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Chapter 1

Introduction

We live in an era of interdependence.

Keohane and Nye, 2002

The above statement expresses a widespread feeling that the world we live in is now

more interconnected than it was before. However, such statements do usually not deliver

precise definitions of the words entailed and examples of interdependent phenomena in

the medical, social, political and economic aspects of our existence, not to mention the

economic structures, are infinite (see Drouet and Kotz, 2001).

We exclusively study economic interdependence and focus on the interdependence of

financial markets.

It is noteworthy that the finance literature has neither provided a generally accepted

definition or description for "interdependence" nor for "dependence". However, a thorough

analysis of "interdependence" requires an accurate definition of the term before examining

the sources and the constituting factors of this phenomenon in a static and also a dynamic

sense. After the discussion of such issues, it is surely interesting to evaluate the results of

such an interconnectedness. Any increased knowledge could lead to a better understand-

ing of the functioning of the international financial system and could answer the question

whether the financial markets are part of an appropriate financial architecture or not. An
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analysis of interdependence can potentially also assign a new role to the International

Monetary Fund (IMF) and to the role that international investors play in this system.

Interdependence can be defined as mutual dependence of equally distributed or un-

evenly distributed entities. This definition contains two types of interdependence: The

first is interdependence characterized by equality and symmetry and the latter type is

adequately described by inequality and asymmetry. An extreme form of such an unequal

interdependence is a pure asymmetric dependence of one entity on another, in other words:

A pure asymmetric dependence is a non-mutual dependence.

An example of the latter is as follows: a small country exports lemons (among other

things) to the United States. In theory, the US depends on the supply of these lemons,

while the small country depends on the US market. But what does that mean in reality?

If no lemons are exported from the small country, US consumers hardly notice the price

change in the grocery store, while the farmers of the small country suffer severe losses.

Thus US "dependence" on the small country is only nominal and the interdependence is

highly asymmetric.

Apart from the question whether interdependence is mutual to any extent or not, it is

also important to assess the outcomes of interdependence. Does interdependence always

lead to better states of the world (synergy) as if there was no interdependence or can

interdependence also result in poorer outcomes (negative synergy)? This question can

also be discussed for the above example. Classical economic theory suggests that trade

is beneficial for all participating parties leading to synergetic effects of interdependence.

Whether this is also true for financial markets is an important issue and will be part of

the analyses in this work.

The aim of this study is to assess the characteristics of varying interdependence by mod-

eling and estimating symmetric and asymmetric linkages of different financial markets.
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We analyze whether the linkages of financial markets increased in the past years,

whether these linkages are persistent and whether they exhibit any asymmetric behav-

ior depending on the shocks of the markets. We investigate factors that cause changes of

the linkages and analyze how shocks are transmitted from one market to the other. We

also examine periods of financial turmoil, especially the Asian crisis in 1997.

More econometric issues are also discussed, such as the relation of volatilities and cor-

relations and the finding of spurious regressions and spillovers.

This study is organized as follows:

The second chapter describes different models to estimate time-varying volatilities in

a univariate framework and builds the fundament for an extension to multivariate speci-

fications. In the second part of the chapter, time-varying volatilities and correlations are

analyzed within a multivariate GARCH framework.

The third chapter focusses on asymmetric correlations and spillovers obtained by uni-

variate regression models with time-varying volatilities, a time-varying parameter model

and a Quantile Regression model.

In terms of dependence or interdependence, the second chapter can be viewed as an

analysis of the dependence of volatilities through time, an examination of symmetric in-

terdependencies of the returns of financial markets through time and the third chapter in-

troduces models of asymmetric (possibly non-mutual) conditional interdependence. Both

returns and variances are analyzed.

We contribute to the literature in several parts.

In the first part, we introduce a new bivariate correlation estimator that is more flexible

than existing multivariate GARCH models and thus not prone to potential misspecifica-

tions. Furthermore, merits and shortcomings of existing multivariate GARCH models are

discussed and evaluated in a simulation study. Differences of daily and monthly returns
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regarding the persistence and the asymmetry of correlations are additionally analyzed.

The second part extends the literature in four ways: First, a classification of the differ-

ent forms of spillovers is made, second, the potential occurrence of spurious correlations

or spillovers is analyzed, third, adequate estimation frameworks to investigate varying

spillovers are proposed and fourth, correlations in mean and volatility are analyzed in

order to obtain insights into the existence and the causes of contagion among financial

markets.

The last part briefly summarizes the main results and points to areas for future re-

search.
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Chapter 2

Symmetric Interdependence:

Correlations

In this chapter we analyze the interdependence of financial markets within a symmetric

model and thus assume an equally distributed dependence between two markets.

We first present an econometric framework that estimates time-varying volatilities and

then use this framework to model time-varying correlations. This preliminary part that is

exclusively focussing on volatilities is fundamental for the understanding of the concept of

time-varying symmetric interdependence.

2.1 Univariate GARCH Models

The (univariate) autoregressive conditional heteroscedastic (ARCH) model was introduced

by Engle (1982) and generalized by Bollerslev (1986).

We discuss the main univariate models of the ARCH family that build the basis for

multivariate ARCH models. The selection of these models is based on the (i) frequency the

models are used in the literature, (ii) the existence of multivariate counterparts and (iii)

the potential existence of multivariate models.

We assume a simple mean equation without any exogenous regressors since the focus
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is on the modeling of the variance equation. The mean equation is thus given by

rt = µ + εt (2.1)

where µ is a constant and the innovation εt is factorized as

εt = zth
1/2
t (2.2)

where zt is assumed to be an iid sequence with mean zero and variance one.

Engle (1982) postulated the conditional variance ht to be a function of past squared

innovations of εt:

ht = ω +
q∑
i=1

αiε
2
t−i (2.3)

Since the variance must be positive by definition, the conditional variance ht is only

surely well defined if the parameters satisfy the following conditions: ω > 0 and αi ≥ 0 for

all i.

It is not readily clear that this model is an autoregressive process as suggested by the

name. Defining vt = ε2t − ht, and substituting ht = ε2t − vt in equation (2.3) we get

ε2t = ω +
q∑
i=1

αiε
2
t−i + vt (2.4)

This model is obviously an autoregressive model. It is covariance stationary if and only

if the sum of the positive autoregressive parameters is less than one. A model is said to be

covariance stationary if it is mean reverting, i.e. the conditional variance tends to return to

its unconditional mean. The unconditional (not time-varying) variance is σ2 = ω/(1−
q∑
i=1

αi)

and can be derived by setting ht = ε2t = ε2t−i for all i.

Applied to empirical data, ARCH(q) models make it necessary to use long lag lengths

to describe the variance process adequately (e.g. see Engle, 1982). This problem can be

circumvented by using the Generalized ARCH model (GARCH) proposed by Bollerslev

14



(1986). The GARCH(p,q) model can be written as

ht = ω +
q∑
i=1

αiε
2
t−i +

p∑
j=1

βjht−j (2.5)

Again, for the conditional variance to be well defined, all parameters must be non-

negative. A widely applied model is the GARCH(1,1):

ht = ω + αε2t−1 + βht−1 (2.6)

Using the same transformation as for the ARCH model (νt = ε2t − ht), we get:

ε2t = ω + αε2t−1 + βε2t−1 − βvt−1 + vt (2.7)

This is an ARMA(1,1) model for ε2t . The GARCH(1,1) process is covariance stationary

if and only if the sum of the autoregressive parameters (α + β) is less than one. The

unconditional variance is computed by setting ht = ht−i = ε2t−i which yields

σ2 = ω/(1 − α− β) (2.8)

Rewriting equation (2.6) and adding the term (αht−1 − αht−1) yields:

ht = ω + (α + β)ht−1 + α(ε2t−1 − ht−1) (2.9)

The term (ε2t−1 − ht−1) has mean zero and can be thought of as a volatility shock at time t.

The coefficient α measures the extent to which the variance shock at time t feeds through

into the volatility of the next period. The sum of the parameters α and β measures the rate

at which this effect dies out over time, i.e. it measures the persistence of shocks. It can

also be shown that the GARCH(1,1) process is a nonlinear autoregressive process (of order

one) with a stochastic autoregressive coefficient. To show this, we write equation (2.6) as

ht = ω + (β + α
ε2t−1

ht−1
)ht−1

Using zt =
εt√
ht

we get

ht = ω + (β + αz2
t−1)ht−1 (2.10)
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Here, the term (β+αz2
t−1) is the stochastic autoregressive coefficient making the process

nonlinear.

To illustrate the dynamic properties of the GARCH models, we simulate four different

GARCH(1,1) processes with the following parameter values for α and β (ω = 0.01): (i)

α = 0.05, β = 0.9, (ii) α = 0.05, β = 0.94, (iii) α = 0.05, β = 0.5 and (iv) α = 0.25, β = 0.7. The

upper plot of figure 2.1 presents the time-varying volatilities for a GARCH(1,1) process

with the parameter values given by (i) and (ii) and the lower part of the figure presents

the time-varying volatilities for the parameter values given by (iii) and (iv). We assume

the same random innovation εt (∼ N(0, 1)) for all processes. It is evident that process (ii)

exhibits the highest persistence of shocks and a pronounced pattern of volatility clustering.

This pattern is also visible for processes (i) and (iv). The clustering is not identifiable for

the process given by (iii).

Recursively substituting equation (2.8) into equation (2.9) leads to the conditional ex-

pectation of volatility (j periods ahead):

Et(ht+j) = (α + β)j(ht − ω

1 − α− β
) +

ω

1 − α− β
(2.11)

Hence, the volatility at t+j reverts to its unconditional mean at rate (α+β). For α+β = 1

shocks are persistent and the GARCH process is said to be integrated in volatility (of order

one) and thus called integrated GARCH (IGARCH). However, the presence of an unit root

in the volatility process must not be confused with an unit root in the underlying returns

for example. IGARCH processes do not violate the stationarity properties (see Nelson,

1991).

The ARCH and GARCH models assume that the conditional variance ht is a function

of lagged squared residuals. However, Taylor (1986) and Schwert (1989) use the absolute

residuals to model the time-varying variance. These modified GARCH models are less

frequently used and thus not further discussed.
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Figure 2.1: Simulated GARCH(1,1) processes
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The GARCH models have been introduced to model time-varying volatilities and the

stylized fact of volatility clustering. Another empirical regularity is the asymmetric effect

of positive and negative shocks on volatility. This is discussed in the next section.

2.1.1 Asymmetric GARCH Models

Black (1976) and Christie (1982) found evidence that stock returns are negatively cor-

related with return volatility. This asymmetry (often related to as financial leverage or

volatility feedback) means that volatility tends to rise in response to a negative shock and

to fall in response to a positive shock.1

The GARCH model does not account for this finding and assumes symmetric impacts of

positive and negative shocks on future volatility. The Asymmetric ARCH (AARCH) model

of Engle (1990), the Quadratic GARCH (QGARCH) model of Sentana (1991), the Exponen-

tial GARCH (EGARCH) model of Nelson (1991) and the Asymmetric GARCH (AGARCH)

model of Glosten, Jagannathan and Runkle (1993) account for these asymmetries. All

these asymmetric models and the non-asymmetric GARCH model can be nested in one

model (see Hentschel, 1995). However, the presentation of such a nested model would not

be consistent with the focus of this section which is only an introduction to multivariate

GARCH models.

A forerunner of the Asymmetric GARCH model of Glosten et al. (1993) was proposed by

Engle (1990). However, only the model of Glosten et al. is now widely applied to financial

data:

ht = ω + α1ε
2
t−1 + α2ε

2
t−1Dt + βht−1

1Financial leverage means that a highly leveraged firm faces more uncertainty when stock prices fall since

the leverage and thus volatility increases. Volatility feedback means that higher volatility results in higher

risk which requires higher expected returns that force stock prices to fall (see Campbell and Hentschel, 1992).
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where Dt is a dummy variable that equals one if εt−1 < 0 and zero otherwise. Hence,

negative values of εt−1 are additionally captured by the parameter α2 (besides the param-

eter α1) that measures the impact of these shocks on volatility at t. If α2 is statistically

significant different from zero there is an asymmetric effect of positive and negative shocks

on future volatility. In most empirical applications of this model, α2 is positive which im-

plies that negative shocks increase volatility more than positive shocks. The model of

Glosten et al. (1993) can also be called a Threshold GARCH model (TGARCH). For exam-

ple, the dummy variable D could be used to estimate the impact of shocks larger than a

multiple of the standard deviations of εt on the conditional volatility.

The Quadratic GARCH model was introduced by Sentana (1991) and the conditional

variance ht is

ht = ω + α(εt−1 + b)2 + βht−1

This specification produces a symmetric curve around b. If b is negative this means that

negative shocks increase the conditional volatility ht more than negative shocks. A more

popular model is based on the idea of using an exponential function instead of the linear

representation of the simple ARCH model and its asymmetric extensions. This was first

mentioned by Engle (1982) but only proposed by Nelson (1991).

The conditional variance ht of this exponential GARCH (EGARCH) model is given by:

ht = exp

(
ω +

q∑
k=1

gk(zt−k) +
p∑
i=1

βi lnht−i

)
(2.12)

where ω is the constant, gk a function of the standardized residuals zt−k (=
εt−k
σt−k

) and β

the parameter that describes the volatility clustering of the process.

Taking the logarithm, we get a linear model

ln(ht) = ω +
q∑
k=1

gk(zt−k) +
p∑
i=1

βi lnht−i (2.13)
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This linear formulation is very common but only theoretical and can be misleading since

the process is estimated as an exponential function given by equation (2.12).

A less common formulation is

ht = exp(ω) exp

(
q∑
k=1

gk(zt−k)

)
p∏
i=1

hβi

t−i (2.14)

This formulation shows that the parameter β must not be confused with the counterpart

in linear asymmetric GARCH models since β is not a linear coefficient of ht−1 but an ex-

ponent. As already mentioned, equation (2.13) is therefore a rather confusing formulation

(but very common).

Unlike other GARCH models the EGARCH process does not require any restrictions

to ensure non-negativity of the conditional variance. Equations (2.12) and (2.14) show

that ht is a nonlinear function of ht−i. This is especially important for the analysis of the

persistence of shocks.

The asymmetric relation between returns and volatility changes is captured by the

function gk(zt).

gk(zt−k) = θkzt−k + γk[|zt−k| − E(|zt−k|)] (2.15)

There is evidence of an asymmetric impact of shocks on conditional volatility if θk < 0 for

q = 1. This means that positive shocks can also reduce volatility whereas negative shocks

always augment it. This effect is in contrast to all linear asymmetric GARCH models

where shocks always increase volatility. This is due to the parameter restrictions that

are necessary in the linear models to guarantee positive conditional variances but need

not imposed in the EGARCH model. Thus, the EGARCH model can be viewed as more

flexible. The magnitude effect of the process is described by the term γk[|zt−k| − E(|zt−k|)].

It could be argued that the exponential function does part of the work itself because large

values augment volatility proportionally more than small values.
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Equation (2.12) shows that if q = 1 the parameter estimates of θ1 and γ1 lead to one

function g(z, θ1, γ1). For θ1 < 0 a plot of this function with zt = z would show the asym-

metric impact of shocks on g(z) and thus on volatility. However, if q > 1, q different gk(z)

functions result and the interpretation of the asymmetry is not straightforward since the

gk(z) functions do not depend on just one variable zt but on different variables zt−k for

k = 1, 2, 3, .... This means that different zt−k and θk have different impacts on ht. Thus, it

is not sufficient to analyze only the impact of each shock on conditional volatility but also

the aggregate impact of the shocks.

The same statement is true for all other asymmetric GARCH models with higher lag or-

ders. We stressed this problem for the EGARCH model since only this model contains a

function g(z) explicitly modeling the asymmetric effect.

The analysis of asymmetric effects of positive and negative shocks and the persistence

of shocks in general have commonly been analyzed separately. El Babsiri and Zakoian

(2001) closed this gap and introduced the concept of contemporaneous asymmetry which

allows different volatility processes for positive and negative return movements. In other

words, if positive and negative shocks have a different impact on volatilities they might

also have another persistence and conditional distribution.

We do not discuss this issue in more detail and focus on the asymmetric effect and the

news-impact curve in the next section.

2.1.2 The News-Impact Curve

The news-impact curve introduced by Pagan and Schwert (1990) and Engle and Ng (1993)

shows how positive and negative shocks influence conditional volatility. Engle and Ng

(1993) analyzed processes of the order one for the autoregressive and the moving average
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term.2 The news-impact curve measures how new information is incorporated into volatil-

ity estimates. Thus, holding constant the information dated t − 2 and earlier it plots the

implied relation between shocks at t− 1 (εt−1) and conditional volatility at t (ht).

The news-impact curve for the GARCH(1,1) process is given by

ht = ω + αε2t−1 + βσ2 (2.16)

where σ2 is the unconditional variance. The equation shows that positive and negative

shocks have the same influence on conditional volatility ht.

The QGARCH(1,1) model exhibits an asymmetric impact of shocks on future volatility

if b �= 0:

ht = ω + α(εt−1 + b)2 + βσ2 (2.17)

The news-impact curve of the AGARCH(1,1) process is given by the two equations for

positive and negative shocks:

ht = ω + αε2t−1 + βσ2 for εt−1 > 0

ht = ω + (α + b)ε2t−1 + βσ2 for εt−1 < 0

The EGARCH(1,1) model is also given by two different equations :

ht = A · exp
(

(θ+γ)
σ · εt−1

)
for εt−1 > 0 and

ht = A · exp
(

(θ−γ)
σ · εt−1

)
for εt−1 < 0

with A = σ2β · exp (α− γ · E(|εt−1|)). Note, that the news-impact curve is a function of εt−1

and not of zt−1 since the standardized residuals zt can only be constructed by the use of

the unconditional variance.

We plot the news-impact curves for the four discussed models with typical parameter

values to obtain pronounced but also comparable functions. The news-impact curves are

shown in figure 2.2. It is evident that the GARCH model reacts equally to positive and
2Note, that the order of the investigated asymmetric GARCH models is determined ad hoc and not by any

selection criterion.
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Figure 2.2: News-Impact Curves

negative shocks which is not true for the other asymmetric GARCH models. In the plotted

example, the QGARCH model has higher variance for negative shocks but lower variance

for positive shocks than the (non-asymmetric) GARCH model. The AGARCH model has

higher conditional variance than the GARCH and the QGARCH model for all shocks but is

always below the EGARCH where increased volatility is very pronounced for large shocks

which is due to the exponential function.

Note that processes with a higher lag order are not adequately described by news impact

curves since only the isolated effect of a shock at time t − 1 on conditional volatility at

time t is shown. The aggregate effect caused by the higher lag order is not revealed. In

addition, this graphical concept does not show the dynamic properties of the models, i.e.

the persistence of shocks is not uncovered. The dynamic behavior could be visualized with

an impulse-response function. Such a function could show both the different impacts of

positive and negative shocks and its persistence on volatility. This graphical approach has
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the advantage that it is easily implementable and also feasible for the EGARCH process

for which the persistence can not be formulated analytically. We do not plot such impulse-

response functions since we also do not extent this concept for to the Multivariate GARCH

Models.

The previously discussed asymmetry of positive and negative shocks on conditional

volatility assumes that the volatility processes for up and down moves are the same. El

Babsiri and Zakoian (2001) introduce the concept of contemporaneous asymmetry which

allows different volatility processes for positive and negative return movements, i.e. pos-

itive and negative shocks can not only have a different impact on conditional volatilities

but can also exhibit different conditional distributions.

2.1.3 Estimation

There are three main possibilities to estimate the above described GARCH models. The

most common is by Maximum Likelihood (ML) or Quasi ML (QML). Other approaches use

a two-stage OLS procedure or the Generalized Methods of Moments (GMM). The latter

two methods have the advantage that they do not need any distributional assumption.

However, the two-stage OLS does only work well for ARCH models and both estimation

procedures are rarely used. Most contributions in the literature only mention the alterna-

tives but use Maximum Likelihood.

The estimation of the discussed ARCH and GARCH models with the Maximum Likeli-

hood method is based on a sample of T observations of the returns vector r and can be done

through numerical maximization of a likelihood function assuming a particular distribu-

tion of the returns vector (for example, Engle and Bollerslev (1986) assume a t-distribution

and Nelson (1991) uses a Generalized Error Distribution (GED)). For normally distributed

returns, we get the following log-likelihood function:
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logL(θ; r1, . . . , rT ) = −T/2 log(2π) − 1/2
∑

log(ht) − 1/2
∑ ε2t

ht
(2.18)

where θ is a parameter vector consisting of all parameters to be estimated in the mean

and the variance equation.

The two-stage OLS estimation consists of the following stages: First, the residual εt =

rt − x′tγ is estimated where rt is the returns vector as above, xt an exogenous variable

and γ the parameter to be estimated. In the second step the conditional volatility in an

ARCH model is estimated: ε̂2t = ω + αε̂2t−1. Estimation of a GARCH model would require

an additional step to estimate β.

GMM estimation of ARCH-type models was used by Glosten et al. (1993) and Rich et

al.(1991) among others. However, apart from the two mentioned examples, the application

of GMM is rare compared to the use of the QML method. A more detailed discussion of

GMM can be found in Pagan (1996). Pagan (1996) summarized that great care has to

be exercised when applying GMM estimators to ARCH type models (page 49). Recently,

Skoglund (2001) has further explored efficiency gains by the use of GMM estimation and

shown that GMM is advantageous compared to ML when excess-kurtosis, high peakedness

and skewness are characteristics of the data.

2.1.4 Conclusions

We have discussed the main univariate GARCH models in order to lay the ground to extend

these models to multivariate versions. In contrast to this chapter, we will focus on the

covariance and correlation of the time-series and not on its volatility. However, since the

covariances and correlations are similarly modeled and parameterized as volatilities, it is

essential to discuss these models in such extensive form as chosen here.

We have not discussed all existing GARCH models since the aim is the description
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of multivariate GARCH models, its existing specifications, shortcomings, innovations and

potential extensions of these models. For example, the discussion of the news-impact curve

is important to understand the multivariate counterpart - the news-impact surface.

The same is true for the discussion of the asymmetric effect of positive and negative

shocks, the persistence of shocks and the possible estimation procedures presented in the

previous section.
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2.2 Multivariate GARCH Models

The knowledge of the time-varying behavior of correlations and covariances between asset

returns is an essential part in asset pricing, portfolio selection and risk management.

