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serving as members in my thesis committee.

Although, many teachers taught me, no one has had such a profound influence on my

academic thinking and working as my supervisor Joachim Grammig. I am deeply indebted to

him for sharing his knowledge with me and for supporting me. I thank him for working with

me on a joint project. What I learned from him is invaluable and without his encouragements,

i



ii

comments and suggestions, this PhD thesis would not have been written. I could not have

wished for a better boss, coach and coauthor.

Many people accompanied me during the years of my PhD project at the chair of

Econometrics, Statistics and Empirical Economics. I want to thank our fantastic student

assistants who always delivered more than one expected (please forgive me if I forgot you):

Irina Dyshko, Tati Figueiredo, Benjamin Friedrich, Tobias Gummersbach, Benedikt Heid,
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Chapter 1

Introduction

Standard statistical methods in the empirical economics and finance literature are mostly

applicable to data that is aggregated on equally spaced time points. However, a key

characteristic of many economic and financial data is their random occurrence and irregular

spacing in time. Since the pathbreaking work of Robert Engle in the last years of the 20th

century, there are new approaches that do not require aggregated data but are able to account

for their irregular timing nature. A new field of empirical research was born and a vast amount

of work followed.

These developments were mainly supported by the increasing availability of high frequency

transaction data due to the implementation of electronic order recording systems at stock

exchanges all over the world. Typically, financial markets data are irregularly observed along

the time axis. As pointed out by Hautsch (2003) and Bowsher (2007), the time series analysis

of fixed time interval data annihilates the natural timing dependence of transaction data and

possibly neglects relevant information. Further, the selection of inappropriate equidistant

aggregation schemes and the exclusion of data points might lead to misspecifications. Easley

and O’Hara (1992) and Dufour and Engle (2000) are prominent references in the market

microstructure literature that show the importance of time in the transaction process. Hence,

the inclusion of all events in an empirical analysis provides additional information about the

timing relation of transaction variables and allows to revisit old and to analyze new questions

delivered by financial markets theory.

The statistical modeling framework to account for characteristics of irregularly spaced

event data is provided by the theory of point processes. A point process statistically describes
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CHAPTER 1. INTRODUCTION 2

the history of events that occur consecutively in time. A process consisting of points at

which we simultaneously observe variables that “mark” the points is conceived as marked

point process.

The major leap forward in financial market data modeling using point processes is

the work of Engle and Russell (1997, 1998). They develop the autoregressive conditional

duration (ACD) model that describes the waiting time between consecutive events by a

dynamic parametric conditional mean function. The ACD models the serial dependencies

of durations and has experienced a large number of specifications and extensions in the

subsequent literature.1 An important example is the study of Grammig and Maurer (2000),

who focus on an alternative distributional assumption for durations. The authors improve

the empirical fit of the ACD model by replacing the exponential or Weibull distribution by

a Burr distribution. Jasiak (1998) suggests a fractionally integrated ACD that incorporates

long memory dependence and Zhang et al.’s (2001) threshold ACD allows for structural breaks

in the duration process.

A significant contribution to the ACD literature is the work of Bauwens and Giot

(2000). They introduce a logarithmic ACD specification that ensures positive durations in

the presence of additionally included explanatory variables. Since the ACD updates in event

time, covariates enter the logarithmic ACD model simultaneously at the arrival of financial

markets events. However, if relevant information arrives within subsequent events modeling

expected conditional durations in an ACD framework is limited. These shortcomings of the

ACD are removed by Hamilton and Jordà’s (2002) autoregressive conditional hazard (ACH)

model. Hamilton and Jordà (2002) extend the ACD by proposing a discrete time intensity

based approach which is able to include information within a duration spell. In contrast to

the ACD, the ACH model is defined on calendar time and gives an estimate of the probability

that an event occurs within the next fixed time interval.

Hence, if the point process is not only driven by its past history but also by information

arriving irregularly between the points, the formulation of a conditional intensity function

becomes useful. In particular, this holds in a multivariate setting when the interdependencies

of two or more point processes are relevant. Engle and Lunde (2003) present a bivariate

ACD that models the arrival of trade and quote durations in discrete time. However, as

1An extensive presentation of model modifications to the original ACD of Engle and Russell (1998) can be found
in Bauwens and Giot (2001).
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pointed out by Bowsher (2007) due to the model structure some information of the trading

process is neglected and extensions to this model class seem to be difficult. These drawbacks

are overruled by Russell (1999), Bauwens and Hautsch (2006) and Bowsher (2007). They

address the question of relations and interdependencies of transaction processes by focusing

on multivariate conditional intensities. In a continuous-time multivariate intensity model

intensities interdepend and update immediately as new information arrives. New information

includes either events in one of the individual processes or covariates that occur irregularly

in time and have a direct impact on the intensities.

The starting point for the multivariate intensity models in the empirical finance literature

is the work of Russell (1999). He introduces the autoregressive conditional intensity (ACI)

model and applies it to quote and trade arrival rates. Hall and Hautsch (2006) use the ACI

to model arrival times of buy and sell trades on a limit order book market. Bauwens and

Hautsch (2006) extend the ACI by an underlying common latent factor. Recently, Bowsher

(2007) introduced a multivariate generalized Hawkes intensity model for the timing interaction

of trades and quotes.

This thesis’s aim is to present new univariate and multivariate empirical point processes

applied in the field of financial and monetary econometrics. In particular, we analyze the

following topics. In the second chapter we suggest a univariate discrete marked point process

model for the federal funds rate target and investigate its point and probability forecast

performance. Chapter 3 presents a model for daily return variation that is disentangled into

a continuous and jump variation component. While daily continuous variation is modeled by

an autoregressive conditional time series model, irregularly occurring jumps are conceived as

a univariate marked point process. Finally, the fourth chapter introduces a new information

share that measures the home and foreign market share in price discovery. For this purpose,

a multivariate point process based on high frequency transaction data is used.

Since the main focus of the thesis is to show point processes from an empirical applicants

perspective, mathematical concepts are introduced whenever required. Karr (1986) gives

an extensive statistical description of point processes and their inference and an excellent

overview of point processes applied to financial transaction data is given by Hautsch (2003).
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A New Marked Point Process Model for the Federal Funds Rate Target - Methodology and

Forecast Evaluation

Although the ACD model was primarily developed in the context of high frequency

tick-by-tick transaction data, the idea of “time matters” spread into research that uses

non-aggregated data observed on lower frequencies, as well. Chapter 2 studies the US Federal

Reserve Bank’s (Fed) monetary policy on weekly data. The Fed’s main policy tool to regulate

the demand and supply of money is to set a target interest rate for the effective federal funds

rate which is the rate at which depository institutions lend reserves at the Fed to other

depository institutions overnight. In the meetings of the Federal Open Market Committee

(FOMC), the Fed decides based on macroeconomic and financial indicators whether the target

interest rate changes. Hence, an irregular spaced time series of target changes emerges due to

the Fed’s institutional framework. Hamilton and Jordà (2002) propose to model the target

changes as points in time and to combine them with an ordered probit (OP) that accounts

for the discreteness of target change sizes. In other words, Hamilton and Jordà (2002) model

the target changes as a marked point process.

Chapter 2 of this thesis draws on Hamilton and Jordà’s (2002) seminal work. We present

a new marked point process model for the federal funds rate target by combining Hamilton

and Jordà’s (2002) autoregressive conditional hazard (ACH) and Russell and Engle’s (2005)

autoregressive conditional multinomial (ACM) model. Further, the chapter compares the

forecast performance of the proposed model with the ACH-OP and other approaches. We

also suggest a method to assess the quality of probability forecasts delivered by this model

class and apply it to forecasts of the federal funds rate target. By improving goodness of fit

and point forecasts, the ACH-ACM qualifies as a sensible modeling framework. Furthermore,

our results show that discrete marked point process models deliver reasonable probability

function forecasts at short and medium term horizons.

Forecasting Return Volatility with Continuous Variation and Jumps

Chapter 3 presents an application of a point process in the context of volatility forecasting

using daily data. Due to the importance of accurate volatility forecasts for the valuation of
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derivatives, portfolio management and risk management, it plays a central role in financial

econometrics. Recently, Andersen et al. (2003) and Andersen and Bollerslev (1998) introduced

a nonparametric approach to measure and model daily return volatility. Based on high

frequency data they suggest the sum of intra-daily squared returns as realized volatility

measure that converges to the quadratic variation of a continuous-time price process.

The chapter is linked to Andersen et al.’s (2007b) and Bollerslev et al.’s (2009) work who

disentangle return volatility into a continuous and a jump component and model realized

volatility by a reduced form time series approach. In this chapter continuous variation is

described by an autoregressive time series model and jump variation is conceived as a marked

point process. Daily variation jumps occur irregularly spaced in time and at each jump

event (points) we immediately observe the size of the jump (mark). Further, the chapter

takes up the idea and extends the method of forecast evaluation of Chapter 2 to density

forecasts of realized volatility. Diagnostics as well as point and density forecast results

show that the suggested approach qualifies as a useful forecast model for daily return variation.

International Price Discovery in Stock Markets - A Unique Intensity Based Information Share

Chapter 4 gives an application of a multivariate point process in the field of international

price discovery. Investors’ decision to invest and companies’ intention to list their stocks

on a stock exchange depends on the ability of an exchange to provide a prospering trading

environment. In particular, within the context of international cross-listed stocks, it is of

paramount concern for a national stock exchange to remain the dominant market with regard

to price discovery.

In Chapter 4 we use Russell’s (1999) autoregressive conditional intensity model (ACI) and

develop a new information share that measures the home and foreign market share in price

discovery. By using a bivariate intensity approach, we account for the informational content

of time between consecutive trades and the timing interdependencies between two markets’

transaction processes. In contrast to the commonly applied Hasbrouck (1995) methodology

we account for the irregularity of the data and deliver a unique information share rather than

lower and upper bounds.

We apply our information share to Canadian stocks that are traded on the Toronto Stock
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Exchange (TSX) and cross-listed on the New York Stock Exchange (NYSE). We find that the

TSX is the dominant market with an information share of 71%. Our results confirms previous

findings by Phylaktis and Korczak (2007), Eun and Sabherwal (2003), and Grammig et al.

(2005), who also analyze Canadian stocks. We also compare our results to the Hasbrouck

(1995) information shares. On average over all sample stocks we find a larger home market

contribution than indicated by the Hasbrouck midpoints.



Chapter 2

A New Marked Point Process

Model for the Federal Funds Rate

Target - Methodology and Forecast

Evaluation

Forecasts of key interest rates set by central banks are of paramount concern for investors

and policy makers. Recently it has been shown that forecasts of the federal funds rate

target, the most anticipated indicator of the Federal Reserve Bank’s monetary policy stance,

can be improved considerably when its evolution is modeled as a marked point process

(MPP). This is due to the fact that target changes occur in discrete time with discrete

increments, have an autoregressive nature, and are usually in the same direction. We propose

a model which is able to account for these dynamic features of the data. In particular, we

combine Hamilton and Jordà’s (2002) autoregressive conditional hazard (ACH) and Russell

and Engle’s (2005) autoregressive conditional multinomial (ACM) model. The paper also

puts forth a methodology to evaluate probability function forecasts of MPP models. By

improving goodness of fit and point forecasts of the target, the ACH-ACM qualifies as a

sensible modeling framework. Furthermore, our results show that MPP models deliver useful

probability function forecasts at short and medium term horizons.

7
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This chapter is based on the article “A New Marked Point Process Model for the Federal

Funds Rate Target Methodology and Forecast Evaluation” by J. Grammig and K. Kehrle

(2008) published in the Journal of Economic Dynamics and Control.

2.1 Introduction

By setting a target for the effective federal funds rate, the executive body of the US Federal

Reserve Bank influences a widespread range of economic variables and financial markets.

Therefore, if and how much the Fed changes the target is of paramount interest for policy

makers and investors. The econometric modeling of the target change process has to account

for specific data characteristics due to institutional structures. Central banks tend to prefer

small target changes in the same direction rather than a large one-time target change. As

a result, target changes take place in discrete time with discrete increments and have an

autoregressive nature. To address these features of the data, Hamilton and Jordà (2002)

propose a dynamic model, the autoregressive conditional hazard (ACH) model, that accounts

for the irregular spacing of the target changes in time and combine it with an ordered probit

(OP) in order to model the discreteness of target change sizes. In this paper we draw on

Hamilton and Jordà’s (2002) seminal work. We present a new model for the federal funds rate

target and compare its forecast performance with the ACH-OP model and other approaches.

We also propose a method to assess the quality of probability forecasts delivered by this class

of models and apply it to forecasts of the federal funds rate target.

Our paper is linked to the literature which focuses on the estimation of empirical

reaction functions, i.e. the response of the Fed to economic developments (see Judd and

Rudebusch 1998, Khoury 1990). For that purpose, other papers have employed vector

autoregressive (VAR) models (e.g. Bernanke and Blinder 1992, Evans and Marshall 1998,

Sack 1998). However, since target changes occur in discrete steps, and the time interval

between change events is irregular, using a VAR can be criticized on methodological grounds

(Rudebusch 1998, Evans and Kuttner 1998). A popular econometric approach that takes into

account the discreteness of the target change sizes is the OP model. Analyses of the Fed’s, the

Bank of England’s and ECB’s monetary policy using OP models include Eichengreen et al.

(1985), Davutyan and Parke (1995), Dueker (1999), Gerlach (2005), Jansen and De Haan

(2006) and Carstensen (2006). Hamilton and Jordà’s ACH-OP was the first model to take
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into account both the irregular spacing in time and the discrete size of target changes. It can

be classified as a discrete marked point process (DMPP) model in which the ACH explains

the autoregressive dynamics of the durations between target changes.1 It gives an estimate

of the probability that a target change will occur within the next week. The OP on the other

hand delivers the probability of observing a target change of a certain size given that a target

change occurs. The ACH-OP methodology was a major leap forward in terms of improving

forecast accuracy. Compared to a VAR, the mean squared error of the target forecast is

considerably reduced at all forecast horizons.

Our paper offers two contributions to this literature. First, we motivate an alternative

model for the target that combines the ACH with the autoregressive conditional multinomial

(ACM) model introduced by Russell and Engle (2005) and compare its empirical performance

with the ACH-OP. Russell and Engle’s (2005) main objective was to provide a model for

discrete transaction price changes.2 Those tick changes do not only occur at a very high

frequency (with only seconds between events), but also with irregular intervals between trade

events. In this paper we deal with much longer durations between fewer events, but the

similarities between the data generating processes are obvious.

Combining ACH and ACM to create a new DMPP model for the target is appealing

from a methodological point of view. As pointed out by Liesenfeld et al. (2006), one major

drawback of the OP model is that the parameters result from a threshold crossing latent

variable model, in which the underlying continuous latent dependent variable has to be given

some more or less arbitrary economic interpretation. Furthermore, Russell and Engle (2005)

argue that the OP allows for a very limited dependence due to its Markov structure and

is far less flexible regarding the impact of new information on the transition probabilities.

The ACM model resolves these methodological shortcomings by allowing for more complex

intertemporal dependencies. We conjecture that this flexibility is rewarded when modeling

the autoregressive nature of target changes that usually take place in the same directions.

The second contribution of this paper is the evaluation of probability forecasts delivered by

DMPP models. This is particularly interesting if the models are employed for value-at-risk and

risk scenario analysis involving the federal funds rate target. For that purpose, we adapt the

1Due to its versatility, the ACH model enjoys increasing popularity (e.g. Demiralp and Jordà 1999, Zhang 2001,
Dolado and Maŕıa-Dolores 2002, Bergin and Jordà 2004, Davis and Hamilton 2004, Scotti 2005).

2Other applications of the ACM model can be found in Liesenfeld et al. (2006) and Prigent et al. (2004).
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density forecast evaluation method popularized by Diebold et al. (1998).3 However, a direct

application of their method is infeasible, as it only applies to continuous forecast variables and

does not readily extend to the probability function forecasts issued by DMPP models. This

extension is delivered in the present paper. We also investigate at which horizons DMPP

models deliver sensible in- and out-of-sample probability and point forecasts, and we offer

recommendations for their practical use.

The main findings of this paper can be summarized as follows. The ACH-ACM model

delivers encouraging results in terms of goodness of fit and out-of-sample point forecast

performance. Given the relatively small number of target change events available for

estimation, we argue that parsimony of the ACM specification is called for to avoid over-fitting.

We therefore consider specifications which impose sensible restrictions on the responses

to previous target changes. These specifications deliver economically plausible estimates

and improve the benchmark model in terms of goodness of fit. In-sample probability

forecast evaluations (conceived as goodness of fit diagnostics) underline the suitability of

the DMPP approach towards modeling the evolution of the federal funds rate target. The

out-of-sample point forecast evaluation confirms the suitability of DMPP models for target

forecasting. Parsimoniously parameterized ACH-ACM specifications do a particularly good

job. Bayesian type model averaging helps stabilizing the point forecast performance in

subsamples. Furthermore, DMPP models deliver sensible out-of-sample probability function

forecasts of the target for horizons up to six months. However, the federal funds rate target

time series is relatively short. More data are needed before firm conclusions concerning longer

probability forecast horizons can be given.

The remainder of this paper is structured as follows. Section 2.2 describes the institutional

background and the data. Section 2.3 presents the ACH-ACM methodology and adapts

techniques for the evaluation of density forecasts to assess the quality of the probability

forecasts issued by DMPP models. Section 2.4 discusses estimation results, compares goodness

of fit measures, evaluates in-sample point forecast performances and employs the diagnostic

tools for the evaluation of probability forecasts for model comparisons. Furthermore,

out-of-sample forecast evaluations are discussed. Section 2.5 summarizes the main findings

and concludes.

3Sarno et al. (2004) assess the accuracy of density forecasts of alternative models for the federal funds rate
(which is conceived as a continuous forecast variable).
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2.2 Institutional Details and Data

The US Federal Reserve Bank (Fed) uses three principal tools to implement its monetary

policy: the reserve requirement ratio, the discount rate and open market operations. The

latter, the sales and purchases of government securities, is the most flexible and most

frequently used. In the case of a purchase (sale) of securities by the Fed, the reserves increase

(decrease) and money supply extends (contracts).4 Meulendyke (1998) and recently Carpenter

and Demiralp (2006) provide details on the Fed’s monetary policy implementation and history.

The executive organ of the Fed, the Federal Open Market Committee (FOMC), is responsible

for the implementation of open market operations. Specifically, the FOMC sets a target for

the effective federal funds rate which is the rate at which depository institutions lend reserves

at the Fed to other depository institutions overnight.

As described by the Federal Reserve System (2005), the implementation of the monetary

policy changed over time. Up to the mid-1980s the Fed influenced the effective federal funds

rate indirectly by targeting the borrowed reserves, a period that was characterized by small

and frequent target changes. Beginning in the mid-1980s, doubts about the financial health

of some depository institutions induced a reluctance to borrow at the discount window and

the link between borrowing and the federal funds rate weakened. Consequently, the Fed

increasingly set a specific level of the federal funds rate rather than a targeted amount of

borrowed reserves. Before 1994, the target level was not publicly announced. However, by

observing the activity at the Domestic Trading Desk at the Federal Reserve Bank of New

York, the objective of the Fed was inferred and speculations about the intended target level

were publicized in press. Since the mid-nineties, the FOMC explicitly states its short term

objective for open market operations by announcing a target level for the effective federal

funds rate.

Figure 2.2.1 depicts the March 1984 to January 2006 time series of the federal funds rate

target, its changes and the effective federal funds rate. Dates of the target changes are given

in Table 2.2.1. The target data from March 1984 to April 2001 were obtained from O. Jordà’s

website. These official trading desk data were originally compiled by Rudebusch (1995) and

updated by Volker Wieland.

4As a matter of fact, sales of securities are extremely rare. Instead of issuing new securities, the Fed rather
redeems some maturing securities.
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Date of

Change

Target

Value

Target

Change

Duration

in Days
Day of the

Week

Date of

Change

Target

Value

Target

Change

Duration

in Days
Day of the

Week

1 March 84 9.5 Thursday 11 July 85 7.6875 -0.0625 52 Thursday
15 March 84 9.875 0.375 14 Thursday 25 July 85 7.75 0.0625 14 Thursday
22 March 84 10 0.125 7 Thursday 22 August 85 7.8125 0.0625 28 Thursday
29 March 84 10.25 0.25 7 Thursday 29 August 85 7.875 0.0625 7 Thursday

5 April 84 10.5 0.25 7 Thursday 6 September 85 8 0.125 8 Friday
14 June 84 10.625 0.125 70 Thursday 18 December 85 7.75 -0.25 103 Wednesday
21 June 84 11 0.375 7 Thursday 7 March 86 7.25 -0.5 79 Friday
19 July 84 11.25 0.25 28 Thursday 10 April 86 7.125 -0.125 34 Thursday

9 August 84 11.5625 0.3125 21 Thursday 17 April 86 7 -0.125 7 Thursday
30 August 84 11.4375 -0.125 21 Thursday 24 April 86 6.75 -0.25 7 Thursday

20 September 84 11.25 -0.1875 21 Thursday 22 May 86 6.8125 0.0625 28 Thursday
27 September 84 11 -0.25 7 Thursday 5 June 86 6.875 0.0625 14 Thursday

4 October 84 10.5625 -0.4375 7 Thursday 11 July 86 6.375 -0.5 36 Friday
11 October 84 10.5 -0.0625 7 Thursday 14 August 86 6.3125 -0.0625 34 Thursday
18 October 84 10 -0.5 7 Thursday 21 August 86 5.875 -0.4375 7 Thursday

8 November 84 9.5 -0.5 21 Thursday 4 December 86 6 0.125 105 Thursday
23 November 84 9 -0.5 15 Friday 30 April 87 6.5 0.5 147 Thursday
6 December 84 8.75 -0.25 13 Thursday 21 May 87 6.75 0.25 21 Thursday

20 December 84 8.5 -0.25 14 Thursday 2 July 87 6.625 -0.125 42 Thursday
27 December 84 8.125 -0.375 7 Thursday 27 August 87 6.75 0.125 56 Thursday

24 January 85 8.25 0.125 28 Thursday 3 September 87 6.875 0.125 7 Thursday
14 February 85 8.375 0.125 21 Thursday 4 September 87 7.25 0.375 1 Friday
21 February 85 8.5 0.125 7 Thursday 24 September 87 7.3125 0.0625 20 Thursday

21 March 85 8.625 0.125 28 Thursday 22 October 87 7.125 -0.1875 28 Thursday
28 March 85 8.5 -0.125 7 Thursday 28 October 87 7 -0.125 6 Wednesday
18 April 85 8.375 -0.125 21 Thursday 4 November 87 6.8125 -0.1875 7 Wednesday
25 April 85 8.25 -0.125 7 Thursday 28 January 88 6.625 -0.1875 85 Thursday
16 May 85 8.125 -0.125 21 Thursday 11 February 88 6.5 -0.125 14 Thursday
20 May 85 7.75 -0.375 4 Monday 30 March 88 6.75 0.25 48 Wednesday
9 May 88 7 0.25 40 Monday 9 January 91 6.75 -0.25 21 Wednesday

25 May 88 7.25 0.25 16 Wednesday 1 February 91 6.25 -0.5 23 Friday
22 June 88 7.5 0.25 28 Wednesday 8 March 91 6 -0.25 35 Friday
19 July 88 7.6875 0.1875 27 Tuesday 30 April 91 5.75 -0.25 53 Tuesday

8 August 88 7.75 0.0625 20 Monday 6 August 91 5.5 -0.25 98 Tuesday
9 August 88 8.125 0.375 1 Tuesday 13 September 91 5.25 -0.25 38 Friday

20 October 88 8.25 0.125 72 Thursday 31 October 91 5 -0.25 48 Thursday
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17 November 88 8.3125 0.0625 28 Thursday 6 November 91 4.75 -0.25 6 Wednesday
22 November 88 8.375 0.0625 5 Tuesday 6 December 91 4.5 -0.25 30 Friday
15 December 88 8.6875 0.3125 23 Thursday 20 December 91 4 -0.5 14 Friday
29 December 88 8.75 0.0625 14 Thursday 9 April 92 3.75 -0.25 111 Thursday

5 January 89 9 0.25 7 Thursday 2 July 92 3.25 -0.5 84 Thursday
9 February 89 9.0625 0.0625 35 Thursday 4 September 92 3 -0.25 64 Friday

14 February 89 9.3125 0.25 5 Tuesday 4 February 94 3.25 0.25 518 Friday
23 February 89 9.5625 0.25 9 Thursday 22 March 94 3.5 0.25 46 Tuesday
24 February 89 9.75 0.1875 1 Friday 18 April 94 3.75 0.25 27 Monday

4 May 89 9.8125 0.0625 69 Thursday 17 May 94 4.25 0.5 29 Tuesday
6 June 89 9.5625 -0.25 33 Tuesday 16 August 94 4.75 0.5 91 Tuesday
7 July 89 9.3125 -0.25 31 Friday 15 November 94 5.5 0.75 91 Tuesday

27 July 89 9.0625 -0.25 20 Thursday 1 February 95 6 0.5 78 Wednesday
10 August 89 9 -0.0625 14 Thursday 6 July 95 5.75 -0.25 155 Thursday

18 October 89 8.75 -0.25 69 Wednesday 19 December 95 5.5 -0.25 166 Tuesday
6 November 89 8.5 -0.25 19 Monday 31 January 96 5.25 -0.25 43 Wednesday

20 December 89 8.25 -0.25 44 Wednesday 25 March 97 5.5 0.25 419 Tuesday
13 July 90 8 -0.25 205 Friday 29 September 98 5.25 -0.25 553 Tuesday

29 October 90 7.75 -0.25 108 Monday 15 October 98 5 -0.25 16 Thursday
14 November 90 7.5 -0.25 16 Wednesday 17 November 98 4.75 -0.25 33 Tuesday
7 December 90 7.25 -0.25 23 Friday 30 June 99 5 0.25 225 Wednesday

19 December 90 7 -0.25 12 Wednesday 24 August 99 5.25 0.25 55 Tuesday
16 November 99 5.5 0.25 84 Tuesday 6 November 02 1.25 -0.5 329 Wednesday

2 February 00 5.75 0.25 78 Wednesday 26 June 03 1 -0.25 231 Thursday
21 March 00 6 0.25 48 Tuesday 30 June 04 1.25 0.25 369 Wednesday

16 May 00 6.5 0.5 56 Tuesday 10 August 04 1.5 0.25 40 Tuesday
3 January 01 6 -0.5 232 Wednesday 21 September 04 1.75 0.25 41 Tuesday

1 February 01 5.5 -0.5 29 Thursday 10 November 04 2 0.25 49 Wednesday
20 March 01 5 -0.5 47 Tuesday 14 December 04 2.25 0.25 33 Tuesday
18 April 01 4.5 -0.5 29 Wednesday 2 February 05 2.5 0.25 49 Wednesday
15 May 01 4 -0.5 26 Tuesday 22 March 05 2.75 0.25 47 Tuesday
27 June 01 3.75 -0.25 42 Wednesday 3 May 05 3 0.25 41 Tuesday

21 August 01 3.5 -0.25 54 Tuesday 30 June 05 3.25 0.25 57 Thursday
17 September 01 3 -0.5 24 Monday 9 August 05 3.5 0.25 39 Tuesday

2 October 01 2.5 -0.5 14 Tuesday 20 September 05 3.75 0.25 41 Tuesday
6 November 01 2 -0.5 34 Tuesday 1 November 05 4 0.25 41 Tuesday

11 December 01 1.75 -0.25 34 Tuesday 13 December 05 4.25 0.25 41 Tuesday

Table 2.2.1: Calendar dates of federal funds rate target changes. ssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssdddddds



CHAPTER 2. A MODEL FOR THE FEDERAL FUNDS RATE TARGET 14

Figure 2.2.1: Federal funds rate target, effective federal funds rate and time series of target
changes, March 1984−January 2006. The left panel depicts the time series of the federal funds rate
target (bold line) and the effective federal funds rate (FFR, thin line). All data are on weekly frequency. The
right panel shows the time series of changes of the federal funds rate target.

Hamilton and Jordà (2002) transform the daily data into a weekly frequency by defining

a seven-day period from Thursday until Wednesday. We extend the time series for the

period May 2001− January 2006 using data from the Federal Reserve Statistical Release.

The distinguishing feature of the target time series is visible in the right panel of Figure 2.2.1.

Target changes occur in discrete steps and are irregularly spaced in time. These characteristics

of the data motivate their modeling as a DMPP.

As proposed by Hamilton and Jordà (2002), we consolidate the observed target changes

(y#) into five categories (y) in the following way:5

y =





s1 = −0.50 if −∞ < y# ≤ −0.4375

s2 = −0.25 if −0.4375 < y# ≤ −0.125

s3 = 0.00 if −0.125 < y# < 0.125

s4 = 0.25 if 0.125 ≤ y# < 0.4375

s5 = 0.50 if 0.4375 ≤ y# < ∞ .

(2.1)

The last column of Table 2.2.2 reports the resulting unconditional frequency distribution of

the consolidated target changes.

