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Abstract

The polychoric correlation is an ML estimator for the correlation parameter between two

latent variables. Each latent variable is only observed as an ordered categorical indicator.

This estimator is based on an assumption on the joint distribution for the latent variables

which in this case is the bivariate standard normal distribution. We perform a simulation

study applying the polychoric correlation based on normality if the true distribution is in

fact an elliptically symmetric distribution. The results show that the polychoric correlation

is robust in the sense that the true correlation between the latent variables is estimated only

with small bias if the true distribution is not too leptokurtic and also not too platykurtic.

These results imply that in practical applications the polychoric correlation can be applied

obtaining meaningful results even if tests suggest that the assumed normal distribution is

not appropriate. Basically the same results are obtained if one latent variable is observed

directly and the ML-estimator based on normality (polyserial correlation) is applied.
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1 Introduction

Business surveys or household surveys are often designed to obtain information on continuous

variables which are hard to quantify exactly. Therefore, the questionnaire supplies ordered

categorical answers like income categories, tendencies of change, degree of likes or dislikes, or

degree of satisfaction. The scale of those variables is problematic if they ought to be used

as explanatory variables in a regression analysis. One suggestion to deal with these ordinal

data is to assume an underlying latent variable for each categorical indicator. This idea is

widespread in various branches of applied statistical analysis like microeconometrics, biometrics,

and psychometrics where ordinal data often occur.

The estimation of the linear dependency between two latent continuous variables, for which

only ordered categorical observations are available, has a long tradition. Karl Pearson (1901)

introduced this idea for a two-by-two contingency table. For each dichotomous indicator he

assumed an underlying unobservable continuous variable. The latent continuous variables are

assumed to jointly follow a standard bivariate normal distribution. The four frequencies of

the two-by-two contingency table are used to estimate the correlation parameter of the latent

continuous model. Pearson called this estimator tetrachoric correlation.

The bivariate normality assumption has two attractive properties: Firstly, the correlation is

equal to the only parameter entering the standard bivariate normal distribution. Secondly, the

regression of one variable on the other is linear and the regression parameter is equal to the

correlation coe�cient. This implies, especially in an econometric setting, that we can formulate

a latent linear regression model, where the dependent variable and also the explanatory variable

are measured categorically, and that we can obtain the regression parameter by estimating the

parameter of the joint distribution.

Further development of this idea is closely related to advances in computing power. Tallis (1962)

described the ML-estimation of the correlation parameter between the latent variables using two-

by-two and also three-by-three contingency tables. The method involves iterative procedures to

obtain the ML-estimate. Olsson (1979) extended the ML-estimation for general r�s contingency

tables. Hamdan (1970) showed the equivalence of Pearson's tetrachoric correlation and Tallis'

ML-estimator in the two-by-two case. The ML-estimator is usually called polychoric correlation.

Analogously, in a multivariate setting, where for each latent variable an ordinal indicator is

observable, a standard multivariate normal distribution is assumed to estimate the correlation
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matrix using the multiway contingency table (Poon and Lee, 1987, Kukuk, 1991). This latent

model is attractive since the marginal distribution of a subset of latent variables given the others is

again normal with conditional means being linear functions of the given variables. The regression

parameters are again functions of the correlation matrix coe�cients of the joint model. However,

the calculation of probabilities for multivariate normal distributions is still a large computational

burden and even intractable for higher dimensions. Kukuk (1991) performed some Monte-Carlo

studies and showed that the e�ciency loss of estimating the correlation matrix in a pair-wise

fashion is negligible.

The distributional assumption for the latent variables can generally be tested using Pearson's

X2 test (Kukuk, 1991). In practical applications this assumption is often rejected (Kukuk,

1994). Therefore, Lee and Lam (1988) suggested ML-estimates using members of the elliptical

distribution class containing the normal distribution as well as multivariate t-distributions. The

problem is that the distribution has to be determined in advance in order to estimate the model.

However, their simulation results indicate that applying the normality assumption in the estima-

tion procedure although the latent variables follow a bivariate t-distribution leads to surprisingly

small biases. Our focus is to investigate more members of the elliptical distribution class. Two

subclasses are considered: �rstly, the Kotz-type, where the multivariate normal distribution is

a special case, and secondly the Pearson-type VII distributions, where the multivariate Cauchy

distribution and t-distributions are special cases (Fang et al., 1990).

The multivariate elliptically symmetric distributions play an important role in another branch of

microeconometrics. That research is concerned with generalizing results that binary dependent

variable models, incorrectly estimated with OLS, still obtain (up to a scalar) consistent parameter

estimates (e.g. Ruud, 1986, Stoker, 1986). The regressor variables are assumed to follow an

elliptical distribution and, hence, the latent dependent variable and all the regressors follow a joint

distribution which is in contrast to �xed regressors usually assumed in econometric modeling. In

this sense it is analogous to our discussion that the �observed� latent variables are interpreted as

a random sample of a joint distribution (Ruud, 1983). The regression function is deducted from

this joint distribution. As a result, regression parameters are obtained via estimated parameters

of the joint distribution (Ronning and Kukuk, 1996).

