
wolfgang maier

PA R S I N G D I S C O N T I N U O U S S T R U C T U R E S

PA R S I N G D I S C O N T I N U O U S S T R U C T U R E S

dissertation

zur Erlangung des akademischen Grades
Doktor der Philosophie

der Philosophischen Fakultät der
Eberhard Karls Universität Tübingen

vorgelegt von

Wolfgang Maier aus Göppingen

2013

Gedruckt mit Genehmigung der Philosophischen Fakultät
der Eberhard Karls Universität Tübingen

dekan:
Prof. Dr. Jürgen Leonhardt

hauptberichterstatter:
Prof. Dr. Laura Kallmeyer, Universität Düsseldorf

mitberichterstatter:
Prof. Dr. Erhard Hinrichs, Universität Tübingen
PD Dr. Frank Richter, Universität Tübingen

tag der mündlichen prüfung:
16. Oktober 2012

TOBIAS-lib, Tübingen

A B S T R A C T

The development of frameworks that allow to state grammars for nat-
ural languages in a mathematically precise way is a core task of the
field of computational linguistics. The same holds for the development
of techniques for finding the syntactic structure of a sentence given a
grammar, parsing. The focus of this thesis lies on data-driven parsing.
In this area, one uses probabilistic grammars that are extracted from
manually analyzed sentences coming from a treebank. The probabil-
ity model can be used for disambiguation, i. e., for finding the best
analysis of a sentence.

In the last decades, enormous progress has been achieved in the do-
main of data-driven parsing. Many current parsers are nevertheless
still limited in an important aspect: They cannot handle discontinu-
ous structures, a phenomenon which occurs especially frequently in
languages with a free word order. This is due to the fact that those
parsers are based on Probabilistic Context-Free Grammar (PCFG), a
framework that cannot model discontinuities.

In this thesis, I propose the use of Probabilistic Simple Range Con-
catenation Grammar (PSRCG), a natural extension of PCFG, for data-
driven parsing. Thereby, I bring together developments from different
areas, namely research on parsing German, on the quantification of
discontinuity in treebanks, and on formalisms which can model dis-
continuous structures. Not only theoretical aspects are treated. For the
first time, all techniques for direct data-driven parsing of discontinu-
ities have been implemented and tested in a real-world data-driven
parsing setting. The parser output quality and the parsing speed are
encouraging and prove the point of this work: An exploration of the
landscape of formal grammars beyond Context-Free Grammar with
regard to data-driven parsing is worth the effort for data-driven pars-
ing and opens the way for many new developments in the future, both
in parsing and beyond.

v

Z U S A M M E N FA S S U N G

Die Entwicklung formaler Systeme für die mathematisch präzise For-
mulierung einer Grammatik der natürlichen Sprache ist eine Kern-
aufgabe der Computerlinguistik. Dasselbe gilt für die Entwicklung
von Techniken für die Berechnung der syntaktischen Struktur eines
Satzes auf Basis einer Grammatik, Parsing. In dieser Dissertation steht
das datengetriebene Parsing im Vordergrund. Dabei werden von den
manuell annotierten Sätzen einer Baumbank extrahierte probabilisti-
sche Grammatiken benutzt. Das Wahrscheinlichkeitsmodell kann zur
Disambiguierung benutzt werden, d. h. zur Berechnung der besten
Analyse für einen gegebenen Satz.

In den vergangenen Jahrzehnten wurden in der Forschung zu daten-
getriebenem Parsing enorme Fortschritte erzielt. Nichtsdestotrotz sind
viele aktuelle Parser weiterhin in einem wichtigen Aspekt beschränkt:
Sie können nicht mit diskontinuierlichen Strukturen umgehen, einer
Art von Strukturen die besonders in Sprachen mit freier Wortstellung
häufig auftritt. Der Grund hierfür ist, dass diese Parser auf Probabilis-
tischer Kontextfreier Grammatik aufbauen, welche Diskontinuitäten
nicht modellieren kann.

In dieser Dissertation plädiere ich für die Benutzung von Probabilis-
tic Simple Range Concatenation Grammar, einer natürlichen Erweiterung
der Probabilistischen Kontextfreien Grammatik, für datengetriebenes
Parsing. Ich führe damit Entwicklungen aus verschiedenen Bereichen
zusammen: Forschung zum Parsing des Deutschen, zur Quantifizie-
rung von Diskontinuität in Baumbanken, und zu Formalismen, die
diskontinuierliche Strukturen modellieren können. Nicht nur theoreti-
sche Aspekte werden behandelt. Zum ersten Mal wurden alle Tech-
niken, die für direktes datengetriebenes Parsing von Diskontinuitäten
benötigt werden, implementiert und auf einem realistisch großen Da-
tensatz getestet. Die Qualität der Parserausgabe und die Parsingge-
schwindigkeit sind ermutigend und sprechen für den Ansatz dieser
Arbeit: Eine Erforschung der Landschaft der formalen Grammatiken
jenseits der Kontextfreien Grammatik lohnt sich für das datengetriebe-
ne Parsing und ebnet den Weg für viele Entwicklungen in der Zukunft,
im Parsing, und darüber hinaus.

vi

功遂身退,
天之道載。

Daodejing (Wang Bi), ch. 9, 9-10
Laozi

A C K N O W L E D G M E N T S

During the last years, many people have helped me to achieve the
completion of this work. While I extend my gratitude to all of them, I
want to mention those who particularly stand out.

In the first place, I wish to express my sincere thanks to my super-
visor Laura Kallmeyer. She motivated and encouraged me at all times
in the development and elaboration of my ideas in every way I could
have wished for. I am deeply grateful for her support and patience – I
could not have received a better supervision.

I very much enjoyed my time in the “Villa”. Thanks to my office
mate Timm Lichte, for countless fruitful academic discussions, and
also for the enjoyable off-time. Thanks to Yannick Parmentier for our
productive teamwork on TuLiPA, and beyond. Thanks to Anders Sø-
gaard for our collaboration and the many discussions which sparked
my work on statistical parsing. Thanks to Giorgio Satta for our collab-
oration and for giving my work a firm direction. I thank Kilian Evang
for his invaluable support with the implementation of the statistical
parser. Thanks also to Andreas van Cranenburgh, Armin Buch and
Gerhard Jäger for discussions.

I am grateful for the support I have received from members and
ex-members of the University of Tübingen. Thanks to Erhard Hin-
richs and Sandra Kübler for our collaboration. Thanks also to Frank
Richter and Johannes Kabatek! Finally, thanks to the best secretary in
the world, Beate Starke, for making all administrative tasks a breeze.

I consider myself very lucky to have been given the chance to travel
to many conferences around the world. Out of the many kind people
I have met there, I would like to thank some people in particular for
both academic and non-academic inspiration: Éric de la Clérgerie, Car-
los Gómez Rodríguez, Arezoo Islami, Marco Kuhlmann, Lilja Øvrelid,
Owen Rambow, and Anoop Sarkar.

vii

I am grateful that I could finish my work at the University of Düs-
seldorf among nice and supportive colleagues. In particular I would
like to thank Miriam Kaeshammer.

Even though it is said to be difficult, I did succeed in having an
exciting life outside the university buildings as well. Two people had
a big part in that. Thank you, Solange, for taking care of me, and thank
you, Joachim, for reminding me that there is more to life than work!

Last but not least, I would like to express my gratitude to my family,
for their support throughout this time, and for having brought me
where I stand now.

Tübingen, im Frühjahr 2013

Wolfgang Maier

viii

C O N T E N T S

1 introduction 1
1.1 Background . 1
1.2 Contributions . 12
1.3 Overview . 15

2 definitions 17
2.1 Basic Definitions . 17
2.2 Grammatical Description 26
2.3 Symbolic Parsing . 51

3 symbolic parsing beyond cfg 61
3.1 Parsing Range Concatenation Grammar 61
3.2 Parsing Simple Range Concatenation Grammar 79
3.3 Related Work . 85
3.4 Conclusion . 88

4 data-driven parsing using cfg 91
4.1 Probabilistic Parsing and Data-Driven Parsing 91
4.2 Data-Driven Constituency Parsing 99
4.3 Data-Driven Dependency Parsing 122
4.4 Simple RCG for Data-Driven Parsing 125

5 discontinuity and non-projectivity in treebanks 129
5.1 Introduction . 129
5.2 Quantifying Discontinuity and Non-Projectivity 131
5.3 Synchronous Rewriting . 147
5.4 Related Work . 152
5.5 Conclusion . 155

6 data-driven parsing beyond cfg 157
6.1 Obtaining a Probabilistic Grammar 157
6.2 Parsing . 169
6.3 Implementation . 177
6.4 Related Work . 180
6.5 Conclusion . 185

ix

x contents

7 parsing discontinuous constituents 187
7.1 Evaluation . 187
7.2 Treebank-Specific Preprocessing 189
7.3 Experiments . 195
7.4 Related Work . 210
7.5 Conclusion . 211

8 parsing non-projective dependencies 213
8.1 Evaluation . 213
8.2 Treebank-Specific Preprocessing 213
8.3 Experiments . 214
8.4 Related Work . 219
8.5 Conclusion . 220

9 conclusion 223

a head rules for negra 227

b acronyms 229
b.1 Formalisms . 229
b.2 Treebanks . 231
b.3 Other Acronyms . 231

bibliography 233

index 269

L I S T O F F I G U R E S

Figure 1 A CFG parse tree example 3
Figure 2 A TAG parse tree example 5
Figure 3 A LCFRS parse tree example 7
Figure 4 A dependency structure example 7
Figure 5 A RCG parse tree example 9
Figure 6 Locality in various formalisms 10
Figure 7 Annotation of discontinuous constituents 11
Figure 8 Syntactic structures 23
Figure 9 CFG derivation tree 31
Figure 10 A TAG for the copy language 34
Figure 11 An elementary tree in FTAG 35
Figure 12 An SRCG derivation tree 48
Figure 13 A discotree . 51
Figure 14 Inclusion hierarchy of formalisms 52
Figure 15 Chart for CFG Earley example 58
Figure 16 Items generated by RCG parsers 76
Figure 17 RNA pseudoknotted structure 88
Figure 18 Inside and outside probabilities 94
Figure 19 Weighted deduction system for CYK 96
Figure 20 Penn Treebank annotation example 100
Figure 21 TüBa-D/Z annotation example 101
Figure 22 NeGra annotation example 102
Figure 23 Removal of crossing branches 103
Figure 24 export format example 105
Figure 25 PCFG lexicalization 107
Figure 26 Grand-parent annotation 110
Figure 27 v = 1,h = 1 markovization of VP→ VBD NP PP . 110
Figure 28 Factoring out lexicalization 111
Figure 29 DOP: From a tree to a STSG 114
Figure 30 Combinatory Categorial Grammar example . . . 116
Figure 31 Empty node recovery by pattern substitution . . . 117
Figure 32 DPSG extraction . 120
Figure 33 CoNLL format example 123
Figure 34 Discontinuity and non-projectivity in NeGra . . . 130

xi

Figure 35 Gap degree . 132
Figure 36 Well- and ill-nestedness 134
Figure 37 Gap filler positions 136
Figure 38 Extracted Simple RCGs 138
Figure 39 Ill-nested dependency structure in Negra-Dep . . 143
Figure 40 Well-nested alternative analysis to fig. 39 143
Figure 41 Ill-nested dependency structure in TIGER-Dep . . 144
Figure 42 Ill-nested constituency structure in NeGra 147
Figure 43 Recursive synchronous rewriting 149
Figure 44 Iterable synchronous rewriting 151
Figure 45 SRCG Binarization 160
Figure 46 Head marking . 162
Figure 47 Binarization of a NeGra tree 164
Figure 48 Markovization (v = 2,h = 2) of a NeGra tree . . . 166
Figure 49 Weighted CYK deduction system 170
Figure 50 Inside estimate . 171
Figure 51 Full SX estimate top-down 172
Figure 52 Full SX estimate bottom-up 173
Figure 53 SX with length, left, right, gaps 174
Figure 54 Inside estimate with total span length 175
Figure 55 SX estimate with length, LR, gaps 176
Figure 56 SX estimate with span and sentence length 177
Figure 57 TDist example . 188
Figure 58 NeGra tree . 189
Figure 59 NeGra tree with attached punctuation 190
Figure 60 Resolving crossing branches in NeGra 194
Figure 61 NeGra30: Binarization items 201
Figure 62 NeGra30: Grammar annotation items 204
Figure 63 NeGra30: Estimates 205
Figure 64 Results for sentences with a length 6 40 208
Figure 65 Dependency parser output 216

L I S T O F TA B L E S

Table 1 Trace for CFG Earley example 58

xii

Table 2 Trace of an RCG CYK parse 70
Table 3 Trace of an RCG Earley parse 72
Table 4 Evaluation of the SRCG Parser 85
Table 5 Gaps, well-nestedness (DDT, PDT) 141
Table 6 Gaps, well-nestedness (NeGra-Dep, TIGER-Dep) . 142
Table 7 Gaps, well-nestedness (NeGra) 145
Table 8 Synchronous rewriting in treebanks 149
Table 9 NeGra: Data sets for PSRCG 196
Table 10 NeGra30: Binarizations, BinaryBottom 199
Table 11 NeGra30: Binarizations, UnaryBottom 199
Table 12 NeGra30: Markovizations 202
Table 13 NeGra30CF: Markovizations 203
Table 14 NeGra30: Grammar annotation 203
Table 15 NeGra30: Cutoff, gaps, well-nestedness 206
Table 16 NeGra30 and NeGra30CF: TDist 208
Table 17 PDT: Data Set . 215
Table 18 PDT20: Markovizations 218
Table 19 PDT20: Binarizations 219

L I S T O F A L G O R I T H M S

Algorithm 1 Filling the chart . 57
Algorithm 2 Weighted deductive parsing 96
Algorithm 3 SRCG binarization 159
Algorithm 4 Determining binarization order 165
Algorithm 5 Punctuation attachment (NeGra) 191
Algorithm 6 Punctuation attachment, function lower 192

xiii

1
I N T R O D U C T I O N

This thesis aims at clarifying the status of discontinuous structures
in treebank annotation, at providing both symbolic and probabilistic
parsing techniques for formalisms which can model them, and at con-
firming the usability of the probabilistic parsing techniques for data-
driven parsing. In the following section, I outline the background of
these research topics and provide motivation for my work. Section 1.2
summarizes the contributions of this thesis, and section 1.3 presents
an overview of the following chapters.

1.1 background

The problem of computationally determining whether a sentence is
admissible given a certain linguistic theory (recognition), as well as
the problem of finding a structure for an admissible sentence which
represents the abstraction of the linguistic theory (parsing) are two core
research topics in computational linguistics. Both require linguistic
theories to be stated in a mathematically rigorous way. An appropriate
type of frameworks for this task is Generative Enumerative Syntax
(GES) (Pullum and Scholz, 2001). Frameworks within GES typically
consist of a grammar formalism which allows to state a finite set of
rules (a grammar), with which an infinite set of strings (a language)
can be generated. A series of rule applications is called a derivation, the
structure resulting from recording the rule applications a parse tree.

Within the context of a grammar formalism, given a grammar, solv-
ing the recognition problem for a sentence amounts to determining
if the grammar allows for the generation of the sentence. In order to
solve the parsing problem, one must additionally keep track of the cor-
responding sequence of rule applications, i. e., one must find a parse
tree for the sentence. Rules can be equipped with probabilities for prob-
abilistic parsing (in contrast to symbolic parsing). The probabilities can
be used for disambiguation, i. e., to determine the most likely parse
tree of a sentence. Parsing with a probabilistic grammar obtained from

1

2 introduction

a treebank (a text collection annotated with linguistic information) is
termed data-driven parsing.

From the point of view of a computational linguist, the choice of
a formalism for the implementation of a linguistic theory depends on
two parameters, its expressivity and its computational complexity. The
expressivity of a formalism can be characterized in terms of the class
of languages it generates. This property is called its weak generative
capacity. Furthermore, it can be characterized via the class of parse
trees it allows for. This property is called its strong generative capacity.
Ideally, from a weakly generative point of view, a formalism should
be capable of generating all and only those strings which constitute
admissible sentences, while from a strongly generative point of view,
it should provide all and only those structures which represent the
abstractions of the underlying linguistic theory. Overgeneration, i. e.,
generating strings which are not admissible sentences, is thereby less
problematic than undergeneration, especially in a probabilistic setting,
where probabilities can help with disambiguation.

A higher expressivity generally implies an increased computational
complexity with respect to recognition. Therefore, the central chal-
lenge in practice is to find a good compromise between expressivity
and computational tractability.

1.1.1 Discontinuous Structures and Syntactic Description

Intuitively speaking, a discontinuous structure in a natural language
sentence is a sequence of words which is discontinuous but forms a lin-
guistically meaningful unit. Discontinuous structures are of particular
interest because they are difficult to model. In the following, I present
the corresponding issues in connection with both types of GES frame-
works I use in this thesis, namely, constituency-based frameworks and
dependency-based frameworks.

Constituency-based frameworks allow for the description of the hi-
erarchical structure of constituent phrases (constituents) in a sentence.
A constituent is a sequence of words which form a linguistically mean-
ingful unit. It is labeled with its linguistic type, e. g., noun phrase (NP),
verb phrase (VP), etc. A hierarchical structure of constituents is called a
constituency structure. As a first framework of this type, Context-Free
Grammar (CFG) was proposed (Chomsky, 1956). CFG allows for the
modeling of constituency structures on the basis of continuous con-

1.1 background 3

S

NP VP

Paul VP PP

V NP P NP

sees Sandy with Det N

a telescope

Figure 1: A CFG parse tree example

stituents, i. e., of constituents consisting of a continuous sequence of
words. Figure 1 shows a possible analysis (a CFG parse tree) of an
English sentence. Note that the sentence can be obtained by reading
the leaves of the tree from left to right.

Several parsing techniques for CFG have appeared in the literature,
such as the CYK algorithm (Cocke and Schwartz, 1970; Younger, 1967;
Kasami, 1965), the Earley algorithm (Earley, 1970), and Left-Corner
Parsing (Rosenkrantz and Lewis, 1970). They have served as a basis
for the development of parsing algorithms for other formalisms.

In the early 80s, it was confirmed that CFG does not provide enough
expressivity to model natural language. Data with so-called cross-serial
dependencies were brought up (Huybregts, 1984; Shieber, 1985). These
are configurations in which constituents are intertwined such that they
mutually interrupt themselves. An example for a sentence which ex-
hibits such dependencies is the Swiss German sentence (1), taken from
Shieber (1985). The cross-serial dependencies in this sentence arise
from the fact that a linguistically adequate modeling requires to asso-
ciate the noun phrases with their corresponding verbs.

(1) . . . mer
. . . we

em Hansi
Hans-Dat

es Huusj
the house-Acc

hälfedi

help
aastriichej
paint

. . . we help Hans paint the house

Note that such dependencies can be iterated, as shown in (2).

4 introduction

(2) . . . mer
. . . we

d’chindi

the kids
em Hansj
Hans

es Huusk
the house

löndi

let
hälfej
help

aastriichek
paint

. . . we let the kids help Hans paint the house

Shieber formally showed that neither the weak nor the strong gen-
erative capacity of CFG is enough to model cross-serial dependencies.
In fact, more generally, no non-local or long-distance dependencies can
be modeled. These are configurations in which two elements are sep-
arated but belong together. They are not a rare phenomenon, particu-
larly in languages with a relatively free word order, such as German.
Consider the German sentence (3) as a more general example. It con-
tains a discontinuous constituent: The VP Darüber nachgedacht is inter-
rupted since Darüber is fronted.

(3) Darüber
Thereof

muss
must

nachgedacht
thought

werden
be

“Thereof must be thought.”

In order to model discontinuous constituents, we need a formal-
ism with an expressivity beyond Context-Free Grammar. Since, as al-
ready mentioned, higher expressivity entails an increased computa-
tional complexity of recognition and parsing, it is desirable to charac-
terize the minimal necessary amount of expressivity beyond Context-
Free Grammar. Mild Context-Sensitivity (MCS) (Joshi, 1985) is an at-
tempt of such a characterization. Informally speaking, a set of lan-
guages is mildly context-sensitive if it contains all context-free lan-
guages, if cross-serial dependencies are allowed to a certain extent,
if the recognition problem is tractable for all languages,1 and if the
lengths of the words of all languages grows linearly. If the set of all
languages which can be generated with grammars of a certain formal-
ism is mildly context-sensitive, we call this formalism a mildly context-
sensitive formalism or MCS formalism.

In the literature, such formalisms have been proposed for gram-
mar implementation. One of them is Tree-Adjoining Grammar (TAG)
(Joshi et al., 1975). A TAG consists of a set of elementary trees, small
phrase structure templates which represent the grammatical structure
(e. g., the subcategorization frame) that comes with a single lexical

1 More precisely, the recognition problem for all languages must be solvable in poly-
nomial time (see section 2.3.2).

1.1 background 5

S

NPnom VP

NP V S*

John knows

S

NPacc S

NPnom VP

NP NP V NP

Paul Sandy loves t

S

NP S

Paul NP VP

John V S

knows NP VP

Sandy V NP

loves t

Figure 2: A TAG parse tree example

item. There are two operations for the combination of elementary trees.
The substitution operation allows to plug a tree into the leaf of another
tree. The adjunction operation allows to insert elementary trees of a
certain type (auxiliary trees) at an internal node of another tree. As an
example, figure 2 shows a simplified TAG analysis for a sentence with
an extracted object NP. One elementary tree encodes the subcatego-
rization requirements of the matrix verb loves with an extracted object.
NP trees fill in the argument slots by substitution. The auxiliary tree
for knows gets adjoined at the lower S node. Adjunction is the key
feature of TAG, since it gives it its extended domain of locality: Ele-
ments which are encoded in a single elementary structure can end up
arbitrarily far away from each other in the final derived tree (in our
example the extracted object and the matrix sentence).

Since there are linguistic phenomena which cannot be modeled with
TAG, e. g., scrambling in German (Becker et al., 1991), variants of

6 introduction

TAG with a higher expressivity have been introduced, such as differ-
ent variants of Multi-Component Tree-Adjoining Grammar (MCTAG).
TAG and its variants have been used for the grammar implementation
in various languages, notably English (XTAG Research Group, 2001),
French (Abeillé et al., 2003), Korean (Han et al., 2000) and German
(Lichte, 2007; Kallmeyer et al., 2008b).

Various parsing algorithms for TAG have appeared in the litera-
ture. Some of them are TAG adaptations of the corresponding CFG
parsers, e. g., TAG CYK (Vijay-Shanker and Joshi, 1985) and Earley-
style parsers (Schabes and Joshi, 1988; Nederhof, 1997, 1999). Other
work takes advantage of the fact that parsing with some formalisms
which are equivalent to TAG is conceptually easier than parsing with
TAG itself. Boullier (1996), e. g., presents a TAG parser which relies on
Linear Indexed Grammar (LIG); i. e., he uses LIG as a pivot formalism.

Linear Context-Free Rewriting System (LCFRS) (Vijay-Shanker et al.,
1987) and the equivalent formalism Multiple Context-Free Grammar
(MCFG) (Seki et al., 1991) are other formalisms which are mildly
context-sensitive. Their expressivity is higher than the expressivity
of TAG. In contrast to TAG, they constitute a somewhat natural ex-
tension of Context-Free Grammar. They offer an extended domain of
locality by dropping the requirement that every constituent must have
a single continuous span. As an example, figure 3 shows a simplified
possible LCFRS/MCFG parse tree of (3). While, to my knowledge,
the formalisms have not been used for grammar implementation, they
have found their share of attention in the parsing community (Seki
et al., 1991; Nakanishi et al., 1997; Burden and Ljunglöf, 2005). They
have furthermore been used in a pivot role for parsing TAG and vari-
ants of TAG (Kallmeyer et al., 2008b).

LCFRSs are not only interesting with respect to frameworks based
on constituency, but also with respect to dependency-based frameworks.
In such frameworks, syntactic description is based on directed word-
to-word relations, so-called dependencies. They are typically organized
such that each word of a sentence has exactly one incoming edge from
its head, and one or more outgoing edges to its dependents. Dependen-
cies can have labels describing their linguistic type. As an example,
figure 4 shows a dependency analysis (a dependency structure) for (3). I
adopt the graphical representation of dependencies from recent liter-
ature (Kuhlmann, 2007). Each word is represented by a circle, depen-
dencies are drawn as arrows between those circles, and the relation

1.1 background 7

S

VP

VP

Proav V V V

Darüber muss nachgedacht werden

Figure 3: A LCFRS parse tree example

Darüber muss nachgedacht werden

Figure 4: A dependency structure example

between words and circles is indicated by dotted lines. The use of de-
pendencies for syntactic description has a long-standing tradition. It
can be traced as far back as to the Sanskrit grammarian Pān. ini (4th
century BC) (Kruijff, 2002). Contemporary dependency frameworks,
which I will subsume under the term Dependency Grammar (DG), are
for instance Meaning Text Theory (MTT) (Mel’čuk, 1988), Weighted
Constraint Dependency Grammar (WCDG) (Foth et al., 2004) and
eXtensible Dependency Grammar (XDG) (Debusmann et al., 2004).
They are all based on Lucien Tesnières pioneering work (Tesnière,
1959).

In this thesis, I treat DG as belonging to Generative Enumerative
Syntax. Under this view, a grammar consists of a finite set of rules
which, instead of describing constituent relationships, describe word-
to-word dependencies or bundles of such dependencies (Hays, 1964;
Gaifman, 1965). Again, the choice of a formalism for formulating such
a grammar determines the class of dependency structures we can ob-
tain. Gaifman (1965) shows the equivalence of CFG and the class of
projective dependency structures. In those structures, each word and its
dependents form a continuous sequence of words. However, for many
linguistic phenomena, non-projectivity is needed. None of the current

8 introduction

dependency frameworks requires projectivity. Our example in figure
4 is also non-projective, since the word (nachgedacht) is separated from
its dependent (Darüber). Unrestricted non-projectivity results in in-
tractable recognition (Neuhaus and Bröker, 1997). For this reason, re-
searchers have attempted to find a DG equivalent for Mild Context-
Sensitivity. Mild non-projectivity is such a characterization (Kuhlmann,
2007). On its basis, Kuhlmann and Satta (2009) show how to model re-
stricted non-projective dependencies in a straight-forward way using
LCFRS.

Some linguistic phenomena have been argued to lie beyond the ex-
pressive power of LCFRS. Becker et al. (1992) mention scrambling of
arguments in German. They argue that there is no bound on the num-
ber of arguments to be scrambled and on the distance over which ar-
guments can be scrambled. This impedes the modeling of scrambling
with LCFRS. Consider (4) as an example. In this sentence, almost all
complement orders are acceptable.

(4) . . . dass
. . . that

[dem
[the

Kunden]i
client]-Dat

[den
[the

Kühlschrank]j
fridge]-Akk

bisher
so far

noch
yet

niemand
nobody

ti
ti

[[tj
[[tj

zu
to

reparieren]
repair]

versprochen]
promised]

hat
has

“. . . that so far, nobody has promised the client to try to repair
the fridge”

Range Concatenation Grammar (RCG) (Boullier, 1998) is a formalism
with which scrambling and other phenomena of this type can poten-
tially be modeled (Boullier, 1999). Grammar development with RCG is
also feasible (Sagot, 2005). The key feature of RCG is that it allows for
copying operations, i. e., it allows for a substring to be part of two con-
stituents at the same time. Figure 5 shows an RCG analysis for a case
of right node raising. The fact that bananas is shared by both VPs can
be expressed directly. RCG has several interesting formal properties. It
is not mildly context-sensitive. Nevertheless, its recognition problem is
not computationally intractable (Bertsch and Nederhof, 2001). Simple
Range Concatenation Grammar (SRCG), a variant of RCG with less
expressivity, is equivalent to LCFRS and MCFG. RCG (and SRCG) can
also take the role of pivot formalisms for parsing, since for many for-
malisms, their grammars can easily be formulated as equivalent RCGs
(Boullier, 1998). Literature on RCG parsing algorithms is sparse. Basic

1.1 background 9

S

S S

VP VP

N V Kon N V N

John likes and Peter hates bananas

Figure 5: A RCG parse tree example

algorithms have been presented by Boullier (1998) and Barthélemy
et al. (2001).

As a summary, figure 6 shows simplified parse tree schemas of CFG,
TAG, LCFRS and RCG in order to visualize their different domains
of locality. The domain of locality of each formalism is characterized
by the type of interruption of constituents it allows for. CFG allows
for the insertion of one continuous string in a constituent (β in the
example). The adjunction operation of TAG delivers more expressivity,
since it allows for the simultaneous insertion of two strings (β1 and β2
in the example). LCFRS allows for the insertion of an arbitrary number
strings. In the example, the interrupting strings are β and γ. However,
other strings δ1, . . . , δn could interrupt each of α1,α2 and α3. RCG, as
mentioned above, additionally allows for copying operations. In the
example, α3 is part of both the B and the C constituent.

1.1.2 Discontinuous Structures and Data-Driven Parsing

Treebanks are text collections (corpora) with linguistic annotation. The
data sources of the treebanks can stem from different domains, rang-
ing from newspapers over transcribed spoken language to historical
texts. The annotation can have various description levels correspond-
ing to different linguistic modules, e. g., semantic role annotation, syn-
tactic annotation, morphological annotation or phonological annota-
tion. The syntactic annotation, which is relevant for this thesis, is gen-
erally either based on dependency grammar (in a dependency treebank)
or on a constituency-based description (in a constituency treebank). The
trees of a treebank can be interpreted as the parse trees of a latent

10 introduction

CFG:

A

B

α1 α2

β

TAG:

A

B

α1 α3

B∗
β1 β2

α2

LCFRS: A

B

C D

α1 α2 α3

β γ

RCG: A

B C

D E

α1 α3 α4

β γ

Figure 6: Locality in various formalisms

grammar. Given an appropriate algorithm, this grammar can be re-
constructed. Since treebanks only deliver a limited amount of data,
one does not interpret the extracted grammars as the implementation
of some linguistic theory. Instead, during the extraction, one estimates
the occurrence probabilities of grammar rules, and uses them to de-
termine the most likely parse tree(s) of a sentence. This approach, as
already mentioned, is called data-driven parsing.

Treebank annotation must account for discontinuous structures. In
most constituency treebanks, the syntactic annotation takes the form
of CFG parse trees, which do not show crossing branches (cf. fig. 1).
Discontinuity is represented with an add-on mechanism, such as la-
beling conventions. The motivation behind this approach is that trees
without crossing branches are easier to process: When discarding the
add-on mechanism, one only needs the expressivity of CFG. Examples
for such treebanks are the Penn Treebank (PTB) (Marcus et al., 1993)
and the German Tübingen Treebank of Written German (TüBa-D/Z)
(Telljohann et al., 2006).

1.1 background 11

Darüber

PROAV

muß

VMFIN

nachgedacht

VVPP

werden

VAINF

.

$.

MO HD

VP

OC HD

VP

OCHD

S

HD

HD HD HD

−

Darüber

PROP

muß

VMFIN

nachgedacht

VVPP

werden

VAINF

.

$.

PX VXINF VXINF

OVFOPP

VC

−

SIMPX

HD

VXFIN

HD

LK

−

VF

Figure 7: Annotation of discontinuous constituents

In a few treebanks, such as in the German TIGER (Brants et al.,
2002) and NeGra (Skut et al., 1997) treebanks, and in the Bulgarian
BulTreebank (BTB) (Osenova and Simov, 2004), a different approach
is pursued. Discontinuities are represented with crossing branches. As
an example, consider figure 7 which contrasts the NeGra annotation
of (3) (left) with a TüBa-D/Z-style annotation of the same sentence
(right). While in the former, the discontinuous VP is annotated directly,
in the latter, the edge label FOPP (facultative PP object) establishes the
connection between Darüber and nachgedacht.

The situation is different for dependency treebanks. Dependency
treebanks such as the Prague Dependency Treebank (PDT) (Hajič et al.,
2000) or NeGra dependency treebank (NeGra-Dep) (Daum et al., 2004)
allow both projective and non-projective dependencies. The depen-
dency tree in figure 4 is actually taken from the NeGra dependency
treebank.

Interpreting constituency trees without crossing branches as the
parse trees of a Probabilistic CFG (PCFG) is a natural choice, since
reading off a grammar and estimating the probabilities is immediate.
Charniak (1996) uses a PCFG extracted from the Wall Street Journal
part of the PTB to show that such grammars give parsing results of ac-
ceptable quality. Charniak’s data have been and continue to be the ba-
sis for most newly developed probabilistic constituency parsers. Mile-
stones are the work of Michael Collins (Collins, 1999), the work of
Mark Johnson (Johnson, 1998), the work of Eugene Charniak (Char-
niak, 2000), the work of the Stanford NLP Group (Klein and Manning,
2003a,b,c), and the work of the Berkeley NLP Group (Petrov et al.,
2006; Petrov and Klein, 2007; Petrov, 2009), which is the current state-
of-the-art.

12 introduction

For data-driven constituency parsing with PCFG, non-local informa-
tion cannot be used directly, i. e., syntactic dependencies which cannot
be expressed with CFG get lost. However, with methods other than
plain PCFG parsing, this information can be used nevertheless.

• Non-local information can be used for the improvement of the
performance of parsers which produce trees without crossing
branches. Within this paradigm, one can recur to formalisms
which have a higher expressivity than CFG but produce parse
trees which, on the surface, do not exhibit crossing branches.
Non-local dependencies can be encoded in complex categories,
such as in Combinatory Categorial Grammar (CCG) (Steedman,
2000; Hockenmaier, 2003), or by derivational mechanisms, such
as in TAG (see above) (Chiang, 2003).

• Non-local information can be used directly in parsers which
can build parse trees that directly encode non-local dependen-
cies. This can be done by augmenting PCFG parses in a pre- or
post-processing step, with techniques such as pattern matching
(Johnson, 2002) or machine learning methods (Levy and Man-
ning, 2004). Another possibility is the use of formalisms which
represent crossing branches directly. Plaehn (2004) uses Proba-
bilistic DPSG (PDPSG) (Bunt et al., 1987); Levy (2005) uses a
Probabilistic MCFG (PMCFG) parser.

While there exists work on grammar-based parsing of projective de-
pendencies (Nasr and Rambow, 2004; Bangalore et al., 2009), to my
knowledge, there exists no grammar-based parser for non-projective
dependencies. Dependency parsers which can handle non-projectivity,
such as the MaltParser (Nivre et al., 2007) and the MSTParser (McDon-
ald et al., 2005), do not rely on grammar formalisms.

1.2 contributions

1.2.1 What this Thesis is About

The focus of this thesis lies on symbolic and probabilistic parsing with
grammar formalisms that can model discontinuous structures in Nat-
ural Language.

1.2 contributions 13

With respect to non-probabilistic applications, Range Concatenation
Grammar is a formalism with interesting properties. Its expressivity
exceeds Mild Context-Sensitivity, which makes it a potential candidate
for the modeling of various complex natural language phenomena ly-
ing beyond MCS. Additionally, grammar development with RCG is
feasible. At the same time, RCG is still fairly efficiently processable.
Still, not many parsing algorithms can be found in the literature. I will
therefore present different parsing strategies for RCG, formulated as
deduction systems. Simple RCG, which is equivalent to LCFRS and
MCFG, is also an interesting formalism which has already proven
useful for parsing TAG in a pivot role. I will present a novel Earley
strategy for SRCG, together with optimization techniques.

The area of data-driven probabilistic parsing with constituency data
has been and continues to be dominated by Probabilistic Context-Free
Grammar. This is mainly due to treebank annotation practices: Syntac-
tic annotation generally takes the form of CFG parse trees, extended
by an additional mechanism that handles discontinuities. For parsing,
this information is then simply discarded. This is especially undesir-
able for languages with a free word order, where discontinuities occur
frequently. There is work which aims at reconstructing discontinuities,
most of it on the basis of a PCFG parser equipped with pre-, resp. post-
processing; however, very rarely, formalisms are used which can en-
code discontinuities directly. I follow up on previous work by Levy
(2005) and dedicate the main part of this thesis to the presentation of
the first data-driven parser for Probabilistic SRCG (PSRCG), to be used
for the parsing of both discontinuous constituents and non-projective
dependencies. The parser uses optimization techniques, such as novel
context-summary estimates for PSRCG A∗ parsing. A treebank study
shows that SRCG is a good candidate for modeling discontinuities.
An evaluation on real-world data from the Czech Prague Dependency
Treebank and the German NeGra treebank yields promising results
and shows that parsing can be done in an acceptable time.

PSRCG, a natural extension of CFG, provides an intuitive way of
direct parsing of discontinuities. Grammars can be obtained immedi-
ately from treebanks with directly annotated discontinuities, without
the need of using linguistic knowledge. Techniques from PCFG pars-
ing can be transferred to PSRCG parsing. However, PSRCGs behave
differently from PCFGs – the best parameters for a parsing model can
only be determined in practice. A parser implementation is publicly

14 introduction

available at http://www.wolfgang-maier.net/rparse/. It constitutes
a major novelty, since it is the first published parser that directly cre-
ates overt discontinuities and delivers evaluable output on real-world
sized data sets; in other words, it is the first time that the feasibil-
ity of data-driven parsing with discontinuities is shown at all. The
implementation is innovative since it brings together developments
from different areas, namely recent research on parsing German, on
quantification of discontinuous structures in treebanks, and research
on formalisms which can model them. Implementing the parser was
a highly non-trivial enterprise. Important challenges had to be over-
come, on both a practical and a theoretical level. The properties of the
extracted grammars had to be investigated, program design decisions
had to be taken such that the higher parsing complexity could be han-
dled, and new techniques for optimization had to be developed.

To sum up, this thesis makes the following contributions.

• A novel Earley-style parsing algorithm for RCG with optimiza-
tion techniques, as well as an Earley-style parsing algorithm for
SRCG, both with empirical evaluations.

• A grammar extraction algorithm for treebanks with discontin-
uous annotation which produces SRCGs, as well as a formal
characterization of discontinuity and synchronous rewriting in
constituency treebanks and in grammars extracted from those
treebanks with measures relating to the corresponding measures
in DG.

• Techniques and algorithms for parsing Probabilistic SRCG, such
an algorithm for weighted deductive parsing, binarization algo-
rithms, markovization strategies and context summary estimates
of parse items for A∗ parsing, resp. best-first parsing.

• Evaluation methods for data-driven Probabilistic SRCG parsing
and qualitative results, moreover, first results on grammar-based
non-projective dependency parsing using Probabilistic SRCG.

1.2.2 What this Thesis is not About

The research presented in this thesis could easily be expanded in dif-
ferent directions. In favor of a clearly delimited scope, some topics
will not be discussed.

http://www.wolfgang-maier.net/rparse/

1.3 overview 15

• Discontinuous structures are in the focus of this thesis. However,
arguing in favor or against a particular linguistic theory of them
is not subject of this work.

• I will make use of formalisms with an expressivity beyond CFG.
However, the choice of an adequate formalism for modeling nat-
ural language, especially with regard to phenomena which need
expressivity beyond context-freeness, is not subject of this work.

• With regard to formalisms beyond CFG, Model-Theoretic Syntax
(MTS) (Pullum and Scholz, 2001) will not be used. I limit myself
to the GES paradigm, particularly to MCS formalisms.

• In order to formulate certain algorithms, I will use the paradigm
of parsing as deduction (Shieber et al., 1995). An exploration of
the formal machinery behind deduction systems is not subject of
this work.

• With respect to the contributions of this thesis to the field of prob-
abilistic parsing, major developments in the literature are pre-
sented in chapter 4. Certain techniques are transferred to PSRCG
parsing in chapter 6. In principle, nothing stands in the way of
applying the remaining techniques as well, in particular lexical-
ized parsing and k-best parsing. This is left for future work.

1.3 overview

In chapter 2, I present basic mathematical definitions and terminology.
I furthermore introduce the relevant grammar formalisms and give
the basic definitions for symbolic parsing.

In chapter 3, I present an Earley-style parsing algorithm for RCG,
an incremental parsing strategy for SRCG and an experimental evalu-
ation of both.

Chapter 4 is dedicated to an introduction to probabilistic parsing
and an overview of data-driven parsing. I give an overview of the de-
velopment of probabilistic constituency parsing and present the limi-
tations of previous approaches. These limitations provide further mo-
tivation for my work. Furthermore, I introduce relevant work in the
field of data-driven dependency parsing and provide motivation for
switching to a grammar-based approach.

16 introduction

In chapter 5, I investigate in detail which linguistic phenomena
cause discontinuity and analyze the annotation of constituency tree-
banks and dependency treebanks which accounts for them. I present
a grammar extraction algorithm for SRCG for both discontinuous con-
stituency treebanks and non-projective dependency treebanks. I then
show for both how their degree of discontinuity can be characterized
in terms of the two measures of gap degree and well-nestedness. More-
over, I investigate to what extent treebank annotation exhibits syn-
chronous rewriting.

In chapter 6, I present the adaptation of various techniques for
PCFG parsing for the parsing of Probabilistic SRCG. These include
methods for binarization and markovization, a CYK style algorithm
for weighted deductive parsing of SRCG, and a series of context sum-
mary estimates of parse items which are used to speed up parsing.

In chapter 7, I apply the techniques presented in the preceding chap-
ter to the German NeGra treebank. In order to provide a meaningful
evaluation, I discuss two different evaluation measures. A discussion
of the experimental results is presented which, one the one hand, clari-
fies the interaction of the different parser parameters, and on the other
hand highlights the differences between a probabilistic SRCG model
and a PCFG model.

In chapter 8, I apply my parser to dependency treebanks. While the
results do not reach the state of the art, they are the first reported
results for grammar-based parsing of non-projective dependencies.

Chapter 9 concludes this thesis and presents perspectives for future
work.

Note that there is ample related work on every aspect of this thesis.
It will be presented throughout the thesis in the respective relevant
context. Furthermore, note that on the beginning of each chapter, it is
indicated if and where material has been published previously.

2
D E F I N I T I O N S

In this chapter, I introduce the mathematical basis of this disserta-
tion. Section 2.1 contains basic definitions. Section 2.2 introduces def-
initions of grammar formalisms and related definitions necessary for
formalizing grammatical description. Section 2.3 contains the basic
definitions for symbolic parsing.

2.1 basic definitions

In this section, I define basic mathematical concepts which are rele-
vant for my work. Whenever possible, I follow standard notation and
definitions (Hopcroft and Ullman, 1979; Schöning, 2001).

2.1.1 Sets, Alphabets, Words, and Languages

N denotes the set of positive natural numbers, excluding 0. We set Sets
N0 = N∪ {0}. A total order on natural number is given by the relation
6. R denotes the set of real numbers.

As usual, sets are notated with upper case letters. For a set A, we
write |A| for its cardinality and P(A) for its powerset, the set which
contains all of its subsets. If A is infinite, Pfin(A) ⊆ P(A) designates
the set of all finite subsets of A. We introduce the functions min and
max which yield the least, resp. the greatest element of A with respect
to a given total order 6 on A. A partition of A is a set of pairwise
disjoint non-empty subsets of A (blocks) the union of which is exactly
A. A partition of A is given by an equivalence relation R on A which
is such that for all a,b ∈ A, a and b are in the same block iff a ∼R b.
Eventually, ∅ denotes the empty set.

We first define an inventory of symbols.
Definition 2.1 (Alphabet). An alphabet is a finite non-empty set Σ. Alphabets and

WordsGiven an alphabet, we can define words (strings of symbols) and
operations on them.
Definition 2.2 (Word). Let Σ be an alphabet.

17

18 definitions

1. A non-empty word1 over Σ is a finite sequence σ1 · · ·σn, where
n ∈N and σi ∈ Σ for 1 6 i 6 n. We define Σ+ to be the set of all
non-empty words over Σ.

2. The concatenation of any two non-empty words w, v ∈ Σ+ with
w = w1 · · ·wn and v = v1 · · · vm such that n,m ∈ N and wi, vj ∈
Σ for 1 6 i 6 n and 1 6 j 6 m is defined as w ◦ v = wv =

w1 · · ·wnv1 · · · vm.

3. A symbol ε /∈ Σ called the empty word is introduced as the neutral
element of concatenation. For any w ∈ Σ+, it holds that wε =

εw = w. We put Σ∗ = Σ+ ∪ {ε}.

Definition 2.3 (Operations on words). Let Σ be an alphabet and let
w ∈ Σ∗.

1. The exponentiation of w and some m ∈ N0, wm, is defined as
follows: w0 = ε and wm+1 = wm ◦w.

2. The length of w, |w|, is defined as follows. If w = ε, then |w| = 0.
If w = vσ with v ∈ Σ∗,σ ∈ Σ, then |w| = |v|+ 1.

A language is a subset of all possible words over some alphabet.
Definition 2.4 (Language). Let Σ be an alphabet. A language over Σ isLanguages

and closure
properties

any set L ⊆ Σ∗.
The closure properties of a set of languages describe the behavior of

the languages under certain operations.
Definition 2.5 (Closure properties). Let Σ be an alphabet.

1. For two languages L1,L2 ⊆ Σ∗,
a) union is defined as L1 ∪L2 = {w | w ∈ L1 or w ∈ L2},

b) intersection is defined as L1 ∩L2 = {w | w ∈ L1 and w ∈ L2},

c) concatenation is defined as L1L2 = {wv | w ∈ L1 and v ∈ L2},
and

d) complementation as L1 = Σ
∗ \ L1.

2. Let R be a set of languages. R is closed under union (resp. intersec-
tion, concatenation, complementation) iff for all L1,L2 ∈ R, it holds
that L1 ∪L2 (resp. L1 ∩L2, L1L2,L1) ∈ R.

1 We use the terms word and string interchangeably.

2.1 basic definitions 19

2.1.2 Graphs and Trees

Graphs and trees are basic tools for the description of syntactic infor-
mation. A directed graph essentially consists of a set of nodes and
directed edges between them. The number of incoming, resp. outgo-
ing edges of a node is called its in-degree, resp. out-degree; a sequence
of nodes is called a path.
Definition 2.6 (Directed graph). Graphs

1. A directed graph is a tuple G = (V ,E) with V a finite set of vertices2

and E ⊆ V × V a set of arcs.

2. E+ is the transitive closure of E, E∗ its reflexive transitive closure.

3. The in-degree function fin : V → N0 is such that for all v ∈ V ,
fin = |{u | 〈u, v〉 ∈ E}|.

4. The out-degree function fout : V → N0 is such that for all v ∈ V ,
fout(v) = |{u | 〈v,u〉 ∈ E}|.

5. Let r ∈ V . If fin(r) = 0, then r is a root node of the graph.

6. A path is a sequence (v1, . . . , vn), where n ∈ N, vi ∈ V for all
1 6 i 6 n, and for all 1 6 j < n, it holds that 〈vj, vj+1〉 ∈ E.
v1 is its start vertex, vn is its end vertex. An elementary path is
a path which contains no repeated vertices. A cycle is a path
which has identical start and end vertices. An elementary cycle is
a cycle which, apart from the start and end vertices, contains no
repeated vertices.

Cyclicity (there is a path which starts and ends with the same node),
connectedness (regarding the edges as undirected, there is a path from
every node in the graph to every other node in the graph), and empti-
ness (the set of nodes is empty) are important properties of a graph.
Definition 2.7 (Graph properties). Let G = (V ,E) be a directed graph.

1. G is acyclic iff it contains no cycles.

2 We use the terms vertex and node interchangeably.

20 definitions

2. G is weakly connected3 iff for all u, v ∈ V , u 6= v, it holds that
〈u, v〉 ∈ E or 〈v,u〉 ∈ E or there are u1, . . . un ∈ V , n ∈ N, which
fulfill the following conditions:

a) 〈u,u1〉 ∈ E or 〈u1,u〉 ∈ E,

b) 〈un, v〉 ∈ E or 〈v,un〉 ∈ E, and

c) 〈ui,ui+1〉 ∈ E or 〈ui+1,ui〉 ∈ E for 1 6 i < n.

3. G is empty iff V = ∅.

Labeling nodes and edges allows us to add linguistic information
to the graph.
Definition 2.8 (Labeling and labeled graph). Let G = (V ,E) be a di-
rected graph.

1. A node labeling over an alphabet LV is a function ΛV : V → LV .

2. An edge labeling over an alphabet LE is a function ΛE : E→ LE.

3. G is node labeled, resp. edge labeled, resp. completely labeled4 iff it
has a node labeling over an alphabet LV , resp. an edge labeling
over an alphabet LE, resp. both.

A tree is just a special kind of a graph. It must have a single root
node, be acyclic and weakly connected. Furthermore, all nodes must
have a single incoming edges, except the root, which must have no
incoming edges.
Definition 2.9 (Tree). A tree is a triple D = (V ,E, r) whereTrees

1. (V ,E) is a directed graph which is acyclic and weakly connected,

2. r ∈ V a distinguished root node, and

3. for all v ∈ V \ {r}, fin(v) = 1 and fin(r) = 0.

We want to be able to order the nodes, label nodes and edges, and
talk about dominance between nodes.
Definition 2.10 (Properties of trees). Let D = (V ,E, r) be a tree.

3 Since with respect to directed graphs, we are only concerned with weakly connected
graphs, in the following, by connected we mean weakly connected.

4 If it is not of importance if a graph is node labeled, edge labeled or completely
labeled, it may just be called labeled.

2.1 basic definitions 21

1. D is ordered iff it has a relation ≺⊆ V×V which is antisymmetric,
irreflexive and transitive.

2. D is node labeled, resp. edge labeled, resp. completely labeled iff (V ,E)
is node labeled, resp. edge labeled, resp. completely labeled.

3. For all v ∈ V , if fout(v) = 0, then u is a leaf, otherwise v is an
internal node.

4. For all v ′, v ′′ ∈ V , we say that v ′ directly dominates v ′′ iff 〈v ′, v ′′〉 ∈
E. If v ′ directly dominates v ′′, then v ′′ is called a daughter node or
child node of v ′ and v ′ is called the parent node of v ′′. We say that
v ′ dominates v ′′ iff there is a 〈v ′, v ′′〉 ∈ E∗.

Now we are ready to define the actual linguistic structures we want
to have over natural language sentences. They are different kinds of
ordered labeled trees. We define them such that the nodes which corre-
spond to the actual words are labeled with integers denoting position
indices of the respective words in the sentence. On their basis, we can
then define an ordering.
Definition 2.11 (Dependency and constituency structure). Let w be a Syntactic

structuresnon-empty word over some alphabet Σ. Let D = (V ,E, r) be an ordered
tree with a node labeling ΛV where ≺ is such that for all v1, v2 ∈ V
with ΛV(v1),ΛV(v2) ∈N0 and ΛV(v1) < ΛV(v2), it holds that v1 ≺ v2.

1. D is a dependency structure for w if |V | = |w|+ 1, LV = {0, . . . , |w|},
and ΛV is such that

a) ΛV(r) = 0, and

b) for all 1 6 i 6 |w|, there is exactly one vi ∈ V \ {r} with
ΛV(vi) = i.

