
 

 

 

 

Signals and the Structure of Societies 

 

 

 

 

 

 

D i s s e r t a t i o n 

zur 

Erlangung des akademischen Grades 

Doktor der Philosophie 

in der Philosophischen Fakultät 

 

der Eberhard Karls Universität Tübingen 

 

 

 

 

vorgelegt von 

 

 

Roland Mühlenbernd 

 

aus 

 

Lemgo 

 

 

 

 

2013 

  



 

 

 

Gedruckt mit Genehmigung der Philosophischen Fakultät 

der Eberhard Karls Universität Tübingen 

 

Dekan: Prof. Dr. Jürgen Leonhardt 

 

 

 

 

Hauptberichterstatter: Prof. Dr. Gerhard Jäger 

Mitberichterstatter: Prof. Dr. Simon Huttegger 

 

Tag der mündlichen Prüfung: 23. Juli 2013 

 

 

 

 

 

 

 

 

 

 

 

 

TOBIAS-lib, Tübingen 

 



.

.



-



Contents

Contents i

Acknowledgements v

Introduction 1

1 Signaling Games 9

1.1 Definition of a Signaling Game . . . . . . . . . . . . . . . . . 12

1.2 Strategies, Equilibria & Signaling Systems . . . . . . . . . . 14

1.3 The Horn Game . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4 Repeated Games . . . . . . . . . . . . . . . . . . . . . . . . 21

1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Update Dynamics 25

2.1 Evolutionary Dynamics . . . . . . . . . . . . . . . . . . . . . 27

2.1.1 Symmetric and Asymmetric Static Signaling Games . 28

2.1.2 Evolutionary Stability . . . . . . . . . . . . . . . . . 30

2.1.3 Replicator Dynamics . . . . . . . . . . . . . . . . . . 31

2.1.4 The Lewis Game in Evolution . . . . . . . . . . . . . 33

2.1.5 The Horn Game in Evolution . . . . . . . . . . . . . 36

2.1.6 The Plausible Symmetric Horn Game . . . . . . . . . 43

2.2 Imitation Dynamics . . . . . . . . . . . . . . . . . . . . . . . 48

2.2.1 Imitate the Best . . . . . . . . . . . . . . . . . . . . . 48

2.2.2 Conditional Imitation . . . . . . . . . . . . . . . . . . 50

2.2.3 Comparing Replicator Dynamics and Imitation . . . 51

2.2.4 Integrating Network Structure . . . . . . . . . . . . . 53

2.2.5 Imitation on a Grid: Some Basic Results . . . . . . . 55

2.3 Learning Dynamics . . . . . . . . . . . . . . . . . . . . . . . 57

i



ii CONTENTS

2.3.1 Languages, Learners and Stability . . . . . . . . . . . 59

2.3.2 Reinforcement Learning . . . . . . . . . . . . . . . . 63

2.3.3 Belief Learning . . . . . . . . . . . . . . . . . . . . . 65

2.3.4 Memory Size and Forgetting . . . . . . . . . . . . . . 68

2.3.5 Learning in Populations: Some Basic Results . . . . . 69

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3 Social Networks 75

3.1 Network Properties . . . . . . . . . . . . . . . . . . . . . . . 76

3.1.1 Node Properties . . . . . . . . . . . . . . . . . . . . . 76

3.1.2 Structural Properties . . . . . . . . . . . . . . . . . . 79

3.2 Network Types . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.2.1 Regular Networks . . . . . . . . . . . . . . . . . . . . 83

3.2.2 Random Networks . . . . . . . . . . . . . . . . . . . 85

3.2.3 Small-World Networks . . . . . . . . . . . . . . . . . 87

3.3 Network Games . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.3.1 The Choice for Communication Partners . . . . . . . 92

3.3.2 The Social Map . . . . . . . . . . . . . . . . . . . . . 94

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4 Emergence of Regional Meaning 99

4.1 Causes for Regional Meaning . . . . . . . . . . . . . . . . . . 102

4.1.1 Dynamics and Game Parameters . . . . . . . . . . . 105

4.1.2 The Degree of Locality . . . . . . . . . . . . . . . . . 120

4.1.3 Further Influences . . . . . . . . . . . . . . . . . . . . 128

4.1.4 Interpretation of the Results . . . . . . . . . . . . . . 131

4.2 Border Agents Analysis . . . . . . . . . . . . . . . . . . . . . 134

4.2.1 Border Agents Arrangement . . . . . . . . . . . . . . 134

4.2.2 Border Agents Behavior . . . . . . . . . . . . . . . . 137

4.2.3 Extreme Initial Conditions . . . . . . . . . . . . . . . 138

4.2.4 The Convex Border Melting Phenomenon . . . . . . 141

4.2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . 143

4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5 Conventions on Social Networks 147

5.1 Small-World Experiments . . . . . . . . . . . . . . . . . . . 148

5.1.1 Language Regions & Agent Types . . . . . . . . . . . 149

5.1.2 Lewis Games on β-Graphs . . . . . . . . . . . . . . . 152

5.1.3 Lewis Games on Scale-Free Networks . . . . . . . . . 162



CONTENTS iii

5.1.4 Horn Games on β-Graphs . . . . . . . . . . . . . . . 171

5.1.5 Horn Games on Scale-Free Networks . . . . . . . . . 175

5.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

6 Summary 185

6.1 How Do Linguistic Conventions Arise? . . . . . . . . . . . . 186

6.2 What Causes Regional Meaning? . . . . . . . . . . . . . . . 188

6.3 Why is the Horn Strategy Predominant? . . . . . . . . . . . 189

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

7 Zusammenfassung 193

Bibliography 195

A Proofs 205





Acknowledgements

Networks have played an important role not only in this dissertation but

also in my life. It has therefore been an honor to be a node in the larger

network of collaborators, all of whom have supported me in completing this

dissertation. Although there is no way to make an exhaustive list, I want to

thank Anton Benz, Armin Buch, Stefano Demichelis, Christian Ebert, Fritz

Hamm, Elliott Wagner and all my colleagues for support and enlightening

discussions, especially in the fields of game theory and pragmatics, language

evolution and change, network theory and phenomena from sociolinguistics.

I should also mention our very supportive and lively department (Special

thanks to Christl!). My thanks go to them not only for their professionalism

but also for their congeniality. In that regard, I would also like to thank

my students, especially those from courses like SLANG and PENG, courses

that both inspired some of the ideas seen herein.

In closing, special thanks go to three persons that were not only the most

prominent supporters of this work, but also good friends. First, I want to

thank my doctoral advisor Gerhard Jäger. It is a privilege to have an
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Introduction

”A name is a spoken sound significant by convention... I say ’by

convention’ because no name is a name naturally but only when

it has become a symbol.”

Aristotle 1984, De Interpretatione

”[w]e can hardly suppose a parliament of hitherto speechless el-

ders meeting together and agreeing to call a cow a cow and a

wolf a wolf.”

Russell 1921, The Analysis of Mind

My Ph.D. project investigates the question of how linguistic conventions

arise and stabilize. To that end I will examine the emergence of conventional

signaling in the spirit of Lewis (1969) who sought an answer to the question:

how can linguistic meaning emerge as a convention among language users,

assuming no previous explicit agreements? I would like to elucidate this

puzzle here. Consider the following three propositions:

1. A convention is exclusively determined by an explicit agreement

2. Human language is a system that consists of linguistic conventions

3. Language, even in the simplest case, is needed to make agreements

Standing by these three propositions, we would come to a paradox: lan-

guage is needed for language to emerge. As a consequence, one of these

propositions must be wrong. While philosophers like Quine took the view

that the second proposition must be wrong and thus language cannot be

conventional, Lewis paved another way for a solution by claiming that the

1



2 Introduction

first of these three propositions is wrong: conventions are not exclusively

determined by explicit agreements; conventions, and particularly conven-

tional linguistic meaning, can arise without such agreements. He illustrated

his claim by constructing and providing a model that formalizes the way

conventions can arise without explicit agreements, namely by the emergence

of regularities in (linguistic) behavior.

The Character of Conventions

What characterizes a convention? A natural starting is that it is determined

by an explicit agreement. Promises, contracts or rules accepted and followed

by all parties among whom the convention holds are examples. In other

words: a convention is characterized by its origin. This characterization is

e.g. according to Quine (1966), who once asked: ”What is convention when

there can be no thought of convening?” In fact, there are many conventions

that originated by explicit agreement (e.g. to drive on the right or left lane

of the street), even for linguistic meaning (e.g. to christen a person or a

ship, to invent a word for a new product), but apart from that, conventions

in language use are usually not the offspring of agreements once made. This

is supported by Russell (1921), who, while dealing with the puzzle of the

evolution of linguistic meaning, once argued: ”we can hardly suppose a

parliament of hitherto speechless elders meeting together and agreeing to

call a cow a cow and a wolf a wolf.”

Thus while philosophers like Quine questioned the fact that linguistic

meaning is based on conventions, Lewis questioned the way these philoso-

phers defined conventions. Should a convention really be characterized by

its origin? He denied this claim and suggested that while the origins of

a convention can be multifarious, there are other conditions that uniquely

characterize a convention. Lewis’s definition of a convention looks roughly

as follows:

Definition 0.1 (Convention). A convention C is a behavioral regularity

among a population with the following properties:

1. common knowledge: every member conforms to C and every member

expects everybody else to conform to C

2. arbitrary: C is not determined by nature, but by society

3. alternative: C has at least one excluding (and probably competing)

alternative C ′, it could be replaced with
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To give an example: a behavioral regularity that fulfills these condi-

tions is to drive on the right lane of the street : i) it is common knowledge

among the population that everybody behaves according to it, ii) it is not

determined by nature and iii) it has an alternative: driving on the left lane

of the street. Thus according to Lewis’s definition, it’s a convention. A

counterexample that fulfills at least the first condition is to breathe: i) it is

common knowledge that every living being breathes. But condition 2 and 3

are violated: ii) it is determined by nature: from birth on we breathe; and

iii) the only excluding alternative would be not to breathe which is not a

serious alternative.

Let’s see if the conditions hold for linguistic meaning: to use a specific

verbal expression for describing a matter i) is used by all members of the

same language area; and it is also known by all members that everybody

else inside this language area uses it; ii) is not given by nature, but in gen-

eral completely arbitrary; and iii) has practically an unlimited number of

alternatives, namely any other verbal expression a society could convention-

ally use for that matter. Thus according to the three conditions linguistic

meaning is a convention.

Furthermore, as you can see in the conditions in Definition 0.1, the origin

of a convention does not play a role. Conventions can arise with or without

an explicit agreement. Dealing with the puzzle of language evolution, Lewis

was particularly interested in the question of how conventions can arise

without explicit agreements. He argues that all it needs for conventions to

arise is a specific process, an ”exchange of manifestations of a propensity

to conform to a regularity.” (Lewis 1969, pages 87-88). To give a formal

framework for modeling such a process Lewis introduced a game-theoretic

model, called the signaling game.

Signaling Games & Signaling Systems

A signaling game is a game-theoretic model that Lewis introduced to ex-

plain the emergence of linguistic meaning as a convention. It basically

models a communication situation between two players, a sender and a re-

ceiver, where the sender has the role of encoding an information state with

an expression, here called message, then the receiver decodes the message

with an interpretation state. To communicate most successfully, sender

and receiver should use compatible coding/encoding patterns. In terms of

a game these are also called contingency plans or strategies. Furthermore,

a compatible pair of strategies depicts an unique map between information
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states and messages, and can be seen as a meaning allocation. By assum-

ing that the message is a verbal expression, such a strategy pair represents

linguistic meaning.

For (linguistic) meaning to arise among sender and receiver, both have

to find a compatible strategy pair, also called a signaling system. Once they

have (directly or indirectly) agreed on one, not only is successful communi-

cation guaranteed, but also such a signaling system constitutes a strict Nash

equilibrium (c.f. Myerson 1991). This roughly means that both participants

do not have any interest in changing their strategies, so long as they know

that the other player would not change either. This implies indirectly that

such a signaling system fulfills the first condition of a convention accord-

ing to Definition 0.1, when considering both players as the population in

question.1

In the standard settings, a signaling game has at least two information

states and two messages. This leads to the realization that there is more

than just one signaling system. Consequently, it guarantees that a signal-

ing system also fulfills the third condition of Definition 0.1 since there are

alternatives. In addition, a mapping from information state to message and

from message to interpretation state is not defined in the game, thus each

mapping is possible; there is no definite or nature-given mapping integrated,

thus the second condition is also fulfilled. This means that a signaling sys-

tem is a communicative behavior that i) determines (linguistic) meaning

and ii) fulfills all conditions of a convention among both players according

to Definition 0.1.

Let us consider a concrete example: when a person wishes to affirm

or negate something, ’shaking one’s head’ or ’nodding’ are messages, yes

and no are two information states. One possible sender strategy s is: i)

’nodding’ for yes, and ii) ’shaking one’s head’ for no. A receiver strategy r

is: i) construing ’nodding’ with yes and ii) construing ’shaking one’s head’

with no. Then the pair 〈s, r〉 is a compatible pair of strategies and has

the following meaning attribution: ’nodding’ means yes and ’shaking one’s

head’ means no. In addition, the strategy pair 〈s, r〉 is a signaling system.

And it is a Nash equilibrium: none of the participants would have an interest

to change the behavior as long as they know that the communication partner

behaves according to this convention; e.g. if the sender knows that the

receiver construes ’nodding’ with yes, why should she change her strategy

1The fact that signaling systems are strict Nash equilibria implies that they are
evolutionary stable in terms of a population-based and evolutionary perspective, as will
be shown in Chapter 2.



Introduction 5

and e.g. shake her head for no? In conclusion, the strategy pair 〈s, r〉 is a

convention since also the other conditions are fulfilled: it is obviously not

given by nature and there are alternative conventions, e.g. to behave exactly

the other way around and form a strategy pair for which ’nodding’ means

no and ’shaking one’s head’ means yes. Another term for such a convention

is a signaling convention.

To analyze how conventional linguistic meaning arises, I examine the

way in which signaling systems and accompanying signaling conventions

arise. More precisely, I analyze the minimalistic version of a signaling game,

called the Lewis game. This game has only two information states and two

messages (like the ’nodding’/’shaking one’s head’ example), which implies

that it bears only two signaling systems. Both players have to agree on

one of both in order to communicate successfully and establish a linguistic

convention. In the Lewis game both signaling systems are equally good. In

the following paragraph I will argue that such parity is an exception rather

than the rule.

Horn’s Rule

A signaling game contains a set of messages. In general, it is highly idealized

to assume that the players have the same preference for all messages; they

may be biased for or against one or the other. A sender could be biased

against a message just because it is harder to produce, to pronounce; or

the message is just longer than the alternative; a receiver could be biased

against a message because the interpretation is harder or takes longer. Such

negative biases can be modeled as message costs. Furthermore, it can be

assumed that information states are not equally frequent topics of commu-

nication. This case can be modeled by assigning so-called prior probabilities

to information states to define which one is more or less frequent.

By applying signaling games with uneven probabilities for information

states and different costs for messages, it is possible to analyze a linguistic

phenomenon that is known as the division of pragmatic labor (Horn 1984),

also known as Horn’s rule. This rule says that, according to evolution-

ary forces optimizing linguistic usage, it is expected that i) the unmarked

message is used for the frequent information state and ii) the marked mes-

sage is used for the infrequent one. By considering a signaling game that

has unequal prior probabilities for information states and different message

costs, exactly one of both possible signaling systems of such a game depicts

Horn’s rule. Therefore, I will call such a game a Horn game. In addition
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to the Lewis game, I will analyze the Horn game to get insights into what

circumstances support or weaken the emergence of linguistic conventions

according to Horn’s rule.

Psychology & Sociology

It is important to note that models of meaning evolution may make precise

the exact conditions under which semantic meaningfulness can emerge. This

may occur if the habit of using a particular sound or gesture to communicate

a certain meaning arises and is amplified and sustained in a population. The

psychology of language users plays a pivotal role here: among other things,

the particulars of agents’ perception and memory, their disposition to adapt

their behavior, including the extent to which they make rational choices,

will heavily influence the way linguistic behavior evolves over time.

To find insights for the puzzle of the evolution of linguistic meaning and

how specific conventions may arise without explicit agreement, I analyze

repeated signaling games. To model a process depicting conventions arising

because of regularities in behavior, like coordinating on strategies that con-

stitute a signaling system, I will factor in agents in repeated interactions

that update their behavior in dependence of previous plays: they behave

according to update dynamics. I will introduce different types of update

dynamics for repeated signaling games that are the most well-regarded in

recent research (for an overview see Huttegger and Zollman, 2011). In that

regard I will present a study where I analyze two kinds of learning dynamics :

reinforcement learning and belief learning.

It is not only the psychology of language users that plays a role in

determining the time course and outcome of evolutionary processes. The

sociology of language-using populations is also a key factor. For that reason

many evolutionary models make explicit assumptions about the interaction

patterns within a population of language users, such as who interacts with

whom (c.f. Nettle 1999, for an early model). Different interaction structures

may, for instance, lead to different predictions about uniformity or diversity

of language (c.f. Zollman 2005; Wagner 2009; Mühlenbernd 2011).

Consequently, another focus in my research is on the interaction struc-

ture of populations of agents. For that purpose I will introduce basic con-

cepts of network theory and apply them in my experiments to i) model

more realistic interaction structures for multi-agent networks and ii) have

the means to analyze the resulting structural patterns. The goal is not only

to analyze, what kind of conventions evolve and how they are spread among
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the society, but also to determine how specific environmental features, in

terms of network properties, influence the temporal and spatial evolution of

language conventions.

Overview

The thesis is structured as follows: in Chapter 1 I will give the definition of

a signaling game central to this thesis and its related concepts. Further, I

will introduce the two specific types of signaling games that are objects of

study in this work: the Lewis game and the Horn game. In Chapter 2 I will

give an overview of the models and literature related to update dynamics

in combination with signaling games; these are basically classified as evolu-

tionary dynamics, imitation dynamics and learning dynamics. In Chapter

3 I will introduce basic concepts from network theory needed for employing

and analyzing network structures in subsequent chapters. In Chapter 4 I

will present experiments of multi-agent populations. These agents i) inter-

act on a toroid lattice structure, ii) communicate via Lewis or Horn game,

and iii) update their behavior by using learning dynamics. I will further an-

alyze results like the influence of agents’ internal as well as environmental

circumstances on the resulting spatial structure of conventions among the

society. In Chapter 5 I will present experiments of simulation runs similar

to those of Chapter 4, but this time agents are placed on more realistic net-

work structures, so-called small-world networks. Here, the analysis includes

the examination of the relationship between a) the structural features of the

network and its members and b) properties of the agents’ learning behavior

and social integration. In Chapter 6 I will give a summary of the most

relevant results of this study and a final conclusion.





Chapter 1

Signaling Games

He said to his friend, ”If the British march

By land or sea from the town to-night,

Hang a lantern aloft in the belfry arch

Of the North Church tower as a signal light,

One if by land, and two if by sea;

And I on the opposite shore will be,

Ready to ride and spread the alarm

Through every Middlesex village and farm,

For the country folk to be up and to arm.”

Longfellow 1863, Paul Revere’s Ride

”Conventions are like fires: under favourable conditions, a suf-

ficient concentration of heat spreads and perpetuates itself. The

nature of the fire does not depend on the original source of heat.

Matches may be the best fire starters, but that is no reason to

think of fires started otherwise as any the less fires.”

Lewis 1969, Convention

I would like to begin with Lewis’s first example of a signaling game, drawn

from Longfellow’s (1863) poem Paul Revere’s Ride which depicts a scene in

the American revolution. For the imminent battles of Lexington and Con-

cord between Americans and British forces, it was of essential importance

that the Americans were previously informed of how the British forces ar-

rived: by land or by sea. The early information should allow the American

9
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s1:
tl m1

ts m2

s2:
tl

m2ts

m1

s3:
tl m1

ts m2

s4:
tl

m2ts

m1

r1:
m1 al

m2 as

r2:
m1

asm2

al
r3:

m1 al

m2 as

r4:
m1

asm2

al

Figure 1.1: Lewis’s original example: the sexton’s and Revere’s admissible
contingency plans.

messenger Paul Revere sufficient time to warn others in preparation for the

imminent attack. Revere’s plan was to let the sexton of the Old North

Church keep watch in the tower at night, from where he had a wide view

over the area. When identifying enemy forces, the sexton had to signal Paul

Revere if the Redcoats are coming by land or by sea. His signals were to

hang out one or two lanterns in the belfry.

In this example there are two information states and two possible signals.

Let’s call the information states tl and ts (for land and sea), the signals m1

and m2 (one or two lanterns). Thus the sexton should have a kind of code;

Lewis called this an admissible contingency plan: a one-to-one allocation

between information states and signals. Accordingly, Revere should also

have an admissible contingency plan, a one-to-one allocation between the

signals and appropriate actions al and as (ai is the appropriate response to

information state ti). As depicted in Figure 1.1 s1, s2, s3 and s4 are the

four possible admissible contingency plans the sexton could have, and r1,

r2, r3 and r4 are Revere’s four possible admissible contingency plans.

How successful communication is (in a probabilistic way) depends on the

combination 〈s, r〉 of admissible contingency plans, also called pure strate-

gies. E.g. if the sexton behaves according to s1, but Revere according to

r3, communication succeeds only if the redcoats are coming by sea. Thus,

communication is successful in one of two possible information states; with

the assumption that all states are equiprobable, the expected communica-

tive success probability is .5. In the same way 〈s2, r2〉 would lead to an

expected communicative success probability of 1, 〈s1, r2〉 to 0. Table 1.1

depicts the values of expected communicative success probabilities of all

possible combinations along these 4× 4 admissible pure strategies.

The strategies s3 and s4 as well as r3 and r4, also called pooling strate-

gies, seem to be negligible because they don’t transfer any information in a

distinctive way. This is visible in Table 1.1 because each pair of contingency
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r1 r2 r3 r4
s1 1 0 .5 .5
s2 0 1 .5 .5
s3 .5 .5 .5 .5
s4 .5 .5 .5 .5

Table 1.1: Expected communicative success for all combinations of the sex-
ton’s and Revere’s four contingency plans.

plans with at least one pooling strategy leads to an expected communicative

success probability of .5, which means that successful communication is a

matter of chance. Nevertheless, these are some of the possible strategies

within the formal framework introduced in the coming section, and there-

fore they are not to be neglected. The combinations of particular interest

are the ones that allow for perfect communication, the strategy pairs 〈s1, r1〉
and 〈s2, r2〉, also called signaling systems.

Combinations that form signaling systems are also called coordination

equilibria (Lewis 1969) because they constitute (strict) Nash equilibria in

such a coordination game. These combinations not only ensure perfect

communication, but also distinctively attribute meanings to signals: they

establish a meaning function between information and signal. E.g. the sig-

naling system 〈s2, r2〉 makes common knowledge that one lantern means

attack by sea and two lanterns mean attack by land.

Note that this example shows us how communication succeeds with pre-

vious explicit agreements. Revere and the sexton have to agree on one of the

two coordination equilibria beforehand, either on 〈s1, r1〉 or 〈s2, r2〉. And

for those who know the poem, it is known that they agreed on 〈s1, r1〉.
Let’s consider the research question, I initially presented from Lewis,

namely ”How can linguistic meaning emerge as a convention among lan-

guage users, by assuming no previous explicit agreements?”. It would be

interesting to apply the framework of a signaling game to analyze how co-

ordination equilibria that form signaling conventions can evolve without

previous explicit agreements; thus I want to find answers for the follow-

ing questions: what leads individuals to coordinate and therefore behave

in a conventional way without previous explicit agreement, or even more,

without any prior knowledge? And how can we adapt these concepts to

explain conventions in whole populations instead among two individuals, as

modeled in the standard game? There are a lot of open questions to be

answered, and the framework of a signaling game seems to be a promis-
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ing starting point for analyzing the puzzle of the evolution of conventional

linguistic meaning in human societies.

1.1 Definition of a Signaling Game

Let’s formalize the model of a signaling game that is analyzed in this the-

sis. A simple version, called the vanilla signaling game, is defined in the

following way:

Definition 1.1 (Vanilla Signaling Game). V SG = 〈(S,R), T,M,A, P, U〉
is a vanilla signaling game with a ’first move’ player S, called the sender,

a ’second move’ player R, called the receiver, a set of information states T ,

a set of messages M , a set of interpretation states A, a prior probability

function over information states P ∈ ∆(T ) and an utility function U :

T × A→ R

In the Lewisean spirit a signaling game is grounded on a coordination

game that shapes the preferences in the utility table. To define a signal-

ing game in this spirit and, additionally, to extend the game for allowing

message costs that diminish utility values, I impose the following conditions:

� the number of states |T | and interpretation states |A| is equal and each

information state ti ∈ T has its companion interpretation state aj ∈ A
marked by the index, thus: |T | = |A| and ∀ti ∈ T ∃aj ∈ A : i = j

� the messages have cost values, defined by a cost function C : M → R

� the utility function is based on a coordination game with value 1 for

coordination and 0 for miscoordination; it is decreased by the costs of

the used message; thus it is defined as U : T ×M × A→ R

With these extensions and conditions the signaling game considered as

standard in the realm of this thesis is defined as follows:

Definition 1.2 (Signaling Game). SG = 〈(S,R), T,M,A, P, C, U〉 is a

signaling game with a ’first move’ player S, called the sender, a ’second

move’ player R, called the receiver, a set of information states T , a set

of messages M , a set of interpretation states A, a prior probability func-

tion over information states P ∈ ∆(T ), a cost function C : M → R with
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∀m ∈M : 0 ≤ C(m) < 11 and a utility function U : T ×M ×A→ R. Fur-

thermore |T | = |A| and each element in T has a counterpart in A, denoted

by the same index: ∀ti ∈ T ∃aj ∈ A : i = j. The utility function is based

on a coordination game and affected by the cost value, given as:

U(ti,m, aj) =

{
1− C(m) if i = j

0− C(m) else

A round of a signaling game is played in the following way: nature N

picks an information state t ∈ T with probability P (t) which the sender

S wants to communicate to the receiver R. For that purpose the sender

chooses a message m ∈ M and sends it to the receiver. Now the receiver

R construes the message m with an interpretation state a ∈ A. If t and

a correspond to each other, coordination and therefore communication is

successful, as expressed by the standard utility function given in Definition

1.2. In this sense, both participants have aligned preferences and an interest

for successful communication for gaining a maximal utility value.

Such a signaling game is a dynamic game because both players act in

sequence. I want to illustrate this fact by Lewis’s example: the sexton

has to signal if redcoats are coming by land or by sea by hanging one or

two lanterns in the belfry. After the sexton has sent a signal, Revere can

perceive the signal and construe it appropriately. Generally, such a game

with two information states and two messages depicts Lewis’s example and

is therefore called the Lewis game. This game is the most simple case of a

signaling game, and it forms the object of study in this work. It is defined

in the following way:

Definition 1.3 (Lewis Game). A Lewis game is a signaling game SG =

〈(S,R), T,M,A, P, C, U〉 with the following settings:

� T = {tl, ts}, M = {m1,m2}, A = {al, as}

� P (tl) = P (ts) = .5

� C(m1) = C(m2) = 0

1van Rooij (2008) mentioned that costs should be nominal, thus never exceed the
benefit of successful communication and that according to Blume et al. (1993) we’re
then still in the realm of cheap talk games.
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Figure 1.2: The extensive form of the Lewis game.

A Lewis game has two information states, messages and interpretation

states. Both information states are equiprobable, and both messages are

costless. U is the predefined utility function giving one point if communi-

cation was successful and 0 if not. The possible paths for such a game can

be displayed as a tree, also known as the extensive form game, as depicted

in Figure 1.2. It highlights the dynamic sequential nature of the game.

Because of the facts i) that both players act asynchronously and there-

fore in a dynamic way and ii) that the receiver doesn’t know the informa-

tion state nature has picked, a signaling game SG belongs to the class of

dynamic games of incomplete information (also dynamic Bayesian games,

see e.g. Ely and Sandholm 2005). In Figure 1.2 the receiver’s incomplete

information is displayed by the dashed lines which denote that he cannot

differentiate the connected situations from each other because he only knows

the message he receives, but not the information state the sender has. Each

leaf of the tree indicates the resulting utility value both players obtain for

the corresponding path, indicating if communication was successful or not

by 1 point or 0 points, respectively.

1.2 Strategies, Equilibria & Signaling Systems

Lewis’s contingency plan is formally a total function s : T → M for the

sender and a total function r : M → A for the receiver. These functions

are pure strategies. In the following, the function s is called pure sender

strategy and the function r is called pure receiver strategy. For Lewis a

contingency plan is admissible if and only if it is a one-to-one allocation,

formally a bijective function. Such an admissible contingency plan is also
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called an equilibrium strategy and defined as follows:

Definition 1.4 (Equilibrium Strategy). A pure sender strategy s or pure

receiver strategy r, respectively, is called an equilibrium strategy if and only

if it is a bijective function.

Figure 1.1 (page 10) depicts all different pure sender and receiver strate-

gies for the Lewis game, where only s1, s2, r1 and r2 are equilibrium strate-

gies. To explain why those strategies are called equilibrium strategies, I first

have to introduce the expected utility EU(s, r), the value you would expect

on average by playing a pure sender strategy s against a pure receiver strat-

egy r. It is defined as follows:

EU(s, r) =

∑
t∈T U(t, r(s(t)))

|T |
(1.1)

An equilibrium strategy is defined by the concept of a Nash equilibrium, a

strategy combination for which no player can score better by solely deviating

from it. Formally, a Nash equilibrium is defined in the following way:

Definition 1.5 (Nash Equilibrium). Given a static 2-player game G =

{P1, P2,S1,S2, U} with player P1 having a set of strategies S1 and player

P2 having a set of strategies S2 and a utility function U : S1 × S2 → R, a

pair of strategies 〈s1, s2〉 with s1 ∈ S1, s2 ∈ S2 forms a Nash equilibrium if

and only if the following two conditions hold:

� U(s1, s2) ≥ U(s1, s
′) ∀s′ ∈ S2

� U(s1, s2) ≥ U(s′, s2) ∀s′ ∈ S1

For the analysis of signaling conventions, also the strict Nash equilibrium

plays an important role. Here a player scores worse by deviating from such

an equilibrium. A strict Nash equilibrium is defined as such:

Definition 1.6 (Strict Nash Equilibrium). Given a static 2-player game

G = {P1, P2,S1,S2, U} with player P1 having a set of strategies S1 and

player P2 having a set of strategies S2 and a utility function U : S1×S2 → R.

Then a pair of strategies 〈s1, s2〉 with s1 ∈ S1, s2 ∈ S2 forms a strict Nash

equilibrium if and only if the following two conditions hold:

� U(s1, s2) > U(s1, s
′) ∀s′ ∈ S2 \ {s2}

� U(s1, s2) > U(s′, s2) ∀s′ ∈ S1 \ {s1}
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Table 1.1 (page 11) depicts the expected utility table for all possible

strategy combinations of the Lewis game. Let’s think of this table as a utility

function of a static 2-players game, where the sender is player P1 with a

strategy set S1 = {s1, s2, s3, s4} and the receiver is player P2 with a strategy

set S2 = {r1, r2, r3, r4}. Then only the strategy combinations 〈s1, r1〉 and

〈s2, r2〉 constitute strict Nash equilibria according to Definition 1.6. Such

an equilibrium of a coordination game is called a coordination equilibrium

which can only be formed by equilibrium strategies, as Lewis (1969) was

able to show. In addition, a coordination equilibrium in a signaling game

forms, what Lewis called a signaling system, which can be defined in the

following way:

Definition 1.7 (Signaling System). For a signaling game SG, the strategy

combination 〈s, r〉 is a signaling system if and only if it is a strict Nash

equilibrium of the expected utility table of SG.

For a signaling system 〈s, r〉 of a signaling game SG there is a corre-

sponding interpretation state aj ∈ A for each information state ti ∈ T that

guarantees successful communication: aj = r(s(ti)) if and only if i = j. In

addition, each signaling system has the same allocation of information state

to interpretation state. Signaling systems only differ in the way messages

are used. Taken as a whole, a signaling system has the following properties:

1. Acting according to a signaling system guarantees successful commu-

nication.

2. A signaling system uniquely attributes messages to corresponding

pairs of information state and interpretation state.

3. A signaling system forms a strict Nash equilibrium on the expected

utility table of the signaling game.

These properties reveal a combination of interesting features, namely

that according to 1.) a signaling system is the most efficient way to com-

municate, according to 2.) a signaling system ascribes a meaning to each

message and according to 3.) a signaling system incorporates a high degree

of stability since players have no incentive to change their behavior by con-

sidering expected utilities. Thus, a signaling system reveals efficiency and

stability by ascribing meanings to messages.
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1.3 The Horn Game

In communication situations, where you have the choice between alternative

expressions, your decision of which one to choose may hang on all sort of

things, but, all else being equal, it may depend on the expression’s functional

bias. For instance, an expression is biased if it is easier to acquire, produce

or receive in comparison to its alternative. This is to say that you would

prefer the biased expression. For a signaling game, where the messages

constitute expressions, this fact can be incorporated by integrating message

costs in a way that the more biased a messages is, the smaller is the value of

its costs. In this sense, van Rooij (2008) mentioned that ”...costly messages

can be used to turn games in which the preferences are not aligned to ones

where they are.” (page 268). By expecting that a language user is biased

according to one or the other expression in almost any case, the Lewis game

is an exception or a highly idealized version since the message costs of both

messages are equal.2 Thus, factoring in unequal message costs seems to be

a plausible generalization.

Furthermore, what makes the Lewis game also quite specific is the fact

that both information states have the same prior probability. If the prior

probability describes the sender’s preference for or against a specific infor-

mation state, then the sender is completely unbiased about the information

state she wants to communicate. It can be expected that in general a sender

is at least a little bit biased for one or the other information state she wants

to communicate. Consequently, I claim that a non-equal prior probability

for all information states is rather the norm than the exception.

A second interpretation is that the prior probability describes the occur-

rence probability of an information state in comparison to the others. Then

the Lewis game would predict that both information states’ occurrences

have the same probability. E.g. Zeevat and Jäger (2002) suggest that the

prior probability of the contents can be derived from corpus-based statis-

tical relations between forms and meanings. As you can imagine, even in

this case, a flat prior probability would be a glaring exception.

Note that a game with two information states, two messages, two in-

terpretation states, unequal prior probabilities and uneven message costs

constitutes a framework that has been recently applied to analyze a linguis-

tic phenomenon known as the division of pragmatic labor (Horn 1984), also

known as Horn’s rule. This rule says that the unmarked message is used

2In fact, the message costs are 0, but even if the costs are the same value c (0 < c < 1)
for both messages, the game would be strategically equivalent.
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for the prototypical information state, while the marked message is used

for the rare information state. Instances of this phenomenon are results of

evolutionary forces of language change and become apparent in various lin-

guistic constructions. Jäger (2004) gave the following examples to present

instances of Horn’s rule in different linguistic domains:

(1) a. John went to church/jail (prototypical)

b. John went to the church/jail (literal)

(2) a. I need a new driller/cooker.

b. I need a new drill/cook.

Example (1a.) describes a prototypical situation, namely that John is a

prisoner in jail or going to the masses organized by the church, respectively.

On the other hand (1b.) describes a more specific situation, namely that

John literally went to the jail or church building. In either case, the longer

and therefore marked version is (1b.) because of the additional ’the’. It

describes a specific situation, whereas the shorter version (1a.) describes

the prototypical and more frequent situation.

Example (2) depicts an interesting fact. The suffix -er has two opposed

roles: e.g. while the drill is a tool, the suffix changes its meaning to a person

who uses this tool. On the other hand the cook is a person and the suffix

changes it to a tool. Thus, the additional suffix did not arise because of

a specific function like ”if X is a person, X + -er is a tool” or the other

way around. The rule is more like: ”X and X + -er are related things and

X is more frequent or prototypical than X + -er.” This shows that the

simpler form is used for the more prototypical meaning. And Jäger (2004)

was able to show a quantitative hint supporting this fact. His results for

Google searches of the expression of (1a.) ”went to church” got 88,000 hits,

whereas ”went to the church” got 13,500 hits. He observed similar results

for ”cook” (712,000 hits) and ”cooker” (25,000 hits).

As I initially indicated, a signaling game as defined in Definition 1.2

(page 12) with strongly unequal prior probabilities and uneven message

costs drives the foundation for the analysis of Horn’s rule. If tf denotes

the frequent information state and tr the rare one, then the property of

uneven frequencies can be modeled by uneven prior probabilities in the fol-

lowing way: P (tf ) > P (tr). Further, the distinction between an unmarked

message mu and a marked message mm can be made by different message

costs: C(mu) < C(mm). Because of the relation between Horn’s rule and

a signaling game with these properties, I’ll call such a game Horn game,
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Figure 1.3: The extensive form of a Horn game with P (tf ) = .75, P (tr) =
.25, C(mu) = .1 and C(mm) = .2.

defined as follows:

Definition 1.8 (Horn Game). A Horn game is a signaling game SG =

〈(S,R), T,M,A, P, C, U〉 with the following settings:

� T = {tf , tr}, M = {mu,mm}, A = {af , ar}

� P (tf ) > P (tr)

� C(mu) < C(mm)

An instance HG of a Horn game according to Definition 1.8 can be given

as follows: HG = 〈(S,R), {tf , tr}, {mu,mm}, {af , ar}, P, C, U〉, whereby S

is a sender and R is a receiver, P (tf ) = .75, P (tr) = .25, C(mu) = .1,

C(mm) = .2 and U is the predefined utility function that returns 1 if com-

munication was successful and 0 if not, minus the message costs, respec-

tively. The extensive form game of such a Horn game is given with Figure

1.3.

Let’s take a look at the different strategy profiles and the resulting ex-

pected utility table this game offers. Since a Horn game has the same num-

ber of information states, messages and interpretation states as the Lewis

game, it has also four sender strategies and four receiver strategies with

the same mapping, as depicted in Figure 1.4: sh and rh depict the sender’s

and receiver’s behavior according Horn’s rule, also called Horn strategies.

sa and ra are the strategies that depict the exact opposite behavior, also

called anti-Horn strategies. In addition, ss and rs depict behavior accord-

ing to avoidance of complexity. The sender does not use the more complex
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Figure 1.4: All pure strategies of the Horn game.

rh ra rs ry
sh .875 -.125 .625 .125
sa -.175 .825 .575 .075
ss .65 .15 .65 .15
sy .05 .55 .55 .05

Table 1.2: Expected utilities for all combinations of pure sender and receiver
strategies for a Horn game with P (tf ) = .75, C(mu) = .1 and C(mm) = .2.

marked message, and the receiver does not take into account the interpre-

tation state that matches the rare or less general information state. These

strategies are called Smolensky strategies.3 To round things out, sy and ry
are called anti-Smolensky strategies since they depict the opposite behavior

of the Smolensky strategies.

The resulting table of expected utilities is depicted in Table 1.2. The EU

table of the Horn game has two strict Nash equilibria 〈sh, rh〉 and 〈sa, ra〉
which correspond to both signaling systems, just like the EU table of the

Lewis game (Table 1.1, page 11). But while the EU table of the Lewis game

has four non-strict Nash equilibria, the EU table of the Horn game has only

one non-strict Nash equilibrium, namely 〈ss, rs〉. This is a first indicator

that Horn’s rule is a rule with exceptions since at least in this simple model

even the opposite of Horn’s rule, the anti-Horn strategy, forms a strict Nash

equilibrium and therefore a situation that can be stable among players.4

And as I will show in subsequent analysis, even the Smolensky strategy can

be a notable alternative for a signaling convention that stabilizes inside a

population.

3The Smolensky strategy is named in reference to Tesar and Smolensky (1998), who
applied this strategy as a starting strategy for players in their simulations with regards
to the assumption that previous generations possibly weren’t aware of the more complex
marked message.

4Indeed a convention obeying Horn’s rule cover the majority of examples you can
find in the literature. But you can also find examples depicting a conventions obeying
the opposite of Horn’s rule. Such examples are given e.g. by Schaden (2008).
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It is important to note that the solution concept like the Nash equilib-

rium is not satisfactory since it admittedly expresses a degree of stability

for the case when both players are involved in a signaling system. It fails

to reveal how players come to it in the first place. In order to analyze evo-

lutionary paths leading to signaling conventions I will reconsider signaling

games as repeated games and combined with update dynamics : players play

a game repeatedly and update their behavior by taking into account the

performances or results of previous plays.

1.4 Repeated Games

As Franke (2009) puts it: ”It is not the game but a solution concept that

describes actual reasoning and/or decision making.” (page 13). We already

saw the Nash equilibrium as a solution concept, where its most common in-

terpretation is a steady state in players’ behavior by repeatedly playing the

game. What crucially lacks at this point is a description of the mechanism

that leads players to a situation of choices that forms a Nash equilibrium.

Update dynamics can fill this gap: the usage of information of previous

plays to optimize behavior. It can be shown for a range of games that

highly unsophisticated update dynamics can lead to and remain in an op-

timal and stable situation of choices; i.e. a Nash equilibrium. The most

common classes of such update dynamics in combination with repeated sig-

naling games are evolutionary dynamics, imitation dynamics and learning

dynamics which will be introduced and discussed in Chapter 2.

This mechanism gives a solution concept at hand that can explain the

adjustment of players’ strategies to form a signaling convention, not by

previous explicit agreements, but by small steps of (unsophisticated) op-

timization. This might be in light of experiences of previous interaction

among the community or, for the simplest case, with the direct participant.

As I showed in the previous sections, there are more Nash equilibria than

only the ones that form signaling systems. By finding update dynamics

that leads the players to only strict Nash equilibria, we would have solu-

tion concepts explaining the emergence of signaling systems. Further, such

dynamics seem to be explanatory solution concepts in the spirit of Lewis’s

idea: a process of conventionalization without explicit agreements.