5Before 1990, the Fed changed the target in increments of 6.25 basis points and later in increments of 25 basis
points. One could therefore argue that using four categories, omitting the category that collects the small
target changes, may be more appropriate for modeling the evolution of the target. All analyses of the paper
were also carried out using four categories (omitting the mid-state). However, the results do not change the
conclusions. We therefore stick to the five categories classification to be comparable to Hamilton and Jordà’s
(2002) analysis. The four category results are available in Appendix A.1.
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previous target change uncond.
frequency-0.5 -0.25 0 0.25 0.5

Panel A: March 1984−April 2001

target
change

-0.5 33.3 16.3 25.0 0.0 11.1 13.9

-0.25 40.0 65.1 25.0 14.3 11.1 37.4

0.0 20.0 4.7 33.3 2.9 22.2 10.4

0.25 6.7 14.0 16.7 65.7 22.2 30.4

0.5 0.0 0.0 0.0 17.1 33.3 7.8

Panel B: March 1984− January 2006

target
change

-0.5 38.1 19.1 25.0 0.0 11.1 15.2

-0.25 42.9 61.7 25.0 10.4 11.1 34.1

0.0 14.3 4.3 33.3 2.1 22.2 8.7

0.25 4.8 14.9 16.7 75.0 22.2 35.5

0.5 0.0 0.0 0.0 12.5 33.3 6.5

Table 2.2.2: Conditional and unconditional relative frequency distributions of consolidated
target changes (in %).

The frequency distributions of the target changes conditional on the previous target

change are also reported in Table 2.2.2. Panel A reports these conditional frequencies for the

period from March 1984−April 2001 (Hamilton and Jordà’s 2002 original sample period).

We use these data for estimation and in-sample evaluations. Panel B reports the results

for the complete sample period, including May 2001− January 2006, the period used for

out-of-sample evaluations. The large numbers on the diagonal of the transition matrices

indicate persistence in the target change sizes. Table 2.2.2 also shows the rare occurrence of

the event that a large negative target change is followed by a large positive target change and

vice versa.

2.3 Econometric Methodology

2.3.1 The ACH-ACM Model

Conceiving the evolution of the federal funds rate target as a discrete marked point process,

we specify a model that accounts for the time between successive target changes and a

model for the magnitude of the target change. We retain Hamilton and Jordà’s (2002)

autoregressive conditional hazard (ACH) as the model for the point process. The ACH is
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combined with Russell and Engle’s (2005) autoregressive conditional multinomial (ACM)

model which accounts for the dynamics of the sequence of target change sizes. Let us start

with a brief review of the ACH and introduce some notation before combining ACH and ACM

to form an alternative DMPP model.

The ACH entails a autoregressive specification for the expected time between two events

conditional on previous durations. Hamilton and Jordà (2002) specify the model in discrete

time. Given the empirical setup described in the previous section, the smallest time interval

between events is one week. Let us denote by τn the duration in number of weeks between

the nth and (n + 1)th target change. To provide a link between event time and calendar

time it is convenient to introduce a step function, denoted N(t), which counts the number of

target changes that occurred as of week t. N(t) jumps by one if a target change occurs during

week t and remains the same as in week t − 1 if no target change occurs. The sequence of

conditional expected durations ψN(t) ≡ E
[
τN(t)|τN(t)−1, τN(t)−2, ...

]
is assumed to evolve as

an autoregressive process,

ψN(t) = ατN(t)−1 + βψN(t)−1 , (2.2)

where α and β are parameters. Equation (2.2) implies that the expected duration is updated

only if a target change occurs.

The conditional probability of a target change during week t given the information

available in t− 1 is referred to as the hazard rate,

ht = P[N(t) 6= N(t− 1)|Υt−1] . (2.3)

If the information set Υt−1 only consists of past durations, the hazard rate will remain the

same until the next target change occurs. Hamilton and Jordà (2002) show that in this case

hazard rate and conditional expected durations are inversely related,

ht =
1

ψN(t−1)
. (2.4)

To allow for an impact of predetermined variables z observed in t−1, Hamilton and Jordà
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(2002) specify a hazard rate that varies in calendar time, viz

ht =
1

ψN(t−1) + δ′zt−1
, (2.5)

where δ is a parameter vector. Equations (2.2) and (2.5) constitute the ACH model.

Hamilton and Jordà (2002) employ an ordered probit to model the time series of target

change sizes and refer to Hausman et al.’s (1992) analysis of transaction price changes as the

classic reference for the OP used in a high frequency time series context. However, following

Russell and Engle (2005) who motivate their ACM model by arguing that the dynamics of

discrete transaction price changes are better captured by a time series model specifically

designed for discrete variables, we conjecture that the ACM may be also better suited to

model the dynamics of target size changes.

In the following, we show how the ACM methodology can be adapted to model the size

of target changes occurring at infrequent event times. Let us first define a binary indicator

xt which takes the value one if a target change occurs during week t and is zero otherwise.

Denote by yt the size of the target change in t. yt is either zero for a week with no target

change (if xt = 0) or takes one of k different ordered outcomes s1 < s2 < ... < sk if xt = 1.

Let us further denote by πjn the probability that the nth target change is equal to sj and

collect the complete set of k probabilities in a vector π̃n = (π1n, . . . , πkn)′. Since the columns

of π̃n have to sum up to one, an arbitrary target change size, say the rth category, can be

defined as a reference category. The probability of observing a target change in the reference

category can then be calculated as πrn = (1 − ı′πn) with ı a (k − 1) × 1 vector of ones. πn

is a (k − 1) × 1 vector that results from deleting πrn from π̃n. To indicate the size of the nth

target change, it is convenient to introduce a k × 1 vector x̃n. Its jth element is equal to one

if the size of the nth target change is equal to sj, the other elements of x̃n are zero. Finally,

define the (k−1)×1 vector xn which results from deleting the rth element (indicating a target

change size within the reference category) from x̃n.

Adapting the ACM methodology to the present application, we allow for autoregressive

dynamics of the size of the target changes and account for the impact of predetermined

previous week variables, wt−1, on the probabilities of observing one of the k possible target
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change sizes:

ℓ
(
πN(t)

)
= A

(
xN(t)−1 − πN(t)−1

)
+ Bℓ

(
πN(t)−1

)
+ Dwt−1xt . (2.6)

A and B are (k − 1) × (k − 1) parameter matrices. D is a (k − 1) × m parameter matrix

where m denotes the number of predetermined variables (including a constant). The logistic

link function ℓ
(
πN(t)

)
= ln

(
πN(t)/(1 − ı′πN(t))

)
ensures that the resulting probabilities lie

within the unit interval. The probabilities πN(t) can be recovered by computing

πN(t) =
exp

[
A

(
xN(t)−1 − πN(t)−1

)
+ Bℓ

(
πN(t)−1

)
+ Dwt−1xt

]

1 + ı′ exp
[
A

(
xN(t)−1 − πN(t)−1

)
+ Bℓ

(
πN(t)−1

)
+ Dwt−1xt

] . (2.7)

The term xn −πn in Equation (2.6) can be interpreted as the innovation associated with the

nth target change.

The combination of Equations (2.2), (2.5) and (2.6) constitutes the ACH-ACM model as

an alternative DMPP model for the federal funds rate target. Setting up the conditional

likelihood function is straightforward. The probability of observing a target change of size

yt conditional on wt−1 and xt = 1 can be written as x̃′

N(t)π̃N(t). This implies that the joint

probability function of target change indicator xt and target change size yt is given by

f(xt, yt|Υt−1;θACH ,θACM ) = g(xt|Υt−1;θACH)q(yt|xt,Υt−1;θACM )

= {ht}xt{1 − ht}(1−xt){x̃′

N(t)π̃N(t)}xt , (2.8)

where the ACH parameters δ, α, β are collected in the vector θACH and the vectorized ACM

parameter matrices A,B,D in θACM .

The ACH-ACM log-likelihood function,

L (θACH ,θACM ) =

T∑

t=1

{xt ln(ht) + (1 − xt) ln(1 − ht)} +

T∑

t=1

xt ln
(
x̃′

N(t)π̃N(t)

)
, (2.9)

can be maximized with respect to the unknown parameters (θACH ,θACM ). If the parameters

(θACH ,θACM ) are variation free as defined in Engle et al. (1983), and if the parameters

of interest are contained in θACH , then maximum likelihood estimates can be delivered by
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maximizing:

L1(θACH) =

T∑

t=1

{xt ln(ht) + (1 − xt) ln(1 − ht)} (2.10)

(Engle 2000). Furthermore, if the parameters of interest are in θACM , then xt is weakly

exogenous and maximum likelihood estimates are obtained from maximizing:

L2(θACM ) =

T∑

t=1

xt ln
(
x̃′

N(t)π̃N(t)

)
. (2.11)

2.3.2 Evaluating Probability Function Forecasts of DMPP Models

The DMPP models considered in this paper deliver forecasts of the complete probability

distribution of the forecast variable. It is thus tempting to use these models for value-at-risk

and risk scenario analyses involving the federal funds rate target. This section proposes a

methodology to evaluate the quality of the probability forecasts delivered by DMPP models.

A probability forecast is a probability function defined for a one-step or κ-period ahead

observation of a (discrete) variable of interest, given the information at time t. The ACH-ACM

one-step probability function forecast is readily available as a byproduct of the construction

of the likelihood function in Equation (2.8),

f(it+1|Υt) =





P(it+1 = it|Υt) = 1 − ht+1

P(it+1 = it + sj|Υt) = ht+1πjN(t+1) j = 1, 2, ..., k .
(2.12)

The probability function is zero for all other values of it+1. The expression for the probability

function in Equation (2.12) is the same for ACH-OP with the only difference that the

conditional probabilities πjN(t+1) originate from an OP model.

Let us briefly review the basic idea of Diebold et al.’s (1998) method for the evaluation of

density forecasts and assume for the moment that the target is a continuous random variable.

Denote by {f(it | Υt−1)} a sequence of density forecasts and by {p(it | Υt−1)} the sequence

of true densities. Diebold et al. (1998) show that the correct density is weakly superior to all

other forecasts. It will be preferred, in terms of expected loss, by all forecast users regardless

of their loss functions. This suggests that forecasts can be evaluated by testing the null
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hypothesis that the forecasting densities are correct, i.e. whether

{f(it | Υt−1)} = {p(it | Υt−1)} . (2.13)

At first sight, testing whether Equation (2.13) holds appears infeasible because p(it | Υt−1)

is unobserved. However, the distributional properties of the probability integral transform

(PIT),

zt =

∫ it

−∞

f(u|Υt−1)du = F (it|Υt−1) , (2.14)

provide the solution to this problem. Diebold et al. (1998) extend Rosenblatt’s (1952) classic

result by showing that under the null hypothesis the distribution of the sequence of probability

transforms {zt} is iid U(0, 1).

In the present application we cannot rely on iid uniformity of the PIT sequence. The reason

is that the PIT theorem only holds for continuous random variables. It applies to density

function forecasts but not probability function forecasts. To address this problem, we adopt a

methodology proposed by Denuit and Lambert (2005) who derive a discrete analog of the PIT

theorem. For notational convenience assume that sj+1−sj = c for j = 1, 2, ..., k−1. Equation

(2.1) implies that k = 5 and c = 0.25. Transferring Denuit and Lambert’s (2005) results, we

“continue”the discrete target value it by adding an independent uniformly distributed random

variable with support [−c, 0], viz

i∗t = it + c(ut − 1) , (2.15)

where ut is iid U(0, 1). Denuit and Lambert (2005) show that the PIT of the continued

variable i∗t can be computed as

z∗t = F ∗(i∗t |Υt−1) = F (it − c|Υt−1) + f(it|Υt−1)ut . (2.16)

The discrete analog of the PIT theorem states that z∗t is U(0, 1) if the forecast probability

function is correctly specified. Having obtained the z∗t sequence, it is possible to apply the

diagnostic tools proposed by Diebold et al. (1998) to evaluate probability function forecasts

of the target.

The continuation principle extends to multi-step probability forecasts. Here the object of



CHAPTER 2. A MODEL FOR THE FEDERAL FUNDS RATE TARGET 21
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b
i◦

f(it+κ|Υt)

i
(m)
t+κ−1

1
M

M∑
m=1

P(i
(m)
t+κ = i◦|i(m)

t+κ−1, .., i
(m)
t+1 ,Υt)

→
p

P(it+κ = i◦|Υt)

Figure 2.3.1: Simulation of probability forecasts for the ACH-ACM model. The figure illustrates
the simulation procedure to obtain κ-step ahead probability function forecasts. Details are provided in the
Appendix A.2. Starting from week t, the figure depicts M = 7 simulated sample paths that reach different
federal funds rate target values in week t + κ − 1. Given the target value in t + κ − 1, three different target
values can be attained in period t + κ. We assume three outcomes to keep the figure clear. The conditional
probability of each outcome is computed via Equation (A.3) in Appendix A.2. Some values in t + κ, like i◦,
may have non-zero probabilities in many replications, while some values may be assigned non-zero probabilities
only once, and some never. Summing conditional probabilities for each possible value over the M replications
and dividing by M yields the estimate of the t + κ period ahead probability forecast f(it+κ|Υt) sketched on
the right hand side of the figure.

interest is the probability forecast f(it+κ|Υt) where κ > 1. We adopt a simulation strategy,

since the analytic computation of the probability function f(it+κ|Υt) and the corresponding

continued PIT sequence is numerically intractable. Figure 2.3.1 illustrates the procedure and

shows how a κ-step ahead probability function forecast is conducted. The Appendix A.2

describes the procedure in detail as it applies to the ACH-ACM. The procedure works in an

analogous manner for the ACH-OP.

Some remarks concerning the methodology are in order. First, the PIT sequence is not iid

for κ > 1 even if the probability forecast is correct. It exhibits a MA(κ − 1) autocorrelation

structure. To account for this fact, we follow Diebold et al. (1998) and partition the continued

PIT sequence into subseries for which we expect iid uniformity if the forecasts were correct.

For instance, for correct two-step ahead probability forecasts, the subseries {z∗1 , z∗3 , z∗5 , . . .}



CHAPTER 2. A MODEL FOR THE FEDERAL FUNDS RATE TARGET 22

and {z∗2 , z∗4 , z∗6 , . . .} should each be iid U(0, 1), although the complete series is not. Tests

for iid uniformity are then based on the minimum or maximum of the test statistic within

the subseries. Critical values are obtained by dividing the significance level by the number

of subseries. Second, it is informative to augment formal tests of iid U(0, 1) with additional

diagnostics. We adopt the iid uniformity test used in Bauwens et al. (2004) which compares the

frequencies in the PIT histogram bins to expected values if the data were iid U(0, 1). However,

iid uniformity tests alone are nonconstructive. When rejection of the null hypothesis occurs,

they do not provide guidance about the reasons why. Diebold et al. (1998) suggest to augment

formal tests of iid uniformity by visual inspection of histograms and autocorrelograms of the

continued PIT sequences which assists in detecting particular forecast failures.

2.4 Estimation Results and Diagnostic Checks

2.4.1 Empirical Setup

This section describes alternative specifications of ACH-ACM models we consider for our

comparison and the basic empirical setup. We split the data into an estimation sample and

a part that is reserved for out-of-sample evaluation. The estimation period is the same as

in Hamilton and Jordà (2002), March 1984−April 2001. The out-of-sample period is May

2001− January 2006. All models considered in this paper employ the ACH to model the

duration between target changes. Since the sample period is the same, we adopt the ACH

specifications reported by Hamilton and Jordà (2002). They document extensively the search

procedure that leads to these specifications. We report the parameter estimates in Appendix

A.3. Hamilton and Jordà’s (2002) ordered probit estimation results can also be found in

Appendix A.3.

The ACM specifications considered in this paper are based on the k = 5 target change

categories defined in Equation (2.1). Hence, target changes occur with fixed increments c =

0.25. The third category (smallest absolute target changes) is chosen as the reference category.

Hamilton and Jordà (2002) identify the previous week’s spread between the six-month treasury

bill rate on the secondary market (TB6) and the effective federal funds rate (FFR) as a

predictor for next week’s target change size. Accordingly, we use wt−1 = SPt−1, where

SP = TB6−FFR. The ACM variants considered in the following are thus restricted versions
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of

ℓ
(
πN(t)

)
= c + A

(
xN(t)−1 − πN(t)−1

)
+ Bℓ

(
πN(t)−1

)
+ dSPt−1xt (2.17)

=




c1

c2

c4

c5




+




a11 a12 a14 a15

a21 a22 a24 a25

a41 a42 a44 a45

a51 a52 a54 a55




(
xN(t)−1 − πN(t)−1

)
+




b11 b12 b14 b15

b21 b22 b24 b25

b41 b42 b44 b45

b51 b52 b54 b55



ℓ
(
πN(t)−1

)
+




d1

d2

d4

d5




SPt−1xt.

OP and ACM are estimated on the sequence of target change events. This time series

contains much less observations than Russell and Engle (2005) had available for their original

application of the ACM model. Their time series of transaction price changes contain many

thousands of events while our sample contains only 115 target changes. Hence, parsimony of

the ACM specification is called for to avoid in-sample over-fitting. To reduce the number of

parameters, Russell and Engle (2005) advocate ACM specifications that imply symmetries in

the responses to innovations xN(t)−1 − πN(t)−1. They call a matrix A “response symmetric”

if its elements are constrained in the following way:

A =




a11 a12 a14 a15

a21 a22 a24 a25

a41 a42 a44 a45

a51 a52 a54 a55




=




a1 a5 a8 a4

a2 a6 a7 a3

a3 a7 a6 a2

a4 a8 a5 a1




. (2.18)

Persistence of the state probabilities πn = (π1n, π2n, π4n, π5n)′ can be allowed for by a

non-zero parameter matrix B. For the sake of parsimony we focus our attention on diagonal

B matrices. Consider an ACM specification that combines a response symmetric matrix A

with a diagonal, but otherwise unrestricted diagonal matrix B. We refer to this specification

as Partially Response Symmetric ACM (PSACM). Another variant where the diagonal matrix

B is also response symmetric is referred to as Response Symmetric ACM (SACM). Two more

parsimonious specifications are also considered. The Diagonal ACM (DACM) restricts all

off-diagonal elements in the matrices A and B equal to zero, but leaves the diagonal elements

unrestricted. Our most parsimonious ACM specification, the Response Symmetric Diagonal

ACM(1,1) (SDACM), constrains both A and B to be diagonal and response symmetric.

We also consider a simple non-dynamic alternative. The UNConditional model issues a

probability forecast for a target change of a given size that is equal to the unconditional
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relative frequencies reported in Table 2.2.2. The UNC model can be viewed as a special case

of Equation (2.17) where all parameters except the vector c are set to zero.

2.4.2 Estimation Results and Goodness of Fit

Table 2.4.1 reports the value of the maximized log-likelihood, the Akaike information criterion

(AIC) and a pseudo-R2 measure (mean maximized likelihood value). We provide this

information for the ACM specifications discussed above as well as for the ordered probit

and UNC model.

A B npar Lmax AIC R2
pseudo

SACM resp sym/8 resp sym diag/2 18 -114.8 2.31 0.369

PSACM resp sym/8 diag/4 20 -114.5 2.34 0.370

OP - - 6 -137.1 2.49 0.303

SACM(1,0) resp sym/8 -/0 16 -129.3 2.53 0.325

SDACM resp sym diag/2 resp sym diag/2 12 -134.0 2.54 0.312

DACM diag/4 diag/4 16 -133.1 2.60 0.314

UNC - - 4 -165.5 2.95 0.237

Table 2.4.1: Summary of estimation results. All models are estimated on March 1984−April 2001
data. Lmax is the maximized log-likelihood value, AIC is the Akaike information criterion computed as

−2 · Lmax

N(T )
+2 ·

npar

N(T )
where N(T ) denotes the total number of target change events and R2

pseudo = exp
“

Lmax

N(T )

”

.

The models are sorted in ascending order by AIC. The total number of free parameters in each model is
reported in the column npar. The ACM specifications are special cases of

ℓ
(
πN(t)

)
= c + A

(
xN(t)−1 − πN(t)−1

)
+ Bℓ

(
πN(t)−1

)
+ dSPt−1xt ,

where SPt−1 denotes the spread between the six-month treasury bill rate and the federal funds rate. The
columns A and B provide information about the restrictions placed on the parameter matrices A and B. resp
sym denotes a response symmetric and diag a diagonal structure of the respective matrix. The figure after the
/ gives the number of free parameters in the respective matrix.

Table 2.4.1 is sorted in ascending order by AIC, so models that appear on top of the list are

preferred based on that criterion. The highest pseudo-R2 (0.37) is delivered by the PSACM,

in terms of AIC this model is ranked second. The SACM, which additionally imposes response

symmetry of B, delivers an only marginally smaller pseudo-R2 and is superior in terms of

AIC. All ACMs deliver a higher pseudo-R2 than the ordered probit, but due to its parsimony

the OP is ranked third in terms of AIC. Parameter estimates of the five ACM specifications

are reported in Table 2.4.2 and Table 2.4.3.



CHAPTER 2. A MODEL FOR THE FEDERAL FUNDS RATE TARGET 25

c′ c1 -2.407 c2 1.278 c4 1.766 c5 -0.138
(1.367) (0.676) (0.659) (0.630)

A

a11 1.434 a12 2.729 a14 -10.991 a15 1.316
(1.297) (1.024) (3.723) (2.355)

a21 1.050 a22 3.532 a24 1.911 a25 0.777
(0.723) (0.756) (0.769) (0.687)

a41 0.777 a42 1.911 a44 3.532 a45 1.050
(0.687) (0.769) (0.756) (0.723)

a51 1.316 a52 -10.991 a54 2.729 a55 1.434
(2.355) (3.723) (1.024) (1.297)

B

b11 0.470 b12 0 b14 0 b15 0
(0.102)

b21 0 b22 0.403 b24 0 b25 0
(0.125)

b41 0 b42 0 b44 0.430 b45 0
(0.098)

b51 0 b52 0 b54 0 b55 0.689
(0.069)

d′ d1 -1.128 d2 0.453 d4 1.772 d5 3.705
(1.177) (0.720) (0.807) (1.266)

Table 2.4.2: Maximum likelihood estimates of the PSACM. The estimation period is March
1984−April 2001. Standard errors are reported in parentheses.

The ACM estimates are sensible from an economic point of view. For the sake of brevity

let us focus on the PSACM results reported Table 2.4.2. As can be seen from the first row in

the table, the estimates of the state specific constant are higher for the“inner states” (medium

size positive or negative target changes) which is in accordance with the empirical frequency

distribution of target changes reported in Table 2.2.2. The estimates of d (last row of Table

2.4.2) imply that an increase of the spread of the six-month treasury bill rate and the effective

federal funds rate increases the probability of observing a subsequent positive target change

(especially in the highest state) and reduces the probability of observing a negative target

change next. This is in line with Hamilton and Jordà’s (2002) ordered probit results (see

Equation (A.9) in Appendix A.3).

Positive and significant estimates of the diagonal elements of the matrix B (third panel

in Table 2.4.2) indicate persistence in the state probabilities. Persistence is highest in the

categories indicating a large target change (|y| = 0.5). Medium size target changes (|y| = 0.25)

are less persistent. The estimates of the matrix A (see second panel of Table 2.4.2) are

plausible, but difficult to interpret directly. Due to the nonlinearity of the model, the marginal

effect of a target change shock depends on the prevailing state probabilities. To give an idea of

the economic significance of the parameter estimates, Figure 2.4.1 illustrates the response of
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SACM SACM(1,0)

c′
-3.659 1.334 1.653 -2.037

c′
-0.421 1.917 2.321 0.534

(1.127) (0.602) (0.646) (1.363) (1.243) (0.829) (0.817) (1.067)

A

1.230 2.821 -17.010 2.393

A

1.625 2.687 -1.068 -1.480
(0.828) (0.918) (5.726) (1.329) (1.115) (1.225) (1.935) (1.470)
0.549 3.112 1.764 0.589 0.771 3.092 2.149 0.485

(0.692) (0.737) (0.755) (0.706) (0.860) (1.028) (1.049) (0.919)
0.589 1.764 3.112 0.549 0.485 2.149 3.092 0.771

(0.706) (0.755) (0.737) (0.692) (0.919) (1.049) (1.028) (0.860)
2.393 -17.010 2.821 1.230 -1.480 -1.068 2.687 1.625

(1.329) (5.726) (0.918) (0.828) (1.470) (1.935) (1.225) (1.115)

B

0.494 0 0 0

B

0 0 0 0
(0.047)

0 0.375 0 0 0 0 0 0
(0.077)

0 0 0.375 0 0 0 0 0
(0.077)

0 0 0 0.494 0 0 0 0
(0.047)

d′
-1.305 0.503 1.385 4.470

d′
-0.613 0.396 1.794 3.384

(0.969) (0.727) (0.811) (0.978) (1.207) (0.841) (0.884) (1.116)

SDACM DACM

c′
0.316 0.720 0.899 0.585

c′
0.223 0.814 0.901 0.752

(0.507) (0.512) (0.545) (0.526) (0.241) (0.563) (0.492) (0.421)

A

0.847 0 0 0

A

0.966 0 0 0
(0.744) (0.449)

0 1.402 0 0 0 1.255 0 0
(0.338) (0.436)

0 0 1.402 0 0 0 1.548 0
(0.338) (0.467)

0 0 0 0.847 0 0 0 0.917
(0.744) (0.708)

B

0.605 0 0 0

B

0.774 0 0 0
(0.227) (0.080)

0 0.597 0 0 0 0.551 0 0
(0.145) (0.224)

0 0 0.597 0 0 0 0.610 0
(0.145) (0.147)

0 0 0 0.605 0 0 0 0.438
(0.227) (0.151)

d′
0.381 0.401 1.064 1.673

d′
0.284 0.454 1.094 2.198

(0.724) (0.573) (0.778) (0.990) (0.333) (0.540) (0.565) (0.726)

Table 2.4.3: Maximum likelihood estimates of alternative ACM specifications. The estimation
period is March 1984−April 2001. Standard errors are reported in parentheses.

the state probabilities to a target change shock. Assuming identical initial state probabilities,

and setting the prevailing spread equal to its sample mean, we use Equation (2.7) to compute

the change of state probabilities due to a target change shock in the respective categories.

Figure 2.4.1 shows that a positive small target change shock increases the probability of

observing another small positive target change, while the probability of observing a subsequent
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Figure 2.4.1: Effect of a target change shock on state probabilities. The figure depicts the change
of state probabilities π̃N(t) − π̃N(t)−1 in response to a shock in the innovation term xN(t)−1 − πN(t)−1. These
computations are based on the PSACM estimates in Table 2.4.2. A small positive shock implies xN(t)−1 =
(0, 0, 1, 0)′, a small negative shock implies xN(t)−1 = (0, 1, 0, 0)′, a large positive shock implies xN(t)−1 =
(0, 0, 0, 1)′, and a large negative shock xN(t)−1 = (1, 0, 0, 0)′. To compute the state probabilities, SPt−1 is set
to its sample mean, and πN(t)−1 = (0.2, 0.2, 0.2, 0.2)′, i.e. we assume identical state probabilities prior to the
shock.

negative target change is reduced. These effects are mirrored for small negative target change

shocks. By contrast, large target change shocks do not induce strong effects on the state

probabilities.