Whereas unconditional correlations can easily be estimated, this is not true for time-

varying correlations. One approach to estimate conditional covariances and correlations

is within a Multivariate GARCH model. Other approaches as a moving average specifi-

cation for the covariances and the variances provide time-varying correlations but do not

parameterize the conditional correlations directly. We attribute the fact that correlations

are considerably less frequently analyzed than variances mainly to the difficulties in the

estimation process. Consequently, studies comparing the existing multivariate GARCH

models are rare in relation to the existing studies that compare univariate time-varying

volatility models (see Pagan and Schwert (1990) and Engle and Ng (1993) among others).

For multivariate GARCH models we are only aware of the work of Kroner and Ng (1998),

Engle (2000) and Engle and Sheppard (2001). While Kroner and Ng (1998) compare the

main existing models within an empirical analysis, Engle (2000) and Engle and Sheppard

(2001) use Monte-Carlo simulations to analyze different models with a focus on the Dy-

namic Conditional Correlation (DCC) estimator.

The first multivariate GARCH model is proposed by Bollerslev, Engle and Wooldridge

(1988). This model uses the VECH operator and is thus referred to as VECH-model. It

does not guarantee a positive-definite covariance matrix and the number of parameters is

relatively large. Baba, Engle, Kroner and Kraft (1991) proposed a multivariate GARCH

model, called BEKK (named after the authors), that guarantees the positive definiteness of

the covariance matrix.3 Interestingly, it seems that even restricted versions of the BEKK

3Restricting the BEKK model to be diagonal reduces the number of parameters that must be estimated.

The Factor GARCH model (Engle et al., 1990) reduces the number of parameters and can be transformed to a

BEKK model.

27



model have too many parameters since commonly only bivariate models are estimated (see

Bekaert and Wu, 2000, Engle, 2000, Karolyi et al., 1996, Kroner and Ng, 1998, Longin and

Solnik, 1995 and Ng, 2000). In addition, we are not aware of any multivariate GARCH

model that is estimated with a higher lag order than GARCH(1,1).

The Constant Correlation Model (CCM) of Bollerslev (1990) does also circumvent the

problem of possible non-positive definiteness of the covariance matrix but is very restric-

tive since it does not allow correlations to be time-varying.

Asymmetric extensions of the existing model are introduced by Kroner and Ng (1998) who

proposed the general asymmetric dynamic covariance (ADC) model that nests the VECH,

the Factor GARCH, the BEKK model and the Constant Correlation Model.4

Recently, Tse and Tsui (2000) proposed a new multivariate GARCH model that param-

eterizes the conditional correlation directly by using the empirical correlation and Engle

(2000) proposed a time-varying correlation model, called Dynamic Conditional Correla-

tions (DCC) that also parameterizes the conditional correlation directly but uses a two-

stage estimation strategy. The Bivariate Dynamic Correlations (BDC) estimator proposed

in this chapter can be assumed to be in the same class as the models by Tse and Tsui

(2000) and Engle (2000) but is different in various respects which we discuss later on.

The remainder of this chapter is as follows: Section 2.2.1 discusses existing multivariate

GARCH models and focusses on the full and restricted BEKK model and its asymmetric

extensions. We also discuss the Constant Correlation Model of Bollerslev (1990) and use

this model as a benchmark for volatility estimates. Section 2.2.2 introduces a new Bi-

variate Dynamic Correlation (BDC) Model that parameterizes the conditional correlation

directly and guarantees positive definite covariance matrices with fewer parameters than

the full BEKK model and more flexibility than the restricted BEKK model. The estima-

4Note that the nested ADC model requires further restrictions to guarantee a positive-definite covariance

matrix.
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tion of the described multivariate GARCH Models is explained in section 2.2.3 and Section

2.2.4 shows results of Monte-Carlo simulations for all discussed models. Section 2.2.5 es-

timates the BDC model and the diagonal BEKK model for daily and monthly data and

focusses on the persistence and the asymmetry of time-varying correlations. Section 2.2.6

concludes.

2.2.1 Existing Multivariate GARCH Models

Extending the univariate GARCH model to a n-dimensional multivariate model requires

to estimate n different mean and corresponding variance equations and
n2 − n

2
covariance

equations. We use a simple specification for the mean equation since our interest is the

time-varying covariance matrix. Thus, returns are modeled as follows:

rt = µ + εt εt |Ωt−1 ∼ N(0,Ht) (2.19)

where rt is a vector of appropriately defined returns and µ is a (N×1) vector of parameters

that estimates the mean of the return series. The residual vector is εt with the correspond-

ing conditional covariance matrix H t given the available information set Ωt−1.

We focus on the BEKK model since it is the only time-varying covariance model that

guarantees a positive-definite covariance matrix. We also discuss the Constant Correlation

Model (CCM) and a Zero Correlation Model (ZCM) which are used as benchmark models.

2.2.1.1 The VECH Model

The equivalent to an univariate GARCH(1,1) model is given as follows:5

vech(Ht) = Ω + Avech(εt−1ε
′
t−1) + Bvech(Ht−1) (2.20)

where Ht is the time-varying (N ×N) covariance matrix, Ω denotes an (N(N + 1)/2 × 1)

vector and A and B are (N(N + 1)/2 ×N(N + 1)/2) matrices. The VECH operator stacks
5We subsequently assume a simple mean equation as given by equation (2.19) and do exclusively focus on

the covariance matrix.
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the lower portion of an (N × N) symmetric matrix as an (N(N + 1)/2 × 1) vector which

can be done since the covariance matrix is symmetric by definition. In the bivariate VECH

model the matrices are all (3 × 3) matrices thus leading to 27 parameters to be estimated.




h11,t

h12,t

h22,t




= Ω+




a11 a12 a13

a21 a22 a23

a31 a32 a33







ε21,t−1

εt−1ε2,t−1

ε22,t−1




+




b11 b12 b13

b21 b22 b23

b31 b32 b33







h11,t−1

h12,t−1

h22,t−1




(2.21)

The diagonal VECH model reduces the number of parameters by using diagonal matri-

ces A and B. However, even for this special case a positive definite covariance matrix is

not guaranteed.6

Hence, we do not present this model in its asymmetric extension and dispense with a

discussion.

2.2.1.2 The BEKK Model

The BEKK model was introduced by Baba, Engle, Kraft and Kroner (1991) and can be seen

as an improvement to the VECH model (introduced by Bollerslev, Engle and Wooldridge,

1988). First, the number of parameters is reduced and second, the positive-definiteness of

the covariance matrix is guaranteed.

We initially present the full (unrestricted) BEKK model and its asymmetric extension

and then restrict this model to the diagonal BEKK.7

The covariance matrix of the unrestricted BEKK model is
6A positive definite covariance matrix would imply that the determinant of

H t =


 h11,t h12,t

h12,t h22,t




is positive. That means that h11,th22,t > h2
12,t which is not guaranteed since the parameters aij and bij are

freely estimated for all i, j = 1, 2.
7The multivariate Factor GARCH model will not be presented here since it can be derived from a full BEKK

model (see Kroner and Ng, 1998).
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Ht = A′A + B′εt−1ε
′
t−1B + C ′Ht−1C (2.22)

A, B and C are matrices of parameters with appropriate dimensions. It is obvious from

the equation above that the covariance matrix is guaranteed to be positive definite as long

as A′A is positive definite. Furthermore, the parameters are squared or cross-products of

themselves leading to variance and covariance equations without an univariate GARCH

counterpart (see also equation (2.25)). Note that this is not true for the VECH model which

is a simple extension of univariate GARCH models to a multivariate form.

The asymmetric extension of this model introduced by Kroner and Ng (1998) bases on

the univariate asymmetric GARCH model proposed by Glosten et al. (1993). Here, the

covariance matrix is given as follows:

Ht = A′A + B′εt−1ε
′
t−1B + C ′Ht−1C + D′ηt−1η

′
t−1D (2.23)

where ηi,t = min{εi,t, 0} and ηt = (η1,t, η2,t, ...)′. Thus, this extension can capture asym-

metric effects of shocks by additionally including negative shocks and still guarantees the

positive-definiteness of the covariance matrix.

To clarify the difficulties in interpreting the parameters of the covariance matrix we

consider the general BEKK model in bivariate form. h11,t and h22,t denote the conditional

variances of the underlying return series and h12,t is their covariance:


 h11,t h12,t

h21,t h22,t


 = A′A +


 b11 b21

b12 b22





 ε21,t−1 εt−1ε2,t−1

ε1,t−1ε2,t−1 ε22,t−1





 b11 b12

b21 b22


+

+


 c11 c21

c12 c22





 h11,t−1 h12t−1

h12,t−1 h22,t−1





 c11 c12

c21 c22




(2.24)
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Without using matrices (see equation above), we get the following form:

h11,t = a2
11 + b211ε

2
1,t−1 + 2b11b21ε1,t−1ε2,t−1 + b221ε

2
2,t−1 + c211h11,t−1+

+ 2c11c21h12,t−1 + c221h22,t−1

h12,t = a12a11 + b11b12ε
2
1,t−1 + (b12b21 + b11b22)ε1,t−1ε2,t−1 + b21b22ε

2
2,t−1+

+ c11c12h11,t−1 + (c12c21 + c11c22)h12,t−1 + c21c22h22,t−1 = h21,t

h22,t = a2
12 + a2

22 + b212ε
2
2,t−1 + 2b12b22ε1,t−1ε2,t−1 + b222ε

2
2,t−1 + c212h11,t−1+

+ 2c12c22h12,t−1 + c222h22,t−1

(2.25)

The latter formulation clarifies that even for the bivariate model the interpretation of

the parameters may be misleading since there is no equation that does exclusively possess

its own parameters, i.e. parameters that exclusively govern an equation. Hence, it is pos-

sible that a parameter is biased by the fact that it influences two equations simultaneously

or by the sole number of regressors (see also Tse, 2000), e.g. the regressors ε22,t−1 and the

regressor h22,t−1 in the first variance equation (h11,t) could both be viewed as a volatility

spillover from the second return. In addition, the statistical significance of the parameters

is also unclear due to the combinations of different parameters serving as new coefficients

for particular regressors.

These critics do not all apply to the diagonal BEKK model where both parameter ma-

trices are diagonal. Thus, the off-diagonal elements are all equal to zero (apart from the

constant term A′A). The number of parameters to be estimated is significantly lower while

maintaining the main advantage of this specification, the positive definiteness of the con-

ditional covariance matrix. Instead of equation (2.25) we have
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h11,t = a2
11 + b211ε

2
1,t−1 + c211h11,t−1

h22,t = a2
11 + a2

22 + b222ε
2
2,t−1 + c222h22,t−1

h12,t = h21,t = a11a22 + b11b22ε1,t−1ε2,t−1 + c11c22h12,t−1

h21,t = h12,t

(2.26)

This model exhibits essentially the same problems as the Full BEKK model since there

is no parameter in any equation that exclusively governs a particular covariance equation.

Hence, it is not clear whether the parameters for h12 are just the result of the parameter

estimates for h11 and h22 or if the covariance equation alters the parameter estimates of

the variance equations. In addition, the model is not very flexible and can consequently

be misspecified. For example, assuming that the persistence of shocks to volatility is rela-

tively high for both return series, say bii + cii = 0.05 + 0.90 = 0.95 for i = 1, 2, then the per-

sistence of the covariance must be almost equally high, biibjj+ciicjj = 0.05 ·0.05+0.9 ·0.9 =

0.0025 + 0.81 = 0.8125 for i = 1 and j = 2. Supposed that covariances are less persistent

or equally persistent as volatilities it is clear that either volatilities or the covariance is

misspecified.

2.2.1.3 Constant Correlation Model and Zero Correlation Model

The Constant Correlation Model (CCM) of Bollerslev (1990) models time-varying covari-

ances more parsimoniously than the models discussed above.
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The bivariate model is given by

h11,t = a11 + b11ε
2
1,t−1 + c11h11,t−1

h22,t = a22 + b22ε
2
2,t−1 + c22h22,t−1

h12,t = ρ
√
h11,th22,t

h21,t = h12,t

(2.27)

where ρ is a parameter that can be estimated almost freely (ρ must be in the range [−1, 1])

and is equal to the empirical correlation coefficient (see Bollerslev, 1990). In contrast to

the BEKK model there is a parameter in the CCM (ρ) that exclusively governs the covari-

ance equation. Note that the CCM exhibits time-varying covariances but only constant

correlations.8

Setting ρ to zero implies a model that we call Zero Correlation Model (ZCM).

We will both use the CCM and the ZCM to analyze in which respect covariances affect

variance estimates.

2.2.1.4 Asymmetric Extensions

While it is straightforward in the diagonal BEKK Model to analyze whether the covariance

exhibits the same degree of persistence as the variances, the relevant parameter estimates

measuring the persistence of shocks are potentially influenced by each other leading to

biased parameter estimates. This is also true for the full BEKK Model and possibly more

severe due to the larger number of parameters.

The same problem arises for the asymmetric extensions of the models. To illustrate

this, we analyze the asymmetric extensions proposed by Kroner and Ng (1998) and focus

on the diagonal BEKK model.
8To guarantee positive variances we use the variance equations of the diagonal BEKK model for the vari-

ance equations of the CCM as suggested by Kroner and Ng (1998).
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The following asymmetric covariance equations for the bivariate case within the full

BEKK model are

h11,t = ... + d2
11η

2
1,t−1 + 2d11d21η1,t−1η2,t−1 + d2

21η
2
2,t−1

h22,t = ... + d2
12η

2
1,t−1 + 2d12d22η1,t−1η2,t−1 + d2

22η
2
2,t−1

h12,t = ... + d11d12η
2
1,t−1 + (d12d21 + d11d22)η1,t−1η2,t−1 + d21d22η

2
2,t−1

(2.28)

where ηi,t = min{εi,t, 0} and ηt = (η1,t, η2,t, ...)′. Equation (2.28) shows that the number of

parameters and its combinations make it difficult to interpret any (clear) asymmetry of

the impact of shocks on the conditional (co-)variance.

For the diagonal BEKK model (see equation (2.26)) the asymmetric extension is

h11,t = ... + d2
11η

2
1,t−1

h22,t = ... + d2
22η

2
2,t−1

h12,t = ... + d11d22η1,t−1η2,t−1

(2.29)

where ηi,t = min{εi,t, 0} and ηt = (η1,t, η2,t, ...)′.

Here, the covariance reacts to negative shocks ηi,t as determined by the asymmetry

implied by the variance equations or vice versa. For example, assuming that variance

h11 does not react asymmetrically to positive and negative shocks (d11 = 0) and variance

h22 does (d22 = 0.2), the asymmetric effect for the covariance would be zero (d11d22 =

0). Consequently, if there is an asymmetric effect of the covariance, either the variance

equation or the covariance equation will be misspecified. Another example is the case

where the asymmetry of the covariance is equal to 0.2. Then, the parameters d11 or d22

would have to be very large to capture this covariance asymmetry (e.g. d11 = d22 =
√

0.2).9

The asymmetric extension of the CCM (see equation 2.27) introduced by Kroner and

Ng (1998) has the variance equations of the diagonal BEKK model and the covariance
9Ang and Chen (2002) report misspecifications of the asymmetric effect in an asymmetric GARCH-M model

without being specific in pointing to this problem.
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equation as given in the original model. Again, we could use this model to analyze how

variance estimates change when correlations are modeled time-varying. This question is

further examined in the simulation study in section 2.2.4.

The next section introduces a new bivariate model that reduces the number of param-

eters compared to the full BEKK model and extends the flexibility compared to the re-

stricted BEKK model.

2.2.2 Bivariate Dynamic Correlations (BDC)

We propose a new bivariate model that is more flexible than the discussed models and

parameterizes the conditional correlations directly.10 We write the covariance matrix H t

in the following form:

Ht = DtRtDt (2.30)

where Dt is a diagonal matrix with the roots of the variances on the main diagonal and Rt

is a correlation matrix. In a bivariate model the correlation matrix Rt is

Rt =


 1 ρt

ρt 1


 (2.31)

with ρt denoting the correlation between two series. H t is positive definite if Rt is positive

definite. This is guaranteed as long as |ρt| < 1. Thus we restrict |ρt| to be smaller than one

by using the following transformation:

ρ�t =
ρt√

1 + ρ2
t

(2.32)

where ρ�t is the correlation restricted to lie in the interval (−1; 1). This restriction allows

to use own parameters for the correlation (covariance) equation and to include additional
10In most Multivariate GARCH models conditional correlations are derived from the ratio of the covariance

and the product of the roots of the conditional variances (see equations (2.24) and (2.26)).
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regressors without risking semi-definite or indefinite covariance matrices.

Hence, the Bivariate Dynamic Correlations model (BDC) is specified by the following

equations:11

h11,t = a2
11 + b211ε

2
1,t−1 + c211h11,t−1

h22,t = a2
22 + b222ε

2
2,t−1 + c222h22,t−1

ρt = a12 + b12ε1,t−1ε2,t−1 + c12ρt−1

ρ�t =
ρt√

1 + (ρt)2

h12,t = ρ�t ·
√
h11,th22,t

(2.33)

The BDC Model is a dynamic correlation model since ρ�t and thus h12,t are time-varying.

The covariance does possess its own parameters and the covariance matrix is always guar-

anteed to be positive-definite. The model allows to assess the degree of persistence and to

compare this persistence with the volatility persistence.

Apart from using the cross product ε1,t−1ε2,t−1 to model the correlation equation (see

equation (2.33)) we additionally use the cross product of the standardized residuals z1,t−1

and z2,t−1 to analyze the different behavior of the correlation process.12 Tse (2000) points

out that there is no a priori reason to expect the standardized residuals to be a better

specification. Contrary to this statement we expect the results to be different due to the

fact that zt is corrected for volatility movements. In addition, the use of zt is a more natural

specification for the conditional correlations (see Engle, 2000 and Tse, 2000). We refer to

the model using the raw residuals εt as BDCε and to the model using the standardized

residuals zt as BDCz. The correlation equation for the BDCz model is given by:

ρt = a12 + b12z1,t−1z2,t−1 + c12ρt−1 (2.34)

11The conditional variances are specified as in a BEKK model. However, the BDC model can be estimated

with any other specification of the conditional variances, e.g. a EGARCH model.
12The standardized residuals are given by zt =

εt
σt

.
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The next subsection introduces the asymmetric extension of the BDC model.

2.2.2.1 Asymmetric BDC Model

An extension of the presented BDC models can also capture asymmetric effects of the

time-varying correlation. Thus, h11 and h22 and ρt are specified as follows:

h11,t = a2
11 + b211ε

2
1,t−1 + c211h11,t−1 + d2

11η
2
1,t−1

h22,t = a2
22 + b222ε

2
2,t−1 + c222h22,t−1 + d2

22η
2
2,t−1

ρt = a12 + b12ε1,t−1ε2,t−1 + c12ρt−1 + d12η1,t−1η2,t−1

(2.35)

Again, ηi,t = min{εi,t, 0} with ηt containing only the negative shocks of the returns at t.

One important feature of the BDC model is that it does not require similar variance and

correlation equations as this is necessary for all other multivariate GARCH models. For

example, the BDC model is well defined (does not risk an indefinite covariance matrix)

even if the variance equations are specified without any asymmetric regressors and the

asymmetry is only modeled in the correlation equation. This feature can also be used

to include additional regressors (e.g. thresholds or spillover effects) in the correlation

equation without risking an indefinite covariance matrix, e.g. the conditional correlation

equation could also be specified as follows independently of the variance equations:

ρt = a12 + b12ε1,t−1ε2,t−1 + c12ρt−1 + d12η1,t−1η2,t−1 + d�12X
(2.36)

where d�12 is a vector capturing the effect of the matrix X of exogenous variables.

Note that the BDC model in its non-asymmetric and asymmetric version is different to

the Dynamic Conditional Correlation (DCC) Estimator of Engle (2000) in various respects.
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First, we estimate all variance and covariance equations simultaneously. Second, the BDC

model can differentiate between the use of the raw residuals ε and the standardized resid-

uals z and third, the BDC model is flexibly extendable, e.g. asymmetric extensions as

presented above or a threshold as suggested by Longin and Solnik (1995) can be included.

In order to clarify the differences between the BDC model and the DCC model, the key

elements of the DCC model are presented in the Appendix.

2.2.3 Estimation

The estimation of the models based on a sample of T observations of the returns vector

rt is done through numerical maximization of a likelihood function assuming normally

distributed returns:

logL(θ; r1, . . . , rT ) = −T/2 log(2π) − 1/2 log(|Ht|) − 1/2ε′tH
−1
t εt . (2.37)

We use the BHHH algorithm of Berndt, Hall, Hall and Hausman (1974).

By using Ht = DtRtDt we can write the above likelihood function also as

logL(.) = −1/2
∑
t

(
n log(2π) + 2 log |Dt| + log |Rt| + z′

tR
−1
t zt

)
(2.38)

This separation shows that a two-step estimation procedure is feasible and that variances

and correlations can be estimated separately. The two-stage approach has mainly the ad-

vantage that the dimensionality of the maximization problem is reduced which accelerates

the maximization process (see also Appendix). We will both use a one-step and a two-step

estimation procedure to estimate the BDC model.

The standard errors and associated t-values reported in this article are calculated us-

ing the quasi-maximum likelihood methods of Bollerslev and Wooldridge (1992), i.e. the

standard errors are robust to the density function underlying the residuals.
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2.2.4 Simulations

In this section, we compare the covariance estimates of the diagonal BEKK, the BDCε

model, the BDCz model, the CCM and Zero Correlation Model (ZCM). We use the CCM and

the ZCM to compare the variance estimates and to analyze the impact of the covariance

specification on the variance estimates (Tse (2000) suggested such an analysis.13 The

simulations and tests are partially similar to the ones undertaken by Engle (2000).14 We

simulate different bivariate GARCH models 200 times with 1000 observations. The data-

generating process consists of T = 1000 Gaussian random numbers εi for i = 1, 2 with

mean zero and variance one transformed to a bivariate GARCH model with a time-varying

covariance matrix H t with a given (time-varying) correlation (see below) and the following

variance equations:

h11,t = 0.01 + 0.04ε21,t−1 + 0.95h11,t−1

h22,t = 0.01 + 0.20ε22,t−1 + 0.50h22,t−1

(2.39)

The variance given by h11 is highly persistent and the variance h22 is less persistent.

Given these variances we use different correlation processes in the simulations:

(i) constant correlations: ρt = 0.5 and (ii) highly persistent time-varying correlations (ρt =

α + β sin(t/(50 ∗ f)) with a fast sine function given by α = 0, β = 0.5, f = 1 and a slow sine

given by α = 0, β = 0.9, f = 5.