To give a first idea about how update dynamics work, let’s think about

a really simple update rule for a repeatedly played 2-player signaling game,

called myopic best response that is defined as follows: make a random choice
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as first move and then play the best response5 against what the other player

has played in the last round. Now let’s say that players play contingency

plans as strategies and try to maximize their expected utility, thus their

game table is the EU table (e.g. Table 1.1 on page 11 for the Lewis game

and Table 1.2 on page 20 for a Horn game). With the myopic best response

rule, players can escape non-strict Nash equilibria. E.g. let’s say that the

players play the Lewis game and start with strategy 〈s3, r4〉, i.e. a non-

strict Nash equilibrium of the Lewis game. In the next round both players

can switch to any other strategy because all receiver strategies are a best

response to s3 and all sender strategies are a best response to r4. Thus,

it is highly probable that at one point they would switch to equilibrium

strategies. At this point, they are trapped in a strict Nash equilibrium and

will never change their strategies. A similar argumentation is given for the

Horn game. As a consequence, according to myopic best response, players

wouldn’t finally stick in the non-strict Nash equilibrium 〈ss, rs〉, but either

in 〈sh, rh〉 or 〈sa, ra〉.
Note that the players might be trapped in a cycle of miscommunication.

For the Lewis game it would be 〈s1, r2〉 → 〈s2, r1〉 → 〈s1, r2〉 → . . ., for the

Horn game 〈sh, ra〉 → 〈sa, rh〉 → 〈sh, ra〉 → . . .. It means that both players

played the exact opposite equilibrium strategies last round and want to

adapt to the other player by switching to the other equilibrium strategy.

Since both players are doing this simultaneously, they will never reach a

signaling system.

Now let’s modify the update rule to the rule probabilistic myopic best

response, defined in the following way: make a random choice as first move;

then play the best response against what your participant has played in

the last round with probability p; and stay with your old strategy with

probability 1 − p. This modification gives both participants the chance

to escape from such a cycle of miscommunication and finally end up in a

signaling system with dead certainty.

This example shows how a simple mechanisms of adapting behavior can

lead to signaling conventions. There is need neither for a previous explicit

agreement, nor for any kind of highly sophisticated rational deliberation.

All that is needed is the will of both participants to communicate success-

fully and the possibility to learn from previous interactions by incorporating

former results. And as I was able to show with the last example, integrating

5To play the best response means to play the move that maximizes expected utility
for a given move of the other player.
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probabilistic choices can avoid a situation, where players are trapped in an

unwanted situation: a cycle of miscommunication.

1.5 Conclusion

In this chapter I defined the signaling game. I introduced i) the Lewis game,

i.e. the simplest variant of a signaling game and ii) the Horn game, i.e. an

extended variant and a formal model to analyze Horn’s division of pragmatic

labor. In either case, the challenge is to explain the emergence of linguistic

meaning as a convention without previous explicit agreements. The solution

concept of a Nash equilibrium explains the stability of signaling systems

since no rational participant has an interest to deviate. This provides a

good explanation for the stability of how conventions remain stable once

emerged. But the crucial question is still how such conventions emerge in

the first place.

The initial example of the Lewis game showed that it works with explicit

agreement: Revere and the sexton previously agreed on a code in form of

a clear information-signal mapping. But how does such a stable situation

emerge without explicit agreement? With a simple update rule, myopic best

response for repeatedly played games, I was able to show how players can

find such stable situations; and by integrating probabilistic choices, they will

finally end up in one signaling system, and that without explicit agreements.

Nevertheless, the probabilistic myopic best response rule i) involves an

assumption of rationality and ii) were applied for a two-player game. One

might ask: is an assumption of rationality necessary to explain the emer-

gence of signaling systems, or are lesser assumptions sufficient? And how

does behavior stabilize among more than only two players, namely among a

whole population? Furthermore, how can the emergence of the Horn strat-

egy in favor of anti-Horn be explained since both are signaling systems and

strict Nash equilibria?

Basic answers to these questions can be found in Chapter 2, where I’ll

show that update dynamics in repeated games have the key role of explaining

the conventionalization process of linguistic meaning without previous ex-

plicit agreements. In general, I’ll show how conventions emerge through the

dynamics of optimization in cultural evolution.6 In Chapter 3 I’ll introduce

6According to the Horn game, this is in the spirit of van Rooij (2004), who suggests
that Horn’s division of pragmatic labor involves not only language use but language
organization, thus one should look at signaling games from an evolutionary point of
view.
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some basic notions from network theory that provide tools for modeling

(realistic) structures of populations. The combination of both i) update

dynamics to model processes of cultural evolution and ii) network theory

to shape realistic social network structures constitutes the innovation in my

research and will be analyzed in subsequent chapters.



Chapter 2

Update Dynamics

”Two savages, who had never been taught to speak, but had been

bred up remote from the societies of men, would naturally begin

to form that language by which they would endeavor to make

their mutual wants intelligible to each other, by uttering certain

sounds, whenever they meant to denote certain objects.”

Smith 1761, Considerations Concerning the First Formation of

Languages

”...the replicator dynamics is a natural place to begin investi-

gations of dynamical models of cultural evolution, but I do not

believe that it is the whole story.”

Skyrms 1996, Evolution of the Social Contract

In Chapter 1 I discussed the properties of a signaling game. This in-

cluded the possible solution concepts for determining signaling conventions

and their stability. I also mentioned that by considering evolutionary paths

or processes for the emergence of such conventions, repeated games have

to be considered. But this alone is not enough. Such a process can only

emerge if agents’ experiences of already played rounds of a game guide their

decision for following rounds; i.e. the performance or the outcome of one

or more previously played rounds of a game influences the way agents up-

date their behavior. Recently three branches of such update dynamics have

gained attention considering this issues: evolutionary dynamics, imitation

25



26 CHAPTER 2. UPDATE DYNAMICS

dynamics and learning dynamics. To proceed chronologically, I will start

this chapter with the first of these three since evolutionary dynamics were

to my knowledge the earliest account of applying update dynamics on re-

peated games. This concept originated in the field of evolutionary game

theory.

While classical game theory found its first applications in the field of

economics, evolutionary game theory originally applied to biological con-

texts. As Alexander (2009) noted, evolutionary game theory has recently

inspired social scientists for three reasons:

1. evolution can be considered as cultural evolution, e.g. to explain the

emergence of conventions, cooperation and norms

2. the rationality assumptions of evolutionary game theory are in general

more suitable for social systems than those of classical game theory

3. evolutionary game theory is an explicit dynamic theory and therefore

provides an important element, missing from traditional game theory

Furthermore, while classical game theory deals with one-shot games be-

tween two agents, evolutionary game theory has considered populations of

agents and repeated games from the beginning. In this chapter I’ll intro-

duce three popular dynamics types by i) giving the formal definition, ii)

presenting the latest noteworthy literature and iii) showing results of my

own research for these dynamics in combination with signaling games. In

Section 2.1 I’ll introduce the most popular dynamics in the framework of

evolutionary game theory that is called replicator dynamics (Taylor and

Jonker 1978), with which we take a macro-level perspective: update steps

are defined in dependence of proportions of the population without taking a

particular agent’s decision process into account. In Section 2.2 I’ll switch to

the micro-level perspective of populations of individual ’behavior updating’

agents, whereas I analyze imitation dynamics, whereof one variant is shown

to be closely related to the replicator dynamics. In Section 2.3 I’ll analyze

agents updating their behavior by learning dynamics which basically differ

from imitation dynamics by the fact that agents can collect information

from multiple previous plays to guide their decisions.
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2.1 Evolutionary Dynamics

As seen in Chapter 1, Lewis’s definition of a convention requires assump-

tions about the players’ common knowledge to let them make their decisions

according to a signaling system, a fact also supported by e.g. Vanderschraaf

(1998). But this requirement bears a question: where should this common

knowledge come from? If the emergence of language should be explained

without previous agreements, why should previous common knowledge be

assumed? Considering the agents’ knowledge about interlocutors, it would

be preferable to start with as few prerequisites as possible. Evolutionary

game theory gives a clue to this puzzle, as Huttegger (2007) pointed out:

”The adaption of the evolutionary viewpoint implies that we do not follow

Lewis (1969) and Vanderschraaf (1998) in invoking any common knowledge

assumption to define conventions. ... We assume neither that the indi-

viduals in the population reach a convention by explicit agreement, nor

that they have a preexisting language or common knowledge of the game.

Indeed, they may not have much knowledge at all.” (page 9).

With this point of view, it is not required that members of a popula-

tion have preexisting common knowledge to agree on a behavioral pattern

that constitutes a convention. A convention can be established in a society

through the mechanism of selection and mutual adaption. van Rooij (2004)

emphasizes the point that a convention can have its own internal dynam-

ics. In addition, he highlights the relationship to biological evolution: ”A

linguistic convention can be seen as a behavioral phenomenon that devel-

ops through the forces of evolution. Indeed, a linguistic convention can be

thought of as a typical example of what Dawkins (1976) calls memes : cul-

tural traits that are subject to natural selection. In contrast with genes,

memes are not replicated - transmitted and sustained - through genetic in-

heritance, but through imitation, memory, and education. ... But linguistic

conventions thought of as memes share a crucial feature with genes: if they

do not serve the needs of the population, evolutionary forces will act to

improve their functioning.” (page 516).

In the following I want to present a number of different accounts that

deal with signaling games in evolutionary frameworks on a population level.

Furthermore, I want to show how conventions can arise without assuming

much, if any, knowledge of individuals in the population. For that purpose it

is necessary to consider a modified version of a standard signaling game SG

(as defined in Chapter 1) which I call a static signaling game SSG. With

respect to the majority of literature about signaling games and evolutionary
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dynamics, there is particularly one distinction that separates a SSG into two

classes: the distinction between symmetric and asymmetric static signaling

games.

2.1.1 Symmetric and Asymmetric Static Signaling Games

To adapt signaling games to established evolutionary accounts, let us con-

sider a static variant: sender or receiver can play all pure strategies and the

virtual game is the table of expected utilities among these strategies. Games

like that are i) asymmetric because sender and receiver have a different set

of strategies and ii) static because agents play their strategies simultane-

ously. Hence, an asymmetric static signaling game SSGa is defined in the

following way:

Definition 2.1 (Asymmetric Static Signaling Game). Given a signaling

game SG = 〈(S,R), T,M,A, P, C, U ′〉 with a sender S, a receiver R, a set

of information states T , a set of messages M , a set of interpretation states

A, a probability function over states P ∈ ∆(T ), a cost function C : M → R
and a utility function U ′ : T ×M × A→ R, the corresponding asymmetric

static signaling game SSGa = 〈(S,R),S,R, U〉 is defined as follows:

� S is a sender, R is a receiver

� S = {s|s ∈ T →M} is the set of pure sender strategies

� R = {r|r ∈M → A} is the set of pure receiver strategies

� U : S×R→ R is the utility function over sender and receiver strate-

gies, defined as U(s, r) =
∑

t P (t)× (U ′(t, r(s(t)))− C(s(t)))

Accordingly, for the Lewis game the payoff table of the corresponding

symmetric static signaling game is depicted in Table 4.5a, whereas the payoff

table representing the symmetric static signaling game for a Horn game with

P (tf ) = .75, C(mu) = .1 and C(mm) = .2 is depicted in Table 4.5b. Notice

that these are asymmetric games by definition because for a symmetric game

both players have the same set of strategies to choose from, and the utility

doesn’t depend on the position of the players. There are two possibilities

for integrating a static game in an evolutionary setup, as Skyrms (1996)

pointed out: ”In an evolutionary setting, we can either model a situation

where senders and receivers belong to different populations or model the

case where individuals of the same population at different times assume the
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r1 r2 r3 r4
s1 1 0 .5 .5
s2 0 1 .5 .5
s3 .5 .5 .5 .5
s4 .5 .5 .5 .5

(a) EU -table Lewis Game

rh ra rs ry
sh .875 -.125 .625 .125
sa -.175 .825 .575 .075
ss .65 .15 .65 .15
sy .05 .55 .55 .05

(b) EU -table Horn Game

Table 2.1: The payoff tables of asymmetric static signaling games for the
Lewis game (Table 4.5a) and the Horn game (Table 4.5b) with P (tf ) = .75,
C(mu) = .1 and C(mm) = .2.

role of sender and receiver.” (page 87). It is easy to see that a SSGa in an

evolutionary setting can only be applied on two disjoint populations, one

with only senders, the other with only receivers. Accordingly, agents can

only interact with members of the other population.

The second possibility that Skyrms mentioned, allows us to adapt sig-

naling games to one homogeneous population. Here agents can switch roles:

every agent can be sender and receiver, each role with a probability of .5

(as a general setup). A game with such a setting is also called the role-

conditioned version (Huttegger 2007). I will call such a game a symmetric

static signaling game SSGs. An agent’s strategy consists of a sender strat-

egy si and a receiver strategy rj. I will call such a strategy pair (si, rj) a

language Lij (or the abbreviation Li if i = j), defined as follows:

Definition 2.2 (Language). Given a static signaling game SSG with a

set of sender strategies S and receiver strategies R for players that take up

sender and receiver role, each player’s strategy pair (si, rj) with si ∈ S and

rj ∈ R is called her language Lij, or Li iff i = j.

A symmetric static signaling game is defined in the following way:

Definition 2.3 (Symmetric Static Signaling Game). Given an asymmetric

static signaling game SSGa = 〈(S,R),S,R, U ′〉 with a sender S, a receiver

R, a set of pure sender strategies S, a set of pure receiver strategies R and

a utility function U : S × R → R. The corresponding symmetric static

signaling game SSGs = 〈(S,R),L, U〉 is defined as follows:

� S is a sender, R is a receiver

� L = {Lij|Lij = 〈si, rj〉∀si ∈ S, ri ∈ R} is the set of languages
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r1 r2 r3 r4
s1 L1 L12 L13 L14

s2 L21 L2 L23 L24

s3 L31 L32 L3 L34

s4 L41 L42 L43 L4

(a) Languages of the Lewis game

rh ra rs ry
sh Lh Lha Lhs Lhy
sa Lah La Las Lay
ss Lsh Lsa Ls Lsy
sy Lyh Lya Lys Ly

(b) Languages of a Horn game

Table 2.2: 4 × 4 strategy pairs constitute 16 languages for the Lewis game
(Table 2.2a) and the Horn game (Table 2.2b) as well.

� U : L × L → R is the utility function over languages, defined as

U(Lij, Lkl) = 1
2
(U ′(si, rl) + U ′(sk, rj))

Instead of a SSGa that distinguishes between a population of senders

with a set of strategies S and receivers with another set of strategies R, a

SSGs can be integrated in a ’one population’ model, where each agent has

the same set of languages L. Note that for a ’SSGs one population model’,

each agent has 16 different languages for the Lewis game and the Horn game

as well. These languages are depicted in Table 2.2a for the Lewis game and

Table 2.2b for the Horn game.

The research of this chapter considers evolutionary dynamics for static

signaling games in populations. With regard to this account I would like to

answer two pressing questions (according to Huttegger 2007, page 6):

1. How is a conventional language maintained in a population?

2. And how might a conventional language established in the first place?

2.1.2 Evolutionary Stability

The first question can be answered with the concept of the evolutionarily

stable strategy (ESS) (c.f. Maynard Smith and Price 1973; Maynard Smith

1982) which is defined as follows:

Definition 2.4 (Evolutionarily stable strategy). For a symmetric signaling

game SSGs a strategy si is said to be a evolutionarily stable strategy if and

only if the following two conditions hold:

1. U(si, si) ≥ U(si, sj) for all sj 6= si

2. if U(si, si) = U(si, sj) for some sj 6= si, then U(si, sj) > U(sj, sj)
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These conditions guarantee that a population of agents playing strategy

si will be resistant against the invasion of a small proportion of mutants

with another strategy sj 6= si. For such an invasion, selection will move the

population back to a state with only si players. The number of mutants

against which an ESS is resistant is also called the invasion barrier.

In addition, the first condition requires an ESS to be a Nash equilibrium.

The second condition says that if a strategy sj can survive with the evolu-

tionary stable strategy si, then si must be able to successfully invade sj. It

follows immediately that any strategy that forms a strict Nash equilibrium is

evolutionarily stable. All in all, the concept of an ESS is strongly connected

to the concept of a Nash equilibrium in the following manifestation:

� if a strategy si constitutes a strict Nash equilibrium, then si is an ESS

� if a strategy si is an ESS, then si is a Nash Equilibrium

This leads to the following inclusion relation:

Strict Nash Equilibria ⊂ ESS ⊂ Nash Equilibria

Further, Wärneryd (1993) was able to show that for a symmetric sig-

naling game, a strategy is an evolutionarily stable state if and only if it is a

signaling system. This explains the fact that once signaling systems emerge

in a population, they are stable (in fact evolutionarily stable).

Note that for the asymmetric static signaling game with two populations,

the second condition of the ESS definition doesn’t matter: here a strategy si
of the first population and strategy rj of the second population constitute

an ESS if U(si, rj) > U(sk, rj) and U(si, rj) > U(si, rl) for all sk 6= si
and rl 6= rj. In this case, both populations have an invasion barrier. In

addition, for an assymetric static signaling game an ESS and a strict Nash

equilibrium coincide: Selten (1980) was able to show that a strategy pair

(si, rj) constitutes an ESS if and only if (si, rj) is a strict Nash equlilibrium.

The concept of an ESS provides a good answer to the first question of

stability for a signaling system once it has emerged, but it doesn’t answer

the question of how signaling systems emerge in the first place. Here the

replicator dynamics should give us a preliminary answer.

2.1.3 Replicator Dynamics

The replicator dynamics in its general specification is a dynamics that mod-

els replication in populations, like biological reproduction. It is defined for



32 CHAPTER 2. UPDATE DYNAMICS

an infinite population of agents playing a game by choosing among strate-

gies, where the fitness is defined by agents’ utility values and selection is

generated by the choice behavior of the population. In detail: given is an

infinite population of agents playing a game with a set of strategies s ∈ S

randomly against each other, and furthermore:

� U(si, sj) is the utility of playing strategy si against sj

� p(si) is the proportion of agents in the population playing strategy si

� U(si) =
∑

sj∈S p(sj)U(si, sj) is the expected utility for playing si

� U =
∑

si∈S p(si)U(si) is the average utility of the whole population

According to the replicator dynamics, the proportion p′(si) of the pop-

ulation playing a strategy s in the next generation depends on i) its pro-

portion p(si) of the current generation and ii) its success in form of overall

utility U(si) in comparison to the population’s average utility U . By consid-

ering that time intervals between generations are arbitrarily small and that

the population size goes towards infinity, the development of the relative fre-

quency of the different strategies within the population converges towards

a deterministic dynamics. This dynamics is called replicator dynamics and

can be described by the following differential equation:

Definition 2.5 (Replicator Dynamics). For a given set of strategies si ∈ S

and the predefined utility of a strategy U(si), proportion of agents playing

that strategy p(si) and the population’s average utility U , the replicator dy-

namics is defined by the following differential equation:

dp(si)

dt
= p(si)[U(si)− U ]

This equation was first introduces by Taylor and Jonker (1978) and later

studies by e.g. Zeeman (1980), Bomze (1986) and Schuster and Sigmund

(1983). Note that there are only two cases for a strategy si not to change

it’s proportion p(si) over time (dp(si)
dt

= 0): first, the strategy is as good

as the populations average (U(si) = U) and second, the strategy is extinct

(p(si) = 0). Furthermore, a strategy proportion p(si) increases (dp(si)
dt

>

0) if and only if it is better than the average (U(si) > U), and deceases

(dp(si)
dt

< 0) if and only if it is worse than the average (U(si) < U).
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As initially mentioned, the replicator dynamics was originally used to

capture biological phenomena. There are some later studies that reason-

ably apply the replicator dynamics in a cultural context (c.f. Björnstedt and

Weibull 1996; Harms 2004). For example, Björnstedt and Weibull (1996)

showed that replicator dynamics describe a learning process governed by im-

itation. Thus the replicator dynamics seems to be a good point of departure

for analyzing signaling games in a context of cultural evolution.

2.1.4 The Lewis Game in Evolution

Skyrms (1996) made replicator dynamics simulations for populations of

agents playing a symmetric static variant of the Lewis game. By starting

from all possible combinations of sender and receiver strategies, he showed

that signaling systems always evolve. Furthermore, Skyrms (2000) gave a

mathematical analysis of the replicator dynamics applied on simple cases of

signaling games, inter alia the Lewis game, for which he was able to show

that signaling systems emerge without fail. It is important to note that

which of both signaling systems is finally selected depends on the initial

proportions. To highlight this fact, let’s take a look at the whole utility ta-

ble of the symmetric static variant of the Lewis game, as depicted in Table

2.3. In the following I’ll denote the symmetric static variant of the Lewis

game with LGs.

As visible in Table 2.3 LGs has two strict Nash equilibria and therefore

at least two evolutionarily stable strategies: languages L1 and L2. There are

four Nash equilibria which are not evolutionarily stable: L3, L34, L43 and L4.

In addition, there are two languages which are bad against themselves but

perfect against each other: L12 and L21. Finally, the remaining languages

fail to be Nash equilibria and are attracted by either L1 or L2. Because LGs

has a 16× 16 utility table, it’s difficult to display dependencies of different

languages for the whole game. To highlight relationships between specific

languages, I’ll break down the game to sub-games that are defined for a

subset of the given set of the languages. A sub-game for a given static game

G is defined in the following way:

Definition 2.6 (Sub-game). Given a static game G = 〈(P1, P2),S1,S2, U〉
with players P1 and P2, a set of strategies S1 for the first and S2 for the

second player and a utility function U : S1 × S2 → R, a corresponding sub-

game of game G restricted to strategy sets S′1 ⊆ S1 and S′2 ⊆ S2 is defined

as sub(G,S′1,S
′
2) = 〈(P1, P2),S

′
1,S

′
2, U

′〉 with:
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L1 L12 L13 L14 L21 L2 L23 L24 L31 L32 L3 L34 L41 L42 L43 L4

L1 1 .5 .75 .75 .5 0 .25 .25 .75 .25 .5 .5 .75 .25 .5 .5

L12 .5 0 .25 .25 1 .5 .75 .75 .75 .25 .5 .5 .75 .25 .5 .5

L13 .75 .25 .5 .5 .75 .25 .5 .5 .75 .25 .5 .5 .75 .25 .5 .5

L14 .75 .25 .5 .5 .75 .25 .5 .5 .75 .25 .5 .5 .75 .25 .5 .5

L21 .5 1 .75 .75 0 .5 .25 .25 .25 .75 .5 .5 .25 .75 .5 .5

L2 0 .5 .25 .25 .5 1 .75 .75 .25 .75 .5 .5 .25 .75 . .5

L23 .25 .75 .5 .5 .25 .75 .5 .5 .25 .75 .5 .5 .25 .75 .5 .5

L24 .25 .75 .5 .5 .25 .75 .5 .5 .25 .75 .5 .5 .25 .75 .5 .5

L31 .75 .75 .75 .75 .25 .25 .25 .25 .5 .5 .5 .5 .5 .5 .5 .5

L32 .25 .25 .25 .25 .75 .75 .75 .75 .5 .5 .5 .5 .5 .5 .5 .5

L3 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5

L34 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5

L41 .75 .75 .75 .75 .25 .25 .25 .25 .5 .5 .5 .5 .5 .5 .5 .5

L42 .25 .25 .25 .25 .75 .75 .75 .75 .5 .5 .5 .5 .5 .5 .5 .5

L43 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5

L4 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5

Table 2.3: Utility table of the symmetric static Lewis game LGs.

L1 L2 L3

L1 1 0 .5
L2 0 1 .5
L3 .5 .5 .5

(a) sub(LGs, {L1, L2, L3})

L1 L12 L21

L1 1 .5 .5
L12 .5 0 1
L21 .5 1 0

(b) sub(LGs, {L1, L12, L21})

L1 L3 L41

L1 1 .5 .75
L3 .5 .5 .5
L41 .75 .5 .5

(c) sub(LGs, {L1, L3, L41})

Table 2.4: Utility tables for different sub-games of LGs

� players P1 and P2

� strategy set S′1 ⊆ S1 for P1 and S′2 ⊆ S2 for P2

� U ′ : S′1 × S′2 → R as the utility function over strategies, defined as

U ′(si, sj) = U(si, sj) for all si ∈ S′1, sj ∈ S′2

Note that for a symmetric game and a sub-game sub(G,S1,S2) with

S1 = S2, the sub-game is abbreviated as sub(G,S1).

To illustrate different dependencies between these languages I will pick

out three sub-games with three languages each, as depicted in Table 2.4.

The global dynamics between both evolutionarily stable languages L1 and

L2 and a third non-evolutionarily stable language L3 (equal to L34, L34
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(a) sub(LGs, {L1, L2, L3}) (b) sub(LGs, {L1, L12, L21}) (c) sub(LGs, {L1, L3, L41})

Figure 2.1: Global dynamics pictures of different sub-games of LGs

or L4) can be analyzed in sub-game sub(LGs, {L1, L2, L3}), as depicted in

Table 2.4a. The corresponding global dynamics picture under the replicator

dynamics is depicted in Figure 2.1a.1 All three languages are stable rest

points, but a population of L3 players can be easily invaded by L1 or L2

players: they score as good as L3 players in such a population, but better

against themselves. The smallest deviation from 100% of L3 players drifts

the population state away, attracted by either a population state of only L1

or of only L2 players. These two population states are attraction points and

the spectrum of population states attracted by them is called their basin

of attraction. It is observable that in sub-game sub(LGs, {L1, L2, L3}) the

whole space of population states is equally divided in a basin of attraction

for L1 and one for L2. Only the population states with p(L1) = p(L2) > 0

drives the population state to a state with 50% of L1 and 50% of L2 players

which is a mixed Nash equilibrium.

The global dynamics of sub-game sub(LGs, {L1, L12, L21}) (Table 2.4b)

are displayed in Figure 2.1b: here the whole space is a basin of attraction

for L1, except the bottom line of only L12 and L21 players. On this line

the replicator dynamics drives the population state to a stable rest point

of 50% of L12 and 50% of L21 players. The average utility is .5 for such

a population state. Only an L1 invader would score the same but better

against himself. Thus the smallest deviation from a population state of only

1Such a global dynamics picture displays the global dynamics between three strate-
gies. Each vertex of the triangle corresponds to 100% of the population playing the
corresponding strategy, all coordinates in between are mixed population states. The ar-
rows represent the directions of change of the population state, the shading illustrates
the speed of change: the lighter the color, the higher the speed. The gray dots represent
stable rest points.
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L12 and L21 players to L1 invaders drives the population to a state of only

L1 players.

The global dynamics of sub-game sub(LGs, {L1, L3, L41}) (depicted in

Table 2.4c) are displayed in Figure 2.1c: here the whole space is a basin

of attraction for L1, except the population state of only L3 players. A

population state of only L41 players is unstable because L1 players score

better against L41 players than L41 players against themselves.

All in all, it can be shown that with a few exceptions of some rest points,

the whole population state space of LGs is equally divided in two basins

of attraction, one for L1 and one for L2. Consequently, dependent on the

initial population state, the replicator dynamics drives the population to a

state of only players of one of those two languages that constitute signaling

systems.

2.1.5 The Horn Game in Evolution

At the beginning of this section I gave reasonable arguments for the way to

analyze signaling games under an evolutionary point of view. This view can

be augmented in particular for the Horn game, as van Rooij (2004) pointed

out: ”According to a tradition going back to Zipf (1949), economy consid-

erations apply in the first place to languages. Speakers obey Horn’s rule

because they use a conventional language that, perhaps due to evolutionary

forces, is designed to minimize the average effort of speakers and hearers.”

(page 494).

Beside Skyrms (1996), a vast number of further scholars analyzed stan-

dard signaling games like the Lewis game in combination with replicator

dynamics, but comparatively a lot less has been done for the Horn game.

Note that two adjustments distinguish a Horn game from the Lewis game:

uneven state probabilities and message costs that differ among the mes-

sages. On the one hand, signaling games with an uneven probability distri-

bution of both states are analyzed e.g. by Nowak et al. (2002), Huttegger

(2007) or Hofbauer and Huttegger (2007), but without reconsidering mes-

sage costs. One the other hand, games with costly signaling were analyzed

by economists (c.f. Spence 1973) and biologists (c.f. Grafen 1990), but un-

even state probabilities were not considered. Research for signaling games

with the combination of both is rare. In the following, I’ll give an overview

about a couple of studies dealing with Horn games.

There is a study of Jäger (2008) that deals with a mathematical analysis

of Horn games by incorporating both an uneven probability distribution for
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rh ra rs ry
sh .875 ; 1 −.125 ; 0 .625 ; .75 .125 ; .25
sa −.175 ; 0 .825 ; 1 .575 ; .75 .075 ; .25
ss .65 ; .75 .15 ; .25 .65 ; .75 .15 ; .25
sy .05 ; .25 .55 ; .75 .55 ; .75 .05 ; .25

Table 2.5: The asymmetric static Horn game HGa with P (tf ) = .75,
C(mu) = .1 and C(mm) = .2, whereby costs are only considered for senders.

the states and different message costs. This study is not restricted to games

with only two states, two messages and two actions. The results show that

the signaling systems are evolutionarily stable for signaling games with an

equal number of states, messages and actions. Jäger also found an infinity

of neutrally stable states2 that are not included in the set of evolutionarily

stable states, but attract a set of states with a positive measure.

Furthermore, Benz et al. (2005) used simulations to analyze the asym-

metric variant of a Horn game (P (tf ) = .75, C(mu) = .1, C(mm) = .2)

under the replicator dynamics for a ’two population’ model, similar to the

one depicted in Table 4.5b, but message costs are only considered for the

agents being senders, not for being receivers. The corresponding SSGa is

depicted in Table 2.5. The resulting times series is depicted in Figure 2.2

for a starting population with all strategies having 25% proportion of the

society, Figure 2.2a for the sender population, Figure 2.2b for the receiver

population. As you can see, with this initial setting the resulting popula-

tion will use the Horn strategy sh for all senders and rh for all receivers as

well. Apparently, the Smolensky strategy is initially really successful partic-

ularly among the receiver population, but it is finally driven to extinction.

In addition, it can be shown that for the same game but with considering

message costs also for receivers (Table 4.5b, page 136), the time series looks

roughly the same: neglecting or incorporating message costs for receivers

basically doesn’t seem to make a difference.

Nevertheless, it can be shown that the anti-Horn strategies sa and ra
and Smolensky strategies ss and rs are also attractors for specific starting

populations. Thus Horn strategy, anti-Horn strategy and Smolensky strat-

egy all have a basin of attraction, where the one of the Horn strategy is

2Neutrally stable states differ from evolutionarily stable states by relaxing the second
condition to a non-strict inequality (see Definition 2.4): if U(si, si) = U(si, sj) for some
sj 6= si, then U(si, sj) ≥ U(sj , sj). Note that the Smolensky language is a neutrally
stable state for a variant of the static Horn game.
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(a) sender population (b) receiver population

Figure 2.2: The time series of the Horn game for sender and receiver pop-
ulation.

always larger than the other two.3 For instance, for the predefined Horn

game (P (tf ) = .75, C(mu) = .1, C(mm) = .2) the basin of attraction for the

Horn strategy spans almost 50% of the space of population states. Figure

2.3 depicts the basins of attraction segmentation of the population state

space as a 3-simplex with uniform population states at the four corners.

The position coordinates of each sphere corresponds to the initial popula-

tion state4, the color represents the final uniform population state.

These results show what van Rooij (2004) pointed out, namely that

the basin of attraction and therefore the initial population state plays a

significant role for the way strategies evolve and stabilize in the population.

While the simulation example of Benz et al. (2005) started with a population

state of the same proportion for each strategy, de Jaegher (2008) argues for

an initial population of agents playing only the Smolensky strategy which

he labeled with a more general term as pooling equilibrium: ”...the evolution

of an equilibrium that selects Horn’s rule follows straightforwardly from the

fact that a signaling equilibrium must at some point have evolved from a

pooling equilibrium.” (page 276).

Like Benz et al. (2005), de Jaegher (2008) also examined the asym-

metric static Horn game with a sender and a receiver population which

I’ll denote with HGa. In his first experiment he considered the sub-game

sub(HGa, {sh, ss}, {rh, rs}) (Table 2.6a) to analyze the evolutionary drift

from the Smolensky to the Horn strategy. The resulting phase diagram for

the replicator dynamics is depicted in Figure 2.4a. As you can see, the pop-

3To what extend these basins of attraction differ depends of the parameter settings
of the Horn game: state probability P and the difference between the costs C(mu) and
C(mm).

4Initial states of sender population and receiver population are identical.
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Figure 2.3: Basins of attraction segmentation of a discrete population state
space as 3-simplex. The four corners are the uniform population states for
Horn (bottom left), anti-Horn (bottom-right), Smolansky (top) and anti-
Smolensky (bottom backside).

rh rs
sh .875 ; 1 .625 ; .75
ss .65 ; .75 .65 ; .75

(a) sub(HGa, {sh, ss}, {rh, rs})

ra rs
sa .825 ; 1 .575 ; .75
ss .15 ; .25 .65 ; .75

(b) sub(HGa, {sa, ss}, {ra, rs})

Table 2.6: Utility tables for different sub-games of LGs

ulation state remains close to the pooling equilibrium (ss, rs) (bold line at

the bottom) as long as less than half of the receivers interpret the costly sig-

nal with the infrequent interpretation state. In any other case the dynamics

drives the population to the signaling equilibrium (sh, rh).

In addition, de Jaegher analyzed the sub-game sub(HGa, {sa, ss}, {ra, rs})
(Table 2.6b). The resulting phase diagram for the replicator dynamics is

depicted in Figure 2.4b. This time there is no evolutionary path from the

pooling equilibrium (ss, rs) to the signaling equilibrium (sa, ra). But de

Jaegher (2008) was able to show that there is an evolutionary path from



40 CHAPTER 2. UPDATE DYNAMICS

(a) sub(HGa, {sh, ss}, {rh, rs}) (b) sub(HGa, {sa, ss}, {ra, rs})

Figure 2.4: Global dynamics pictures of the two sub-games

the other pooling equilibrium (sy, ry) to the signaling equilibrium (sa, ra).

Furthermore, Jäger (2004) simulated the Horn game with replicator dy-

namics and integrated a specific degree of noisy mutation: a randomly

chosen proportion of the population is randomly replaced by invaders that

play a randomly chosen strategy. In such a model no strategy is evolution-

arily stable because every mutation barrier can be overcome, even with a

very small probability. Although the invasion barrier is high for popula-

tions of Horn players to be invaded by anti-Horn players (and the other way

around), an invasion is probable. Jäger (2004) simulated such a run for the

Horn game as specified in Table 2.5. He showed that the system switched

from time to time between populations either with predominantly Horn or

anti-Horn players. The result also revealed that the system spent 67% of

its time in a population with predominantly Horn players and 26% of its

time in a population with predominantly anti-Horn players. This indicates

that the Horn strategy being more probable is the only stochastically sta-

ble strategy which is a refinement of evolutionary stability: a strategy is

stochastically stable if its probability converges to a value Pr > 0 as the

mutation rate approaches 0.5 For the symmetric variant of the Horn game

van Rooij (2004) had the same observation and pointed out that ”in case

the mutation rate is small, the system spends most of the time at the ’good’

5For more details and e.g. a formal definition of stochastically stable strategies, see
e.g. Vega-Redondo (1996) or Young (1998).
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equilibrium, with probability 1 in the long run.” (page 523).

Lentz and Blutner (2009) examined a symmetric variant of the Horn

game for a ’SSGs one population’ model under evolutionary dynamics

slightly different from the replicator dynamics: here a population of agents

is given, wherein each agent plays against every other agent and acquires a

total score as the sum of all played games. The total outcome of each agent

in relation to all other agents’ outcomes defines the number of her offspring.

The higher the score, the more offspring. But only couples of agents which

are randomly chosen at each simulation step can have offspring. Further-

more, if one agent of this couple uses language Lij and the other agent uses

language Lkl, then the offspring in the next round plays either Lil or Lkj.

In other words, the offspring uses the sender strategy of one parent and

the receiver strategy of the other. After each step 85% of the population is

replaced with offspring with a 1% chance of mutation.

In comparison to the replicator dynamics, this dynamics is in some ways

innovative: new or already extinct languages can evolve just by the fact that

the offspring’s language is a combination of parts of the parents’ languages.

Admittedly, these new languages are also limited to possible combinations

of already given sender and receiver strategies. But combined with the

chance of mutation this dynamics can lead to strong shifts in an initially

homogeneous population, a property that is really useful for the kind of

experiments Lentz and Blutner (2009) performed: e.g. by starting with only

agents playing the Smolensky language Ls, in 98% of all simulation runs the

resulting stable society consisted of agents playing the Horn language Lh.

This result is congruent with the one of de Jaegher (2008), who showed for

the asymmetric variant of the Horn game that there is an evolutionary path

from Smolensky strategy to Horn strategy (Figure 2.4a).

van Rooij (2004) also analyzed the symmetric variant of the Horn game

(HGs) and remarked that the only two evolutionarily stable states are the

Horn and the anti-Horn language. This is apparent from taking a look

on the utility table of HGs (with P (tf ) = .7 and costs C(mu) = .1 and

C(mm) = .2) that is depicted in Table 2.7. It shows that the only languages

that are strict Nash equilibria against themselves and therefore ESS’s are the

languages Lh and La. In addition, Ls is a non-strict Nash equilibrium, but

not evolutionarily stable: first, Ls players score as good against Lsh players

as against themselves, thus the first condition of Definition 2.4 isn’t satisfied.

Second, Lsh players score as good against themselves as against Ls players,

thus the second condition of Definition 2.4 isn’t satisfied. Furthermore,

Lsh itself is not even a Nash equilibrium, and those players can easily be
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Lh Lha Lhs Lhy Lah La Las Lay Lsh Lsa Ls Lsy Lyh Lya Lys Ly

Lh .87 .37 .72 .52 .35 -.15 .2 0 .735 .235 .585 .385 .485 -.015 .335 .135

Lha .37 -.13 .22 .02 .85 .35 .7 .5 .535 .035 .385 .185 .685 .185 .535 .335

Lhs .72 .22 .57 .37 .7 .2 .55 .35 .735 .235 .585 .385 .685 .185 .535 .335

Lhy .52 .02 .37 .17 .5 0 .35 .15 .535 .035 .385 .185 .485 -.015 .335 .135

Lah .35 .85 .7 .5 -.17 .33 .18 -.02 .215 .715 .565 .365 -.035 .465 .315 .115

La -.15 .35 .2 0 .33 .83 .68 .48 .015 .515 .365 .165 .165 .665 .515 .315

Las .2 .7 .55 .35 .18 .68 .53 .33 .215 .715 .565 .365 .165 .665 .515 .315

Lay 0 .5 .35 .15 -.02 .48 .33 .13 .015 .515 .365 .165 -.035 .465 .315 .115

Lsh .735 .535 .735 .535 .215 .015 .215 .015 .6 .4 .6 .4 .35 .15 .35 .15

Lsa .235 .035 .235 .035 .715 .515 .715 .515 .4 .2 .4 .2 .55 .35 .55 .35

Ls .585 .385 .585 .385 .565 .365 .565 .365 .6 .4 .6 .4 .55 .35 .55 .35

Lsy .385 .185 .385 .185 .365 .165 .365 .165 .4 .2 .4 .2 .35 .15 .35 .15

Lyh .485 .685 .685 .485 -.035 .165 .165 -.035 .35 .55 .55 .35 .1 .3 .3 .1

Lya -.015 .185 .185 -.015 .465 .665 .665 .465 .15 .35 .35 .15 .3 .5 .5 .3

Lys .335 .535 .535 .335 .315 .515 .515 .315 .35 .55 .55 .35 .3 .5 .5 .3

Ly .135 .335 .335 .135 .115 .315 .315 .115 .15 .35 .35 .15 .1 .3 .3 .1

Table 2.7: Utility table for all languages of a Horn game with P (tf ) = .7
and costs C(mu) = .1 and C(mm) = .2.

invaded by Lh players. Note that this possible shift Ls → Lsh → Lh realizes

indirectly the so-called intuitive criterion (Cho and Kreps 1987): with the

first switch Ls → Lsh the receiver strategy changes from the Smolensky

language to the Horn language which is equivalent to construing a previously

unused message with the interpretation matching the prototypical state;

and with the second switch Lsh → Lh the sender strategy switches from the

Smolensky language to the Horn language.

Furthermore, van Rooij (2004) mentioned that two factors can explain

a predominance of Lh to La: mutation and correlation. First, he mentioned

that if mutation is involved, Lh is the only stochastically stable equilibrium,

a fact that I already observed and discussed for the asymmetric variant

HGa. The second factor is correlation: instead of random pairing it is more

probable that agents interact with interlocutors using the same strategy

than with others. Skyrms (1994) was able to show that if correlation is

(nearly) perfect, the strictly efficient strategy (the one with the highest

payoff) is the unique equilibrium of the replicator dynamics. And the only

strictly efficient strategy of HGs is Lh. And van Rooij emphasizes that

”for linguistic communication, positive correlation is the rule rather than

the exception: we prefer and tend to communicate with people that use the
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same linguistic conventions as we do...” (page 522).

All in all, and independent of symmetric or asymmetric games, there

are at least three possible reasons that strongly support and therefore ex-

plain the emergence of Horn’s rule in favor of anti-Horn under the replicator

dynamics, even though the latter one is a strict Nash equilibrium and evo-

lutionarily stable in all ways of modeling this game:

� By assuming the Smolensky strategy as the initial population state

(e.g. because of prior absence of the complex form) a small mutation

rate brings the population to the Horn strategy.

� By assuming a strong mutation rate, the system switches between pop-

ulation states of predominantly Horn strategy or anti-Horn strategy

players. The system stays most of the time in the former populations

state. Consequently, the Horn strategy is the only stochastically stable

equilibrium.

� By assuming correlation instead of random pairing, it can be shown

that if correlation is (nearly) perfect, the unique equilibrium is the

Horn strategy.

Some properties of HGs remain to be analyzed. To do this, I’ll focus on

a sub-game of HGs by considering only languages forming plausible strategy

pairs. Plausibility is a property that incorporates the relationship of sender

and receiver strategy.