The paper is organized as follows. In the next section the spherically symmetric distribution

class and the elliptically symmetric distribution class are introduced. The characterization of

the distributions will be the basis for simulating these distributions. In section 3 estimation of
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the polychoric correlation is discussed as well as the closely related polyserial correlation which

is an ML-estimator in the situation where one latent continuous variable is observed directly.

Those estimators are used in the simulation study in section 4 to study how sensitive they are if

the underlying distribution deviates from normality. Section 5 summarizes and concludes.

2 Multivariate Spherical and Elliptical Distributions

In this section a distribution class is considered which generalizes the multivariate normal dis-

tribution in the sense that the above outlined attractive features are preserved. The probability

density function of a multivariate normal distribution is given by

�n(x;�;�) = (2�)
1

2
nj�j�

1

2 exp

�
�
1

2
(x� �)0��1(x� �)

�

where x = (x1; x2; : : : ; xn)
0, � = E(x), and � = E(x��)(x��)0. In case the covariance matrix

is equal to the identity matrix I and � = 0 the density function can be written as

�n(x) / exp(�x0x=2) ;

where the variables x1; x2; : : : ; xn only enter the density function through the inner product x0x.

It implies that all elements x 2 Rn having the same Euclidean distance from the origin have the

same value of the density function �n. In other words, contours of surfaces of equal density are

spheres around the origin with radius r = (x0x)1=2. This concept is used to de�ne a distribution

class of spherically symmetric distributions (or simply spherical distributions) having probability

density functions

 (x) = h(x0x) : (1)

This distribution class is only a subset of a broader class of spherically symmetric distributions

since it requires that the distributions possess densities. The broader class can be de�ned using

a stochastic representation (Fang et al., 1990)

x
d
= r � u ; (2)

where
d
= signi�es that both sides have the same distribution, u being a random vector uniformly

distributed on the unit sphere, and r is a positive random variable independent of u. This

stochastic representation will be used later on to obtain pseudo random variables following a

spherical distribution.
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The relationship between the density h(�) and the density of random variable r can be established

using the condition

Z
Rn

h(x0x) dx = 1 (3)

and transforming the variables x1; x2; : : : ; xn to polar coordinates r; �1; �2; : : : ; �n�1 (Anderson,

1984 p.279):

y1 = r sin �1 ;

y2 = r cos �1 sin �2 ;

...

yn�1 = r cos �1 cos �2 � � � cos �n�2 sin �n�1 ;

yn = r cos �1 cos �2 � � � cos �n�2 cos �n�1 :

The Jacobian of this transformation is rn�1 cosn�2 �1 cos
n�2 �2 � � � cos �n�2. Therefore, Equation

(3) can be written as

Z
Rn

h(x0x) dx =

1Z
0

Z
�

h(r2) � rn�1 cosn�2 �1 cos
n�2 �2 � � � cos �n�2 d�dr = 1

where � = (�1; : : : ; �n�1)
0. The multiple integral can be solved recursively using

�

2Z
��

2

cosm�1 ' d' =
�(12m)�(12 )

�
�
1
2(m+ 1)

�

resulting in

Z
Rn

h(x0x) dx =
2�n=2

�(12n)

1Z
0

h(r2) � rn�1 dr = 1 :

Substituting y = r2 implying dr = (2r)�1dy, the following relation is obtained:

Z
Rn

h(x0x) dx =
�n=2

�
�
1
2n
� 1Z

0

h(y) � yn=2�1 dy = 1 : (4)

The function h(�) is called the density generator of a spherical distribution if random variable r

in Equation (2) has a density f(�) with (Fang et al, 1990 p. 35)

f(r) =
2�n=2

�
�
1
2n
�rn�1h(r2) : (5)
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As an example, if h(x0x) = (2�)�n=2 exp(�x0x=2) which is the joint density of n independently

and standard normally distributed variables, we derive from (4) the density of q = x0x as

g(q) =
�n=2

�
�
n
2

� 1

(2�)n=2
exp

�
�
q

2

�
qn=2�1

=
1

2n=2�
�
n
2

� exp��q
2

�
qn=2�1

which is the density of a �2
n-distribution establishing the well-known fact that the sum of n

squared independently and standard normally distributed variables q =
Pn

i=1 x
2
i = x0x follows

a chi-square distribution with n degrees of freedom. Equation (5) yields the density of r which

is the chi-distribution with n degrees of freedom (Johnson et al., 1994 p. 417)

f(r) =
2�n=2

�
�
1
2n
� rn�1 1

(2�)n=2
exp

�
�
r2

2

�

=
2n=2

�
�
1
2n
�
2n=2�1

rn�1 exp

�
�
r2

2

�
:

In order to obtain a spherical distribution with density generator h(�) and hence density f(r)

according to Equation (2) a random vector u is required being uniformly distributed on the

unit sphere. Such a vector can be constructed using a random vector y following a multivariate

normal distribution with density �n(y;0; I). De�ning

ui =
yi
kyk

i = 1; : : : ; n (6)

where kyk = (y0y)1=2 then u is uniformly distributed on the unit sphere in Rn . This procedure is

convenient since standard normal (pseudo) random number generators are implemented in many

software packages. Thus, simulating u and the univariate random variable r independently of u

and multiplying them according to (2) yields (pseudo) random numbers of spherical distributions

with density h(x0x). r will be simulated in our study using the Acceptance-Rejection Method.

