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Abstract

In 1978, Roger Koenker and Gilbert Bassett, Jr. introduced a new econometric estima-

tion method and entitled it quantile regression. Since then, many subsequent authors

have elaborated and extended the underlying theoretical framework. Other contribu-

tions have successfully applied the procedure to a wide range of problems from a variety

of scientific branches.

This study presents the basic features of quantile regression along with some important

properties and a selection of significant extensions and applications. Subsequently, the

procedure is used in three new and original empirical regression settings to demon-

strate the universality and flexibility of the approach.
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Chapter 1

Introduction

What the regression curve does is give a grand summary for the averages of the

distributions corresponding to the set of x’s. We could go further and compute

several different regression curves corresponding to the various percentage

points of the distributions and thus get a more complete picture of the set.

Ordinarily this is not done, and so regression often gives a rather incomplete

picture. Just as the mean gives an incomplete picture of a single distribution,

so the regression curve gives a correspondingly incomplete picture for a set of

distributions.
Frederick Mosteller and John W. Tukey (1977)

Already a quick analysis of some arbitrarily chosen contributions to the applied econo-

metrics literature immediately reveals the fact that the overwhelming majority of em-

pirical regression studies are based on the analysis of the (conditional) mean of the

regressand. However, as Mosteller and Tukey (1977) paraphrased above, this confine-

ment might give an incomplete picture and thus can lead to possibly wrong conclusions

as soon as not all assumptions of the classical linear regression model hold.

A solution to the risen question of how to “go further” was proposed by Roger Koenker

and Gilbert W. Bassett, Jr. (1978). They introduced a new method labeled “quantile

regression” that allows the estimation of the entire distribution of the response vari-

13



14 CHAPTER 1. INTRODUCTION

able conditional on any set of (linear) regressors. In other words, the calculation of a

single value (the conditional mean) is replaced by the computation of a whole set of

numbers (the conditional quantiles) which are able to give a more complete picture of

the underlying interrelations.

Furthermore, the quantile regression procedure inherits some additional advantages

over least squares regression, as for example equivariance to monotone transforma-

tions of the response variable, robustness against outliers of the regressand, and higher

efficiency for a wide range of error distributions.

Of course, as Milton Friedman (1975) put it in his famous dictum, “there is no such

thing as a free lunch”. In the case of quantile regression, one can argue that there is (at

least at first sight) a higher computational burden. In contrast to the least squares case,

the objective function is not differentiable at the origin, so no general closed solution

can be given. However, the quantile regression problem can be shown to have a linear

programming representation which substantially eases the calculation. With some ad-

ditional modifications, the method can be made competitive in computation time even

for very large data sets. Another potential criticism point of Koenker and Bassett’s

(1978) original proposal could be the missing of a well-established general asymptotic

theory and thus a lack of appropriate inference procedures. Yet, a variety of subsequent

authors have addressed that issue and comprehensively closed the gap.

This study is organized as follows: chapter two starts with the presentation of some

basic principles of the quantile regression approach along with a few remarks on the

computation of the estimates. Subsequently, several important properties of conditional

quantiles are discussed and two examples try to clarify the presentation and interpre-

tation of the results. Next, the asymptotic theory and inferential strategies for quantile

regression are addressed, including a comparison of different procedures. An introduc-

tion to several extensions and empirical applications of estimated conditional quantiles

follows. Chapter two concludes with a short retrospective on the situation before the

invention of quantile regression.
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The subsequent chapters (three to five) contain three new and original empirical imple-

mentations of quantile regression in three different scientific branches to demonstrate

the variability and vast application possibilities of Koenker and Bassett’s (1978) semi-

nal proposal.

Chapter three contains an econometric demand analysis of cross-section micro data

taken from a consumer panel. The use of the quantile regression model enables the

analysis of consumer behavior conditional on the intensity of consumption. Several

interesting results are revealed.

In chapter four, a new measure for the degree of linkages between financial markets,

called coexceedances, is introduced. Subsequently, these coexceedances are used in a

quantile regression setting to contrast contagion against interdependence. Multiple

new insights are gained and presented.

Chapter five applies the quantile regression procedure to the analysis of environmental

connectivities. The impact of different meteorological influence factors on the condi-

tional distribution of daily maximum ozone concentrations is considered. The obtained

results vary significantly for different ozone regimes.

The conclusions in chapter six summarize our findings and give an outlook to future

prospects on the successful application of quantile regression.



16 CHAPTER 1. INTRODUCTION



Chapter 2

Quantile Regression

2.1 Basics

In this section, we seek to present the fundamental principals of quantile regression.

We start with some basic definitions around the quantile function. Next, we consider

empirical quantiles and present an alternative formulation. Subsequently, the concept

is extended to a regression setting. Finally, some computational issues of quantile re-

gression are addressed.

2.1.1 The quantile function

For any τ in the interval (0, 1) and any (discrete or continuous) random variable Y , the

τ -th quantile of Y can be defined as any number ξτ ∈ R that fulfils1

P (Y < ξτ ) ≤ τ ≤ P (Y ≤ ξτ ) (2.1)

It can be seen that a solution to (2.1) always exists and that it is unique if Y is a

continuous random variable (in this case the two probabilities given in (2.1) coincide).
1The underlying intuition is very simple: at least τ percent of the probability mass of Y is lower than

or equal to ξτ , and at least (1− τ) percent of the probability mass of Y is higher than or equal to ξτ .

17



18 CHAPTER 2. QUANTILE REGRESSION

Table 2.1: Distribution function FY (y) and corresponding quantile function QY (τ)

Distribution FY (y) QY (τ)

Exponential 1− e−y − ln(1− τ)

Gaussian Φ(y) Φ−1(τ)

Gumbel 1− exp(−ez) ln
(− ln(1− τ)

)

Logistic
ey

1 + ey
ln

( τ

1− τ

)

Pareto 1− (α
y )β α(1− τ)−

1
β

Uniform y τ

If Y is a discrete variable, the solution to (2.1) is for some τ a closed interval of the real

line. To circumvent any problems arising from this non-uniqueness, we will from now

on always choose the smallest element of the solution set. With this convention, we can

use the so-called (right-continuous) cumulative distribution function (CDF)

FY (y) = P (Y ≤ y) (2.2)

to define the (left-continuous) quantile function

QY (τ) = F−1
Y (τ) = inf{y | FY (y) ≥ τ} 0 < τ < 1 (2.3)

In letters: for any τ in the interval (0, 1), the quantile function QY (τ) provides the τ -th

(unconditional) quantile of Y . The function has several interesting properties, e.g. for

any monotonically increasing and left-continuous function g, it can be shown (see e.g.

Peracchi (2001)) that for every τ in the interval (0, 1)

P
(
Y ≤ QY (τ)

)
= P

(
g(Y ) ≤ g(QY (τ))

)
= τ (2.4)

Table 2.1 uses this property and exemplary lists some common distribution functions

along with their quantile function analogues.

For a continuous random variable Y , the so-called probability density function (PDF) is
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defined as the derivative of the distribution function:2

fY (y) =
dFY (y)

dy
(2.5)

The analogue for the quantile function was (to our knowledge) first mentioned by Tukey

(1965) and is defined as

sY (τ) =
dQY (τ)

dτ
(2.6)

Tukey (1965) called sY (τ) the sparsity function. Parzen (1979) labeled it the quantile-

density function. Note that with the derivative of the identity FY (F−1
Y (τ)) = τ , we have

dFY (F−1
Y (τ))

dτ
= fY (F−1

Y (τ)) · dF−1
Y (τ)
dτ

= 1 (2.7)

and the sparsity function can thus also be expressed as the reciprocal of the density

function, evaluated at the quantile of interest:3

sY (τ) =
dF−1

Y (τ)
dτ

=
1

fY (QY (τ))
(2.8)

We will come back to the sparsity function in section 2.3.

2.1.2 Empirical quantiles

If a random sample Y1, Y2, . . . , Yn is taken, the so-called empirical distribution function

is defined as the quotient of the number of observations lower than or equal to the value

of interest and the total number of observations:

F̂Y (y) =
#(Yi ≤ y)

n
(2.9)

2In the discrete case, it is defined as f(y) = P (Y = y).
3Parzen (1979) named fY (QY (τ)) the density-quantile function and additionally introduced its deriva-

tive −dfY (QY (τ))/dτ as the score function of the probability density.
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In analogy to (2.3) we can define the empirical quantile function as

Q̂Y (τ) = F̂−1
Y (τ) = inf{y | #(Yi ≤ y)

n
≥ τ} 0 < τ < 1 (2.10)

It can easily be seen from equation (2.10) that in order to obtain the desired quantile,

one first has to sort and rank the observed sample and then check at which observation

the threshold is reached. This procedure was state of the art until Koenker and Bas-

sett (1978) proposed a complete new and different method to calculate the quantile in

question:

Q̂Y (τ) = argmin
ξτ∈R





∑

i∈{i|Yi≥ξτ}
τ |Yi − ξτ | +

∑

i∈{i|Yi<ξτ}
(1− τ) |Yi − ξτ |



 (2.11)

To paraphrase it, the concept of sorting has been replaced by optimizing a (weighted)

loss function. All observations greater than the unknown optimal value (to be more pre-

cise the absolute differences between the observations and the optimum) are weighted

with τ , all observations below the optimum are weighted with (1−τ). Koenker and Bas-

sett (1978) remarked that “the case of the median (τ = 1/2) is, of course, well known,

but the general result has languished in the status of curiosum”.4

For our further proceeding, we use the indicator function (I(A) = 1 if A is true, and

I(A) = 0 otherwise) to introduce the so-called check function

ρτ (u) = u(τ − I(u < 0)) 0 < τ < 1 (2.12)

The check function allows us to reformulate the objective function of (2.11) as a single

expression:

Q̂Y (τ) = argmin
ξτ∈R

∑

i

ρτ (Yi − ξτ ) (2.13)

Before we show that equations (2.11) and (2.13) really provide the desired quantile,

we present a little example to illustrate the intuition of Koenker and Bassett’s (1978)

4For τ = 1/2, equation (2.11) simplifies to Q̂Y (0.5) = argmin
ξ0.5∈R

∑
i |Yi − ξ0.5|.
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Table 2.2: Example. The table depicts the evaluation of the objective function in equa-
tion (2.11) for a random sample taken from a standard normal distribution for τ = 0.25.

i yi leftsum rightsum objfun
1 -1.491088 6.691236 0 6.691236
2 -1.309872 5.830457 .1359124 5.966370
3 -1.114695 4.952164 .4286767 5.380841
4 -1.011688 4.514384 .6604424 5.174827
5 -.9411827 4.232362 .8719594 5.104321
6 -.6687527 3.210749 1.893572 5.104321
7 -.5695546 2.863556 2.339963 5.203519
8 -.2859412 1.941812 3.828934 5.770746
9 -.2598439 1.863521 3.985517 5.849038

10 -.2188201 1.750705 4.262428 6.013133
11 -.1958248 1.693217 4.434893 6.128110
12 -.0433352 1.350115 5.692932 7.043047
13 .0225686 1.218308 6.286066 7.504374
14 .1109507 1.063639 7.147792 8.211431
15 .2860689 .8009616 8.986532 9.787494
16 .4537083 .5914124 10.87248 11.46389
17 .8690140 .1761066 15.85614 16.03225
18 .9308267 .1297471 16.64426 16.77400
19 1.042856 .0737323 18.15666 18.23039
20 1.337785 0 22.35940 22.35940

seminal proposal. We drew twenty observations from a standard normal distribution

and sorted them in ascending order. The second column of table 2.2 lists the drawn

sample observations yi. Columns three and four present the two sums in equation

(2.11) evaluated at each observation for τ = 0.25 (the first quartile). The last column

finally lists the resulting value of the composite objective function. Figure 2.1 presents

the outcome in a graphical manner.

Table 2.2 and Figure 2.1 clarify that, in the given example, any value in the interval

[−.9411827,−.6687527] minimizes the objective function in equation (2.11) for τ = 0.25.

This is completely in line with the demanded properties of a quantile stated in equation

(2.1). As already noticed, we will always choose the smallest value of the interval to

guarantee the left-continuity of the quantile function. Moreover, it can be seen that a

non-unique solution to equation (2.11) only arises if nτ is an integer, so there is a good

chance that it will not occur too often in practical applications.

Figure 2.1 further shows that the objective function is convex and piecewise linear with

kinks at the observed yi’s. At each observation, the slope of the loss function changes
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Figure 2.1: Example. The graph pictures the values of table 2.2. The two dashed lines
show the two weighted sums of equation (2.11), the solid line presents the composed
loss function, all for τ = 0.25.

by exactly 1, as the contribution of the value in question changes from −(1 − τ) to +τ .

So, in our example, the slope of the objective function ranges from −5 to +15.

We still have omitted the general proof that the optimum of the loss function provides

the desired quantile. Turning back to the theoretical case, we can express the expected

loss as

E
(
ρτ (Y − ξτ )

)
= τ

∫ ∞

ξτ

(y − ξτ )dF (y) − (1− τ)
∫ ξτ

−∞
(y − ξτ )dF (y) (2.14)

Taking the derivative with respect to ξτ yields:5

∂E
(
ρτ (Y − ξτ )

)

∂ξτ
= τ

∂
∫∞
ξτ

(y − ξτ )∂F (y)

∂ξτ
− (1− τ)

∂
∫ ξτ

−∞(y − ξτ )∂F (y)
∂ξτ

= −τ

∫ ∞

ξτ

∂F (y) + (1− τ)
∫ ξτ

−∞
∂F (y)

= −τ(1− F (ξτ )) + (1− τ)F (ξτ )

= F (ξτ ) − τ (2.15)

5In the second step, we use twice a variant of the Leibniz rule (see Chen (2001) or Pagan and Ullah
(1999)): ∂

∫ g(x)

−∞ ψ(x, y)dy / ∂x =
∫ g(x)

−∞ (∂ψ/∂ x)dy + (∂g/∂x)ψ(x, g(x))
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Setting (2.15) to zero, it can be seen that the (convex) expected loss function is in fact

minimized if and only if ξτ fulfils F (ξτ ) = τ .

2.1.3 Regression quantiles

Having read about the alternative method to determine empirical quantiles in the last

subsection, one might ask why the new formulation should be used. It seems to be more

complicated (we have not talked about computational issues yet, but it is in fact a bit

burdensome), so where is the surplus? The answer is clear and simple: In contrast to

the classical sorting and ranking approach, the optimization procedure can be extended

to regression settings.

Consider a classical linear regression model:

yi = x′iβ + ui i = 1, . . . , n (2.16)

If one assumes that the expected value of the error term conditional on the regressors

is zero (E(ui|xi) = 0), then the conditional mean of yi with respect to xi is

E(yi|xi) = x′iβ (2.17)

The parameter vector β can be estimated by the well-known method of least squares:

β̂ = argmin
β∈RK

∑

i

(yi − x′iβ)2 (2.18)

A solution to (2.18) is given by β̂ = (X ′X)−1X ′y, see e.g. Greene (2002).

Let us now assume that yi = x′iβτ + ui,τ and that not the expected value, but the τ -th

quantile of the error term conditional on the regressors is zero (Qτ (ui,τ |xi) = 0).6 Then

it is ready to see that the τ -th conditional quantile of yi with respect to xi can be written

6We write Qτ (ui,τ |xi) instead of Qui,τ (τ |xi) or Qui(τ)(τ |xi) to underline the analogy to equation (2.17).
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as

Qτ (yi|xi) = x′iβτ (2.19)

Assembling equations (2.11), (2.13) and (2.19), it should come to no surprise that for

any τ in the interval (0, 1), the parameter vector βτ can be estimated by

β̂τ = argmin
βτ∈RK





∑

i∈{i|yi≥x′iβτ}
τ |yi − x′iβτ | +

∑

i∈{i|yi<x′iβτ}
(1− τ) |yi − x′iβτ |





= argmin
βτ∈RK

∑

i

ρτ (yi − x′iβτ ) (2.20)

In letters: all observations above the estimated hyperplane given by Xβ̂τ (again to be

precise, the absolute difference between yi and x′iβ̂τ ) are weighted with τ , all observa-

tions below the estimated hyperplane are weighted with (1− τ). Again, the special case

of the conditional median (τ = 0.5) is well known and can be calculated by7

β̂0.5 = argmin
β0.5∈RK

∑

i

|yi − x′iβ0.5| (2.21)

Yu, Lu, and Stander (2001) presented alternative definitions of regression quantiles

(they introduced four formulations based on the conditional distribution function, the

check function, a regression model, and an asymmetric Laplace density function) and

showed the equivalence of the different approaches. To our surprise, they cut out their

nice result in the journal version (see Yu, Lu, and Stander (2003)).

2.1.4 Computation

In contrast to the least squares case, equation (2.20) cannot be solved explicitly since the

check function is not differentiable at the origin. However, after a slight modification, it
7In the literature, a “bewildering variety of names” (Bassett and Koenker (1978)) have been proposed

for the conditional median regression, as for example least absolute error (LAE), least absolute deviation
(LAD), least absolute residuals (LAR), [least] mean absolute deviation (MAD), minimum sum [of] absolute
error (MSAE) or just `1 regression.



2.1. BASICS 25

can be shown to have a linear programming representation (see e.g. Buchinsky (1996,

1998b), Koenker and Portnoy (1999) or Cizek (2003)).

If one rewrites yi as a function of only positive elements

yi =
K∑

k=1

xikβk,τ + ui,τ =
K∑

k=1

xik(β1
k,τ − β2

k,τ ) + (εi,τ − νi,τ ) (2.22)

with β1
k,τ ≥ 0, β2

k,τ ≥ 0, k = 1, . . . ,K, and εi,τ ≥ 0, νi,τ ≥ 0, i = 1, . . . , n, then the solution

to (2.20) is reduced to the solution of the following problem:

min
β1

k,τ ,β2
k,τ ,εi,τ ,νi,τ

n∑

i=1

τεi,τ + (1− τ)νi,τ (2.23)

subject to: yi =
∑K

k=1 xik(β1
k,τ − β2

k,τ ) + (εi,τ − νi,τ ), β1
k,τ , β

2
k,τ , εi,τ , νi,τ ≥ 0(∀i, k)

Finally, by setting A = (X,−X, I,−I), z = (β1
τ
′
, β2

τ
′
, ετ

′, ντ
′), and c = (0′, 0′, τ ι′, (1− τ)ι′)′,

problem (2.23) can be written as the primal problem of linear programming:

min
z

c′z subject to: Az = y (z ≥ 0) (2.24)

The according dual problem is given by

max
w

w′y subject to: w′A ≤ c′ (2.25)

with the dual variable w ∈ [τ − 1, τ ]n. If the design matrix X is of full column rank,

both the primal and the dual problem have feasible solutions with equal optimal values

(min c′z = max w′y), see Buchinsky (1998b).

Barrodale and Roberts (1973, 1974) proposed a modified simplex algorithm for the effi-

cient estimation of the conditional median.8 Koenker and d’Orey (1987, 1994) general-

ized the approach to allow for the computation of conditional quantiles. Their algorithm

turned out to be competitive to least squares estimation in calculation time for small to

8A similar algorithm was also developed by Bartels and Conn (1980a, 1980b).



26 CHAPTER 2. QUANTILE REGRESSION

medium numbers of observations (say, n up to 1000), but less favorable for larger data

sets (it takes for example up to 50 times longer than least squares for n = 50000).

To eliminate this “inconvenience”, Portnoy and Koenker (1997) developed an interior

point algorithm for the computation of regression quantiles. The substitution of the

(non-differentiable) objective function through a (differentiable) log barrier formula-

tion, combined with an adequate preprocessing method, enables the “Laplacian tor-

toise” (quantile regression) to keep up with the “Gaussian hare” (least squares estima-

tion) in calculation time even for very large data sets. See also Koenker and Portnoy

(1999) and Koenker (2000).

Several software packages directly contain quantile regression routines in their core

package, as for example SHAZAM, EASYREG, BLOSSOM (see Cade and Richards (2001)),

XPLORE (see Cizek (2003)) or STATA (see Stata Corporation (2003)9). Furthermore, a

tremendous number of adaptations for other programs can be found in the internet.10

Finally, we should mention THE R PROJECT FOR STATISTICAL COMPUTING (see Ven-

ables and Smith (2003)) which is free of charge and includes a quantile regression pack-

age written by Roger Koenker (see Koenker (2004)). So, in our opinion, any econometri-

cian willing to incorporate quantile regression into his “methodological canon” should

have no problem (and is strongly encouraged) to do so.

2.2 Properties

In the last section, we have presented the basic fundamentals of the quantile regression

approach. Now, we want to study several important properties of the method. We start

by giving some rather general comments to clarify a few open questions from section

one. Subsequently, a couple of significant characteristics are discussed and contrasted

against other econometrical methods. Finally, we provide several detailed examples

9For more details on the STATA algorithms see also Rogers (1992, 1993) and Gould (1992, 1997).
10See for example http://www.stat.psu.edu/~dhunter/qrmatlab/ for an implementation in MATLAB.
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to elucidate the characteristics of the results obtained from the application of quantile

regression in practice. We also give some hints on the graphical presentation of these

results.

2.2.1 General comments

As already pointed out, in a linear quantile regression model, for any τ in the interval

(0, 1), the estimated conditional quantile of y with respect to a regressor matrix X can

be calculated as

Q̂τ (y|X) = Xβ̂τ with β̂τ = argmin
βτ∈RK

∑

i

ρτ (yi − x′iβτ ) (2.26)

So, by varying the value of τ , the quantile regression method enables us to evaluate

the entire conditional distribution of the regressand. This stands in sharp contrast

to the least squares approach which provides us only with a single value, namely the

conditional mean.11 It is evident that the flexible structure of the QR model is able

to detect some forms of heteroscedasticity in the data by analyzing several quantiles.

Of course, as in mean regression, the application of an appropriate weighting scheme

creates opportunities for improved efficiency, see section 2.4.

This analysis of several quantiles leads us to the question of “how many different solu-

tions to equation (2.26) can be found for a given problem”. As we have already seen, the

answer is easy for the ordinary sample quantiles. With n observations, the objective

function in (2.13) has exactly n breakpoints where the primal solution flips from one

basis to another. Furthermore, with respect to τ , the n solutions are equally spaced

on the interval [0, 1] with each distinct order statistic occupying an interval of length

exactly 1/n.

The situation is a bit more complicated for the regression quantiles. Both the num-

11Koenker’s (2000) comment “There is more to econometric life than can be captured by the philosophy
of the Gaussian location shift” nicely paraphrases this limitation.
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ber J and the locations of the distinct τj ’s depend in a complicated way on the design

configuration as well as the observed response (see e.g. Bassett and Koenker (1982)).

While Koenker and d’Orey (1987) only provided a rule-of-thumb (2n < J < 3n), Port-

noy (1991b) showed that the number of breakpoints J is of order O(n log n) under some

mild conditions. Fortunately, we do not have to conduct the whole calculation procedure

described in the last section for each quantile. In contrast, by means of parametric pro-

gramming, it is possible to evaluate the entire quantile regression process in roughly

n log n simplex pivots by subsequently jumping from one vertex to its adjacent one (see

e.g. Koenker and Portnoy (1999)). An implementation of this procedure is included in

Koenker’s (2004) quantile regression package for THE R PROJECT.

It is self-evident that, as long as they are not parallel (which is the “boring” case), the

estimated quantile hyperplanes of y conditional on X cross each other at some place.

This leads to the rather absurd result that the estimated conditional value of y is higher

at a lower quantile and vice versa. In practice, this fact is much less a problem than it

seems to be. Usually, the crossing only occurs at the remote region of the design space

(if not even beyond), where any statistical assertion should be treated very cautiously.

Even better, Bassett and Koenker (1982) showed that Q̂τ (y|X) is always non-decreasing

in τ at the centroid of the design (where all regressors are at their mean). Anyone

not satisfied with this might refer to He (1997) who proposed a restricted version of

regression quantiles that do not cross.

Coming back to the estimation of a single conditional quantile, Koenker and Portnoy

(1999) stated that in a model with K regressors, there are exactly K residuals with

value zero if there is no degeneracy.12 In this case, the proportion of negative residuals

N− is approximately τ :
N−

n
≤ τ ≤ N− + K

n
(2.27)

12Degeneracy can occur if the yi’s are discrete and leads to more than K zero residuals.
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and the proportion of positive residuals N+ is roughly (1− τ):

N+

n
≤ 1− τ ≤ N+ + K

n
(2.28)

In least squares regression, it is common to calculate the so-called goodness-of-fit mea-

sure

R2 =
min

∑
i(x

′
iβ̂ − ȳ)2

min
∑

i(yi − ȳ)2
= 1− min

∑
i(yi − x′iβ̂)2

min
∑

i(yi − ȳ)2
(2.29)

Koenker and Machado (1999) proposed a similar measure for quantile regression mod-

els13

R1(τ) =
min

∑
i ρτ (x′iβ̂τ −Qτ (y))

min
∑

i ρτ (yi −Qτ (y))
= 1− min

∑
i(yi − x′iβ̂)

min
∑

i ρτ (yi −Qτ (y))
(2.30)

where Qτ (y) denotes the unconditional τ -th quantile of y. Like R2, the value of R1(τ)

lies between 0 and 1. Unlike R2 which is a global measure of goodness of fit, R1(τ )

measures the relative success of the corresponding quantile regression model and can

thus be interpreted as a local goodness of fit value for a particular quantile.