2.4.3 Comparing Short Term Interest Rate Forecasts

Hamilton and Jordà (2002) made a strong case for DMPP modeling by showing that their

ACH-OP model improves the accuracy of the short term interest rate forecasts considerably

compared to a forecast delivered by a standard vector autoregressive (VAR) model. Panel A

of Table 2.4.4 reports the MSEs of one to twelve months forecasts of the effective federal funds

rate using the VAR from Evans and Marshall (1998) and the ACH-OP model. These results

are taken from Table 7 in Hamilton and Jordà (2002). For the ACH-OP (and the other DMPP

models considered below) the model’s target forecast is used as a forecast for the effective

rate.6 Interestingly, the simple DMPP specification ACH-UNC is also able to outperform the

6More precisely, the forecast of ACH-OP and the other DMPP models is the conditional expected target value
for the respective horizon. We use the simulation techniques described in Section 2.3.2 to compute these target
forecasts. Each DMPP model includes the same estimated ACH model reported in Equations (A.7) and (A.8)
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Panel A: Apr 1985-Apr 2001 (in-sample) Panel B: May 2001-Jan 2006 (out-sample)

h UNC OP PSACM DACM VAR UNC OP PSACM DACM BTMA

1 0.03 0.04 0.03 0.03 0.21 0.01 0.01 0.01 0.01 0.01

2 0.10 0.10 0.08 0.09 0.59 0.08 0.05 0.07 0.05 0.05

3 0.19 0.17 0.14 0.17 0.95 0.21 0.13 0.19 0.13 0.13

4 0.31 0.26 0.23 0.28 1.24 0.39 0.24 0.36 0.25 0.24

5 0.45 0.37 0.34 0.40 1.45 0.63 0.40 0.59 0.41 0.40

6 0.61 0.48 0.47 0.53 1.62 0.94 0.66 0.90 0.64 0.65

7 0.81 0.61 0.61 0.68 1.77 1.28 0.96 1.26 0.91 0.93

8 1.04 0.77 0.77 0.87 1.89 1.66 1.30 1.66 1.21 1.24

9 1.26 0.92 0.94 1.05 2.00 2.07 1.67 2.07 1.52 1.58

10 1.48 1.08 1.11 1.22 2.18 2.51 2.09 2.52 1.88 1.96

11 1.70 1.24 1.28 1.39 2.42 2.96 2.55 2.98 2.26 2.38

12 1.92 1.39 1.44 1.56 2.70 3.40 3.01 3.45 2.64 2.80

Panel C: May 2001-May 2004 Panel D: Jun 2004-Jan 2006

h UNC OP PSACM DACM BTMA UNC OP PSACM DACM BTMA

1 0.01 0.01 0.02 0.01 0.01 0.01 0.00 0.00 0.00 0.00

2 0.08 0.06 0.11 0.06 0.06 0.08 0.02 0.01 0.03 0.02

3 0.22 0.17 0.27 0.17 0.17 0.20 0.06 0.04 0.07 0.06

4 0.40 0.31 0.51 0.30 0.31 0.37 0.11 0.08 0.15 0.12

5 0.65 0.51 0.84 0.51 0.51 0.59 0.19 0.13 0.24 0.20

6 0.99 0.87 1.28 0.80 0.84 0.84 0.27 0.20 0.35 0.28

7 1.37 1.29 1.80 1.15 1.22 1.11 0.36 0.28 0.46 0.37

8 1.80 1.76 2.35 1.54 1.65 1.41 0.46 0.37 0.59 0.47

9 2.25 2.27 2.93 1.95 2.12 1.72 0.56 0.47 0.73 0.58

10 2.75 2.85 3.56 2.42 2.64 2.06 0.68 0.58 0.88 0.71

11 3.26 3.49 4.22 2.93 3.22 2.40 0.79 0.68 1.02 0.82

12 3.77 4.16 4.89 3.45 3.81 2.72 0.90 0.80 1.14 0.93

Table 2.4.4: Mean squared errors for one to twelve months forecasts of the effective federal
funds rate, in- and out-of-sample. In-sample OP and VAR results are taken from Table 7 in Hamilton
and Jordà (2002). All models are estimated on March 1984−April 2001 data and use the ACH specification
in Equations (A.7) and (A.8) as the model for the point process. The column titled BTMA reports the MSEs
of a Bayesian type model averaging of ACH-OP and ACH-DACM. The forecast horizon h in months is given
in the first column. Bold faced numbers indicate the lowest MSE at the respective horizon.

VAR which emphasizes the point that modeling the time between target changes matters.

in Appendix A.3. The VAR model is based on monthly data, while ACH-OP and the other models considered
in this paper are estimated on weekly data. To ensure comparability and avoid giving the DMPP models a
head start, we follow Hamilton and Jordà (2002) and compute the DMPP and VAR forecasts based on the
same conditioning information. Specifically, the monthly DMPP models’ forecasts are based on end-of calendar
month information even if newer weekly data would be available. Furthermore, we need forecast values of the
spread (SP ) to compute the target forecast of ACH-OP and ACH-ACM models. For that purpose, we use the
following specification estimated by Hamilton and Jordà (2002):

SPt =0.129
(0.032)

+ 0.228
(0.083)

it− 0.267
(0.083)

it−1+ 0.723
(0.023)

SPt−1 (2.19)

with standard errors in parentheses.
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We extend the analysis by letting ACH-ACM specifications enter the competition. Let us

focus on the ACH-PSACM and the ACH-DACM. The other ACH-ACM specifications deliver

comparable results. Panel A of Table 2.4.4 shows that the ACH-PSACM improves the mean

squared errors of the ACH-OP target forecast at forecast horizons up to eight months while

the ACH-DACM improves on the OP at forecast horizons up to four months. The ACH-ACM

approach seems particularly useful for forecast horizons of up to six months. The ACH-OP

is preferable beyond a horizon of three quarters of a year. Averaged over the first three

months, the ACH-OP MSE is reduced by 14% by the ACH-DACM model and by 22% by the

ACH-PSACM model. Although this is less impressive than the 82% MSE reduction of the

ACH-OP compared to the VAR, it is still a favorable result for the approach proposed in this

paper.

2.4.4 In-sample Probability Forecasts

The probability forecast evaluation techniques outlined in Section 2.3.2 can be conveniently

used for diagnostic checking. Table 2.4.5 reports results of tests for iid uniformity of

the continued PIT sequences produced by ACH-OP, ACH-PSACM and ACH-DACM. The

probability forecast horizon κ ranges from one to 60 weeks. The analysis is performed

in-sample, i.e. the period used for parameter estimation is also the period for which we

compute the in-sample probability forecast. We employ the iid uniformity test suggested by

Bauwens et al. (2004). Their test compares the number of observations in the bins of the

PIT histogram with the expected values if the z∗ sequence would indeed be iid U(0, 1). The

caption of Table 2.4.5 explains computational details.

Comparing the values of the in-sample test statistics (left panel of Table 2.4.5) with the

10%/κ critical values, we cannot reject the hypothesis that the three DMPP models deliver

correct probability forecasts. It should be noted, however, that the number of observations on

which the test is based shrinks for longer forecast horizons. As already explained above, the

z∗ sequence exhibits a MA(κ− 1) autocorrelation structure even if the probability forecast is

correct. The necessary thinning into κ subseries which are iid U(0, 1) under the null reduces

the number of observations and power. For instance, the 52 week ahead forecast evaluation

is based on about 16 observations in each subseries. Diebold et al. (1998) advocate the

use of autocorrelograms and histograms of the PIT sequences as diagnostic tools to detect
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in-sample out-of-sample

Apr 1985−Apr 2001 May 2001−Jan 2006 critical values

κ OP PSACM DACM OP PSACM DACM
1%
κ

5%
κ

10%
κ

1 8.6 5.7 6.2 16.9 12.9 18.0 21.7 16.9 14.7

4 11.5 14.1 15.3 28.6 23.5 19.6 25.5 21.0 19.0

8 12.3 12.3 9.7 17.7 46.1 24.8 27.3 23.0 21.0

12 12.9 12.0 20.1 18.0 23.0 16.0 28.4 24.1 22.2

16 13.4 12.6 15.7 17.7 25.7 15.0 29.1 24.9 23.0

20 19.7 18.8 18.8 18.0 21.3 9.7 29.7 25.5 23.6

24 14.8 19.5 19.5 18.0 24.0 12.0 30.1 25.9 24.1

26 16.1 19.2 16.1 16.6 18.8 12.1 30.3 26.2 24.3

28 14.1 14.8 20.3 14.5 20.3 12.0 30.5 26.4 24.5

32 15.5 20.2 14.8 14.4 20.1 14.4 30.9 26.7 24.9

36 14.0 15.7 14.8 14.0 14.0 14.0 31.2 27.0 25.2

40 13.0 19.0 14.0 14.0 17.3 14.0 31.4 27.3 25.5

44 16.3 17.3 14.2 17.0 17.0 13.0 31.7 27.5 25.7

48 25.9 22.4 14.2 17.0 17.0 17.0 31.9 27.8 25.9

52 17.8 15.2 16.5 21.0 21.0 21.0 32.1 28.0 26.2

60 17.0 10.8 15.5 21.0 21.0 21.0 32.4 28.4 26.5

Table 2.4.5: Results of iid uniformity test for continued PIT sequence. For each forecast horizon κ
the continued PIT sequence is split into κ subseries which are iid U(0, 1) under the null hypothesis of a correct
probability forecast. Bauwens et al.’s (2004) test statistic for iid uniformity is computed for each subseries.
The test is based on the result that under the null of iid U(0, 1) behavior of the (continued) PIT sequence the
joint distribution of the heights of the PIT histogram is multinomial, i.e. f (ni) =

`

n

ni

´

pni (1 − p)n−ni where n

gives the number of observations (in each subseries), ni the number of observations in the ith histogram bin and

p = 1/m with m the number of histogram bins. We use m = 10. The statistic
Pm

i=1
(ni−np)2

np
is under the null

hypothesis asymptotically χ2(m− 1) distributed. The table reports the largest test statistic computed from κ
subseries. The critical values are computed by dividing the significance levels by κ. The forecast periods are
April 1985−April 2001 (in-sample) and May 2001− January 2006 (out-of-sample), respectively.

specification problems associated with a model’s density forecasts. For instance, ∪-shaped

PIT histogram would indicate that we would observe too many large and small future target

values compared to what is predicted by the model. Significant serial correlation of the PIT

series would indicate that the model is not able to account properly for the dynamics of

the federal funds rate target. Figure 2.4.2 depicts ten-bin histograms of the continued PIT

sequence for forecast horizons ranging from one to 60 weeks implied by the ACH-PSACM.

The histograms for ACH-OP and ACH-DACM look quite similar. Due to space constraints

we refrain from their presentation. The histogram is based on the original continued PIT

sequence only for the one week horizon (i.e. one-step forecast). For multi-step forecasts

(κ > 1), we plot the minimum and the maximum relative frequency of the thinned κ subseries

in each of the ten histogram bins.
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Figure 2.4.2: Histograms of the continued PIT sequence: ACH-PSACM, in-sample probability
forecast. The figure shows ten-bin histograms of the continued PIT sequence for forecast horizons ranging
from κ = 1 to 60 weeks. For κ > 1 the data are thinned into κ subseries which are iid U(0, 1) under the null
hypothesis of a correct probability forecast. The horizontal solid lines show the minimum and the maximum
relative frequency of the κ subseries in each of the ten histogram bins. Upper and lower bound (displayed in
horizontal dashed lines) of the 95% confidence interval are computed from the 0.025/κ and 0.975/κ quantiles
of a binomial distribution with p = 0.1 and number of draws equal to n, where n is the number of observations
in each subseries. The estimation period is March 1984−April 2001, the forecast evaluation period is April
1985−April 2001.

Overall, the results are quite favorable for the DMPP approach. The histograms do not

hint at violations of iid uniformity of the continued PIT sequence. As noted above, however,

this finding should be taken with a pinch of salt. As a consequence of the thinning into

subseries, the confidence bounds become wide for longer forecasting horizons (beyond nine

months), so the power of the diagnostic test shrinks.

Figure 2.4.3 plots autocorrelograms of the continued PIT sequence for ACH-PSACM. Due

to the necessary thinning, into subseries we refrain from computing the autocorrelograms

beyond a 32 weeks horizon. The autocorrelograms suggest that some dynamics of the
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Figure 2.4.3: Autocorrelations of the continued PIT sequence: ACH-PSACM, in-sample
forecast. For each forecast horizon κ the z∗ sequences are split into κ subseries. The figures show the
maximal autocorrelations of the κ subseries. The horizontal lines superimposed on the autocorrelograms mark
the 95% confidence intervals. The estimation period is March 1984−April 2001, the forecast period is April
1985−April 2001.

probability forecasts at two to four month horizons are not entirely captured, so there seems to

be room for further model improvement. The same holds true for ACH-OP and ACH-DACM

for which the autocorrelograms look quite similar.

2.4.5 Out-of-sample Forecast Evaluation

This section extends the in-sample view by conducting an analysis of the out-of-sample point

and probability forecast performance of DMPP models for the federal funds rate target.

Section 2.4.3 analyzed the in-sample performance of DMPP models when employed for

forecasting the effective federal funds rate. The out-of-sample results of such an exercise

are presented in Panels B, C and D of Table 2.4.4.

The good in-sample forecasting performance of DMPP models for the target extends

out-of-sample. Over the complete out-of-sample period May 2001− January 2006 the

parsimoniously specified ACH-DACM model delivers the best forecasts. It produces the

smallest MSE in 10 out of 12 months (see Panel B of Table 2.4.4). At forecast horizons
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up to three months, the out-of-sample MSEs of the best model (ACH-DACM) are even

smaller than those of the best in-sample model (ACH-PSACM). In- and out-of-sample forecast

performances remain comparable for up to six months horizons. Beyond, the out-of-sample

MSEs become bigger than their in-sample counterparts. However, the out-of-sample

ACH-DACM MSEs are still considerably smaller than the in-sample VAR MSEs. The results

reported in Panel B of Table 2.4.4 show that using conditioning information matters. The

ACH-UNC model’s out-of-sample performance is the worst of all models.

None of the models is superior in terms of predicting the target equally well at all forecast

horizons and subsamples (see Panels B, C and D of Table 2.4.4). A fashionable approach

in such a situation is to apply (Bayesian) model averaging. We do not plunge into a fully

fledged Bayesian analysis. Instead, we apply a Bayesian type model averaging procedure.

Specifically, we refrain from accounting for parameter uncertainty and assume equal prior

model probabilities. Model weights are then formed by the (predictive) likelihoods of the

models. We describe the methodology in greater detail in the Appendix A.4. Table 2.4.4

reports in the columns titled BTMA the MSEs of a combination of ACH-OP and ACH-DACM.

Generally, Bayesian model averaging entails probing all possible model combinations. Because

of the computationally intensive simulation of multi-step forecasts, we focus on some selected

combinations (see Appendix A.5 for additional modeling averaging MSEs results). The

OP-DACM combination turns out to be the most successful. It does a good job in the

overall out-sample and the performance in both subsamples is also satisfactory. However, the

best models in each forecast sample cannot be outperformed.

The out-of-sample probability of forecast evaluation broadly confirms the conclusions of

Section 2.4.4. Comparing the values of iid uniformity test using the complete out-of-sample

continued PIT sequences of ACH-DACM with the 5%/κ critical values (right panel of Table

2.4.5), the hypothesis that the probability forecasts are correct cannot be rejected (for κ = 1

and κ = 8 at 1%/κ). Figure 2.4.4 depicts the histograms of the continued PIT sequence for

the ACH-DACM. As the corresponding figures for ACH-PSACM and ACH-OP look similar,

they are omitted for the sake of brevity.

The ACH-DACM histograms are more ragged compared to their in-sample counterparts,

but not enough to be at odds with the hypothesis that the out-of-sample probability forecast

is correct. It should be noted, however, that the small sample problem at longer forecast
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Figure 2.4.4: Histograms of the continued PIT sequence: ACH-DACM, out-of-sample
probability forecast. The estimation period is March 1984−April 2001, the forecast evaluation period
is May 2001− January 2006. See caption of Figure 2.4.2 for explanations.

horizons discussed above is aggravated as we have fewer data available for out-of-sample

evaluation.

2.5 Conclusion and Outlook

Forecasts of the federal funds rate target are of key interest for investors and financial

institutions. Hamilton and Jordà’s (2002) finding that the quality of federal funds rate target

forecasts can be substantially improved when the sequence of target changes is modeled as

a discrete marked point processes (DMPP) highlighted the importance of this econometric

approach for a central issue in monetary economics.

This paper introduces a new DMPP specification which combines the autoregressive

conditional hazard (ACH) model put forth by Hamilton and Jordà (2002) and the

autoregressive conditional multinomial (ACM) model developed by Russell and Engle (2005).

From a methodological point of view, the ACM model seems the natural choice, as it is

formulated as a time series model for discrete variables. This is precisely what is needed for

modeling the evolution of the federal funds rate target.
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The ACM offers a great amount of flexibility in accounting for target change dynamics.

However, even in Russell and Engle’s (2005) application of the ACM to transaction

price changes (implying a much larger sample than we have at hand) the authors

recommend exploring parsimonious specifications in order to avoid overfitting. By imposing

diagonal and response-symmetric structures of the ACM parameter matrices one can

provide straightforward testable restrictions. We show that such parsimonious ACH-ACM

specifications deliver improved results in terms of goodness of fit and in-sample forecast

performance. Hamilton and Jordà’s (2002) study made a strong case for DMPP models

showing their excellent in-sample forecast performance. We show that out-of-sample results

are also promising. Parsimoniously specified ACH-ACM models do a good job and Bayesian

type model averaging of ACH-ACM and ACH-OP robustifies the out-of-sample point forecast

performance.

DMPP models deliver forecasts of the complete probability distribution of future target

values. Hence, it seems intriguing to employ them for value-at-risk and risk scenario analysis.

For that purpose, this paper proposes a methodology to evaluate the probability function

forecasts of DMPP models. We show that parsimoniously specified DMPP models deliver

useful probability function forecasts of the target for horizons up to six months. The available

time series is yet too short to assess probability forecasts beyond that horizon.

Avenues for further research stretch in several directions. First, model averaging could

be extended from point to probability forecasts within a fully fledged Bayesian framework.

Second, it seems promising to adapt the specification test proposed by Hong and Li (2005) to

evaluate multi-period probability forecasts of DMPP models. Their framework accounts for

parameter estimation uncertainty within Diebold et al.’s (1998) density forecast evaluation.

Third, the forecast evaluation could be extended towards the federal funds rate target’s

worldwide counterparts, like the European Central Bank’s rate of main refinancing operations

or the Repo Rate set by the Bank of England. These variables exhibit the same time series

properties: discrete interest rate changes with irregularly spaced time intervals in between.

An evaluation of the performance of the ACH-ACM framework using these data is left for

further research.



Appendix A

A.1 Four Category ACH-ACM Model

Hamilton and Jordà (2002) introduce the ACH-OP model for target changes that are classified

into five categories (see Section 2.2). In our analysis we focus on five category ACH-OP and

ACH-ACM models as well to be comparable to their study. However, since the Fed changed

its monetary policy implementation in 1990 and increased the minimum target change from

6.25 to 25 basis points, one could argue that using four categories, may be more appropriate

for modeling the evolution of the target. In order to show the robustness of our conclusions,

we consolidate the observed target changes (y#) into four categories in the following way,

y =





s1 = −0.50 if −∞ < y# < −0.25

s2 = −0.25 if −0.25 ≤ y# < 0

s3 = 0.25 if 0 < y# ≤ 0.25

s4 = 0.50 if 0.25 < y# < ∞ ,

(A.1)

and carry all analyses of the paper out using four categories (omitting the mid-state). The

reference state in the ACH-ACM and ACH-OP model is s3.

A.1.1 Four Category Estimation Results

Using the consolidated target changes in Equation (A.1) for the ordered probit estimation

(March 1, 1984 -April 26, 2001), we obtain for the latent target change equation:

y∗N(t) = 2.544
(0.407)

yN(t)−1+ 0.541
(0.211)

SPt−1 · xt . (A.2)

Standard errors are reported in parenthesis.

36



CHAPTER 2. A MODEL FOR THE FEDERAL FUNDS RATE TARGET 37

A B npar Lmax AIC R2
pseudo

ACM full/9 diag/3 18 -104.9 2.14 0.402

OP - - 5 -120.6 2.19 0.350

SACM resp sym/7 resp sym diag/2 15 -114.6 2.26 0.369

PSACM resp sym/7 diag/3 16 -113.8 2.26 0.372

DACM diag/3 diag/3 12 -128.2 2.44 0.328

UNC - - 3 -147.2 2.62 0.278

Table A.1.1: Summary of four category ACM estimation results. All four category ACM models,
the unconditional and ordered probit model are estimated on March 1984−April 2001 data. Lmax is the
maximized log-likelihood value, AIC is the Akaike information criterion computed as −2 · Lmax

N(T )
+ 2 ·

npar

N(T )

where N(T ) denotes the total number of target change events and R2
pseudo = exp

“

Lmax

N(T )

”

. The models are

sorted in ascending order by AIC. The total number of free parameters in each model is reported in the column
npar. The ACM specifications are special cases of

ℓ
(
πN(t)

)
= c + A

(
xN(t)−1 − πN(t)−1

)
+ Bℓ

(
πN(t)−1

)
+ dSPt−1xt ,

where SPt−1 denotes the spread between the six-month treasury bill rate and the federal funds rate. The
columns A and B provide information about the restrictions placed on the parameter matrices A and B. resp
sym denotes a response symmetric and diag a diagonal structure of the respective matrix. The figure after the
/ gives the number of free parameters in the respective matrix.

We provide in Table A.1.1 summary estimation results for four categories ACM

specifications, the ordered probit and the unconditional model. The table reports the value

of the maximized log-likelihood, the Akaike information criterion (AIC) and a pseudo-R2

measure (see Section 2.4.1 for model acronyms). Table A.1.1 is sorted in ascending order

by AIC, so models that appear on top of the list are preferred based on that criterion. The

highest pseudo-R2 and lowest AIC criterion is delivered by a fully specified ACM model.

Parameter estimates of the four ACM specifications using the target change classification of

(A.1) are reported in Table A.1.2.

As for the five category ACM model, we find economic sensible parameter estimates.

Table A.1.2 reports that an increase of the spread of the six-month treasury bill rate and the

effective federal funds rate implies an increase in the probability of observing a subsequent

positive target change and a reduction in the probability of observing a negative target change

next. This is in line with the ordered probit results in (A.2). The significant estimates of

the diagonal elements of the matrix B indicate persistence in the state probabilities. Higher

categories (|y| = 0.5) indicate a large target change. Medium size target changes (y = −0.25)

are less persistent.
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ACM DACM

c′
-1.282 -0.879 -0.414

c′
-2.428 -0.310 -0.149

(0.780) (0.421) (0.492) (0.769) (0.279) (0.164)

A

5.011 4.785 2.778

A

-0.386 0 0

(1.595) (1.320) (1.771) (0.722) 0

2.943 3.065 -0.012 0 1.367 0

(1.056) (0.875) (0.569) (0.400)

-2.695 -7.798 -0.826 0 0 0.944

(4.058) (4.261) (0.845) (0.608)

B

0.511 0 0

B

-0.625 0 0

(0.150) (0.194)

0 0.497 0 0 0.592 0

(0.113) (0.165)

0 0 0.746 0 0 0.745

(0.077) (0.146)

d′
-1.110 -1.633 1.758

d′
-2.004 -0.722 0.385

(1.021) (0.643) (0.769) (0.719) (0.417) (0.303)

SACM PSACM

c′
-0.746 -0.622 -0.966

c′
-0.636 -0.534 -0.511

(0.460) (0.348) (0.643) (0.521) (0.357) (0.535)

A

1.937 1.827 -1.050

A

1.777 1.941 -0.850

(0.710) (0.886) (1.404) (0.760) (0.986) (1.217)

2.289 2.595 -0.259 2.230 2.683 -0.348

(0.879) (0.732) (0.783) (0.910) (0.833) (0.837)

-1.050 -6.044 1.937 -0.850 -4.494 1.777

(1.404) (3.314) (0.710) (1.217) (2.733) (0.760)

B

0.589 0 0

B

0.482 0 0

(0.125) (0.277)

0 0.472 0 0 0.465 0

(0.128) (0.156)

0 0 0.589 0 0 0.732

(0.125) (0.147)

d′
-0.765 -1.108 1.183

d′
-0.639 -1.153 0.900

(0.647) (0.532) (0.582) (0.742) (0.566) (0.542)

Table A.1.2: Maximum likelihood estimates of four category ACM specifications. The
estimation period is March 1984−April 2001. Standard errors are reported in parentheses.

A.1.2 In- and Out-of-sample Four Category ACH-ACM Forecast Results

Table A.1.3 depicts mean squared errors (MSEs) of one to twelve months forecasts of the

effective federal funds rate. Each model uses the same estimated ACH equations reported in

(A.7) and (A.8) in Appendix A.3. Considering the in-sample forecast performance in Panel

A of Table A.1.3, the full parameterized four category ACH-ACM specification delivers the

smallest MSEs up to eleven months among all models. The conclusions that five category

DMPP models yield considerably smaller MSEs than the in-sample VAR MSEs (see Table
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2.4.4) are confirmed for the four category DMPP models. Comparisons of the out-of-sample

ability to forecast the effective federal funds rate are presented in the Panels B, C and D of

Table A.1.3.

Panel A: Apr 1985-Apr 2001 (in-sample) Panel B: May 2001-Jan 2006 (out-sample)

h UNC OP ACM PSACM DACM UNC OP ACM PSACM DACM

1 0.03 0.04 0.03 0.03 0.04 0.01 0.01 0.01 0.01 0.01

2 0.10 0.10 0.09 0.09 0.10 0.08 0.05 0.05 0.06 0.07

3 0.19 0.17 0.16 0.17 0.18 0.22 0.13 0.13 0.16 0.19

4 0.31 0.27 0.24 0.27 0.29 0.39 0.23 0.25 0.30 0.35

5 0.44 0.37 0.34 0.38 0.41 0.63 0.39 0.42 0.50 0.57

6 0.60 0.47 0.45 0.50 0.55 0.94 0.66 0.68 0.81 0.86

7 0.81 0.60 0.58 0.65 0.70 1.29 0.99 1.00 1.17 1.20

8 1.04 0.75 0.73 0.82 0.87 1.67 1.35 1.35 1.57 1.57

9 1.27 0.90 0.88 0.99 1.03 2.08 1.76 1.72 2.00 1.96

10 1.49 1.04 1.03 1.16 1.19 2.53 2.23 2.14 2.47 2.39

11 1.72 1.18 1.18 1.32 1.34 2.98 2.73 2.59 2.97 2.81

12 1.93 1.32 1.33 1.48 1.48 3.44 3.26 3.07 3.49 3.26

Panel C: May 2001-May 2004 Panel D: Jun 2004-Jan 2006

h UNC OP ACM PSACM DACM UNC OP ACM PSACM DACM

1 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.01

2 0.09 0.06 0.07 0.08 0.09 0.08 0.02 0.01 0.03 0.03

3 0.23 0.16 0.19 0.20 0.24 0.19 0.06 0.03 0.08 0.09

4 0.41 0.30 0.36 0.38 0.44 0.36 0.11 0.05 0.16 0.17

5 0.67 0.49 0.60 0.62 0.73 0.56 0.19 0.09 0.27 0.28

6 1.02 0.87 0.97 1.03 1.12 0.80 0.28 0.14 0.39 0.39

7 1.41 1.32 1.43 1.53 1.57 1.06 0.38 0.20 0.52 0.51

8 1.85 1.82 1.93 2.07 2.07 1.35 0.49 0.27 0.66 0.64

9 2.32 2.38 2.46 2.64 2.60 1.65 0.61 0.35 0.82 0.78

10 2.82 3.03 3.05 3.27 3.18 1.98 0.75 0.45 0.98 0.93

11 3.36 3.73 3.69 3.96 3.76 2.29 0.87 0.54 1.14 1.06

12 3.90 4.49 4.38 4.69 4.38 2.58 0.98 0.65 1.28 1.20

Table A.1.3: Mean squared errors for four category ACH-ACM forecasts of the effective
federal funds rate, in- and out-of-sample. All four category ACH-ACM models, the unconditional
and ordered probit model are estimated on March 1984−April 2001 data and use the ACH specification in
Equations (A.7) and (A.8) as the model for the point process. The forecast horizon h in months is given in
the first column. Bold faced numbers indicate the lowest MSE at the respective horizon.

The good in-sample performance of the ACH-ACM models holds out-of-sample as well.

Over the complete out-of-sample period May 2001 – January 2006 the ACH-ACM produces

favorable results in terms of small MSEs on eight forcast horizons. The ACH-UNC model

performs worst indicating that using conditioning information is important. The division of
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in-sample out-of-sample

Apr 1985−Apr 2001 May 2001−Jan 2006 critical values

κ OP ACM DACM PSACM OP ACM DACM PSACM
1%
κ

5%
κ

10%
κ

1 12.4 8.5 10.2 8.8 18.0 15.5 13.3 16.0 21.7 16.9 14.7
4 14.8 11.0 13.7 13.8 23.5 40.6 14.8 18.3 25.5 21.0 19.0
8 13.7 14.3 10.0 9.5 18.4 22.9 26.7 26.1 27.3 23.0 21.0
12 17.8 16.4 17.5 13.5 20.0 14.0 23.0 15.0 28.4 24.1 22.2
16 16.8 10.7 17.6 15.7 13.7 13.7 25.7 15.0 29.1 24.9 23.0
20 14.4 17.3 15.8 14.4 16.3 18.0 18.0 16.3 29.7 25.5 23.6
24 18.9 14.8 14.2 12.5 12.0 10.0 24.0 12.0 30.1 25.9 24.1
26 23.0 11.8 19.2 17.4 16.6 12.1 21.0 12.1 30.3 26.2 24.3
28 15.5 12.0 19.6 12.7 12.0 12.0 22.0 12.8 30.5 26.4 24.5
32 14.8 15.5 25.5 19.4 12.1 11.6 11.6 15.0 30.9 26.7 24.9
36 12.2 13.1 19.2 14.8 14.0 17.7 17.3 17.3 31.2 27.0 25.2
40 14.0 10.0 21.0 13.0 11.0 14.3 17.7 17.7 31.4 27.3 25.5
44 14.2 14.2 20.5 15.2 9.0 13.0 29.0 13.0 31.7 27.5 25.7
48 17.7 21.2 20.1 17.7 17.0 17.0 29.0 13.0 31.9 27.8 25.9
52 11.5 14.0 17.8 12.7 21.0 16.0 21.0 16.0 32.1 28.0 26.2
60 13.9 10.8 12.4 13.9 21.0 21.0 21.0 11.0 32.4 28.4 26.5

Table A.1.4: Results of iid uniformity test for continued PIT sequence using four category
ACH-ACM. All four category ACH-ACM models, the unconditional and ordered probit model are estimated
on March 1984−April 2001 data. The forecast periods are April 1985−April 2001 (in-sample) and May
2001− January 2006 (out-of-sample), respectively. See caption of Figure 2.4.5 for explanations.

the out-of-sample periods shows that for the first subsample (May 2001 – May 2004) the

ACH-OP achieves lowest MSEs up to the eighth month and for the second subsample (June

2004 – January 2006) the ACH-ACM produces smallest MSEs for all forecast horizons. These

favorable four category ACH-ACM forecast results confirm the conclusions drawn from the

five category ACH-ACM modeling approach.