Analogously to the multivariate normal distribution where the general distribution can be derived

by the spherical normal distribution using the linear transformation

z = �+A0x

with � = A0A, rank(�) = n, and � 2 R
n . The contours of surfaces of equal density are now

ellipsoids around the center �. The covariance matrix for the general normal distribution is

equal to �. We use the same linear transformation for any x following a spherical distribution

and obtain a class of elliptically symmetric distributions. For this class it can be shown that the

covariance matrix of z, if those moments exist, is proportional to �. For the partitioned vector
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z = (z(1); z(2))0 with appropriate

� =

0
@ �(1)

�(2)

1
A and � =

0
@ �11 �12

�
0
12 �22

1
A

the distribution of z(1) j z
(2)
0 is again elliptical with �1:2 = �(1) +�12�

�1
22 (z

(2)
0 ��(2)). In other

words the regression of a subset of variables on the others is a linear function (Fang et al., 1990

p. 45).

3 Estimators for Categorical Data

Polychoric Correlation

As mentioned above, the covariance matrix of a multivariate distribution can be estimated in

a pair-wise fashion, especially when the multivariate treatment is computational burdensome

or intractable. Therefore, we want to analyze the bivariate situation where for the two latent

variables z�1 and z�2 only categorical indicators are available:

zi = j , �i;j�1 � z�i < �i;j j = 1; 2; : : : ; ki i = 1; 2 : (7)

The �rst and last threshold �0 and �ki of each variable is equal to �1 and1, respectively. The

observations for the categorical indicators z1 and z2 from a random sample can be summarized

in a k1 � k2 contingency table containing the relative or absolute frequencies. Assuming a

multivariate normal distribution for z�1 and z
�
2 we see from measurement relation (7) that location

and scale parameters of the latent variables are not identi�ed unless we impose restrictions on

the thresholds. Thus, denoting the standard bivariate normal distribution function by �2(�; �; �),

the probability of observation z1 = i ^ z2 = j can be written as

�ij = �2(�1;i; �2;j ; �)� �2(�1;i�1; �2;j ; �)��2(�1;i; �2;j�1; �) + �2(�1;i�1; �2;j�1; �) :

Maximizing the Log�Likelihood function

L(�;�1;�2) =

k1X
i=1

k2X
j=1

nij log �ij ;

where nij is the absolute frequency in the i; j cell of the contingency table, the polychoric

correlation �̂ is obtained together with estimates of the thresholds (Olsson, 1979; Kukuk, 1991).

From simulation studies it is known that sample sizes of N = 100 for 3 � 3 contingency tables

yield su�ciently small biases for � unless the thresholds are chosen so that observations in some
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categories are highly unlikely. Even in situations where the thresholds are chosen so that the

distributions of the categorical indicators are highly skewed the bias is still in the same negligible

order (Olsson, 1979; Poon and Lee, 1987, Kukuk, 1991). Thus, if the joint distribution of z�1 and

z�2 is correctly assumed, the estimation procedure works well. Pearson's X2 test can be used in

this setting to evaluate whether the assumed distribution of the latent variables is appropriate.

The test statistic is

X2 =

k1X
i=1

k2X
j=1

(nij �N�ij)
2

N�ij
;

which is �2
� distributed with � = (k1 � k2 � k1 � k2) degrees of freedom under the null hypoth-

esis of the correct distribution assumption. Analyzing real data, the normality assumption is

often strongly rejected. Lee and Lam (1988) tackled this problem by choosing other elliptical

distributions in the ML procedure. However, the �rst di�culty is to choose the most appropri-

ate member and the second one is that the distribution function is in most cases not available

in a closed analytical form. Therefore, we want to perform a simulation study using di�erent

elliptical distributions but still using the ML procedure based on the normality assumption to

estimate the correlation �. A �rst indication of the robustness of the latter procedure are the

results reported in Lee and Lam (1988). Besides the estimates obtained with ML based on the

correct t-distribution they showed the estimates from ML based on normality which are quite

close.

It should be mentioned that since the continuous variables are not observed directly monotone

transformations of z�i and correspondingly �i result in unchanged observations of zi. Therefore,

for all members of Mardia's distribution class (Mardia, 1970) we observe the same contingency

table and as a consequence obtain the same correlation estimate (Kukuk, 1994). However, for

our purposes this distribution class is not too interesting since the regression function of one

latent variable on the other is mostly not linear.