2.1.6 The Plausible Symmetric Horn Game

By considering all the studies so far, there is one thing conspicuous: sender

and receiver strategy are completely unrelated by definition. Not notewor-

thy are the asymmetric games since there are different populations of sender

and receiver. But for symmetric games we have agents that are sender and

receiver at the same time. And since these games allow for all possible strat-

egy pairs, there is no restriction to combinations accounting for a particular

relation or dependency between sender and receiver strategy. But is that

really realistic? I don’t think so. Let me make the case for a restriction to

specific plausible strategy pairs that I define in the following way:

Definition 2.7 (Plausible Strategy Pair). Given is a static game G =

〈(P1, P2),S1,S2, U : S1×S2 → R〉 with player P1 with a set of strategies S1

and player P2 with set of strategies S2. A strategy pair (si, sj) with si ∈ S1,

sj ∈ S2 is plausible if and only if the following two conditions hold:
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r1 r2 r3 r4
s1 1 0 .5 .5
s2 0 1 .5 .5
s3 .5 .5 .5 .5
s4 .5 .5 .5 .5

(a) EU -table Lewis Game

r1 r2 r3 r4
s1 .875 -.125 .625 .125
s2 -.175 .825 .575 .075
s3 .65 .15 .65 .15
s4 .05 .55 .55 .05

(b) EU -table Horn Game

Table 2.8: All strategy pairs for the Lewis game (Table 2.8a) and the Horn
game (Table 2.8b) with P (tf ) = .75, C(mu) = .1 and C(mm) = .2. The
plausible strategy pairs are shaded in gray.

1. U(si, sj) ≥ U(si, sk) for all sk ∈ S2

2. U(si, sj) ≥ U(sl, sj) for all sl ∈ S1

In other words: a strategy pair (si, sj) is plausible if and only if si is a

best response to sj and the other way around. With this definition there

are 6 plausible strategy pairs for the Lewis game and 3 plausible strategy

pairs for the Horn game, as highlighted in the payoff tables 2.8a and 2.8b.

Not surprisingly, plausible strategy pairs are exactly the Nash equilibria of

the payoff table of the asymmetric signaling games.

With this definition it is reasonable to restrict symmetric signaling games

to plausible strategy pairs. I’ll call such a signaling game a plausible sym-

metric static signaling game SSGs
p, defined in the following way:

Definition 2.8 (Plausible Symmetric Static Signaling Game). Given an

asymmetric static signaling game SSGa = 〈(S,R),S,R, U ′〉 with a sender

S, a receiver R, a set of pure sender strategies S, a set of pure receiver

strategies R and a utility function U : S × R → R, the corresponding

plausible symmetric static signaling game SSGs
p = 〈(S,R),L, U〉 is defined

as follows:

� S is a sender, R is a receiver

� L = {Lij = 〈si, rj〉|si ∈ S, ri ∈ R,∀s′ ∈ S : U(si, rj) > U(s′, rj),∀r′ ∈
R : U(si, rj) > U(si, r

′)} is the set of languages that form plausible

strategy pairs

� U : L × L → R is the utility function over languages, defined as

U(Lij, Lkl) = 1
2
(U ′(si, rl) + U ′(sk, rj))
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L1 L2 L3 L34 L43 L4

L1 1 0 .5 .5 .5 .5
L2 0 1 .5 .5 .5 .5
L3 .5 .5 .5 .5 .5 .5
L34 .5 .5 .5 .5 .5 .5
L43 .5 .5 .5 .5 .5 .5
L4 .5 .5 .5 .5 .5 .5

(a) Plausible Lewis Game

Lh La Ls

Lh .87 −.15 .585
La −.15 .83 .365
Ls .585 .365 .6

(b) Plausible Horn Game

Table 2.9: The plausible Lewis game LGs
p and Horn game HGs

p for P (tf ) =
.75, C(mu) = .1 and C(mm) = .2.

It is easy to show that each SSGs
p is a sub-game of the respective SSGs,

just restricted to the plausible strategy pairs. The corresponding plausible

symmetric static signaling games for the Lewis game LGs
p and the Horn

game HGs
p are depicted in Table 2.9.

Admittedly, the plausible Lewis game is not really an exciting case to

analyze. After all, the structure is really similar to the asymmetric game

LGa or the symmetric game LGs. It has two strict Nash equilibria and

therefore evolutionarily stable states L1 and L2 and four languages that are

non-strict Nash equilibria and not evolutionarily stable. But the plausible

Horn game reveals an interesting property: the Smolensky language Ls is a

strict Nash equilibrium and therefore evolutionarily stable.

Figure 2.5 depicts the global dynamics of plausible Horn games with dif-

ferent parameters which I’ll call the weak Horn game (P (tf ) = .6, C(mu) =

.05, C(mm) = .1), the normal Horn game (P (tf ) = .7, C(mu) = .1,

C(mm) = .2) and the strong Horn game (P (tf ) = .9, C(mu) = .1, C(mm) =

.3). While the dynamics doesn’t seem to differ strongly among all three

games, an important detail is the position of the three rest points, marked

as white dots. At such a point the smallest deviation brings the popula-

tion state in one or the other direction, dependent of the direction of the

deviation. There is a rest point pha between population states of Horn

and anti-Horn players, a rest point phs between population states of Horn

and Smolensky players and a rest point pas between population states of

anti-Horn and Smolensky players.

The fact that phs is close to the corner of the population state of only

Smolensky players in all three games reveals that, even the Smolensky strat-

egy is evolutionarily stable, it has a low invasion barrier against the Horn

strategy. While this invasion barrier is the lowest for the weak Horn game
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(a) Weak Horn game (b) Normal Horn game (c) Strong Horn game

Figure 2.5: Global dynamics pictures of the three sub-games

among this three games, it is higher for the strong Horn game, but never-

theless pretty low. In contrast, the rest point pas is changing its position

strongly in dependence of the different games. While the Smolensky lan-

guage has a relatively low invasion barrier against the anti-Horn language

for the weak Horn game, it has a pretty high one for the strong Horn game:

in fact here Ls has a higher invasion barrier against La than the other way

around.

Another interesting fact is that these rest points mark roughly the basins

of attraction. This is easy to see by taking a look at Figure 2.6 which depicts

the basins of attraction, where the position of a dot represents the initial

population state and its shading the final population state of entirely one

language (light: Lh, medium: La, dark: Ls). The differences between the

three Horn games are remarkable: from weak to normal to strong Horn

game the size of the basin of attraction of the Horn language is slightly

increasing (55% → 59% → 64%), while the one of the anti-Horn language

is strongly decreasing (43% → 35% → 22%). The basin of attraction of

the Smolensky language is very strongly increasing; it triples from the weak

to the normal Horn game and more than doubles from the normal to the

strong Horn game (2% → 6% → 14%). Furthermore, it is nice to see how

the basin of attraction of the Smolensky language more or less spans the

three rest points of the global dynamics pictures in Figure 2.5.

These figures show even more clearly that, while populations states of

Horn or anti-Horn players have a relatively high invasion barrier and sys-

tem shaking invasions are necessary to shift the population state to another

stable state, the population state of Smolensky language players needs a rel-

atively small invasion at least of Horn players to change the whole situation
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(a) Weak Horn game’s
basin of attraction sizes are
Lh: 55%, La: 43%, Ls: 2%

(b) Normal Horn game’s
basin of attraction sizes are
Lh: 59%, La: 35%, Ls: 6%

(c) Strong Horn game’s
basin of attraction sizes are
Lh: 64%, La: 22%, Ls: 14%

Figure 2.6: The basins of attraction of the three Horn games.

of the population. Nevertheless, the Smolensky strategy is still evolution-

arily stable for the plausible variant of the Horn game. Thus the concept of

an ESS doesn’t seem to be a satisfying explanation for a predominant emer-

gence of Horn’s rule in human language since not only anti-Horn, but the

Smolensky language is evolutionarily stable for a particular setup. Maybe

something more is necessary than only the population-based replicator dy-

namics to find an explanation for the previously mentioned predominance

of the Horn language.

In exploring the adequacy of update dynamics to explain the emergence

of signaling systems in repeated signaling games, Huttegger and Zollman

(2011) argued that the following three questions are of particular interest

(page 169):

1. How little cognitive ability is needed to learn a signaling system?

2. Is the replicator dynamics an appropriate approximation for models

of individual learning?

3. Do all models that have limited memory converge to signaling sys-

tems? What about all those that remember the entire history?

Regarding the first question, Huttegger and Zollman (2011) pointed out

that by applying replicator dynamics as an usually simpler model than other

learning rules, a process like natural selection can result in the emergence

of signaling systems. Thus there seems to be no need for modeling more

cognitive abilities to explain the emergence of signaling systems. But, by
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reconsidering the second question, would we get different, maybe more ex-

plicable results by applying more sophisticated and/or detailed individual-

based dynamics? If not, the replicator dynamics, despite lacking explana-

tory potential, seems to be fit enough. To find an answer to this question,

I’ll take a look at more individual-based types of update dynamics: imi-

tation dynamics and learning dynamics. The third question highlights the

importance of the agents’ memory. Does this play a role for the way sig-

naling systems emerge? I will analyze this by comparing learning dynamics

with limited and unlimited memory.

2.2 Imitation Dynamics

The replicator dynamics describes how strategy distributions in a popu-

lation of agents develop over time if relative fitness of a strategy directly

influences relative future proportions of the population using that strategy.

This is a macro-level perspective because the updates are defined by pro-

portions of the population without factoring in the way a particular agent

behaves. But it is possible to link the replicator dynamics to a micro-level

perspective: it can be shown that the replicator dynamics describes the most

likely path of strategy distributions in a virtually infinite and homogeneous

population6, when every agent updates her behavior by a specific imitation

dynamics, called conditional imitation. To put it the other way around: if

agents’ behavior is guided by conditional imitation, the aggregate popula-

tion behavior can be approximated by the replicator dynamics (c.f. Helbing

1996; Schlag 1998). In the following, I’ll introduce conditional imitation

which is a generalized version of the quite popular imitation dynamics ’im-

itate the best’.

2.2.1 Imitate the Best

Following a micro-level perspective, the imitation dynamics defines the par-

ticular behavior of an agent by an update rule, also called behavioral rule.

The behavioral rule ’imitate the best’ is a generalization of the rule ’imitate

if better’ (c.f. Ellison and Fudenberg 1995; Malawski 1990): here an agent

interacts with another agent and switches to the opponent’s strategy if this

one reflects a higher payoff. ’Imitate the best’ is more general in the sense

6A population is homogenous if every agent repeatedly interacts with everybody else
with the same frequency.
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that here an agent interacts and compares her payoff with a set of other

agents and switches to that agent’s strategy with the maximal payoff among

all agents in the set if scoring better than herself. It is easy to show that

using ’imitate the best’ and restricting all sets of interlocutors to singletons

reproduces ’imitate if better’.

’Imitate the best’ is defined in the following way: agents play a game

against some other agents in a population. Let’s label the utility value

of agent z playing against agent z′ as Uz,z′ , the used strategy of agent z

as sz. First, it is possible to restrict the access of an agent’s potential

interaction partners. The set of accessible interlocutors of agent z is called

her neighborhood NHz, whereas any z′ ∈ NHz is called a neighbor of z.7

Further, let’s say that in each round of a repeated game each agent z is

playing against all her neighbors and her income is the average utility value

over all interactions among her neighborhood. Thus, for an agent z I define

� her income as Iz =
∑
z′∈NHz Uz,z′

|NHz |

� her set of incomes for neighborhoodNHz as I(NHz) = {Iz′|z′ ∈ NHz}

� her set of neighbors with maximal income as NHz
∗ = {z′ ∈ NHz|Iz′ ∈

max(I(NHz))}

The dynamics ’imitate the best’ works as follows: each agent z switches

to the strategy of a neighbor z∗ with maximal income if the income of z∗ is

higher than the one of z. Otherwise agent z keeps her strategy. To put it

formally: let I∗ ∈ max(I(NHz)) be the maximal income among NHz and

let z∗ ∈ NHz
∗ be a randomly chosen agent of NHz with maximal income.

Further, let sz be the old strategy of agent z and suz the strategy after the

update, then the ’imitate the best’ behavioral rule is given as follows:

suz =

{
sz if Iz ≥ I∗

sz∗ else
(2.1)

Note that ’imitate the best’ incorporates (i) an ignorance of previous in-

teractions and (ii) a bounded rationality assumption. Property (i) describes

the fact that the memory access of the behavioral rule is limited to the

current interaction, while previous interactions are ignored. In comparison:

the learning dynamics which I’ll introduce later, incorporate behavioral rules

7Notice that a population of agents without restriction is also defined, namely if
∀z ∈ P : NHz = P \ {z}, in other words if each agent’s neighborhood consist of all other
agents in the population.
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that are defined with access to the past n interactions or even the whole

history of previous interactions. Property (ii) describes the fact that the

behavioral rule is myopic in the sense that it inhibits the agents to antic-

ipate how the decision may effect future interactions. This property is in

fact also given for all further dynamics that I’ll introduce in this thesis.

Furthermore, Schlag (1998) calls a behavioral rule improving if it (weakly)

increases expected payoffs in any decision situation, under the assumption

of ignorance of previous interactions. Schlag mentioned that this property

is important by comparing agent-based imitation models with population-

based models like the replicator dynamics. I’ll introduce a further imitation

rule related to ’imitate the best’ which (i) is improving and (ii) is, in terms

of systemic behavior, strongly connected to the replicator dynamics: it is

called conditional imitation.

2.2.2 Conditional Imitation

The behavioral rule of ’imitate the best’ lets an agent always switch to a

strategy yielding a higher payoff; conditional imitation lets an agent switch

only with a specific probability. I call P (s → s′) ∈ (∆(S))S the probability

that an agent is switching from s to s′. Let I∗ ∈ max(I(NHz)) be the

maximal income among NHz and let z∗ ∈ NHz
∗ be a randomly chosen

agent of NHz with maximal income; let sz be the old strategy of agent z

and sz∗ the old strategy of agent z∗. In addition, let α be an arbitrary

scaling factor, Pmin the minimal and Pmax the maximal payoff value of the

game table, then the behavioral rule for conditional imitation is given as

follows:

P (sz → sz∗) =

{
0 if Iz ≥ I∗

α× I∗−Iz
Pmax−Pmin else

(2.2)

The behavioral rule exhibits that the probability P (s→ s′) of switching

from strategy sz yielding income Iz to a strategy sz∗ yielding a higher income

I∗ depends on the difference between Iz and I∗: the higher the positive

difference between the incomes of agent z and agent z∗ ((I∗ − Iz) ≥ 0), the

higher the probability that agent z switches to strategy sz∗ .

I mentioned in the beginning of this section that the following claim

could be confirmed by e.g. Helbing (1996) or Schlag (1998): it can be shown

that the replicator dynamics describes the most likely path of strategy dis-

tributions in a virtually infinite and homogeneous population, when every

agent updates her behavior by conditional imitation. But neither Helbing
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(a) Replicator Dynamics (b) Conditional Imitation

Figure 2.7: Comparing the basins of attraction for the replicator dynamics
(Figure 2.7a) and the conditional imitation rule by numerical simulation for
a population of 50 randomly interacting agents (Figure 2.7b).

nor Schlag considered i) signaling games and ii) various population struc-

tures. In the following section I’ll analyze the similarity of conditional imi-

tation and replicator dynamics for populations of agents playing a signaling

game; additionally I’ll take different heterogeneous population structures

into account to analyze how spatial features may change the aggregate pop-

ulation behavior.

2.2.3 Comparing Replicator Dynamics and Imitation

I showed in Section 2.1 that the Horn game has three relevant attractor

states for the replicator dynamics (e.g. Figure 2.3 on page 39, Figure 2.6 on

page 47). In addition, these attractor states have different sizes of basins of

attraction. Given the connection between replicator dynamics and the con-

ditional imitation update rule explained above, the similar experiments for

conditional imitation are expected to show a strong conformity of the basins

of attraction for both dynamics. For that purpose I started simulation runs

of 50 agents interacting randomly by playing the asymmetric static Horn

game HGa (P (tf ) = .75, C(mu) = .1 and C(mm) = .2) and updating via

conditional imitation for different initial population states. Here each agent

used the same sender and receiver strategy at the beginning. Figure 2.7b

shows the resulting basins of attraction of the simulations whose extents are

similar to the ones of the replicator dynamics, depicted in Figure 2.7a.

First, the differences of the sizes of the basins of attraction for both

dynamics are minute: while the replicator dynamics’ basin of attraction of
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Figure 2.8: Similarity of the spreadings of basins of attraction for the repli-
cator dynamics and the conditional imitation rule by numerical simulation
for a population of 50 randomly interacting agents. The darker the spheres,
the higher the deviation.

Horn occupies a share of 49, 4%, the basin of attraction of Horn for the

conditional imitation update rule for 50 agents amounts to 48, 1%. Further,

the basins of attraction for anti-Horn (36, 8% to 36, 6%) and Smolensky

(13, 5% to 14, 6%) reveal a similar size comparing both dynamics. Never-

theless, there are small differences; in this regard it would be interesting to

see where and how strongly the basins of attraction differ.

Figure 2.8 shows the similarity of both dynamics’ spreading of their

basins of attraction, computed in the following way: for each initial popula-

tion I made 10 simulation runs with 50 randomly interacting agents playing

the Horn game and updating via conditional imitation. Now, the more final

population states of these ten runs corresponded to the final population of

the replicator dynamics, the higher the similarity of both dynamics for that

initial population state; and the lighter the appropriate spheres shading in

Figure 2.8. E.g. if all 10 simulations’ final population states corresponded to

the result of the replicator dynamics, the sphere is white, if none of them,

the sphere is black. For a number between 0 and 10 the sphere has an
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appropriate gray shading.

Figure 2.8 depicts the resulting pattern that displays where the basins

of attraction conform or differ. Not surprisingly the deviations are at the

borders of the three basins of attraction, whereas most of the space of the

simplex coincides among both dynamics: this experiment reveals a simi-

larity of 93.8% for both replicator dynamics’ and conditional imitation’s

spreading of basins of attraction.

2.2.4 Integrating Network Structure

While the population-based replicator dynamics abstracts from a specific

interaction structure, the individual-based imitation dynamics allows for

different arrangements of interaction. As a first illustration that interaction

structure matters, I would like to examine what happens to the sizes of these

basins of attraction when we look at network games with different kinds of

social interaction structures. While Figure 2.7b (page 51) shows the result-

ing pattern for a completely connected and therefore homogeneous network,

I conducted the same experiment for other types of heterogeneous network

structures to get a good glimpse at the consequences of the assumption or

omission of homogeneity for evolutionary dynamics.

For this purpose, I made the following experiments: 100 agents are

placed on a network structure, so that each agent is connected to a subset

of all other agents in the population. Agents can only interact with those

other agents with whom they are connected. A simulation run ends when all

agents play the same strategy. This happened in each simulation run after

a couple of simulation steps. I applied different network structures which I

will introduce and define in Chapter 3: two types of so-called small-world

networks, one that is called a scale-free network and one that is called β-

graph; and furthermore a grid network.8 For each network type I conducted

20 simulation runs.

Figure 2.9 depicts the average sizes of basins of attraction for a complete

network, the scale-free network, the β-graph and the grid network, each

involving a population of 100 agents playing the asymmetric static Horn

game and updating via conditional imitation among connected agents. The

8See Chapter 3, Definition 3.22 (page 87) for the small-world network, Definition
3.23 (page 87) for the scale-free network and Figure 3.1b (page 85) for an example of a
grid network. Furthermore, in my simulations I used a β-graph with k = 4, β = .1 (see
Section 3.2.3), for the scale-free network I used the Holme-Kin algorithm with m = 3
and Pt = .8 (see Section 3.2.3), the grid network is a 10× 10 toroid lattice (see Section
3.2.1).
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percentage

0

0.2

0.4

0.6

complete (93.8%) scale-free (91%) β-graph (89.1%) grid (88.2 %)

Smolenskyanti-HornHorn

Figure 2.9: Comparing distributions of basins of attraction for the condi-
tional imitation dynamics and its conformity to the replicator dynamics
(percentage in brackets), for different network topologies: complete, scale-
free, small-world and grid (10× 10) with 100 agents each.

results differ not only in the distributions of the basins of attraction, but also

in the correspondence to the basin of attraction of the replicator dynamics,

noted in brackets behind the particular network names. In addition, the

results let one assume that a network structure that supports a fast spread

of conventions like the scale-free network promotes the emergence of the

Smolensky strategy and displays a higher RD-correspondence.

Note that the Smolensky strategy has a considerable significance for the

Horn game in evolutionary dynamics, as I showed in Section 2.1 for the

replicator dynamics: here the Smolensky strategy has a considerable basin

of attraction for the asymmetric and symmetric static Horn game; it is fur-

ther evolutionarily stable by considering only plausible strategy pairs. In

addition, I showed in this section that the conditional imitation dynamics

reveals an almost identical result for the Horn game’s basins of attraction.

And now, by considering more heterogeneous network structures for the

conditional imitation dynamics, the basin of attraction of the Smolensky

strategy is shrinking with the locality (see Chapter 4) of the network struc-

ture. I will show in further experiments of Chapter 4 and 5 that the degree

of locality of network structures has a strong influence on the way different

strategies evolve and stabilize.

In general, these results are evidence enough for the simple, but impor-

tant conceptual point I would like to make here: paying attention to social

factors of interaction has non-trivial effects on the results of evolutionary
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processes; this is particularly true for the emergence or non-emergence of

unexpected resulting population states for the Horn game. Note that for

this experiment the final outcome of each simulation run was a population

that uses one strategy society-wide. In the following experiment, I will show

cases with more varied results.

2.2.5 Imitation on a Grid: Some Basic Results

To get a better impression of how a resulting society structure looks like

for simulating ’imitate the best’ (as introduced in Section 2.2.1) on a grid

network, I reproduced a study by Zollman (2005). He analyzed the be-

havior of agents playing the Lewis game on a toroid lattice by updating

with ’imitate the best’. Considering that i) signaling games are a model for

simulating the emergence of conventions and ii) conventions arise in pop-

ulations usually consisting of more than two persons, in accordance with

my argumentation, Zollman argued for a more realistic framework than the

existing replicator dynamics accounts, where each agent communicates with

any other at random. As a consequence, I performed experiments similar

to those of Zollman.

First, I started the following experiment: 1600 agents are placed on a

40×40 toroid lattice and playing the symmetric static Lewis game, thus they

can choose among 16 languages, as depicted in Table 2.3; and they update

by the ’imitate the best’ dynamics. The resulting pattern is depicted in

Figure 2.10: like in Zollman’s experiments regions of two regional meanings

emerge and stabilize, each of agents with solely using L1 or L2, thus exactly

both strategy pairs that constitute a signaling system.

In the next experiment, I analyzed the behavior of a society of agents

playing the asymmetric static Lewis game. Here an agent is sometimes a)

in the sender role and chooses among the four pure sender strategies s1, s2,

s3 and s4 or b) in the receiver role and chooses among the four different

pure receiver strategies r1, r2, r3 and r4. Again, each agent updates by the

’imitate the best’ dynamics, this time for each role. Each agent tries to find

the optimal sender and the optimal receiver strategy as well. I started the

following experiment: 900 agents are placed on a 30× 30 toroid lattice and

play the asymmetric static Lewis game. The resulting patterns are depicted

in Figure 2.11, where each cell is marked by the agent’s sender strategy with

the color of the cell’s top left half and by the agent’s receiver strategy with

the color of the cell’s bottom right half.

Figure 2.11a depicts an exemplary pattern of a start situation where ev-
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L1 L2

Figure 2.10: Exemplary resulting pattern for agents playing a symmetric
static Lewis game and updating via ’imitate the best’, on a 40× 40 toroid
lattice.

ery agent initially plays a randomly assigned strategy si ∈ {s1, s2, s3, s4} as

sender and also a randomly assigned strategy ri ∈ {r1, r2, r3, r4} as receiver.

Figures 2.11b and 2.11c both depict an exemplary pattern for a final situa-

tion. Regions of agents playing the strategy pair 〈s1, r1〉 or 〈s2, r2〉 emerged.

Between these regions border agents emerged switching in each step between

〈s1, r2〉 and 〈s2, r1〉. Figure 2.11b depicts the final pattern for each even sim-

ulation step, Figure 2.11c depicts the final pattern for each odd simulation

step which shows that border agents switch each simulation step. It is im-

portant to note that the behavior of those switching agents on the border

between two regions is a result of synchronous update (everybody adapts

his behavior at the same time); this possibly converges to more realistic

results without switching agents by using a more general asynchronous up-

date. Nevertheless, this result gives a hint for the particular role of agents

at the border between different language regions.

To conclude at this point: in this section I switched from a macro-level

to a micro-level perspective by changing from replicator dynamics to imi-

tation dynamics. Furthermore, I showed i) the similarity of replicator and
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s1/r1 s2/r2 s3/r3 s4/r4

(a) Initial pattern (b) Resulting pattern 1 (c) Resulting pattern 2

Figure 2.11:

imitation dynamics and ii) the remarkable influence of network structure.

In the next section, I will stay at a micro-level perspective, but switch from

static to dynamic signaling games, as known from Chapter 1, and combine

them with two kinds of learning dynamics: reinforcement learning and belief

learning.

2.3 Learning Dynamics

The learning dynamics are a next step in the direction of considering a

more fine-grained setup. Note that by switching from replicator dynam-

ics to imitation dynamics, I switched from population-based dynamics to

agent-based dynamics: instead of considering population proportions, the

behavior of each particular agent is modeled. This allows me i) to give up

the idealization of an infinite population size and ii) to integrate hetero-

geneous population structures. Furthermore, the switch from imitation to

learning dynamics allows that a (possibly unlimited) number of previous

interaction steps guides an agent’s decision. The number of steps an agent

can keep in mind is called her memory size. In this sense, imitation has a

memory size of 1. In contrast, the essence of learning dynamics is to factor

in a larger number of previously acquired inputs/observations.

But there is an additional substantial difference between the imitation

dynamics and learning dynamics employed in this thesis: while the intro-

duced types of imitation dynamics are applied on static signaling games

(in accordance with the replicator dynamics), the learning dynamics are

applied on dynamic/sequential signaling games; i.e. the standard account
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dynamics type replicator imitation learning

perspective macro-level micro-level micro-level

(population-based) (agent-based) (agent-based)

population homogeneous variable variable

population size infinite finite finite

memory size - 1 n ∈ N
game type static static dynamic/sequential

strategy pure pure behavioral

Table 2.10: Overview of structural and environmental differences of repli-
cator, imitation and learning dynamics.

of a signaling game as given by Lewis and as defined in Chapter 1. This is

an important conceptual difference that leads to the fact that agents play

so-called behavioral strategies (Definition 2.10 on page 59) instead of pure

ones. An overview of correspondences and differences between the three

types of dynamics is displayed in in Table 2.10.

In a learning dynamics account for signaling games sender and receiver

act according to response rules that are adjusted over time by update rules

which are defined by an update mechanism. All in all, a learning dynamics

account can be defined as follows:

Definition 2.9 (Learning Dynamics). A learning dynamics for a signaling

game is given as D = 〈SG, σ, ρ,MU〉, where

� SG = 〈(S,R), T,M,A, P, C, U〉 is a dynamic signaling game

� σ is the response rule of sender S

� ρ is the response rule of receiver R

� MU is the update mechanism

� σ and ρ constitute behavioral strategies

In the following I’ll i) introduce behavioral strategies, ii) define the no-

tions of language learner and long-term stability, and iii) present response

rules and update mechanisms for the learning dynamics reinforcement learn-

ing and belief learning.
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2.3.1 Languages, Learners and Stability

Recall that a static signaling game is defined by the EU tables of all pure

strategy combinations (see Table 2.1), for which sender and receiver choose

simultaneously one of the pure strategies, or contingency plan, and get the

corresponding payoff. Huttegger and Zollman (2011) argued that the fact

that agents’ behavior is committed to whole contingency plans isn’t plausi-

ble for learning (page 169). Here, as opposed to static games, agents play

a dynamic signaling game, and, instead of selecting among pure strate-

gies, they probabilistically choose a particular move (sender’s message or

receiver’s interpretation state) for a given choice point. This can be mod-

eled by a behavioral strategy which is a function that maps choice points

to probability distributions over moves available in that choice point. A

behavioral sender and receiver strategy can be defined as follows:

Definition 2.10 (Behavioral strategy). Given is a signaling game SG =

〈(S,R), T,M,A, P, C, U〉 with a sender S, a receiver R, a set of information

states T , a set of messages M , a set of interpretation states A, a probability

function over information states P ∈ ∆(T ), a cost function C : M → R
and a utility function U : T ×M × A→ R. A behavioral sender strategy σ

is a function that maps information states t ∈ T to probability distributions

over messages m ∈ M ; a behavioral receiver strategy ρ is a function that

maps messages m ∈M to probability distributions over interpretation states

a ∈ A, thus:

� σ : T → ∆(M)

� ρ : M → ∆(A)

Note that the pure strategies of a signaling game constitute a subset of

the set of behavioral strategies which is infinite. To see an example, four

different behavioral strategies for the Lewis game are depicted in Figure

2.12, two sender (σa, σb) and two receiver (ρa, ρb) strategies. Note also that

the strategies σb and ρb constitute exactly the pure strategies s1 and r3 of

the Lewis game (see Figure 1.1 on page 10).

Language Learner

It is possible to compute the proximity between two behavioral strategies

via a measure known as the Hellinger similarity which, in general, measures
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σa =

 tl 7→
[
m1 7→ .9
m2 7→ .1

]
ts 7→

[
m1 7→ .5
m2 7→ .5

]
 ρa =

 m1 7→
[
al 7→ .3
as 7→ .7

]
m2 7→

[
al 7→ 1
as 7→ 0

]


σb =

 t1 7→
[
m1 7→ 1
m2 7→ 0

]
t2 7→

[
m1 7→ 0
m2 7→ 1

]
 ρb =

 m1 7→
[
a1 7→ 1
a2 7→ 0

]
m2 7→

[
a1 7→ 1
a2 7→ 0

]


Figure 2.12: Four different behavioral strategies, two sender and two receiver
strategies. σb and ρb constitute the pure strategies s1 and r3 of the Lewis
game.

the similarity of two probability distributions. It is defined in the following

way:

Definition 2.11 (Hellinger similarity). For two given probability distribu-

tions P and Q over the same set X, the Hellinger distance between them is

defined as follows:

simH(P,Q) = 1−
√

1−
∑
x∈X

√
P (x)×Q(x)

The Hellinger similarity can range between 0 and 1, where 1 is given

for identical strategies. By regarding that a language is a pair of pure

strategies Lij = 〈si, rj〉, the Hellinger similarity can be used to describe

how close a pair of behavioral sender and receiver strategy 〈σ, ρ〉 of a role-

switching agent is to one of the pure strategies, by just calculating the

average of the distance of both behavioral strategies to the pure strategies

of a language. I call the similarity between a behavioral strategy pair and

a language language similarity and define it as follows:

Definition 2.12 (Language Similarity). For a given pair of behavioral

sender and receiver strategy 〈σ, ρ〉 its language similarity simL to a lan-

guage Lij = 〈si, rj〉 is defined in the following way:

simL(〈σ, ρ〉, Lij) =
simH(σ, si) + simH(ρ, rj)

2

The more similar an agent’s pair of behavioral sender and receiver strat-

egy is to a given language L, the more consistent is her behavior to act
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according to the language L. Consequently, I stipulate that if the language

similarity between an agent’s current behavioral strategy pair and one of

the possible languages is above a given threshold9, the agent’s current be-

havior is close enough to be called as behaving according to the appropriate

language L; i.e. I allege that the agent has learned or is using this language

L. Thus a language learner is defined as follows:

Definition 2.13 (Language Learner). If an agent is playing a dynamic

signaling game SG repeatedly by using a learning dynamics and is switch-

ing between sender and receiver role, her behavior can be characterized by

a behavioral strategy pair 〈σ, ρ〉. If for a language L the language similar-

ity simL(〈σ, ρ〉, L) is above a given threshold hε, then the agent is called a

language learner of language L.

This indirectly includes that if the the language similarity of current be-

havioral strategy pair isn’t above the threshold hε for all possible languages

Lij ∈ L10, thus ∀Lij ∈ L : simL(〈σ, ρ〉, Lij) < hε, then the agent hasn’t

learned a language; i.e. she is not a learner of any language.

With these prerequisites it is possible to compare a) dynamic processes

and resulting states in populations of agents playing dynamic signaling

games by using learning dynamics with b) our former results for populations

of agents playing static signaling games by using replicator or imitation dy-

namics. While for replicator and imitation dynamics agents switch among

languages, for learning dynamics agents can learn languages. They learn it

by playing behavioral strategy pairs that approximate pure strategy pairs

depicting these languages. But since measures of evolutionary stability are

not applicable for behavioral strategies, an important question has to be

answered for learning dynamics: when can a language learner considered as

stable in her behavior?

Long-Term Stability

As I will show in my experiments in Chapter 4 and Chapter 5, agents

generally become language learners after a while. It is not easy to find a

formal definition for the stability of those agents’ behavior once they have

learned a language. Thus I simply define their stability as a consistent

long-term behavior that I call long-term stability. The basic idea is the

9In general the threshold should be close to 1, but at least higher than .5 to ensure
that an agent can be a learner of not more than one language at the same time.

10L is the set of all possible languages of a given signaling game SG.
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following: a whole society is defined as constituting a stable pattern if at

least a specific proportion p of the society has learned a language and no

member of this proportion changes it - at least for the length t of a long-term

simulation run. The question is how to define the values p and t? First,

my simulation results revealed that if around 2
3

of a society have learned

a language, the pattern doesn’t change that much, e.g. almost all of those

agents will never change their strategy during the whole simulation run.

To control the long-term consistency I checked this with a couple of long-

term simulation runs, arranged in the following way: when at least 66.6%

of all agents have learned a language at simulation step τ , I conducted the

simulation run until simulation step 10 × τ . It revealed that in all of such

runs above two thirds of the population stayed with the learned language.

Consequently, these experiments let me come up with the notion of long-

term stability, defined as follows:

Definition 2.14 (Long-Term Stability). Given is a population of agents

z ∈ Z. If there is a subset Zs ⊆ Z at simulation step τ with the following

properties

�

|Zs|
|Z| ≥

2
3

� ∀z ∈ Zs : z has learned a language L

� ∀t with τ ≤ t < 10 × τ : ∀z ∈ Zs : agent z uses the same language L

at simulation step t

then each agent z ∈ Zs is long-term stable at simulation step τ .

Note that long-term stability does not guarantee that these agents will

never change their behavior. But since i) I have no mutants or external

influences that change circumstances in my experiments, ii) p is high enough

that a strong modification of the language pattern among the society is

hard to expect (where should it come from?) and iii) there was no change

to observe for a multiple of the number of considered simulation steps, then

it is highly improbable that a long-term stable agent will change at a later

point in time. In fact, all my experiments revealed that in every experiment

each long-term stable agent stayed stable for the whole simulation run.

In conclusion, notions like language learner and long-term stability are

essential for the analysis and commensurability of my experiments with the

two in this thesis applies learning dynamics, described in the next sections:

reinforcement learning and belief learning.
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2.3.2 Reinforcement Learning

Reinforcement learning can be captured by a simple model based on urns,

also known as Pólya urns (Roth and Erev 1995; Skyrms 2010). An urn

models a behavioral strategy in the sense that the probability of making a

particular decision is proportional to the number of balls in the urn that

correspond to that action choice. By adding or removing balls from an urn

after each encounter, an agent’s behavior is gradually adjusted.

For a given signaling game SG = 〈(S,R), T,M,A, P, C, U〉 the sender

has an urn 0t for each state t ∈ T which contains balls for different messages

m ∈M . The number of balls of type m in urn 0t is designated with m(0t),

the overall number of balls in urn 0t with |0t|. If the sender is faced with

a state t, she draws a ball from urn 0t and sends message m if the ball

is of type m. In compliance, the receiver has an urn 0m for each message

m ∈ M which contain balls for different interpretation states a ∈ A. The

number of balls of type a in urn 0m is designated with a(0m), the overall

number of balls in urn 0m with |0m|. If the receiver wants to construe a

message m, he draws a ball from urn 0m and uses the interpretation a if

the ball is of type a.

The resulting response rules for reinforcement learning are given in

Equation 2.3 for the sender and 2.4 for the receiver.

σ(m|t) =
m(0t)

|0t|
(2.3) ρ(a|m) =

a(0m)

|0m|
(2.4)

The learning dynamics’ update mechanism is realized by changing the

urn content dependent on the communicative success. Let’s call y(0x)
τ

the number of balls y in urn x at time τ and U(t,m, a)τ the utility of the

realized played signaling game at time τ , then for the classical account of

reinforcement learning, called Roth-Erev reinforcement learning (c.f. Roth

and Erev 1995), the update mechanism MU = 〈SG, uτ 〉 for a signaling game

SG is realized by the update rule uτ , as given by Equation 2.5 and 2.6.

m(Ωt)
τ+1 =

{
m(Ωt)

τ + 1 if U(t,m, a)τ > 0

m(Ωt)
τ else

(2.5)

a(Ωm)τ+1 =

{
a(Ωm)τ + 1 if U(t,m, a)τ > 0

a(Ωm)τ else
(2.6)

Note that, according to the signaling games considered in this thesis,

U(t,m, a) > 0 if and only if communication via t→ m→ a is successful. In
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other words, Roth-Erev reinforcement adds one appropriate ball to sender

and receiver urn in case of successful communication which makes the choice

of such a combination more probable in subsequent plays. This relation

between success and increasing probability defines the reinforcement effect.

The update mechanism I applied in my experiments is an extended ver-

sion of Roth-Erev reinforcement. First, I integrated lateral inhibition, so

that, for successful communication, not only does the number of the appro-

priate balls in the appropriate urn increase, but also does the numbers of

all other balls in the same urn decrease. Furthermore, I integrated negative

reinforcement so that the number of balls are decreased for unsuccessful

communication.

In detail: the update mechanism MU = 〈SG, uτ , α, β, γ〉 is given by a

signaling game SG, an update rule uτ , a reward value α ∈ N, a punishing

value β ∈ N and an inhibition value γ ∈ N. If communication via t, m

and a is successful, the number of balls in the sender urn 0t is increased

by α balls of type m and reduced by γ balls of type m′ 6= m, m′ ∈ M .

Similarly, the number of balls in the receiver urn 0m is increased by α balls

of type a and reduced by γ balls of type a′ 6= a, a′ ∈ A. In this way successful

communicative behavior is more probable to reappear in subsequent rounds.

Furthermore, unsuccessful communication via t, m and a is punished by

reducing the number of balls of type m in the sender urn 0t and the number

of balls of type a in the receiver urn 0m by β. Here the inhibition value γ is

used as an inverse force by increasing the numbers of balls of type m′ 6= m

in the sender urn 0m and the numbers of balls of type a′ 6= a in the receiver

urn 0m by γ balls.

The account should warrant that the number of balls of each type cannot

be negative. For this purpose a lower limit value ϕ is integrated to ensure

this property. Given these predefinitions, the update rule uτ is defined by

sender update (Equations 2.7), sender inhibition (Equations 2.8), receiver

update (Equations 2.9) and receiver inhibition (Equations 2.10).

m(Ωt)
τ+1 =

{
m(Ωt)

τ + α if U(t,m, a)τ > 0

max(m(Ωt)
τ − β, ϕ) else

(2.7)

∀m′ 6= m : m′(Ωt)
τ+1 =

{
max(m′(Ωt)

τ − γ, ϕ) if U(t,m, a)τ > 0

m′(Ωt)
τ + γ else

(2.8)

a(Ωm)τ+1 =

{
a(Ωm)τ + α if U(t,m, a)τ > 0

max(a(Ωm)τ − β, ϕ) else
(2.9)
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∀a′ 6= a : a′(Ωm)τ+1 =

{
max(a′(Ωm)τ − γ, ϕ) if U(t,m, a)τ > 0

a′(Ωm)τ + γ else
(2.10)

All in all, reinforcement learning with lateral inhibition and punishment

can be defines in the following way:

Definition 2.15 (Reinforcement Learning with Inhibition and Punish-

ment). A reinforcement learning dynamics with lateral inhibition and pun-

ishment is given as a learning dynamics account RLIP = 〈SG, σ, ρ,MU〉,
where

� SG = 〈(S,R), T,M,A, P, C, U〉 is the signaling game

� σ is the response rule of sender S as given with Equation 2.3

� ρ is the response rule of receiver R as given with Equation 2.4

� MU = 〈SG, uτ , α, β, γ〉 is the update mechanism for signaling game

SG, with parameters α, β, γ ∈ N for the update rule uτ , as given by

the Equations 2.7, 2.8, 2.9 and 2.10

2.3.3 Belief Learning

There are some preeminent properties that distinguish belief learning from

reinforcement learning, as Skyrms (2010) pointed out: ”Reinforcement learn-

ers do not have to know their opponent’s payoff; they do not have to know

the structure of the game. If acts are reinforced, they do not have to know

that they are in a game. But now we move up a level. Individuals know

that they are in a game. They know the structure of the game. They know

how the combination of others’ actions and their own affect their payoffs.

They can observe actions of all the players in repeated plays of the game.

They can think about all this.” (page 90).

In addition, with reinforcement learning agents act non-rationally. I.e. they

are just biased more and more in one or the other direction, whereas in this

account of belief learning agents act rationally in that they play a best re-

sponse by maximizing their expected utilities. This combination of learning

information about other players’ behavior, forming a belief out of it, and

using this belief to play a best response is also known as fictitious play,

introduced by Brown (1951).
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Belief learning can be formalized as follows: I call EUs(m|t) the sender’s

expected utility for sending message m in state t and EUr(a|m) the re-

ceiver’s expected utility for construing message m with interpretation a.