Comparing the values of the in-sample uniformity test statistics in Table A.1.4 with the

5%/κ for the ACH-ACM and ACH-OP model, we cannot reject the hypothesis that the

models deliver correct probability forecasts. Same results are depicted in Figure A.1.1. The

histogram bars lie within the 95% confidence bounds and the continued PIT sequence does

not show violations of iid uniformity. However, as noted in Section 2.4.4, the thinning of

the PIT sequence into κ subseries for multiperiod forecasts (κ > 1) implies wide confidence

bounds for longer forecasting horizons.

The autocorrelograms in Figure A.1.2 of the four category ACH-ACM models’ PIT

sequence look quite similar to the autocorrelograms in Figure 2.4.3. They show that for

predictions at two to four month horizons the dynamics of the probability forecast is not

entirely captured.
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Figure A.1.1: Histograms of the continued PIT sequence: four category ACH-ACM, in-sample
probability forecast. The estimation period is March 1984−April 2001, the forecast evaluation period is
May 2001− January 2006. The horizontal lines superimposed on the histograms mark the 95% confidence
intervals. See caption of Figure 2.4.2 for explanations.

Figure A.1.2: Autocorrelations of the continued PIT sequence: four category ACH-ACM,
in-sample probability forecast. For each forecast horizon κ the z∗ sequences are split into κ subseries.
The figures show the maximal autocorrelations of the κ subseries. The horizontal lines superimposed on the
autocorrelograms mark the 95% confidence intervals. The estimation period is March 1984−April 2001, the
forecast period is April 1985−April 2001.
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Out-of-sample probability forecast evaluations in Table A.1.4 show that the hypothesis

that the probability forecasts are correct cannot be rejected at a 1%/κ significance level for

all models (except for ACM κ = 4 forecast). The four category ACH-DACM histograms in

Figure A.1.3 are more jagged than those in Figure A.1.1 but still support the hypothesis that

the out-of-sample probability forecasts are correct.

Figure A.1.3: Histograms of the continued PIT sequence: four category ACH-DACM,
out-of-sample probability forecast. The estimation period is March 1984−April 2001, the forecast
evaluation period is May 2001− January 2006. The horizontal lines superimposed on the histograms mark
the 95% confidence intervals. See caption of Figure 2.4.2 for explanations.

A.2 Simulation of Multi-step Probability Forecasts

To compute multi-step ahead forecasts f(it+κ|Υt), we simulate future sample paths of

an ACH-ACM process. We first need a realization of xt+1, the random variable which

indicates whether a target change occurs at t + 1. Since the ACH model readily delivers

P(xt+1 = 1|Υt) = ht+1, this can be obtained by drawing from a Bernoulli distribution with

success probability ht+1. Let us denote by x
(1)
t+1 the result of that draw. The superscript

indicates that this is the first of many replications. If x
(1)
t+1 = 0, the target is unchanged,

i
(1)
t+1 = it. If x

(1)
t+1 = 1, we update the counting function by computing N

(1)
t+1 = Nt + 1, and
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determine the size of the target change. This is done by drawing from the discrete distribution

of the random variable yt+1 determining the size of the target change. For the ACM model,

this probability distribution is given by πN(t) (see Equation (2.7)). Having drawn the target

change in t + 1, y
(1)
t+1, we add it to it and obtain the simulated target value i

(1)
t+1. Iterating

forward the ACH-ACM Equations (2.5) and (2.6) yields the probabilities h
(1)
t+2 and π

(1)
N(t+2).

These probabilities are used to simulate x
(1)
t+2 and i

(1)
t+2. This works in the same way as just

described except that we condition on time t+ 1 simulated values instead of time t observed

values. The procedure is continued until t + κ − 1. Conditioning on the simulated path of

target values i
(1)
t+κ−1, i

(1)
t+κ−2, . . . , i

(1)
t+1, we can then compute the one-step probability forecast

analogously to Equation (2.12) as:

f(i
(1)
t+κ|i

(1)
t+κ−1, .., i

(1)
t+1,Υt) =





P(i
(1)
t+κ = i

(1)
t+κ−1|i

(1)
t+κ−1, .., i

(1)
t+1,Υt) = 1 − h

(1)
t+κ

P(i
(1)
t+κ = i

(1)
t+κ−1 + sj|i(1)t+κ−1, .., i

(1)
t+1,Υt) = h

(1)
t+κπ

(1)
jN(t+κ)

for j = 1, 2, ..., k .

(A.3)

In order to obtain the κ-period ahead probability forecast f(it+κ|Υt), we need to remove the

conditioning on the sample path. For this purpose we exploit that

f(it+κ, ..., it+1|Υt) = f(it+κ|it+κ−1, ..., it+1,Υt) · f(it+κ−1, ..., it+1|Υt) (A.4)

and

f(it+κ|Υt) =
∑

it+κ−1

...
∑

it+1

f(it+κ|it+κ−1, ..., it+1,Υt) · f(it+κ−1, ..., it+1|Υt) . (A.5)

The computation of the multi-period probability forecast via Equation (A.5) is still

computationally intractable. We address this problem by repeating the simulation of the

sample paths described above M times. This delivers a vector sequence of M probability

forecasts, each conditioned on the respective simulated sample path,

{f(i
(m)
t+κ|i

(m)
t+κ−1, . . . , i

(m)
t+1,Υt)}M

m=1 .
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Averaging over the M replications yields a consistent estimate of f(it+κ|Υt),

1

M

M∑

m=1

f(i
(m)
t+κ|i

(m)
t+κ−1, . . . , i

(m)
t+1 ,Υt) →

p
E [f(it+κ|it+κ−1, ..., it+1,Υt)] = f(it+κ|Υt) . (A.6)

A useful byproduct of this simulation strategy is the possibility to use the estimated

probability forecast to produce multi-period point forecasts E [it+κ|Υt] and conduct MSE

comparisons.

A.3 ACH and OP Estimation Results

Taking into account that the objective of the Federal Reserve changed (see Section 2.2),

Hamilton and Jordà (2002) estimate separate ACH specifications for two subperiods. For the

first subsample, covering the period from March 1, 1984 to November 23, 1989, the estimated

ACH equation reads

ht =

(
2.257
(1.160)

+ 0.090
(0.056)

τN(t−1)−1+ 0.847
(0.078)

ψN(t−1)−1− 2.044
(0.631)

FOMCt−1

)−1

, (A.7)

where FOMCt is a dummy variable that equals one if there was a FOMC meeting in t and

zero otherwise. The values in parentheses are standard errors. For the second subsample from

November 30, 1989 to April 26, 2001, the estimated ACH equation is given by

ht =

(
30.391
(7.119)

+ 0.067
(0.024)

τN(t−1)−1− 23.046
(7.295)

FOMCt− 8.209
(2.462)

|SPt−1|
)−1

, (A.8)

where |SP | is the absolute value of the spread between the six-month treasury bill rate (TB6)

and the effective federal funds rate (FFR), i.e. SP = TB6 − FFR.

Replicating Hamilton and Jordà’s (2002) ordered probit estimation (March 1, 1984 -April

26, 2001), we obtain for the latent target change equation:

y∗N(t) = 2.389
(0.390)

yN(t)−1+ 0.741
(0.211)

SPt−1 · xt . (A.9)

Standard errors are reported in parenthesis.
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A.4 Bayesian Type Model Averaging

Let M = {M1, ...,MM} be the set of models that yield a forecast of the variable of interest,

in our application the value of the federal fund rate target, i. A target forecast that takes

into account model uncertainty is then given by an average of the model forecasts weighted

by their posterior model probabilities:

E[i|data] =
M∑

j=1

E[i|data,Mj ] · P(Mj |data) . (A.10)

This posterior probability for modelMj after observing the data is proportional to the product

of the marginal likelihood for model Mj and the prior probability for model Mj, viz

P(Mj |data) =
P(data|Mj)P(Mj)

M∑
l=1

P(data|Ml)P(Ml)

∝ P(data|Mj)P(Mj) . (A.11)

We refrain from accounting for parameter uncertainty and assume, in a Bayesian sense, equal

prior model probabilities.

In a standard Bayesian model averaging approach, the marginal likelihood is used for

the construction of the weights as a natural in-sample measure of fit (see for e.g. Garratt

et al. 2006, Hoeting et al. 1999). Alternatively, Eklund and Karlsson (2005) suggest

an out-of-sample measure of fit, the predictive likelihood. They split the sample into a

training-sample used for parameter inference and a hold-out sample from which the predictive

likelihood is computed. We follow their idea and use the predictive likelihood as weights in

the Bayesian type model averaging.

A.5 Additional Bayesian Type Model Averaging Results

In Section 2.4.5 we consider in the last column of Panel B, C and D in Table 2.4.4 only the

Bayesian type model averaging results of an ACH-OP and an ACH-DACM. We focus on this

model combination since it is the most successful one in terms of smallest MSE among our

selections.

Table A.5.1 gives additional Bayesian type model averaging MSEs results for four model

combinations. See the caption of Table A.5.1 for details. All models use the ACH
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specification in Appendix A.3 as model for the point process. Naturally, the ACH-DACM

and ACH-PSACM combination is an interesting choice. However, it turns out that the MSEs

of this combination are larger than the those of the ACH-OP and ACH-DACM reported in

the Section 2.4.5.

May 2001-Jan 2006 May 2001-May 2004 Jun 2004-Jan 2006

h BT1 BT2 BT3 BT4 BT1 BT2 BT3 BT4 BT1 BT2 BT3 BT4

1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00

2 0.05 0.05 0.05 0.05 0.06 0.07 0.06 0.07 0.02 0.03 0.02 0.02

3 0.13 0.15 0.14 0.14 0.17 0.19 0.18 0.19 0.06 0.07 0.06 0.06

4 0.24 0.28 0.26 0.27 0.31 0.35 0.34 0.35 0.12 0.14 0.12 0.12

5 0.40 0.47 0.44 0.45 0.51 0.59 0.57 0.58 0.20 0.24 0.20 0.20

6 0.65 0.73 0.69 0.70 0.84 0.93 0.91 0.93 0.28 0.35 0.28 0.28

7 0.93 1.03 0.99 1.00 1.22 1.33 1.32 1.34 0.37 0.46 0.37 0.37

8 1.24 1.36 1.32 1.33 1.65 1.77 1.77 1.79 0.47 0.58 0.47 0.48

9 1.58 1.71 1.67 1.68 2.12 2.24 2.26 2.27 0.58 0.72 0.58 0.58

10 1.96 2.10 2.06 2.07 2.64 2.76 2.80 2.81 0.71 0.87 0.70 0.71

11 2.38 2.50 2.48 2.49 3.22 3.31 3.38 3.39 0.82 1.01 0.82 0.82

12 2.80 2.91 2.91 2.90 3.81 3.86 3.97 3.97 0.93 1.14 0.93 0.93

Table A.5.1: Additional mean squared errors results for Bayesian type model averaging for
one to twelve months forecasts of the effective federal funds rate, out-of-sample. The table depicts
the mean squared errors for four Bayesian type model average combinations (BT1: OP-DACM, as in Table
2.4.4, BT2: PSACM-DACM, BT3: PSACM-DACM-OP, BT4: UNC-DACM-PSACM-OP). All models are
estimated on March 1984−April 2001 data. The forecast horizon h in months is given in the first column.
Bold faced numbers indicate the lowest MSE at the respective horizon.



Chapter 3

Forecasting Return Volatility with

Continuous Variation and Jumps

This paper introduces a time series model for realized volatility that accounts for continuous

variation and jumps. Engle and Russell’s (1998) autoregressive conditional duration

approach is used to model continuous and jump size variation and Hamilton and Jordà’s

(2002) autoregressive conditional hazard model is applied to jump durations. We further

suggest a methodology to evaluate density forecasts delivered by the model. Diagnostics

as well as point and density forecast results show that this approach qualifies as a useful

forecast model for daily return variation.

This chapter is based on the article “Forecasting Return Volatility with Continuous Variation

and Jumps” by K. Kehrle (2008).

47



CHAPTER 3. FORECASTING RETURN VOLATILITY 48

3.1 Introduction

Modeling and forecasting volatility is one of the major research topics in financial

econometrics. Since the seminal introduction of Engle’s (1982) ARCH model, we have

observed an explosive growth in this field of finance. This development is due to the desire

for a deeper understanding of financial markets and the importance of accurate volatility

forecasts for the valuation of derivatives, portfolio management and risk management. This

paper presents a new discrete time model for volatility and compares its forecast performance

with other approaches discussed in the literature. It also proposes a methodology to evaluate

the quality of density forecasts delivered by the model and applies it to forecasts of daily

return variation.

Beyond the vast literature of discrete-time ARCH and GARCH modeling (Engle 1982,

Bollerslev 1986)1, two main strands emerged in the volatility literature over time. The

first is based on continuous-time diffusion processes and dates back to the work of Merton

(1980). More recent studies examine more flexible parametric diffusion processes that allow

for time-varying jump diffusions. However, the empirical results based on daily data show

difficulties and do not lead to precise findings, see e.g. Bates (2000), Chernov et al. (2003),

Eraker (2004) and Pan (2002). The second strand of literature presents a nonparametric

approach and uses high frequency data. Andersen et al. (2003) and Andersen and Bollerslev

(1998), among others, suggest the sum of intradaily squared returns as measure for volatility

that converges to the quadratic variation of the price process. Andersen et al. (2001a, 2001b)

investigate this realized volatility measure and provide important empirical insights into the

properties of daily return and volatility distributions. A major leap forward in the realized

volatility literature is the work of Barndorff-Nielsen and Shephard (2004). They develop a

volatility measure called bi-power variation that is immune to jumps and, therefore, enables a

decomposition of realized volatility into continuous and discontinuous variation. Huang and

Tauchen (2005), Andersen et al. (2007a) and Barndorff-Nielsen and Shephard (2006) show

that the contribution of jumps to daily price variation is not negligible.

The present paper is linked to Andersen et al.’s (2007b) and Bollerslev et al.’s (2009)

work that disentangles return volatility into a continuous and a jump component and models

realized volatility by a reduced form time series approach. This paper introduces a new

1For an extensive forecast comparison of important GARCH specifications see Hansen and Lunde (2005).



CHAPTER 3. FORECASTING RETURN VOLATILITY 49

model that is based on Engle and Russell’s (1998) autoregressive conditional duration (ACD)

model. The ACD accounts for transaction price durations that are strictly positive and

serially correlated. Since continuous variation exhibits same stylized facts, we adopt Engle and

Russell’s (1998) framework to continuous variation. The jump variation process is conceived

as a marked point process. As outlined by Engle (2000), marked point processes can be

conveniently separated into a model for the duration between points in time (here: observing

a jump) and a model for the marks, i.e. the variables which are observed when the event

occurs (here: size of a jump). Thus, the occurrence of jumps is irregularly spaced in time and

both jump durations and sizes have an autoregressive nature. To account for the time between

successive jumps we employ, Hamilton and Jordà’s (2002) autoregressive conditional hazard

(ACH) model, as suggested by Andersen et al. (2007b). The ACH delivers an estimate of the

probability that a jump will be observed during the next day. The time series features of jump

sizes are addressed by using Engle and Russell’s (1998) model. In general, an autoregressive

conditional model structure is appealing since point and density forecasts are easily derived

(see Engle and Russell 1997, Bauwens et al. 2004). Combining the continuous and jump

variation models forms a joint model for total return variation.

Furthermore, we suggest a methodology to evaluate density forecasts delivered by this

model class. For this purpose, we use forecast evaluation methods of Diebold et al. (1998)

to assess the accuracy of realized volatility density forecasts. Density forecast evaluations,

which are perceived as model diagnostics, are also applied to the models of continuous and

jump variation. Since Diebold et al.’s (1998) method is only applicable to density forecasts, a

direct implementation to probability forecast by ACH is infeasible. Hence, a discrete analog

in the vein of Denuit and Lambert (2005) and Grammig and Kehrle (2008) is employed.

The main findings of the empirical results using high frequency intraday data of the DAX

future, DJ Euro Stoxx 50 future, S&P 500 future and the General Motors stock can be

summarized as follows. The estimation results for the continuous and jump variation models

indicate high persistence and residual diagnostics do not detect model misspecifications.

Probability and density forecasts are assessed and approve the suitability towards modeling

realized, continuous and jump variation. For point forecast comparisons we estimate three

alternative volatility models: a GARCH(1,1), an autoregressive conditional time series model

for realized volatility and Corsi’s (2004) HAR-RV model. Out-of-sample point forecast



CHAPTER 3. FORECASTING RETURN VOLATILITY 50

comparisons show the usefulness of the introduced model for predicting daily return variation.

The remainder of this paper is structured as follows. Section 3.2 derives the nonparametric

volatility measures. Section 3.3 describes the data and stylized facts. Section 3.4 presents

the methodology and techniques for evaluating density forecasts. Section 3.5 discusses

estimation results and employs diagnostic tools for density forecasts and compares point

forecast performance. Section 3.6 concludes.

3.2 Theoretical Framework

The logarithmic price of a financial asset, denoted by pt, is assumed to follow a continuous-time

semimartingale jump diffusion process,

pt =

∫ t

0
µ(s)ds+

∫ t

0
σ(s)dW (s) +

N(t)∑

s=1

κ(s) , (3.1)

where µ(t) is a continuous mean process with local finite variation, σ(t) > 0 is the

instantaneous volatility process which is càdlàg, W (t) denotes a standard Brownian Motion

and N(t) counts the number of jumps occurring with size κ(s) and (possibly) time-varying

jump intensity λ(t). The quadratic variation for the cumulative price process in (3.1) is2

[p, p](t) =

∫ t

0
σ2(s)ds +

N(t)∑

s=1

κ2(s) , (3.2)

where the first term on the right hand side is referred to as the integrated variation and the

second as the sum of squared jumps.

Let the jth intradaily continuously compounded return be denoted by rt,j = pt−1+ j

M

−
p

t−1+ (j−1)
M

, with M as the number of returns per day. The nonparametric realized volatility

measure is defined as the sum of M intraday squared returns,

RVt =

M∑

j=1

r2t,j . (3.3)

For increasing M , RVt converges in probability to the increments of the quadratic variation

2The quadratic variation process of (3.1) is [p, p](t) = plim
Pn−1

j=0 (pτj+1
−pτj

)2, where τ0 = 0 ≤ τ1 ≤ ... ≤ τn = t
is a sequence of partitions with supj{τj+1 − τj → 0} for n → ∞.
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process in (3.2) (see Andersen and Bollerslev 1998, Andersen et al. 2001a, Barndorff-Nielsen

and Shephard 2001), viz

RVt →
p

∫ t

t−1
σ2(s)ds+

N(t)∑

s=N(t−1)+1

κ2(s) for M → ∞ . (3.4)

The realized volatility measure is affected by the variation due to jumps. In order to

disentangle integrated variation and jump variation, Barndorff-Nielsen and Shephard (2004)

introduce the realized bi-power variation measure that is immune to jumps and converges to

the integrated variation in (3.2) as M grows,

BVt = µ−2
1

(
M

M − 1

) M∑

j=2

|rt,j−1||rt,j | →
p

∫ t

t−1
σ2

sds for M → ∞ , (3.5)

with µ1 =
√

2/π. Equations (3.3) and (3.5) define the daily jump variation measure as the

residual between realized and bi-power variation,

JVt = RVt −BVt →
p

N(t)∑

j=N(t−1)+1

κ2(sj) , (3.6)

that converges to the increments of the sum of squared jumps in (3.2) for M → ∞ . Any small

deviation between RVt and BVt induces a jump size greater than zero. Even a negative jump

variation becomes empirically possible due to measurement errors. This motivated Andersen

et al. (2007a) to derive a test statistic that identifies significant positive jumps,

Zt =
√
M

(RVt −BVt)RV
−1
t√

(µ−4
1 + 2µ−2

1 − 5)max{1, TQtBV
−2
t }

→
d

N(0, 1) , (3.7)

where extreme deviations of RVt and BVt are standardized by the realized tri-power quarticity,

TQt = Mµ−3
4/3

(
M

M − 2

) M∑

j=3

|rt,j−2|4/3|rt,j−1|4/3|rt,j |4/3 →
p

∫ t

t−1
σ4(s)ds , (3.8)

with µ4/3 = 22/3Γ(7/6)/Γ(1/2) and Γ(·) denoting the gamma function.

If the nominator in (3.7) is large, the test statistic exceeds the critical value Φ1−α and

identifies a significant squared jump, denoted by Jt. Then the jump occurrence indicator Xt
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equals one and Jt = RVt−BVt. Φ1−α is the 1−α quantile of the standard normal distribution

with α as significance level. If Zt ≤ Φ1−α, then the significant jump size in t is zero, i.e. Jt = 0

and Xt = 0. This formalizes to

Jt ≡ Xt(RVt −BVt) for t = 1, ..., T . (3.9)

Hence, positivity of squared significant jumps is ensured by (3.9). On a day without jumps,

the continuous variation measure Ct is equal to the realized variance and on days with a jump

Ct equals the bi-power variation, viz

Ct ≡ (1 −Xt)RVt +XtBVt for t = 1, ..., T . (3.10)

3.3 Data

The estimated variation measures introduced in the previous section only converge to their

continuous-time counterparts if the number of daily sampled returns increases infinitely.

Hence, making use of a high data frequency is requested. However, variation measures

computed on a tick-by-tick basis hinge on market microstructure noise.3 Various approaches

in the literature propose volatility estimators that are not affected by noise. Thomakos and

Wang (2003), Andersen et al. (2001a) or Bollen and Inder (2002) suggest noise free variation

measures based on filtered returns using MA or AR processes. Bandi and Russell (2008) and

Aı̈t-Sahalia et al. (2005) propose a bias-corrected version of realized volatility. The present

paper follows Andersen et al. (2001b, 2007b) and solves the problem of market microstructure

noise by computing variation measures on a coarser sampling frequency of five minutes.

The data contain intraday prices of the Eurex traded DAX and Euro Stoxx 50 future

(DAX, ESX), the Chicago Mercantile Exchange traded S&P 500 future (SP) and the New

York Stock Exchange traded General Motors (GM) stock. Futures data cover the period from

July 1st, 2002 to June 30th, 2006 and GM data are available from January 1st, 2001 to June

30th, 2006.4

3The source of the market microstructure noise is manifold including price discreteness, bid-ask bounds, and
measurement errors.

4All futures are denominated in local currencies. The maximum lifetime of a future contract is limited to nine
months. Therefore, a continuous time series of transaction prices is not directly observed and needs to be
constructed by using the last three months of the future life-span. Proceeding in that fashion assures a rather
high trading frequency. GM data are extracted from NYSE Trade and Quotations (TAQ) bid and ask quotes.
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Figure 3.3.1: Time series of return and volatility measures for DAX and ESX. The left panels
show daily time series for DAX and the right panels correspond to ESX. The top panel depicts daily returns,
the second realized volatility, the third continuous variation, the fourth significant jumps computed using Φ0.05,
and the bottom panel displays jump durations.
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Figure 3.3.2: Time series of return and volatility measures for SP and GM. The left panels show
daily time series for SP and the right panels correspond to GM. The top panel depicts daily returns, the second
realized volatility, the third continuous variation, the fourth significant jumps computed using Φ0.05 for GM
and Φ0.001 for SP, and the bottom panel displays jump durations.
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We compute returns between the first prices in each five minute interval. Holidays and

overnight returns as well as returns beyond 09:20am to 08:00pm (CET) for DAX and ESX,

08:30am to 3:15pm (CST) for SP, and 09:40am to 4:00pm (EST) for GM are excluded.

Time series plots of daily returns and volatilities are depicted in Figures 3.3.1 and 3.3.2.

The returns in the figures show the well known volatility clustering which is also reflected in

the series of realized and continuous variation. The figures also depict significant jumps that

occur irregularly with varying size and exhibit a clustering.

The descriptive statistics in Table 3.3.1 summarize the stylized facts in the data. The

empirical distributions of continuous and realized variation are highly skewed and leptocurtic.

rt RVt Ct Jn τn

Panel A: DAX

Mean -0.031 2.043 1.968 0.330 4.352

Std 1.449 3.011 2.882 0.621 4.236

Skewness 0.291 3.535 3.116 5.160 2.804

Kurtosis 4.39 20.33 13.83 34.53 12.89

LB(10) 28 5606 5996 326 20

Panel B: ESX

Mean -0.034 2.186 2.092 0.356 3.752

Std 1.422 3.292 3.137 0.683 3.323

Skewness 0.489 4.632 4.432 5.887 2.041

Kurtosis 6.14 34.19 31.06 47.08 5.85

LB(10) 45 3987 4255 354 16

Panel C: SP

Mean 0.004 0.877 0.830 0.196 4.190

Std 0.937 1.170 1.182 0.131 5.675

Skewness 0.594 5.469 5.392 3.041 3.775

Kurtosis 7.08 43.28 42.27 12.60 16.68

LB(10) 14 4592 4579 353 113

Panel D: GM

Mean -0.030 2.894 2.749 0.716 4.949

Std 1.830 3.091 2.915 1.147 5.266

Skewness 0.197 3.770 3.338 7.399 2.304

Kurtosis 2.99 23.32 16.65 74.92 6.14

LB(10) 16 2251 2558 13 15

Table 3.3.1: Summary statistics for return and volatility measures. The descriptive statistics are
computed on the total sample for the return, rt, realized volatility, RVt, continuous variation, Ct, (significant)
jump variation, Jn, and jump duration, τn. There are 1016 daily observations for the DAX, 1015 for ESX,
995 for the SP, and 1367 for the GM (denoted by the subscript t) with 233, 270, 237 and 276 significant
jumps (denoted by the subscript n), respectively. The number of daily sampled returns for the DAX is 128,
for ESX M = 128, for SP M = 79, and for GM M = 75. The first four rows of each panel report the sample
mean, standard deviation, along with skewness and kurtosis. The last row labeled LB(10) reports a Ljung-Box
statistic up to lag ten.
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Ljung-Box tests in Table 3.3.1 do not reject the null of no autocorrelation up to ten lags for

realized and continuous variation. Weaker but still present serial dependence can be detected

in jump sizes and durations (τn) between successive jumps.

3.4 Methodology

3.4.1 Econometric Model

Recently, Andersen et al. (2007a) and Bollerslev et al. (2009) proposed parametric models

based on nonparametric volatility measures where daily realized volatility is decomposed

into continuous and jump variation. We follow this idea and specify a model that accounts

for the autoregressive nature in continuous variation, jump sizes and jump duration. We

suggest to adopt Engle and Russell’s (1998) approach to capture the time series dynamics in

continuous variation and refer to it as autoregressive conditional continuous variation (AC-C)

model.5 The jump variation process is conceived as a marked point process. The time

between two successive jumps are points at which we observe the mark, i.e. the jump size. To

account for the durations between significant jumps, we employ Hamilton and Jordà’s (2002)

autoregressive conditional hazard (ACH) model. For jump sizes we apply Engle and Russell’s

(1998) framework and refer to it as autoregressive conditional jump size (AC-J) model. In

the following we present the models for continuous variation, jump sizes and jump duration

before we combine them to a joint model for daily return variation.

For the AC-C model it is assumed that daily continuous variation is specified as

Ct = σtεt , (3.11)

where εt is an iid innovation with constant expectation µ and constant variance such that the

expected continuous variation conditional on the information set Υt−1 is E [Ct|Υt−1] = σtµ.

σt follows a linear autoregressive process that updates daily,

σt = δC + αCCt−1 + βCσt−1 , (3.12)

5Engle and Russell’s (1998) approach is also used by Lanne (2006) who applies a mixture multiplicative error
model to realized volatility.
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where δC > 0, αC ≥ 0 and βC ≥ 0 which ensures positivity of σt. Given (3.11) and assuming

an unconditional innovation distribution, fε(·;θε), the conditional likelihood function is given

by

fC(Ct|Υt−1;θC) = fε

(
Ct

σt
;θε

)
σ−1

t , (3.13)

with unknown parameter vector θC = (δC, αC, βC,θε). The AC-C can be estimated

straightforward by Maximum Likelihood (ML). In principle, any innovation distribution with

positive support is possible. In this paper, we consider the exponential (AC-EC), Weibull

(AC-WC) and Grammig and Maurer’s (2000) Burr distribution (AC-BC) for fε(εt;θε).

The ACH model of Hamilton and Jordà (2002) describes a mean duration process and is

based on the ACD model. Conditional on previous duration, it delivers an estimate of the

probability that a jump will be observed the next day. Given Section 3.2, the smallest time

interval between successive significant jumps is one day. Thus, τn denotes the duration in

number of days between the nth and (n + 1)th jump. The sequence of conditional expected

durations ψn ≡ E [τn|Υn−1] is assumed to evolve as

ψn = αXτn−1 + βXψn−1 , (3.14)

where αX ≥ 0 and βX ≥ 0. Equation (3.14) only updates if a jump occurs on day t and

remains the same as in t− 1 if no jump occurs. A discrete step function, N(t), that increases

by one if there is a jump in t and is unchanged if no jump occurs, provides a convenient link

between event and calendar time. Hamilton and Jordà (2002) define the hazard rate as the

probability of a jump in t conditional on t− 1 information,

ht = P[N(t) 6= N(t− 1)|Υt−1] . (3.15)

If the information set in t − 1 only consists of past durations, the hazard rate and

conditional expected durations are inversely related, such that

ht =
1

ψN(t−1)
. (3.16)

Hamilton and Jordà (2002) extend (3.16) by allowing for predetermined variables zt−1 and
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formulate the hazard rate in calendar time. Hence, the hazard rate becomes

ht =
1

ψN(t−1) + δ′Xzt−1
. (3.17)

The conditional likelihood function of the ACH model in Equations (3.14) and (3.17) is

fX(Xt|Υt−1;θX) = {ht}Xt{1 − ht}(1−Xt) , (3.18)

which is maximized by ML with respect to θX = (αX, βX, δX).