Polyserial Correlation and Brillinger's Estimator

Olsson et al. (1982) developed an ML procedure for the situation where the latent variables

z�1 and z�2 again follow a bivariate normal distribution but only one variable z1 is observed

categorically and z�2 is directly observable. They named the estimator polyserial correlation. In

this case Brillinger's (1982) one-step estimator can be applied. His main result states that under
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mild conditions for a measurable function s(�)

cov(z�1 ; z
�
2) =

cov(s(z�1); z
�
2)var(z

�
1)

cov(s(z�1); z
�
1)

which in our case with s(�) given in Equation (7) leads to

~�z�
1
z�
2
=
�BPz1z�2
��z�

1
z1

; (8)

where �BP denotes the Bravais-Pearson correlation coe�cient using observations for z1 and z�2

and

��z�
1
z1 =

E(z1 � z
�
1)

(Var(z1))
1=2

=
E [E(z�1 jz1)]�Pk1

j=1 j
2 � (�(�j)� �(�j�1))�

�Pk1
j=1 j � (�(�j)� �(�j�1))

�2��1=2

=

k1X
j=1

�1(�j)

2
4k21 �

k1�1X
j=1

(2j + 1) � �1(�j)�

0
@k1 � k1�1X

j=1

�1(�j)

1
A

23
5
�1=2

with �1(�) and �1(�) denoting the density and distribution function of the univariate standard

normal distribution, respectively. Brillinger's estimator is very easy to calculate requiring only

�rst-step estimates of the thresholds which are given by

�̂1;j = ��1
1

 
jX

l=1

k2X
m=1

nlm
N

!
j = 1; : : : ; k1 � 1 :

In the following simulation study the polychoric correlation, the polyserial correlation as well as

Brillinger's estimator, all relying on the normality assumption, will be analyzed in non-normal

situations.

4 Monte-Carlo Study

In this section we simulate two standardized continuous variables jointly following an ellipti-

cal distribution allowing the marginal distributions of the latent variables to be leptokurtic or

platykurtic. As mentioned earlier, for all members of this distribution class the parameter of

interest � is the correlation between the latent variables and it equals the regression parame-

ter of one latent variable on the other. We can restrict the analysis to two variables since the

correlation matrix R in the multivariate case can always be estimated in a pair-wise fashion

(Kukuk,1991).

The general setup is that we �rst use a large sample of 100:000 observations to study the general

behaviour of the estimators. This will be done with 3 categories per variable since in the case of
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a 2 � 2 contingency table the number of parameters equals the number of free frequencies and

therefore the X2 test is not applicable. Firstly, we use sets of symmetric thresholds resulting

in symmetric discrete distributions of the categorical variables. Secondly, the thresholds are

chosen to obtain highly skewed discrete distributions. For each continuous distribution the sets

of thresholds are determined to obtain the same categorical distributions in all settings. In a

next step these large samples are each divided in 100 samples of 1:000 observations to analyze

the small sample properties. This is the sample size we often encounter in practical applications.

The results shown in the following are all for � = �:8. For other values the results are basically

the same and are therefore not reported.

Symmetric Kotz-Type Distributions

The density functions of standardized bivariate elliptical Kotz-type distributions are given by

(Fang et al., 1990, p. 76)

h(x) = c � jRj�1=2
�
x0R�1x

�N�1
exp

�
�r �

�
x0R�1x

�s�
N; r; s > 0 ;

where c is the normalizing constant and R the correlation matrix. For N = 1, s = 1, and r = 1=2

we obtain the bivariate normal distribution. For N < 1 the density function tends to in�nity

at the origin, whereas for N > 1 the density function has a local minimum at the origin and

looks like a volcano crater. For N = 1, the density function appears more and more cylindrical

as s grows larger. In the Monte Carlo simulations we vary N from 0.1 to 3 and s from 0.25

to 8, whereas r is kept �xed at 1/2. The polychoric correlations for large samples of 100:000

observations are recorded in table 1 for various sets of thresholds. First of all it can be seen that

in the situation N = 1 and s = :9, which is close to the normal distribution, the estimator works

well for all threshold combinations.

The polychoric correlation works also well for all continuous distributions considered if both

categorical variables have almost equal probabilities (columns .3/.4 and .35/.3). If the outer

categories have smaller frequencies (column .1/.8), which is, for instance, more realistic for

categorical data in business surveys, the estimator obtains adequate results if the distributions

are not too leptokurtic (empirical kurtosis �̂4 of the latent variables less than 20) and also not

too platykurtic (�̂4 > 2:5). Outside this range, the true correlation is underestimated in absolute

terms. However, for this threshold setting there is a tendency of overestimating � when the

empirical kurtosis is around 4-6.
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Table 1: Polychoric Correlation for Kotz-Type Distributions (� = �:8). Large Samples.