For all v ∈ V in a dependency structure, the parent node of v is
called its head and the daughters of v are called its dependents.

2. D is a constituency structure for w if LV = {1, . . . , |w|}∪N, N being
a set of syntactic category labels disjoint from {1, . . . , |w|}, and
ΛV is such that

a) for all 1 6 i 6 |w|, there is exactly one vi ∈ V with fout(vi) =
0 and ΛV(vi) = i, and

b) for all v with fout(v) > 0, ΛV(v) ∈ N;

22 definitions

Furthermore, for all u1,u2 ∈ V with ΛV(u1),ΛV(u2) ∈ N, u1 ≺
u2 iff min({ΛV(u) | u ∈ V and ΛV(u) ∈ N and 〈u1,u〉 ∈ E+}) <
min({ΛV(u) | u ∈ V and ΛV(u) ∈N and 〈u2,u〉 ∈ E+}).

Note that in both dependency and constituency structures, we or-
der the leaves with respect to their numeric labeling. In constituency
structures, we additionally order the internal nodes by the label of the
resp. leftmost leaf they dominate. Our definition excludes ε-labeled
leaves on purpose, since they are not needed to describe the treebank
data we use (see next section). We now subsume both dependency
and constituency structures under a single term.
Definition 2.12 (Syntactic structure). D = (V ,E, r) is a syntactic struc-
ture iff it is either a dependency structure or a constituency structure.
D may optionally have an edge labeling over an alphabet LE. Thereby,
if D is a dependency structure, then LE is a set of dependency labels.
Otherwise, LE is a set of grammatical function labels.
Example 2.13 (Syntactic structures). Let us consider again (3), p. 4,
repeated here as (5).

(5) Darüber
Thereof

muss
must

nachgedacht
thought

werden
be

“Thereof must be thought.”

Figure 8 contains the graphical representation of two syntactic struc-
tures for (5), one constituency structure (above) and one dependency
structure (below). Note the following points.

• As usual, constituency structures are represented as trees. For
dependency structures, the graphical representation method of
Kuhlmann (2007) will be adopted. The nodes are arranged in
ascending order. Each node is depicted by a circle and connected
to its label by a dotted line.

• In the graphical representation of constituency structures, all
nodes are arranged such that for two different nodes N1,N2
whereN1 dominatesN2,N2 is situated belowN1. For this reason,
all node connections always point downwards and therefore do
not need arrows, unlike in dependency structures, where arrows
are necessary.

2.1 basic definitions 23

S

VP

VP

1 2 3 4
Darüber muss nachgedacht werden

OC

HD
OC

HD

MO HD

0 1 2 3 4
Darüber muss nachgedacht werden

root aux

aux

pp

Figure 8: Syntactic structures

• In both syntactic structures, the node labeled i, 1 6 i 6 4, cor-
responds to the ith word of (5). In our definition of dependency
structures, we assume an additional root node which is mapped
to 0, in order to ensure that the resulting graph is connected. For
easier accessibility, in further graphical representations of syn-
tactic structures, the words of the sentence are used for labeling
(instead of their indices).

• In the case of constituency structures, non-terminal nodes are
labeled with syntactic category labels (VP, S), and edges with
grammatical function labels (OC, HD, MO). In the case of depen-
dency structures, the edges carry dependency type labels (root,
aux, pp). In further graphical representations, the edge labeling
may be omitted, if of no importance.

The yield of a node is the set of labels of all integer-labeled nodes
which it dominates. In other words, the yield of a node represents the
part of the sentence which the node covers.
Definition 2.14 (Yield). Let D = (V ,E, r) be a syntactic structure. The Yield and

yield blocksyield function π : V → Pfin(N) is such that for all v ∈ V , π(v) = {i ∈
N | there is a v ′ ∈ V with 〈v, v ′〉 ∈ E∗ and ΛV(v ′) = i}.

24 definitions

We call a continuous sequence of integers in the yield of a node a
yield block. The set of all yield blocks of a node is its yield block set.
Definition 2.15 (Yield block set). Let D = (V ,E, r) be a syntactic struc-
ture. For all v ∈ V , the yield block set Ωv of v is a partition of π(v)
given by the equivalence relation O on π(v) which is such that for all
i, j ∈ π(v), i ∼O j iff

1. i < j and i+ 1 ∈ π(v) and i+ 1 ∼O j, or

2. i > j and i− 1 ∈ π(v) and i− 1 ∼O j, or

3. i = j.

Any ω ∈ Ωv is called a yield block of v.5

The subscript on the yield block set may be omitted if clear from
the context. The yield block set is ordered by the respective smallest
integer of the blocks it contains.
Definition 2.16 (Yield block set ordering). Let D = (V ,E, r) be a syn-
tactic structure. For the block set Ωv of any v ∈ V , the following holds.

1. Ωv is equipped with a strict total order ≺ called block ordering
which is such that for all ω1,ω2 ∈ Ωv, ω1 ≺ ω2 iff min(ω1) <
min(ω2).

2. Any ω ′ ∈ Ωv is the ith block of v, notated v(i), iff |{ω ∈ Ωv | ω ≺
ω ′}| = i− 1.

The block degree of a node is the cardinality of its block set.Block degree

Definition 2.17 (Block degree). Let D = (V ,E, r) be a syntactic struc-
ture. For all v ∈ V , the block degree function dim : V → N yields the
cardinality of the block set of v.
Example 2.18 (Yield, yield blocks and block degree). Consider again
the two syntactic structures in figure 8.

• The node labeled S in the constituency structure and the node
labeled 2 in the dependency structure have the yield {1, 2, 3, 4},
respectively. The corresponding yield block set is {{1, 2, 3, 4}}, and
the block degree |{{1, 2, 3, 4}}| = 1.

5 We use the terms yield block and yield component interchangeably and omit yield when
clear from the context.

2.1 basic definitions 25

• The upper node labeled VP in the constituency structure and the
node labeled 4 in the dependency structure have the same yield
{1, 3, 4}. The corresponding yield block set is {{1}, {3, 4}} (where
{1} is the first and {3, 4} the second yield block), and the block
degree is |{{1}, {3, 4}}| = 2.

2.1.3 Treebanks

A collection of texts is called a corpus. A corpus in which each sentence
is annotated with a syntactic structure is called a treebank. The annota-
tion in a treebank is typically created by human annotators. It is often
split in modules, i. e., apart from a syntactic annotation level, a tree-
bank can contain, e. g., Part-of-Speech (POS) annotation, morphologi-
cal annotation, annotation of semantic frames, etc. The rules which hu-
man annotators follow during annotation are generally written down
in a stylebook. The stylebook determines the annotation schema, i. e., it
determines what kind of information is encoded and how the encod-
ing is accomplished. Here, we focus on the syntactic annotation.

We now define treebanks. Recall the definitions of syntactic struc-
tures (defs. 2.11 and 2.12).
Definition 2.19 (Treebank). Treebanks

1. A lexicon is an alphabet of atomic natural language tokens W. A
POS tag set is an alphabet of POS tags P.

2. Let W be a lexicon and P be a POS tag set. A POS-tagged token
over W and P is a tuple 〈w,p〉 ∈W×P. For 〈w,p〉 we may write
w/p, or just w, if the POS tag is of no importance. A POS tagged
sentence over W and P is a non-empty word s ∈ (W×P)+.

3. A treebank is a set Υ of tuples (i,υi, si), 1 6 i 6 |Υ|, where i is an
index which is unique to each tree, and υi is a syntactic structure
for some POS tagged sentence6 si. υi is also called the (syntactic)
annotation of si.

4. Υ is called a constituency treebank, resp. a dependency treebank, iff
for all (i,υi, si) ∈ Υ, 1 6 i 6 |Υ|, it holds that υi is a constituency
structure, resp. a dependency structure.

6 The nature of the treebanks we are investigating (cf. sections 4.2.1 and 4.3.1) allows
us to assume that all words carry POS annotation.

26 definitions

Instead of token, we may also say word, if it is clear from the context
that we not referring to a word in the sense of definition 2.2, but to a
natural language token.

2.2 grammatical description

In order to formulate a linguistic theory in a mathematically explicit
way, an appropriate mathematical framework is needed. Such a frame-
work needs to provide a possibility for licensing, resp. ruling out sen-
tences, and for specifying the appropriate structure of a licensed sen-
tence. The two major classes of such frameworks are Model-Theoretic
Syntax (MTS) and Generative Enumerative Syntax (GES) (Pullum and
Scholz, 2001). The contributions of this thesis focus on the latter (see
also section 1.2). For details on MTS, the reader is referred to Pullum
and Scholz (2001) and Pullum (2007).

Frameworks belonging to GES are finite devices called grammar for-
malism or simply formalism. They typically allow for the specification
of an axiom and substitution rules. Starting from the axiom, languages
can be generated via a series of (recursive) rule applications. Pullum
and Scholz (2001) present a list of major frameworks, completed here
by several others:7

• Phrase Structure Grammar, including Context-Free Grammar, in-
troduced by Noam Chomsky (Chomsky, 1956),

• Transformational Grammar, Chomsky’s work on linguistics in
its various versions (Chomsky, 1957, 1981, 1995),

• Tree-Adjoining Grammar, introduced by Aravind Joshi (Joshi
et al., 1975),

• Multi-Component Tree-Adjoining Grammar, introduced by Joshi
(1987),

• Different flavors of Categorial Grammar, such as Combinatory
Categorial Grammar, introduced by Mark Steedman (Steedman,
2000),

• Generalized Phrase Structure Grammar, the work of Gerald Gaz-
dar and colleagues (Gazdar et al., 1985),

7 This list is, of course, still far from exhaustive.

2.2 grammatical description 27

• Linear Context-Free Rewriting System (Vijay-Shanker et al., 1987)
and the independently developed equivalent formalisms Multi-
ple Context-Free Grammar (Seki et al., 1991) and Simple Range
Concatenation Grammar (Boullier, 1998),

• Minimalist Grammar (Stabler, 1997), the formalization of Chom-
sky’s minimalist program (Chomsky, 1995), and

• Range Concatenation Grammar, introduced by Pierre Boullier
(Boullier, 1998).

Only some of these frameworks will be used in this thesis.

2.2.1 Context-Free Grammar

For the presentation of the definition of Context-Free Grammar and
related definitions, we follow Hopcroft and Ullman (1979).
Definition 2.20 (Context-Free Grammar). A Context-Free Grammar Context-Free

Grammar(CFG) is a tuple G = (N, T ,P,S), where

1. N and T are disjoint alphabets of non-terminal symbols and ter-
minal symbols,

2. S ∈ N is a distinguished start symbol, and

3. P ⊆ N × (N ∪ T)∗ is a finite set of productions.8 A production
〈A,β〉 ∈ P is written as A→ β.

The derivational process on the basis of which we can derive a set
of words using a CFG is driven by the relation derives.
Definition 2.21 (Derivation (CFG)). Let G = (N, T ,P,S) be a CFG. Derivation

and language
1. =⇒G⊆ (N ∪ T)+ × (N ∪ T)∗ is a relation called derives which is

defined as follows. γ =⇒G γ ′ iff there are A → β ∈ P and
α,α ′ ∈ (N ∪ T)∗ with γ = αAα ′ and γ ′ = αβα ′. We may write
=⇒A→β

G to make the production explicit. If G is not relevant or
implicitly understood, we may omit the corresponding subscript.

2. ∗
=⇒G is the reflexive transitive closure of =⇒G.

8 Productions are also called rules.

28 definitions

3. Let α1, . . . ,αm ∈ (N∪ T)∗, m ∈N. A sequence

α1 =⇒G · · · =⇒G αm

is a derivation of length m, also written α1
m
=⇒G αm. αm is called

derivable from α1. Each αi =⇒G αj, 1 6 i, j 6 m, j = i+ 1, is a
derivation step.

The language of a CFG consists of the terminal words that can be
derived from its start symbol.
Definition 2.22 (Language (CFG)). Let G = (N, T ,P,S) be a CFG. The
language of G is L(G) = {w | w ∈ T∗ and S ∗

=⇒G w}.
The derivations of a grammar formalism can be represented as trees.

Such trees are called derivation trees.
Definition 2.23 (Derivation tree (CFG)). Let G = (N, T ,P,S) be CFG.Derivation

trees A derivation tree9 for G is an labeled ordered tree D = (V ,E, r) which
is as follows.

1. ≺ is such that for all u1,u2 ∈ V with 〈u1,u2〉 6∈ E∗ and 〈u2,u1〉 6∈
E∗,

a) either u1 ≺ u2 or u2 ≺ u1,
b) for all u ′1,u

′
2 ∈ V , if

i. 〈u1,u ′1〉 ∈ E and u1 ≺ u ′2 or

ii. 〈u2,u ′2〉 ∈ E and u ′1 ≺ u2,
then it holds that u ′1 ≺ u ′2;

c) ≺ contains nothing else.

2. It has a node labeling Λ over N∪ T ∪ {ε} such that

a) for all v ∈ V , if fout(v) = 0, then Λ(v) ∈ T ∪ {ε}, otherwise
Λ(v) ∈ N, and

b) for all v0, v1, . . . , vn ∈ V , n ∈N, 1 6 i 6 n, 1 6 j < n, where

i. 〈v0, vi〉 ∈ E, and there is no v ′ ∈ V \ {v1, . . . , vn} with
〈v0, v ′〉 ∈ E,

ii. vj ≺ vj+1, and

iii. Λ(v0) = A and Λ(vi) = βi,

9 Derivation trees are also called parse trees.

2.2 grammatical description 29

there exists a A→ β1 · · ·βn ∈ P.

D is also called a Λ(r)-tree. If Λ(r) 6= S, then D is called a partial
derivation tree.

Derivation trees are connected to derivations through their frontier,
the word which results from reading all leaf nodes from left to right.
Definition 2.24 (Frontier). Let G = (N, T ,P,S) be a CFG and let D =

(V ,E, r) be a derivation tree for G. Let Vl = {v ∈ V | fout(v) = 0}. The
frontier of D is the word Λ(u1) · · ·Λ(u|Vl|) where for all 1 6 i 6 |Vl|,
ui ∈ Vl and |{u ∈ Vl | u ≺ ui}| = i− 1.
Proposition 2.25. Let G = (N, T ,P,S) be a CFG, and let w ∈ T∗.
S
∗

=⇒G w iff there is a derivation tree for G with frontier w (Hopcroft
and Ullman, 1979).
Definition 2.26 (Tree language (CFG)). Let G = (N, T ,P,S) be a CFG.
The tree language of G is T(G) = {γ | γ is a derivation tree (V ,E, r) for
G with Λ(r) = S}.

To distinguish the tree language of a grammar G from its language,
the latter is also referred to as its string language.

Normal forms which impose restrictions on the grammar can be use- Normal
Formsful for parsing. Among others, we define ε-free CFG and the Chomsky

Normal Form.
Definition 2.27 (ε-free CFG). Let G = (N, T ,P,S) be a CFG. G is ε-free
if either

1. ε ∈ L(G), there is a production S → ε ∈ P, S occurs in no other
right-hand side (RHS) of a production in P and there is no other
production of the form A→ ε ∈ P for some A ∈ N; or

2. ε /∈ L(G) and there is no production of the form A → ε ∈ P for
some A ∈ N.

Definition 2.28 (Useful symbol). Let G = (N, T ,P,S) be a CFG. A non-
terminal A ∈ N is useful if for α,γ ∈ (N ∪ T)∗ and w ∈ T∗, there is a
derivation S ∗

=⇒G αAγ
∗

=⇒G w. Otherwise, A is useless.
Proposition 2.29. If L = L(G) for some CFG G = (N, T ,P,S), then
L \ {ε} is the language L(G ′) of a CFG G ′ without useless symbols and
without productions of the form A→ ε (Hopcroft and Ullman, 1979).
Definition 2.30 (Chomsky Normal Form). Let G = (N, T ,P,S) be a
CFG with ε /∈ L(G). G is in Chomsky Normal Form (CNF) iff all p ∈ P

30 definitions

are either of the form A→ a or of the form A→ BC, where a ∈ T and
A,B,C ∈ N.
Proposition 2.31. For every ε-free CFG G, there is another CFG G ′ in
CNF with L(G ′) = L(G) (Hopcroft and Ullman, 1979).

Context-Free Grammar has been introduced within a hierarchy of
formalisms with different expressivity, the Chomsky Hierarchy (Chom-
sky, 1956). However, CFG is the only formalism of the hierarchy which
will be used in this thesis.

In order to be able to compare formalisms, we introduce weak and
strong equivalence between formalisms.
Definition 2.32 (Equivalence of formalisms). Let F1 and F2 be twoEquivalence of

formalisms formalisms.

1. F1 and F2 are weakly equivalent if

a) the concept of a language is defined for both, and

b) for every grammar instance GF1 of F1 generating the lan-
guage L, there is a grammar instance GF2 of F2 which also
generates L and vice versa.

2. F1 and F2 are strongly equivalent if

a) the concept of a tree language is defined for both, and

b) for every grammar instance GF1 of F1 generating the tree
language T, there is a grammar instance GF2 of F2 which
also generates T and vice versa.

Example 2.33 (Context-Free Grammar). Let G = ({S,A}, {a,b},P,S) be
a CFG with P = {S → AB,A → aAb,A → ε,B → cBd,B → ε}. It is
easy to see that L(G) = {anbncmdm | n,m > 0}. Figure 9 shows the
graphical representation of a derivation tree for aabb ∈ L(G).

The example shows a characteristic property of Context-Free Lan-
guages (CFLs), namely center embedding. Center embedding leads to
words with a nested structure. Cross-serial dependencies (see p. 3)
can not be described. Consider again (2) and (3), repeated here as (6)
and (7).

(6) . . . mer
. . . we

em Hansi
Hans-Dat

es
the

Huusj
house-Acc

hälfedi
help

aastriichej
paint

. . . we help Hans paint the house

2.2 grammatical description 31

S

A B

a A b ε

a A b

ε

Figure 9: CFG derivation tree

(7) . . . mer
. . . we

d’chindi
the kids

em Hansj
Hans

es
the

Huusk
house

löndi
let

hälfej
help

aastriichek
paint

“. . . we let the kids help Hans paint the house”

Introducing one symbol for each verb/complement combination, (6)
can be abstracted to the word abab, (7) to abcabc. In fact, the abstraction
can be generalized to the copy language Lcopy = {ww | w ∈ {a,b}∗}.
However, this language is no CFL. This can be shown using the closure
properties of CFLs, generalizing the proof idea of Shieber (1985) who
shows non-context-freeness for a special case of this language.

2.2.2 Mild Context-Sensitivity

Joshi (1985) introduces Mild Context-Sensitivity (MCS) as an attempt Mild Context-
Sensitivityto characterize in a formal way the amount of context-sensitivity, i. e.,

the amount of expressivity beyond CFG which is necessary to model
natural language. A set of languages is mildly context-sensitive if it
obeys the following necessary conditions.10

1. It properly contains all CFLs.

2. It allows for a limited amount of cross-serial dependencies, i. e.,
it contains all string languages {wn | w ∈ Σ∗} for some n > 2.

3. All languages in the set can be recognized in polynomial time
(see section 2.3.2).

10 See Kracht (2003), pp. 369, and Kallmeyer (2010a) for a critical discussion of the
conditions from a formal point of view.

32 definitions

4. All languages in the set have the constant growth property.11

If the set of languages which can be generated by a formalism is
mildly context-sensitive, then we speak of a mildly context-sensitive for-
malism or MCS formalism. Now, two such formalisms will be intro-
duced, namely Tree-Adjoining Grammar and Linear Indexed Grammar.
Formal definitions will not be presented, since none of the contribu-
tions of this thesis requires them.

The first version of Tree-Adjoining Grammar (TAG) has been intro-Tree-
Adjoining
Grammar

duced under the name of Tree Adjunct Grammar in Joshi et al. (1975).
A comprehensive introduction can be found in Joshi and Schabes
(1997). For a complete formal definition of TAG, consult, for instance,
Kallmeyer (1999) or Kallmeyer (2010b). TAG is not a symbol-rewriting
formalism such as CFG, but a tree-rewriting formalism. A TAG consists
of a set of labeled ordered trees called elementary trees. For linguistic
modeling, Lexicalized Tree-Adjoining Grammar (LTAG) is used. In LTAG,
the trees are lexicalized, i. e., at least one of its leaves is labeled with a
terminal. Generally, the linguistic principle of elementary tree minimal-
ity is respected: a tree must encode the subcategorization requirements
of one lexical item (Frank, 2002). Elementary trees come in two vari-
ants. Auxiliary trees have one leaf node called foot node labeled with
the same label as the root node and marked with a star. Initial trees are
non-auxiliary elementary trees.

A derivation is built by combining elementary trees into new trees,
using two different operations. The substitution operation allows to
replace a non-terminal leaf of an elementary tree (substitution node)
with another elementary tree the root of which carries the same label.
The adjunction operation allows to replace the internal node of a tree
(adjunction node) with an auxiliary tree the root and foot of which carry
the same label; i. e., the part below the node to which the auxiliary tree
is to be adjoined is excised, the node is replaced with the auxiliary tree,
and the excised part of the original tree is appended to the foot node.
Generally, by definition, only one adjunction happens at a time and
one can only adjoin at a node once (Joshi and Schabes, 1997). In order
to generate the copy language, TAG must be extended with adjunction
constraints. These are given by two functions. The first one tells for

11 The lengths of the words generated by grammars of a formalism which has the
constant growth property must grow linearly, i. e., not, e. g., exponentially as in the
language {a2

n
| n > 1}. The constant growth property of a language can be shown

by showing its semilinearity (Parikh, 1966).

2.2 grammatical description 33

each node if adjunction is obligatory (node is marked with OA for
obligatory adjunction). The second one yields for each node the set of
trees that can be adjoined. If this set is empty, the node is marked NA
for no adjunction.

A tree which is the result of a tree combination is called a derived
tree. In CFG, the derived tree, i. e., the result of the application of pro-
ductions, is isomorphic to the derivation tree. This is not the case for
TAG, since one cannot reconstruct from a derived tree alone how it
has been built. A TAG derivation tree does encode this information. In
such a tree, every node is labeled with the name of a tree an instance
of which has been used in a derivation. An edge between two nodes
exists if for the corresponding trees, it holds that one tree has been
adjoined or substituted into the other. The edge is labeled with the
Gorn address12 of the substitution, resp. adjunction node.
Example 2.34 (Tree-Adjoining Grammar). Figure 10 shows a TAG for
the copy language. Furthermore, it shows the derivation process, a
derivation tree and a derived tree for the word abab. It is easy to see
that the reason for the additional expressivity of TAG is the adjunction
operation, which can be controlled through adjunction constraints.

Figure 2, p. 5, shows a linguistic example with the derivation pro-
cess and the derived tree. It features both an adjunction and substitu-
tions.

A popular variant of TAG is Feature Structure Based Tree-Adjoining Feature
Structure
TAG

Grammar (FTAG) (Vijay-Shanker and Joshi, 1988). A feature structure13

is a data structure which consists of a set of attribute-value pairs. At-
tributes are names; values can be of different types (e. g., boolean,
string, integer, or other feature structures). Structure sharing allows to
express, resp. force value identities. In FTAG, every node in an ele-
mentary tree carries two feature structures (generally represented as
Attribute-Value Matrices (AVMs), see figure 11 for an example), a top
and a bottom feature structure.14 Given a node A, the idea is that the
top structure gives information about the part of the tree above A and
the bottom structure about the part below A. Feature structure unifi-

12 In this convention (Gorn, 1967), the root address is ε and the jth child of a node with
address p has address p · j. The node labeled ε in the derived tree in figure 10, e. g.,
has the address 22111.

13 The TEI Consortium offers a good introduction to feature structures in their guide-
lines for feature structure representation (TEI Consortium, 2010).

14 Note that structure sharing is expressed via variables, written as boxed numbers.

34 definitions

TAG generating the copy language:

α

S

ε

β1

SNA

a S

S∗
NA

a

β2

SNA

b S

S∗
NA

b

Derivation of abab and derived tree:

S

ε

SNA

a S

S∗
NA

a

SNA

b S

S∗
NA

b

;

SNA

a SNA

b S

SNA b

SNA a

ε

Derivation tree:

α

β1

β2

ε

2

Figure 10: A TAG for the copy language

2.2 grammatical description 35

[
cat S

]

[
cat S

]



cat NP

case nom

agr 1







cat VP

agr 1

[
pers 3
num sing

]



[
cat VP

]

[
cat V

] [
cat NP

case acc

]

[
cat V

]

likes

Figure 11: An elementary tree in FTAG

cation plays a central role. Intuitively, the unification of two feature
structures is built by creating a new feature structure and adding all
attribute-value pairs from both feature structures to it. The result of
unification is undefined if there is a value clash for two features. When
adjoining a tree β at A, the top structure of A is unified with the top
structure of the root node of β and the bottom structure of A is uni-
fied with the bottom structure of the foot node of β. To complete a
derivation, all top and bottom structures are unified. A derivation is
only possible if all feature structure unifications are defined.

Linguistic principles, such as agreement, can be modeled easily
with FTAG. Therefore, grammar implementations make extensive use
of feature structures (XTAG Research Group, 2001; Kallmeyer et al.,
2008a). As an example, figure 11 shows an elementary tree for the
word likes with feature structures. The feature structures can take over
the role of the adjunction constraints. Note how structure sharing is
used to restrict the set of trees which can be substituted at the subject
position.

Multi-Component Tree-Adjoining Grammar (MCTAG) is a variant of Multi-
Component
TAG

TAG. Instead of single elementary trees, an MCTAG contains sets of

36 definitions

trees (therefore multi-component). In a single adjunction step, all of the
trees of a set must be used at once. The key idea is that by splitting the
requirements, resp. the contributions of a lexical item on various trees,
more flexibility is gained for linguistic modeling. In non-local MCTAG,
no restriction is imposed on the adjunction operation (apart from the
restriction that all trees must be adjoined at the same time). In tree-
local and set-local MCTAG (Joshi, 1985), the trees of a tree set may be
adjoined to a single tree, resp. to trees from a single tree set. In Vector
Tree-Adjoining Grammar (VTAG) with dominance links (Rambow, 1994),
the simultaneous adjunction condition is relaxed. Locality is achieved
by imposing dominance links on the trees in the multi-component sets
which must be respected in the final derivation. Multi-Component Tree-
Adjoining Grammar with Tree Tuples (TT-MCTAG) (Lichte, 2007) takes
yet another approach. Like in VTAG, the condition of simultaneity
of adjunction is relaxed; still, all the trees of a multi-component set
must be used once a single tree of it has been used. Furthermore,
the number of sets which can be “open” at the same time is limited.
For a formal definition of MCTAG and several of its variants, consult
Kallmeyer (2009). Note that tree-local MCTAG is strongly equivalent
to TAG and set-local MCTAG is weakly equivalent to Linear Context-
Free Rewriting System (LCFRS), which will be introduced in the fol-
lowing. As far as parsing complexity (see section 2.3.2) is concerned,
parsing non-local MCTAG without restrictions and parsing non-local
MCTAG with dominance link is NP-complete, even in the lexicalized
case (Champollion, 2011). As for TT-MCTAG, only the universal recog-
nition problem is NP-complete (Søgaard et al., 2007; Kallmeyer and
Satta, 2009).

Linear Indexed Grammar (LIG) (Gazdar, 1988) is an extension of CFGLinear
Indexed

Grammar
which is weakly equivalent to TAG (Vijayshanker, 1987). It is defined
as a tuple G = (N, T , I,P,S) where N, T ,S are as for CFG and I is a
finite set of indices. The productions in P look like the productions
of CFG except that the non-terminals carry stacks of indices from
I. Stacks are written as [. . .]. There are three different types of pro-
ductions, each with different operations on the stacks. In all produc-
tions, the stack is first copied from the non-terminal on the left-hand
side (LHS) to a single non-terminal of the RHS. Then, either nothing
else happens, or a stack symbol is pushed on the stack, or a stack
symbol is deleted from the stack. The key idea is to use the stacks

2.2 grammatical description 37

for counting, i. e., as a kind of memory, and to overcome this way the
limitations of center embedding.
Example 2.35 (LIG). As an example, consider the LIG

G = ({S, T }, {a,b}, {#,a,b},P,S)

where P contains the following productions.
S0 → S[#]

S[. . .] → aSa[. . .] Sa[. . .] → S[a . . .]

S[. . .] → bSb[. . .] Sb[. . .] → S[b . . .]

S → T

T [a . . .] → T [. . .]a T [b . . .] → T [. . .]b

T [#] → ε

G generates the copy language. The productions interact as follows.
The S non-terminals are used to generate the first half of a word of the
copy language, in other words, the word to be copied. While generat-
ing it, the symbols used are “recorded” on the stack. At some point,
S → T is applied and the second part of the word, in other words the
copy, is generated on the basis of the stack’s contents.

LIG is a restricted form of Indexed Grammar (IG) (Aho, 1968). It is
linear in the sense that the stack is copied from the LHS non-terminal
to a single RHS non-terminal.

(Linear) Indexed Grammar is not as nice to use as a linguistic de-
scription device as TAG. Expressing linguistic abstractions in a tree
rewriting system is more immediate than expressing them in a sys-
tem of symbol rewriting (cf. p. 6). However, due to the proximity of
LIG to CFG, the parsing problem for LIG is conceptually easier to
solve than for TAG. Therefore, as already mentioned, LIG is used as a
pivot formalism for parsing (Boullier, 1996).

2.2.3 Generalized Rewriting

Several formalisms share the property that their derivation processes Generalized
rewritingcan be expressed by a CFG. Capturing this intuition is the idea behind

Linear Context-Free Rewriting System (Vijay-Shanker et al., 1987). The
backbone of the definition of Linear Context-Free Rewriting System is
Generalized Context-Free Grammar (Pollard, 1984).15

15 Our definition of LCFRS follows Weir’s (1988) definition.

38 definitions

Definition 2.36 (Generalized Context-Free Grammar). A Generalized
Context-Free Grammar (GCFG) is a tuple G = (N,S, F,P) where

1. N is an alphabet of non-terminals,

2. F is an alphabet of function symbols disjoint from N with an
arity function dim : F→N0

3. S ∈ N is a distinguished start symbol, and

4. P is a finite set of productions A → f(A1, . . . ,An) where n ∈
N0,16 A,A1, . . . An ∈ N, f ∈ F and dim(f) = n.

Definition 2.37 (Derivation (GCFG)). Let G = (N,S, F,P) be a GCFG.
=⇒G is a relation called derives which is such that

1. A =⇒G f() if A→ f() ∈ P, and

2. A ∗
=⇒G f(t1, . . . , tn) if A → f(A1, . . . ,An) ∈ P and Ai

∗
=⇒G ti for

1 6 i 6 n.

A GCFG G derives a set of terms T(G) such that for all t ∈ T(G),
S

∗
=⇒G t. The idea is to interpret these terms as the derivation trees

of various grammar formalisms. To do that, we need to give an in-
terpretation for each f ∈ F, such that each f ∈ F is mapped onto the
composition operation of the formalism. The interpretation of some
term t ∈ T(G) in some formalism F is written as JtKF (Weir, 1988,
pp. 92).

As for the interpretation for CFG, the co-domain of f are strings,
since Context-Free Grammar is a string-rewriting formalism. As a con-
crete example, consider a CFG with the productions S → aSb and
S → C. A corresponding GCFG G ′ would contain the productions
S → f(Xa,S,Xb), S → f(C), Xa → fa(), Xb → fb(). Jfw()KCFG = w for
all fw with dim(fw) = 0 and some string w, i. e., in our example, we
define Jfa()K = a and Jfb()K = b. Futhermore, and finally, we define

Jf(t1, . . . , tn)KCFG = Jt1KCFG ◦ · · · ◦ JtnKCFG.

However, the interpretation function is not restricted to a co-domain
of strings. Weir (1988) gives more examples. For TAG, the co-domain
of the interpretation function are trees. For Head Grammars (HGs)

16 As usual, if n = 0, then we have a production of the form A→ f().

2.2 grammatical description 39

(Pollard, 1984), the co-domain are pairs of strings. For MCTAG, the
co-domain are finite sequences of trees.

One can capture the common properties of different interpretation
functions by defining a yield function on the interpretations of terms to
capture their contribution of terminals to a final derivation (Weir, 1988,
p. 94). We assume a function φF which returns the yield 〈w1, . . . ,wk〉
of intermediate structures JtKF produced by a formalism F, where
〈w1, . . . ,wk〉, k ∈ N0, is a tuple of terminal strings; and we assume
a function arF which for an intermediate structure JtKF returns the
arity of the tuple returned by φF(JtKF). Note that φCFG is the identity.
Definition 2.38 (Linear Context-Free Rewriting System). A Linear Linear

Context-Free
Rewriting
Systems

Context-Free Rewriting System (LCFRS) is a GCFG G = (N,S, F,P) for
which the following holds. A unique yield function fF is associated
with each f ∈ F such that if

φF(JtiKF) = 〈wi,1, . . . ,wi,arF(JtiKF)〉

for all 1 6 i 6 n and

φ(Jf(t1, . . . , tn)KF) = 〈w1, . . . ,wk〉

for k ∈N0 then

fF(〈w1,1, . . . ,w1,arF(Jt1KF)〉, . . . , 〈wn,1, . . . , xn,arF(JtnKF)〉)
= 〈w1, . . . ,wk〉

and every fF can be defined by an equation of the form

fF(〈x1,1, . . . , x1,m1〉, . . . , 〈xn,1, . . . , xn,mn〉) = 〈α1, . . . ,αm〉

where n ∈N0, m,m1, . . . ,mn ∈N, and for all 1 6 p 6 n, 1 6 q 6 mn,
xp,q is a variable, and each αi, 1 6 i 6 m, is a finite string over vari-
ables occurring on the LHS of the equation and terminal symbols.
Thereby, the m is called the fan-out of the function and n is called its
rank. The rank and fan-out of G are the maximal fan-out of its equa-
tions. The equations must be non-erasing (all variables which appear
on the LHS also appear on the RHS and vice versa) and linear (all
variables appear only once on the LHS and only once on the RHS).

The string languages generated by formalisms which can be formu-
lated as LCFRSs can be obtained by linking the equations from def-
inition 2.38 to the productions of the underlying GCFG (Weir, 1988,
p. 95).

40 definitions

Definition 2.39 (Derivation (LCFRS)). Let G = (N,S, F,P) be a LinearDerivation
and language Context-Free Rewriting System. ∗

=⇒G is a relation called derives which
is such that for all A ∈ N, A ∗

=⇒G 〈w1, . . . ,wm〉, m ∈ N0, if one the
following conditions hold.

1. there is a A→ f() ∈ P such that fF() = 〈w1, . . . ,wm〉.

2. there is a A→ f(A1, . . . ,An) ∈ P, n ∈N, with yield function

fF(〈x1,1, . . . , x1,m1〉, . . . , 〈xn,1, . . . , xn,mn〉) = 〈α1, . . . ,αm〉

and there are 〈wp,1 . . . wp,mp〉 for all 1 6 p 6 n such that

a) Ap
∗

=⇒G 〈wp,1 . . . wp,mp〉, mp ∈N,

b) 〈w1, . . . ,wm〉 can be obtained from 〈α1, . . . ,αm〉 in the fol-
lowing way. For all 1 6 i 6 m, wi is αi with all occurrences
of variables xp,q in αi substituted by wp,q for all 1 6 q 6 mp.

Definition 2.40 (Language (LCFRS)). Let G = (N,S, F,P) be a Linear
Context-Free Rewriting System. The language of G is L(G) = {w |

S
∗

=⇒G 〈w〉}
Of course, if only the string languages are of concern, a much more

direct definition of LCFRS is possible. One can interpret the produc-
tions of the GCFG as functions which state how to compute the yield
of the LHS given the yields of the RHS. This view is adopted in more
recent work. See, e. g., Gómez-Rodríguez et al. (2009a).
Example 2.41 (Linear Context-Free Rewriting System). As an example,
consider the LCFRS G = ({S,A},S, {f1, f2, f3, f4},P) with the following
productions in P and their associated equations.

S → f1(A), f1(〈x1,1, x1,2〉) = 〈x1,1x1,2〉
A → f2(A), f2(〈x1,1, x1,2〉) = 〈ax1,1,ax1,2〉
A → f3(A), f3(〈x1,1, x1,2〉) = 〈bx1,1,bx1,2〉
A → f4(), f4() = 〈ε, ε〉

G generates the copy language {ww | w ∈ {a,b}∗}. The S production
separates the two copies of the word, and the A productions generate
the as and bs, respectively. Note that the equations are given without
a subscript indicating a formalism, because only the string-generating
capacity of LCFRS is used; however, all equations adhere to the condi-
tions given in definition 2.38.

2.2 grammatical description 41

Multiple Context-Free Grammar (MCFG), a formalism which is weakly Multiple
Context-Free
Grammar

equivalent to LCFRS, was independently introduced by Seki et al.
(1991). The original definition of MCFG is not as general as the defini-
tion of LCFRS, MCFG has been defined as a string-rewriting formal-
ism. The productions of an MCFG have the form A0 → f[A1, . . . ,Ak].
Just as in the GCFG underlying an LCFRS, f is a function which is
used to compute the yield of A0 from the yields of A1, . . . Ak. The
only difference between the MCFG yield functions and their LCFRS
equivalents is that MCFG does not impose the bottom-up non-erasing
condition (see def. 2.43). Nevertheless, MCFG is weakly equivalent to
LCFRS, as Seki et al. (1991) show.

Another formalism which is equivalent to LCFRS is Simple Range
Concatenation Grammar (Boullier, 1998). In the remainder of the the-
sis, we will adopt the Simple Range Concatenation Grammar terminol-
ogy. This formalism will be introduced later in this chapter, together
with a definition of its derivation trees.

Further formalisms are equivalent to LCFRS. Context-Free Grammat- Other
formalisms
equivalent to
LCFRS

ical Framework (cf-GF), a restricted variant of GF (a version of depen-
dent type theory) (Ranta, 2004), is weakly equivalent to LCFRS. Both
formalisms are conceptually very close (Ljunglöf, 2004). Minimalist
Grammar (MG) (Stabler, 1997), the formalization of Chomsky’s Mini-
malist program (Chomsky, 1995), is weakly equivalent to MCFG, as
shown by Michaelis (2001a,c). Also, set-local MCTAG (see p. 35) is
weakly equivalent to LCFRS (Weir, 1988).

2.2.4 Range Concatenation Grammar

Range Concatenation Grammar has been introduced by Pierre Boullier
(Boullier, 1998).
Definition 2.42 (Positive Range Concatenation Grammar). A Positive Range

Concatenation
Grammar

Range Concatenation Grammar is a tuple G = (N, T ,V ,P,S) where the
following holds.

1. N is an alphabet of predicate names with an arity function dim :

N→N.

2. T and V are disjoint alphabets of terminals and variables.

3. P is a finite set of clauses of the form

ψ0 → ψ1 · · ·ψm

42 definitions

with the rank m ∈ N0 and each of the ψi, 0 6 i 6 m, is a
predicate of the form Ai(αi,1, . . . ,αi,dim(Ai)) where Ai ∈ N and
each of the αi,j ∈ (T ∪ V)∗, 1 6 j 6 dim(A) is an argument.
Ai(αi,1, . . . ,αi,dim(Ai)) is abbreviated as Ai(~αi), ψ1 · · ·ψm is ab-
breviated as ~Ψ.

4. S ∈ N is the distinguished start predicate name with dim(S) = 1.

Since Negative Range Concatenation Grammar (NRCG) will not be
used in this thesis (see Boullier (1998) for details), henceforth by Range
Concatenation Grammar (RCG), Positive Range Concatenation Gram-
mar is meant. Depending on the particular form of clauses, we distin-
guish several subtypes of RCGs.
Definition 2.43 (Subtypes of RCGs). Let G = (N, T ,V ,P,S) be an
RCG.

1. G is a k-RCG iff its maximal predicate arity is k; G has the rank
m iff its maximal clause rank is m.

2. G is non-combinatorial if for all c ∈ P, it holds that the length of
all arguments of RHS predicates is 1.

3. G is bottom-up non-erasing if for all c ∈ P, it holds that every
variable which occurs on the RHS also occurs on the LHS.

4. G is top-down non-erasing if for all c ∈ P, it holds that every
variable which occurs on the LHS also occurs on the RHS.

5. G is non-erasing if it is bottom-up non-erasing and top-down non-
erasing.

6. G is bottom-up linear if for all c ∈ P, no variable appears more
than once on the LHS of c.

7. G is top-down linear if for all c ∈ P, no variable appears more than
once on the RHS of c.

8. G is linear if it is bottom-up linear and top-down linear.

9. A clause c ∈ P is an ε-clause if there is an argument of its predi-
cates which is the empty word. G is ε-free if either P contains no
ε-clauses or there is exactly one clause S(ε) → ε ∈ P and S does
not appear in any of the RHSs of the clauses in P.

2.2 grammatical description 43

Clauses in an RCG can be instantiated. In an instantiated clause,
all occurrences of terminals and ε, and the variables, are mapped to
ranges of a string. For this, we first must define the ranges of a string.
Definition 2.44 (Range). Let Σ be an alphabet. For every w ∈ Σ∗, such Ranges and

instantiationthat w = w1 · · ·wn with n ∈N and wi ∈ Σ for 1 6 i 6 n, we define:

1. Pos(w) = {0, . . . ,n}.

2. A range in w is a pair 〈l, r〉 ∈ Pos(w)×Pos(w) with l 6 r. Its yield
〈l, r〉(w) is the substring wl+1 · · ·wr.

3. For two ranges ρ1 = 〈l1, r1〉, ρ2 = 〈l2, r2〉: if r1 = l2, i. e., if the
ranges are adjacent, then ρ1 · ρ2 = 〈l1, r2〉; otherwise ρ1 · ρ2 is
undefined.

A range vector is a vector of ranges in a certain string.
Definition 2.45 (Range vector). Let Σ be an alphabet and let w ∈ Σ∗.
A range vector of dimension k ∈ N in w is defined as ~φ ∈ (Pos(w)×
Pos(w))k, where 〈li, ri〉 ∈ ~φ, 1 6 i 6 k, is a range in w. ~φ(i) denotes
〈li, ri〉 and ~φ(i).l (resp. φ(i).r) denotes then the first (resp. second)
component of ~φ(i), that is li (resp. ri).

In order to instantiate a clause of the grammar, we need to find
ranges for all variables in the clause, for all occurrences of terminals,
and for all ε arguments. We first introduce a numbering of argument
elements.
Definition 2.46 (Argument numbering). Let G = (N, T ,V ,P,S) be an
RCG.

1. For all c ∈ P, we assume all occurrences of terminals, all occur-
rences of ε and the resp. first occurrences of variables in c to be
consecutively numbered with a unique index w.r.t. their occur-
rence from left to right, starting with 1.

2. For any c ∈ P, the function ξ yields the maximal index of c.
The function ξe yields the variable, occurrence of a terminal, or
occurrence of ε in c at index i for all c ∈ P, 1 6 i 6 ξ(c).

Now we can give an instantiation by a range vector, using the argu-
ment numbering we have just defined to map elements of the clause
to ranges in the range vector.

44 definitions

Definition 2.47 (Clause instantiation). Let G = (N, T ,V ,P,S) be an
RCG and let w ∈ T∗ be a string.

1. An instantiation of some clause c ∈ P with ξ(c) = k with respect
to w is given by a range vector ~φ of dimension k where ~φ(j),
1 6 j 6 k contains the range to which ξe(c, j) is bound. Thereby,

a) variables which are adjacent in c must be mapped on adja-
cent ranges, and

b) for 0 6 i < |w|,

i. if ξe(c, j) is the occurrence of a terminal a, it must be
mapped on a range 〈i, i+ 1〉 with wi+1 = a, and

ii. if ξe(c, j) is an occurrence of ε, it must be mapped on a
range 〈i, i〉.

2. Applying ~φ to a predicate A(~α) in c, notated ~φ(A(~α)), is defined
as a mapping of all occurrences of terminals and ε and all vari-
ables in ~α to elements of ~φ such that ξe(c, i) is mapped to ~φ(i).

If the result is defined, i. e., if the images of adjacent variables
can be concatenated, then it is called an instantiated predicate. If
the result of applying ~φ to all predicates in c is defined, then the
result of the mapping is called an instantiated clause.

3. The notation A(~ψ) designates a predicate A(~α), instantiated with
~φ.

An RCG derivation consists of rewriting instantiated predicates ap-
plying instantiated clauses.
Definition 2.48 (Derivation (RCG)). Let G = (N, T ,V ,P,S) be an RCGDerivation

and language and w ∈ T∗ a string.

1. =⇒G,w is a relation called derives on strings of instantiated pred-
icates the following way. Let Γ , Γ ′ be strings of instantiated pred-
icates. If A0(~ψ0) → A1(~ψ1) . . . Am(~ψm), m ∈ N0, is the instantia-
tion of some clause c ∈ P, then

ΓA0(~ψ0)Γ
′ =⇒G,w ΓA1(~ψ1) . . . Am(~ψm)Γ

′.

We may write =⇒A0(~α0)→A1(~α1)...Am(~αm)
G,w to make the clause ex-

plicit. If G and w are not relevant or implicitly understood, then
we may omit the corresponding subscript.

2.2 grammatical description 45

2. ∗
=⇒G,w is the reflexive transitive closure of =⇒G,w.

3. Let Γ1, . . . , Γn be strings of instantiated predicates, n ∈ N. A se-
quence

Γ1 =⇒G,w · · · =⇒G,w Γn

is a derivation of length n, also written Γ1
n⇒G,w. Γn is called deriv-

able from Γ1. Each Γi =⇒G,w Γj, 1 6 i, j 6 m, j = i + 1, is a
derivation step.

The language of an RCG G is the set of strings that can be reduced
to the empty word.
Definition 2.49 (Language (RCG)). Let G = (N, T ,V ,P,S) be an RCG.
The language of G is L(G) = {w | S(〈0, |w|〉) ∗

=⇒G,w ε}.
In fact, for a w, the set of instantiated clause w.r.t. w is a CFG G ′

with start symbol S(〈0, |w|〉) (this is the grammar which generates the
shared forest, see p. 54). If the language is not empty ({ε} = L(G ′)),
then w ∈ L(G).
Example 2.50 (Range Concatenation Grammar). RCG can generate
languages beyond mild context-sensitivty. An example for such a lan-
guage is Lexp = {a2

n
| n ∈N0} (it lacks the constant growth property).

Lexp can generated by an RCG G = 〈{S, eq}, {a}, {X, Y},P,S〉 with P con-
taining the following clauses.

S(XY) → S(X)eq(X, Y)
S(a) → ε

eq(aX,aY) → eq(X, Y)
eq(ε, ε) → ε

The eq clauses check two strings of as for equal length: Only a string
with an even number of as can be reduced to ε. The S clauses split the
string and apply the eq predicate.

RCG can be used for linguistic modeling (see section 3.1.1). For an
elaborate linguistic example, consult Sagot (2005), section 4.1.

The most important sub-class of RCGs in this thesis are Simple
Range Concatenation Grammars.
Definition 2.51 (Simple Range Concatenation Grammar). A Simple Simple RCG
Range Concatenation Grammar (SRCG) is an RCG which is linear, non-
erasing, and non-combinatorial.

46 definitions

Intuitively, an SRCG clause can be seen as a combined notation of
an LCFRS production together with the corresponding yield function.
See example 2.56.
Proposition 2.52. For every Simple Range Concatenation Grammar,
there is a weakly equivalent Linear Context-Free Rewriting System
and vice versa (Boullier, 1998).

A way of encoding SRCG (and also RCG) derivations as trees is
presented by Boullier (1998). He uses the derivation trees of the pre-
viously mentioned CFG consisting of the set of instantiated clauses
w.r.t. a word w (following def. 2.23, p. 28). In contrast, we define the
derivation trees for SRCG such that in a derivation tree for a derivation
of a word w ∈ L(G), G being some SRCG, leaf nodes are introduced
in the tree for all terminals and ε used in instantiations, along with
edges from the corresponding predicates to these nodes. The leaves
are ordered.
Definition 2.53 (Derivation tree (SRCG)). Let G = (N, T ,V ,P,S) be anDerivation

trees SRCG and let w = w1 · · ·wn, n ∈ N, with wi ∈ T for all 1 6 i 6 n be
a string. A derivation tree for G for a derivation S(〈0,n〉) =⇒G,w ε is an
ordered tree D = (VD,ED, r) with a node labeling Λ over N ∪ T ∪ {ε}

and a function pos : {v ∈ VD | fout(v) = 0}→N such that the following
holds.

1. Λ is as follows.

a) For all v ∈ VD, if fout(v) > 0, then Λ(v) ∈ N, otherwise
Λ(v) ∈ T ∪ {ε}.

b) For all wi, there is exactly one v ∈ VD with Λ(v) = wi.

2. For all v0, v1, . . . , vk ∈ VD, k ∈ N, with 〈v0, vj〉 ∈ E, 1 6 j 6 k,
such that there are no other vd ∈ VD \ {v1, . . . , vk} with 〈v0, vd〉 ∈
ED, there exists a clause c = A0(~α0) → A1(~α1) · · ·Am(~αm) ∈ P,
m ∈N0, which is instantiable with respect to w by range vector
~φ, such that

a) |{p | 1 6 p 6 |~φ| and ξe(c,p) is no variable}| = k−m,

b) Λ(v0) = A0, and for all 1 6 q 6 m, there is exactly one
v ′ ∈ {v1, . . . , vk} with Λ(v ′) = Aq,

c) for all 1 6 p 6 |~φ| where ξe(c,p) is a occurrence of a ter-
minal t or of ε, there is a exactly one v ′′ ∈ {v1, . . . , vk} such
that

2.2 grammatical description 47

i. Λ(v ′′) = ξe(c,p), and

ii. pos(v ′′) = ~φ(p).l.

3. ≺ is such that for all u ′,u ′′ ∈ {u ∈ VD | Λ(u) ∈ T ∪ {ε}}, u ′ ≺ u ′′
iff pos(u ′) < pos(u ′′).

Again, D is also called a Λ(r)-tree. If Λ(r) 6= S, then D is called a partial
derivation tree.

A comparable alternative definition to our definition 2.53 can be
found in Kracht (2003), p. 409.

Imposing an ordering on variables can be useful for parsing (Ville-
monte de la Clergerie, 2002; Kallmeyer, 2010b).
Definition 2.54 (Ordered Simple Range Concatenation Grammar).
An Ordered Simple Range Concatenation Grammar (OSRCG) is an SRCG
G = (N, T ,V ,P,S) where for all ψ0 → ψ1 · · ·ψm ∈ P, it holds that if
a variable X1 precedes a variable X2 in a ψi, 1 6 i 6 m, then X1 also
precedes X2 in ψ0.
Lemma 2.55. Every SRCG can be transformed into an equivalent Or-
dered SRCG (Kallmeyer, 2010b, p. 145).

