimicking portfolio weights, the beta estimates, and the lambda estimates. For
details on statistical inference, see the Appendix.

Panel A: Value-Weighted Portfolios

Low 2 3 4 High Low 2 3 4 High

β̂W · λ̂W × 100 tW

Small 8.5 8.0 7.6 7.7 8.4 2.52 2.44 2.46 2.31 2.33

2 7.7 7.4 6.9 7.3 7.4 2.46 2.39 2.42 2.37 2.41

3 7.7 6.8 6.4 6.4 6.9 2.42 2.49 2.45 2.47 2.37

4 6.6 6.3 6.5 6.4 7.9 2.47 2.42 2.48 2.49 2.37

Big 6.2 5.5 5.7 6.3 7.5 2.50 2.56 2.53 2.53 2.62

β̂M · λ̂M × 100 tM

Small 2.2 4.7 6.6 8.4 9.0 0.89 2.06 2.67 2.75 2.81

2 2.6 4.7 5.9 6.9 6.6 1.30 2.30 2.87 2.94 2.79

3 1.0 3.9 4.5 5.3 6.5 0.52 2.41 2.99 3.11 2.63

4 -1.0 2.7 3.7 4.3 4.5 -0.81 1.83 2.78 2.54 1.92

Big -2.7 0.1 1.6 2.3 2.8 -2.90 0.11 1.30 1.58 1.30

Panel B: Equally-Weighted Portfolios

Low 2 3 4 High Low 2 3 4 High

β̂W · λ̂W × 100 tW

Small 7.8 8.6 7.2 7.8 8.3 2.10 2.04 2.05 1.90 1.91

2 7.2 6.9 6.5 6.7 6.7 2.04 2.00 2.02 2.00 2.04

3 6.7 6.2 5.9 5.8 6.2 2.08 2.07 2.09 2.11 2.07

4 6.0 5.7 6.0 5.9 7.4 2.09 2.07 2.10 2.13 2.04

Big 5.5 5.0 5.5 5.8 6.6 2.13 2.16 2.17 2.15 2.20

β̂M · λ̂M × 100 tM

Small 4.6 6.5 9.2 12.4 13.8 1.30 2.17 3.11 3.00 3.28

2 4.5 6.5 8.0 9.1 8.8 1.67 2.58 3.35 3.66 3.64

3 1.6 5.5 5.9 6.7 8.1 0.73 2.68 3.45 3.87 3.31

4 -0.7 3.7 4.8 5.6 5.8 -0.44 2.17 3.24 3.26 2.20

Big -2.3 1.2 3.4 4.1 4.1 -3.34 1.53 2.42 2.29 1.52
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Table 12: Mimicking Portfolio CDRM: Time-Series and
Cross-Sectional Regression Results - Value-Weighted Portfo-
lios, Quarterly Postwar Data
Panel A reports the beta estimates that result from time-series regressions of excess
returns on the CDRM risk factors using the invention-mimicking portfolio instead of
patenting activity. Test assets are the 25 value-weighted portfolios sorted by size (ver-
tical) and book-to-market value (horizontal). The sample period is 1950:Q1-2008:Q4,
and the sampling frequency is quarterly. The t-statistics are formulated for the null
hypothesis that the true parameter is zero. Panel A also displays the R2 of each time-
series regression. Panel B reports the estimated λ from a cross-sectional regression
of average excess returns on the estimated betas, as well as ∆λ̂ = λ̂cs − λ̂ts, and the
associated p-value of a test that ∆λ̂ is significantly different from zero. Statistical
inference takes into account that the parameters are obtained by three subsequent
regressions that yield the mimicking portfolio weights, the beta estimates, and the
lambda estimates. For details on statistical inference, see the Appendix.