Marginal frequencies of
z1 = 1=z1 = 2
z2 = 1=z2 = 2

N s �̂4 .1/.8 .15/.7 .2/.6 .25/.5 0.3/.4 .35/.3 .45/.35 .45/.35 .45/.35
.1/.8 .15/.7 .2/.6 .25/.5 0.3/.4 .35/.3 .5/.35 .3/.4 .15/.35

.1 .3 47 -.752 -.749 -.752 -.757 -.768 -.783 -.705 -.744 -.775

.1 .5 14 -.806 -.785 -.775 -.775 -.782 -.790 -.733 -.763 -.779

.1 1.5 4.1 -.829 -.821 -.810 -.802 -.797 -.797 -.774 -.784 -.789

.1 8 3.0 -.810 -.819 -.826 -.811 -.801 -.798 -.785 -.789 -.794

.5 .25 26 -.777 -.762 -.760 -.765 -.774 -.784 -.711 -.742 -.773

.5 .9 4.7 -.835 -.819 -.803 -.794 -.791 -.795 -.765 -.776 -.787

.5 4 2.9 -.803 -.818 -.825 -.814 -.799 -.796 -.787 -.788 -.794

.5 8 2.75 -.800 -.816 -.824 -.819 -.805 -.799 -.790 -.792 -.794

.9 .25 15.5 -.809 -.792 -.782 -.781 -.784 -.789 -.740 -.763 -.785

.9 .7 4.0 -.825 -.815 -.804 -.797 -.795 -.796 -.785 -.791 -.797

.9 1.5 2.65 -.787 -.791 -.796 -.803 -.804 -.803 -.806 -.802 -.801

.9 2 2.45 -.773 -.782 -.794 -.801 -.805 -.804 -.813 -.807 -.805

1 .25 13 -.804 -.791 -.784 -.784 -.787 -.793 -.747 -.770 -.789
1 .5 5 -.828 -.816 -.802 -.793 -.791 -.795 -.777 -.785 -.793
1 .9 3.2 -.806 -.801 -.804 -.802 -.800 -.800 -.796 -.798 -.800
1 2 2.3 -.761 -.777 -.786 -.799 -.808 -.808 -.820 -.811 -.807

1.1 .25 12 -.812 -.795 -.785 -.784 -.787 -.791 -.751 -.772 -.787
1.1 .9 3.1 -.801 -.798 -.800 -.800 -.802 -.803 -.802 -.805 -.803
1.1 1.5 2.5 -.767 -.777 -.789 -.799 -.804 -.808 -.817 -.812 -.805
1.1 2 2.3 -.757 -.768 -.780 -.794 -.806 -.807 -.822 -.812 -.805

2 .25 6 -.818 -.803 -.793 -.789 -.788 -.791 -.776 -.785 -.794
2 .5 3.1 -.801 -.796 -.791 -.789 -.793 -.798 -.804 -.804 -.803
2 .7 2.6 -.777 -.777 -.780 -.785 -.797 -.802 -.816 -.813 -.805
2 .9 2.3 -.762 -.763 -.769 -.782 -.796 -.805 -.822 -.815 -.805

3 .25 4.2 -.813 -.801 -.790 -.788 -.790 -.798 -.792 -.797 -.802
3 .3 3.55 -.808 -.798 -.791 -.789 -.793 -.798 -.799 -.802 -.801
3 .5 2.55 -.775 -.769 -.773 -.781 -.791 -.801 -.817 -.813 -.805
3 .7 2.27 -.745 -.746 -.758 -.772 -.791 -.804 -.827 -.819 -.802

Note: �̂4 denotes the empirical kurtosis of the standardized latent variables.
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Table 2: X2 from Polychoric Correlation for Kotz-Type Distributions (� = �:8)

Marginal frequencies of
z1 = 1=z1 = 2
z2 = 1=z2 = 2

N s �̂4 .1/.8 .2/.6 .3/.4 .35/.3 .45/.35
.1/.8 .2/.6 .3/.4 .35/.3 .15/.35

.1 .3 47 264030.03 37568.19 17850.33 13042.92 8206.03

.1 .5 14 334161.22 18216.45 9120.95 7810.40 4177.81

.1 1.5 4.1 163.93 2234.19 3733.68 4634.99 903.31

.1 8 3.0 3.05 3.96 2395.22 3847.67 257.87

1 .25 13 250491.63 14435.26 7923.01 6201.14 3479.11
1 .5 5 15127.57 2492.87 1604.08 1251.26 873.04
1 .9 3.2 10.05 26.27 40.68 27.77 13.76
1 2 2.3 1.98 104.75 551.79 458.76 458.61

2 .25 6 40273.65 2631.89 970.79 406.29 800.37
2 .5 3.1 6.20 0.52 148.97 406.06 14.60
2 .7 2.6 3.04 77.84 730.42 1418.10 290.00
2 .9 2.3 1.53 132.56 1195.12 2264.73 740.77

Note: The (� = 5%) critical value for the analyzed situations is 7.8.
Larger X2 statistics imply a rejection of the assumed bivariate
normal distribution.

