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Abstract

We develop a dynamic general equilibrium model of education, quality and vari-

ety innovation, and scale-invariant growth. The early endogenous innovation-based

growth models incorporate a scale effect predicting that larger economies are charac-

terized by higher per capita growth rates. Recent models of semi-endogenous growth

remove this scale effect but instead imply that economic growth depends proportion-

ally on population growth. In contrast to the predecessor models, this paper argues

that endogenous human-capital accumulation rather than an exogenously given con-

tinuing increase of the population is decisive for per capita growth. The consequence

of the proposed integration of human capital accumulation into a two-R&D-sector

model of quality and variety innovation is that education and innovation appear

as twin-engines of growth and that steady state growth rates can be enhanced by

subsidizing education.

Keywords: Education, quality and variety innovation, scale-invariant growth

JEL Classification: O2, O3
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1 Introduction

Within the modern growth literature it is widely accepted that human capital ac-

cumulation and techological progress are the two most important engines of eco-

nomic growth. In his pioneering contribution, Lucas (1988) has emphasized human

capital accumulation by education as a decisive source of endogenous growth. In

their empirical studies, Hanushek/Kimko (2000) and Barro (2001) have found that

especially the quality, but also the quantity of schooling are positively related to

subsequent economic growth. Since the early nineties, however, endogenous growth

theory is undoubtedly dominated by the innovation-based growth models which ex-

clusively build on innovation dynamics as the main engine of growth. Romer (1990),

Grossman/Helpman (1991) and Aghion/Howitt (1992, 1998) were among the first

to introduce dynamic general equilibrium models which explain per-capita growth

by intentional R&D activities of private firms. According to their approach, techno-

logical change results from an endless sequence of vertical improvements of goods

along a given quality ladder or, alternatively, from a continuing horizontal expan-

sion of the variety of goods. The innovation-based endogenous growth models share

a common property which is well-known as the scale effect. This scale effect predicts

that larger economies grow faster and that population growth causes higher per-

capita growth. This counterfactual prediction continues to hold in a related sense if

population growth is replaced by an increasing qualification of the labor force due

to educational investment in human capital. Any enlargement of human capital now

inevitably induces increasing per-capita growth rates which is certainly at odds with

the empirical evidence. For this reason, no successful attempts have been made to

integrate the sustainable process of human capital accumulation, as suggested e.g. by

the influential model by Lucas (1988), into the early endogenous innovation-based

growth models. Therefore, until recently, education on the one hand and innova-

tion on the other hand were treated separately as two alternative and independent

engines of economic growth.

In the mid nineties, Jones (1995a) presented an influential empirical study in which

he could find no support for the scale effect as predicted by the endogenous growth

models. In response to this “Jones critique”, a new class of semi-endogenous growth

models has emerged (see, e.g. Jones 1995b, 2002, Kortum 1997, Segerstrom 1998).

As a distinguishing feature, these models remove the scale effect but instead im-
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ply that per-capita growth depends proportionally on population growth. Without

doubt, this property of the semi-endogenous growth models is at odds with the

empirical findings, too. However, from a technical point of view, it opens the chal-

lenging possibility of integrating skill acquisition of workers in accordance with the

empirical evidence if exogenous population growth is replaced by endogenous hu-

man capital accumulation. A few attempts in this promising direction have recently

been made. Arnold (1998) and Blackburn/Hung/Pozzolo (2000) have integrated ed-

ucation in Romer’s (1990) variety-expansion model, Arnold (2002) has incorporated

education into Segerstrom’s (1998) quality-ladder model. The crucial assumption

which removes the scale effect in the Segerstrom-Arnold approach is a continuing

deterioration of the technological opportunities which results in a declining produc-

tivity of workers in the R&D sector. However, a historical analysis of the occurrence

of technological innovations in different industries clearly shows that periods of in-

creasing and decreasing technological opportunities have alternated. In our view, the

existing empirical evidence is not convincing enough to support the hypothesis of a

continuing declining trend in the R&D productivity.