Note, however, that the corresponding construction yields a gram-
mar which is exponential in size. Other instances of the idea of vari-
able ordering are monotone LCFRS (Kracht, 2003, p. 408) and MCFG in
Monotone Function Form (MFF) (Michaelis, 2001b, p. 21).

In well-nested SRCG, certain “crossing” variable configurations are
disallowed (Kanazawa, 2009b). This variant of SRCG will be intro-
duced later (def. 5.13, p. 140).
Example 2.56 (Simple Range Concatenation Grammar). As an exam-
ple, consider the following SRCG G = ({S,A}, {a,b}, {X, Y},P,S) where
P contains the following clauses.

S(XY) → A(X, Y)
A(aX,aY) → A(X, Y)
A(bX,bY) → A(X, Y)
A(ε, ε) → ε

Again, L(G) is the copy language. Note that the grammar is ordered.
It works in parallel to the corresponding LCFRS in example 2.41. Fig-
ure 12 shows the derivation tree for G over abaaba.

48 definitions

S

A

A

A

a b a a b a

Figure 12: An SRCG derivation tree

Boullier (1998), pp. 18, presents the relation between RCG and otherRCG and
other

formalisms
formalisms.

RCG has been introduced as a variant of Literal Movement Grammar
(LMG) (Groenink, 1996). The definitions are very similar. The crucial
difference is that while in RCG, variables are bound to ranges, in LMG
they are bound to strings. While unrestricted LMG is not computation-
ally tractable, a restricted version called simple LMG (Groenink, 1997)
is, in fact, weakly equivalent to RCG.

Simple 1-RCG is strongly equivalent to CFG. Full 1-RCG can still be
parsed in cubic time (see section 2.3.2), but offers more expressivity
through copying (Boullier, 2000a).17

SRCG is equivalent to LCFRS, MCFG, MG and cf -GF. Well-nested
SRCG (def. 5.13, p. 140) is equivalent to Coupled Context-Free Grammar
(CCFG) (Hotz and Pitsch, 1994).

Boullier furthermore presents conversion algorithms from TAG and
MCTAG to RCG. Kallmeyer and Parmentier (2008) present a conver-
sion algorithm from TT-MCTAG to RCG. It has found an application
in the TuLiPA parser (Kallmeyer et al., 2008b).

2.2.5 Beyond RCG

Before Shieber’s proof of the non-context-freeness of natural language
and before the introduction of the concept of Mild Context-Sensitivity,
two extensions of CFG appeared with the particular aim of providing
means for the handling of free word order, resp. discontinuous con-
stituents.

17 This only holds if one discards the cost of finding instantiations. See the discussion
in section 3.4.

2.2 grammatical description 49

Generalized Phrase Structure Grammar

The framework of Generalized Phrase Structure Grammar (GPSG) ex-
tends CFG with additional mechanisms that facilitate the expression
of linguistic abstractions (Gazdar et al., 1985). In fact, these mecha-
nisms are a means of specifying an underlying CFG: Every GPSG can
be expanded into a weakly equivalent CFG called object grammar. In the ID/LP
context of this work, the Immediate Dominance/Linear Precedence (ID/LP)
formalism, an extension of GPSG, is particularly interesting (Shieber,
1984). It separates the specification of dominance relations from the
specification of precedence relations. This way, constituency structures
can be modeled independently from word order. This is particularly
useful for free word order languages. One specifies an ID/LP gram-
mar in terms of ID rules and LP rules. ID rules (specifying immediate
dominance) take the form of context-free rules the RHSs of which are
specified as a set. LP rules specify linear precedence across all ID rules
of the grammar. E. g., in order to state that a category A precedes a cat-
egory B in all rules, one would write A ≺ B. Note that in CFG it is not
possible to generalize over linearization in a grammar-wide manner.

The disadvantage of ID/LP is its parsing complexity. The parsing
algorithm of Shieber (1984) offered greatly improves over previous
work which used the object grammar for parsing by refraining from
compiling the entire object grammar. Using Unordered Context-Free
Grammar (UCFG) (basically ID/LP without any LP rules), Barton Jr.
(1985) finally proved that parsing ID/LP is NP complete (cf. section
2.3.2).

ID/LP triggered a number of linguistic works on free word order
and discontinuous constituents. A complete review of this area is be-
yond the scope of this work; some of it will be covered in section 5.4.

Discontinuous Phrase Structure Grammar

Discontinuous Phrase Structure Grammar (DPSG) is a formalism inspired
by the ID/LP tradition. The original definition of DPSG (Bunt et al., DPSG
1987; Bunt, 1991, 1996; Plaehn, 1999, 2004) starts from the idea of defin-
ing trees with discontinuous constituents and then develops gram-
mar rules which derive them. The crucial difference between DPSG
rules and SRCG rules is that DPSG rules explicitly specify the mate-
rial which can occur in gaps while SRCG does not.

50 definitions

The definition of DPSG is based on discontinuous trees, nicknamed
discotrees. They are in turn composed of subdiscotrees. Intuitively speak-Discotrees
ing, a subdiscotree is a labeled tree in which the dominance relation is
not completely defined, i. e., a node in a subdiscotree can have “loose”
daughters, called context daughters. A discotree is a subdiscotree in
which every node is dominated by some other node in the tree. In
order to obtain crossing branches, node precedence must be defined
accordingly. The children of all nodes of subdiscotrees are ordered;
additionally, if one node v1 precedes another node v2 according to the
ordering, the leftmost daughter of v1 precedes the leftmost daughter
of v2. Two nodes v, v ′ form an adjacency pair if v precedes v ′ and the
leftmost daughter of v ′ is the first node on the right of the leftmost
daughter of v which is not dominated by v. They are adjacent if they
are an adjacency pair or if they connected by a sequence of adjacency
pairs.

On the basis of the definitions of discotrees, subdiscotrees and adja-
cency pairs, productions are specified which derive18 discotrees. Those
productions look like CFG productions (i. e., they are supposed to be
subtrees of height one in a derivation tree), with the difference that el-
ements of the RHS can be marked as context daughters (by enclosing
them in squared brackets), and are interpreted to end up as adjacent
nodes in the derived discotree.
Example 2.57 (DPSG). Here is an example, borrowed from Bunt (1996).
The discotree in figure 13 can be generated by the following grammar:

VP → V NP
V → VS [DET] [N] PART

NP → DET N
VS → wake N → friend

DET → your PART → up

The parsing complexity of DPSG is exponential (Plaehn, 2004) (see
section 2.3.2). Vogel and Bunt (1992), resp. Vogel and Erjavec (1994) in-
troduce a restricted version of DPSG, called DPSGr. The latter present
arguments which suggest that DPSGr is less expressive than TAG,
but more expressive than CFG. They remark that this would make
it parsable in no worse than O(n7), due to the applicability of a recog-

18 There does not seem to be an explicit definition of a derivation relation anywhere in
the literature on DPSG.

2.3 symbolic parsing 51

VP

V NP

VS DET N PART

Wake your friend up

Figure 13: A discotree

nition algorithm for MCS languages of Pollard (1984). While DPSGr

fulfills the goal of being ideally suited for modeling certain types of
discontinuity while remaining tractable, it cannot model cross-serial
dependencies (i. e., the copy language). The work on probabilistic pars-
ing by Plaehn will be reviewed in chapter 4.

2.2.6 The Big Picture

Figure 14 shows the inclusion hierarchy of some of the formalisms
which have been presented so far. MCS is indicated by an arrow be-
cause the class is not clearly delimited, due to the fact that its member-
ship conditions are necessary but not sufficient. Note that RCG gener-
ates exactly the class of languages recognizable in PTIME (cf. section
2.3.2).

2.3 symbolic parsing

In this section, I introduce basic concepts of parsing. They are the
foundation of the work which is presented in the following chapters.

2.3.1 Parsing as Deduction

The recognition problem is the problem of deciding for a grammar G
and a word w over some alphabet Σ if w ∈ L(G). If the grammar is
fixed, then we speak of the fixed recognition problem, otherwise about
the universal recognition problem. The difference is that in the case of
the latter, the complexity of the problem depends on both the size
of the input string and the size of the grammar, while in the case

52 definitions

MCS
RCG

LCFRS

MCFG, SRCG

TAG

LIG

CFG

Figure 14: Inclusion hierarchy of formalisms

2.3 symbolic parsing 53

of the former, it depends on the length of the input string alone. A
recognition algorithm, or just recognizer, is an algorithm which solves
the recognition problem. A parsing algorithm or parser essentially is a
recognition algorithm which records the steps that lead to a solution
and outputs them in case of success. Since parsers can sometimes be
implemented as an extension of the corresponding recognizer, there is
often no strict distinction between the terms parser and recognizer.

Parsing algorithms can be specified in pseudo-code. Such specifica-
tions can be implemented fairly directly. However, their disadvantage
is that they mix up the algorithm itself, i. e., the strategy for the solu-
tion of the recognition problem, with the control structures used for
its implementation. An alternative to pseudo-code is the specification
of parsing algorithms as deduction systems. This idea goes back to
Lambek (1958). It has been picked up by Pereira and Warren (1983)
and Shieber et al. (1995), and has been further formalized by Sikkel
(1997). Deduction systems allow for parsing algorithms to be specified
in a declarative way instead of in a procedural way. One can concen-
trate on the properties of an algorithm instead of concentrating on
its implementation. Intuitively speaking, the formulation of a parsing
algorithm as deduction system requires

1. a characterization of partial parsing results, or, in other words,
a way of stating the grammatical status of strings, as so-called
items,19

2. inference rules which determine how new items can be built from
existing ones, and

3. goal items, which represent complete parses.

Following Shieber et al. (1995) and Nederhof (2003), we define here Deduction
systemsa deduction system as a finite set of inference rules. The general form of

an inference rule is

A1, . . . ,Ak
B

c1, . . . , cm

where k,m ∈N0, the antecedents A1, . . . ,Ak and the consequent B are
items, and c1, . . . , cm are side conditions with which a link is established

19 Also often referred to as edges, especially in the context of a parsing process.

54 definitions

between the inference rule, and the grammar and the input string. We
allow null antecedents, therefore, unlike Shieber et al. (1995), we do
not need axioms.20

Following Nederhof (2003), we interpret a deduction system which
refers to productions of a grammar G and to an input string w in its
side conditions as a construction of a CFG Gk out of G and w. Let I

be the set of all possible instantiations of inference rules with produc-
tions from G and input positions in w. The productions Pk of Gk are
obtained from I: In each production p ∈ Pk, the LHS is the consequent
and the RHS are the antecedents of an instantiated inference rule I ∈ I.
Parsing amounts to deriving ε from a goal item.

If G is ambiguous, i. e., if there is more than one way to derive w or
substrings of w, then Gk also contains an ambiguity. Another view is
that given the input string w, Gk is a compact encoding of all possible
derivations of w: If two different derivations of w or of parts of w
contain a common sub-derivation, then the sub-derivation is shared
among them through the ambiguity of Gk. In this context, we speak of
a shared forest (Billott and Lang, 1989).

Parsing with a formalism F beyond CFG can also be seen as the
construction of a grammar Gk out of G and w, where G is a grammar
in formalism F and w is an input string. This has been shown, e. g.,
for TAG (Kallmeyer and Satta, 2009) and RCG (Boullier, 1998), and
will also be the basis for the presentation of the parsers for SRCG and
RCG in chapter 3.

As a first example, consider the CYK algorithm for CFG in Chom-CYK and
Earley

algorithms
sky Normal Form (Cocke and Schwartz, 1970; Younger, 1967; Kasami,
1965). CYK is a non-directional bottom up parsing technique.
Example 2.58 (CYK algorithm for CFG). Let Σ be an alphabet. Given
a CFG G = (N, T ,P,S) in CNF and an input string w = w1 · · ·wn,
n ∈ N, with wi ∈ Σ for 1 6 i 6 n, the CYK algorithm recognizes
items of the form [A, i, j], where A ∗

=⇒ wi+1 · · ·wj, 0 6 i < j and

20 Note that the formalization of parsing as deduction of Sikkel (1997) is closely related.
He calls deduction systems parsing systems, parsing systems which are instantiated
to a grammar and an input string are called parsing schemata and inference rules
are called deduction steps. The latter are notated as sets of all possible instances of
inferences. In principle, Sikkel’s formalization could have been used for this thesis.
However, especially the novel algorithms in chapter 3 would potentially have been
more unintuitive to notate due to the particular form of items which is used there.

2.3 symbolic parsing 55

A ∈ N. A first deduction rule for terminal scanning introduces an item
for each terminal of the input string:

scan
[A, i− 1, i]

A→ wi ∈ P

A second deduction rule completes two items which represent non-
terminals from which adjacent parts of the input string can be derived
into a new item, in case a matching production is present in the gram-
mar.

complete
[B, i, j], [C, j,k]

[A, i,k]
A→ BC ∈ P

The input string is recognized if the goal item can be derived.

goal [S, 0,n]

The disadvantage of the CYK algorithm is that in some cases, many
items are produced which do not lead to the goal item. As a second
example, we look at the Earley algorithm for CFG (Earley, 1970), which
remedies this problem to a certain extent.
Example 2.59 (Earley algorithm for CFG). Let G = (N, T ,P,S) now be
a CFG which is not necessarily in CNF, and let w be the input string
as in example 2.58. The Earley algorithm produces items of the form
[A→ α •β, i, j] where 0 6 i 6 j, A→ αβ ∈ P, and α ∗

=⇒ wi+1 · · ·wj as
well as S ∗

=⇒ w1 · · ·wiAγ for some γ ∈ (N∪ T)∗. The Earley algorithm
processes the input string strictly from left to right. The dot marks the
position up to which a production has been recognized, i. e., from the
part of the production on the right of the dot, a continuous part of the
input string can be derived.

The initialize rule predicts unrecognized productions which have
the start symbol on their LHS.

initialize
[S→ •α, 0, 0]

S→ α ∈ P

If in an item, the dot is in front of some non-terminal B on the RHS
of the production, we can predict new items with productions which
have B on their LHS and cover a part of the input string which is
adjacent to the part recognized so far.

56 definitions

predict
[A→ α •Bβ, i, j]

[B→ •γ, j, j]
B→ γ ∈ P

We can move the dot over a terminal a if in the input this terminal is
present at the indices of the current item.

scan
[A→ α • aβ, i, j]

[A→ αa •β, i, j+ 1]
wj+1 = a

If in an item, the dot is in front of some non-terminal B on the RHS
of the production, and we have recognized already a non-terminal B
from which a part of the input string can be derived which is adjacent
to the right, we can move the dot over the non-terminal and update
the indices accordingly.

complete
[A→ α •Bβ, i, j], [B→ γ•, j,k]

[A→ αB •β, i,k]

The goal is to completely recognize a production with the start symbol
on its LHS.

goal [S→ α•, 0,n] with S→ α ∈ P

For the actual parser implementation, normally, dynamic program-Chart parsing
ming (Bellman, 1957) is used. Roughly, this means that we keep a set of
partial results which can be reused (computation sharing). The canonical
storage structure is called chart. Parsing with a chart is consequently
often called chart parsing. The advantage of parsing as deduction, as
described above, is that the items give a natural formalization of par-
tial results. In order to store the items of the Earley algorithm for CFG,
e. g., one can use a four-dimensional boolean matrix C. Assuming that
we have uniquely numbered all productions A → α, we can store
some item [A→ α •β, i, j] in C by setting (i, j,k, l) to true, where k is
the index of A→ α and l is the position of the dot in α. The canonical
way of filling C is as depicted in algorithm 1. It involves an additional
data structure A called agenda.

If we just want to recognize the input string, it is enough to check
if C contains a goal item. In order to obtain a real parser, we must
construct Gk. In order to achieve this, for each item which was the
consequent in an instantiated inference rule, we must keep track of its
antecedents. These references to antecedents are called backpointers. In

2.3 symbolic parsing 57

Let G be a grammar in formalism F, and let w be the input string
C = ∅
A = ∅
for all items i which are consequents of inference rules with empty an-
tecedent instantiated with prod. from G and positions in w do

add i to A and C

end for
while A 6= ∅ do

remove an item i from A

for all items i ′ which are consequents of inference rules with i and
eventually other items from C in their antecedent, instantiated with
prod. from G and positions in w do

if i ′ /∈ C then
add i ′ to C and A

end if
end for

end while

Algorithm 1: Filling the chart

order to reflect ambiguity, obviously, every item in the chart needs a
list of them. Assuming that we have exactly one goal item, a parse of
w is then obtained by following the backpointers in the chart starting
at the goal item.
Example 2.60 (Parsing trace). Let G = ({S,A}, {a,b},P,S) be a CFG
with P = {S → aSb,S → ab}. L(G) = {anbn | n > 1}. Table 1 shows
all items which are generated (a trace) when parsing the input string
aabb. Note that the items which lead to the goal items are only 1, 3, 6,
8, 11, 12 and 13.

Figure 15 shows the chart for the trace in table 1. The arrows symbol-
ize the backpointers. Note that a single backpointer points to possibly
more than one item if it denotes the application of an inference rule
which has more than one item in its antecedent.

2.3.2 Parsing and Complexity

The complexity of a parsing algorithm is characterized in relation to Parsing
complexitythe size of the input string and, only in case of the universal recog-

nition problem, of the grammar. The following complexity classes are
important for this work (Hopcroft and Ullman, 1979).

58 definitions

no. item rule antecedents

1 [S→ •aSb, 0, 0] initialize none

2 [S→ •ab, 0, 0] initialize none

3 [S→ a • Sb, 0, 1] scan 1

4 [S→ a • b, 0, 1] scan 2

5 [S→ •aSb, 1, 1] predict 3

6 [S→ •ab, 1, 1] predict 3

7 [S→ a • Sb, 1, 2] scan 5

8 [S→ a • b, 1, 2] scan 6

9 [S→ •aSb, 2, 2] predict 7

10 [S→ •ab, 2, 2] predict 7

11 [S→ ab•, 1, 3] scan 8

12 [S→ aS • b, 0, 3] complete 3 and 11

13 [S→ aSb•, 0, 4] scan 12: goal

Table 1: Trace for CFG Earley example

0 1 2
0 S → •aSb

S → •ab
1 S → a • Sb S → •aSb

S → a • b S → •ab
2 S → a • Sb S → •aSb

S → a • b S → •ab
3 S → aS • b S → ab•
4 S → aSb•

Figure 15: Chart for CFG Earley example

2.3 symbolic parsing 59

ptime contains problems the solutions of which can be found in an
amount of time which is polynomial with respect to the size of
the input. The complexity of an algorithm is O(nk) if there is a
constant c and a k ∈N such that the parsing of a string of length
n takes an amount of time 6 cnk. O(n) is called linear time, O(n2)
is called quadratic time, O(n3) is called cubic time. PTIME is often
equated with the class of “tractable” problems.

np contains problems for which a given solution can be verified in de-
terministic polynomial time. Alternatively, NP can be defined as
the problems the solutions of which can be found in polynomial
time when proceeding non-deterministically.

np-complete contains problems into which any problem in NP can
be transformed in polynomial time.

The complexity of a parsing algorithm which is notated as deduc-
tion system can be determined easily. Given an input string of length n
and an inference rule which manipulates k mutually independent in-
dices, the complexity of the inference rule is usually O(nk). This is the
case since the number of independent indices determine the number
of instantiations of inference rules, and the number of instantiations
of inference rules determines the time complexity since it specifies the
possible number of different operations. For instance, the complexity
of the CYK algorithm for CFG, e. g., is O(n3), since the complete
rule involves 3 independent indices i, j and k.

Since this thesis does not contain contributions to complexity theory,
the reader is referred to Hopcroft and Ullman (1979) for more details.

3
S Y M B O L I C PA R S I N G B E Y O N D C O N T E X T- F R E E
G R A M M A R

This chapter takes up the problem of symbolic Range Concatenation
Grammar (RCG) parsing and symbolic Simple Range Concatenation
Grammar (SRCG) parsing.

In section 3.1, I introduce an Earley-style parsing algorithm for RCG.
RCG has interesting computational properties. Inter alia, it generates
exactly the class of languages recognizable in polynomial time. It is
therefore a candidate for modeling linguistic phenomena which lie
beyond mild context-sensitivity. In section 3.2, I present an incremen-
tal parsing strategy for Simple Range Concatenation Grammar. SRCG,
which is equivalent to Linear Context-Free Rewriting System (LCFRS)
and Multiple Context-Free Grammar (MCFG), is a mildly context-
sensitive formalism. Apart from the applications of its probabilistic
variant which are described in later chapters of this thesis, it has been
used as a pivot formalism for parsing other mildly context-sensitive
formalisms, such as Tree-Adjoining Grammar (TAG) variants. Related
work is discussed in section 3.3. Section 3.4 concludes this chapter.

Material in this chapter has been previously published in Kallmeyer
et al. (2009), Kallmeyer et al. (2009), Parmentier and Maier (2008) and
Kallmeyer and Maier (2009).

3.1 parsing range concatenation grammar

In this section, I present top-down algorithms, CYK-style algorithms
and an Earley-style algorithm for RCG, formulated as deduction sys-
tems.

3.1.1 Introduction

Over the years, the parsing community has produced extensive work
on symbolic parsing algorithms for formalisms beyond Context-Free
Grammar (CFG). For TAG (p. 32), there exist CYK (Vijay-Shanker and

61

62 symbolic parsing beyond cfg

Joshi, 1985; Kallmeyer and Satta, 2009), Earley-style (Schabes and Joshi,
1988; Joshi and Schabes, 1997; Nederhof, 1997, 1999) and LR strategies
(Nederhof, 1998; Prolo, 2000, 2003). Linear Indexed Grammar (LIG)
(p. 36) has also found attention, see, e. g., Boullier (1996). For SRCG
and formalisms which are equivalent to it, we also find different pars-
ing strategies in the literature. To this respect, see section 3.2.

Work on RCG parsing (def. 2.42, p. 41) is scarce. See section 3.3
for a detailed overview. The relatively small amount of work might
be explained with the fact that RCG is expensive to recognize. How-
ever, the fact that it is also highly expressive (beyond Mild Context-
Sensitivity (MCS)) entails several advantages.

expressivity RCGs can be used for modeling linguistic phenom-
ena which arguably lie beyond mild context-sensitivity. The phenom-
ena which have been put forward in the literature include scram-
bling in German (Becker et al., 1992), case stacking in Old Georgian
(Michaelis and Kracht, 1997) and Chinese number names (Radzinski,
1991). For the latter, Boullier (1999) presents an RCG modeling.

In RCG derivations, multiple parts of the input string can be han-
dled at once, through copying. However, parsing complexity is not
necessarily higher. Just as CFG, we can parse 1-RCG in O(n3), while
obtaining additional expressivity which can be used to model com-
plex linguistic phenomena (Boullier, 2000a). In syntax-directed ma-
chine translation, this additional expressivity of RCG is useful, too
(Søgaard, 2011).

Grammars of MCS formalisms can be translated into equivalent
Range Concatenation Grammars (cf. p. 48). This way RCG can act as a
pivot-formalism at no additional cost (modulo the cost of the conver-
sion), i. e., the parsing complexity remains unchanged (Boullier, 1998,
pp. 18).

modularity Boullier (1998) explicitly proposes RCG as a modu-
lar formalism, in the sense of a formalism which, through its closure
properties, constitutes a device for elegant linguistic modeling (Boul-
lier, 1998, p. 3). Boullier (2000b) shows that Range Concatenation Lan-
guages (RCLs) are closed under intersection, unlike Context-Free Lan-
guages (CFLs). This is interesting, since it allows for a modularization
of the description of language properties. Even though it has been ar-

3.1 parsing range concatenation grammar 63

gued that this property is less useful than it seems (Chiang, 2004), it
is still a feature which few formalisms offer.

Range Concatenation Grammar predicates can be viewed as describ-
ing certain (linguistic) properties of its ranges in a modular way. Copy-
ing, i. e., the use of the same variable in more than one predicate,
makes it possible to describe more than one property of a certain range
within the same clause. Sagot (2005) takes advantage of this view and
proposes a formalism called Meta-RCG, which is strongly equivalent
to RCG and offers a notation which facilitates the description of lin-
guistic concepts, such as lexical heads.

tractable parsing RCG is still relatively tractable. Due to the
structure of its clauses, RCGs have a context-free backbone, i. e., the
choice of the operation performed at each step only depends on the
object to be derived from. This way, RCG derivations can be packed
into polynomially sized parse forests (see p. 54). Furthermore, as men-
tioned before, it has been shown by Bertsch and Nederhof (2001) that
RCLs, i. e., the class of languages generated by RCG, are equal to the
class of languages recognizable in PTIME (see p. 51). Even though
in practice, the high cost of computing clause instantiations must be
taken into account, especially those languages of which some proper-
ties are already known before parsing can be parsed very efficiently.
To this respect, Boullier (2000b) presents parsing times for certain vari-
ants of 1-RCGs which lie below linear time.

The attractive properties combined with the fact that so far, there
is no parsing algorithm for RCG in the literature which has been for-
mulated as a deduction system provide the motivation for the presen-
tation of several different parsing strategies for RCG in the following
subsections.

3.1.2 Definitions

For ease of presentation, it is assumed without loss of generality for
all grammars that empty arguments (ε) only appear in clauses with an
empty right-hand side (RHS). Every RCG G = (N, T ,V ,P,S) can easily
be transformed in an RCG G ′ which fulfills this condition. A new
unary predicate Eps is introduced together with a clause Eps(ε) → ε.
Then, for every clause c ∈ P with a RHS that is not ε, replace every
argument ε that occurs in c with a variable X ∈ V (picking a different

64 symbolic parsing beyond cfg

variable with each replacement which does not occur in c) and add
the predicate Eps(X) to the RHS.

With range vectors (def. 2.45, p. 43), we can only express complete
instantiations: All instances of terminals as well as all variables in
a clause must be mapped to some range. However, during parsing,
we may incrementally gain more and more information about range
boundaries which we would like to accumulate before determining a
complete instantiation. In other words, we would like to be able to
express a partial instantiation. This is what we will use the constraints
in the range constraint vector for.
Definition 3.1 (Range constraint vectors). Let Vr = {r1, r2, . . . } be a set
of range boundary variables.

1. A range constraint vector of dimension k ∈ N is a pair 〈~ρ,C〉 for
which the following holds.

a) ~ρ ∈ (Vr × Vr)k, furthermore all range boundary variables
in ~ρ are pairwise different. We define Vr(~ρ) as the set of
range boundary variables occurring in ~ρ; since those vari-
ables must be pairwise different, |Vr(~ρ)| = 2k.

b) Again for all 1 6 i 6 k, ~ρ(i) denotes 〈xi,yi〉 ∈ ~ρ and ~ρ(i).l
(resp. ~ρ(i).r) denotes then the first (resp. second) component
of ~ρ(i), that is xi (resp. yi).

c) C is a set of constraints cr that have one of the following
forms: r1 = r2, κ = r1, r1 + κ = r2, κ 6 r1, r1 6 κ, r1 6 r2 or
r1 + κ 6 r2 for r1, r2 ∈ Vr(~ρ) and κ ∈N0.

2. We say that a range vector ~φ satisfies a range constraint vector
〈~ρ,C〉 iff ~φ and ~ρ are of the same dimension k ∈N and there is a
function f : Vr →N that maps ~ρ(i).l to ~φ(i).l and ~ρ(i).r to ~φ(i).r
for all 1 6 i 6 k such that all constraints in C are satisfied.

3. We say that a range constraint vector 〈~ρ,C〉 is satisfiable iff there
exists a range vector ~φ that satisfies it.

Intuitively, a range constraint vector of some clause captures all in-
formation about boundaries forming a range, ranges containing only
a single terminal, and about adjacent variables and terminal occur-
rences in the clause. Recall the definition of argument numbering
(def. 2.46, p. 43).

3.1 parsing range concatenation grammar 65

Definition 3.2 (Range constraint vector of a clause). Let G be an RCG
with G = (N, T ,V ,P,S); assume the numbering from definition 2.46.
For every clause c ∈ P, we define its range constraint vector 〈~ρ,C〉 with
respect to to a string w as follows:

1. ~ρ has dimension ξ(c) and all range boundary variables in ~ρ are
pairwise different.

2. The constraints in C are as follows.

a) For all 〈r1, r2〉 ∈ ~ρ: 0 6 r1, r1 6 r2, r2 6 |w| ∈ C.

b) For all occurrences t of terminals in c with i = ξe(c, t):
~ρ(i).l+ 1 = ~ρ(i).r ∈ C.

c) For all x,y that are variables or occurrences of terminals in
c such that xy is a substring of one of the arguments in c:
~ρ(ξe(c, x)).r = ~ρ(ξe(c,y)).l ∈ C.

d) These are all constraints in C.

3.1.3 Directional Top-Down Parsing

The directional top-down parsing algorithm evaluates RHS predicates
from left to right and stops further evaluation once a predicate fails.

For the directional top-down parsing algorithm, we need to distin-
guish between passive items and active items. Passive items have the
form [A, ~φ, flag], where A is a predicate, ~φ is a range vector of di-
mension dim(A) (containing the ranges that the arguments of A are
instantiated with) and flag ∈ {c,p} indicates if the item has been com-
pleted or predicted. Since, unlike in standard top-down parsing for
context-free grammar, we already start off with the entire string at
initialization time, we need a way to propagate information about suc-
cessful predicates. This is achieved by the p/c-flag, which is set by the
scan and the complete operations.

Active items allow us to move a dot through the RHS of a clause.
The item form is [A(~x) → Φ •Ψ, ~φ] where A(~x) → ΦΨ is a clause and
~φ is a range vector of dimension h = ξ(A(~x) → ΦΨ) that gives an
instantiation of the clause.

The axiom is the prediction of the start predicate ranging over the
entire input. The initialize rule is as follows.

66 symbolic parsing beyond cfg

[S, (〈0,n〉),p]

We have two predict operations. The first one, predict-rule, pre-
dicts active items with the dot on the left of the RHS, for a given
predicted passive item.

[A,ψ,p]

[A(~x)→ •Ψ, ~φ]

with the side condition ~φ(A(~x)) = A(ψ), i. e., ~φ instantiates A(~x) with
A(ψ).

predict-pred predicts a passive item for the predicate following
the dot in an active item:

[A(~x)→ Φ •B(~y)Ψ, ~φ]

[B,ψ,p]

with the side condition ~φ(B(~y)) = B(ψ).
The scan operation scans a terminal in the input string:

[A, (〈l, r〉),p]
[A, (〈l, r〉), c]

with the side conditions A(x)→ ε, 〈l, r〉(w) = x.
complete moves the dot over a predicate in the RHS of an active

item if the corresponding passive item has been completed.

[B, ~φB, c], [A(~x)→ Φ •B(~y)Ψ, ~φ]

[A(~x)→ ΦB(~y) •Ψ, ~φ]

with the side condition ~φ(B(~y)) = B(~φB).
Once the dot has reached the right end of a clause, we can convert

the active item into a completed passive item:

[A(~x)→ Φ•, ~φ]
[A,ψ, c]

with the side condition ~φ(A(~x)) = A(ψ).
The goal is to find a completed passive item denoting the start pred-

icate ranging over the entire input.

3.1 parsing range concatenation grammar 67

goal [S, (〈0,n〉), c]

An obvious problem of this algorithm is that predict-rule has to
compute all possible instantiations of A-clauses, given an instantiated
A-predicate. Take for example the RCG for {a2

n
| n > 0} from example

2.50. If w = aaaa, starting from [S, (〈0, 4〉),p] predict-rule would
predict (among others) the active items

[S(X1Y2)→ •S(X1)eq(X1, Y2), (〈0, r〉, 〈r, 4〉)]

for all 0 6 r 6 4.
The computation of all these possible instantiations is very costly

and will be avoided in the Earley algorithm that is presented in 3.1.5.
The latter will use range constraint vectors (instead of range vectors)
and predict only one active item [S(X1Y2)→ •S(X1)eq(X1, Y2), 〈〈(r1, r2),
(r3, r4)〉, {0 = r1, r1 6 r2, r2 = r3, r3 6 r4, 4 = r4}〉].

3.1.4 Bottom-Up Chart Parsing

Basic CYK Parsing

CYK (p. 54) is a non-directional bottom-up parsing technique.
The items have the form [A, ~φ] where A is a predicate and ~φ a range

vector of dimension dim(A). The scan operation is as follows.

[A, ~φ]

As a side condition, it must hold that there is a clause c = A(~x) → ε

with an instantiation ψ such that ψ(A(~x)) = A(~φ).
complete works in parallel to the CFG variant of the algorithm.

[A1, ~φ1] . . . [Ak, ~φk]

[A, ~φ]

with the side condition that A(~φ) → A1(~φ1) . . . Ak(~φk) is an instanti-
ated clause.

The goal is again to find an item denoting the start predicate ranging
over the whole input.

goal [S, (〈0,n〉)]

68 symbolic parsing beyond cfg

Directional Bottom-Up Parsing

An obvious disadvantage of the basic CYK algorithm is that, in or-
der to perform a complete step, all A1, . . . ,Ak in the RHS must be
checked for appropriate items. This leads to a lot of indices that need
to be checked at the same time.

In order to avoid this, we can again move a dot through the RHS
of a clause. As in the case of the directional top-down algorithm, in
addition to the items used above which we call passive items now, we
also need active items. In the active items, while traversing the RHS
of the clause, we keep a record of the positions already found for the
left and right boundaries of variables and terminal occurrences. This
is achieved by subsequently enriching the range constraint vector of
the clause.

Active items have the form [A(~x) → Φ •Ψ, 〈~ρ,C〉] with A(~x) → ΦΨ

a clause, ΦΨ 6= ε, ξ(A(~x → ΦΨ)) = h and 〈~ρ,C〉 a range constraint
vector of dimension h. We require that 〈~ρ,C〉 be satisfiable.

Items that are distinguished from each other only by a bijection of
the range variables are considered equivalent. I. e., if the application
of a rule yields a new item such that an equivalent one has already
been generated, this new one is not added to the set of partial results.

The scan rule is the same as in the basic algorithm. In addition, we
have an initialize rule that introduces clauses with the dot on the
left of the RHS.

[A(~x)→ •Φ, 〈~ρ,C〉]

with the side condition thatA(~x)→ Φ is a clause with range constraint
vector 〈~ρ,C〉,Φ 6= ε.

complete moves the dot over a predicate in the RHS of an active
item provided the corresponding passive item has been completed.

[B, ~φB],
[A(~x)→ Φ •B(x1...y1, ..., xk...yk)Ψ, 〈~ρ,C〉]
[A(~x)→ ΦB(x1...y1, ..., xk...yk) •Ψ, 〈~ρ,C ′〉]

with the side conditions C ′ = C ∪ {~φB(j).l = ~ρ(ξ(xj)).l, ~φB(j).r =

~ρ(ξ(yj)).r | 1 6 j 6 k}. Note that the conditions on the items require
the new constraint set for ~ρ to be satisfiable.

3.1 parsing range concatenation grammar 69

convert turns an active item with the dot at the end of the RHS
into a completed passive item.

[A(~x)→ Ψ•, 〈~ρ,C〉]
[A, ~φ]

with the side condition that there is an instantiation ψ of A(~x) → Ψ

that satisfies 〈~ρ,C〉 such that ψ(A(~x)) = A(~φ).
The goal is the same as in the basic CYK algorithm.

goal [S, (〈0,n〉)]
A sample parse trace is shown in table 2. For the sake of readability,

instead of the range boundary variables, we use X.l and X.r respec-
tively for the left and right range boundary of the range associated
with X.

3.1.5 The Earley Algorithm

We now add a prediction operation to the CYK algorithm with active
items which leads to an Earley-style algorithm. As before, the passive
items are enriched with an additional flag that can have values p or
c depending on whether the item is only predicted or already com-
pleted. Furthermore, they contain range constraint vectors since when
predicting a category, the left and right boundaries of its arguments
might not be known.

Passive items either have the form [A, 〈~ρ,C〉,p] for a predicted item,
where 〈~ρ,C〉 is a range constraint vector of dimension dim(A), or the
form [A, ~φ, c] for completed items where ~φ is a range vector of dimen-
sion dim(A). The active items are the same as in the CYK case.

Deduction Rules

The axiom is the prediction of an S ranging over the entire input, i. e.,
the initialize rule is as follows:

[S, 〈(〈r1, r2〉), {0 = r1,n = r2}〉,p]
We have two predict operations. The first one, predict-rule, pre-

dicts active items with the dot on the left of the RHS, for a given
predicted passive item:

70 symbolic parsing beyond cfg

Grammar for {a2
n

| n > 0}: S(XY) → S(X)eq(X, Y), S(a1) → ε,
eq(a1X,a2Y) → eq(X, Y), eq(a1,a2) → ε. Items generated for input
w = aa (the constraints 0 6 r1, r2 6 n for a range 〈r1, r2〉 are omitted):

no. item operation

1 [S, (〈0, 1〉)] scan S(a1)→ ε

2 [S, (〈1, 2〉)] scan S(a1)→ ε

3 [eq, (〈0, 1〉, 〈0, 1〉)] scan eq(a1,a2)→ ε

4 [eq, (〈0, 1〉, 〈1, 2〉)] scan eq(a1,a2)→ ε

5 [eq, (〈1, 2〉, 〈0, 1〉)] scan eq(a1,a2)→ ε

6 [eq, (〈1, 2〉, 〈1, 2〉)] scan eq(a1,a2)→ ε

7 [S(XY)→ •S(X)eq(X, Y), {X.l 6 X.r,X.r =
Y.l, Y.l 6 Y.r}]

initialize

8 [eq(a1X,a2Y)→ •eq(X, Y), {a1.l+ 1 =
a1.r,a1.r = X.l,X.l 6 X.r,a2.l+ 1 =
a2.r,a2.r = Y.l, Y.l 6 Y.r}]

initialize

9 [S(XY)→ S(X) • eq(X, Y), {. . . , 0 = X.l, 1 =
X.r}]

complete 7 with 1

10 [S(XY)→ S(X) • eq(X, Y), {. . . , 1 = X.l, 2 =
X.r}]

complete 7 with 2

11 [eq(a1X,a2Y)→ eq(X, Y)•, {. . . , 1 = X.l, 2 =
X.r, 1 = Y.l, 2 = Y.r}]

complete 8 with 6

12 [S(XY)→ S(X)eq(X, Y)•, {. . . , 0 = X.l, 1 =
X.r, 1 = Y.l, 2 = Y.r}]

complete 9 with 4

13 [eq, (〈0, 2〉, 〈0, 2〉)] convert 11

14 [S, (〈0, 2〉)] convert 12

Table 2: Trace of an RCG CYK parse

3.1 parsing range concatenation grammar 71

[A, 〈~ρ,C〉,p]
[A(x1 . . . y1, . . . , xk . . . yk)→ •Ψ, 〈~ρ ′,C ′〉]

with the side condition that 〈~ρ ′,C ′〉 is obtained from the range con-
straint vector of the clause A(x1 . . . y1, . . . , xk . . . yk) → Ψ by taking
all constraints from C, mapping all ~ρ(i).l to ~ρ ′(ξ(xi)).l and all ~ρ(i).r
to ~ρ ′(ξ(yi)).r, and then adding the resulting constraints to the range
constraint vector of the clause.

The second predict operation, predict-pred, predicts a passive
item for the predicate following the dot in an active item:

[A(...)→ Φ •B(x1...y1, ..., xk...yk)Ψ, 〈~ρ,C〉]
[B, 〈~ρ ′,C ′〉,p]

with the side conditions ~ρ ′(i).l = ~ρ(ξ(xi)).l, ~ρ ′(i).r = ~ρ(ξ(yi)).r for all
1 6 i 6 k and C ′ = {c | c ∈ C, c contains only range variables from ~ρ ′}.

scan can be applied if a predicted predicate can be derived by an
ε-clause:

[A, 〈~ρ,C〉,p]
[A, ~φ, c]

with the side condition that there is a clause A(~x)→ ε with a possible
instantiation ψ that satisfies 〈~ρ,C〉 such that ψ(A(~x)) = A(~φ).

Finally, complete and convert are the corresponding deduction
rules from the CYK algorithm with active items except that we add
flags c to the passive items occurring in these rules.

Again, the goal item is as follows.

goal [S, (〈0,n〉), c]

To understand how this algorithm works, consider the example in
table 3, which uses the RCG and the input word from table 2.

Note that the algorithm shows a great similarity to the directional
top-down algorithm. The crucial difference is that while in the top-
down algorithm, we are using range vectors to record the variable
bindings, in the Earley-style algorithm, we use range constraint vec-
tors. Due to the fact that range constraint vectors allow us to leave
range boundaries unspecified, we can compute the value of range
boundaries in a more incremental fashion since we do not have to
guess all values of all boundary variables of a clause at once as in

72 symbolic parsing beyond cfg

Grammar for {a2
n

| n > 0}: S(XY) → S(X)eq(X, Y), S(a1) → ε,
eq(a1X,a2Y) → eq(X, Y), eq(a1,a2) → ε Items generated for input
w = aa (the constraints 0 6 r1, r2 6 n for a range 〈r1, r2〉 are omitted):

no. item operation

1 [S, 〈(〈r1, r2〉), {0 = r1, r1 6 r2, 2 = r2}〉,p] initialize

2 [S(XY)→ •S(X)eq(X, Y), {X.l 6 X.r,X.r =
Y.l, Y.l 6 Y.r, 0 = X.l, 2 = Y.r}]

predict-rule from 1

3 [S, 〈(〈r1, r2〉), {0 = r1, r1 6 r2}〉,p] predict-pred from 2

4 [S, (〈0, 1〉), c] scan from 3

5 [S(XY)→ •S(X)eq(X, Y), {X.l 6 X.r,X.r =
Y.l, Y.l 6 Y.r, 0 = X.l, }]

predict-rule from 3

6 [S(XY)→ S(X) • eq(X, Y), {. . . , 0 = X.l, 2 =
Y.r, 1 = X.r}]

complete 2 with 4

7 [S(XY)→ S(X) • eq(X, Y), {X.l 6 X.r,X.r =
Y.l, Y.l 6 Y.r, 0 = X.l, 1 = X.r}]

complete 5 with 4

8 [eq, 〈(〈r1, r2〉, 〈r3, r4〉), {r1 6 r2, r2 =
r3, r3 6 r4, 0 = r1, 2 = r4, 1 = r2}〉]

predict-pred from 6

9 [eq(a1X,a2Y)→ •eq(X, Y), {a1.l+ 1 =
a1.r,a1.r = X.l,X.l 6 X.r,a2.l+ 1 =
a2.r,a2.r = Y.l, Y.l 6 Y.r,X.r = a2.l, 0 =
a1.l, 1 = X.r, 2 = Y.r}]

predict-rule from 8

. . .

10 [eq, (〈0, 1〉, 〈1, 2〉), c] scan 8

11 [S(XY)→ S(X)eq(X, Y)•, {. . . , 0 = X.l, 2 =
Y.r, 1 = X.r, 1 = Y.l}]

complete 6 with 10

12 [S, (〈0, 2〉), c] convert 11

Table 3: Trace of an RCG Earley parse

3.1 parsing range concatenation grammar 73

the top-down algorithm. In other words, the instantiations are com-
puted “lazily”. This becomes particularly apparent when comparing
the complete rules of the non-directional top-down algorithm and
the Earley-style algorithm. In the former, we check the compatibility
of the range vector of the completed item with the range vector of the
item which is to be completed as a side condition. In the latter, we add
the information contributed by the range vector of the completed item
dynamically to the range constraint vector of the item to be completed.
Of course, the use of constraints makes comparisons between items
more expensive, which means that for an efficient implementation, an
efficient representation of the constraints and adequate techniques for
constraint solving are required, such as they are presented, e. g., in
Schulte (2002).

The directional bottom-up parser from section 3.1.4, in contrast to
the Earley algorithm, lacks the top-down predictions. However, it uses
the same technique of dynamic updating of a set of constraints on
range boundaries, therefore the active items are the same for the two
algorithms.

Soundness and Completeness

It is easy to see that the Earley-style algorithm is both sound and
complete. More precisely, if a completed item is generated, then the
corresponding predicate can be derived (soundness): [A,ψ, c]⇒ A(ψ).
Furthermore, if we can derive a constituent A(ψ), we also generate the
corresponding item (completeness). Let Γ be a string of instantiated
predicates. Then

S(〈0,n〉) ∗⇒l A(ψ)Γ
∗⇒l Γ iff [A,ψ, c]

where ∗⇒l denotes the leftmost derivation (def. 6.4, p. 167). In particu-
lar, [S, (〈0,n〉), c] iff S(〈0,n〉) ∗⇒ ε.

Obtaining a Parse Forest

So far, we have described recognizers, not parsers. The way to obtain
a parse forest from the item set resulting from the Earley recognizer
with range boundary constraints is rather obvious. Whenever a con-
vert is done, a fully instantiated clause has been found. By collecting

74 symbolic parsing beyond cfg

these clauses, we obtain a compact representation of our parse forest.1

Starting from an S predicate ranging over the entire input and follow-
ing the clauses for the instantiated predicates in the RHSs, we can read
off the single parse trees from this forest.

Complexity

It is clear that all the algorithms presented here are polynomial in the
input size.

When dealing with RCG, one huge factor of complexity, as shown
by Boullier (1998), is the maximal number of range variables occurring
inside an argument of a predicate. In the Earley-style approach, the
computation, resp. resolution of the values of the range variables is
delayed as much as possible in order to narrow the search space. The
result of this is

1. a reduction of the number of items produced by the parser (thus
a reduction in space complexity) and consequently

2. a reduction of time complexity, compared with the other ap-
proaches.

We do not give here a theoretical definition of the time complexity of
our algorithm, but rather give a practical evaluation of the relative cost
of directional top-down and Earley-style parsing (see section 3.1.6).

The Valid Prefix Property

The Earley-style algorithm lacks the Valid Prefix Property (VPP). A pars-
ing algorithm has the VPP if for some grammar G, it only recognizes
strings which are valid prefixes of some w ∈ L(G).

As an example, consider the following grammar which generates
the language L = {aa}.

S(X) → A(X)B(X)

A(cX) → A(X) A(a) → ε

B(Xc) → B(X) B(a) → ε

1 Note that, strictly speaking, this structure is not the parse forest as it contains some
clause instantiations that are not part of the actual parse forest. This is not a problem
for these useless instantiations are ignored when reading the parses starting from
the instantiated S predicates.

3.1 parsing range concatenation grammar 75

Let the input string be w = ca. Using the A predicates, the Earley-
style algorithm would recognize the entire string before realizing that
ca is not a prefix of aa.

We briefly sketch the idea behind a prefix-valid version of the Earley-
style algorithm. All deduction rules would have to be adapted in or-
der to ensure additional side conditions. For a passive items [A,ψ, c],
we would have to ensure that there is a v = w1 . . . wiv

′ such that
S(〈0, |v|〉) ∗⇒ A(ψ)

∗⇒ ε with respect to v, i being the rightmost range
boundary in ψ. For an active item [A(~x) → Φ •Ψ,ψ], we would have
to ensure that there is a v = w1 . . . wiv ′ such that S(〈0, |v|〉) ∗⇒ A(Ψ)⇒
ΦΨ ′ ∗⇒ Ψ ′ with respect to v, i being the rightmost range boundary in
arguments of Ψ. Note that the additional conditions highly increase
the complexity of the algorithm.

3.1.6 Experimental Evaluation

For experimental evaluation, the directional top-down algorithm and
the new Earley-style algorithm have been implemented within the
TuLiPA system2 (Kallmeyer et al., 2008b). The algorithms are tested
on different words of the language L = {a2

n
|n 6 0}, given the gram-

mar from example 2.50. Figure 16 shows a plot of the numbers of items
generated with the top-down and the Earley algorithm. We can clearly
see that range boundary constraint propagation increases the amount
of information transported in single items and thereby considerably
reduces the number of generated items.

3.1.7 Efficient Instantiation Computation Without Incrementality

The incremental algorithm has the advantage that the lazy compu-
tation of instantiations is easier than the “brute-force” approach of
guessing complete clause instantiations at once. However, given the
right formulation of the instantiation problem, it can also be feasible
to guess complete clause instantiations. A convenient technique for
this purpose is the constraint satisfaction paradigm.3 In the following, I
present a formulation of clause instantiation within this paradigm.

2 Available at http://sourcesup.cru.fr/tulipa/.
3 For a good introduction to constraint solving, see Schulte (2002).

http://sourcesup.cru.fr/tulipa/

76 symbolic parsing beyond cfg

 10

 100

 1000

 0 10 20 30 40 50 60

Ite
m

s
(lo

g
sc

al
e)

Word Length

Earley
Top-down

Figure 16: Items generated by RCG parsers

In the constraint satisfaction paradigm, a problem is described with
a set of variables, each taking its value in a given domain. Constraints
are then applied on the values these variables can take in order to nar-
row their respective domains. Finally, we search for one (or all) solu-
tion(s) to the problem, that is to say we search for some (or all) assign-
ment(s) of values to variables respecting the constraints. One particu-
larly interesting sub-class of Constraint Satisfaction Problems (CSPs)
are those that can be stated in terms of constraints on variables rang-
ing over finite sets of non-negative integers. For such CSPs, there exist
several implementations offering a wide range of constraints (arith-
metic, boolean and linear constraints), and efficient solvers. One ex-
ample of such an implementations is the Gecode library.4

As mentioned above, an argument of a predicate to be instantiated
contains range variables and/or constants, the latter acting like con-
straints on the boundaries between ranges. To illustrate this, consider
the instantiations of the predicate A(aXYdZ) with respect to the input
string abcdef. For this example, we only have three solutions, depend-
ing on where to put the boundary between ranges X and Y. How-

4 See http://www.gecode.org.

http://www.gecode.org

3.1 parsing range concatenation grammar 77

ever, an instantiation of a predicate A(XaYbZ) with the string aaaabaa
would have a lot more solutions.

The idea underlying the interpretation of this instantiation task in
terms of a CSP is to use the natural order of integers to represent the
linear order imposed on ranges, and to define additional constraints
reflecting the fact that constants (if any) are anchors for ranges of the
input string. We do the following:5

1. we define a model which associates boundary constants with non-
negative integers, and boundary variables with finite domains over
non-negative integers,

2. we define constraints on these boundary variables,

3. we search for all assignments of values (i. e., non-negative inte-
ger) to these boundary variables.

step 1 The input string w is defined as follows:

w = b0s1b1s2 . . . bn−1snbn

where n ∈ N, si, 1 6 i 6 n, is a constant symbol of the input string,
and bj, 0 6 j 6 n, is a boundary constant. For convenience, we note
w[i] = si. Every boundary constant is associated with an integer refer-
ring to its position in the string (boundary constants are ordered by
the relation 6 on N). Thus b0 = 0, b1 = 1, etc.