For the asymmetric extensions of the models we use the following variance equations:

h11,t = 0.01 + 0.04ε21,t−1 + 0.85h11,t−1 + 0.1η2
1,t−1

h22,t = 0.01 + 0.10ε22,t−1 + 0.50h22,t−1 + 0.2η2
2,t−1

(2.40)

13In other words, are the estimates of the parameters in the conditional-variance estimates robust with

respect to the constant correlation assumption? (page 109)
14Engle compares the DCC model with the scalar BEKK, the diagonal BEKK, a moving average process, an

exponential smoother and a principle components GARCH.
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The correlation processes are the same as for the non-asymmetric models.

We compare the estimates of h11,t, h22,t and ρt with the true variance and covariance

series by (i) the mean absolute deviation (MAD) and (ii) the means of the correlations of

the true covariance series (hij,t for i, j = 1, 2) with the estimated covariance series. The

means of the correlations are also computed since they provide a measure of the fit of the

estimated model compared to the simulated one.

2.2.4.1 Simulation Results

Table 2.1 presents the results for the simulated models (diagonal BEKK, BDCε, BDCz,

CCM and ZCM) in a restricted (no asymmetric extension) specification. The table contains

the results for the mean absolute deviation (MAD) and the mean of the correlation of the

estimated process (variances and correlations) with the true simulated series. The val-

ues denoted with a star indicate the minimum (MAD) or maximum (mean of correlation)

value among the estimated models and among the different correlation processes (constant

correlations, fast sine function and sine function).

Constant correlations are best estimated by the CCM and time-varying correlations are

best estimated by the BDCz model and the diagonal BEKK model. The diagonal BEKK

model performs best for the fast sine function. However, the difference to the BDCz model

is small. The good performance of the diagonal BEKK model can be explained with the

similar characteristics of the correlation and the variance processes. In this case the di-

agonal BEKK model can be assumed to be least biased.15 Moreover, it is important to

emphasize that the BDC model performs clearly better for constant correlations compared

to the diagonal BEKK model. This can be attributed to the greater flexibility of the BDC

model.

15See discussion of the diagonal BEKK model above. In this case, the high persistence of the correlation

process mainly contributes to this result.
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Table 2.1: Simulation Results - Multivariate GARCH Models
MAD

D.BEKK BDCε BDCz CCM ZCM

correlations
constant 0.2011 0.0303 0.0295 0.0169* 0.4995
fast sine 0.1619* 0.2172 0.1859 0.5662 0.5670
sine 0.1734 0.1244 0.1202* 0.2199 0.2935

variance 1
constant 0.1045 0.0617 0.0562* 0.0585 0.0636
fast sine 0.1668 0.0744 0.0997 0.0660* 0.0667
sine 0.0631 0.0601 0.0586* 0.0600 0.0587

variance 2
constant 0.0041 0.0024 0.0023 0.0022* 0.0024
fast sine 0.0134 0.0041 0.0045 0.0026 0.0023*
sine 0.0038 0.0026 0.0029 0.0024 0.0023*

* denotes the best model (minimum value in row)

Mean of Correlations

D.BEKK BDCε BDCz CCM ZCM

correlations
constant 0.0761 0.4667 0.4751 1.0000*
fast sine 0.9456* 0.9056 0.9267 0.0008
sine 0.6188 0.7790 0.7795* 0.0252

variance 1
constant 0.9832 0.9881 0.9887* 0.9868 0.9795
fast sine 0.9620 0.9840* 0.9661 0.9796 0.9801
sine 0.9937* 0.9851 0.9876 0.9856 0.9801

variance 2
constant 0.9543 0.9892 0.9917 0.9925 0.9926*
fast sine 0.8156 0.9809 0.9878 0.9887 0.9920*
sine 0.9467 0.9891 0.9904 0.9924* 0.9890

T = 1000
200 iterations
* denotes the best model (maximum value in row)
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Table 2.2: Simulations Results - BDCz Model (two-step procedure)
Asymmetric BDCz Model
Mean of Correlation
T = 1000 T = 2000

constant + asymmetry 0.8397 0.9237
fast sine + asymmetry 0.9044 0.9054
slow sine + asymmetry 0.7470 0.9289

200 iterations, variances are assumed to be perfectly estimated
Data-generating process for asymmetric correlation is: ρt = ... + 0.1η1,t−1η2,t−1

(ρt is restricted as in the BDCz model to guarantee positive-definite covariance matrices.)

The results for the variances show that the CCM, the ZCM and the BDCz model perform

best. The higher correlation of the estimates of the variances with the true variances for

the Zero Correlation Model are an indication that the correlation process is not relevant

for the variance estimates.16 Estimating time-varying correlations (instead of assuming a

zero or constant correlation) does even seem to influence variance estimates negatively.

For the asymmetric models, results do not change considerably. Consequently, we do

not report these results. However, we further analyze the behavior of the asymmetric

BDCz model when a two-step procedure is used (see Engle, 2000). This model is estimated

for the previous correlation processes with an asymmetric effect. Additionally, the simula-

tions are performed for T = 1000 and T = 2000. Results in table 2.2 show that the two-step

estimation leads to similar results as the one-step estimation strategy according to the

mean of the correlation coefficient (of the true correlation process and its estimate). The

constant correlation process is an exception since the values are considerably higher com-

pared to table 2.1. This can be explained with the fact that the addition of an asymmetric

term transforms the constant correlation process into a time-varying correlation process.

Furthermore, the performance increased for all correlation processes with the greater

sample size of T = 2000.

16Tse (2000) proposed an analysis whether or to which extent correlation estimates improve or change vari-

ance estimates.
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We conclude from our simulation results that correlation estimates are closest to the

true values in the BDC model for time-varying correlations and constant correlations

among the time-varying correlation models. However, constant correlations are best es-

timated by a CCM. In addition, the BDCz model performs better than the BDCε model

which we attribute to the variance correction that potentially leads to less noise in the

correlation process.

2.2.5 Empirical Results

We estimate the asymmetric versions of the BDCz and the diagonal BEKK model and use

daily (close-to-close) continuously compounded returns of the following MSCI stock indices:

Japan, UK, Germany and the US. The indices span a time-period of approximately 5 years

from April 30th, 1997 until December 30th, 2001 with T = 1176 observations for each stock

index. Non-trading days in a market are included to synchronize the data.17 This implies

that conditional correlations decrease at non-trading days.

We are aware of the fact that estimates for close-to-close daily data can be biased if

trading hours differ (e.g. Japan and the US). However, this is especially a problem when

modeling informational spillovers (see chapter 3).18

Due to these potential problems we also use monthly data spanning from December

1969 until April 2002 with T = 389 observations for each index. We additionally use this

type of data to analyze any differences in the characteristics of time-varying correlations

between daily and monthly data.

Tables 2.3 and 2.4 contain the descriptive statistics for the daily and monthly returns

and tables 2.5 and 2.6 report the unconditional empirical correlation coefficient for these

17A non-trading day means that no information is processed in the market. Consequently, returns are zero.
18Existing methods to synchronize the data are only recently developed (Engle et al. (1998), Forbes and

Rigobon (2002), Martens and Poon (2001).
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Table 2.3: Descriptive Statistics (daily data)

Mean Variance Skewness Kurtosis

Japan -0.026 2.729 2.137 48.669
UK 0.002 1.351 -0.184 7.327
Germany 0.000 2.441 -0.860 27.959
US 0.023 1.603 -0.517 14.943

Number of observations: 1175
rt = 100 · log(pt) − log(pt−1)

Table 2.4: Descriptive Statistics (monthly data)

Mean Variance Skewness Kurtosis

Japan 0.772 42.308 0.439 6131.782
UK 0.573 42.634 129.330 15664.007
Germany 0.606 35.513 -85.396 5167.311
US 0.591 20.136 -50.565 2235.682

Number of observations: 389
rt = 100 · log(pt) − log(pt−1)

return series, respectively.

Interestingly, whereas the unconditional correlations are higher for monthly data than

for daily data, the correlation of Germany and the UK is an exception. In this case monthly

returns exhibit a lower correlation than daily data. This counterintuitive result could be

a result of the use of close-to-close returns because the trading hours of both markets are

not synchronous.

Table 2.5: Unconditional Correlation (daily data)

Japan UK Germany US

Japan 1.000 0.189 0.182 0.069
UK 1.000 0.655 0.366
Germany 1.000 0.377
US 1.000

Number of observations: 1175
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Table 2.6: Unconditional Correlation (monthly data)

Japan UK Germany US

Japan 1.000 0.376 0.373 0.307
UK 1.000 0.454 0.525
Germany 1.000 0.427
US 1.000

Number of observations: 389

Figures 2.3 and 2.4 additionally show the evolution of the prices of these series.

Figure 2.3: Daily Returns (Japan, UK, Germany, US)

We first focus on the volatility estimates of the BDCz model and the diagonal BEKK

model and then discuss the results for the correlation estimates.

Table 2.7 reports the estimates for the volatilities of the index pairs under investigation.

All volatilities are highly persistent (measured by the sum bii + cii) and react asymmet-

rically to positive and negative shocks (indicated by dii). Results for the diagonal BEKK

model (table 2.11) confirm this statement. However, estimates differ considerably from

the results of the BDCz model since volatilities and covariances are not freely estimated
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Figure 2.4: Monthly Returns (Japan, UK, Germany, US)

as explained above. We will further discuss this issue when interpreting the correlation

estimates. An interesting result is also that volatilities are entirely driven by negative

shocks for the UK and US stock indices (the parameter estimates of bii are zero).19

Tables 2.8 and 2.9 present the results for the correlation estimates for the BDCz model

in its asymmetric specification for daily and monthly data, respectively. Comparing the

values b12 + c12 among the index pairs for daily data shows that the persistence of shocks

varies considerably among the time-varying correlations estimated. The correlations be-

tween the UK and Germany and the UK and the US have the highest persistence while

the persistence of Germany and the US is very low and the persistence between Japan and

Germany is even negative. For monthly data, the persistence generally decreases for all

country pairs except the correlation of Germany and the UK.20 Any asymmetric reaction

of the correlation process to positive and negative shocks is discussed in the next section.

Table 2.11 presents results for the asymmetric diagonal BEKK model.

19Simulations (that are not reported here) show that such a finding is not due to any misspecification or

identification problem.
20This can be explained with the different pattern of unconditional correlations for these markets (see tables

2.5 and 2.6).
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Table 2.7: Daily Data: BDCz MODEL, Asymmetric Volatility

Parameters JAP/ UK JAP/ GER JAP/ US UK/ GER UK/ US GER/ US

a11 0.482 *** 0.482 *** 0.482 *** 0.339 *** 0.339 *** 0.429 ***
a22 0.339 *** 0.429 *** 0.385 *** 0.429 *** 0.385 *** 0.385 ***
b11 0.246 *** 0.246 *** 0.246 *** 0.000 0.000 0.060
b22 0.000 0.060 0.000 0.060 0.000 0.000
c11 0.905 *** 0.905 *** 0.905 *** 0.917 *** 0.917 *** 0.914 ***
c22 0.917 *** 0.914 *** 0.888 *** 0.914 *** 0.888 *** 0.888 ***

d11 0.283 *** 0.283 *** 0.283 *** 0.379 *** 0.379 *** 0.402 ***
d22 0.379 *** 0.402 *** 0.494 *** 0.402 *** 0.494 *** 0.494 ***

***, **, * denotes significance at the 1, 5 and 10 percent level, respectively

Variance equation:
hii,t = a2

ii + b2iiz
2
i,t−1 + c2iihii,t−1 + d2

iiη
2
i,t−1

Table 2.8: Daily Data: BDCz MODEL, Asymmetric Correlations

Parameters JAP/ UK JAP/ GER JAP/ US UK/ GER UK/ US GER/ US

a12 0.095*** 0.265*** 0.050** 0.049** 0.128 0.350***
b12 0.037 -0.036 -0.065*** 0.020 0.043 0.037
c12 0.538*** -0.355 0.310 0.903*** 0.740*** 0.158
d12 -0.013 0.112* 0.024 0.042 -0.115 -0.117***

mean (ρt) 0.210 0.203 0.072 0.608 0.393 0.366

***, **, * denotes significance at the 1, 5 and 10 percent level, respectively

Correlation equation:
ρt = a12 + b12z1,t−1z2,t−1 + c12ρt−1 + d12η1,t−1η2,t−1

Table 2.9: Monthly Data: BDCz MODEL, Asymmetric Correlations

Parameters JAP/ UK JAP/ GER JAP/ US UK/ GER UK/ US GER/ US

a12 0.231*** 0.354*** 0.367*** 0.636*** 0.180 0.456***
b12 0.010 -0.021 0.021 0.220*** -0.056 0.134**
c12 0.415** 0.050 -0.091 -0.231 0.712*** -0.045
d12 0.116* 0.126* 0.004 -0.080 0.104** -0.043

mean (ρt) 0.408 0.368 0.323 0.481 0.540 0.420

***, **, * denotes significance at the 1, 5 and 10 percent level, respectively

Correlation equation:
ρt = a12 + b12z1,t−1z2,t−1 + c12ρt−1 + d12η1,t−1η2,t−1
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Table 2.10: Daily Data: Parameter Comparison

Parameters JAP/ UK JAP/ GER JAP/ US UK/ GER UK/ US GER/ US

d12 -0.013 0.112* 0.024 0.042 -0.115 -0.117***

d�
12 -0.044 0.030 0.035 -0.060* -0.194*** -0.170***

***, **, * denotes significance at the 1, 5 and 10 percent level, respectively

Correlation equation:
ρt = a12 + b12z1,t−1z2,t−1 + c12ρt−1 + d12η1,t−1η2,t−1

d�
12 denotes the estimate for a model based on non-asymmetric variance estimates (d11 = d22 = 0)

Table 2.11: Daily Data: Asymmetric Diagonal BEKK MODEL

Parameters JAP/ UK JAP/ GER JAP/ US UK/ GER UK/ US GER/ US

a11 0.408 *** 0.457 *** 0.427 *** 0.321 *** 0.401*** 0.381 ***
a22 0.092 *** 0.106 *** 0.041 0.228 *** 0.304*** 0.160 ***
b11 0.245 *** 0.266 *** 0.297 *** 0.000 -0.287*** 0.172 ***
b22 -0.046 -0.050 -0.067 *** -0.097 -0.133* -0.063 *
c11 0.923 *** 0.912 *** 0.918 *** 0.930 *** 0.888*** 0.924 ***
c22 0.883 *** 0.902 *** 0.869 *** 0.929 *** 0.843*** 0.877 ***

d11 0.248 *** 0.217 * 0.105 0.332 *** -0.098 0.330 ***
d22 0.418 *** 0.425 *** 0.511 *** 0.334 *** 0.468*** 0.501 ***

mean (ρt) 0.213 0.206 0.075 0.606 0.383 0.354

***, **, * denotes significance at the 1, 5 and 10 percent level, respectively

Covariance equations:
hii,t = a2

ii + b2iiε
2
i,t−1 + c2iihii,t−1 + d2

iiηi,t−1

hij,t = hji,t = aiiajj + biibjjεi,t−1εj,t−1 + ciicjjh12,t−1 + diidjjηi,t−1ηj,t−1
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Comparing the parameter estimates for the variance equations (aii, bii, cii, dii) among

the different index pairs shows that parameters vary substantially for the same return

series. This is evidence that the variance estimates are influenced by the second return

series and by the estimated covariance. Thus, parameter estimates are biased. However,

it seems that the bias is mainly in the variance parameters.

Since the BEKK model does not estimate the correlation process directly but by the

ratio of the covariance and the squared root of the product of the variances, we can only

analyze the persistence and asymmetry of the variances and the covariance which hinders

us from directly comparing estimates between the BDCz model and the diagonal BEKK

model.

Figure 2.5 shows the correlation estimates for the BDCz model.

Note that the finding of constant and non-persistent conditional correlations observed

in two cases for daily returns and in five cases for monthly returns estimated with the

BDC Model is unique since it could not be revealed by the single use of any standard

multivariate GARCH model.
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Figure 2.5: Asymmetric Time-varying Correlations (BDCz), (JAP, UK), (JAP, GER), (JAP,

US), (UK, GER), (UK, US), (GER, US)
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2.2.5.1 The Asymmetry of Correlations

Asymmetric effects of volatilities to positive and negative shocks are well documented in

the literature and explained with the leverage effect (Black, 1976 and Christie, 1982) and

the volatility feedback effect (Campbell and Hentschel, 1992). However, little is known

about the temporal behavior of stock return correlations (see Andersen et al., 2000 and

Andersen et al., 2001) and even less of the potential asymmetric effects of positive and

negative shocks.

If correlations are viewed as a measure of comovement, they should react in the same

way (increase, stay constant or decrease) for equal values of jointly positive and jointly

negative shocks. This implies that there is no asymmetric effect. Furthermore, there is no

generally accepted theory based on an economic model that would predict such effects (e.g.

see Karolyi and Stulz, 2001 and Connolly and Wang, 2001).

In contrast, the estimation results of the asymmetric BDCz model show that there is

an asymmetric effect of correlations and that this asymmetry is not similar to the one

observed for volatilities. This result differs from the findings in the literature where simi-

lar asymmetric effects of the conditional covariance are reported (see Kroner and Ng, 1998

among others). The difference can be explained with the fact that the BDC model analyzes

the correlation directly whereas commonly the covariance is examined.

To interpret the asymmetric effect we focus on the parameter estimates for b12 and d12

in table 2.8 (daily data). Results reveal that correlations increase with jointly positive

shocks for all country pairs except (Japan, Germany) and (Japan, US) where correlations

decrease with jointly positive shocks. Whether correlations react differently to negative

shocks can be assessed by the estimate for d12. Correlations increase more with negative

shocks than with positive shocks for (Japan, Germany), (Japan, US) and (UK, Germany)

and decrease for the remaining country pairs.
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Figure 2.6: News-Impact Surfaces and frontal views, BDCz model (JAP/ UK) (top) and

(JAP/ GER) (bottom)
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Table 2.10 shows an important finding. It tabulates the estimated parameter values

of d12 for two different models. The first is the BDCz model as introduced above and the

second is the BDCz model with the variances restricted to exhibit no asymmetric effects,

i.e. d11 = d22 = 0. The results show that the parameter d�12 is considerably different

from the results found in the non-restricted model which is a hint that the specification

of the variances can affect correlation estimates. This is not counter to the conclusions

drawn from the simulation study since we have not analyzed how different volatility spec-

ifications affect correlation estimates but only how different correlation specifications can

affect volatility estimates.

Furthermore, it is not surprising that the estimates of the parameters b12 and d12 for

monthly data as reported in table 2.9 differ considerably from the daily data results. How-

ever, there is also asymmetry in correlations and even negative effects (d12 < 0) for two

country pairs.

To clarify these findings we plot news-impact surfaces for all estimated daily correla-

tions given by figures 2.6 to 2.8. These functions show how correlations react to different

combinations of shocks of two time-series. We set the range of positive and negative shocks

to [−2.5,+2.5] and additionally plot a frontal view of the news-impact surfaces to ease the

analysis and interpretation of the behavior of the correlations.

Due to the construction of the correlation process, all news-impact surfaces exhibit a

symmetric behavior for the residuals of opposite signs, i.e. negative shocks of one stock

index do not have a different impact on the correlation than negative shocks of the other

stock index. The same is true for positive shocks. Such a symmetric picture is not existent

if both shocks have the same sign since we account for such differences in the correlation

equation (equation (2.35)).

The asymmetry of correlations is closely related to the empirical finding that correla-
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Figure 2.7: News-Impact Surfaces and frontal views, BDCz model (JAP/ US) (top) and (UK/

GER) (bottom)
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Figure 2.8: News-Impact Surfaces and frontal views, BDCz model (UK/ US) (top) and

(GER, US) (bottom)

56



tions increase with volatility. More precisely, it was often stated that correlations increase

in bear markets thus calling into question the desirability of international portfolio diver-

sification (see De Santis and Gerard, 1997, Longin and Solnik, 1995, Longin and Solnik,

2001, Ng, 2000, Ramchand and Susmel, 1998 and Susmel and Engle, 1994).

Interpreting simultaneously high positive and negative values of ε1 and ε2 as a high-

volatility state, we can answer this question by interpreting the parameter estimate for

d12. The results for the correlation of the DAX with the NIKKEI and the FTSE (d12 > 0)

replicate the findings in the literature, i.e. international portfolio diversification is not

effective whenever it is needed most because the correlation increases with simultaneously

positive and negative shocks. The result for the correlation of the DAX and the DOW is

counter to the findings in the literature (d12 < 0) and further encourages international

portfolio diversification between Germany and the US.

2.2.6 Conclusions

We have shown that existing multivariate GARCH models do not adequately model con-

stant or time-varying correlations. The same is true for the asymmetric extensions of

these models. The Bivariate Dynamic Correlations (BDC) Model introduced here performs

clearly better in this regard.

We estimated the BDC model for four international stock market indices and found

that correlations exhibit a different temporal behavior compared to volatilities, i.e. corre-

lations are more often constant and less persistent than volatilities and the asymmetry of

shocks on volatility is more pronounced and more similar among volatilities itself than the

asymmetric effects of jointly positive or negative shocks on correlations.

Future research could be done by studying the impact of the distributional assumptions

on the persistence and asymmetry of correlations. In addition, although mentioned, fur-
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ther research is necessary to answer the question how correlation estimates change with

volatilities or vice versa.
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2.2.7 Appendix

2.2.7.1 Dynamic Conditional Correlations

The Dynamic Conditional Correlations Model (DCC) is introduced by Engle (2000). The

time-varying covariance matrix H t can be written as in equation (2.30) (H t = DtRtDt).

Engle presents different possibilities to estimate the correlation matrix Rt. However, the

main contribution is the two-step estimation strategy that provides consistent but ineffi-

cient estimates of the parameters of the model. The log-likelihood function of the DCC

estimator can be expressed as

logL(.) = −1/2
∑
t

(
n log(2π) + log |Ht| + r′

tH
−1
t rt

)
(2.41)

assuming that rt is conditionally multivariate normal distributed with zero means and

covariance matrix H t (rt ∼ N(0,Ht)) of dimension (n× n).