To conclude our general comments, we briefly want to address the sometimes encoun-

tered faulty notion that something like quantile regression could be achieved by simply

segmenting y into subsets according to its unconditional distribution and then doing

least squares fitting on these subsets. Hallock, Madalozzo, and Reck (2003) provided

a nice example showing the “disastrous” results of this truncation on the dependent

variable (due to sample selection bias elucidated by Heckman (1979)). Even though the

concrete fit of a conditional quantile is determined by only K points (see below), the

decision of which K points are chosen depends on the entire sample for any quantile.

In contrast, segmenting the sample into subsets defined according to the regressors is

of course a valid option. Such local fitting underlies all non-parametric quantile regres-

sion approaches, see section 2.4.

13Koenker and Machado’s (1999) formulation is a bit more general, but we wanted to stress the analogy
to the classical version of equation (2.29).
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2.2.2 Equivariance, robustness, efficiency, and interpretation

Already in their original paper, Koenker and Bassett (1978) showed the following basic

equivariance properties of the estimated quantile regression coefficients:

β̂τ (λy, X) = λβ̂τ (y,X) λ ∈ [0,∞) (2.31)

β̂τ (−λy, X) = λβ̂1−τ (y, X) λ ∈ [0,∞) (2.32)

β̂τ (y +Xγ,X) = β̂τ (y,X) + γ γ ∈ Rk (2.33)

β̂τ (y, XA) = A−1β̂τ (y, X) A nonsingular (2.34)

Equations (2.31) and (2.32) state that β̂τ is scale equivariant. That is, if the regressand

y is rescaled by a factor λ, then β̂τ is rescaled by the same factor. Property (2.33) is

called location, shift or regression equivariance. It means that if β̂τ is the solution to

(y, X), then β̂τ + γ is the solution to (y∗, X) with y∗ = y + Xγ. Equation (2.34) is called

equivariance to reparameterization of design and means that the transformation of β̂τ

is given by the inverse transformation of X.

Properties (2.31) to (2.34) are shared by the least squares estimator (this is not uni-

versally true for other regression estimators). However, regression quantiles enjoy

another equivariance property which is much stronger than those already discussed.

From equation (2.4), it follows that for any non-decreasing function h(·) on R:

Q̂τ

(
h(y)|X)

= h
(
Q̂τ (y|X)

)
(2.35)

In words, the conditional quantiles are equivariant to monotone transformations of the

response variable. Of course, unless h(·) is affine, the conditional mean does not share

this property:

E
(
h(y)|X) 6= h

(
E(y|X)

)
(2.36)

Equation (2.35) can be very useful under certain conditions. If we have for example
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built a model for the logarithm of the regressand14, we are perfectly justified in inter-

preting exp(x′β̂τ ) as an appropriate estimate of the conditional τ -th quantile of y given

X, while this interpretation is difficult to be justified formally for the conditional mean

(see Koenker and Portnoy (1999)). Property (2.35) is also valuable for the analysis of a

censored response variable, see section 2.4.

Another important property of regression quantiles is their robustness against outliers

of the regressand.15 This means that having fit a conditional quantile hyperplane, any

observation above the plane can be made arbitrarily large (up to +∞) and any obser-

vation below the plane can be made arbitrarily small (up to −∞) without altering the

fitted solution. This characteristic of quantile regression is also useful for the analysis

of censored response variables (see section 2.4) and can be stated formally by (compare

Koenker and Portnoy (1999))

β̂τ

(
y,X

)
= β̂τ

(
Xβ̂τ (y, X) + D

(
y −Xβ̂τ (y, X)

)
, X

)
(2.37)

where D is a diagonal matrix with non-negative elements di. In contrast, the quantile

regression approach is not robust against contamination of the conditioning covariates.

In section 2.4, we will briefly describe a proposal by Rousseeuw and Hubert (1999) to

“robustify” quantile regression also against outlying values of the regressors.

Our next point in this subsection concerns efficiency considerations. It is well known

that for a normally distributed random variable, the sample median is “worse” than the

sample mean in the sense that its (asymptotic) variance is about 50% larger (see e.g.

Koenker (2000)). However, for a wide range of non-Gaussian distributions, this pro-

portion is reversed with in some cases disastrous results for the mean. Koenker and

Bassett (1978) extended the concept to a regression setting by stating that the condi-

tional median is more efficient than the least squares estimator for any distribution for

which the median is more efficient than the mean. So, they concluded that “it seems

14Of course, we could also have applied the more general Box-Cox-transformation h(y) = (yλ − 1)/λ
15Interestingly, this feature was the main focus of Koenker and Bassett’s (1978) original paper.
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reasonable to pay a small premium in the form of sacrificed efficiency at the Gaus-

sian distribution, in order to achieve a substantial improvement over least squares in

the event of a non-Gaussian situation.” Furthermore, as already noted, the use of an

appropriate weighting procedure can additionally improve the efficiency of quantile re-

gression estimators, see Newey and Powell (1990) and section 2.4.

It is usual in least squares regression to interpret the regression coefficients βk as (ce-

teris paribus) partial derivatives of the expected value of y:

βk =
∂E(y|X)

∂xk
(2.38)

Of course, if there is more than one coefficient associated with a particular covariate

(e.g. the regressor itself plus its squared value), the partial derivative consists of an

appropriate combination of the according coefficients.

The interpretation of the quantile regression model is analogous to (2.38), now the

coefficient βτ,k answers the question of “how does the τ -th conditional quantile of y

react to a (ceteris paribus) change of xk”:

βτ,k =
∂Qτ (y|X)

∂xk
(2.39)

Some caution is required if we are interested in the effect on a single observation (e.g.

an individual person). If the xk of this subject changes, of course also the conditional

quantile at which the subject lies, can (and probably will) change. One possible remedy

for this identification problem might be the use of longitudinal data to explore in more

detail the dynamics of response.

As we have already noted, the quantile regression method is invariant to any monotone

transformation of the regressand, so if we have for example estimated a model for the

logarithm of the response variable (Qτ (log y) = x′βτ ), we can trouble-free write

∂Qτ (y|X)
∂xk

= ex′βτ βτ,k (2.40)
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Table 2.3: Simple regression example. The table shows the results of least squares and
several quantile regression estimates of model (2.41). The estimated standard errors
given in brackets have been calculated by bootstrapping with 1000 replications, see next
section. The goodness-of-fit measures were introduced in equations (2.29) and (2.30).

y LS q1 q10 q25 q50 q75 q90 q99

3.937 2.971 3.331 3.579 3.990 4.232 4.524 5.051
constant

(0.063) (0.266) (0.066) (0.056) (0.061) (0.060) (0.063) (0.106)

2.158 -0.250 0.896 1.609 2.061 2.855 3.468 4.714
coef of x

(0.109) (0.518) (0.177) (0.130) (0.131) (0.161) (0.150) (0.364)

R2,R1 .2818 .0028 .0369 .1038 .1737 .2273 .2893 .3413

In contrast, an analogue interpretation is problematic in least squares regression mod-

els. However, this does not hinder many practitioners from regardlessly (and possibly

wrongly) applying it.

2.2.3 Illustration

2.2.3.1 A simple regression example

Having presented the basic features and some important properties of quantile regres-

sion, we now want to further elucidate the theoretical results with the help of some

practical examples. We start with a very simple (bivariate) model by creating a regres-

sor x which consists of 1000 independently and uniformly distributed observations on

the interval (0, 1). The response variable y is subsequently generated by

yi = 4 + 2xi + ui with ui ∼ N
(
0, (xi + 0.5)2

)
(2.41)

It can easily be seen that the classical assumption of independence between the error

term and the regressor is clearly violated. Table 2.3 (second column) presents the re-

sults of a least squares regression of y on x. The estimated constant and the coefficient

of x are nicely in line with the imposed model parameters, so at first sight, there is no

indication that the least squares result hides any information.
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Figure 2.2: Conditional quantiles. The figure pictures every observation of model (2.41)
as a blue dot. Furthermore, three estimated conditional quantile regression hyper-
planes (which are, of course, in this simple regression model only straight lines) are
superimposed.

However, table 2.3 also contains the outcomes from several quantile regression esti-

mates for some selected values of τ (τ ∈ {0.01, 0.1, 0.25, 0.5, 0.75, 0.9, 0.99}). While the

conditional median (q50) roughly coincides with the mean regression, both the con-

stant and the coefficient of x are considerably different for other conditional quantiles.

Of course, recalling the specification from (2.41), this should be not too surprising. Fig-

ure 2.2 tries to clarify the underlying intuition. Every observation is plotted as a single

dot, which clearly reveals the increasing conditional variance of y for increasing values

of x. The three estimated quantile regression lines perfectly mirror the heteroscedastic

structure of the error term.16

Instead of only analyzing some selected conditional quantiles, it is also possible to con-

sider the whole range between 0 and 1. For practical reasons, we confine ourselves to

99 values (τ ∈ {0.01, . . . , 0.99}). Figure 2.3 plots the constant and the coefficient of x

for these 99 values of τ . It can be seen that in our example, both the constant and the

16The interested reader might try to verify equations (2.27) and (2.28) which in this case say that roughly
10 points should lie below the conditional 1%-quantile line and roughly 10 points above the 99%-quantile
line.
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Figure 2.3: Quantile regression coefficients. The figure presents the constant and the
coefficient of x from model (2.41) for 99 different quantiles. The respective values are
connected as a red solid line along with an estimated 95%-confidence band shaded in
gray (see next section). The least squares value is included as a horizontal solid blue
line.

coefficient of x have higher values at higher quantiles. This will be different in other

applications, see chapters three, four, and five. Figure 2.3 also contains the estimated

least squares coefficients to demonstrate the additional information obtained by using

the quantile regression approach.

The application of the quantile regression procedure paves the way to another and, as

we see it, very meaningful analytical instrument. Assume that we are interested in the

conditional distribution of y for a specific value of the regressor x. The implementation

is easy and straightforward: First, we calculate 99 quantiles of y conditional on the

desired value x∗:

Q̂τ (y|x∗) = α̂τ + β̂τx
∗ (2.42)

These 99 values constitute a rough estimation of the empirical quantile function (and

the empirical cumulative distribution function as its inverse). The resulting (discrete)

empirical probability density function thus consists of 99 spikes of equal height. So we

can easily apply a kernel density estimation on these 99 spikes to get an approximation

of the estimated density of y conditional on x∗.17 In figure 2.4, we present the result for

four different values of x∗. As in our later applications, we chose the unconditional 2%−,
17Consider that we have n observations Y1, Y2, . . . , Yn. Then a so-called kernel density estimate is defined
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Figure 2.4: Conditional densities. The figure shows the estimated density of y from
model (2.41) conditional on four different values of x (to be precise: the unconditional
2%- (solid blue line), 10%- (long-dashed red line), 90%- (dashed green line) and 98%-
quantile (short-dashed orange line) of the regressor).

10%−, 90%− and 98%-quantile of x∗ (which are of course just 0.02,0.1,0.9, and 0.98 in

this example) to examine the different impacts on y. Figure 2.4 nicely shows that not

only the conditional location but also the entire conditional shape of the distribution of

y behaves differently for different values of x∗.

Of course, one could also think of calculating not only 99 but all different conditional

quantiles (which are, as we have already seen, of order O(n log n)). In this case, the

different heights of the spikes of the empirical probability density function would have

to be accordingly included into the kernel density estimation process.

In our opinion, the specified method provides a simple, yet powerful tool for the post-

regressional analysis of any model. Surprisingly, very little can be found on our proposal

in the literature (see Koenker (2001), who presents a similar example, as an exception).

as
f̂(y) = (nh)−1

∑
i

K

(
y − Yi

h

)
(2.43)

One has to choose the kernel function K and the bandwidth parameter h, where usually the latter is
more important, see e.g. Pagan and Ullah (1999). We chose the Epanechnikov kernel and the “optimal”
bandwidth minimizing the mean integrated square error, see e.g. Silverman (1986).
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Even worse, some of the few papers with related approaches do not adequately deal

with the multiple regression setting, which will be clarified in the following example.

2.2.3.2 A multiple regression example

Our second example extends the concept to a model with two regressors. We start by

generating 1000 independently and uniformly distributed observations on the interval

(20, 80). The values are stored as our first regressor x1 (to put some life into it, x1 could

be seen as the age of a person). Subsequently, we create a second regressor x2 (which

could stand for the income of the respective person) by

x2 = 100x1 + ε with ε ∼ N
(
0, 5002

)
(2.44)

It is evident (and intended) that the two regressors are highly collinear (in our sample,

the correlation coefficient was nearly 0.96). Finally, we generate our response variable

y (which could for example be the person’s expenses for traveling) by

y = 1000− 10x1 + 0.2x2 + ν with ν ∼ N
(
0, (200− x1)2

)
(2.45)

Table 2.4 presents the outcomes of a least squares regression of model (2.45) along

with several quantile regression estimates. It can be seen that the least squares result

is close to the imposed coefficients. While the quantile regression coefficients of x1 vary

significantly, those of x2 have rather the same value for all quantiles. This is perfectly

in line with our specification, as the (variance of the) error term ν depends on x1 but

not on x2. Figure 2.5 plots for three examples of τ the estimated conditional values of

y against x1 and x2, respectively. As we now have two regressors, the interconnection

of the points is of course no longer a simple straight line as in figure 2.2. Figure 2.6

visualizes the quantile regression coefficients of x1 and x2 for the whole range of τ . It

can be seen that also in the multiple regression model, the use of quantile regression

enables us to obtain a more complete picture of the underlying relationships between
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Table 2.4: Multiple regression example. The table shows the results of least squares
and several quantile regression estimates of model (2.45). As in table 2.3, the estimated
standard errors given in brackets have been calculated by bootstrapping.

y LS q1 q10 q25 q50 q75 q90 q99

1002.4 566.6 745.4 868.0 1013.3 1135.4 1265.0 1460.4
constant

(10.31) (41.40) (20.96) (22.26) (12.04) (14.41) (18.95) (44.36)

-10.362 -5.370 -7.015 -8.974 -11.116 -11.736 -14.246 -14.347
coef of x1

(0.698) (1.758) (0.999) (1.188) (0.596) (0.854) (1.029) (1.716)

0.203 0.195 0.195 0.203 0.210 0.203 0.215 0.198
coef of x2

(0.007) (0.020) (0.011) (0.012) (0.006) (0.008) (0.010) (0.015)

R2,R1 .7778 .5796 .5659 .5641 .5594 .5394 .5136 .5201
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Figure 2.5: Conditional quantiles. The figure pictures for every observation of model
(2.44) three conditional estimated quantiles of y against x1 (left side) and x2 (right side).

the regressors and the response variable.

Obviously, also in the multiple regression model, the computation of conditional densi-

ties of y would be of interest for the analysis of a given model. However, the situation

is slightly more complicated than in the simple regression setting. As we know, in our

example the estimated conditional quantiles of y are given by:

Q̂τ (y|x1, x2) = α̂τ + β̂τx1 + γ̂τx2 (2.46)

So if we are interested in the conditional distribution of y for a specific value of x1 (say
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Figure 2.6: Quantile regression coefficients. The figure presents the coefficients of x1

and x2 from model (2.44) for 99 different quantiles along with the LS result.
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Figure 2.7: Densities of y conditional on x1. The left side is based on an auxiliary
regression of x2 on x1 for model (2.44). The right side is based on a simple regression of
y on x1.

x∗1), we also need some number of x2 to plug into equation (2.46). But which value to

choose? The answer is given by the so-called Frisch-Waugh-theorem (see e.g. Greene

(2002)). In our example, the theorem tells us that we can first conduct an auxiliary

regression of x2 on x1 and subsequently plug in the obtained values into equation (2.46).

The result is given on the left side of figure 2.7. To verify our approach, we also included

the outcome of a simple regression of y on x1 on the right side of figure 2.7. It can

clearly be seen that both graphs are in line, while the smaller variance on the left side

nicely reflects the additional information given in the full model compared to the simple

regression.
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Figure 2.8: Two invalid implementations of conditional densities. The left side is calcu-
lated only from the constant and x1, the right side includes the mean value of x2.

To complete our discussion, figure 2.8 contains two erroneous implementations of the

density estimation. The left side completely ignores x2 and evaluates the densities of y

only from the constant and x1. Obviously, this is no meaningful specification and leads

to completely false results. More interesting is the right side of figure 2.8 where we

included the mean of x2 in the estimation procedure of the density of y conditional on

x1. It can clearly be seen that also in this case, the procedure is far away from yielding

correct outcomes.

However (and surprisingly to us), the latter approach can be found frequently (with

respect to few papers dealing with the subject at all) in the literature. For example,

Mata and Machado (1996) presented an estimation of the empirical quantile function

(which could be used to calculate the conditional density of y as presented above). Un-

fortunately, they did not account for any possible collinearity among the regressors.

2.3 Asymptotics and Inference

According to Koenker and Hallock (2001), “it is a basic principle of sound econometrics

that every serious estimate deserves a reliable assessment of precision”. As the fi-

nite sample distribution of the estimated quantile regression coefficients β̂τ is not very
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tractable in most applications18, we resort to asymptotic theory for inferential state-

ments. We will see that the (estimation of the) already introduced sparsity function

plays a crucial role for this purpose. We also discuss how resampling methods can be

used to obtain information on the accuracy of the quantile regression process. Some test

procedures are also addressed. Finally, we briefly outline the results of several Monte

Carlo experiments comparing some of the different approaches.

2.3.1 Asymptotic normality

2.3.1.1 Sample quantiles

Before we extend our analysis to regression quantiles, we reconsider the ordinary uni-

variate sample quantiles from equation (2.13):

Q̂Y (τ) = argmin
ξτ∈R

∑

i

ρτ (Yi − ξτ ) (2.48)

The so-called uniform law of large numbers (also known as Glivenko-Cantelli-theo-

rem19) tells us that the empirical distribution function of a one dimensional random

variable converges uniformly to the true distribution function in probability (see e.g.

Vapnik (1998)). This provides us with the desired consistency of the sample quantiles.

What size has the rate of convergence? Koenker and Portnoy (1999) show that if the

continuous density of Y is bounded away from 0 and ∞ near ξτ
20, then

√
n

(
Q̂Y (τ)− ξτ

)
−→ N (

0, ω2
)

with ω2 =
τ(1− τ)
f2

Y (ξτ )
(2.49)

18Koenker and Portnoy (1999) show that with i.i.d. errors ui,τ (having strictly positive density f at
F−1(τ)), the density of β̂τ takes the rather unwieldy form

g(b) =
∑

h∈H
P{ξh(b) ∈ [τ − 1, τ ]p}|X(h)|

∏

i∈h

f(x′i(b− βτ ) + F−1(τ)) (2.47)

where ξh(b) =
∑

i

ψτ (yi − xib)x
′
iX(h)−1 and ψτ (u) = τ − I(u < 0)

19The name dignifies the work of Glivenko (1933) and Cantelli (1933).
20Smirnov (1952) discussed cases in which this assumption fails. See also Knight (2000).
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It can be seen that the numerator of ω2 seems to make Q̂Y (τ) more precise in the tails,

but this effect is typically dominated by the density of Y (which is usually small if τ is

near 0 or 1) in the denominator. If we remember the sparsity function from equation

(2.8), we see that the asymptotic variance of the estimated sample quantile can also

be expressed as ω2 = τ(1 − τ)s2
Y (τ). So it is evident that the sparsity of the data at a

specific quantile determines the preciseness of the estimated value.

If FY is actually flat in a neighborhood of ξτ , we can only say that the sum of the

probabilities that Q̂Y (τ) falls near the lower or upper bound of the flat interval tends to

1 as n → ∞. Ellis (1998) argued against this “instability”, but the comment of Portnoy

and Mizera in the same article rebutted his line of argumentation.

Equation (2.49) can be extended to the limiting form of the joint distribution of several

quantiles. If ζ is a vector of m sample quantiles
(
ζ = (ξτ1 , . . . , ξτm)

)
and ζ̂ denotes its

estimate, it can be shown that (see again Koenker and Portnoy (1999))

√
n

(
ζ̂ − ζ

)
−→ N (

0,Ω
)

with Ω =
(
ωij

)
=

min(τi, τj)− τiτj

f(F−1(τi))f(F−1(τj))
(2.50)

2.3.1.2 Linear regression quantiles

If we move on to the asymptotic theory of estimating conditional linear quantile func-

tions, the situation gets a bit more complicated. Again, we start with considering the

question under which circumstances the estimators converge in probability to their true

value. El Bantli and Hallin (1999) provides us with necessary and sufficient conditions

for the desired consistency of the estimated regression coefficients. First, they make

the following two assumptions:21

1. There exists a vector d > 0 such that limn→∞ inf inf ||u||=1 n−1
∑

i I(|x′iu| < d) = 0

2. There exists a matrix D > 0 such that limn→∞ sup sup||u||=1 n−1
∑

i(x
′
iu)2 ≤ D

21The first condition ensures that the xi’s are not concentrated on a subspace and is needed for identifi-
ability, the second one controls the rate of growth of the xi’s.
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Subsequently, they show that for fixed ε > 0,

lim
n→∞

√
n

(
n−1

∑

i

Fi(x′iβτ−ε) − τ
)
→∞ and lim

n→∞
√

n
(
τ − n−1

∑

i

Fi(x′iβτ +ε)
)
→∞

are necessary and sufficient for β̂τ → βτ . Other formulations of consistency with slightly

different imposed conditions can be found, inter alia, in Oberhofer (1982), Koenker and

Bassett (1984), Bassett and Koenker (1986), Zhao, Rao, and Chen (1993), Chen, Wu,

and Zhao (1995), and Mizera and Wellner (1998).

In analogy to equation (2.49), it can be shown that (under some mild regularity condi-

tions) the rate of convergence of the estimated regression coefficients is also O(1/
√

n):

√
n

(
β̂τ − βτ

)
−→ N

(
0, τ(1− τ)H−1

τ JH−1
τ

)
= N

(
0,Λτ

)
(2.51)

with J = lim
n→∞n−1

∑

i

xix
′
i

and Hτ = lim
n→∞n−1

∑

i

xix
′
ifi(Qτ (yi|xi))

A detailed proof of (2.51) can be found in Kim and White (2003). Their argument uses

the so-called stochastic equicontinuity of the gradient of the objective function. This

means that the discontinuous first order conditions are made asymptotically stochas-

tically uniformly continuous to allow for taking the usual Taylor expansion to obtain

the asymptotic distribution. See Huber (1967), Bickel (1975), and Jureckova (1977)

for important contributions on stochastic equicontinuity and monotonicity of the gradi-

ent. The asymptotic results of quantile regression estimators under i.i.d. errors were

derived by Ruppert and Carroll (1980).

Other authors based their argument on the convexity of the limiting objective function,

see e.g. Pollard (1991), Niemiro (1992), Hjort and Pollard (1993), Bai (1995), Geyer

(1996), and Knight (1998, 1999). Further information on the asymptotic properties of

least absolute deviation and quantile regression under various conditions are provided

in, among others, Bassett and Koenker (1978), Koenker and Portnoy (1987), Phillips
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(1991), Portnoy (1991a), Andrews (1994), Welsh, Carroll, and Ruppert (1994), Koenker

(1994), Herce (1996), Zhou and Portnoy (1996), Fitzenberger (1997b), Zhou and Portnoy

(1998), Van Der Vaart (1998), and Zhao (2001).

If the errors are assumed to be i.i.d., equation (2.51) simplifies to

√
n

(
β̂τ − βτ

)
−→ N

(
0,

τ(1− τ)
f2(F−1(τ))

J−1
)

with J = lim
n→∞n−1

∑

i

xix
′
i (2.52)

We see that in this case all density values fi are identical, so the “sandwich” variance

from equation (2.51) collapses to a much simpler expression. One could argue that the

assumption of i.i.d. errors is very restrictive and often violated in empirical applica-

tions. Furthermore, if the assumption is true, the information gain from using quantile

regression is limited, as all conditional quantile planes are parallel in this case.22 How-

ever, the analysis of the special case has its justification for at least two reasons: (i)

as we will see in the next subsection, the estimation of the variance in (2.51) is not

necessarily straightforward and some of the proposed methods are only feasible in the

i.i.d. case; (ii) equation (2.52) can be regarded as a kind of benchmark model and thus

be utilized for the construction of tests, which is also shown below.