Analogous to (3.11), (3.12) and (3.13), we briefly introduce the notation for the jump size

model, AC-J. Denote by JN(t) the size of the N(t)th jump, by φN(t) the conditional expected

jump size, and by ηN(t) an iid innovation such that JN(t) = φN(t)ηN(t). φN(t) evolves as

φN(t) = δJ + αJJN(t)−1 + βJφN(t)−1 , (3.19)

imposing δJ > 0, αJ ≥ 0 and βJ ≥ 0. The AC-J likelihood function conditional on Xt = 1 is

fJ(JN(t)|Xt = 1,Υt−1;θJ) = fη

(
JN(t)

φN(t)
;θη

)
φ−1

N(t) , (3.20)

with θJ = (δJ, αJ, βJ,θη). The innovation ηN(t) is assumed to be either exponential (AC-EJ),

Weibull (AC-WJ) or Burr (AC-BJ) distributed.

Combining the models of continuous and jump variation to a joint model for realized

volatility yields the joint density,

f(Ct,Xt, JN(t)|Υt−1;θ) = fC(Ct|Υt−1;θC)fX(Xt|Υt−1;θX)fJ(JN(t)|Xt = 1,Υt−1;θJ) , (3.21)

where θ collects all parameters of the model. Henceforth, we will refer to (3.21) as the

autoregressive conditional continuous jump (AC-CJ) model. Taking logs of (3.21) yields the

log-likelihood function of the AC-CJ model

L (θ) =
T∑

t=1

ln fC(Ct|Υt−1;θC) +
T∑

t=1

ln fX(Xt|Υt−1;θX) +
T∑

t=1

ln fJ(JN(t)|Xt = 1,Υt−1;θJ).

(3.22)

As pointed out by Engle (2000), maximization of L (θ) is equivalent to maximizing the three
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terms on the right hand side of (3.22) separately if θC, θX and θJ have no parameters in

common.

3.4.2 Forecast Setup

In this section we present the forecast methodology. We outline how single model forecasts for

continuous and jump variation are combined to achieve point and density forecasts for total

return variation. Further, we introduce the techniques of Diebold et al. (1998) to examine the

accuracy of in-sample density forecasts. Their methods enjoy increasing popularity as they

offer intuitive diagnostics to detect specification problems. Hence, the primary interest is to

assess the models’ fit and to conduct diagnostic checks by using density forecast evaluation

methods.

Engle and Russell’s (1998) framework as basis for AC-C and AC-J is appealing in terms

of prediction, since point and density forecasts are obtained in a straightforward way. Point

forecasts for continuous variation and jump variation result directly from iterating forward

(3.12) and (3.19), respectively. Then, h-step ahead density forecasts are obtained by simply

inserting the estimated parameters and the h-step ahead point forecast for Ct+h and JN(t+h)

into the conditional densities in (3.13) and (3.20). The probability, of a jump in t+ h, is

computed using the ACH in (3.17). In the case of one-step forecasts this probability will be

simply ht+1. To obtain multiperiod ahead forecasts for the jump indicator, one needs to draw

from the probability functions of Xt+1, · · · ,Xt+h. If there is no jump on day t + 1 realized

volatility is simply the continuous variation in t+ 1. A jump in t+ 1 implies Xt+1 = 1 and

realized volatility in t + 1 is then the sum of continuous and jump variation, i.e. RVt+1 =

Ct+1 +JN(t+1). Point and density forecasts for RVt+h are achieved by Monte Carlo simulation

methods. The main idea is to simulate M forecast paths for the realized volatility from h = 1

up to the Hth horizon, which produces the sequence {RV (m)
t+h }M

m=1. From this sequence, point

and density forecasts for each forecast horizon are computed. A detailed description for this

forecasting procedure can be found in Appendix B.1.

Once a forecast density is achieved, Diebold et al.’s (1998) forecast evaluation methods

can be applied. Denote by xt a continuous forecast variable, by {p(xt | Υt−1)} a sequence of

true densities and by {f(xt | Υt−1)} a sequence of density forecasts. As shown by Diebold

et al. (1998) the correct density is weakly superior to all other forecasts. Hence, forecasters
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will prefer the correct density irrespective of their loss function. Consequently, forecasts can

be evaluated by testing the null hypothesis that the forecasting densities are equivalent to the

true densities, i.e. whether

{f(xt | Υt−1)} = {p(xt | Υt−1)} . (3.23)

Obviously, the true densities are unobserved and testing whether Equation (3.23) holds seems

impossible. However, this problem can be solved by using Rosenblatt’s (1952) probability

integral transform (PIT) result:

zt =

∫ xt

−∞

f(u|Υt−1)du = F (xt|Υt−1) . (3.24)

Diebold et al. (1998) derive the distributional properties of of the probability transforms {zt}
and show that under the null hypothesis the PIT sequence is iid U(0, 1) distributed.

Having obtained a {zt} sequence, it is possible to evaluate density forecasts of realized,

continuous and jump variation by carrying out the following steps. First, we use the iid

uniformity test proposed by Bauwens et al. (2004), which compares the number of PIT

observations in classified bins to expected numbers if the data were indeed iid U(0, 1)

distributed. Second, we follow Diebold et al. (1998) who suggest to augment formal tests of

iid uniformity by diagnostic tools. Visual inspection of histograms and autocorrelograms of

the PIT sequences help to detect the reasons for the rejection of the uniformity null hypothesis

and assist to identify forecast failures. Third, since the PIT sequence possesses a MA(h− 1)

autocorrelation structure, density forecasts for h > 1 will not be correct. Due to this,

Diebold et al. (1998) recommend to remove the autocorrelation structure by partitioning

the PIT sequence into subseries. For instance, for two-step ahead density forecasts, the

subseries {z1, z3, z5, . . .} and {z2, z4, z6, . . .} should each be iid U(0, 1), although the sequence

{z1, z2, z3, z4, . . .} is not. Iid uniformity tests are then based on the minimum and maximum

test statistic within the h subseries. Critical values are computed by dividing the significance

level by the forecast horizon. Finally, Diebold et al.’s (1998) idea is only applicable to

continuous forecast variables. Due to this we require a discrete analog of the PIT to evaluate

the probability function forecast delivered by the ACH model. To address this problem, we

use Denuit and Lambert’s (2005) methodology and “continue” the discrete variable Xt by
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adding a uniform distributed random variable ut, i.e. ut is iid U(0, 1) and X∗
t = Xt +(ut−1).

Denuit and Lambert (2005) show that the PIT of the continued variable X∗
t is

z∗t = F ∗(X∗

t |Υt−1) = F (Xt − 1|Υt−1) + f(Xt|Υt−1)ut . (3.25)

The discrete analog of the PIT theorem states that z∗t is U(0, 1) if the probability forecast

function is correctly specified.

3.5 Empirical Results

3.5.1 Estimation Results and Residual Diagnostics

As indicated in the methodology section AC-C, ACH and AC-J are estimated separately on

an in-sample period from July 1st, 2002 to January 31st, 2006 for the futures and January

1st, 2001 to January 31st, 2006 for GM. The period from February 1st, 2006 to June 30th,

2006 is reserved for out-of-sample forecasts.

Table 3.5.2 reports the ML estimates of the AC-C, ACH and AC-J. The estimated AC-C

coefficients αC and βC are statistically significant and vary between 0.18 and 0.36 for αC

and 0.59 and 0.82 for βC. AC-C specifications indicate high persistence. The exponential,

Weibull and Burr parameters in the AC-C and AC-J are statistically significant. The ACH

estimates in Table 3.5.2 suggest strong persistence and serial correlation in durations with an

average value over all time series of αX = 0.053 and βX = 0.855.6 The AC-J estimates αJ and

βJ depend on the distributional assumptions for the innovation term. Generally, if a Burr

distribution is assumed, βJ is higher and αJ is lower than the corresponding estimates when

using an exponential or Weibull distribution.

As noted in Bauwens and Giot (2001), the imposed independence assumption of the error

terms in the AC-C and AC-J models cannot be tested directly. However, autocorrelation

tests on AC-C and AC-J residuals are conducted to detect potential specification errors. The

residual autocorrelation tests in Table 3.5.3 show that the high correlation in Ct is removed

for DAX, ESX, SP and GM. For the DAX some serial correlation is left in the higher order

6None of the included predetermined variables in Equation (3.17) appeared to be statistically significant. Since
imprecise estimated parameters of exogenous variables might blur the forecast quality, the specifications in
Table 3.5.2 are used for prediction.
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AC-EC AC-WC AC-BC ACH AC-EJ AC-WJ AC-BJ
Panel A: DAX

δ 0.000 0.000 0.000 2.743 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.769) (0.000) (0.000) (0.000)

α 0.317 0.364 0.296 0.065 0.174 0.174 0.064
(0.079) (0.043) (0.031) (0.038) (0.146) (0.152) (0.042)

β 0.663 0.587 0.708 0.827 0.750 0.748 0.924
(0.083) (0.047) (0.030) (0.090) (0.193) (0.201) (0.041)

γ1 2.034 4.362 1.004 4.176
(0.045) (0.243) (0.042) (0.633)

γ2 1.235 2.510
(0.149) (0.628)

Panel B: ESX

δ 0.000 0.000 0.000 2.807 0.000 0.000 0.000
(0.000) (0.000) (0.000) (1.295) (0.000) (0.000) (0.000)

α 0.195 0.200 0.181 0.016 0.307 0.350 0.051
(0.046) (0.028) (0.023) (0.021) (0.115) (0.104) (0.012)

β 0.788 0.777 0.817 0.940 0.663 0.626 0.930
(0.051) (0.032) (0.023) (0.064) (0.106) (0.090) (0.011)

γ1 1.700 4.029 1.161 4.725
(0.038) (0.231) (0.047) (0.615)

γ2 1.463 2.840
(0.168) (0.563)

Panel C: SP

δ 0.000 0.000 0.000 1.413 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.537) (0.000) (0.000) (0.000)

α 0.309 0.312 0.314 0.100 0.258 0.362 0.167
(0.063) (0.027) (0.030) (0.033) (0.218) (0.113) (0.037)

β 0.663 0.654 0.655 0.845 0.622 0.384 0.769
(0.070) (0.031) (0.033) (0.047) (0.403) (0.238) (0.051)

γ1 2.290 2.901 2.018 5.852
(0.057) (0.135) (0.088) (0.764)

γ2 0.376 1.713
(0.081) (0.373)

Panel D: GM

δ 0.000 0.000 0.000 4.097 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.934) (0.000) (0.000) (0.000)

α 0.262 0.270 0.247 0.032 0.485 0.501 0.088
(0.055) (0.037) (0.031) (0.040) (0.167) (0.171) (0.032)

β 0.709 0.694 0.737 0.820 0.383 0.370 0.886
(0.063) (0.042) (0.034) (0.190) (0.140) (0.139) (0.042)

γ1 1.550 3.560 1.018 3.227
(0.028) (0.166) (0.042) (0.332)

γ2 1.281 1.898
(0.127) (0.345)

Table 3.5.2: Maximum likelihood estimates of the AC-C, ACH and AC-J. The distributional
assumption of the AC-C and AC-J innovations are exponential (E), Weibull (W) or Burr (B) with γ1 and γ2

as distributional parameters. Standard errors are reported in parentheses.

autocorrelations. The residuals of the AC-J do not exhibit any autocorrelation, indicating

that the model accounts properly for jump size dynamics.
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k AC-EC AC-WC AC-BC AC-EJ AC-WJ AC-BJ

Panel A: DAX

1 0.451 0.217 0.496 0.050 0.009 0.010

5 0.784 0.356 0.999 0.059 0.095 0.093

10 1.332 1.572 1.466 0.115 0.136 0.076

15 1.098 1.393 1.236 0.094 0.124 0.084

Panel B: ESX

1 0.065 0.037 0.035 0.147 0.202 0.041

5 0.387 0.380 0.327 0.375 0.433 0.243

10 0.447 0.462 0.381 0.290 0.319 0.159

15 0.556 0.536 0.579 0.263 0.285 0.140

Panel C: SP

1 0.520 0.327 0.226 0.151 0.003 0.426

5 0.302 0.234 0.196 0.201 0.138 0.277

10 0.351 0.298 0.281 0.210 0.268 0.229

15 0.559 0.545 0.505 0.301 0.284 0.402

Panel D: GM

1 0.326 0.317 0.442 0.340 0.208 0.001

5 0.638 0.568 0.716 0.260 0.210 0.158

10 0.522 0.436 0.640 0.203 0.171 0.179

15 0.592 0.576 0.615 0.347 0.316 0.218

Table 3.5.3: Autocorrelation tests of AC-C and AC-J estimated residuals. The table reports the
result of the ratio LB(k)

χ2(k)
with LB(k) denoting the Ljung-Box statistic and χ2(k) the 5% critical value. The

ratio is computed for the first, fifth, tenth and fifteenth order serial correlation (k). The null hypothesis of no
autocorrelation is not rejected for values smaller than one.

3.5.2 Density Forecast Evaluation

The forecast techniques of Diebold et al. (1998) outlined in Section 3.4.2 can be conveniently

used for diagnostic checking. To analyze the models’ fit, we focus on an in-sample density

forecast evaluations. As mentioned above, the rejection of the null hypothesis of uniformity in

the PIT sequence does not provide guidance concerning the reasons. Therefore, Diebold et al.

(1998) recommend to use autocorrelograms and histograms of the PIT sequences as diagnostic

tools to detect specification errors associated with a model’s density forecasts. For instance,

inverse ∪-shaped PIT histograms suggest that we observe insufficient large and small future

values of volatility compared to what is predicted by the model. Significant autocorrelation

in the PIT series indicates that the model is not able to account properly for the dynamics

of the variation measures.

Figure 3.5.3 depicts twenty-bin histograms of the PIT sequence for one-day ahead forecasts

implied by AC-EC, AC-WC, AC-BC, ACH and AC-BJ. The histograms are based on the
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Figure 3.5.3: Histograms of the one-step ahead forecast PIT sequence for the AC-EC, AC-WC,
AC-BC, ACH and AC-BJ. The figure shows twenty-bin histograms of the PIT sequence for one-step ahead
forecast horizon, i.e. h = 1, for DAX (first column), ESX (second column), SP (third column) and GM (fourth
column). Upper and lower bound (displayed in horizontal dashed lines) of the 95% confidence interval are
computed from the 0.025 and 0.975 quantiles of a binomial distribution with p = 0.05 and number of draws
equal to n, where n is the number of observations in each subseries. The first panel row depicts the histograms
for the AC-EC, the second for AC-WC, the third for AC-BC, the fourth for ACH and the last for the AC-BJ
model.

original PIT sequence for one-step forecasts. For multi-step forecasts (h > 1), the minimum

and the maximum relative frequency of the thinned h subseries in each of the twenty histogram

bins is plotted. Histograms for two- and four-day ahead forecasts are deferred to Appendix

B.3. As seen from Figure 3.5.3, the histograms of the PIT sequence resulting from the AC-EC
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are inverse ∪-shaped, while these from AC-WC are rather ragged. Thus, histograms of AC-EC

and AC-WC point at specification errors due to incorrect distributional assumptions. In

contrast, the histograms resulting from AC-BC do not show any deviations from uniformity

implying that the dynamics of continuous variation are well captured. Histogram bars of the

continued ACH PIT sequence lie mostly within the 95% confidence bounds (see also Figures

B.3.1 and B.3.2 in Appendix B.3). Same conclusions can be drawn for the PIT histograms of

the AC-BJ.

Figure 3.5.4: Histograms of the PIT sequence for the BC-BJ. The first panel column contains the
results for the DAX, the second for ESX, the third for SP and the fourth for GM. See caption of Figure 3.5.3
for explanations.
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From the single model evaluation it is inferred that the assumption of Burr distributed

errors in the AC-C and AC-J fits the data best. Hence, we combine AC-BC, ACH and

AC-BJ to the BC-BJ model and obtain density forecasts for realized volatility following the

description in Section 3.4.2. The resulting PIT histograms are reported in Figure 3.5.4. For

DAX, ESX and GM the figures do not exhibit deviations from uniformity. However, the

histograms for SP suggest that insufficient small values of realized volatility are predicted by

the model.

h 1 2 4 1 2 4
1%/h 36.2 38.6 40.9 36.2 38.6 40.9
5%/h 30.1 32.9 35.4 30.1 32.9 35.4

Model Panel A: DAX Panel B: ESX

AC-BC 15.8 23.4 28.9 14.2 15.6 31.3
ACH 21.1 16.2 17.9 16.0 19.4 34.4

AC-BJ 17.3 18.4 23.1 12.3 16.3 26.8
BC-BJ 24.2 20.1 17.6 15.8 16.5 19.1

Panel C: SP Panel D: GM

AC-BC 7.6 17.3 22.2 15.1 36.3 33.5
ACH 12.9 22.7 21.6 12.8 28.2 24.9

AC-BJ 22.6 20.0 35.7 20.6 22.6 32.6
BC-BJ 94.1 56.0 41.0 5.1 41.2 19.7

Table 3.5.4: Results of iid uniformity test for the PIT sequence. For each forecast horizon h
the PIT sequence is split into h subseries which are iid U(0, 1) under the null hypothesis of a correct density
forecast. Bauwens et al.’s (2004) test statistic for iid uniformity is computed for each subseries. The test is
based on the result that under the null of iid U(0, 1) behavior of the PIT sequence the joint distribution of
the heights of the PIT histogram is multinomial, i.e. f (ni) =

`

n

ni

´

pni (1 − p)n−ni where n gives the number

of observations (in each subseries), ni the number of observations in the ith histogram bin and p = 1/m with

m the number of histogram bins. We use m = 20. The statistic
Pm

i=1
(ni−np)2

np
is under the null hypothesis

asymptotically χ2(m − 1) distributed. The table reports the largest test statistic computed from h subseries.
The critical values are computed by dividing the significance levels by h.

Table 3.5.4 reports the uniformity test statistic suggested by Bauwens et al. (2004). The

idea of Bauwens et al.’s (2004) test is to compare the number of observations in the bins of

the PIT histogram with the expected values given that the PIT sequence would indeed be

iid U(0, 1). The caption of Table 3.5.4 explains computational details. Since the assumed

Burr distribution for the AC-C and AC-J innovations yields most accurate density forecasts

for realized, continuous and jump size variation, we omit in Table 3.5.4 the results for the

exponential and Weibull distribution. Bauwens et al.’s (2004) test is applied to the (continued)

PIT sequences computed up to four-day ahead density forecasts and confirms the conclusions

drawn from the visual inspection of the histograms. For DAX and ESX the null hypothesis
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Figure 3.5.5: Autocorrelograms of the PIT sequence for the AC-BC, ACH, AC-BJ and BC-BJ.
The figure shows autocorrelograms of the PIT sequence for one-step ahead forecast horizon, i.e. h = 1, for
DAX (first column), ESX (second column), SP (third column) and GM (fourth column). The horizontal lines
superimposed on the autocorrelograms mark the 95% confidence intervals. The first panel column contains the
DAX , the second the ESX, the third the SP and the fourth the GM results. The first panel row depicts the
autocorrelograms for the AC-BC, the second for ACH, the third for AC-BJ and the last for the BC-BJ model.

that the PIT sequences delivered by the AC-BC, ACH and AC-BJ are uniform cannot be

rejected at any conventional significance level. For SP and GM the same conclusion can be

drawn for a 1%/h significance level. Tests for uniformity of PIT sequence implied by the

BC-BJ do not detect misspecifications for DAX, ESX and GM. However, as already visible

from the PIT histograms, the null of uniformity is rejected for SP.

Finally, we investigate the dynamics of PIT sequence obtained from AC-BC, ACH, AC-BJ

and BC-BJ to detect specification errors. We compute autocorrelations of the PIT for a

one-step ahead forecast horizon and plot them in Figure 3.5.5. Although minor autocorrelation

is left in some PIT sequences, we conclude that the overall dynamics of the variation measures

are captured quite well.
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3.5.3 Out-of-sample Point Forecast Performance

In this section we analyze the model’s ability of out-of-sample point predictions. To compare

daily return forecasts delivered by the AC-CJ, we estimate three alternative volatility models.

First, motivated by the work of Hansen and Lunde (2005), we consider a simple GARCH(1,1)

model with normally distributed errors. The second model is the heterogeneous autoregressive

realized volatility (HAR-RV) model suggested by Corsi (2004). This AR-type process includes

lags corresponding to the time horizons of one day, one aggregated week and one aggregated

month period. Finally, we estimate an autoregressive conditional realized volatility (AC-R)

model, which is identical to the AC-C model in (3.11), (3.12) and (3.13), but the variable of

interest is realized variation.7 The estimation results of the benchmark models can be found

in Appendix B.2.

To evaluate the point forecast performance, the sequence of volatility forecasts, {R̂V t+h},
is compared to the sequence of actual realized volatility, {RVt+h}. We use the root mean

squared error (RMSE),

RMSE =

√√√√ 1

T

T∑

t=1

[RV t+h − R̂V t+h]2 , (3.26)

as loss function. To test whether the difference between forecast errors of a null model and an

alternative model is significant, we apply the modified version of the Diebold-Mariano (1995)

test suggested by Harvey et al. (1997).

Table 3.5.5 contains out-of-sample RMSEs and modified Diebold-Mariano (DM) tests

for one- and ten-day ahead volatility forecasts. The null model of the DM test is an AC-CJ

model with exponential distributed innovations in the AC-C and Burr distributed innovations

in the AC-J (EC-BJ). Hence, negative values for the DM test results from smaller forecast

errors of EC-BJ compared to the alternative model. Considering the one-day ahead forecasts,

the GARCH produces higher RMSEs compared to EC-BJ for all time series. The differences

between the GARCH and the EC-BJ model are significant on a 5% level for ESX. For ten-day

ahead forecasts the EC-BJ is more accurate than the GARCH for ESX and GM. One-day

ahead AC-ER RMSEs are higher compared to EC-BJ for DAX and ESX and for ten-day

7The assumed distributions of the AC-R innovations are either exponential (AC-ER), Weibull (AC-WR) or
Burr (AC-BR). Since the exponential distribution turns out to be most suitable in terms of forecasting, we
refrain from presenting AC-WR and AC-BR results.
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1-day ahead 10-day ahead

Model RMSE DM p-value RMSE DM p-value

Panel A: DAX

EC-BJ 0.455 0.624
BC-BJ 0.464 -1.714 0.045 0.666 -1.603 0.056
GARCH 0.474 -0.591 0.278 0.605 0.654 0.743
AC-ER 0.458 -0.466 0.321 0.623 0.140 0.556
HAR-RV 0.494 -1.299 0.098 0.665 -0.817 0.208

Panel B: ESX

EC-BJ 0.567 0.694
BC-BJ 0.575 -1.941 0.027 0.712 -1.246 0.108
GARCH 0.676 -2.350 0.010 0.778 -0.959 0.170
AC-ER 0.570 -0.873 0.192 0.700 -1.735 0.043
HAR-RV 0.591 -1.205 0.115 0.736 -0.942 0.174

Panel C: SP

EC-BJ 0.274 0.318
BC-BJ 0.275 -0.032 0.487 0.319 -0.382 0.352
GARCH 0.286 -0.548 0.293 0.309 0.232 0.591
AC-ER 0.274 0.075 0.530 0.322 -0.535 0.297
HAR-RV 0.271 0.268 0.606 0.319 -0.021 0.492

Panel D: GM

EC-BJ 3.068 3.291
BC-BJ 3.066 0.145 0.557 3.323 -0.403 0.344
GARCH 3.267 -1.166 0.123 3.501 -0.634 0.264
AC-ER 3.066 0.148 0.559 3.307 -0.634 0.264
HAR-RV 3.101 -0.511 0.305 3.283 0.051 0.520

Table 3.5.5: Point forecast evaluation for realized volatility: out-of-sample RMSEs. The table
depicts root mean squared errors (RMSEs) of the daily realized variance forecast for one- and ten-day ahead
horizons delivered by EC-BJ, BC-BJ, GARCH, HAR-RV and AC-ER. Further, the table contains the result
of the modified Diebold-Mariano tests (DM) and corresponding p-values. The null model is the EC-BJ. Thus,
negative values for the DM test corresponds to smaller RMSEs of the EC-BJ model.

ahead the AC-ER produces less precise forecasts then the EC-BJ for ESX, SP and GM. For

the ten-day ahead ESX forecast the DM null hypothesis can be rejected on a 5% significance

level. The EC-BJ is superior to the HAR-RV in terms of lower one- and ten-day ahead RMSEs,

for DAX, ESX and GM (one-day ahead) and for DAX, ESX and SP (ten-day ahead), but

the differences are not statistically significant. Generally, it can be concluded that the EC-BJ

model is at least as accurate as the alternative models and in some cases even more accurate.

3.6 Conclusion

The present paper is linked to Andersen et al. (2007b) and Bollerslev et al. (2009) who

disentangle return volatility into a continuous and a jump variation component and model
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realized volatility by simple time series methods. We introduce a model that accounts for

continuous variation and jumps as well. Since continuous variation is strictly positive and

autocorrelated, we apply Engle and Russell’s (1998) framework to continuous variation and

refer to it as autoregressive conditional continuous variation (AC-C) model. The jump

variation process is conceived as a marked point process. Time between successive jumps

is modeled by Hamilton and Jordà’s (2002) autoregressive conditional hazard (ACH) model.

For the jump sizes, we apply the autoregressive conditional jump (AC-J) model. Combining

the three models forms the AC-CJ model for total return variation. To assess the accuracy of

density forecasts of realized, continuous and jump variation, the forecast evaluation methods

of Diebold et al. (1998) are applied.

The main findings of the empirical results using high frequency intraday data of the DAX,

ESX, SP and GM can be summarized as follows. The estimation of AC-C, ACH and AC-J

models deliver sensible parameter estimates and encouraging results in terms of diagnostics.

Especially AC-C and AC-J specifications with assumed Burr distributed errors (AC-BC and

AC-BJ) are capable to capture the dynamics of continuous and jump variation. Density

forecast evaluations confirm the suitability of the AC-BC and AC-BJ towards modeling the

evolution of the continuous and jump size variation. Similarly, as shown by the probability

forecast evaluation, the ACH qualifies as a suitable model for jump durations. For the point

forecast evaluation it can be concluded that the EC-BJ model is at least as accurate as the

GARCH(1,1), HAR-RV and AC-R model and in some cases even more accurate. Overall,

these results suggest that the framework proposed in this paper is useful for modeling and

forecasting volatility.



Appendix B

B.1 Density Forecasts

Density forecasts for RVt+h are achieved by using Monte Carlo simulation methods. Figure

B.1.1 illustrates the simulation strategy. Conditional on time t information, one can draw

a one-step ahead simulated value for the continuous variation C
(1)
t+1 from its conditional

distribution using a draw for ε
(1)
t+1 and the estimated parameters θ̂C. The superscript indicates

the first of M simulation steps. By drawing X
(1)
t+1 from the probability distribution of Xt+1,

it is determined whether there is no jump in t+ 1, implying RV
(1)
t+1 = C

(1)
t+1, or whether there

is a jump in t+ 1. In the latter case, a simulated value for J
(1)
t+1 is obtained from a draw for

η
(1)
t+1 using the estimates for θ̂J. Then realized volatility in t+ 1 is the sum of continuous and

jump variation, i.e. RV
(1)
t+1 = C

(1)
t+1 + J

(1)
t+1 and N(t + 1)(1) = N(t) + 1. Iterating conditional

on time t+ 1 Equations (3.12), (3.17) and (3.19) forward, yields two-period ahead forecasts.