In this paper, we therefore follow the suggestions by Arnold (1998, 2002) and Black-

burn/Hung/Pozzolo (2000) to focus on human capital growth rather than on popula-

tion growth within the framework of a semi-endogenous growth model, but we prefer

to build on another even more convincing specification which provides an alterna-

tive mechanism of eliminating the scale effect.1 We adapt this mechanism from the

latest generation of growth models as represented by Young (1998), Peretto (1998),

Dinopoulos/Thompson (1998), Jones (1999), and Li (2002) who argue that the va-

riety of products grows proportionally to the population of the economy. Extending

an appropriate version of such a basic model by accounting for endogenous accu-

mulation of human capital instead of exogenous population growth yields some new

insights about the impact of education on innovation and growth. Most important,

human capital accumulation and technological innovation appear as twin engines of

growth which are closely linked to each other.

The paper is organized as follows. Section 2 introduces the model. In Section 3,

the steady-state growth equilibrium is derived and the factors explaining education,

1 Another strand of the literature emphasizes the role of human capital in the absorption of new
technology (see, e.g. Stokey 1991, Eicher 1996, Lloyd-Ellis/Roberts 2002).
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innovation and growth are identified. Finally, Section 4 concludes.

2 The Model

We consider an economy which consists of a continuum of firms, each producing

a differentiated consumer good. The goods are sold to households having a taste

for quantity, quality and variety. Improvements of quality and extensions of variety

take place stochastically with intensities increasing in the innovative efforts of firms.

Households are endowed with human capital which can be accumulated by educa-

tion. Thus, there are two engines of growth which will prove to be closely linked to

each other: education and innovation.

2.1 Education and Spending Behavior of Households

There is a continuum of unit mass of households which live forever and inelastically

supply human capital services in exchange for wage payments. They share identical

preferences and maximize their discounted utility

Ut =

∫ ∞

0

e−ρt ln Dt dt, (1)

where ρ is the constant subjective discount rate and

Dt =

[∫ Nt

0

q1−α
jt xα

jtdj

]1/α

, 0 < α < 1, (2)

is a quality-augmented Dixit-Stiglitz consumption index which measures instanta-

neous utility at time t. It reflects the households’ tastes for quantity xjt and quality

qjt of the demanded goods available in industry j as well as their love for variety

of horizontally differentiated goods indexed on the interval [0, Nt]. With these pref-

erences, the elasticity of substitution between any two products across industries is

given by ε = 1/(1− α) > 1.

For each household, the discounted utility maximization problem can be solved in

two steps. The first step is to solve the across-industry static optimization problem.

Maximizing the consumption index (2) subject to the budget constraint

Et =

∫ Nt

0

pjtxjtdj
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where Et is the household’s expenditure, and pjt is the price of product j, yields the

static demand function

xjt =
qjtp

− 1
1−α

jt E
∫ Nt

0
qjtp

− α
1−α

jt dj
(3)

for product j at time t. Hence, the consumption index (2) can be written as

Dt = Et/p
D
t ; pD

t ≡
[∫ Nt

0

qjtp
− α

1−α

jt

]− 1−α
α

. (4)

The second step is to solve the dynamic optimization problem by maximizing dis-

counted utility. Households supply human capital services to production, R&D, and

education. By devoting HE
t units to education, households can raise their human

capital according to the Uzawa-Lucas technology

Ḣt = κHE
t − δHt, (5)

where κ(> δ+ρ) reflects the efficiency of the education system and δ is the constant

depreciation rate of human capital. The dynamic budget constraint is given by

Ȧt = rtAt + wt(Ht −HE
t ) + σwtH

E
t − Et − Tt, (6)

where At is the value of asset holdings, rt is the nominal interest rate, wt is the nom-

inal wage rate, and σ ≥ 0 is a constant education subsidy rate for foregone income.

The subsidies are publicly financed by a non-distorting lump-sum tax Tt which is

exogenously given for the households. Each household maximizes its discounted util-

ity (1), given (4), subject to the accumulation function (5) and the dynamic budget

constraint (6).