Using Ht = DtRtDt results in

logL(.) = −1/2
∑
t

(
n log(2π) + log |DtRtDt| + r′

t(DtRtDt)−1rt
)

(2.42)

Substituting r′
tD

−1
t by the standardized residuals zt yields

logL(.) = −1/2
∑
t

(
n log(2π) + 2 log |Dt| + log |Rt| + z′

tR
−1
t zt

)
(2.43)

Engle suggests to estimate the variance equations in a first step by setting Rt equal

to the identity matrix. This yields consistent but inefficient estimates. Hence, the log-

likelihood for the variance equations is given by

logLu(θ|Rt = I) = −1/2
∑
t

(
n log(2π) + 2 log |Dt| + 0 + z′

tzt
)

(2.44)

where θ is a vector consisting of the variance parameters. If θ is known, the variance

estimates and thus the standardized residuals zt can be computed.

Then the remaining part of the log-likelihood is

logLc(φ|θ, rt) = −1/2
∑
t

(
log |Rt| + z′

tR
−1
t zt

)
(2.45)
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where φ is a vector that contains all parameters of the correlation matrix Rt. Note, that

the matrix Rt must be positive definite since log |Rt| and R−1 need to be computed.

The likelihood sacrificed by the two step estimation strategy can be written as

logL(θ,φ) = Lc + Lu + 1/2
∑
t

z′
tzt (2.46)

The last term on the right hand side is almost exactly NT/2. This term has to be added

due to the last term of the log-likelihood in equation (2.44).

As outlined in this section, the main problem in the estimation of dynamic correlations

is the possible indefiniteness of the correlation matrix. The technique to guarantee the

correlation matrix to be positive definite is described as follows (see Engle and Sheppard,

2001):

The dynamic covariance in a DCC(1,1) model is:

Qt = (1 − α1 − β1)Q + α1zt−1z
′
t−1 + β1Qt−1 (2.47)

where Q is the unconditional covariance of the standardized residuals. The correlation

matrix is given by

Rt = Q�−1

t QtQ
�−1

t (2.48)

where Q�−1

t is a diagonal matrix composed of the square root of the diagonal elements of

Qt. A proof that equation (2.48) guarantees a positive-definite correlation matrix can be

found in Engle and Sheppard (2001).
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Chapter 3

Asymmetric Interdependence:

Spillovers

In this chapter we depart from the Multivariate GARCH framework and its focus on the

estimation of time-varying correlations and concentrate on an estimation framework that

models the influence of shocks of a given market on another market in an asymmetric way.

Such an asymmetric impact of shocks is often called spillover since shocks transmit (spill

over) from one market to another.

Spillovers are mainly modeled to analyze information flows and its transmission be-

tween markets (e.g. Hamao et al., 1990) or around the world (see Engle et al., 1990). The

investigation of spillovers is also applied to tests of the efficient market hypothesis, i.e.

whether markets process information efficiently or not.

The fact that a spillover is an element of an asymmetric relation between markets is

a characteristic that constitutes the fundamental difference to the correlation of markets

that measures symmetric phenomena. Although this asymmetric relation can also be mu-

tual to some extent, it is usually not the focus of a spillover analysis and often restricted by

the time structure of the data. For example, the dependent and independent variables of

a regression model in an analysis of the effects of the morning trading (independent vari-
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able) on the afternoon trading (dependent variable) are predetermined by the timing of the

data: only the effect of the morning trading on the afternoon trading can be economically

interpreted. Thus, the timing of the data determines the regression model.

Since a spillover is the result of a transmission of an innovation (or shock) from one mar-

ket to another it must not contain overlapping information sets (e.g. overlapping trading

hours). Otherwise a spillover could not be distinguished from any measure of the corre-

lation of markets. The difference is therefore mainly due to the structure of the variables

under investigation and not due to the measure employed.

However, the correlation coefficient is more prone to measure symmetric relations be-

tween two variables (markets) x and y because it can be viewed as a weighted measure

of the variances (ρ =
cov(x, y)√

V ar(x)V ar(y)
). On the other hand, the regression coefficient β

of a regression model y = βx + ε is more adequate to measure asymmetric relations be-

cause it is not a symmetrically weighted measure of the variances of the variables involved

(β =
cov(x, y)
V ar(x)

).

We advocate the use of a regression model with a dependent variable y and an indepen-

dent variable x for the analysis of spillovers since it can be seen as a natural framework

to model asymmetric relations. If x is not independent or exogenous1, the direction of the

spillover is not clear and the results of a spillover analysis are biased.

A typical example describes the effects of the use of overlapping and non-overlapping

returns within a correlation or a spillover analysis: assume two positively correlated fi-

nancial markets with different trading hours. One market opens at 9am and closes at

8pm and the other market opens at 3pm and closes at 10pm. This example could fit to

a market in Europe and one in North or South America. Both markets exhibit a 5 hour

trading overlap (3pm until 8pm). Analyzing the close-to-close returns2 8pm(t-1)-to-8pm(t)

1see Engle et al., 1983 for a discussion of the term exogeneity
2A close-to-close return is the return between the current closing price at t and the previous markets’ closing
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Table 3.1: Timing of Markets

close-to-close return (10pm-10pm)

8pm (t-1) - 10pm (t-1) 8pm (t) - 10pm (t)

close-to-close return (8pm-8pm)

8pm (t-1) - 10pm (t-1) 8pm (t) - 10pm (t)

overlap of close-to-close returns is 22 hours: 10pm(t-1)-to-8pm(t)

and 10pm(t-1)-to-10pm(t) would lead to a 22 hours overlap and bias the correlation coeffi-

cient because 2 hours are missing each day (In these 2 hours trading occurs in one market

while the other market is closed.). Table 3.1 shows the timing of the close-to-close returns

of both markets.

On the contrary, an investigation of the 10pm(t-1)-to-8pm(t) return of the first market

and the 10pm(t-1)-to-8pm(t) return of the second market would synchronize both returns

and neither understate nor overstate the true correlation of these markets (see Martens

and Poon, 2001).3

There is another possibility to show that non-synchronous trading hours yield incorrect

correlation coefficients: The parameters of two different regressions are denoted as β1 and

β2 where (yt = β1xt + εt) and (xt = β2yt + εt) are the associated regression equations,

respectively. The parameter β1 describes the effect of one market denoted with xt on the

other market denoted with yt and the parameter β2 describes the reverse effect, i.e. the

influence of market yt on market xt. Using the square root of the product of the absolute

values of β1 and β2 multiplied by the sign of the covariance of xt and yt yields the following

price at t − 1.
3A literature overview concerning non-synchronous trading can be found in Campbell et al. (1997).
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correlation coefficient:

ρt = sign(cov(xt, yt))
√
|β1| · |β2| (3.1)

This separation of the correlation coefficient shows that one component is the result of an

incorrect specification. For example, the regression of the close-to-close return 8pm(t-1)-to-

8pm(t) on the 10pm(t-1)-to-10pm(t) return is not adequate since the 10pm price at t cannot

be exogenous for the 8pm price at t. On the contrary, a spillover analysis of the open-to-

close returns4 (9am(t)-8pm(t) and 3pm(t)-10pm(t)) would lead to a biased estimate of the

spillover since trading hours overlap by 5 hours. The observed spillover is biased because

it also contains the contemporaneous correlation of these markets. Thus, it is fundamental

to isolate the returns, e.g. the open-to-3pm return and its effect on the 3pm-to-close return

would be a correct spillover analysis.

Both strategies to synchronize or isolate (de-synchronize) the returns are very intuitive.

However, while the spillover literature has mainly accounted for these problems (e.g. see

Hamao et al., 1990), the analysis of the correlation of financial markets has only recently

proposed to synchronize the data to avoid spurious results (see Burns, Engle and Mezrich,

1998 and Martens and Poon, 2001).

3.1 Mean and Volatility Spillovers

A spillover can be (i) constant or time-varying, (ii) affecting the mean or the volatility (or

both) of another market and (iii) being contemporaneous or lagged. A general model that

nests all these cases can be formulated as follows:

yt = µ + βtxt−k + εt , where εt|Ft−1 ∼ N(0, ht)

and ht = a + bε2t−1 + cht−1 + dt x
2
t−k� (3.2)

4A open-to-close return is the return between the current closing price at t and the opening price at t.
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where xt−k and yt denote the returns under investigation. The parameters µ are constants

and εt is assumed to follow a GARCH(1,1)-process as indicated above. The information set

available up to time t− 1 is denoted by Ft−1. The effect of return shocks from one market

(xt−k) to the mean and variance equations of the other market is described by βtxt−k and

dtx
2
t−k� , respectively. Mean spillovers are contemporaneous for k = 0 and lagged for any

k > 0. Moreover, volatility spillovers are contemporaneous for k� = 0 and lagged for

any k� > 0. Both effects can differ, i.e. it is possible to model contemporaneous mean

spillovers and lagged volatility spillovers or vice versa. The model given by equation (3.2)

is a time-varying mean and volatility spillover model. Imposing the restrictions βt = β or

dt = d would lead to a constant mean spillover model or constant volatility spillover model,

respectively. Restricting dt or βt to be zero would imply a pure mean spillover model or a

pure volatility spillover model, respectively.

It is important to note that the names constant spillover model and time-varying spillover

model can be misleading since spillovers are shocks that typically vary. Thus, the constant

(time-varying) spillover model means that the influence of varying spillovers on another

market is constant (time-varying) independent of the spillover per se. We are not aware

of any contribution in the literature that has adverted to this semantic problem. Apart

from this fact, we follow the literature and do not alter the names since this would result

in more complicated expressions.

If it is not possible to isolate a shock that spills over from one market to another it is

more adequate to speak of contemporaneous correlation or more specifically contemporane-

ous correlation in mean. Such a correlation is not equal to the correlation coefficient since

it is the result of a regression model.5 Correlation is a more appropriate name in this case

because there is not a clear asymmetry or exogeneity which is characteristic for spillovers.

5Note that contemporaneous spillover and contemporaneous correlation are sometimes used as an equiva-

lent (see e.g. Edwards, 1998).
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Table 3.2: Classification of Spillovers
Mean Spillovers

non-overlapping returns overlapping returns
(constant) (constant)

yt = βxt mean spillover contemporaneous correlation in mean

(time-varying) (time-varying)
yt = βtxt mean spillover contemporaneous correlation in mean

Volatility Spillovers
ht = ... + dx2

t (constant) (constant)
volatility spillover contemporaneous correlation in volatility

ht = ... + dtx
2
t (time-varying) (time-varying)

volatility spillover contemporaneous correlation in volatility

lagged spillovers or correlations are not tabulated

Analogous to this correlation in mean, if a volatility spillover is a result of two overlapping

returns we propose to name the latter contemporaneous correlation in volatility.

Table 3.2 summarizes the different types of spillovers and focusses on mean and volatil-

ity spillovers. It distinguishes between a spillover and the correlation. The table does not

contain lagged spillovers or lagged correlations.

It is important to mention that we are not aware of recent contributions to the literature

that have explicitly classified these different effects. In addition, there is no precise and

explicit definition of a spillover. For example, Lin et al., 1994 only give a definition for

lagged spillovers in a footnote (see footnote 2).

Table 3.2 does not only give an overview of existing types of spillovers in the literature

but it is also an overview of this chapter: Constant mean and volatility spillovers are

discussed in section 3.2, varying and conditional mean spillovers are modelled in section

3.3, and section 3.4 is a special case of time-varying mean and volatility spillovers. Possible

parameterizations for time-varying mean spillovers (βt) are discussed in section 3.3.1. We

also discuss conditional spillovers depending on the magnitude of the dependent variable

in section 3.3.2.
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3.2 Constant Mean and Volatility Spillovers

This section describes a model to test if there are mean or volatility spillovers among

two financial markets. We analyze synchronous and non-synchronous trading hour over-

laps of markets and discuss the associated findings of spurious correlations and spurious

spillovers. We also describe the problems that can arise if opening quotes are not reliable

due to the content of fractions of the previous closing prices.

The main part of this section focusses on the estimation of mean and volatility spillovers

between the German stock index DAX and the US stock index DOW Jones Industrial Aver-

age. We find strong contemporaneous correlations between these markets and a trade-off

between effects in the mean and in the volatility. This is further investigated by a simula-

tion study.

3.2.1 Spurious Correlations and Spillovers

We have argued that the difference between a spillover and the correlation is rooted in the

overlapping or non-overlapping information sets. If innovations can be isolated (informa-

tion sets do not overlap), a spillover analysis can be carried out, otherwise a correlation

analysis is conducted. If the assumptions corresponding to a correct spillover or correlation

analysis are violated, spurious results can occur.6

Spurious correlations or spillovers can occur if (i) the opening quotes contain large frac-

tions of the previous closing quotes due to the structure and the computation of indices7

(see Stoll and Whaley, 1990 and Baur and Jung, 2002 for more details) or if (ii) the returns

under investigation contain overlapping trading hours.

6Spurious regressions are first analyzed by Yule (1926) and Granger and Newbold (1974). These studies

warned that spurious relations may be found between the levels of trending time-series that are actually

independent. We do not concentrate on trending time-series but discuss spurious relations associated with

overlapping information sets.
7This finding is also referred to stale prices.
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In order to avoid these problems it is necessary to construct returns that are different to

the close-to-close returns. For example, separating a close-to-close return in open-to-close

(day return) and close-to-open (night return) return components (see Hamao et al., 1990)

can be a first step to eliminate overlapping trading hours. Furthermore, the availability

of tick-by-tick data can fully eliminate trading hour overlaps and allows to study returns

of higher frequency. It can also diminish or eliminate the problem of unreliable opening

prices (stale prices) by using modified opening quotes (e.g. opening quote plus 5 minutes).

This flexibility in constructing returns is essential to conduct an unbiased spillover analy-

sis.

The next section presents an econometric model that is closely related to the general

model presented in equation (3.2) followed by the empirical results for the German DAX

and a the US DOW Jones Industrial Average stock index, explicitly accounting for the

problems discussed above.

3.2.2 The Econometric Model

The empirical analysis is based on a variant of the popular aggregate-shock (AS) model as

described in detail in Lin et al. (1994).

The AS-model comprises of the following set of equations:

r1,t = µ1 + ε1,t , where ε1,t|Ft−1 ∼ N(0, h1,t) (3.3)

and h1,t = a11 + b11ε
2
1,t−1 + c11h1,t−1

r2,t = µ2 + β1ε1,t + β2 r
�
2,t−1 + ε2,t , where ε2,t|Ft−1 ∼ N(0, h2,t) (3.4)

and h2,t = a22 + b22ε
2
2,t−1 + c22h2,t−1 + d22 ε

2
1,t

r1,t and r2,t denote the foreign and home returns respectively, µ1 and µ2 are constants

while ε1,t and ε2,t are assumed to be serially uncorrelated and mutually independent shocks

that follow a GARCH(1,1)-process as indicated above. The term r�2,t−1 captures any auto-
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correlation of the dependent variable.8 The information set containing home and foreign

returns available up to time t− 1 is denoted by Ft−1. The effect of return shocks in the for-

eign market to the mean and variance equations of the home market is captured in β1ε1,t

and d22 ε
2
1,t, respectively. We assume that µ1 = 0 since we want to analyze the raw effect of

shocks of r1,t onto r2,t.

Lin et al. (1994) labeled the model aggregate shock model in contrast to a signal-

extraction model because the foreign return is not decomposed into a global and a local

factor. As a result of this specification, the model implicitly assumes that all the informa-

tion revealed in the foreign market has a global impact on the returns of the home market.

Despite this limitation, the AS-model is much more popular among applied financial re-

searchers as compared to the signal-extraction model. This is probably due to the fact that

the latter model requires a more sophisticated estimation procedure9 while the former

model can easily be estimated using standard (quasi-) maximum likelihood procedures

implemented in many econometric packages.

Due to the very simple specification of the mean equation we can follow Hamao et al.

(1990) and Susmel and Engle (1994) and use a univariate estimation procedure whereby

the foreign return is substituted directly into the mean equation of the home return in

the first line of equation (3.4). Quite analogous, the squared foreign return serves as a

proxy for the foreign volatility surprise and can be included in the variance equation of

(3.4) which can be estimated using standard GARCH methods.

It is quite obvious from the discussion above that by setting β or d22 in the equation (3.4)

equal to zero, it is possible to specify and estimate separate mean and volatility spillover

models. This is a useful analysis due to the fact that many studies either estimate mean

8It is not necessary to include such a regressor in the variance equation since the structure of a GARCH(1,1)

model accounts for any autocorrelation of the variance.
9Lin et. al (1994) e.g. employ a Kalman-filtering procedure.
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and volatility effects separately or simultaneously but do not evaluate nor explicitly dis-

cuss differing results (see e.g. Chakrabarti et al. 2002, Edwards, 1998, Hamao et al., 1990,

Lin et al., 1994 and Susmel and Engle, 1994). In examining the implications of the differ-

ent specifications below we will be able to demonstrate potential pitfalls in the uncritical

use of such reduced model specifications.

The first alternative specification under investigation is the pure mean spillover model.

It comprises of the following two equations for the home returns:

r2,t = µ2 + β1ε1,t + β2 r
�
2,t−1 + ε2,t , where ε2,t|Ft−1 ∼ N(0, h2,t) (3.5)

and h2,t = a22 + b22ε
2
2,t−1 + c22h2,t−1 .

The second one is the pure volatility spillover model given by

r2,t = µ2 + β2 r
�
2,t−1 + ε2,t , where ε2,t|Ft−1 ∼ N(0, h2,t) (3.6)

and h2,t = a22 + b22ε
2
2,t−1 + c22h2,t−1 + d22 ε

2
1,t

We estimate the full spillover model and its restricted versions in the following section

and further explore characteristics of these models in a simulation study afterwards.

3.2.3 The Empirical Results

In this section we present and discuss the estimation results for four different hypothe-

ses. We will differentiate between the contemporaneous correlation of returns based on

overlapping time spans and a pure spillover effect which is obtained from returns based

upon non-overlapping time periods. Only the second approach allows a causality test of

whether the preceding foreign returns contain any additional information relevant for the

home returns.

The data used in this study consist of time series of intra-day equity index returns for

the period January 2, 1998, through December 29, 2000, providing us with a sample size
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Table 3.3: Timing of the opening and the closing of the Frankfurt and the New York stock

market

Date

CET

EST

Germany

New York

Day t-1 Day t

9:00 15:30 20:00 22:00 9:00 15:30

4:00 9:30 14:00 16:00 4:00 9:30

DAX open (t-1) DAX closed (t) DAX open (t)

DOW closed (t-1) DOW open (t-1) DOW closed (t)

of 773 daily observations. We choose the DAX as the most prominent representative

of the German stock market and the Dow Jones 30 Industrial Average (DJIA) as its US

counterpart10. More details regarding the data can be found in Baur and Jung (2002).

The opening and closing times of the Frankfurt and the New York market are presented in

Table 3.3. To keep the table as simple as possible, the Frankfurt opening hours are given

as 9.00 am (CET) to 8.00 pm (CET).

The first hypothesis is concerned with the contemporaneous dependence of the overnight

return of the DAX and the previous day DJIA performance.

The second hypothesis looks at the information transmission between the intra-day

DAX returns and the overnight returns of the DJIA from the same day.

The subject of the third hypothesis is the development of the DAX in the first trad-

ing hours in Frankfurt with possible spillovers from the DJIA intra-day returns from the

previous trading day.

10The DAX data were obtained from the KKMDB (Karlsruher Kapitalmarkt Datenbank) and the DJIA data

from Tick Data, Inc. (http://www.tickdata.com).
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The fourth hypothesis analyzes the effects of the first trading hours in Frankfurt on the

opening of the New York stock market on the same day.

Quasi-Maximum likelihood estimates were computed using the BHHH algorithm. As

will be shown below in all cases the skewness and kurtosis of the standardized regres-

sion residuals indicate the use of robust standard errors as provided in Bollerslev and

Wooldridge (1992). We report the skewness and the kurtosis of the standardized regres-

sion residuals along with a test for autocorrelation of the standardized residuals and the

squared standardized residuals.

3.2.3.1 Contemporaneous correlation between daytime returns of the DOW and

the DAX overnight returns

We now investigate whether the daytime returns of the previous trading day in New York

are correlated with the overnight returns in Frankfurt. As pointed out by Hamao et al.

(1990) as well as Lin et al. (1994) any significant finding would not violate the efficient

market hypothesis but rather reflects a reaction of the German stock market to (global)

information contained in the DOW returns. The DOW return is calculated from closing

time Frankfurt (this varied in our sample starting from 5:00 pm (CET) over 5:30 pm (CET)

to now 8:00 pm (CET)) until the closing in New York (i.e. 4:00 pm (EST)). Information

accumulated during this time span has not been incorporated into the DAX at t−1 but will

eventually emerge in the DAX opening at t. Information contained in the DOW returns

from its opening up to the closing in Frankfurt are already being processed in previous

days DAX returns. The overnight return of the DAX is calculated on the basis of the

previous day closing price and the first DAX quote of the day plus 5 minutes11. As a result

of this setup we expect to see some reaction of the DAX opening to (global) information

contained in those DOW returns that resulted after the trading in Frankfurt.

11This time period is necessary to avoid stale prices in the index return.
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Table 3.4: DAX overnight returns and the preceding daytime returns of DOW
a22 b22 d22 c22 µ2 β1 β2

Full Model 0.009023 0.1065 0.01855 0.8524 0.09213 0.6871 -0.1032
( 1.338) ( 3.376 ) ( 1.121 ) ( 19.50 ) ( 3.610 ) ( 19.76 ) ( -1.330)

Mean Spillover Model 0.009377 0.1117 0.8749 0.09177 0.6872 -0.09882
( 1.656 ) ( 3.923 ) ( 36.83 ) ( 3.588 ) ( 18.32 ) ( -1.322 )

Volatility Spillover Model 0.1806 0.07637 0.6788 0.1011 0.1293 -0.1025
( 3.921 ) ( 1.368 ) ( 4.929 ) ( 1.159 ) ( 5.695 ) ( -1.530 )

t-values in parenthesis

Mean/ SD of z 0.0452 1.0022
Skewness 0.8850
Kurtosis 13.1147
Autocorrelation of ẑ 0.6454
Autocorrelation of ẑ2 − 1 0.1163

Full Model:
DAXNRt = µ2 + β1DOWDR�

t−1 + β2DAXDR�
t−1 + ε2t

h2,t = a22 + b22ε22t−1 + d22DOWDR2
t−1 + c22h2,t−1

Regression and testing results are provided in Table 3.4 and show that a significant

correlation in mean can be identified in the data. The estimated value for β1 implies that

both markets share a large amount of information. The validity of this result is checked

by running a pure mean spillover as well as a pure volatility spillover regression.