In analogy to equation (2.50), we can also specify the joint asymptotic distribution

of several regression coefficient vectors (calculated at different quantiles). Let ζ be

a vector of m K-variate quantile regression estimators
(
ζ = (β′τ1 , . . . , β

′
τm

)′
)

and ζ̂ =

(β̂′τ1 , . . . , β̂
′
τm

)′ its estimate. Then the joint asymptotic distribution of these m estimated

regression coefficient vectors is given as (see Koenker and Portnoy (1999))

√
n

(
ζ̂ − ζ

)
−→ N (

0, Ω
)

(2.53)

with Ω =
(
ωij

)
=

(
min(τi, τj)− τiτj

)
H−1

τ1 JH−1
τ2

and J = lim
n→∞n−1

∑

i

xix
′
i and Hτ = lim

n→∞n−1
∑

i

xix
′
ifi(Qτ (yi|xi))

22To quote Chamberlain (1994): “This is hardly an attractive foundation for inference, given our focus
on how the slopes differ for different quantiles.”
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2.3.2 Sparsity estimation

2.3.2.1 Independently and identically distributed errors

In the last subsection, we have seen in (2.52) that under the assumption of i.i.d. errors,

the asymptotic normality of an estimated regression quantile coefficient is given as

√
n

(
β̂τ − βτ

)
−→ N

(
0,

τ(1− τ)
f2(F−1(τ))

J−1
)

with J = lim
n→∞n−1

∑

i

xix
′
i (2.54)

It is easy to see that for any inferential assertion, we somehow have to estimate the

(square of the) reciprocal of the density f(F−1(τ)), already introduced as sparsity s(τ).23

As the sparsity function is the derivative of the quantile function, it is natural to just

use a simple difference quotient of the empirical quantile function to estimate the spar-

sity24

ŝ(τ) =
F̂−1(τ + hn)− F̂−1(τ − hn)

2hn
(2.55)

where F̂−1 is an estimate of the quantile function and hn is a bandwidth parameter

which tends to zero as n → ∞. This procedure was originally proposed by Siddiqui

(1960) for constructing confidence intervals for univariate sample quantiles (see also

Koenker (1994)). Obviously, the next question arising from (2.55) is how to optimally

choose the bandwidth parameter hn. Bofinger (1975) showed that

hn = n−1/5

(
4.5(s(τ))2

(s′′(τ))2

)1/5

(2.56)

minimizes the mean squared error (MSE) under mild regularity conditions on F . Of

course, if we knew s(τ) and s′′(τ) we wouldn’t need hn, but as s(τ)/s′′(τ) is not very

sensitive to F , we can choose hn for some typical distributional shape (see Sheather

23The estimation of the sparsity can to some extent be compared with the estimation of the standard
deviation σ in the least squares case.

24As the centered difference formula in (2.55) has O(h2) truncation error, it is preferred over a simple
forward (or backward) difference formula which has O(h) truncation error, see Chen (2001).
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Figure 2.9: Bandwidth parameter hn. The three solid lines show the Bofinger band-
width from equation (2.58) depending on n. From top to bottom, the blue line repre-
sents τ = 0.5, the red one shows τ = 0.75 and green indicates τ = 0.95. The dashed lines
show the Hall and Sheather bandwidth from equation (2.60) for the same values of τ
and α = 0.05.

and Maritz (1983)). In general,

s(τ)
s′′(τ)

=
f2

2(f ′/f)2 +
(
(f ′/f)2 − f ′′/f

) (2.57)

so if we plug in the Gaussian distribution (f = φ), we see that (f ′/f)(F−1(τ)) = Φ−1(τ)

and thus Bofinger’s bandwidth parameter is given as

hn = n−1/5

(
4.5(φ(Φ−1(τ)))4

(2(Φ−1(τ))2 + 1)2

)1/5

(2.58)

The three solid lines in figure 2.9 show the resulting values of (2.58) for τ = 0.5, τ = 0.75

and τ = 0.95.25 As the assumed Gaussian distribution is symmetric, it is clear that the

hn’s are identical at τ and 1 − τ . Figure 2.9 indicates that the bandwidth gets smaller

for larger sample sizes and values of τ further away from 0.5.

25In figure 1 of Koenker (1994), which shows the same than figure 2.9, the bandwidth curves have some
odd kinks at small n. We believe that this must be a computational inaccuracy since neither (2.58) nor our
results suggest such kinks.
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Figure 2.10: Bandwidth parameter hn. The blue solid line shows the Bofinger band-
width for n = 500 depending on the value of τ . The red (α = 0.01) and green (α = 0.1)
long-dashed lines present the Hall and Sheather bandwidth, the yellow (α = 0.01) and
grey (α = 0.1) short-dashed lines indicate the Chamberlain bandwidth.

Hall and Sheather (1988) questioned Bofinger’s rule and suggested instead

hn = n−1/3z2/3
α

(
1.5s(τ)
s′′(τ)

)1/3

(2.59)

where zα = Φ−1(1− α
2 ). The parameter α denotes the desired size of the test. Since the

Hall and Sheather rule is explicitly designed for confidence interval construction, rather

than simply optimizing MSE-performance for the sparsity estimate itself, Koenker

(1994) argued that it seems to be more reasonable for inferential purposes. If we again

plug in the Gaussian distribution, we obtain

hn = n−1/3z2/3
α

(
1.5(φ(Φ−1(τ)))2

2(Φ−1(τ))2 + 1

)1/3

(2.60)

Figure 2.9 also contains three examples of the Hall and Sheather bandwidth, each cal-

culated for α = 0.05. It can be seen that the values are bigger than the Bofinger sand-

wich for small sample sizes but (considerably) smaller for medium to big data sets.

A third and rather simple alternative to the bandwidth estimation was proposed by
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Buchinsky (1991) and is derived from the asymptotics of binomially distributed quan-

tiles (see also Chen (2001)). It is named Chamberlain bandwidth and also contains a

significance level parameter α:

hn = zα

√
τ(1− τ)

n
(2.61)

Figure 2.10 pictures the different bandwidth choice rules for the whole range of τ with

n = 500. We imposed two different confidence levels for the Hall and Sheater bandwidth

and the Chamberlain bandwidth, respectively.

Having presented three possibilities to determine the bandwidth parameter hn, we now

consider the question of how to calculate the estimated empirical quantile function

Q̂(τ) = F̂−1(τ) in equation (2.55). A simple approach is to just take the residuals from

a quantile regression fit at an arbitrarily chosen quantile (denoted with τ∗):26

ûi = yi − x′iβ̂τ∗ i = 1, . . . , n (2.62)

Sorting the resulting values, we obtain the corresponding order statistics û(i) : i =

1, . . . , n and can estimate an empirical quantile function by

F̂−1(τ) = û(i) τ ∈ [ i−1
n , i

n) (2.63)

Of course, now the estimated empirical quantile function refers to uτ∗ instead of the

regressand. But since the sparsity is defined as a function of the difference of two F̂−1’s

and we have assumed i.i.d. errors, both approaches are valid. If one prefers a piecewise

linear version of (2.63), one can use

F̃−1(τ) =





û(1) if τ ∈ [0, 1
2n )

λû(j+1) + (1− λ)û(j) if τ ∈ [ 2j−1
2n , 2j+1

2n ) j = 1, . . . , n− 1

û(n) if τ ∈ [ 2n−1
2n , 1]

(2.64)

26Unfortunately, Koenker (1994) is unclear at this point. Bassett and Koenker (1982) are more specific,
they use not only the median but also (alternatively) a least squares preliminary estimation to obtain the
residuals.
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with λ = τn − j + 1/2. The fact that the K residuals equal to zero may be problematic

if K/n is large relative to hn can easily be circumvented by ignoring the zero residuals.

This procedure can be compared to the usual degrees of freedom correction in least

squares regression.

A perhaps more appealing approach to obtain the estimated empirical quantile function

was proposed by Bassett and Koenker (1982). As we have already seen in the last

subsection, the sample path of the conditional quantiles of y is non-decreasing in τ at

the mean of x, so we can just use (see also Bassett and Koenker (1986))

F̂−1(τ) = x̄′iβ̂τ (2.65)

To give an impression of some typical sparsity values, figure 2.11 shows a very simple

example. We drew 500 sample observations from a standard normal distribution, deter-

mined the empirical quantile function (e.g. by just setting x = ι in (2.65)), and applied

the three bandwidth choice rules. It can be seen that the Bofinger bandwidth yields the

smoothest result (our plot shows the estimates for τ ∈ [0.08, 0.92]).

Other techniques for the sparsity estimation are also possible: Welsh (1988) used a ker-

nel approach and gave greater weight to values with narrower bandwidth. In Koenker

and Bassett (1982a), the sparsity function is estimated by twice differentiating a smoo-

thed version of R̂(τ), which denotes the minimum value achieved by the objective func-

tion at each regression quantile. Chamberlain (1994) obtained the sparsity from an

estimated confidence band constructed from appropriate order statistics.

2.3.2.2 Non-i.i.d. errors

In equation (2.51), we have seen that in a non-i.i.d. setting, the asymptotic variance of

the estimated quantile regression coefficients has the slightly unpleasant property of
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Figure 2.11: Sparsity estimation. The figure shows the estimated sparsity for a random
sample of 500 standard normally distributed values with the Bofinger (solid blue line),
the Hall and Sheather (long-dashed red line) and the Chamberlain (short-dashed green
line) bandwidth.

different densities at each observation:

√
n

(
β̂τ − βτ

)
−→ N

(
0, τ(1− τ)H−1

τ JH−1
τ

)
= N

(
0,Λτ

)
(2.66)

with J = lim
n→∞n−1

∑

i

xix
′
i and Hτ = lim

n→∞n−1
∑

i

xix
′
ifi(Qτ (yi|xi))

So, in this case we somehow have to estimate the entire matrix Hτ . The first proposal

(see Hendricks and Koenker (1992)) is to estimate the conditional density fi(Qτ (yi|xi))

at each observation by

f̂i(Qτ (yi|xi)) =
2hn

x′i(β̂τ+hn − β̂τ−hn)
(2.67)

with the same bandwidth parameter hn (e.g. Bofinger, Hall and Sheather, or Chamber-

lain bandwidth) as already discussed. Subsequently, the obtained values are substi-

tuted into Hn, and we have an estimator for the non-i.i.d. model. A possible drawback

of this procedure is the fact that the denominator of (2.67) is not necessarily always pos-

itive. As we have already seen, conditional quantile planes can cross, although usually

only at the periphery of the design space. To correct for this “inconvenience”, we simply
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replace f̂i(Qτ (yi|xi)) by its positive part and add a small tolerance parameter ε > 0 to

avoid dividing by zero:

f̂+
i (Qτ (yi|xi)) = max

(
0,

2hn

x′i(β̂τ+hn − β̂τ−hn)− ε

)
(2.68)

Another approach to estimate Hτ was proposed by Powell (1986, 1991) and is given as

(see also Buchinsky (1998b))

Ĥτ = (nhn)−1
∑

i

K

(
ûi,τ

hn

)
xix

′
i (2.69)

where ûi,τ = yi − x′iβ̂τ are again the residuals and hn is a bandwidth parameter with

limn→∞ hn = 0 and limn→∞
√

nhn = ∞. As in the last section, K denotes the kernel

function. So, we again have to choose an appropriate kernel and an optimal bandwidth,

where the latter selection is more important. Buchinsky (1998b) suggests to use a

cross-validation method for the choice of hn.

2.3.3 Bootstrapping

As we have seen in the last subsection, the estimation of the (asymptotic) covariance

matrix can be a bit burdensome, in particular if one assumes the more realistic case

of non-i.i.d. errors. So it comes to no surprise that several authors tried to circumvent

the laborious estimation of the sparsity and proposed alternatives to obtain inferential

information. A large part of these proposals is based on resampling methods known as

bootstrapping (see Efron (1979) as an important initial contribution and e.g. Efron and

Tibshirani (1993) for a comprehensive introduction).27

As in other applications, there are several possible implementations of the bootstrap

procedure. The first one is called residual bootstrap and was suggested by Efron (1982)
27Under a generous perspective, some parallels can be found between quantile regression and boot-

strapping: Both approaches were “invented” in the late 70’s, both provided new insights unattainable
by conventional methods, and both received a “career boost” in the 90’s due to improved availability of
computational power.
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for a nonlinear median regression problem. An adaptation for general quantile regres-

sion settings can be found e.g. in Hahn (1995). The idea is to fit a quantile regression

model, obtaining the residuals

ûi,τ = yi − x′iβ̂τ i = 1, . . . , n (2.70)

Subsequently, a bootstrap sample u∗i,τ , . . . , u
∗
n,τ is drawn (of course with replacement)

from the estimated empirical distribution. With y∗i = xiβ̂τ + u∗i,τ , a bootstrapped regres-

sion coefficient is given as

β̂∗τ = argmin
βτ∈RK

∑

i

ρτ (y∗i − x′iβτ ) (2.71)

Repeating this process B times yields β̂∗τ,1, . . . , β̂
∗
τ,B, and we can consistently estimate

the asymptotic variance of β̂τ by (compare Bickel and Freedman (1981) and Freedman

(1981))28

Λ̂τ =
n

B

B∑

b=1

(
β̂∗τ,b − β̂τ

)(
β̂∗τ,b − β̂τ

)′
(2.72)

De Angelis, Hall, and Young (1993) showed that the error of the approximation is of

order O(n−1/4) as n → ∞. They also presented a smoothed version of the empirical

distribution function of the residuals with improved error of only O(n−2/5). A major

drawback of the residual bootstrap is the obvious fact that it is only valid under the

assumption of i.i.d. errors. As we have already explained, this is a strong limitation

which confines the practical utility of the method.

If the error term is independently but not necessarily identically distributed, the so-

called design matrix bootstrap provides a viable alternative to the residual bootstrap.

The idea is to draw (x∗i , y
∗
i )-pairs from the joint empirical distribution of the sample, of

course again with replacement. Subsequently, from each (x∗i , y
∗
i )-pair, a bootstrapped

regression coefficient β̂∗τ is calculated, and the resulting B coefficient vectors are again

28Fitzenberger (1997b) argued that it might be preferable to replace β̂τ by the bootstrap mean β̄∗τ in
(2.72).
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inserted into equation (2.72) to obtain the estimated asymptotic covariance matrix.

Horowitz (1998) suggested some refinements of the design matrix bootstrap based on

smoothing of the quantile regression objective function.

Having calculated a set of bootstrapped regression coefficients, the so-called percentile

method provides an alternative to equation (2.72) by just sorting the β̂∗τ ’s and defin-

ing a confidence interval for βτ with the Bα/2-th element as lower bound and the

B(1−α)/2-th element as upper bound (see e.g. Buchinsky (1996)). Andrews and Buchin-

sky (2000, 2001, 2002) provide an extensive discussion on the optimal number of boot-

strap repetitions. Several authors (see Bickel and Freedman (1981), Buchinsky (1994),

Sakov and Bickel (2000), Abrevaya (2001)) showed that a smaller size of the bootstrap

sample m than the original sample n can be advantageous under some cirumstances.

Fitzenberger (1997b) analyzed the case of autocorrelated errors and proposed a moving

blocks bootstrap. Parzen, Wei, and Ying (1994) proposed a resampling method based

on the subgradient condition (see also Bilias, Chen, and Ying (2000)). Hahn (1997) in-

vestigated the large sample property of the bootstrapped quantile regression estimator

under a Bayesian setting.

Some further applications of bootstrap methods on quantile regression problems can,

among others, be found in Knight (2002), He and Hu (2002), Kocherginsky, He, and Mu

(2003), and Machado and Parente (2003).

2.3.4 Testing procedures

In the last two subsections, we have seen several ways to obtain the (asymptotic) co-

variance matrix of the estimated regression coefficients. In this subsection, we briefly

present some testing approaches based on the previous results.
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2.3.4.1 Wald tests

Consider a linear quantile regression model

yi = x′iβτ + ui,τ i = 1, . . . , n (2.73)

with the linear hypothesis

H0 : Rβτ = r (2.74)

Koenker and Bassett (1982a, 1982b) showed that the test statistic

Wτ = n(Rβ̂τ − r)′[RΛ̂−1
τ R′]−1(Rβ̂τ − r) (2.75)

is asymptotically chi-square distributed under the null hypothesis with rank(R) degrees

of freedom. Λ̂τ denotes the estimated variance-covariance-matrix of the estimated re-

gression coefficient vector β̂τ from equation (2.51) and can be determined by one of the

already presented methods.

An even more general Wald statistic is given by

W = n(Rζ̂ − r)′[RΩ̂−1R′]−1(Rζ̂ − r) (2.76)

where Ω̂−1 is the estimated asymptotic joint matrix from equation (2.53) and the null

hypothesis (H0 : Rζ = r) refers to ζ = (β′τ1 , . . . , β
′
τm

)′. This formulation accommodates a

wide variety of testing situations, see Koenker and Portnoy (1999).

2.3.4.2 Likelihood ratio tests

Let

V̂τ = argmin
βτ∈RK

∑

i

ρτ (yi − x′iβτ ) (2.77)
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denote the value of the objective function at the unrestricted minimizer β̂τ and

Ṽτ = argmin
βτ∈RK |Rβτ=r

∑

i

ρτ (yi − x′iβτ ) (2.78)

refer to the value of the objective function under the restricted estimator β̃τ . Koenker

and Machado (1999) showed that under the i.i.d. error assumption, the test statistic

Lτ =
2(Ṽτ − V̂τ )

τ(1− τ)s(τ)
(2.79)

is asymptotically chi-square distributed under the null hypothesis with rank(R) degrees

of freedom. The estimation of the sparsity function s(τ ) has already been discussed.

Koenker and Machado (1999) also proposed a second LR statistic

Lτ =
2nσ(τ)

τ(1− τ)s(τ)
log

(
Ṽτ/V̂τ

)
(2.80)

with similar properties, assumed that σ(τ) = Eρτ (u).

2.3.4.3 Rank tests

The classsical theory of rank tests employs the so-called rankscore function (see Hájek

and Sidák (1967))

âni(τ) =





1 if τ < (Ri − 1)/n

Ri − τn if (Ri − 1)/n ≤ τ ≤ Ri/n

0 if Ri/n < τ

(2.81)

where Ri represents the i-th observation yi in (y1, . . . , yn). The integration of âni(τ)

with respect to various score generating functions ψ creates vectors of rank-like statis-

tics which are suitable for testing. For instance, integrating âni(τ) using the Lebesgue

measure (ψ(τ) = τ ) yields the so-called Wilcoxon scores

si =
∫ 1

0
âni(τ)dτ =

Ri − 1/2
n

i = 1, . . . , n (2.82)
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while e.g. using ψ(τ) = sgn(τ − 1/2) generates the so-called sign scores si = âni(1/2).

Gutenbrunner and Jureckova (1992) extended the theory to regression models by show-

ing that the rankscores in (2.81) are a solution to the dual problem of the quantile re-

gression minimization problem from equation (2.25). Gutenbrunner, Jureckova, Koenker,

and Portnoy (1993) designed a test of the null hypothesis H0 : βτ(2) = 0 based on the

regression rankscore process for the model

y = X1βτ(1) + X2βτ(2) + uτ (2.83)

First, the âni(τ)’s are computed at the restricted model y = X1βτ(1) + uτ , leading to the

corresponding rankscores vector with elements si =
∫

âni(τ)dψ(τ). Next, a vector

Sτ = n−1/2X ′
2s (2.84)

is formed, which converges in distribution toN (0, A2(ψ)Q) under the null, where A2(ψ) =
∫ 1
0 ψ2(τ)dτ and Q = limn→∞(X2− X̂2)′(X2− X̂2)/n with X̂2 = X1(X ′

1X1)−1X ′
1X2. Finally,

the test statistic

Tτ =
S′nQ−1Sn

A2(ψ)
(2.85)

can be calculated, which is asymptotically chi-square distributed under the null hy-

pothesis with rank(X2) degrees of freedom. An important feature of the test statistic Tτ

is that it requires no estimation of nuisance parameters (as e.g. the sparsity function),

since the functional A(ψ) depends only on the score function, but not on the distribution

of the error term (see e.g. Koenker (1994)). Huskova (1994) showed that inverted rank

tests can be used to estimate confidence intervals for quantile regression parameters.

Koenker (1997) and Hallin and Jureckova (1999) analyzed the efficiency of Tτ tests.

Further references on rank tests in a quantile regression context are, among others,

Koul and Saleh (1995), Hasan and Koenker (1997), and Mukherjee (1999).
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2.3.4.4 Further approaches

In the literature, several further testing procedures under different conditions were

developed. Buchinsky (1998b) proposed a test using the GMM framework, Melly (2001)

described a test for symmetry based on Newey and Powell (1987), and Koenker and Xiao

(2002a) used a martingale transformation to develop new tests. Chernozhukov (2002b)

offered an alternative resampling test, Park (2002) compared different procedures, and

He and Zhu (2003) developed a lack-of-fit test. Komunjer (2003) and Whang (2003) are

two recent examples of contributions on the issue of specification testing.

2.3.5 Monte Carlo results

To conclude this section, we briefly mention several Monte Carlo studies that compared

some of the presented approaches. Please refer to the cited articles for a more extensive

discussion.

Buchinsky (1995a) examined six different estimation procedures of the asymptotic co-

variance matrix: an order statistic estimator (from Chamberlain (1994)), a design ma-

trix bootstrap, a residual bootstrap, a sigma bootstrap (where the sparsity is boot-

strapped), and two kernel approaches (one for the general model, one under i.i.d. as-

sumption). He concluded that the design matrix bootstrap yields the best results, while

some of the estimators with i.i.d. assumption performed poorly when the assumption

was not satisfied (which is, after all, not too astonishing).

Koenker and Hallock (2000) compared the Hall and Sheather sparsity estimation, the

sandwich formula proposed by Powell (see above), another sandwich proposed by Hasan

and Koenker (1997), a rank inversion confidence interval, and the percentile estimation

version of the bootstrap with 20, 200, and 600 repetitions. Their main conclusion was

that all methods performed rather good. If forced to choose, one may want to take the

bootstrap with 600 replications. In a similar study, Koenker and Portnoy (1999) in-
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cluded the Parzen-Wei-Ying approach and a so-called Heqf-bootstrap. While the spar-

sity approach failed if the i.i.d. assumption was not satisfied (again not very surprising),

they recommended the rank-inversion method due to faster computation time than any

of the bootstrap procedures.

Chen (2001) also advocated the use of the rank-inverse test. Further studies can be

found, among others, in Fitzenberger (1997b), Koenker and Machado (1999), Koenker

and Xiao (2002a), and Kocherginsky, He, and Mu (2003).

2.4 Extensions and Applications

Since Koenker and Bassett’s (1978) invention of quantile regression, a multiplicity of

authors have extended the theoretical framework as well as presented empirical appli-

cations of the method. In this section, we briefly want to mention some of the (in our

opinion) most important contributions to both branches of the literature. As, of course,

many papers contain theoretical extensions and empirical elements, our classification

can be seen as somewhat arbitrary.

2.4.1 Theoretical contributions

2.4.1.1 Weighted quantile regression

As we have already noted, the application of an appropriate weighting scheme creates

opportunities for improved efficiency of estimation. Newey and Powell (1990) showed

that the following estimator attains a semiparametric efficiency bound:

β̂τ = argmin
βτ∈RK

∑

i

fi(Qτ (yi|xi))
(
τ − 1

2
+

1
2

sgn(yi − x′iβτ )
)
(yi − x′iβτ ) (2.86)

Similar results are given in Koenker and Zhao (1994). For other contributions on

weighted quantile regression see e.g. Machado and Santos Silva (2001) and Zhao (2001).
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2.4.1.2 Censored quantile regression

In section 2.2, we have seen that the quantile regression procedure is equivariant to

monotone transformations of the response variable and robust against outliers of the

regressand. From each of both properties, it follows immediately that the use of a

censored dependent variable (e.g. top-coded income data) does not at all influence the

results for conditional quantiles below the censoring threshold. Of course, this is not

true for the conditional mean.

In order to enable the estimation of all conditional quantiles, Powell (1984, 1986) pro-

posed the following estimator for a response variable with top coding value y:

β̂τ = argmin
βτ∈RK

∑

i

ρτ

(
yi −min{y, x′iβτ}

)
(2.87)

Fitzenberger (1997a) extended equation (2.87) to the case of observation specific cen-

soring from the left (yi) and right (yi):

β̂τ = argmin
βτ∈RK

∑

i

ρτ

(
yi −max{yi, min{yi, x

′
iβτ}}

)
(2.88)

A slight drawback of equations (2.87) and (2.88) is the fact that the estimation problem

has no longer a strict linear programming representation. However, several procedures

for censored quantile regression have been proposed, see, inter alia, Buchinsky and

Hahn (1998), Chay and Honoré (1998), Chen and Khan (1998, 1999, 2000), Khan and

Powell (1999), Yang (1999), Galfalvy, He, and Simpson (2000), Arias (2001), Chay and

Powell (2001), Chernozhukov and Hong (2002), Honoré, Khan, and Powell (2002), and

Portnoy (2003).