In the same way, we define an argument to instantiate, arg, as fol-
lows:

arg = B ′0s
′
1B
′
1s
′
2 . . . B

′
m−1s

′
mB
′
m

where m ∈ N, s ′i, 1 6 i 6 m is a symbol (range variable or constant),
and B ′j , 0 6 j 6 m is a boundary variable. We write V for the set of all
boundary variables. As before, we note arg[i] = s ′i. Furthermore, each
boundary variable is associated with the finite domain [0..n] (i.e., a
boundary variable must match a boundary constant defined over the
input string).6

5 A formal proof of the correctness of this formulation is omitted.
6 Note that here we only consider the case where all constants appearing in the input

string and in the argument to instantiate occur only once.

78 symbolic parsing beyond cfg

step 2 Once our model has been defined, we compute a constraint
matrix MC, which maps boundary variables to boundary constants.
Thus MC is a (m+ 1)× (n+ 1) matrix

MC[i, j] =





1 if arg[i] = w[j] or arg[i− 1] = w[j− 1]

(2 6 i 6 m, 2 6 j 6 n)

1 if (i, j) = (1, 1) (*)

1 if (i, j) = (m+ 1,n+ 1) (*)

0 otherwise

The 1 in MC represent boundary positions that are constrained by
the input string. The lines marked (*) represent the fact the lower and
upper bounds of the argument to instantiate must be respectively the
lower and upper bounds of the input string. If we consider the previ-
ous example of the predicate A(aXYdZ) to be instantiated with abcdef,
we obtain the following constraint matrix:

MC =




b0 b1 b2 b3 b4 b5 b6

B ′0 1 0 0 0 0 0 0

B ′1 0 1 0 0 0 0 0

B ′2 0 0 0 0 0 0 0

B ′3 0 0 0 1 0 0 0

B ′4 0 0 0 0 1 0 0

B ′5 0 0 0 0 0 0 1




Note that without the assumption made about the uniqueness of con-
stants in the input string, this matrix would not represent all possible
constraints on the boundaries.

step 3 We finally search for all assignments of values in [0..n] to
the boundary variables B ′j , 0 6 j 6 m. In other terms, we search for all
functions f : V→ [0..n] such that B ′j, 0 6 j 6 m maps to bi, 0 6 i 6 n.

This search uses generic constraints reflecting the ordering of the
boundary variables:

for all 0 6 i, j 6 m : (i 6 j)⇒ 0 6 (f(B ′i) 6 f(B
′
j)) 6 n

and the specific constraints encoded in the matrix MC:

for all 1 6 i 6 m+ 1, 1 6 j 6 n+ 1 : (MC[i, j] = 1)⇒ (f(B ′i−1) = bj−1)

3.2 parsing simple range concatenation grammar 79

In the latter formula, the indexes of the boundaries are shifted with
respect to the matrix indexes (i, j) because MC’s rows and columns
indexes start from 1 while the indexes of the boundaries start from
0. Considering our previous example, all B ′i are constrained by MC,
except B ′2, which can take 3 values: 1 (b1), 2 (b2) or 3 (b3), these are
the 3 expected range boundaries.

This constraint-based computation of clause instantiations has been
implemented within the context of an implementation of the direc-
tional top-down parsing algorithm (resp. Boullier’s algorithm) in the
TuLiPA system (using the Gecode library), where in comparison with a
first naive implementation of clause instantiation, an enormous speed-
up is achieved.

3.2 parsing simple range concatenation grammar

This section is dedicated to the problem of the symbolic parsing of
SRCG.

3.2.1 Introduction

Simple Range Concatenation Grammar and its equivalent formalisms
(p. 41) are commonly considered to be the most expressive formalisms
which are still mildly context-sensitive. Several parsing algorithms for
them have appeared. See section 3.3 for details on these works and
other related literature.

In the following, I present an incremental Earley parsing algorithm
which is a modification of the “incremental algorithm” of Burden and
Ljunglöf (2005) for LCFRS with a strategy very similar to the strategy
adopted by Thread Automata. Then, in section 3.2.3, item filters are
presented which limit the search space, as well as an experimental
evaluation of the algorithm in section 3.2.4.

3.2.2 Incremental Earley Parsing

The Incremental Earley algorithm assumes the grammar to be ordered
and ε-free. Recall that Ordered Simple Range Concatenation Grammar
(OSRCG) is equivalent to SRCG (lemma 2.55, p. 47). We refrain from
supporting non-ε-free grammars since the grammars used for the ex-

80 symbolic parsing beyond cfg

perimental implementation are all ε-free. However, note that only mi-
nor modifications would be necessary in order to support non-ε-free
grammars (see below). Furthermore, without loss of generality, we as-
sume that for every clause, there is a k ∈ N0 such that the variables
occurring in the clause are exactly X1, . . . ,Xk.

We process the arguments of the left-hand sides (LHSs) of clauses in-
crementally, starting from an S-clause. Whenever we reach a variable,
we move into the clause of the corresponding RHS predicate (pre-
dict or resume). Whenever we reach the end of an argument, we
suspend this clause and move into the parent clause that has called
the current one. In addition, we treat the case where we reach the
end of the last argument and move into the parent as a special case.
Here, we first convert the item into a passive one and then com-
plete the parent item with this passive item. This allows for some
additional factorization.

The item form for passive items is

[A,~ρ]

where A a predicate of some arity k, ~ρ is a range vector of arity k. The
item form for active items is

[A(~φ)→ A1(~φ1) . . . Am(~φm), pos, 〈i, j〉,~ρ]

where

1. A(~φ)→ A1(~φ1) . . . Am(~φm) ∈ P;

2. pos ∈ {0, . . . ,n} is the position up to which we have processed
the input;

3. 〈i, j〉 ∈ N×N marks the position of our dot in the arguments
of the predicate A: 〈i, j〉 indicates that we have processed the
arguments up to the jth element of the ith argument;

4. ~ρ is a range vector containing the bindings of the variables and
terminals occurring in the left-hand side of the clause (~ρ(i) is
the range the ith element is bound to). We distinguish between
different occurrences of the same terminal.

When first predicting a clause, it is initialized with a vector containing
only symbols “?” for “unknown”. We call such a vector (of appropriate

3.2 parsing simple range concatenation grammar 81

arity) ~ρinit. We introduce an additional piece of notation. We write ~ρ(X)
for the range bound to the variable X in ~ρ. Furthermore, we write
~ρ(〈i, j〉) for the range bound to the jth element in the ith argument of
the LHS of the clause.

The deduction rules are as follows.
initialize: We predict the S-predicate.

[S(~φ)→ ~Φ, 0, 〈1, 0〉,~ρinit]

with the side condition S(~φ)→ ~Φ ∈ P.
scan: Whenever the next symbol after the dot is the next terminal

in the input, we can scan it.

[A(~φ)→ ~Φ, pos, 〈i, j〉,~ρ]
[A(~φ)→ ~Φ, pos + 1, 〈i, j+ 1〉, ~ρ ′]

with the side conditions ~φ(i, j+ 1) = wpos+1 and ~ρ ′ is ~ρ updated with
~ρ(i, j+ 1) = 〈pos, pos + 1〉.

In order to support non-ε-free grammars, one would need to store
the pair of indices a ε is mapped to in the range vector, along with the
mappings of terminals and variables. The indices could be obtained
through a scan-ε operation, parallel to the scan operation.

predict: Whenever our dot is left of a variable that is the first
argument of some RHS predicate B, we predict new B-clauses.

[A(~φ)→ . . . B(X, . . .) . . . , pos, 〈i, j〉,~ρA]
[B(~ψ)→ ~Ψ, pos, 〈1, 0〉,~ρinit]

with the side condition ~φ(i, j+ 1) = X,B(~ψ)→ ~Ψ ∈ P.
suspend: Whenever we arrive at the end of an argument that is not

the last argument, we suspend the processing of this clause and we go
back to the item that was used to predict it.

[B(~ψ)→ ~Ψ, pos ′, 〈i, j〉,~ρB],
[A(~φ)→ . . . B(~η) . . . , pos, 〈k, l〉,~ρA]

[A(~φ)→ . . . B(~η) . . . , pos ′, 〈k, l+ 1〉,~ρ]

with the side conditions that the dot in the antecedentA-item precedes
the variable ~η(i), |~ψ(i)| = j (the ith argument has length j and has

82 symbolic parsing beyond cfg

therefore been completely processed), |~ψ| < i (the ith argument is not
the last argument of B), ~ρB(~ψ(i)) = 〈pos, pos ′〉 and for all 1 6 m < i:
~ρB(~ψ(m)) = ~ρA(~η(m)). ~ρ is ~ρA updated with ~ρA(~η(i)) = 〈pos, pos ′〉.

convert: Whenever we arrive at the end of the last argument, we
convert the item into a passive one.

[B(~ψ)→ ~Ψ, pos, 〈i, j〉,~ρB]
[B,~ρ]

with the side conditions |~ψ(i)| = j, |~ψ| = i and ~ρB(~ψ) = ~ρ.
complete: Whenever we have a passive B item we can use it to

move the dot over the variable of the last argument of B in a parent
A-clause that was used to predict it.

[B,~ρB], [A(~φ)→ . . . B(~η) . . . , pos, 〈k, l〉,~ρA]
[A(~φ)→ . . . B(~η) . . . , pos ′, 〈k, l+ 1〉,~ρ]

where the dot in the antecedent A-item precedes the variable ~η(|~ρB|),
the last range in ~ρB is 〈pos, pos ′〉, and for all 1 6 m < |~ρB|: ~ρB(m) =

~ρA(~η(m)). ~ρ is ~ρA updated with ~ρA(~η(|~ρB|)) = 〈pos, pos ′〉.
resume: Whenever we are left of a variable that is not the first

argument of one of the RHS predicates, we resume the clause of the
RHS predicate.

[A(~φ)→ . . . B(~η) . . . , pos, 〈i, j〉,~ρA],
[B(~ψ)→ ~Ψ, pos ′, 〈k− 1, l〉,~ρB]
[B(~ψ)→ ~Ψ, pos, 〈k, 0〉,~ρB]

with the side conditions ~φ(i)(j+ 1) = ~η(k),k > 1 (the next element
is a variable that is the kth element in ~η, i.e., the kth argument of B),
|~ψ(k− 1)| = l, and ~ρA(~η(m)) = ~ρB(~ψ)(m) for all 1 6 m 6 k− 1.

The goal is again as follows.

goal [S, 〈0,n〉]

Note that, in contrast to a purely bottom-up CYK algorithm, the Ear-
ley algorithm presented here is prefix valid, provided that the gram-
mar does not contain useless symbols.

3.2 parsing simple range concatenation grammar 83

3.2.3 Filters

During parsing, various optimizations known from (P)CFG parsing
can be applied. More concretely, because of the particular form of
our simple RCGs, we can use several filters to reject items very early
that cannot lead to a valid parse tree for a given input string w with
|w| = n.

For the grammars we extract from treebanks,7 the following holds.
They are ε-free, we know that each variable or occurrence of a termi-
nal in the clause must cover at least one terminal in the input. Fur-
thermore, since separations between arguments are generated only in
cases where between two terminals belonging to the yield of a non-
terminal, there is at least one other terminals that is not part of the
yield, we know that between different arguments of a predicate, there
must be at least one terminal in the input. Consequently, we obtain as
a filtering condition on the validity of an active item that the length of
the remaining input must be greater or equal to the number of vari-
ables and terminal occurrences plus the number of argument separa-
tions to the right of the dot in the LHS of the clause. More formally, an
active item [A(~φ)→ A1(~φ1) . . . Am(~φm), pos, 〈i, j〉,~ρ] satisfies the length
filter iff

(n− pos) > (|~φ(i)|− j) + Σ
dim(A)
k=i+1 |

~φ(k)|+ (dim(A) − i)

The length filter is applied to results of predict, resume, suspend
and complete.

A second filter checks for the presence of required preterminals.
This corresponds to the f estimate from Klein and Manning (2003a)
(the same idea was in fact already proposed by Langer (1998)). In
our case, we assume the preterminals to be treated as terminals, so
this filter amounts to checking for the presence of all terminals in
the predicted part of a clause (the part to the right of the dot) in the
remaining input. Furthermore, we check that the terminals appear in
the predicted order and that the distance between two of them is at
least the number of variables/terminals and argument separations in
between. In other words, an active item

[A(~φ)→ A1(~φ1) · · ·Am(~φm), pos, 〈i, j〉,~ρ]

7 Treebank grammar extraction is described in section 5.2.2.

84 symbolic parsing beyond cfg

satisfies the terminal filter iff we can find an injective mapping fT :

Term = {〈k, l〉 | ~φ(k)(l) ∈ T and either k > i or (k = i and l > j)} →
{pos + 1, . . . ,n} such that

1. wfT (〈k,l〉) = ~φ(k)(l) for all 〈k, l〉 ∈ Term;

2. for all 〈k1, l1〉, 〈k2, l2〉 ∈ Term with k1 = k2 and l1 < l2:

fT (〈k2, l2〉) > fT (〈k1, l1〉) + (l2 − l1);

3. for all 〈k1, l1〉, 〈k2, l2〉 ∈ Term with k1 < k2:

fT (〈k2, l2〉) > fT (〈k1, l1〉) + (|~φ(k1)|− l1) + Σ
k2−1
k=k1+1

|~φ(k)|

+ l2 + (k2 − k1).

Checking this filter amounts to a linear traversal of the part of the
LHS of the clause that is to the right of the dot. We start with index
i = pos + 1, for every variable or gap we increment i by 1. For every
terminal a, we search the next a in the input, starting at position i. If
it occurs at position j, then we set i = j and continue our traversal of
the remaining parts of the LHS of the clause.

The preterminal filter is applied to results of the predict and re-
sume operations.

3.2.4 Evaluation

We have implemented the incremental Earley parser with the filter-
ing conditions on items. In order to test it, we have extracted an
SRCG from the first 1,000 sentences of the German NeGra and TIGER8

(with removed punctuation) and parsed the sentences 1,001-1,100 with
it. The grammars contained 2,474 clauses (NeGra) and 2,554 clauses
(TIGER). Table 4 contains the total number of sentences for different
lengths, the number of sentences for which a parse was found, and the
average parsing times of the sentences for which a parse was found.

This shows that using the filters, symbolic parsing of SRCG is feasi-
ble in practice.

8 The treebanks are presented at length in section 4.2.1.

3.3 related work 85

length negra parse/tot/av.t. tiger parse/tot/av.t.

|w| 620 73/84/0.40 sec. 50/79/0.32

20 6 |w| 6 35 14/16/2.14 sec. 10/19/2.16

Table 4: Evaluation of the SRCG Parser

3.3 related work

In this section, I present relevant related work for both RCG and
SRCG.

3.3.1 Range Concatenation Grammar

A directional top-down recognizer has been presented by Pierre Boul-
lier, using pseudocode (Boullier, 1998, 2000b). It is roughly equivalent
to the directional top-down parsing algorithm. Boullier’s RCG parser
implementation, SYNTAX (Boullier and Deschamp, 1988), is (to my
knowledge) the only implementation of a parser for arbitrary RCGs
apart from the TuLiPA system (Kallmeyer et al., 2008b). In SYNTAX,
a highly optimized and very fast system, (unpublished) heuristics on
the input strings are used to avoid having to compute complete instan-
tiations at once. The SYNTAX approach thereby seems to be concep-
tually comparable to the formulation using range constraint vectors
presented in the previous sections and implemented in the TuLiPA
system (Pierre Boullier and Benoît Sagot, personal communication).

Barthélemy et al. (2001) present an extension of the top-down al-
gorithm. Roughly, their approach is to generate a 1-RCG from the
grammar, by introducing a separate predicate for each argument of
a clause. For example, from a clause S(XYZ) → A(X, Y,Z), the clause
S1(XYZ) → A1(X)A2(Y)A3(Z) would be generated, the superscripts
representing the respective argument of the original predicate. The 1-
RCG then acts as an oracle which limits the search space by excluding
early partial results which do not lead to a parse.

I am not aware of any further work on parsing RCG. However, RCG
has found some applications. Some of them have already been men-
tioned in section 3.1.1. Another one has been presented by Boullier
and Sagot (2009). They introduce an extension of Boullier’s top-down
algorithm which is able to handle Directed Acyclic Graphs (DAGs) as

86 symbolic parsing beyond cfg

input (instead of a simple sequence of words). Handling DAGs is rele-
vant since they are used in several NLP applications, such as in speech
recognition. While the complexity of parsing DAGs was known before
(polynomial when using SRCG and NP-complete when using arbi-
trary RCG, cf. Bertsch and Nederhof (2001)), Boullier and Sagot’s work
is the first concerning implementation-related issues. Their parser pro-
duces parse forests for input DAGs using both SRCG and arbitrary
RCG in PTIME. However, the parse forests for arbitrary RCG need to
be filtered in order to be correct. The filtering algorithm takes expo-
nential time (which reflects again Bertsch and Nederhof’s result).

Søgaard (2011) argues that a variant of RCG, (2, 2)-BRCG, is useful
for Syntax-Directed Machine Translation. A (2, 2)-BRCG is a bottom-
up non-erasing 2-RCG, where an argument of the LHS predicate con-
tains at most two variables. Such grammars can be used for the bilin-
gual modeling of sentence pairs such at is offered by Inversion Trans-
duction Grammar (ITG) (Wu, 1997) and Synchronous CFG used by
Chiang (2007) (he calls them Syntax-Directed Transduction Grammars
(SDTG)). In (2, 2)-BRCG, intuitively speaking, the first argument of an
LHS predicate models the source language and the second argument
models the target language. The copying capacity of arbitrary RCG
is used. Søgaard shows that the formalism is more expressive than
SDTG and shows the relevance of his result with an empirical inves-
tigation of aligned corpora that shows that alignments which can be
modeled by RCG, but cannot be modeled by SDTG, occur relatively
frequently.

3.3.2 Parsing SRCG and Equivalent Formalisms

Satta (1992) investigates the formal properties of LCFRS and its recog-
nition problem. While it had been known before that the fixed recog-
nition problem is solvable in PTIME (Vijay-Shanker et al., 1987), Satta
shows among other things that the universal recognition problem is
NP-complete. Burden and Ljunglöf (2005) present several parsing al-
gorithms for LCFRS, formulated as deduction systems, together with
suggestions for optimizations. Their algorithms are used in Grammat-
ical Framework (Ranta, 2004) and have been the starting point for the
SRCG parsing algorithm presented in the previous section. The for-
mal properties and the complexity of Grammatical Framework are
explored in Ljunglöf (2004). Ljunglöf also establishes the relation be-

3.3 related work 87

tween Grammatical Framework (GF) and Parallel Mulitple Context-
Free Grammar (PMCFG) (Seki et al., 1991), a variant of MCFG which
has recently found further attention with respect to parsing (Angelov,
2009).

Seki et al. (1991) introduce the formalism of MCFG. They present
several important computational properties of Multiple Context-Free
Languages (MCFLs), such as the relation to the languages of other
formalisms such as TAGs. Furthermore, their article contains a CYK
recognizer for their formalism, formulated as pseudo-code. Kanazawa
(2009a) presents a prefix-valid Earley parser for MCFG, based on the
idea of representing an MCFG by a Datalog program and applying
generalized supplementary magic-sets rewriting (Beeri and Ramakr-
ishnan, 1991).

Another approach to parsing MCFG is presented by Nakanishi et al.
(1997). They reduce the parsing problem to boolean matrix multipli-
cation, something which has been done before for CFG (Valiant, 1975)
and TAG (Satta, 1994). The complexity of the algorithm directly de-
pends on the complexity of the algorithm used for boolean matrix
multiplication. However, since the algorithms for this task which have
a low complexity are impractical (Lee, 2002), Nakanishi et al.’s work
is of rather theoretical interest.

Work on Minimalist Grammar (MG) parsing has been presented
by Michaelis (2001b), who investigates the formal properties of MG,
and Harkema (2001), who delivers bottom-up, top-down and Earley
strategies for MG.

Villemonte de la Clergerie (2002) presents an automaton model,
called Thread Automata (TA). TA is not equivalent to a particular for-
malism, it can be parametrized to work as an automaton model for
different mildly context-sensitive formalisms. Villemonte de la Clerg-
erie’s parametrization for SRCG, as already mentioned, delivers an
incremental parser with a strategy similar to the parser presented be-
fore.

For SRCG and the equivalent formalisms, probabilistic variants have
been created. The first probabilistic application can be found in Kato
et al. (2006). The authors define Probabilistic MCFG (PMCFG)9 and
use a restricted version of it for the modeling of RNA pseudoknotted
structures. Pseudoknot is a typical substructure in secondary struc-

9 See remark on acronym on p. 230.

88 symbolic parsing beyond cfg

C

5′–C A G G

• • •
U C C A G U

• • •
G U C A G–3′

C
c a g g c u g a c c u g c u c a g

Figure 17: RNA pseudoknotted structure

tures of several RNAs. It poses a particular difficulty for RNA struc-
ture prediction, the task of determining nucleic acid secondary or ter-
tiary structure from its sequence.10 The reason for the difficulty is
that, intuitively speaking, long-distance resp. crossing dependencies
are involved. Figure 17 shows such a structure together (left) with an
alternative representation called arc depiction (right). The example is
taken from Kato et al. (2006).

A further application of probabilistic SRCG is data-driven parsing.
This is what the remainder of this thesis is dedicated to.

3.4 conclusion

This chapter was concerned with the problem of symbolic parsing
of Range Concatenation Grammar and Simple Range Concatenation
Grammar. Several algorithms have been presented which pursue dif-
ferent strategies.

A top-down algorithm, two CYK-style algorithms, and an Earley-
style parsing algorithm for the full class of RCG have been presented,
formulated in terms of deduction systems. While the directional top-
down algorithm corresponds the algorithm of Boullier, all other algo-
rithms are novel. The crucial difference between the directional top-
down algorithm and the Earley-style algorithm is that while the for-
mer computes all clause instantiations during predict operations,
the latter avoids this using a technique of dynamic updating of a set
of constraints on range boundaries. Experiments show that the Earley-
style algorithm generates significantly less items than the directional
top-down algorithm, which confirms that range boundary constraint
propagation is a viable method for a lazy computation of ranges.

10 See Gardner and Giegerich (2004) for a survey of work on RNA structure prediction.

3.4 conclusion 89

Furthermore, a Earley-style algorithm for SRCG has been presented,
also formulated as deduction system. Filters on the chart have been
presented which reduce the number of items produced during pars-
ing. An implementation and experiments with grammars extracted
from treebanks showed that reasonable parsing times can be achieved.
Unfortunately, experiments with the Earley algorithm have shown that
with grammars of a reasonable size for data-driven parsing (more than
15,000 clauses), exhaustive parsing is no longer efficient, due to the
high ambiguity of treebank grammars. Algorithms using only passive
items (pure CYK) are more suitable in this context since they do not
“hard-code” a binarization strategy and therefore more easily allow
to reduce the number of produced items through markovization. This
subject will be treated in the following chapters.

With respect to parsing arbitrary RCG, the experience from imple-
menting the algorithms presented in this chapter shows that in prac-
tice, most of the computational resources are taken up by the process
of finding instantiations. Formulating the instantiation problem in an
appropriate way is the key to efficient parsing; however, what is the
best strategy seems to depend on the properties of the grammar which
is used. In other words, it is very hard to build a parser for completely
unrestricted RCG, i. e., for all possible grammar instances of the for-
malism. Nevertheless, by letting the parser know in advance certain
details of the words in the language of the grammar, one can achieve
excellent parsing performance on certain practically relevant Range
Concatenation Languages. In our case, e. g., this information could be
given to the parser in the form of constraints. This is also the approach
taken in other work on parsing RCG such as Boullier (2000a), where
very low “practical” parsing complexities are reported that cannot be
achieved in the general case.

4
D ATA - D R I V E N PA R S I N G U S I N G C O N T E X T- F R E E
G R A M M A R

Linguistic grammars can not only be created manually by linguists.
Another way to obtain grammars is to interpret the syntactic struc-
tures contained in a treebank as the derivations of a latent grammar
and to use an appropriate algorithm for grammar extraction. One can
not only obtain the grammar, but also estimate occurrence probabili-
ties of its rules. These can be used for disambiguation, i. e., to deter-
mine the best parse, resp. parses of a sentence; furthermore, they can
be used for speeding up the parsing process. Parsing with a probabilis-
tic grammar obtained from a treebank is called data-driven parsing.

Data-driven constituency parsing looks back on a long history. In
this field, many developments have been made which are relevant
for the work presented in the following chapters of this thesis. There-
fore, after a formal introduction to probabilistic parsing and data-
driven parsing in section 4.1, I present an overview of major works
in section 4.2. Since much of the development in constituency pars-
ing is connected to the development of treebanks and treebank an-
notation schemes, a part of the section is dedicated to constituency
treebanks. Correspondingly, in section 4.3 I present an overview of
developments in data-driven dependency parsing. The same section
introduces dependency annotation. Finally, in section 4.4, out of the
preceding two sections, I motivate the main contributions of this the-
sis, namely the development of a parser for data-driven constituency
parsing and grammar-based non-projective dependency parsing with
Simple Range Concatenation Grammar (SRCG).

4.1 probabilistic parsing and data-driven parsing

Probabilistic data-driven parsing is strongly associated with a single
formalism, namely Probabilistic Context Free Grammar.

91

92 data-driven parsing using cfg

4.1.1 Probabilistic Generative Syntax

A Probabilistic Context-Free Grammar is a Context-Free Grammar
augmented with rule probabilities. In the form they are presented in
here, they have appeared first in Booth and Thomson (1973), albeit
with a different notation.
Definition 4.1 (Probabilistic Context-Free Grammar). A Probabilistic
Context-Free Grammar (PCFG)1 is a tuple G = (N, T ,P,S,p) where
(N, T ,P,S) is a Context-Free Grammar (CFG) and p : P → [0, 1]2 is
a function such that for all A ∈ N,

∑

A→α∈P
p(A→ α) = 1

p(A → α) denotes the conditional probability p(A → α | A). Since
we are interested in probabilities of derivations, we must make sure
that equivalent derivations are only counted once. This is achieved by
always referring to the leftmost derivation, in which the leftmost non-
terminal is always substituted first. To this end, in definition 4.2, we
revise 1. of definition 2.21, p. 27.
Definition 4.2 (Leftmost derivation (CFG)). Let G = (N, T ,P,S) be a
CFG. The relation =⇒G⊆ (N ∪ T)+ × (N ∪ T)∗ called leftmost derives is
defined as follows. γ =⇒G γ

′ iff there are A → β ∈ P, α ∈ T∗ and
α ′ ∈ (N∪ T)∗ such that γ = αAα ′ and γ ′ = αβα ′.

It is easy to see that leftmost derives is properly contained in derives.
Proposition 4.3. Let G = (V , T ,P,S) be a CFG, let w ∈ T∗. If w ∈
L(G), then there exists at least one derivation tree G for w, and with
respect to a certain derivation tree, w has a unique leftmost derivation
(Hopcroft and Ullman, 1979).
Definition 4.4 (Derivation probability (PCFG)). Let G = (N, T ,P,S,p)
be a PCFG, and let α,γ ∈ (N∪ T)∗.

1. Let A→ β ∈ P. The probability of a derivation step α =⇒A→β
G γ

is defined as follows.

p(α =⇒A→β
G γ) = p(A→ β)

1 Sometimes, especially in literature not about computational linguistics, PCFG is
called Stochastic Context-Free Grammar (SCFG).

2 As usual, [0, 1] denotes the interval {i ∈ R | 0 6 i 6 1}.

4.1 probabilistic parsing and data-driven parsing 93

2. Let A1 → β1, . . . ,Am → βm ∈ P, m ∈ N. The probability of a
derivation α =⇒A1→β1

G · · · =⇒Am→βm
G γ is defined as follows.

p(α =⇒A1→β1
G · · · =⇒Am→βm

G γ) =

m∏

i=1

p(Ai → βi)

3. The probability of α ∗
=⇒G γ is defined as the sum over the prob-

abilities of all leftmost derivations of γ from α:

p(α
∗

=⇒G γ) =

k∑

i=0

mi∏

j=0

p(Aij → βij)

where k ∈ N is the number of leftmost derivations of γ from α

and mi ∈ N is the derivation length of the ith derivation and
Aij → βij is the production used in the jth derivation step of the
ith leftmost derivation.

Definition 4.5 (Inside and Outside probabilities (PCFG)). Let G =

(N, T ,P,S,p) be a PCFG and let w = w1 · · ·wn, n ∈ N, wi ∈ Σ for
some alphabet Σ, 1 6 i 6 n, be an input string. Let 1 6 i 6 j 6 n.

1. The probability of deriving a part wi · · ·wj of the input string
from a certain non-terminal A ∈ N is called inside probability of
A, i, j and defined as

p(A
∗

=⇒G wi · · ·wj)

2. The probability of a starting with S and generating non-terminal
A ∈ N and all terminals outside of wi to wj is called outside
probability of A, i, j and defined as

p(S
∗

=⇒G w1 · · ·wi−1Awj+1 · · ·wn)

An illustration for outside and inside probabilities is in figure 18.
The part surrounded by the dashed line refers to the outside prob-
ability, and the part surrounded by the solid line refers to the inside
probability. The inside algorithm and the outside algorithm can be used to
compute the resp. probabilities for a given grammar and input string
(Baker, 1979).

94 data-driven parsing using cfg

S

A

1 i− 1 i j j+ 1 n

Figure 18: Inside and outside probabilities

4.1.2 Finding the Most Probable Derivation

A computational problem of predominant interest is how to find the
most probable derivation for a given input string. One of the oldest
approaches for efficiently searching the most probable derivation of
a PCFG for a given string is the Viterbi algorithm (Viterbi, 1967).3 The
basic idea behind the algorithm is to keep track for all subderivations
of which one has the highest probability. This can be achieved with
a CYK-like algorithm (Goodman, 1998, p. 7), in which at all times,
each chart cell contains the highest probability of all corresponding
sub-derivations found so far. With dynamic programming, the algo-
rithm runs in O(n3) (Manning and Schütze, 1999, p. 396). The Viterbi
algorithm is exhaustive, i. e., all possible sub-derivations are built.

An alternative to the Viterbi algorithm is Weighted Deductive Parsing
(WDP) (Nederhof, 2003). Nederhof uses weighted deduction systems to-
gether with Knuth’s algorithm (Knuth, 1977) for finding the derivation
with the lowest weight. As weights, one commonly uses the absolute
value of the natural logarithm of the corresponding probabilities. A
production A → α with p(A → α) = y is notated as y : A → α; an
item A with weight x is notated as x : A. Here and throughout, we
will write log(y) to denote |ln(y)|.

A weighted deduction system as presented by Nederhof (2003) is a
finite set of inference rules extended with weights. The inference rules
have the form

3 Some authors call any algorithm which computes the best derivation of a PCFG
Viterbi algorithm.

4.1 probabilistic parsing and data-driven parsing 95

x1 : A1, . . . , xk : Ak
f(x1, . . . , xk) : B

c1, . . . , cm

where again, k,m ∈ N0, the antecedents A1, . . . ,Ak and the consequent
B are items, and c1, . . . , cm are side conditions which link the inference
rule to the grammar and the input string. x1, . . . , xk are unique weight
variables. f is the weight function.

The actual algorithm is shown as algorithm 2. It uses two data struc-
tures, a chart C and an agenda A. The agenda is organized as a prior-
ity queue of items, ordered by item weights. In each step, the item
x : I with the lowest weight is removed from the agenda and put
in the chart. Next, all possible items are deduced from x : I using
items from the chart. The resulting items are added to the agenda.
In case the agenda already contains such an item, the correspond-
ing weight is updated to the maximum of both. If the weight func-
tions f(x1, . . . , xm) in the deduction system are superior (in Knuth’s
terms), which means that they are monotone non-decreasing in each
variable, and if f(x1, . . . , xm) > max(x1, . . . , xm) for all possible values
of x1, . . . xm , then it is guaranteed that when an item is removed from
the agenda, no competing analysis with a higher probability can be
found (Nederhof, 2003). That means that when the goal item is re-
moved from the agenda for the first time, it is guaranteed to be the
most probable analysis of the input string.

The CYK algorithm for PCFG can be formulated using a weighted
deduction system as shown in figure 19. inA, inB and inC denote the
log probabilities of the best inside parses of the respective items, i. e.,
their Viterbi inside scores. It is easy to see that for all possible values
of inB, inC and p, it holds that f(inB, inC, log(p)) > max(inB, inC, log(p)),
i. e., the superiority condition is fulfilled.

By estimating the Viterbi outside score4 of items, one can get an idea
of which items lead to a complete parse more quickly than others.
In A∗ parsing (Klein and Manning, 2003a) one adds an estimate of
the Viterbi outside score of an item to its inside score, in order to
favorably influence the ordering of the priority agenda. If the estimate
fulfills two conditions, then we are guaranteed to find the best parse.

4 Note that just as Klein and Manning (2003a), we always use inside score and outside
score to denote the Viterbi inside and outside scores, i. e., the resp. maximum proba-
bilities. They are not to be confused with the actual inside and outside probabilities
(def. 4.5, p. 93).

96 data-driven parsing using cfg

Let G be a probabilistic grammar, and let w be the input string
C = ∅
A = ∅
add items resulting from deduction rules with no antecedent to A

while A 6= ∅ do
remove best item x : I from A

add x : I to C

if I goal item then
build parse tree from I and exit

else
for all y : I ′ deduced from x : I and items in C do

if there is no z with z : I ′ ∈ C∪A then
add y : I ′ to A

else
if z : I ′ ∈ A for some z then

update weight of I ′ in A to max(y, z)
if y > z then

update backpointers to the antecedents of I ′

end if
end if

end if
end for

end if
end while

Algorithm 2: Weighted deductive parsing

scan
log(p) : [A, i− 1, i]

p : A→ wi ∈ P

complete
inB : [B, i, j], inC : [C, j,k]

inB + inC + log(p) : [A, i,k]
p : A→ BC ∈ P

goal x : [S, 0,n]

Figure 19: Weighted deduction system for CYK

4.1 probabilistic parsing and data-driven parsing 97

The first condition is admissibility: The actual outside score of an item
must never be underestimated. The second condition is monotonicity:
When deducing an item I2 from an item I1, the weight of I2 must not
be greater than the weight of I1. In order to become A∗-enabled, the
complete rule of the deduction system in figure 19 must be modified
as follows (outA, outB and outC are the respective outside estimates):

inB + outB : [B, i, j], inC + outC : [C, j,k]

inB + inC + log(p) + outA : [A, i,k]
p : A→ BC ∈ P

Klein and Manning build context summary estimates and grammar
projection estimates. Intuitively, a context summary is a generalization
of the outside part of the constituent represented by the item. For
instance, given an input string of length n, an item [A, i, j] can be sum-
marized with (A, i,n− j), i. e., by the length of the spans to the left and
to the right of the span represented by the item.5 The more informa-
tive a context summary item is, the closer its estimate is to the actual
outside score. However, more informative estimates are also more ex-
pensive to compute. The idea is therefore to choose the summary gen-
eral enough to be computable, but specific enough to provide enough
information for discriminating items. Note that the least informative
summary is the one which provides no information at all (which sum-
marizes all items), and the most informative summary is the actual
outside context (which summarizes only a single item). A grammar
projection estimate projects the actual grammar to a simpler grammar.
One parses then first with the simpler grammar, and uses the output
as a guide for the actual parser.

One has to keep in mind that managing the agenda as priority
queue implies an administrative overhead in an implementation. If
one implements the priority queue as a binary heap, one faces a cost
of O(log(n)) for a queue of length n for every operation (access, dele-
tion, addition) (Cormen et al., 2003, p. 164). When using a Fibonacci
heap (Fredman and Tarjan, 1987), one can get better performance, e. g.,
updating the weight of an item can be done in constant amortized

5 This is the SX estimate of Klein and Manning.

98 data-driven parsing using cfg

time6 (Cormen et al., 2003, pp. 505). To this respect, see also section
6.3.2.

WDP is closely related to parsing with hypergraphs (Klein and Man-
ning, 2001). Instead of filling a chart as in deductive parsing, Klein
and Manning build a hypergraph7 which serves the same purpose. In
WDP, Knuth’s algorithm (a generalization of Dijkstra’s algorithm) is
used to find the best parse using the CFG which encodes the parse
forest, the CFG being given by the chart. Klein and Manning use an-
other extension of Dijkstra’s algorithm to achieve the same thing on
their hypergraph. Thereby, Knuth’s superiority condition (see above)
is replaced by an equivalent condition on the hypergraphs. See Klein
and Manning (2001) for details, particularly sections 2.3 and 2.5. In
this thesis, the deduction-based approach is given preference over the
hypergraph approach due to the easier accessibility of deduction sys-
tems. However, a formulation in terms of hypergraphs would be pos-
sible, too.

4.1.3 Obtaining a Probability Model

Another important computational problem with regard to PCFG is the
estimation of production probabilities given a collection of example
derivations. Given a treebank all trees of which are CFG derivation
trees (def. 2.23, p. 28), a CFG G which derives at least all sentences
can be obtained by interpreting all subtrees of height one as a pro-
duction of the grammar and collecting all productions in a grammar
G = (N, T ,P,S). The simplest method for obtaining probabilities (for
training the grammar) is to use a Maximum Likelihood Estimator. Let

Υ = {(1,υ1, s1), . . . , (n,υn, sn)},

n ∈N, be a treebank (def. 2.19, p. 25). For allA→ α ∈ P, the estimated
probability p(A→ α) is

p(A→ α) =

∑n
i=1 f(A→ α,υi)∑

γ s.t.A→γ∈P
∑n
i=1 f(A→ γ,υi)

6 In an algorithm, the higher cost of an expensive operation might be outweighed by
a higher number of times a cheap operation is called. Amortized analysis takes this
into account by judging the run-time of an algorithm by looking at the interplay of
all of its operations.

7 A directed hypergraph is a tuple (V ,H) where V is a set of vertices and H ⊆ P(V)×
P(V). For an introduction to hypergraphs, see Gallo et al. (1993).

4.2 data-driven constituency parsing 99

where f is the function which yields the occurrence count of a produc-
tion in a treebank tree. The counts necessary for the estimation can
easily be obtained from the treebank.

In order to be tight, the probability model defined by a PCFG must
be such that the sum of probabilities of all finite parse tree generated
by G is 1 (Booth and Thomson, 1973). This is not always the case,
since probability mass can get lost to infinite derivations. It is easy to
see that this happens with the PCFG with the productions 0.8 : S→ SS

and 0.2 : S → a. Fortunately, Chi and Geman (1998) showed8 that the
estimation of production probabilities from data guarantees tightness.

4.2 data-driven constituency parsing

In this section, I introduce some relevant aspects of constituency tree-
bank annotation. Furthermore, I present an overview of work on data-
driven constituency parsing.

4.2.1 Constituency Treebank Annotation

As mentioned in the previous section, for PCFG extraction, we need a
treebank which provides CFG parse trees. CFG parse trees cannot en-
code non-local dependencies because they only allow for constituents
with a continuous yield; therefore, a common approach for annota-
tion encoding is to use an annotation backbone based on CFG, en-
riched with an additional mechanism that encodes information be-
yond CFG. For PCFG parsing, this additional mechanism is then sim-
ply discarded and the pure context-free derivation backbone is used.
Let us consider some examples.

The 24 sections of Wall-Street Journal part of the Penn Treebank
(PTB) (Marcus et al., 1994) have been the data-source for most new
developments in data-driven parsing. Figure 20 shows an example
from the annotation guidelines of the PTB (Bies et al., 1995), namely
the annotation of (8).

(8) But our outlook has been, and continues to be, defensive.

8 Nederhof and Satta (2006) present a more general proof which, unlike Chi and
Geman’s proof, also works for grammars with empty rules and unary rules.

100 data-driven parsing using cfg

((S But

(NP-SBJ-2 our outlook)

(VP (VP has

(VP been

(ADJP *RNR*-1)))

,

and

(VP continues

(S (NP-SBJ *-2)

(VP to

(VP be

(ADJP *RNR*-1)))))

,

(ADJP-1 defensive))) .)

Figure 20: Penn Treebank annotation example

The bracketed structure provides an annotation backbone which is
based on CFG. Empty nodes together with labeling conventions es-
tablish additional relations in the tree. In the example, this is the case
for the annotation of right node raising, where the relation between
the raised constituent and its original sites is established by the label
RNR and the coindexation (-1). For data-driven parsing, the empty
nodes and the special labelings are generally discarded. PCFGs are
then extracted from the remaining trees.

A comparable approach is taken in the German Tübingen Treebank
of Written German (TüBa-D/Z) (Telljohann et al., 2006). Its annotation
backbone is based on CFG. Punctuation and inserted phrases are not
included in the annotation. Instead, they are attached to a “virtual”
root node, together with the actual root node of the sentence. As an
additional mechanism for long-distance dependencies, a combination
of topological field annotation (Höhle, 1986) and edge labels is used.
As an example, consider the annotation of (9), a case of fronting, in
figure 21. The edge label V-MOD marks the NP Ohne Bomben as modifier
of the verb.

(9) Ohne
Without

Bomben
bombs

wären
would have

die
the

Vertreibungen
expulsions

auch
also

weitergegangen
continued

4.2 data-driven constituency parsing 101

Ohne

APPR

a

Bomben

NN

apf

wären

VAFIN

3pkt

die

ART

npf

Vertreibungen

NN

npf

auch

ADV

weitergegangen

VVPP

.

$.

HD

NX

HD

VXFIN

- HD

NX

HD

ADVX

HD

VXINF

- HD

PX

HD

LK

ON MOD

MF

OV

VC

V-MOD

VF

- - - -

SIMPX

VROOT

Figure 21: TüBa-D/Z annotation example

“Without the bombs, the expulsions would have continued as
well.”

For data-driven PCFG parsing, (at least) all those elements directly
below the virtual root node which cause crossing branches, namely
punctuation and certain insertions, have to be attached to the actual
tree. Since the topological field level and the edge labels do not inter-
fere with context-freeness, there is no need to modify them. A PCFG
can be extracted from the resulting trees.

As for the German NeGra (Skut et al., 1997) and TIGER (Brants
et al., 2002) treebanks,9 the situation is different. Crossing branches
are allowed, in other words, the annotation backbone based on CFG
is given up. This way, long-distance dependencies can be annotated
directly by grouping all parts of a discontinuous constituent under a
single node. As in TüBa-D/Z, punctuation and certain constituents
are not attached to the trees but to a virtual root node, together with
the root node of the sentence. As an example, figure 22 shows the
annotation of (10). It is also a case of fronting; however, other than in
the TüBa-D/Z example, the fronted constituent is attached directly to
the VP.

9 The difference between both treebanks is that TIGER has a refined POS tag set and
that it is about double the size of NeGra.

102 data-driven parsing using cfg

Noch

ADV

nie

ADV

habe

VAFIN

1.Sg.Pres.Ind

ich

PPER

1.Sg.*.Nom

so

ADV

viel

ADV

gewählt

VVPP

.

$.

MO HD

AVP

MO HD

AVP

MO MO HD

VP

OCHD SB

S

VROOT

Figure 22: NeGra annotation example

(10) Noch
Yet

nie
never

habe
have

ich
I

so
so

viel
much

gewählt
elected

“Never have I made so many choices.”

For data-driven parsing using PCFG, the elements directly dominated
by the virtual root node must be attached to the actual tree. Further-
more, the crossing branches must be resolved somehow. For this pur-
pose, most of the works using TIGER or NeGra for parsing (Kübler
and Penn, 2008, among others) make use of an algorithm which pro-
ceeds bottom-up, moving certain constituents in the tree to higher po-
sitions, in order to remove the crossing branches. Head words (identi-
fied by their edge labels) are excluded from movement, and as few
other material as possible is moved. An undocumented implemen-
tation of this algorithm by Thorsten Brants is shipped with the Ne-
Gra release. Boyd (2007) proposes another algorithm which, for non-
terminals with a block degree greater than one, injects additional
nodes in the tree that capture this nodes’ yield blocks. Figure 23 shows
the annotation of (11), another fronting example from NeGra, without
and with resolved crossing branches, using the Brants method and the
Boyd method.

(11) Selbst
Self

besucht
visited

hat
has

er
he

ihr
him

nie
never

“He has never visited him personally.”

See section 7.2 for a more detailed description of the Brants algorithm.

4.2 data-driven constituency parsing 103

Selbst

ADV

besucht

VVPP

hat

VAFIN

er

PPER

ihn

PPER

nie

ADV

MO HD OA MO

VP

OCHD SB

S

Unresolved crossing branches

Brants algorithm

Boyd algorithm

Figure 23: Removal of crossing branches

104 data-driven parsing using cfg

Both NeGra and TIGER (and also TüBa-D/Z) are distributed in the
export format (Brants, 1997). In this format, a sentence w annotated
with a constituency structure that has m non-terminals, m ∈ N0, is
represented by a list of |w|+m+ 2 lines. The first line is a begin-of-
sentence marker with the sentence number and metadata information
about the annotator of the sentence. The following |w| lines, implic-
itly numbered from 1 to |w|, represent the terminals of w. Each of the
following m lines, carrying numbers greater than 500, represents a
non-terminal node of the constituency structure, except the last line,
which is an end-of-sentence marker. The node numbered 0 is the im-
plicit virtual root node. Every node line contains tab-separated fields.
In version 3 of the export format, the first field contains the terminal
token, resp. the non-terminal node number, the second field contains
the Part-of-Speech (POS) tag, resp. the non-terminal syntactic node
label, the third field contains morphological information, the fourth
field contains the label of the edge from the node to its parent, the
fifth field contains the node number of the parent node, the sixth field
can contain the number of an arbitrary node in the tree to which the
current one has a so-called second edge, the seventh field can contain
comments on the node. In version 4 an additional field between the
fields one and two contains lemmatization information. Since starting
from each node, only the resp. parent node is referenced, child or-
dering is not specified explicitly. This means that trees with crossing
branches can be represented as well. In the graphical representation,
as defined in definition 2.11, p. 21, non-terminals are ordered by the
leftmost leaf they dominate, i. e., by the smallest element of their re-
spective yields. Figure 24 shows the annotation of (10) in the export

format, version 3.

4.2.2 Context-Free Data-Driven Constituency Parsing

In the following, I present an overview of work on data-driven parsing
with the aim of producing context-free derivations.

Evaluating Parser Performance

In order to judge the performance of a parser, one must be able to
assess the quality of its output (the parsed test data) with respect to
the desired output (the gold data). The most widely used technique

4.2 data-driven constituency parsing 105

#BOS 90 3 867232142 2

Noch ADV -- MO 500

nie ADV -- HD 500

habe VAFIN 1.Sg.Pres.Ind HD 503

ich PPER 1.Sg.*.Nom SB 503

so ADV -- MO 501

viel ADV -- HD 501

gewählt VVPP -- HD 502

. $. -- -- 0

#500 AVP -- MO 502

#501 AVP -- MO 502

#502 VP -- OC 503

#503 S -- -- 0

#EOS 90

Figure 24: export format example

for this task consists of comparing for each parsed sentence the set of
bracketings produced by the parser with the set of gold bracketings
from the manual treebank annotation. A bracketing is thereby a pair
of indices on the input string denoting the start and the end of the
span dominated by a certain non-terminal (i. e., its yield block). The
bracketing is called labeled if the label is included; if it is just the index
pair, it is called unlabeled.

Commonly, bracket scoring is defined as follows (Black et al., 1991;
Lin, 1995; Collins, 1997). Let O be the set of bracketings from the parser
output, and let the set of bracketings from the treebank annotation
be G. Precision is then computed as |O∩G|

|O|
, recall as |O∩G|

|G|
, and F1 as

2∗precision∗recall
precision+recall . A literal interpretation of this formulation can have an

undesired effect, namely, that unary edges are counted only once. This
holds especially for the unlabeled case. For instance, if the unlabeled
edge [0, 2] occurs > 1 times in the gold data, any number of [0, 2]s
> 1 in the parser output would lead to the same score. Evalb (Sekine
and Collins, 1997), the quasi-standard software for bracket scoring,
solves this problem by computing the intersection in the formulae
of precision and recall such that a bracket is marked as used after it
matches for the first time. Black et al. (1991), however, mention the con-
vention of excluding unary constituents. Another difference between
Black et al.’s work and Evalb is how statistics are computed over a

106 data-driven parsing using cfg

set of more than one sentence. While the former uses micro-averaging
(the aggregate score is computed by averaging the scores of single sen-
tences), the latter uses macro-averaging (all counts are summed before
the division).10

Evalb suffers from certain biases (Sampson and Babarczy, 2003; Re-
hbein and van Genabith, 2007a; Emms, 2008; Kübler et al., 2008). There
is no grade of severeness of errors. From a linguist’s point of view,
some errors are worse than others, however, spans are either correct
or wrong. This makes it impossible to honor a partially correct recog-
nized span which, e. g., has just one boundary right, or which has the
boundaries right, but not the label. Last, attachment errors are pun-
ished too severely, since a wrong attachment position can cause many
(otherwise correct spans) to be disrupted. Other metrics do not suffer
from those problems and provide a more balanced evaluation.

• The leaf-ancestor metric (LA) (Sampson and Babarczy, 2003) ex-
tracts for each tree the paths between the root and leafs in both
test and gold data and computes their Levenshtein edit distances
(Levenshtein, 1966).

• In dependency evaluation (Lin, 1995) the constituency structures in
both test and gold data are transformed into dependency struc-
tures according to the lexical heads in the trees. The dependency
structures are then evaluated against each other.

• The tree-distance metric (TDIST) (Emms, 2008) uses a tree edit
distance measure (Zhang and Shasha, 1989) between the trees
from the parser output and gold trees to determine tree similar-
ity. TDIST will be used later, it will be explained in more detail
in section 7.1.

Unlexicalized and Lexicalized Parsing

Charniak (1996) investigates the performance of a PCFG obtained di-
rectly from the PTB and trained using a plain Maximum Likelihood es-
timator, such as described above. With this grammar, he parses unseen
sequences of POS tags (not words). Charniak’s key finding is that with-
out any smoothing or other methods for improving the probability

10 In order to allow for the computation of the score over more than one sentence, in
the case of macro-averaging, a bracketing also includes a sentence number.

4.2 data-driven constituency parsing 107

S

NP VP

NN NNS VBD PP

Factory payrolls fell IN NN

in September

S[fell-VBD]

NP[payrolls-NNS] VP[fell-VBD]

NN[Factory] NNS[payrolls] VBD[fell] PP[in-IN]

Factory payrolls fell IN[in] NN[September]

in September

Figure 25: PCFG lexicalization

model, and without incorporating any lexical information, treebank
grammars perform much better than expected. He furthermore shows
that the extracted grammars place virtually no restriction on the se-
quence of POS tags which can be parsed. This means that in spite of
the flat annotation of the PTB, which produces many rules with a low
frequency, low coverage is the least concern for such a grammar (even
though at the time, this was thought to be a problem). Amongst other
things, though, Charniak suggests that incorporating lexical informa-
tion offers possibilities for improvement. He supports his claim citing
the successful decision-tree-based model of Magerman (1995).