The current-value Hamiltonian of this optimal control problem is given by

H = ln Et − ln pD
t + ψ1[rtAt + wt(Ht −HE

t ) + σwtH
E
t − Et − Tt] + ψ2[κHE

t − δHt] ,

where ψ1 and ψ2 are the costate variables of At and Ht. The necessary first-order

conditions are given by

HE = 1/Et − ψ1 = 0, (7)
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HA = ψ1rt = ψ1ρ− ψ̇1, (8)

HHE = −ψ1(1− σ)wt + ψ2κ = 0, (9)

HH = ψ1wt − ψ2δ = ψ2ρ− ψ̇2. (10)

Conditions (7) and (8) yield the well-known differential equation

Ė/E = rt − ρ.

The optimal time path of consumer expenditures applies not only to a representative

household but also to the aggregate economy. At this aggregation level, it proves

convenient to impose the normalization Et = pD
t Dt = 1 which implies that the

nominal interest rate rt equals the subjective discount rate ρ. Using this identity, we

derive from (8), (9), and (10) the differential equation

ẇt/wt = −[κ/(1− σ)− δ − ρ]. (11)

The larger the discount and depreciation rates, the lower the efficiency of education,

and the lower the education subsidy rate, the larger is the growth rate of nominal

wages required by the households in order to invest in human capital.

2.2 The Product Markets

Each product line is initially created by a horizontal innovation. Once a new variety

is available on the market, its quality can be improved by vertical innovations. The

quality grades of the products are arrayed along the rungs of a quality ladder which is

assumed to be equal across industries. Each new generation of products provides a λ

times higher quality, where the upgrading factor λ > 1 is assumed to be exogenously

given and constant over time. Thus the quality of the top-of-the-line product in

industry j at time t is given by

qjt = λmjtQtN ,
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where QtN denotes the initial level of quality of variety j when it was introduced at

time tN ≤ t and mjt is the number of sequential upgrading innovations in industry

j until time t. The average quality of all existing varieties is defined by

Qt = (1/Nt)

∫ Nt

0

qjt dj. (12)

To avoid an unplausible effect of declining average quality as a result of the introduc-

tion of new varieties, we assume that the initial quality level of a variety innovation

equals the average quality at this time.

All consumer goods are produced subject to a constant-returns-to-scale technology

with human capital as the single input factor. By an appropriate choice of units,

production of one unit of each variety xjt requires one unit of human capital HX
jt .

According to this technology, marginal production cost is equal to the wage rate wt.

Therefore, the supplier of variety j maximizes flow profits

πjt = (pjt − wt)xjt. (13)

The price setting behavior of firms depends on the underlying market structure

which in turn is endogenously determined by the basic technological conditions in

the industries. In the case of drastic innovations, which will be assumed throughout,

the pricing decisions of the technological leaders are constrained by competition

from the producers of substitutive goods in the other industries. According to the

demand function (3), the price elasticity of demand is given by −ε = −1/(1 − α)

and, hence, the optimal pricing rule is given by2

pjt = (1/α)wt. (14)

Since the leading firms charge identical prices pjt = pt ∀ j, independent of product

qualities, the demand function (3) can now be written as

xjt =
qjt

NtQtpt

. (15)

2 In the alternative case of non-drastic quality innovations, each technological leader would charge
a limit price pt = λ

1−α
α wt, thereby driving the rivals out of the market. Similar to our version

the mark-up factor remains constant, so that the following considerations continue to hold in
this case.
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Obviously, the demand for product j depends negatively on price pt and the variety

mass Nt of existing products, but positively on the ratio of its quality to the average

quality of all products, qjt/Qt.