A rational sender that wants to communicate state t will use the mes-

sage m that maximizes her expected utility EUs(m|t). Accordingly, a

rational receiver who received message m will construe it with the inter-

pretation a that maximizes his expected utility EUr(a|m). If there are

more choices which maximize those EU ’s, then each choice is equiprobable.

Formally: if MAX(t) = argmaxmEUs(m|t) is the set of messages where

each one maximizes the sender’s expected utility for a given state t and

MAX(m) = argmaxaEUr(a|m) is the set of interpretation states where

each one maximizes the receiver’s expected utility for a given message m,

then the sender’s response rule σ and the receiver’s response rule ρ both

can be given as follows:

σ(m|t) =

{
1

|MAX(t)| if m ∈MAX(t)

0 else
(2.11)

ρ(a|m) =

{
1

|MAX(m)| if a ∈MAX(m)

0 else
(2.12)

The sender’s expected utility EUs(m|t) returns the utility value the sender

can expect for sending message m in state t. But this expected value de-

pends on what she believes the receiver would play. Her belief about the

receiver’s strategy Br(a|m) is a function returning the sender’s believed

probability that the receiver construes message m with a. Given this belief,

the sender’s expected utility is defined in the following way:

EUs(m|t) =
∑
a∈A

Br(a|m)× U(t,m, a) (2.13)

The receiver’s expected utility EUr(a|m) returns the value the receiver can

expect for construing a received message m with interpretation a. Thus

he needs to have a belief about the sender’s strategy Bs(t|m) that returns

the receiver’s believed probability that the sender is in state t by sending

message m. Accordingly, the receiver’s expected utility is defined as follows:

EUr(a|m) =
∑
t∈T

Bs(t|m)× U(t,m, a) (2.14)

But where do these beliefs Br and Bs come from? The belief learning

account of my model engenders a process of acquiring these beliefs by ob-

servation. Concretely, a player’s belief is a mixed strategy representing all
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the interlocutor’s observed past plays. E.g. assume that sender and receiver

had the same kind of communicative situation many times before and that

function ]S,R(m) is a counter that returns the number of times the sender

S has sent message m to the receiver R. Likewise ]S(a|m) returns the num-

ber of times the sender has observed the receiver interpreting the sender’s

sent message m with a. Because of these observations the sender has the

following belief Br(a|m) about the receiver:

Br(a|m) =

{
]S(a|m)
]S,R(m)

if ]S,R(m) > 0

1/|A| else
(2.15)

In the same way an evaluation of the receiver’s observations ]R(m|t) about

the sender’s behavior leads to belief Bs(t|m) about the sender:

Bs(t|m) =

{
]R(t|m)
]S,R(m)

if ]S,R(m) > 0

1/|T | else
(2.16)

Notice that both equations contain the condition that the denominator

]S,R(m) must be greater than zero. This is not only to avoid a division

by zero. It has also a descriptive reason: if there has never been a commu-

nicative situation by using message m, then both participants cannot have

beliefs through past observations. In this case the probabilities for this

message are uniformly distributed, for the sender given by a uniform dis-

tribution over all possible interpretations a ∈ A (1/|A|) and for the receiver

accordingly over all possible states t ∈ T (1/|T |).

I define ](m)τ as the number of times m was topic until time τ . Further,

I define ](a|m)τ and ](t|m)τ in the same way. Then the update mechanism

MU = 〈SG, uτ 〉 for a signaling game SG is given by update rule uτ that

simply increments the number of observed situations of the sender (Equa-

tion 2.17), the receiver (Equation 2.18), and the number of situations the

message is conveyed among both (Equation 2.19), in the case that commu-

nication happened via t→ m→ a:

]S(a|m)τ+1 = ]S(a|m)τ + 1 (2.17)

]R(t|m)τ+1 = ]R(t|m)τ + 1 (2.18)

]S,R(m)τ+1 = ]S,R(m)τ + 1 (2.19)

After every communication situation in which message m is used, the

sender’s belief Br(a|m) and the receiver’s belief Bs(t|m) as well will be
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updated. The belief of the interlocutor’s strategy results from previous

communications with a dialogue partner. All in all, a belief learning account

that integrates i) learning by observation and ii) best response behavior can

be defined as follows:

Definition 2.16 (Belief Learning). A belief learning dynamics is given as

a learning dynamics account BL = 〈SG, σ, ρ,MU〉 where

� SG = 〈(S,R), T,M,A, P, C, U〉 is the signaling game

� σ is the response rule of sender S as given with Equation 2.11

� ρ is the response rule of receiver R as given with Equation 2.12

� MU = 〈SG, uτ 〉 is the update mechanism for signaling game SG and

update rule uτ , realized by the Equations 2.17, 2.18 and 2.19

To sum up, both learning accounts presented are i) made for being ap-

plied on dynamic signaling games and ii) defined by sender and receiver

response rules and an update rule. Note: while the update rule of reinforce-

ment learning incorporates and reconsiders the success of previous commu-

nicative situations, the update rule of belief learning does not. Here it only

reconsiders exclusively the previous behavior of the interlocutors. Generally

speaking: while reinforcement learners adapt directly to successful behav-

ior, belief learners i) adapt to interlocutors’ behavior by learning beliefs and

ii) compute successful behavior by playing what maximizes their expected

utility. In this sense, only belief learning demands rationality, whereas for

reinforcement learning agents make decisions randomly and biased by for-

mer results.

2.3.4 Memory Size and Forgetting

A general observation of both learning dynamics is that learned behavior

manifests itself very early and ingrains itself in the dynamics. Barrett and

Zollman (2009) showed that forgetting experiences increases both the dy-

namics of the system and the probability of an optimal language evolving.

They introduced different learning accounts based on reinforcement learning

and extended by different types of forgetting. I extend both reinforcement

and belief learning accounts with a simple forgetting rule, informally de-

scribed as follows.
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Both learning accounts’ response rules at time τ depend indirectly on a

history of updates H = {u1, u2, . . . , uτ}, where ui ∈ H is an update at time

i via an appropriate update rule. Now let’s assume that each agent has a

memory size µ ∈ N that affects her update mechanism as follows: at time

τ undo all updates ui with i < τ − µ. Thus, all updates that happened

more than µ time steps ago are canceled and therefore have no influence on

the response rule. In other words, an agent can’t remember that they ever

happened; i.e. she has forgotten them.

2.3.5 Learning in Populations: Some Basic Results

Recent studies have revealed significant similarities between reinforcement

learning and the replicator dynamics (c.f. Beggs 2005; Hopkins and Posch

2005). E.g. Börgers and Sarin (1997) argue that the replicator dynamics

can be seen as a limited case of reinforcement learning. But the application

of reinforcement learning to model evolutionary processes in combination

with signaling games has yet to be studied extensively. Most of the lit-

erature considers reinforcement learning for a simple two players account:

a repeated game between a sender and a receiver. It has been proven for

the Lewis game between a sender and a receiver that update by reinforce-

ment learning (α = 1, β = 0, γ = 0) that the participants’ behaviors will

converge (almost surely) to a signaling system (Argiento et al. 2009). In ad-

dition, it was shown for reinforcement learning that simulations of signaling

games with non-equiprobable states leads to the learning of pooling equi-

libria which was also shown for replicator dynamics (Barrett 2006; Skyrms

2010).

But how similar are replicator dynamics and reinforcement learning if

initial population states and basins of attraction are considered? And in

what sense do basins of attraction differ by analyzing the Horn game? To

find answers to these questions, I made some simulations with populations of

agents playing the Horn game and updating via reinforcement learning. To

emulate the random pairing characteristics of replicator dynamics, agents

choose their partners randomly. But each agent can switch between sender

and receiver, though each agent has sender urns and receiver urns.

To define initial populations states comparable to those of the experi-

ments with the replicator dynamics, I define the value of initial tendency in

the following way:

Definition 2.17 (Initial Tendency). If an agent’s initial sender urn settings

are as such that ∀t∃m : σ(m|t) = κ and the initial receiver urn settings are
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(a) sender strategy tendencies (b) receiver strategy tendencies

Figure 2.13: The time series of the Horn game for tendencies of sender
strategies and receiver strategies.

as such that ∀m∃a : ρ(a|m) = κ for a value 0.5 < κ < 1, then the agent

has the initial tendency of degree κ to a language L = (s, r) that depicts the

corresponding pure strategies with κ = 1.11

For instance, if an agent that plays the Horn game has an initial urn

setting that bears the behavioral strategies σ(mu|tf ) = .7, σ(mm|tr) = .7,

ρ(af |mu) = .7, σ(ar|mm) = .7, then this agent has an initial tendency of

degree .7 to language Lh: his urn setting depicts a tendency for playing the

Horn strategy. With this definition it is possible to define population states

of agents playing a particular language with a specific initial tendency.

In the experiment I started a simulation run with a population of 100

agents playing the Horn game, where 25% of all agents had an initial ten-

dency for Lh, 25% for La, 25% for Ls and 25% for Ly, all tendencies with a

degree of κ = .7. The reinforcement parameters were set to α = U(t,m, a),

β = 0 and γ = 0, in other words the reward equals the utility value of a

played round, whereas punishment and lateral inhibition are neglected. The

initial number of balls were 50 per type. The resulting course of strategy

learners over all agents in the population is depicted in Figure 2.13, Figure

2.13a for the sender strategy, 2.13b for the receiver strategy.12

The resulting patterns are quite similar to the results for the experiments

in Section 2.1.5, where I analyzed the asymmetric static version of the Horn

game for a ’two population’ model under replicator dynamics. This reveals

new insights in the similarity of both accounts. The experiments with the

replicator dynamics showed that the sender population reveals an initial

11Note that since a language depicts a pair of pure strategy, its κ-value is always 1.
12For this experiment the threshold hε for the Hellinger similarity was set to .65.
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increase in the number of Horn strategy and Smolensky strategy players

and a fast decrease in the number of anti-Horn and anti-Smolensky strategy

players. And at one point the number of Smolensky players decreases to 0%

and the number of Horn players is continuing increasing, finally to 100%

(Figure 2.2a on page 38). A similar pathway is observable for the learned

sender strategies of all players in the population of agents updating via

reinforcement learning (Figure 2.13a). The same is true for the receiver

population in the replicator dynamics experiments (Figure 2.2b on page

38) comparing with the learned receiver strategies for the reinforcement

learning account (Figure 2.13b). In particular, the initially strong increase

of the Smolensky strategy to almost 80% is observable in both cases.

While reinforcement learning and replicator dynamics reveal quite dif-

ferent properties and capabilities (see Table 2.10 on page 58), these results

show the apparent similarities of both accounts. This puts forward the ques-

tion of other scenarios in which similarities might exist. For that purpose

I started simulation runs for different initial population states by changing

the initial distribution of strategy tendencies. Like in the experiment of

Section 2.1.6 for the plausible Horn game, I only considered the Horn lan-

guage, the anti-Horn language and the Smolensky language and computed

the final population states for different initial population states. The re-

sulting simplexes for the weak and the normal Horn game13 are depicted in

Figure 2.14a and 2.14b, respectively.

The basins of attraction of this experiment are quite similar to those

of the experiment with the replicator dynamics (Figure 2.6). However, it

is apparent that the Smolensky strategy has a quite larger basin of attrac-

tion. Even though it can be argued that the resulting patterns are not that

suitable for a general proposition because of the high number of parameters

for the reinforcement learning account, it shows that the probability of the

emergence of the Smolensky strategy still exists for populations of agents

updating via reinforcement learning. And it is in fact quite larger than for

the replicator dynamics account, at least for the parameters used in this

experiment.

13The weak, normal and strong Horn game are defined by game parameters and were
introduced on page 45.
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(a) weak Horn game (b) normal Horn game

Figure 2.14: Basin of attractions for the reinforcement learning dynamics
for initial population states of agents with different strategy tendencies.

2.4 Conclusion

In this chapter I introduced different update dynamics for repeated games

and highlighted the similarities and differences in a case dependent way. I

analyzed them applied on two basic variants of a signaling game that are

objects of study in this thesis: the Lewis game and the Horn game. The

classical account in the field of evolutionary game theory is the replicator

dynamics. In Section 2.1 I tried to give an overview of the relevant literature

that is as accurate as possible.

The basic results in research and analysis are the following: for the

Lewis game a final population state with a homogeneous population playing

exactly one of both signaling systems is expected. Which one evolves is first

of all a question of the initial population state since the population state

space is equally divided in two basins of attraction, one for each of the

two signaling systems. Only these two states are evolutionarily stable and

have a substantial invasion barrier which can be overcome by allowing for

mutation, but only by switching to the other signaling system.

For the Horn game there are three strategies that are of special inter-

est: the Horn and anti-Horn strategy which form the only two signaling

systems; and the Smolensky strategy which depicts pooling with the cheap-

est message and the interpretation state matching the most likely infor-

mation state. While the two signaling systems are evolutionarily stable,

the Smolensky strategy is a non-evolutionarily stable Nash equilibrium and

has a considerable basin of attraction. Furthermore, for a symmetric Horn
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game that is restricted to plausible strategy pairs the Smolensky strategy

is evolutionarily stable, but with a relatively low invasion barrier against

the Horn strategy. Nevertheless, the results show that the expected Horn

strategy has not only with the anti-Horn strategy but also with the Smolen-

sky strategy a formidable strategy that weakens the universality of Horn’s

rule. Like for the Lewis game, it is also the case for the Horn game that

the initial population state and the possibility for mutation plays a decisive

role as to whether one or the other strategy finally evolves.

In Section 2.2 I analyzed Lewis and Horn game by applying imitation

dynamics on agents in a finite population. Though replicator dynamics and

imitation dynamics strongly resemble each other in the way populations

behave over time, the main difference is the switch from macro to micro

perspective: replicator dynamics is a population-based dynamics, imitation

dynamics an agent-based dynamics. By analyzing the Horn game, the con-

formity of basins of attraction and stable states among both dynamics is

remarkable. But the agent-based perspective of imitation dynamics allows

for structural variation. I was able to show that more local network topolo-

gies of agent populations reduce the basin of attraction of the Smolensky

strategy. Furthermore, experiments with the Lewis game on a lattice struc-

ture revealed the emergence of multiple language regions that constitute

regional meaning. This all gives a first impression that network structures

can have a considerable impact on the course of a convention’s evolution.

In Section 2.3 I introduced two types of learning dynamics: reinforce-

ment learning and belief learning. For the former one agents make proba-

bilistic decisions biased by previous success. For the latter one agents make

decisions by playing best responses based on beliefs about their participants,

where these beliefs are formed by memorizing previous behavior of them.

In this sense, belief learning incorporates rationality according to its choice

behavior.

Furthermore, there is an important technical difference between both

types of learning dynamics and imitation dynamics: while for imitation

dynamics (and also replicator dynamics) agents play a static signaling game

and choose among contingency plans, for the learning dynamics agents play

dynamic signaling games and use behavioral strategies: they choose between

moves for given choice points. In this sense, learning dynamics is more fine

grained and less abstract in comparison with imitation dynamics. Finally,

experiments with reinforcement learning revealed that the resulting patterns

for learning course and basin of attraction are quite similar to the results

of experiments with the replicator dynamics.
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All my experimental results reveal that by comparing all three dynam-

ics types, the resulting population forces and dynamics are quite similar.

Consequently, the question arises as to why I should analyze these games

with more sophisticated dynamics if they do not bring any remarkable new

insights in comparison with the replicator dynamics? In fact, one factor

which turned out to make a difference, is worth analyzing more in detail:

the population structure. While the results of the experiments with differ-

ent topologies for the imitation dynamics revealed a considerable impact on

the dynamics, it seems worthwhile to analyze different topologies for the

learning dynamics as well.

In Chapter 3 I’ll introduce concepts from network theory to have basic

techniques to constitute and analyze more complex interaction structures.

In Chapter 4 and Chapter 5 I’ll analyze in depth the behavior of agents i)

placed on a complex network structure, ii) interacting by signaling games

and iii) acting according to learning dynamics.



Chapter 3

Social Networks

”Society does not consist of individuals, but expresses the sum

of interrelations, the relations within which these individuals

stand.”

Marx, Grundrisse: Foundations of the Critique of Political

Economy

The last chapter began with the premise that Lewis’s signaling game

originated in a framework of language evolution. Nevertheless, there are

reasons to assume that the emergence of linguistic meaning modeled by sig-

naling games are also appropriate to be considered under a sociolinguistic

point of view. If we proceed on the assumption that actual language use is

conventional and that forces of linguistic change realize the process of re-

placing old linguistic conventions with new ones, then signaling games are an

adequate tool for analyzing processes of language change. Furthermore, the

division between language evolution and language change is academically

constructed, as the notions arose in different disciplines. By discounting

such a sharp line I’ll take a look at studies of language change that inspired

me to take the social environment into account by analyzing the emergence

of linguistic meaning via signaling games.

The idea to use social networks for the analysis of the emergence of lin-

guistic meaning was inspired by studies that analyze language change via

simulations on a quite general level. Several of these focused on the role of

social structure (c.f. Nettle 1999; Ke et al. 2008; Fagyal et al. 2010). While

Nettle (1999) took a toroid lattice grid structure into account, Ke et al. and

75
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Fagyal et al. considered more realistic small-world network structures since

these resemble interaction structures of real human networks. In addition,

an early analysis of signaling games on social structures was made by Zoll-

man (2005) for toroid lattices and then by Wagner (2009) on small-world

networks. I’ll present basic results from similar analysis in Chapter 4 for

toroid lattices and in Chapter 5 for social networks.

In this chapter I’ll introduce different notions from network theory. In

Section 3.1 I’ll introduce common network properties, in Section 3.2 I’ll

present several types of network structures that resemble more or less re-

alistic human interaction structures. In Section 3.3 I’ll give the basic idea

of network games : applying signaling games on network structures. And

finally in Section 3.4 I’ll give a final conclusion.

3.1 Network Properties

A network is formally represented as an undirected graph G = (N,E) where

N = {1, . . . , n} is the set of nodes, and E ⊆ N × N is an irreflexive and

symmetric ordering on N , also called the set of edges.1 For such a given

network G it is possible to compute specific properties of networks, sub-

networks or particular nodes. In this sense, I want to distinguish between

a) structural properties of whole (sub-)networks that consist of multiple

nodes and edges and b) node properties that describe the position of one

particular node in dependency of its environment.

3.1.1 Node Properties

Node properties describe the particular characteristics pertaining to the

position of a given node inside a network on a quantitative and qualitative

level. For further analysis the centrality and embeddedness of a node will

play an important role. Before defining these properties I’ll first introduce

the following basic notions: path (between two nodes), neighborhood and

degree.

1Although a couple of relation types could reasonably be modeled with asymmetric
edges (directed graphs), I consider relationships as symmetric and therefore I take only
undirected graphs into account.
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Paths between nodes

A couple of important features of a network are based on the definition of a

path between two nodes. Such a path can be defined in the following way:

Definition 3.1. (Path) For a given graph G = (N,E) with a set of nodes

N = {1, . . . , n} and a set of edges E = {{i, j}|i, j ∈ N}, a path P (i1, im)

between node i1 and node im is defined as a sequence of nodes P (i1, im) =

(ik, ik+1, . . . , im) for each k ∈ {1, . . . ,m − 1}, where the following two con-

ditions hold:

1. ∀k ∈ {1, . . . ,m− 1} : {ik, ik+1} ∈ E

2. ∀k, j ∈ {1, . . . ,m} : ik 6= ij

Thus, a path depicts a sequence of consecutively connected nodes, where

each node is unique in this sequence. Furthermore, each path has a length

that displays the number of nodes and can be defined in the following way:

Definition 3.2. (Path Length) For a given path P (i1, im) = (ik, ik+1, . . . , im)

with k ∈ {1, . . . ,m− 1}, the path length |P (i1, im)| is m− 1.

Indeed, there may be multiple paths between two nodes. In particular,

the shortest path between two nodes plays an important role for further

definitions and can be defined as follows:

Definition 3.3. (Shortest Path) For a given graph G = (N,E) and two

nodes i, j ∈ N , a path P (i, j)∗ between i and j is a shortest path between

them if and only if for all paths P (i, j) between i and j: |P (i, j)∗| ≤ |P (i, j)|.

Furthermore, the shortest path length between two nodes is given as

follows:

Definition 3.4. (Shortest Path Length) For two nodes i, j ∈ N in a given

graph G = (N,E): if there is a shortest path P (i, j)∗ between i and j, then

the shortest path length SPL(i, j) = |P (i, j)∗|, otherwise SPL(i, j) =∞.

Neighborhood and Degree

The neighborhood NH(i) of a node is given by the following definition:

Definition 3.5. (Neighborhood) For a node i ∈ N in a given graph G =

(N,E), its neighborhood NH(i) is given as

NH(i) = {j ∈ N |{i, j} ∈ E}
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Consequently, a neighbor of a given node can be defined as follows:

Definition 3.6. (Neighbor) For a node i ∈ N in a given graph G = (N,E),

a node j ∈ N is a neighbor if and only if j ∈ NH(i).

An important property of a node i is its degree d(i) that displays the

number of i’s neighbors and is simply defined as follows:

Definition 3.7. (Degree) For a node i ∈ N in a given graph G = (N,E),

its degree d(i) is defined by its number of neighbors:

d(i) = |NH(i)|

Centrality

There are a couple of interesting measures depicting the centrality of a given

node regarding to different characteristics. The most local of all centrality

measures is the degree centrality. It considers a node’s degree in relation to

the total number of nodes in the network and is defined as follows:

Definition 3.8. (Degree Centrality) For a node i ∈ N in a given graph

G = (N,E), its degree centrality DC(i) is defined by its degree in relation

to the possible maximal degree of being connected to all other |N |− 1 nodes,

though:

DC(i) =
d(i)

|N | − 1

The following centrality values are more global in the sense that they

interrelate a node’s position to all other nodes in the network. E.g. closeness

centrality describes the average shortest path length of a node to all other

nodes in the network and can be defined as follows:

Definition 3.9. (Closeness Centrality) For a node i ∈ N in a given graph

G = (N,E), its closeness centrality CC(i) is defined as the average shortest

path length to all other nodes in the network:

CC(i) =

∑
j∈N

SPL(i, j)

|N | − 1

Finally, betweenness centrality of a node i describes the fraction of short-

est paths among all other nodes in the graph of which i is a member. It can

be defined as follows:
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Definition 3.10. (Betweenness Centrality) The function NSP (j, k) re-

turns the number of shortest paths between node j and k. Furthermore

the function MSP (j, k, i) returns the number of shortest paths between j

and k of which node i is a member. Then for a node i ∈ N in a given graph

G = (N,E), its betweenness centrality BC(i) is defined as follows:

BC(i) =

∑
j,k∈N

MSP (j, k, i)∑
j,k∈N

NSP (j, k)

Note that closeness and betweenness centrality both describe a node’s

position in dependence of all other nodes in the network. Consequently,

both values depict a global centrality measure. Degree centrality takes only

direct neighbors into account. It depicts a local centrality measure.

Embeddedness

The embeddedness of a node inside a local structure can be represented

by its individual clustering value. It is given by the ratio of edges be-

tween a node’s neighbors to all possible edges in the neighborhood (given

by d(i)×(d(i)−1)/2). The individual clustering value is defined as follows:

Definition 3.11. (Individual Clustering) For a node i ∈ N in a given

graph G = (N,E), its individual clustering CL(i) is defined as ratio of

edges between all nodes j, k ∈ NH(i) to all possible edges in NH(i):

CL(i) =
|{{j, k} ∈ E|j, k ∈ NH(i)}|

d(i)×(d(i)−1)/2

In the next section I’ll introduce basic structural properties of whole

(sub-)networks.

3.1.2 Structural Properties

While node properties delineate a node’s position in relationship to its envi-

ronment, structural properties depict characteristics of whole (sub-)networks.

It is important to mention that I consider only connected (sub-)graphs in

my analysis, thus connectedness is a requirement for further investigations.

Furthermore, the degree distribution of a graph resembles its homogeneity.

In particular, I’m interested in measuring the density of such a graph, where

I distinguish between local and global density measures. Furthermore, the



80 CHAPTER 3. SOCIAL NETWORKS

average path length plays an important role as a property for a realistic

human network structure.

Connectedness

In a connected graph there exists a path between each two nodes:

Definition 3.12. (Connected Graph) A graph G = (N,E) is connected if

and only if the following condition holds:

∀i, j ∈ N : ∃P (i, j)

Note that according to Definition 3.4 (page 77), the shortest path length

between two nodes is ∞ if there is no path between them. This is not

possible for connected graphs because by definition, there exists a path

between any two nodes. By considering only connected graphs, the shortest

path length between two nodes is always a natural number. Furthermore,

closeness centrality (Definition 3.9) and betweenness centrality (Definition

3.10) are defined by the shortest path length. It is easy to see just by

implication that these values are always positive real numbers for connected

graphs.

Since I want to understand regional variation, connected sub-graphs are

of particular interest for my study. A connected sub-graph G′ of graph G

is defined as follows:

Definition 3.13. (Connected Sub-Graph) A graph G′ = (N ′, E ′) is con-

nected subgraph of a connected graph G = (N,E) if and only if the following

conditions hold:

� N ′ ⊂ N

� E ′ = {{i, j} ∈ E|i, j ∈ N ′}

� G′ is a connected graph

Degree Distribution

The degree distribution is a fundamental characteristics of a graph and

depicts the relative frequencies of degrees of nodes. A degree distribution

for a graph G can be described as a vector PG, where the position d of

the vector stands for node degree d and the value PG(d) for the relative

frequency of nodes with degree d. Thus the degree distribution PG can be

defined as follows:
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Definition 3.14. (Degree Distribution) Given a graph G = (N,E) with

maximal degree d∗ = max{d(i)|i ∈ N}. The degree distribution PG of graph

G is given as a vector of length d∗ + 1, where the following condition holds:

∀d ≤ d∗ ∈ N0 : PG(d) =
|{i ∈ N |d(i) = d}|

|N |

It is easy to see that all entries of PG are between 0 and 1 and sum up

to 1, thus the following two conditions hold:

1. ∀d = 0 . . . d∗ : 0 ≤ PG(d) ≤ 1

2.
d∗∑
d=0

PG(d) = 1

There are some particularly interesting degree distributions. E.g. a reg-

ular distribution is where each node has the same degree. Therefore it can

be defined as follows:

Definition 3.15. (Regular Degree Distribution) A graph G has regular de-

gree distribution PG of degree d∗ if the following properties hold:

� ∀d 6= d∗, d ∈ N0 : PG(d) = 0

� PG(d∗) = 1

Furthermore, a scale-free distribution is defined as follows:

Definition 3.16. (Scale-Free Degree Distribution) A graph G has scale-free

degree distribution PG of degree γ if the following property holds:

� PG(d) ∝ cd−γ

where c > 0 is a scalar that normalizes the support of the distribution to

sum to 1.

Density

For structural density values I distinguish between global and local density

values. I consider the classical density value as global, where values like

average clustering and transitivity represent a local density: structures for

which these values are high incorporate dense local sub-structures.

The classical density is the ratio of edges in a graph to the maximal

number of edges a graph with |N | nodes could have (what is |N |×(|N |−1)/2),

defined as follows:
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Definition 3.17. (Density) For a graph G = (N,E), the density dens(G)

is defined as follows:

dens(G) =
|E|

|N |×(|N |−1)/2

The average clustering is the average individual clustering value of all

nodes, defined as follows:

Definition 3.18. (Average Clustering) For a graph G = (N,E), the aver-

age clustering value clust(G) is defined as follows:

clust(G) =

∑
i∈N

CL(i)

|N |

Finally, the transitivity value of a graph G = (N,E) represents the ratio

of triads and triangles. Triads are pairs of edges sharing the same node,

given by the set TRIADS(G). Triangles are three fully connected nodes,

given by the set TRI(G). Both are defined as follows:

� TRIADS(G) = {{{i, j}, {i, k}} ⊆ E|i, j, k ∈ N, i 6= j 6= k}

� TRI(G) = {{{i, j}, {i, k}, {j, k}} ⊆ E|i, j, k ∈ N, i 6= j 6= k}

With these prerequisites, the transitivity of a graph G is defined as

follows:

Definition 3.19. (Transitivity) For a graph G = (N,E), the transitivity

value trans(G) is defined as follows:

trans(G) =
|TRI(G)|

|TRIADS(G)|

Note that average clustering and transitivity depict similar characteris-

tics. Both values are higher when more pairs of neighbor nodes are con-

nected.2 Nevertheless, it can be shown that for particular graph structures

both values can be quite different.3 For instance, I’ll show in Section 3.2

that so-called scale-free networks can strongly differ in average clustering

and transitivity value.

2Sometimes transitivity is called overall clustering, see e.g. Jackson (2008), p. 35.
3According to Jackson (2008) average clustering gives more weight to low-degree

nodes that transitivity does.
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Average Path Length

In the context of realistic human network structures, the average path length

plays an important role. The average path length defines the shortest path

length between two nodes averaged over all pairs of nodes given in the

network. It can be defined as follows:

Definition 3.20. (Average Path Length) For a graph G = (N,E), the

average path length APL(G) is defined as follows:

APL(G) =

∑
i,j∈N

SPL(i, j)

|N | × (|N | − 1)

3.2 Network Types

The most basic graph structure is a completely connected network : every

node is connected with all others. A completely connected network is also

inside the class of regular networks, introduced in the following section.

3.2.1 Regular Networks

A graph where each node has the same degree is called a regular network.

Such a network has a homogeneous interaction structure. A regular network

is formally defined as follows:

Definition 3.21. (Regular Network) A graph G = (N,E) is a regular net-

work if and only if the following condition holds:

∀i, j ∈ N : d(i) = d(j)

Regular networks have received a fair amount of attention in the litera-

ture because they are comparatively easy to handle in implementations and

proofs. Note that a regular network has a regular degree distribution since

each node has the same degree.

One of the most popular regular network is a k-ring network, where

all nodes are ordered and connected in a circular way to their k nearest

neighbors. Figure 3.1a depicts a 4-ring network of 8 nodes. In general, a

graph G = (N,E) arranged as a k-ring with n > k nodes has the following

properties:

� ∀i ∈ N : d(i) = k
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� dens(G) = k
n−1

� clust(G) = 3×(k−2)
4×(k−1)

� APL(G) = n
2×k

Notice that the clustering value is quite high for a ring, indeed it can

be shown that clust(G) ≥ .5 for k ≥ 4, thus the clustering is high even for

huge ring networks and furthermore completely independent of n. This is

quite different for the average path length: here APL(G) growth with the

number of nodes n. It is therefore strongly dependent of n and quite high

for huge networks, assuming a fixed k � n.

Another popular graph structure is a toroid lattice, where the nodes are

arranged on an n×m toroid structure and every node is connected with the

8 nearest nodes on the lattice.4 Figure 3.1b depicts a 3 × 3 toroid lattice:

the gray nodes are doubles of some white nodes to highlight the fact that

there is no border and each node has exactly 8 neighbors (e.g. the right

neighbor of node 3 is node 1, the top-left neighbor of node 7 is node 6). In

general, such a toroid lattice has the following properties:

� ∀i ∈ N : d(i) = 8

� dens(G) = 8
n−1

� clust(G) = 3
7

� APL(G) = n
3

Similar to the k-ring, the toroid lattice also has a clustering value that

is independent of the lattice size and quite high, while the average path

length grows with the lattice size and can be extremely high for huge toroid

lattices. As we will see later, realistic human networks are assumed to have

a short average path length. This is a property that neither the k-ring, nor

the toroid lattice can come up with if we consider a large populations size.

In the following, I will introduce a network class that has a low average

path length in general, but doesn’t exhibit any kind of regularity: random

networks.

4This constitutes a structure that is also known as Moore neighborhood.
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(a) A 4-ring network
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(b) A 3× 3 toroid lattice

Figure 3.1: A 4-ring network of 8 nodes that are arranged as a ring and
connected to their 4 nearest neighbors (Figure 3.1a) and a toroid lattice of
3 × 3 nodes that are connected to their 8 nearest neighbors (Figure 3.1b).
Note that the lattice is a toroid because there is no border, as highlighted
by doubles that are marked as gray nodes.

3.2.2 Random Networks

Random networks are created by a process of a completely random forma-

tion. A simple variant, also known as the Erdős-Rényi (ER) random graph

model, can be described as follows: given an initial graph G = (N,E) with

a fixed set of n nodes N = {1, . . . , n} and an empty set of edges E = {},
take any pair of nodes i, j ∈ N and add edge {i, j} to set E with probability

p (0 ≤ p ≤ 1).5

Such a random network has interesting pattern. E.g. the degree distri-

bution of a random network can be approximated by a Poisson distribution

with the expected average degree6 at the center of the curve. Figure 3.2

depicts averaged degree distributions for a network with 100 nodes created

by the ER algorithm for different probability values .03, .25, .5 and .75.

Figure 3.2 also reveals another phenomenon: for small p-values the graph

has highly probably nodes with degree 0; in other words: the graph has

isolated nodes and is not connected in such a case. In general, the lower the

p-value, the higher the probability that the resulting graph is non-connected.

It can be shown that for a graph with n nodes, the probability value should

be p ≥ log(n)
n

for isolated nodes to disappear. In fact, this is exactly the

threshold value for the probability that a network is connected converges to

1, as n grows.

Both of the two major assumptions of the ER-model, namely that edges

5Note that for p = 1 we would get a completely connected network.
6The expected average degree for a node is given by p× (n− 1).
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(a) n = 100 and p = .03 (b) n = 100 and p = .25

(c) n = 100 and p = .5 (d) n = 100 and p = .75

Figure 3.2: Degree distributions of random networks for a graph of 100
nodes and different probabilities (.03, .25, .5, .75), created by the ER algo-
rithm; each data point averaged over 100 simulation runs.

are independent and that each edge is equally likely, may be inappropriate

for modeling real-life phenomena. In particular, a graph created by the

ER algorithm does not have a degree distribution with heavy tails7, as is

the case in many real networks. Moreover, it has low clustering, unlike

many social networks. For modeling alternatives that realize networks with

such real-world characteristics, I’ll introduce the most popular variants of

small-world networks.

7A degree distribution with a heavy tail has a quite high number of extreme values,
e.g. a high number of nodes with low degree, or with a high degree, or both.
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3.2.3 Small-World Networks

Recent studies on large-scale complex networks in the real world reveal

that the topology of most real-world networks (evolved by dynamics of self-

organizing systems) is neither regular nor completely random, but some-

where between these two extremes (c.f. Watts and Strogatz 1998; Barabási

2002). Watts and Strogatz (1998) revealed that these networks are highly

clustered8 like e.g. regular lattices, but have a much shorter average path

length, similar to random networks. Watts and Strogatz called networks

with such structural properties small-world networks since a short average

path length embodies the small-world phenomenon, also known as the six

degrees of separation. To check if a graph G has properties of a small-world

network, one has i) to measure its average path length and average cluster-

ing and ii) to compare it with those values of a connected random network

G′ with the same number of nodes and edges. While the average path length

of G should be of similar length to that of G′, the average clustering should

be much higher. Thus a graph can be defined as a small-world network in

the following way:

Definition 3.22. (Small-World Network) A graph G = (N,E) is called a

small-world network if, in comparison with a random network G′ = (N ′, E ′)

with |N ′| = |N | and |E ′| = |E|, the following conditions hold:

� clust(G)� clust(G′)

� APL(G) ≈ APL(G′)

A further property found in a number of real-world networks is a scale-

free degree distribution (see Definition 3.16). Barabási and Réka (1999)

called small-world networks with this property scale-free networks. A scale-

free network can be defined in the following way:

Definition 3.23. (Scale-Free Network) A graph G = (N,E) is called a

scale-free network if its degree distribution PG is scale-free.

These properties often emerge as a result of human behavior. There are

multiple ways to construct network structures that have small-world or even

scale-free properties. In the following, I’ll present some of the most popular

ones from recent developments that will be object of study in subsequent

chapters of this thesis.

8These networks have a high values of individual clustering, average clustering and/or
transitivity.
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(c) After rewiring 8 edges

Figure 3.3: Example for the Watt-Strogatz algorithm: starting with a 4-
ring with 8 nodes (Figure 3.3a), the edges are rewired randomly. E.g. after
rewiring {8, 1} → {8, 4}, {4, 5} → {4, 7} and {2, 4} → {2, 6}, the resulting
structure is less regular and has a smaller APL, accomplished by the new
edges that provide shortcuts; thus it has small-world properties (Figure
3.3b). After 5 more rewired edges, the network shows probably less small-
world characteristics by decreased average clustering (Figure 3.3c).

β-Graphs

One of the best-known algorithms for constructing small-world networks is

defined by Watts and Strogatz (1998). Its resulting graph is called a β-

graph. A β-graph is obtained by i) starting with a regular k-ring network

and ii) subsequently, for each node, rewiring its k/2 left neighbors to a

random node n with probability β, as depicted in Figure 3.3. As you can

see, the resulting graph is neither regular (β = 0) nor random (β ≈ 1), but

somewhere between these extremes if β is centrally arranged between 0 and

1.

A graph that is somewhere between being regular and random is a small-

world network; if it has the high clustering value of regular networks and the

short average path length of random networks, it therefore has small-world

properties. Figure 3.4 shows the clustering value (clustering coefficient) and

average path length (characteristic path length) in dependence of different

β-values by starting with a k-ring of 1000 nodes with k = 12, each data

point averaged over 50 simulation runs. As you can see, such a β-graph has

small-world properties particularly in the range of .01 ≤ β ≤ .1.

Another popular account for β-graphs is to start with a toroid lattice

instead of a ring and rewire the edges with a probability β in the same

way. The effect is similar. A very low β-value results in a relatively high
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Figure 3.4: Average clustering and average path length (y-axis) of network
structures created by the Watts-Strogatz algorithm for different β-values
(probability of rewiring, x-axis), started with an initial 12-ring of 1000
nodes, averaged over 50 simulation runs. The typical small world char-
acteristic is a combination of a high average clustering value and a low
average path length. This is approximately given for .01 < β < .1.

average path length9 and also a highly regular pattern, whereas a high β-

value diminishes the average clustering value. Only an intermediate β-value

brings along small-world properties.

Scale-Free Networks

It can be shown that β-graphs have a quite small range of different degrees

of nodes. This might be acceptable for models of small societies, where

interaction is fairly local and focused on immediate kinsmen. But it might

be unrealistic for more open societies, where we would expect a more diverse

degree distribution: most agents interact with a smaller number of agents,

9A toroid lattice with dimension n× n has the average path length of n/3, thus it is
quite high for huge lattices.
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but there are also agents that interact with many. The inappropriateness

of β-graphs to model large, open and dynamic societies is also noted by

Barabási and Réka (1999). They criticize that the β-graph model assumes

i) starting with a fixed number of nodes, while most real-world networks are

open and formed by continuously adding new nodes and edges to the system

and ii) that the probability of two nodes being reconnected is random and

uniform, while in real-world networks a new edge is more probably made

with a more highly connected node.

Barabási and Réka (1999) presented an algorithm that creates a net-

work without this inappropriateness. This BA algorithm can be informally

described as follows:

1. Initial Setting

� initially given is a small number of n nodes

2. Expansion

� for every time step add a new node in and connect it randomly

to m already given nodes (m ≤ n)

� the probability Pr(in, i) of in being connected to a given node i

depends on its degree d(i), formally: Pr(in, i) = d(i)/
∑
j∈N

d(j)

3. Final Setting

� after t time steps we have a network with n+ t nodes and m× t
edges

� the resulting network has a scale-free degree distribution

The resulting network is scale-free, but it lacks an important small-world

property: a high average clustering. Holme and Kin (2002) mentioned that

such a network has an average clustering value clust(G) ≈ 0 and therefore

fails to resemble a type of networks I’m interested in: social networks that

typically have a high clustering value.

Holme and Kin (2002) presented an algorithm that creates a scale-free

network with small-world properties like a high clustering. They modify

the BA algorithm by changing the expansion step in the following way:

2. Expansion

� for every time step add a new node in and connect it with m

already given nodes in one of the two following ways:
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a) connect in with any node i according to probability Pr(in, i)

b) connect in with any node j ∈ NH(i) according to Pr(in, j),

where i is the node chosen in step a)

� each time start with ’step a)’ and then follow with ’step b)’ with

probability Pt or ’step a)’ with probability 1−Pt, until either in
is connected to m nodes or in is connected to all j ∈ NH(i). In

the latter case follow with ’step a)’.

Notice that in ’step b)’ the new node in is connected to a neighbor of a

node it is already connected with. In other words, ’step b)’ realizes a triangle

formation and therefore increases the average clustering. Consequently,

the clustering depends on the probability parameter Pt. And the average

number of ’step b)’ accomplishments is given by mt = (m − 1)Pt which is

the control parameter of the model.10

Holme and Kin (2002) were able to show that the algorithm produces

a scale-free network for arbitrary mt values. Furthermore, the relation be-

tween mt and clust(G) is almost linear for a sufficiently large number of

nodes, and the average clustering increases with mt. All in all, the algo-

rithm creates a scale free network with small-world properties for a range

of mt values.

3.3 Network Games

In my work I will use network structures to present an explicit inter-

action structure that determines which agents can interact with one an-

other in a population of multiple agents. In general: given is a set of n

agents X = {x1, x2, . . . , xn} and a network structure G = {N,E} with

N = {1, 2, . . . , n}. Then every agent xi ∈ X corresponds to node i ∈ N .

In addition, any two agents xi, xj ∈ X can interact with each other if and

only if {i, j} ∈ E.11 One interaction step is realized by playing one round

of a dynamic signaling game. Furthermore, agents interact repeatedly and

their decisions are guided by learning dynamics, as already introduced in

Chapter 2. I refer to a signaling game SG that is i) played by a population

of agents X placed on a fixed interaction structure G and ii) combined with

an update dynamics D, as a network game.