Many high-performance parsers are based on the lexicalization of
PCFGs (Collins, 1999; Charniak, 1997, 2000; Dubey and Keller, 2003;
Klein and Manning, 2003c). The basic idea of lexicalization is to make
use of the lexical heads of phrases to augment the grammar. As an il-
lustration, figure 25 shows a constituency structure without and with
head annotation (example borrowed from Klein and Manning (2003c)).
Productions of a lexicalized grammar can be seen as having the form
A[a] → B[b]C[a], where A,B,C are non-terminals and a,b are lexical
elements or a combination of lexical elements and POS tags (Eisner
and Satta, 1999). The terminal, resp. terminal/POS tag combination
on the left-hand side (LHS) (a) is thereby inherited from a single
right-hand side (RHS) non-terminal. This kind of grammars can en-

108 data-driven parsing using cfg

code, e. g., selectional preferences. Consider the following lexicalized
productions extracted from the annotated example tree.

VP[fell-VBD] → VBD[fell] PP[in-IN]

PP[in-IN] → IN[in] NN[September]

VBD[fell] → fell

IN[in] → in

NN[September] → September

The productions derive the VP fell in September. By virtue of not
adding certain other lexicalized productions to the grammar, one can
avoid generating, e. g., fell in Monday.

With a lexicalized grammar, the use of a Maximum Likelihood Esti-
mator is no longer feasible due to the data sparseness caused by the
highly increased number of symbols. Collins (1999) therefore proposes
to refrain from generating the right-hand sides of rules in a single step,
and to generate them instead step by step, since the corresponding
probabilities are easier to estimate. In his three parsing models, the
lexicalized PCFG rules have the form

P[h]→ Ln[ln] · · ·L1[l1]H[h]R1[r1] · · ·Rm[rm]

where H is the head child and Ln[ln] · · ·L1[l1], resp. R1[r1] · · ·Rm[rm]
are left, resp. right modifiers of H, with n,m ∈N0. The generation of
the RHS of a rule is decomposed into three steps. First, the head con-
stituent label is generated with the probability ph(H | P,h). Then the
modifiers on the left of the head are generated using a Markov process,
with the probability

∏n+1
i=1 pl(Li[li] | P,h,H) where Ln+1[ln+1] =STOP

(The symbol STOP is added to the non-terminal alphabet). Then, the
modifiers right of the lexical head are generated, also using a Markov
process with the probability

∏m+1
i=1 pr(Ri[ri] | P,h,H) which generates

STOP on finishing, i. e., we define Rm+1[rm+1] as STOP. Collins’ mod-
els incorporate many additional features which model linguistic facts
(“everything is conditioned on everything”). For example, the gener-
ation of modifiers is conditioned on their distance to the head, since
the probability of occurrence of a certain modifier can indeed depend
on its distance to the head. For the left modifiers, one would include
such a feature as follows.

pl(Li[li] | H,P,h,L1[l1] . . . Li−1[li−1]) = pl(Li[li] | H,P,h,∆l(i− 1))

4.2 data-driven constituency parsing 109

where ∆ is a function yielding the distance. In order to account for
sparse data, elaborate smoothing, resp. back-off techniques are neces-
sary which ensure that if a certain fine-grained class of training data
is not available, a more coarse-grained class can be recurred to.

Dubey and Keller (2003) are one of the first to present non-English
work on parsing.11 They present a lexicalized model for German. Ne-
Gra, the treebank they are using, has a much flatter annotation than
the PTB (see p. 101); e. g., other than in the PTB, PP-internal NPs are
not annotated. To compensate for the flatness, amongst other things,
they propose a sister-head model as an alternative to Collins’ head-head
model. Instead of conditioning modifiers on the LHS and the head,
they condition them on the LHS and their previous sister. Dubey and
Keller find that while an unlexicalized baseline model outperforms
the lexicalized model using head-head dependencies, the sister-head
dependencies give better performance than the baseline model. This
suggests at least that the benefit of lexicalization does not general-
ize straight-forward from English to German (and possibly other lan-
guages). This concurs with the findings of Kübler et al. (2006, 2008).

Lexicalization comes with a price. Estimating the model parame-
ters of a lexicalized PCFG is highly complex; furthermore, lexicalized
PCFG have a higher parsing complexity than PCFG, namely O(n5),
resp. O(n4) using the “hook trick” (Eisner and Satta, 1999). The higher
parsing complexity requires a reconciliation of the goal of finding a
good parse with the goal of finding it as quickly as possible. Generally,
the idea is to refrain from searching the parse which is globally opti-
mal. Beam search restricts the number of edges tracked at any moment
during parsing to a certain maximum. With a well chosen threshold,
beam search can provide enormous speed-up while doing few harm
to the parsing results. In Best-First Parsing (Caraballo and Charniak,
1998), edges are rated in function of their ability to lead to a com-
plete parse. The value which is computed for a single item is called its
Figure-of-Merit (FOM). During parsing, always the item with the best
FOM is processed first.

Klein and Manning (2003b) revisit the possibilities of unlexicalized
parsing. They show that without relying on lexicalized grammars,
good results can be achieved, and estimating the probability model
is much easier. To improve their unlexicalized grammars, the authors

11 Previously, Collins et al. (1999) had applied the Collins parser to Czech and Bikel
and Chiang (2000) had applied two lexicalized models to Chinese.

110 data-driven parsing using cfg

S

NPˆS VPˆS

NN NNS VBD PPˆVPˆS

Factory payrolls fell IN NN

in September

Figure 26: Grand-parent annotation

VP

@VBDˆVP-PP

@VBDˆVP-NP PP

@VBDˆVP NP

VBD

Figure 27: v = 1,h = 1 markovization of VP→ VBD NP PP

augment unlexicalized PCFG productions in three ways. Firstly, rules
are equipped with parent annotation (Johnson, 1998). This means that
before grammar extraction, every non-terminal in the tree is anno-
tated with its parent label, and possibly also with its grand-parent
label. As an example, figure 26 shows the upper tree from figure 25
with grand-parent annotation.12 Secondly, the rules are horizontally
markovized. Horizontal markovization mimics the head-outward gen-
eration of the RHS of the rule: First, the head is generated, then the
modifiers. In fact, parent annotation and horizontal markovization are
two instances of the same idea, and can be called vertical and horizontal
markovization. They break down the strong independence assumptions
of PCFG by reducing the horizontal and by augmenting the vertical
context of a rule. As an example, figure 27 shows the markovization
(v = 1, h = 1) of a production VP → VBD NP PP (VBD being the lexi-
cal head). Thirdly, Klein and Manning exploit the fact that in treebank
trees, certain symbols have a characteristic distribution, i. e., they oc-
cur only in certain contexts. Klein and Manning find that annotating
grammar symbols (splitting them) w.r.t. their context is beneficial. An
example for such an annotation is that the symbol for auxiliary verbs
is split into two symbols, one for be and one for have.

12 The example follows Johnson (1998) in that the POS tags are not annotated – he
parses POS tags and not natural language tokens.

4.2 data-driven constituency parsing 111

VBD[fell]

NNS[payrolls] fell IN[in]

NN[factory] payrolls in NN[September]

Factory September

Figure 28: Factoring out lexicalization

Klein and Manning (2003c) take advantage of the fact that bilexi-
cal dependencies can be encoded by dependency structures. This is
easy to see in the example above: Every lexicalized (CNF) production
involves exactly two lexical elements. Figure 28 shows the factored
dependency tree for the example in figure 25.

The Stanford Parser, which implements their work, consists of a
combination (Klein and Manning, 2003c) of the unlexicalized parser
described in Klein and Manning (2003b,a), and a dependency parser.

Latent Variable Grammars and Coarse-To-Fine Parsing

Klein and Manning improve unlexicalized parsing by splitting gram-
mar symbols according to the linguistic properties of their data. How-
ever, splits (and merges) can also be done automatically.

The work of Slav Petrov and the Berkeley NLP group (Petrov et al.,
2006; Petrov and Klein, 2007; Petrov, 2010) has established the current
state-of-the art in statistical parsing. Before Petrov, experiments had
been done with a fixed number of category splits (e. g., an NP split
into NP-1 to NP-8) (Matsuzaki et al., 2005; Prescher, 2005). However,
the problem with those methods is that some categories are oversplit
while others are undersplit. Petrov et al. (2006) introduce an improved
system which performs splits (and merges) based on the benefit they
bring for parsing, i. e., it splits only when needed. For this task, it uses
the EM algorithm (Dempster et al., 1977). In the expectation step, the
probability of each rule with split labels and position in each train-
ing set tree is computed (using the corresponding inside and outside
probabilities). In the Maximization step, those probabilities are used
to update the rule probabilities. The grammar is then modified by re-
peatedly splitting and retraining it. Overfitting is avoided by remerg-
ing splits (splits are undone if the loss of likelihood for removing them
falls below a certain threshold) and by smoothing.

112 data-driven parsing using cfg

An alternative approach to splitting, resp. merging symbols has
been introduced by Ule (2003, 2006). Ule’s work, which unfortunately
has largely been overlooked, is based on Bockhorst and Craven (2001).
The crucial difference between his and Petrov’s approach is that he
computes the benefit of splits on the basis of a more local context, i. e.,
instead of relying on inside/outside probabilities, he looks at changes
of likelihood of split labels occurring in a certain context, the con-
text being just the corresponding parent label. Since no experimental
data are available on how this method performs on the PTB, no direct
comparison to Petrov’s work is possible. It is to be suspected that the
method performs worse; in exchange, it should also be computation-
ally less demanding by an order of magnitude.

A related line of work is called coarse-to-fine parsing (Charniak et al.,
2006; Petrov, 2009). The idea of this technique is to split the task of
learning a probability model from a treebank grammar into different
steps. Instead of using a single treebank grammar G, one uses gram-
mars G1 to Gn. Thereby, Gi+1 is a refinement of Gi, in the sense that the
symbols in Gi+1 refine the symbols of Gi, such that there is a surjective
mapping which maps every symbol A ′ in Gi+1 to a unique symbol A
in Gi. In other words, in Gi+1, the symbols of Gi are split into equiv-
alence classes. During parsing, the coarser grammars can be used to
prune the search space of the finer grammars.

Exploiting Higher Symbolic Expressivity

The problem of PCFG is that its independence assumptions are too
strong: The context within a derivation which is covered by one CFG
production, i. e., by a subtree of height 1, is not big enough. As we
have seen, this limitation can be overcome to a certain extent with a
more expressive probabilistic model. Alternatively, one can use for-
malisms which provide more expressivity on the symbolic side, such
as Tree-Adjoining Grammar (TAG) (p. 32). Given their extended do-
main of locality, TAG elementary trees capture a bigger context than
CFG rules and allow for the estimation of simple but meaningful prob-
ability models. The disadvantage of such approaches w.r.t. CFG is that
grammar extraction from treebanks is more difficult, probabilities are
more difficult to estimate and the parsing complexity is higher.

4.2 data-driven constituency parsing 113

data-oriented parsing Data-Oriented Parsing (DOP) (Bod and
Scha, 1996), resp. its first incarnation called DOP-1 (Bod, 1995), is
based on Stochastic Tree Substitution Grammar (TSG). TSG can be seen
as TAG lacking the adjunction operation. It works as follows. Take
a collection of syntactic structures and extract every subtree of every
syntactic structure. Take these trees to be the elementary trees of a
TSG and assign a probability to each tree which is the count of occur-
rences of the tree as a subtree in the collection of syntactic structures
divided by the sum of the counts of trees which have the same root
label. Figure 29 shows an example with a single tree and the STSG
extracted from it, including the probabilities.

For DOP, interesting linguistic arguments have been given (Scha,
1990). Apart from that, excellent parsing results (accuracy far over
90%) have been reported (Bod, 1995). Just as with Probabilistic Tree-
Adjoining Grammar (PTAG) (see below), the good results can be at-
tributed to the fact that the subtrees capture a larger context than
PCFG rules. The disadvantage of DOP is that parsing with DOP-1
is very expensive. Unlike PTAG, which settles for the most probable
derivation (i. e., derivation tree), DOP-1 searches for the most proba-
ble parse (i. e., the most probable derived tree, where the probability of
a derived tree is the sum of the probabilities of all underlying deriva-
tions). This problem is NP-complete (Sima’an, 1996). Various methods
exist which make DOP parsing (more) tractable. Bod (1993) uses a
Monte Carlo algorithm which estimates the derivation probability. Bod
(1995) chooses to randomly sample 5% of the trees of his grammar.
Sima’an (1999) proposes restrictions on the grammar such as limit-
ing the number of substitution nodes or limiting the tree depth in the
STSG. Goodman (2003) presents a summary of optimizations for DOP-
1 from the literature, including his own method of reducing the input
STSG to an equivalent PCFG.

probabilistic tree-adjoining grammar The first probabilis-
tic variant of TAG, which we will call Probabilistic Tree-Adjoining Gram-
mar (PTAG), has been proposed by Schabes (1992) and at the same
conference by Resnik (1992), who provides an equivalent but more di-
rect definition. PTAG works as follows. A probability is assigned to
the selection of an initial tree which can be the valid start of a deriva-
tion; subsequent adjunction and substitution operations are treated as
independent events with their own probabilities. The probability of

114 data-driven parsing using cfg

S

NP VP

Det N V NP

Det N
;

1

NP

Det N

1

2

VP

V NP

1

2

VP

V NP

Det N

1

6

S

NP VP

1

6

S

NP VP

V NP

1

6

S

NP VP

V NP

Det N

1

6

S

NP VP

Det N

1

6

S

NP VP

Det N V NP

1

6

S

NP VP

Det N V NP

Det N

Figure 29: DOP: From a tree to a STSG

4.2 data-driven constituency parsing 115

a derivation is the product of the operations which have lead to it.
Sarkar (1998) investigates the conditions for the consistency of PTAG.

A popular approach for obtaining PTAGs from treebanks is to use
heuristics in order to reconstruct derivations from treebank trees, i. e.,
treebank trees are treated as TAG derived trees and the heuristics are
used to identify the elementary trees the derived tree is composed of.
Xia (2001) presents a flexible system for obtaining grammars automat-
ically, based on this technique. In her system, the linguistic knowledge
used by the extraction heuristics (such as head percolation tables) can
be parametrized. She applies her system to the PTB. TAG extraction
has also been tried on German treebanks. Frank (2001) extracts TAG
from NeGra, Kaeshammer and Demberg (2012) extract a TAG from
TIGER. Yet another technique is presented by Chiang (2003), who uses
his extracted grammars for data-driven parsing (see below). He uses a
variant of TAG which allows for sister adjunction, an operation which
consists of inserting the root of an initial tree as a new daughter of
an interior node. The sister adjunction operation helps to account for
the rather flat annotation of the PTB. Other variations of TAG extrac-
tion methods exists, most of them tailored to the properties of specific
treebanks.

Extracted grammars have been used for data-driven parsing; see,
e. g., Joshi and Sarkar (2003), Chiang (2003) (both articles are revised
versions of previous work of the resp. authors) and Shen and Joshi
(2005). In comparison with PCFG, good output quality can be achieved
at a reasonable speed.

probabilistic combinatory categorial grammar The for-
malism of Combinatory Categorial Grammar (CCG) (Steedman, 2000) has
more expressivity than CFG. The additional expressivity is provided
by complex syntactic categories which are assigned to every lexical
item in the lexicon. Much like elementary trees of a TAG, they encode
the lexical item’s contribution to a complete derivation, in other words,
word order and subcategorization information. The syntactic category
of the verb likes, for example, is notated (S/NP)\NP. Constituents can
be combined using combination rules. The two simplest ones are back-
ward composition (e. g., a constituent with the category (S/NP)\NP can
be backward composed with a adjacent NP constituent on its left into
a constituent with category (S/NP)) and forward composition (e. g., a
constituent with category S/NP can be forward composed with a NP

116 data-driven parsing using cfg

The car that Paul drives

NP N (NP\NP)/(S/NP) NP (S\NP)/NP
> >T

NP S/(S\NP)
>B

S/NP
>

NP\NP
<

NP

Figure 30: Combinatory Categorial Grammar example

constituent on its right into constituent with category S). Other oper-
ations are type raising and functional composition (the latter allows to
combine two categories of the form X/Y and Y/Z into a category of
the form X/Z). Figure 30 shows an example of a CCG derivation of
an NP with a relative clause in the canonical notation. Forward and
backward composition are marked with > and <, respectively; type
raising is marked with T, functional composition with B.

Hockenmaier and Steedman (2002a) describe how to transform the
trees of the PTB into CCG normal form13 derivations. Hockenmaier
and Steedman (2002b) and Clark et al. (2002) present parsers, the for-
mer based on generative modeling and the latter on conditional mod-
eling. Hockenmaier and Steedman (2002b) almost achieve Collins’ per-
formance on the PTB, despite their less fine-tuned approach.

4.2.3 Beyond Context-Free Derivations

We do not only want to build CFG parse trees. In this thesis, we are
particularly interested in ways of reconstructing the annotation infor-
mation beyond context-freeness. There are different approaches to this
task in the literature.

PCFG plus Post- or Preprocessing

One possibility is to pre-, resp. post-process the input, resp. output of
a PCFG parser. A post-processing approach is presented by Johnson
(2002). He uses a pattern-matching algorithm which recovers empty
nodes and their antecedents of the PTB. The algorithm can in fact

13 For a discussion of the CCG normal form, see Eisner (1996a).

4.2 data-driven constituency parsing 117

NP

NP S

DT NN WHNP-1 S

the man -NONE- NP VP

0 NNP VBZ t NP

Sam likes -NONE-

∗T∗-1
Treebank tree with traces

NP

NP SBAR

DT NN S

the man NP VP

NNP VBZ t

Sam likes

Typical parser output

SBAR

WHNP-1 S

-NONE- NP VP

0 VBZ t NP

-NONE-

∗T∗-1

Pattern extracted from treebank tree

Figure 31: Empty node recovery by pattern substitution

be seen as an instance of Memory-Based Learning (MBL). As pat-
terns, Johnson uses minimal connected tree fragments which contain
an empty node and all nodes which are co-indexed with it. The mo-
tivation for this is that the path between an empty node and its an-
tecedent gives cues on where empty nodes may occur and where not.
Intuitively speaking, a pattern matches a certain tree if this tree is an
extension of the pattern, ignoring the empty nodes. Empty nodes are
then inserted into some parser output tree t by substituting the sub-
tree of t matching p by p (using a pre-order traversal). As an example,
consider figure 31, taken from Johnson (2002). It displays a treebank
tree, a pattern for the empty nodes which would be extracted from
that tree and a tree from the parser output which, by pattern substi-
tution, could be transformed into the original treebank tree. Johnson
evaluates the positions of the empty nodes with the Evalb measure
and the quality of the coindexation by a version of the Evalb measure
in which the label representation is augmented. Jijkoun (2003) and
Campbell (2004) present improved versions of Johnson’s strategy.

118 data-driven parsing using cfg

Dienes and Dubey (2003a,b) use a pre-processing approach. They
insert empty elements between words of the unparsed sentence using
a Maximum Entropy model and give the parser the modified input.
Their approach outperforms Johnson’s technique.

Levy and Manning (2004) also recur to machine learning techniques
to reconstruct empty nodes and their antecedents. Their algorithm can
be described as a mixture of Johnson’s and Dienes and Dubey’s ap-
proaches. They use post-processing, like Johnson. However, they do
not treat empty node insertion and antecedent identification in one
step. In some cases, they identify empty categories first (like Dienes
and Dubey), in other cases they proceed in the inverse direction. The
enhancement of the CFG parse trees is done in multiple steps. In each
phase, loglinear classifiers are used to identify a certain subset of tree
nodes, which are then modified using appropriate operations (see sec-
tion 3 of the article). An evaluation shows that their technique com-
pares favorably to the two previous approaches. A novelty about Levy
and Manning’s work is that they apply their method not only to the
PTB, but also to NeGra.

Discontinuous Phrase-Structure Grammar

Alternatively to augmented PCFG parsing, one can use a formalism
which accommodates the direct encoding of information beyond CFG
in its derived trees. Discontinuous Phrase Structure Grammar (DPSG)
(Bunt et al., 1987; Bunt, 1991, 1996) is such a formalism. It has the aim
of extending CFG in order to allow for trees with crossing branches
(see p. 49). Plaehn (1999, 2004) proposes the use of DPSG for data-
driven parsing. His work is particularly relevant for this thesis since
he uses DPSG to model the German discontinuous constituents of
NeGra. Furthermore, to my knowledge, his work contains the only
evaluation results for parsing NeGra without removing the crossing
branches.

Analogous to a PCFG, a Probabilistic Discontinuous Phrase Structure
Grammar (PDPSG), as presented by Plaehn (2004), consists of a DPSG
and a function which maps all rules to a probability such that the
probabilities of all rules with the same left-hand sides sum up to 1.
Plaehn presents a directional bottom-up chart parsing algorithm with
which discotrees can be built. Note that the directionality, which is
achieved through the use of dotted productions, implies a fixed bi-

4.2 data-driven constituency parsing 119

narization strategy. Given a grammar which contains no productions
with context daughters, the parser behaves as a PCFG parser. The al-
gorithm uses items, an agenda and a chart (cf. p. 56). A constituent
is represented by a label and two bit vectors of the length of the in-
put string, one representing the terminals the constituent dominates,
the other representing the terminals its context daughters dominate
(the ith terminal is dominated iff the ith bit of the resp. vector is set).
When building new edges, this representation allows to easily check
the compatibility of two constituents by using bitwise operations on
the bit vectors.

Plaehn furthermore presents a Viterbi-like extension for his parsing
algorithm which finds the most probable parse. His algorithm is ex-
haustive, i. e., in order to search for the most probable derivation, all
possible sub-derivations are built. The need for updates of larger con-
stituents is avoided by making the parser proceed strictly bottom-up,
i. e., a constituent is only built when the space of all possible sub-
derivations has been searched (Plaehn, 2004, p. 100).

Plaehn reports results for experiments on “an early version of the
second release of the corpus”, containing 20,571 sentences (the final
second release contains 20,602 sentences), on both an extracted DPSG
and an extracted PCFG, obtained from a “continuified” version of Ne-
Gra (see above). A method is described for extracting a DPSG from
NeGra (Plaehn, 2004, p. 101), the difficulty being the identification of
the context daughters. In a nutshell, context daughters convey infor-
mation about all those gaps in the yield of a constituent which lie
between the yields of direct children of the constituent (the absence of
a gap signifies that there are no context daughters). The set of con-
text daughters for such a gap is the set of the gap’s maximal nodes
(def. 5.7, p. 135). As an example, figure 32 shows again the NeGra an-
notation of (3), and the DPSG productions extracted from it. To obtain
probabilities, a Maximum Likelihood Estimator is used. Parsing is lim-
ited to sentences with a length of 15 words and less. As an evaluation,
Plaehn reports among other things labeled and unlabeled precision,
recall and F-measure. While for the DPSG, the average parsing time
per sentence is almost 50 times14 higher than for the PCFG, the results

14 Plaehn mentions the parsing complexity to be exponential, citing Reape (1991).
DPSG therefore does not seem to be an MCS formalism, other than its restricted
variant DPSGr (see p. 50).

120 data-driven parsing using cfg

Darüber

PROAV

muß

VMFIN

nachgedacht

VVPP

werden

VAINF

MO HD

VP

OC HD

VP

OCHD

S

S → V VP

VP → VP VP → PROAV [V] VVPP

PROAV → Darüber VVPP → nachgedacht

VVFIN → muss VVINF → werden

Figure 32: DPSG extraction

lie in the same range (73.16 labeled F score for DPSG, 74.57 labeled F
score for PCFG).

Multiple Context-Free Grammar

Levy (2005) uses another formalism for data-driven parsing, namely
Probabilistic Multiple Context-Free Grammar (PMCFG).15 The same
formalism is used in a slightly restricted variant by Kato et al. (2006)
for RNA pseudoknot modeling (see section 3.3). Grove (2010) uses
PMCFG as a backend to parse Minimalist Grammar. In the follow-
ing chapters, we will use Probabilistic Simple Range Concatenation
Grammar (PSRCG) for probabilistic parsing. Therefore, we postpone
a detailed analysis of these works to section 6.4 in order to compare
them to the contributions of this thesis.

15 In fact, on his grammars, which he calls Probabilistic Wrapping Grammars, he imposes
the bottom-up non-erasing condition, as well as a condition he calls strict concate-
nation, which amounts to either only having variables in a function, or a single
terminal. The grammars we will extract from treebanks (see p. 137) have the same
form.

4.2 data-driven constituency parsing 121

4.2.4 Related Work

Other Formalisms

Lexical Functional Grammar (LFG) (Bresnan, 1982) and also Head-Driven
Phrase Structure Grammar (HPSG)16 (Pollard and Sag, 1994; Sag and
Wasow, 1999) are two formalisms the cores of which are based on fea-
ture structures (cf. p. 33). Both are much more expressive than the pre-
viously mentioned formalisms. They have been used for data-driven
parsing.

In LFG, the syntactic information for a sentence is encoded in two
levels. The c-structure takes the form of context-free derivation trees
and represents the constituency structure. The f-structure is a feature
structure (cf. p. 33) which encodes amongst other things predicate-
argument relations and agreement information. Riezler et al. (2002)
and Kaplan et al. (2004) present systems which use a hand-written
grammar (Butt et al., 1999) for parsing the WSJ, together with a dis-
criminative component for parse selection. Other researchers obtain
LFGs directly from the treebank. The difficult part about this is the
induction of f-structures. A method for f-structure induction is de-
scribed, e. g., in Burke et al. (2004) and Cahill (2004). The latter uses
the extracted grammars for parsing, out-performing previous systems
based on hand-written grammars. LFG-style information can also be
used to improve the performance of data-driven parsing for other lan-
guages such as Arabic (Tounsi et al., 2009) and French (Schluter and
van Genabith, 2008).

HPSG completely relies on feature structures and on axioms (prin-
ciples) prescribing their shape. The field of linguistics has seen many
hand-implemented grammars. However, HPSG fragments have also
be obtained automatically and used for data-driven parsing. See, e. g.,
Miyao (2006) and Miyao and Tsujii (2008).

Psycholinguistically Motivated Work

A completely different strain of work which is not of direct relevance
to this thesis, but nevertheless very interesting, be mentioned for the
sake of completeness. This work has its motivation in the field of psy-
cholinguistics and is concerned with creating parsers which mimic as

16 Consult Levine and Meurers (2006) for an introductory overview.

122 data-driven parsing using cfg

well as possible the sentence processing of the human mind. A key
property of such parsers is that they process input sentences strictly
from left to right and maintain at any moment a fully connected parse
tree. Formally, most systems are restricted to the expressivity of CFG.
One example for such a system is Roark (2001). Recent ideas on how
to integrate expressivity beyond context-freeness have been presented
by Schuler et al. (2010).

Reranking

Certain constraints in a probabilistic parsing model are most easily ex-
pressed as features which discriminate complete derivations. Rerank-
ing17 takes advantage of this. Typically, a reranker takes as input a list
of parses of a sentence ordered by their respective output probabili-
ties and outputs the best parse among them according to derivation-
global features. The input list can be obtained from a k-best parser
(Huang and Chiang, 2005; Pauls and Klein, 2009). Training is done
using machine learning techniques. The reader is referred to the liter-
ature for information about successful systems (Collins, 2000; Collins
and Duffy, 2002; Kudo and Matsumoto, 2004; Collins and Koo, 2005).

4.3 data-driven dependency parsing

This section contains a short overview of the encoding of dependency
annotation and of dependency parsers.

4.3.1 Dependency Treebank Annotation

Dependency treebank annotation generally contains more information
than the bare dependency structures. The Czech Prague Dependency
Treebank (PDT) (Hajič et al., 2000), e. g., has three annotation layers.
The first layer contains morphological information, the second layer
contains the dependency structure itself, and the third layer (tectogram-
matical layer) contains further non-local relations.

Here, we are only concerned with the part of the dependency an-
notation which denotes a dependency structure (def. 2.12, p. 22). The

17 In machine learning terms, reranking is a discriminative model (as opposed to a gen-
erative model).

4.3 data-driven dependency parsing 123

1 Třikrát _ Cv Cv _ 2 Adv _ _

2 rychlejší _ AAFS AAFS _ 0 ROOT _ _

3 než _ J J _ 2 AuxC _ _

4 slovo _ NNNS NNNS _ 3 ExD _ _

Figure 33: CoNLL format example

graph can be represented conveniently using the CoNLL interchange
format. Just as the export format, the CoNLL format is line-based. A
dependency structure over a sentence of length n is represented by n
lines of text, where the ith line contains information about the node
associated with the ith word in the sentence. There is neither a sepa-
rate line for the root node, nor a sentence numbering. As an example,
figure 33 shows the annotation of (12), a sentence from the PDT.

(12) Třikrát
Three times

rychlejší
faster

než
than

slovo
word

“Three times faster than words”

Only some of the information provided by the CoNLL format is nec-
essary to reconstruct a dependency structure, namely the first field,
containing the index of a token in the sentence, the second field, con-
taining the token itself, the fourth and fifth field18 which are used for
POS tags, the sixth field, containing the number of the head of the
word, and the seventh field, containing the label of the edge to the
head.

See chapter 8 for more information on dependency treebank prepro-
cessing.

4.3.2 Data-Driven Dependency Parsers

Transition-based and grammar-based parsers greedily search for lo-
cally optimal transitions (edges). Graph-based parsers are globally op-
timized. They search the space of complete dependency structures
without considering the properties of single transitions. Hybrid sys-

18 One of them would of course be enough. We use both in order to maintain compat-
ibility with popular tools using the CoNLL format, such as the evaluation module
of the MSTParser (see p. 124).

124 data-driven parsing using cfg

tems aim at combining the advantages of transition-based and graph-
based systems.

Note that dependency parsing is not the core subject of this thesis.
I will therefore only mention a fraction of the available literature on
dependency parsing; however, the presented material should give a
general idea of the field.

Transition-Based Parsing

The MALT parser (Nivre et al., 2007) is a system for inductive parsing.
It offers various methods for inducing a classifier from a dependency
treebank and for using this classifier to produce dependency trees
on unannotated sentences. MALT includes algorithms for building
projective trees (see, e. g., Nivre (2003)) and non-projective trees (see
for instance Covington (2001), Nivre and Nilsson (2005), or Gómez-
Rodríguez and Nivre (2010)). Dependencies are generally built from
left to right. Thereby, the classifier is used to determine the most likely
incoming, resp. outgoing arcs from each word.

Graph-Based Parsing

Another way of formulating the problem of non-projective depen-
dency parsing can be found in McDonald et al. (2005). They view
dependency structures as weighted directed graphs, i. e., as directed
graphs in which each edge has a weight. The score of such a graph is
the sum of all of its edges’ scores. Considering all possible edges (with
given weights) of a graph G, its Maximum Spanning Tree (MST) is the
tree with the highest score that contains all nodes of G. Finding the
most probable dependency parser amounts to searching the space of
all possible spanning trees. This can be accomplished efficiently with
the Chu-Liu-Edmonds algorithm (Chu and Liu, 1965; Edmonds, 1967).
Given an adequate implementation, the algorithm can run in as few
as O(n2). For a graphical example, consult McDonald et al. (2005).

The advantages of this greedy algorithm are its efficiency, the accu-
racy of its output, and the fact that it can treat non-projective depen-
dencies. Its disadvantage is that only edge factorization is tractable, i. e.,
one must make the unrealistic assumption that all edges are indepen-
dent of one another (McDonald and Satta, 2007). However, elegant ap-
proximations of more powerful models exist (McDonald and Pereira,
2006).

4.4 simple rcg for data-driven parsing 125

Another instance of graph-based systems are constraint-based sys-
tems. They generally rely on a (hand-written) set of rules, resp. con-
straints, which model dependency graphs. An example is Weighted
Constraint Dependency Grammar (WCDG) (Foth et al., 2004). Systems
such as WCDG are generally not restricted to projective dependen-
cies.

Hybrid Systems

Other systems try to combine the advantages of both locally opti-
mized and globally optimized systems. Among the very different ap-
proaches, there is a recent promising one which has been presented by
Goldberg and Elhadad (2010) under the name of easy-first parsing. In
a nutshell, Goldberg and Elhadad use a greedy strategy comparable
to the strategy of the MALT parser, with the difference that strict left-
to-right processing is given up and “easy” decisions are taken first.
Easier decisions are decisions with which the parser is more confi-
dent; confidence is measured on the basis of scores of feature vectors
extracted from the training data. Goldberg and Elhadad (2010) achieve
a performance between the MALT parser and the MST parser.

Grammar-Based Parsing

So far, to my knowledge, grammar-based parsing of dependencies
has only been explored for projective dependencies. The first parsing
models were presented by Eisner (1996b). He exploits the closeness of
projective dependencies to CFG and essentially uses bottom-up chart
parsing. More recently, Bangalore et al. (2009) have presented a prob-
abilistic dependency parser based on Tree Insertion Grammar (TIG), a
restricted variant of TAG (Schabes and Waters, 1995).

The advantage of grammar-based parsing is that bottom-up chart
parsing is available, together with all related techniques. This allows
for detailed probabilistic models. The disadvantage is that (until now),
parsing is restricted to projective structures.

4.4 simple rcg for data-driven parsing

In the following chapters, techniques for data-driven parsing of dis-
continuous constituency structures and non-projective dependencies

126 data-driven parsing using cfg

using Probabilistic Simple Range Concatenation Grammar will be pre-
sented, as well as an investigation of the properties of discontinuous
treebank annotation. What is the motivation for this work?

4.4.1 Constituency Parsing

The data source for the development of most data-driven parsers has
been, and continues to be, the Penn Treebank. However, since the first
studies on languages other than English, it is clear that models which
work well for English do not necessarily generalize to other languages.
Even models which work well on the PTB do not automatically gen-
eralize to other English treebanks (Gildea, 2001). People have tried to
measure parsing difficulty, resp. to find the factors which influence it,
and they have tried to identify the features which help most for pars-
ing a certain language (Dubey and Keller, 2003; Levy and Manning,
2003; Corazza et al., 2004, 2008; Kübler, 2005; Maier, 2006; Kübler et al.,
2006, 2008; Rehbein and van Genabith, 2007c,b; Tsarfaty and Sima’an,
2007). Recent workshops show a rising interest in this kind of research
(Kübler and Penn, 2008; Seddah et al., 2010). This thesis contributes to
this area by taking up a German constituency treebank with discontin-
uous annotation and by investigating the properties of its annotation.

Discontinuous constituents occur especially frequently in languages
with a free word order, such as German (cf. chapter 5). A particu-
larly interesting research question for such languages is therefore how
discontinuous constituents can be reconstructed. The previous section
summarizes the literature on this topic. One of the techniques, namely
the direct parsing of discontinuous constituents using an MCS for-
malism, has not found much attention so far, despite Levy’s (2005)
promising work (cf. p. 120). We follow up on his approach. For sev-
eral reasons, we also choose SRCG19 as a formalism.

• SRCG is a candidate for modeling discontinuous constituents.
Grammar extraction is almost immediate due to the proximity of
SRCG to CFG (cf. p. 4), and discontinuous structures and their
properties are reflected in an immediate way in the grammar.
This will be made clear in detail in chapter 5.

19 Recall that SRCG is equivalent to Multiple Context-Free Grammar (MCFG) and
Linear Context-Free Rewriting System (LCFRS).

4.4 simple rcg for data-driven parsing 127

• SRCG is fairly efficiently processable. It has a polynomial pars-
ing complexity which depends directly on the degree of discon-
tinuity which is involved. CFG is simply a special case of SRCG
which produces only derivations without discontinuities.

• Probabilistic variants of SRCG have been proposed before (Levy,
2005; Kato et al., 2006; Søgaard, 2011). The proximity of SRCG
to CFG allows a direct transfer of techniques which are known
from PCFG parsing. Furthermore, we can exploit recent results
which are important for parsing SRCG, particularly on binariza-
tion techniques (Gómez-Rodríguez et al., 2009a).

Discontinuous Phrase Structure Grammar has also been used for
the modeling of discontinuous constituents (Plaehn, 2004) (see p. 118).
However, SRCG has advantages over DPSG. In DPSG, discontinuous
structures are reflected less directly in the grammar, due to the fact
that in the productions, one must specify the material in the gaps of
a node yield. This also makes grammar extraction more difficult, as
explained before. The other, more essential disadvantage of DPSG is
that it is not an MCS formalism: Its parsing complexity is exponential.

Other than Levy (2005), we will perform a detailed evaluation of our
parser output. Outside estimates for accelerating parsing speed will be
introduced, and the effect of different binarization techniques will be
investigated. A further detailed comparison of Levy’s work, Plaehn’s
work and this work is postponed to section 6.4, as mentioned before.

4.4.2 Dependency Parsing

Given the fact that there is a highly optimized data-driven dependency
parser which runs in O(n2) and gives state-of-the-art performance, one
might question the benefit of using a highly expressive grammar for-
malism with a much higher complexity for dependency parsing. The
motivation for tackling dependency parsing in this thesis is two-fold.

Firstly, one can immediately interpret non-projective dependency
structures as LCFRS derivations (Kuhlmann and Satta, 2009). Given
Kuhlmann and Satta’s grammar extraction algorithm, and our parser,
dependency parsing comes for free. However, the effect of different pa-
rameters is not necessarily parallel to the corresponding constituency
grammars and therefore worth to be investigated.

128 data-driven parsing using cfg

Secondly, grammar-based dependency parsing brings a formal ad-
vantage. Previous grammar-based approaches (which essentially cor-
respond to bottom-up chart parsing for constituency structures) pro-
duce good probabilistic models, however, they only provide projec-
tivity. Previous algorithms for non-projective dependency parsing are
greedy, considering the full set of possible dependency structures for
a sentence. They work efficiently, but are also problematic due to
their unreasonably strong independence assumptions: They require
that all edge decisions be treated as independent. If one wants to go
beyond these edge-factored models, parsing becomes intractable (Mc-
Donald and Satta, 2007). Using chart parsing for dependencies as pro-
posed by Kuhlmann and Satta (2009) allows for a more flexible prob-
abilistic model which can easily be augmented by techniques such as
markovization or arity restrictions (McDonald and Satta, 2007).

To our knowledge, this thesis contains the first results on grammar-
based non-projective dependency parsing.

5
D I S C O N T I N U I T Y A N D N O N - P R O J E C T I V I T Y I N
T R E E B A N K S

This chapter is dedicated to a review of the treatment of discontinuity
and non-projectivity in treebanks. In section 5.1, I give an overview
of the treatment of discontinuous structures, especially constituents,
from a linguistic point of view. In section 5.2, I review the treatment
of discontinuous constituents in such treebanks, introducing measures
for the degree of discontinuity of treebank trees. The starting point for
this work are measures established in dependency grammar literature.
I will furthermore investigate the presence of synchronous rewriting
in treebank trees in section 5.3. Section 5.4 presents related work, and
section 5.5 concludes this chapter.

Material in this chapter has been previously published in Maier and
Søgaard (2008), Maier and Lichte (2011), and Kallmeyer et al. (2009).

5.1 introduction

Discontinuous phrases are common in natural language. They occur
particularly frequently in languages with a relatively free word order,
such as German. Consider again (11) (repeated here as (13)), taken
from NeGra. In this sentence, the discontinuity is due to fronting.

(13) Selbst
Self

besucht
visited

hat
has

er
he

ihn
him

nie
never

“He has never visited him personally.”

Comparable examples can also be found in languages with a more
fixed word order, like Chinese. Consider (14) as an example for topi-
calization in that language.

(14) shu1
book1

wo
I

zhi
only

mai
buy

pianyi-de
cheap

t1.
t1.

“As for books, I only buy cheap ones.”

129

130 discontinuity and non-projectivity in treebanks

Selbst

ADV

besucht

VVPP

hat

VAFIN

er

PPER

ihn

PPER

nie

ADV

MO HD OA MO

VP

OCHD SB

S

r Selbst besucht hat er ihn nie

root

adv

obja

aux
subj

adv

Figure 34: Discontinuity and non-projectivity in NeGra

The same sentence is also acceptable in Bulgarian, a language with a
relatively free word order, as shown in (15).

(15) Knigi1
books1

kupuvam
buy-I

samo
only

evtini
cheap

t1
t1

“As for books, I only buy cheap ones.”

As explained in chapter 4, constituency treebank annotation schemes
generally use an annotation backbone based on Context-Free Grammar
(CFG), and extend this backbone with an additional mechanism that
accounts for non-local dependencies. In the Penn Treebank (PTB), this
mechanism consists of trace nodes and labeling conventions, more
precisely, co-indexation. In the Tübingen Treebank of Written German
(TüBa-D/Z), the mechanism is a combination of labeling conventions
and topological field annotation (cf. p. 100). In the TIGER and Ne-
Gra treebanks (cf. p. 101), non-local dependencies are represented di-
rectly, i. e., all parts of a discontinuous constituent are captured under
one node. This requires the annotation backbone based on CFG to be
given up, since crossing branches must be allowed. Dependency tree-
banks, on the other hand, generally contain non-projective structures
(see p. 7). As an example, figure 34 shows the NeGra discontinuous
constituency and non-projective dependency annotations of (13).

In the last years, the formal characterization of non-projectivity has
received a lot of attention. Among other measures, gap degree and well-

5.2 quantifying discontinuity and non-projectivity 131

nestedness have been introduced. Both of them were shown to empiri-
cally describe non-projective dependency data well (Kuhlmann, 2007).
In contrast, a characterization of the degree of discontinuity of con-
stituency trees with crossing branches has not been attempted yet.
The aim of section 5.2 is to give a definition of gap degree and well-
nestedness for constituency structures with the same descriptive and
practical relevance as their Dependency Grammar (DG) counterparts.
An empirical investigation on treebanks will show the expressivity
of the measures. In the last chapter, we have motivated the use of
Simple Range Concatenation Grammar (SRCG) for data-driven pars-
ing of treebanks with direct annotation of discontinuous constituents.
The degree of discontinuity of the treebank trees can have direct in-
fluence on the shape of the extracted grammars and therewith also
on parsing complexity. Therefore, we introduce a grammar extraction
algorithm for SRCG from both discontinuous constituency structures
and non-projective dependency structures and investigate the relation
between extracted grammars and the new measures. In SRCG deriva-
tions, unrelated parts of a derivation can evolve in a synchronous way.
Since synchronous rewriting can also have an influence on parsing
complexity, in section 5.3, we investigate to which degree treebank
trees show synchronous rewriting and how synchronous rewriting af-
fects extracted grammars. Section 5.4 contains related work and sec-
tion 5.5 concludes the chapter.

5.2 quantifying discontinuity and non-projectivity

5.2.1 Measures for Trees and Graphs

We formulate the measures gap degree (Kuhlmann, 2007) and well-
nestedness (Bodirsky et al., 2005) which are known from DG such that
they can be applied to both dependency structures and constituency
structures.

Gap Degree

Both gap degree and well-nestedness can be defined on the yields of
syntactic structures. Intuitively, a gap is a discontinuity in the yield of
a node and the gap degree is a measure for the amount of discontinu-

132 discontinuity and non-projectivity in treebanks

r v1 v2 v3 v4 v5

0 1 2 3 4 5

Ddep−g

v0

v1 v2

v11 v21 v12

1 2 3

Dcon−g

Figure 35: Gap degree

ity in syntactic structures. Recall the definition of the yield of a node
(def. 2.14, p. 23).
Definition 5.1 (Gap). Let Dsyn = (V ,E, r) be a syntactic structure.
For all v ∈ V , a gap in π(v) is a pair (in, im) with in, im ∈ π(v) and
in + 1 < im such that there is no ik ∈ π(v) with in < ik < im. The size
of (in, im) is im − in.
Definition 5.2 (Gap degree). Let Dsyn = (V ,E, r) be a syntactic struc-
ture.

1. For all v ∈ V , the gap degree of a v the number of gaps in π(v).

2. The gap degree of Dsyn is the maximal gap degree of any of its
nodes.

A dependency structure with gap degree > 0 is non-projective; a
constituency structure with gap degree > 0 is discontinuous. In other
words, the gap degree corresponds to the maximal number of times
the yield of a node is interrupted. n gaps of a node entail n+ 1 yield
blocks. This is reflected in the measure of block degree (Kuhlmann, 2007,
pp. 35). Given the block degree function dim from def. 2.17, p. 24, the
following is obvious.
Lemma 5.3. Let Dsyn = (V ,E, r) be a syntactic structure. The gap de-
gree of any v ∈ V is dim(v) + 1.

Figure 35 shows an example. Both syntactic structures in Ddep−g
and Dcon−g have gap degree 1. In Ddep−g both yields π(v4) and π(v5)
have the maximal gap degree 1 due to the fact that they do not contain
3. In Dcon−g, v1 has gap degree 1 because 2 is not included in its yield.
Ddep and Dcon in figure 36 both have gap degree 0.

5.2 quantifying discontinuity and non-projectivity 133

Well-Nestedness

We now define well-nestedness (as opposed to ill-nestedness) as another
property of syntactic structures. Intuitively, in a well-nested structure,
it holds for all nodes which do not stand in a dominance relation that
their yields do not interleave.
Definition 5.4 (Well-nestedness). Let Dsyn = (V ,E, r) be a syntactic
structure.

1. A pair of nodes v1, v2 ∈ V with π(v1)∩ π(v2) = ∅ is well-nested iff
there are no i1, i2 ∈ π(v1) and j1, j2 ∈ π(v2) such that i1 < j1 <

i2 < j2.

2. Dsyn is well-nested iff all pairs of nodes in V with disjoint yields
are well-nested.

The following is easy to see.
Corollary 5.5. If a syntactic structure is ill-nested, then its gap degree
is > 1.

Figure 36 shows well-nested and ill-nested constituency structures
and dependency structures. Dcon and Ddep are well-nested, while
Dcon−n and Ddep−n are not. Note that, while Dcon and Ddep have gap
degree 0 in addition to being well-nested, both Dcon−g and Ddep−g in
figure 35 are well-nested but have a gap degree greater than 1.

The definitions of gap degree and well-nestedness for constituency
structures are novel. Nevertheless, with respect to dependency struc-
tures our definitions correspond to the definitions of gap degree and
well-nestedness from the literature (Holan et al., 1998; Bodirsky et al.,
2005; Kuhlmann and Nivre, 2006).

The definition of well-nestedness (resp. ill-nestedness) does not pro-
vide a notion of a degree. For this purpose, to our knowledge, three
measures have been introduced so far in the DG literature. Havelka
(2007) introduces level types, Gómez-Rodríguez et al. (2009b) intro-
duce strongly ill-nested structures, and Gómez-Rodríguez et al. (2011)
introduce mildly ill-nested structures. All three measures characterize
the data considered in the respective articles well. Still, there is a
good reason for introducing yet another measure. The first measure is
path-based rather than yield-based, i. e., it is not directly adaptable to
constituency structures. The second measure only discriminates very
complex dependency structures which are unlikely to occur in natural

134 discontinuity and non-projectivity in treebanks

0 1 2 3 4 5

Ddep
0 1 2 3 4 5

Ddep−n

v0

v1 v2

v11 v21 v12 v22

1 2 3 4

Dcon

v0

v1 v2

v11 v21 v12 v22

1 2 3 4

Dcon−n

Figure 36: Well- and ill-nestedness

language, and the third measure falls short in providing a linguistic
intuition due to its procedural definition.

Our measure is called k-ill-nestedness. We intend it to intuitively cap-
ture the degree of interleaving of yields in constituency structures and
dependency structures. k stands for the number of disjoint yields that
interleave with some other single yield which is disjoint from them.
Definition 5.6 (k-ill-nestedness). Let Dsyn = (V ,E, r) be a syntactic
structure.

1. A node v ∈ V is k-ill-nested iff there are exactly k nodes v1, . . . , vk
∈ V \ {v} such that

a) the yields of all {v, v1, . . . , vk} are pairwise disjoint, and

b) v and vi, 1 6 i 6 k, are ill-nested.

2. Dsyn is k-ill-nested iff k is the maximal degree of ill-nestedness of
any of its nodes.

Note that 0-ill-nestedness is equivalent to well-nestedness. The de-
pendency structure Ddep−n and the constituency structure Dcon−n in
figure 36 are 1-ill-nested. An example for 2-ill-nested syntactic struc-
tures is Dcon−lr in figure 37, p. 136.

5.2 quantifying discontinuity and non-projectivity 135

Further Properties of Constituency Structures

We now give a further formal characterization of constituency struc-
tures. We first define the maximal nodes of a gap. Informally speaking,
the entire yield of a maximal node lies in the gap, but the yield of its
parent node does not.
Definition 5.7 (Maximal node). Let Dcon = (V ,E, r) be a constituency
structure, v ∈ V and (i1, i2) a gap in π(v). Any vmax ∈ V is a maximal
node of (i1, i2) iff

1. for all j ∈ π(vmax), it holds that i1 < j < i2,

2. there is a node u ∈ V with 〈u, vmax〉 ∈ E, and there is a k ∈ π(u)
with k 6 i1 or k > i2.

The node u is called a gap filler. A gap (i1, i2) can have more than
one maximal node, and the combined yield of all maximal nodes is
the set {i | i1 < i < i2}. As an example, consider Dcon−n in figure 36.
The only maximal node of the gap (1, 3) of v1 is v21.

Intuitively, in a well-nested constituency structure Dcon = (V ,E, r),
all gaps are filled from “above”. That means that all gap fillers (i. e.,
the parent nodes of all maximal nodes) of all gaps (i1, i2) in the yield
of a v ∈ V immediately dominate v itself. As an example, compare the
well-nested structure Dcon−g (figure 35) with the ill-nested structure
Dcon−n (figure 36): In the first, v0 is the maximal node of the gap of v1
and v0 directly dominates v1, while in Dcon−n, v2 is the maximal node
of the gap of v1 and v2 does not stand in a dominance relation with v1.
We formalize this intuition in lemma 5.8.
Lemma 5.8. Let Dcon = (V ,E, r) be a well-nested constituency struc-
ture, v ∈ V a node with gap degree > 1, (i1, i2) a gap in π(v) and vmax
a maximal node of (i1, i2). There is no node v ′ with 〈v ′, vmax〉 ∈ E and
〈v ′, v〉 6∈ E+.

Proof. By contradiction. Assume there is a node v ′ with 〈v ′, vmax〉 ∈ E
and 〈v ′, v〉 6∈ E+. According to the definition of maximal nodes, there
must be a ki ∈ π(v ′) with ki < i1 or ki > i2 and a kj with i1 < kj < i2.
That means that it is either the case that ki < i1 < kj < i2 or i1 < kj <
i2 < ki, both of which contradict the definition of well-nestedness.