Skewed distributions of the categorical indicators do not worsen the good performance of the

polychoric correlation which can be seen from the last column of table 1. In this case the �rst

indicator has 45% of observations in the �rst category whereas the second indicator has 50% in

the third category. For all distributions the results are acceptable. This result holds for positive

correlations if the indicators are skewed in the same category. On the other side, in the situation

where both indicators have high frequencies in the �rst category (column .45/.35 & .5/.35) the

performance is not satisfying. In this extreme case of skewness acceptable estimates are obtained

if the kurtosis of the latent variable is between 2.2 and about 6.

In table 2 Pearson's X2 statistics, testing the bivariate normality assumption, are recorded for

some of the settings shown in table 1. Those settings not shown in the table reveal qualitatively

the same conclusions. The last three columns are those situations where the polychoric correla-

tion works well. However, the test statistics are well above the 5% critical value of 7.8 for a 3�3

contingency table. On the other hand, we observe low values of the test statistic for platykurtic

distributions and wide thresholds where the estimator performs poorly. As a consequence, the

X2 test statistic does not provide valuable information about the performance of the estimator.

At least for the .1/.8/.1 frequency distribution of the categorical indicators it also implies that

this criterion cannot be used to discriminate between distributions for the latent variables.
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Table 3: Correlation Estimates for Kotz-Type Distributions (� = �:8). Small Samples.

Cat. PCL BP PCS PS BRI
�� s� �� s� �� s� �� s�

N = :1 s = :3 �̂4 = 47
.1/.8 -.752 -.800 .046 -.752 .040 -.697 .030 -.740 .044
.2/.6 -.751 -.800 .046 -.752 .028 -.712 .029 -.564 .036
.35/.3 -.783 -.800 .046 -.782 .021 -.751 .038 -.466 .031

N = :1 s = 1:5 �̂4 = 4:1
.1/.8 -.829 -.801 .014 -.830 .022 -.785 .020 -.838 .022
.2/.6 -.810 -.801 .014 -.811 .021 -.797 .016 -.800 .016
.35/.3 -.797 -.801 .014 -.797 .019 -.803 .016 -.760 .017

N = 1 s = :25 �̂4 = 13
.1/.8 -.804 -.799 .023 -.805 .037 -.752 .026 -.833 .032
.2/.6 -.784 -.799 .023 -.785 .025 -.775 .023 -.725 .024
.35/.3 -.793 -.799 .023 -.793 .018 -.800 .024 -.653 .025

N = 1 s = :5 �̂4 = 5
.1/.8 -.828 -.800 .015 -.829 .031 -.783 .022 -.835 .024
.2/.6 -.802 -.800 .015 -.802 .023 -.794 .019 -.785 .019
.35/.3 -.795 -.800 .015 -.795 .019 -.803 .018 -.749 .018

N = 1 s = :9 �̂4 = 3:2
.1/.8 -.806 -.800 .013 -.806 .027 -.798 .021 -.806 .022
.2/.6 -.804 -.800 .013 -.804 .021 -.800 .017 -.800 .018
.35/.3 -.800 -.800 .013 -.800 .019 -.801 .017 -.795 .017

N = 2 s = :25 �̂4 = 6
.1/.8 -.818 -.799 .015 -.820 .029 -.775 .021 -.827 .023
.2/.6 -.793 -.799 .015 -.794 .025 -.790 .021 -.772 .020
.35/.3 -.791 -.799 .015 -.791 .020 -.800 .019 -.737 .018

N = 2 s = :9 �̂4 = 2:3
.1/.8 -.761 -.800 .010 -.761 .028 -.809 .019 -.758 .018
.2/.6 -.769 -.800 .010 -.770 .019 -.798 .014 -.790 .015
.35/.3 -.805 -.800 .010 -.805 .015 -.796 .011 -.829 .014

N = 2 s = 3 �̂4 = 1:8
.1/.8 -.668 -.800 .009 -.668 .037 -.816 .016 -.710 .016
.2/.6 -.731 -.800 .009 -.731 .023 -.795 .013 -.781 .016
.35/.3 -.810 -.800 .009 -.810 .014 -.789 .010 -.851 .014

Note: PCL is polychoric correlation from Large Sample.
Bravais-Pearson BPz�

1
z�
2
, polychoric PCS , polyserial PS,

and Brillinger BRI are calculated from Small Samples.
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Splitting the large samples each into 100 small samples with 1.000 observations we can study

whether an extra bias occurs in small samples and also obtain standard deviations. In table

3 some parameter combinations already discussed in table 1 are considered. Comparing the

mean of the polychoric correlations of the 100 samples �� (PCS) with the large sample estimates

(recorded again in column PCL) indicates that no small sample bias occurs.