Panel A: Time-Series Regressions

Low 2 3 4 High Low 2 3 4 High

β̂W tW

Small 1.422 1.190 0.985 0.921 0.973 7.22 5.32 4.47 4.09 3.63

2 1.384 1.100 0.943 0.894 0.930 10.30 6.31 5.04 4.51 4.07

3 1.335 1.030 0.881 0.855 0.847 16.38 8.30 5.53 4.69 3.92

4 1.275 0.993 0.910 0.873 0.921 18.71 9.65 6.95 6.18 4.30

Big 1.108 0.913 0.776 0.761 0.802 10.39 23.65 11.78 6.58 5.64

β̂M tM

Small -1.582 -2.122 -2.197 -2.242 -2.720 -1.11 -1.84 -2.12 -2.16 -2.20

2 -1.013 -1.720 -1.843 -2.044 -2.336 -0.93 -2.11 -2.53 -2.47 -2.23

3 -0.272 -1.266 -1.631 -1.848 -2.173 -0.32 -2.42 -2.82 -2.66 -2.24

4 0.136 -0.978 -1.287 -1.433 -2.043 0.22 -2.41 -2.62 -2.45 -2.30

Big 1.113 0.003 -0.427 -0.983 -1.147 2.76 0.01 -0.83 -1.42 -1.17

R2

Small 71.2 81.0 82.4 82.6 82.4

2 80.1 87.1 90.6 89.3 84.0

3 82.9 90.2 91.1 90.2 81.0

4 87.0 89.3 90.7 88.4 85.5

Big 95.8 88.0 79.1 81.5 72.9

Panel B: Cross-Sectional and Time-Series λ

λ̂W 0.013 tW 2.09

λ̂cs
M -0.007 tcsM -2.30

λ̂ts
M -0.005 ttsM 5.43

∆λ̂ -0.003 p-val. (%) 58.5
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Table 13: Mimicking Portfolio CDRM: Risk Compensations -
Value-Weighted Portfolios, Quarterly Postwar Data
The table reports estimated expected excess return compensations (percentage) that
are implied by the mimicking portfolio version of the CDRM. Test assets are the 25
value-weighted portfolios sorted by size (vertical) and book-to-market value (horizon-
tal). The sample period is 1950:Q1-2008:Q4, and the sampling frequency is quarterly.
The delta method is used to compute the t-statistic for a test that the respective risk
compensation is zero. Statistical inference takes into account that the parameters are
obtained by three subsequent regressions that yield the mimicking portfolio weights,
the beta estimates, and the lambda estimates. For details on statistical inference, see
the Appendix.

Low 2 3 4 High Low 2 3 4 High

β̂W · λ̂W × 100 tW

Small 1.8 1.5 1.2 1.2 1.2 1.91 1.89 1.89 1.89 1.87

2 1.7 1.4 1.2 1.1 1.2 1.96 1.96 1.97 1.98 1.95

3 1.7 1.3 1.1 1.1 1.1 1.99 2.03 2.04 2.01 1.94

4 1.6 1.3 1.1 1.1 1.2 1.99 2.08 2.07 2.06 1.95

Big 1.4 1.2 1.0 1.0 1.0 2.03 2.10 2.13 2.11 2.08

β̂M · λ̂M × 100 tM

Small 1.2 1.6 1.6 1.7 2.0 1.07 1.81 2.28 2.53 2.84

2 0.8 1.3 1.4 1.5 1.7 0.87 2.01 2.66 3.26 3.09

3 0.2 0.9 1.2 1.4 1.6 0.32 2.26 3.18 3.26 3.05

4 -0.1 0.7 1.0 1.1 1.5 -0.22 2.32 2.88 2.97 2.53

Big -0.8 0.0 0.3 0.7 0.9 -2.63 -0.01 0.84 1.48 1.18
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Panel A: Patenting Growth and SMB
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Panel B: Patenting Growth and HML

Figure 1: Patenting Growth and Fama-French Factors
The graph shows patent growth (percentage) and the Fama-French factors (SMB)
and (HML) over the period 1927-2008.
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Panel A: CAPM
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Panel B: Fama-French Model
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Panel C: CDRM
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Figure 2: Predicted vs. Actual Mean Excess Returns -
Value-Weighted Portfolios
The figures compare predicted vs. realized average excess returns (percentage) given
by the CAPM (Panel A), the Fama-French model (Panel B), and the CDRM (Panel
C). The sample period is 1927-2008; the sampling frequency is annual. The test assets
are the value-weighted 25 portfolios sorted by size and book-to-market value, where
the first number denotes the size quintile (1 being the smallest and 5 the largest),
and the second number refers to the book-to-market quintile (1 being the lowest and
5 the highest).
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Panel A: CAPM
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Panel B: Fama-French Model
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Panel C: CDRM
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Figure 3: Predicted vs. Actual Mean Excess Returns -
Equally-Weighted Portfolios
The figures compare predicted vs. realized average excess returns (percentage) given
by the CAPM (Panel A), the Fama-French model (Panel B), and the CDRM (Panel
C). The sample period is 1927-2008; the sampling frequency is annual. The test assets
are the equally-weighted 25 portfolios sorted by size and book-to-market value, where
the first number denotes the size quintile (1 being the smallest and 5 the largest), and
the second number indicates the book-to-market quintile (1 being the lowest and 5
the highest).
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Panel A: Mimick. Portf. CDRM (VWP)
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Panel B: Fama-French Model (VWP)
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Panel C: Mimick. Portf. CDRM (EVP)
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Panel D: Fama-French Model (EWP)
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Figure 4: Predicted vs. Actual Mean Excess Returns -
Mimicking Portfolio CDRM vs. Fama-French Model
The figures compare predicted vs. realized average excess returns (percentage) given
by the Invention Mimicking CDRM and Fama-French model. The sample period is
1927-2008; the sampling frequency is annual. Test assets are the 25 portfolios sorted
by size and book-to-market value, where the first number denotes the size quintile
(1 being the smallest and 5 the largest), and the second number indicates the book-
to-market quintile (1 being the lowest and 5 the highest). Panels A and B show the
results for value-weighted portfolios (VWP), and Panels C and D show the results
for equally-weighted portfolios (EWP). The cross-sectional R2 (unadjusted) are, for
EVPs, 81.1% (Mimicking Portfolio CDRM) vs. 83.4% (Fama-French model), and for
VWPs, 65.4% (Mimicking Portfolio CDRM) vs. 70.5% (Fama-French model).
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