Ill-nested constituency structures are thus constituency structures
in which some gap is filled from a direction other than “above”, in

136 discontinuity and non-projectivity in treebanks

v0

v1 v2

v11 v21 v12 v22

1 2 3 4

Dcon−r :
(1, 3): right

v0

v1 v2

v11 v21 v12 v22

1 2 3 4

Dcon−l :
(2, 4): left

v0

v1 v2 v3

v11 v21 v12 v31 v22 v32

1 2 3 4 5 6

Dcon−lr :
(2, 5): left and right

Figure 37: Gap filler positions

other words, in which the gap filler does not dominate the node with
the gap. Gaps in such structures can intuitively be filled from the left,
from the right, or from both sides. Note that if a gap is filled from the
left or the right and additionally from above, we are still dealing with
an ill-nested structure (cf. lemma 5.8).
Definition 5.9 (Gap filler locations). Let Dcon = (V ,E, r) be an ill-
nested constituency structure, v ∈ V a node with gap degree > 1,
(i1, i2) a gap in π(v), vmax a maximal node of (i1, i2), and v ′ ∈ V a
node with 〈v ′, vmax〉 ∈ E and 〈v ′, v〉 /∈ E+. If min(π(v ′)) < i1 then we
say that (i1, i2) is filled from the left. If max(π(v ′)) > i2 then we say that
(i1, i2) is filled from the right.

As an example, figure 37 shows three trees with different gap filler
locations. In Dcon−lr, the gap is filled from both sides with material
coming from two different nodes. Note that it is also possible that a
single node fills a gap from both the left and the right.

5.2 quantifying discontinuity and non-projectivity 137

5.2.2 Measures for Extracted Grammars

The gap degree and ill-nestedness of syntactic structures determine
certain properties of SRCGs extracted from them. I present an algo-
rithm which extracts an SRCG from a treebank by interpreting all
syntactic structures in the treebank as SRCG derivations. With respect
to dependency structures, the algorithm does exactly what Kuhlmann
and Satta’s (2009) extraction algorithm does.

Grammar Extraction

Recall the definition of treebanks (def. 2.19, p. 25), syntactic structures
(def. 2.12, p. 22), yield and yield blocks (defs. 2.14 and 2.15, p. 24).

Let Υ be a treebank of length m ∈N. For all

(i, (Vi,Ei, ri), 〈wi,1,pi,1〉 · · · 〈wi,ni ,pi,ni〉) ∈ Υ,

1 6 i 6 m, ni ∈N, do the following.
Create set of variables X = {X1, . . . ,Xni}. Then for all v0, v1, . . . , vk ∈

Vi with k = fout(v0) and 〈v0, vj〉 ∈ Ei, 1 6 j 6 k, do the following.
If fout(v0) = 0, then add the lexical clause pi,ΛVi(v0)(wi,ΛVi(v0))→ ε to

the grammar.
Otherwise, create a clause ψ0 → ψ1 . . . ψk and determine the predi-

cate labels for all ψr, 0 6 r 6 k as follows. If (Vi,Ei, ri) is a dependency
structure, label ψr with ΛEi(〈h, vr〉), where h ∈ Vi. Otherwise, label
ψr with ΛVi(vr). Finally, append dim(vr) to the label of ψr. Now de-
termine the predicate arguments of ψr. For all ψr, the irth argument,
1 6 ir 6 dim(vr), is the string resulting from the concatenation of all
Xs ∈ X such that s ∈ v(ir)r ,1 and it holds for all p,q ∈ v(ir)r that p < q
iff Xp precedes Xq.

In all arguments of all ψj, if this string is of length > 2, then there
and in ψ0 (where the same string must occur), it is shortened to length
1 by replacing it with its first symbol (i. e., first variable). If (Vi,Ei, ri)
is a dependency structure and ΛVi(v0) = j, then we exchange the
variable Xj in the arguments of ψ0 with wi,ΛVi(v0).

2

1 Recall that v(ir)r denotes the irth yield block of vr.
2 This is what Kuhlmann and Satta (2009) do. Later, for parsing, we do not replace

the variable. Instead, just as for constituency structures we add a lexical clause
pi,ΛVi(v0)

(wi,ΛVi(v0)
) → ε to the grammar. The other addition to Kuhlmann and

138 discontinuity and non-projectivity in treebanks

S1(X1X2X3X4) → VP2(X1,X4) VAFIN1(X2) PPER1(X3)

VP2(X1X2X3X4) → ADV1(X1) VVPP1(X2) PPER1(X3) ADV1(X4)

ADV1(Selbst) → ε VVPP1(besucht) → ε

VAFIN1(hat) → ε PPER1(er) → ε

PPER1(ihn) → ε ADV1(nie) → ε

aux2(X1besucht, X5) → adv1(X1) obja1(X5)

root1(X1hatX4X5X6) → aux2(X1,X5) subj1(X4) adv1(X5)

adv1(Selbst) → ε subj1(er) → ε

obja1(ihn) → ε adv1(nie) → ε

Figure 38: Extracted Simple RCGs

Finally, add the clause to the grammar.
Note that due to the nature of the treebanks, the extraction algo-

rithm produces only ε-free ordered SRCGs. Furthermore, the presence
of terminals in predicate arguments is limited to predicates of lexical
clauses.3

As an example, figure 38 shows the two grammars extracted from
the constituency and dependency structures in figure 34.

Properties of Extracted Grammars

The properties in lemma 5.10 are immediately obvious.
Lemma 5.10 (Grammar Properties). Let G be a simple k-RCG of rank
m. A syntactic structure D derived from G

1. has at most gap degree g− 1 and

2. does not have nodes with more than m children.

Assuming the relation between simple RCGs and syntactic struc-
tures given by the grammar extraction algorithm, we can also draw

Satta’s work we make for parsing is that we add a separate top clause which ex-
pands to all root clauses that have been extracted. Otherwise we would not be able
to produce a connected graph. See p. 215.

3 This holds for constituency treebanks only, and for the version of the dependency
extraction algorithm we use for parsing, cf. previous footnote.

5.2 quantifying discontinuity and non-projectivity 139

conclusions from the kind of clauses in a simple RCG G on the well-
nestedness of its derivations. Lemma 5.11 relates the interleaving of
the variables in the arguments of clauses to the conditions given by
the definition of well-nestedness. Recall the definition of argument
numbering in RCG clauses (def. 2.46, p. 43). For convenience, we in-
troduce the function η : P ×N → Pfin(N), which, given an SRCG
(N, T ,V ,P,S), returns for a clause ψ0 → ψ1 · · ·ψm ∈ P the numbers
of the variables used in the arguments of ψi, 1 6 i 6 m, given the
argument numbering.
Lemma 5.11 (Ill-nestedness and Grammars). Let G = (N, T ,V ,P,S) be
an ordered simple RCG. If it produces k-ill-nested derivations with
k > 1, then there is a clause c ∈ P, c = ψ0 → ψ1 · · ·ψm with ψi,ψj,
1 6 i < j 6 m such that

1. i1, i2 ∈ η(p, i) and j1, j2 ∈ η(p, j), and

2. i1 < j1 < i2 < j2.

Proof. By contradiction. Assume there is no such clause and G pro-
duces ill-nested derivations. Due to the definition of well-nestedness,
there must be a derivation tree (V ,E, r) of G with some v1, v2 ∈ V with
disjoint yields such that for some i1, i2 ∈ π(v1) and j1, j2 ∈ π(v2) it
holds that i1 < j1 < i2 < j2. The fact that π(v1) and π(v2) are disjoint
entails that v1 and v2 do not dominate each other. Furthermore, it en-
tails that the yield of their least common ancestor vlca must contain
both π(v1) and π(v2) and that for all nodes v ′ with 〈vlca, v ′〉 ∈ E+,
it holds that π(v ′) ∩ π(v1) = ∅ or π(v ′) ∩ π(v2) = ∅. Assume vlca
and its children have been generated by a clause ψ0 → ψ1 · · ·ψm.
Due to the aforementioned condition on the yields of all nodes domi-
nated by vlca and the way predicate arguments are built by the gram-
mar extraction algorithm, there must be at least two predicates ψi,ψj,
1 6 i < j 6 m, for which it holds that i1, i2 ∈ η(p, i) and j1, j2 ∈ η(p, j)
with i1 < j1 < i2 < j2. This contradicts our initial assumption.

Note that given a simple RCG which produces k-ill-nested struc-
tures with k > 1, it is not possible to determine the exact k without
inspecting all possible derivations, i. e., the k can not be determined
by properties of the clauses of the grammar alone. This is due to the
fact that k-ill-nestedness is not clause-local.

One can also build well-nestedness directly into the definition of the
grammar. This has first been done by Kanazawa (2009b) for Multiple

140 discontinuity and non-projectivity in treebanks

Context-Free Grammar (MCFG). The well-nestedness requirement ef-
fectively reduces the expressivity of the formalism.
Lemma 5.12. Multiple Context-Free Languages (MCFL) properly con-
tain well-nested MCFLs (Kanazawa and Salvati, 2010).

Here, we define Wellnested Ordered Simple Range Concatenation
Grammar. Note that the ordering requirement does not change the
expressivity of SRCG (see lemma 2.55, p. 47).
Definition 5.13 (Wellnested Ordered Simple Range Concatenation
Grammar (WOSRCG)). Let G = (N, T ,V ,P,S) be a Ordered Simple
Range Concatenation Grammar (OSRCG). Assume for all c ∈ P that c
only contains variables {X1, . . . ,Xn} and in all predicates of c, Xi pre-
cedes Xj iff i < j for 1 6 i < j 6 n.

1. A clause c = ψ0 → ψ1 · · ·ψm ∈ P is ill-nested if there are two
predicates ψi,ψj, 1 6 i < j 6 m which are such that

a) ψi contains two variables Xi1 , Xi3 ,

b) ψj contains two variables Xi2 , Xi4 , and

c) i1 < i2 < i3 < i4.

If c is not ill-nested, then it is well-nested.

2. G is well-nested (a WOSRCG) iff all c ∈ P are well-nested.

5.2.3 Empirical Investigation

We now verify our new measures in an empirical investigation.

Non-Projective Dependency Structures

The empirical relevance of gap degree and well-nestedness has been
shown for dependency treebanks in works such as Kuhlmann and
Nivre (2006) on the basis of the Prague Dependency Treebank (PDT)
(Hajič et al., 2000) and the Danish Dependency Treebank (DDT) (Kro-
mann, 2003). We extended the previous investigations on two other
treebanks, namely the dependency versions of the NeGra and TIGER,
the TIGER dependency treebank (TIGER-Dep) and the NeGra depen-
dency treebank (NeGra-Dep). Both have been built with the depen-
dency converter for TIGER-style trees from Daum et al. (2004). We are
aware of the fact that all dependency conversion methods introduce

5.2 quantifying discontinuity and non-projectivity 141

danish dep. treebank prague dep. treebank

number of sent. 4,393 73,088

av. sent. length 18 17

gap degree 0 3,732 84.95% 56,168 76.85%

gap degree 1 654 14.89% 16,608 22.72%

gap degree 2 7 0.16% 307 0.42%

gap degree 3 – – 4 0.01%

gap degree 4 – – 1 < 0.01%

gap degree >5 – – – –

well-nested 4,388 99.89% 73,010 99.89%

Table 5: Gaps, well-nestedness (DDT, PDT)

undesired noise, but we choose this well-established method rather
than using other German dependency data sets like the CoNLL-X
TIGER data (used by Havelka (2007)) or the very small TIGER de-
pendency treebank (TIGER-DP) of Forst et al. (2004) due to our desire
of obtaining comparable dependency structures for both constituency
treebanks.

Since punctuation is generally not attached to the trees and there-
fore not part of the annotation, we remove it in a preprocessing step
from all trees in both treebanks prior to the conversion. This leads to
the exclusion of a handful of sentences from TIGER and NeGra, since
they consist only of punctuation. Table 5 contains the gap degree fig-
ures and the ratios of well-nestedness of the PDT and the DDT, bor-
rowed from Kuhlmann and Nivre (2006). Table 6 contains our findings
for NeGra-Dep and TIGER-Dep.

The gap degree figures of NeGra-Dep and TIGER-Dep lie in the
same range as the figures of DDT and PDT. A closer look at the de-
pendency annotations of TIGER-Dep and NeGra-Dep reveals that the
most common causes for a high gap-degree (greater than two) are
enumerations, appositions and parenthetical constructions. The con-
stituency counterparts of these sentences have no or very few gaps.

Well-nestedness covers almost all dependency structures found in
treebanks (Kuhlmann, 2007, p. 62). This is confirmed by our quanti-
tative findings in the German treebanks. With the exception of a sin-

142 discontinuity and non-projectivity in treebanks

negra-dep tiger-dep

number of sent. 20,597 40,013

av. sent. length 15 16

gap degree 0 16,695 81.06% 32,079 80.17%

gap degree 1 3,662 17.78% 7,466 18.66%

gap degree 2 225 1.09% 438 1.09%

gap degree 3 12 0.05% 22 0.05%

gap degree 4 2 0.01% 4 0.01%

gap degree >5 1 < 0.01% 4 0.01%

well-nested 20,472 99.39% 39,750 99.34%

1-ill-nested 124 0.60% 263 0.66%

2-ill-nested 1 < 0.01% – –

Table 6: Gaps, well-nestedness (NeGra-Dep, TIGER-Dep)

gle 2-ill-nested dependency structure4 in NeGra-Dep, the structures
which do not adhere to the well-nestedness constraint are all 1-ill-
nested. Note that 1-ill-nestedness is a stronger constraint than non-
well-nestedness.5 A closer linguistic inspection of the ill-nested depen-
dency structures in Negra-Dep and TIGER-Dep shows that the most
common reason for ill-nestedness is not erroneous annotation, but
linguistically acceptable analyses of extraposition phenomena. Even
though well-nestedness is a very useful constraint which can be ex-
ploited for efficient parsing (Gómez-Rodríguez et al., 2010), ill-nested
structures should therefore not be discarded. Figure 39 shows a typical
ill-nested dependency analysis of (16), a sentence of NeGra.

(16) Im
In

Grenzverkehr
border traffic

hat
has

sich
itself

ein
a

Modus
mode

eingespielt,
equipoised,

der
which

. . . zulässt

. . . admits
“Border traffic has ended up in a mode which admits for . . . ”

4 The edge which is responsible for the 2-ill-nestedness cannot be linguistically moti-
vated and is an artifact introduced by the conversion procedure.

5 The fact that there are no k-ill-nested structures with k > 2 can be explained with the
fact that they would require a kind of simultaneous right and leftward extraposition,
something which German does not exhibit as a feature.

5.2 quantifying discontinuity and non-projectivity 143

r Im Grenzverkehr hat sich ein Modus eingespielt der . . . zulässt

Figure 39: Ill-nested dependency structure in Negra-Dep

r Im Grenzverkehr hat sich ein Modus eingespielt der . . . zulässt

Figure 40: Well-nested alternative analysis to fig. 39

The edges relevant for the ill-nestedness are dashed. In this sentence,
the subject noun ein Modus dominates a non-adjacent, extraposed rel-
ative clause, while being surrounded by a disjoint subtree, namely the
non-finite main verb eingespielt and its dependent.

The annotation can be related to linguistic generalizations on depen-
dency structures discussed in the literature (particularly on German):

1. The subject depends on the finite verb (Kunze, 1975, p. 110; Hud-
son, 1984, pp. 83).

2. The non-finite verb depends on the finite verb and governs its
objects and modifying expressions (Engel, 1988, p. 189). In our
treebanks, this is only true for objects and modifying expres-
sions outside the Vorfeld since Vorfeld material is systematically
attached to the finite verb by the conversion procedure.

3. Extraposed material is dependent on its antecedent (Kunze, 1975,
pp. 130; Hudson, 1984, pp. 101).

By changing certain assumptions about how dependency structures
are built, one can get rid of certain cases of ill-nestedness. An alter-
native well-nested structure for (16) is shown in figure 40. However,
there are good linguistic arguments for the fact that ill-nestedness in

144 discontinuity and non-projectivity in treebanks

r Auch würden durch die Regelung nur ständig neue Altfälle entstehen

Figure 41: Ill-nested dependency structure in TIGER-Dep

certain other structures cannot be avoided (Chen-Main and Joshi, 2010,
2012).

In the remaining sentences, there are two phenomena which give
rise to ill-nestedness, namely coordinated structures and discontinu-
ous subjects. Figure 41 shows the annotation of (17), an example from
TIGER-Dep for a discontinuous subject. Again, the relevant edges are
dashed.

(17) Auch
Also

würden
would

durch
through

die
the

Regelung
regulation

nur
only

ständig
always

neue
new

Altfälle
cases

entstehen.
emerge

“Another effect of the regulation would be constantly emerg-
ing new cases.”

The ill-nested annotation of the coordination cases is often disputable.
This can be explained with the lack of a general linguistic theory of
coordination (Lobin, 1993). The situation for discontinuous subjects is
more clear, since one can argue that the components of the discontin-
uous subject distinguish themselves from the material in the gap by
making up a semantic unit.

To sum up, ill-nested dependency annotation in NeGra-Dep and
TIGER-Dep can generally be linguistically justified and is not only the
result of an accidental interplay of annotation principles. An accurate
linguistic survey of (k)-ill-nestedness of structures in DDT and PDT
has not been presented in the literature and is left for future work.

Discontinuous Constituency Structures

We also investigate gap degree and well-nestedness of constituency
treebanks in order to verify if both measures are as informative for

5.2 quantifying discontinuity and non-projectivity 145

negra tiger

gap degree 0 14,904 72.36% 28,832 72.06%

gap degree 1 5,002 24.29% 9,902 24.75%

gap degree 2 682 3.31% 1,264 3.16%

gap degree 3 9 0.04% 15 0.04%

well-nested 20,339 98.75% 39,573 98.90%

1-ill-nested 258 1.25% 440 1.10%

2-ill-nested – – – –

Table 7: Gaps, well-nestedness (NeGra)

constituency structures as they are for dependency structures. We con-
duct our study on the constituency versions of the treebanks in the pre-
vious section, using exactly the same set of sentences (with removed
punctuation). The results are summarized in table 7.

The constituency gap degree figure of both German treebanks again
lie close together. The number of constituency structures with gap de-
gree greater or equal than three is considerably lower than the cor-
responding number of dependency structures. The reason is that the
phenomena which cause a high gap degree in dependency structures
(enumerations and appositions) generally receive a constituency struc-
ture without gaps. The most frequent reasons for gaps in constituency
structures are parenthetical constructions, as well as finite verbs, sub-
jects and negative markers, which are generally annotated as immedi-
ate constituents of the highest S node and therefore may cause gaps
in the VP yield.

Table 7 shows that the ratio of ill-nested structures in constituency
data is comparable to the ratio in dependency data. This suggests that
ill-nestedness has a comparable explanatory value as a constraining
feature for constituency structures. The only degree of ill-nestedness
that can be observed is 1-ill-nestedness. A linguistic inspection of
the ill-nested constituency structures shows that most of them are ill-
nested due to the interplay of several annotation principles. Again,
most of the ill-nested constituency structures in TIGER and NeGra
arise from extraposition phenomena. Furthermore we can also find
cases of discontinuous subjects annotated with ill-nested structures.

146 discontinuity and non-projectivity in treebanks

Other than for the dependency structures, coordination is no trigger
for ill-nestedness in the constituency data.

As an example for ill-nested constituency structure, see the embed-
ded sentence (18) and its tree annotation in figure 42.

(18) . . . ob
. . . whether

auf
on

deren
their

Gelände
premises

der
the

Typ
type

von
of

Abstellanlage
parking facility

gebaut
built

werden
be

könne,
could,

der
which

. . .

. . .
“whether on their premises precisely the type of parking facil-
ity could be built, which . . . ”

The two overlapping, disjunctive constituents are the lower VP, and
the NP with its extraposed relative clause.

The following annotation principles seem to be respected through-
out:

1. the subject is an immediate constituency of the sentence;

2. the finite verb is another immediate constituency (and the head)
of the sentence;

3. the non-finite verb is the head of another immediate constituency
that also includes objects and modifying expressions;

4. extraposed material is included in the antecedent constituency.

We will not argue in favor or against these annotation principles
from a linguistic point of view. A mapping to common linguistic the-
ories is highly non-trivial, since very different means of expressing
constituency relations and a variety of shapes of constituency struc-
tures would have to be taken into account. On the other hand, the
similarity to the above stated annotation principles for dependency
structures is striking.

Ill-nestedness does not affect the same set of structures across tree-
bank variants, i. e., the ill-nested dependency structures are no subset
of the ill-nested constituency structures and vice versa. We leave an
exhaustive investigation of the differences for future work.

5.3 synchronous rewriting 147

Figure 42: Ill-nested constituency structure in NeGra

5.3 synchronous rewriting

Simple Range Concatenation Grammar allows for synchronous rewrit-
ing. We speak of synchronous rewriting when two or more context-
free derivation processes are instantiated in a synchronous way. Un-
like SRCG, Discontinuous Phrase Structure Grammar (DPSG), which
has also been proposed for modeling discontinuities, does not allow
for synchronous rewriting because the different discontinuous parts of
the yield of a non-terminal are treated locally, i.e., their derivations are
independent from each other (cf. p. 49). So far, synchronous rewriting
has not been empirically motivated by linguistic data from treebanks.
Here, we fill this gap by investigating the existence of structures indi-
cating synchronous rewriting in treebanks with discontinuous annota-
tions. The question of whether we can find evidence for synchronous
rewriting is important for the choice of grammar formalisms to model
discontinuities and, furthermore, it has consequences for the complex-
ity of parsing. In fact, parsing with synchronous formalisms can be
carried out in time polynomial in the length of the input string, with
a polynomial degree depending on the maximum number of syn-
chronous branches one can find in derivations (Seki et al., 1991).

In this section, we characterize synchronous rewriting as a prop-
erty of trees with crossing branches and in an empirical evaluation
and we confirm that constituency treebanks do contain recursive syn-

148 discontinuity and non-projectivity in treebanks

chronous rewriting which can be linguistically motivated. Further-
more, we show how this characterization transfers to the simple RCGs
describing these trees.

5.3.1 Treebank Trees with Synchronous Rewriting

By synchronous rewriting we indicate the synchronous instantiation of
two or more context-free derivation processes. As an example, con-
sider the language L = {anbncndn | n > 1}. Each of the two halves
of some w ∈ L can be obtained through a stand-alone context-free
derivation, but for w to be in L the two derivations must be synchro-
nized somehow. For certain tasks, synchronous rewriting is a desired
property for a formalism. In machine translation, e.g., synchronous
rewriting is extensively used to model the synchronous dependence
between the source and target languages (Chiang, 2007). The question
we are concerned with here is whether we can find instances of re-
cursive synchronous rewriting in treebanks that show discontinuous
phrases.

We make the assumption that, if the annotation of a treebank al-
lows to express synchronous rewriting, then all cases of synchronous
rewriting are present in the annotation. This means that, on the one
hand, there are no cases of synchronous rewriting that the annotator
“forgot” to encode. Therefore unrelated cases of parallel iterations in
different parts of a tree are taken to be truly unrelated. On the other
hand, if synchronous rewriting is annotated explicitly, then we take
it to be a case of true synchronous rewriting, even if, based on the
string, it would be possible to find an analysis that does not require
synchronous rewriting. This assumption allows us to concentrate only
on explicit cases of synchronous rewriting.

We concentrate on the NeGra and TIGER treebanks. In the trees of
those treebanks, synchronous rewriting amounts to cases where dif-
ferent components of a non-terminal category develop in parallel. In
particular, we search for cases where the parallelism can be iterated.
An example is the relative clause in (19), found in TIGER. Figure 43
gives the annotation. As can be seen in the annotation, we have two
VP nodes, each of which has a discontinuous span consisting of two
parts. The two parts are separated by lexical material not belonging to
the VPs. The two components of the second VP (Pop-Idol and werden)
are included in the two components of the first, higher, VP (genau-

5.3 synchronous rewriting 149

der

PRELS

genausogut

ADV

auch

ADV

Pop-Idol

NN

hätte

VAFIN

werden

VAINF

können

VMINF

PD HD

VP

MO MO OC HD

VP

SB OC HD

S

Figure 43: Recursive synchronous rewriting

negra tiger

number of trees 20,597 40,013

total num. of RSRS in all trees 600 1476

av. RSRS length in all trees 2.12 2.13

max. RSRS length in all trees 4 5

Table 8: Synchronous rewriting in treebanks

sogut auch Pop-Idol and werden können). In other words, the two VP
components are rewritten in parallel and contain again two smaller
VP components.

(19) . . . der
. . . who

genausogut
as well

auch
also

Pop-Idol
pop-star

hätte
have

werden
become

können
could

“who as well also could have become a pop-star”

Trees showing recursive synchronous rewriting can be characterized
as follows. We have a non-terminal node n1 with label A whose yield
has a gap. n1 dominates another node n2 with label A such that for
some i 6= j, the ith component of the yield of n2 is contained in the
ith component of the yield of n1 and similar for the jth component.
We call the path from n1 to n2 a recursive synchronous rewriting segment
(RSRS).

Table 8 shows the results obtained from searching for recursive syn-
chronous rewriting in the German TIGER and NeGra treebanks. As in
the last section, punctuation has been removed.

150 discontinuity and non-projectivity in treebanks

(19) shows that we find instances of recursive synchronous rewrit-
ing where each of the rewriting steps adds something to both of the
parallel components. (19) was not an isolated case.

The annotation of (19) in figure 43 could be turned into a context-
free structure if the lowest node dominating the material in the gap
while not dominating the synchronous rewriting nodes (here VAFIN)
is attached lower, namely below the lower VP node. (Note however
that there is good linguistic motivation for attaching it high.) Besides
such cases, we even encountered cases where the discontinuity can-
not be removed this way. An example is (18) (resp. figure 42) where
we have a gap containing an NP such that the lowest node dominat-
ing this NP while not dominating the synchronous rewriting nodes
has a daughter to the right of the yields of the synchronous rewrit-
ing nodes, namely the extraposed relative clause. This structure is of
the type ancbnd, where a and b depend on each other in a left-to-
right order and can be nested, and c and d also depend on each other
and must be generated together. This is a structure that requires syn-
chronous rewriting, even on the basis of the string language. Note that
the nesting of VPs can be iterated, as can be seen in (20), resp. in figure
44.

(20) . . . ob
. . . whether

auf
on

deren
their

Gelände
premises

der
the

Typ
type

von
of

Abstellanlage
parking facility

eigentlich
actually

hätte
had

schon
already

gebaut
built

werden
be

sollen,
should,

der
which

. . .

. . .
“whether on their premises precisely the type of parking facil-
ity should actually already have been built, which . . . ”

As a conclusion from these empirical results, we state that to ac-
count for the data we can find in treebanks with discontinuities, i.e.,
with crossing branches, we need a formalism that can express syn-
chronous rewriting.

5.3.2 Synchronous Rewriting in Extracted Grammars

We also check SRCGs extracted from TIGER and NeGra for the pos-
sibility to generate recursive synchronous rewriting. For this purpose,
we use the extraction algorithm from section 5.2.2. For the tree in fig-
ure 43, the algorithm produces for instance the following clauses:

5.3 synchronous rewriting 151

S

NP

VP

VP

VP

PP NP

ob auf dem Gelände der Typ von Abstellanlage . . . hätte . . . gebaut werden sollen, der. . .

Figure 44: Iterable synchronous rewriting

PRELS(der)→ ε

ADV(genausogut)→ ε

. . .

S(X1X2X3X4)→ PRELS(X1)VP2(X1,X4) VAFIN(X3)

VP2(X1X2X3,X4X5)→ ADV(X1) ADV(X2)VP2(X3,X4) VMINF(X5)

VP2(X1,X2)→ NN(X1) VAINF(X2)

We distinguish different usages of the same category depending on
their numbers of yield components. E.g., we distinguish non-terminals
VP1, VP2, . . . depending on the arity of the VP. We define cat(A) for
A ∈ N as the category of A, independent from its arity. For instance,
cat(VP2) =VP.

In terms of simple RCG, synchronous rewriting means that in a sin-
gle clause distinct variables occurring in two different arguments of
the LHS predicate are passed to two different arguments of the same
RHS predicate. We call this recursive if, by a sequence of synchronous
rewriting steps, we can reach the same two arguments of the same
predicate again. Derivations using such cycles of synchronous rewrit-
ing lead exactly to the recursive synchronous rewriting trees charac-
terized in section 5.3.1. In the following, we check to which extent the
extracted simple RCG allows for such cycles.

In order to detect synchronous rewriting in a simple k-RCG G, we
build a labeled directed graph G = (VG,EG, l) from the grammar with
VG a set of nodes, EG a set of arcs and Λ : VG → N ′ × {0, . . . ,k} ×
{0, . . . ,k} where N ′ = {cat(A) |A ∈ N} a labeling function. G is con-
structed as follows. For each clause A0(~α) → A1(~α1) . . . Am(~αm) ∈ P
we consider all pairs of variables Xs,Xt for which the following condi-
tions hold:

1. Xs and Xt occur in different arguments i and j of A0, 1 6 i < j 6
dim(A0); and

152 discontinuity and non-projectivity in treebanks

2. Xs and Xt occur in different arguments q and r of the same oc-
currence of predicate Ap in the RHS, 1 6 q < r 6 dim(Ap) and
1 6 p 6 m.

For each of these pairs, two nodes are created and labeled [cat(A0), i, j]
and [cat(Ap),q, r], respectively. They are added to VG (if they do not
yet exist, otherwise the already existing nodes are used) and a directed
arc from the first node to the second node is added to EG. The intuition
is that an arc in G represents one or more clauses from the grammar in
which a gap between two variables in the LHS predicate is transferred
to the same RHS predicate.

To detect recursive synchronous rewriting, we then need to discover
all elementary cycles in G, i.e., all cycles in which no vertex appears
twice except the first and the last node. In order to accomplish this
task efficiently, we exploit the algorithm presented in Johnson (1975).
On a grammar extracted from NeGra, the algorithm yields a graph
with 28 nodes containing 206,403 cycles of an average length of 12.86
and a maximal length of 28.

Our algorithm runs in asymptotical polynomial time, with a poly-
nomial degree that is independent of k. Johnson’s algorithm runs in
O((|VG|+ |EG|)(c+ 1)), where c is the number of cycles in G. Note that
the algorithm detects synchronous rewriting with at least two context-
free derivations involved, but not whether there are more than two.
The second task would be more complex, resulting in a running time
of polynomial degree depending on k. Our algorithm can be easily
adapted to such a task.

5.4 related work

5.4.1 Dependency Grammar

Linguistic Modeling

Current dependency frameworks do not require projectivity, as men-
tioned before. Interestingly, there is an intersection with constituency-
based work in the way non-projectivity is modeled. Some dependency
frameworks incorporate a separation of dominance and linear prece-
dence in the style of the framework of Immediate Dominance/Linear
Precedence (ID/LP). In fact, the separation is already present in Tes-

5.4 related work 153

nière (1959), and can also be found, e. g., in Debusmann et al. (2004)
and (partly) in Gerdes and Kahane (2001).

A particularly interesting, very ambitious work which brings to-
gether statistical natural language processing and psycholinguistics
on the basis of DG is Buch-Kromann’s Discontinuous Grammar (Buch-
Kromann, 2009). The Danish Dependency Treebank (Kromann, 2003)
is based on this framework.

Quantifying Non-Projectivity

Some of the literature on characterizations of non-projectivity of de-
pendency structures has been left out so far; either because it did not
have as much impact as the literature discussed earlier, or because
the respective characterizations of non-projectivity cannot be straight-
forwardly transferred to constituency structures.

regular dependency languages Offering a formal relation
between dependency structures and MCS formalisms is is the idea
behind Regular Dependency Languages (Kuhlmann and Möhl, 2007a,b;
Kuhlmann, 2007). They are a proper, mildly context-sensitive exten-
sion of Context-Free Languages (CFLs) and have been introduced as
a characterization of the string languages introduced by certain types
of dependency structures.

edge degree The degree of an edge (Nivre, 2006; Kuhlmann and
Nivre, 2006) is the number of components not dominated by the head
of the edge which intervene in its span, the span being all string po-
sitions between the two endpoints of the edge. The edge degree of a
dependency structure is the maximum edge degree of any of its edges.

level types Level types and level signatures (Havelka, 2007) cannot
be straight-forwardly transferred to constituency structures, because
they are formulated in terms of path lengths in dependency structures,
instead of node yields.

planarity The planarity constraint (Sleator and Temperley, 1993;
Havelka, 2007) prohibits crossing edges in a dependency structure.
The same constraint is also known as weak non-projectivity (Dikovsky
and Modina, 2000). It can be defined as a stronger version of well-

154 discontinuity and non-projectivity in treebanks

nestedness, in which one does not require the considered yields to be
disjoint.

multi-planarity Yli-Jyrä (2003) extends the planarity constraint
to multi-planarity with a bounded number of planes. He does not con-
sider only dependency trees, but dependency graphs, i. e., he discards
acyclicity and connectedness. Roughly, the idea is that a dependency
graph is m-planar if its set of edges can be partitioned into m sub-sets
such that when considering only one of the sub-sets, we have a planar
graph. Yli-Jyrä (2003) notes that in spite of being linguistically useful,
from a formal language point of view, multiplanarity is a very loose
constraint, and introduces additional restrictions on his concept.

pseudo-projectivity With the motivation of allowing disconti-
nuities while still allowing for polynomial parsing, Kahane et al. (1998)
introduce pseudo-projectivity. Pseudo-projectivity relies on an opera-
tion called lifting, with which one can transform certain non-projective
graphs into projective graphs. The transformation is reversible, be-
cause the information provided by the non-projective edges is not lost,
but encoded in the node labels. The transformation resembles the al-
gorithm for resolving the crossing branches in NeGra by Boyd (2007)
(cf. p. 102).

5.4.2 Constituency-Based Frameworks

To my knowledge, there has not been any attempt of a quantifica-
tion of discontinuity in constituencies before Maier and Lichte (2011).
However, there is a very large body of linguistic literature on the mod-
eling of discontinuous constituents within grammatical frameworks. I
present a short overview, in which I follow Lichte (2012). He divides
the literature in two parts.

The first part contains approaches that model discontinuity indi-
rectly in the tradition of generative grammar. Roughly put, this hap-
pens through some kind of movement which generates a discontinu-
ous structure out of a continuous one. This area is out of the scope of
this thesis. Consult Wurmbrand (2001) for a detailed overview.

The second part contains frameworks which provide a direct repre-
sentation of discontinuity. They include

5.5 conclusion 155

• all those frameworks which relax the ordering of the right-hand
sides of context-free rules, among others DPSG (cf. p. 49) and
Suhre’s (2000) Linear Specification Language (LSL);

• all frameworks which allow non-terminals to span more than a
single yield block such as Linear Context-Free Rewriting System
(LCFRS) and its equivalent formalisms; and

• the ID/LP variant of GPSG6 (Shieber, 1984) (see above) and its
extensions, as presented, e. g., by Zwicky (1986), Blevins (1990)
and Daniels (2005); furthermore the HPSG-based work such as
Reape (1994) and Richter and Sailer (1995).

There are also Tree-Adjoining Grammar (TAG) variants which allow
for derived trees with crossing branches. Sarkar and Joshi (1996) build
derived trees with crossing branches to account for cases of coordina-
tion with ellipsis. Chen-Main (2006) considers elements which take a
different grammatical role depending on their linear position as being
dominated by multiple parents. In her thesis on these multi-dominance
structures, she follows up on Sarkar and Joshi’s work. For a further
excellent overview on TAG and discontinuity, see again Lichte (2012).

Note that this is only a tiny fraction of the literature in order to give
some ideas, a complete overview is beyond the scope of this thesis.

5.4.3 Synchronous Rewriting

While to my knowledge, synchronous rewriting has never been ex-
plored in relation to treebanks, it is formally well-understood, and, as
mentioned before, an important tool in certain NLP applications. A
further exploration of this topic is beyond the scope of this thesis. The
interested reader is referred to the literature. A good starting point are
Rambow and Satta (1996, 1999).

5.5 conclusion

This chapter was dedicated to a review of the treatment of discontinu-
ity and non-projectivity in treebanks. We have presented a grammar

6 See also Uszkoreit (1986), who presents a Generalized Phrase Structure Grammar
(GPSG), resp. ID/LP analysis of German.

156 discontinuity and non-projectivity in treebanks

extraction algorithm for both constituency and dependency treebanks
showing discontinuities. We have formulated the measures of gap de-
gree and well-nestedness which are known from DG such that they
apply to both dependency structures and constituency structures. An
empirical evaluation on treebanks has confirmed the expressivity of
the measures for constituency structures. Furthermore we have con-
firmed the presence of synchronous rewriting in treebank trees and
extracted grammars.

There are treebanks in languages other than German which provide
both non-projective dependency annotation and discontinuous con-
stituency annotation, such as the Bulgarian BulTreebank (Osenova and
Simov, 2004) and the recently created Discontinuous Penn Treebank,
a version of the PTB in which trace nodes and co-indexation have
been converted to crossing branches (Evang, 2011). In future research,
our investigations will be extended to these additional resources. This
will allow us to investigate our suspicion that gap degree and well-
nestedness are language-specific parameters.

6
D ATA - D R I V E N PA R S I N G B E Y O N D C O N T E X T- F R E E
G R A M M A R

In this chapter, I present methods for statistical data-driven parsing
using Simple Range Concatenation Grammar (SRCG) as an underly-
ing formalism. Firstly, techniques for binarization and markovization
are presented. Secondly, I present a CYK parser for Probabilistic Sim-
ple Range Concatenation Grammar (PSRCG), together with context-
summary estimates for parse items which are used to speed up pars-
ing. Eventually, I present related work and conclude this chapter.

Material in this and the following two chapters has been published
previously in Maier (2010), Kallmeyer and Maier (2010), Maier and
Kallmeyer (2010) and Kallmeyer and Maier (2012).

6.1 obtaining a probabilistic grammar

We use the grammar extraction algorithm presented on p. 137 to ob-
tain SRCGs from dependency and constituency treebanks.1 In order to
allow the computation of a Maximum Likelihood Estimate, we count
the occurrences of each clause. In all experiments, we parse sequences
of Part-of-Speech (POS) tags and not words, i. e., we provide the parser
with the gold POS tags. This means that we do not use the extracted
lexical clauses and that in dependency grammar extraction, we do not
put the lexical elements directly in the predicate arguments (consider
the footnote on p. 137).

6.1.1 Improving the Unbinarized Grammar

The unbinarized grammar can be improved by modifying the treebank
before grammar extraction, or just after it.

1 Treebank-specific preprocessing, e. g., for the treatment of punctuation, is described
in chapters 7 and 8.

157

158 data-driven parsing beyond cfg

Grammar Annotation

Probabilistic Context-Free Grammar (PCFG) suffers from its strong in-
dependence assumptions. This comes from the fact that a single pro-
duction only covers a subtree of height one in a derivation. PSRCG
shares this problem with PCFG. Klein and Manning (2003b) (cf. p. 110)
take advantage of the fact that certain symbols only occur in certain
contexts. They find that annotating symbols with their context (split-
ting them) improves parsing results. This method is not specific to
PCFG and we apply it to PSRCG. The corresponding experiments will
be called Split.2

Consider the NeGra treebank as an example. One possibility for
splitting is to use the edge labels. The edge label of a node encodes
its grammatical function. While even with PCFG, one runs into sparse
data problems when discriminating all node labels by their edge labels
(Kübler, 2005), using some of them can still be beneficial. E. g., one
can use the RC edge label in order to distinguish relative clauses from
regular sentences (both share the node label S). The annotations used
for the experiments will be described in chapters 7 and 8.

Cutoff

Charniak (1996) finds that removing productions with a low frequency
in a PCFG only has a minor effect on parsing results. Since with SRCG,
we have to keep an eye on parsing efficiency, in the experiments, we
will study this method (Cutoff).

Note that removing clauses may render symbols useless. This hap-
pens when a clause with some left-hand side (LHS) predicate label A
is removed which, after removing the clause, only occurs on the right-
hand side (RHS) of other clauses. Since from these clauses, nothing
will be derived, we apply the removal procedure recursively.

6.1.2 Binarization

The binarization of SRCG is similar to the transformation of a Context-
Free Grammar (CFG) into Chomsky Normal Form (CNF). The result
is an SRCG of rank 2. As in the CFG case, in the transformation, we

2 All methods and techniques we refer to in the discussion of the experiments are
given names written in small capital letters.

6.1 obtaining a probabilistic grammar 159

introduce a non-terminal for each RHS longer than 2 and split the
clause into two clauses, using this new intermediate non-terminal (we
call it a binarization non-terminal). This is repeated until all RHS are of
no greater length than 2.

For the presentation of the transformation algorithm, we need the
notion of a reduction of a vector ~α ∈ [(T ∪ V)∗]i by a vector ~x ∈ V j
where all variables in ~x occur in ~α. A reduction is, roughly, obtained by
keeping all variables in ~α that are not in ~x. This is defined as follows.
Definition 6.1 (Vector reduction). Let 〈N, T ,V ,P,S〉 be a SRCG, ~α ∈
[(T ∪ V)∗]i and ~x ∈ V j for some i, j ∈ N. Let w = ~α1$. . . $~αi be the
string obtained from concatenating the components of ~α, separated
by a new symbol $ /∈ (V ∪ T). Let w ′ be the image of w under a
homomorphism h defined as follows: h(a) = $ for all a ∈ T , h(X) = $
for all X ∈ {~x1, . . .~xj} and h(y) = y in all other cases. Let y1, . . . ym ∈
V+ such that w ′ ∈ $∗y1$+y2$+ . . . $+ym$∗. Then the vector 〈y1, . . . ym〉
is the reduction of ~α by ~x.

For instance, 〈aX1,X2,bX3〉 reduced with 〈X2〉 yields 〈X1,X3〉 and
〈aX1X2bX3〉 reduced with 〈X2〉 yields 〈X1,X3〉 as well.

Let (N, T ,V ,P,S) be an SRCG
for all clauses c = A(~α)→ A0(~α0) . . . Am(~αm) in P with m > 1 do

remove c from P

R = ∅
pick new non-terminals C1, . . . ,Cm−1

add the clause A(~α) → A0(~α0)C1(~γ1) to R where ~γ1 is obtained by
reducing ~α with ~α0
for all i, 1 6 i 6 m− 2 do

add the clause Ci(~γi) → Ai(~αi)Ci+1(~γi+1) to R where ~γi+1 is ob-
tained by reducing ~γi with ~αi

end for
add the clause Cm−1(~γm−2)→ Am−1(~αm−1)Am(~αm) to R
for every clause r ′ ∈ R do

replace RHS arguments of length > 1 with new variables (in both
sides) and add the result to P

end for
end for

Algorithm 3: SRCG binarization

Algorithm 3 is the binarization algorithm. As already mentioned, it
proceeds like the one for CFGs in the sense that for RHSs longer than

160 data-driven parsing beyond cfg

Original SRCG:

S(XYZUVW)→ A(X,U)B(Y,V)C(Z,W)

A(aX,aY)→ A(X, Y) A(a,a)→ ε

B(bX,bY)→ B(X, Y) B(b,b)→ ε

C(cX, cY)→ C(X, Y) C(c, c)→ ε

Clause with RHS of length > 2:
S(XYZUVW)→ A(X,U)B(Y,V)C(Z,W)

For this clause, we obtain
R = {S(XYZUVW)→ A(X,U)C1(YZ,VW),

C1(YZ,VW)→ B(Y,V)C(Z,W)}

Equivalent binarized SRCG:

S(XPUQ)→ A(X,U)C1(P,Q)

C1(YZ,VW)→ B(Y,V)C(Z,W)

A(aX,aY)→ A(X, Y) A(a,a)→ ε

B(bX,bY)→ B(X, Y) B(b,b)→ ε

C(cX, cY)→ C(X, Y) C(c, c)→ ε

Figure 45: SRCG Binarization

2, we introduce a new non-terminal that covers the RHS without the
first element. Figure 45 shows an example. In this example, there is
only one clause with a RHS longer than 2. In a first step, we introduce
the binarization non-terminals and clauses that binarize the RHS. This
leads to the set R. In a second step, before adding the clauses from R

to the grammar, whenever a RHS argument contains several variables,
they are collapsed into a single new variable.

The equivalence of the original SRCG and the binarized grammar is
rather straight-forward. Note however that the arity of the SRCG can
increase because of the binarization.

We can alternatively add additional unary clauses when introduc-
ing the highest and the lowest new binarization non-terminal. We call
those unary clauses top unary clause (UnaryTop vs. BinaryTop) and
bottom unary clause (UnaryBottom vs. BinaryBottom). While this in-
troduces an additional factorization which is potentially beneficial for
parsing, it also introduces more clauses and symbols, which poten-
tially harms parsing efficiency.

6.1 obtaining a probabilistic grammar 161

In SRCG, in contrast to CFG, the order of the RHS elements of a
clause does not matter for the result of a derivation. Therefore, we
can reorder the RHS of a clause before binarizing it. If no reordering
of the RHS predicates is performed, and if every non-terminal which
is introduced during binarization is unique, then we talk about deter-
ministic binarization (Determ). The binarized grammar in this case is
equivalent to the unbinarized grammar. Apart from that, we also use
different reorderings combined with markovization (Collins, 1999) as
used by Klein and Manning (2003b) (see p. 110). Those reorderings
either result in a head-outward binarization or aim at optimizing the
binarized grammar for efficient parsing by optimizing the arity of re-
sulting grammar.

6.1.3 Beyond Deterministic Binarization

Head-Outward Binarization

We first want to achieve a head-outward binarization (Collins, 1999; Klein
and Manning, 2003b) (cf. p. 106). For this, we must first mark the lexi-
cal heads3 of every constituent. In the tradition of Collins, we employ a
rule-based approach. We decide for each node in a constituency struc-
ture which of its child nodes is its head by following a list of rules
for its node label. The goal of these rules is to express the linguistic
constraints on what one would consider a head. A single rule consists
of a search direction (left-to-right or right-to-left) and an ordered list
of labels. If the list of labels is empty, then the first label in the search
direction, i. e., the leftmost or the rightmost label, is marked as head.
Otherwise, for each rule and node label in the node label list of the
rule, the child nodes are traversed in the specified search direction. If
a node label equals the label of a child, this child is marked as head
and we exit (i. e., we proceed to mark the head child of the next node).
Since the binarization depends on it, head rules must be designed
robustly such that a head is marked for all nodes.

Consider the following example for NeGra. We use the following
two rules for the label VZ (zu-marked infinitive):4

3 Here and in the following, head is not meant to refer to a particular linguistic concept
of lexical heads.

4 The labels have the following meaning: VVINF – infinitive, full; VAINF – infinitive,
auxiliary; VMINF – infinitive, modal; VVFIN – finite verb, full; VVIZU – infinitive

162 data-driven parsing beyond cfg

Figure 46: Head marking

VZ right-to-left VVINF VAINF VMINF VVFIN VVIZU

VZ left-to-right APPR PTKZU

In the upper tree fragment in figure 46, the first rule applies and
VVINF is marked, while in the lower one, the second rule applies
and PTKZU is marked.

The head finding algorithm is applied to grammars extracted from
constituency treebanks only. In dependency treebanks, the head child
is always the child with the POS tag non-terminal.5

We can now perform a reordering HeadOutward that results in a
head-outward binarization where the head is the lowest subtree. The
head is extended by adding first all sisters to its left and then all sisters
to its right. Consequently, before binarizing we reorder the RHS of the
clauses extracted from the treebank such that first, all elements to the
right of the head are listed in reverse order, then all elements to the
left of the head in their original order and then the head itself.

We also investigate alternatives to this reordering.

• We add first the sisters to the right and then the ones to the left.
This is what Klein and Manning (2003c) do, therefore, we call
this reordering HeadOutwardKM.

with zu, voll; APPR – preposition, circumposition left; PTKZU – zu in front of infini-
tive.

5 There exists an unsupervised method for finding heads in a PCFG (Sangati and
Zuidema, 2009). The exploration of its usability for Probabilistic SRCG is left for
future work.

6.1 obtaining a probabilistic grammar 163

• We add all children from left to right (L-To-R), resp. from right
to left (R-To-L). For the former, the unbinarized clause does not
have to be changed, while for the latter, we reverse the order of
its right-hand side.

Figure 47 shows a sample HeadOutward binarization with Unary-
Top and UnaryBottom of a tree in the NeGra format.

Minimizing the Arity

An alternative to choosing a linguistically motivated head as the start-
ing point for binarization and then adding the children to the left and
to the right of this head is to order the RHS such that the arity and
the number of variables in the binarized grammar are as minimal as
possible. The merit of this approach, which we name Optimal, is a
possibly lower parsing complexity, since the arity has direct influence
on it.

In recent work, it has been shown how to do a fully optimal binariza-
tion (Gómez-Rodríguez et al., 2009a) (see also section 6.4.2 for other
work related to binarization). Here, we resort to a simpler method
which yields a minimal arity and a minimal variable number per
clause and binarization step.6 We assume that we are only consider-
ing partitions of right-hand sides where one of the sets contains only
a single non-terminal. For the presentation of the algorithm, we need
a supplementary definition.
Definition 6.2 (Characteristic string). Let G = (N, T ,V ,P,S) be an
SRCG. Let c = A0(~x0) → A1(~x1) . . . Am(~xm) ∈ P, m ∈ N. Introduce a
new symbol $ 6∈ (V ∪ T).

1. For all 1 6 i 6 m, the characteristic string s(c,Ai) of the Ai-
reduction of c is defined as follows: Concatenate the elements
of ~x0, separated with $, while replacing every component from
~xi with a $.

2. The arity of the characteristic string, dim(s(c,Ai)), is the number
of maximal substrings x ∈ V+ in s(c,Ai).

6 This version of the algorithm has first been published in Kallmeyer (2010b) and
Kallmeyer and Maier (2012).

164 data-driven parsing beyond cfg

NeGra tree:
S

VP

ADV VVPP VAFIN PPER PPER ADV
Selbst besucht hat er ihn nie
Self visited has he ihm never
“He has never paid him a visit personally.”

Rule extracted for the S node (head marked):
S(X1X2X3X4) → VP(X1,X4) VAFIN’(X2) PPER(X3)

Reordering for head-outward binarization:
S(X1X2X3X4) → PPER(X3) VP(X1,X4) VAFIN(X2)

New rules resulting form binarizing this rule (with unary rules):
S(X) → @1(X)
@1(X1X2X3) → @2(X1,X3) PPER(X2)
@2(X1X2,X3) → VP(X1,X3) @3(X2)
@3(X1) → VAFIN(X1)

Tree after binarization:
S
@7

@6

VP @5

@4

@3

@2

@1

ADV VVPP VAFIN PPER PPER ADV
Selbst besucht hat er ihn nie
Self visited has he ihm never
“He has never paid him a visit personally.”