Using one categorical variable z1 and the latent variable z�2 , implying that the latter can be

observed directly, we estimate the polyserial correlation (PS) and Brillinger's estimator (BRI).

The polyserial correlation performs better if the categories are distributed evenly (third row of

each panel) just like the polychoric correlation. Unlike the latter, PS shows a bias when the

latent variables have kurtosis greater than 20. For the other threshold settings the polyserial

correlation works well for kurtosis less than 6.

The polyserial correlation is robust if the true distribution is platykurtic even in those situations

where the polychoric correlation deviates more from the true value. On the contrary, Brillinger's

estimator depends heavily on the normality assumption. The bias occurring with other elliptical

distributions is in some settings substantial. No threshold values can be identi�ed for which

this estimator performs best. Thus, there is a clear dominance of the polyserial correlation over

Brillinger's estimator.

The estimators' standard deviations are reported as well. For most settings the ordering of

the estimators according to their standard deviation is as expected. Estimating the correlation

using the continuous variables (BP ) usually results in a smaller variance than only having one

continuous variable and one categorical indicator (PS) or even both variables being categorical

(PC). However, for those elliptical distributions having large empirical kurtosis the ordering of

estimators according to their standard deviation is sBP > sPS > sPC . This occurs whenever the

kurtosis is greater than approximately 10.

Symmetric Pearson-Type VII Distributions

As a second subclass of elliptical distributions, we analyze the Pearson-type VII distributions

which are characterized by the density generator

h(u) = c �
�
1 +

u

m

��N
N > 1; m > 0 :

The multivariate Cauchy distribution is a member of this subclass having the parameters N = 1:5

andm = 1. If the parameters obeyN = 1+m=2 we obtain multivariate t-distributions. The shape
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Table 4: Correlation Estimates for Pearson-Type VII Distributions (m = 1 � = �:8). Small
Samples.

Cat. PCL BP PCS PS BRI
�� s� �� s� �� s� �� s�

N = 1:5 �̂4 = 118:8
.1/.8 -.721 -.796 .068 -.725 .047 -.611 .048 -.544 .058
.2/.6 -.749 -.796 .068 -.749 .030 -.636 .044 -.395 .044
.35/.3 -.783 -.796 .068 -.783 .020 -.706 .061 -.325 .035

N = 1:8 �̂4 = 89:8
.1/.8 -.766 -.796 .062 -.767 .042 -.707 .029 -.675 .060
.2/.6 -.765 -.796 .062 -.765 .025 -.746 .024 -.545 .050
.35/.3 -.787 -.796 .062 -.787 .022 -.815 .025 -.482 .047

N = 2:2 �̂4 = 32:7
.1/.8 -.797 -.800 .034 -.801 .038 -.750 .029 -.778 .036
.2/.6 -.780 -.800 .034 -.781 .021 -.786 .019 -.684 .037
.35/.3 -.798 -.800 .034 -.798 .020 -.828 .022 -.636 .037

N = 2:4 �̂4 = 20:5
.1/.8 -.802 -.800 .031 -.805 .036 -.760 .028 -.802 .031
.2/.6 -.784 -.800 .031 -.784 .022 -.791 .021 -.715 .029
.35/.3 -.792 -.800 .031 -.792 .020 -.819 .023 -.670 .032

N = 2:7 �̂4 = 13:1
.1/.8 -.808 -.802 .023 -.810 .032 -.770 .025 -.811 .027
.2/.6 -.790 -.802 .023 -.791 .023 -.795 .020 -.744 .022
.35/.3 -.796 -.802 .023 -.796 .018 -.816 .022 -.707 .025

N = 3 �̂4 = 9:7
.1/.8 -.812 -.801 .019 -.814 .034 -.772 .022 -.813 .023
.2/.6 -.788 -.801 .019 -.789 .025 -.793 .022 -.756 .021
.35/.3 -.795 -.801 .019 -.795 .019 -.809 .024 -.724 .021

N = 5 �̂4 = 4:4
.1/.8 -.808 -.801 .014 -.809 .026 -.788 .021 -.813 .020
.2/.6 -.798 -.801 .014 -.798 .022 -.797 .018 -.788 .017
.35/.3 -.799 -.801 .014 -.800 .017 -.804 .016 -.773 .016

N = 10 �̂4 = 3:2
.1/.8 -.798 -.800 .012 -.798 .025 -.796 .017 -.807 .019
.2/.6 -.813 -.800 .012 -.813 .022 -.804 .016 -.807 .017
.35/.3 -.798 -.800 .012 -.798 .016 -.802 .014 -.791 .015

Note: See table 3 for details.
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of the spherical density function is always similar to the shape of the spherical normal distribution.

As an example, starting from the Cauchy distribution and increasing m or decreasing N , the

local maximum at the origin lowers and the outer regions rise, but the typical hill shape is still

present.