Therefore, the maximized flow profits (13) are given by

πjt =
(1− α)qjt

NtQt

. (16)

Once the quality of a new variety is improved by a drastic vertical innovation it

becomes obsolete. However, such an improvement may infringe on the patent of the

variety innovator. Therefore, following Li (2000), we allow for the possibility of a

license agreement between the variety and quality innovators in which the latter

have to pay a fixed fraction 0 ≤ β < 1 of the operating profits as a royalty to the

former. The parameter β can then be interpreted as the scope of the variety patent

or, alternatively, as a measure of the relative bargaining power of variety and quality

innovators. Each further quality innovation, which is assumed not to infringe on the

patent of the previous quality innovator, drives the lower quality product out of the

industry, so that all varieties are exclusively produced by the patent holders of the

top-of the-line products. However, even these patent holders are required to pay the

royalty to the original variety innovator. This license aggreement implies that each

quality innovator receives the flow profits (1 − β)πjt, while the flow profits of the

variety innovator reduce to βπjt, as soon as the first quality innovation occurs.

The innovation dynamics, rising quality Qt and expanding variety Nt are governed by

the human capital resources devoted to both R&D dimensions. Following Li (2000,

2002), we assume that both types of innovative activities take place simultaneously,

but in contrast to the existing literature we treat not only quality innovations but

also variety innovations as stochastic processes.

2.3 Quality-upgrading Innovations

The quality of the consumer goods can be upgraded by a sequence of innovations,

each of which builds upon its predecessors. To produce a higher quality product, a

blueprint is needed. These blueprints are developed by innovative firms in a separate

R&D sector. The lure of temporary monopoly rents drives potential entrants to
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engage in risky R&D projects in order to search for the blueprint of a higher quality

product. The first firm to develop the higher quality product is granted an infinitely-

lived patent for the intellectual property rights. Competition therefore takes the form

of a patent race between rival firms. Any quality innovation opens up the opportunity

for all firms to search for the next vertical innovation in this industry. This implies

an external spillover effect of technological knowledge since even laggard firms can

equally participate in each patent race without having taken all of the rungs of

the quality ladder themselves. It is only the patent protection which guarantees

temporary appropriability of innovation rents. Each firm may target its research

efforts at any of the continuum of state-of-the-art products, i.e. it may engage in

any industry. If it undertakes R&D at intensity hQ
jt for a time interval of length dt, it

will succeed in taking the next step up the quality ladder for the targeted product j

with probability hQ
jtdt. This implies that the number of realized innovations in each

industry follows a Poisson process with the arrival rate hQ
jt which is specified as

hQ
jt =

HQ
jtQt

µQqjt

. (17)

The arrival rate of vertical innovations is assumed to depend proportionally on the

amount of human capital HQ
jt devoted to R&D activities in order to realize a quality

improvement in industry j. The parameter µQ denotes the degree of technological

difficulty in realizing a vertical innovation and is assumed to be constant and common

to all industries. The ratio qjt/Qt reflects a negative externality of industry specific

innovation successes in the past by indicating that the realization of a further quality

innovation becomes more and more difficult as the technological lead of the achieved

quality to the average quality level increases. If a firm succeeds in a quality innovation

it attains the stock market value V Q
jt . To participate in a patent race the firms have

to employ skilled labor in their research labs. An entrepreneur who devotes HQ
jt units

of human capital to vertical R&D at a cost of (1 − ξ)wtH
Q
jt for a time interval of

length dt attains the patent value V Q
jt with probability (HQ

jtQt)/(µ
Qqjt)dt, where

ξ ≥ 0 denotes the R&D subsidy rate financed by a non-distorting lump-sum tax.

The entrepreneur can finance this R&D venture by issuing equity claims that pay

nothing in the case that the research effort fails but entitle the claimants to the

income stream πjt if the effort succeeds. Free entry into each patent race implies

V Q
jt = µQ(1− ξ)wtqjt/Qt . (18)
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The stock market value V Q
jt of a successful firm is given by the no-arbitrage condition

rt = πjt/V
Q
jt + V̇ Q

jt /V Q
jt − hQ

jt, (19)

which implies that the expected return on equities of quality innovators must equal

the return on an equal size investment in a riskless bond. Since the risks associated

with industrial research efforts are idiosyncratic, equity holders can earn a safe re-

turn by holding a well-diversified portfolio of firms’ shares in different industries.