10Notice that for mt = 0 we get the BA algorithm.
11This condition is weakened by applying the social map selection algorithm, intro-

duced in Section 3.3.2.
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Formally, a network game NG = 〈SG,X,D,G〉 is given by a signaling

game SG, a set of agents X, a learning dynamics D and a graph structure

G and can be defined in the following way:

Definition 3.24. (Network game) For network game NG = 〈SG,X,D,G〉
a population of agents X = {x1, . . . , xn} is placed on a graph structure

G = {N,E} with N = {1, . . . , n}, where each agent plays repeatedly a

signaling game SG = 〈(S,R), T,M,A, P, C, U〉 and behaves according to

the learning dynamics D = 〈SG, σ, ρ,MU〉. Consequently, each round of

play is realized in the following way:

1. choose randomly a pair of connected nodes i, j ∈ N with {i, j} ∈ E

2. take agent xi as the sender S and agent xj as the receiver R for a

round of play of signaling game SG

3. choose a state t ∈ T according to prior probability P (t)

4. S sends message m ∈ M according to behavioral strategy σ(m|t) of

learning dynamics D

5. R chooses interpretation state a ∈ A according to behavioral strategy

ρ(a|m) of learning dynamics D

6. after the round is played, S and R update their learning level according

to update mechanism MU of learning dynamics D

Note that the network structure plays a role for the first step in Defi-

nition 3.24: the choice of a communication partner. Such a choice can be

realized in different ways. This can have a crucial influence on the probabil-

ity of how often an agent is chosen. In the following I’ll present and analyze

different ways.

3.3.1 The Choice for Communication Partners

By analyzing the behavior of agents playing network games, it can be im-

portant to consider how often an agent is chosen to interact in comparison

to how often other agents are chosen. The probability of a node i being

chosen generally depends on the node selection algorithm and the node’s

degree d(i). I’ll illustrate this with the following different selection algo-

rithms random sender & neighbor, random receiver & neighbor, random

edge and weighted edge. They can be defined in the following way:
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Definition 3.25. (Random Sender & Neighbor) For the network game

NG = 〈SG,X,D,G = {N,E}〉, the selection algorithm random sender

& neighbor (RSN) selects a sender S and a receiver R in the following way:

1. select randomly a node i ∈ N ; xi ∈ X is sender S

2. select randomly a node j ∈ NH(i); xj ∈ X is receiver R

Definition 3.26. (Random Receiver & Neighbor) For the network game

NG = 〈SG,X,D,G = {N,E}〉, the selection algorithm random receiver &

neighbor (RRN) selects a sender S and a receiver R in the following way:

1. select randomly a node i ∈ N ; xi ∈ X is receiver R

2. select randomly a node j ∈ NH(i); xj ∈ X is sender S

Definition 3.27. (Random Edge) For the network game NG = 〈SG,X,D,
G = {N,E}〉, the selection algorithm random edge (RE) selects a sender S

and a receiver R in the following way:

1. select randomly an edge {i, j} ∈ E

2. select randomly case i) xi is sender S and xj is receiver R or case ii)

exactly the other way around

Definition 3.28. (Weighted Edge) For the network game NG = 〈SG,X,D,
G = {N,E}〉, the selection algorithm weighted edge (WE) selects a sender

S and a receiver R in the following way:

1. select an edge {i, j} ∈ E with probability 4
|N |×(d(i)+d(j))

2. select randomly case i) xi is sender S and xj is receiver R or case ii)

exactly the other way around

Note that the probability of an agent xi being sender or receiver is

different for each of these selection algorithms, as depicted in Table 3.1:

while for algorithm RSN the sender is chosen completely randomly among

all |N | nodes, the receiver is more probably chosen with a higher degree

centrality. This is because the higher the degree centrality of node i, the

more probable it is for i to be the neighbor of another node. The same

consideration exactly the other way around leads to the probabilities of the

RRN algorithm. Furthermore, a node i is more probable to be an element
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RSN RRN RE WE
Pr(xi = S) 1/|N | d(i)/(2×|E|) d(i)/(2×|E|) 1/|N |
Pr(xi = R) d(i)/(2×|E|) 1/|N | d(i)/(2×|E|) 1/|N |

Table 3.1: The probabilities of an agent being selected as a sender or receiver
for different selection algorithms.

of a randomly chosen edge with a higher degree d(i). Thus for algorithm

RE both sender and receiver have a higher chance of being selected with

a higher degree. According to algorithm WE edges with nodes with high

degrees are less frequently selected then edges with nodes with low degrees.

On average, each node is selected with a probability of 1/|N | and therefore

completely randomly, as shown in Proof A.1 in Appendix A.

Thus, in a model where agents can only communicate with their direct

neighbors, the probability of communication partners being selected is ran-

domly and, dependent on the selection algorithm, biased by the degree of

a node. In the following section I’ll relax the restriction that agents only

interact with direct neighbors. The probability of agent xi having a com-

munication partner xj depends on the shortest path length between i and

j.

3.3.2 The Social Map

In this section, I want to i) regard a toroid lattice as interaction structure

and ii) relax the condition that possible communication partners are con-

strained to the direct neighborhood. The idea is as follows: the probability

that agent xi chooses a particular communication partner xj is positively

correlated to the shortest path length between i and j according to a corre-

lation function. This transforms the toroid lattice into what I call a social

map since spatial distance (shortest path length) depicts social distance

(probability of interaction). Furthermore, for a correlation function with

a strongly increasing slope, the social map structure approximates direct

neighbor communication. On the other hand, for a linear correlation func-

tion the social map patterns a network where each pair of interlocutors

is chosen with the same probability. In the latter case, spatial effects are

eliminated and the interaction structure resembles a completely connected

network.
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Interlocutor Allocation and the Degree of Locality

In this section, I place agents on a social map (see Nettle (1999) as a com-

parable account): all agents x ∈ X are placed on a lattice. The distance

d(xi, xj) between two agents xi and xj plays a crucial role and is defined as

follows:

Definition 3.29. (Distance) Given is a network game NG = 〈SG,X,D,G =

(N,E)〉. For two agents xi, xj ∈ X, the distance d(xi, xj) between them is

defined by the shortest path length SPL(i, j), i, j ∈ N :

d(xi, xj) = SPL(i, j)

To realize a social map structure, an agent xi’s probability Pγ(d) to

interact with an agent xj depends on the distance d = d(xi, xj) between

both agents. Furthermore, this dependency is influenced by a parameter

γ which is called the degree of locality. The idea is as follows: the higher

γ, the more local is the interaction structure. A maximal local interaction

structure is direct neighbor communication, whereas a minimal local and

therefore a maximal global interaction structure is random interaction. In

other words: for γ = 0, agents interact randomly and by increasing γ, the

interaction structure approximates direct neighbor communication and the

social map approximates a toroid grid structure.

With this account it is possible to analyze interaction structures between

the local interaction structure of a toroid lattice network and the global

interaction structure of a population of randomly chosen communication

partners which, in terms of network theory, equals a completely connected

network.

The social map account can be realized as follows: given is a n×n toroid

grid structure. I denote the set of all agents of distance d to an agent xi
with Nd(xi), formally Nd(xi) = {xj ∈ X|d(xi, xj) = d}. Two agent xi, xj
are chosen as communication partners by the following Social Map selection

algorithm:

Definition 3.30. (Social Map) For a network game NG = 〈SG,X,D,G =

{N,E}〉 the selection algorithm Social Map selects a sender S and a receiver

R in the following way:

1. select randomly a node i ∈ N ; xi ∈ X is sender S

2. select a distance d with probability Pγ(d)
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3. select randomly an agent xj from the set Nd(xi); xj is receiver R

The probability Pγ(d) of choosing distance d in dependence of the degree

of locality γ is defined as follows:

Pγ(d) =
8× d

dγ

η(γ, d)
η(γ, d) is normalizer function12 (3.1)

Furthermore, it is evident that for an n × n toroid lattice each agent

has 8 × d neighbors of distance d; to put it formally: ∀x ∈ X : ∀d ≤ n
2

:

|Nd(x)| = 8× d. Consequently, the probability of choosing a random agent

from the set Nd(x) is 1
8×d . This leads to the following interaction probability

of an agent xi interacting with an agent xj:

Definition 3.31. (Interaction probability on a Social Map) For a network

game NG = 〈SG,X,D,G = (N,E)〉, where G is a n× n toroid lattice and

agents use the selection algorithm Social Map, the probability Pr(xi, xj) that

an agent xi ∈ X interacts with agent xj ∈ X is given as follows:

Pr(xi, xj)γ = Pγ(d(xi, xj))×
1

8× d(xi, xj)

It can be shown that for γ = 0, the probabilities of an agent choos-

ing his communication partner is equiprobable among all other agents:

∀xi, xj ∈ X : Pr(xi, xj)0 = 1
|X|−1 = 1

n2−1 (see Proof A.2). Thus, alloca-

tion is completely random and independent of distance d. The interaction

structure equals a completely connected network. But by increasing γ, a

close distance is more and more important for frequent communication.

Figure 3.5 shows the probability distributions Pγ(d) for different γ-values

over d ∈ D = {m ∈ N|1 ≤ m ≤ 10}. As you can see, for γ = 0 the proba-

bility of choosing a distance d increases linearly with the distance. Because

also |Nd(x)| increases linearly with the distance, each possible communi-

cation partner is chosen with the same probability, independently of the

distance. This probability is exactly 1
n2−1 , as I showed in Proof A.2.

For γ = 8 the probability of choosing a communication partner with

distance 1 is P8(1) ≈ 0.992 for a maximal distance of 10 (n = 21). Thus,

for γ = 8 the probability is almost 1 that agents choose a direct neighbor

as a partner (see Proof A.3). This choice probability implies a selection

12I set η(γ, d) = (
∑bn/2c
d=1 8 × d/dγ) + (bn+1

2 c −
n+1
2 ) × (4n + 2) to guarantee that

Pγ(d) is a probability measure, in other words that holds: ∀d ∈ D : 0 ≤ Pγ(d) ≤ 1 and∑
d∈D Pγ(d) = 1 with D = {1, 2, . . . dn/2e − 1} ⊆ N.
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Figure 3.5: Degree distributions with a maximal degree of 10 for different
γ-values. γ = 0 depicts random communication. By increasing the γ-value,
agents’ behavior approximates neighborhood communication. For γ = 8
the probability of choosing a direct neighbor is ca. 0.992.

strategy that is close to neighborhood communication and approximates it

by increasing γ.

For my social map experiments in Chapter 4, the overall system’s be-

havior for different γ-values is of special interest. As I already mentioned,

the behavior of choosing a partner completely randomly (γ = 0) realizes a

completely connected network structure, whereas the behavior of choosing

one in an agent’s direct neighborhood (γ → ∞) realizes a toroid lattice

structure. Both are extreme points of the degree of locality γ. One of

my tasks is to find out how the degree of locality affects the emergence of

signaling languages in the multi-agent system; in other words, I want to

examine the behavior of societies with interaction structures between those

two extreme points.

3.4 Conclusion

The task for the subsequent chapters is to simulate and analyze the behavior

of agents on a network structure interacting repeatedly by playing signaling
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games with accessible interlocutors, where decisions are guided by learning

dynamics. I termed such a configuration a network game, as introduced in

Section 3.3. In Section 3.2 I introduced regular networks, random networks

and so-called small-world networks that emulate realistic human network

structures. The latter ones will be used as interaction structure for my

simulation experiments with network games in Chapter 5. In Section 3.1

I introduced network measures describing i) structural properties of (sub-

)networks and ii) node properties of particular agents. These measures will

be used for the analysis of my experimental results.

All in all, the prerequisites are given. In the following Chapters 4 and

5 I’ll present experiments with network games and analysis of the results.

In detail, I will i) analyze the global behavior of populations under dif-

ferent circumstances, ii) compare such global behavior with former results

(e.g. replicator and imitation dynamics), iii) analyze particular agents’ be-

havior more in detail and in dependence of their spatial properties and iv)

try to interpret the results in the light of matters from sociolinguistics.



Chapter 4

Emergence of Regional Meaning

”Construing agreement generously, maybe all conventions could,

in principle, originate by agreements. What is clear is that they

need not. And often they do not.”

Lewis 1969, Convention

”However, it seems that the simpler models have not said all

there is to say about cooperation and spatial structure as expla-

nations of social cooperation.”

Zollman 2005, Talking to Neighbors: The Evolution of Regional

Meaning

The ur-mission of developing signaling games was to explain the emer-

gence of conventions arising without explicit previous agreements. As de-

manded in Chapter 1 and depicted in Chapter 2, such conventions can and

probably must arise over time and in populations. In Chapter 2 some basic

results were obtained for different dynamics and initial population setups.

In particular, for the Horn game analysis I was able to show that the only

possibility for agents to learn one of the other two promising strategies,

anti-Horn or Smolensky, instead of the predominant Horn strategy was an

appropriately shifted initial population state. But one could argue that such

a shifted population state violates the requirement for an initial unbiased

situation since it might imply a sort of previous agreement.

99
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I would like to stress this point: let’s assume an initial situation for a

population that behaves in a way that no previous agreement among the

members was made. Such a situation should have the following properties

for the different three dynamics types:

� evolutionary dynamics: the initial population state is unbiased/neutral

� imitation dynamics: the initial start strategies are randomly chosen

or uniformly distributed among the society

� learning dynamics: a) the initial tendencies of a population’s members

to a specific strategy are uniformly distributed among the society or

b) all population members are completely unbiased/unexperienced

We saw earlier that for an unbiased initial population state the replicator

dynamics leads to a final population state with all members playing the

Horn strategy (see e.g. Figure 2.2). In addition, I showed for the imitation

dynamics that in a population of randomly acting agents starting with an

initial uniform distribution of every strategy, the following result holds: in

the final population all agents play the Horn strategy (see e.g. Figure 2.7).

And finally, for reinforcement learning it was shown that for simulations

starting with uniform initial strategy tendencies, the resulting population

behaves according Horn’s rule (see e.g. Figure 2.13).

I want to examine the evolution of convention by applying learning dy-

namics and having an initial state with completely unbiased and unexperi-

enced agents. This means that all agents i) start with a random choice and

ii) have a memory completely empty of experience.1 This guarantees an ini-

tial state that rescind the assumption that any explicit previous agreement

was made since agents do not have any knowledge about the past.

In addition, I would like to stress a second point here: I showed in ear-

lier experiments that the interaction structure can play an important role in

the way strategies evolve and stabilize. Experiments for different network

topologies revealed that the basins of attraction for different strategies are

shifted (see e.g. Figure 2.9). Furthermore, some basic experiments with im-

itation dynamics on a toroid lattice (see e.g. Zollman, 2005) showed that

final population states can be significantly divergent in terms of the emer-

gence of regional meaning (see e.g. Figure 2.10). This sketches out a possible

loophole for strategies other than Horn to emerge.

1This means a) for reinforcement learning that all ball types of the agents’ urns
are uniformly distributed; and b) for belief learning that all experiences are empty or
uniformly distributed.
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These observations bring me to the following question: if agents a) are

playing a Horn game repeatedly by using learning dynamics and starting

with an initial unbiased and unexperienced status, and b) are placed on an

interaction structure that allows for multiple strategies to emerge, are there

circumstances that lead to an emergence of strategies different from Horn’s

rule? This chapter deals with exactly this question by analyzing a model

that includes individuals with the following properties:

� the individuals are initially unbiased regarding any strategy

� the individuals are connected among a specific interaction structure

� the individuals interact by playing pairwise - the Lewis game or a

Horn game

� the individuals adapt their behavior over time; or, more precisely:

they use learning dynamics to learn strategies of communicative be-

havior

My model has the following features: i) individuals as artificial agents

whose decision mechanism is defined by learning dynamics, ii) an interaction

structure is given by a toroid lattice2 and iii) a communication protocol

achieved by playing a signaling game, the Lewis game or a variant of the

Horn game.

This chapter contains the analysis of this model and how different pa-

rameter settings have an impact on the resulting society structure of lan-

guage regions. In particular, it focuses on circumstances that lead to sit-

uations of agents learning strategies different from the Horn strategy. To

foreshadow one general result: for a lot of circumstances the experiments

lead to an emergence of regional meaning, what plays a crucial role for the

question of how multiple or unexpected strategies may emerge. Thus, the

more general question for getting an insight in how different language learn-

ers arise might be: what causes the emergence of regional meaning? What

circumstances support the emergence of multiple language regions inside

the population?

The chapter is structured in the following way: in Section 4.1 I analyze

the different factors that cause the emergence or non-emergence of multiple

2The justification for choosing a lattice structure is as follows: i) it is a locally
connected interaction structure, thus resembling a highly idealized human population
structure and ii) it is regular and therefor easy to analyze and iii) its regular and strongly
local structure can easily be relaxed by applying the social map algorithm and therefore
a more realistic structure is immediately available.
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language regions. In Section 4.2 I examine phenomena that emerged dur-

ing my experiments in a more detailed fashion, to get a better insight in

the dynamic forces inside the population. Finally, in Section 4.3 I give a

conclusion about the main results of my experiments.

4.1 Causes for Regional Meaning

I want to analyze the influence of specific parameters and how they impact

the learning process and resulting regional structure. I consider parameters

that are values from three different dimensions. These dimensions are i.)

the signaling game itself, ii.) the learning dynamics and iii.) the interaction

structure. Basically, I analyze these three dimensions as follows:

� signaling game by game parameters (prior probability, message costs)

� interaction structure by degree of locality and lattice size

� learning dynamics by learning type (BL or RL) and memory size

With this analysis I want to get more detailed answers for the question

of how different circumstances of the whole model, like game parameters,

update dynamics, memory size or the spatial arrangement, have a specific

influence on the resulting population structure. More precisely, I want to

find answers for questions like the following:

� in what sense do results of these experiments differ from previous

results of experiments with other dynamics and/or population struc-

tures?

� under which circumstances do multiple language regions evolve?

� if multiple language regions evolve, how do agents on the border be-

tween language regions behave?

� particularly for the Horn game: under what circumstances do anti-

Horn players or Smolensky players evolve?

In most of my experiments I used a population structure of a 30 ×
30 toroid lattice, thus a population size of 900 agents. With this setup I
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game abbr. probabilities message costs

Lewis game LG P (t1) = P (t2) = .5 C(m1) = C(m2) = 0

weak Horn game HGw P (tf ) = .6, P (tr) = .4 C(mu) = .05, C(mm) = .1

normal Horn game HG P (tf ) = .7, P (tr) = .3 C(mu) = .1, C(mm) = .2

Table 4.1: The different games analyzed in the experiments.

made a reasonable compromise of a manageable runtime duration and the

possibility of the emergence of global effects.3

The signaling games that I analyzed in most of the experiments are

the Lewis game LG as well as two Horn games with different parameters

which I call (in accordance with Chapter 2) the weak Horn game HGw

and the normal Horn game HG. The appropriate game parameters are

given in Table 4.1. It is important to note that all three games are inside

a range of what I call the Horn game spectrum that defines the unlimited

set of signaling games with two information states, two messages and two

interpretation states, for different combinations of prior probability P (tf )

and message costs difference δC = C(mm) − C(mu). Note that P (tr) is

uniquely defined by 1 − P (tf ), and that 0 ≤ C(mu) ≤ C(mm) ≤ 1. Thus,

the Horn game spectrum for different parameter combination is given as

depicted in Figure 4.1a, where LG, HGw and HG are positioned according

to their parameters. In my experiments I often analyzed, next to the three

predefined games LG, HGw andHG, the outcome of experiments for further

games inside this spectrum, to get a better insight in what way or extend

game parameters influence the agents’ behavior. These experiments are

made for discrete sections that divide a subset of the spectrum, exemplary

depicted in Figure 4.1b.

I was not only interested in analyzing the way game parameters influence

the outcome, but also in comparing the impact of different update dynamics.

In Chapter 2 I introduced i) the replicator dynamics, ii) the prominent

imitation dynamics ’imitate the best’ and conditional imitation and iii)

the two learning dynamics reinforcement learning and belief learning. I

showed some basic results for preliminary experiments for some of these

3If the population is too large, the runtime for simulation runs until interesting results
like stable structures emerge is too high for practical research. On the other hand, if the
population size is too small, the distinction between local and global phenomena is hard
to make. In fact, a resulting composition of local formations are highly improbable. As
corroboration, see the results of Experiment IX: the analysis of different population sizes.
The smaller the population size, the less probable the emergence of multiple language
regions is.
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Figure 4.1: The Horn game spectrum: signaling games with different com-
binations of prior probabilities P (t) and the difference of message costs δC
(Figure 4.1a). For my analysis I used a discrete segmentation of a subset of
this spectrum, as exemplified in Figure 4.1b.

dynamics. In this chapter I will focus on learning dynamics. In Section 4.1.1

I’ll focus on the comparison of reinforcement learning and belief learning,

each considered with unlimited and limited memory.

In my experiments I used network games with the following settings:

� the agents use a selection algorithm Random Sender & Neighbor (Def-

inition 3.25), except for Experiments V-VIII: here they use selection

algorithm Social Map (Definition 3.30)

� for the belief learning experiments I applied the BL account (Defini-

tion 2.16) with initially empty beliefs and random choice

� for the reinforcement learning experiments I applied the RLIP ac-

count (Definition 2.15) with an initial urn settings of 100 balls per

urn, 50 for each type and the following update values: α = 10, β = 0

and γ = 2

� an agent is a language learner if the Hellinger similarity simL of her

current strategy is above threshold hε = 0.65 (see Definition 2.13)
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� a cohesive area of agents using the same language L is called a language

region of language L4

� agents’ languages and corresponding language regions are considered

as stable according to long-term stability (Definition 2.14)

With this setup I’ll analyze the three dimensions: game parameters,

interaction structure and learning dynamics, by varying their parameter

values and measuring the impact on the resulting language structure of

the society. In Section 4.1.1 I’ll analyze the impact of different dynamics

settings and game parameters inside the Horn spectrum. In Section 4.1.2 I’ll

extend the analysis by varying the interaction structure, i.e. using the social

map algorithm (Definition 3.30) and taking different degrees of locality γ

into account. In Section 4.1.3 I’ll examine the influence of different sizes of

a) agents’ memory and b) population members. Finally, in Section 4.1.4 I’ll

give an overview of the experiments and an interpretation of their results.

4.1.1 Dynamics and Game Parameters

In my experiments agents update their behavior by using different learning

dynamics: reinforcement learning (RL) or belief learning plus best response

dynamics (BL), as introduced in Section 2.3. In addition, for both dynamics

I distinguish between agents with unlimited memory (RL∞, BL∞) or a

limited memory of 100 (RL100, BL100).

The Experiments I-IV contain simulation runs, each for a particular

combination of dynamics type and memory size. Each series encompasses

detailed analyses of all three games plus a more general analysis for a part

of the Horn game spectrum. Table 4.2 shows an overview of the 4 experi-

ment series with 4 experiments each. Consequently, there are 16 different

experiments in total.

Experiment I: BL Agents with Unlimited Memory

In the first Experiment I(a) I analyzed the behavior of BL agents playing

the Lewis game on a toroid lattice: I performed 100 simulation runs of the

network game NGI(a) = 〈LG,X,BL∞, Gl30〉, where X = {x1, . . . x900} is

a set of 900 agents and Gl30 is a 30 × 30 toroid lattice. The fundamental

result was that all simulation runs ended with a society, where the lattice

is split into local signaling languages of both types L1 and L2, i. e. regional

4A formal definition for a language region is given in Definition 5.1.
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dynamics LG HGw HG Spectrum

BL∞ Exp. I(a) Exp. I(b) Exp. I(c) Exp. I(d)

RL∞ Exp. II(a) Exp. II(b) Exp. II(c) Exp. II(d)

BL100 Exp. III(a) Exp. III(b) Exp. III(c) Exp. III(d)

RL100 Exp. IV(a) Exp. IV(b) Exp. IV(c) Exp. IV(d)

Table 4.2: Experiments for different games and different dynamics on a
30× 30 toroid lattice.
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Figure 4.2: Sample learning curves over 200 simulation steps (4.2a) and a
sample of the resulting pattern after 3000 simulation steps (4.2b) for BL∞

agents playing the Lewis game on a 30× 30 toroid lattice.

meaning emerged in every simulation run. Furthermore, language regions

were separated by border agents, who were not proficient in either of the

two signaling languages. The phenomenon of such border agents is a con-

sequence of the fact that both signaling languages are highly incompatible.

A more detailed analysis of border agents is given in Section 4.2 and will

show that such border agents use miscommunication languages, thus are

either L12 or L21 learners (see Table 2.2a). I’ll label agents that learned one

of both miscommunication languages as Lm learners or miscommunication

language learners. Sample learning curves of agents, who have learned L1,

L2 or Lm are depicted in Figure 4.2a. Furthermore, Figure 4.2b shows a

sample of the resulting pattern of agents that have learned L1, L2 or Lm,

distributed on the toroid lattice.
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Figure 4.3: Sample learning curves over 200 simulation steps (4.3a) and a
sample of the resulting pattern after 3000 simulation steps (4.3b) for BL∞

agents playing HGw on a 30× 30 toroid lattice.

The Experiments I(b) and I(c) cover 100 simulation runs of the network

games NGI(b) = 〈HG,X,BL∞, Gl30〉 and NGI(c) = 〈HGw, X,BL
∞, Gl30〉,

where X = {x1, . . . x900} is a set of 900 agents and Gl30 is a 30× 30 toroid

lattice. As a basic result and in contrast to the Experiment I(a), in these ex-

periments it was not the case that every simulation run ended with multiple

local languages: for the weak Horn game HGw in Experiment I(b) in almost

all runs (99%) both languages Lh and La emerged, in the remaining one run

language Lh spread over the whole lattice. For the normal Horn game HG

in Experiment I(c) the result was almost exactly the other way around:

only 4% of all runs ended in a society with multiple language regions, the

remaining runs resulted in a society of only Lh learners. Furthermore, the

average number of La learners was 32.68 for HGw, and only 5.75 for HG,

averaged over all runs ending with multiple languages. Figure 4.3a depicts

sample learning curves for a simulation run that ended up with multiple

language regions. Figure 4.3b shows a sample of the resulting pattern after

3000 steps for the weak Horn game.

As one can note, the game parameters play a crucial role for the emer-

gence of multiple language regions: while for the weak Horn game HGw

multiple language regions emerged in almost every simulation run, for the

normal Horn game multiple language regions emerged in only 4% of all sim-

ulation runs. In all other cases only Lh emerged as society-wide language.
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Figure 4.4: 36 different experiments of each kind of combination of prior
probability and message costs of the marked message. Each experiment was
conducted 50 times and the shade of gray depicts the percentage of simula-
tion runs ending with multiple language regions: the darker the shade, the
more often did multiple language regions and therefore anti-Horn language
learners emerge and stabilize.

To get a more proper insight into these dependencies between game

parameters and simulation results, I started Experiment I(d) for a discrete

continuum of the Horn spectrum: I started 50 runs each for all possible com-

binations of P (tf ) ∈ {0.5, 0.55, 0.6, 0.65, 0.7, 0.75} (P (tr) = 1 − P (tf )) and

cost difference δC = C(mm)−C(mu) with δC ∈ {0, 0.05, 0.1, 0.15, 0.2, 0.25}.
For each combination I measured the percentage of simulation runs that

ended with the emergence of multiple language region. Figure 4.4 shows the

resulting graph with the continuum of message costs difference δC on the

x-axis and the continuum of prior probability Pr(tf ) on the y-axis, where

the shade of gray of each combination depicts the percentage of multiple

language regions as follows: the darker the shade, the higher the percentage

of runs with multiple language regions.

These results show different facts: first, if Pr(tf ) = .5 or δC = 0, then all

runs end up with multiple language regions. In either case one condition is

violated for defining a Horn game. Furthermore, neither of the two possible

signaling languages is superior. Thus if we have two equally good signaling

systems, both form regions in each simulation run (as we’ll see, this does

not necessarily hold for smaller populations).
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Second, if Pr(tf ) > .5 or δC > 0, then we have a variant of a Horn

game. Here the percentages of trials ending with the emergence of multiple

language regions depend on the difference of both parameters. Roughly

speaking, the higher Pr(tf ) + δC , the stronger the Horn game is and the

less probable multiple language regions emerge. Furthermore, the rule of

thumb appears to be that if Pr(tf ) + δC ≥ 0.8, then the percentage of runs

ending with the emergence of multiple language regions is (almost) zero (at

least according to the experiment results). Additionally, if Pr(tf )+δC ≤ 0.7,

then the percentage of runs ending with the emergence of multiple language

regions is (almost) 1. Consequently, for the given setup it is expected that

i) almost all simulation runs bear multiple language regions for the weak

Horn game and ii) almost all simulation runs end up without the emergence

of multiple language regions for the weak Horn game.

Note that this is only valid for the given dynamics and the given lat-

tice size and not necessarily. The results cannot be applied one-to-one to

different settings. But in general it can be seen that for other lattice sizes

and dynamics: the higher the value of Pr(tf ) + δC (and therefore the more

unequal both signaling systems are), the more unlikely it is that multiple

language regions emerge; and the more likely it is that only one society-wide

language of the stronger signaling system emerges: the Horn language.

Let’s summarize the results of Experiment I: the results of Experiment

I(a) showed that multiple language regions of both signaling language learn-

ers emerged in each run. On the contrary, it was observed for the Horn

games (Experiments I(b) and I(c)) that multiple language regions of Lh
and La learners did not emerge in each run. In some runs only one society-

wide language emerged which was always Lh. Consequently, the emergence

of learners of the anti-Horn language La was only observed, when multiple

language regions emerged. A comparison of the results of I(b) with I(c)

shows that the percentage of runs ending with regions of La learners is 99%

for the weak Horn game, but only 4% for the normal Horn game (according

to the experimental results), everything else being equal.

An analysis of the influence of different game parameters, thus for a

subset of the Horn spectrum, was conducted with Experiment I(d). It could

be shown that the Lewis game and the weak Horn game are inside a range

of parameters, for which the emergence of multiple language regions can be

expected. Furthermore, the normal Horn game is outside this parameter

range (Figure 4.4). In the next Experiment II I will examine if the same

facts hold for RL∞ dynamics.



110 CHAPTER 4. EMERGENCE OF REGIONAL MEANING

0 500 1000 1500 2000
0

50

100

150

200

250

300

350

simulation steps

n
u

m
b

er
o

f
a

g
en

ts L1

L2

Lm

Lpp

Lp

(a) Sample learning curves

L1 L2 Lm Lp Lpp

(b) Sample pattern

Figure 4.5: Sample learning curves over 2000 simulation steps (4.5a) and a
sample of the resulting pattern after 2000 simulation steps (4.5b) for RL∞

agents playing the Lewis game on a 30× 30 toroid lattice.

Experiment II: RL Agents with Unlimited Memory

In Experiment II(a) I conducted 100 simulation runs of the network game

NGII(a) = 〈LG,X,RL∞, Gl30〉, where X = {x1, . . . x900} and Gl30 is a

30 × 30 toroid lattice. Here the stable society structure turned out to be

more diverse. Not only L1, L2 and Lm learners emerged, but also learners

of partial pooling and pooling languages. I labeled all partial pooling lan-

guages L ∈ {L13, L14, L23, L24, L31, L32, L41, L42} with Lpp and all holistic

pooling languages L ∈ {L3, L34, L43, L4} with Lp. Figure 4.5 depicts sample

learning curves and a sample of the resulting pattern of Experiment II(a).

As Figure 4.5a shows, only around 50% of the whole society become

stable learners of a signaling language L1 or L2. In particular, a non-trivial

fraction of the stable learners learned one of the partial pooling languages,

in total around 33% of the society. Figure 4.5b reveals that (similar to

the results in Experiment I(a)) signaling language learners stabilize in local

regions, circumvented by border agents. But the border agents are mostly

Lpp learners. Furthermore, those borders are much broader.

For Experiment II(b) I conducted 100 runs of the network gameNGII(b) =

〈HGw, X,RL
∞, Gl30〉, thus agents play the weak Horn game. Again, all par-

tial pooling languages L ∈ {Lhs, Lhy, Las, Lay, Lsh, Lsa, Lyh, Lya} are labeled

with Lpp and all pooling languages L ∈ {Ls, Lsy, Lys, Ly} are labeled with
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Figure 4.6: Sample learning curves over 3000 simulation steps (4.6a) and a
sample of the resulting pattern after 3000 simulation steps (4.6b) for RL∞

agents playing the weak Horn game on a 30× 30 toroid lattice.

Lp. In comparison to Experiment II(b), here the number of partial pooling

language learners is much larger, almost half of all agents, whereas learn-

ers of signaling languages Lh or Lh turned out to be only a small number,

less than 150 for each group (Figure 4.6a). Horn and anti-Horn language

learners formate in local language groups, but these groups are small and

rather arranged like islands in the see of partial pooling and pooling lan-

guage learners (Figure 4.6b). Note that here Smolensky language learners

are not depicted explicitly, but entailed in the group of Lp learners.

Because of the high number of partial pooling language learners, it would

be interesting to get a more detailed picture of the agents’ behavior by

isolating sender and receiver strategy. Figure 4.7a shows the course for the

change of sender strategies of all agents, Figure 4.7b of receiver strategies.

As you can see, while the number of sender strategies depicting behavior

according to Horn and anti-Horn is quite high, the majority of agents learn

the receiver strategy depicting behavior according to Smolensky. These

facts explain the high number of Lpp learners since Horn as sender and

Smolensky as receiver strategy forms a partial pooling language.

This can be highlighted by Figure 4.8a. This figure depicts the final

pattern already depicted in Figure 4.6b, but now each agent’s sender and

receiver strategy is depicted independently: the top-left triangle of each

square depicts the sender strategy, the bottom-right one the receiver strat-
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Figure 4.7: Sample learning curves over 2000 simulation steps for sender
strategies (4.7a) and receiver strategies (4.7b) for RL∞ agents playing the
weak Horn game on a 30× 30 toroid lattice.

egy. Again, it is clear to see that the emergence of the high number of

Lpp learners is a result of the fact that a lot of agents learns Smolensky as

receiver strategy.

Similar results can be seen for the normal Horn game. Figure 4.8b

depicts the resulting pattern, again both sender and receiver strategy as

well. As you can see, the emerged number of Smolensky strategy learners,

especially as receiver strategy, is high, in fact much higher than for the weak

Horn game, whereas there is essentially no emergence of anti-Horn strategy

learners, neither as sender, nor as receiver strategy.

The focal question seems to be: why do so many agents learn Smolensky

as receiver strategy? The answer can be found in two facts: first, agents

seem to have a strong initial tendency to learn Smolensky as receiver strat-

egy as already seen in previous experiments (e.g. Figure 2.2 for replicator

dynamics, Figure 2.13 for basic experiments with reinforcement learning).

And second, the RL∞ dynamics seems to be not flexible (see Table 4.4)

enough for agents to change strategies learned early on in a repeated game.5

In Experiment II(d) I was interested in the way, game parameters in-

fluence the distribution of resulting strategies. I made 50 simulation runs

each for the Horn game spectrum of Pr(tf ) ∈ {0.55, 0.6, 0.65, 0.7, 0.75} and

5In terms of learning dynamics RL∞ seems to be too cold to overcome this initial
tendency: agents learning too fast and stuck in initial tendencies.
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sh/rh sa/ra ss/rs sy/ry

(a) Resulting pattern of HGw

sh/rh sa/ra ss/rs sy/ry

(b) Resulting pattern of HG

Figure 4.8: Sample of the resulting pattern after 3000 simulation steps
of HGw (4.8a) and HG (4.8b), each square explicitly depicts the sender
strategy (top-left triangle) and the receiver strategy (bottom-right triangle).

δC ∈ {0.05, 0.1, 0.15, 0.2, 0.25}. The average number of agents that have

learned a specific language is depicted in Figure 4.9, Figure 4.9a for Lh,

Figure 4.9b for La, Figure 4.9c for Ls and Figure 4.9d for Lpp learners; and

finally Figure 4.9e for agents that haven’t learned a language.

At least two interesting facts are evident: first, it is clear to see that by

increasing the Horn parameters, the number of La learners decreases and

the number of Ls learners increases. That is not surprising since strong

Horn parameters support the Smolensky language, but prohibit anti-Horn

language learners to emerge. The second observation is that for low δC val-

ues combined with high P (tf ) values, the number of Horn language learners

decreases, while the number of Lpp learners plus non-learners increases. For

significantly high P (tf ) values the number of non-learners increases dramat-

ically (e.g. more than half of all agents were non-learners for the combination

P (tf ) = 0.75, δC = 0.05).

The explanation for the increasing number of Lpp learners is result of

the fact that the higher the prior probability P (tf ), the more probable it is

that agents initially learn Smolensky as receiver strategy. The explanation

for the suddenly increasing number of non-learners can probably be found

in the following fact: because of the low probability of P (tr), agents haven’t
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Figure 4.9: The fraction of agents that have learned Lh, La, Ls, Lpp or
no language at all for a subset of the Horn spectrum: all game parameter
combinations for 0.55 ≤ P (tf ) ≤ 0.75 and 0.05 ≤ σC ≤ 0.25.

played this state often enough to have learned a language after 1000 steps

and just need more time. All in all, we observe a nice negative image

relationship between La and Ls learners on the one hand (Figures 4.9b and

4.9c), and (by counting non-learners as prospective Lpp learners) Lh and

Lpp learners on the other hand (Figures 4.9a and 4.9d).

To sum up Experiment II: RL∞ agents are less flexible than their BL∞

cousins. While forBL∞ agents ,language regions spread quickly and broadly,

(only a small number of border agents didn’t learn a signaling language),

for RL∞ agents regions of signaling languages spread much more slowly and

are smaller, divided by much broader borders. Furthermore, these border

agents are primarily learners of partial pooling or pooling languages. This

fact is particularly visible for both Horn games, where more than half of all

agents learn a Lpp language. That is because the majority of agents learn

the Smolensky strategy as receiver and stick to it. The explanation for this

phenomenon seems to be a result of two facts: i) agents that play the Horn

game in a population have an initial tendency to learn Smolensky as re-
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(a) after 100 steps

L1 L2 other

(b) after 200 steps (c) after 500 steps

(d) after 1000 steps (e) after 2000 steps (f) after 3000 steps

Figure 4.10: The convex border melting phenomenon: language regions
with convex nor concave borders can stabilize, but only with linear ones.

ceiver strategy, as also earlier studies showed; and ii) the RL∞ dynamics is

not flexible enough; the agents learn too fast and stick to strategies learned

earlier. A possibility to make the agents’ behavior more flexible is to give

them a limited memory, as the next experiments will show.

Experiment III: BL Agents with Limited Memory

In Experiments III I analyzed the behavior of BL agents with limited

memory. In Experiment III(a) I conducted 100 runs of the network game

NGIII(a) = 〈LG,X,BL100, Gl30〉 withX = {x1, . . . x900} andGl30 is a 30×30

toroid lattice. This setup brings a phenomenon into being which I call the

convex border melting phenomenon. Figure 4.10 shows a sample course of

patterns of the lattice after different numbers of simulation steps, here after

100, 200, 500, 1000, 2000 and 3000 steps. The different patterns display the

convex border melting phenomenon: a border can stabilize in the end, only
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(a) after 1000 steps

Lh La other

(b) after 2000 steps (c) after 4000 steps

Figure 4.11: Whole convex regions are driven to extinction by the convex
border melting phenomenon. This can lead to a final situation with only
one global language, what is seen almost always for the Horn games, and
sometimes for the Lewis game.

if it is linear, i.e. neither concave nor convex.6

It was not always the case that two regions, separated by a linear bor-

der, appear and stabilize. In fact, that happened only in 43% of all 100

simulation runs. In all the other cases, only one global language emerged at

the end. This happened if one of the two signaling languages shapes solely

convex regions which were driven to extinction by convex border melting.

Figure 4.11 shows a sample course of patterns of the lattice after different

numbers of simulation steps, here after 1000, 2000 and 4000 steps. In this

simulation run the final situation was the emergence of one global language.

What does the convex border melting phenomenon mean for the Horn

games? The simulation results revealed: if regions of La learners emerged,

they were generally smaller and highly probably convex. Consequently,

they were driven to extinction. Experiment III(b) and III(c) (conduct-

ing the network games NGIII(b) = 〈HGw, X,BL
100, Gl30〉 and NGIII(c) =

〈HG,X,BL100, Gl30〉) revealed that in all 100 simulation runs finally all

agents became Lh learners and a development like depicted in Figure 4.11

was observed.

6As a matter of fact, a non-linear border is convex for one language region, and
concave for the other one. As we’ll see later in a more detailed analysis in Section 4.2,
because of the superior number of the agents of the region with the concave border,
these agents replace the agents of the region with the convex border. Furthermore, as
we saw in the results of Experiment I, this didn’t happen for BL∞ agents. But here the
limitation of the memory makes these agents more flexible, a term which we will define
in Section 4.1.4.
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Figure 4.12: 36 different experiments of each kind of combination of prior
probability and message costs of the marked message. Each experiment
was conducted 50 times and the shade of gray depicts the percentage of
simulation runs that ended with multiple language regions: the darker the
shade, the more often did multiple language regions stabilize.

This result was supported by Experiment III(d), where I analyzed for a

subset of the Horn game spectrum how probable multiple language regions

emerge and stabilize. Since there was a percentage of 43% for the Lewis

game and of 0% for the weak Horn game, I analyzed games between values of

these two games. Thus, I made simulations for all combinations of P (tf ) ∈
{0.5, 0.52, 0.54, 0.56, 0.58, 0.6} and δC ∈ {0, 0.01, 0.02, 0.03, 0.04, 0.05}, 50

runs for each combination. The result is depicted in Figure 4.12: each

square represents a particular parameter combination and the shade of gray

depicts the percentage of runs with the emergence of multiple language

regions, where the darker the shade, the higher the percentage.

The result was as expected: the stronger the Horn parameters, the less

likely did multiple language regions stabilize. Note that in each simulation

run multiple language regions emerged temporarily, but only stabilized if

they were separated by a linear border (like in Figure 4.10). The percentage

of runs was already low for the Lewis game (around 43%) and decreases with

stronger Horn parameters.