The results of the mean spillover regression are close to those of the full specification

whereas those of the pure variance spillover specification differ markedly. There seems

to be clear evidence of a rather pronounced correlation in volatility effect from New York

to the DAX overnight returns. The omission of a mean spillover term can obviously have

quite a severe impact on the regression results. Notice further that the estimated GARCH-

parameter decreases dramatically. The variance spillover term now clearly captures a

considerable amount of the GARCH effects.

The standardized residuals of the full model indicate the presence of positive skewness

and a considerable amount of kurtosis not captured by the model yet. However, a F-test

that detects remaining autocorrelation of the estimated standardized residuals and its

square with 5 lags does not indicate any misspecification.
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To assess the stability of the parameter estimates obtained, separate regressions for

data for the years 1998 and 1999 as well as for the years 1999 and 2000 only were run

with no qualitatively different results. Result are thus not reported.

3.2.3.2 Contemporaneous correlation between daytime returns of the DAX and

the DOW overnight returns

The purpose of the analysis undertaken in this subsection is to contribute to the ongo-

ing debate about the sensitivity of the New York opening to global information accrued

overnight (see e.g. Lin et al. (1994) and the results discussed therein). It is important

to notice that the New York markets open while trading in Germany is still under way.

Taking this into account we chose the DAX open-to-3:30 pm (CET) segment as the inde-

pendent variable for our analysis. The dependent variable is the overnight return of the

DOW where 9:45 am (EST) is chosen as a proxy for the opening quote12. If the DAX re-

turns contain any global information relevant for the New York market, the opening quote

should exhibit a significant effect.

Table 3.5: DOW overnight returns and the preceding daytime returns of DAX
a22 b22 d22 c22 µ2 β1 β2

Full Model 0.05293 0.1291 0.03894 0.3904 0.04712 0.2476 0.02951
( 2.257 ) ( 2.659 ) ( 2.887 ) ( 2.193 ) ( 3.086 ) ( 14.45 ) ( 1.844 )

Mean Spillover Model 0.01579 0.1003 0.8354 0.04911 0.2357 0.04071
( 2.639 ) ( 3.728 ) ( 21.01 ) ( 3.086 ) ( 10.64 ) ( 2.383 )

Volatility Spillover Model 0.07732 0.1061 0.1051 0.1769 0.05061 0.002418
( 4.274 ) ( 2.125 ) ( 5.272 ) ( 2.091 ) ( 3.028 ) ( 0.1896 )

t-values in parenthesis

Mean/ SD of z -0.0052 1.001
Skewness -0.0893
Kurtosis 3.720
Autocorrelation of ẑ 1.045
Autocorrelation of ẑ2 − 1 1.097

Full Model:
DOWNRt = µ2 + β1DAXDR�

t−1 + β2DOWDR�
t−1 + ε2t

h2,t = a22 + b22ε22t−1 + d22DAXDR2
t−1 + c22h2,t−1

12This time span avoids stale prices.
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The results of our three specifications are tabulated in Table 3.5. The full model con-

taining mean as well as volatility spillover terms clearly indicates the presence of such

effects. The estimated reaction coefficient in the mean equation is much smaller as com-

pared to the reaction of the German market to the previous day returns from New York

(see Table 3.4). This result is qualitatively similar to the one obtained by Dornau (1998)

and supports the finding of Lin et al. (1994) that the New York stock market is not immune

to foreign information.

What is quite striking though is the unusual low estimate for the GARCH-coefficient.

This is further analyzed in a simulation study below. As can be seen from the results, the

mean spillover specification produces similar results as compared to the full model with

the exception of a much higher estimate for the GARCH-coefficient now. Leaving out the

mean spillover in exchange of a pure volatility spillover coefficient leads to the effect that

already occurred above. The value of the estimated coefficient increases quite dramatically

as compared to the full model and the estimate for the GARCH-coefficient is down even

further.

The values of the skewness and kurtosis coefficients obtained for the full model point

toward a much less severe deviation from the conditional normality as compared e.g. to the

first hypotheses tested above. Furthermore, there is no sign of remaining autocorrelation

in the standardized residuals and its square.

3.2.3.3 Spillovers from New York to the morning trading in Frankfurt

The analysis of spillovers from New York to the morning trading in Frankfurt is in the

spirit of Susmel and Engle (1994). It tests part of the claim put forward in financial media

that the previous day performance of the New York markets can explain the behavior

of the DAX in the following trading day. If the German market is processing the global
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information contained in the previous days DOW returns efficiently, there should be no

significant spillover effects in both mean and variance from the previous trading day in

New York to the DAX morning returns (e.g. open-to-noon). Note that this specification

tests a true spillover since returns do not overlap as in the previous models.

We chose the open-to-noon time span because it is quite likely to be net of any additional

global information generated in the US due to the fact that it corresponds to the very

early morning hours in New York. Extending the time span e.g. up to the opening of the

New York markets would have tampered possible effects due to news announcements that

usually take place before 9:30 am (EST) or 3:30 pm (CET).

Table 3.6: DAX morning returns: spillovers from the preceding day in New York
a22 b22 d22 c22 µ2 β1 β2

Full Model 0.01066 0.04097 0.01310 0.9330 -0.02854 0.06369 -0.1753
( 0.8646 ) ( 2.105 ) ( 1.139 ) ( 23.47 ) ( -0.9221 ) ( 1.231 ) ( -3.196 )

Mean Spillover Model 0.009964 0.05103 0.9364 -0.03080 0.06285 -0.1786
( 0.9773 ) ( 2.447 ) ( 31.45 ) ( -1.091 ) ( 1.204 ) ( -3.235 )

Volatility Spillover Model 0.01079 0.04133 0.01383 0.9319 -0.03831 -0.1349
( 0.8707 ) ( 1.976 ) ( 1.079 ) ( 22.14 ) ( -1.411 ) ( -3.324 )

t-values in parenthesis

Mean/ SD of z -0.0128 0.9947
Skewness -0.1010
Kurtosis 4.977
Autocorrelation of ẑ 0.2220
Autocorrelation of ẑ2 − 1 0.5031

Full Model:
DAXDR�

t = µ2 + β1DOWDR�
t−1 + β2DAXNRt−1 + ε2t

h2,t = a22 + b22ε22t−1 + d22DOWDR2
t−1 + c22h2,t−1

Regression results for the full model, the mean spillover model only and the variance

spillover model only are shown in Table 3.6. No significant mean or volatility spillover

effects can be found and none of the problems that occurred in the last subsections are

present under this setting. Thus, the German market is processing the information con-

tained in the previous DOW return efficiently.

The reported test statistics at the bottom of Table 3.6 do not point toward misspecifica-
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tions in the regression models.

3.2.3.4 Spillovers from Frankfurt to the morning trading in New York

The analysis of spillovers from the morning trading in Frankfurt on the opening of the

New York stock market is the counterpart to the third hypothesis above. It tests whether

the US market is processing information accrued in the German stock market efficiently.

This specification also tests a true spillover since returns do not overlap.

We chose the 10am-to-12am time span for the DOW and the open-to-3:30pm (CET) for

the DAX on the same day.

Regression results for the full model, the mean spillover model and the variance spillover

model are shown in Table 3.7. No significant mean or volatility spillover effects can be

found in the full model and its restricted versions. It can thus be conlcuded that the US

market processes information contained in the German stock market efficiently.

Table 3.7: DOW morning returns: spillovers from the morning in Frankfurt
a22 b22 d22 c22 µ2 β1 β2

Full Model 0.0023 0.05066 0.004425 0.8972 0.0000 0.01831 0.1101
( 0.6292 ) ( 3.173 ) ( 0.8507 ) ( 11.03 ) ( 0.1282 ) ( 0.9610 ) ( 2.701 )

Mean Spillover Model 0.0000 0.0554 0.9162 0.000 0.01641 0.1111
( -0.5667 ) ( 2.223 ) ( 12.39 ) ( -0.1845 ) ( 0.6058 ) ( 2.669 )

Volatility Spillover Model 0.0000 0.05158 0.0042 0.8975 0.0000 0.1299
( 0.6233 ) ( 3.042 ) ( 0.8405 ) ( 10.21 ) ( 0.1398 ) ( 3.627 )

t-values in parenthesis

Mean/ SD of z -0.0083 1.001
Skewness -0.0480
Kurtosis 3.326
Autocorrelation of ẑ 1.111
Autocorrelation of ẑ2 − 1 0.9731

Full Model:
DOWDR�

t = µ2 + β1DAXDR�
t + β2DOWNRt−1 + ε2t

h2,t = a22 + b22ε22t−1 + d22DAXDR2
t + c22h2,t−1

There is no considerable difference between the full model and the pure volatility spillover

model as this is true for the first two hypotheses tested above. In addition, the persistence

77



of the volatility process measured by the parameter c22 is stable among the three different

models.

Again, the reported test statistics at the bottom of Table 3.7 do not point toward any

misspecification in the regression models.

3.2.4 Simulations

In this section, we further explore the results found in the empirical section indicating that

there is an interaction or a trade-off between a mean spillover and a volatility spillover. For

example, tables 3.4 and 3.5 show that the volatility spillover is higher in a pure volatility

spillover model compared to a full model. It is also evident that there are considerable

changes of the GARCH parameters among the estimated models.

In order to gain more insights in the empirical findings obtained above, we assume

three different data-generating processes (DGP): (i) a pure mean spillover model, (ii) a

pure volatility spillover model and (iii) a simultaneous mean and volatility spillover model

also referred to as full model. We simulate these models with 1000 observations and 1000

repetitions and estimate each DGP with three different models. We focus on a sample

of 1000 observations to make a comparison with the empirical results (773 observations)

feasible. However, we additionally run the simulations with 2500 observations in order to

minimize any small sample bias.

The DGP of a simultaneous mean and volatility spillover model is given by the following

equation:

r2,t = βε1,t + ε2,t

h2,t = a22 + b22ε
2
2,t−1 + c22h2,t−1 + d22 ε

2
1,t

(3.7)

The DGP of a pure mean spillover model is given by restricting d22 to be zero and the

DGP of a pure volatility spillover model is obtained by restricting β to be zero. The model
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Table 3.8: Simulation Results - Pure Mean Spillover

DGP β̂ ˆd22 ˆa22 ˆb22 ˆc22

β = 0.0, d22 = 0.0 0.0009 0.0050 0.0081 0.0531 0.8589
0.0009 0.0085 0.0537 0.8599

0.0050 0.0080 0.0528 0.8609

β = 0.2, d22 = 0.0 0.1999 *** 0.0047 0.0073 0.0531 0.8685
0.1997 *** 0.0087 0.0538 0.8579

0.0114 0.0099 0.0515 0.8404

β = 0.4, d22 = 0.0 0.3989 *** 0.0047 0.0073 0.0539 0.8673
0.3987 *** 0.0093 0.0550 0.8504

0.0811 0.0318 0.0528 0.5969

β = 0.6, d22 = 0.0 0.6002 *** 0.0050 0.0083 0.0541 0.8564
0.6000 *** 0.0108 0.0558 0.8331

0.3315 ** 0.0777 0.0416 0.1378

β = 0.8, d22 = 0.0 0.7985 *** 0.0048 0.0076 0.0538 0.8650
0.7985 *** 0.0101 0.0550 0.8439

0.6282 *** 0.0907 0.0296 0.0371

1000 runs
first line: full model
second line: pure mean spillover model
third line: pure volatility spillover model
*, **, *** indicate rejection of null hypothesis (β̂ = 0 or ˆd22 = 0) in more than 90 percent, 95 percent and 99 percent
of all simulation runs, respectively.
GARCH parameters: b22 = 0.05, c22 = 0.9, a22 = 0.005

is simulated with different values of the parameter β (0.0, 0.2, 0.4, 0.6, 0.8) and d22 (0.0,

0.1, 0.2), respectively.

The innovations ε1,t and ε2,t are iid random variables with mean zero and variances that

follow a GARCH(1,1) process with the parameter values b22 = 0.05, c22 = 0.9 and a22 =

(1 − b22 − c22) · σ where σ is the unconditional variance assumed to be 0.1.

In accordance with the empirical section we use the Quasi-Maximum-Likelihood proce-

dure and the BHHH algorithm to estimate the above model.

Each DGP is estimated with a full model and its two restricted counterparts leading to

nine different alternatives.

Simulation results for DGP (i) (pure mean spillover) are tabulated in table 3.8.

It can be stated that the pure mean spillover model leads to unbiased estimates (β̂ = β).
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A pure volatility spillover model is estimated with a bias of the parameter d22 increasing

with the magnitude of the mean spillover and is estimated unbiased if there is no mean

spillover. Such an upward bias reflects effects on volatilities that can be explained with

the fact that a mean spillover is a shock that can also affect the volatility of the underlying

return series. Assume that there is a mean spillover but no volatility spillover:

r2,t = βε1,t + ε2,t

h2,t = a22 + b22ε
2
2,t−1 + c22h2,t−1

(3.8)

If the true DGP is assumed to contain only a volatility spillover, the appropriate estimation

framework would be as follows:

r�2,t = ε�2,t

h�2,t = a22 + b22ε
�2
2,t−1 + c22h

�
2,t−1 + d22ε

2
1,t

(3.9)

The stars (1) indicate that the return r�2,t and thus ε�2,t are different from the true DGP

since the mean spillover is not included.

Since the volatility of ε�2,t will usually be larger than the volatility of ε2,t, the parameter

d22 can pick up this shock leading to a volatility spillover. Of course, the shock may also

be captured by the parameter b22 only. This possibility is also evident by analyzing the

simulation results. These shocks cannot always be clearly distinguished resulting in an

identification problem.

In addition (and only for DGP (i)), there is a strong effect on the GARCH parameters:

the persistence is decreasing extremely, e.g. ˆc22 is smaller than 0.05 for a mean spillover

with β = 0.8. It is further evident that there is a general downward bias of ˆc22. This

is true for all DGP but is most severe for DGP (i). We attribute this to a small sample

bias since the bias of ˆc22 diminishes for sample sizes of 2500 observations.13 Finally, a full

(unrestricted) mean and volatility spillover estimates the mean and volatility spillover

unbiased.
13Results are not reported.
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Table 3.9: Simulation Results - Pure Volatility Spillover

DGP β̂ ˆd22 ˆa22 ˆb22 ˆc22

β = 0.0, d22 = 0.1 -0.0018 0.1087 *** 0.0072 0.0473 0.8921
-0.0018 0.0167 0.0614 0.8829

0.1092 *** 0.0072 0.0474 0.8917

β = 0.0, d22 = 0.2 0.0007 0.2117 ** 0.0081 0.0476 0.8934
0.0007 0.0252 0.0656 0.8835

0.2127 *** 0.0082 0.0476 0.8931

1000 runs
first line: full model
second line: pure mean spillover model
third line: pure volatility spillover model
*, **, *** indicate rejection of null hypothesis (β̂ = 0 or ˆd22 = 0) in more than 90 percent, 95 percent and 99 percent
of all simulation runs, respectively.
GARCH parameters: b22 = 0.05, c22 = 0.9, a22 = 0.005

The simulation results for the DGP (ii) (pure volatility spillover) are shown in table 3.9

and indicate that all types of models yield unbiased estimates for β and d22.

Simulation results for the third DGP (iii) (full mean and volatility spillover) are given

by table 3.10. The results are consistent with the previous findings and can also be derived

by these. This means that a full mean and volatility spillover model leads to unbiased es-

timates for β and d22. A pure mean spillover model leads to unbiased estimates for β and

a pure volatility spillover model results in an overestimated parameter for d22 depending

on the magnitude of β due to the simultaneous influence of a shock to the mean and to

the volatility of the underlying return. For example, a simultaneous mean and volatility

spillover with the parameter values β = 0.8 and d22 = 0.2 leads to estimates d̂22 = 0.4000

in a pure volatility spillover model (last line, table 3.10). This is an overestimation of

d̂22 − d22 = 0.2. Generally, slightly overestimated estimates of d̂22 can be explained with

underestimated conditional volatilities (GARCH parameters). This effect fades away with

larger sample sizes.

Note that this trade-off between mean and volatility spillovers is not rooted in the univari-

ate specification but only in the fact that a mean spillover can (and often does) increase
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Table 3.10: Simulation Results - Mean and Volatility Spillover

DGP β̂ ˆd22 ˆa22 ˆb22 ˆc22

β = 0.2, d22 = 0.1 0.2015 *** 0.1087 * 0.0075 0.0474 0.8904
0.2015 *** 0.0174 0.0622 0.8788

0.1174 ** 0.0079 0.0469 0.8873

β = 0.4, d22 = 0.1 0.3992 ** 0.1072 *** 0.0074 0.0476 0.8919
0.3989 *** 0.0175 0.0621 0.8792

0.1424 ** 0.0103 0.0463 0.8753

β = 0.6, d22 = 0.1 0.5983 *** 0.1095 ** 0.0072 0.0472 0.8919
0.5979 *** 0.0167 0.0618 0.8817

0.2192 * 0.0188 0.0468 0.8302

β = 0.8, d22 = 0.1 0.7992 *** 0.1063 ** 0.0073 0.0478 0.8918
0.7977 *** 0.0171 0.0617 0.8808

0.4330 * 0.0555 0.0515 0.6720

β = 0.2, d22 = 0.2 0.2003 0.2132 ** 0.0088 0.0467 0.8922
0.2005 0.0276 0.0663 0.8777

0.2229 ** 0.0095 0.0465 0.8895

β = 0.4, d22 = 0.2 0.4021 *** 0.2103 ** 0.0081 0.0474 0.8936
0.4024 *** 0.0248 0.0650 0.8848

0.2452 ** 0.0095 0.0465 0.8867

β = 0.6, d22 = 0.2 0.5974 *** 0.2153 ** 0.0083 0.0482 0.8914
0.5976 *** 0.0265 0.0672 0.8790

0.3026 ** 0.0134 0.0466 0.8708

β = 0.8, d22 = 0.2 0.7984 *** 0.2134 ** 0.0086 0.0478 0.8917
0.7978 *** 0.0259 0.0665 0.8812

0.4000 ** 0.0223 0.0477 0.8404

1000 runs
first line: full model
second line: pure mean spillover model
third line: pure volatility spillover model
*, **, *** indicate rejection of null hypothesis (β̂ = 0 or ˆd22 = 0) in more than 90 percent, 95 percent and 99 percent
of all simulation runs, respectively.
GARCH parameters: b22 = 0.05, c22 = 0.9, a22 = 0.005
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volatility.14

3.2.5 Conclusions

We have stated that spurious correlations and spurious spillovers can occur if there are

stale prices around the opening of markets or if returns are overlapping to some extent.

We have also shown that the finding of a spillover depends on the applied model potentially

resulting in a trade-off between mean and volatility spillovers. This implies that the source

of an estimated volatility spillover can also be a mean spillover. It further shows that

studies that exclusively model volatility spillovers have to be interpreted with caution.

Economically, this means that information spilling over from a foreign market that

affects the mean of a given market can also influence the volatility of this market but not

vice versa, i.e. uncertainty indicated by increased volatility does not have any influence on

the mean return of other markets, only on its volatility.

14Simulation results with a multivariate model confirm this conclusions. Results are not reported.
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3.3 Varying Mean Spillovers

In the previous section, we have modeled and estimated constant influences of spillovers on

other markets. The results are based on the possibly strong assumption that the impact

of spillovers does not vary. In this section we relax the assumption of constant mean

spillovers and introduce two different regression models in order to examine any variation

of the impact of shocks (spillovers) on the mean of a given market.

The first approach is a time-varying parameter model that estimates the impact of

spillovers on a given market for every time t and the second estimation framework is a

Quantile Regression model that provides estimates of the impact of spillovers conditional

on the value of the dependent variable.

Whereas the employed estimation procedures are standard approaches in particular

strands of the literature, they are new in the context of spillovers.

In the next paragraphs we will describe the econometric framework necessary to es-

timate the different impact of spillovers and present empirical results for the hypotheses

analyzed in section 3.2. Since we do not use a new data set, we can focus on the differences

between constant and varying spillovers.

3.3.1 Time-varying Mean Spillovers

Time-varying spillovers are first estimated for volatility spillovers by the use of dummy

variables indicating different regimes of volatility (see Susmel and Engle, 1994). Bekaert

and Harvey (1995, 1997) and Bekaert, Harvey and Ng (2002) estimate time-varying risk

parameters within an international Capital Asset Pricing Model (CAPM). Ng (2000) ap-

plies this method to model time-varying impacts of mean and volatility spillovers.15 Time-

15Ng (2000) analyzes contemporaneous (and synchronous) weekly data. Thus, it is not a true spillover

analysis and different to the frequency of the data used here.
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varying conditional betas of a CAPM are also estimated by Ball and Kothari (1989), Braun

et. al.(1995) and Cho and Engle (2001).

There are important differences regarding the parameterizations of the time-varying

parameters: the last three cited articles use a bivariate EGARCH model that only in-

cludes lagged values of the variables under investigation to estimate the time-varying

parameter. On the other hand, Bekaert et al. (1995, 1997, 2002) and Ng (2000) include

exogenous variables to parameterize the time-varying parameters. For example, they use

the sum of imports and exports of a market (country) as a proxy for world market in-

tegration. Another variable is the spread between a world market dividend yield and a

particular market under investigation. This approach introduced by Bekaert and Harvey

(1995) is different to the Braun et al. (1995) approach since the time-variation is driven

by economic variables that are not part of the estimated system and are optimally derived

from economic theory.

It is important to note that all cited contributions do not belong to the original spillover

literature as introduced in this chapter. They focus on the time-varying behavior of a

market index on a given portfolio or asset or do not analyze spillovers but contemporane-

ous correlations (see Ng, 2000). We describe the approaches by Braun et al. (1995) and

Bekaert et al. (2002) in their original versions and within their original context in order to

clarify the difference to the modified model in the context of time-varying spillovers that

is proposed below.