2.4.1.3 Regresssion depth

We have seen in section 2.2 that the quantile regression method is robust against out-

liers of the response variable, but not to extreme values of the regressors. Rousseeuw
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and Hubert (1999) introduced an approach called “deepest regression” which is also ro-

bust against such so-called leverage points. However, the procedure is less intuitive,

more computational demanding and less efficient than quantile regression (see e.g. He

and Portnoy (1998)). Furthermore, additional problems can arise beyond a bivariate

setting (see e.g. Koenker (2000)), so we will not further consider regression depth.

2.4.1.4 Autoregression, ARMA, and ARCH

A variety of authors have analyzed the characteristics to be taken into account if ap-

plying quantile regression to time series. Bloomfield and Steiger (1983) considered an

autoregressive model under stationary conditions. Hasan and Koenker (1997) provided

a test for the unit root hypothesis. Davis and Dunsmuir (1997) analyzed regression

models with ARMA errors. Koenker and Zhao (1996) proposed a specification for ARCH

models.

For more on quantile regression for time series see, among others, Weiss (1991), Koul

and Saleh (1995), Herce (1996), Hallin and Jureckova (1999), Galbraith, Zernov, and

Zinde-Walsh (2001), Ling and McAleer (2001), El Bantli and Hallin (2002), Koenker

and Xiao (2002b), Furno (2003), and Ferreira (2003).

2.4.1.5 Two-stage and IV quantile regression

Amemiya (1982) and Powell (1983) proposed a two-stage estimation procedure for the

conditional median. Some recent contributions to the implementation of quantile re-

gression for endogenous response variables can be found in Chernozhukov and Hansen

(2001), Arias, Hallock, and Sosa-Escudero (2001), Chernozhukov and Hansen (2002),

Abadie, Angrist, and Imbens (2002), Lucchetti (2002), Blundell and Powell (2003a),

Blundell and Powell (2003b), Kim and Muller (2003), Chernozhukov and Hong (2003),

Honoré and Hu (2004), Lee (2004), and Ma and Koenker (2004).
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2.4.1.6 Nonlinear quantile regression

So far, we have confined our analysis to the linear-in-parameters quantile regression

model, since it offers a flexible approach suitable for many applications. Furthermore,

a linear model can always be regarded as the (best) linear approximation of possibly

underlying nonlinear relationships. However, it is of course also possible to define a

nonlinear quantile regression estimator:

β̂τ = argmin
βτ∈RK

∑

i

ρτ

(
yi − g(xi, βτ )

)
(2.89)

Koenker and Park (1996) described a general approach for the computation of (2.89).

Other analyses of nonlinear quantile regression include Weiss (1991), Jureckova and

Prochazka (1994), Koenker, Ng, and Portnoy (1994), Welsh, Carroll, and Ruppert (1994),

Fitzenberger (1997a), Hunter and Lange (1998), Mukherjee (1999), Taylor (1999), Craig

and Ng (2000), Engle and Manganelli (2002), and Lee (2003).

2.4.1.7 Nonparametric quantile regression

Several authors have addressed the estimation of nonparametric quantile regression

models. Chaudhuri (1991) proposed a locally polynomial approach, while Hendricks

and Koenker (1992) introduced the computation of quantile regression splines. For

more on nonparametric methods see, inter alia, Koenker, Ng, and Portnoy (1994), Ab-

berger and Heiler (1997), Yu and Jones (1998), Khan (2001), Nahm (2001), Horowitz

and Lee (2002), Yu and Lu (2002), Yu (2002), Chen and Khan (2003), Gannoun, Saracco,

and Yu (2003), and Otsu (2003).

2.4.1.8 Multivariate quantile regression

Having read so far, one might ask why we have confined ourselves to the estimation

of univariate conditional quantiles. However, the definition of multivariate (condi-
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tional) quantiles is not straight-forward. Some proposals have been given by Chaudhuri

(1996), Koltchinskii (1997), Chakraborty and Chaudhuri (1998), De Gooijer, Gannoun,

and Zerom (2002), and Chakraborty (2003).

2.4.1.9 Further extensions

Manski (1985) introduced least absolute deviation estimation for binary response vari-

ables. Subsequent articles on quantile regression for discrete regressands include Ho-

rowitz (1992), Kordas (2002a), Kordas (2002b), Blundell and Powell (2003b), Kordas

and Lehrer (2003), Bilias and Haliassos (2004), and Lee and Yang (2004).

Machado and Santos Silva (2002) proposed a jittering procedure to estimate count data.

Other contributions for duration models can be found in Ying, Jung, and Wei (1995),

Chaudhuri, Doksum, and Samarov (1997), Koenker and Bilias (2001), and Koenker

and Geling (2001).

Chay (1995) extended the focus of quantile regression onto the estimation for panel

data. Chen and Khan (1998), He and Kim (2002), He, Fu, and Fung (2003), and Koenker

(2003) also analyzed longitudinal data sets.

Chernozhukov (2002a) provided a comprehensive theory for estimated conditional ex-

tremes and near-extremes. For more on extremal quantile regression see also Portnoy

and Koenker (1989), Portnoy and Jureckova (1999), and Chernozhukov (2000).

Several articles have introduced a linear Bahadur representation for the quantile re-

gression estimator, which can be helpful for inferential assertation. See for example

Koenker and Portnoy (1987), Chaudhuri (1991), Hendricks and Koenker (1992), Guten-

brunner and Jureckova (1992), and He and Shao (1996).

A regression method that is somewhat related to quantile regression is the so-called

asymmetric least squares estimation procedure. A variety of names have been proposed

for the computed regression outputs: expectiles, percentiles, graviles, heftiles, loadiles,
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or projectiles. See, among others, Aigner, Amemiya, and Poirier (1976), Newey and

Powell (1987), and Efron (1991).

Hahn (1997) examined the quantile regression process under a Bayesian setting. Sub-

seqent references include Jureckova and Klebanov (1999), Yu and Moyeed (2001), and

Tsionas (2003).

Buchinsky (2001) and Fitzenberger (2003) addressed sample selection issues, Chaud-

huri and Loh (2002) and Bergez, Cardot, and Garcia (2003) introduced quantile re-

gression trees, Morillo (1999b) used a recursive estimation procedure, and Hastie and

Loader (1993) proposed a kernel smoothing of the estimator.

2.4.2 Empirical examples

2.4.2.1 Labor and educational economics

Inspired by Chamberlain’s (1994) address to the World Congress of the Econometric

Society and Buchinsky’s (1991, 1994, 1995b, 1997, 1998a, 2001) pioneering work, a va-

riety of subsequent authors has applied quantile regression to labor economics and ed-

ucational questions. Without claiming to be exhaustive, we could mention Poterba and

Rueben (1994), Chay and Honoré (1998), Eide and Showalter (1998b), Eide and Showal-

ter (1998a), Kahn (1998), Schultz and Mwabu (1998), Maloney and Ribeiro (1999), Mo-

rillo (1999a), Machado and Mata (2000), Pereira and Martins (2000), Fertig (2001),

Fitzenberger, Hujer, MaCurdy, and Schnabel (2001), García, Hernández, and López-

Nicoláz (2001), González and Miles (2001), Hartog, Pereira, and Viera (2001), Levin

(2001), Machado and Mata (2001), Montenegro (2001), Nielsen and Rosholm (2001),

Ribeiro (2001), Tannuri-Pianto (2001), Bassett, Tam, and Knight (2002), Ding and

Lehrer (2002), Fitzenberger and Wunderlich (2002), Fitzenberger and Kurz (2002), Fer-

sterer and Winter-Ebmer (2002), Guimaraes (2002), Madalozzo (2002), Skans (2002),

Tam, Bassett, and Sukhatme (2002), Tannuri-Pianto and Pianto (2002), Wang (2002),
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Albrecht, Björklund, and Vroman (2003), Bedard (2003), Eide, Goldhaber, and Showal-

ter (2003), Falaris (2003), Hallock, Madalozzo, and Reck (2003), Maloney, Cunningham,

and Bosch (2003), Melly (2003), Nguyen, Albrecht, Vroman, and Westbrook (2003),

Rangvid (2003), Schunk (2003), Reck (2003), Angrist, Chernozhukov, and Fernández-

Val (2004), Kee (2004), Wößmann (2004), Melly (2004), and Martins (2004).

2.4.2.2 Time series and financial data

Another important field of successfully implemented quantile regression methods is the

analysis of time series and financial data. Refer for example to Koul and Saleh (1995),

Abberger (1997), Chang and Weigend (1999), Hallin and Jureckova (1999), Mukherjee

(1999), Taylor (1999), Taylor and Bunn (1999), Leggett and Craighead (2000), Tay-

lor (2000), Bassett and Chen (2001), Chernozhukov and Umantsev (2001), Galbraith,

Zernov, and Zinde-Walsh (2001), Barnes and Hughes (2002), Chen and Chen (2002),

Cai (2002), Engle and Manganelli (2002), Komunjer (2002), Park (2002), and Bassett,

Koenker, and Kordas (2004).

2.4.2.3 Medicine and health economics

Also in medical and health economics applications, quantile regression has proved to

be a viable alternative to other competing estimation methods. Examples are Cole

(1988), Cole and Green (1992), Gasser, Ziegler, Seifert, Prader, Molinari, and Largo

(1994), Royston and Altman (1994), Manning, Blumberg, and Moulton (1995), Lip-

sitz, Fitzmaurice, Molenberghs, and Zhao (1997), Wright and Royston (1997), Royston

and Wright (1998), Heagerty and Pepe (1999), Royston and Wright (2000), Jones and

Nicolás (2002), Variyam, Blaylock, and Smallworld (2002), Sun (2003), Yee (2004), and

Kan and Tsai (2004).
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2.4.2.4 Environmental applications

To demonstrate the universality of quantile regression, we further want to mention

some applications with biological and geological background. Please refer to Cade, Ter-

rell, and Schroeder (1999), Haire, Bock, Cade, and Bennett (2000), Haire, Bock, and

Cade (2000), Green and Kozek (2001), Knight and Ackerly (2002), Sankarasubrama-

nian and Lall (2003), and Cade (2003).

2.4.2.5 Economic growth and welfare

Finally, back in economics, several articles have used quantile regression for the analy-

sis of growth and welfare. See for example Mello and Novo (2002), Cunningham (2003),

Mello and Perrelli (2003), Gomanee, Girma, and Morrissey (2003), and Barreto and

Hughes (2004).

2.5 Concluding Remarks

Instead of repeating all features, properties, and advantages of quantile regression from

the last four sections, we want to conclude this chapter by notionally turning back time

for a moment to the year 1975. At that time, roughly three years before the “invention”

of quantile regression, Robert V. Hogg (1975) analyzed the relationship between the

salary and the number of years in rank of 96 American statistics professors. He quickly

remarked that the classical homoscedastic assumption of the error term seemed to be

violated in the data set.

So, he proposed the following method for the estimation of percentile regression lines:

First, he divided the data set into two groups according to x (years of rank) with equal

number of observations in both groups. Then, he plotted all 96 observations in a (x, y)

coordinate system. Finally, he took a pencil and a ruler and moved the ruler as long as
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Figure 2.12: Hogg’s estimator. The figure shows Hogg’s (1975, page 58) estimate of
percentile regression lines for the salary of 96 statistics professors, conditional on the
number of years in rank (see text).

nτ points were below and n(1− τ) were above it simultaneously in both groups to draw

the “estimated” τ -th percentile regression line. Figure 2.12 shows the result for three

different values of τ .

Without intending to denigrate Hogg’s approach, in our opinion a comparison between

his method and the quantile regression procedure as described in the last four sec-

tions should clearly clarify the ground-breaking characteristics of Koenker and Bas-

sett’s (1978) proposal. The next three chapters contain the application of their method

to three different empirical settings.



Chapter 3

Household Demand for

Consumption Goods

Abstract

This chapter uses cross-section micro data from the GfK consumer panel for an econo-

metric demand analysis of households in Germany. Contrary to most research which

considered “average” behavior, we analyze consumer behavior for different “intensities”

of consumption. Our analytical tool is quantile regression which allows us to describe

the conditional distribution for any quantile including the (conditional) median repre-

senting “average” behavior. As an illustrative example, we use the demand for beer and

wine. The results show quite distinct patterns regarding price and income effects for

light and heavy consumption, respectively, which leads to a better characterization of

household demand.

67
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3.1 Introduction

Econometric demand analysis played an important role in the 70’s and the 80’s: Chris-

tensen, Jorgenson, and Lau (1975) proposed the “Translog demand system” and Deaton

and Muellbauer (1980) introduced an alternative specification termed “Almost Ideal De-

mand System” (AIDS). Both approaches based their empirical analysis on the aggregate

time series data from a sample of households continuing the work started by Richard

Stone who established the “Linear Expenditure System” quite a while earlier (see Stone

(1954)). Many studies failed in trying to verify the constraints like symmetry and En-

gel and Cournot aggregation established by (static) microeconomic theory. Econometric

issues arose from the fact that both translog and AIDS were formulated in terms of (dy-

namic) share equations; the implied problems have been solved only marginally. See

Ronning (1992) for an overview.

On the other hand, surprisingly little work has been done in consumption analysis on

the basis of individual cross-section (or panel) household data. This fact is even more

worth mentioning when comparing it with a huge bulk of microeconometric studies in-

volved in qualitative choice behavior initiated by Daniel McFadden (1974) who studied

the structure of travel demand. Exceptions are, among others, the microeconometric

studies based on the British family expenditure survey (see for example Atkinson, Go-

mulka, and Stern (1990) and Blundell, Pashardes, and Weber (1993)). Deaton (1997) is

the most recent example for this kind of research who studies the consumption pattern

in underdeveloped countries.

All research so far has concentrated on “average” behavior, i.e. on the expected value of

the conditional distribution. Our study is concerned with a more detailed description

of characteristics of this (conditional) distribution; in particular we consider quantiles

of consumption which means that we do not only consider average behavior but also

behavior of “extreme” consumers thereby installing a new characterization of consumer
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behavior.1 For example, it might well happen for some good that extreme consumers’

demand elasticity differs in sign from the one shown by the average consumer: the

study by Manning, Blumberg, and Moulton (1995, page 125) on the demand for alcohol

tries to find out “...whether light and heavy drinkers have different price responses”.

In our analysis, we try to give an explanation for this varying demand structure which

to our best knowledge so far has only be noted - in a quite different context - by the

paper just mentioned. We use data from the German GfK consumer panel2 for the year

1995. Special attention is given to the kind of temporal aggregation employed in order

to include all purchases within this period.

The chapter is organized as follows: in section two, we establish or rather report some

basic results from empirical demand analysis needed when interpreting our own em-

pirical results later on. Section three contains a short description of the data. In sec-

tion four, we report on our results from which we derive some tentative more general

statements regarding consumer behavior. Section five summarizes our findings and

concludes.

3.2 Econometric Demand Analysis

The main concern of econometric demand analysis is with consumers’ reactions to

changes in prices and income3 as described, for example, in Varian’s textbook on mi-
1Former studies have tried to provide such information by evaluating the price elasticities at certain

quantiles of the expenditures. See, for example, Blundell, Pashardes, and Weber (1993, table 3, part D and
E) or - as a most recent example - Newey (2001, tables 3 to 5).

2GfK = Gesellschaft für Konsumforschung, Nuremberg/Germany.
3The table displays the possible cases. Normal goods are further separated into luxuries when income

elasticity is greater than one and necessities if income elasticity is smaller than one. Two goods are called
substitutes if the cross-price elasticity is positive and complements if it is negative.

change of income µ
“normal good” “inferior good”

∂qj/∂µ > 0 ∂qj/∂µ < 0

“ordinary good”
change of ∂qj/∂pj < 0

example: butter example: margarine

price pj “Giffen good” example: potatoes in
∂qj/∂pj > 0 Ireland, 19-th century
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croeconomic theory (see Varian (1992, section 3.3)). Two main approaches have been

used:4

• analysis of Engel curves for certain goods or groups of goods, that is the relation

between consumption and income for a certain good (group of goods). From this

analysis the income elasticity may be deduced.

• estimation of demand systems (LES, Translog, AIDS, generalized Leontief) using

information on prices and quantities for all goods (groups of goods). Only this

approach allows an adequate examination of substitution patterns between goods.

In the following, we list some of the most important topics and problems arising from

econometric demand analysis:

(a) Aggregate data versus micro data It has already been pointed out in the intro-

duction that most of the work concerning estimation of demand systems has been

done on the basis of (monthly or yearly) aggregate data for some population. Typi-

cally, consumption shares for a moderate number of categories have been analyzed

over time. See for example the pioneering papers by Christensen, Jorgenson, and

Lau (1975) and Deaton and Muellbauer (1980). Most of the studies failed to verify

the restrictions postulated by (static) microeconomic theory.

About a decade ago, Richard Blundell and others posed the question: “What do we

learn about consumer demand patterns from micro data?” Their paper shows - at

least for the data set used - that estimation on the basis of micro data much bet-

ter fulfills the demand restrictions (Blundell, Pashardes, and Weber (1993, page

577)), a fact which to our best knowledge has not been appropriately noted in the

literature. On the other hand, each model based on micro data has to relate its

results to the macro level thereby facing the problem of aggregation. This aspect

has been treated, too, in Blundell, Pashardes, and Weber’s (1993) paper.5

4See, for example, Ronning (1988) for an overview.
5Ronning and Zimmermann (1991) give an introduction to a series of papers in Ifo-Studien on the

relevance of microeconometric models for economic policy.
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(b) Income versus expenditure (consumption versus purchase) Ideally, consump-

tion for all goods and services should be included into the analysis. However,

usually only a subset of goods and services has been considered, so that it is un-

clear how “income” has been distributed between this subset and the remaining

goods. Therefore, the expenditures for this subset are used instead. Moreover,

Keen (1986) has stressed the important distinction between consumption and pur-

chase of a good: “Zero consumption” can only be defined via observed purchases.

If an household buys a good infrequently, we speak of zero consumption, although

it is not clear whether the good really is not consumed. See, for example, Ronning

(1988, page 71) and Blundell, Pashardes, and Weber (1993, page 575).

(c) Price information Prices of most goods will not vary over individuals in a cross-

section. This is an argument in favor of disregarding price effects in the analysis

of Engel curves where typically cross-section data are used. On the other hand,

it complicates the estimation of price effects on consumption, especially for goods

with regulated prices (price maintenance agreements, for example). The situation

is improved when panel data are available. If groups of goods are used in microe-

conometric research, then prices have to be aggregated (see, for example, Blundell,

Pashardes, and Weber (1993)). The data set used in our analysis contains infor-

mation for single households over one year indicating expenditures and quantities

for each single purchase. However, prices have to be derived from these data. As

we shall explain in section three, prices have been averaged over the whole year

to make the econometric demand analysis possible since all other variables, in

particular income, are only given on a yearly basis.

Manning, Blumberg, and Moulton (1995) have pointed out that consumers with iden-

tical income and facing the same price of a good may behave quite differently depend-

ing on the intensity of consumption. In their study on the demand for alcohol, they

find remarkable differences between “heavy” and “light” drinkers with respect to the

own-price elasticity and income elasticity. For example, the same good is considered
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as “inferior” by some consumers and “normal” by others. Another example is given by

Koenker and Hallock (2001), where different Engel curves are shown for “heavy” and

“light” consumption implying varying income elasticities for these subgroups.6 In both

cases, the method of quantile regression first proposed by Koenker and Bassett (1978)

is employed.

3.3 The Data

Our empirical analysis is based on data from the ConsumerScan household panel main-

tained by “Gesellschaft für Konsumforschung” (GfK) since 1957. The panel currently

consists of about 12,000 households constantly reporting their purchases of Fast Moving

Consumer Goods. A subset of this data set is available for scientific use from Zentrum

für Umfragen, Methoden und Analysen (ZUMA) at Mannheim.7 This file is confined to

the year 1995.

The data set contains all 9,064 households continuously reporting their purchases in

1995. The products are divided into 81 categories and no brand names are given. For

each individual purchasing act the following information is available: date, day of the

week, subcategory of a certain good, type of retailer, product identification number, type

of price (normal/special), total quantity, amount spent, time since last buying. Other

specific characteristics of the products are given as well (for example, packaging). For

some product categories only a subsample (4,426 respectively 4,638) of households has

been reporting.

Table 3.1 provides some descriptive statistics. In particular it contains information

about the total number of purchases from which we estimated the average purchas-

ing frequency: For example, households buy about 49 times milk and about 21 times

mineral water during the year. Additionally, the table reports the proportion of house-

6The paper uses the original data from Engel’s study on food expenditures (see Engel (1857)).
7A detailed description of the provided data can be found in Papastefanou (2001).
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Table 3.1: Descriptive statistics

purchasing number of purchasing proportion ofident. product
acts households frequency (av.) non-buyers (%)

04 detergents for dishes 34556 7780 4.44 14.17
08 milk 204339 *4185 48.83 5.45
12 pure coffee (roasted) 143194 8457 16.93 6.70
17 frozen food 230841 8175 28.24 9.81
22 fats 233124 *4617 50.49 0.45
33 beer 131245 7485 17.53 17.42
35 wine 27614 2954 9.35 67.41
46 lemonade 155447 7254 21.43 19.97
66 animal food 123133 3056 40.29 66.28
84 mineral water 174470 8414 20.74 7.17
91 pasta 53201 *4165 12.77 10.20
99 toilet paper 32435 *4039 8.03 8.74

Note: An asterisk indicates that only a subsample of the households has been reporting.

Table 3.2: Distribution of income

net income number percentage accumulated
up to 499 DM 24 0.26 0.26

500 DM - 999 DM 189 2.09 2.35
1000 DM - 1249 DM 312 3.44 5.79
1250 DM - 1499 DM 366 4.04 9.83
1500 DM - 1999 DM 890 9.82 19.65
2000 DM - 2499 DM 1235 13.63 33.27
2500 DM - 2999 DM 1233 13.60 46.88
3000 DM - 3499 DM 1235 13.63 60.50
3500 DM - 3999 DM 907 10.01 70.51
4000 DM - 4499 DM 852 9.40 79.91
4500 DM - 4999 DM 484 5.34 85.25
5000 DM - 5499 DM 474 5.23 90.48
5500 DM and more 829 9.15 99.62

not reported 34 0.38 100.00
total 9064 100.00

holds not buying from a certain product group. This ranges from 0.45% not buying fats

to 67.41% not buying wine and thereby illustrating the fact of “zero consumption” as

discussed in section 2.

Furthermore, some socioeconomic and demographic information is provided on a house-

hold basis. Regional information includes federal state and size of the community. Ad-

ditional variables are age of head of household, number of children in different age

groups (up to 6, 7-14 and 15-18 years), income, occupational and educational status.

Moreover, information about equipment of the household is provided. For some of the

households these variables are missing.

A major drawback of this data set is the fact that income and age are reported only

in grouped form. Table 3.2 shows the number of missing values as well as the group-
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ing for the variable household income which plays a central role in demand analysis.

Finally, the GfK panel reports on attitudes of consumers. These attitudes concern e.g.

nutritional, environmental and other aspects (like price consciousness) of daily life.

For our empirical analysis, some aggregation of the data is required. This results from

the fact that we have detailed information on each purchase regarding quantity and

amount spent from which we can deduce - for each purchase - the price per unit by

computing for each product

price =
amount spent

quantity
.

However, we have - of course - only one observation regarding income for each house-

hold. Therefore, we determine the yearly average price for each household by comput-

ing for each product

average price =
total amount spent by a household on this product within the year

total quantity within the year
.

In the following, we call this derived average price simply “the price”. In order to illus-

trate the effect of our aggregation approach, we show in figure 3.1 the distribution of

quantity, amount spent and price (per purchase) for the case of beer. Note the peaks

at 10 and 20 liters whereas the price distribution is rather well behaved. Figure 3.2

then displays the result of aggregation in two scatter diagrams (double linear scale and

double log scale) for price and quantity where each point represents one household.8

3.4 Empirical Results

In the following, we present our estimation results. We start by showing the least-

squares estimates as a sort of benchmark which then are contrasted with outcomes

8Due to size restrictions, only a randomly chosen 20% subsample of all households is presented.
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Figure 3.1: Beer consumption (quantity, expenditures and price)
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Figure 3.2: Aggregated beer data (levels and logs)

from quantile regression. In the last subsection, we will discuss our estimation results

with regard to possible bias due to potential endogeneity of regressors.

We will concentrate on the consumption of beer and wine since alcohol consumption has

a particularly clear interpretation of the “intensity” of consumption. We also would like

to contrast our results with those from Manning, Blumberg, and Moulton (1995). Later

on (see subsection 3.4.3) we add some results for other products trying to explain the

varying demand patterns for different goods more generally.

We use the simplest specification possible relating quantity and price by a log-linear

model. This has the advantage that coefficients can be interpreted as elasticities. In-

come is available only in grouped form. We therefore first exploit this information as

well as that from other discrete or grouped explanatory variables (age, household size).