To wrap up: BL100 agents have a high level of flexibility (c.f. Section

4.1.4) that causes the convex border melting phenomenon. Convex border

regions are melting over time until they disappear completely. Since lan-
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Figure 4.13: Sample learning curves for the Lewis (4.13a) and the Horn
game (4.13b) for RL100 agents on a 30 × 30 toroid lattice, where in each
case finally one society-wide language emerges.

guage regions of La learners are generally smaller for agents playing the

weak or normal Horn game, these regions disappear and solely regions of

Lh learners remain. This was seen in all 100 simulation runs for both Horn

games. And even for the Lewis game one of both signaling languages spread

society-wide and crowded out the other one in more than half of all runs.

In the remaining runs local regions of both signaling languages emerged,

separated by a linear border.

Experiment IV: RL Agents with Limited Memory

In Experiment IV I conducted simulation runs for reinforcement learning

with limited memory. In detail, I simulated 100 runs each for the network

games NGIV (a) = 〈LG,X,RL100, Gl30〉, NGIV (b) = 〈HGw, X,RL
100, Gl30〉

and NGIV (c) = 〈HG,X,RL100, Gl30〉 (Experiments IV(a)-IV(c)). The re-

sults of these experiments were quite similar to those of their BL100 cousins:

convex language regions finally disappeared. Sample learning curves for the

Lewis game (Experiment IV(a)) and the normal Horn game (Experiment

IV(c)) are depicted in Figure 4.13.

Both sample learning curves show how the convex border melting phe-

nomenon erases convex language regions of L2 learners (Figure 4.13a), or

La learners (Figure 4.13b), respectively. That happened in all simulation
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Figure 4.14: 36 different experiments of each kind of combination of prior
probability and message costs of the marked message. Each experiment was
conducted 50 times and the shade of gray depicts the percentage of simula-
tion runs with the temporary emergence of multiple language regions after
1000 simulation steps: the darker the shade, the more often did multiple
language regions and therefore anti-Horn players emerge.

runs for both Horn games: solely Lh learners survived finally, having as-

similated temporary emerged language regions of La learners. In contrast

to Experiment III, here it took a high number of simulation steps until

the convex border melting was clearly noticeable. As evident from Figure

4.13a and refrl-melting:horn the regions of minorities start to shrink after

roughly 1000 simulation steps. Up to this point, a structure of multiple

language regions evolved, separated by border agents of miscommunication

languages. This temporary patterns were quite similar to the final patterns

of Experiment I (see e.g. Figure 4.2b and 4.3b).

To analyze such temporary patterns, I conducted Experiment IV(d). For

a subset of the Horn spectrum I determined the percentage of runs, where

multiple language regions emerged temporarily . Figure 4.14 shows the re-

sulting pattern: the percentage of 100 runs for each parameter combination

that multiple language regions emerged after 1000 simulation steps; where

the darker the shade of gray, the higher the percentage.

Finally, I should remark that BL∞ agents and RL100 agents exhibit

a similarity in emerging patterns. Obviously, the convex border melting

phenomenon is only seen for the latter and therefore the final results of both
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LG HGw HG

BL∞ Exp. V(a) Exp. V(b) Exp. V(c)

RL∞ Exp. VI(a) Exp. VI(b) Exp. VI(c)

RL100 Exp. VII(a) Exp. VII(b) Exp. VII(c)

BL100 Exp. VIII(a) Exp. VIII(b) Exp. VIII(c)

Table 4.3: Experiments for different games and different dynamics on a
30× 30 toroid lattice.

types are quite different. Nevertheless, it can be shown that the intermediate

patterns of RL100 agents look quite similar to the final patterns of BL∞

agents.

4.1.2 The Degree of Locality

While in the last section I analyzed the behavior of agents communicating

with their direct neighbors on a toroid lattice, in this section I want to relax

the condition that possible communication partners are constrained to the

direct neighborhood. The basic idea is as follows: the probability of an agent

x choosing a particular communication partner x′ is positively correlated to

the spatial distance between x and x′. This choice behavior transforms the

toroid lattice into a social map (see Nettle (1999) as a comparative account).

Similar to the last section, I analyzed network games for all possible

combinations of dynamics and games, as depicted in Table 4.3.7 To realize

a social map structure, I used the the selection algorithm Social Map as

given in Definition 3.30. This selection algorithm has a parameter variable

γ, called the degree of locality, that influences the interaction structure: the

higher γ, the more local is the interaction structure. A maximal local in-

teraction structure is direct neighbor communication, whereas a minimal

local and therefore a maximal global interaction structure is random inter-

action. In detail: for γ = 0, agents interact randomly and by increasing γ,

the interaction structure approximates neighborhood communication and

the social map approximates a grid structure (for a detailed description

of these dependencies see Section 3.3.2). This account makes it possible

to analyze interaction structures that are somewhere between the local in-

teraction structure of a grid network and the global interaction structure

of a population of randomly chosen communication partners. The latter

structure is, in terms of network theory, equal to a complete network.

7These experiments and there results are already published in Mühlenbernd (2011).
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L1 L2 Lm

(a) Lewis game

Lh La Lm

(b) weak Horn game

Figure 4.15: Sample of the resulting pattern of learners with different strate-
gies for γ = 6, for the Lewis and the weak Horn game.

Experiment V: BL Agents with Unlimited Memory

In Experiment V I examined the influence of the degree of locality γ on the

population dynamics of BL∞ agents. I performed 25 simulation runs each,

in Experiment V(a) of the network game NGV (a) = 〈LG,X,BL∞, Gl30〉, in

Experiment V(b) of the network game NGV (b) = 〈HGw, X,BL
∞, Gl30〉 and

in Experiment V(c) of the network game NGV (c) = 〈HG,X,BL∞, Gl30〉,
where X = {x1, . . . x900} is a set of 900 agents and Gl30 is a 30× 30 toroid

lattice. As initially mentioned, the agents use the Social Map selection

algorithm.

The main task was to examine how the degree of locality γ influences

the emergence of multiple language regions. Thus I started simulation runs

with different γ-values. A sample of the resulting pattern for γ = 6 is de-

picted in Figure 4.15, Figure 4.15a for the Lewis game, Figure 4.15b for the

weak Horn game. As evident, the runs resulting in a split societies produced

signaling language regions separated by borders agents of miscommunica-

tion language learners, quite similar to the results of Experiment I, but with

slightly broader borders.

Such a resulting population structure was a typical outcome for high

γ values (local interaction structures), whereas for low γ values (global

interaction structures) agents tend to agree on one global language. Figure

4.16 shows the percentage of 25 trials producing a society with multiple
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Figure 4.16: The percentage of trials resulting in a society with multiple
languages regions. For the Lewis game, every trial culminated with both
signaling languages if γ ≥ 3. For the weak Horn game about 90% of the
trials produced both Horn and anti-Horn language learners if γ ≥ 4. And
for the normal Horn game not more than 5% of the trials resulted with both
Horn and anti-Horn language learners, even for high γ-values.

local signaling languages for different γ-values between 0 and 9.5. The

results indicate that the probability of the emergence of multiple language

regions strongly depends on the degree of locality γ. Remember: with

γ = 0 we have random communication and expect only one global signaling

language to emerge, whereas for a high γ-value we’re close to neighborhood

communication and expect multiple local signaling languages regions to

emerge.

Figure 4.16 shows for the Lewis game: every trial resulted in a society

with only one global signaling language if γ < 2. For γ ≥ 3 every trial

led to a society with multiple language regions of L1 and L2 learners. In

the range 2 ≤ γ < 3 the percentage of trials ending with multiple language

regions increases with γ. All in all, these results show: the probability that

multiple languages regions emerge increases with respect to the degree of

locality γ.

A similar dependency can be seen for the weak Horn game: for γ ≤ 3

one society-wide signaling language emerged in every run, and each time

it was Lh. For γ ≥ 4 the percentage of trials that ended with a society of

both, Horn and anti-Horn language learners, levels out at around 90%. In

the range 3 < γ < 4 the percentage of trials that rendered a society with
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multiple language regions increases with the γ-value. For the normal Horn

game the percentage of trials that ended with multiple language regions was

low in any case: for γ < 4 only Lh learners emerged, but even for γ ≥ 4 the

percentage of trials that finished with both Horn and anti-Horn language

learners is only around 5%.

Let’s summarize the results of Experiment V. For a population of BL∞

agents playing a Lewis or Horn game, the following holds: the higher the

degree of locality γ, the higher the probability that multiple language re-

gions emerge. In any case, however, this probability is still very low for the

normal Horn game.

Experiment VI: RL Agents With Unlimited Memory

In Experiment VI I examined the influence of the degree of locality γ on

the behavior of RL∞ agents: I started simulation runs of the network

games NGV I(a) = 〈LG,X,RL∞, Gl30〉, NGV I(b) = 〈HGw, X,RL
∞, Gl30〉

and NGV I(c) = 〈HG,X,RL∞, Gl30〉 (Experiment VI(a)-(c)), where X =

{x1, . . . x900} is a set of 900 agents and Gl30 is a 30× 30 toroid lattice. The

agents use the social map selection algorithm.

The results of Experiment VI(a) for RL∞ agents playing the Lewis game

contrasts to the BL∞ agents’ results in the following way: first, agents

learned both signaling languages L1 and L2 in each trial, independently of

the γ-value. Second, only a fraction of the agents learned signaling lan-

guages. Similar to Experiment II, a lot of agents learned a partial pooling

languages Lpp ∈ {L13, L14, L23, L24, L31, L32, L41, L42}, as displayed in Figure

4.17a: a sample of the resulting pattern for a simulation run with γ = 7.0.

Furthermore, the degree of locality γ did influence the number of agents

who learned a signaling language or a partial pooling language. Figure

4.17b shows the number of agents (averaged over 25 trials) who learned

a signaling or a partial pooling language. As you can see, the number of

agents who learned a signaling language increases with the γ-value and lev-

els off at around 450 signaling language learners. This is exactly 50% of all

agents of the population.

In these simulation runs, signaling language learners stabilized in groups,

where the higher the degree of locality γ was, the stronger those groups

grew. Since RL∞ agents became more inert as the simulation ran longer,

the growing eventually stopped, and the remaining agents stabilized at a

pooling language. In most of the cases the pooling language learners learned

the Smolensky strategy as receiver strategy for reasons that were already



124 CHAPTER 4. EMERGENCE OF REGIONAL MEANING

L1 L2 Lpp + Lm

(a) Sample pattern

0 1 2 3 4 5 6 7 8
0

200

400

600

800

γA
ve

ra
g

e
n

u
m

b
er

o
f

a
sp

ec
ifi

c
le

ar
n

er
ty

p
e

Lpp/Lm
L1 + L2

(b) Average number of learner types

Figure 4.17: A sample of the resulting pattern of RL∞ agents playing the
Lewis game on a 30× 30 toroid lattice with γ = 7.0 (Figure 4.17a) and the
average number of different learner types over 25 simulation runs each for
different γ-values between 0 and 8 (Figure 4.17b).

discussed for the analysis of Experiment II(b).

Now let’s take a look at the results for Experiment VI(b): RL∞ agents

playing the weak Horn game. The resulting attribution of the average num-

ber of learner types to different γ-values is depicted in Figure 4.18a. Each

data point represents the average number of particular language learner

types over 25 simulation runs, each for an appropriate γ-value. As you can

see, the average number of learners of partial pooling languages increases

with the γ-value, from 300 to 450 agents. Further, the average number of

anti-Horn language learners also increases with the γ-value, but stays be-

low an average of 100 agents. In addition, the average number of Smolen-

sky language learners seems to be independent of γ since it is constantly

around 100 agents. An interesting fact is seen for Horn language learners:

for 0 ≤ γ < 3, there evolved around 100 to 150 of them on average, but

around 250 for higher values. It looks like a γ-value of 3 is a tipping point

that doubles the average number of Horn language learners. Also note that

the remaining agents were non-learners (not depicted here) which average

number decreases with an increasing γ-value.

Last, the results for RL∞ agents playing the normal Horn game are

depicted in Figure 4.18b. As you can see, for γ ≤ 2 no agent learned any
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Figure 4.18: The average number of different language learner types over
25 trials each for different γ-values each, for the weak and the normal Horn
game as well.

language. With increasing γ-value, the average numbers of Horn, anti-Horn,

Smolensky and pooling language learners increase. For γ ≥ 2 the average

number of Horn language learners stabilized around 80-100, the average

number of anti-Horn language learners around 10 and the average number

of Smolensky language learners around 40. Nevertheless, the number of

pooling language learners permanently increases with γ.By summing this

up, the overall average number of agents that learned a target language is

less than half of all agents even for high γ-values. Further, the emergence

of anti-Horn language learners is probable, but those groups are minute in

general.

All in all, it is important to recognize that because of being less flexible,

even for high γ-values less or maximally half of all RL∞ agents learned a

signaling language for the Lewis and weak Horn game on average, and even

maximally 100 for the normal Horn game. These results fit to those of

Experiment II. Furthermore, it was seen for each game that an increasing

γ-value raises the probability of the emergence of signaling languages. And

with respect to the Horn game, a higher γ-value supports the probability

that anti-Horn language learners emerge.
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Figure 4.19: The percentage of trials resulting in a society with multiple
signaling languages. For the Lewis game, every trial culminated with both
signaling languages if γ ≥ 3. For the weak Horn game about 80% of the
trials produced both Horn and anti-Horn language learners if γ ≥ 4. And
for the normal Horn game less than 10% of the trials resulted with both
Horn and anti-Horn language learners.

Experiment VII: RL Agents with Limited Memory

In Experiment VII I examined the influence of the degree of locality γ

on the behavior of RL100 agents: I started simulations of the network

games NGV II(a) = 〈LG,X,RL100, Gl30〉, NGV II(b) = 〈HGw, X,RL
100, Gl30〉

and NGV II(c) = 〈HG,X,RL100, Gl30〉 (Experiment VII(a)-(c)), where X =

{x1, . . . x900} is a set of 900 agents and Gl30 is a 30× 30 toroid lattice. The

agents use the social map selection algorithm.

Figure 4.19 shows the results. Each data point displays the percentage

of 25 simulation runs that ended with multiple signaling languages. The

different curves depict results for the Lewis game, the weak Horn game,

and the normal Horn game. This result is considerably similar to the result

of Experiment V for BL∞ agents (see Figure 4.16), apart from slightly

shifted values.

As you can see, the results for the Lewis game are as follows: for γ < 2

the whole society learned solely one of both signaling languages in every

simulation run. For 2 ≤ γ < 3 the percentage of runs with the emergence of

multiple languages regions increases. For γ ≥ 3 multiple languages regions

emerged in every run.
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For the weak Horn game, γ < 2.5 induced all agents learning solely the

Horn language in every run. For 2.5 ≤ γ ≤ 4 the percentage of simulation

runs that ended with multiple language regions increases with the γ-value,

and for γ > 4, each simulation run ended with multiple language regions of

Horn and anti-Horn language learners. Note that this result is quite similar

to Experiment V, but with the slight difference that, while in Experiment

V for γ ≥ 4 the percentage of those final situation levels out at 90%, here

it increases to 100%.

Finally the results for the normal Horn game are as follows: for γ < 4

all agents learned solely the Horn language in every simulation run. For

4 ≤ γ < 7 the percentage of simulation runs with multiple language regions

increases with the γ-value. For γ ≥ 7 the percentage of runs with regions

of Horn and anti-Horn language learners levels off at around 70%. Again,

in accordance with Experiment V the tipping point of the emergence of

multiple language regions is γ ≥ 4, but here the percentage levels off at

around 70%, while in Experiment V it was only around 5%.

These results show that by increasing the γ-value, the probability of the

emergence of multiple languages regions increases. In addition, samples of

the resulting patterns are quite similar to those of Experiment V. Further-

more, by comparing these results with Experiment IV, it is also a matter of

fact that for a γ-value not too high (≤ 7), there was no convex border melt-

ing phenomenon observable, at least not in a manageable runtime. Thus,

for an intermediate γ value the structuring effect of RL100 agents is similar

to the structuring effect of BL∞ agents. This is an important insight that

shows both dynamics have an similar degree of flexibility, as I will define in

Section 4.1.4.

Experiment VIII: BL Agents with Limited Memory

In Experiment VIII I examined the influence of the degree of locality γ on

the behavior of BL100 agents: I started simulations of the network games

NGV III(a) = 〈LG,X,BL100, Gl30〉, NGV III(b) = 〈HGw, X,BL
100, Gl30〉 and

and NGV III(c) = 〈HG,X,BL100, Gl30〉 (Experiment VIII(a)-(c)), where

X = {x1, . . . x900} is a set of 900 agents and Gl30 is a 30× 30 toroid lattice.

The agents use the social map selection algorithm.

For each experiment I started 25 simulation runs for γ-values between 0

and 9.5. Each simulation run resulted in a society with only one signaling

language independent of the γ-value. In Experiment IV(b) and IV(c) for the

Horn games all agents learned the Horn language at the end of a simulation
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run. But by taking a closer look at the simulation runs you can see that

in a lot of trials for high γ-values substantial islands of anti-Horn language

learners emerged during a simulation run, but for these cases the convex

border melting phenomenon drove them to extinction (similar to the results

of Experiment III). In sum, a population of BL100 agents almost always

ended up with one unique signaling language, independently of the γ-value.

4.1.3 Further Influences

As I showed in the last Section 4.1.2, the population’s interaction structure

has a strong influence on the way, the arrangement of language regions

evolves and stabilizes. A high degree of locality supports the emergence

of regional meaning. But not only the interaction structure, but also the

size of the population may have an influence, as Wagner (2009) was able to

show. Consequently, to analyze the impact of population size on the final

structures, I will conduct Experiment IX that entails simulation runs for

different lattice sizes.

In addition, in previous experiments I always distinguished between un-

limited memory and a memory size of 100. It would be interesting to see

how a smaller or larger memory size would influence the agent’s learning

performance. Thus, with Experiment X I will perform simulation runs for

agents with different memory sizes to analyze the impact of memory size

on the learning performance.

Experiment IX: Population Size

As already mentioned, Wagner’s (2009) experiments showed that the num-

ber of language regions increases with the size of the population. Thus,

I made similar experiments with the expectation that the lattice size is

proportionally related to the probability that multiple language regions

emerge.8

To examine this suspicion, I started Experiment IX: I conducted simula-

tion runs for the network games NGI(a), NGI(b) and NGI(c) (see Experiment

I), thus BL∞ agents playing the games LG, HGw and HG. For each game

I conducted 100 simulation runs each for different lattice sizes between 5×5

8Since I still analyze small lattices, the number of language regions did not play any
role; in general, if multiple language regions evolved, there were only two of them: one
of each signaling language.
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Figure 4.20: The percentage of the emergence of multiple language regions
over 100 runs for different population sizes.

and 50× 50;9 and compared the percentages of runs that ended with mul-

tiple language regions. The result of Experiment IX is depicted in Figure

4.20.

As you can see, the following holds at least for the Lewis game and the

weak Horn game: for the most part the percentage of runs that ended with

multiple language regions increases with the number of agents. Further-

more, the Lewis game is content with smaller populations than the weak

Horn game for the emergence of multiple language regions. The normal

Horn game’s percentages are small in all cases and don’t increase strongly.

Thus the population size effects the probability of multiple language regions

for agents playing the games LG and HGw in a proportional manner, while

this effect is not strong for the normal Horn game.

In a second analysis of the data of both Horn games I calculated the

average number of La language learners for different lattice sizes. The results

are depicted in Figure 4.21: for the weak Horn game the number of emerged

and stabilized anti-Horn language learners is clearly increasing with the

population size in a linear manner, whereas for the normal Horn game

the number of La learners is hardly increasing and small even for large

population sizes.

Now let’s summarize the results of Experiment IX: for a population of

9I simulated 100 runs on a n × n lattice for n = 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 40,
50 in each case.
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Figure 4.21: The average number of La learners over all runs for which La
learners emerge and stabilize; in dependence of different population sizes.

BL∞ agents playing the Lewis or Horn game on toroid lattices with dif-

ferent sizes, the following holds: the larger the lattice/population size, the

higher the approximated probability that multiple language regions emerge.

These language regions consists either of L1 or L2 learners (Lewis game), or

either of Lh or La learners (both Horn games), respectively. In addition, for

agents playing the weak Horn game, the lattice size has a clear influence i)

on the probability of the emergence of La learners, and ii) on the number of

emerging La learners. This dependency is much weaker for the normal Horn

game, if existent at all. I was able to obtain similar results for the other

dynamics, so that the simulations revealed the following two correlations: i)

population size is proportional to the probability of the emergence of mul-

tiple language regions; and ii) by considering Horn games, there is a direct

proportion between population size and the number of La learners, at least

for the weak Horn game. Furthermore, these correlations are apparently

weakened by increasing Horn parameters Pr(t) and δC , as the results for

the normal Horn game inferred.

Experiment X: Memory Size

By comparing the results of RL∞ and RL100 dynamics, I found out that

the first dynamics is too cold or inflexible for efficient signaling systems

to spread out, whereas the second dynamics supports signaling systems to

spread society-wide. Thus, it seems reasonable that the memory size has an
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Figure 4.22: The average runtime until 90% of the population is stable -
over 20 simulation runs each for every memory size between 75 and 175.

influence of the agents flexibility in the following way: the larger the memory

size, the less flexible the agent’s learning behavior. The agents’ flexibility

can be measured in the runtime, the agents need to stabilize a society of

(almost) only signaling language learners. Thus I started Experiment X

to determine the influence of the agents’ memory size on the number of

simulation steps required until a signaling language has captured 90% of

the whole society. Consequently, I started simulations with RLm agents

with a memory size m ∈ {75, 100, 125, 150, 175} for the Lewis game and

measured the average runtime over 20 trials each. As you can see in Figure

4.22, the runtime for the whole society to learn the unique signaling language

increases linearly with the memory size.

4.1.4 Interpretation of the Results

A multitude of experiments were made to extract the influences of the di-

mensions game parameters, interaction structure and learning dynamics on

the final population structure, particularly on the probability of the emer-

gence of multiple language regions. The following list summarizes the re-

sults:10

10Each point in the list assumes that all else being equal.
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1. signaling game

� game parameters: increasing game parameters inside the Horn

spectrum (Pr(tf ), δC) generally decreases the probability of the

emergence of multiple language regions

2. interaction structure

� degree of locality γ: increasing the degree of locality generally

increases the probability of the emergence of multiple language

regions

� lattice size: increasing the lattice size generally increases the

probability of the emergence of multiple language regions

3. learning dynamics

� memory size: increasing the memory size generally increases the

probability of the emergence of multiple language regions

� learning type: both learning types’ (BL and RL) impact can only

be judged in combination with memory size (see the analysis in

the following section about the degree of flexibility)

At this point, it is important to note that the emergence of multiple

language regions for the Horn game is equivalent with the emergence of

anti-Horn language learners. Consequently, the results clearly reveal i) how

anti-Horn language can evolve in a structured society of learning agents:

namely as local language regions next to other language regions of Horn

language learners; and ii) what supports the emergence of such local lan-

guage regions and therefore the emergence of anti-Horn language learners:

low game parameters of the Horn spectrum, a local interaction structure,

a large population and a large memory size of the agents. In addition, it

is not possible to describe the influence of the learning dynamics in such a

straight-forward way since both learning dynamics behave quite diverse for

limited and unlimited memory. To handle this complexity, I will introduce

the degree of flexibility to classify types of learning dynamics in combination

with memory size.

Degrees of Flexibility

In my experiments I compared four different types of agents, arising out of

the combinations of learning dynamics (RL and BL) and memory settings
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Flexibility Dynamics
¯

Resulting population
¯Level 0 RL∞ no population-wide spread of signaling lan-

guage(s); emergence of (partial) pooling
languages

Level 1 BL∞,
RLn

dependent of game parameters and interac-
tion structure the outcome is
a) the emergence of several local regions of
signaling languages stretched out over the
whole population
b) the emergence of one population-wide
signaling language

Level 2 BLn the emergence of one population-wide sig-
naling language

Table 4.4: Three different levels of flexibility

(unlimited and limited). By comparing these results, I am inclined to in-

troduce a property that signifies the distinction of the systemic behavior

of each agent type. I call this property flexibility. The simulation results

suggest a classification of three different levels of flexibility (see Table 4.4).

Flexibility level 0 describes an extremely inert behavior like those of

RL∞ agents. As the Experiments II and VI showed, at least roughly half

of the agents did not learn any signaling language because their behavior

is not flexible enough for a successful language to spread society-wide. The

resulting society is a conglomeration of all possible languages, e.g. partial

pooling languages emerge, caused by the fact that agents tend to learn the

Smolensky strategy during an initial phase as a receiver strategy and stay

with it. This is also a result of the low degree of flexibility that let them

resist in initial tendencies of learned behavior.

Flexibility level 2 describes the behavior of BLn agents: it is the most

flexible case, so that even if language regions emerge, convex regions cannot

stay stable and are driven to extinction, initiated by the convex border

melting phenomenon: only one global signaling language finally emerges for

the whole society in almost any case.11

Flexibility level 1 is the most interesting case since the agents are inter-

mediate flexible and the resulting outcome of the society strongly depends

on the other game parameters. Depending on the degree of locality γ, lat-

11The only exception was the emergence of linear borders between language regions.
Since this is a quite artificial case, I do not consider it as a realistic outcome of a social
structure.
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tice size, and the game parameters, we see that either one global signaling

language emerges or local groups of signaling languages regions emerge and

stabilize, where only the border agents between local groups fail to learn

a signaling language. This behavior is seen for BL∞ agents as well as

RLn agents. For the latter also the convex border melting phenomenon

was observed, but it is weakened by higher memory size and vanished for

e.g. intermediate γ values.

These results depict the circumstances for or against the emergence of

specific languages. Nevertheless, to get a deeper insight in the dynamics

and interdependencies of populations in my experiments, I will analyze the

phenomena that emerged in my experiments in a more detailed fashion: the

emergence of border agents and the convex border melting phenomenon.

4.2 Border Agents Analysis

There are particularly interesting phenomena that emerged in the experi-

ments of Section 4.1. These are worth to analyze in a more detailed fashion.

In a couple of experiments border agents emerge; agents that constitute

the borders between language regions of signaling languages. These bor-

der agents are learners of miscommunication languages12 that are highly

incompatible with themselves. This yields the question of how stable these

border agents are. In the following I will take a more detailed look in the

way border agents behave, survive or getting replaced. In addition, for

populations of agents that use learning dynamics with limited memory, a

phenomenon seems to depict an instability of border agents: the convex bor-

der melting phenomenon. I will take a closer look at i) why convex border

melting emerges, ii) what it says about the agents’ stability and iii) why it

is restricted to dynamics with limited memory.

4.2.1 Border Agents Arrangement

To give an example how border agents are arranged, I extended the sample

of the resulting pattern of BL∞ agents playing the Lewis Game (as in

Figure 4.2b, page 106) by distinctively displaying the language learners of

both miscommunication languages L12 and L21. This more fine-grained

depiction is displayed in Figure 4.23a. As you can see, all border agents are

12Exceptions are RL∞ agents playing a Horn game, for which Lp learners, Lpp learners
and non-learners emerge at the borders, see Section 4.1.1, Experiment II(b) and II(c).
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(a) Language learners on a 30 × 30
toroid lattice.
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Figure 4.23: Language learners (after 3000 steps) on a 30×30 toroid lattice
of BL∞ agents playing the Lewis Game are depicted in Figure 4.23a. Two
detailed clippings of Figure 4.23a (white frames) with averaged EU values
for the inner agents are depicted in Figure 4.23b.

learners of miscommunication languages, thus either L12 or L21 learners.13

In addition, they are noticeably alternating arranged along the borders.

This is not a coincidence, but the result of a particular requirements for

the arrangements of border agents. This fact is more comprehensible by

taking a look at two detailed clippings of Figure 4.23a, highlighted by the

white frames and depicted in Figure 4.23b. In both clippings each inner

cell’s number represents the neighborhood expected utility EUN which is the

sum of all expected utilities among each agent’s neighborhood, defined in

the following way:

Definition 4.1 (Neighborhood Expected Utility). Given i) the expected

utility EU(L′, L′′) of two languages L′ and L′′ and ii) the information L(x)

that agent x has learned language L, then the Neighborhood Expected Util-

ity EUN(x) of an agent x among her neighborhood N(x) is:

EUN(x) =
∑

y∈N(x)

EU(L(x), L(y)) (4.1)

To get a better insight in how these values are achieved, the particular

expected utilities between the strategies L1, L2, L12 and L21 of the Lewis

game are depicted in Table 4.5a (Table 4.5b for the normal Horn game).
13Note: for the Horn game the miscommunication languages are Lha and Lah.
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L1 L2 L12 L21

L1 1 0 .5 .5
L2 0 1 .5 .5
L12 .5 .5 0 1
L21 .5 .5 1 0

(a) EU table Lewis game

Lh La Lha Lah
Lh .87 −.15 .37 .35
La −.15 .83 .35 .33
Lha .37 .35 −.13 .85
Lah .35 .33 .85 −.17

(b) EU table normal Horn game

Table 4.5: Expected utilities among different language users, Table 4.5a for
the Lewis game, Table 4.5a for the normal Horn game.

Let’s take a closer look at the clippings of Figure 4.23b: the top clipping

shows a linear border with an L21−L12−L21 alternation. To reconstruct the

fact that miscommunication language learners can stabilize, let’s imagine

that agent x(18,20) would switch to a L1 learner. Then changes of the inner

agents’ EUN values would happen as follows:

� EUN(x(16,20)): 5→ 5

� EUN(x(17,20)): 4.5→ 5

� EUN(x(18,20)): 4.5→ 4.5

� EUN(x(19,20)): 5→ 4.5

� EUN(x(20,20)): 4.5→ 4.5

� EUN(x(21,20)): 5→ 5

As you can see, after such a switch the EUN of agent x(18,20) wouldn’t

change. In addition, the left neighbor of x(18,20) would have a higher EUN
by 0.5, whereas the right neighbor’s would have a lower one by 0.5. Con-

sequently, the sum of EUN values along this border would be the same

in total. This would also happen if x(17,20) would switch to a L12 border

agent: while she keeps her EUN , the right neighbor would fare better by

0.5, whereas the left neighbor would loose 0.5.

This shows that once an alternating structure of border agents exists,

agents around the border region don’t fare better or worse (in terms of

the total sum of EUN values along the border) if that switch to a signaling

language. Furthermore, if there would be no border agents at all, the agents

of the clipping would fare better in total because everybody would have an

EUN value of 5 then. Thus, a single border agent couldn’t survive because

she would have an EUN of 4.5, while a signaler one of 5. This reveals

that a border agent with a particular miscommunication language can only

stabilize if she has at least one neighbor of the other miscommunication

language.

Now let’s take a look at the situation of the second clipping. Imagine
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agent x(26,9) would switch to a L1 signaler. Then her EUN value would still

be 5. Furthermore, her three top neighbors’ and her left neighbor’s EUN
each would increase by 0.5, whereas her three bottom neighbors’ and her

right neighbor’s EUN each would decrease by 0.5. Thus, the total sum of

EUN ’s along the border wouldn’t change. If agent x(26,9) would switch to a

L2 signaler, she herself would loose an EUN of 2.0. Thus, this switch can

be excluded.14 Nevertheless, x(26,9) as an L1 signaler scores as good as a

border agent. Thus, in many cases it is a question of chance if border agents

switch to signalers and the other way around. But if they substantially

emerge, then they are preferably arranged in an alternating chain of both

miscommunication languages.

4.2.2 Border Agents Behavior

The following analysis shows a more detailed insight into border agents’

properties by extracting the behavior of particular agents over time. Fig-

ures 4.24a - 4.24c show the sample patterns of RL100 agents playing the

Lewis game on a 30× 30 toroid lattice, after 500, 1000 and 1500 simulation

steps, respectively. The agents under observation are agents x(2,16), x(3,16)
and x(4,16) which are the three agents in the center of the white square

(central left of the lattice). Figure 4.24d displays the particular learned lan-

guages for these agents over time. In detail: agent x(3,16) switches between

L2 and L21 and agent x(2,16) has first learned L21 and finally switches be-

tween L12 and L2. This exemplary result reveals two facts, namely i) that

agents at the border switch from time to time between a miscommunication

language and a signaling language of a contiguous language region and ii)

that the potential miscommunication languages are generally arranged in

an alternating manner along the agents (here: the line of agents x(2,16) -

x(3,16) - x(4,16) applies L12 - L21 - L12 at simulation step 1000).

Furthermore, it can be seen that between a switch from a signaling

to a miscommunication language or the other way around agents are non-

learners for a while. This can hold for a longer time, like for agent x(2,16) dur-

ing simulation steps 350 - 550, or a short time, like for agent x(3,16) around

simulation step 1500. And the fact of being a non-learner between switches

from one language to another makes perfect sense for RL agents, who need

this time to rearrange the urn settings and finally obtain a Hellinger dis-

14It can be shown for both learning dynamics that an agent never switches to a
language, for which she gains much less than for the current one if her neighborhood
consists of language learners.
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(a) after 500 steps

L1 L2 L12 L21 no

(b) after 1000 steps (c) after 1500 steps

0 250 500 750 1000 1250 1500

none

L1

L2

L12

L21

t

Agent x(4,16)
Agent x(3,16)
Agent x(2,16)

(d) temporal development of 3 particular agents

Figure 4.24: Sample patterns for different numbers of simulation steps are
depicted in Figure 4.24a - 4.24c. The behavior over time for the three agents
x(2,16), x(3,16) and x(4,16) which are the ones in the middle of the white frame
of all three sample patterns, is depicted in Figure 4.24d.

tance sufficiently close to a language. Therefore, while the overall behavior

of BL agents is quite the same, these phases of being non-learners between

switches is never observed for BL agents (c.f. Section 2.3.1).

4.2.3 Extreme Initial Conditions

To analyze where border agents emerge or remain, I started experiments

with extreme initial conditions, so that either i) all agents are miscommu-

nication language (Lm) learners from the start or ii) all agents are signaling

language learners from the start. The goal of these settings is to analyze

i) if Lm learners can really only survive on the border between two regions

and ii) if Lm learner will necessarily emerge at border regions.

With Experiment XI(a) I would like to demonstrate that border agents
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(a) after 500 steps

L1 L2 L12 L21 none

(b) after 1000 steps (c) after 1500 steps

(d) after 2000 steps (e) after 2500 steps (f) after 3000 steps

Figure 4.25: By starting with only L12 and L21 learners, signaling language
regions emerge and signalers push them to the border.

can only remain on border regions between two language regions. There-

fore I conducted the network game NGXI(a) = 〈LG,X,RL100, Gl30〉, where

X = {x1, . . . x900} is a set of 900 agents and Gl30 is a 30 × 30 toroid lat-

tice. In addition, all agents initially play a miscommunication language,

either L12 or L21, by setting the agents’ urns’ content randomly to one of

both languages. The patterns of a simulation run for different numbers of

simulation steps is depicted in Figure 4.25.

As you can see, by starting with randomly distributed L12 and L21 learn-

ers, regions of both signaling languages emerge and the L12 and L21 learners

continue to exist only on the borders between these regions. All 100 sim-

ulation runs with these initial settings showed similar results with exactly

this dynamic behavior. Thus, it can be taken for granted, at least for this

learning dynamics that miscommunication language learners only remain

on the border between regions of signaling languages and nowhere else.

Figure 4.26a shows the appropriate learning curve: the number of sig-
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Figure 4.26: Sample learning curves for RL100 agents playing the Lewis
game on a 30× 30 toroid lattice by having specific starting conditions.

naling language learners increases in a S-shape curve, while the number of

miscommunication language learners decreases in an inverse way to a small

number of final Lm learners which are the remaining border agents. Multi-

ple runs reveals the same: Lm learners exclusively survive between signaling

language regions. In addition, all language regions are generally completely

separated by Lm learners.

In Experiment XI(b) I started simulations where all agents initially start

with a signaling languages. Thus, I started experiments with the network

game NGXI(b) = 〈LG,X,RL100, Gl30〉, where X = {x1, . . . x900} is a set of

900 agents and Gl30 is a 30 × 30 toroid lattice. Furthermore, all agents

initially have learned a signaling language, arranged as randomly emerged

but coherent language regions like in Figure 4.27a. As you can see in Figure

4.27b and Figure 4.27c, after a while Lm language learners emerge between

those regions, but nowhere else. Figure 4.26b shows a sample course of

language learners. As you can see, the number of learners of a miscommu-

nication language, L12 or L21 increases slightly.15 All in all, the important

15Note that because of the convex border melting phenomenon, the number of L2

learners increases, while the number of L1 learners decreases slowly.
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(a) after 0 steps

L1 L2 L12 L21 none

(b) after 1000 steps (c) after 4500 steps

Figure 4.27: By starting with only L1 and L2 learners, miscommunication
language learners emerge only at the border regions, but it takes a long
time.

observation is the emergence of a small group of miscommunication language

learners that are positioned on the border between the language regions. In

all 100 simulation runs border agents emerged in any case. Thus, it can be

taken for granted, that border agents necessarily emerge between regions of

signaling languages.

4.2.4 The Convex Border Melting Phenomenon

As it was seen for dynamics with limited memory: convex border regions

are melting. To get a better insight for this phenomenon, it is worth to

take look at the EUN values for convex borders. Figure 4.28 shows different

examples for border regions with perfect alternating border structures of

thickness 1 and the appropriate EUN values for each agent by reconsidering

that they are playing the Lewis game.

First, it is important to note the linear borders constitute a strict Nash

equilibrium situation of EUN values between both language regions. This is

seen by considering the two examples for linear borders in Figure 4.28b and

Figure 4.28c. In both examples all border agents gain an EUN of 5. This

is the value each Lm learner archives, who is as member of an alternating

border of thickness 1. Furthermore, two learners of a signaling language

regions gain exactly the same if they have the same distance to the border.

In addition, since all signalers score better than the border agents, a switch

of any signaler to a border agent would decrease the EUN value of this

agent: in Figure 4.28b a signaling language learner adjacent to the border
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Figure 4.28: Different examples for borders between signaling language re-
gions and the appropriate EUN values for each agent according to the Lewis
game.

would change her EUN value from 6 to 5. The same is true for the situation

in for Figure 4.28c: if an signaler that is adjacent to the border switches to

a Lm language, her EUN value would change from 6.5 to at most 5.5.

The same holds the other way around: if on of the border agents switches

to a signaling language, her EUN value would decrease from 5 to 4 (in

situation of Figure 4.28b and Figure 4.28c, as well). Thus, a linear border

forms a situation in which any switch to another strategy would decrease

an agent’s utility. In that sense, a linear border of alternating Lm learners

of thickness 1 constitutes a strict Nash equilbrium in respect to all involved

agents’ EUN value: each agent would score worse by switching to any other

language.

As a matter of fact, this is not the case for convex borders. As you can
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see in Figure 4.28d, all border agents gain an EUN value of 5. But this is

also the case for two agents of the convex signaling language region, namely

agent x(4,3) and agent x(5,3). This is the weak spot of the convex region. If

these two agents would switch to Lm language learners, they would score the

same, as depicted in Figure 4.28e. Furthermore, the agents x(4,4) and x(5,4)
would score much better by subsequently switching to signaling language

learners of the concave region: they increase the EUN from 5 to 6.5. Thus,

a convex border in not a strict Nash equilibrium for all involved agents.

This example gives a visual representation of the mechanisms of the

convex border melting phenomenon. A question remains however: why does

this happen exclusively for dynamics with limited memory? The answer can

be informally given as follows: the exemplary transition from situation in

Figure 4.28d to the situation in Figure 4.28e showed that to realize convex

border melting, a signaling language learner at the border has to switch to

a Lm learner for a situation, where she scores the same EUN in either case.

In other words, she is unbiased (in terms of maximizing expected utility)

between keeping the signaling language or switching to the Lm language.

Moreover, note that agents not only reconsider the actual situation, but

also last encounters. Thus, agents with unlimited memory will most likely

never reach the point of being unbiased since they will never forget even the

first observations/encounters and therefore are biased by an initial tendency.

The convex border melting phenomenon as depicted in the transition from

Figure 4.28d to Figure 4.28e only emerges for agents with limited memory

because as members of convex signaling language regions they can unbiased

between the actual signaling language and a Lm language and, at one point,

switch to it.

4.2.5 Summary

In summary, the following claims about border agents can be made with

confidence:

� border agents are biased to an alternating structure of L12 and L21

learners (for a Horn game: Lha and Lah)

� border agents can only survive with neighbors being border agents

� border agents shape a border with a maximal thickness of one unit16

16Exception is the social map structure since agents also interact with agents beyond
the neighborhood. The defined EUN value is not applicable. An appropriate value for
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� border agents never stabilize in terms of long-term stability since they

reveal an alternating behavior

� border agents always emerge between language regions of signaling

languages

� border agents never go extinct between language regions of signaling

languages

� linear borders of alternating Lm learners of thickness 1 between sig-

naling language regions are strict Nash equilibria of all agents’ EUN
(except social maps, only on grids)

� in case of dynamics with limited memory: border agents replace agents

of convex signaling language regions, thus accuse the convex border

melting phenomenon

4.3 Conclusion

Let’s come back to this chapter’s initial question: given unbiased agents,

under what circumstances can we expect languages other than the Horn

strategy to emerge? In the experiments of Chapter 2 I showed that under

circumstances depicting unbiased starting conditions (like a neutral popula-

tion state for replicator dynamics, or uniformly distributed initial strategies

for imitation and learning dynamics) the only final outcome is a society

of all agents acting according to Horn’s rule. The other two noticeable

strategies that (i) reveal stability properties and (ii) have a salient basin

of attraction are anti-Horn and Smolensky strategy, but both only emerge

and stabilize for biased starting points. Thus, the task was directed towards

finding out if there are additional circumstances supporting the emergence

of those strategies in initially unbiased settings. I did so by reconsidering

more individual-based learning dynamics for agents arranged in two types

of spatial structures: a toroid lattice and a social map.

It turned out as a general phenomenon that the Smolensky strategy

emerges particularly at the beginning of simulation runs and mainly as

receiver strategy. That happened for all dynamics types I analyzed, but

disappeared in almost all of them for subsequent simulation steps. Only

learning dynamics with a degree of flexibility level 0 led to the situation that

an expected utility for the social map is much more complicated to compute and goes
beyond this thesis’ work.
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Smolensky strategy survived and stabilized, as seen for the RL∞ dynamics.