The bivariate EGARCH model introduced by Braun et al. (1995) provides estimates for

conditional betas of a CAPM and can be written as follows:

rpt = µpt + βptrmt + σptzpt (3.10)

where rpt and rmt denote the time t excess returns of a portfolio and a market index respec-

tively. µpt is the conditional mean of the portfolio and βpt the conditional beta of portfolio
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p with respect to the market index. The product σptzpt is the idiosyncratic shock of rpt

that consists of the conditional variance σ2
pt and a normally distributed random variable

zpt with mean zero and variance one. The conditional variance follows a EGARCH process

(see Nelson, 1991) and the conditional beta (βpt) is parameterized as follows:

βpt = αβ + λpmzpt−1zmt−1 + λmzmt−1 + λpzpt−1 + δβ(βpt−1 − αβ) (3.11)

where αβ is a constant, λpm captures the covariance of zpt−1 and zmt−1, λm and λp estimate

any leverage effect and δβ indicates the persistence of shocks to the conditional beta (βpt).

A simplified model of Bekaert et al. (2002) can be written as follows:

rit = βUSit−1µUS,t−1 + eit (3.12)

βUSit−1 = p′XUS
it−1 + q′Xw

it−1 (3.13)

where rit is the excess return on the equity index of country i, µUS,t−1 is the conditional

expected excess return on the US market based on information available at time t − 1, eit

is the idiosyncratic shock of any market i and βUSit−1 is the time-varying risk parameter.

This risk parameter is specified as given by equation (3.13). XUS
it−1 consists of information

variables that capture the covariance risk of market i with the US and Xw
it−1 consists

of local instruments that should capture the covariance risk of market i with the world

portfolio. The parameter vectors p and q capture the influence of the variables included.

This model is very different to the (pure) time-series approach initiated by Ball et al.

(1989). By using exogenous variables to parameterize βUSit , the model does not only aim to

explain the excess return of a country i by exogenous variables but also tries to explain the

value of the impact of any exogenous variable. However, we focus on the model based on

Braun et al. (1995) since the Bekaert et al. (1995, 1997, 2002) approach requires a more

extensive discussion regarding the selection of the variables parameterizing βt.16

16Potential variables that could be used to explain the varying impact of spillovers or correlations are the
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A model based on Braun et al. (1995) is given as follows:

r2,t = β1tr1,t + β2r
�
2,t−1 +

√
h2,tz2,t (3.14)

with the conditional variance following an EGARCH process

h2,t = exp (c + θz2,t−1 + γ(|z2,t−1| − E(|z2,t|)) + δ log(h2,t−1)) (3.15)

and the time-varying impact of a spillover

βt = αβ + λ1ε1,t−1ε2,t−1 + λ2ε1,t−1 + λ3ε2,t−1 + δββt−1 (3.16)

We use the unstandardized residuals (εit) to avoid additional estimations of the con-

ditional volatility of these series. Estimation is done by the Quasi-Maximum-Likelihood

method. The specification tests of these models are described and conducted in the em-

pirical section. Interestingly, the tests for these models exclusively focus on the estimated

standardized residuals but do not test the specification of βt directly, e.g. no measure of

the fit of the time-varying beta is used in the literature.

Empirical results of the modified model of Braun et al.(1995) are presented in the next

section.

3.3.1.1 Empirical Results

Results for the four hypotheses put forward are shown in tables 3.11-3.14. The tables

contain the parameter estimates and the associated t-values. In addition, the mean, the

minimum and the maximum value of the varying parameter βt is reported. Statistics that

indicate the correct specification of the model are also tabulated.

The first hypothesis investigates the contemporaneous correlation between daytime re-

turns of the DOW and the DAX overnight returns. Estimation results are shown in table

volume of stocks traded, GDP growth rate differentials, interest rate differentials and the sum of total exports

and imports among others.
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3.11 and indicate that there is a considerable variation across time: the minimum and

maximum of βt is −0.0363 and 1.264, respectively.

The varying parameter βt is mainly characterized by a constant αβ = 0.5736 and an asym-

metric effect of lagged shocks of DOWDRt−1 represented by the negative parameter λ2.

This means that negative shocks of the DOWDRt−1 increase the impact on the dependent

variable. In other words, the influence of the US market on the German market tends to

increase in bear markets.

Table 3.11: Time-varying Correlation (DAXNRt, DOWDRt−1)

c θ γ δ α αβ λ1 λ2 λ3 δβ β2

parameter -0.1464 0.05817 0.1608 0.9778 0.1025 0.5736 0.01088 -0.1245 0.05199 0.1573 -0.01322
t-value ( -3.733 ) ( 1.405 ) ( 4.469 ) ( 74.92 ) ( 4.897 ) ( 2.089 ) ( 0.3943 ) ( -1.030 ) ( 0.3765 ) ( 0.3849 ) ( -0.1114 )

Mean of βt 0.6695
Min/ max of βt -0.03634 1.264
Mean/ SD of z 0.01477 1.009
Skewness 0.5063
Kurtosis 8.572
Autocorrelations of z 0.5011
Autocorrelations of squared z 0.3636

DAXNRt = α + βtDOWDR�
t−1 + β2DAXDR�

t−1 + ε2t

h2,t = exp
(
c + θz2,t−1 + γ(|z2,t−1| − E(|z2,t|)) + δ log(h2,t−1)

)
βt = αβ + λ1r1,t−1r2,t−1 + λ2r1,t−1 + λ3r2,t−1 + δββt−1

The second hypothesis examines the contemporaneous correlation between the daytime

return of the DAX and the DOW overnight return. Results are presented in table 3.12 and

show a significant negative effect of the covariance (λ1) and the persistence (δβ) of βt. The

estimated βt varies only between 0.0285 and 0.3277.

Table 3.12: Time-varying Correlation (DOWNRt, DAXDRt)

c θ γ δ α αβ λ1 λ2 λ3 δβ β2

parameter -0.2321 -0.03699 0.1792 0.9370 0.04507 0.3327 -0.02369 -0.02260 0.001548 -0.4019 -0.02901
t-value ( -3.280 ) ( -1.011 ) ( 3.570 ) ( 32.25 ) ( 2.729 ) ( 6.828 ) ( -2.204 ) ( -0.8261 ) ( 0.1443 ) ( -2.425 ) ( -1.796 )

Mean of βt 0.2302
Min/ max of βt 0.02849 0.3277
Mean/ SD of z 0.001437 1.003
Skewness -0.1104
Kurtosis 3.942
Autocorrelations of z 0.8521
Autocorrelations of squared z 0.3859

DOWNRt = α + βtDAXDR�
t + β2DOWDRt−1 + ε2t

h2,t = exp
(
c + θz2,t−1 + γ(|z2,t−1| − E(|z2,t|)) + δ log(h2,t−1)

)
βt = αβ + λ1r1,t−1r2,t−1 + λ2r1,t−1 + λ3r2,t−1 + δββt−1
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The third hypothesis analyses if the information from the previous days closing quote

in New York spills over to the next days morning trading in Frankfurt. Results are given

by table 3.13 and show that there is a significant positive effect of the covariance of both

markets on the conditional influence of the DAXDR. Furthermore, βt varies over a wide

range between −1.200 and 1.174 which can be attributed to the rather large values of the

parameters λ1 and δβ.

Table 3.13: Time-varying Spillover (DAXDRt, DOWDRt−1)

c θ γ δ α αβ λ1 λ2 λ3 δβ β2

parameter -0.08587 0.001073 0.1079 0.9899 -0.04246 -0.02705 0.1367 0.03141 0.01699 0.3922 -0.04070
t-value ( -3.406 ) ( 0.03219 ) ( 3.546 ) ( 71.09 ) ( -1.311 ) ( -1.010 ) ( 2.163 ) ( 0.5288 ) ( 0.2572 ) ( 1.508 ) ( -0.8057 )

Mean of βt -0.05235
Min/ max of βt -1.200 1.174
Mean/ SD of z -0.0119 0.9945
Skewness -0.1539
Kurtosis 4.518
Autocorrelations of z 0.5581
Autocorrelations of squared z 0.3924

DAXDR�
t = α + βtDOWDR�

t−1 + β2DAXNRt−1 + ε2t

h2,t = exp
(
c + θz2,t−1 + γ(|z2,t−1| − E(|z2,t|)) + δ log(h2,t−1)

)
βt = αβ + λ1r1,t−1r2,t−1 + λ2r1,t−1 + λ3r2,t−1 + δββt−1

The fourth hypothesis analyses if the information from the morning trading in Frank-

furt spills over to the morning trading in New York on the same day. Results are given by

table 3.14 and reveal a negative and significant parameter λ1 that governs the covariance

of the two returns analyzed and a positive and significant parameter λ3 that implies that

positive shocks of the DAXDR increase the influence on the DOWDR and negative shocks

decrease this influence. The impact of the spillover varies between −0.8632 and 1.261.

Specification tests primarily focus on the distributional characteristics of ẑt (see Nelson,

1991). We compute the mean and the variance of the estimated standardized residual

ẑt =
ε̂t
σ̂t

that should be zero and one, respectively. In addition, we carry out a F-test for

autocorrelation of ẑt and ẑt
2 − 1 with 5 lags.

For all four hypotheses the indicators do not point to any systematic violation of the

assumptions regarding ẑt. Although the skewness and the excess kurtosis are clearly dif-
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Figure 3.1: Time-varying Correlations (Spillovers): top: (DAXNRt, DOWDRt−1), interme-

diate: (DOWNRt, DAXDRt), (DAXDRt, DOWDRt−1), bottom: (DOWDR�t , DAXDR�t )
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Table 3.14: Time-varying Spillover (DOWDR�t , DAXDR�t )

c θ γ δ α αβ λ1 λ2 λ3 δβ β2

parameter -0.1361 -0.02230 0.1702 0.9869 0.06674 -0.06371 -0.1126 -0.09467 0.1263 0.1806 -0.06733
t-value ( -3.279 ) ( -0.5045 ) ( 3.729 ) ( 67.69 ) ( 2.388 ) ( -0.3850 ) ( -2.099 ) ( -0.5746 ) ( 1.738 ) ( 0.1163 ) ( -1.450 )

Mean of βt -0.0853
Min/ max of βt -0.8632 1.261
Mean/ SD of z 0.02941 1.006
Skewness -0.05657
Kurtosis 6.807
Autocorrelations of z 1.146
Autocorrelations of squared z 0.1009

DOWDR�
t = α + βtDAXDR�

t + β2DOWNRt−1 + ε2t

h2,t = exp
(
c + θz2,t−1 + γ(|z2,t−1| − E(|z2,t|)) + δ log(h2,t−1)

)
βt = αβ + λ1r1,t−1r2,t−1 + λ2r1,t−1 + λ3r2,t−1 + δββt−1

ferent from zero, the model can be assumed to be well-specified because the non-normality

is accounted for in the estimation process by the use of the Quasi-Maximum Likelihood

(QML) procedure.

The plots of βt are given by figure 3.1 and show that the analyzed time-varying effects

exhibit wide ranges of values for the first, third and fourth hypotheses and a relatively

smaller range for the second hypothesis.

The plots also show that there is increased variation between t = 150 and t = 200

which could be attributed to effects of the Brazilian and Russian crises in 1998. This

finding additionally justifies the estimation of a time-varying parameter model: even if

the constancy of βt for the whole sample cannot be rejected, the model can also provide

anomalies for shorter periods which would not be revealed by a constant parameter model.
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3.3.2 Conditional Mean Spillovers

The Quantile Regression (QR) model introduced by Koenker and Bassett (1978) (see Ap-

pendix for details) provides estimates for different conditional quantiles of the dependent

variable. Applying this method to several quantiles supplies information about the vary-

ing impact of an exogenous variable x on an endogenous variable y. A simple quantile

regression equation to model a mean spillover is given as follows:

yt = c(q) + β1(q)xt + β2y
�
t−1 + εt (3.17)

where q is the desired quantile of the dependent variable yt, xt is the exogenous variable

and εt the error term. The parameters c(q), β1(q) and β2(q) are estimated with the QR

model and potentially yield different values for each quantile.17

Moreover, the QR model can provide asymmetric results without any additional regres-

sor which would be necessary in the standard model (see equation (3.2)) and the time-

varying parameter model (see equation (3.14)). For example, if an exogenous variable xt

has a larger positive impact on the dependent variable yt at the 10 percent quantile of yt

than at the 90 percent quantile of yt (β(10) > β(90)), then the spillover is higher if yt is

small (e.g. large negative values) and lower if yt is large (e.g. large positive values). This

example would imply that simultaneous movements of returns are more pronounced in

bear markets than in bull markets.18 There is also an obvious link to the finding that cor-

relations of stock market returns are higher for negative returns than for positive returns

(see Ang and Chen, 2002 and Longin and Solnik, 2001 among others).

17While equation (3.17) is appropriate to model conditional mean spillovers, the QR model could also be

used to estimate conditional volatility spillovers similar to an approach by Chakrabarti et al.(2002) who model

volatility spillovers not within a GARCH framework but focus on innovations in variances directly.
18In other words, bears and bulls move differently across countries (see Lin et al., 1994).
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3.3.2.1 Empirical Results

The first hypothesis investigates the contemporaneous correlation between daytime re-

turns of the DOW and the DAX overnight returns. Estimation results are shown in table

3.15 and do not reveal a clear difference of the estimated parameters among the quantiles.

Estimates for β(q) vary slightly around 0.7 and are all significant at the 1 percent level.

The measure of fit19 denoted with Pseudo-R2 has the highest value at the 1 percent quan-

tile (0.3055) and the lowest value (0.2392) at the 60 percent quantile. The values for the

remaining quantiles vary around 0.25.

Table 3.15: Conditional Correlation (DAXNRt, DOWDRt−1)

q1 q10 q20 q30 q40 q50 q60 q70 q80 q90 q99 LS

R2(q) 0.3055 0.2521 0.2660 0.2541 0.2440 0.2406 0.2392 0.2411 0.2556 0.2806 0.2677 0.4326
β1(q) 0.694 0.709 0.712 0.719 0.705 0.708 0.723 0.690 0.696 0.712 0.769 0.705

(4.05)*** (11.65)*** (13.53)*** (17.28)*** (18.08)*** (15.84)*** (14.35)*** (13.25)*** (18.16)*** (13.21)*** (4.96)*** (24.02)***
β2(q) -0.017 0.017 -0.004 0.010 0.016 -0.011 -0.034 -0.057 -0.103 -0.115 -0.371 -0.075

(0.09) (0.64) (0.12) (0.22) (0.55) (0.31) (0.80) (1.45) (2.82)*** (2.64)*** (1.53) (2.88)***
c(q) -1.676 -0.541 -0.303 -0.144 -0.018 0.108 0.255 0.400 0.582 0.799 1.905 0.116

(8.94)*** (12.17)*** (11.33)*** (5.25)*** (1.09) (3.82)*** (11.44)*** (14.75)*** (20.91)*** (27.30)*** (4.51)*** (5.00)***

DAXNRt(q) = c(q) + β1(q)DOWDR�
t−1 + β2(q)DAXDRt−1

t-values in parenthesis (calculated by bootstrapping with 2000 repetitions)

The second hypothesis examines the contemporaneous correlation between the daytime

return of the DAX and the DOW overnight return. Results are presented in table 3.16 and

show that there is a larger influence at the lower quantiles (especially at the 1 percent

quantile) than in the higher quantiles. All quantiles larger than 20 percent exhibit a

relatively constant relationship around 0.20. This finding indicates that the DAXDR has

a higher impact on the DOWNR for larger negative values of the DOWNR. This can be

viewed as an asymmetric effect of the DAXDR on the DOWNR as described above. Note

that all estimates of β1(q) are highly significant at the 1 percent level. Furthermore, the

R2 is considerably higher at the 1 percent quantile (0.2924) than in all other quantiles

19R2 = 1 − Sum of Weighted Deviations About Estimated Quantile
Sum of Weighted Deviations About Raw Quantile

The raw quantile is given by quantile regression with no regressor. This R2 is analogous to the R2 of the least

square regression.
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declining almost steadily to exhibit the lowest value at the 70 percent quantile (0.1095).

Table 3.16: Conditional Correlation (DOWNRt, DAXDRt)

q1 q10 q20 q30 q40 q50 q60 q70 q80 q90 q99 LS

R2(q) 0.2924 0.1982 0.1534 0.1338 0.1179 0.1104 0.1120 0.1095 0.1114 0.1120 0.1191 0.2587
β1(q) 0.268 0.263 0.228 0.200 0.202 0.198 0.188 0.197 0.178 0.172 0.171 0.217

(5.95)*** (10.62)*** (10.59)*** (7.96)*** (8.64)*** (8.27)*** (6.76)*** (10.90)*** (6.32)*** (5.50)*** (3.96)*** (16.32)***
β2(q) 0.158 0.091 0.032 0.032 0.020 0.026 0.004 0.026 0.029 0.014 0.043 0.045

(1.74)* (2.55)** (1.12) (1.64) (1.01) (1.42) (0.18) (1.32) (0.93) (0.35) (0.89) (2.93)***
c(q) -1.178 -0.530 -0.325 -0.174 -0.067 0.064 0.152 0.285 0.413 0.632 1.253 0.046

(10.28)*** (15.82)*** (11.65)*** (8.74)*** (3.19)*** (3.47)*** (8.11)*** (14.18)*** (17.40)*** (18.17)*** (12.95)*** (2.60)***

DOWNRt(q) = c(q) + β1(q)DAXDR�
t + β2(q)DOWDRt−1

t-values in parenthesis (calculated by bootstrapping with 2000 repetitions)

Table 3.17: Conditional Spillover (DAXDRt, DOWDRt−1)

q1 q10 q20 q30 q40 q50 q60 q70 q80 q90 q99 LS

R2(q) 0.0016 0.0043 0.0054 0.0068 0.0047 0.0023 0.0010 0.0017 0.0024 0.0081 0.0143 0.0016
β1(q) 0.016 -0.048 -0.067 -0.005 0.019 -0.002 -0.019 -0.041 -0.059 -0.108 0.051 -0.030

(0.11) (0.45) (0.72) (0.09) (0.44) (0.06) (0.55) (1.18) (1.09) (1.58) (0.21) (0.76)
β2(q) 0.094 -0.122 -0.101 -0.115 -0.076 -0.051 -0.029 -0.042 0.010 -0.009 0.143 -0.032

(0.51) (1.10) (1.33) (2.38)** (1.74)* (1.45) (0.75) (0.76) (0.15) (0.12) (0.67) (0.87)
c(q) -2.407 -1.092 -0.672 -0.366 -0.196 -0.029 0.110 0.312 0.555 0.929 2.292 -0.066

(13.47)*** (17.44)*** (14.09)*** (11.13)*** (7.43)*** (1.04) (3.36)*** (8.41)*** (11.49)*** (20.11)*** (8.69)*** (2.09)**

DAXDR�
t (q) = c(q) + β1(q)DOWDR�

t−1 + β2(q)DAXNRt−1

t-values in parenthesis (calculated by bootstrapping with 2000 repetitions)

The third hypothesis analyzes the question if the information from the previous days

closing quote in New York spills over to the next days morning trading in Frankfurt. Re-

sults are given by table 3.17 and indicate that β(q) is close to zero and insignificant for all

quantiles. The insignificant estimates are also reflected in values of the Pseudo-R2 close

to zero.

Table 3.18: Conditional Spillover (DOWDR�t , DAXDR�t )

q1 q10 q20 q30 q40 q50 q60 q70 q80 q90 q99 LS

R2(q) 0.0627 0.0195 0.0165 0.0137 0.0151 0.0135 0.0109 0.0102 0.0055 0.0008 0.0165 0.0220
β1(q) -0.054 0.039 0.008 0.018 0.034 0.007 0.008 0.004 0.014 -0.011 0.053 0.015

(1.15) (0.94) (0.29) (0.76) (1.18) (0.35) (0.23) (0.10) (0.41) (0.25) (0.66) (0.75)
β2(q) 0.336 0.192 0.185 0.144 0.138 0.143 0.142 0.101 0.072 0.039 0.149 0.128

(2.25)** (2.24)** (2.76)*** (2.90)*** (2.09)** (3.05)*** (2.34)** (1.96)* (1.06) (0.58) (0.60) (3.07)***
c(q) -0.014 -0.007 -0.004 -0.003 -0.001 -0.000 0.001 0.003 0.004 0.007 0.014 -0.000

(12.43)*** (19.40)*** (14.80)*** (8.43)*** (8.35)*** (0.08) (4.90)*** (8.27)*** (12.21)*** (16.37)*** (11.42)*** (0.13)

DOWDR�
t (q) = c(q) + β1(q)DAXDR�

t + β2(q)DOWNRt−1

t-values in parenthesis (calculated by bootstrapping with 2000 repetitions)

The fourth hypothesis shows that the influence of the morning trading in Frankfurt on

the opening of New York stock market is insignificant for all quantiles.

The last column of tables 3.15-3.18 show the least square results. These values are
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Figure 3.2: Conditional Correlations (Spillovers): top: (DAXNRt, DOWDRt−1), intermedi-

ate: (DOWNRt, DAXDRt), (DAXDRt, DOWDRt−1), bottom: (DOWDR�t , DAXDR�t )
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slightly different compared to the results presented in the previous section since no GARCH

effects are modeled.

Considerably different estimates compared to the original AS-model are only obtained

for the second hypothesis. Note, that it is only tested whether these estimates are different

from zero. A test whether the slope estimates are identical at every quantile is not carried

out (see Koenker and Bassett, 1982) since the aim of this quantile regression analysis is to

obtain additional information compared to the least square regression. Thus, we focus on

the question whether the quantile estimates are different to the least square estimates.