However, in order to obtain at least rough estimates for the income elasticity, we con-

struct an artificial continuous income variable. The same is done for age. Details of our

data transformations are presented in subsection 3.4.2.
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Table 3.3: Least-squares regression (beer)

log. beer quantity coef. std. err. t P > |t| 95% conf. interval
constant 3.35284 .1889605 17.74 0.000 2.982424 3.723256

log. av. price -1.753606 .0786581 -22.29 0.000 -1.907799 -1.599414
income ∈ [1000,1249] .0878681 .1583885 0.55 0.579 -.2226182 .3983544
income ∈ [1250,1499] .0880574 .1531222 0.58 0.565 -.2121056 .3882203
income ∈ [1500,1999] .2436030 .1359381 1.79 0.073 -.0228742 .5100802
income ∈ [2000,2499] .1308066 .1341529 0.98 0.330 -.1321710 .3937842
income ∈ [2500,2999] .3098026 .1353236 2.29 0.022 .0445299 .5750752
income ∈ [3000,3499] .3405131 .1359922 2.50 0.012 .0739298 .6070963
income ∈ [3500,3999] .3250298 .1392488 2.33 0.020 .0520627 .5979969
income ∈ [4000,4499] .3633615 .1398491 2.60 0.009 .0892177 .6375053
income ∈ [4500,4999] .3150890 .1476771 2.13 0.033 .0256000 .6045780
income ∈ [5000,5499] .2552472 .1475486 1.73 0.084 -.0339899 .5444842

income >= 5500 .2976291 .1412991 2.11 0.035 .0206429 .5746153
hhsize = two 1.062992 .0522729 20.34 0.000 .9605224 1.165462

hhsize = three 1.213293 .0622057 19.50 0.000 1.091352 1.335234
hhsize = four 1.320731 .0689660 19.15 0.000 1.185538 1.455924
hhsize = five 1.330039 .0938747 14.17 0.000 1.146018 1.514060
hhsize >= six 1.357907 .1490717 9.11 0.000 1.065685 1.650130
age ∈ [25,29] .3611248 .1597493 2.26 0.024 .0479710 .6742786
age ∈ [30,34] .4054011 .1567852 2.59 0.010 .0980577 .7127445
age ∈ [35,39] .5560247 .1573868 3.53 0.000 .2475020 .8645473
age ∈ [40,44] .6279981 .1572959 3.99 0.000 .3196535 .9363426
age ∈ [45,49] .7142163 .1578534 4.52 0.000 .4047788 1.023654
age ∈ [50,54] .8675696 .1564659 5.54 0.000 .5608521 1.174287
age ∈ [55,59] .8535417 .1536883 5.55 0.000 .5522691 1.154814
age ∈ [60,65] .7362940 .1544137 4.77 0.000 .4335994 1.038989
age ∈ [65,69] .5831481 .1545569 3.77 0.000 .2801727 .8861235

age >= 70 .4721374 .1534021 3.08 0.002 .1714259 .7728490

3.4.1 Least-squares estimation

Table 3.3 shows the results from least-squares estimation for the consumption of beer.

In addition to the price of this good, the impacts of income (grouped), age of head of

household (grouped) and household size are considered by defining three sets of dum-

mies. For each categorical variable, the first category is omitted (household size one,

income lower than 1000 DM and age less than 25). We note a rather pronounced price

elasticity of -1.75 which is comparable in size to the estimated elasticities of alcohol in

Blundell, Pashardes, and Weber (1993, table 3) and Manning, Blumberg, and Moulton

(1995, table 2). Household size matters much more than age or income when looking

at the t-ratios. We note for later reference that income has an (albeit slight) significant

effect at higher income classes.

Turning to the corresponding results for wine (see table 3.4), we obtain a quite different

picture: the price elasticity is positive making wine a “Giffen” good which is at odds
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Table 3.4: Least-squares regression (wine)

log. wine quantity coef. std. err. t P > |t| 95% conf. interval
constant .8621149 .2742967 3.14 0.002 .3242790 1.399951

log. av. price .1011763 .0542206 1.87 0.062 -.0051385 .2074911
income ∈ [1000,1249] .1044016 .224500 0.47 0.642 -.3357938 .5445971
income ∈ [1250,1499] -.1895866 .2251126 -0.84 0.400 -.6309831 .2518100
income ∈ [1500,1999] .3246291 .1906123 1.70 0.089 -.0491199 .6983782
income ∈ [2000,2499] .3041583 .1862344 1.63 0.103 -.0610067 .6693233
income ∈ [2500,2999] .3381186 .1900110 1.78 0.075 -.0344516 .7106887
income ∈ [3000,3499] .5028804 .1919761 2.62 0.009 .1264571 .8793038
income ∈ [3500,3999] .4895946 .1978534 2.47 0.013 .1016473 .8775419
income ∈ [4000,4499] .5577149 .1964025 2.84 0.005 .1726125 .9428172
income ∈ [4500,4999] .6424704 .2096058 3.07 0.002 .2314791 1.053462
income ∈ [5000,5499] .8378914 .2125869 3.94 0.000 .4210548 1.254728

income >= 5500 .9920589 .1991890 4.98 0.000 .6014927 1.382625
hhsize = two .2183280 .0779064 2.80 0.005 .0655705 .3710855

hhsize = three .0995142 .0956803 1.04 0.298 -.0880939 .2871223
hhsize = four .2701201 .1071512 2.52 0.012 .0600201 .4802202
hhsize = five .1343788 .1470194 0.91 0.361 -.1538942 .4226518
hhsize >= six .2052321 .2434585 0.84 0.399 -.2721368 .6826010
age ∈ [25,29] .3174385 .2453108 1.29 0.196 -.1635625 .7984394
age ∈ [30,34] .4703598 .2413946 1.95 0.051 -.0029624 .943682
age ∈ [35,39] .4929683 .2423548 2.03 0.042 .0177633 .9681732
age ∈ [40,44] .6611684 .2403771 2.75 0.006 .1898414 1.132495
age ∈ [45,49] .6735898 .2424984 2.78 0.006 .1981033 1.149076
age ∈ [50,54] .8447658 .2408852 3.51 0.000 .3724424 1.317089
age ∈ [55,59] .7958071 .2366303 3.36 0.001 .3318268 1.259787
age ∈ [60,64] .6219815 .2366123 2.63 0.009 .1580364 1.085927
age ∈ [65,69] .6377288 .2378547 2.68 0.007 .1713476 1.104110

age >= 70 .7447125 .2352835 3.17 0.002 .2833730 1.206052

with a priori expectations. However, the estimate is not significantly different from

zero. Household size is almost insignificant contrary to the results for beer. The income

effect is nearly monotone, i.e. coefficients are greater for larger incomes. Age, too, has

an impact on wine consumption.

3.4.2 Results from quantile regression

We now turn to the results from quantile regression which analyzes the conditional

distribution to a greater extent. For this, we compute quantile regressions for 99 dif-

ferent quantiles (τ = 0.01, . . . , 0.99) by the methods discussed in chapter two. Again, we

include the explanatory variables price, household size, income and age as explanatory

variables. Table 3.5 contains the regression results for some selected quantiles.

A more comprehensive way of presenting the results is in form of graphics: Figure

3.3 displays the estimated price elasticities for all 99 quantiles. The 95% confidence
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Table 3.5: Quantile regression results (beer)

log. beer quantity least sq. 5% quant. 25% quant. 50% quant. 75% quant. 95% quant.

constant 3,353*** 0,174 2,263*** 3,91*** 4,601*** 5,235***
log. av. price -1,754*** -0,908*** -1,895*** -2,196*** -1,889*** -1,41***

income ∈ [1000,1249] 0,088 0,394 0,231 -0,307 -0,114 0,589***
income ∈ [1250,1499] 0,088 0,029 0,164 -0,107 0,056 0,632***
income ∈ [1500,1999] 0,244* 0,122 0,457** 0,148 0,145 0,606***
income ∈ [2000,2499] 0,131 0,046 0,289* 0,023 0,012 0,431**
income ∈ [2500,2999] 0,310** 0,410 0,497*** 0,233 0,117 0,479***
income ∈ [3000,3499] 0,341** 0,234 0,539*** 0,252 0,162 0,496***
income ∈ [3500,3999] 0,325** 0,612* 0,460*** 0,215 0,127 0,473***
income ∈ [4000,4499] 0,363*** 0,452 0,559*** 0,276 0,204 0,455***
income ∈ [4500,4999] 0,315** 0,439 0,556** 0,183 0,153 0,391**
income ∈ [5000,5499] 0,255* 0,418 0,469*** 0,160 0,034 0,418**

income >= 5500 0,298** 0,443 0,438*** 0,226 0,038 0,375**
hhsize = two 1,063*** 0,895*** 1,097*** 1,184*** 1,125*** 0,689***

hhsize = three 1,213*** 1,258*** 1,311*** 1,289*** 1,203*** 0,799***
hhsize = four 1,321*** 1,528*** 1,495*** 1,399*** 1,250*** 0,816***
hhsize = five 1,330*** 1,494*** 1,357*** 1,409*** 1,320*** 0,911***
hhsize >= six 1,358*** 1,363*** 1,343*** 1,408*** 1,507*** 1,412***
age ∈ [25,29] 0,361** 0,663* 0,454 0,183 0,283 0,374
age ∈ [30,34] 0,405*** 0,521** 0,471* 0,302 0,446*** 0,514*
age ∈ [35,39] 0,556*** 0,578** 0,593** 0,505** 0,662*** 0,601**
age ∈ [40,44] 0,628*** 0,474* 0,646** 0,584*** 0,739*** 0,720**
age ∈ [45,49] 0,714*** 0,469* 0,764*** 0,688*** 0,818*** 0,888***
age ∈ [50,54] 0,868*** 0,953*** 1,038*** 0,861*** 0,809*** 0,832***
age ∈ [55,59] 0,854*** 0,97*** 0,951*** 0,783*** 0,843*** 0,820***
age ∈ [60,64] 0,736*** 0,915*** 0,864*** 0,618*** 0,790*** 0,741**
age ∈ [65,69] 0,583*** 0,572** 0,718*** 0,589*** 0,562*** 0,501*

age >= 70 0,472*** 0,458* 0,518* 0,360* 0,513*** 0,587**

Note: An asterisk indicates that the coefficient is significantly different from zero at the 90%-level (** at
the 95%-level, *** at the 99%-level). The t-values have been calculated by bootstrapping.
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Figure 3.3: Comparison of price elasticity coefficients

bands from bootstrapped estimation errors are also shown as dotted lines. The same

figure shows additionally the corresponding results for wine. We note at first sight the

positive price elasticity of wine and a large negative elasticity for beer at the median

(50% quantile) which is roughly comparable to the least-squares procedure given in

subsection 3.4.1 and presented in this figure by horizontal dashed lines. Note that the

confidence band regarding elasticities for wine is strictly positive for quantiles around

50%, whereas the corresponding least-squares estimate was insignificant.

Taking a closer look reveals interesting findings: For beer, the price elasticity coefficient

shows a pronounced U-shaped form, starting at values between -0.4 and -0.9 for small

quantiles, peaking at -2.23 (47% quantile) and coming back to values around -1.3 for

the largest quantiles. In other words, those consumers either purchasing a very little

or a very high amount of beer are much less price sensitive than “average” consumers.

These findings could be explained as follows: People with small beer consumption do not

care much about price , whereas some of the heavy consumers may be partly addicted to

alcohol and therefore as well less price sensitive. The presented results coincide in some

way with the findings of Manning, Blumberg, and Moulton (1995). They analyzed the

relationship between alcohol consumption (not only beer) and regional average price by

quantile regression and also reported a U-shaped price elasticity.
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Figure 3.4: Estimated conditional 5%-, 50%- and 95%-quantiles

The corresponding results for wine in figure 3.3 however remind us that the U-shaped

pattern is not typical for all alcoholic beverages: Besides the fact already noted of a

positive price elasticity, the quantile estimation outcome for wine shows a inversed U-

shape. The elasticity is negative for quantiles smaller than 14% and bigger than 83%,

but reaches values greater than +0.35 for the quantiles around 50%. This results could

perhaps be explained by the much stronger dispersion of the average price paid for wine

and the fact that wine is much more related to social status which may, for example,

lead so-called “yuppies” (young urban professionals) or “dinks” (double income, no kids)

to buy the more expensive wine whenever available.

A different view of these results is depicted in figure 3.4 which shows estimated con-

ditional 5%-, 50%- and 95%-quantiles of beer consumption with respect to price. The

curves in this figure have been obtained by evaluating all (x, Q̂y(τ))-pairs (one for each

household). Subsequently, the results have been connected via a median spline func-

tion, respectively. One can easily recognize the different slopes for different consump-

tion intensities. (The fluctuations at the edges are caused by variation of the other

regressors included in the model.)

Since the results so far (which have not been presented besides the price elasticities
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Table 3.6: Pseudo continuous variables

hhsize % value income % value age % value
one 25.59 1 <= 999 2.36 700 <= 24 1.48 22
two 35.20 2 1000-1249 3.46 1125 25-29 6.37 27

three 18.44 3 1250-1499 4.05 1375 30-34 9.30 32
four 14.95 4 1500-1999 9.86 1750 35-39 9.72 37
five 4.46 5 2000-2499 13.68 2250 40-44 9.57 42

>= six 1.35 6 2500-2999 13.65 2750 45-49 8.29 47
3000-3499 13.68 3250 50-54 8.64 52
3500-3999 10.04 3750 55-59 11.32 57
4000-4499 9.44 4250 60-64 10.12 62
4500-4999 5.36 4750 65-69 10.68 67
5000-5499 5.25 5250 >= 70 14.53 77
>= 5500 9.18 6000

Table 3.7: Regression results for beer (t-values in brackets)

log. beer quantity least sq. 5% quant. 25% quant. 50% quant. 75% quant. 95% quant.
-.6420831 -4.088360 -1.797473 -1.183578 .9832792 3.921834constant

[-1.88] [-4.43] [-3.75] [-3.19] [2.41] [9.04]
-1.902398 -.9192157 -2.105968 -2.367971 -2.122683 -1.529505log. av. price

[-23.83] [-4.87] [-15.67] [-23.29] [-27.72] [-11.14]
.3875034 .4626996 .4378815 .5056042 .3160614 .0799454log. income

[9.39] [3.45] [6.89] [9.83] [5.94] [1.28]
.2660790 .2936658 .2946095 .2693489 .2452102 .1659373household size

[15.23] [7.50] [11.50] [12.06] [10.52] [7.53]
.0852777 .0679076 .0820750 .0866123 .0915853 .0818739age

[11.07] [4.51] [6.63] [10.38] [11.50] [8.85]
-.0007800 -.0006507 -.0007563 -.0007851 -.0008163 -.0007303squared age

[-10.51] [-4.78] [-6.25] [-9.72] [-10.05] [-8.09]

in figure 3.3) have not allowed us to estimate income elasticity, we now convert the

grouped data back to artificial continuous variables. The details are given in table 3.6.

Most importantly, income classes are now related to a certain income value thereby

only approximating the variation between groups and disregarding the variation within

groups. For example we assign the income of DM 2,750 to all households from the

income interval DM 2,500 to 3,000. Moreover, we take the logarithms of these values in

the estimations presented below. For age, a similar procedure is adopted which allows

us also to include age squared. For the household size, we use just the integers as

regressor variables. The estimation results are presented - for some selected quantiles

- in tables 3.7 and 3.8. As one can see in figure 3.5, the coefficients for the price elasticity

have not changed much compared to the first model. This may serve as an indicator for

the suitability of our data manipulations. Moreover, figure 3.6 displays the estimated

income elasticities for all 99 quantiles for both wine and beer.

Figure 3.6 shows that income elasticities behave quite differently for beer and wine.
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Table 3.8: Regression results for wine (t-values in brackets)

log. wine quantity least sq. 5% quant. 25% quant. 50% quant. 75% quant. 95% quant.
-3.727660 -1.067146 -3.421165 -4.261983 -3.949232 -3.981429constant

[-7.50] [-2.48] [-4.15] [-8.07] [-8.79] [-5.32]
.1030630 -.1747103 .1888987 .3705933 .1859693 -.3212998log. av. price

[1.92] [-3.14] [1.80] [5.43] [2.69] [-4.53]
.5559961 .1218493 .4245471 .5511245 .6407591 .8672602log. income

[9.07] [2.67] [3.78] [9.20] [9.76] [10.76]
.0405598 .0409576 .0561165 .0373011 .0455761 -.018845household size

[1.51] [1.15] [1.32] [1.18] [1.88] [-0.37]
.0454465 .0068891 .0367241 .0553589 .0597191 .0620024age

[3.96] [0.61] [2.14] [4.72] [4.10] [2.97]
-.0003653 -.0000657 -.0003397 -.0004768 -.0004792 -.0004107squared age

[-3.31] [-0.61] [-1.99] [-4.40] [-3.48] [-1.98]
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Figure 3.5: New price elasticities
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3.4. EMPIRICAL RESULTS 83

h
o

u
s
e

h
o

ld
 s

iz
e

 c
o

e
ff

ic
ie

n
t

 
quantile

 wine

 beer

1 10 20 30 40 50 60 70 80 90 99

0

.1

.2

.3

.4

Figure 3.7: Effect of household size

First, we note that the least-squares coefficients are 0.3875 for beer and 0.5560 for

wine, respectively. In other words, the positive effect of an income rise on the expected

consumption is a bit higher for wine than for beer. Looking at the quantile values,

a different picture can be stated. For beer, the elasticity is roughly constant for the

quantiles lower than the median, but diminishes at the right tail of the distribution. As

far as the impact on wine consumption is concerned, quite the opposite can be observed.

The coefficient is negligible small at low quantiles and rises up to 0.8862 at the 96%-

quantile. In conclusion, those households consuming only a small amount of beer are

more income sensitive than those purchasing a higher quantity, while this relationship

is reversed for wine. Again, this could be explained by the association with social status

in the case of wine, whereas beer is considered as a every-day good.

Finally, the influence of the household size is depicted in figure 3.7. It can be seen that

the quantile coefficients do not differ much from the least-squares results for wine. The

same applies to beer, only at large quantiles some smaller values can be observed.
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Figure 3.8: Price elasticity, income elasticity and household effect (from left to right) for
frozen food, fats and lemonade (from up to down)

3.4.3 Results for other goods

In this subsection, we add some results for other groups of goods. Again, the estimated

coefficients are presented in a graphical manner. The method of quantile regression

here, too, enables us to reveal more differentiated and detailed results than from stan-

dard least-squares estimation. Figures 3.8 and 3.9 shows results for coefficients re-

garding price, income and household size for the following categories: frozen food, fats,

lemonade, animal food and mineral water. The different vertical scales should be noted.

For the groups considered, the following facts can be stated:

• Only for frozen food (first row), the price elasticity moves from negative to positive

values for the larger proportion of quantiles. All other goods show normal price

reactions over all quantiles.
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Figure 3.9: Results for animal food and mineral water (compare figure 3.8)

• None of the goods shows a monotonically decreasing graph of price elasticities.

A monotonically increasing pattern is given for frozen food and mineral water,

whereas lemonade and animal food show an U-shape as in the case of beer.

• Income elasticities are - with the exception of fats - always positive and much

smaller in size than price elasticities. The income elasticity of 0.8 for wine (see

figure 3.6) is by far the greatest value observed in our data set, and the monoton-

ically increasing graph for this good seems to be an exception. Mostly, the income

elasticities show now a pronounced pattern. None of the goods is a “luxury” one.

• Household size should have an impact on substitutional processes which cannot be

observed from our results. For example, households with children will switch from

expensive food to less expensive food. Therefore, negative coefficients should be

possible. However, in all cases considered, the impact of household size is positive

with the exception of animal food where a negative sign arises for “moderate”

and “heavy” consumption. This may be a good example for such substitutional

processes: If the household has children and also has animals, then for those

households spending a lot of money for animals, this will result in a decrease of

consumption of other goods.
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3.4.4 Instrumental variables estimation

Our discussion of estimation results so far has not raised the question whether our

estimates are biased due to non-exogeneity of regressors. Since we use the income of the

household and not total expenditures for the goods considered, we maintain that this

explanatory variable should be of no concern regarding biased estimation.9 However,

prices of single purchases are expected to be endogenous indeed since prices will have

impact on the decision to buy. Whether this is still a problem for the aggregated prices

(see Section 3.3) is an open question. Leaving this aside, the use of unit prices by

construction creates negative correlation between this explanatory variable and the

error term thereby asking for an instrumental variable approach.10

There is not much sample information which could be used. Alternatively the following

instrumental variables were employed:

• We split the data set for the full year into two half-year data sets and used (aver-

age) prices for the first half as instruments in the quantile regressions based on

the second half of the year.

• We used the (discrete) variables describing attitudes of consumers (suspicion to-

wards new products, type of nutrition, price sensitivity, profession, . . . ) as instru-

ments.

In both cases the approach of Arias, Hallock, and Sosa-Escudero (2001, Section 5.1) was

used. Price elasticities derived from these estimation results are shown in figures 3.10

and 3.11 which should be compared with figure 3.3. It can be observed that in both ap-

proaches the price elasticities roughly maintain their shape pointing to the robustness

of our results.

9See Blundell, Pashardes, and Weber (1993, Section C) for a discussion on the treatment of total expen-
diture being endogenous.

10This has been pointed out by one of the editors.
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Figure 3.10: Price elasticities from IV estimation (instruments derived from split of the
sample)
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Figure 3.11: Price elasticities from IV estimation (attitudes used as instruments)
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3.5 Concluding Remarks

Our study presents empirical results obtained from quantile regressions which show

that there is much heterogeneity around the “average” consumer regarding reactions

to prices and income. Some typical patterns have been observed for different groups of

goods which we try to characterize by different attitudes towards consumption of these

goods. For example, beer consumption shows the greatest (negative) price elasticity for

“moderate” drinkers, whereas both “light” and “heavy” drinkers are less price sensi-

tive. On the other hand, for wine consumption, price elasticity is positive for moderate

drinkers and negative for those with very large and very small demand, although the

price reactions are much smaller than for beer. We have argued that this particular

response pattern may be caused, at least partly, by the fact that wine is much more

associated with (higher) social status. Contrary to this, beer is more likely an every-

day consumption good (see Table 3.1 for the proportion of non-buyers), and therefore

consumers of beer are rather price-sensitive. For “heavy drinkers” however, the prob-

lem of addiction makes them less price-sensitive. For quite another reason, “light” beer

drinkers also care less about price. Since by construction the unit prices derived from

aggregation of the single purchases are correlated with the error term, we have also

used instrumental variable estimation employing two different sets of instruments. The

results for wine and beer show very similar price responses as obtained in the standard

setting and can thus be seen as a justification of our approach.



Chapter 4

Coexceedances in Financial

Markets

Abstract

This chapter introduces a new model to analyze financial contagion based on a modified

coexceedance measure. We use the quantile regression framework to examine the oc-

currences and the degrees of coexceedances. Contagion is defined as the crisis-specific

coexceedance not explained by the covariates conditional on certain quantiles. Our ap-

proach can identify the extent of contagion and also reveal any linear and non-linear

linkages between contagion and its determinants. Estimation results for daily stock

index returns show that contagion exists and is predictable within and across regions.

Furthermore, contagion depends on regional (world) market returns and its volatility

and is stronger for extreme negative returns than for extreme positive returns. An

analysis of the evolution of coexceedances additionally reveals clusters of extremes. Fi-

nally, the computation of conditional densities shows the impact of different influence

factors on the entire conditional distribution of coexceedances.

89
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4.1 Introduction

The analysis of the linkages of financial markets is an important topic and of special

interest in times of market turmoil or financial crisis. International investors need to

assess the benefits of portfolio diversification and policymakers are concerned about

the stability of the financial system. In a highly interdependent financial system, a

crisis in one country is likely to transmit to other countries which is associated with

contagion. As a result of the transmission, the linkages between the markets become

stronger which (i) diminish diversification benefits of investors and (ii) raise policymak-

ers’ concerns about financial stability. The strengthening of market linkages is also the

rationale for many empirical tests: if the correlation between the market of the crisis

origin and other markets increase, there is contagion. Otherwise, the correlation is

constant which is called interdependence (see Forbes and Rigobon (2002)). Hence, it is

essential to assess the linkages before, during and after a crisis to identify contagion.

These linkages can be estimated with Pearson’s correlation coefficient (see among oth-

ers King and Wadhwani (1990), Lee and Kim (1993), Calvo and Reinhart (1996), Baig

and Goldfajn (1999), Loretan and English (2000), and Forbes and Rigobon (2002)), with

a regression model (Hamao, Masulis, and Ng (1990), Edwards (1998), Bekaert, Harvey,

and Ng (2004)) or by a cointegration analysis (Cashin, Kumar, and McDermott (1995)).