This is the result of the fact that agents are too inflexible or, in terms of

learning, their learning mechanism is too cold. Consequently, they stick in

initial tendencies. Furthermore, Smolensky language learners never evolved

as language regions, but as isolated learner types inside a conglomeration

of multiple language learners.

The second fact is that anti-Horn language learners emerged in local

regions, sharing the society with regions of Horn language learners, where

those regions where zoned by border agents: agents that learned a mis-

communication language, a mixture of Horn and anti-Horn language. A

more detailed analysis revealed that border agents i) emerge in an alternat-

ing pattern of both miscommunication languages and ii) emerge necessarily

and only on the border between language region. All in all, an emergence

and stabilization of regions of anti-Horn language learners goes hand in

hand with the emergence of multiple language regions.

Hence, the question of the emergence of multiple language regions in gen-

eral, thus also for the Lewis game, was strongly involved in the analysis of

Chapter 4: under what circumstances do multiple language regions evolve

instead of one society-wide signaling language? The experiments showed

that a specific dynamics class of flexibility level 1 is a necessary condition

for such an outcome. This class contains belief learning with unlimited and

reinforcement learning with limited memory (BL∞, RLn). A lower flexi-

bility level (like for RL∞ dynamics) prohibits the spread of local language

regions, a higher flexibility level (like for BLn dynamics) leads to only one

society-wide language, basically triggered by the convex border melting phe-

nomenon. But learning dynamics with flexibility level 1 alone is only a

necessary condition for the emergence of multiple language regions. Suf-

ficient conditions are particular combinations of (i) external circumstances

like a large population size and a local communication structure and (ii)

game parameters of the signaling game: prior probabilities and message

costs.

In my experiments I analyzed the impact of the game parameters by

comparing the results of specific signaling games with different parameters,

called the Lewis game LG, the normal Horn game HG and the weak Horn

game HGw. Further, the analysis includes experiments for a subset of the

Horn spectrum, a scope of different game parameter combinations. The

results are indicative of a negatively correlation between the emergence of

multiple language regions and the divergence of the Horn case representing

parameters, namely state probabilities and message costs. By increasing the
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difference of both message costs and/or prior probabilities, the probability of

the emergence of multiple language regions decreases. Thus the probability

of the emergence of a diverse final pattern is weakened by strong Horn

parameters.

In my experiments both parameters of external circumstances, popu-

lation size and locality of communication structure, were varied. I showed

that a large size of the population basically supports the emergence of multi-

ple language regions, everything else being equal. Furthermore, the locality

of the communication structure was analyzed in a more detailed fashion;

in the social map experiment : here the interaction structure of the popula-

tion could be manipulated by the degree of locality γ and set from random

interaction (γ = 0) to basically neighborhood interaction (γ > 8). This set-

ting implicitly allows to analyze interaction structures between a complete

network and a toroid lattice. And as already mentioned, multiple language

regions emerged only for a sufficient dense local structure (high degree of

locality), given a dynamics class of flexibility level 1. This result highlights

the importance of the society’s interaction structure for stable patterns of

language regions.

All in all the BL∞ and RLn dynamics belong both to the same class

of flexibility level 1 since both cause similar circumstances: the resulting

structure of language region(s) mainly depend on external factors like the

interaction structure of the network (see Table 4.4). This shows that both

dynamics generate behavior that is sensitive to network structure. Thus

BL∞ and RLn dynamics both seem to be excellent candidates for the ex-

periments in subsequent Chapter 5: experiments on more realistic network

structures, so-called small-world networks.



Chapter 5

Conventions on Social Networks

”...network studies in sociolinguistics can provide a starting point

for theoretical models of social interactions underlying the spread

of novel linguistic variants.”

Fagyal et al. 2010, Center and peripheries: Network Roles in

Language Change

”Computer models can provide an efficient tool to consider large-

scale networks with different structures and discuss the long-

term effect on individuals’ learning and interaction on language

change.”

Ke et al. 2008, Language Change and Social Networks

In this chapter I will present results and analyses of experiments that

are quite similar to those of Chapter 4: simulations of populations of agents

that communicate via signaling games and update behavioral strategies

by learning dynamics. The crucial difference, however, is the population

structure. While in Chapter 4 I conducted experiments on a lattice structure

and therefore a regular network, in this chapter I will conduct experiments

on social networks structures, so-called small-world networks. This is switch

to more heterogeneity.

The switch to social network structures has specific consequences for my

analysis. First, it brings some restrictions: for a regular lattice structure I

was able to make general statements for clippings of the network; take for

147
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example the border agents analysis in Section 4.2. Such generalized analysis

is not possible for small-world networks, since they lack regular patterns. In

contrast, it brings new opportunities: now each agent has an unique position

in a network. Consequently, specific node properties mark her off from

any other agent in the same network. Furthermore, also connected regions

of a network, also called sub-networks, have specific structural properties

that distinguish them from other sub-networks of the same network. With

this comes the opportunity for substantially incorporating facets of network

theory into the analysis.

As already introduced in Section 3.1, network theory offers a couple of

tools for measuring and labeling both node and (sub-)network properties.

Consequently, the analysis of this chapter includes new research questions.

The fundamental one is as follows: in what way do specific network prop-

erties influence the way languages emerge? Or more in detail: how do the

node properties of an agent influence her way of learning and using lan-

guage? And in what way is the emergence of a language region influenced

by it’s structural properties?

While previous related work has focused on studying, which global net-

work structures are particularly conducive to innovation and its spread (Ke

et al. 2008; Fagyal et al. 2010), this work investigates more closely the

local network properties associated with (regions of) agents that have suc-

cessfully learned a language or not. In contrast with Zollman (2005) and

Wagner (2009), but parallel to Mühlenbernd (2011), I focus not on imita-

tion, but learning dynamics. In particular, I will focus on those learning

dynamics that have an intermediate flexibility level of 1: BL∞ and RLn

dynamics.1

5.1 Small-World Experiments

The following experiments include simulation runs of populations of agents

that repeatedly play the Lewis game or the normal Horn game, as given in

Table 4.1, and update their behavior according to learning dynamics. I only

consider learning dynamics of flexibility level 1, since I am interested in the

analysis of the emergence of multiple and connected language regions. As

I was able to show in Chapter 4, flexibility level 1 ensures such outcomes

at least for grid structures and social maps; and, as the experiments will

1Note that many of these experiments are part of a joint work with Michael Franke.
Results were already published in Mühlenbernd and Franke (2012a), Mühlenbernd and
Franke (2012b), and Mühlenbernd and Franke (2012c).
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game network structure BL∞ RL100

LG β-graphs Exp. I(a) Exp. I(b)

LG scale-free networks Exp. II(a) Exp. II(b)

HG β-graphs Exp. III(a) Exp. III(b)

HG scale-free networks Exp. IV(a) Exp. IV(b)

Table 5.1: Experiments of populations of agents playing the Lewis or Horn
game for different dynamics and different network types .

reveal, this also holds for small-world network structures. Consequently, the

learning dynamics that I reconsidered in the experiments are belief learning

with unlimited memory and reinforcement learning with limited memory:

BL∞ and RL100. Finally, the two types of small-world networks under

observation are β-graphs and scale-free networks, as introduced in Section

3.2.3. The corresponding eight experiments are depicted in Table 5.1.

5.1.1 Language Regions & Agent Types

In this chapter I am interested in the analysis of the behavior of not only

particular agents, but also groups of connected agents that learned the

same language. Such a groups is called a language region. Furthermore,

I am interested in a classification of agents referring to a) their learning

behavior and b) their node properties in the networks. Consequently, I will

sort them into different groups of agent types. In the following I will give a

formal definition for both, language regions and agent types.

Language Regions

A language region of a given graph G is a connected sub-graph G′ (see

Definition 3.13), of which all nodes belong to agents that have learned the

same language L. Furthermore, all agents outside the language region that

are connected to at least one member of the language region have not learned

language L. This feature can be formalized by the fact the the connected

sub-graph G′ = (N ′, E ′) is maximal according to language L: there is no

connected sub-graph G′′ = (N ′′, E ′′) with N ′ ⊂ N ′′, where G′′ is a language

region. All in all, a language region is defined as follows:

Definition 5.1. (Language Region) A graph G′ = (N ′, E ′) is a language

region of a network graph G = (N,E) if and only if the following conditions

hold:
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(a) β-graph (b) scale-free network

Figure 5.1: Sample results for a β-graph and scale-free network (100 nodes
each) with a large language region for each of the languages L1 and L2

(white and gray nodes) and a small number of non-learners (black nodes).

� G′ is a connected sub-graph of G

� ∀n ∈ N ′: all agents at node n have learned the same language L

� G′ is maximal: ¬∃G′′ = (N ′′, E ′′) with the following features:

– G′′ is a language region

– N ′ ⊂ N ′′

To anticipate a general result for experiments with the Lewis game: in

most of the simulation runs two large language regions evolved, more or less

independently of the type of learning dynamics or network structure. To

get a first impression, Figure 5.1 depicts a snapshot of a simulation run of

agents playing the Lewis game on a β-graph (Figure 5.1a) and on a scale-

free network (Figure 5.1b), with 100 nodes each. In each case two large

language regions evolved, one of language L1, one of language L2, plus a

remaining group of agents that are non-learners at that simulation step.

Agent Types

In this section I will characterize agent types according to two classes of

properties: static properties and dynamic properties. Static properties are

defined in terms of network theory by the node properties of an agent. These

properties are called static, since they are given by environmental features
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connectedness global (BC, CC) local (CL) individual (DC)

family man low high -
globetrotter high low high

Table 5.2: Properties of family man and globetrotter

and do not change during a simulation run. Thus, an agent has the same

static properties before, during and after an experiment, since the network

structure does not change over time. On the contrary, dynamic properties

are properties that integrate the language that an agent learns. Therefore,

they can evolve and change over time.

Let’s start with the definition of agent types by static properties. The

theoretical challenge here lies in adequately characterizing local network

roles in terms of formal notions of network connectivity which can never be

clean-cut, but must necessarily be of a probabilistic nature. For our present

purposes, however, a rather straightforward cross-classification based on

whether an agent is globally, locally or individually well connected turned

out to have high explanatory value. For that purpose I reconsider the node

properties betweenness centrality (BC), closeness centrality (CC), degree

centrality (DC) and individual clustering (CL), as defined in Section 3.1.1.

Using suggestive terminology, I will be primarily concerned with two

types of agents, family men and globetrotters. The former have tight local

connections (high CL value), with less global connections (low BC and CC

values); the latter show the opposite pattern (low CL value, high BC and

CC values) plus a high degree of connectivity (high DC value). All in all,

family men and globetrotters are characterized as depicted in Table 5.2.

The next step is to characterize agents by dynamic properties. Here

we consider the entire network and its segmentation of language regions

that evolve during a simulation run. The first type of dynamics properties

reflects, whether an agent is positioned on the margin of a language region of

language L or inside of it. In the first case such an agent is called a marginal

agent, according to the fact that not all of his neighbors have learned the

same language L. As opposed to this, an interior agent is positioned inside

a language region, since all of her neighbors have learned the same language

L. Taken together, both types are defined as follows:

Definition 5.2. (Marginal Agent) An agent xi ∈ X, positioned on node

i ∈ N inside a graph G = (N,E), is called a marginal agent if the following

conditions hold:
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� xi is member of a language region RL of language L

� ∃j ∈ NH(i): agent xj, positioned on node j, is not member of lan-

guage region RL

Definition 5.3. (Interior Agent) An agent xi ∈ X, positioned on node

i ∈ N inside a graph G = (N,E), is called an interior agent if and only if

the following conditions hold:

� xi is member of a language region RL of language L

� ∀j ∈ NH(i): agent xj, positioned on node j, is member of language

region RL

The second type of dynamic properties reflects, whether an agent has

learned a language at the end of a simulation run. It is important to note

at this point that the simulation runs of my experiments will not run, until

all agents have learned a language, but stop, when at least 90% of all agents

have learned a language. Consequently, at the end of the run the remaining

agents haven’t finally learned a language. An agent of the former group is

called a learner, an agent of the latter one is called a non-learner. Both are

defined as follows:

Definition 5.4. (Learner) An agent xi ∈ X that has learned a language L

at the end of a simulation run is called a learner.

Definition 5.5. (Non-Learner) An agent xi ∈ X that has not learned a

language L at the end of a simulation run is called a non-learner.

These notions of language region and agent types are used for the analy-

ses of the subsequent experiments of agents that are playing the Lewis game

and the normal Horn game on β-graphs and scale-free network structure,

where they update their behavior by BL∞ and RL100 dynamics.

5.1.2 Lewis Games on β-Graphs

The settings for Experiment I were as follows: I modeled a structured pop-

ulations as β-graph with 300 nodes, constructed by the the algorithm of

Watts and Strogatz (1998), as described in Section 3.2.3, with the parame-

ter k = 6 and a varying β-value: β ∈ {.08, .09, .1}. These parameter choices

ensured the small-worldliness of our networks that I had to keep small for
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obtaining enough data points at manageable computation costs. Further-

more, it ensures that such a β-graph and a scale-free network of subsequent

experiments both have similar values of structural network properties.

In each simulation run of the experiment, interactions happened accord-

ing to the selection algorithm Random Sender & Neighbor (Definition 3.25,

page 93) and each agent’s behavior was updated separately after each round

of communication in which the agent was involved. In addition, each simu-

lation run ran until more than 90% of all agents had acquired a language, or

each network connection had been used 3000 times in either direction. The

latter case was to ensure a compromise between a short running time and

sufficient time for learning, but also because I was interested in the results

of learning after a realistic time-span, not in limit behavior.

In Experiment I(a) I simulated BL∞ agents playing the Lewis game

(LG) on a β-graph: I performed 200 simulation runs of the network game

NGI(a) = 〈LG,X,BL∞, Gβ〉, where X = {x1, . . . x300} is a set of 300 agents

and Gβ is a β-graph of 300 nodes. The fundamental result was that all

simulation runs ended with a society, where the network is split into local

language regions of both types L1 and L2, i. d. regional meaning emerged

in every simulation run. In general, it was the case that two large language

regions emerged, similar to the sample pattern of Figure 5.1a (page 150),

but this time with a network of 300 nodes.

To compare these results with experimental results of RL100 agents, I

started Experiments I(b): I performed 200 simulation runs of RL100 agents

playing the Lewis game on a β-graph, thus I applied network game NGI(b) =

〈LG,X,RL100, Gβ〉. As a basic result, all simulation runs ended with a

society, where the network is split into local language regions of both types,

with in most cases two large language regions, similar to the exemplary

resulting pattern of Figure 5.1b (page 150), but with a network of 300

nodes.

Analysis of Language Regions

As already mentioned, by comparing results of Experiment I(a) and I(b),

most of the time two large language regions formed, one of language L1, one

of language L2. But the results of Experiment I(a) (BL∞ dynamics), due

to its slightly higher flexibility, revealed a little more regional variability

than results of Experiment I(b) (RL100 dynamics). This fact is displayed in

Figure 5.2 that depicts a Hinton diagram of Experiment I(a) (Figure 5.2a)
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(a) BL∞ dynamics (b) RL100 dynamics

Figure 5.2: Hinton diagrams for the combination of language regions of L1

and L2 language learners on a β-graph for BL∞ and RL100 dynamics. For
both dynamics in most of the cases two language regions emerged. This
trend was stronger for the RL100 dynamics, while for BL∞ dynamics the
results were more varied.

and Experiment I(b) (Figure 5.2b).2 As observable, the share of simulation

runs, where only one of each language region evolved, is higher for RL100

than BL∞ dynamics.

To analyze the properties of language regions on the β-graphs for both

dynamics, I applied suitable notions from network theory which describe

structural properties of (sub-)graphs: density (Definition 3.17, page 82),

average clustering (Definition 3.18, page 82) and transitivity (Definition

3.19, page 82). To compare the different values of structural properties of

language regions with a standard value, I computed the expected value of

each property for any size n (number of nodes) of a sub-network. Figure

5.3 shows the results of my analysis in the following way: each data point

depicts a language region. Its position is defined by its number of nodes

n (x-axis) and its value of the appropriate structural property (y-axis).

The data points labeled with ’o’ are language regions that evolved in the

first 20 simulation runs of Experiment I(a) (BL∞ dynamics); those data

points labeled with ’+’ are language regions that evolved in the first 20

simulation runs of Experiment I(b) (RL100 dynamics). The solid line depicts

the expected value of the structural property for different sizes n, where each

data point is the average value over 100 randomly chosen connected regions

2In a Hinton diagram the size of each square represents the magnitude of the share
of a specific combination of two values, here the numbers of L1 and L2 language regions.
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Figure 5.3: Density, average clustering and transitivity (y-axis) of the result-
ing language region in comparison with the average values from randomly
chosen subgraphs (solid lines, sub-graph size n along the x-axis).
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in the same network.

The results reveal that each connected language region of a given type

had always a higher average clustering and transitivity value than the ex-

pected value for a connected subgraph with the same size n (Figure 5.3b

and 5.3c), whereas the density value didn’t exhibit such a divergence (Fig-

ure 5.3a). One may conclude from this that local density on an individual

level supports the evolution of a local language, whereas global density does

not. In addition, all results were by and large the same for both learning

dynamics.

Agent Analysis

The next step was to investigate the relationship between an agent’s a)

individual learning profile as figured by her dynamic properties and b) po-

sitioning in the network as given by her static network properties. For that

purpose, I started one analysis for each learning dynamics: in Analysis I(a)

I partitioned the set of agents according to dynamic properties in learners

and non-learners (Definition 5.4 and 5.5) of the final populations of all 200

simulation runs; in Analysis I(b) I partitioned the set of agents according

to dynamic properties in interior agents and marginal agents (Definition

5.3 and 5.2) of the final populations of all 200 simulation runs. For each

partition I computed the average values of the agents’ network properties:

individual clustering (CL), closeness centrality (CC), betweenness central-

ity (BC) and degree centrality (DC). The resulting values with a t-test3

comparison for different partitions are depicted in Table 5.3, the top table

for the results of Experiment I(a) (BL∞ dynamics), the bottom table for

the results of Experiment I(b) (RL100 dynamics).

The results display no significant difference between both dynamics. To

elaborate, by considering the significant differences of node properties for

the appropriate partitions, the following can be observed: first, learners have

a significant higher CL value and significant lower CC and BC values than

non-learners, while the DC values are not significantly different. Second,

marginal agents have a significant lower CL value and significant higher CC,

BC and DC values than interior agents. These points are clearly displayed

by representing the data as box plots (Figure 5.4).

By taking into account the characterization of agents by network prop-

erties (see Table 5.2), the following conclusions can be drawn for agents

3A t-test can be used to determine if two sets of data are significantly different from
each other. For more details, I refer to David and Gunnink (1997); Zimmerman (1997).



5.1. SMALL-WORLD EXPERIMENTS 157

BL∞ dynamics

learners non-learners marginal interior

cl 0.452 > 0.427 0.404 < 0.488
cc 0.205 < 0.206 0.210 > 0.201
bc 0.013 < 0.014 0.017 > 0.010
dc 0.020 ≈ 0.020 0.021 > 0.019

RL100 dynamics

learners non-learners marginal interior

cl 0.453 > 0.423 0.405 < 0.487
cc 0.205 < 0.207 0.209 > 0.201
bc 0.013 < 0.015 0.017 > 0.010
dc 0.020 ≈ 0.020 0.021 > 0.019

Table 5.3: Average local network properties of learners vs. non-learners,
and of marginal vs. interior agents by different learning dynamics. Symbols
<, >, ≈ indicate whether differences in means are considered significant by
a t-Test.

playing the Lewis game on β-graphs:

1. Interior agents tend to be family men; marginal agents show the mark

of globetrotters

2. In comparison to non-learners, learners tend to be family men

Intuitively speaking, this means that in order to successfully learn a

language in a diffuse social network structure like a β-graph, an agent would

have to be a family man, well embedded in a dense local structure and an

interior agent of a language region. Globally well connected agents like

globetrotters, on the other hand, have difficulties learning a language early

on, because they might be torn between different locally firmly established

languages and are often found on the margin of language regions.

In addition, a basic result of these experiments is as follows: differ-

ent learning dynamics, BL∞ or RL100, does not have remarkably different

impacts on the emergence of language regions or the history of individ-

ual learning. Where language regions emerged was basically influenced by

global structural network properties; and individual learning was strongly
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Figure 5.4: Box plot of data from Analysis I(a) and I(b)

influenced by local network properties, but both almost completely inde-

pendent of the learning dynamics. This result resembles the conclusion I

drew after the experiments on a toroid lattice in Section 4.1. That study

also showed: BL∞ and RL100 dynamics both have a similar impact on the

resulting structure. In the following I will show that both dynamics differ

strongly in another way: the temporal development of learning.

Analysis of Temporal Development

A fundamental result of the temporal development analysis is as follows:

BL∞ agents settle into conventions much faster than RL100 agents. Fig-

ure 5.5 depicts the number of language learners (averaged over all 200 sim-

ulation runs) over the number of simulation steps for each dynamics. As

observable: after 10 simulation steps ca. 90% of BL∞ agents have learned a
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Figure 5.5: Number of BL∞ and RL100 agents that have learned a language
over the number of simulation steps. The developmental process of BL∞

agents is much faster than the one of their RL100-cousins. The latter one
forms a so-called S-shaped curve.

language, whereas even after 100 simulation steps less than half of all RL100

agents have settled into a language.

Note that the development process of RL100 agents resembles the canon-

ical S-shaped curve that is assumed to represent the time course of language

change (c.f. Weinreich et al. 1968; Chambers 2004): the initial stage reveals

a quite low incremental rate and is referred to as the innovation phase (c.f.

Croft 2000). The rate of change increases to a maximum, when the majority

of individuals are using the appropriate linguistic variant, generally close to

the midpoint of S-shaped curve. This stage is called the selection and prop-

agation phase (c.f. Fagyal et al. 2010). The process slows down, when the

linguistic variant is used by a (nearly) majority of the speech community.

This final stage of the change is called the establishment phase (c.f. Fagyal

et al. 2010).

According to this segmentation, the developmental process of the RL100

dynamics forms a S-shaped curve with an innovation phase around the first



160 CHAPTER 5. CONVENTIONS ON SOCIAL NETWORKS

30 simulation steps, a selection and propagation phase around simulation

steps 30-80, and an establishment phase that starts after 80 simulation

steps. Such a development process was not detectable for BL∞ agents, in

general because they simply learn too quickly.4

But the learning speed is not only influenced by the agents’ learning

dynamics, but also by their structural properties. Thus, in a further analysis

I was interested in finding answers to the following question: what kind

of node properties cause agents to learn a language early or late during a

simulation run? For that purpose, I partitioned all agents into different time

intervals, in which they have acquired their final language. Consequently, I

define a learning time group as follows:

Definition 5.6. (Learning time group) A learning time group Xt(f, c) ⊆ X

is the group of agents that learned their final language between simulation

step f (floor) and simulation step c (ceiling).

For my analysis I partitioned all agents that learned a language in the

first 300 simulation steps in different learning time groups, where each group

involves 25 simulation steps. Hence, I considered the following learning

time groups: Xt(1, 25), Xt(26, 50), Xt(51, 75), Xt(76, 100), ..., Xt(251, 275),

Xt(276, 300). To measure the node properties for learners over time, I com-

puted the average CL, BC, CC and DC values for each learning time group,

also averaged over all simulation runs. As the analysis revealed, the slower

RL100 dynamics show a very interesting connection between the temporal

development of language learning and an agent’s node properties.5 The

result is depicted in Figure 5.6.

The results basically reveal that average values of global connectivity

(BC and CC) of learners slightly increase over time, while the average

clustering value (CL) decreases over time. In other words: early learners

are family men, and the later agents learn a language, the more do they

have the mark of globetrotters. This result perfectly matches with another

result of Analysis I(a), namely that learners tend to be family men.

But there is another interesting fact: the degree centrality value de-

creases strongly for the first 75 simulation steps, and then it increases con-

4More precisely, because of the dynamics of the best response choice function, agents
decide for one or the other language even without an established belief. Thus, they
don’t undergo a learning process that includes a long phase of being undecided and
finally converging to a stable language. That makes it hard for BL∞ agents to detect a
manifestation of the population’s learning status during the learning process.

5Such a connection was not detectable for BL∞ agents because of that point already
made to explain the lack for an S-shaped curve development process of learning.
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Figure 5.6: The average CL, BC, CC and DC values for RL100-learners in
different learning time groups (specified by an interval of simulation steps).

stantly. This additional observation tempts me to define a further classifi-

cation of agent roles that depict the influence on the development process

of language regions:

Definition 5.7. (Classification of Developmental Agent Roles) Given a so-

ciety of agents situated on a social network, where agents interact via a

signaling games and update their strategic behavior via learning dynamics.

Agents can be classified in three different roles that depict the influence on

the development process of language regions:

� Founding Fathers: These agents are the innovators. They are the first

that learn a language (∼ during the first 25 simulation steps) and are

possible initializers of a language region.
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� Stabilizers: These are agents that, after a language has evolved, adopt

and spread it within their local community (∼ simulation steps 25-75).

� Late Learners: These agents are left after core areas of language re-

gions have already evolved (& 75 simulation steps). Late learners are

most probably marginal agents of final language regions.

Note that this classification of agents is (almost) completely in line with

the three stages of language change (see Figure 5.5): founding fathers sketch

the innovation phase, stabilizers accomplish the selection and propagation

phase and late learners learn, when languages are essentially established,

at the establishment phase. Furthermore, the results reveal the following

relationships between the developmental agent roles and the agent types

characterized by node properties (see Table 5.2) for β-graphs:

� Founding Fathers can be characterized as highly connected family men

(high DC and IC values, low BC and CC values).

� Stabilizers have also the characteristics of family men. But, as opposed

to founding fathers, they have a much lower DC value which makes

them more likely to adopt a language from a nearby founding father.

� Late Learners reveal a specific pattern: the later they learn, the more

do they have characteristics of globetrotters (high DC, BC and CC

values, low IC value), which holds also the other way around.

It is important to note that the share of founding fathers constitutes less

than 5% of the whole population, while the share of stabilizers is around

35%. Thus core areas of language regions are established after around 40%

of all agents have learned a language. The slightly more than 60% of all

remaining agents are labeled as late learners.

5.1.3 Lewis Games on Scale-Free Networks

For Experiment II we move from β-graphs to a different class of realis-

tic network structures, so-called scale-free networks. As mentioned before,

these capture the realism of preferential attachment; i.e. humans form so-

cial bonds based on preferences like friendship or economics. In this line of

inquiry, I modeled structured populations as scale-free networks with 300

nodes, constructed by the algorithm of Holme and Kin (2002), as described
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in Section 3.2.3, with control parameter mt = 3 and probability parameter

Pt = .8. These parameters ensure that these scale-free networks and the β-

graphs of Experiment I have similar values of density and average clustering,

whereas scale-free networks inherently come with a lower transitivity value.

The further experimental settings are also exactly like those of Experiment

I.

In Experiment II(a) I simulated BL∞ agents playing the Lewis game

LG on a scale-free network: I performed 200 simulation runs of the network

game NGII(a) = 〈LG,X,BL∞, Gsf〉, where X = {x1, . . . x300} is a set of

300 agents and Gsf is a scale-free network. To compare these results with

the behavior of RL100 agents, I started Experiment II(b): 200 simulation

runs of RL100 agents playing the Lewis game on a scale-free network, thus

I applied network game NGII(b) = 〈LG,X,RL100, Gsf〉.

Analysis of Language Regions

As a general result, in every run exactly one language region emerged for

one of both languages, where the second language either a) expended over

multiple language regions, b) formed also exactly one language region, or

c) was driven to extinction and therefore did not form any language re-

gion. More than half of all simulation runs ended with a society, where the

network was split into exactly two language regions of both types L1 and

L2. This fact is displayed in Figure 5.7 that depicts the Hinton diagram of

Experiment II(a) (Figure 5.7a) and Experiment II(b) (Figure 5.7b).

In comparison with the results of Experiment I (see e.g. Figure 5.2),

the scale-free network produces much more regional variability than a β-

graph. Furthermore, regional meaning did not emerge in every trial since

some simulation runs ended with a society of agents that have all learned

the same language.

In a further analysis, similar to Experiment I for the β-graphs, I ana-

lyzed the structural properties of language regions for scale-free networks.

Thus, I measured density, average clustering and transitivity of all language

regions for the first 20 simulation runs of both experiments. To compare

the different values of each language region’s structural properties with a

standard value, I computed the expected value of each property for any size

n (number of nodes) of a sub-network inside a scale-free network. Figure

5.8 shows the results of my analysis in the following way: each data point

depicts a language region. Its position is defined by the number of nodes n

(x-axis) and the value of the appropriate structural property (y-axis). The
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(a) BL∞ dynamics (b) RL100 dynamics

Figure 5.7: Hinton diagrams for the combination of language regions of L1

and L2 language learners on a small-world network for BL∞ and RL100

dynamics. For both dynamics two language regions emerged in most cases,
in particular for the RL100 dynamics, while for BL∞ dynamics the results
were more varied.

data points labeled with ’o’ are language regions that evolved in Experiment

II(a) (BL∞ dynamics); the data points labeled with ’+’ are language regions

that evolved in Experiment II(b) (RL100 dynamics). The solid line depicts

the expected value of the structural property for different sizes n, where

each data point is the average value over 100 randomly chosen connected

regions in the same network.

The results reveal that each connected language region of a given type

had, without fail, a higher average clustering value than the expected av-

erage value for a connected subgraph with the same size n (Figure 5.8b),

whereas the density and transitivity value didn’t exhibit such a divergence

(Figure 5.8a and and 5.8c).

Thus the results slightly contrast with the experimental results for β-

graphs (see Figure 5.3, page 155): both results correspond to the two fact

i) that the average clustering values were always higher than the expected

average value, and ii) that the density values roughly coincide with the

expected average. But the difference is that the transitivity values are

always higher than expected for β-graphs, whereas for scale-free networks

the transitivity values are distributed around the expected average, some

above, some below.

This divergence results from the nature of both network types: in dif-

fuse networks like β-graphs, transitivity and clustering roughly correspond
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Figure 5.8: Density, average clustering and transitivity of the resulting lan-
guage region (y-axis) in comparison with average values from randomly
chosen subgraphs (solid lines, sub-graph size n along the x-axis).



166 CHAPTER 5. CONVENTIONS ON SOCIAL NETWORKS

to each other, thus enhanced individual clustering values bring along en-

hanced transitivity values. This is not the case for scale-free networks: they

can have enhanced individual clustering values because of the cliquishness

of sub-communities, whereas the more global transitivity value stays low

because unions of those communities are connected by only few hubs.

In general, this divergence hints to the fact that phenomena that can

be observed in one small-world network are probably not seen in another.

In reference to the given case, we can see that individual clustering and

transitivity have different expressiveness: individual clustering is a more

local value, transitivity is more global. And scale-free networks that are

constructed by the algorithm of Holme and Kin (2002) reveal indeed an

ordinary individual clustering value, but a quite low transitivity value in

comparison to β-graphs.

Agent Analysis

In a next step, like in Experiment I, I investigated the relationship between

an agent’s a) individual learning profile as represented by her dynamic prop-

erties and b) positioning in the network depicted by her static network prop-

erties. For that purpose I started two analyses for each learning dynamics:

in Analysis II(a) I partitioned all agents in learners and non-learners (Defi-

nition 5.4 and 5.5), in Analysis II(b) in interior agents and marginal agents

(Definition 5.3 and 5.2) of the final populations of all runs. For each parti-

tion I computed the average values of the agents’ network properties: CL,

DC, CC and BC. The resulting values didn’t reveal any difference between

both dynamics. The values for RL100 dynamics are depicted as box plots

in Figure 5.9.

The results resemble by and large the results of Analysis I(a) and I(b)

for β-graphs (see Figure 5.4), with one small exception. While on β-graphs

learners and non-learners revealed the same average degree centrality, here

non-learners have a clearly higher one. Thus, on scale-free networks the

non-learners clearly depict the mark of globetrotters in comparison with

learners. By taking into account the characterization of agents by network

properties (see Table 5.2), the following conclusions can be drawn for agents

playing the Lewis game on scale-free networks:

1. Interior agents tend to be family men; marginal agents display the

signs of globetrotters

2. Learners tend to be family men; non-learners tend to be globetrotters
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Figure 5.9: Box plot of data from Analysis II(a) and II(b)

The conclusion that can be drawn resembles the conclusion for β-graphs:

to successfully learn a language (particularly at early stages), an agent has to

be a family man, well embedded in a dense local structure inside a language

region.

Analysis of Temporal Development

In accordance with Experiment I, it was shown that different learning dy-

namics (BL∞ or RL100) do not have clearly divergent impacts on the emer-

gence of language regions or the history of individual learning. But they

have a strong impact on the learning speed. Accordingly, on scale-free net-

works the learning speed differs strongly between BL∞ agents and RL100

agents: BL∞ agents learn much faster, and roughly as fast as on β-graphs.

Furthermore, the learning speed of RL100 agents is slightly faster on β-

graphs than on scale-free networks, as depicted in Figure 5.10.
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Figure 5.10: The number of RL100 agents that have learned a language
over the number of simulation steps for both network types: the learning
speed on β-graphs is a bit faster than on scale-free networks.

Much as was done for the β-graphs, I wanted to find out what kind of

node properties cause agents to learn a language early or late during a sim-

ulation run on scale-free network structures. For that purpose I partitioned

the agents in different learning time groups for all 25 simulation steps over

the first 300 simulation steps (exactly like in Experiment I) and I measured

the average values of the node properties CL, CC, BC and DC for each

learning time group, averaged over all simulation runs. The slower RL100

dynamics showed a very interesting connection between the temporal de-

velopment of language learning and agent’s node properties, as depicted in

Figure 5.11.

The results look quite different on scale-free networks in comparison

with the results of the β-graph experiments (see Figure 5.6). Remember:

on β-graphs founding fathers are highly connected family men, whereas

lower connected family men stabilize the language region and late learners

show more and more the mark of globetrotters. As observable in Figure

5.11 on scale-free networks, if we again characterize founding fathers by the
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Figure 5.11: The average CL, BC, CC and DC values for RL100-learners in
different learning time groups (specified by an interval of simulation steps).

early learners and therefore innovators in the network (∼ during the first

25 simulation steps), then these agents have completely different properties.

Here founding fathers are super-globetrotters: they have extremely low CL

values, but extremely high local and global centrality values (DC, BC and

CC) in comparison with agents that learn a language afterwards. The

stabilizers (∼ simulation steps 25-75) and late-learners (& 75 simulation

steps) differ basically in their CL values since the former ones reveal a

higher individual clustering value.

The results reveal the following relationships between the developmental

agent roles and the agent types, characterized by node properties for scale-

free networks:
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� Founding Fathers can be characterized as super-globetrotters (very

high DC and BC values, high CC and low CL value).

� Stabilizers have the typical characteristics of low connected family

men (high CL and low centrality values).

� Late Learners have similar characteristics like stabilizers, but the later

they learn, the lower is their CL value, and the other way around.

The share of founding fathers constitutes less than 5% of the whole

population. The share of stabilizers is no more than around 35%. Thus,

core areas of language regions are established after around 40% of all agents

have learned a language. The remaining more than 60% of all agents are

labeled as late learners.

All in all, these results show that in more diffuse networks with rela-

tively homogeneously distributed influence like β-graphs, the emergence of

language regions is induced by local big-shots, whereas on networks follow-

ing a power law distribution like scale-free networks, some super-influential

global agents initiate language regions.

These circumstances explain the fact that agents on β-graphs learn

faster, as depicted in Figure 5.10: the crucial difference between both S-

shaped curves is the learning speed of the stabilizers during the selection

and propagation phase. This can be explained by the fact that founding

fathers on β-graphs are embedded in a dense local structure, stabilizers

around them form a perfect foundation for languages to spread and stabi-

lize very quickly. On the opposite side of the spectrum, founding fathers

on scale-free networks are global players, connected to different distant6 re-

gions. Consequently, they are not embedded in an optimal foundation for

languages to spread and stabilize fast.

Finally, the difference between stabilizers and late-learners on β-graphs

is remarkable since the former are low connected family men, and the latter

show the mark of globetrotters. Thus, both types are exactly inverted

in terms of node properties. Furthermore, there is not a clear difference

between stabilizers and late-learners on scale-free networks.7 This can be

explained by the fact that there are not many typical globetrotters in a scale-

free network. And these few ones are super-influential ones that adopt the

role of founding fathers.

6Distant in terms of shortest path length.
7They only noticeable observation is a slightly decreasing CL value for late-learners.
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5.1.4 Horn Games on β-Graphs

Proceeding with Experiment III, I turn to the analysis of Horn games on

β-graphs. Except of the game, all conditions for interaction and settings

for simulation runs are given as for Experiment I in Section 5.1.2.

In Experiment III(a) I simulated BL∞ agents playing the normal Horn

game on a β-graph: I performed 200 simulation runs of the network game

NGIII(a) = 〈HG,X,BL∞, Gβ〉, where X = {x1, . . . x300} is a set of 300

agents and Gβ is a β-graph. To compare these results with experimental

results of RL100 agents I started Experiment III(b): I performed 200 sim-

ulation runs of RL100 agents playing the Horn game on a β-graph, thus I

applied network game NGIII(b) = 〈HG,X,RL100, Gβ〉.

Analysis of Language Regions

As a general observation, the resulting combinations of number of language

regions for both signaling languages, here Lh and La, look quite different in

comparison with the experiments for the Lewis games (Section 5.1.2), but

also the results of RL100 and BL∞ dynamics differ strongly.

The results for Experiment III(b) (RL100 dynamics) reveal that in almost

every run exactly one language region of the Horn language Lh emerged,

whereas the language La expended over multiple language regions, generally

between 2 and 4 local regions. In the remaining simulation runs it happened

that either i) no language region of La emerged or ii) two language regions

of Lh emerged.8 The resulting Hinton diagram of Experiment III(b) is

depicted in Figure 5.12b.

The results for Experiment III(a) (BL∞ dynamics) look quite different:

here in more than half of all simulation runs one language region of the Horn

language Lh emerged, whereas the language La failed to form a language

region. In a noteworthy number of simulation runs either i) one language

region for each language emerged, or ii) two Lh and one La language region

emerged, or iii) two language regions of Lh, but none of La emerged. The

resulting Hinton diagram of Experiment III(a) is depicted in Figure 5.12a.

In a next step, I analyzed the structural properties of language regions:

I measured the density, average clustering and transitivity of all language

regions for the first 20 simulation runs of both experiments; and compared

the different values of structural properties of language regions with the

expected average value. Figure 5.13 shows the results of my analysis, the

8Actually, in one simulation run 3 language regions of Lh emerged.
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(a) BL∞ dynamic (b) RL100 dynamic

Figure 5.12: Hinton diagrams for the combination of language regions of
Lh and La language learners on a β-graph for BL∞ and RL100 dynamics.
For both dynamics in most of the cases one language region of language
Lh emerged, while the number of La language regions varied more over all
simulation runs.

left figures for the BL∞ dynamics (Figure 5.13a, 5.13c and 5.13e), the right

figures for the RL100 dynamics (Figure 5.13b, 5.13d and 5.13f) Data points

labeled with ’o’ are Lh language regions, data points labeled with ’�’ are La
language regions, and data points labeled with ’+’ are Ls language regions.

The results show the same pattern that were already seen for Experi-

ment I: each connected language region of a given type had always a higher

average clustering and transitivity value than the expected average value

for a connected subgraph with the same size n, whereas the density value

didn’t exhibit such a divergence.

But the results reveal even more: the language regions of language Lh
is (almost) always larger than those of La language regions. The results

for RL100 agents show that most of the Lh language regions have a size of

between 80 and 260 nodes, whereas all of the La language regions have a

size of less than 40 nodes. This divergence is even stronger for the results for

BL∞ agents: all of the Lh language regions have a size of between 220 and

250 nodes, whereas all of the La language regions have a size of less than

10 nodes. Furthermore, small language regions of the Smolensky language

Ls emerged.

The divergence of language region sizes between Lh and La is a result

that resembles the results for experiments on a toroid lattice in Section 4.1.1.

Furthermore, the fact thatBL∞ agents learn faster leads to two effects: first,
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Figure 5.13: Density, average clustering and transitivity of the resulting
language region (y-axis) in comparison with expected average values from
randomly chosen subgraphs (solid lines, sub-graph size n along the x-axis).
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the more efficient Lh language can spread faster and therefore leaves less

room for the La language to spread. Second, the condition that simulation

runs stop after at least 90% of all agents have learned a language is fulfilled

quite early for the fast BL∞ dynamics (basically after 10 simulation steps,

see e.g. Figure 5.5 on page 159). This leads to a final population, where a

small number of agents still stick with initial strategy profiles that would

probably disappear over time. This explains the appearance of Ls language

learners in Experiment III(a).9

Agent Analysis

To analyze the relationship between an agent’s a) individual learning profile

and b) static network properties, I started two analyses for each learning

dynamics: in Analysis III(a) I partitioned all agents in learners and non-

learners, in Analysis III(b) in interior agents and marginal agents of the

final populations of all runs. For each partition I computed the average

values of the the agents’ network properties. The resulting values for RL100

dynamics are depicted as box plots in Figure 5.14.10

The results resemble by and large the results of Analysis I(a) and I(b)

for agents playing the Lewis game on β-graphs (see Figure 5.4), with one

small exception: in Experiment I the non-learners’ degree centrality didn’t

show any variation, while in this Experiment III the non-learners’ degree

centrality values drift above the average value. By taking into account

the characterization of agents by network properties (see Table 5.2), the

following conclusions can be drawn for RL100 agents playing the Horn game

on β-graphs:

1. Interior agents tend to be family men; marginal agents tend to be

globetrotters

2. Learners have the characteristics of family men; non-learners those of

globetrotters

9Note: I could show in former experiments that agents have a strong tendency to
initially learn the Smolensky strategy for different dynamics and population structures.
See e.g. Figure 2.2 for replicator dynamics (page 38), Figure 2.13 for basic experiments
with reinforcement learning (page 70) or Figure 4.8b for reinforcement learning on a
toroid lattice (page 113).