Table 4 shows in the �rst panel results for the Cauchy distribution and the following panels

show the results for distributions varying the parameter N while keeping m = 1 constant. The

conclusions are in accordance with the discussion of Kotz-type distributions. The results can be

summarized as follows:

� The polychoric correlations performs best whenever the frequencies of the discrete indica-

tors are distributed almost uniformly. Even for the Cauchy distribution the large sample

bias of the polychoric correlation is about 0.017. Increasing the value of parameter N re-

duces the empirical kurtosis. As a result, the estimates for the other threshold combinations

improve and become acceptable.

� For the threshold values yielding .1/.8/.1 distributions for the categorical indicators the

polychoric correlation (absolutely) overestimates � when the kurtosis is of magnitude 4 to

10.

� Small samples of 1.000 observations yield the same estimates as large samples. The stan-

dard deviation of the polychoric correlation is smaller than the one of the Bravais-Pearson

correlation coe�cient if the kurtosis is greater than 10 (.35/.3/.35 frequencies) or greater

than 20 (.15/.7/.15 frequencies).

� The polyserial correlation performs best with distributions having lower values of kurtosis.

For kurtosis values less than 8 the estimator shows only small biases for all threshold

settings. For distributions with higher kurtosis good results are obtained only if the discrete

distributions of the categorical indicator show almost even frequencies. The polyserial

correlation outperforms Brillinger's estimator which can be recommended only for small

values of excess kurtosis.

The t-distributions require the parameters to be N = 1 + m=2. In this sense the Cauchy

distribution can be interpreted as a t-distribution. We simulated other t-distributions, which are

not reported in the tables, starting with N = 2 and m = 2. Already for this setting the bias

of the polychoric correlation is less than 0.02 for all the symmetric threshold values considered.

However, the X2 statistics vary between 2.000 and 18.000 and are hence well above reasonable
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critical values. The empirical kurtosis of the latent variables is about 66. The bias reduces

for higher values of N and m except for the .1/.8/.1 case where the above mentioned (absolute)

overestimation occurs for distributions having kurtosis between 4 and 8. For N = 11 and m = 20

the empirical kurtosis is about 3.4 the absolute bias of the polychoric correlation is less than 0.008

and yet the X2 values vary between 17 and 152.

5 Summary and Conclusions

Multivariate normality plays a central role in estimating the correlation structure of latent vari-

ables underlying observed categorical indicators. In the case of two latent variables the polychoric

correlation is applied if both variables are only observed categorically whereas polyserial corre-

lation is used if one latent variable is observed directly. In both cases the normality assumption

can be tested using Pearson's X2 test in the former case and tests based on the sample kurtosis

of the continuous variable in the latter case (Johnson et al., 1994 p.169). In many empirical

applications the normality assumption is rejected. Lee and Lam (1988) developed ML proce-

dures based on other distributions. One problem that occurs is the a priori choice of the correct

distribution.

Our goal in this paper is to analyze the bias resulting if estimation is based on normality when

the true distribution is a member of the elliptical symmetric distribution class. The distributions

all have a linear regression function if it exists. The simulation results show that for those

threshold values where the discrete indicators have equal probabilities the bias of the polychoric

correlation is smallest. It increases with higher values of kurtosis and with uneven probabilities

of the discrete indicators. As an implication, researchers designing questionnaires using ordered

categories should try formulating the question so that almost equal probabilities will result. This

can be achieved by suggesting thresholds. For instance in business surveys, if a monthly change

in a variable is of interest one can suggest that the �unchanged� category is about �a% change in

the latent variable with a being appropriately chosen. The more mass is in the middle category,

the higher the bias if the true distribution is not normal. High frequencies in the middle category

can for instance be observed for most questions in the monthly business survey of the ifo Institute,

Munich, and in the quarterly business survey of the Centre for European Economic Research,

Mannheim. However, even for threshold values implying uneven frequencies of the categories the

bias is small for a wide range of elliptical distributions.
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For some platykurtic distributions we observe low X2 test statistics suggesting no deviation from

normality. But the bias of the polychoric correlation is already of considerable magnitude. Thus,

this test statistic is not useful in �nding the most appropriate distribution within the given

class since several local minima are present. Again, the polychoric correlation is more robust for

platykurtic distributions if even frequencies of the discrete indicator are present.

In the situation where one latent variable is observed directly and the other is observed cate-

gorically the polyserial correlation and Brillinger's estimator can be applied. Our results show

that Brillinger's estimator is sensitive to deviations from normality whereas the polyserial corre-

lation is robust to a certain extent. Higher kurtosis leads to higher bias whereas the bias is still

negligible for negative excess kurtosis.

Simulations for other values of the correlation parameter, not shown in this paper, yield qualita-

tively the same results. In general, the simulation study indicates that for any given frequency

distribution of the categorical indicators there is a set of elliptically symmetric distributions for

which the polychoric (polyserial) correlation is a good approximation for the true correlation

parameter.
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