A common approach to detect contagion in financial markets1 is based on the correlation

between markets in a period of turbulence compared to a normal situation (see Baig

and Goldfajn (1999) and Forbes and Rigobon (2002)). We argue that tests for contagion

based on the correlation coefficient are inadequate for the following reasons: First, the

correlation coefficient is not an adequate measure to assess market linkages due to

its sensitivity to heteroscedasticity (see Boyer, Gibson, and Loretan (1999), Forbes and

Rigobon (2002), and Longin and Solnik (2001)), and second, the correlation coefficient

is a linear measure which is inappropriate if contagion is an event that is characterized

1A list of different definitions of contagion is provided by the World Bank (http://www1.worldbank.org/
contagion/definitions.html). See also Pericoli and Sbracia (2003).
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by nonlinear changes of market association (see Bae, Karolyi, and Stulz (2003)).2

Thus, we base our analysis of contagion on another measure to assess the joint move-

ment of financial markets. We use joint exceedances (coexceedances) of two financial

market returns below or above a certain threshold to test the hypothesis whether there

are increased coexceedances among financial markets in particular periods of market

turbulence (i.e. contagion) or not.

We contribute to the literature in various ways: first, we compute coexceedances for

every point of time t without arbitrarily categorizing the coexceedances, second, we use

the quantile regression (QR subsequently) model of Koenker and Bassett (1978) to ana-

lyze the behavior of extreme coexceedances for different regimes of coexceedances, and

third, we use the model to detect contagion among financial markets by additionally

analyzing certain crisis periods. The advantage of the quantile regression model in

comparison to a multinomial logit model used by Bae, Karolyi, and Stulz (2003) is the

possibility to analyze not only the occurrence but also the degree of coexceedances. In

addition, coexceedances are estimated conditional on the dependence structure which

yields more conservative results regarding the detection of contagion. Furthermore,

conditional quantile estimates show the evolution of coexceedances over time, and con-

ditional density estimates can reveal the existence of multiple equilibria.

The chapter is organized as follows: section two describes the computation of time-

varying coexceedances and introduces the econometric framework for analyzing coex-

ceedances, section three presents the data set used, and section four displays the em-

pirical results. Finally, section five summarizes the main results and concludes.

2Embrechts, McNeil, and Straumann (2002) summarize the shortcomings of the correlation coefficient
and discuss other types of dependence measures.
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4.2 Coexceedances

4.2.1 Definition

The term exceedance has been introduced by Bae, Karolyi, and Stulz (2003). It is defined

as the occurrence of an extreme return (i.e. a return value below (above) a prespecified

threshold) of a financial market at a certain point of time t. Bae, Karolyi, and Stulz

(2003) use the 5th (95th) quantile of the overall (unconditional) return distribution as

the threshold that defines an exceedance. Positive and negative returns are treated

separately. The joint occurrence of exceedances in two or more markets at the same

point of time is defined as coexceedance. Finally, the number of coexceedances at time t

is determined by the number of countries jointly exceeding their thresholds.

We propose a different approach that does not only specify the existence of coexcee-

dances but also reveals information about their degree. In the bivariate case, the coex-

ceedance of two return pairs r1 and r2 at time t is defined as follows:

Coext(r1, r2) =





min(r1t, r2t) if r1t > 0 ∧ r2t > 0

max(r1t, r2t) if r1t < 0 ∧ r2t < 0

0 otherwise

(4.1)

The measure can be interpreted as the value of (extreme) movement that is shared by

both markets. It can be shown that the coexceedance Coext is related to lower and upper

tail dependence (see e.g. Poon, Rockinger, and Tawn (2004) for a recent application) in

the following way:

Prob(Coext ≤ a) = Prob(∀i : ri ≤ a) (4.2)

which is equal to lower tail dependence if the scalar a is sufficiently small or if u → 0

for a = F−1
Coex(u).3

3Equation (4.2) can also be written as follows

Prob(Coext ≤ a) = H(∀i : ri ≤ a) = C(∀i : Fri(a)) (4.3)
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Since the definition above is based on raw (absolute) values of the market returns, a

direct interpretation of the measure is not straightforward. To overcome this problem,

both markets are standardized to have zero mean and a variance of one before cal-

culating the coexceedance. This leads to the following intuitive interpretation: if the

coexceedance at time t has a value of e.g. -2, both returns are at least two standard

deviations below their mean at that point of time.

4.2.2 Estimation framework

Bae, Karolyi, and Stulz (2003) analyze the number of coexceedances (according to their

definition) within a multinomial logistic regression framework with the dependent vari-

able defined by the number of countries jointly exceeding their thresholds at the same

time. They investigate the influence of exogenous variables like exchange rates, inter-

est rates and volatilities on the number of observed coexceedances. Due to the use of a

multinomial logistic regression, they are unable to make any statement on the degree

of the examined coexceedances.

In contrast, we propose to estimate coexceedances (as defined in this chapter) within a

quantile regression (QR) framework (see Koenker and Bassett (1978) and chapter two

for details) in order to also account for the degree of the investigated coexceedances. An

additional advantage of the QR model is that no distributional assumptions have to be

made as for example in Bae, Karolyi, and Stulz (2003) or applications of Extreme Value

Theory (see Longin and Solnik (2001) and Poon, Rockinger, and Tawn (2004)).

The use of the quantile regression model to analyze extreme coexceedances, i.e. extreme

negative and positive coexceedances, enables us to consider any values of the lowest or

highest coexceedances without prespecifying any distribution or threshold. A simple

where H denotes the joint distribution function of the returns ri, C is the copula function which is equal
to the Frechet upper bound (see Nelson (1999) for an introduction to copulas) and Fri is the marginal
distribution function of return ri.
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linear quantile regression equation is given as follows:

Coex = Xβ(τ) + ε(τ) with Qε(τ)(τ |X) = 0 (4.4)

where Coex denotes the (n × 1) vector of the coexceedances, X is a (n × k) matrix of

k exogenous variables, β(τ) represents a (k × 1) parameter vector and ε(τ) stands for

the (n × 1) error term. It is assumed that the τ -th quantile of the error term condi-

tional on the regressors has value zero. From this specification, it follows that the τ -th

conditional quantile of the coexceedances can be expressed as

QCoex(τ |X) = Xβ(τ) (4.5)

4.2.3 Analysis of contagion

In the literature, many definitions of contagion have been proposed. As an example,

Pericoli and Sbracia (2003) present five different concepts. In accordance with most

of the latest papers, we speak of contagion as a “structural break in the international

propagation mechanism during a crisis period”. In contrast, the case of a stable data-

generating process with constant or increased variances is labelled interdependence.

Most of the early papers dealing with contagion rely on the analysis of the correla-

tion coefficient during crisis periods. However, this approach is only appropriate in

the absence of heteroscedasticity, simultaneous equations and omitted variables. Un-

fortunately, in most empirical applications at least one of these conditions is violated.

There are many proposals to circumvent the problems, like a correction of the corre-

lation coefficient (Boyer, Gibson, and Loretan (1999), Forbes and Rigobon (2002)) or

covariance-based tests (Rigobon (2003)), but often new problems arise in these cases

(see e.g. Billio and Pelizzon (2003)).

Our approach is different and combines the advantages of the Bae, Karolyi, and Stulz

(2003) method with a greater flexibility also taking into account the degree of the ex-
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amined contagion. Our starting point is the estimation of the following simple quantile

regression model:

QCoext(τ) = β0(τ) + β1(τ)Dcrisis
t (4.6)

QCoext(τ) again denotes the τ -th conditional quantile of the coexceedance at time t,

β0(τ) is the constant and β1(τ) is a parameter estimating the effect of a dummy variable

Dcrisis
t which is one if t is in the crisis period and zero otherwise. It is assumed that the

turmoil period is known by institutional information.4

How can the estimated parameters β0(τ) and β1(τ) be interpreted? The constant β0(τ)

simply states for any value of τ the respective (unconditional) quantile of the coex-

ceedances during the tranquil period. If e.g. β0(τ) takes the value -2 for q = 0.05, this

means that in five percent of all cases (number of days), both markets have returns

lower than their mean minus two standard deviations, respectively. In ninety-five per-

cent of the cases (days), at least one of the returns is not below its mean minus two

standard deviations.

The parameter β1(τ) reveals information about the behavior of the coexceedance dur-

ing the crisis period. If, for example, the coefficient β1(τ) is significantly below zero

for small quantiles (e.g. τ ∈ {0.01, . . . , 0.05}), we can not only argue that the (extreme)

negative movement shared by both markets is significantly lower during the turmoil

period, but we are also able to make statements about the severeness of the observed

contagion. Since the quantile regression model accounts for different regimes of coex-

ceedances, our approach is more conservative than existing definitions and measures of

contagion: Contagion is not detected just because values are usually larger in the tails.

Furthermore, by taking into consideration all quantiles, our approach can also reveal

different structures of dependence5 and uncover potential non-linearities (see Yu, Lu,

and Stander (2003)).

The simple specification given by equation (4.6) neglects any other covariates that po-
4As we will show later, the concept can be expanded by endogenously determining the crisis period.
5Hu (2003) clarifies the separation between degree of dependence and structure of dependence.
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tentially have an influence on the structure of the coexceedances. Among others, one

could think of the return and the volatility of a regional or global factor, interest rates

or exchange rates. As an example, an increased volatility during the crisis period might

lead to larger extreme coexceedances, although the underlying data-generating process

remains stable. To correct for these influences, we include them into our model and

define contagion as the unexplained coexceedances during crisis times.

In other words, model (4.6) can be seen as a benchmark model that provides fundamen-

tal information about the (raw) behavior of the coexceedance during the crisis period.

A model that does not neglect the influence of a regional or global market and also

accounts for any potential persistence of coexceedances is given by

QCoext(τ) = β0(τ) + β1(τ)Dcrisis
t + β2(τ)rMt + β3(τ)ĥMt + β4(τ)Coext−1 (4.7)

where rMt is the return of a global or regional market index, ĥMt is its estimated condi-

tional variance and Coext−1 is the lagged coexceedance. If β1(τ) is significantly smaller

than zero even after controlling for the effect of a global or regional stock index, there

is evidence of contagion. This concept can be seen in line with Bae, Karolyi, and Stulz

(2003) who define contagion as “the fraction of (co-)exceedance events that is not ex-

plained by the covariates” and is consistent with the definition given by Bekaert, Har-

vey, and Ng (2004).

4.3 The Data

We use daily (close-to-close)6 continuously compounded index returns of eleven Asian

stock markets calculated in U.S. dollars7: China, Hong Kong, India, Indonesia, Japan,

South Korea, Malaysia, Philippines, Singapore, Taiwan and Thailand. Furthermore,

6We are aware of the potential bias that is introduced by using this type of returns since trading hours
are not synchronous.

7The data is provided by Morgan Stanley Capital International Inc. (MSCI) and can be retrieved under
www.mscidata.com.
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Table 4.1: Descriptive statistics for the eleven countries and four regional indices uti-
lized in the analysis (1176 observations from 30/04/1997 to 31/10/2001)

market median mean std dev min max skewness kurtosis autocorr
China -0.0013 -0.0014 0.0267 -0.1444 0.1274 0.1333 5.7582 0.1563

Hongkong 0.0000 -0.0004 0.0220 -0.1377 0.1601 0.1767 9.6380 0.0324
India 0.0000 -0.0003 0.0189 -0.0732 0.0782 -0.1556 4.7245 0.0933

Indonesia -0.0011 -0.0019 0.0448 -0.4306 0.2381 -0.7614 16.3923 0.1307
Japan -0.0009 -0.0003 0.0165 -0.0716 0.1227 0.4743 6.5383 0.0203
Korea -0.0002 -0.0002 0.0359 -0.2167 0.2688 0.3418 9.5961 0.1056

Malaysia -0.0008 -0.0008 0.0308 -0.3695 0.2568 -0.5733 32.5324 0.0868
Philippines -0.0008 -0.0013 0.0216 -0.1036 0.2119 1.2706 16.0811 0.2181
Singapore -0.0005 -0.0007 0.0206 -0.1003 0.1552 0.5025 8.7563 0.1483

Taiwan -0.0009 -0.0008 0.0204 -0.1113 0.0739 -0.0056 5.2528 0.0391
Thailand -0.0013 -0.0013 0.0294 -0.1489 0.1644 0.6388 7.1727 0.1683
EMF Asia -0.0009 -0.0009 0.0161 -0.0753 0.0761 0.0421 5.0560 0.2178

EMF La.Am. 0.0004 -0.0003 0.0188 -0.1448 0.1307 -0.4029 11.7116 0.1246
Europe 0.0010 0.0004 0.0143 -0.0680 0.0619 -0.3509 4.7824 0.0589

USA 0.0000 0.0002 0.0127 -0.0697 0.0488 -0.2550 5.8229 -0.0032

four regional stock indices are analyzed: Emerging Markets Free Asia8, Emerging Mar-

kets Free Latin America, Europe and the USA. The indices span a time-period of four

and a half years from April, 30th 1997 until October, 31th 2001. The number of obser-

vations is T = 1176.

Table 4.1 presents several descriptive statistics for the fifteen time series. It can be

seen that the mean is negative for Asian countries and Latin America, but positive

for Europe and the United States. The skewness exhibits a different behavior among

the analyzed markets, whereas all returns are (in some cases considerably) leptokurtic.

Except for the USA, all autocorrelations are positive.

Table 4.2 shows the unconditional correlation structure between all variables for the

whole time span. One can see that all values are positive, thereby reflecting regional

and economic relationships. Table 4.3 lists the corresponding values during the crisis

period under the assumption that (i) the Hongkong market is the origin of the crisis

(October, 17th until November, 17th 1997) and, alternatively, (ii) the financial market

of Thailand is the crisis-breeding element (July, 2nd until November, 17th 1997). In

most cases, the correlation rises during the crisis in the Hongkong case, whereas the
8The MSCI Free indices reflect investable opportunities for global investors by taking into account local

market restrictions on share ownership by foreigners.
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Table 4.2: Unconditional pairwise correlations between all analyzed markets and re-
gional indices

CHN HON INA IND JAP KOR MAL PHI SIN TAI THA ASI LAT EUR USA

China 1.00
Hongkong 0.60 1.00

India 0.18 0.21 1.00
Indonesia 0.26 0.35 0.10 1.00

Japan 0.28 0.36 0.15 0.21 1.00
Korea 0.25 0.29 0.19 0.17 0.26 1.00

Malaysia 0.27 0.31 0.11 0.33 0.23 0.20 1.00
Philippines 0.31 0.37 0.14 0.38 0.22 0.21 0.26 1.00
Singapore 0.44 0.61 0.17 0.46 0.38 0.26 0.39 0.44 1.00

Taiwan 0.23 0.26 0.12 0.18 0.19 0.20 0.18 0.18 0.28 1.00
Thailand 0.31 0.38 0.17 0.38 0.25 0.31 0.37 0.40 0.48 0.23 1.00

EMF Asia 0.49 0.54 0.45 0.47 0.38 0.63 0.56 0.45 0.58 0.60 0.57 1.00
EMF LA 0.13 0.21 0.12 0.08 0.14 0.18 0.11 0.14 0.22 0.07 0.17 0.21 1.00
Europe 0.19 0.37 0.15 0.12 0.18 0.21 0.13 0.13 0.30 0.14 0.20 0.28 0.47 1.00

USA 0.04 0.13 0.05 0.01 0.06 0.10 0.02 0.07 0.13 0.03 0.05 0.08 0.58 0.43 1.00

Table 4.3: Comparision of the correlations during the tranquil and crisis period for
Hongkong and Thailand as origins

CHN HON INA IND JAP KOR MAL PHI SIN TAI THA ASI LAT EUR USA

HON 0.60 1.00 0.21 0.35 0.36 0.29 0.31 0.37 0.61 0.26 0.38 0.54 0.21 0.37 0.13
HON Crisis 0.81 1.00 0.10 0.63 0.47 0.18 0.58 0.67 0.79 0.11 0.01 0.50 0.12 0.83 0.05

THA 0.31 0.38 0.17 0.38 0.25 0.31 0.37 0.40 0.48 0.23 1.00 0.57 0.17 0.20 0.05
THA Crisis -0.03 0.02 0.19 0.24 0.03 0.25 0.28 0.24 0.14 0.16 1.00 0.48 0.02 0.07 -0.08

Thailand values decrease, even leading to two negative outcomes. This result already

shows that the definition of the crisis period can be crucial. We will show below that

conditional quantile estimates can be used to detect the true crisis periods. Note that

the time period for the Hongkong crisis is equal to the one used by Forbes and Rigobon

(2002).

In order to clarify our approach, table 4.4 shows the Hongkong and Malaysian returns

Table 4.4: Descriptive statistics for Hongkong, Malaysia and the resulting coex-
ceedances between the two markets. The first four rows indicate the raw values, the
last four states the results obtained by standardization of the two time series.

Variable obs median mean std dev min max skewness kurtosis autocorr
Hongkong 1175 0.0000 -0.0004 0.0220 -0.1377 0.1601 0.1767 9.6380 0.0324
Malaysia 1175 -0.0008 -0.0008 0.0308 -0.3695 0.2568 -0.5733 32.5324 0.0868

coexceedance 1175 0.0000 -0.0007 0.0123 -0.0803 0.0888 -0.0388 13.2605 0.0977
coexceedance 6= 0 668 -0.0005 -0.0012 0.0163 -0.0803 0.0888 0.0686 7.5787 0.0960

stdrhong 1175 0.0176 0.0000 1.0000 -6.2518 7.3030 0.1767 9.6380 0.0324
stdrmal 1175 0.0001 0.0000 1.0000 -11.9608 8.3595 -0.5733 32.5324 0.0868
coexstd 1175 0.0000 -0.0104 0.4782 -2.5785 4.0573 0.4899 15.3251 0.1162

coexstd 6= 0 706 0.0162 -0.0173 0.6169 -2.5785 4.0573 0.4135 9.2316 0.1423
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Figure 4.1: Coexceedance between Hongkong and Malaysia. The left figure presents
the histogram of the coexceedance obtained from standardized values (as comparison,
we superimposed a normal distribution). The right graph shows the distribution with
all zero coexceedances excluded.

as well as the calculated coexceedances in exemplary fashion. The upper part of the

table contains the unstandardized values, the lower part their standardized analogues.

As illustrated in section two, we advocate the use of the standardized values in order

to ease the interpretation of the results. The last four columns show that the charac-

teristics of the time series are not changed by the standardization. It can be seen that

the coexceedances are somewhat less leptokurtic than the original returns, especially

if only the values different from zero are considered. The autocorrelations are slightly

higher than those of the original returns. Figure 4.1 plots the histogram of the com-

puted coexceedance. Both graphs (with and without values equal to zero) reveal that

the distribution is clearly non-normal.

The question whether joint negative shocks are more common or more pronounced than

joint positive shocks can reveal important information and is often analyzed with the

correlation coefficient (see e.g. Ang and Chen (2002)). Such an analysis can also be

performed with the coexceedance measure by analyzing the percentages of positive

and negative coexceedances as well as the skewness of the coexceedances. Results

are shown in tables 4.5 and 4.6, respectively. Table 4.5 indicates that joint negative

shocks are less frequent than joint positive shocks (the difference seems to be bigger

for Hongkong than for Thailand). Table 4.6 shows that joint negative shocks are not
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Table 4.5: Percentages of Coexceedances. The table shows the proportions (in percent)
of negative and positive coexceedance of Hongkong and Thailand with all other mar-
kets, respectively.

CHN HON INA IND JAP KOR MAL PHI SIN TAI THA LAT EUR USA

negative (HON) 34.1 xxxx 24.3 25.9 28.2 28.2 28.1 26.6 30.4 27.0 28.3 24.8 28.3 25.8
positive (HON) 38.3 xxxx 31.0 31.3 30.7 32.3 32.1 31.9 35.0 30.9 32.8 31.8 34.4 28.4

negative (THA) 29.9 28.3 25.2 28.2 29.3 30.3 29.9 29.5 31.0 27.8 xxxx 26.2 28.0 25.7
positive (THA) 30.7 32.8 28.6 30.7 28.4 31.0 30.5 31.5 32.1 28.3 xxxx 29.9 30.7 25.0

Table 4.6: Skewness of Coexceedances. The table presents the skewness of the com-
puted coexceedance of Hongkong and Thailand with all other markets, respectively. In
each case, the second row takes into account only coexceedances different from zero.

CHN HON INA IND JAP KOR MAL PHI SIN TAI THA LAT EUR USA

Hongkong -0.07 xxxx -0.51 1.09 -0.29 -0.00 0.49 0.96 0.53 0.16 0.78 -0.65 -0.54 -0.97
HON (coexstd 6= 0) -0.04 xxxx -0.36 0.81 -0.18 -0.00 0.41 0.74 0.45 0.11 0.62 -0.47 -0.41 -0.70

Thailand 0.45 0.78 0.51 1.42 0.20 0.70 0.20 1.18 0.99 0.08 xxxx -0.13 -0.56 -0.07
THA (coexstd 6= 0) 0.38 0.62 0.43 1.10 0.22 0.59 0.22 0.95 0.81 0.09 xxxx -0.05 -0.38 0.04

generally more pronounced than joint positive shocks. Results are mixed within Asia,

whereas the skewness tends to be negative for coexceedances across regions. These

findings are counter to the outcomes in the literature (see e.g. Ang and Chen (2002) and

Longin and Solnik (2001)) and may partly be explained by the different properties of

the coexceedance measure compared to the correlation coefficient.

4.4 Empirical Results

In this section, we present the empirical results of models (4.6) and (4.7) introduced in

section two. First, an analysis of coexceedances of market indices belonging to the same

region (in our case the Asian market) is conducted and second, effects across regions

are analyzed. For the coexceedances across regions, we also consider the evolution of

the conditional quantile estimates and present a (to our knowledge) new concept of

conditional density estimates.
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Table 4.7: Estimation Results for Hongkong and Malysia. The table shows the coeffi-
cients and estimated t-values (in brackets) for several quantiles along with the least
squares outcome. The first part presents the benchmark model only containing a con-
stant and a crisis dummy. The second model also includes a regional index, its volatility
and the lagged coexceedance as regressors.

Model q2 q4 q6 q8 q10 LS q90 q92 q94 q96 q98

Benchmark Model
Pseudo-R2 0.053 0.039 0.030 0.023 0.020 0.004 0.005 0.008 0.010 0.013 0.021
Constant -1.205*** -0.792*** -0.621*** -0.529*** -0.396*** -0.006 0.374*** 0.449*** 0.576*** 0.712*** 1.032***

[14.33] [9.74] [12.52] [11.94] [9.89] [0.44] [11.78] [11.77] [11.00] [12.83] [11.67]
Dummy -1.374*** -1.787*** -1.341** -1.433** -1.454** -0.222** 0.626 0.613 0.485 1.830** 1.510*

[3.13] [3.72] [2.28] [2.26] [2.23] [2.16] [0.82] [0.74] [0.55] [2.09] [1.82]

Full Model
Pseudo-R2 0.369 0.344 0.312 0.283 0.261 0.363 0.234 0.259 0.286 0.329 0.412
Constant -0.865*** -0.618*** -0.541*** -0.475*** -0.414*** -0.008 0.374*** 0.426*** 0.510*** 0.648*** 0.822***

[10.93] [15.22] [17.96] [15.52] [13.32] [0.73] [15.70] [12.58] [9.92] [12.17] [16.96]
Dummy -0.776* -0.929** -0.610 -0.677 -0.712 -0.114 -0.015 0.312 0.226 0.305 -0.004

[1.90] [2.53] [1.47] [1.57] [1.52] [1.35] [0.04] [0.81] [0.67] [1.03] [0.01]
EMF Asia 0.365*** 0.319*** 0.301*** 0.304*** 0.278*** 0.285*** 0.269*** 0.297*** 0.334*** 0.366*** 0.376***

[9.33] [12.13] [12.04] [11.44] [9.71] [25.15] [12.26] [11.99] [9.38] [8.33] [8.58]
Egarch -0.143* -0.189*** -0.146*** -0.134*** -0.118*** 0.013 0.114*** 0.109*** 0.123*** 0.160*** 0.221***

[1.93] [4.32] [4.47] [4.62] [4.46] [1.16] [4.39] [3.27] [2.87] [2.90] [4.92]
Coext−1 -0.189 -0.035 -0.028 -0.021 -0.037 0.014 -0.012 0.001 0.080 0.081 0.076

[1.14] [0.28] [0.30] [0.25] [0.51] [0.59] [0.30] [0.01] [1.22] [0.86] [0.60]

* indicates that the coefficient is significantly different from zero at the 90%-level (** at the 95% level, *** at the 99% level); The t-values have been
calculated by bootstrapping with 2000 replications.