Repeating this procedure results in a sequence {RV (1)
t+h}H

h=1. One can go back to the start and

generate a second path, {RV (2)
t+h}H

h=1. Hence, drawing from the density of RVt+h,

f(RVt+h|Υt) (B.1)

=

∞∫

−∞

· · ·
∞∫

−∞

f(RVt+h|RVt+h−1, · · · , RVt+1,Υt)f(RVt+h−1|RVt+h−2, · · · , RVt+1,Υt) · · ·

· · · f(RVt+2|RVt+1,Υt)f(RVt+1|Υt) dRVt+h−1 · · · dRVt+1

=

∞∫

−∞

· · ·
∞∫

−∞

f(RVt+h, RVt+h−1, · · · , RVt+1|Υt) dRVt+h−1 · · · dRVt+1 ,

M times produces a sequence of {RV (m)
t+h }M

m=1 for h = 1, ...,H. To conduct a density forecast

evaluation, a h-step ahead empirical quantile distribution is computed using Monte Carlo

71
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Figure B.1.1: Simulation of point and density forecasts for the AC-CJ model. The figure
illustrates the Monte Carlo simulation to obtain h-step ahead point and density forecasts. Starting from
day t, the figure depicts a schematic diagram of the Monte Carlo procedure. In t the single models deliver
one-period ahead forecasts. A draw from the density of Xt+1 results in a jump in t + 1, hence, Xt+1 = 1 and
RVt+1 = Ct+1 + JN(t+1) with Ct+1 = σt+1εt+1 and Jt+1 = φt+1ηt+1. Forward iterations of Equations (3.12),
(3.17) and (3.19) reveals a no-jump day in t + 2 with RVt+2 = Ct+2 and Ct+2 = σt+2εt+2. The repeated

simulation of volatility paths attains a sequence of volatility values in t + h, {RV
(m)

t+h }M
m=1. Averaging over

these draws from f(RVt+h|Υt) yields a point estimate and computing empirical quantile functions gives a
distribution forecast sketched on the right hand side of the figure.

integration. The distribution function is given by,

F (RVt+h|Υt) =

xt+h∫

−∞

f(RVt+h|Υt) dRVt+h (B.2)

=

∞∫

−∞

1(RVt+h ≤ xt+h)f(RVt+h|Υt) dRVt+h

where 1(·) is an indicator function that takes value one if the expression RVt+h ≤ xt+h is true

and zero otherwise. Plugging (B.1) into (B.2) yields a conditional expectation of RVt+h ≤ xt+h

F (RVt+h|Υt) (B.3)

=

∞∫

−∞

...

∞∫

−∞

1(RVt+h ≤ xt+h)f(RVt+h, RVt+h−1, ..., RVt+1|Υt) dRVt+1...dRVt+h−1dRVt+h

= E [1(RVt+h ≤ xt+h)|Υt] .



CHAPTER 3. FORECASTING RETURN VOLATILITY 73

If M increases infinitely an estimator for (B.3) is simply the sample mean,

1

M

M∑

i=1

1(RV
(m)
t+h ≤ xt+h) →

p
E [1(RVt+h ≤ xt+h)|Υt] . (B.4)

A point forecast for RVt+h is given by the conditional expectation of RVt+h,

E [RVt+h|Υt] =

∞∫

−∞

RVt+hf(RVt+h|Υt) dRVt+h (B.5)

=

∞∫

−∞

...

∞∫

−∞

RVt+hf(RVt+h, RVt+h−1, ..., RVt+1|Υt) dRVt+hdRVt+h−1...dRVt+1.

As M grows, the sample mean over RV
(m)
t+h gives a point forecast estimator that converges to

the conditional expectation in (B.5),

1

M

M∑

i=1

RV
(m)
t+h →

p
E [RVt+h|Υt] for m = 1, ...,M . (B.6)
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B.2 Additional Table

AC-ER GARCH HAR-RV AC-ER GARCH HAR-RV

Panel A: DAX Panel B: ESX

δR 0.000 δG 0.000 c -0.276 δR 0.000 δG 0.000 c -0.409

(0.000) (0.000) (0.129) (0.000) (0.000) (0.164)

αR 0.292 αG 0.063 β(d) 0.231 αR 0.202 αG 0.061 β(d) 0.077

(0.076) (0.014) (0.040) (0.050) (0.012) (0.040)

βR 0.687 βG 0.929 β(w) 0.496 βR 0.782 βG 0.931 β(w) 0.598

(0.080) (0.016) (0.068) (0.054) (0.013) (0.074)

β(m) 0.245 β(m) 0.281

(0.055) (0.062)

Panel C: SP Panel D: GM

δR 0.000 δG 0.000 c -0.586 δR 0.000 δG 0.000 c -0.623

(0.000) (0.000) (0.182) (0.000) (0.000) (0.218)

αR 0.358 αG 0.055 β(d) 0.204 αR 0.257 αG 0.085 β(d) 0.251

(0.087) (0.008) (0.041) (0.055) (0.010) (0.034)

βR 0.619 βG 0.934 β(w) 0.559 βR 0.717 βG 0.903 β(w) 0.377

(0.093) (0.012) (0.068) (0.062) (0.010) (0.060)

β(m) 0.177 β(m) 0.299

(0.052) (0.054)

Table B.2.1: Estimates of the AC-ER, HAR-RV and GARCH(1,1) model. The GARCH(1,1)
specification for the mean and variance equation for the daily return series is

rt = ǫt

σ2
t = δG + αGǫ

2
t−1 + βGσ

2
t−1 ,

with ǫt being normally distributed with mean zero and variance σ2
t . The parameters of the GARCH Model

are estimated by ML. The HAR-RV model of Corsi (2004) is estimated using logarithmic realized volatilities
and is specified as:

RV
(d)
t+1 = c+ β(d)RV

(d)
t

+ β(w)RV
(w)
t

+ β(m)RV
(m)
t

+ ωt+1d ,

where RV
(d)

t is the daily realized volatility in t and a weekly aggregated realized volatility estimator is RV
(w)
t =

1
5

(RVt−1 + · · · + RVt−5). A monthly aggregated RV
(m)
t is computed analogously. The estimates δR, αR and

βR of the autoregressive conditional realized volatility with exponential distributed innovations (AC-ER) are
estimated by ML. Standard errors are reported in parentheses.
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B.3 Additional Figures

Figure B.3.1: Histograms of the two-step ahead forecast PIT sequence for the AC-EC,
AC-WC, AC-BC, ACH and AC-BJ. The figure shows twenty-bin histograms of the PIT sequence for
a two-step ahead forecast horizon, i.e. h = 2, for DAX (first column), ESX (second column), SP (third
column) and GM (fourth column). For h > 1 the data are thinned into h subseries which are iid U(0, 1)
under the null hypothesis of a correct density forecast. The horizontal solid lines show the minimum and
the maximum relative frequency of the h subseries in each of the twenty histogram bins. Upper and lower
bound (displayed in horizontal dashed lines) of the 95% confidence interval are computed from the 0.025/h
and 0.975/h quantiles of a binomial distribution with p = 0.05 and number of draws equal to n, where n is
the number of observations in each subseries. The first panel row depicts the histograms for the AC-EC, the
second for AC-WC, the third for AC-BC, the fourth for ACH and the last for the AC-BJ model.
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Figure B.3.2: Histograms of the four-step ahead forecast PIT sequence for the AC-EC,
AC-WC, AC-BC, ACH and AC-BJ. The figure shows twenty-bin histograms of the PIT sequence for
a four-step ahead forecast horizon, i.e. h = 4, for DAX (first column), ESX (second column), SP (third
column) and GM (fourth column). See caption of Figure B.3.1 for explanations.



Chapter 4

International Price Discovery in

Stock Markets - A Unique Intensity

Based Information Share

This paper proposes a new information share for price discovery based on Russell’s (1999)

autoregressive conditional intensity model. While previous studies rely on equally spaced

high frequency data, we use the information conveyed by trade intensities to determine

a market’s contribution to price discovery. Thereby, we account for the irregular nature

of transaction data. Moreover, in contrast to the commonly applied Hasbrouck (1995)

approach, which yields lower and upper bounds for information shares, our model delivers a

unique measure. Our empirical application to US-listed Canadian stocks supports previous

evidence for the home market leadership in price discovery.

This chapter is based on the article “International Price Discovery in Stock Markets - A

Unique Intensity Based Information Share” by K. Kehrle and F. J. Peter (2009).

77
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4.1 Introduction

According to Coffee (2002), increasing globalization and improved technology will lead to a

decay in the number of securities exchanges around the world. Small national exchanges will

lose their share in trading to large international exchanges, which provide a more efficient

trading environment. Carpentier et al. (2007) examine this development for the Canadian

stock exchanges with respect to the US markets. They report a rapidly growing share of US

markets in trades of Canadian stocks, up to the point where interlisted stocks are absorbed by

the foreign market and delisted on the home market. These developments foreshadow small

national stock exchanges as markets for illiquid stocks that failed to attract investors on

the large markets (see Gaa et al. 2002). Thus, within the context of international cross-listed

stocks, it is of paramount interest to national stock exchanges to remain the dominant market

with regard to price discovery.1 The competition among smaller national and the giant

US markets for the leadership in price discovery of interlisted stocks has therefore grown

immensely and has stirred up an increasing field of research.

The main innovations of this paper are summarized as follows. We apply Russell’s (1999)

autoregressive conditional intensity model (ACI) and develop a new information share that

measures the home and foreign market share in price discovery. By using a bivariate intensity

approach, we account for the informational content of time between consecutive trades and

the timing interdependencies between the two markets’ transaction processes. In contrast to

the commonly applied Hasbrouck (1995) methodology we account for the irregularity of the

data and deliver a unique information share rather than lower and upper bounds. We apply

our information share to Canadian stocks that are traded on the Toronto Stock Exchange

(TSX) and cross-listed on the New York Stock Exchange (NYSE).

Evidence from previous studies suggests that the greatest part of price discovery for a

cross-listed stock takes place in the home market. Eun and Sabherwal (2003) examine a

sample of US listed Canadian stocks based on the relative adjustment of prices in a market

to deviations from the equilibrium price. They conclude, while the contribution of the US

market cannot be neglected, the home market leads price discovery. Adjustment coefficients

as a measure for price discovery, however, are criticized, since they do not account for the

contemporaneous correlations and variances of market’s price innovation and focus only on the

1For a comprehensive study concerned with cross-listings in stock markets see Karolyi (2006).



CHAPTER 4. A UNIQUE INTENSITY BASED INFORMATION SHARE 79

price adjustment (see De Jong 2002, Baillie et al. 2002). The more commonly applied measure,

the Hasbrouck (1995) information share, is given by the contribution of a market’s price

innovation to the variance of the efficient underlying price innovations. Grammig et al. (2005),

Hupperets and Menkveld (2002), and Phylaktis and Korczak (2007), use the Hasbrouck (1995)

methodology to estimate the home and foreign market share in price discovery for US listed

stocks from various countries. They also conclude that trading on the home market stock

exchanges contributes most to price discovery, while trading on the NYSE primarily takes

place to offset arbitrage opportunities.

The main drawback of the Hasbrouck (1995) approach is that it does not yield a uniquely

identified information share but merely upper and lower bounds. Hasbrouck’s (1995) method

requires equidistant sampled data to measure a market’s contribution to price discovery.

Depending on the sampling frequency the information share bounds can diverge considerably

and conclusions concerning the leading market are rather vague (see Hupperets and Menkveld

2002, Phylaktis and Korczak 2007). However, transaction market events occur irregularly in

time, where the time between consecutive transactions convey information (see Frijns and

Schotman 2005, Dufour and Engle 2000). Hence, arbitrary sampling schemes to obtain regular

spaced data induce an undesirable loss of information.

Our method overcomes these difficulties by modeling the instantaneous arrival rates

(intensities) of the price processes in a bivariate intensity model. The intensity roughly gives

the probability of a transaction event within the next instant. We use Russell’s (1999) ACI

model that allows for a flexible interaction between the two markets’ conditional intensities.

The autoregressive dynamics of the intensity function are driven by an innovation term that

originates in one market and immediately affects the conditional intensities on both markets.

The innovation is constructed as the difference between the realized and the expected arrival

rates. According to economic theory we expect positive cross effects of one market’s innovation

on the other market’s conditional intensity, since the arbitrage relation between prices of stocks

listed on two trading venues force an immediate incorporation of information originating in

one market in the second market’s price. Hence, if the realized arrival rate of the process

associated with the first market is higher than expected, it increases the conditional intensity

function of the second market. This can be interpreted as information originating from the

first market that triggers further events in the second market. The larger these adjustments
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in the second market, the more the first market contributes to price discovery. We propose to

relate these innovations’ cross effects and use them as a new information share. This measure

does not suffer from an identification problem inherent in the Hasbrouck (1995) approach and

is therefore unique. Further, we examine the long run dynamics of an intensity shock by an

impulse response analysis.

We empirically analyze the price discovery process of Canadian stocks, which are traded

on the TSX and cross-listed on the NYSE. Our results show a clear leadership of the TSX in

the price discovery process. With an average information share of 29%, the contribution of

the NYSE is slightly less pronounced than indicated by Eun and Sabherwal (2003).

The remainder of the paper is organized as follows. Section 4.2 outlines the methodological

details of the ACI and introduces the new information share. Section 4.3 describes the data

preparation and addresses the question of deseasonalization. In Section 4.4 we show and

discuss the results and implications of our empirical application. Section 4.5 concludes.

4.2 Methodology

4.2.1 The Autoregressive Conditional Intensity Model

Denote by {ti}n
i=1 a stochastic sequence of event times in calendar time t which represent a

point process. Assume that the arrival times are strictly distinct, 0 < t1 < t2... < tn, and

N(t) counts the number of events through t. The internal filtration of N(t) denoted by ℑt

consists of the complete information path of N(t). The ℑt-intensity process that characterizes

the evolution of N(t) is then

λ(t;ℑt) = lim
∆→0

1

∆
P [N(t+ ∆) −N(t) > 0|ℑt] . (4.1)

Equation (4.1) gives an instantaneous probability that an event occurs in the next instant

conditional on the information set available at t.

In a multivariate point process setting, N(t) describes a pooled S-dimensional process

that orders and pools the arrival rates of S individual point processes that occur with arrival

times {tsi}ns

i=1 for s = 1, ..., S. The associated counting functions for the s-type events are

indexed by N s(t). Since the pooled point process is assumed to be strictly increasing, the

individual processes will be strictly orderly, too. Figure 4.2.1 gives an illustration of a pooled
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Figure 4.2.1: Pooled point process illustration. The figure gives an illustration of a simple point

process N(t) that consists of two individual counting processes N1(t) and N2(t). {t1i }
n1

i=1 denotes the arrival

times of events in process 1 and {t2i }
n2

i=1 corresponds to event times in process 2. A time sequence {ti}
n
i=1

containing both event time series is obtained by pooling and ordering the individual event times. As a
consequence, an event occurring in the first process does not depend only on its own history but is allowed to
depend on the history of process 2, as well, and vice versa.

point process N(t) consisting of two individual processes N1(t) and N2(t).

The point process model adopted here is Russell’s (1999) ACI model that parameterizes

the s-type conditional intensity function as,

λs(t;ℑt) = λs
o(t)ψ

s(t)φs(t) . (4.2)

The process in (4.2) depends on a baseline intensity function λs
o(t) and ψs(t) that captures the

dynamic structure of the conditional intensity. In many financial high frequency applications

a daily seasonality function, φs(t), is of particular importance.

For the parametrization of the baseline intensity, we follow Russell (1999) and use a

Weibull type hazard function that is based on the backward recurrence time, xs(t) = t−tNs(t),

of process s,

λs
o(t) = exp(ws)

S∏

r=1

xr(t)γ
s
r . (4.3)

Hence, in the absence of events in the pooled process, γs
r gives the impact of the backward

recurrence time of the rth process on the conditional intensity in (4.2).

Collecting all ψs in a S × 1 vector, ψi = (ψ1, ..., ψS)′, enables us to model the dynamic

component in (4.2) as a vector autoregressive moving average (VARMA(1,1)) process,

ψ̃i = asεsi−1 + Bψ̃i−1 , (4.4)
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with ψs(t) = exp
(
ψ̃s

N(t)

)
in order to ensure positivity of λs(t;ℑt). The right hand side of

(4.4) contains a S×1 coefficient vector as multiplied by a scalar innovation, εsi , that captures

the arrival of new information originating from the sth process. B is a S × S autoregressive

coefficient matrix.

According to Russell (1999) the specification of the innovation in (4.4) is based on the

integrated intensity which is computed by piecewise integration of λs(t;ℑt),

Λs(tsi−1, t
s
i ) =

tsi∫

tsi−1

λs(u;ℑu)du =
∑

j

t̃j+1∫

t̃j

λs(u;ℑu)du , (4.5)

for j denoting all points with tsi−1 < t̃j < t̃j+1 ≤ tsi . Using the random time change theorem

any non-Poisson process can be transformed into a standard Poisson process which implies

an iid standard exponential distributed integrated intensity, i.e. Λs(tsi−1, t
s
i ) ∼ iid Exp(1) (see

Hautsch 2003, Brémaud 1981, Bowsher 2007). Following Bauwens and Hautsch (2006), we

then define the innovation in (4.4) as logarithm of an iid exponential variate centered by its

unconditional expectation,2

εsi = −0.5772 − ln Λs(tsi−1, t
s
i ) . (4.6)

Hence, an innovation in the ACI model has the interpretation of the deviation between the

realized number of events minus the expected number of events within the interval (tsi−1, t
s
i ].

This implies that positive values of εsi indicate an underprediction of arrival rates and negative

values an overprediction. Then the S × 1 vector as in (4.4) gives the degree of adjustment to

the new information originating from type s events that have an impact on the S conditional

intensities.

The log-likelihood function of the S-dimensional ACI process can be expressed as

lnL(θ) =
S∑

s=1

n∑

i=1

{−Λs(ti−1, ti) + ys
i lnλs(ti;ℑti)} , (4.7)

where ys
i is an indicator variable that takes the value one if the ith point of the pooled process

2As indicated by Hautsch (2003), the logarithm of an iid exponential variate yields a minimum Gumbel variate,
ln Λs(ts

i−1, t
s
i ), with mean -0.5772 and variance π2/6.
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is of type s and zero otherwise. Moreover, the first term on the right hand side of (4.7)

corresponds to the s-type intensity integrated over (ti−1, ti] and the second to the probability

of the arrival times in the pooled process. The log-likelihood in (4.7) can be maximized by

standard nonlinear optimization algorithms.

If the model is specified correctly, the resulting s-type residuals in (4.6), ε̃si = Λs(tsi−1, t
s
i ),

should be iid unit exponentially distributed. Hence, the dynamic and distributional properties

of the estimated residuals can be evaluated by a Ljung-Box test and an overdispersion

test suggested by Engle and Russell (1998). Their test statistic against excess dispersion,√
ns

8 (σ2
ε̃s − 1), follows asymptotically a normal distribution, where σ2

ε̃s denotes the variance

of the s-type residual series and ns denotes the number of observations for process s.

4.2.2 Impulse Response Functions and Information Shares

In the context of international price discovery we are particularly interested in the cross effects

of the conditional intensities associated with prices in the home and foreign market. In the

following we therefore focus on a bivariate ACI model. Arbitrage relations between the two

markets make sure that informative price changes originating in one market will subsequently

be incorporated into the prices of the other. Consequently, if we observe unexpected trade

events in one market this will trigger immediately events in the other market.

Henceforth, we denote an innovation originating in the home market (TSX) with

superscript 1 and the corresponding coefficient vector becomes a1. The first element of

a1, a1
1, is then the impact of a TSX innovation, ε1, on the TSX conditional intensity, λ1.

The second element, a1
2, gives the cross effect of ε1 on the NYSE conditional intensity λ2.

Thus, the subscript of a indicates the intensity of the market that is affected by the shock.

Analogously, we denote NYSE associated shocks with a superscript 2. Following earlier

studies (see Russell 1999, Bauwens and Hautsch 2006, Hall and Hautsch 2006), we restrict

the autoregressive coefficient matrix B to be diagonal. Then, the diagonal elements of B

determine the long run impact of a shock. As noted by Russell (1999), stationarity of the

process is ensured if the eigenvalues of B lie inside the unit circle.

In order to examine the long run effect of an innovation shock on the dynamic component

ψ̃ in (4.4) we compute impulse response functions and analyze the cumulated effects of a

shock. The long run impact of a shock in period i in either market is computed by iterating
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(4.4) h periods forward,

ψ̃i+h = asεsi+h−1 + Basεsi+h−2 + ...+ Bh−2asεsi+1 + Bh−1asεsi + Bhψ̃i .

To isolate the standard deviation shock in period i, σε =
√
π2/6, all subsequent shocks

are set to their unconditional mean, E [εsi ] = 0. Further, the unconditional mean E

[
ψ̃i

]
= 0

is used as a starting value for ψ̃. The impulse response functions are then given by,

IR1(h) = Bh−1a1σε and IR2(h) = Bh−1a2σε , (4.8)

where IR1 denotes the bivariate impulse response function associated with a standard

deviation shock on TSX and analogously IR2 gives the bivariate impulse response function

associated with a standard deviation shock on the NYSE. Summing up the effects in each

period delivers the cumulative impulse response functions,

CIR1(h) =

h∑

j=1

Bj−1a1σε and CIR2(h) =

h∑

j=1

Bj−1a2σε . (4.9)

If the process is stationary, the effect of a shock in any of the markets dies out in the long

run. Thus, the cumulative impulse response functions in (4.9) for h→ ∞ converge to a finite

vector given below:

lim
h→∞

CIR1 = [1 − B]−1a1σε and lim
h→∞

CIR2 = [1 − B]−1a2σε . (4.10)

We focus on the cumulated cross effects of an unexpected shock in either market (CIR1
2

and CIR2
1) to determine the contributions to price discovery. If an unexpected positive

deviation in the realized and expected arrival rates in the first market has a large impact on

the second market’s conditional intensity (implies large CIR1
2), then this can be associated

with information originating in the first market that has not yet been incorporated into

the second market prices. A cumulated cross effect of zero (CIR2
1 = 0) on the other hand

indicates that the first market’s conditional intensity does not react to informational events

in the second market. This can be interpreted as evidence in favor of the first market leading

the price discovery process.
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Drawing on this, we propose to use the relative size of these cumulated cross effects as a

measure for a market’s contribution to price discovery. Due to characteristics of the trading

process on the TSX and NYSE both markets might generally react differently to intensity

shocks and we suggest to standardize the cumulative cross effects by the cumulative impact of

a shock in the own market. Consequently,
CIR2

1

CIR1
1

denotes the cross effect of a NYSE intensity

shock on the TSX conditional intensity, standardized by the impact of a TSX shock on TSX’s

intensity.
CIR1

2

CIR2
2

gives the analogue ratio for the NYSE.

Considering (4.10) it is obvious that terms cancel out and the ratio simplifies to
a2
1

a1
1

and

a1
2

a2
2
. In a last step we confine our information shares to lie between zero and one by taking the

standardized cross effects of each market relative to the sum of standardized cross effects:

IIS1 =

a1
2

a2
2

a2
1

a1
1

+
a1
2

a2
2

and IIS2 =

a2
1

a1
1

a2
1

a1
1

+
a1
2

a2
2

. (4.11)

Equation (4.11) then gives our unique intensity based information shares where IIS1 denotes

the TSX’s and IIS2 the NYSE’s contribution to price discovery. Standard errors of the IIS

in (4.11) can be computed via the delta method.

4.3 The Data

We use transaction data for 83 Canadian stocks that are traded on the TSX and cross-listed

on the NYSE. The NYSE data are extracted from the Trade and Quote (TAQ) DVDs supplied

by the NYSE. Toronto quote and trade data were taken from the Equity Trades and Quotes

data set provided by the TSX. The sample period covers 62 trading days from 1st of January

2004 to 31st of March 2004. Continuous trading on both exchanges takes place from 9:30am

to 4:30pm. We remove trades beyond these trading hours and overnight spells. We exclude

16 stocks due to erroneous data or extremely infrequent trading on one or both exchanges.3

There are 67 stocks remaining for estimation. Table 4.3.1 contains the stock tickers as

well as the full company names.

3We omit BGM and ITN due to erroneous data. BEI, BR, CJR, CWG, EXEA, HBG, ITN, LAF, MDZ, MWI,
OPY, RBA, RYG, TRA and VTS are excluded, since after thinning the data the resulting number of trading
days on one or both exchanges is less then 62.
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Ticker Company Name Industry

ABX Barrick Gold Gold Mining
ABY Abitibi Consolidated Inc. Paper
AEM Agnico Eagle Mines Ltd. Gold Mining
AGU Agrium Inc. Chemicals (Specialty)
AL Alcan Inc. Metals and Mining
BCE BCE Inc. Foreign Telecom.
BCM Canadian Imp. Bank of Commerce Bank
BMO Bank of Montreal Bank
BNN Brascan Corp. Real Estate Holding
BNS Bank of Nova Scotia Bank
BPO Brookfield Properties Corporation Real Estate Holding
BVF Biovail Corp. Pharmaceuticals
CCJ Cameco Corp. Nonferrous Metals
CGT CAE Inc. Aerospace
CLS Celestica Inc. Electronics
CNI Canadian National Railway Transport
CNQ Canadian Natural Ressources Petroleum (Producing)
COT Cott Corp. Soft Drinks
CP Canadian Pacific Railway Transport
DTC Domtar Corp. Paper
ECA EnCana Corp. Energy
ENB Enbridge Inc. Gas Distribution
ERF Enerplus Resource Fund Exploration and Production
FDG Fording Canadian Coal Trust Mining (Other Mines)
FFH Fairfax Financial Holdings Ltd. Property and Casualty Insurance
FHR Fairmont Hotels Resorts Inc. Hotels
FS Four Seasons Hotels Inc. Hotels
GG Goldcorp Inc. Gold Mining
GIB CGI Group Inc. Computer Services
GIL Gildan Activewear Inc. Clothing and Accessories
GLG Glamis Golds Ltd. Gold Mining
IDR Intrawest Corp.. Hotels
IPS IPSCO Inc. Metals and Mining
IQW Quebecor World Publishing
ITP Intertape Polymer Group Inc. Containers and Packaging
KFS Kingsway Financial Services Inc. Insurance
KGC Kinross Gold Corp. Gold Mining
MDG Meridian Gold Inc. Gold Mining
MFC Manulife Financial Corp. Insurance
MGA Magna International Inc. Auto Parts
MHM Masonite International Corp. Building Products
MIM MI Developments Inc. Gambling
N Inco Ltd. Metals and Mining
NCX Nova Chemicals Corp. Commodity Chemicals
NRD Noranda Inc. Metals and Mining
NT Nortel Networks Foreign Telecom.
NXY Nexen Inc. Energy
PCZ Petro-Canadian Com. Integrated Oil and Gas
PDG Placer Dome Precious Metals
PDS Precision Drilling Corp Oil Equipment and Services
PGH Pengrowth Energy Exploration and Production
PKZ PetroKazakhstan Inc. Petroleum
POT Potash Corp. Chemical
PWI Primewest Energy Trust Energy
RCN Radiant Communications Telecommunications
RG Rogers Publishing Limited Publishing
RY Royal Bank of Canada Bank
SLF Sun Life Financial Serv. Insurance
SU Suncor Energy Petroleum
TAC TransAlta Corp. Conventional Electricity
TD Toronto-Dominion Bank
TEU CP Ships Ltd. Maritime
TLM Talisman Energy Energy
TOC Thomson Corp. Information Services
TRP TransCanada Corp. Energy
TU Telus Corp. Telecommunications
ZL Zarlink Semiconductor Inc. Semiconductors

Table 4.3.1: Sample stocks. The table shows the ticker symbols of the 67 Canadian sample stocks
together with the full company name and their industry.