Substituting (16) and (18) into (19), taking the derivative of V Q
jt , and using rt = ρ

yields

ρ = (1− β)(1− α)/[µQ(1− ξ)wtNt] + ẇt/wt − Q̇t/Qt − hQ
t , (20)

where the arrival rate proves to be independent of the industry, i.e. hQ
jt = hQ

t ∀ j.

The law of large numbers then implies that aggregate quality growth is deterministic

and satisfies

gQ = (λ− 1)hQ
t . (21)

We now turn to variety innovations.

2.4 Variety-expanding Innovations

In the tradition of the models introduced by Romer (1990) and Grossman/Helpman

(1990) variety innovations are usually assumed to follow a deterministic process.3

However, there seems to be no plausible reason to suppose riskless variety innova-

tions. Therefore, we assume that, according to the case of quality innovations, the

number of variety innovations also follows a stochastic process. In contrast to the

predecessor models we assume that variety innovation is not only occurring in a

single industry but takes place in all industries of the economy. Each firm i under-

taking horizontal R&D at intensity hN
it for a time interval of length dt will succeed

3 In their simplified models, Aghion/Howitt (1998) and Dinopoulos/Thompson (1999) even assume,
that variety innovations are pure results of costless imitation.
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with probability hN
it dt. At the aggregate level this implies that the numbers of real-

ized variety innovations follows a Poisson process with an arrival rate hN
t which is

specified as

hN
t = HN

t /µN , (22)

where µN denotes the degree of technological difficulty in realizing a variety innova-

tion. The arrival rate of variety innovations depends proportionally on the amount of

human capital HN
t devoted to horizontal R&D activities.4 The mass of horizontally

differentiated products at time t is then determined by

Nt =

∫ t

0

hN
t′ dt′,

implying the growth rate

gN =
HN

t

µNNt

. (23)

Free entry into each horizontal patent race implies

V N
t = µN(1− ξ)wt , (24)

where ξ is the same R&D subsidy rate as it was supposed in the case of quality

innovations. The stock market value V N
t of a variety innovation is given by the

no-arbitrage condition

rt = πN
t /V N

t + V̇ N
t /V N

t − ((V N
t − V R

t )/V N
t )hQ

t , (25)

where the right-hand side is the rate of return on equities of variety innovators,

consisting of the dividend rate, the capital gains and the risk of losing part of the

profits in the future. The term (V N
t − V R

t ) denotes the expected capital loss when

the first quality innovation occurs, where V R
t is the expected discounted value of the

royalties βπjt at time tQ, when the first quality innovation in the industry occurs.

4 Note that there is no intersectoral spillover effect as it was assumed in the case with vertical
innovations. The justification of the absence of this kind of spillover effects is the above assump-
tion that each variety innovation arrives with the average quality of all top-of the-line products
available at that time.
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At time tN of the variety innovation, expected royalties are expected to be given by

β(1 − α)/N , since the expected future quality qjt of the improved product equals

the expected average quality Qt at the same time.

Simple calculations show that the expected difference V N
t − V R

t equals V Q
jt (qjt/Qt)

at time tN . Hence, using (18) and (24) yields (V N
t − V R

t )/V N
t = µQ/µN ≡ µ. The

expected relative capital loss at time tQ is nothing but the ratio of the degrees of

technological difficulties of realizing quality and variety innovations. Thus, substi-

tuting (16) and (24), taking the derivative of V N
t , and using rt = ρ, the variety R&D

no-arbitrage condition (25) can be rewritten as

ρ = (1− α)/[µN(1− ξ)wtNt] + ẇt/wt − µhQ
t . (26)

To close the model, we finally use the market-clearing condition for human capital

Ht = HX
t + HE

t + HQ
t + HN

t , (27)

which can be devoted to production, to education, and to both types of R&D.

3 The Steady-state Growth Equilibrium

We restrict our attention to the steady-state growth equilibrium where the shares of

human capital in the different sectors remain constant over time. Aggregate human

capital devoted to production can be derived, using (14) and (15), as

HX
t =

∫ Nt

0

xjtdj = 1/pt = α/wt.