4.4.1 Contagion within regions

Table 4.7 lists the estimation results for the coexceedance between Hongkong and

Malaysia for the crisis period assuming that the Hongkong market is the origin of the

crisis. The benchmark model displays the regression of the coexceedance on a constant

and a crisis dummy (one during October 17th until November 17th 1997). Looking at

the latter, it can be stated that the coefficient is highly significant in the negative tail

implying larger coexceedances during the crisis period. The estimates of the full model

mainly show that the coefficient of the crisis dummy becomes smaller in absolute val-

ues and less significant by including the regional market return EMF-Asia, its volatility

and the lagged coexceedance. Nevertheless, the dummy remains slightly significant for

some of the low quantiles, so we can see evidence of “some” contagion. The regional

market return and its volatility have a significant influence on the coexceedance at all

reported quantiles and capture a significant portion of the shocks in the lower quantiles.

Figures 4.2, 4.3 and 4.4 plot the regression results (coefficients) of the full model for
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99 different quantiles (τ ∈ {0.01, . . . , 0.99}).9 The shaded areas represent the 95%-

confidence intervals calculated by bootstrapping with 2000 replications.10 It can be

seen that the crisis dummy has negative values in the whole left tail, which are, how-

ever, mostly insignificant. The figures also show the considerable influence of the re-

gional market return and its volatility and the rather negligible influence of the lagged

coexceedance.

Since all figures also include the least-squares estimates (represented by a solid hor-

izontal line), the additional information that is provided by the quantile regression

model in general and in this application in particular is evident: the coefficient esti-

mates are not constant among the quantiles which indicates that the distribution of

the error term is not independent from the covariates. In other words, not only the

location but also the scale and the shape of the response distribution are affected by

the regressors. It is important to stress that the pseudo-R2 is not comparable with its

least-square analogue as it is a local and not a global measure of goodness of fit.11

Having presented the outcomes for Hongkong and Malaysia, now the other Asian coun-

tries are included into the consideration. Furthermore, Thailand is taken as an alter-

native source of potential contagion. Since we are mainly interested in the effect of

the crisis dummy and to simplify and clarify the analysis, tables 4.8 and 4.9 provide a

summary of the crisis dummy coefficients for all analyzed countries.

Table 4.8 shows that for low quantiles, the crisis dummy is significantly negative in the

benchmark model (upper part) in most cases. Turning to the full model (lower part),

the picture is more ambivalent: for some countries, the coefficient remains significantly

negative thus indicating contagion, for other countries its effect is now captured by the

other covariates thus signalling interdependence.
9It has to be noticed that due to the construction of the coexceedances (allocation of value zero for

opposite returns) no relevant outcomes are to be expected for the “middle” quantiles (roughly between
30% and 70%).

10This number of replications is large enough to guarantee a small variability of the estimated covari-
ance matrix (Buchinsky 1998b).

11The measure is calculated as 1 − V̂ (τ)/Ṽ (τ) with V̂ (τ) and Ṽ (τ) referring to the unrestricted and
restricted quantile regression minimization problems (see Koenker and Machado (1999)).
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Figure 4.2: Pseudo-R2 and Constant for the coexceedance between Hongkong and
Malaysia. The left figure shows the pseudo-R2 (see text) for 99 different quantiles
(τ ∈ {0.01, . . . , 0.99}) for the full regression model (see section two). The right graph
pictures the constant (β0(τ)) of the model for the same quantiles. The respective values
are connected as a solid red line along with the estimated confidence band shaded in
grey. The least squares value is included as a horizontal blue solid line.
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Figure 4.3: Crisis Dummy and Market Return. The two figures present the coefficients
β1(τ) (crisis dummy) and β2(τ) (regional market index EMF-Asia) for 99 different quan-
tiles (τ ∈ {0.01, . . . , 0.99}). Again, the respective values are connected as a solid red line
(along with the estimated confidence band shaded in grey) with the least squares result
added as a horizontal blue solid line.
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Figure 4.4: Volatility and Lagged Coexceedance. The two graphs picture the coefficients
β3(τ) (estimated volatility of the market index EMF-Asia) and β4(τ) (one-period lagged
value of coexceedance) for τ ∈ {0.01, . . . , 0.99} (solid red line). The blue line refers to the
LS value.

Table 4.8: Hongkong results. The table presents the coefficient β1(τ) of the crisis
dummy for several conditional quantiles of the coexceedance between Hongkong and
ten Asian markets. The upper part refers to the benchmark model only containing
a constant and a crisis dummy, the second model also includes a regional index, its
volatility and the lagged coexceedance as regressors.

Benchmark Model
Hongkong q2 q4 q6 q8 q10 q90 q92 q94 q96 q98

China -1.567*** -1.913*** -2.100*** -2.221*** -0,994 0,399 1,097 0,925 1.511** 1.105*
India -0.077 -0.431 -0.528* -0.645* -0.564 -0.486*** -0.525*** -0.625*** -0.638*** -0.862***

Indonesia -1.998* -2.378** -0.244 -0.390 -0.410 -0.297 1.388 1.265 1.772* 1.429*
Japan -0.794*** -1.092*** -1.012*** -1.111*** -0.938*** -0.503 0.890 0.778 1.056 0.748
Korea -1.221*** -1.596*** -1.474** -1.643*** -1.011 -0.387 0.125 -0.017 1.360 0.840

Malaysia -1.374*** -1.787*** -1.341** -1.433** -1.454** 0.626 0.613 0.485 1.830** 1.510*
Philippines -2.389*** -2.748*** -1.685* -1.799* -1.477 0.253 0.449 0.335 2.475** 2.046*
Singapore -2.355*** -2.734*** -1.728* -1.907* -1.091 0.470 1.866 1.742 2.450** 2.087**

Taiwan -2.252*** -2.570*** -1.812* -1.927* -1.019 -0.426 0.450 0.350 0.897 0.578
Thailand -2.115** -2.446** -1.195 -1.303 -0.689 -0.480*** -0.398** -0.550*** -0.577*** -0.956***

Full Model
Hongkong q2 q4 q6 q8 q10 q90 q92 q94 q96 q98

China -1.541** -1.844** -0,478 -0,516 -0,616 0,028 0,771 0,751 1.508* 1.368*
India -0.200 -0.185 -0.204 -0.401* -0.350 0.061 0.504 0.430 0.651* 0.459

Indonesia -0.246 -0.666 -0.177 -0.205 -0.107 0.127 0.840* 0.619 0.408 -0.130
Japan -0.713** -0.985*** -0.630 -0.824** -0.370 -0.048 0.229 0.145 1.217* 0.870
Korea -0.906 -1.132* -0.244 -0.362 -0.477 0.029 0.086 0.036 -0.075 -0.205*

Malaysia -0.776* -0.929** -0.610 -0.677 -0.712 -0.015 0.312 0.226 0.305 -0.004
Philippines -1.082*** -1.309*** -1.372** -1.462** -1.277 0.229 0.377 0.261 1.876** 1.951**
Singapore -0.966 -1.447** -0.969 -1.221* -0.467 0.182 0.132 -0.011 0.938 0.522

Taiwan -0.946** -0.966** -0.891 -0.921 -0.407 0.076 -0.012 -0.052 0.380 0.147
Thailand -0.404 -0.911** -0.250 -0.418 -0.306 -0.086 -0.015 -0.106 -0.093 -0.188

* indicates that the coefficient is significantly different from zero at the 90%-level (** at the 95% level, *** at the 99% level); The t-values
were calculated by bootstrapping with 2000 repetitions.
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Table 4.9: Thailand results. The table presents the coefficient β1(τ) of the crisis dummy
for several quantiles of the coexceedance between Thailand and ten Asian markets.
The upper part refers to the benchmark model only containing a constant and a crisis
dummy, the second model also includes a regional index, its volatility and the lagged
coexceedance as regressors.

Benchmark Model
Thailand q2 q4 q6 q8 q10 q90 q92 q94 q96 q98

China -0,557 -0,224 -0,121 -0,24 -0,114 -0,053 0,01 -0,115 -0,148 0,065
Hongkong -0.646 -0.266 -0.302 -0.134 -0.163 -0.199 -0.172 -0.287 -0.050 -0.096

India -0.238 -0.380 -0.197 -0.218 -0.150 -0.113 -0.023 -0.079 0.177 -0.126
Indonesia -0.341 -0.247 -0.302 -0.254 -0.271* -0.104 -0.190 -0.251 -0.298 -0.425

Japan -0.106 -0.409** -0.419* -0.231 -0.230 -0.148 -0.179 -0.131 -0.281 -0.497
Korea -0.340 -0.306 0.015 0.076 0.010 -0.312*** -0.347*** -0.429** -0.407 -0.633

Malaysia -1.027* -0.319 -0.279 -0.350* -0.338** -0.105 -0.144 -0.069 -0.111 0.867
Philippines -0.669 -0.474 -0.474** -0.552*** -0.555*** 0.106 0.035 0.050 -0.071 -0.273
Singapore -0.369 0.032 0.047 -0.053 -0.083 -0.219 -0.140 -0.264 -0.276 -0.116

Taiwan -0.757 -0.301 -0.343 -0.168 -0.247 0.157 0.110 0.024 -0.110 -0.090
Full Model

Thailand q2 q4 q6 q8 q10 q90 q92 q94 q96 q98
China -0.464** -0,29 -0,098 -0,087 -0,102 0,085 0,151 0.248* 0,256 0.737*

Hongkong -0.333 -0.060 -0.101 -0.031 -0.017 -0.048 0.023 -0.005 0.139 0.267
India -0.177 -0.197 -0.131 -0.124 -0.184* 0.113 0.160 0.291* 0.435** 0.478*

Indonesia -0.459 -0.013 -0.090 -0.058 -0.057 0.008 -0.013 -0.059 0.002 -0.084
Japan -0.111 -0.107 -0.151 -0.110 -0.130 -0.033 -0.042 -0.058 0.339 0.312
Korea -0.011 -0.149 -0.227* -0.132 -0.015 0.038 0.009 0.065 -0.007 -0.011

Malaysia 0.006 -0.128 -0.122 -0.123 -0.116 -0.035 -0.057 -0.050 -0.021 0.349
Philippines -0.509 -0.304 -0.323** -0.260* -0.190 0.044 0.108 0.201* 0.034 -0.025
Singapore 0.144 0.020 0.002 -0.078 -0.066 -0.017 -0.050 -0.014 -0.050 -0.168

Taiwan -0.247 -0.232 -0.274** -0.210* -0.143 0.090 0.211** 0.157* 0.147 0.009
* indicates that the coefficient is significantly different from zero at the 90%-level (** at the 95% level, *** at the 99% level); The t-values
were calculated by bootstrapping with 2000 repetitions.

The upper quantile coefficients have mostly positive values (benchmark and full model)

indicating that crisis periods can sometimes also be characterized by extreme positive

shocks. An interesting exception are India and Thailand with significantly negative

values in the benchmark model which completely disappear in the full model. It is

evident that the estimated degree of contagion varies depending on the quantile. This is

not surprising since contagion is measured conditional on the regime of coexceedances.

Note that usually only a certain quantile (e.g. five percent) is reported which would hide

the variation observed here. The varying degree of contagion is further analyzed below

in subsection 4.2.1 where the evolution of the coexceedances is considered.

The results for the crisis assumed to be associated with occurrences in Thailand are in

general less pronounced. The insignificance of the coefficient estimates can be partly

explained by the longer crisis period compared to the one assumed in the Hongkong

case.
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Table 4.10: Coexceedances across regions. The upper part of table presents the crisis
dummy coefficient β1(τ) of the full regression model for several conditional quantiles
of the coexceedance between Hongkong and three regional indices. The lower part as-
sumes Thailand to be the crisis breeding element.

q2 q4 q6 q8 q10 q90 q92 q94 q96 q98

Hongkong
Latin A. -1.298** -1.446** -0.420 -0.525 -0.602 0.114 0.668 0.574 1.146** 0.738
Europe -2.347** -2.563** -0,927 -1,09 -0,422 0,254 0,405 0,261 2.079* 1,374

USA 0.043 -0.231 -0.237 -0.278 -0.346* 0.315 0.410 0.373 0.638** 0.375

Thailand
Latin A. 0.016 -0.179 -0.196** -0.209** -0.187* 0.102 0.122 0.188 0.169 0.162
Europe -0.802 -0.031 -0.038 -0.025 -0.092 0.004 0.049 0.188 0.164 0.051

USA -0.135 -0.000 -0.065 -0.106* -0.060 0.115 0.080 0.213* 0.195 0.148

4.4.2 Contagion across regions

In this subsection, we want to answer the question whether contagion can also be found

across different regions. Therefore, we calculate coexceedances between the Hongkong

market as the assumed crisis origin and several regional MSCI indices, namely the

United States, Europe and Latin America. We also include Thailand as an alternative

crisis-breeding element. In this specification, we use the return and the volatility of the

MSCI World index to account for common shocks. Table 4.10 lists the effect of the crisis

dummy in the full model for both crisis periods.

The results show that there are larger coexceedances of Hongkong with Latin America

and Europe at the lowest quantiles, which indicates evidence of contagion. In con-

trast, the US market is not strictly affected by shocks originating in the crisis period in

Hongkong. Only the 10% quantile slightly indicates contagion, whereas the 2% quan-

tile even has an (insignificant) positive value. Hence, for the assumed crisis period, our

result can be seen in line with Bae, Karolyi, and Stulz (2003) who conclude that the US

market is insulated from Asian markets. Table 4.10 displays an asymmetry between

negative coexceedances and positive coexceedances for the Hongkong crisis, especially

for Europe. For the Thailand crisis, there is weaker evidence of any increased coex-

ceedances.

Comparing our results with the findings of Forbes and Rigobon (2002) reveals the fol-
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lowing differences: Forbes and Rigobon (2002) find contagion for the Hong Kong crisis

in Indonesia, Korea and the Philippines based on a correlation coefficient not corrected

for heteroscedasticity. Using the adjusted (corrected for heteroscedasticity) correlation

coefficient, no contagion is found in any analyzed Asian market. Although we also cor-

rect for high volatility and account for different regimes of coexceedances (which could

be interpreted as a correction for heteroscedasticity), we still find contagion in some

cases. Our outcomes are thus similar to Corsetti, Pericoli, and Sbracia (2003) who

speak of “some contagion, some interdependence”.

4.4.2.1 Evolution of coexceedances

In this part, we analyze the evolution of the estimated conditional coexceedances be-

tween the Hong Kong market and two regional indices (Europe and USA). The analy-

sis of the coexceedances in a time-varying context (see Chan-Lau, Mathieson, and Yao

(2002) for a similar study) provides information on the questions whether extreme joint

market movements have increased in recent years, whether negative movements are

more pronounced than positive movements and whether the volatility of such move-

ments has increased or stayed rather constant. We present the quantile estimate of

the conditional 2-, 50- and 98-percent quantiles of the two coexceedances. Since we use

the quantile regression model, our approach is clearly different to the Chan-Lau, Math-

ieson, and Yao (2002) method that computes moving averages of coexceedances defined

as in Bae, Karolyi, and Stulz (2003) with a prespecified threshold.

The plots of the estimated conditional 2-, 50- and 98-percent quantiles along with the

realized values are given in figure 4.5 for Hongkong with Europe and the United States.

The assumed crisis interval is marked by the grey shaded area. The figures clearly

show the differences between the two examined cases. For Europe, there is evidence

of contagion expressed by the significantly larger estimated coexceedances during the

assumed crisis period. For the United States, the coexceedances are also larger than

in tranquil periods, but not larger than in other clusters (periods) of extremes, e.g. at
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Figure 4.5: Evolution of coexceedances. The left figure shows the computed time-
varying coexceedance between Hongkong and Europe as a red dot for every point of time
t of the sample. Furthermore, the estimated conditional 2%-, 50%- and 98%-quantiles
are superimposed as green, orange and blue lines, respectively. Finally, the underlying
crisis period is shaded in grey (in this case: October, 17th until November, 17th 1997).
The right graph shows Hongkong and the United States. Please note the different ver-
tical scales.

the end of the sample. Furthermore, there seems to be a slight positive trend of more

frequent extreme market movements.

The plots of the conditional quantile estimates for the Thailand crisis period are given

in figure 4.6. Both figures show that the crisis period could also be detected endoge-

nously. Even without a crisis dummy in our model, clusters of extreme coexceedances

could be uncovered. This could then serve as a justification for the chosen crisis pe-

riod. This is an important feature of our method and shows an alternative to the crisis

detection through outliers proposed by Favero and Giavazzi (2002).

4.4.2.2 Conditional densities

In this part, we present conditional density estimates for the coexceedances of the

Hongkong market with two regional stock indices as chosen above. We focus on the

Hongkong crisis period since the Thailand crisis interval was shown to be too long (see

previous subsection). The conditional densities are calculated by fixing the value of

one independent variable to several specific numbers and subsequently computing the
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Figure 4.6: Evolution of coexceedances. The figures show the estimated conditional
coexceedances between Thailand and Europe and the United States, respectively (com-
pare figure 4.5). The crisis period shaded in grey lasts from July, 2nd until November,
17th 1997 (see text).

density of the coexceedance conditional on these numbers. The according values of the

other covariates are calculated by an auxiliary regression (see chapter two for details).

These densities can provide important additional information since they show the dis-

tribution of the coexceedance given a certain value of one covariate. This can help

obtaining more information about the sources that lead to the occurrences of coex-

ceedances. Figures 4.7 to 4.10 show the density estimates for two pairs of coexceedances

(Hong Kong with Europe and USA, respectively) conditional on the four regressors of

our QR model. The figures show that the density of the coexceedances in the crisis

period (Dcrisis = 1) has a lower mean and a higher variance than the density in the

non-crisis period (Dcrisis = 0). There is also some hint of multimodality of the densities

during the crisis period which slightly points to the existence of multiple equilibria (see

Calvo and Mendoza (2000) and Kodres and Pritsker (2002)). However, the evidence is

rather weak.

The figures further show that low (high) values of the world factor lead to lower (higher)

expected values of the coexceedances while the variance of the distribution is relatively

unaffected. In contrast, the volatility of the world factor affects the variance of the

coexceedance but not the mean of the conditional values: large (small) values are asso-
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Figure 4.7: Conditional density estimations. The left graph pictures the estimated dis-
tribution of the coexceedance between Hongkong and Europe conditional on the value
of the crisis dummy. The solid blue line refers to the tranquil period, the short-dashed
red line pictures the crisis case. The densities were calculated by applying a kernel
density estimation on 99 quantile regression coefficients computed in both cases (see
text). The right figure shows the same for the coexceedance between Hongkong and
USA.
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Figure 4.8: Conditional densities. The left figure shows the estimated distribution of the
coexceedance between Hongkong and Europe conditional on four different values of the
market return (to be precise: the unconditional 2%- (solid blue line), 10%- (long-dashed
red line), 90%- (dashed green line) and 98%-quantile (short-dashed orange line) of the
MSCI world index). The right graph examines the coexceedance between Hongkong
and USA.
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Figure 4.9: Density estimation conditional on market volatility (compare figure 4.8)
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Figure 4.10: Densities conditional on lagged coexceedance (compare figure 4.8)
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ciated with a higher (lower) volatility of the coexceedance. Interestingly, the impact of

the lagged coexceedance is quite similar: negative (positive) lagged coexceedances in-

duce a higher (lower) volatility, whereas the estimated conditional mean remains rather

constant.

4.5 Concluding Remarks

In this chapter, we have proposed a new approach to compute and analyze coexcee-

dances. Time-varying coexceedances and their analysis with the quantile regression

model have various advantages: First, we do not need to count the coexceedances or

prespecify any threshold, second, no distributional assumptions have to be made about

the coexceedances or the underlying returns, third, the approach can estimate linear

and non-linear linkages and is able to correct for different states of shock magnitudes,

and fourth, the inclusion of a dummy variable into the quantile regression model can

directly quantify the degree of contagion. Furthermore, the analysis of the evolution

of extreme coexceedances and the estimation of conditional densities allow use to gain

additional information on the underlying processes, which would remain uncovered if

current methods were employed.

Applying our approach to empirical data, we obtain mixed results within regions: in

some cases we find contagion, in other cases interdependence. This finding also holds

for coexceedances across regions, where we find contagion from Asia to Latin America

and Europe but not to the United States. We have shown that the quantile regression

offers a variety of possibilities to analyze extreme market behavior. Future studies on

conditional quantiles and density estimates could further exploit these new prospects.



Chapter 5

Determinants of Surface Ozone

Concentration

Abstract

This chapter proposes the use of the conditional quantile regression approach for the

interpretation of the nonlinear relationships between daily maximum 1-hr ozone con-

centrations and both meteorological and persistence information. When applied to nine

years (1992-1999) of data from four monitoring sites in Athens, quantile regression

results show that the contributions of the explanatory variables to the conditional dis-

tribution of the ozone concentrations vary significantly at different ozone regimes. This

evidence of heterogeneity in the ozone values is hidden in an ordinary least square re-

gression that is confined to providing a single central tendency measure. Furthermore,

the utilization of an ‘amalgated’ quantile regression model leads to a significantly im-

proved goodness of fit at all sites. Finally, computation of conditional ozone densities

through a simple quantile regression model allows the estimation of complete density

distributions that can be used for forecasting next day’s ozone concentrations under an

uncertainty framework.

113
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5.1 Introduction

The study of the impact of meteorology and persistence on surface ozone has attracted

considerable interest in the literature (see e.g. Comrie and Yarnal (1992), Davies, Kelly,

Low, and Pierce (1992), or Derwent, Simmonds, Seuring, and Dimmer (1998)). Statisti-

cal models estimating daily maximum ozone concentrations are numerous and may be

divided into four broad areas: regression-based modelling (Feister and Balzer (1991),

Bloomfield, Royle, Steinberg, and Yang (1996), Hubbard and Cobourn (1998)), extreme

value approaches (Chock and Sluchak (1986), Smith (1989)), neural networks (Can-

non and Lord (2000), Cobourn, Dolcine, French, and Hubbard (2000), Comrie (1997))

and space-time models (Rao, Zalewsky, and Zurbenko (1995), Rao, Zurbenko, Neagu,

Porter, Ku, and Henry (1997)). The main objectives of such models are to obtain ozone

forecasts, investigate and estimate ozone time trends (e.g. Gardner and Dorling (2000)),

increase scientific understanding of the underlying mechanisms in the ozone formation,

and determine potential ozone-related health effects. A model comparison of 15 differ-

ent statistical techniques for ozone forecasting is thoroughly discussed by Schlink, Dor-

ling, Pelikan, Nunnari, Cawley, Junninen, Greig, Foxall, Eben, Chatterton, Vondracek,

Richter, Dostal, Bertucco, Kolehmainen, and Doyle (2003).

Conditional quantile regression was introduced by Koenker and Bassett (1978) and is

gradually emerging as a comprehensive approach to the statistical analysis of linear

and nonlinear models. Quantile regression models have been used in a broad range of

application settings, such as in paediatric medicine (Royston and Wright (1998), Cole

and Green (1992), Cole, Freeman, and Preece (1998), Gasser, Ziegler, Seifert, Prader,

Molinari, and Largo (1994), Heagerty and Pepe (1999)), labor economics (e.g. Buchin-

sky (1994)), financial market analysis (e.g. Engle and Manganelli (2002)) and many

other fields (see Koenker and Hallock (2001)). For a recent review of some typical ap-

plications of quantile regression, the reader is referred to Yu, Lu, and Stander (2003).

By extending the exclusive focus of the least-squares based methods on the estimation

of conditional mean functions with a more general technique for estimating families
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of conditional quantile functions, quantile regression is capable of greatly expanding

the flexibility of both parametric and nonparametric regression methods. It allows the

examination of the entire distribution of the variable of interest rather than a single

measure of the central tendency of its distribution.

Additional advantages accruing from using quantile regression models are their flexi-

bility to allow for the covariates to have different impacts at different points of the dis-

tribution and the robustness to departures from normality and skewed tails (Mata and

Machado (1996)). These latter features are often observed in environmental variables

and ozone in particular. Finally, quantile regression can provide information about any

linear or nonlinear relationships between the dependent variable and the explanatory

variables without an a priori knowledge of the type of (potential) nonlinearities. De-

spite its advantages and wide range of applications, conditional quantile regression

has only been used as median regression in an ozone forecasting study (Schlink, Dor-

ling, Pelikan, Nunnari, Cawley, Junninen, Greig, Foxall, Eben, Chatterton, Vondracek,

Richter, Dostal, Bertucco, Kolehmainen, and Doyle (2003)). Yet, with respect to air

quality issues, models for mean (or even median) concentration levels may be less rele-

vant from a health standpoint than respective models for upper quantiles representing

more extreme concentration levels.

To this end, the purpose of this chapter is to explore the potential of the conditional

quantile regression in elucidating the meteorological and persistence influence on the

different regimes of daily maximum ozone concentrations recorded in an urban envi-

ronment susceptible to photochemical pollution such as the Athens metropolitan area.