Figure 47: Binarization of a NeGra tree

6.1 obtaining a probabilistic grammar 165

The function optimalCandidate, algorithm 4, shows how in a first
step, for a given clause c with right-hand side length > 2, we deter-
mine the optimal candidate for binarization: On all right-hand side
predicates B we check for the maximal arity (given by dim(s(c,B)))
and the number of variables (dim(s(c,B)) + dim(B)) we would obtain
when binarizing with this predicate. This check provides the optimal
candidate. In a second step we then perform a binarization as before,
except that we use the optimal candidate now instead of the first ele-
ment of the right-hand side. Then we repeat the process, i. e., calling
optimalCandidate on the remaining un-binarized clause and bina-
rizing with its result, until the length of the RHS is shorter or equal to
2.

function optimalCandidate(c = A0(~x0)→ A1(~x1) . . . Am(~xm))
cand = 0

arity = number of variables in c
vars = number of variables in c
for all i = 0 to m do

cand-arity = dim(s(r,Ai));
if cand-arity < arity and dim(Ai) < arity then

arity = max({cand-arity, dim(Ai)});
vars = cand-arity + dim(Ai);
cand = i;

else if cand-arity 6 arity, dim(Ai) 6 arity and cand-arity+ dim(Ai) < vars
then

arity = max({cand-arity, dim(Ai)});
vars = cand-arity + dim(Ai);
cand = i

end if
end for
return cand

Algorithm 4: Determining binarization order

Markovization

For markovization, we pick a single new binarization non-terminal
which does not occur in the treebank. Then we add vertical and hori-
zontal context from the original trees to all occurrences of this new
non-terminal. This is done as follows. During grammar extraction

166 data-driven parsing beyond cfg

from a treebank Υ, resulting in an SRCG G = (N, T ,V ,P,S), we col-
lect the vertical contexts of all clauses. A vertical context of a clause is
the concatenation of the first v labels on the path from some node u to
the root of a treebank tree (including u itself), given that the clause has
been obtained from u. More precisely, for each clause c ∈ P occurring
in k ∈N different contexts, we build the set Cc = {〈cc1, rc1〉, . . . , 〈cck, rck〉},
such that for all 1 6 i 6 k, c occurs rci times with the vertical context
cci . We then binarize c once per vertical context, i. e., k times in total.
In the ith binarization, we append the vertical context cci to the bina-
rization non-terminal and we set the occurrence count of all resulting
binary clauses to rci . The horizontal context is built as follows. During
the binarization of a (reordered) clause A0(~α0) → A1(~α1) . . . Am(~αm),
for the new non-terminal that comprises the RHS elements Ai . . . Am
(for some 1 6 i 6 m), we additionally append the first h elements of
Ai,Ai−1, . . . ,A1 to the binarization non-terminal.

Figure 48 shows an example of a markovization of the tree from
figure 47 with v = 2 and h = 2. Here, the superscript is the vertical
context and the subscript the horizontal context of the binarization
non-terminal @.

S1

@S1
PPER1

@S1
VP2,PPER1

VP2 @S1
VAFIN1,VP2

@
VP2,S1
ADV1

@
VP2,S1
PPER1,ADV1

@
VP2,S1
ADV1,PPER1

@
VP2,S1
VVPP1,ADV1

ADV1 VVPP1 VAFIN1 PPER1 PPER1 ADV1
Selbst besucht hat er ihn nie

Self visited has he ihm never

“He has never paid him a visit personally.”

Figure 48: Markovization (v = 2,h = 2) of a NeGra tree

6.1 obtaining a probabilistic grammar 167

6.1.4 Adding Probabilities

We now extend SRCG with probabilities. This is done in parallel to
PCFG.
Definition 6.3 (Probabilistic Simple Range Concatenation Grammar).
A Probabilistic Simple Range Concatenation Grammar (PSRCG) is a tuple
G = (N, T ,V ,P,S,p) where (N, T ,V ,P,S) is a SRCG and p : P → [0, 1]
is a function which is such that for all A ∈ N,

∑

A(~α)→~Ψ∈P
p(A(~α)→ ~Ψ) = 1

The probabilities of the clauses of the binarized grammar are then
computed using a Maximum Likelihood Estimator (MLE). This is also
done exactly as in the context-free case. In a PSRCG G = (N, T ,V ,P,S)
which has been extracted from a treebank (def. 2.19, p. 25)

Υ = {(1,υ1, s1), . . . , (n,υn, sn)},

n ∈ N, for all A(~α) → α ∈ P, the estimated probability p(A(~α) → ~Ψ)

is

p(A(~α)→ ~Ψ) =

∑n
i=1 f(A→ ~Ψ)∑

~Φ s.t.A→~Φ∈P
∑n
i=1 f(A→ ~Φ)

where f is the function which yields the occurrence count of a clause
in a treebank tree. This count can easily be obtained from the treebank.

Probabilistic versions of SRCG, resp. equivalent formalisms, have
been used before (Levy, 2005; Kato et al., 2006; Søgaard, 2011). The
estimation should ensure tightness, since, as Levy (2005) remarks on
p. 122, in the proof of Chi and Geman (1998) (see section 4.1.3), there
is nothing specific to CFG.

Just as with PCFG, we must make sure that equivalent derivations
are only counted once. Analogously to definition 4.2, p. 92, in defi-
nition 6.4, we revise 1. of definition 2.48, p. 44, defining the relation
leftmost derives for SRCG. In the leftmost derivation, always the left-
most instantiated predicate is substituted first.
Definition 6.4 (Leftmost derivation (SRCG)). Let G = (N, T ,V ,P,S)
be an SRCG and w ∈ T∗ a string. The relation =⇒G,w is a relation
called leftmost derives on strings of instantiated predicates the follow-
ing way. Let Γ be a string of instantiated predicates. If A0(~ψ0) →

168 data-driven parsing beyond cfg

A1(~ψ1) . . . Am(~ψm),m ∈N0, is the instantiation of some clause c ∈ PG,
then

A0(~ψ0)Γ =⇒G,w A1(~ψ1) . . . Am(~ψm)Γ .

We use the relation symbol of derives for leftmost derives, since we
will not refer to non-leftmost derivations anymore. The probability
of a derivation is also computed exactly as in the context-free case
(cf. def. 4.4, p. 92).
Definition 6.5 (Derivation probability (SRCG)). Let

G = (N, T ,V ,P,S,p)

be a PSRCG, let w ∈ T∗ be a string, and let Γ1, Γ2 be strings of instanti-
ated predicates of clauses in P with respect to w.

1. Let A(~α)→ ~Ψ ∈ P. The probability of a derivation step

Γ1 =⇒A(~α)→~Ψ
G,w Γ2

is defined as follows.

p(Γ1 =⇒A(~α)→~Ψ
G,w Γ2) = p(A(~α)→ ~Ψ)

2. Let A1(~α1) → ~Ψ1, . . . ,Am(~αm) → ~Ψm ∈ P, m ∈ N. The prob-

ability of a derivation Γ1 =⇒A1(~α1)→~Ψ1
G,w · · · =⇒Am(~αm)→~Ψm

G Γ2 is
defined as follows.

p(Γ1 =⇒A1(~α1)→~Ψ1
G,w · · · =⇒Am(~αm)→~Ψm

G,w Γ2) =

m∏

i=1

p(Ai(~αi)→ ~Ψi)

3. The probability of Γ1
∗

=⇒G,w Γ2 is defined as the sum over the
probabilities of all leftmost derivations of Γ1 from Γ2:

p(Γ1
∗

=⇒G,w Γ2) =

k∑

i=0

mi∏

j=0

p(Aij(
~αij)→ ~ψij)

where k ∈ N is the number of leftmost derivations of Γ2 from
Γ1 and mi ∈N is the derivation length of the ith derivation and
Aij(

~αij) → ~ψij is clause used in the jth derivation step of the ith
leftmost derivation.

6.2 parsing 169

6.2 parsing

6.2.1 CYK Parsing

We employ a probabilistic CYK parser, using Weighted Deductive
Parsing (WDP) (see section 4.1.2). Without loss of generality, we can
make the assumptions

• that due to binarization, all clauses in the grammar are of rank 1
or 2,

• that the parser input is POS tagged, and therefore there are no
clauses in which predicate components are terminals, and

• that due to the extraction algorithm, we do not have clauses in
which LHS components are ε.

In summary, the algorithm must only handle binary clauses in which
all predicate argument components are variables.

For an input string w and a PSRCG G = (N, T ,V ,P,S,p), our items
have the form [A,~ρ] where A ∈ N, ~ρ ∈ (Pos(w) × Pos(w))dim(A) is
the vector of ranges characterizing all components of the span of A.
We specify the set of weighted parse items via the deduction rules in
figure 49, using algorithm 2, p. 96, and build the best parse from the
goal item as described on p. 56. Recall that as the weights of clause,
we use the absolute value of the natural logarithm of its probability,
i. e., for a clause c with probability p, we use |ln(p)|. Nevertheless,
abbreviating, we just write log(p).

6.2.2 Outside Score Estimates

In order to speed up parsing, we add an estimate of the log of the
outside score of the items to their inside weights in the agenda (see
A∗ parsing in section 4.1.2).7 All our outside estimates are admissible,
which means that they never underestimate the actual outside score
of the item, but one of them is not monotonic. While the monotonic
estimates allow for true A∗ parsing, with the non-monotonic one, it
can happen that we deduce an item I2 from an item I1 where the

7 Recall that inside score and outside score always denote the corresponding Viterbi
scores and not the actual inside and outside probabilities.

170 data-driven parsing beyond cfg

scan
0 : [A, 〈〈i, i+ 1〉〉]

A POS tag of wi+1

where A is the POS tag of wi+1.

unary
in : [B,~ρ]

in + log(p) : [A,~ρ]
p : A(~α)→ B(~α) ∈ P

where p : A(~α)→ B(~α) ∈ P.

binary
inB : [B, ~ρB], inC : [C, ~ρC]

inB + inC + log(p) : [A, ~ρA]
where

p : A(~ρA)→ B(~ρB)C(~ρC) is an instantiated rule.

goal [S, 〈〈0,n〉〉]

Figure 49: Weighted CYK deduction system

weight of I2 is greater than the weight of I1. The parser can therefore
end up with a local maximum that is not the global maximum we
are searching for. In other words, this outside estimate is actually a
Figure-of-Merit (FOM) (as in best-first parsing).

We precompute all outside estimates offline up to a certain maximal
sentence length lenmax.

Full SX estimate

The full SX estimate,8 for a given sentence length n, is supposed to
give the maximal probability of completing a category C with a span
~ρ into an S with span 〈〈0,n〉〉. In order to avoid computing the same
partial results several times, we use a deductive approach that allows
for tabulation.

For the computation, we need an estimate of the inside score of a
category C with a span ~ρ, regardless of the actual terminals in our in-
put. This inside estimate is computed as shown in figure 50. Here, we
do not need to consider the number of terminals outside the span of C
(to the left or right or in the gaps), they are not relevant for the inside
score. Therefore the items have the form [A, 〈l1, . . . , ldim(A)〉], where A
is a non-terminal and li gives the length of its ith component. It holds

8 The full SX estimate is the naive SRCG adaption of the SX estimate of Klein and
Manning (2003a).

6.2 parsing 171

pos tags
0 : [A, 〈1〉]

A a POS tag

unary
in : [B,~l]

in + log(p) : [A,~l]
p : A(~α)→ B(~α) ∈ P

binary
inB : [B,~lB], inC : [C,~lC]

inB + inC + log(p) : [A,~lA]
where p : A(~αA)→ B(~αB)C(~αC) ∈ P and the following holds: we define B(i)

as {1 6 j 6 dim(B) | ~αB(j) occurs in ~αA(i)} and C(i) as {1 6 j 6 dim(C) | ~αC(j)

occurs in ~αA(i)}. Then for all i, 1 6 i 6 dim(A): ~lA(i) = Σj∈B(i)
~lB(j) +

Σj∈C(i)~lC(j).

Figure 50: Inside estimate

that Σ16i6dim(A)li 6 lenmax − dim(A) + 1 because the way our gram-
mars are extracted from the treebank, we can be sure that the different
components in the yield of a non-terminal are never adjacent. There
is always at least one terminal in between two different components
that does not belong to the yield of the non-terminal.

The first rule in figure 50 tells us that POS tags always have a single
component of length 1, therefore this case has probability 1 (weight 0).
The rules unary and binary are like the ones in the CYK parser,
except that they combine items with length information. The rule
unary for instance tells us that if the log of the probability of build-
ing [B,~l] is greater or equal to in and if there is a clause that allows
to deduce an A item from [B,~l] with probability p, then the log of the
probability of [A,~l] is greater or equal to in + log(p). For each item,
we record its maximal weight, i.e., its maximal probability. The rule
binary is slightly more complicated since we have to compute the
length vector of the LHS of the clause from the RHS length vectors.

A straightforward extension of the CFG algorithm from Klein and
Manning (2003b) for computing the SX estimate is given in figure 51.
Here, the items have the form [A,~l] where the vector ~l tells us about
the lengths of the string to the left of the first component, the first
component, the string in between the first and second component and
so on.

The algorithm proceeds top-down. The outside estimate of complet-
ing an S with component length len and no terminals to the left or
to the right of the S component (item [S, 〈0, len, 0〉]) is 0. If we expand

172 data-driven parsing beyond cfg

axiom
0 : [S, 〈0, len, 0〉]

1 6 len 6 lenmax

unary
w : [A,~l]

w+ log(p) : [B,~l]
p : A(~α)→ B(~α) ∈ P

binary-right
w : [X,~lX]

w+ in(A,~l ′A) + log(p) : [B,~lB]

binary-left
w : [X,~lX]

w+ in(B,~l ′B) + log(p) : [A,~lA]
where, for both rules, there is an instantiated rule p : X(~ρ) → A(~ρA)B(~ρB)

such that ~lX = lout(~ρ), ~lA = lout(~ρA),~l ′A = lin(~ρA), ~lB = lout(~ρB),~l ′B =

lin(~ρB).

Figure 51: Full SX estimate top-down

with a unary clause (unary), then the outside estimate of the RHS
item is greater or equal to the outside estimate of the LHS item plus
the log of the probability of the clause. In the case of binary clauses,
we have to further add the inside estimate of the other daughter. For
this, we need a different length vector (without the lengths of the parts
in between the components). Therefore, for a given range vector ~ρ =

〈〈l1, r1〉, . . . , 〈lk, rk〉〉 and a sentence length n, we distinguish between
the inside length vector lin(~ρ) = 〈r1 − l1, . . . , rk − lk〉 and the outside
length vector lout(~ρ) = 〈l1, r1 − l1, l2 − r1, . . . , lk − rk−1, rk − lk,n− rk〉.

This algorithm has two major problems: Since it proceeds top-down,
in the binary rules, we must compute all splits of the antecedent X
span into the spans of A and B which is very expensive. Furthermore,
for a category A with a certain number of terminals in the compo-
nents and the gaps, we compute the lower part of the outside estimate
several times, namely for every combination of number of terminals
to the left and to the right (first and last element in the outside length
vector). In order to avoid these problems, we now abstract away from
the lengths of the part to the left and the right, modifying our items
such as to allow a bottom-up strategy.

The idea is to compute the weights of items representing the deriva-
tions from a certain lower C up to some A (C is a kind of “gap” in
the yield of A) while summing up the inside costs of off-spine nodes
and the log of the probabilities of the corresponding clauses. We use
items [A,C,~ρA,~ρC, shift] where A,C ∈ N and ~ρA,~ρC are range vec-

6.2 parsing 173

pos tags
0 : [C,C, 〈0, 1〉, 〈0, 1〉, 0]

C a POS tag

unary
0 : [B,B,~ρB,~ρB, 0]

log(p) : [A,B,~ρB,~ρB, 0]
p : A(~α)→ B(~α) ∈ P

binary-right
0 : [A,A,~ρA,~ρA, 0], 0 : [B,B,~ρB,~ρB, 0]

in(A, lin(~ρA)) + log(p) : [X,B,~ρX,~ρB, i]

binary-left
0 : [A,A,~ρA,~ρA, 0], 0 : [B,B,~ρB,~ρB, 0]

in(B, lin(~ρB)) + log(p) : [X,A,~ρX,~ρA, 0]
where i is such that for shift(~ρB, i) = ~ρ ′B p : X(~ρX) → A(~ρA)B(~ρ

′
B) is an

instantiated clause.
Starting sub-trees with larger gaps:

w : [B,C,~ρB,~ρC, i]

0 : [B,B,~ρB,~ρB, 0]
Transitive closure of sub-tree combination:

w1 : [A,B,~ρA,~ρB, i],w2 : [B,C,~ρB,~ρC, j]

w1 +w2 : [A,C,~ρA,~ρC, i+ j]

Figure 52: Full SX estimate bottom-up

tors, both with a first component starting at position 0. The integer
shift 6 lenmax tells us how many positions to the right the C span is
shifted, compared to the starting position of the A. ~ρA and ~ρC repre-
sent the spans of C and A while disregarding the number of terminals
to the left the right. I.e., only the lengths of the components and of
the gaps are encoded. This means in particular that the length n of
the sentence does not play a role here. The right boundary of the last
range in the vectors is limited to lenmax. For any i, 0 6 i 6 lenmax, and
any range vector ~ρ, we define shift(~ρ, i) as the range vector one obtains
from adding i to all range boundaries in ~ρ and shift(~ρ,−i) as the range
vector one obtains from subtracting i from all boundaries in ~ρ.

The weight of [A,C,~ρA,~ρC, i] estimates the log of the probability of
completing a C tree with yield ~ρC into an A tree with yield ~ρA such
that, if the span of A starts at position j, the span of C starts at position
i+ j. Figure 52 gives the computation. The value of in(A,~l) is the inside
estimate of [A,~l].

174 data-driven parsing beyond cfg

axiom
0 : [S, len, 0, 0, 0]

1 6 len 6 lenmax

unary
w : [X, len, l, r,g]

w+ log(p) : [A, len, l, r,g]
where p : X(~α)→ A(~α) ∈ P.

binary-right
w : [X, len, l, r,g]

w+ in(A, len − lenB) + log(p) : [B, lenB, lB, rB,gB]

binary-left
w : [X, len, l, r,g]

w+ in(B, len − lenA) + log(p) : [A, lenA, lA, rA,gA]
where, for both rules, p : X(~α)→ A(~αA)B(~αB) ∈ P.

Figure 53: SX with length, left, right, gaps

The SX estimate for some predicate C with span ~ρ where i is the left
boundary of the first component of ~ρ and with sentence length n is
then given by the maximal weight of [S,C, 〈0,n〉, shift(~ρ,−i), i].

SX with Left, Gaps, Right, Length

A problem of the previous estimate is that with a large number of non-
terminals the computation of the estimate requires too much space.
Our experiments have shown that for treebank parsing where we have,
after binarization and markovization, appr. 12,000 non-terminals, its
computation is not feasible. We therefore turn to simpler estimates
with only a single non-terminal per item. We now estimate the Viterbi
outside score probability of a non-terminal A with a span of a length
len (the sum of the lengths of all the components of the span), with
left terminals to the left of the first component, right terminals to the
right of the last component and gaps terminals in between the com-
ponents of the A span, i.e., filling the gaps. Our items have the form
[X, len, left, right, gaps] with X ∈ N, len + left + right + gaps 6 lenmax,
len > dim(X), gaps > dim(X) − 1.

Let us assume that, in the clause X(~α) → A(~αA)B(~αB), when look-
ing at the vector ~α, we have leftA variables for A-components pre-
ceding the first variable of a B component, rightA variables for A-
components following the last variable of a B component and rightB
variables for B-components following the last variable of a A compo-
nent. (In our grammars, the first LHS argument always starts with the

6.2 parsing 175

pos tags
0 : [A, 1]

A a POS tag

unary
in : [B, l]

in + log(p) : [A, l]
p : A(~α)→ B(~α) ∈ P

binary
inB : [B, lB], inC : [C, lC]

inB + inC + log(p) : [A, lB + lC]
where either p : A(~αA)→ B(~αB)C(~αC) ∈ P or p : A(~αA)→ C(~αC)B(~αB) ∈ P.

Figure 54: Inside estimate with total span length

first variable from A.) Furthermore, gapsA = dim(A) − leftA − rightA,
gapsB = dim(B) − rightB.

Figure 53 gives the computation of the estimate. It proceeds top-
down, as the computation of the full SX estimate in Figure 51, except
that now the items are simpler. The following side conditions must
hold: For binary-right to apply, the following constraints must be
satisfied:

1. len + l+ r+ g = lenB + lB + rB + gB,

2. lB > l+ leftA,

3. if rightA > 0, then rB > r+ rightA, else (rightA = 0), rB = r,

4. gB > gapsA.

Similarly, for binary-left to apply, the following constraints must
be satisfied:

1. len + l+ r+ g = lenA + lA + rA + gA,

2. lA = l,

3. if rightB > 0, then rA > r+ rightB, else (rightB = 0), rA = r

4. gA > gapsB.

The value in(X, l) for a non-terminal X and a length l, 0 6 l 6 lenmax
is an estimate of the probability of an X category with a span of length
l. Its computation is specified in figure 54.

The SX estimate for a sentence length n and for some predicate C
with a range characterized by ~ρ = 〈〈l1, r1〉, . . . , 〈ldim(C), rdim(C)〉〉 where

len = Σ
dim(C)
i=1 (ri − li) and r = n− rdim(C) is then given by the maximal

weight of the item [C, len, l1, r,n− len− l1 − r].

176 data-driven parsing beyond cfg

axiom
0 : [S, len, 0, 0]

1 6 len 6 lenmax

axiom
w : [X, len, lr,g]

w+ log(p) : [A, len, lr,g]
where p : X(~α)→ A(~α) ∈ P.

binary-right
w : [X, len, lr,g]

w+ in(A, len − lenB) + log(p) : [B, lenB, lrB,gB]

binary-left
w : [X, len, lr,g]

w+ in(B, len − lenA) + log(p) : [A, lenA, lrA,gA]
where, for both rules, p : X(~α)→ A(~αA)B(~αB) ∈ P.

Figure 55: SX estimate with length, LR, gaps

SX with LR, Gaps, Length

In order to further decrease the space complexity of the computation
of the outside estimate, we can simplify the previous estimate by sub-
suming the two lengths left and right in a single length lr. I.e., the items
now have the form [X, len, lr, gaps] with X ∈ N, len + lr + gaps 6 lenmax,
len > dim(X), gaps > dim(X) − 1. This estimate will be called the LR
estimate.

The computation is given in figure 55. Again, we define leftA, gapsA,
rightA and gapsB, rightB for a clause X(~α)→ A(~αA)B(~αB) as above. The
side conditions are as follows: For Binary-right to apply, the following
constraints must be satisfied:

1. len + lr + g = lenB + lrB + gB,

2. lr < lrB, and

3. gB > gapsA.

For Binary-left to apply, the following must hold:

1. len + lr + g = lenA + lrA + gA,

2. if rightB = 0 then lr = lrA, else lr < lrA and

3. gA > gapsB.

Furthermore, in both binary-left and binary-right, we have
limited lr in the consequent item to the lr of the antecedent plus the

6.3 implementation 177

axiom
0 : [S, len, len]

1 6 len 6 lenmax

unary
w : [X, lX, slen]

w+ log(p) : [A, lX, slen]
where p : X(~α)→ A(~α) ∈ P.

binary-right
w : [X, lX, slen]

w+ in(A, lX − lB) + log(p) : [B, lB, slen]

binary-left
w : [X, lX, slen]

w+ in(B, lX − lA) + log(p) : [A, lA, slen]
where, for both rules, p : X(~α)→ A(~αA)B(~αB) ∈ P.

Figure 56: SX estimate with span and sentence length

length of the sister (lenB, resp. lenA). This results in a further reduction
of the number of items while having only little effect on the parsing
results.

The estimate for a sentence length n and for some predicate C with
a span ~ρ = 〈〈l1, r1〉, . . . , 〈ldim(C), rdim(C)〉〉 where len = Σ

dim(C)
i=1 (ri − li)

and r = n − rdim(C) is then the maximal weight of [C, len, l1 + r,n −

len− l1 − r].

SX with Span and Sentence Length

We will now present a further simplification of the last estimate that
records only the span length and the length of the entire sentence.
The items have the form [X, len, slen] with X ∈ N, dim(X) 6 len 6 slen.
The computation is given in figure 56. This last estimate, called LN
estimate, is actually monotonic and allows for true A∗ parsing. For a
proof, see Kallmeyer and Maier (2012).

The SX estimate for a sentence length n and for some predicate C
with a span ~ρ = 〈〈l1, r1〉, . . . , 〈ldim(C), rdim(C)〉〉 where len = Σ

dim(C)
i=1 (ri −

li) is then the maximal weight of [C, len,n].

6.3 implementation

The techniques described in this chapter have been implemented in
a single system, called rparse. rparse is publicly available under the

178 data-driven parsing beyond cfg

GNU General Public License 2.0 from http://www.wolfgang-maier.

net/rparse/. Some implementation details follow.

6.3.1 Items

When parsing a single sentence, the parser can easily produce sev-
eral millions of items. Especially for the complete operation, which
checks the compatibility of two range vectors and the variable config-
uration of a certain clause, efficiency is therefore crucial.

We use Plaehn’s (2004) item representation. Letw be the input string
of length n. In an item [A,~ρ] whereA is a non-terminal and ~ρ is a range
vector, we represent ~ρ by a bit string b1 · · ·b|w| ∈ {0, 1}+ where for all
bi, 1 6 i 6 |w| it holds that if there is a range 〈u, v〉 ∈ ~ρ with u < i 6 v,
then bi = 1; otherwise bi = 0. For example, if ~ρ = (〈0, 1〉, 〈5, 8〉) and
|w| = 9, then the corresponding bit string is 100001110.

For the combination of two items in the complete rule, one must
ensure the compatibility of the range vectors and the variables of
the clause which is involved. Since the parser only has to handle bi-
nary clauses which have variables as their arguments, we can rep-
resent the variables as a two-dimensional boolean array y. y speci-
fies how the arguments of the LHS predicate are composed of the
arguments of the RHS predicates.9 Thereby, given a binary clause
A0(~α0) → A1(~α1)A2(~α2), y[i][j] is false if the jth variable of the ith
argument of the LHS comes from A1, otherwise it is true. The imple-
mentation of the complete operation consists of a recursive traversal
of the boolean array representing the yield function. As the traversal
advances, range boundaries from both RHS predicates can be checked
for conformity with the yield function.

6.3.2 Priority Queue

The implementation of the priority queue has a decisive impact on
parsing performance. In an earlier implementation which was used for
previously published experiments (Maier, 2010; Maier and Kallmeyer,
2010; Kallmeyer and Maier, 2010), a binary heap was used (Cormen

9 In fact, y rather represents an Linear Context-Free Rewriting System (LCFRS) yield
function than SRCG variables, since intuitively, an SRCG derivation proceeds top-
down, while LCFRS proceeds bottom-up.

http://www.wolfgang-maier.net/rparse/
http://www.wolfgang-maier.net/rparse/

6.3 implementation 179

et al., 2003, p. 164). However, the implementation was faulty: The up-
date operation violated the heap property, i. e., the node keys were up-
dated but on an update, the heap was not reordered.10 On the other
hand, an update took only O(1). The current version of rparse realizes
the priority queue as a Fibonacci heap (Fredman and Tarjan, 1987), a
data structure which can serve as a priority queue and is particularly
apt to back incarnations of Dijkstra’s algorithm, such as WDP (Cor-
men et al., 2003, pp. 505).

6.3.3 Filtering

Simple Range Concatenation Grammar, as used in this chapter, allows
gaps to be arbitrarily large. However, gaps are not arbitrarily large in
the treebank data. Blocking items which create implausibly large gaps
should therefore help to prune the search space. The blocking of items
which contain gaps with a size greater than some ∆ ∈N can easily be
integrated into the function which computes the combination of range
vectors. Such a filter amounts to adding the following side condition
to the binary rule in figure 49. Take the bit string representation of
~ρA and remove all leading and trailing 0s. The resulting string may

not contain a substring s ∈ {0}∗ with |s| > ∆. We will investigate the
effect of this filter in the GapFilter experiments.

Another type of filter which can be applied within the binary rule
of figure 49 is a filter for items which represent ill-nested constituents
(Ill-nestedFilter). It requires to add the side condition that con-
stituents represented by antecedent items fulfill the condition for well-
nestedness, i. e., it requires that there be no i1, i2 ∈ ~ρA and j1, j2 ∈ ~ρB
with i1 < j1 < i2 < j2.

10 Thanks to Andreas van Cranenburgh for pointing this out.

180 data-driven parsing beyond cfg

6.4 related work

6.4.1 Data-Driven Parsing

Direct Modeling of Discontinuous Constituents

probabilistic dpsg Plaehn’s (2004) approach to parsing NeGra
using Probabilistic Discontinuous Phrase Structure Grammar has al-
ready been presented in section 4.2.3.

probabilistic mcfg Levy (2005) presents a parser for Probabilis-
tic Wrapping Grammars. As mentioned in chapter 4, a Probabilistic
Wrapping Grammar is a Probabilistic Multiple Context-Free Grammar
which respects the bottom-up non-erasing condition, as well as a con-
dition Levy calls strict concatenation. This conditions requires that in
a function, there are either only variables, or a single terminal. The
grammars we obtain with our extraction algorithm (cf. p. 137) have
the exact same form. Even though Levy describes some experiments
(reporting numbers of items which have been generated, etc.), he does
not evaluate them. His parser builds on a variety of ideas.

• His head finding algorithm (p. 128) describes an additional re-
ordering of the children by their respective heads. We do not do
that since we assume non-terminals to be ordered by the leftmost
terminal they dominate.

• His binarization algorithm (p. 126) creates a head-outward bi-
narization, with a binary top clause and an unary head clause.
However, Levy does not describe how the predicate arguments
are handled during the binarization.

• His probability estimation using MLE is identical to the method
presented earlier.

• Concerning his parser, Levy references the parsing algorithms
for MCFG presented by Harkema (2001). The CYK algorithm is
identical to Seki et al.’s algorithm. Apart from that, he performs
Weighted Deductive Parsing like we do.

• On p. 131, he sketches the idea for the MCFG adaption of the
SX estimate, i. e., the full SX estimate presented in this work in
section 6.2.2. However, no parsing results are reported.

6.4 related work 181

Levy notes two deficiencies of the simple Maximum Likelihood model.
First, the arity distinction of predicates is unmotivated and only an
artifact of the formalism, and second, it is not possible to express
distances as a feature (in the sense of Collins (1999)). This would
be needed, for example, to make the fact whether a constituent is
extraposed or not a parameter which can be estimated. He there-
fore sketches a more sophisticated estimation technique, based on
Immediate Dominance/Linear Precedence (ID/LP), which would rem-
edy both problems. However, he also notes that such a factorized
grammar cannot be learned in a completely supervised manner any-
more.

Recent work by Grove (2010) describes the implementation of a
probabilistic parser for MCFG to be used as a backend for parsing
Minimalist Grammar. To my knowledge, there is no publication on
this system, besides the webpage.

As already mentioned in chapter 3, Kato et al. (2006) use a restricted
version of Probabilistic MCFG for the modeling of RNA pseudoknot-
ted structures. Pseudoknot is a typical substructure in secondary struc-
tures of several RNAs. It poses a particular difficulty for RNA structure
prediction, the task of determining nucleic acid secondary or tertiary
structure from its sequence. Long-distance resp. crossing dependen-
cies are what it makes difficult. Figure 17, p. 88, shows such a structure
together with an alternative representation called arc depiction.

probabilistic srcg The annotation of the Penn Treebank (PTB)
contains discontinuities in the form of trace nodes and coindexations
(cf. p. 99) on top of a annotation backbone based on CFG. Evang (2011),
resp. Evang and Kallmeyer (2011), convert the PTB trees into trees
with crossing branches, such as in NeGra. Many linguistic consider-
ations are involved in this process, since the conversion is far from
straight-forward. rparse is then used to parse the transformed tree-
bank. The results show that the additional expressivity of SRCG has a
positive influence on the results.

An extension of the approach in this thesis is presented by van Cra-
nenburgh et al. (2011). They extend it to Data-Oriented Parsing (DOP),
by adapting Goodman’s (2003) reduction (cf. p. 112) to LCFRS. Their
approach outperforms ours slightly.

182 data-driven parsing beyond cfg

definite clause grammar Johnson (1985) uses Definite Clause
Grammar (DCG) to parse discontinuous constituents. Many ideas of
those presented in this chapter already exist in his work. Johnson
drops the requirement that every non-terminal has to dominate a sin-
gle range. Essentially, his DCG predicates look just like SRCG predi-
cates, with the exception that their arguments are also used to pass
other information than range boundaries, such as case information.
He also proposes a representation of range boundaries as bit sets, such
as the ones we use. For parsing, he employs a deductive framework
(Pereira and Warren, 1983) and remarks that a “head-first” strategy
would be the most appropriate (i. e., first expanding the head and
then the complements).

Factoring of Complexity

Alternatively to directly using crossing branches, one can convert the
syntactic structures with discontinuities to a simpler representation
(i. e., a representation which is simpler to process) and make this alter-
native representation reversible by using a suitable labeling scheme.
In other words, information encoded in crossing branches is moved
into the labeling schema.

dependencies Hall and Nivre (2008b,a) present an interesting ap-
proach to parsing discontinuities in NeGra which is not directly com-
parable to any of the other approaches presented before in this chap-
ter. The basis for their work consists of a conversion algorithm from
discontinuous constituents to a dependency representation, compara-
ble to Lin’s (1995) dependency conversion, and a labeling schema for
the converted dependencies, generated from the discontinuous con-
stituents. The conversion is reversible, i. e., the dependencies can be
converted back to constituents. The dependencies can be parsed with
any dependency parser; Hall and Nivre use the MALT parser and
achieve high-quality results.

Kahane et al. (1998) introduce pseudo-projectivity (cf. p. 154). Their
motivation is to allow non-projectivity while maintaining a polyno-
mial parsing complexity. Pseudo-projectivity allows for a reversible
transformation of certain non-projective graphs into projective graphs
by an operation called lifting. The transformation is reversible, be-
cause the information provided by the non-projective edges is not lost,

6.4 related work 183

but encoded in the node labels. Nivre and Nilsson (2005) provide a
pseudo-projective dependency parser.

constituents Another technique on the same lines is the algo-
rithm for resolving crossing branches by Boyd (2007) (cf. p. 102), with
which the crossing branches in NeGra can be resolved. It removes the
crossing branches of a non-terminal by introducing new non-terminals
for each of its yield blocks. Boyd introduces this algorithm only as an
alternative to the standard method of resolving crossing branches in
NeGra. However, it could also serve as the starting point for pars-
ing discontinuous constituents. If one additionally introduces a suit-
able labeling scheme to make the transformation reversible, one could
parse the converted representation with a PCFG parser and then re-
introduce the crossing branches in the parser output. The context-free
representation could alternatively be used as a guide in the sense of
Barthélemy et al. (2001) (see p. 85), or possibly as a coarse grammar
within a coarse-to-fine framework (see p. 112). This will be pursued in
future work.

6.4.2 Formal Properties of LCFRS and SRCG

Rank and fan-out of LCFRS, resp. rank and arity of SRCG, are two
dimensions of grammars which independently influence their pars-
ing complexity (Rambow and Satta, 1999). Recently, for this reason,
rank and fan-out reduction of LCFRS have attracted interest, more
precisely, the question of how grammars can be transformed to equiv-
alent grammars with lower rank and/or fan-out, ideally such that an
optimal parsing complexity is guaranteed. This problem is also called
grammar factorization.

Rank and Fan-Out Reduction

Gómez-Rodríguez et al. (2009a) present an algorithm which trans-
forms an LCFRS into a strongly equivalent LCFRS which has rank
2 or less and has minimal fan-out.

For those LCFRSs which have fan-out at most 2, Gómez-Rodríguez
and Satta (2009) present a binarization algorithm, i. e., an algorithm
for the reduction of the rank to 2, which runs in optimal time (linear
time in the rule length) and does not increase the fan-out of the rule.

184 data-driven parsing beyond cfg

Sagot and Satta (2010) present the counterpart to Gómez-Rodríguez
et al. (2009a). Their algorithm transforms an LCFRS with a fan-out of
at most 2 into a strongly equivalent LCFRS with a minimal rank.

Parsing Complexity

Recently, work has appeared which is concerned with algorithms that
find the optimal parsing algorithm for a given grammar (meta parsing
algorithms). Concerning LCFRS, these are algorithms in which fan-out
and rank are optimized in function of the parsing complexity instead
of assuming a fixed fan-out or rank as the algorithms above.

Gildea (2010) investigates how one can find the grammar factor-
ization which guarantees optimal parsing complexity. Gildea (2011)
describes a more general construction for finding the optimal parsing
strategy for different formalisms.

Crescenzi et al. (2011) extend Gildea’s work to head-driven parsing,
i. e., parsing algorithms which take lexical heads into account. Their
work is motivated by the work on data-driven parsing presented in
this thesis (as published in Kallmeyer and Maier (2010)). A head-driven
strategy is a parsing strategy which first expands the lexical head of
a rule and then, one by one, adds the modifiers to the partial parse
with the lexical head. Crescenzi et al. show that choosing the parsing
strategy which has either the lowest time complexity or the lowest
space complexity out of the n! different strategies which exist for a
single LCFRS rule is NP hard. Crescenzi et al.’s approach is different
to Gildea’s (2010). They show strict NP hardness while Gildea only
shows that a polynomial time algorithm for finding the optimal pars-
ing strategy would imply the existence of better algorithms for the un-
derlying graph-theoretical problems. However, their results only hold
for head-driven strategies, while Gildea’s results hold for unrestricted
parsing strategies.

Note finally that the problem of grammar factorization has been
addressed for other formalisms as well, e. g., for Synchronous CFG.
See Gildea (2010) for pointers to the corresponding literature.

Well-Nestedness

Gómez-Rodríguez et al. (2010) present a parsing algorithm for well-
nested LCFRS (def. 5.13, p. 140) which runs in O(f · |G| · |w|2f+2), for
an input string w and a grammar G with fan-out f. In contrast, Seki’s

6.5 conclusion 185

algorithm (the one we use) runs in O(|G| · |w|f·(r+1)) where r is the rank
of G (Gómez-Rodríguez and Satta, 2009). In other words, as Gómez-
Rodríguez et al. remark, by removing ill-nestedness, we make the pars-
ing complexity depend exclusively on the fan-out, instead of the rank
and the fan-out. This clear is made clear by lemma 5.11, p. 139: In
well-nested clauses, RHS predicates are independent from each other,
only in the case of ill-nestedness one must keep track of associations
between them in other to find the desired crossing configuration, and
therefore gets a parsing complexity which depends on the rank of the
grammar.

6.5 conclusion

In this section, methods have been presented which are necessary for
data-driven parsing of PSRCG. These include methods for improving
the unbinarized grammar, a binarization algorithm for head-outward
binarization and markovization, and a probabilistic parser for PSRCG
with outside score estimates for speed-up, to be used in the Weighted
Deductive Parsing framework.

Many interesting points remain open for future research.

• One path which should be investigated is the benefit of the bina-
rization algorithms which aim at minimizing arity and rank of
clauses for data-driven parsing.

• Well-nestedness is a property which captures almost all trees
with discontinuities (see the previous chapter); and disallowing
well-nestedness allows for more efficient parsing. To allow well-
nestedness nevertheless, one could exploit the work of Gómez-
Rodríguez et al. (2011); or one could try to use the parser for
well-nested grammars and add ill-nestedness in post-processing
with techniques such as the ones presented on p. 116 for adding
discontinuities.

• The Maximum Likelihood Estimate as used here also has poten-
tial for improvement. It is a requirement of the definition SRCG
that predicate names be distinguished by their arities. From a lin-
guistic point of view, however, one would prefer that the proba-
bilistic model is not aware of them. A model in which expansions
depend only on the symbols and not on the arity of the symbols

186 data-driven parsing beyond cfg

should be investigated. Another idea which should be pursued
is the separate learning of ID and LP, as already explored by
Levy (2005).

• The algorithm of Boyd (2007) for crossing branches resolution
in NeGra provides an interesting perspective: Its output could
possibly be used directly with a PCFG parser combined with
a re-introduction of crossing branches in post-processing, or it
could serve as a guide for the parsing with a SRCG, resp. LCFRS,
in the sense of Barthélemy et al. (2001), or it could be used within
a coarse-to-fine framework (p. 112).

7
PA R S I N G D I S C O N T I N U O U S C O N S T I T U E N T S

In this chapter, I present an application of the parsing techniques from
the previous chapter. I parse the German NeGra treebank with rparse

(cf. section 6.3). In section 7.1, I present the evaluation procedures
we use. In section 7.2, I present the treebank-specific preprocessing.
Section 7.3 is dedicated to the experiments and the discussion of their
results. In section 7.4 I present related work, section 7.5 concludes this
chapter.

Material in this chapter has been published previously in Maier
(2010) and Maier and Kallmeyer (2010).

7.1 evaluation

In the following, our evaluation metrics will be presented. They are
all implemented within rparse.

7.1.1 Bracket Scoring

The first is bracket scoring (henceforth Evalb) (see section 4.2.2). While
it has its known shortcomings, it also has the advantage that to a
certain extent, we can compare our work to previous work on parsing
NeGra. In the context of LCFRS, we compare sets of tuples of the form
[i,A,~ρ], where i ∈N is a sentence number, A is a non-terminal in the
derivation tree for sentence i and ~ρ is a range vector representing the
ranges in the input string covered by A. One set is obtained from the
parser output, and one from the corresponding treebank trees. We do
not exclude or collapse labels (Black et al., 1991). Using these tuple sets,
we compute labeled and unlabeled recall (LR/UR), precision (LP/UP),
and the F1 measure (LF1/UF1), with the same approach as the Evalb
program (Sekine and Collins, 1997) (see again section 4.2.2). Note that
range vectors must be an exact match, there is no partial credit for
partially correct range vectors.

187

188 parsing discontinuous constituents

B<

B C

B t3 B >B t4

t1 t2 z t1 t2 z

x y x y

Figure 57: TDist example

7.1.2 Tree Edit Distance

Evalb does not necessarily reflect parser output quality (Rehbein and
van Genabith, 2007a; Emms, 2008; Kübler et al., 2008). One of its major
problems is that attachment errors are penalized too hard. A wrong
attachment may cause many other (otherwise correct) spans to become
wrong. As the second evaluation method, we therefore choose the tree-
distance measure (henceforth TDist) of Zhang and Shasha (1989), which
levitates this problem. It has been proposed for parser evaluation by
Emms (2008). TDist is an ideal candidate for the evaluation of the
output of a PLCFRS parser, since whether trees have crossing branches
or not is not relevant to it.

Following Emms (2008), for two trees υK = (VK,EK, rK) and υA =

(VA,EA, rA) to be compared, the basis for this metric are partial map-
pings σ : VK → VA. For a so-called T -mapping, only those node map-
pings are considered which preserve left-to-right order and ancestry.
Within these mappings, insertion, deletion, and swap operations are
identified. They are represented by the respective sets I = {v ∈ VA |

v /∈ range(σ)}, D = {v ∈ VK | v /∈ domain(σ)}, S = {v ∈ VK | ΛVK(v) 6=
ΛVA(σ(v))}. Furthermore, we consider the set M = {v ∈ VA | ΛVK(v) =

ΛVA(σ(v))} representing the matched nodes. The cost of a T -mapping
is the total number of these operations, i.e. |I| + |D| + |S|. The tree
distance between two trees υK and υA is the cost of the cheapest T -
mapping.

Consider figure 57, borrowed from Emms, as an example for a T -
mapping. Inserted nodes are prefixed with >, deleted nodes are suf-
fixed with <, and swapped nodes are linked with arrows. Since in
total, four operations are involved, to this T -mapping, a cost of 4 is
assigned. For the computation of TDist, we exploit the algorithm of

7.2 treebank-specific preprocessing 189

"

$(

In

APPR

Zukunft

NN

werde

VAFIN

ich

PPER

nur

ADV

noch

ADV

clean

ADJD

leben

VVINF

"

$(

,

$,

versicherte

VVFIN

er

PPER

dem

ART

Richter

NN

.

$.

AC NK

PP

NK NK

NP

MO MO MO HD

AP

MO HD

VP

OCHD SB

S

OC HD SB DA

S

VROOT

Figure 58: NeGra tree

Klein (1998), as it is presented in section 3.2.1 of Bille (2005). The algo-
rithm runs in polynomial time in the size of the treebanks which are
to be compared. We evaluate whole trees (not roof trees, see Emms
(2008)); furthermore, in order to convert the tree distance measure
into a similarity measure like Evalb, we use the macro-averaged Jac-
card normalization as defined by Emms. For a T -mapping σ from υK
to υA and the sets D, I, S and M as introduced above, we compute it
as follows.

jaccard(σ) = 1−
|D|+ |I|+ |S|

|D|+ |I|+ |S|+ |M|

where, in order to achieve macro-averaging, the numerators and de-
nominators are summed over all tree pairs before the division.

7.2 treebank-specific preprocessing

We preprocess NeGra in accordance with the usual practices known
from the literature. These will be explained here. Figure 58 shows the
NeGra annotation of (21). We will use this tree as running example.

(21) “In Zukunft werde ich nur noch clean leben, versicherte er
dem Richter.
“In future will I only still clean live, assured he the judge.
“In the future, the only thing I will do is to live clean”, he
assured the judge.

190 parsing discontinuous constituents

"

$(

In

APPR

Zukunft

NN

werde

VAFIN

ich

PPER

nur

ADV

noch

ADV

clean

ADJD

leben

VVINF

"

$(

,

$,

versicherte

VVFIN

er

PPER

dem

ART

Richter

NN

.

$.

AC NK

PP

NK NK

NP

MO MO MO HD

AP

MO HD

VP

OCHD SB

S

OC HD SB DA

S

VROOT

Figure 59: NeGra tree with attached punctuation

7.2.1 Punctuation

In NeGra, punctuation is not included in the annotation. It is simply
attached to the virtual root node. This is not satisfactory for parsing,
since it augments the arity of the extracted grammar, and further-
more makes few sense from a linguistic point of view (in the Penn
Treebank (PTB), punctuation is included in the annotation). We use a
two-pass algorithm for punctuation attachment. In the first pass, we
attach all punctuation as high as possible in the tree, but as low as
necessary in order to not introduce new crossing branches. In a sec-
ond pass, we review the attachment of all punctuation nodes carrying
the $(tag. This is punctuation which comes in pairs, such as quota-
tion marks, parentheses, etc. The goal is to identify pairs and to attach
both parts to the same level, preferably to the lower position of both.
Note that it is very difficult to find satisfactory attachment positions
for punctuation in a fully automatic fashion. Heuristics tend to always
introduce new discontinuities in a fraction of the sentences. The two-
pass algorithm we use, in this formulation due to Kilian Evang, is algo-
rithm 5/6. As input, it expects a treebank Υ = {(i,υi, si) | 1 6 i 6 m},
m ∈N. The function lower, algorithm 6, expects a punctuation node
v and a node d being a candidate to which v could be lowered.

Figure 59 shows the tree from figure 58 with attached punctuation.
Note that the first quotation mark is lowered to the S node in the
second pass – the first pass does not touch it.

7.2 treebank-specific preprocessing 191

for all (i, (Vi,Ei, ri), si,1/pi,1 · · · si,n/pi,n) ∈ Υ do
for all v ∈ Vi with π(v) = {j} and pi,j is a punctuation POS tag do

lower(v, j, ri)
end for
Let M = ∅ the set holding possible left matches {second pass starts here}
for all l ∈ {si,1, . . . , si,n} do

for all r ∈M do
if r is matching right part of paired punct. for l then

if rightmost terminal dominated by parent of l is left adjacent to
r then

move r to be the rightmost child of the parent of l
else

if leftmost terminal dominated by parent of r is right adjacent
to l then

move l to be the leftmost child of the parent of r
end if

end if
remove l from M and continue with next l

end if
end for
if l is a potential left part of a paired punctuation then

add l to M
end if

end for
end for

Algorithm 5: Punctuation attachment (NeGra)

192 parsing discontinuous constituents

function lower(v, j, d)
Let n ∈N be the number of children of d
for all children vi of d, 1 6 i 6 n do

if j < min(π(vi)) then
move v to be the ith child of d
break

else
if j < max(π(vi)) then

lower(v, j, vi)
break

end if
end if

end for

Algorithm 6: Punctuation attachment, function lower

7.2.2 Resolving Crossing Branches

To test the parser performance on PCFG, i. e., Probabilistic Simple 1-
RCG, we create a version of NeGra with no crossing branches. For this
task, we use the algorithm of Thorsten Brants’ program, i. e., the one
which is included in the NeGra distribution for this task. Due to a lack
of publications on this program, the algorithm was obtained through
reverse-engineering (Maier, 2004). Originally, the reverse-engineering
was done to allow for PCFG parsing of TIGER. The original program
does not resolve all crossing branches in TIGER.

The algorithm, which is formulated on top of the export format
node numbering (cf. p. 102), traverses the tree bottom-up. At each non-
terminal it determines the respective head1 and moves as few children
as possible (except the head) to higher positions in the tree such that
all discontinuities of the node are resolved.
Definition 7.1 (export numbering). Let υ = (V ,E, r) be a constituency
structure which is such that V contains at most 499 terminals and
500 non-terminals. An export numbering of υ is given by a function
f : V →N0 which is as follows.

1. f(r) = 0, and for all v ∈ V \ {r},

1 Note that we do not use the head marking algorithm from 6.1.3. Instead, we mark
as head of a node its leftmost child with the edge label SC. If there is no such child,
then we mark as head its rightmost child with the edge label NK. If there is no such
child we mark the leftmost child as head.

7.2 treebank-specific preprocessing 193

a) if fout(v) = 0 and Λ(v) = i, then f(v) = i,

b) if fout(v) > 0, then f(v) > 500 and f(v) 6 999, and for all
500 6 i < f(v), there is a u 6= v in V with f(u) = i.

2. For all v ′, v ′′ ∈ V ,

a) if v ′ = v ′′ then f(v ′) = f(v ′′),

b) if 〈v ′, v ′′〉 ∈ E+ then f(v ′) > f(v ′′), and

c) if 〈v ′′, v ′〉 ∈ E+ then f(v ′) < f(v ′′).

For convenience, given a constituency structure (V ,E, r), we intro-
duce the function fp : V → V which is undefined for v = r and which
yields the parent node of v for all v ∈ V \ {r}.