CHAPTER 4. A UNIQUE INTENSITY BASED INFORMATION SHARE 87

TSX NYSE
Ticker V ol1 #T 1 τ̄ 1 στ1 AC1 p1

LB V ol2 #T 2 τ̄ 2 στ2 AC2 p2
LB

ABX 35.46 368.2 63.4 94.3 0.16 0.00 34.71 835.0 27.7 39.7 0.11 0.00
ABY 15.98 201.6 115.6 188.9 0.13 0.00 1.45 122.4 188.0 271.7 0.13 0.00
AEM 6.05 137.7 168.5 257.3 0.13 0.00 6.65 377.1 61.7 96.8 0.13 0.00
AGU 7.76 94.2 244.8 366.2 0.14 0.00 4.74 223.7 101.7 157.2 0.13 0.00
AL 49.47 456.5 51.1 72.4 0.17 0.00 63.85 905.7 25.6 34.6 0.10 0.00
BCE 56.76 320.2 72.9 101.2 0.14 0.00 5.02 218.5 105.6 159.7 0.12 0.00
BCM 68.87 286.1 81.5 118.0 0.12 0.00 1.72 80.1 284.3 412.2 0.13 0.00
BMO 52.16 289.0 80.7 118.4 0.13 0.00 1.39 82.9 273.6 402.0 0.17 0.00
BNN 13.07 105.5 219.2 315.2 0.08 0.00 1.00 54.0 405.8 622.1 0.15 0.00
BNS 49.98 214.8 108.7 160.3 0.14 0.00 0.41 21.5 977.2 1333.9 0.09 0.00
BPO 2.63 34.0 655.8 953.6 0.13 0.00 2.13 82.6 275.0 420.1 0.13 0.00
BVF 11.21 289.7 80.4 126.1 0.22 0.00 22.33 565.2 40.8 65.1 0.15 0.00
CCJ 18.34 159.9 145.3 253.4 0.17 0.00 4.58 174.5 130.7 216.1 0.18 0.00
CGT 6.57 156.5 148.5 244.0 0.19 0.00 0.08 12.7 1409.7 2254.4 0.10 0.01
CLS 19.03 393.1 59.3 92.9 0.18 0.00 22.39 578.2 40.1 70.7 0.15 0.00
CNI 23.26 218.5 106.5 162.6 0.14 0.00 10.58 346.7 66.1 97.5 0.12 0.00
CNQ 26.07 208.8 111.4 173.5 0.16 0.00 3.58 157.3 145.5 216.9 0.12 0.00
COT 3.53 50.1 458.7 611.6 0.08 0.00 2.61 143.7 159.9 237.7 0.11 0.00
CP 14.58 171.7 135.5 196.7 0.14 0.00 1.79 131.5 174.0 247.4 0.11 0.00
DTC 10.95 127.8 182.1 278.3 0.15 0.00 0.52 55.7 395.7 574.3 0.10 0.00
ECA 55.61 383.5 60.8 89.4 0.16 0.00 11.93 374.8 61.5 84.7 0.11 0.00
ENB 13.09 98.0 237.0 371.4 0.09 0.00 0.34 22.9 848.4 1329.3 0.15 0.00
ERF 5.14 77.1 298.5 445.7 0.16 0.00 5.82 199.4 115.3 175.8 0.17 0.00
FDG 5.64 77.2 296.5 499.4 0.20 0.00 4.33 156.1 147.4 264.8 0.20 0.00
FFH 4.12 51.8 433.7 713.5 0.18 0.00 4.98 94.8 238.1 450.2 0.15 0.00
FHR 2.62 59.0 390.6 578.8 0.15 0.00 6.00 185.7 123.0 206.2 0.14 0.00
FS 0.91 24.2 891.6 1411.9 0.16 0.00 7.66 258.8 88.9 157.4 0.17 0.00
GG 9.51 255.6 91.1 134.4 0.16 0.00 15.55 584.2 39.7 55.8 0.13 0.00
GIB 4.06 97.8 236.6 373.8 0.12 0.00 0.14 25.2 867.6 1334.6 0.17 0.00
GIL 1.49 26.7 742.2 1290.9 0.09 0.00 0.35 23.0 834.5 1635.4 0.14 0.00
GLG 7.26 124.6 186.6 281.2 0.18 0.00 8.09 413.7 56.1 86.1 0.12 0.00
IDR 1.47 36.2 620.4 889.5 0.13 0.00 1.61 87.0 260.8 408.2 0.11 0.00
IPS 3.47 40.4 543.8 872.6 0.10 0.00 0.12 15.8 1118.5 1915.5 0.10 0.00
IQW 7.13 94.4 245.0 353.9 0.14 0.00 0.32 42.0 520.3 769.6 0.10 0.00
ITP 1.36 30.2 688.2 1119.9 0.08 0.00 0.43 51.5 422.8 713.5 0.10 0.00
KFS 3.45 85.4 268.6 428.4 0.21 0.00 0.42 42.9 511.6 831.6 0.15 0.00
KGC 14.91 284.0 82.2 125.5 0.18 0.00 6.91 352.4 66.1 97.3 0.14 0.00
MDG 3.55 106.0 218.4 351.3 0.16 0.00 5.69 382.3 60.7 91.2 0.11 0.00
MFC 50.17 280.8 83.0 120.5 0.14 0.00 13.34 267.0 86.4 139.2 0.11 0.00
MGA 11.31 107.1 216.5 304.0 0.17 0.00 15.47 335.3 68.7 100.6 0.10 0.00
MHM 6.25 40.4 554.9 944.3 0.13 0.00 0.31 21.8 979.4 1501.2 0.11 0.00
MIM 1.93 19.8 1098.2 1873.6 0.14 0.00 3.51 73.6 301.6 595.6 0.17 0.00
N 45.64 426.4 54.7 80.1 0.17 0.00 55.09 881.3 26.2 37.5 0.07 0.00
NCX 6.51 77.0 300.4 412.3 0.16 0.00 1.94 120.3 188.0 273.7 0.11 0.00
NRD 21.31 290.1 80.3 123.2 0.15 0.00 1.14 103.7 218.9 307.2 0.10 0.00
NT 147.31 959.5 24.3 42.4 0.22 0.00 134.59 555.9 41.9 69.5 0.17 0.00
NXY 26.59 208.5 111.0 185.5 0.13 0.00 2.01 99.9 222.9 330.8 0.16 0.00
PCZ 50.51 285.2 81.7 132.9 0.19 0.00 1.94 99.1 231.4 335.3 0.14 0.00
PDG 28.75 399.7 58.3 86.4 0.16 0.00 23.94 687.7 33.6 49.0 0.11 0.00
PDS 11.59 135.7 170.5 250.9 0.15 0.00 7.36 259.0 87.0 130.7 0.11 0.00
PGH 4.74 116.0 198.3 315.8 0.20 0.00 5.54 248.8 92.7 147.2 0.17 0.00
PKZ 5.33 115.1 199.3 362.2 0.24 0.00 8.68 307.7 74.5 126.8 0.14 0.00
POT 7.19 68.7 335.7 451.8 0.17 0.00 8.54 242.9 94.3 150.3 0.15 0.00
PWI 3.89 94.3 243.6 400.4 0.19 0.00 3.58 121.0 189.6 311.9 0.22 0.00
RCN 1.63 26.8 777.2 1329.9 0.12 0.00 0.34 31.9 645.2 1215.7 0.15 0.00
RG 14.61 111.2 208.1 353.4 0.13 0.00 0.42 51.9 431.3 628.0 0.19 0.00
RY 90.44 303.3 77.0 108.4 0.17 0.00 2.19 103.2 222.5 304.9 0.18 0.00
SLF 29.18 239.3 97.4 138.2 0.13 0.00 1.96 151.3 151.3 215.2 0.13 0.00
SU 35.78 336.8 69.3 103.2 0.14 0.00 11.08 386.0 59.4 80.3 0.09 0.00
TAC 5.16 112.7 206.1 284.4 0.15 0.00 0.08 9.1 1979.3 2759.9 0.07 0.12
TD 61.19 294.3 79.3 113.9 0.15 0.00 1.17 83.0 275.6 395.9 0.17 0.00
TEU 9.01 109.7 210.7 335.1 0.15 0.00 1.69 98.4 233.1 366.5 0.15 0.00
TLM 22.82 162.0 143.6 204.4 0.16 0.00 5.39 219.4 104.4 150.6 0.13 0.00
TOC 14.39 143.9 161.7 258.4 0.17 0.00 1.03 74.9 306.0 453.4 0.14 0.00
TRP 25.90 210.0 111.2 162.1 0.14 0.00 2.43 179.3 129.3 174.9 0.11 0.00
TU 8.99 114.7 202.1 321.1 0.15 0.00 0.22 25.3 848.1 1603.1 0.12 0.00
ZL 3.91 173.8 133.3 236.0 0.18 0.00 0.78 71.4 313.8 561.1 0.22 0.00

Table 4.3.2: Descriptive statistics.For TSX the superscript s equals 1 and for NYSE s = 2. The
columns labeled V ols and #T s give the average daily trading volume in million CAD$ and the average number
of transactions per day, respectively. Columns τ̄ s and στs contain the average and the standard deviation of
transaction durations in seconds for the whole sample period. Columns ACs give the first order autocorrelation
of the transaction duration, a corresponding Ljung-Box p-value is reported in the columns labeled ps

LB . All
statistics are calculated over the whole sample period (from January 1st to 31st of March 2004). For full
company names see Table 4.3.1.
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Prior to estimation the trade data were thinned based on price marks, in order to extract

events associated with new information (see Engle and Russell 1998).4 In detail, we retain

those trade events that are associated with a volume equal or larger than the volume available

at the best quote. This procedure filters those trades that induce a quote revision. Since the S

dimensional intensity model introduced in the previous section assigns zero probability to the

simultaneous occurrence of two events, trades with the same time stamp within one market

are treated as one trade. Further, trades with the same time stamp in both markets are

deleted.

Table 4.3.2 presents detailed stock specific descriptive statistics. It can be seen that the

sample includes a range of stocks varying with respect to size and transaction frequency. The

average trading volume in the seven hours of parallel trading ranges for TSX from CAD$ 0.9

million to CAD$ 147.3 million and for NYSE CAD$ 0.1 million to CAD$ 134.6 million. The

average daily number of transactions ranges from 20 to 960 at TSX and from 9 to 906 at

NYSE. Trades arrive on TSX over all stocks on average every 240 seconds and on NYSE on

every 303 seconds. Transactions on the TSX occur on average every 24 seconds for the most

frequent stock and every 18 minutes for the most infrequent stock. Accordingly, at NYSE

trades occur in a range between 26 seconds and 33 minutes.

Several authors (see e.g. Engle and Russell 1997) point out that price durations exhibit an

intraday pattern in the rate of arrival. We therefore deseasonalize our data prior to estimation.

Assuming the separability of time function and stochastic function in (4.2), the elimination

of the time of day effect proceeds in the following two steps. First, the typical time-of-day

pattern (φi) is estimated by regressing the transaction durations (τi = ti − ti−1) of the pooled

process on polynomial and trigonometric time functions (see Eubank and Speckman 1990

and Appendix C.1). Second, dividing the durations by their estimated typical shape gives

seasonally adjusted durations, i.e. τ̃i = τi

φi
. Then, a seasonal adjusted transaction arrival

series of the pooled process is achieved by setting the first arrival time of the day to zero and

cumulating durations (τ̃i) for each day. Figure 4.3.1 shows the transaction duration for two

randomly chosen stocks in our sample before removing the intraday pattern. As clearly visible

from the figure, transaction durations exhibit the typical ∩-shape. The intraday pattern is

captured by the estimated seasonal figure.

4Price marks are characteristics in the point process that are observed simultaneously with the price arrival
times e.g. the size of the price change, bid-ask spread or volume traded.
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Figure 4.3.1: Intraday pattern of durations. The figure shows the transaction durations (Original
Data: black dots) of the pooled process for two randomly chosen stocks (see Table 4.3.1). As visible from
the figure, transaction durations exhibit a ∩-shape. The typical intraday pattern is captured by the estimated
seasonal figure (Estimated: line).

4.4 Estimation, Information Shares and Results

4.4.1 Estimation Results and Diagnostics

As outlined in Section 4.2.1 estimation of our model parameters is done via maximizing the

model’s likelihood function in (4.7). Since we cannot allow previous day shocks to affect the

next day’s intensity, the likelihood function has to be re-initialized each day and becomes the

sum of independent day-likelihoods. Therefore, the recursive process for the latent ψ̃ in (4.4)

stops at the end of the trading day and is initialized the next morning. Table 4.4.1 contains

sample stock descriptives for the estimated ACI coefficients. Stock specific results can be

found in Table C.2.1 in the Appendix C.2.

First, we draw our attention on the estimates of the baseline intensity in Equation (4.3).

Small average standard errors in Table 4.4.1 and standard errors of the estimates in Table C.2.1

in Appendix C.2 show that generally the constant coefficients of the baseline intensity (ωs) are

statistically significant on a 5% level of confidence. The ratio of constant baseline coefficients,

exp(ω̂1)
exp(ω̂1)+exp(ω̂2)

, estimates very well the ratio of daily average number of transactions in Table

4.3.2, #T 1

#T 1+#T 2 . Hence, the constants reflect the relative number of transactions in the two

markets over the whole sample period. The estimated coefficients of the backward recurrence

function γ̂s
1 and γ̂s

2 are negative and mostly significant for all stocks. Hence, an event in one

market induces an upwards jump in the intensity functions and in the absence of new events

in the pooled process the probability of an event will be downward sloping.
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Estimates M Std Q25 Q75 Min Max M(SE) #sig

ω̂1 -0.657 0.413 -0.995 -0.354 -1.982 -0.044 0.0295 54

ω̂2 -0.777 0.509 -1.143 -0.381 -2.267 0.031 0.0260 54

γ̂1
1 -0.223 0.055 -0.256 -0.189 -0.383 -0.052 0.0067 55

γ̂1
2 -0.088 0.049 -0.124 -0.051 -0.223 -0.026 0.0076 55

γ̂2
1 -0.198 0.082 -0.247 -0.144 -0.406 0.005 0.0078 54

γ̂2
2 -0.234 0.053 -0.271 -0.204 -0.362 -0.083 0.0074 55

â1
1 0.049 0.012 0.041 0.055 0.029 0.099 0.0056 55

â1
2 0.024 0.011 0.018 0.029 0.002 0.069 0.0053 52

â2
1 0.011 0.007 0.006 0.014 0.000 0.032 0.0040 38

â2
2 0.046 0.022 0.031 0.054 0.018 0.111 0.0068 54

b̂1 0.984 0.015 0.977 0.993 0.927 1.000 0.0046 55

b̂2 0.973 0.030 0.968 0.991 0.858 1.000 0.0085 55

Table 4.4.1: Estimation summary results. The table contains descriptive statistics for the estimated
parameters of the ACI model in (4.3) and (4.4). The table displays the mean (M), the standard deviation
(Std), the first (Q25) and third quartile (Q75), and the minimum (Min) and maximum (Max) of the estimated
parameters over all sample stocks. M(SE) is the average standard error of the estimates and #sig gives the
number of significant estimates on a 5% significance level over the sample stocks. The descriptive statistics are
computed over 55 stocks that have positive as estimates and B estimates smaller than one.

As reported in Table C.2.1 in Appendix C.2, we see that the parameter estimates for as
s are

positive for 57 stocks indicating positively autocorrelated intensities. An underprediction of

arrival rates in the previous interval of type s has for the majority of the stocks significant and

positive effects on the conditional intensity of the same type in the next interval. According

to Table 4.4.1, the effect of a shock in the own market tends to be higher than the cross effect

of a shock in the other market. The short run innovation impacts from TSX on NYSE are

on average larger than the effects of NYSE innovations on TSX. For 52 stocks the innovation

effects from the TSX are significant. The spill over effects from NYSE on TSX are significant

for 38 stocks. As expected from the duration modeling literature (see e.g. Engle and Russell

1998), we find strong persistence of innovation shocks. This is reflected in relatively large (on

average 0.98) and significant autoregressive coefficients (bs) for all stocks.

The results for the Ljung-Box test in Table 4.4.2 for the first autocorrelation of the

estimated residuals are mixed. For some stocks the null hypothesis of no autocorrelation

cannot be rejected. Further, the table shows that the mean and the standard deviation of the

estimated residuals are on average close to one on both markets. Considering the standard

deviation of the residuals some excess dispersion is still present.



CHAPTER 4. A UNIQUE INTENSITY BASED INFORMATION SHARE 91

TSX NYSE

Ticker ¯̃ε1 σε̃1 OD1 AC1 LB1 ¯̃ε2 σε̃2 OD2 AC2 LB2

ABX 1.01 1.07 7.67 0.05 47.18 0.99 1.09 14.88 0.03 52.42
ABY 1.00 1.06 4.69 0.03 8.76 0.97 0.99 -0.36 0.04 11.21
AEM 1.00 1.04 2.58 0.03 9.71 1.00 1.06 6.10 0.04 35.20
AGU 1.02 1.07 3.57 0.02 1.38 0.99 1.01 1.07 0.04 23.31
AL 1.00 1.08 9.31 0.04 42.22 0.98 1.05 9.33 0.03 56.35
BCE 1.01 1.06 5.76 0.04 31.56 0.97 1.01 1.10 0.03 14.01
BCM 1.01 1.05 5.13 0.03 15.63 0.96 0.95 -2.53 0.00 0.04
BMO 1.00 1.05 4.70 0.02 8.49 0.95 0.95 -2.39 0.04 7.00
BNN 1.02 1.08 4.86 0.01 0.39 0.95 0.97 -1.05 0.04 5.82
BNS 1.00 1.05 4.13 0.03 11.77 0.88 0.80 -4.50 0.01 0.18
CCJ 1.00 1.09 6.32 0.06 38.92 0.96 0.99 -0.85 0.04 13.23
CGT 0.97 1.04 2.65 0.06 30.67 0.83 0.89 -1.94 0.01 0.11
CLS 1.00 1.08 8.90 0.05 71.05 0.98 1.07 10.01 0.04 54.17
CNI 1.02 1.10 8.44 0.03 11.28 0.97 1.01 1.35 0.02 12.05
CNQ 1.01 1.07 5.58 0.04 20.09 0.98 0.98 -1.13 0.01 1.53
COT 1.02 1.13 5.47 0.02 1.51 0.99 1.03 1.79 0.02 3.76
DTC 1.02 1.05 2.95 0.05 15.69 0.95 0.93 -2.70 0.01 0.27
ECA 1.00 1.08 8.53 0.05 60.31 0.98 0.98 -2.25 0.02 9.56
ERF 1.01 1.05 2.38 0.03 3.59 0.99 1.01 0.63 0.05 31.02
FDG 0.99 1.03 1.69 0.04 8.76 0.97 1.07 4.84 0.04 14.45
FFH 0.97 1.05 2.01 0.03 3.32 0.99 1.08 4.53 0.04 7.87
FHR 1.01 1.04 1.79 0.03 3.96 0.99 1.02 1.82 0.03 13.25
FS 0.96 0.96 -1.15 0.01 0.24 0.99 1.07 5.83 0.05 31.07
GG 1.01 1.04 3.53 0.05 37.23 0.99 1.01 1.79 0.02 14.13
GIB 0.99 1.11 6.26 0.03 4.85 0.95 1.01 0.37 0.01 0.19
GIL 1.00 1.28 8.72 0.03 1.10 1.02 1.35 10.36 -0.01 0.09
GLG 1.01 1.05 2.99 0.03 6.13 0.99 1.05 5.52 0.03 29.54
IPS 1.03 1.14 4.86 0.02 0.75 0.90 0.97 -0.60 -0.04 1.14
IQW 1.01 1.04 2.25 0.04 10.16 0.96 1.05 1.90 0.04 3.48
KFS 0.99 1.13 6.90 0.05 14.42 0.98 1.21 8.50 0.06 10.45
KGC 1.00 1.07 7.23 0.05 45.12 1.00 1.05 4.84 0.03 26.22
MDG 0.99 1.00 0.01 0.05 13.28 1.00 1.03 3.10 0.02 9.05
MFC 1.01 1.07 6.75 0.03 19.48 0.99 1.04 3.50 0.02 10.05
NCX 1.02 1.04 1.71 0.02 2.80 0.99 0.98 -1.05 0.02 2.42
NRD 1.00 1.07 6.39 0.05 37.59 0.97 0.98 -1.05 0.03 4.31
NT 0.98 1.13 24.02 0.06 198.05 0.95 1.11 15.60 0.06 104.28
NXY 0.99 1.14 11.21 0.05 25.80 0.92 0.98 -0.99 0.03 7.26
PCZ 0.98 1.07 7.18 0.05 35.56 0.96 0.94 -3.34 0.02 1.77
PDG 1.01 1.07 8.38 0.05 52.02 0.99 1.05 7.06 0.03 27.65
PDS 1.02 1.10 7.00 0.05 17.36 0.98 1.00 0.05 0.02 3.64
PGH 0.99 1.06 3.94 0.05 14.27 0.98 1.07 6.18 0.02 4.33
PKZ 0.97 1.03 2.07 0.07 34.86 0.96 1.05 5.01 0.01 3.60
POT 1.01 0.99 -0.31 0.04 7.09 0.98 1.02 1.40 0.03 16.21
RCN 1.02 1.39 12.79 0.04 3.00 1.04 1.32 11.10 -0.02 0.75
RG 1.00 1.11 6.52 0.03 7.59 0.98 1.03 1.31 0.04 3.95
RY 1.01 1.07 6.72 0.06 65.88 0.96 0.96 -2.16 0.05 13.21
SLF 1.01 1.04 3.82 0.04 24.81 0.98 0.97 -1.75 0.02 5.45
SU 1.03 1.09 9.68 0.05 45.26 0.97 0.98 -2.03 0.01 2.78
TAC 0.97 1.04 2.22 0.05 14.48 0.80 0.79 -3.02 0.06 2.09
TD 1.00 1.06 6.14 0.03 21.08 0.97 0.95 -2.54 0.03 4.45
TEU 1.00 1.12 7.11 0.04 8.45 0.99 1.05 2.89 0.03 3.75
TLM 1.01 1.06 4.15 0.02 5.62 0.99 1.00 0.30 0.03 9.93
TOC 1.00 1.04 2.98 0.06 32.35 0.98 1.00 -0.19 0.01 0.92
TRP 1.00 1.08 6.24 0.05 27.77 0.99 0.99 -1.10 0.03 12.88
ZL 0.99 1.07 4.79 0.05 25.42 0.95 0.95 -2.13 0.08 25.72

Table 4.4.2: Residual diagnostics for the ACI model. The table presents residual diagnostics for
the estimated residuals corresponding to TSX (s = 1) and NYSE (s = 2). ACs denotes the value of the first
order autocorrelation and columns labeled with LBs contain the corresponding Ljung-Box statistic. ¯̃εs and
σε̃s contain the mean and the standard deviation of the estimated residuals and ODs gives the test statistic
of the overdispersion test of Engle and Russell (1998). This statistics has a limiting normal distribution under
the null with a 5% critical value of 1.645. The statistics are computed for 55 stocks that have positive as

estimates and B estimates smaller than one. For full company names see Table 4.3.1.
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4.4.2 Information Shares

Figure 4.4.1 shows cumulated impulse response functions in (4.9) for an exemplary sample

stock. The left panel depicts the impact of a standard deviation shock on the TSX and

its impact on TSX and NYSE processes. The right panel illustrates the impact of a NYSE

standard deviation shock on both processes. Own market’s shocks have larger impacts on

Figure 4.4.1: Cumulated impulse response function of a standard deviation innovation shock.
The figure shows cumulated impulse response functions of (4.9) for the recursive process ψ̃ in (4.4) for the
sample stock ABX (see Table 4.3.1). The left panel depicts the impact of a standard deviation shock on the
TSX and its impact on the TSX process (solid line) and on the NYSE (dashed line). Analogously, the right
panel illustrates the impact of a standard deviation shock on the NYSE on the NYSE process (solid line) and
on the TSX (dashed line).

ψ̃ than shocks of the other market. Long run impacts of a TSX shock on ψ̃2 are generally

higher, than the effects of a NYSE shock on ψ̃1.

Table 4.4.3 displays sample stock descriptives for the unique intensity based information

share (IIS) according to (4.11). We also report Hasbrouck information shares (details are

outlined in Appendix C.3). Stock specific results can be found in Table C.2.2 in the Appendix

C.2.

As reported in Table 4.4.3 the average home market intensity based information share

(IIS1) amounts to 71%. This implies a clear leadership of the TSX in price discovery. It

is even more pronounced than indicated by previous studies (see Grammig et al. 2005, Eun

and Sabherwal 2003). For only 7 out of 55 stocks we observe a higher NYSE contribution.

Considering the average Hasbrouck information share midpoint (HIS1
mid) of 54% for the

home market, we find on average higher intensity based information shares. However, the
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TSX NYSE

Descriptive IIS1 HIS1
low HIS1

up HIS1
mid IIS2 HIS2

low HIS2
up HIS2

mid

M 70.9 30.2 77.3 53.7 29.1 22.7 69.8 46.3
M(SE) 11.3 2.6 2.5 2.3 11.3 2.5 2.6 2.3
Std 15.6 23.0 16.7 18.2 15.6 16.7 23.0 18.2
Q25 61.9 9.0 60.3 37.9 18.2 8.4 52.2 30.4
Q75 81.7 47.3 90.8 67.6 36.0 36.5 90.7 61.9
Min 30.9 0.1 21.7 10.9 0.7 2.9 11.6 7.7
Max 99.3 88.4 97.1 92.3 69.1 78.3 99.9 89.1

Table 4.4.3: Intensity based information shares – descriptives. The table presents descriptives
computed over the information shares using an intensity based and the standard Hasbrouck approach in
percent. The descriptives are the mean (M), the standard deviation (Std), the mean of the information share
standard error (M(SE)), the 25% quantile (Q25), the 75% quantile (Q75), the minimum (Min) and maximum
(Max) over the cross sectional information shares. The midpoint and the lower and upper bounds of Hasbrouck
are denoted by HISs

mid, HISs
low and HISs

up, respectively. Columns labeled IISs give the unique intensity
based information share. For TSX s = 1 and NYSE s = 2. The descriptives are computed over 55 stocks that
have positive as estimates and B estimates smaller than one.

Hasbrouck information share bounds deviate considerably, with an average lower bound of

30% and an average upper bound of 77% for the home market share. Consequently, the

lower and upper bounds differ by 47 percentage points on average and the midpoint can be

considered a very imprecise proxy for the true information share, which emphasizes the need

for a unique measure. We further find that the cross sectional variation of intensity based

information shares corresponds to those of the Hasbrouck share midpoints. For 25 out of 55

stocks, the intensity shares lie outside the Hasbrouck share bounds.

4.5 Conclusion

Investors’ decision to invest and companies’ intention to list their stocks on a stock exchange

depends on the ability of an exchange to provide a prospering trading environment. As a

result of an increasing globalization and improved technology, small national exchanges fear

to lose their attractiveness for investors and companies. In particular, within the context of

international cross-listed stocks, it is of paramount concern for a national stock exchange to

remain the dominant market with regard to price discovery.

We propose a new approach to measure the contribution of different trading venues to

the price discovery process of internationally cross-listed stocks. We use a bivariate intensity

approach as an alternative to the commonly applied vector error correction model in order

to take into account the irregularity of the data. Based on the autoregressive conditional

intensity model of Russell (1999), contributions to price discovery are determined by modeling



CHAPTER 4. A UNIQUE INTENSITY BASED INFORMATION SHARE 94

the interdependencies of the trading processes in both markets.

In contrast to the Hasbrouck (1995) approach, our new information share delivers unique

results rather than upper and lower bounds. In our empirical application we examine

Canadian stocks which are listed on the TSX as well as on the NYSE. We find that despite

the concern of the TSX to lose its share in price discovery to the NYSE, trading on the

TSX still plays the most important role. We show that the leadership of the TSX is even

more pronounced than indicated by previous studies. The average TSX information share

amounts to 71% , which confirms previous results by Phylaktis and Korczak (2007), Eun and

Sabherwal (2003), and Grammig et al. (2005), who also analyze Canadian stocks. We also

compare our results to the Hasbrouck (1995) information shares. On average we find a larger

home market contribution than indicated by the Hasbrouck midpoints.

Generally, our intensity based unique information share offers an alternative approach to

determine the leading market with respect to price discovery. Taking into account the irregular

spacing of the transaction data, it presents an appealing alternative to the Hasbrouck (1995)

information shares when analyzing price discovery using high frequency data.



Appendix C

C.1 Deseasonalization

In order to deseasonalize the transaction data, we follow Eubank and Speckman (1990) and

regress the transaction durations of the pooled process on polynomial and trigonometric time

functions. The regression equation reads for some integers d ≥ 0 and δ ≥ 0 as follows,

τi = β0 +

d∑

j=1

βp
j t

j
i +

δ∑

j=1

[βc
j cos(jti) + βs

j sin(jti)] + ǫi , (C.1)

where the transaction duration is τi = ti− ti−1. The number of polynomial and trigonometric

terms are selected by a generalized cross-validation measure defined as,

GCV =
nRSS

(n− 2δ − d− 1)2
, (C.2)

where RSS denotes the residual sum of squares and n the number of observations. In the

selection we restrict d and δ to be smaller than five. To compute a typical time-of-day function

we select the specification of (C.1) that minimizes the GCV in (C.2).