The plots of the conditional quantile estimates are given in figure 3.2 and do not only

contain the conditional parameter β (solid line) but also a 95 percent pointwise confidence

band. There is also a dashed line representing the ordinary least squares estimate of the

mean effect. The graphs for the QR model suggest that there is negligible variation among

all quantiles for the first, third and fourth hypotheses. However, the extreme negative

and positive quantiles show values that are different from the least square estimates for

the second hypothesis (negative quantiles), the third hypothesis (positive quantiles) and

the fourth hypothesis (negative quantiles). Given the narrow confidence bands for these

values, they are clearly different from the average values of the other quantiles and the

least square estimates. This finding is not surprising since changing market conditions

can imply changing parameter estimates. For example, extreme market situations such as

crashes or bubbles can be expected to exhibit different parameter values than market con-

ditions that are characterized as more normal. The Quantile Regression Model accounts

for such different market situations whereas the classical regression model provides only

estimates of the mean effect.
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3.3.3 Conclusions

This section relaxes the restriction of constant correlations and constant impacts of spill-

overs and extends the existing literature in two ways: it provides methods to estimate

impacts of spillovers on other markets depending on the value of the dependent variable

and on the time of the spillover. Results show that the assumption of an identical impact

of spillovers through time and across quantiles is a strong restriction. This implies that

an analysis as carried out above is more appropriate and can provide information that

remains hidden in a standard spillover analysis.
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3.3.4 Appendix

3.3.4.1 Quantile Regression

Quantile Regression (QR) as introduced in Koenker and Bassett (1978) may be viewed as a

natural extension of classical least square estimation of conditional mean models to models

for conditional quantile functions. These conditional quantile functions are estimated by

minimizing an asymmetrically weighted sum of absolute errors as follows:

argmin
∑

ρθ(yi − ε) (3.18)

with the check function ρθ(z) =
{

θz : z ≥ 0
(θ − 1)z : z < 0

(3.19)

To obtain an estimate of the conditional quantile function, we simply replace the scalar

of equation (3.18) by the parametric function ε(xi, βθ) and solve

min
∑

ρθ(yi − ε(xi, βθ)) (3.20)

where z = (yi − ε). Instead of using the check function ρθ(z) we write the minimization

problem more explicitly as

min




∑
i:yi≥x′βθ

θ|yi − x′iβθ| +
∑

i:yi<x′βθ

(1 − θ)|yi − x′iβθ|

 (3.21)

A general closed solution to the minimization problem does not exist. However, it can

be shown that this optimization problem can be solved with a linear programming algo-

rithm. For example, a method by Koenker and Park (1996) is competitive to least-squares

estimation even for very large data sets. Standard errors can either be computed by using

asymptotic results or by performing bootstraps.
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3.4 Mean and Volatility Contagion

This section does not further analyze the German DAX and the US DOW Jones stock

index but examines a broader range of stock market indices. First, correlations in mean

and in volatility are investigated and second, it is examined whether there is a change in

the correlation during certain periods of time, particularly in periods of financial stress or

financial turmoil. It is thus an analysis of time-varying correlations with different regimes

of market characteristics.

The investigation of changes in correlations is crucial for portfolio and risk management

since diversification can only be effective if correlations and variances do not significantly

and rather abruptly change in certain time periods. Examining changing interdependen-

cies is also important when discussing the appropriate financial architecture and the rea-

sons for financial crises. For example, the justification for aid packages or credits to crises

countries by the International Monetary Fund (IMF) is the fear that the crisis could spread

to other countries, i.e. that the crisis is contagious for other countries. Consequently, it is

not only important to assess the existence of contagion but also the strength of contagion.

Apart from this problem, there is even widespread disagreement what the term contagion

entails (see Forbes and Rigobon, 2002). A list of different definitions is provided, for ex-

ample, by the World Bank20 and Pericoli et al. (2001). We adapt the definition of Baig and

Goldfajn (1999) and Forbes and Rigobon (2002) who define contagion as a significant in-

crease in cross-market linkage after a shock to one country or a group of countries. Forbes

and Rigobon (2002) stress that this notion of contagion excludes a constant high degree of

comovement in a crisis period. In this case, markets are just interdependent.

The definition of Forbes and Rigobon (2002) uses the term cross-market linkage as a

synonym for correlation and comovement. However, these terms describe forms of market

20http://www1.worldbank.org/contagion/definitions.html
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association that are not explicitly defined. Furthermore, they sometimes seem to be used

inflationary which is also true for transmission, interdependence and spillover. We use

precise definitions of these terms in order to describe and estimate empirical phenomena

more accurately.

Focussing on the narrow definition of Forbes and Rigobon (2002) and their test for con-

tagion, we show that results can be misleading when (i) correlations are time-varying and

not constant, (ii) heteroscedasticity is a source of contagion and (iii) the crisis period is too

short, i.e. the test does not have enough power to detect contagion.

In addition, we argue that the correlation coefficient is an inadequate measure to ana-

lyze an asymmetric phenomenon such as contagion and therefore advocate to focus on the

transmission mechanism of shocks directly.

The remainder of this part is organized as follows: Section 3.4.1 briefly discusses poten-

tial models of contagion, section 3.4.2 explains the test developed by Forbes and Rigobon

(2002) and shows that this test severely hinges on certain assumptions. Section 3.4.3 in-

troduces a test that concentrates on the transmission mechanism of shocks directly and

not on the correlation coefficient. In section 3.4.4, we also introduce a test for volatility

contagion and report empirical results for the Asian crisis in section 3.4.5. Section 3.4.6

concludes.

3.4.1 Modeling Contagion

We present two models that explain the phenomenon of contagion (i.e. increased correla-

tion in crises times) and discuss their strengths and shortcomings. A single factor model

for two markets can be written as follows (see Corsetti et al., 2001)

r1t = a1 + b1ft + u1t

r2t = a2 + b2ft + u2t

(3.22)
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where rit is the return of market i, ft is a common factor that potentially affects both

markets, uit is the error term of return i and ai, bi (for i = 1, 2) are the parameters to be

estimated. In such a framework, correlations are time-varying due to the global factor ft

if bi �= 0 (for i = 1, 2)21. There is no transmission of shocks from one market to the other.

Thus, we call this ’comovement’ which is only explained by the common factor. Contagion

when defined as increased correlation occurs when (i) the common factor increases, (ii)

the loading bi increases or (iii) the ratio of the variances of uit and ft increases (ceteris

paribus).

Another potential model of contagion is characterized by a country-specific shock that

becomes regional or global in a crisis period (see Corsetti et al., 2001). In such a setting

there is a transmission of a shock from one market to the other:

r1t = a1 + b1ft + u1t

r2t = a2 + b2ft + b3u1tDCrisis + u2t

(3.23)

Here the factor model as described by equation (3.22) is extended with the term

b3u1tDCrisis, i.e. the error term u1t transmits to the other market (r2t) in the crisis period.22

The parameter b3 captures this transmission and the dummy DCrisis ensures the shock to

be influential only in the crisis period (the dummy is equal to one in the crisis period and

zero otherwise).

Note that this model does not assume a constant transmission of shocks from one mar-

ket to the other. There is ’only’ comovement in tranquil (normal) times whereas in a crisis

period there is a transmission of an idiosyncratic shock from market 1 to market 2. Con-

21The time-varying correlation coefficient ρt in a factor model is given as follows:

ρt =
E(b1ft + u1t)E(b2ft + u2t)√
E(b2

1f
2
t + u2

1t)E(b2
2f

2
t + u2

2t)
= ... =

1√
(1 + V ar(u1t)

b21V ar(ft)
)(1 + V ar(u2t)

b22V ar(ft)
)

This expression shows that time-varying variances of ft or the idiosyncratic shocks u1t and u2t imply varia-

tion of ρ through time.

22Note that E(u1t) is not necessarily zero in the crisis period in contrast to E(u1t) for the whole period.
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tagion happens in this model if b3 is different from zero.23

In the following section, we describe and discuss the test for contagion introduced by

Forbes and Rigobon (2002) that is based on changes of the correlation coefficient in a crisis

period relative to a tranquil period. Then, we propose a test for contagion that is based on

equation (3.23) and relate this test to the Forbes and Rigobon (2002) approach.24

3.4.2 Excess comovement

Forbes and Rigobon (2002) base their test for contagion on a comparison of the cross-

market linkage during a relatively stable period (measured as a historic average) with

the linkage during a crisis period.25 They use the correlation coefficient as a measure

for the cross-market linkage. This means that linkage and correlation are viewed as an

equivalent phenomenon. Since Forbes and Rigobon do not assume any model (i.e. data-

generating process), the model could be given by equations (3.22), (3.23) or any other model

generating contagion.

Testing for contagion as proposed by Forbes and Rigobon is based on an unconditional

correlation coefficient, i.e. a constant correlation.

The null hypothesis of no contagion is H0 : ρ0 ≥ ρ1 against the alternative of contagion

(H1 : ρ0 < ρ1) where ρ0 and ρ1 stand for the unconditional correlation coefficients of the full

period and the crisis period, respectively. This approach tests whether there is increased

comovement in the crisis period compared to the full period. This increased comovement

is also referred to as excess comovement. If the comovement does not increase in a crisis
23A common notion of contagion implies that the parameter b3 is positive.
24Other testing approaches, e.g. the analysis of news spillovers (e.g. Lin et al., 1994 and Edwards, 1998),

increased probabilities of a crisis in crises times (e.g. Kaminsky and Reinhart, 1999), co-integration (e.g.

Cashin et al. 1995) and the coincidence of extreme returns (Bae et al., 2002) will not be discussed in further

detail.
25This concept was first proposed by King and Wadhwani (1990) and also used by Baig and Goldfajn (1999),

for example. We refer to the study of Forbes and Rigobon (2002) since it is the most recent and also most

general analysis of contagion in financial markets.
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Figure 3.3: Simulated Correlation process (1)

period, markets are only interdependent (see Forbes and Rigobon, 2002).

We now explain that this constant (unconditional) correlation assumption can lead to

false conclusions when correlations are not constant but time-varying in nature. We give

three different examples of how a time-varying correlation can severely bias test results

for contagion.

First, assume the correlation increases steadily in the time-period under investigation.

Averaging such a trend can lead to the non-rejection of the null hypothesis of no contagion

when the crisis period is in the beginning of the sample even if there is contagion. Figure

3.3 clarifies this point. Contrary, if there is no contagion but the crisis period is at the end

of the sample the test would falsely detect contagion.

Second, assume the correlation is constant in nature but there is a structural break.

Similar to the trend example the question whether contagion is found depends crucially

on the time location of the crisis period.

Third, if the correlation between two markets varies due to different business-cycles or

different periods of capital in- and outflows, correlations can exhibit a cyclical behavior
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with one peak or multiple extremes as depicted in figure 3.4. Again, contagion is falsely

detected depending on the assumed time of a crisis.

Given these examples, we conclude that it is crucial to assess the dynamic structure of

the correlation in such a test for contagion and that any test assuming a constant correla-

tion can lead to false conclusions. The question now is whether time-varying correlations

are an empirical regularity that would justify our argument or whether changing cor-

relations are rather a rare phenomenon. Apart from studies that explicitly test for the

constancy of correlations (see e.g. Karolyi and Stulz, 1996, Longin and Solnik, 1995, 2001,

and Tse, 2000) and find that correlations are often not constant, we additionally focus on

the fact that correlations are time-varying when the ratio of the variances of two markets

is changing over time or the regression coefficient β obtained from a regression of yt on xt

is not constant. The correlation coefficient ρ can be written as

ρ = β
σx
σy

(3.24)

where β is the coefficient of a regression of y on x and σx and σy are the standard deviations
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of x and y, respectively.26 This formulation clarifies that the correlation coefficient varies

over time if β or the ratio of the standard deviations are not constant.

Thus, we focus on the estimation of β and show empirically that the assumption of a

constant β as made by Forbes and Rigobon (2002) is too restrictive.

Alternatively27, we generate two random variables with a constant correlation (ρ = 0.5)

and time-varying volatilities with randomly chosen intervals of potential contagion. In

simulations with 1000 iterations, we find that correlations vary with a standard devia-

tion of 0.50 around its mean (ρ = 0.5) although the random variables exhibit a constant

correlation.

In addition, there are other potential shortcomings of the concept proposed by Forbes

and Rigobon (2002). First, the fact that the correlation coefficient is biased in high volatil-

ity regimes and the correction for this bias (see Appendix and Forbes and Rigobon, 2002

and Boyer et al., 1999) can be misleading if volatility is an important factor of contagion

(see Baig and Goldfajn, 2000). Second, short crisis periods can lead to a test statistic with

low power considerably affecting test results (see Dhungey and Zhumabekova, 2001).28

The third and more general shortcoming is the use of the correlation coefficient which is

a symmetric measure, i.e. both series (markets) are affected equally by each other. We

argue that it is more adequate to model contagion in an asymmetric way since a virus is

transmitted from one subject to another not in a symmetric way. Bae et al. (2002) also

argue that the correlation coefficient is a linear measure and therefore not suitable given

that contagion is probably a non-linear phenomenon. In the next section, we advocate the

use of a different concept for contagion that eliminates these shortcomings.

26This formulation can be derived from the following formulas for ρ and β: ρ =
σxy
σxσy

where σxy is the

covariance of x and y and the regression coefficient is β =
σxy
σ2
x

27See Appendix for details.
28Own simulations confirm this finding (see Appendix for further details).
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3.4.3 Mean Contagion

We base our test on a modified model by Corsetti et. al (2001) where a shock in one market

becomes a regional or global shock in that it affects at least one other market. Since the

original model does not capture any change in the transmission mechanism beyond the

transmission which is expected in normal times, we modify the model and allow for a

change in the transmission mechanism during a crisis period relative to a tranquil period.

The model can be written in the following form:

r1t = u1t

r2t = µ2 + b1r1t + b2r1tDCrisis + u2t

(3.25)

where the parameter µ2 is the mean, the parameter b1 captures the normal effect (trans-

mission) of shocks from one market (r1) to the other market (r2) and the parameter b2

indicates whether there is an additional effect (beyond what is normally expected) in a

particular crisis period (DCrisis is a dummy variable that is equal to one in the crisis pe-

riod and zero otherwise). The common factor ft in equation (3.23) is substituted by the

return r1t. Thus, the parameter b1 measures the comovement of the two markets under

investigation caused by common global (regional) shocks and country-specific shocks. Con-

sequently, the parameter b2 measures the change of this comovement.29

The parameter b1 does not necessarily measure an asymmetric relationship since r1t

cannot be assumed to be exogenous. On the contrary, we assume that shocks originating

in the crisis country (r1t) within the crisis period are exogenous. This is not a strong

assumption if the crisis period is confined to a short period of time.

It is obvious that the above model does not distinguish between global and country-

specific shocks. The return shocks contain global (regional) and country-specific shocks.

29The term b2r1tDCrisis does not only account for the change in the comovement but does also avoid a bias

of b1 if the crisis period contains outliers or constitutes a structural break.
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The model given by equations (3.25) can be estimated within a multivariate framework

by the Maximum-Likelihood (ML) method or by Ordinary Least Squares (OLS). Time-

varying variances (e.g. a GARCH process) can also be included by using the ML method.

The null hypothesis of a test for contagion is that there is no increased transmission of

shocks from one market to the other in the crisis period: H0 : b2 ≤ 0 against the alternative

hypothesis H1 : b2 > 0. A positive parameter b2 can be viewed as excess transmission of

shocks in the crisis period. In addition, H0 tests the assumption whether the regression

coefficient β is constant. Note that this assumption is made by Forbes and Rigobon (2002)

and crucial for their results.

The test based on a regression model is superior to the concept based on the correla-

tion coefficient proposed by Forbes and Rigobon (2002) in various respects: (i) the question

whether the correlation coefficient varies and the associated problems need not be consid-

ered since we focus on the transmission mechanism (the regression coefficient β) directly,

(ii) the test is more conservative than the Forbes and Rigobon test (see simulations in the

Appendix) and (iii) this approach can explain contagion by shocks that transmit from one

market to the other, i.e. it does model contagion in an asymmetric way.

The next section extends the regression based concept to volatilities since an increased

variance of shocks can be contagious per se.

3.4.4 Volatility Contagion

Volatility contagion can be derived from the analysis of the body temperature of a human

being during an illness accompanied by fever. In this case, not only the body temperature

increases but also its volatility. A typical evolution of the temperature is depicted in figure

3.5. It shows that (i) volatility increases considerably and that (ii) the period of increased

volatility can clearly be separated from the normal period (non-illness period). For finan-
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Figure 3.5: Volatility Contagion

cial time series one can think of an equivalent phenomenon: In times of increased uncer-

tainty or around crises periods, volatility increases and can be distinguished from normal

(less volatile) times. This analogy also matches the stylized fact of volatility clustering.

The notion of volatility contagion is closely related to the spillover literature (e.g. Chak-

rabarti and Roll, 2002, Edwards, 1998, Lin et al., 1990, Hamao et al., 1990 and King

and Wadhwani, 1990 among others). Edwards (1998) tests for volatility contagion in the

following framework:

yt = ut = zt
√
ht

ht = a + bu2
t−1 + cht−1 + dXt−1

(3.26)

where yt is the time-series under investigation, zt is a normally distributed random vari-

able with mean zero and variance one and ht is the conditional volatility of yt. This typical

GARCH(1,1) specification is extended by an exogenous regressor Xt−1 that can be any

variable that affects the volatility. If this exogenous variable has any significant effect on

the conditional volatility, there is evidence of volatility contagion or a volatility spillover

(see Edwards, 1998, page 9 and Chakrabarti et al., 2002, page 7). Obviously, this literature
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does not distinguish between (volatility) contagion and (volatility) spillover.30 However, we

argue that there is a difference between a spillover and contagion: A volatility spillover

(correlation in volatility) is a shock that transmits from one market to the other at every

time t. In contrast, volatility contagion is an effect which changes the commonly observed

volatility spillover (correlation in volatility) during a particular period of time. This notion

of contagion is essentially consistent with our definition of mean contagion.

Thus, the model capable of detecting volatility contagion as defined here is given as

follows:

r2t = u2t = z2t

√
h2t

h2t = a0 + b0u
2
2t−1 + c0h2t−1 + d1r

2
1t−1 + d2r

2
1t−1DCrisis,t−1

(3.27)

where r2t is the return under investigation. The conditional variance h2t is a GARCH(1,1)

model with two additional regressors. The first regressor captures the volatility spillover

commonly observed (r2
1t−1) and the second regressor reveals any departure from the normal

volatility spillover in the crisis period (DCrisis,t−1 is equal to one in the crisis period and

zero otherwise).

Analogously to the effects of mean contagion, it is also possible that volatility does not

increase in the crisis period but decreases. However, allowing the parameter d2 to be

negative would risk a negative volatility in the estimation process of the GARCH model.

To avoid this problem, we make use of the exponential GARCH (EGARCH) model (see

Nelson, 1991) in which it is not necessary to restrict the parameters to be non-negative.

The EGARCH model is given as follows:

r2t = u2t

h2t = exp(c + θz2t−1 + γ (|z2t−1| − E(|z2t−1|)) + δlog(h2t−1) + d1r
2
1t−1+

+ d2r
2
1t−1DCrisis,t−1)

(3.28)

30Furthermore, this literature does not distinguish between volatility spillover and correlation in volatility

as proposed in previous sections.
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The parameters to be estimated are a0, b0, c0, d1 and d2. The null hypothesis of no

volatility contagion is H0: d2 ≤ 0 against the alternative hypothesis H1 : d2 > 0.

Since a shock coming from another market can have contagious effects on the mean

of the return (first moment) and also on the variance of this return (second moment), we

model both effects simultaneously.

The full model is given as follows:

r2t = µ2 + b1r1t + b2r1tDCrisis + u2t

h2t = exp(c + θz2t−1 + γ (|z2t−1| − E(|z2t−1|)) + δlog(h2t−1) + d1r
2
1t−1+

+ d2r
2
1t−1DCrisis,t−1)

(3.29)

This model is different from equation (3.28) only in the mean equation where the trans-

mission of shocks and its crisis behavior is also modeled.

Empirical results are presented in the following section.

3.4.5 Empirical Results

We use daily (close-to-close) continuously compounded stock index returns of eleven Asian

stock markets31: China, Hong Kong, India, Indonesia, Japan, South Korea, Malaysia,

Philippines, Singapore, Taiwan and Thailand. The indices span a time-period of 4 and a

half years from April 30th, 1997 until October 30th, 2001. The number of observations is

T = 1176. All indices are denominated in US dollar. Table 3.19 presents the descriptive

statistics for the stock market returns. Tables 3.20 and 3.21 present the unconditional

correlations for the whole sample and the crisis periods in Hong Kong and in Thailand,

respectively.

Empirical results for mean and volatility contagion based on equations (3.25) during

the Hong Kong crisis are presented in table 3.22. The crisis period is October 17th until
31The data is provided by Morgan Stanley Capital International Inc. (MSCI) and can be retrieved under

www.mscidata.com
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Table 3.19: Descriptive Statistics (Asian Markets)
Country median mean std dev min max skewness kurtosis autocorr

China -.0012658 -.0014264 .0266808 -.1444192 .1274350 .1332843 5.758194 0.1563

Hong Kong .0000065 -.0003807 .0219682 -.1377221 .1600540 .1766766 9.637965 0.0324

India .0000000 -.0002875 .0188786 -.0732472 .0782044 -.1556417 4.724459 0.0933

Indonesia -.0011408 -.0018711 .0448212 -.4306072 .2381204 -.7614149 16.392310 0.1307

Japan -.0008902 -.0002562 .0165281 -.0715819 .1227236 .4743118 6.538290 0.0203

Korea -.0001647 -.0001964 .0359397 -.2166640 .2688081 .3417927 9.596132 0.1056

Malaysia -.0008460 -.0008494 .0308228 -.3695134 .2568147 -.5732581 32.532380 0.0868

Philippines -.0008455 -.0012681 .0215515 -.1035550 .2118705 1.2705870 16.081110 0.2181

Singapore -.0005161 -.0006736 .0206082 -.1002934 .1551547 .5024695 8.756342 0.1483

Taiwan -.0009461 -.0007620 .0203578 -.1112802 .0738537 -.0055746 5.252786 0.0391

Thailand -.0012523 -.0013319 .0294436 -.1488675 .1644259 .6388479 7.172669 0.1638

Table 3.20: Correlations (Asian Markets)
CHN HON INA IND JAP KOR MAL PHI SIN TAI THA

China 1.00

Hong Kong 0.60 1.00

India 0.18 0.21 1.00

Indonesia 0.26 0.35 0.10 1.00

Japan 0.28 0.36 0.15 0.21 1.00

Korea 0.25 0.29 0.19 0.17 0.26 1.00

Malaysia 0.27 0.31 0.11 0.33 0.23 0.20 1.00

Philippines 0.31 0.37 0.14 0.38 0.22 0.21 0.26 1.00

Singapore 0.44 0.61 0.17 0.46 0.38 0.26 0.39 0.44 1.00

Taiwan 0.23 0.26 0.12 0.18 0.19 0.20 0.18 0.18 0.28 1.00

Thailand 0.31 0.38 0.17 0.38 0.25 0.31 0.37 0.40 0.48 0.23 1.00

Table 3.21: Crises correlations (Asian Markets)
CHN HON INA IND JAP KOR MAL PHI SIN TAI THA

Hong Kong 0.60 1.00 0.21 0.35 0.36 0.29 0.31 0.37 0.61 0.26 0.38

Hong Kong Crisis 0.81 1.00 0.10 0.63 0.47 0.18 0.58 0.67 0.79 0.11 0.01

Thailand 0.31 0.38 0.17 0.38 0.25 0.31 0.37 0.40 0.48 0.23 1.00

Thailand Crisis -0.03 0.02 0.19 0.24 0.03 0.25 0.28 0.24 0.14 0.16 1.00
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November 17th, 1997 (see Forbes and Rigobon, 2002).