Since the mark-ups in the price-setting equation (14) are constant, it follows that

gHX = −gw. Therefore, the steady state growth rates of human capital in all sectors

are determined by

gH = gHX = gHE = gHQ = gHN = −gw = κ/(1− σ)− δ − ρ. (28)

The quality-augmented consumption index (2) is given by aggregating (15) across

the industries and using the average quality index defined in (12) to obtain

Dt = α[NtQt]
1−α

α /wt.
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Using (28), the steady state growth rate of the index is

gD =
1− α

α
(gN + gQ) + gH . (29)

Variety expansion and quality improvement of the products as well as human capital

accumulation are the interrelated channels of growth. Most important, the dynamics

of quality and variety innovations decisively depend on the pace of human capital

accumulation. From (23) the growth rate of the mass of horizontally differentiated

products is given by

gN = gH . (30)

The growth rate of the average quality results from (20) and (26) by using (21) and

(28) as

gQ =
(λ− 1)(1− β − µ)

(λ− 1 + β)µ
(gH + ρ) =

(λ− 1)(1− β − µ)

(λ− 1 + β)µ
(

κ

1− σ
− δ). (31)

It depends not only on the basic conditions of the education system but also on the

technological conditions as well as on the endogenously determined market structure.

Inserting these growth rates into (29) finally yields5

gD =

[(
1 +

(1− α)(λ− 1)(1− β − µ)

(λ− 1 + β)µ

) (
κ

1− σ
− δ

)
− ρ

]
/α. (32)

As is characteristic for semi-endogenous growth models, the long-run growth rate is

unrelated to scale. However, in accordance with the empirical evidence the explana-

tory factors of the accumulation of both human capital and technological knowledge

are derived as important determinants of growth. As can be seen from (32), the

growth rate depends

• positively on market power 1/α,

• positively on the innovation size λ,

5 Using the equations HX
t = α/wt, HE

t = (gH + δ)Ht/κ, HQ
t = gQNt/(λ−1), and HN

t = gHµNNt

for the factor input in the various sectors, the market clearing condition (27), and condition (20)
or (26) can be used to determine the equilibrium values of wt and Nt.
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• positively on the subsidy rate σ,

• positively on the efficiency of the education system κ,

• negatively on the scope of the patent of a variety innovation β,

• negatively on the ratio of the degrees of difficulty of realizing quality and

variety innovations µ,

• negatively on the subjective discount rate ρ, and

• negatively on the depreciation rate δ.

The efficiency of education as well as the education subsidy rate not only accelerate

the pace of human capital accumulation but also the dynamics of quality and variety

innovation. In this sense, human capital accumulation of households and innovations

as a result of intentional R&D activities of firms can be interpreted as twin engines

of economic growth which are closely linked to each other.

4 Conclusion

Recent semi-endogenous growth models have accomplished a valuable task by re-

moving the scale effect present in the early endogenous growth models. A disturbing

property of these non-scale models is, however, that the long-run growth rate de-

pends proportionally on population growth. Without doubt, this property is at odds

with the empirical evidence. The present paper has offered an alternative interpreta-

tion of the role of the input factor labor by replacing exogenous population growth

by endogenous human capital accumulation. Therefore, consistent with the empiri-

cal evidence, the rate of growth is not driven by population growth but by education

of the households. Human capital resources devoted to education and R&D appear

as engines of economic growth which are inextricably linked to each other. As was

shown, human-capital accumulation not only has a direct growth effect, but also an

indirect effect via an acceleration of quality and variety innovations. The factors en-

hancing the skill acquisition of the households are therefore as important as they are

in the endogenous human capital growth model of Lucas (1988), but they are com-

plemented by the technological and structural conditions influencing the innovative

activities of firms.
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It has turned out that subsidizing education is a suitable policy to raise the long-run

growth rate. Thus, education policy plays a decisive role within the public growth

policy. On the one hand, it influences human capital accumulation as one important

engine of growth. On the other hand, since human capital is an essential input into

R&D, the model also highlights the impact of public education expenditures on

the innovation dynamics which are considered as the second of the twin engines of

growth.
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