95
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C.2 Additional Tables

Ticker ω̂1 ω̂2 â1
1 â1

2 â2
1 â2

2 b̂1 b̂2 γ̂1
1 γ̂1

2 γ̂2
1 γ̂2

2

ABX -0.991 -0.292 0.048 0.029 0.003 0.045 0.991 0.965 -0.189 -0.032 -0.060 -0.146
(0.025) (0.009) (0.004) (0.003) (0.002) (0.003) (0.002) (0.004) (0.004) (0.005) (0.003) (0.003)

ABY -0.411 -0.898 0.058 0.010 0.015 0.043 0.965 0.984 -0.272 -0.093 -0.174 -0.260
(0.018) (0.024) (0.005) (0.004) (0.004) (0.006) (0.006) (0.005) (0.005) (0.006) (0.007) (0.007)

AEM -1.137 -0.209 0.029 0.013 0.008 0.032 0.996 0.985 -0.228 -0.121 -0.135 -0.201
(0.028) (0.016) (0.004) (0.003) (0.002) (0.003) (0.001) (0.003) (0.006) (0.007) (0.004) (0.004)

AGU -1.039 -0.287 0.063 0.032 0.002 0.044 0.975 0.976 -0.275 -0.131 -0.166 -0.271
(0.024) (0.019) (0.008) (0.005) (0.004) (0.004) (0.006) (0.005) (0.008) (0.009) (0.006) (0.005)

AL -0.910 -0.293 0.045 0.023 0.006 0.022 0.995 0.992 -0.130 -0.036 -0.088 -0.108
(0.030) (0.014) (0.003) (0.002) (0.001) (0.001) (0.001) (0.001) (0.004) (0.004) (0.003) (0.003)

BCE -0.446 -0.824 0.051 0.018 0.012 0.050 0.978 0.978 -0.158 -0.029 -0.145 -0.229
(0.018) (0.018) (0.004) (0.003) (0.003) (0.005) (0.003) (0.004) (0.005) (0.005) (0.006) (0.005)

BCM -0.206 -1.404 0.047 0.037 0.021 0.111 0.971 0.946 -0.198 -0.041 -0.250 -0.213
(0.018) (0.025) (0.004) (0.007) (0.005) (0.012) (0.004) (0.011) (0.005) (0.006) (0.009) (0.009)

BMO -0.214 -1.387 0.039 0.018 0.011 0.057 0.987 0.984 -0.189 -0.030 -0.225 -0.221
(0.022) (0.028) (0.003) (0.004) (0.004) (0.007) (0.002) (0.004) (0.005) (0.006) (0.009) (0.009)

BNN -0.380 -1.048 0.046 0.010 0.011 0.034 0.952 0.989 -0.225 -0.064 -0.268 -0.273
(0.020) (0.032) (0.007) (0.005) (0.006) (0.007) (0.012) (0.006) (0.008) (0.009) (0.010) (0.010)

BNS -0.087 -2.006 0.051 0.059 0.016 0.093 0.953 0.886 -0.207 -0.026 -0.254 -0.304
(0.021) (0.042) (0.004) (0.019) (0.008) (0.027) (0.008) (0.053) (0.005) (0.007) (0.016) (0.016)

BPO -1.115 -0.286 0.051 0.046 -0.005 0.071 0.984 0.655 -0.262 -0.195 -0.229 -0.284
(0.038) (0.017) (0.020) (0.023) (0.005) (0.015) (0.017) (0.162) (0.014) (0.014) (0.009) (0.008)

BVF -1.120 -0.646 0.048 0.023 0.013 0.024 0.999 1.001 -0.141 -0.080 -0.099 -0.172
(0.036) (0.028) (0.002) (0.002) (0.002) (0.001) (0.000) (0.000) (0.004) (0.005) (0.004) (0.003)

CCJ -0.541 -0.571 0.063 0.035 0.023 0.038 0.997 0.999 -0.255 -0.098 -0.198 -0.226
(0.042) (0.037) (0.004) (0.003) (0.003) (0.003) (0.001) (0.001) (0.005) (0.007) (0.006) (0.005)

CGT -0.044 -2.041 0.059 0.037 0.013 0.075 0.991 0.975 -0.214 -0.046 -0.250 -0.362
(0.043) (0.060) (0.005) (0.011) (0.009) (0.020) (0.003) (0.010) (0.006) (0.009) (0.021) (0.019)

CLS -0.697 -0.381 0.055 0.032 0.014 0.034 0.992 0.989 -0.169 -0.083 -0.115 -0.208
(0.029) (0.017) (0.004) (0.002) (0.002) (0.002) (0.001) (0.001) (0.004) (0.004) (0.004) (0.003)

CNI -0.759 -0.419 0.034 0.017 0.000 0.023 0.996 0.990 -0.199 -0.075 -0.177 -0.213
(0.034) (0.017) (0.003) (0.002) (0.002) (0.002) (0.001) (0.002) (0.005) (0.006) (0.004) (0.004)

CNQ -0.467 -0.790 0.051 0.023 0.014 0.040 0.985 0.978 -0.215 -0.079 -0.224 -0.221
(0.025) (0.020) (0.004) (0.004) (0.003) (0.006) (0.003) (0.006) (0.005) (0.006) (0.006) (0.006)

COT -1.198 -0.235 0.029 0.008 0.002 0.034 0.991 0.982 -0.250 -0.125 -0.235 -0.232
(0.029) (0.022) (0.007) (0.005) (0.003) (0.004) (0.006) (0.005) (0.011) (0.012) (0.007) (0.006)

CP -0.522 -0.832 0.053 0.016 -0.004 0.026 0.976 0.993 -0.213 -0.057 -0.235 -0.197
(0.021) (0.026) (0.006) (0.003) (0.004) (0.004) (0.005) (0.003) (0.006) (0.007) (0.007) (0.007)

DTC -0.339 -1.098 0.064 0.022 0.002 0.056 0.927 0.940 -0.286 -0.079 -0.241 -0.280
(0.019) (0.025) (0.009) (0.009) (0.007) (0.011) (0.021) (0.023) (0.006) (0.008) (0.010) (0.010)

ECA -0.574 -0.644 0.046 0.016 0.008 0.025 0.990 0.989 -0.165 -0.051 -0.142 -0.200
(0.023) (0.015) (0.003) (0.002) (0.002) (0.002) (0.002) (0.002) (0.004) (0.005) (0.004) (0.004)

ENB -0.204 -1.573 0.049 -0.005 0.005 0.043 0.951 0.993 -0.276 -0.048 -0.307 -0.313
(0.025) (0.048) (0.008) (0.006) (0.008) (0.012) (0.016) (0.006) (0.008) (0.010) (0.015) (0.014)

ERF -1.180 -0.379 0.037 0.017 0.014 0.028 0.997 1.000 -0.240 -0.192 -0.150 -0.222
(0.033) (0.029) (0.004) (0.003) (0.003) (0.002) (0.001) (0.001) (0.008) (0.009) (0.006) (0.005)

FDG -1.059 -0.487 0.050 0.022 0.026 0.044 0.995 0.998 -0.249 -0.188 -0.224 -0.200
(0.037) (0.035) (0.006) (0.004) (0.003) (0.003) (0.002) (0.001) (0.008) (0.009) (0.006) (0.006)

FFH -0.946 -0.400 0.056 0.032 0.010 0.035 0.991 0.988 -0.252 -0.145 -0.239 -0.291
(0.040) (0.031) (0.009) (0.006) (0.004) (0.006) (0.004) (0.005) (0.011) (0.011) (0.008) (0.007)

FHR -1.245 -0.206 0.044 0.013 0.002 0.039 0.987 0.971 -0.284 -0.168 -0.162 -0.266
(0.029) (0.018) (0.007) (0.005) (0.004) (0.005) (0.005) (0.007) (0.010) (0.010) (0.006) (0.005)

FS -1.982 0.031 0.099 0.019 0.002 0.049 0.979 0.975 -0.322 -0.223 -0.111 -0.294
(0.050) (0.023) (0.024) (0.008) (0.007) (0.004) (0.012) (0.004) (0.015) (0.015) (0.006) (0.004)

GG -1.007 -0.286 0.040 0.023 0.017 0.026 0.994 0.991 -0.194 -0.081 -0.072 -0.184
(0.026) (0.017) (0.003) (0.002) (0.002) (0.002) (0.001) (0.001) (0.005) (0.006) (0.004) (0.003)

GIB -0.221 -1.447 0.049 0.023 0.006 0.067 0.976 0.977 -0.258 -0.054 -0.302 -0.316
(0.029) (0.043) (0.006) (0.008) (0.007) (0.012) (0.006) (0.008) (0.008) (0.009) (0.014) (0.014)

GIL -0.554 -0.728 0.045 0.029 0.002 0.093 0.975 0.935 -0.383 -0.139 -0.323 -0.325
(0.037) (0.042) (0.011) (0.014) (0.009) (0.015) (0.016) (0.023) (0.013) (0.015) (0.015) (0.015)

GLG -1.267 -0.158 0.071 0.023 0.013 0.028 0.980 0.985 -0.231 -0.120 -0.135 -0.206
(0.023) (0.015) (0.007) (0.003) (0.003) (0.002) (0.004) (0.003) (0.007) (0.008) (0.004) (0.004)

Table C.2.1: Stock specific estimation results. The table contains estimated parameters of the ACI
model in (4.3) and (4.4). Standard errors are reported in parentheses. For full company names see Table 4.3.1.
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Ticker ω̂1 ω̂2 â1
1 â1

2 â2
1 â2

2 b̂1 b̂2 γ̂1
1 γ̂1

2 γ̂2
1 γ̂2

2

IDR -1.104 -0.302 0.037 0.017 -0.004 0.034 0.981 0.967 -0.269 -0.200 -0.214 -0.290
(0.032) (0.022) (0.012) (0.007) (0.005) (0.006) (0.013) (0.011) (0.013) (0.013) (0.008) (0.008)

IPS -0.273 -1.201 0.051 0.069 0.032 0.093 0.941 0.858 -0.306 -0.086 -0.364 -0.341
(0.031) (0.045) (0.014) (0.022) (0.013) (0.027) (0.032) (0.070) (0.012) (0.014) (0.017) (0.017)

IQW -0.327 -1.122 0.036 0.016 0.012 0.052 0.990 0.981 -0.253 -0.076 -0.276 -0.246
(0.030) (0.035) (0.004) (0.006) (0.005) (0.010) (0.003) (0.008) (0.008) (0.009) (0.012) (0.012)

ITP -0.888 -0.407 0.040 0.027 -0.001 0.060 0.973 0.917 -0.385 -0.173 -0.281 -0.303
(0.032) (0.025) (0.013) (0.011) (0.006) (0.009) (0.021) (0.022) (0.012) (0.014) (0.010) (0.010)

KFS -0.444 -1.023 0.036 0.019 0.022 0.035 1.000 0.996 -0.210 -0.095 -0.246 -0.315
(0.035) (0.034) (0.004) (0.004) (0.004) (0.008) (0.001) (0.004) (0.008) (0.009) (0.012) (0.010)

KGC -0.655 -0.503 0.051 0.030 0.013 0.048 0.990 0.969 -0.175 -0.085 -0.101 -0.184
(0.026) (0.013) (0.004) (0.003) (0.002) (0.004) (0.002) (0.004) (0.005) (0.005) (0.005) (0.004)

MDG -1.295 -0.146 0.046 0.020 0.008 0.030 0.988 0.980 -0.284 -0.137 -0.123 -0.206
(0.024) (0.014) (0.006) (0.003) (0.003) (0.003) (0.003) (0.003) (0.007) (0.008) (0.004) (0.004)

MFC -0.573 -0.630 0.052 0.028 0.012 0.054 0.975 0.961 -0.220 -0.062 -0.166 -0.253
(0.017) (0.013) (0.004) (0.004) (0.003) (0.005) (0.004) (0.006) (0.005) (0.005) (0.005) (0.005)

MGA -1.236 -0.181 0.053 0.033 -0.001 0.032 0.990 0.977 -0.222 -0.121 -0.168 -0.238
(0.028) (0.014) (0.007) (0.004) (0.002) (0.003) (0.003) (0.004) (0.008) (0.008) (0.005) (0.004)

MHM -0.426 -0.998 0.074 -0.003 -0.005 0.039 0.711 0.985 -0.336 -0.061 -0.293 -0.330
(0.025) (0.042) (0.022) (0.008) (0.017) (0.013) (0.149) (0.017) (0.011) (0.014) (0.015) (0.015)

MIM -1.340 -0.220 0.112 0.017 -0.004 0.064 0.945 0.976 -0.316 -0.262 -0.179 -0.356
(0.045) (0.039) (0.019) (0.009) (0.011) (0.009) (0.016) (0.010) (0.016) (0.016) (0.009) (0.008)

N -0.998 -0.597 0.051 0.015 0.007 0.021 0.996 1.000 -0.161 -0.061 -0.082 -0.156
(0.030) (0.038) (0.003) (0.001) (0.001) (0.001) (0.001) (0.000) (0.004) (0.004) (0.003) (0.003)

NCX -0.852 -0.469 0.062 0.036 0.004 0.042 0.952 0.936 -0.216 -0.124 -0.244 -0.272
(0.022) (0.017) (0.010) (0.008) (0.005) (0.006) (0.015) (0.019) (0.009) (0.010) (0.007) (0.007)

NRD -0.243 -1.167 0.056 0.025 0.010 0.034 0.979 0.980 -0.213 -0.044 -0.180 -0.260
(0.023) (0.022) (0.005) (0.004) (0.004) (0.006) (0.004) (0.005) (0.005) (0.005) (0.008) (0.008)

NT -0.421 -0.980 0.041 0.025 0.012 0.018 0.999 1.000 -0.052 -0.030 0.005 -0.083
(0.038) (0.032) (0.001) (0.001) (0.001) (0.001) (0.000) (0.000) (0.002) (0.003) (0.004) (0.003)

NXY -0.373 -1.140 0.048 0.015 0.010 0.031 0.993 0.998 -0.255 -0.059 -0.203 -0.236
(0.034) (0.036) (0.005) (0.003) (0.003) (0.004) (0.002) (0.001) (0.005) (0.006) (0.008) (0.007)

PCZ -0.316 -1.279 0.047 0.018 0.015 0.030 0.999 0.998 -0.195 -0.050 -0.214 -0.220
(0.038) (0.032) (0.003) (0.003) (0.003) (0.004) (0.001) (0.001) (0.004) (0.006) (0.008) (0.008)

PDG -0.727 -0.341 0.044 0.026 0.011 0.034 0.996 0.988 -0.156 -0.055 -0.054 -0.166
(0.038) (0.015) (0.003) (0.002) (0.002) (0.002) (0.001) (0.001) (0.004) (0.004) (0.003) (0.003)

PDS -0.919 -0.340 0.042 0.031 0.006 0.032 0.989 0.977 -0.228 -0.103 -0.178 -0.216
(0.026) (0.016) (0.005) (0.004) (0.003) (0.003) (0.003) (0.004) (0.007) (0.007) (0.005) (0.005)

PGH -1.139 -0.484 0.049 0.021 0.017 0.027 0.998 1.000 -0.180 -0.152 -0.123 -0.194
(0.037) (0.029) (0.004) (0.002) (0.003) (0.002) (0.001) (0.000) (0.007) (0.008) (0.005) (0.005)

PKZ -1.353 -0.471 0.066 0.029 0.020 0.027 0.997 0.999 -0.233 -0.159 -0.149 -0.231
(0.041) (0.030) (0.005) (0.002) (0.002) (0.002) (0.001) (0.000) (0.007) (0.008) (0.005) (0.004)

POT -1.341 -0.223 0.051 0.009 0.005 0.038 0.983 0.991 -0.215 -0.130 -0.186 -0.234
(0.028) (0.028) (0.008) (0.004) (0.004) (0.003) (0.005) (0.002) (0.010) (0.010) (0.005) (0.005)

PWI -0.948 -0.750 0.035 0.028 0.013 0.026 1.001 1.001 -0.207 -0.167 -0.174 -0.228
(0.032) (0.032) (0.003) (0.003) (0.002) (0.002) (0.000) (0.000) (0.008) (0.008) (0.007) (0.007)

RCN -0.690 -0.632 0.029 0.039 0.020 0.065 0.989 0.889 -0.289 -0.191 -0.406 -0.259
(0.035) (0.031) (0.008) (0.014) (0.007) (0.014) (0.007) (0.039) (0.015) (0.015) (0.012) (0.013)

RG -0.358 -1.152 0.060 0.032 0.011 0.088 0.967 0.901 -0.302 -0.057 -0.358 -0.204
(0.025) (0.026) (0.007) (0.011) (0.006) (0.013) (0.008) (0.027) (0.007) (0.009) (0.009) (0.011)

RY -0.209 -1.299 0.047 0.022 0.007 0.059 0.986 0.978 -0.145 -0.026 -0.218 -0.183
(0.024) (0.025) (0.003) (0.004) (0.003) (0.008) (0.002) (0.005) (0.005) (0.006) (0.008) (0.008)

SLF -0.432 -0.899 0.044 0.025 0.007 0.061 0.976 0.949 -0.204 -0.048 -0.234 -0.236
(0.018) (0.016) (0.004) (0.005) (0.003) (0.007) (0.004) (0.010) (0.005) (0.006) (0.006) (0.006)

SU -0.445 -0.539 0.039 0.023 0.006 0.032 0.996 0.980 -0.221 -0.057 -0.134 -0.189
(0.054) (0.014) (0.003) (0.003) (0.002) (0.003) (0.001) (0.003) (0.004) (0.005) (0.004) (0.004)

TAC -0.110 -2.267 0.036 0.002 0.006 0.025 0.993 0.998 -0.153 -0.039 -0.328 -0.311
(0.038) (0.067) (0.005) (0.006) (0.008) (0.014) (0.003) (0.009) (0.008) (0.010) (0.024) (0.023)

TD -0.145 -1.381 0.041 0.030 0.007 0.095 0.992 0.948 -0.153 -0.036 -0.244 -0.240
(0.027) (0.023) (0.003) (0.006) (0.004) (0.013) (0.002) (0.014) (0.005) (0.006) (0.009) (0.009)

TEU -0.562 -0.721 0.061 0.018 0.009 0.049 0.981 0.976 -0.264 -0.112 -0.271 -0.253
(0.028) (0.024) (0.008) (0.005) (0.004) (0.007) (0.005) (0.007) (0.007) (0.008) (0.008) (0.008)

TLM -0.738 -0.490 0.052 0.023 0.014 0.032 0.983 0.981 -0.189 -0.091 -0.185 -0.211
(0.024) (0.017) (0.005) (0.004) (0.003) (0.004) (0.004) (0.005) (0.006) (0.007) (0.006) (0.005)

TOC -0.396 -1.048 0.038 0.014 0.013 0.059 0.988 0.964 -0.270 -0.057 -0.301 -0.204
(0.026) (0.025) (0.005) (0.007) (0.004) (0.014) (0.004) (0.018) (0.006) (0.007) (0.008) (0.009)

TRP -0.544 -0.725 0.052 0.021 0.008 0.029 0.986 0.991 -0.189 -0.051 -0.162 -0.195
(0.024) (0.022) (0.004) (0.003) (0.003) (0.004) (0.002) (0.002) (0.005) (0.006) (0.006) (0.006)

TU -0.210 -1.597 0.086 0.001 -0.003 0.084 0.910 0.966 -0.326 -0.055 -0.367 -0.345
(0.023) (0.043) (0.008) (0.007) (0.011) (0.015) (0.015) (0.012) (0.007) (0.009) (0.013) (0.013)

ZL -0.341 -1.172 0.057 0.028 0.018 0.036 0.992 0.996 -0.236 -0.102 -0.197 -0.280
(0.037) (0.037) (0.005) (0.004) (0.004) (0.007) (0.002) (0.002) (0.005) (0.007) (0.009) (0.008)

Table C.2.1: Stock specific estimation results continued. The table contains estimated parameters
of the ACI model in (4.3) and (4.4). Standard errors are reported in parentheses. For full company names see
Table 4.3.1.
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TSX

Ticker IIS1 SE(IIS) HIS1
low HIS1

up HIS1
mid SE(HISmid)

ABX 91.0 4.5 3.4 58.2 30.8 2.0
ABY 46.7 12.1 39.4 85.8 62.6 1.6
AEM 59.8 8.7 3.4 51.3 27.3 1.5
AGU 95.6 7.6 9.3 58.3 33.8 1.6
AL 88.5 2.5 5.6 82.5 44.0 0.9
BCE 60.0 7.5 48.8 92.5 70.7 1.9
BCM 41.9 7.3 47.2 96.2 71.7 1.8
BMO 52.3 10.1 59.2 94.7 77.0 1.6
BNN 54.5 17.6 40.3 76.1 58.2 2.3
BNS 67.0 14.4 70.2 95.1 82.6 1.8
CCJ 71.9 3.8 18.6 83.6 51.1 1.5
CGT 69.2 17.3 88.4 96.1 92.3 1.9
CLS 77.9 3.1 7.3 82.2 44.7 1.2
CNI 99.3 6.8 11.4 85.2 48.3 22.3
CNQ 67.9 6.6 33.0 92.5 62.8 1.4
COT 81.6 31.1 11.9 59.5 35.7 1.9
DTC 91.0 24.3 49.0 83.7 66.3 2.3
ECA 78.8 5.0 25.8 93.6 59.7 1.3
ERF 62.5 6.7 11.1 64.5 37.8 1.5
FDG 48.0 6.3 8.7 58.5 33.6 1.9
FFH 83.9 6.2 16.9 54.6 35.7 2.6
FHR 88.3 18.6 5.3 45.3 25.3 1.6
FS 96.0 16.0 0.1 21.7 10.9 1.7
GG 68.0 3.8 6.4 69.9 38.1 1.2
GIB 74.6 23.8 57.0 83.5 70.3 2.7
GIL 87.1 49.3 34.1 52.6 43.4 4.7
GLG 81.8 4.5 3.2 60.6 31.9 1.5
IPS 54.5 13.2 45.0 57.4 51.2 4.2
IQW 47.0 13.6 51.4 82.7 67.0 3.1
KFS 47.4 8.3 65.1 90.3 77.7 2.7
KGC 70.7 4.4 17.5 77.0 47.2 1.5
MDG 80.4 6.3 4.0 56.6 30.3 1.6
MFC 69.4 6.5 21.6 78.8 50.2 4.4
NCX 93.0 8.8 17.8 70.7 44.3 1.9
NRD 79.7 7.2 61.4 96.9 79.1 1.4
NT 82.2 2.7 5.4 84.5 44.9 1.1
NXY 70.8 8.3 52.8 94.5 73.7 1.8
PCZ 64.6 6.3 45.2 97.1 71.2 1.7
PDG 74.9 3.3 9.7 82.3 46.0 1.5
PDS 86.9 5.3 13.1 76.5 44.8 1.2
PGH 69.4 4.7 9.2 59.1 34.1 2.3
PKZ 78.5 3.0 7.2 68.7 37.9 1.8
POT 73.5 16.8 4.7 54.3 29.5 1.5
RCN 46.5 12.6 15.3 69.4 42.3 3.2
RG 66.8 14.3 45.1 87.2 66.2 2.3
RY 69.7 10.0 61.8 94.9 78.4 1.5
SLF 72.8 10.9 40.5 89.2 64.9 1.6
SU 81.8 4.6 28.1 92.7 60.4 1.7
TAC 30.9 70.1 78.2 86.3 82.2 3.6
TD 66.5 13.6 61.0 96.1 78.6 1.7
TEU 70.9 10.9 30.2 78.2 54.2 1.7
TLM 73.1 5.7 22.5 83.9 53.2 1.3
TOC 41.4 12.2 39.3 90.7 65.0 1.9
TRP 81.6 5.7 47.5 91.3 69.4 1.6
ZL 71.6 6.7 43.3 84.9 64.1 2.1

Table C.2.2: Stock specific intensity based information shares. The table presents TSX stock
specific information shares using an intensity based (IIS1) and the standard Hasbrouck approach in percent.
The midpoint and the lower and upper bounds of TSX Hasbrouck are denoted by HIS1

mid, HIS1
low and

HIS1
up, respectively. The standard error for IIS is reported in the column labeled SE(IIS) and for HISmid it

is SE(HISmid). NYSE information shares can be calculated by IIS2 = 100 − IIS1, HIS2
low = 100 −HIS1

up,
HIS2

up = 100 − HIS1
low and HIS2

mid = 100 − HIS1
mid. The information shares are computed for 55 stocks

that have positive as estimates and B estimates smaller than one. For full company names see Table 4.3.1.
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C.3 VECM and Hasbrouck Shares

According to the law of one price, prices in different trading venues that refer to the same

underlying asset are cointegrated, meaning that they can only deviate from each other in the

short run. Assume that TSX and NYSE price dynamics can be described by a bivariate vector

autoregression of order q, we model price changes, ∆pt = pt−pt−1, as a bivariate vector error

correction model (VECM),

∆pt = αβ′pt−1 + Γ1∆pt−1 + . . .+ Γq−1∆pt−q+1 + ut , (C.3)

where pt = (p1
t , p

2
t )

′, Γ1 to Γq−1 are 2 × 2 parameter matrices. ut = (u1
t , u

2
t )

′ is a white noise

vector with zero means and covariance matrix Σu. The vector α = (α1, α2)′ contains the

coefficients associated with the speed of adjustment of each price series to deviations from

the equilibrium. β denotes the 2× 1 cointegration vector, which implies that there exists one

common stochastic trend, which can be considered as the stock’s underlying efficient price.

Hasbrouck’s information shares are then derived as the contribution of an innovation in one

market’s price series to the underlying efficient price innovations variance. Since the VECM

innovations (ut) tend to be contemporaneously correlated, the shares cannot be uniquely

identified. To solve this dilemma, Hasbrouck applies the Cholesky decomposition to the

covariance matrix of innovations (Σu = CC ′).

With the home market ordered first, Hasbrouck information shares of TSX (HIS1) and

NYSE (HIS2) can be computed as,

HIS1 =
[ξ′C[1]]

2

ξ′CC ′ξ
and HIS2 =

[ξ′C[2]]
2

ξ′CC ′ξ
, (C.4)

where ξ′C[j] denotes the jth element of the vector ξ′C and ξ gives the common row vector in

the matrix of long run impacts (Ξ) of time t idiosyncratic innovations on the efficient price.

It is derived as,

Ξ = β⊥[α′

⊥(In −
q−1∑

i=1

Γi)β⊥]−1α′

⊥ . (C.5)

The Cholesky decomposition implies that the contribution of the market ordered first

is maximized and that of the market ordered second is minimized. Since there is no

theoretical justification for such a hierarchy, the common solution is to permutate the ordering
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of the markets. This yields upper and lower bounds of information shares. The main

drawback of Hasbrouck’s methodology is that these bounds can diverge considerably, as the

contemporaneous correlation between the composite innovations u1
t and u2

t tends to increase

with decreasing sampling frequency.

In our application to Canadian stocks we choose a one minute sampling frequency using

transaction prices. Thereby the US stock prices are converted to Canadian Dollars. After

testing for cointegration using the maximum eigenvalue and trace statistic, we confirm the

existence of one cointegration relation. The number of lags in the VECM is determined

by the Schwarz information criterion (see Schwarz 1978). Standard errors for Hasbrouck’s

information shares are derived by a nonparametric bootstrap as proposed by Grammig et al.

(2004).



Chapter 5

Conclusion

Modeling data on their lowest observation level is an extremely active research field in the

empirical econometrics literature. Since irregular spacing of many financial and economic

data is a key characteristic, new methodologies are introduced that account for this data

property. These approaches are based on point processes which describe the history of

events that occur consecutively in time. A process consisting of points at which we observe

simultaneously variables that “mark” the points is called a marked point process. In this

thesis we present new univariate and multivariate empirical (marked) point process studies

that use irregular observed monetary and financial data.

Since precise predictions of short term interest rates are of key interest to investors and

financial institutions, we investigate a marked point process model for the federal funds rate

target and its forecast performance in Chapter 2. By modeling the target as a marked point

process, Hamilton and Jordà (2002) considerably reduce the forecast mean squared errors

compared to a standard time series method that uses equidistant data.

In Chapter 2 of this thesis we present a new marked point process for the target and

show that the suggested specifications deliver improved results in terms of goodness of fit and

in-sample forecast performance. The proposed methodology to evaluate probability function

forecasts reveals useful target probability forecasts up to a six months horizon. Out-of-sample

results are promising as well and Bayesian type model averaging robustifies the point forecast

performance. We conclude from our findings that the model seems to capture very well the

target characteristics: target changes occur in discrete time with discrete increments and
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have an autoregressive nature.

As Chapter 2, Chapter 3 of this thesis investigates the forecast ability of a marked point

process model. We present a time series model to predict total return variation. Due

to the importance of accurate volatility forecasts in the valuation of derivatives, portfolio

management and risk management, the prediction of volatility plays a central role in financial

econometrics literature.

Chapter 3 is based on the work of Andersen et al. (2003) and Andersen and Bollerslev

(1998) who use high frequency intraday data to introduce the concept of a nonparametric

realized volatility measure. As shown by Barndorff-Nielsen and Shephard (2004) realized

volatility can be decomposed into a continuous and a jump variation part. Since continuous

variation is serially correlated, we model it by an autoregressive conditional time series

model. Daily variation jumps that occur irregularly in time are conceived as marked point

process. Continuous and jump variation models are combined to assess the accuracy of

point and density forecasts of total return variation. The main findings of the empirical

section can be summarized as follows. The estimation of the models yields sensible results

in terms of diagnostics and parameter estimates. Density forecast evaluations confirm the

suitability of this approach with respect to modeling the evolution of realized, continuous

and jump variation. A point forecast analysis shows that the suggested model yields at least

as accurate and in some cases even more accurate volatility forecasts than standard models

that use equally spaced data.

In Chapter 4 we extend the univariate point process of the previous chapters to a

multivariate point process and propose a new information share that measures the home

and foreign market share in price discovery. We apply a bivariate autoregressive conditional

intensity approach that accounts for the irregularity of the data, the informational content

of time between consecutive trades and the timing interdependencies between two markets’

transaction processes. In contrast to the commonly applied Hasbrouck (1995) methodology

that requires equidistant data we deliver a unique information share rather than lower and

upper bounds.

Since national stock exchanges fear to lose their attractiveness for investors and are
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ambitious to remain the leading market with regard to price discovery, the identification of

an information share is of paramount concern for a trading venue. We apply Hasbrouck’s

(1995) and our intensity based information share to analyze the price discovery process of

Canadian stocks, which are traded on the Toronto Stock Exchange (TSX) and cross-listed

on the New York Stock Exchange (NYSE). We find that despite the concern of the TSX

to lose its share in price discovery to the NYSE, trading on the TSX still plays the most

important role. Further, we show that the leadership of the TSX is even more pronounced

than indicated by previous studies. The average TSX information share amounts to 71%.

We also compare our results to the Hasbrouck (1995) information shares. On average we find

a larger home market contribution than indicated by the Hasbrouck midpoints.

Summarizing the results of Chapter 2 through 4 we find evidence that using (marked)

point processes to model non-aggregated data helps to explore the timing related information.

Further, we conclude that accounting for the irregular spacing of economic and financial

variables can improve a model’s fit and forecast or solve problems arising using equidistant

data. Overall, the presented findings are promising and in favor for (marked) point processes

compared to standard econometric methods that use equally spaced data.
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