Table 3.22: Mean and Volatility Contagion (Hong Kong Crisis)
c γ θ δ µ2 b1 b2 d1 d2

China 0.10174 0.30943 -0.076752 0.71659 -0.13619 0.77365 -0.19461 0.015031 -0.010849
( 0.77477 ) ( 4.1096 ) ( -2.3721 ) ( 6.6458 ) ( -2.2994 ) ( 21.917 ) ( -3.2474 ) ( 2.9304 ) ( -2.3926 )

India -0.081655 0.27026 -0.099753 0.88191 0.046420 0.20106 -0.14924 0.00077691 -0.00085451
( -1.8637 ) ( 6.5139 ) ( -3.3056 ) ( 27.375 ) ( 0.93839 ) ( 7.0404 ) ( -3.4153 ) ( 0.32479 ) ( -0.32971 )

Indonesia -0.073562 0.24892 -0.068447 0.95136 -0.12802 0.38009 0.18738 C 0.0043056 -0.0034404
( -1.6984 ) ( 2.1948 ) ( -2.3890 ) ( 27.533 ) ( -1.5155 ) ( 5.4939 ) ( 1.1114 ) ( 1.1031 ) ( -0.99744 )

Japan -0.063601 0.10038 -0.053620 0.97087 -0.052726 0.26759 -0.082709 0.0018866 -8.7079e-005
( -2.5647 ) ( 3.3229 ) ( -2.5258 ) ( 70.950 ) ( -1.2206 ) ( 9.6129 ) ( -1.3846 ) ( 1.7673 ) ( -0.062903 )

Korea -0.051907 0.089199 -0.027907 0.98967 -0.024912 0.56473 -0.54548 0.00094654 0.0022297 C
( -2.1093 ) ( 2.7987 ) ( -2.0001 ) ( 237.94 ) ( -0.33216 ) ( 9.6875 ) ( -2.3929 ) ( 1.0538 ) ( 1.9735 )

Malaysia -0.10456 0.15453 -0.054406 0.98223 -0.033209 0.26680 0.14400 C 0.0055116 -0.0040969
( -4.6793 ) ( 5.9750 ) ( -2.7546 ) ( 105.19 ) ( -0.66569 ) ( 6.3751 ) ( 1.3576 ) ( 2.5952 ) ( -2.1005 )

Philippines -0.073043 0.14487 -0.11401 0.95842 -0.12160 0.27739 0.042211 C 0.0048123 -0.0043817
( -1.2663 ) ( 1.5711 ) ( -3.8996 ) ( 55.504 ) ( -2.1761 ) ( 5.8951 ) ( 0.42018 ) ( 2.9207 ) ( -2.8735 )

Singapore -0.033307 0.050437 -0.064581 0.96213 -0.078554 0.51781 -0.082064 0.0057966 -0.0036485
( -0.64514 ) ( 0.63290 ) ( -2.4592 ) ( 35.359 ) ( -1.9273 ) ( 16.141 ) ( -1.1234 ) ( 2.0231 ) ( -1.5833 )

Taiwan -0.026239 0.10935 -0.087414 0.95723 -0.098633 0.26104 -0.13553 -0.00048356 -0.00014907
( -0.96222 ) ( 2.3624 ) ( -3.4363 ) ( 39.349 ) ( -1.8258 ) ( 8.7262 ) ( -0.95736 ) ( -0.41834 ) ( -0.12056 )

Thailand -0.063445 0.16277 -0.020449 0.94978 -0.13973 0.50910 -0.33007 0.0068014 -0.0035349
( -1.7061 ) ( 2.2294 ) ( -1.0058 ) ( 40.124 ) ( -2.1297 ) ( 10.898 ) ( -2.0286 ) ( 3.4421 ) ( -1.9133 )

r1t(Hong Kong) = u1t

r2t(Country)i = µ2 + b1r1t + b2r1tDCrisis + u2t

h2t(Country)i = exp
(
c + θz2t−1 + γ(|z2t−1| − E(|z2t−1|)) + δlog(h2t−1) + d1r

2
1,t−1 + d2r

2
1,t−1DCrisis,t−1

)

Crisis origin is Hong Kong and the crisis period is October 17th, 1997
until November 17th, 1997
t-values in parenthesis
C denotes contagion in mean or volatility

Table 3.23 presents results based on the same model only alternatively assuming that

the crisis origin is the Thailand stock market. We assume the crisis period to begin on

July 2nd and to last until September 2nd, 1997 (approximately one month before the Hong

Kong crisis occurs).

Figure 3.6 is a plot of the prices of the first 180 trading days for all Asian markets.32 The

common downward movement is especially evident for the period after t = 60 (Thailand

crisis) and for the period around t = 130 (Hong Kong crisis).

Estimation results of mean contagion for the Hong Kong crisis (table 3.22) indicate that

the transmission mechanism of shocks (parameter b2) is not constant for most countries.

Results show that there is a decreasing transmission mechanism of shocks for China, In-

dia, Japan, Korea, Singapore, Taiwan and Thailand. An increase in the transmission

mechanism of shocks from Hong Kong to the other markets can be found for Indone-

32The initial prices are set to 100 in order to show the common evolution of the prices.
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Table 3.23: Mean and Volatility Contagion (Thailand Crisis)
c γ θ δ µ2 b1 b2 d1 d2

China 0.020874 0.24077 -0.10694 0.87642 -0.16861 0.27582 -0.30553 0.0011605 0.0077967 C
( 0.19941 ) ( 1.7717 ) ( -3.6345 ) ( 7.5288 ) ( -2.4150 ) ( 5.720 ) ( -3.4251 ) ( 0.70761 ) ( 1.7313 )

Hong Kong -0.065238 0.21464 -0.10776 0.90760 -0.067618 0.27182 -0.41820 0.0018403 -0.0014799
( -1.5169 ) ( 6.0388 ) ( -3.2571 ) ( 20.550 ) ( -1.3447 ) ( 10.784 ) ( -7.4516 ) ( 1.1310 ) ( -0.33263 )

India -0.028248 0.24706 -0.11007 0.87505 0.0027945 0.076066 -0.012966 -0.0018628 -0.0041274
( -0.50308 ) ( 5.7332 ) ( -3.4726 ) ( 22.430 ) ( 0.056166 ) ( 4.2038 ) ( -0.21706 ) ( -1.4909 ) ( -1.1994 )

Indonesia -0.060750 0.34592 -0.10096 0.91557 -0.17247 0.38437 -0.29925 0.0025752 -0.0062681
( -0.92418 ) ( 4.1993 ) ( -3.0227 ) ( 27.816 ) ( -1.8982 ) ( 7.6645 ) ( -3.1314 ) ( 1.5828 ) ( -1.1688 )

Japan -0.092533 0.15883 -0.057212 0.96071 -0.051183 0.13332 -0.072198 0.00057673 -0.0023068
( -3.5875 ) ( 5.1582 ) ( -2.3963 ) ( 48.247 ) ( -1.1556 ) ( 6.7664 ) ( -7.3278 ) ( 0.84305 ) ( -1.0867 )

Korea -0.014660 0.14526 -0.078655 0.95004 -0.061823 0.38369 -0.39227 0.0023418 -0.012180
( -0.38122 ) ( 3.3534 ) ( -3.4070 ) ( 46.588 ) ( -4021.8 ) ( 8.5932 ) ( -6.1362 ) ( 2.3521 ) ( -2.7322 )

Malaysia -0.11512 0.17297 -0.061342 0.99031 0.052216 0.21801 -0.25209 0.00098919 -0.00014449
( -4.9391 ) ( 6.7283 ) ( -2.8060 ) ( 96.991 ) ( 0.82521 ) ( 7.1143 ) ( -4.0029 ) ( 0.96012 ) ( -0.063537 )

Philippines -0.13035 0.29811 -0.15266 0.89146 -0.10644 0.27278 -0.24507 0.0039714 0.0044827 C
( -2.9880 ) ( 3.2415 ) ( -3.3618 ) ( 12.624 ) ( -2.2840 ) ( 6.2695 ) ( -2.7000 ) ( 1.2977 ) ( 0.68572 )

Singapore -0.10882 0.22241 -0.084153 0.91480 -0.058604 0.27830 -0.33945 0.0028419 0.00022997 C
( -2.9058 ) ( 2.9752 ) ( -3.5965 ) ( 16.630 ) ( -1.2915 ) ( 11.441 ) ( -7.3151 ) ( 1.2672 ) ( 0.052197 )

Taiwan -0.0084177 0.099611 -0.10030 0.95178 -0.068903 0.16379 -0.056934 -0.00095753 0.0017585 C
( -0.28852 ) ( 2.2818 ) ( -4.4087 ) ( 50.880 ) ( -1.2419 ) ( 7.5196 ) ( -1.1774 ) ( -2.3108 ) ( 1.3035 )

r1t(Thailand) = u1t

r2t(Country)i = µ2 + b1r1t + b2r1tDCrisis + u2t

h2t(Country)i = exp
(
c + θz2t−1 + γ(|z2t−1| − E(|z2t−1|)) + δlog(h2t−1) + d1r

2
1,t−1 + d2r

2
1,t−1DCrisis,t−1

)

Crisis origin is Thailand and the crisis period is July 2nd, 1997
until September 2nd, 1997
t-values in parenthesis
C denotes contagion in mean or volatility

sia, Malaysia and the Philippines. The increase is close to 50 percent for Indonesia and

Malaysia and approximately 20 percent for the Philippines. The total transmission (b̂1+b̂2)

of shocks is close to zero for India and Korea which could be interpreted as immunity to

shocks originating in Hong Kong.

Volatility contagion (parameter d2) can only be found for Korea. Interestingly, the

volatility transmission decreased in all other countries in the crisis period. However, a

decreased volatility transmission does not necessarily imply lower volatility.

The results for a crisis assumed to originate in Thailand can be summarized as follows:

the transmission mechanism (table 3.23) is not constant in the crisis period for all coun-

tries except India and Taiwan. Again, there are countries that can be viewed to be isolated

from shocks coming from Thailand in the crisis period which can be assessed by the total

transmission (b1 + b2) of shocks. Here, China and Korea exhibit values of b1 + b2 close to

zero. For Hong Kong, Malaysia and Singapore the total transmission is clearly negative in

the crisis period.
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Figure 3.6: Asian markets, first 180 trading days

Volatility contagion can be found for China, the Philippines, Singapore and Taiwan.

Different results for mean and volatility contagion are not surprising since an increased

effect of shocks to the mean of a return does not necessarily need to increase the impact on

the volatility and increased shocks to the volatility do not need to increase the influence

on the underlying returns.

Summarizing the results reveals that there is mean and volatility contagion during the

Asian crisis. In addition, the assumption of a constant transmission mechanism must be

rejected for almost all countries.

The finding of mean and volatility contagion is counter to the results obtained by Forbes

and Rigobon (2002) who find contagion for the Hong Kong crisis in Indonesia, Korea and

the Philippines only for an unadjusted correlation coefficient. Using the adjusted correla-

tion coefficient proposed by Forbes and Rigobon, no contagion is found in any Asian market

analyzed.

The remaining question is now whether the degree of interdependence influences the
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degree of contagion. Since this issue is closely related to the medical sciences, the following

example aims to clarify the relation between interdependence and contagion.

A disease affecting a human being can only be contagious by direct or indirect contact

with the disease. Thus, the disease can only be transmitted from one person to another

if their existence is interdependent to some extent, e.g. they live or work together. In

analogy to this, it would be natural to assume that contagion among financial markets

depends on the degree of interdependence (e.g. measured by the correlation coefficient or

the transmission mechanism). In particular, the higher the interdependence, the higher

the contagious effect and the lower the interdependence, the lower the contagious impact.

However, the empirical results do not support such a hypothesis. High exposures to shocks

in normal times do not have any systematic influence on the occurrence or the degree of

contagion in crises times.

3.4.6 Conclusions

We have argued that existing tests for contagion based on the correlation coefficient can

lead to false conclusions if the correlation is changing over time, the crisis period is too

short or volatility is a factor of contagion per se.

Empirically, we find that the transmission mechanism of shocks to the mean is not

constant and mainly decreases in the crisis period relative to a tranquil period. This is

also true for the transmission of volatility which is not constant and often decreases in the

crisis period.

Whereas mean contagion is more frequent in the Hong Kong crisis, volatility contagion

is more common in the Thailand crisis period. These findings suggest that markets first

transmitted volatility within the months before the Hong Kong crisis and then started to

transmit shocks also to the mean making the Hong Kong crisis more severe.
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Future research could focus on the investigation of the decreasing transmission mecha-

nism since even a lower percentage of raw shocks coming from another market in a crisis

period can cause contagion if the magnitude of these shocks increases considerably.
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3.4.7 Appendix

3.4.7.1 Simulations: Correlations are time-varying

We transform two independent, normally distributed random variables z1 and z2 to two

variables that exhibit a constant correlation (ρ = 0.5) and changing volatilities generated

with a GARCH(1,1) process (hi,t = 0.01 + 0.05ε2i,t−1 + 0.90hi,t−1 for i = 1, 2):


 ε1t

ε2t


 = (DtRDt)−1/2


 z1t

z2t


 (3.30)

where Dt is a diagonal (2 × 2) matrix with the root of the conditional variances on the

diagonal and R is given as follows:

R =


 1 0.5

0.5 1


 (3.31)

Due to the changing volatilities the series ε1t and ε2t do not exhibit a constant correlation

if short subperiods (i.e. crisis periods) are analyzed. Simulations with randomly selected

intervals of 2.5 percent of the full period (T=1000) show that correlations vary with a

standard deviation of 0.50 around its mean (ρ = 0.5).

3.4.7.2 Simulations: Contagion Tests

According to the data length that is commonly used (e.g. see Forbes and Rigobon, 2002) we

simulate the return series with T = 500 and T = 1000. The beginning of the crisis period

is randomly chosen within the full period every run of the simulation. The length of the

crisis period is assumed to be 2.5 (as in Forbes and Rigobon, 2002 for example), 5 and 10

percent of the full period (T ).
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Table 3.24: Simulation Results - Contagion Tests
percent of rejection (t = 500)
crisis period 0.025T 0.05T 0.10T

b2 b2 ≤ 0 BG� FR�� b2 ≤ 0 BG FR b2 ≤ 0 BG FR

0.0 0.099 0.314 0.296 0.095 0.380 0.366 0.106 0.411 0.394
0.1 0.125 0.447 0.430 0.134 0.559 0.542 0.181 0.664 0.651
0.2 0.186 0.570 0.555 0.263 0.730 0.718 0.389 0.841 0.833
0.3 0.274 0.682 0.671 0.435 0.847 0.841 0.636 0.941 0.940

percent of rejection (t = 1000)
crisis period 0.025T 0.05T 0.10T

b2 b2 ≤ 0 BG FR b2 ≤ 0 BG FR b2 ≤ 0 BG FR

0.0 0.105 0.383 0.365 0.101 0.412 0.397 0.106 0.439 0.421
0.1 0.144 0.559 0.544 0.184 0.672 0.660 0.247 0.776 0.767
0.2 0.260 0.727 0.717 0.404 0.854 0.846 0.591 0.940 0.938
0.3 0.442 0.849 0.844 0.668 0.948 0.947 0.871 0.990 0.990

� Baig and Goldfajn (1999)
�� Forbes and Rigobon (2002)

10.000 runs
r1t = u1t

r2t = 0.25u1t + b2u1tDCrisis + u2t

level of significance is 5 percent
Note that estimates of b2 are unbiased (estimates are not tabulated)

The data-generating process is as follows:

r1t = u1t

r2t = b1u1t + b2u1tDCrisis + u2t

(3.32)

where uit = zit
√
hit for i = 1, 2 and zit ∼ N(0, 1) and hit = 0.01 + 0.05u2

it−1 + 0.9hit−1 is the

conditional variance of series i. Thus, the returns r1 and r2 exhibit time-varying variances

and are correlated through the transmission of shocks from market 1 to market 2.

To assess the power of the contagion test, we compute a scenario with no contagion

(b1 = 0.25, b2 = 0) and with contagion (b2 = 0.1, 0.2, 0.3). The level of significance is 5

percent.

We also compute the test proposed by Forbes and Rigobon for this model in its un-

conditional (corrected for heteroscedasticity) and in its conditional (not corrected for het-

eroscedasticity) version. Simulation results are presented in table 3.24.
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Simulations of 10.000 runs (only the mean equations are estimated) show some inter-

esting results: (i) the test proposed by Forbes and Rigobon falsely rejects the null hypoth-

esis of no contagion (type-1 error) in approximately 40 percent of all simulation runs. The

approach based on the transmission mechanism only leads to a type-1 error in less than

10 percent, (ii) the Forbes Rigobon test (also the Baig and Goldfajn approach) have very

low power for short crises periods (2.5 and 5 percent of the total number of observations)

(see also Dhungey and Zhumabekova, 2001). Note that the low power is also a regularity

for the concept based on the transmission mechanism. However, estimates are unbiased

which means that conclusions need not to be based on the t-values as this is necessary for

the Baig and Goldfajn (1999) and the Forbes and Rigobon (2002) test procedure.

3.4.7.3 Correction for heteroscedasticity

Dividing a given sample into two sets so that the variance of xt is lower in the first group

(l) and higher in the second group (h), Forbes and Rigobon (2002) define the following

correlation coefficients ρh and ρl:

ρh =
σhxy
σhxσ

h
y

(3.33)

ρl =
σlxy
σlxσ

l
y

(3.34)

Defining 1 + δ =
σhxx
σlxx

, the following formula is obtained:

ρh = ρl

√
1 + δ

1 + δ(ρl)2
(3.35)

A simple example

Assume the following volatilities in the high and low variance regime for x: σhxx = 0.2 and

σlxx = 0.1

This yields 1 + δ = 0.2
0.1 = 2 and δ = 0.2

0.1 − 1 = 1.

Also assume that the volatility of y is the same in both regimes (σhyy = σlyy = 0.1) and that
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the covariances for the low variance regime and the high variance regime are σlxy = 0.05

and σlxy = 0.1. Thus, we get the following correlation coefficients for the two different

regimes:

ρl = 0.05/(
√

0.1 · 0.1) = 0.5 and ρh = 0.1/(
√

0.2 · 0.1) = 0.71

However, the corrected correlation coefficient is given by

ρh
�

= 0.5

√
2

1 + 1 · 0.52
= 0.63

which is clearly smaller.
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Chapter 4

Concluding Remarks

The subject of this study is the econometric modeling and estimation of interdependent

relations among financial markets.

The first part of this work is a discussion of univariate GARCH models that describe

the empirical regularities of volatility clustering and the persistence of volatility. It is

also discussed whether volatility reacts asymmetrically to positive and negative shocks.

Finally, a graphical approach to visualize the persistence and the asymmetry of volatilities

is described and evaluated.

The second part is an extension of univariate GARCH models to multivariate GARCH

models that provide time-varying volatility estimates and also time-varying covariance

and correlation estimates. These correlations are measures of symmetric interdependen-

cies of the returns of two markets. The analysis of the persistence and the asymmetry of

the time-varying correlations is essentially not different to an investigation of these char-

acteristics for volatilities in econometric terms. However, in comparison to the existence

of economic explanations for the findings of persistent and asymmetric reactions of condi-

tional volatilities, there is no generally accepted interpretation regarding the persistence

or the asymmetry of time-varying correlations. It is also important to emphasize that the

analysis of the asymmetry of time-varying correlations focusses on different effects be-
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tween simultaneously negative and simultaneously positive shocks. It does not analyze

asymmetries of the influence of shocks of different financial markets on their conditional

correlations.

The third part extends the analysis of interdependence in two ways: First, interdepen-

dence is modelled in an asymmetric form and second, not only the dependence of returns is

examined but also their volatilities. The last part of this work discusses theoretical models

of contagion and introduces appropriate estimation frameworks to analyze whether there

is increased interdependence in financial crises or not.

The discussion of the multivariate GARCH models shows that the existing models de-

pend on rather strong restrictions to guarantee well-defined results. These strong restric-

tions suggest that future research is still necessary and that other measures of dependence

should also be considered. The correlation coefficient cannot only be viewed as a problem-

atic measure due to the difficulties associated with the estimation of multivariate GARCH

models, it is also problematic that the correlation coefficient is a linear measure which

is not necessarily adequate for all possible market reactions. Furthermore, although the

knowledge of the relation between correlations and volatilities is very important for the

theory of finance, the results obtained so far provide only mixed evidence.

The analysis of spillovers as carried out in this study is mainly an investigation of

shock transmissions without the examination of the source of these shocks. It is implicitly

assumed that the spillovers originate in one of the (two) markets under investigation. In

order to obtain more results regarding the functioning of the financial system and the

processing of (global) information, it is necessary to extend the number of markets under

investigation and to model the interaction of all these markets simultaneously. The last

section of the third chapter points in this direction but is only an initial step to reach this

goal. This section has further shown that the correlation coefficient is an inappropriate
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measure to describe forms of co-relation or comovement for short periods of time or periods

of increased volatility.

In the introduction, we raised questions regarding the adequate architecture of the fi-

nancial system. The last section showed that interdependence can have negative impacts

on the markets involved in periods of financial turmoil or stress. The finding that negative

shocks and increased volatility are transmitted from some countries to other countries is

a logical result of interdependence. Thus, the analysis of the degree of interdependence is

the basis for further investigations regarding the question whether the degree of interde-

pendence can or should be reduced in certain periods of time without causing persistent

harm to the functioning of financial markets in other periods of time, e.g. periods of aver-

age volatility.

Moreover, it could be interesting to investigate and measure the degree of interdepen-

dence not only between pairs of countries but also for many countries simultaneously. It

is well possible that the degree of interdependence is too high between some countries and

much too low between other countries resulting in a non-optimal equilibrium. The degree

of interdependence could be explained with the degree of diversified portfolios that are

held by investors. High interdependence between a given number of markets can be due

to the high diversification between these markets but also due to the low diversification

with other countries.

Unfortunately, the econometric focus of this study did not provide the scope to discuss

theoretical explanations for interdependence and its consequences in more detail. How-

ever, the study made clear that the estimation of the evolution of the interdependence of

financial markets is an essential stage in order to approach theoretical solutions to this

problem and to draw policy related conclusions.
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