5.2 The Data

The dataset consists of ozone concentrations recorded at four stations in the Athens

basin and was provided by PERPA, a branch of the Hellenic Ministry of Environment,

City Planning and Public Works. The Athens basin topography forces two main wind
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regimes: the first from the northeast and the second from the southwest. The three

residential suburban sites (Liossia, Maroussi and Likovrissi) are located northeast,

downwind of the prevailing south-southwesterly winds, and do therefore exhibit the

highest ozone concentrations in the basin. The urban site (Smirni) is located upwind,

close to the sea front and records lower ozone concentrations. For Smirni, Liossia and

Maroussi, an eight-year (1992-1999) data set was used. At Likovrissi, a six-year data

set (1994-1999) was available. The analysis focuses on the daily maximum 1-hr ozone

concentrations recorded during the ‘ozone season’ of 01 April through 31 October.

Based on an earlier case study for Athens (Chaloulakou et al., 2003), the meteorologi-

cal variables considered are: (1) nocturnal wind speed (02:00), (2) morning wind speed

(07:00-10:00), (3) afternoon wind speed (13:00-14:00), (4) solar radiation (10:00-14:00),

(5) relative humidity (10:00-13:00), (6) upper air temperature at 850 hPa (14:00), (7)

change from the previous day of upper air temperature at 850 hPa, (8) range of sur-

face daily temperature (Tmax − Tmin) and (9) surface maximum temperature. Simi-

lar meteorological variables were found to be significant in describing the variation

in the daily maximum 1-hr ozone concentrations by several authors (Burrows, Ben-

jamin, Beauchamp, Lord, McCollor, and Thomson (1995), Cannon and Lord (2000),

Hubbard and Cobourn (1998), Comrie (1997)). Motivated by the work of Bloomfield,

Royle, Steinberg, and Yang (1996) and Davis, Eder, Nychka, and Yang (1998), two per-

pendicular wind vectors for each type of wind speed (nocturnal, morning and afternoon)

are included. The surface meteorological measurements for the period 1992-1999 were

obtained from the National Observatory of Athens. The upper air data (i.e., the tem-

perature at 850 hPa) were obtained from the monitoring station at the Athens airport.

Table 5.1 and figure 5.1 presents the histograms of the daily maximum 1-hr ozone con-

centrations of the datasets at the four sites. The ozone distribution at the urban site

Smirni is characterized by much lower values than those at the suburban sites. Fur-

thermore, the ozone concentrations at Smirni more or less resemble a normal distribu-

tion, which is clearly not the case for the other stations that exhibit much fatter tails
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Table 5.1: Descriptive statistics for the daily one-hour maximum ozone concentrations
(µg/m2) at the four monitoring stations in the Athens basin

station obs. median mean std dev min max skewness kurtosis autocorr
smirni 1301 120 123.29 36.67 30 259 0.5207 3.4149 0.6125
liossia 1069 122 135.50 53.47 36 365 1.2411 4.5765 0.5124

maroussi 1177 131 138.87 52.51 35 381 1.3534 5.8904 0.5550
likovrissi 839 118 130.65 56.21 31 463 1.8011 7.9693 0.5103
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Figure 5.1: Histograms and cumulative distributions of the ozone concentrations at the
four monitoring stations (Smirni, Liossia, Maroussi and Likovrissi, respectively)

and are more skewed. In addition, the autocorrelation of ozone concentration at Smirni

is higher (0.613) than the autocorrelation at the suburban sites (values slightly greater

than 0.5). In our analysis, we will also, thereafter, consider lagged ozone information

(i.e., previous day’s maximum 1-hr ozone concentration) to account for this persistence

in ozone.

5.3 The Quantile Regression Model

A linear quantile regression model (Koenker and Bassett (1978)) assumes that the re-

gressand y (in our case the daily 1-hr maximum ozone concentration) is linearly depen-

dent on K explanatory variables. Furthermore, the τ -th quantile of the error term εt(τ)
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conditional on the regressors is assumed to be zero:

yt = β0(τ) +
K∑

k=1

βk(τ)xtk + εt(τ) with Qεt(τ)(τ |xt1, . . . , xtK) = 0 (5.1)

>From this specification, it follows that the τ -th conditional quantile of y can be written

as

Qyt(τ |xt1, . . . , xtK) = β0(τ) +
K∑

k=1

βk(τ)xtk (5.2)

In a least squares regression model, the error term is assumed to be independent of

the value of the covariates (homoscedasticity). In contrast, quantile regression mod-

els allow for the variance of the error term to vary (heteroscedasticity) and make no

assumptions about the variance structure (Yu, Lu, and Stander (2003)).

Computationally, quantile regression estimators may be formulated as a linear pro-

gramming problem and efficiently solved by simplex or barrier methods via an opti-

mization of a piecewise linear objective function in the residuals (Koenker and Hallock

(2001)). The constant β0(τ) and the coefficients βk(τ) are estimated for 99 different

quantiles (τ = 0.01, . . . , 0.99) using each time the entire data set. A detailed descrip-

tion of the mathematical formulation of conditional quantile regression is provided in

chapter two.

The regressors xk are standardized to have zero mean and unit standard deviation (SD).

The ozone data are used in original units (µg m−3). This type of standardization allows

one to see at first glance the impact of a one-SD variation in the regressors (ceteris

paribus effect) on the daily maximum 1-hr ozone concentrations, and, hence, makes a

comparison of the relative importance of the covariates feasible. In total, sixteen regres-

sors are included in the model, comprising nine meteorological variables, six variables

related to the two perpendicular components per wind speed, and one measure of per-

sistence (i.e. the lagged ozone concentration).

The meteorological data set exhibits intravariable (e.g. wind speed at different times)

and intervariable collinearity (e.g. maximum surface temperature and upper air tem-
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perature). However, this collinearity and the joint effect of the regressors can be very

different among the ozone regimes (see results below). Hence, we include all meteoro-

logical variables in our model and consider the potential collinearity in the interpreta-

tion of the results (Chock, Kumar, and Herrmann (1982, 1984)). For inference, we use

the bootstrap method to obtain the standard errors since it is valid under more general

assumptions than the theoretical analogue.

5.4 Results

5.4.1 Regression coefficients

Figures 5.2 to 5.5 summarize some selected effects (standardized regression coeffi-

cients) of the explanatory variables on the daily maximum 1-hr ozone concentrations

using the quantile regression and the ordinary least squares (OLS) regression mod-

els that include all 16 regressors. Bootstrap estimates of standard error (at the 95%

confidence level) were calculated by randomly sampling each dataset with replacement

(1000 times). In the quantile regression framework, a regression coefficient is a func-

tion of τ , while in the classical regression approach the regression coefficient is a single

value for the entire distribution.

The constant in the quantile regression model has the typical and expected shape at all

sites. The higher the ozone quantile, the higher the value of the constant in the model.

For example at Liossia site, the constant of the model is close to 100 µg m−3 at the 0.25

quantile and over 150 µg m−3 at the 0.75 quantile. At all three suburban sites, the

constant is close to 250 µg m−3 for the very high quantiles. The narrow bounds indicate

the high degree of confidence about the estimated values for the constant at all sites.

The effect of persistence (i.e. the impact of previous day’s maximum ozone) on the daily

maximum 1-hr ozone concentration has a common pattern at all four sites: it is posi-

tively increasing with the quantile (τ ) for most of the range of τ . At Liossia, for example,
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Figure 5.2: Estimated constant and lagged ozone concentration coefficient at Liossia.
The standardized quantile regression coefficients (solid red line) are presented with
their 95% confidence bounds (shaded in grey). The least squares regression coefficients
(solid blue line) are also given with their 95% confidence bounds (shaded in yellow). The
vertical axis shows the standardized regression coefficients (µg m−3), the horizontal
axis shows the ozone quantile. Please note the different vertical scales.
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Figure 5.3: Estimated quantile regression effects of relative humidity and range of
surface daily temperature at Smirni (compare figure 5.2).
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Figure 5.4: Estimated quantile regression effects of upper air temperature and change
from previous day’s upper air temperature at Maroussi (compare figure 5.2).
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Figure 5.5: Estimated quantile regression effects of afternoon wind speed and solar
radiation at Likovrissi (compare figure 5.2).
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an increase of one-SD in the previous day’s maximum 1-hr ozone concentration would

result in a ceteris-paribus increase of 10 µg m−3 in today’s maximum ozone at the 0.25

quantile, but in an increase of 25 µg m−3 at the 0.75 quantile. For higher quantiles,

however, this effect is reduced, which indicates lower persistence of ozone concentra-

tions at very extreme values of the distribution. Due to the wider confidence bands

at high quantiles, the quantification of this effect is a bit less accurate than for low

quantiles.

The OLS approach indicates that the statistically insignificant variables (i.e. with t-

ratios lower than two in absolute value) at both Likovrissi and Maroussi are the noc-

turnal wind, relative humidity, range of surface daily temperature and maximum sur-

face temperature. At Liossia and Smirni, the range of surface daily temperature and

the morning wind are insignificant, respectively. On the other hand, the quantile re-

gression approach shows that the effects of these meteorological variables on the daily

maximum 1-hr ozone concentrations are more complex, which is reflected in the sign,

size and significance of the estimated coefficients. We will try to isolate the most signifi-

cant effects in our discussion. The interpretations are only suggestive of actual physical

or chemical causes of ozone variations.

The nocturnal wind (absolute speed and both perpendicular components) is important

only for the Smirni site, where previous night’s north winds increase the next day’s

ozone concentration, while south winds decrease it. This may indicate that air entrain-

ing ozone travels from the suburban areas towards the urban site at Smirni during the

night, increasing thereafter the next day’s ozone levels at the site. As expected, this

increase is not related to the ozone regime at Smirni, since the pollution is actually

transported and not produced locally.

The morning wind speed at Likovrissi becomes significant at the 0.30 quantile onwards,

exhibiting a negative effect. The dependence on low morning wind speeds may indicate

that middle and higher ozone concentrations at Likovrissi are typified by local produc-

tion of ozone. However, the effect is random in the upper tail of the ozone distribution.
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A similar pattern is seen at Liossia and Maroussi. At Smirni, the effect of the morning

wind speed is not statistically different from zero for the entire ozone distribution.

The afternoon wind affects the ozone concentrations at all four sites. At Likovrissi, the

effect of the afternoon wind speed is negative at the very low quantiles, but it becomes

positive and increases monotonically for the quantiles between 0.25 and 0.90. This

may reflect that the very low daily maximum 1-hr ozone concentrations at Likovrissi

are more likely to rely on local production processes, while ozone concentrations in

the range between 95 and 205 µg m−3 are due to transportation from south-southwest

directions. An OLS regression would have averaged the effect of this variable, thus

would have veiled the conclusions drawn previously. At Maroussi, afternoon winds

coming from south-west direction can increase the ozone concentrations, especially at

the higher quantiles. At Liossia, there is a clear positive effect of the afternoon south

winds, which is increasing with the quantile. At Smirni, low afternoon winds, particu-

larly from south, increase the ozone concentrations at all points of the distribution.

Solar radiation exhibits a constant positive effect on the ozone quantiles below 0.70

at Likovrissi, which is close to the OLS estimate. The effect of solar radiation is neg-

ligible for higher quantiles. Similar behavior is found at the remaining sites. This

behavior is consistent with previous studies that show that beyond a certain limit, a

further increase of the solar radiation does not affect the daily maximum 1-hr ozone

concentrations significantly (Kioutsioukis, Melas, Ziomas, and Skouloudis (2000)).

Relative humidity has no significant effect on the entire ozone distribution at Likovrissi

and Maroussi. At Liossia, however, the coefficient of relative humidity is negative and

constant at the 0.10-0.40 quantiles, while it is not different from zero at the higher

quantiles. At Smirni, relative humidity affects negatively the ozone concentrations

up to the 0.70 quantile and becomes insignificant for higher quantiles. The stronger

dependence on relative humidity of the ozone concentrations at Smirni, as opposed to

the suburban sites, can be explained by the location of Smirni in the vicinity of the

seaside.
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The effect of the upper air temperature is insignificant at Likovrissi. At Maroussi, there

is variation in the magnitude and the sign of the coefficient as we move up the ozone

distribution. Specifically, upper air temperature has a negative coefficient at the very

low quantiles, it becomes insignificant for the quantiles close to 0.30, and finally flips

the sign around the 0.40 quantile. An increasing positive effect is evident at Liossia,

where an increase of one-SD in upper air temperature could result in an increase of 40

µg m−3 for the extreme ozone values. This indicates the detection of a photochemical

signal for which upper air temperature is a good surrogate. In fact, upper air mea-

surements appear in a number of studies to be most beneficial for estimating the condi-

tions underlying extreme events (Burrows, Benjamin, Beauchamp, Lord, McCollor, and

Thomson (1995), Pryor, McKendry, and Steyn (1995)). The negative coefficient of upper

air temperature at Smirni seems to be random, given the large confidence interval.

At all sites, the change of the upper air temperature from the previous day seems to

have a negligible effect on all ozone quantiles, except for the upper extremes, where the

variable has a positive effect at Smirni, a negative effect at Maroussi and Likrovrissi

and a negligible effect at Liossia. The effect of the range of surface daily temperature is

insignificant at the suburban sites and increasingly positive at Smirni. The maximum

surface temperature is insignificant at all sites.

The quantile curves of ozone versus the covariates at each of the four sites (not pre-

sented here) are clearly not parallel, which indicates that the distribution of the er-

ror term ε depends strongly on the value of the covariate. This confirms that in the

present case of ozone modelling the assumption of ordinary regression is severely vio-

lated. These results indicate how much information can be veiled if the approach does

not account for the varying effects of the determinants of ozone concentrations at the

different ozone regimes. In particular, the quantile regression analysis shows that the

OLS approach hides a large amount of information about the dependence of the con-

ditional distribution of daily maximum 1-hr ozone concentrations on the lagged ozone

concentrations, the morning and afternoon winds and the upper air temperature.
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Figure 5.6: Goodness of fit R1(τ) of the quantile regression model (vertical axes) as
a function of the ozone quantile τ (horizontal axes) at Smirni, Liossia, Maroussi and
Likovrissi (from left to right).

5.4.2 Model performance

The relative success of conditional quantile regression models at a specific quantile can

be measured in terms of an appropriately weighted sum of absolute residuals and is

denoted by R1(τ) (Koenker and Machado (1999)). Like the coefficient of determination

in the linear regression (R2), the goodness of fit in the quantile regression R1(τ) is in

the interval [0, 1]. Unlike R2, that measures a global goodness of fit over the entire

conditional distribution, R1 measures the local goodness of fit as a function of τ . Figure

5.6 illustrates the values of R1(τ) at different ozone quantiles for each monitoring site.

The quantile regression model of the 16 variables for Smirni exhibits a rather flat R1

function indicating that the amount of ozone variability explained by the model is equal

at all conditional quantiles. At Liossia, the bowl shaped curve of R1 suggests that the

model can explain the ozone variation in the tails of the conditional distribution better

than in the center of the distribution. At Maroussi, the goodness of fit is slightly better

for the higher than for the lower quantiles. The same pattern, but more pronounced, is

apparent at Likovrissi.

As noted earlier, the R2 of the classical linear regression and the R1 of the quantile

regression are not directly comparable due to their different nature; the former is a

global measure, the latter is a local one. Even at the 0.50 quantile that can somehow

be seen as a counterpart to the ‘mean’ ozone behavior (least squares approach), the R1

and R2 values are different, although the models’ estimates of the daily maximum 1-hr

ozone concentrations have similar values in both approaches. This confirms that R1
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and R2 are not meant to be comparable in absolute values.

It was previously shown that the daily maximum 1-hr ozone concentrations at the sub-

urban sites have skewed distributions with long right tails. As a consequence, the

application of the OLS regression leads to an underprediction of the ozone concentra-

tions in the right tail of the distribution. Within the quantile regression framework

we suggest adopting the following approach for estimating a global goodness-of-fit to

be compared with the R2 of the classical linear regression: First, we compute the

quantile regression coefficients for a small number of quantiles (in this case we chose

τ ∈ {0.1, 0.3, 0.5, 0.7, 0.9} as representative values). Subsequently, we divide the dataset

into five uniform intervals according to the ozone values and calculate the predicted

ozone concentrations using the quantile regression coefficients of the respective quan-

tile regression function. The rationale in this approach resembles the ‘amalgated’ linear

regression model for ozone by Eder, Davis, and Bloomfield (1994) that combines seven

linear regression models for seven meteorological regimes identified by a cluster analy-

sis.

Figure 5.7 presents the scatterplots of the OLS and the quantile regression model esti-

mates versus the observed daily maximum 1-hr ozone concentrations at the four sites.

The scatterplots associated with the OLS models reveal the expected tendency to under-

estimate the highest ozone concentrations (from around 180 µg m−3 on). On the other

hand, the results obtained from the amalgated quantile regression models exhibit a

marked improvement in the estimated values. For the suburban sites, the amalgated

models explain more of the ozone variation (between 72% and 80%) and have lower

residual errors (RMSE between 24 and 30 µg m−3) when compared to the OLS mod-

els (R2 < 0.5, RMSE around 40 µg m−3). The quantile regression model performance

statistics are not significantly affected by using slightly different quantile functions

than the five utilized above. Furthermore, the results of the conditional quantile regres-

sion approach present an improvement to previous attempts to model the daily maxi-

mum 1-hr ozone concentrations in the Athens basin using Classification and Regression
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Figure 5.7: Estimated-versus-actual daily maximum 1-hr ozone concentrations at four
sites in Athens, using ordinary least squares regression (OLS) models (top row) as well
as the ‘amalgated’ quantile regression (QR) models at five quantiles (0.1, 0.3, 0.5, 0.7,
0.9) (bottom row).

Trees (Kaprara, Karatzas, and Moussiopoulos (2001)) or neural networks (Chaloulakou,

Saisana, and Spyrellis (2003), Kioutsioukis, Melas, Ziomas, and Skouloudis (2000)).

5.4.3 Conditional densities

The quantile regression approach can also be applied when the aim of the analysis

is to obtain an estimate of the entire conditional ozone distribution for any value of an

explanatory variable considered individually in a simple regression model. The detailed

procedure is explained in chapter two (compare Hyndman, Bashtannyk, and Grunwald

(1996) and Yu and Jones (1998) who use alternative methods to compute conditional

densities). Furthermore, by using one-period-lagged values of a regressor, the outcome

allows for one-step forecasts of the ozone concentrations. In contrast to other forecast

methods, this approach does not yield a single estimated value of tomorrow’s ozone

concentration but an estimated density distribution.

Figures 5.8 to 5.10 presents the estimated densities of the daily maximum 1-hr ozone

concentrations conditional on (i) the lagged ozone concentration, (ii) the afternoon wind

speed, and (iii) the upper air temperature. These explanatory variables were previ-

ously shown to be significant in explaining the ozone variation at most sites. The condi-
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Figure 5.8: Conditional densities. The figure shows the estimated density of daily max-
imum 1-hr ozone concentration conditional on four different levels of the lagged ozone
value at Smirni (left side) and Liossia (right side). The values of the explanatory vari-
ables are the 2%- (continuous blue line), 10%-(long-dashed red line), 90%- (dashed green
line) and 98%-quantile (short-dashed orange line). The densities were calculated by ap-
plying a kernel density estimation on 99 quantile regression coefficients estimated in
each case (see chapter two). Vertical axes indicate density, horizontal axes indicate
ozone concentration (µg m−3).

tional densities of the ozone concentrations are presented for two low levels (0.02- and

0.10-quantile, solid and long-dashed line) and two high levels (0.90- and 0.98-quantile,

dashed and short-dashed line) of the independent variables, respectively. The values

have been calculated by applying a kernel density estimation on 99 conditional quan-

tiles in each case (see chapter two).

The results show that conditioning on low lagged ozone concentrations, there is a rather

narrow unimodal density distribution of the daily maximum 1-hr ozone concentrations

at all sites (Figure 5.8 presents the results only for Smirni and Liossia). However, as

the previous day’s maximum ozone concentration increases there is a tendency for the

upper tail of the distribution to lengthen, which implies that the uncertainty in estimat-

ing today’s ozone is considerably larger if yesterday’s ozone is high. This effect is more

pronounced at the suburban sites and shows that the classical regression assumption

that a covariate affects only the location of the response distribution, but not its scale

or shape, is violated. Similar conclusions were drawn in a case study on temperature
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Figure 5.9: Conditional densities. The figure shows density estimates of the ozone
concentration conditional on afternoon wind speed at Liossia (left side) and Likovrissi
(right side). Compare figure 5.8.
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Figure 5.10: Conditional densities. The figure shows density estimates of the ozone
concentration conditional on upper air temperature at 850 hPa at Liossia (left side)
and Maroussi (right side). Compare figure 5.8.



130 CHAPTER 5. SURFACE OZONE CONCENTRATION

distributions conducted by Koenker (2001).

The density of ozone distribution conditional on the afternoon wind speed shows a fea-

ture which is typical for all wind speed covariates but different from most of the other

variables (e.g. upper air temperature): the higher the value of the covariate (the wind

speed), the lower is the value of the daily maximum 1-hr ozone concentration, and vice

versa. Furthermore, low wind speeds are associated with the whole range of ozone

concentrations, while high wind speeds are related to a rather short range of ozone

concentrations. These examples show that the analysis of the conditional densities can

provide an additional insight into possibly complex relationships between the explana-

tory variables and the ozone concentrations.

5.5 Concluding Remarks

This chapter, using conditional quantile regression models applied on data from several

monitoring sites in Athens, demonstrates that high daily maximum 1-hr ozone concen-

trations are clearly characterized by different stochastic relationships with meteorology

and lagged ozone concentrations than mid or low ozone concentrations. Furthermore,

the results confirm the expectation that high ozone concentrations are more persis-

tent than low ozone concentrations. The upper air temperature is more influential for

high ozone than for low ozone concentrations. This heterogeneity in the determinants

of ozone is well captured by conditional quantile regression models, but is ignored if

conventional regression models are employed. Consequently, the quantile regression

results for different ozone regimes may provide important insights on the different de-

terminants of ozone concentrations, without undertaking a cluster analysis for meteo-

rological schemes. Furthermore, the application of an ‘amalgated’ quantile regression

model leads to a significant improvement in explaining the ozone concentration. Finally,

by calculating conditional densities, we are able to provide an entire density distribu-

tion for the forecasted ozone concentration.
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Within the framework of describing the effect of meteorology and persistence on daily

maximum 1-hr ozone concentrations, there are several arguments that render the quan-

tile regression approach attractive: It is more information rich than ordinary least

squares regression. Unlike Classification and Regression Trees, it is not empirical.

Moreover, it can treat non-linear mechanisms without using transformed variables and

interactions between variables, which in some cases could be cumbersome. Finally,

quantile regression can easily be implemented and provides readily interpretable re-

sults, unlike neural networks that are often considered as ‘black box’ approaches. A

potential application of our approach could be to forecast ozone values by using lagged

explanatory variables or to meteorologically adjust ozone data sets. Future work will

further exploit this direction.
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Chapter 6

Conclusions

It is difficult to understand why statisticians commonly limit their

inquiries to Averages and do not revel in more comprehensive views.

Their souls seem as dull to the charm of variety as that of the native of

one of our flat English counties, whose retrospect of Switzerland was

that, if its mountains could be thrown into its lakes, two nuisances

would be got rid of at once.
Sir Francis Galton (1889)

Roughly twenty-five years ago, Roger Koenker and Gilbert W. Bassett, Jr. proposed a

new econometric method for the estimation of so-called regression quantiles for a re-

sponse variable. In the first subsequent years, only few econometric articles dealt with

the new procedure. This had several reasons: first, of course, for every new method it

takes time to be noticed, discussed, and hopefully accepted by the scientific community

(compare for example the time span that elapsed between the invention and widespread

application of the Tobit model).

Furthermore, there were also some initially more substantial obstacles that retarded an

immediate breakthrough of the quantile regression idea. The first was a slight difficulty

of computing, since the solution of a quantile regression problem cannot be formulated

as a simple closed expression. Moreover, not much was known about the asymptotic

133
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behavior of the quantile regression process in the beginning, although already Koenker

and Bassett (1978) provided some basic results. From this followed that also the deriva-

tion of valid inferential assertion seemed demanding in those days.

Fortunately, all of these problems have been extensively addressed and globally solved.

The linear programming representation of quantile regression allowed the development

of efficient algorithms. In addition, the impressive progression in the availability of

fast and cheap computer power has substantially facilitated the practical application

of the approach. A multiplicity of papers have analyzed the asymptotic properties of

conditional quantiles, so today a well elaborated theory is readily available. This is

also true for inferential questions, a variety of procedures have been introduced and

successfully applied.

A nice indicator of the wide acceptance quantile regression has reached (rightly) in the

meantime might be the average year of publication of applied quantile regression pa-

pers. Of course, the attentive reader could (and should) annotate at this point: “why

only considering the mean and not the entire (possibly conditional) distribution of pub-

lication date?”

We hope to having coherently exposed the great potential inherent in the application of

quantile regression and to having accomplished a small contribution to the fast growing

empirical literature on conditional quantiles. We want to conclude our study by stating

that with quantile regression at hand, one at least does not run the risk to be considered

by Sir Francis Galton as a dull native of a flat English county.
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