10It is noteworthy to mention that the results for the BL∞ dynamics looked quite
different: there was almost no deviation of any groups average value in any direction.
The reason for this result is probably the fast learning speed combined with the uniformity
of the final population. More precise analyses go beyond this work.
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Figure 5.14: Box plot of data from Analysis III(a) and III(b)

Note that this result basically doesn’t deviate from former results. Fur-

ther, the analysis of temporal development didn’t reveal any new insight

that weren’t already obtained from Experiment I with the Lewis game on

β-graphs. Thus I will continue with the analysis of Experiment IV: Horn

games on scale-free networks.

5.1.5 Horn Games on Scale-Free Networks

We complete our analysis of costly signaling equilibria on realistic social

structures in this part. Here I conducted experiments for agents playing

the Horn game on scale-free networks. Except of the game, all conditions

for interaction and settings for simulation runs are given as for Experiment

II in Section 5.1.3.

In Experiment IV(a) I simulated BL∞ agents playing the Horn game
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HG on a scale-free network: I performed 200 simulation runs of the net-

work game NGIV (a) = 〈HG,X,BL∞, Gsf〉, where X = {x1, . . . x300} is a

set of 300 agents and Gsf is a scale-free network as introduced. To com-

pare these results with experimental results of RL100 agents, I started Ex-

periment IV(b): I performed 200 simulation runs of RL100 agents play-

ing the Horn game on a scale-free network, thus I applied network game

NGIV (b) = 〈HG,X,RL100, Gsf〉.

Analysis of Language Regions

As a general observation, the resulting combinations of language regions for

both signaling languages, here Lh and La, look quite different in comparison

with both the results for Lewis games on scale-free networks (Section 5.1.2)

and the results for Horn games on β-graphs (Section 5.1.4).

The results for Experiment IV(a) (BL∞ dynamics) reveal that only one

language region of the Horn language Lh emerged in almost every run,

whereas no such regions of language La emerged, as depicted in the resulting

Hinton diagram (Figure 5.15a).

The results for Experiment IV(b) (RL100 dynamics) also reveal that in

most of the simulation runs one language region of language Lh and no

language region(s) of language La emerged, but in comparison with Exper-

iment IV(a), the few exceptions are a little bit more varied, as observable

in the resulting Hinton diagram (Figure 5.15b).

In a next step I analyzed the structural properties of language regions: I

measured density, average clustering and transitivity of all language regions

for the first 20 simulation runs of both experiments; and compared the dif-

ferent values of structural properties of language regions with the expected

average value. Figure 5.16 shows the results of my analysis, the left figures

for the BL∞ dynamics (Figure 5.16a, 5.16c and 5.16e), the right figures

for the RL100 dynamics (Figure 5.16b, 5.16d and 5.16f), where data points

labeled with ’o’ are Lh language regions, and data points labeled with ’�’

are La language regions.

The resulting characteristics of the language regions reveal what the

Hinton diagrams already gave us reason to expect: for both dynamics there

is one huge Lh language region that spreads over the whole network. The

RL100 agents show a little bit more variety in two ways: i) the sizes of the

regions vary stronger and ii) for some runs, tiny regions of the La language

emerged.11

11Note that these are the data of the first 20 simulation runs of each experiment. The
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(a) BL∞ dynamics (b) RL100 dynamics

Figure 5.15: Hinton diagrams for the combination of language regions of
Lh and La language learners on a scale-free network for BL∞ and RL100

dynamics. For both dynamics one language region of language Lh emerged
in almost every case, while La language regions either never emerged, or
failed to stabilize, thus eventually disappeared.

Both experiments reveal that the resulting transitivity and average clus-

tering values don’t distinctively differ from the expected average values.

Note that this is inevitable since a sub-network’s structural features ap-

proach the structural features of the whole network with increasing size.

The salient result is the extreme dominance of the Lh language on scale-

free networks that outperforms the result for Horn games on β-graphs (Ex-

periment III). The reason for this phenomenon can be deduced from the fact

that founding fathers on β-graphs and scale-free networks differ strongly.

On β-graphs there are more than twice as many founding fathers in local

areas that can establish their language in the innovation phase. Conse-

quently, the probability of founding fathers that initialize a La language

region is higher. Furthermore, such starters of innovation operate in local

terrain that provides a fast local spread and stabilization of the language.

Thus, the initialized La language regions often establish a strong barrier

against other languages. Consequently, they have a higher chance to sur-

vive in a network that is dominated by the Lh language.

On the contrary, many fewer of the founding fathers evolve in scale-free

networks, thus the probability of initiating an La language region is small

whole data set reveals that La language regions emerged also for BL∞ dynamics, but
much less frequent than the already infrequent occurrences of La language regions for
RL100 dynamics.
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Figure 5.16: Density, average clustering and transitivity of the resulting
language region (y-axis) in comparison with expected average values from
randomly chosen subgraphs (solid lines, sub-graph size n along the x-axis).
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in the first place. Furthermore, those agents are locally connected and

probably strongly influenced by other founding fathers since all of them are

super-influential globetrotters. In addition, since local clustered terrain is

rare, a strong barrier against a Lh majority is hard to establish. Thus even

a spark of such an La language region is readily extinguished.

Agent Analysis

To analyze the relationship between an agent’s a) individual learning profile

and b) static network properties, I started two analyses for each learning

dynamics: in Analysis IV(a) I partitioned all agents in learners and non-

learners, in Analysis IV(b) in interior agents and marginal agents of the

final populations of all runs. For each partition I computed the average

values of the the agents’ network properties. The resulting values for RL100

dynamics are depicted as box plots in Figure 5.17.

The results resemble by and large the results of Analysis II(a) and II(b)

for agents playing the Lewis game on scale-free networks (see Figure 5.9),

but with an interesting salient deviation. The non-learners revel outstanding

high DC and BC values and an outstanding low clustering value CL. Note

that these characteristics resemble those of super-globetrotters, the type of

agents that established the founding fathers in Experiment II (see e.g. Figure

5.11). This leads to the following conclusions for agents playing the Horn

game on scale-free networks:

1. Interior agents tend to be family men; marginal agents tend to be

globetrotters

2. Learners have characteristics of family men; non-learners those of

super-globetrotters

A reasonable explanation for how super-globetrotters are finally non-

learners is as follows: Experiment II revealed that super-globetrotters con-

stitute founding fathers. But in those experiments the agents played the

Lewis game and both languages survived and stabilized. As opposed to

this, in Experiment IV agents played the Horn game and while Lh takes

over the whole population, La is driven to extinction in the end. Thus,

if some of these super-globetrotters initially learned the language La, they

became temporary founding fathers. But at one point language Lh has been

acquired by the majority of the society; and this majority drives the minor-

ity of La learners to extinction. As a consequence, the temporary founding
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Figure 5.17: Box plot of data from Analysis IV(a) and IV(b)

fathers of La have to relearn and adopt Lh, a process that takes generally

long and turns them finally into non-learners, when 90% of the society has

already learned Lh.

All in all, for agents playing the Horn game on a scale-free network,

the group of super-globetrotters is split into two in a temporal sense com-

pletely opposed groups: i) founding fathers, thus early-learners, and ii)

non-learners, thus, in a technical sense, late-learners as well.

5.2 Conclusion

First, I want to peer at the results of Chapter 5 through the lens provided

by the research question that arose in Chapter 4: under what circumstances

can we expect languages other than the expected Horn language to emerge,
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BL∞ RL100

β-graphs 26% 63%

scale-free networks 1% 6%

Table 5.4: Percentage of simulation runs where La language regions stabi-
lized for different combinations of network structure and learning dynamics.

under the precondition of initially unbiased agents? In Chapter 4 I gave

an initial answer, namely that for experiments on an idealized society like

a toroid lattice structure, the only language that can emerge and stabi-

lize next to the Horn language is its counterpart, the anti-Horn language.

Furthermore, those anti-Horn language learners emerged in local regions,

sharing the society with regions of Horn language learners. Thus, the emer-

gence of a language other than the Horn language goes hand in hand with

the emergence of multiple signaling language regions. I was further able to

show that the emergence of multiple language regions for Horn game ex-

periments is, among other things, also supported by a moderately flexible

learning dynamics (Level 1), weak game parameters and a local communi-

cation structure.

In this chapter I conducted experiments with flexibility level 1 alone

(BL∞ and RL100 dynamics) and only with the standard parameters of

the Horn game (normal Horn game HG). I was chiefly interested in the

ways different social network structures are conducive or detrimental to

the emergence of local meaning. My results of Experiment III (Horn game

on β-graphs) and Experiment IV (Horn game on scale-free networks) re-

vealed the following causal relationships: the emergence of multiple lan-

guage regions for Horn games, and therefore the emergence of La language

regions, is stronger supported by a more locally structured small-world net-

work (namely a β-graph), than by a globally and hierarchically organized

small-world network (namely a scale-free network). The corresponding re-

sults of Experiment III and IV are depicted in Table 5.4: the percentage of

simulation runs where also La language regions emerged and stabilized.

The results of Table 5.4 also reveal that the RL100 dynamics is more sup-

portive for the emergence of multiple language regions in comparison with

the BL∞ dynamics. The more substantial difference, however, is made by

the network structure. The supporting contribution of the more locally

structured β-graph to the emergence of multiple language regions is analo-

gous to the results of the social map experiments of Chapter 4: a high the

degree of locality supported the probability of multiple language regions
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emerging. Thus, the analysis of the Horn game in this chapter did not re-

veal crucially new insights to explain the emergence of anti-Horn language

regions that weren’t already featured in the analyses of Chapter 4.

In addition, the analyses of this chapter revealed a more general question

from the very beginning of this thesis: how do linguistic conventions arise

and stabilize? In Experiment I and II this research question was investi-

gated by examining, in particular, structural properties of real-world social

networks. I showed that for a given small-world network the emergence of

local language regions is supported by specific structural network properties

and the developmental process is guided by specific agent roles that are

correlated to particular node properties.

In detail, the analysis of structural properties revealed that sub-networks

that constitute language regions have higher local density values12, but

a similar global density value in comparison with randomly chosen sub-

networks of the same size. This result implies that a locally dense structure

supports the emergence and stability of local conventions. I was able to

support this result with Analysis I: the analysis of agent types on β-graphs.

The results showed that the stabilization of a language region depends on

the so-called family men: agents that are strongly embedded in a dense

local structure, but without strong global connections or a central position

in the network.

The comparison of Analysis III and IV revealed that those family men

are important as stabilizers for the preservation of small local speech com-

munities, e.g. like La language regions. This result is in accord with studies

from sociolinguistics that deal with the influence of network structure on

language variation and change in human societies. For example, Milroy

and Margrain (1980) came to the conclusion that ”closeness to vernacular

speech norms correlates positively with the level of individual integration

into local community network.” (page 44).

The role of family men in the developmental process of language regions

is to constitute the selection and propagation phase. This phase triggers

a quick convergence to adopting a convention on a local scale. Studies

in sociolinguistics purport that this type has a catalytic role in linguistic

change. E.g. Labov (1994) postulates that language change emerges when

other speakers start adopting and using innovations conventionally; or as

Wolfram and Schilling-Estes (2003) pointed out: ”it is not the act of inno-

12To be precise: language regions have higher individual clustering values on scale-free
networks and additional higher transitivity values on β-graphs.
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vation that changes language, but the act of influence that instantiates it.”

(page 733).

But before family men select, propagate and stabilize, another type of

agent initiates language spread: the so-called founding father constitutes

the innovation phase of the developmental process of a language region. I

showed in Analysis I and II that the properties of those founding fathers

depend on the structure of the network. In more locally structured small-

world networks like β-graphs the founding fathers of language regions were

highly connected family men, while in globally and hierarchically organized

scale-free networks the founding fathers were super-globetrotters: agents

with high local and global centrality values and a very low clustering value.

Both types of founding fathers are in accordance with findings of studies

in sociolinguistics. E.g. Fagyal et al. (2010) mention that i) ”charismatic

leaders with strong ties to the local community have also been identified as

innovators...” (page 4), and furthermore ii) ”The near-equivalents of such

central figures in other studies (Labov 2001; Mendoza-Denton 2008) led to

the proposal that leaders of language change are centrally connected, highly

visible individuals whose influence can extend beyond their own personal

networks.” (page 5).

To sum up, the results suggest the following conclusion: while the type

of innovators for language emergence or change strongly depends on the

structural properties of the network, the type that spreads and stabilizes

local language is generally found in a dense local structure, regardless of the

type of the social network.





Chapter 6

Summary

This Ph.D. project focused on the evolution and emergence of conventions

and the search for an answer to the question posed by Lewis (1969): how can

linguistic meaning arise and become a convention without prior agreements?

By considering that agreements need language, we would come to a paradox:

language is needed for language to emerge. Lewis paved the way for refuting

this paradox by showing that, with the game-theoretic model of a signaling

game, conventional linguistic meaning can arise without such agreements.

In this project I considered two specific kinds of signaling games: the

Lewis game and the Horn game. These games models have, respectively,

neutral and biased preferences towards selecting signaling conventions. They

were chosen based on their broad coverage of phenomena in language, as

some conventions are driven purely by the need to arbitrarily coordinate on

meaning, and others arise with a bias built in towards some form or mean-

ing. By taking these two games into account, I passed through the forests

of literature dealing with population-based accounts of signaling games in

search for the answer as to how certain signaling conventions could arise in

societies of interacting agents. My journey started with concepts from evolu-

tionary game theory via more individual-based imitation dynamics through

to the core field of my research: learning dynamics on heterogeneous network

structures.

In tandem with the basic question of How do linguistic conventions

arise?, further questions arose during my research, in particular the ques-

tions of What causes regional meaning? and Why is the Horn strategy pre-

dominant? In my experimental results and analyses I tried to find satisfying

185
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answers.

6.1 How Do Linguistic Conventions Arise?

The initial question of the introduction was as follows: how can linguistic

meaning emerge as a convention among language users, even by no explicit

agreements? In Chapter 1 I introduced the signaling game as the linchpin

of my analysis of the emergence of convention. With the Lewis game I pre-

sented an initial example that Lewis used to introduce his model. Lewis’s

example shows that a successful signaling strategy represents a code of coor-

dinated signaling behavior: a signaling system. And such a signaling system

has interesting properties since it i) forms a Nash equilibrium and there-

fore reveals a high degree of stability, ii) renders successful communication

and finally iii) ascribes a meaning to a signaling message. Thus a signal-

ing system can model a linguistic convention that is optimally efficient and

stable.

Lewis’s example itself illustrates a one-shot game of a signaling game

with explicit agreement about the signaling strategy. Thus, a signaling

system can illustrate how a convention may stabilize, but to answer the

question of how a linguistic convention might emerge, it is necessary to look

for a model that represents a process rather than a single situation. This

led me to models of repeated signaling games combined with update dy-

namics. In addition, Lewis’s example depicts a situation where a successful

communication strategy depends on previously made explicit agreements.

Thus the challenge lies in the question of how might such a strategy emerge

without such an agreement?

As a first example for repeated games with update dynamics, I intro-

duced the update rule myopic best response in Chapter 1. I showed that the

probabilistic version of this dynamics eventually leads to an equilibrium: a

final situation of communication via a signaling system. Myopic best re-

sponse represents an update rule that demands that players have a degree of

rationality. Consequently, I posed the following question: is an assumption

like rationality necessary to explain the emergence of signaling systems, or

are lesser assumptions sufficient?

In Chapter 2 I wanted to answer this question by applying an update

dynamics that considers no assumption of rationality. I started with a

well-known evolutionary dynamics account that elides the behavior of indi-

vidual players in favor of the behavior of shares of a whole population: the
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replicator dynamics. Various analyses revealed that a population playing

the Lewis game and updating by the replicator dynamics results in a state

where the whole population adapts the same evolutionary stable strategy.

Such a strategy is necessarily a signaling system since it can be shown that

signaling systems are the only evolutionary stable strategies of the Lewis

game.

Thus it seems that I can abort my research at this point since the results

for signaling games in combination with replicator dynamics reveal that

the process by which signaling systems emerge and constitute linguistic

conventions can be explained without cognitive ability, let alone rationality.

It is here that we move to a quote by Huttegger and Zollman (2011): is the

replicator dynamics an appropriate approximation for models of individual

learning?

To answer this question I switched from a population-based macro-level

perspective to an individual-based micro-level perspective by applying imi-

tation dynamics as update mechanism for agents playing repeated signaling

games. To be more concrete, I applied the imitation rule conditional im-

itation: with a specific probability that an agent adopts the strategy of a

neighbor in the next round of play, but only if the latter scored better in

the current round. Consequently, I started experiments with population of

agents that interact with randomly chosen partners by playing the Lewis

game and updating with conditional imitation. The results were akin to

results of experiments with the replicator dynamics. This resembles what

also other studies revealed: the replicator dynamics describes the most likely

path of strategy distributions in a virtually infinite and homogeneous pop-

ulation when every agent updates her behavior by conditional imitation.

Notice that this accordance between replicator dynamics and imitation

dynamics holds for homogeneous populations. Thus one further direction

was to conduct experiments on heterogeneous population structures, in part

because language change occurs in human societies, none of which are uni-

formly connected. For that purpose I analyzed imitation dynamics on a

toroid lattice structure with the result that regional meaning emerged, some

for one, some for the other signaling system.

Another direction was the switch to a more elaborated class of update

dynamics: learning dynamics. While imitation dynamics incorporate a fea-

ture called ignorance of previous interactions, learning dynamics incorpo-

rate a history of previous interactions for the decision finding process and

additionally allow for a more fine-grained version of a signaling game: the

dynamic or sequential signaling game. Furthermore, with the goal of an-
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alyzing the importance of rationality, I applied two learning dynamics: i)

reinforcement learning which decisions are made in a non-rational way, and

ii) belief learning which is combined with the rational best response dynam-

ics.

My experiments confirmed that there are significant similarities between

reinforcement learning and the replicator dynamics. The same holds for be-

lief learning by presupposing a homogeneous population structure. However,

similar to the results for imitation on a lattice structure, I also found that

for learning dynamics, the results differ strongly when adapting them to

more heterogeneous population structures: the emergence of regional mean-

ing occurs. We can draw from this that the structure of a society has a

considerable impact on the evolutionary progression of the emergence of

conventions. This brought with it a new question: what causes regional

meaning to emerge in heterogeneous population structures.

6.2 What Causes Regional Meaning?

In Chapter 4 I dealt with the question of what circumstances cause re-

gional meaning to emerge. For that purpose I conducted experiments of

agents playing the Lewis game on a toroid lattice and updating via learning

dynamics. To examine the impact of rationality I applied reinforcement

learning and belief learning as well. To ensure that agents are initially

completely neutral to any decision, the simulation runs of my experiments

started with completely unbiased agents. This excluded any tendency that

might have delineated a previously made explicit agreement

In general, the resulting structure was either i) a society of multiple

local language regions of both signaling systems, or ii) a uniform society,

where every member behaves according to one of both signaling systems.

There were principally two factors that affected the probability of regional

meaning emerging. The first factor concerns the psychology of agents: it

turned out that the highest probability of the emergence of regional mean-

ing is triggered by an intermediate degree of flexibility of the agents’ update

dynamics.1 The second factor concerns the sociology of the community. Ad-

ditional experiments on a social map, an innovation allowing for a constantly

changing web of communication partners, revealed that the emergence of

1Note that the choice of the learning dynamics, if reinforcement or belief learning,
has an indirect influence since, all else being equal, belief learning has a higher degree
of flexibility. But in combination with limited/unlimited memory both dynamics can be
classed with the same degree of flexibility.
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regional meaning is strengthened by a high degree of locality supporting

local communication structures.

In Chapter 5 I conducted similar experiments, but on more realistic

network structures: so-called small-world networks. Again, I wanted to an-

alyze the circumstances for the cause of regional meaning, but the focus

here was the way in which specific structural network properties and agent

types are involved in particular phases of the developmental process of the

emergence of regional meaning. The general results underlined the results of

Chapter 4: a local communication structure supports the emergence of re-

gional meaning. Because of the heterogeneous network structures, concepts

from network theory were applied, allowing for a more detailed analysis of

structural patterns.

It turned out that specific agent types, in terms of individual network

properties, undertake particular roles for the process of the emergence of

regional meaning: on more locally structured small-world networks regional

meaning is i) initialized by highly connected local leaders and ii) stabilized

by sparsely connected locally embedded agents. On globally and hierar-

chically organized small-world networks, the stabilizers of regional meaning

are also sparsely connected locally embedded agents, but this time the ini-

tializers are super-connected global players.

6.3 Why is the Horn Strategy Predominant?

While the Lewis game represents a symmetric variant of a signaling game

with two equally probable information states, two messages and two inter-

pretation states, I was also interested in how an asymmetric version of such

a signaling game may change the path of a linguistic convention’s emer-

gence. Therefore I introduced a game that has distinct probability values

and message costs. This game i) models some of the incentives behind

the linguistic phenomenon known as the division of pragmatic labor (a.k.a.

Horn’s rule), and ii) is consequently called the Horn game. Much like be-

fore, the Horn game has two signaling systems. One system describes a

system of communication that associates frequent states with cheaper sig-

nals, and is therefore called a Horn strategy in reference to Horn’s parallel

claim on the division of pragmatic labor. The other system depicts exactly

the opposite behavior, thus it is called anti-Horn strategy.

Both possible signaling systems, Horn and anti-Horn strategy, have dif-

ferent manifestations of efficiency, but both ensure successful communica-
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tion and a specific degree of stability. A third strategy also plays a notable

role in the process of the emergence of convention: the so-called Smolensky

strategy. Thus while it is assumed that Horn’s rule is a determinative factor

for the evolution of meaning, the appropriate Horn strategy seems to have

with the anti-Horn and Smolensky strategy notable competitors. I was thus

interested in the reasons that explain the predominance of Horn’s rule. At

the same time I wanted to find exactly which circumstances support the

evolution of meaning according to strategies other than Horn’s rule.

In Chapter 2 I gave an overview of a wide range of literature dealing with

analyses of the Horn game in evolutionary game theory, in particular via

the replicator dynamics. As a basic result, it turned out that at least three

factors support emergence of conventions according to the Horn strategy:

i) specific starting conditions, ii) a high mutation rate and iii) correlation

of interactions.

In my own experiments I conducted the Horn game in combination with

imitation dynamics on different network structures and analyzed how the

share of initial population space, the so-called basin of attraction, was dis-

tributed among the Horn, anti-Horn and Smolensky strategy. The basic

result was as follows: the more local the network structure, i) the lower the

conformity to results of the replicator dynamics, ii) the lower the basin of

attraction of Smolensky strategy, and iii) the higher the basin of attraction

of anti-Horn strategy. Interestingly, the basin of attraction of the Horn

strategy was (almost) completely independent of the network structure and

always around 50%. Nevertheless, the results revealed some of the first hints

of how the structure of society may change the results already obtained by

applying evolutionary dynamics like replicator dynamics.

In Chapter 4 I was able to show that factors supporting the emergence

of multiple areas of regional meaning for the Lewis game, namely an inter-

mediate degree of flexibility and a high degree of locality, also support the

emergence of multiple regions for the Horn game. Such a resulting struc-

ture is segmented in regions for Horn and anti-Horn strategy as well, where

the Horn strategy players were generally superior in number. Moreover, a

third factor influenced the emergence of regional meaning: the strength of

Horn parameters that delineated the differences between probability and

message cost values in a Horn game. The experiments revealed that the

stronger the Horn parameters are, the lower the probability that regional

meaning evolves is. In cases where no regional meaning emerges, the whole

society behaves according to Horn’s rule. All in all, the results showed that

circumstances supporting the emergence of regional meaning support the
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emergence of conventions according to the anti-Horn strategy.

The small-world network experiments of Chapter 5 revealed similar re-

sults: a more locally dense network supports the emergence of regional

meaning and therefore conventions according to the anti-Horn strategy. In-

terestingly, in almost every experiment of Chapter 4 and Chapter 5, behav-

ior according to the Smolensky strategy also evolved, but this was (almost)

always temporary and in initial phases of the simulation runs. Thus, with

regard to heterogeneous network structures, the anti-Horn strategy features

a specific degree of stability, although its emergence and stabilization pro-

cess depends on several environmental factors. The Smolensky strategy,

on the other hand, is adopted all along and nearly independently of envi-

ronmental factors, but it lacks stability and will therefore die out. In the

end, the Horn strategy turned out to be the strategy used predominantly

and, in dependence of the aforementioned factors, it was either the only

society-wide strategy or at least used by the majority of the population.

6.4 Conclusion

The technical outcome of my dissertation is an extended and refined game

model of signaling games concerned with the analysis of language conven-

tions. Only this model combines features that fulfill two essential precon-

ditions that were missing in Lewis’s original account. These must be kept

for analyzing the way linguistic meaning arises and becomes a convention

without prior agreements:

1. The first precondition is that we must analyze signaling games for a

whole population of agents and not only among two players of the

game. Such an analysis is essential to cope with the nature of con-

ventions that generally emerge in societies of multiple individuals. In

this dissertation, I introduced network games and applied them on

artificial and social network structures to meet this precondition.

2. The second precondition is that we must model a process of the emer-

gence of meaning without prior agreements. In this dissertation I

applied repeated signaling games to model a process rather than an

instance. In addition, I applied learning dynamics that permit agents

to be initially unbiased in mind and behavior. Such an initial situa-

tion is essential to eliminate any possibility that previous influences

like prior agreements existed.
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The analytical outcome of this dissertation is a line of experimental

results that revealed particular dependencies between factors that impact

on the way linguistic meaning may arise. In short, these experiments showed

two things:

1. First, the psychology of agents, in terms of update dynamics that guide

their decision making process, does not have an essential impact on the

final outcome. Whether evolutionary dynamics, imitation dynamics,

or learning dynamics are applied, the result is a similar process of how

linguistic meaning evolve. This holds exclusively for homogeneous

populations.

2. Second, the sociology of agents plays an essential role. The way agents

are structured and arranged inside a population has an impact on the

way linguistic meaning evolves that cannot be ignored. In particu-

lar, I showed that locally organized interaction structures support the

emergence of multiple meanings. On top of that, agents in heteroge-

neous population structures initiate different types of linguistic change

based on their in the social network.

The second result highlights the importance of social structure in lan-

guage evolution. By understanding how agents connect with each other, we

can learn something about how language change. My hope for this disserta-

tion is that I will motivate other researchers to understand the connections

between games, networks, and the fields of pragmatics, sociolinguistics, and

language evolution.



Chapter 7

Zusammenfassung

Diese Doktorarbeit behandelt schwerpunktmäßig den Entstehungsprozess

von Konventionen und diesbezüglich die Suche nach einer Antwort auf eine

Frage, die sich bereits Lewis (1969) stellte: Wie kann sprachliche Bedeutung

entstehen und zur Konvention werden, wenn davon auszugehen ist, dass es

im Vorfeld keine Absprache gab, die diese Konvention festlegte? Denn von

der Annahme ausgehend, dass Absprache Sprache verlangt, würde es zu

einem Paradoxon führen, Absprachen als Anfangspunkte der Sprachevo-

lution zu verorten. Lewis ebnete den Weg, dieses Paradoxon aufzulösen,

indem er mithilfe des spieltheoretischen Modells des Signalspiels aufzeigte,

wie konventionelle sprachliche Bedeutung ohne Absprachen entstehen kann.

In dieser Dissertation entwickelte ich Lewis’ Modell weiter, um detail-

liertere Einsichten zu bekommen, welche Faktoren den Entstehungsprozess

von Konventionen in vielschichtiger Hinsicht beeinflussen können. Das tech-

nische Resultat ist ein erweitertes und verfeinertes spieltheoretisches Modell

des Signalspieles. Mein Modell vereinigt Eigenschaften, welche zwei Bedin-

gungen erfüllen, die im Bezug auf den Entstehungsprozess von Sprachkon-

ventionen essentiell sind:

� Die erste Bedingung lautet: Signalspiele sollten auf Populationen ange-

wendet werden, da es der Natur der Sprachkonvention entspricht, in

solchen zu entstehen. Daher überführte ich die Standard-2-Spieler-

Signalspiele in Netzwerkspiele, um Simulationsläufe auf künstlichen

sozialen Netzwerkstrukturen durchzuführen.

� Die zweite Bedingung lautet: Konventionen müssen in einem Prozess
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entstehen, der vorherige Absprachen vollständig ausschließt. Um einen

Prozess zu simulieren, verwendete ich in meinen Experimenten wieder-

holte Signalspiele in Kombination mit Lerndynamiken. Um eine Ten-

denz möglicher vorheriger Absprachen auszuschließen, startete ich

die Simulationen mit Agenten, die anfänglich völlig gleichgültig hin-

sichtlich ihrer Präferenzen waren und ihre erste Entscheidung zufällig

trafen.

Das Ergebnis meiner Experimente und Analysen ist eine Entschlüsselung

von Zusammenhängen, die den Entstehungsprozess von Sprachkonventionen

maßgeblich beeinflussen. Die Experimente zeigten Folgendes:

� Die Psychologie der Agenten in Form von Update-Dynamiken, die zur

Entscheidungsfindung beitragen, spielt keine große Rolle im Entste-

hungsprozess von Sprachkonventionen: Experimente mit Update- Dy-

namiken aus verschiedenen Feldern, wie etwa Evolutionsdynamiken,

Imitationsdynamiken und Lerndynamiken, zeigten keine maßgeblichen

Unterschiede in den Ergebnissen hinsichtlich des Entstehungsprozesses.

Allerdings galt diese Beobachtung nur für Experimente auf homoge-

nen Populationsstrukturen.

� Die Soziologie der Agenten in Form ihrer Populationsstruktur dagegen

spielt eine sehr wichtige Rolle im Entstehungsprozess von Sprachkon-

ventionen: Es zeigte sich in Experimenten auf Torus-förmigen Git-

ternetzwerken und sogenannten Small-World -Netzwerken, dass lokale

Interaktionsstrukturen die Entstehung regionaler Sprachkonventionen

unterstützen. Des Weiteren nahmen Agenten unterschiedlich Rollen

und Aufgaben im Entstehungsprozess von Sprachkonventionen ein, die

im hohen Maße abhängig von der individuellen Position im Netzwerk

waren.

Das zweite Ergebnis unterstreicht die Wichtigkeit von sozialer Struktur

in Bereichen wie Sprachwandel und Sprachevolution. Um besser zu ver-

stehen, wie Sprache entstanden ist, lohnt es sich, einen Blick darauf zu

werfen, wie Gesellschaften strukturiert sind. Ich hoffe mit dieser Disserta-

tion tiefere Erkenntnisse über die Zusammenhänge a) von Methoden aus

Spieltheorie und Netzwerktheorie und b) zwischen verschiedenen Feldern,

wie Pragmatik, Soziolinguistik und Sprachevolution aufzuzeigen.
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hard, and van Rooij, Robert, editors, Language, games, and evolution,

pages 160–176. Springer-Verlag, 2011.

Jackson, Matthew O. Social and Economic Networks. Princeton University

Press, 2008.
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Jäger, Gerhard. Evolutionary stability conditions for signaling games with

costly signals. Journal of Theoretical Biology, pages 131–141, 2008.



198 BIBLIOGRAPHY

Ke, Jinyun; Gong, Tao, and Wang, William S-Y. Language change and

social networks. Communications in Computational Physics, 3(4):935–

949, 2008.

Labov, William. Principles Of Linguistic Change: Internal Factors. Black-

well, 1994.

Labov, William. Principles Of Linguistic Change: Social Factors. Blackwell,

2001.

Lentz, Tom and Blutner, Reinhard. Signalling games: Evolutionary conver-

gence on optimality. In Papers on Pragmasemantics, pages 95–110. ZAS

(Zentrum für Allgemeine Sprachwissenschaft), 2009.

Lewis, David. Convention. A philosophical study. Havard University Press,

1969.

Longfellow, Henry Wadsworth. Paul Revere’s ride. In Tales of a Wayside

Inn, pages 18–25. Ticknor and Fields, 1863.

Malawski, Marcin. Some Learning Processes in Population Games. Instytut

Podstaw Informatyki Polskiej Akademii Nauk, 1990.

Marx, Karl. Grundrisse: Foundations of the Critique of Political Economy.

Penguin UK, 2005.

Maynard Smith, John. Evolution and the Theory of Games. Cambridge

University Press, 1982.

Maynard Smith, John and Price, George. The logic of animal conflict.

Nature, (146):15–18, 1973.

Mendoza-Denton, Norma. Home Girls. Blackwell, 2008.

Milroy, Lesley and Margrain, Sue. Vernacular language loyalty and social

network. Language in Society, 9:43–70, 1980.

Mühlenbernd, Roland. Learning with neighbours. Synthese, 183(S1):87–

109, 2011.

Mühlenbernd, Roland and Franke, Michael. Signaling conventions: who

learns what where and when in a social network. In Proceedings of

EvoLang IX, pages 242–249, 2012a.



BIBLIOGRAPHY 199

Mühlenbernd, Roland and Franke, Michael. Simulating the emergence of

conventions in small-world networks. In Proceedings of the 21st Annual

Conference on Behavior Representation in Modeling and Simulation 2012,

pages 37–43, 2012b.

Mühlenbernd, Roland and Franke, Michael. Signaling conventions in small-

world networks. In Pre-Proceedings of Linguistic Evidence 12, pages 283–

288, 2012c.

Myerson, Roger B. Game Theory: Analysis of Conflict. Harvard University

Press, 1991.

Nettle, Daniel. Using social impact theory to simulate language change.

Lingua, 108(2–3):95–117, 1999.

Nowak, Martin A.; Komarova, Natalia L., and Niyogi, Partha. Computa-

tional and evolutionary aspects of language. Nature, 417:611–617, 2002.

Quine, Willard Van Orman. Truth by convention. In The Ways of Paradox

and other Essays, pages 70–99. 1966.

Roth, Alvin E. and Erev, Ido. Learning in extensive-form games: Experi-

mental data and simple dynamic models in the intermediate term. Games

and Economic Behaviour, 8:164–212, 1995.

Russell, Bertrand. The Analysis of Mind. Unwin Brothers Ltd, 1921.

Schaden, Gerhard. Say hello to markedness. In Proceedings of DEAL II,

pages 73–97, 2008.

Schlag, Karl H. Why imitate, and if so, how? Journal of Economic Theory,

78(1):130–156, 1998.

Schuster, Peter and Sigmund, Karl. Replicator dynamics. Journal of The-

oretical Biology, 100:535–538, 1983.

Selten, Reinhard. A note on evolutionarily stable strategies in asymmetric

animal conflicts. Journal of Theoretical Biology, 84:93–101, 1980.

Skyrms, Brian. Darwin meets the logic of decision: Correlation in evolu-

tionary game theory. Philosophy of Science, 61(4):503–528, 1994.

Skyrms, Brian. Evolution of the Social Contract. Cambridge University

Press, 1996.



200 BIBLIOGRAPHY

Skyrms, Brian. Stability and explanatory significance of some simple evo-

lutionary models. Philosophy of Science, 67(1):94–113, 2000.

Skyrms, Brian. Signals: Evolution, Learning and Information. Oxford

University Press, 2010.

Smith, Adam. Considerations concerning the first formation of languages.

Reprinted (2000) in: The Theory of Moral Sentiments, pages 505–538,

1761.

Spence, Michael. Job market signaling. Quarterly Journal of Economics,

87(3):355–374, 1973.

Taylor, Peter D. and Jonker, Leo B. Evolutionarily stable strategies and

game dynamics. Mathematical Biosciences, 40:145–156, 1978.

Tesar, Bruce and Smolensky, Paul. Learnability in optimality theory. Lin-

guistic Inquiry, 29:229–268, 1998.

van Rooij, Robert. Signaling games select Horn strategies. Linguistics and

Philosophy, 27:493–527, 2004.

van Rooij, Robert. Games and quantity implicatures. Journal of Economic

Methodology, 15(3):261–274, 2008.

Vanderschraaf, Peter. Knowledge, equilibrium and convention. Erkenntnis,

49:337–369, 1998.

Vega-Redondo, Fernando. Evolution, Games, and Economic Behaviour.

The MIT Press, 1996.

Wagner, Elliott. Communication and structured correlation. Erkenntnis,

71(3):377–393, 2009.

Wärneryd, Karl. Cheap talk, coordination, and evolutionary stability.

Games and Economic Behaviore, 5:532–546, 1993.

Watts, Duncan J. and Strogatz, Steven H. Collective dynamics of small-

world networks. Nature, 393:440–442, 1998.

Weinreich, Uriel; Labov, William, and Herzog, Marvin. Empirical foun-

dations for a theory of language change. In Directions for Historical

Linguistics, pages 95–195. Austin: University of Texas Press, 1968.



BIBLIOGRAPHY 201

Wolfram, Walt and Schilling-Estes, Natalie. Dialectology and linguistic dif-

fusion. In The Handbook of Historical Linguistics, pages 509–528. Black-

well, 2003.

Young, H. Peyton. Individual Strategy and Social Structure: An Evolution-

ary Theory of Institutions. Princeton University Press, 1998.

Zeeman, Erik C. Population dynamics from game theory. In Global Theory

of Dynamical Systems: Proceedings of an International Conference Held

at Northwestern University, pages 471–497, 1980.
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Appendix A

Proofs

Proof A.1. For the decision algorithm weighted edge (WE) by choosing

an edge {i, j} ∈ E of a network G = (N,E) with probability 4
|N |×(d(i)+d(j)) ,

the probability for a node i and therefire agent zi to be chosen as sender or

receiver is 1
|N | and therefore equiprobable for each node.

Proof. First of all note that the probability of choosing a node i by a ran-

domly chosen edge {i, j} depends on the degree and is therefore:

Pr(i) =
d(i)

2× |E|

Furthermore by reconsidering that an edge {i, j} has two nodes and each

node is chosen equiprobable either as sender S or receiver R, we can write:

Pr(zi = S) = Pr(zi = R) =
1

2
×
(

d(i)

2× |E|
+

d(j)

2× |E|

)
1

2
× d(i) + d(j)

2× |E|
d(i) + d(j)

4× |E|
1

E
× d(i) + d(j)

4

Now by reconsidering that the WE-algorithm does not choose an edge

equiprobably randomly, but with probability 4
|N |×(d(i)+d(j)) , we just have to
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substitute 1
E

with this probability and thus get:

Pr(zi = S) = Pr(zi = R) =
4

|N | × (d(i) + d(j))
× d(i) + d(j)

4

=
4× (d(i) + d(j))

|N | × (d(i) + d(j))× 4

=
1

|N |

(A.1)

Proof A.2. For a toroid lattice of n×n agents and the predefined probability

function of communication partner allocation Pr(x, y)γ the probability of

agents x to be allocated with any agent y ∈ Y = X \ {x} is equiprobable

among Y iff γ = 0 and therefore: ∀x, y ∈ X : Pr(x, y)0 = 1
|Y | = 1

n2−1 .

Proof.

Pr(x, y)0 = P0(d)× 1

8× d

=
8× d

d0

η(0, d)
× 1

8× d
(see Definition 3.31)

=
8× d
η(0, d)

× 1

8× d

=
1

η(0, d)

=
1

n2 − 1
(∀d : η(0, d) = n2 − 1, see Proof A.4)

(A.2)

Proof A.3. For a toroid lattice of 21× 21 agents and the predefined proba-

bility function of communication partner allocation Pγ(d) the probability of

agents an x to be allocated with any direct neighbor y ∈ |N1(x)| is > 0.99,

if γ = 8; and therefore the interaction structure is close to neighborhood

communication.
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Proof. ∀x ∈ X : ∀y ∈ N1(x), n = 21 :

P8(1) =
8× 1

10

η(8, 1)

=
8

η(8, 1)

=
8(

b21/2c∑
d=1

8× d
d8

)
+
(
b21+1

2
c − 21+1

2

)
× (4× 21 + 2)

=
8

8×
(

10∑
d=1

1
d7

)
+ (11− 11)× 86

=
1

10∑
d=1

1
d7

=
1

1.008349155

= 0.99172

(A.3)

Proof A.4. Given is a n × n social map. If the degree of locality γ is 0,

then η (the denominator and normalizer of Pγ) is n2 − 1 for all distances

d ≤ bn/2c, thus: ∀d : η(0, d) = n2 − 1

For this proof it is necessary to distinguish between n is even or odd. Re-

mark: if n is even: bn/2c = n/2, if n is odd: bn/2c = (n− 1)/2.

Proof. a) n is even
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η(0, d) =

bn/2c∑
d=1

8× d/d0
+

(⌊
n+ 1

2

⌋
− n+ 1

2

)
× (4n+ 2)

= 8×

bn/2c∑
d=1

d

+

(⌊
n+ 1

2

⌋
− n+ 1

2

)
× (4n+ 2)

= 8×
(
bn/2c

2
× (bn/2c+ 1)

)
+

(
n

2
− n+ 1

2

)
× (4n+ 2)

= 8×
(n

4
×
(n

2
+ 1
))

+

(
−1

2

)
× (4n+ 2)

= 8×
(
n2

8
+
n

4

)
− 2n− 1

= n2 + 2n− 2n− 1

= n2 − 1

Proof. b) n is odd

η(0, d) =

bn/2c∑
d=1

8× d/d0
+

(⌊
n+ 1

2

⌋
− n+ 1

2

)
× (4n+ 2)

= 8×

bn/2c∑
d=1

d

+

(⌊
n+ 1

2

⌋
− n+ 1

2

)
× (4n+ 2)

= 8×
(
bn/2c

2
× (bn/2c+ 1)

)
+

(
n+ 1

2
− n+ 1

2

)
× (4n+ 2)

= 8×
(
n− 1

4
×
(
n− 1

2
+ 1

))
+ 0× (4n+ 2)

= 8×
(
n2 − 2n+ 1

8
+
n− 1

4

)
= n2 − 2n+ 1 + 2n− 2

= n2 − 1
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