The algorithm expects a treebank Υ = {(i,υi, si) | 1 6 i 6 m},m ∈N,
as input, with fi being the export numbering for υi and f ′i being the
inverse of fi (i. e., the function which yields a node given a number).
All trees υi = (Vi,Ei, ri) are transformed by iterating through all non-
terminals v ∈ Vi in export order, i. e., such that for all v1, v2 ∈ Vi, v1 is
visited before v2 iff fi(v1) < fi(v2). If v has more than one yield block,
then the children of v excluding its head daughter are considered for
movement. The target node, i. e., the new parent node for those chil-
dren of v which are to be moved is the node with the export number
max({f1(v), f2(v)}), where f1 : V → N, f2 : V → N are two functions
which are defined as follows.

1. For the computation of f1 for some given node v, one regards
the sequence of terminals from the leftmost terminal dominated
by the parent of v to the leftmost terminal dominated by v it-
self and computes for each of the terminals the node with the
lowest export number higher than the export number of the
parent of v which dominates the terminal. f1(v) is then the node
with the highest export number taken from this set of nodes.
More formally, f1 is computed as follows. First, let Vt = {t ∈
V | fout(t) = 0}. For all v ∈ V , compute V ′ = {v ′ ∈ Vt |

Λ(v ′) > min(π(fp(v))) and Λ(v ′) 6 min(π(v))}. Let g : V ′ → N

be a function such that for all v ′ ∈ V ′, g(v ′) = min({fi(v ′′) |

v ′′ ∈ V and there is a 〈v ′′, v ′〉 ∈ E∗ and fi(v ′′) > fi(v)}). Finally,
f1(v) = f

′
i(max({g(v ′′′) | v ′′′ ∈ V ′})).

2. For some given node v, f2 yields the node with the highest
export number from the set of parent nodes of terminals in

194 parsing discontinuous constituents

In

APPR

Zukunft

NN

werde

VAFIN

ich

PPER

nur

ADV

noch

ADV

clean

ADJD

leben

VVINF

AC NK

PP

MO MO MO HD

AP

MO HD

VP

OCHD SB

S

Figure 60: Resolving crossing branches in NeGra

the gaps of v. More formally, for all v ∈ V , let Vgaps = {vgap ∈
V | fout(vgap) = 0 and Λ(vgap) /∈ π(v) and Λ(vgap) > min(π(v))
and Λ(vgap) < max(π(v))}; finally f2(v) = f ′i(max({fi(vp) | vp ∈
V and there is a vgap ∈ Vgaps with 〈vp, vgap〉 ∈ E})).

While the two functions f1 and f2 may seem to be defined in a some-
what arbitrary way, note that they do mirror exactly the behavior of
Brants’ original program. Figure 60 shows the relevant part of the re-
sult of transforming the tree from figure 58.

We do not use the algorithm by Boyd (2007) here (cf. p. 102) since
to our best knowledge, there are no parsing results we could compare
ours too. However, Boyd’s algorithm provides an interesting perspec-
tive for future work, as already mentioned in section 6.4.

7.2.3 Grammar Annotation

Grammar annotation (cf. section 6.1.1) has previously proven to be suc-
cessful for German treebanks (Versley, 2005). For NeGra, we try two
manually introduced splits of non-terminal labels. The grammatical
function annotation provided with the edge labels already provides a
finer-grained discrimination of the non-terminal labels. However, first,
not all of them are equally informative, and second, using all of them
leads to sparse data problems, even with PCFG parsing (Kübler, 2005).
We therefore pick only some of the grammatical function labels.

sentence-level refinement The S category is very coarse. Two
types of sentences which can be clearly distinguished but carry

7.3 experiments 195

the same label S are relative clauses and (regular) clauses. In
this split, we therefore change the label of all relative clause S
(identifiable via the RC edge label) into S-RC.

np refinement The NP category, which is very frequent, occurs in
rather different contexts. We take advantage of the fact that its
different grammatical functions are given in its edge labels and
extend all NP labels with their edge labels.

7.2.4 Head Rules

For head-driven binarization, we must mark lexical heads (cf. section
6.1.3). As rules for this approach, we use the head rules for NeGra
from the Stanford parser (Klein and Manning, 2003c) as obtained from
http://nlp.stanford.edu/software/lex-parser.shtml. A complete
listing of the rules can be found in Appendix A.

7.3 experiments

We now apply the parser to the actual data.

7.3.1 Data

Due to time and space constraints, we conduct all experiments in
which we test different parameter combinations with a data set in
which sentence length is restricted to not more than 30 words, called
NeGra30. As a proof of feasibility, we also conduct one experiment
with all sentences with a length up to 40 words. The corresponding
data set is called NeGra40. According to common practice, for both
sets, we use the first 90% for training and the remaining 10% as a
test set. Table 9 shows the properties of the data (before splitting).
Per-node values are values for non-terminal nodes only. The most im-
portant fact about the data sets is that a gap occurs in one out of about
four sentences, but only in one out of about twenty nodes. While the
former makes clear that gaps cannot be just ignored, the latter indi-
cates that there could be a sparse data situation with respect to learn-
ing a probabilistic model.

http://nlp.stanford.edu/software/lex-parser.shtml

196 parsing discontinuous constituents

negra30 negra40

sentence len. limit 30 40

number of sentences 18,335 19,931

tokens 267,097 322,179

non-terminal nodes 127,302 151,331

av. sentence length 14.57 16.16

av. tree height 4.63 4.86

max. tree height 13 13

av. children per node 2.95 3.00

max. children per node 22 34

sentences with no gaps 13,842 (75.49%) 14,615 (73.33%)

av. gap degree per sent. 0.30 0.33

nodes with no gaps 120,902 (94.97%) 143,409 (94.77%)

av. gap degree per node 0.06 0.06

max. gap degree 6 8

well-nested sentences 17,937 (97.83%) 18,879 (97.36%)

Table 9: NeGra: Data sets for PSRCG

7.3 experiments 197

As for the properties of the SRCGs we extract from the data sets,
from NeGra30, we obtain a 7-SRCG with 16,599 clauses and 73 unique
clause LHS predicate labels, while from NeGra40 we obtain a 9-SRCG
with 22,587 clauses and 134 unique clause LHS predicate labels. Note
that the arities are higher than the ones in chapter 5 because we do
not remove punctuation as we did before; inspite of the attachment
algorithm presented before, achieving a lower arity is very difficult.

We conduct all experiments in parallel on a version of NeGra with
resolved crossing branches, i. e., we use the same data set as before
but with the transformation described in the previous section. These
data sets will be called NeGra30CF and NeGra40CF. The main goal
of this is to investigate the differences between PCFG and PSRCG
parsing. For those experiments in which both behave similarly, we
will therefore not elaborate on the context-free experiments.

7.3.2 Parsing Results

For the experiments, the newest Oracle Java 7 was used, running on
a 3.16GHz Intel Xeon node. The virtual machine was provided with 7
GB per experiment unless noted otherwise.2

Binarization

We start out by investigating the different markovizations and bina-
rization and the interplay between both.

unary vs . binary top and bottom clauses At first, we in-
vestigate the effect of binary, resp. unary top and bottom clauses. For
this, we perform experiments with NeGra30 and NeGra30CF for all
four possible combinations, using Optimal and markovization set-
tings v = 1,h = 2. In a second turn, we repeat the four experiments
with HeadOutward, in a third turn with Determ.

2 I am indebted to the Computation Services Department at the Faculty for Philoso-
phy of the University of Düsseldorf for helping me with the access to this machine,
as well as I am indebted to Jochen Saile for helping me with the access to machines of
the Department for Computational Linguistics at the University of Tübingen for pre-
vious experiments. Thanks furthermore for helping me with experiments without
red tape to Sandra Kübler, University of Indiana, and Ivelina Nikolova, Bulgarian
Academy of Sciences.

198 parsing discontinuous constituents

For NeGra30, the results lie very close together. Using Optimal,
we get 74.83 labeled F1 for BinaryTop with UnaryBottom and 74.90
for BinaryTop with BinaryBottom. For UnaryTop with UnaryBot-
tom, we get 74.80, while for UnaryTop with BinaryBottom , we get
74.87. Using HeadOutward, we get 74.09 labeled F1 for BinaryTop
with UnaryBottom, 74.12 for BinaryTop with BinaryBottom, 74.07
for UnaryTop with UnaryBottom, and 74.11 for UnaryTop with Bi-
naryBottom. The behavior of NeGra30CF is very similar, but the
bracket scoring gives better results (which is normal, given that pars-
ing with an SRCG is a more difficult task than parsing with a CFG):
For HeadOutward, we get 76.00, resp. 75.97 labeled F1 for the Binary-
Bottom experiments (with BinaryTop and UnaryTop, respectively),
and 75.82, resp. 75.77 for the UnaryBottom experiments (again with
BinaryTop and UnaryTop, respectively). Optimal is a little better—
for both BinaryBottom experiments, we get 76.34, and for both the
UnaryBottom experiments we get 76.25.3

What is more interesting than the results is that for both Optimal
and HeadOutward, UnaryBottom produces about two to four times
as many items as the BinaryBottom. UnaryTop in turn produces
only slightly more items than BinaryTop (around 10-15% more). De-
term, for which, of course, all results are identical (labeled F1 72.10 for
the SRCG and 74.85 for the CFG), behaves similarly, even though the
difference between the number of produced items is even bigger (4.5
to 5 times as many items for UnaryBottom vs. BinaryBottom, same
small difference for unary vs. binary top clauses). Again, also with
respect to the numbers of items produced, the data without crossing
branches behaves very similarly.

An explanation for the difference in the number of items is the fact
that in order to arrive on top of a binarized clause, one must simply
produce more items. Parsing time gets higher, not only because a big-
ger agenda has to be managed, but also because a bigger grammar
has to be searched. As for the non-deterministic binarizations, having
a unary clause at the bottom introduces a bigger factorization than
the unary clause at the top. More factorization causes a bigger search
space and more items. As the evaluation shows, the additional factor-
ization is not even beneficial.

3 As for the experiments with the identical results, the output is not totally identi-
cal. There are differences in a small number of sentences; however, the number of
matching brackets turns out to be identical.

7.3 experiments 199

lp lr lf1 up ur uf1

HeadOutward 74.00 74.24 74.12 77.09 77.34 77.22

HeadOutwardKM 74.00 74.13 74.07 77.20 77.33 77.26

Optimal 74.92 74.88 74.90 77.77 77.73 77.75

R-To-L 74.94 74.44 74.69 77.71 77.20 77.45

L-To-R 75.08 74.69 74.88 77.95 77.54 77.75

Determ 72.40 71.80 72.10 75.67 75.04 75.35

Table 10: NeGra30: Binarizations, BinaryBottom

lp lr lf1 up ur uf1

HeadOutward 73.77 74.41 74.09 76.90 77.57 77.23

HeadOutwardKM 74.15 74.58 74.36 77.41 77.86 77.64

Optimal 74.70 74.96 74.83 77.55 77.82 77.68

R-To-L 74.57 74.63 74.60 77.31 77.37 77.34

L-To-R 74.77 74.84 74.81 77.51 77.59 77.55

Determ 72.40 71.80 72.10 75.67 75.04 75.35

Table 11: NeGra30: Binarizations, UnaryBottom

binarization orders We now investigate the performance of
different binarization orders. Again, we set the markovization to v = 1
and h = 2 and perform experiments with NeGra30 and NeGra30CF.
Since using BinaryTop or UnaryTop did not make much of a dif-
ference, except BinaryTop being slightly faster, we limit ourselves to
BinaryTop, and combine it with both BinaryBottom and UnaryBot-
tom. Tables 10 and 11 contain the results for NeGra30.

For NeGra30, all results for markovizing binarizations lie very close
together (between 74.07 and 74.90 labeled F1), Determ is worse (72.10
labeled F1). NeGra30CF behaves almost identically, the results being
about two points better (between 75.82 and 76.84 labeled F1 for the
markovizing binarizations, 74.85 for Determ). Throughout, for both,
BinaryBottom is very slightly better than UnaryBottom, and the
best results are obtained with Optimal and L-To-R, resp. R-To-L for
NeGra30CF.

200 parsing discontinuous constituents

The different binarization strategies result in a different number of
produced items and therefore in different parsing speeds. Figure 61
depicts the numbers of items which are produced for each of the bina-
rizations with NeGra30, for BinaryBottom (top) and UnaryBottom
(bottom). We can make the following observations for NeGra30.

• The proximity of the results from the evaluation indicates that
both BinaryBottom und UnaryBottom are about equally suc-
cessful. Consequently, a higher number of items indicates that
the search space is just traversed in an unfavorable way. As for
the difference between BinaryBottom and UnaryBottom in
terms of the number of items which is produced for each of the
binarization orders, we see they behave similarly, with the differ-
ence that BinaryBottom produces very roughly about a third of
the items of UnaryBottom.

• HeadOutward and HeadOutwardKM also behave very simi-
larly. This indicates that the actual order of adding the sisters of
the head does not make a big difference.

• The numbers of items produces by L-To-R and Determ are also
fairly close together, especially for BinaryBottom. This is obvi-
ously due to the fact that both binarize the clauses strictly from
left to right. Nevertheless, the deterministic strategy produces
more items, while yielding worse results. This indicates that the
presence or absence of markovization is more important for the
results than the actual binarization order. The coverage is also
improved by markovization. In the Determ experiment, 78 sen-
tences had no parse, while in the other experiments, only 15 to
35 sentences had none.

For NeGra30CF, much less items are produced, and a much higher
speed is achieved (for HeadOutward with UnaryBottom, 2 seconds
per sentence instead 10 seconds with NeGra30). This reflects the lower
parsing complexity. Furthermore, we can observe that the number of
produced items for the different binarization orders lie closer together.

Markovization

For the investigation of different markovizations, we turn to the most
successful settings so far: BinaryTop with BinaryBottom and Opti-
mal. Table 12 contains the parsing results and the number of clauses

7.3 experiments 201

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 19 21 23 25 27 29

it
e
m

s
(i

n
 1

0
0

0
)

sentence length

BinaryBottom

Headdriven

Headdriven-KM

Optimal

R-to-L

L-to-R

Deterministic

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 19 21 23 25 27 29

it
e
m

s
(i

n
 1

0
0

0
)

sentence length

UnaryBottom

Headdriven

Headdriven-KM

Optimal

R-to-L

L-to-R

Deterministic

Figure 61: NeGra30: Binarization items

202 parsing discontinuous constituents

v h lp lr lf1 up ur uf1 cl . sym .

1 1 73.63 73.58 73.61 76.76 76.71 76.73 10,430 1,316

1 2 74.92 74.88 74.90 77.77 77.73 77.75 20,035 5,212

1 ∞ 71.98 71.97 71.97 75.32 75.31 75.32 34,260 17,686

2 1 73.91 73.75 73.83 76.95 76.78 76.86 21,231 3,991

2 2 74.66 74.58 74.62 77.41 77.33 77.37 34,110 11,789

2 ∞ 71.61 71.67 71.64 74.78 74.85 74.82 47,634 25,602

3 1 73.82 73.62 73.72 76.64 76.43 76.53 32,684 8,444

3 2 74.09 74.18 74.13 76.77 76.87 76.82 46,399 18,710

3 ∞ 71.17 71.42 71.29 74.43 74.68 74.55 59,386 32,550

Table 12: NeGra30: Markovizations

and symbols in the binarized grammars for NeGra30. The correspond-
ing results and grammar properties for NeGra30CF are contained in
table 13.

For NeGra30, among the different horizontal markovizations, h = 2

seems to produce the best results. Parent annotation (v = 2) and grand-
parent annotation (v = 3) actually let the parsing results deteriorate
slightly, and additionally bloat the grammar. This is due to the flat-
ness of the NeGra annotation. We get an average times of about 200,
40 and 20 sec. per sentence for all experiments with h = 1, h = 2,
and h = 3, respectively; the different vertical markovizations vary
among themselves only slightly. In other words, the parsing times de-
pend rather on the horizontal than on the vertical markovization. For
NeGra30CF, the best results are actually obtained with parent anno-
tation and h = 2.

On the basis of our results, we will adopt v = 1, h = 2 as the
standard setting for further experiments with markovization: It offers
the best trade-off between speed and results.

Grammar Annotation

To investigate the effect of grammar annotation (Split), we continue
to use BinaryTop with BinaryBottom, Optimal, and markovization
with v = 1 and h = 2. Table 14 contains the experimental results

7.3 experiments 203

v h lp lr lf1 up ur uf1 cl . sym .

1 1 75.03 74.11 74.57 78.01 77.05 77.53 6,615 527

1 2 76.32 76.36 76.34 79.12 79.17 79.14 15,441 3023

1 ∞ 73.51 76.22 74.84 76.70 79.52 78.09 32,910 17,659

2 1 75.36 74.29 74.83 78.15 77.04 77.59 13,548 1,659

2 2 76.95 76.77 76.86 79.48 79.30 79.39 26,055 7,171

2 ∞ 73.67 76.23 74.92 76.60 79.26 77.90 43,119 23,667

3 1 75.42 74.44 74.93 78.03 77.02 77.52 21,213 3,882

3 2 76.39 76.46 76.42 78.93 79.00 78.97 35,022 11,725

3 ∞ 72.92 75.67 74.27 75.90 78.76 77.30 51,909 28,727

Table 13: NeGra30CF: Markovizations

lp lr lf1 up ur uf1

Baseline 74.92 74.88 74.90 77.77 77.73 77.75

NP 75.21 74.95 75.08 78.16 77.88 78.02

S 75.81 75.65 75.73 78.31 78.15 78.23

NP ◦ S 75.93 75.57 75.75 78.60 78.22 78.41

Table 14: NeGra30: Grammar annotation

for the baseline (Optimal), the two grammar annotations from p. 194,
both separately, and the combined annotation, on NeGra30.

We see that the grammar annotations improve the results and that
the combined annotations indeed combine the advantages of both.
Furthermore, the numbers of produced items shown in figure 62 in-
dicate that the grammar annotation helps to find a better parse more
quickly.

For NeGra30CF, both the results and the number of produced items
show the same pattern. With NP ◦ S, we obtain a labeled F1 of 77.80
vs. 76.34 for the baseline.

Outside Estimates

The computation of the context summary estimates in 6.2.2 is very de-
manding in terms of time and space requirements. We limit ourselves

204 parsing discontinuous constituents

 50

 100

 150

 200

 250

 300

 350

 400

 19 21 23 25 27 29

it
e
m

s
(i

n
 1

0
0

0
)

sentence length

Baseline

NP

S

NP+S

Figure 62: NeGra30: Grammar annotation items

to the two estimates which were computable at all, namely the LR
estimate (p. 176) and the LN estimate (p. 177). While the former is
non-monotonic and therefore gives us a best-first parser instead of an
A∗ parser, the latter is monotonic and allows for true A∗ parsing.

On NeGra30 with Optimal, markovization v = 1 and h = 2, the
results are 73.76 labeled F1 for the LR estimates and 74.88 for the LN
estimate. The parser output for the baseline differs by two brackets
(within a single sentence), hence the result difference of 0.02 points.
The two analyses of the sentence have the same probability, therefore,
this is due to a different tie break at some point during parsing. As for
the difference in the numbers of items which are produced, consider
figure 63. For sentences of length 30, for instance, the LN estimate re-
duces the parsing time from an average of over 500 seconds to around
150 seconds; with the LR estimates, sentences of length 30 get parsed
in average in around 50 seconds. The speedup for other binarization
orders is even higher, as additional experiments have shown.

On NeGra30CF the behavior with the same settings is comparable
in terms of speed gain. However, we obtain a labeled F1 of 76.32 for
both estimates vs. 76.34 for the baseline. The closeness of the result
of the LR estimate to the baseline shows that the estimate acts more
monotonous without the crossing branches. The parser output for the

7.3 experiments 205

 50

 100

 150

 200

 250

 300

 350

 400

 19 21 23 25 27 29

it
e
m

s
(i

n
 1

0
0

0
)

sentence length

Baseline

LN

LR

Figure 63: NeGra30: Estimates

LN estimate and the baseline differ again by two brackets in a single
sentence. Both analyses for the sentence have the same probability,
therefore this is also due to a different tie break during parsing.

Cutoff, Gaps and Well-Nestedness

With the same settings, we now perform experiments with Cutoff,
GapFilter and Ill-nestedFilter. Table 15 contains all results.

cutoff Cutoff causes a major drop in result quality. A look at
the sizes of the grammars after applying the cutoff reveals the cause:
After Cutoff 1, the unbinarized grammar contains only 29% of the
clauses of the original grammar (4,848 out of 16,599), after Cutoff 2
18% (2,998), and after Cutoff 3 13% (2,256). This shows that we are
faced with extreme data sparseness. Cutoff also drastically reduces
parsing time (from an average of around 30 seconds per sentence to
25 sentences per second with Cutoff 3).

As for the number of removed clauses with NeGra30CF, we obtain
the same picture. The baseline grammar contains 15,333 clauses and
Cutoff 1, 2 and 3 grammars contain 4,534, 2,811 and 2,127 clauses,
respectively. Nevertheless the result quality does not deteriorate as

206 parsing discontinuous constituents

lp lr lf1 up ur uf1

Baseline 74.92 74.88 74.90 77.77 77.73 77.75

Cutoff 1 71.99 67.83 69.85 75.27 70.91 73.03

Cutoff 2 71.39 61.68 66.18 74.93 64.75 69.47

Cutoff 3 70.71 57.28 63.29 74.31 60.19 66.51

GapFilter 0 73.77 73.29 73.53 77.03 76.53 76.78

GapFilter 1 74.11 73.72 73.92 77.17 76.76 76.96

GapFilter 2 74.26 73.92 74.09 77.26 76.92 77.09

GapFilter 5 74.90 74.87 74.88 77.80 77.77 77.78

GapFilter 10 74.90 74.87 74.88 77.80 77.77 77.78

Ill-nestedFilter 74.97 74.83 74.90 77.87 77.72 77.80

Table 15: NeGra30: Cutoff, gaps, well-nestedness

much as with NeGra30. While we obtain 76.34 labeled F1 with the
baseline, we obtain 73.15, 70.78 and 68.61 with Cutoff 1, 2 and 3,
respectively. In any case, this indicates that Charniak’s (1996) result
does not generalize to PSRCG.

gap filter With the GapFilter, we get results which are notice-
ably lower than the baseline when blocking all gaps and gaps longer
than one, resp. two words. As for the number of items which gets
blocked, when we use GapFilter 5, an effect is noticeable with sen-
tences longer than 13 words, for which the number of blocked items
climbs more or less proportional to the number of calls the range vec-
tor compatibility check method. The average parsing time for a single
sentence is about ten seconds lower than with the baseline.

ill-nestedness filter With Ill-nestedFilter, labeled F1 does
not change compared to the baseline. We even obtain a sightly higher
unlabeled F1, indicating not only that ill-nested structures can not be
recovered given our probabilistic model, but also that they can be
detrimental for it. Nevertheless, an additional experiment with L-To-
R binarization yielded results slightly higher than the baseline. This
shows that additional experiments are necessary to determine the ex-
act status of ill-nested structures. The amount of times the check of

7.3 experiments 207

range vector compatibility fails because the well-nestedness condition
is not fulfilled is more or less constant over all sentence lengths > 3.

More Data

We now choose parser settings which allow for a compromise between
speed and result quality inclining more towards speed. These are a
v = 1,h = 2 markovization with HeadOutward and BinaryBottom,
BinaryTop, both category splits, GapFilter with 10, and the LN esti-
mate. With those settings, we try to parse NeGra40 as a test of mere
feasibility. We also parse NeGra40CF with the same settings, for com-
parison.

As results for NeGra40, we obtain a labeled F1 of 74.06 (LP 73.98,
LR 74.14). In comparison, on 30 words the results are 75.10 F1, LP
75.19 and LR 75.02. For the 40 words, the memory provided to the Java
Virtual Machine had to be increased from 7 to 14 GB. The difference in
average speed is noticeable: While with 30 words, the average parsing
time for a sentence is 0.4 seconds, with 40 words it is 6.8 seconds. For
NeGra40CF, the distance between the results is comparable to the
previous experiments: We get a labeled F1 of 75.98 (LP 75.76, LR 76.20)
with an average parsing time of 3 seconds per sentence. The results for
NeGra30CF with identical settings are labeled F1 77.28, LP 77.75 and
LR 77.75, with an average parsing time of 0.6 seconds per sentence.4

Figure 64 shows the numbers of items which are produced. These
numbers explain the higher time. Additionally, with sentences over 30
words, we can see very clearly the effect of the higher parsing com-
plexity of NeGra40 compared to NeGra40CF.

Alternative Evaluation with Tree Edit Distance

Bracket scoring is not a fair evaluation measure (see section 7.1). In
order to show the possibilities of a different evaluation technique, we
re-evaluate the Split experiments and the corresponding Determ ex-
periment with TDist. Table 16 shows the results for both NeGra30
and NeGra30CF.

4 While those parsing times might seem long in comparison with other PCFG parsers
on the market, note that this is due to the fact that the parser engine is optimized
for PSRCG parsing. For PCFG parsing, many of the data structures are not needed
and a much more compact implementation would be possible.

208 parsing discontinuous constituents

 0

 500

 1000

 1500

 2000

 21 23 25 27 29 31 33 35 37 39

it
e
m

s
(i

n
 1

0
0

0
)

sentence length

NeGra40

NeGra40CF

Figure 64: Results for sentences with a length 6 40

determ basel . np s np ◦ s

NeGra30 79.79 80.77 81.19 81.37 81.53

NeGra30CF 85.82 86.70 87.03 87.19 87.41

Table 16: NeGra30 and NeGra30CF: TDist

7.3 experiments 209

While for all experiments, it is the case that an experiment with a
lower bracket score than another one also has a lower TDist score, we
see that the TDist results lie much closer together than the bracket
scoring results. This shows the importance of a point which remains
open for future work, namely the implementation of significance test.
While it is not the case that there is no work on significance tests in
parsing (Yeh, 2000; Bikel, 2001), using them is unfortunately far from
being standard in the statistical parsing community.

7.3.3 Discussion

Our experiments have shown that direct data-driven parsing of dis-
continuous constituents is indeed possible, and gives good results.
We have seen that several techniques known from PCFG parsing can
straight-forwardly be transferred, and that most of them have a com-
parable effect in PSRCG parsing.

Taking the unmodified grammar (through deterministic binariza-
tion) as a baseline, we have seen that only with certain markovization
settings and with grammar annotation, we get a substantial improve-
ment in result quality while maintaining a reasonable speed. Other
techniques which extend the binarized grammar such that it gener-
ates more only increase the number of items and thereby the parsing
time while having little or no positive effect on the result quality. This
holds for many techniques which might seem a good idea to try, such
as the unary top and bottom clauses in the binarization, binarization
orders with less directionality than others, etc.

The major reason for this problematic behavior seems to be the com-
binatorial explosion caused by different predicate arities, resp. block
degrees of non-terminals, combined with the fact that about 98% of all
constituents in the original treebank are continuous. We simply suffer
from a sparse data situation: While we can already learn a usable
model even from the unmodified treebank grammar, we must very
carefully choose in which direction we extend the binarized grammar.
A small extension of the binarized grammar might add many relevant
events, but it can also, at the same time, add a huge amount of irrel-
evant events to the model, blowing up the search space such that the
only effect remains a higher parsing time.

Future research on data-driven parsing should therefore concentrate
on methods for splitting the problem of learning a probability model

210 parsing discontinuous constituents

in several parts, for example in learning the block degrees separately
from the labels themselves, or, as Levy (2005) suggests, learning ID
separately from LP. The use of unsupervised methods seems to be
in order; this has also already been remarked by Levy. Another in-
teresting perspective is the combination of a grammar resulting from
Boyd’s transformation (see p. 102) with guided parsing (see p. 85), and
the use of coarse-to-fine parsing (see p. 112).

7.4 related work

How does our approach perform in comparison with previous work
in data-driven parsing?

The results from LCFRS parsing are not directly comparable with
PCFG parsing results, since LCFRS parsing is a harder task. How-
ever, we can compare them to our own PCFG parsing results. Fur-
thermore, since the bracket scoring metric coincides for constituents
without crossing branches, to a certain extent, a comparison is possi-
ble. In order to place our results in the context of previous work on
parsing NeGra, we cite some of the results from the literature which
were obtained using PCFG parsers with bracket scoring. Note that
these results were obtained on sentences with a length of 6 40 words
and that those parser possibly would deliver better results if tested
on shorter sentences. Kübler (2005) (table 1, plain PCFG) obtains 69.4,
Dubey and Keller (2003) (table 5, sister-head PCFG model) 71.12, Raf-
ferty and Manning (2008) (table 2, Stanford parser with markovization
v = 2 and h = 1) 77.2, and Petrov and Klein (2007) (table 1, Berkeley
parser) 80.1.

As for the works which aim at creating crossing branches, Plaehn
(2004) obtains 73.16 labeled F1 with his Probabilistic Discontinuous
Phrase Structure Grammar approach, albeit only on sentences with a
length of up to 15 words. On those sentences, we obtain 84.59. Levy
(2005) does not provide any evaluation results of his work. van Cra-
nenburgh et al. (2011) have also followed up on our work. They in-
troduce an integration of our approach with Data-Oriented Parsing
(DOP), producing results which slightly exceed ours.

As for results on parsing treebanks other than NeGra, Evang and
Kallmeyer (2011) followed up on our work. They transform the Penn
Treebank such that the trace nodes and co-indexation are converted

7.5 conclusion 211

to crossing branches and parse them with our parser. Their results
compare favorably to the ones from the literature.

7.5 conclusion

We have seen that data-driven direct parsing of discontinuous con-
stituents using Probabilistic Simple Range Concatenation Grammar
(SRCG) is feasible and yields competitive results. When comparing
this approach to PCFG parsing results, one has to keep in mind that
LCFRS parse trees contain non-context-free information about discon-
tinuities. Therefore, a correct parse with our grammar is actually more
informative than a correct CFG parse, evaluated with respect to a
transformation of NeGra into a context-free treebank where precisely
this information gets lost.

A major difficulty of direct data-driven parsing of discontinuous
constituents is that the discontinuous structures themselves are im-
portant (they occur in 75% of all sentences, not only in NeGra but also
in the PTB), but not frequent enough to learn them with a straight-
forward Maximum-Likelihood approach (only about 2% of all con-
stituents in NeGra are discontinuous). Combined with the linguisti-
cally undesired fact that in SRCG, by definition, we must distinguish
predicates by their arities, we run into severe sparse data problems. In
future work, as already noted in the discussion section, we therefore
aim at finding a method of splitting the learning of the probability
model in several parts.

8
PA R S I N G N O N - P R O J E C T I V E D E P E N D E N C I E S

In this chapter, we use our parser for grammar-based parsing of the
Czech Prague Dependency Treebank (PDT). In section 8.1, I present
the evaluation procedures for dependency parsing. In section 8.2, I
present the treebank-specific preprocessing. Section 8.3 is dedicated
to the experiments and the discussion of their results. In section 8.4 I
present related work, and section 8.5 concludes this chapter.

Material in this chapter has been published previouly in Maier and
Kallmeyer (2010).

8.1 evaluation

We use the standard metrics which have been used in the literature for
the evaluation of dependency parses, namely labeled attachment score
(LAS) and unlabeled attachment score (UAS), as well as the percentage
of completely correct sentences including labels (LCC) and completely cor-
rect sentences not including labels (UCC). UAS, resp. LAS is computed as
the percentage of unlabeled, resp. labeled edges in the gold standard
which occur in the intersection of unlabeled, resp. labeled edges of
the gold standard and the parser output. More precisely, an unlabeled
edge consists of a sentence number, a node label (i. e., an integer) and
the label of the head of the node (i. e., also an integer). A labeled edge
additionally contains the dependency relation label between the node
and its head. Let KL and KU be the set of labeled, resp. unlabeled edges
of the gold standard and let AL and AU be the set of labeled, resp. un-
labeled edges of the parser output. LAS is computed as |AL∩KL|

|KL|
∗ 100,

UAS is computed as |AU∩KU|
|KU|

∗ 100. LCC, resp. UCC is computed as the
percentage of sentences for which the sets of labeled, resp. unlabeled
edges in gold standard and parser output are equal.

8.2 treebank-specific preprocessing

We perform experiments with the PDT, release 2.0 (Hajič et al., 2000).

213

214 parsing non-projective dependencies

Annotation Format

The annotation of the PDT has already been presented in section 4.3.1.
It has three annotation layers. The first layer contains morphological
information (and the sentence itself) (m-layer), the second layer con-
tains the dependency structures themselves (a-layer), and the third
layer (tectogrammatical layer or t-layer) contains further non-local rela-
tions. The treebank annotation is provided in a stand-off XML format,
i. e., all annotation layers are provided in separate files. One annota-
tion file, resp. one set of annotation files contains several sentences.
The linking of the files is done with the XML ID, resp. IDREF direc-
tives.

We thus read POS tagged sentences from an m-layer file and the
corresponding dependency structures from the corresponding a-layer
file simultaneously and reconstruct the dependency structures in a
format suitable for the parser. Since using the complete morphological
information for every word would result in very sparse data, we use
only the first two letters of the morph tag as POS tag.1

Punctuation

In the PDT, punctuation is attached to the dependency structures
(mainly explained by Hajičová et al. (1999) on pp. 188). We rely on
this attachment and perform no further modification.

8.3 experiments

We now apply the parser to the actual data.

8.3.1 Data

Data Sets

The data of the PDT 2.0 is readily partitioned into a training set, a de-
velopment set, and a test set. We discard the development set and use
the other two for training and parsing. Since, as it turns out, depen-
dency parsing experiments are more demanding in terms of computa-

1 Collins et al. (1999) only use the first letter. We use two letters to bring our data
closer to the properties of our constituency data.

8.3 experiments 215

pdt20

sentence len. limit 20

number of sentences 13,219

number of nodes 145,454

av. sentence length 11.00

av. edges 9.07

sentences with no gaps 10,923 (82.63%)

av. gap degree per sent. 0.18

nodes with no gaps 142,706 (98.11%)

av. gap degree per node 0.02

max. gap degree 2

well-nested sentences 13,211 (99.94%)

Table 17: PDT: Data Set

tional resources, we limit ourselves to sentences of a maximum length
of 20 words. In the training set, we take the first five sections of the
PDT training set and exclude all sentences longer than 20 words. For
testing, we take the PDT test set, remove all sentences longer than 20
words, and then shorten it such that we get a 90/10 ratio, just as for
the constituency parsing experiments. Table 17 shows the properties
of the resulting data set (training and test set combined). Note the sim-
ilarity of the ratios of sentences, resp. nodes with gaps and the ratio of
well-nested sentences to the corresponding ratios of the constituency
data in table 9, p. 196.

Grammar Extraction

Given the grammars produced by the grammar extraction algorithm
as presented in section 5.2.2, the parser does not produce dependency
structures as in definition 2.11, p. 21. This is because it does not ex-
tract a clause which corresponds to the root node of the dependency
structure, due to the fact that the root node has no head, i. e., no in-
coming edge. In order to nevertheless extract a clause for this node, we
pretend that every root node has an incoming edge labeled TOP and
extract the corresponding clause as usual.2 For the dependency struc-

2 In fact, TOP corresponds to the virtual root node in our constituency treebanks.

216 parsing non-projective dependencies

r VB RR PP PD NN NN Vf Z:
Může po mně takové údaje pojištovna vyžadovat ?

root

root

sb

obj

obj atr

auxp

obj

TOP

ROOT

Obj

AuxP Obj

Obj Atr Sb ROOT

VB RR PP PD NN NN Vf Z:
Může po mně takové údaje pojištovna vyžadovat ?
Can of me such data insurance ask ?
“Is the insurance company allowed to ask me for this data?”

Figure 65: Dependency parser output

ture in figure 65, this would be the clause TOP(X1X2) → ROOT(X1)
ROOT(X2). As for the properties of the simple RCG we extract from
the data set, we obtain a 3-SRCG with 11,099 clauses and 50 unique
LHS predicate labels of clauses.

8.3.2 Parsing Results

Output Conversion

We need an additional conversion procedure for the parser output
in order to obtain proper dependency structures. Figure 65 shows an
example. The upper structure is the one we want to obtain from the
lower one. The conversion is done as follows. As the terminals/POS
tags of the target dependency structure, we take the terminals/POS
tags of the parser output structure. Since a single non-terminal node

8.3 experiments 217

in the parser output structure represents exactly a single dependency
relation, and since every dependency relation has exactly one head,
every non-terminal must have exactly one (pre-)terminal child, which
is the head of the corresponding dependency relation. To build the
target structure, we traverse the parser output structure. For each node
v we encounter, we build a dependency relation r, where

• as the label of r, we choose the label of v,

• as the head of r, we choose the (pre-)terminal child of the parent
node of v, and

• as the dependent of r, we choose the (pre-)terminal child of v
itself.

Inversely to the extension of the grammar extraction algorithm, we
eventually discard the incoming TOP edge to the root node of the
resulting dependency structure.

We perform again experiments with different settings in order to
determine their effect. Since the grammars we extract from the depen-
dency treebanks have rather different properties than the grammars
we have seen in the last chapter, we must proceed slightly differently.

Experimental Results

Since for constituency parsing, we have achieved the biggest improve-
ment by markovizing the binarized grammar, we first investigate the
effect of different markovization settings and compare them with De-
term. We use HeadOutward combined with BinaryTop and Bina-
ryBottom since those options resulted in the fastest parsing speed
for constituents. Table 18 shows the results, together with the num-
ber of clauses and symbols of the respective binarized grammars and
the average number of items produced during parsing. With Determ,
we obtain 60.43/50.29 (UAS/LAS) and 18.83/11.82 (UCC/LCC); the
corresponding binarized grammar contains 31,832 clauses and 20,839
symbols, and the parser produces 483,696 items in average.

The results lie much closer together than for constituency parsing.
There is no substantial improvement with any type of markovization.
In order to see if a change of the binarization settings is more effec-
tive, we also compare the different settings HeadOutward, Head-
OutwardKM, Optimal, R-To-L, L-To-R, and Determ. Table 19 shows

218 parsing non-projective dependencies

v h uas las ucc lcc cl . symb . items

1 1 59.89 50.32 17.77 11.49 8,014 597 190,715

1 2 60.54 50.85 18.17 12.14 13,171 2,663 230,521

1 ∞ 60.76 50.58 18.91 11.82 20,300 8,920 133,367

2 1 57.81 48.12 17.93 11.49 14,112 2,085 620,470

2 2 59.51 49.80 18.09 12.14 19,542 5,865 831,272

2 ∞ 59.83 49.41 18.58 11.49 26,066 12,862 783,123

3 1 58.19 48.21 17.60 11.41 18,352 4,050 989,794

3 2 59.33 49.57 18.09 12.06 23,496 8,314 1,192,442

3 ∞ 59.88 49.40 18.74 11.49 29,637 14,951 1,147,816

Table 18: PDT20: Markovizations

the corresponding results. Just as with the different markovizations,
there is a variance of less than one point in the attachment scores.
The biggest difference in UAS is 60.76 for HeadOutward vs. 60.17
for L-To-R; for LAS, it is 50.07 for HeadOutwardKM vs. 50.58 for
HeadOutward.

To get an impression where the results are situated in comparison
with a state-of-the-art parser, we parse our data with the MST parser
(McDonald et al., 2005) (see p. 124). Using the standard settings with
the non-projective decoder, the results are 81.26/72.36 UAS/LAS and
35.70/21.76 UCC/LCC, i. e., almost 20 points higher than our results.
Furthermore, training and parsing together required less than five
minutes for all 13,219 sentences, while with rparse using a v = 1,h =

∞ markovization, the total required time was 2.5 hours.

8.3.3 Discussion

The most immediate observation that we can make is that on gram-
mars extracted from dependency structures, markovization does not
have the positive effect we have observed with the grammars extracted
from constituency structures. In fact, markovization barely changes
the result at all with respect to Determ. It is even the case that the
best results are obtained with the markovized grammar which most
closely resembles the original grammar (v = 1,h > 2). The sizes of

8.4 related work 219

uas las ucc lcc

HeadOutward 60.76 50.58 18.91 11.82

HeadOutwardKM 60.11 50.07 18.50 11.90

Optimal 60.28 50.21 18.91 11.82

R-To-L 60.60 50.53 18.91 11.65

L-To-R 60.17 50.10 18.74 11.74

Determ 60.43 50.29 18.83 11.82

Table 19: PDT20: Binarizations

the markovized grammars vary much, though, and cause a very high
parsing time, particularly with high vertical markovizations. The av-
erage time for sentence of length 20 is 40.71 seconds, while for the
a bigger deterministically binarized grammar extracted from NeGra
(over sentences with a maximum length of 30), sentences of the same
length only take slightly over a second to parse. The different binariza-
tion orders also barely cause an effect.

The fact that the results are almost identical across all different bina-
rizations and markovizations indicates that there is a systemic prob-
lem with the way the grammar is extracted. At least for the baseline
approach, the advantage of grammar-based parsing of non-projective
dependencies, namely, the ability of going beyond edge-factored mod-
els, is outweighed by the disadvantage of much worse results and a
much higher parsing time (cf. our comparison experiment with the
MST parser, and the next section). A possible remedy can be found
in the literature. By adapting the extended dependency-to-lexicalized-
tree conversion of Collins et al. (1999), especially with respect to their
way of choosing the node labels of the converted tree, one could most
likely get better results. Another remedy could consist of incorporat-
ing structure-global information, e. g., through k-best parsing. In any
case, one would then still have to deal with the high complexity of full
PSRCG parsing.

8.4 related work

As already mentioned, there is ample work on non-projective depen-
dency parsing in the literature. However, to my knowledge, none of it

220 parsing non-projective dependencies

is grammar-based. The results which have been achieved on the (com-
plete) Prague Dependency Treebank with state-of-the-art parsers are
similar to the ones we obtained on our reduced data set with the MST
parser: Nivre and Nilsson (2005) achieve UAS/LAS 80.1/72.8 and UC-
C/LCC 31.8/22.4 with the pseudo-projective (cf. p. 5.4.1) variant of
the MALT parser; McDonald and Pereira (2006) report an accuracy of
85.2, resp. 35.9% completely correct sentences for the best setting of
the MST parser on the complete PDT with the entire predefined test
and training sets, using the POS tag reduction of Collins et al. (1999).
No results on the PDT are reported for the easy-first parser of Gold-
berg and Elhadad (2010). However, the results they report for English
data (Penn Treebank (PTB) section 23 and CoNLL English test set) lie
between the MST parser results and the MALT parser results for this
data.3

8.5 conclusion

This chapter was dedicated to the presentation of the first results of
grammar-based non-projective dependency parsing in the literature.

The general conclusion from our experiments is that even though
there are good formal reasons for using Simple Range Concatena-
tion Grammar (SRCG), resp. Linear Context-Free Rewriting System
(LCFRS) for grammar-based non-projective dependency parsing (see
the reasoning of Kuhlmann and Satta (2009)), in practice, this is a
rather difficult enterprise. The cost of parsing in terms of time and
space requirements is much higher than with other current depen-
dency parsers and the results are not even in the vicinity. The reason
is that a straight-forward MLE-based probability model fails to cap-
ture features of dependency structures which are global to structures:
The contexts modeled by SRCG clauses is too local. A modification
of the extraction algorithm with respect to how the labels are chosen
could possibly be more successful. In any case, parsing would still be
much more complex than with other state-of-the-art parsers.

Apart from the tree modifications of Collins et al. (1999), in future
work, optimizations for constituency parsing should be tested for their
effectiveness for dependency parsing. This holds particularly for Di-
rected Treebank Refinement (Ule, 2003). Another way to better results

3 Note that in none of this works, a sentence length limit is imposed.

8.5 conclusion 221

could be the reranking of k-best lists, in order to incorporate structure-
global features. In principle, nothing stands in the way of computing
such lists and adapting a reranker.4 However, we would still face the
high cost of parsing full SRCG. Last, since the well-nestedness con-
straint captures dependency structures equally well as constituency
structures, just as constituency parsing, grammar-based dependency
parsing would profit from a parser for a restricted variant of well-
nestedness.

4 While with the algorithm of Pauls and Klein (2009), we face the same issues as with
standard A∗-parsing (see section 6.2.2), i. e., it should be feasible and fast. Comput-
ing a complete chart and extracting the k-best list afterwards (Huang and Chiang,
2005) is expensive but should not entail any other complications.

9
C O N C L U S I O N

In previous chapters, I have already delivered detailed conclusions. In
this chapter, I will summarize the main contributions of this thesis. I
have aimed

a. at clarifying the status of discontinuous structures in both de-
pendency and constituency treebank annotation,

b. at providing symbolic and probabilistic parsing techniques for
formalisms which can model them, and

c. at confirming that the probabilistic parsing techniques are usable
for data-driven parsing.

discontinuous structures in treebank annotation In
chapter 5, I have analyzed annotation of constituency treebanks and
dependency treebanks which account for discontinuities. I have intro-
duced a grammar extraction algorithm for Simple Range Concatena-
tion Grammar (SRCG) for discontinuous constituency treebanks and
non-projective dependency treebanks. I have then shown for both how
their degree of discontinuity can be characterized in terms of the
two measures of gap degree and well-nestedness. In particular, I have
shown that those measures which are known from recent literature
on Dependency Grammar (DG) have a comparable descriptive value
for constituency data. Furthermore, I have investigated to what extent
treebank annotation exhibits synchronous rewriting and found that
synchronous rewriting is a feature of treebank annotation which can
be linguistically justified.

symbolic parsing beyond context-free grammar In chap-
ter 3, I have presented an Earley-style parser for Range Concatenation
Grammar (RCG), an incremental parsing strategy for SRCG and an
experimental evaluation of both. Those parsers close important gaps
in the literature. Furthermore, they have already proven useful in
TuLiPA, a symbolic parser, which uses RCG or SRCG as pivot for-

223

224 conclusion

malisms for parsing Tree-Adjoining Grammar (TAG) and variants of
TAG.1

probabilistic parsing beyond context-free grammar In
order to place my work on probabilistic parsing and data-driven pars-
ing in the relevant context of the literature, in chapter 4 I have pre-
sented an introduction to probabilistic parsing and an overview of
the corresponding literature, especially of those works which are con-
cerned with the reconstruction of discontinuities. Out of this presen-
tation, I have motivated the use of Probabilistic Simple Range Con-
catenation Grammar (PSRCG) for data-driven parsing. Furthermore, I
have introduced relevant work in the field of data-driven dependency
parsing and provided motivation for switching to a grammar-based
approach.

In chapter 6, I have presented new techniques for direct data-driven
parsing of discontinuous constituents using PSRCG with real-world
sized data sets. These include binarization and markovization meth-
ods, a CYK style algorithm for weighted deductive parsing of PSRCG,
and outside estimates for parse items used to speed up parsing, some
of them allowing for true A∗ parsing. The development of the tech-
niques has brought together recent developments from different areas,
such as research on parsing German and research on Linear Context-
Free Rewriting System (LCFRS).

All techniques have been implemented in a single system. The im-
plementation, which is called rparse, is freely available.2 rparse is
the first efficient parser for unrestricted PSRCG, resp. Probabilistic
LCFRS. In fact, it is the first system which has successfully been used
for direct data-driven parsing of discontinuous constituents with real-
world sized data sets and also the first grammar-based parser for non-
projective dependencies.

parsing of discontinuous structures In the chapters 7 and
8, I have applied my parser to discontinuous constituents and non-
projective dependencies.

In chapter 8, I have applied my parser to the non-projective depen-
dency structures of the Czech Prague Dependency Treebank. While
the results do not reach the state of the art, they are the first reported

1 See https://sourcesup.cru.fr/tulipa/.
2 See http://www.wolfgang-maier.net/rparse/.

https://sourcesup.cru.fr/tulipa/
http://www.wolfgang-maier.net/rparse/

conclusion 225

results for grammar-based parsing of non-projective dependencies. I
have presented several ideas which could help to improve grammar-
based data-driven parsing of non-projective constituents.

In chapter 7, I have applied my parser to the German NeGra tree-
bank, a constituency treebanks with a direct annotation of discontinu-
ities. The experiments have been evaluated with different evaluation
measures. A discussion of the experimental results has been presented
which, one the one hand, clarifies the interaction of the different parser
parameters, and on the other hand highlights the differences between
a PSRCG model and a Probabilistic Context-Free Grammar (PCFG)
model. The experiments have proven that data-driven parsing with
PSRCG is feasible at a reasonable parsing speed. An evaluation with
bracket scoring has furthermore shown that the output quality of the
parser lies in the range of the output quality of current PCFG parsers,
while delivering more informative parses which contain discontinu-
ous constituents. This shows that SRCG has a further potential and is
worth to be explored, not only in parsing, but also beyond.

A
H E A D R U L E S F O R N E G R A

The following table lists the rules for head finding in NeGra (see sec-
tions 6.1.3 and 7.2.4). The rules are are minor modifications of the rules
in the code of the Stanford parser (Klein and Manning, 2003c), as avail-
able from http://nlp.stanford.edu/software/lex-parser.shtml.

label direction potential heads

S right-to-left VVFIN VVIMP
S right-to-left VP CVP
S right-to-left VMFIN VAFIN VAIMP
S right-to-left S CS
VP right-to-left VVINF VVIZU VVPP
VP right-to-left VZ VAINF VMINF VMPP VAPP PP
VZ right-to-left VVINF VAINF VMINF VVFIN VVIZU
VZ left-to-right PRTZU APPR PTKZU
NP right-to-left NN NE MPN NP CNP PN CAR
AP right-to-left ADJD ADJA CAP AA ADV
PP left-to-right KOKOM APPR PROAV
CO left-to-right
AVP right-to-left ADV AVP ADJD PROAV PP
AA right-to-left ADJD ADJA
CNP right-to-left NN NE MPN NP CNP PN CAR
CAP right-to-left ADJD ADJA CAP AA ADV
CPP right-to-left APPR PROAV PP CPP
CS right-to-left S CS
CVP right-to-left VZ
CVZ right-to-left VZ
CAVP right-to-left ADV AVP ADJD PWAV APPR PTKVZ
MPN right-to-left NE FM CARD

227

http://nlp.stanford.edu/software/lex-parser.shtml

228 head rules for negra

NM right-to-left CARD NN
CAC right-to-left APPR AVP
CH right-to-left
MTA right-to-left ADJA ADJD NN
CCP right-to-left AVP
DL left-to-right
ISU right-to-left
QL right-to-left
- right-to-left PP
CD right-to-left CD
NN right-to-left NN
NR right-to-left NR
VROOT left-to-right .,

B
A C R O N Y M S

b.1 formalisms

Many formslisms and frameworks have been mentioned in this the-
sis. I list them in the following, together with the acronyms I have
used. Unless noted otherwise, the acronym of the probabilistic ver-
sion of a formalisms is the acronym of the symbolic variant, with a
“P” prepended; furthermore, the acronym for the languages produced
by a formalism is the acronym of the formalism, with the “G” (for
grammar) or “S” (for system) swapped with an “L” (for language), also
unless noted otherwise.

CCFG Coupled Context-Free Grammar

CCG Combinatory Categorial Grammar

CFG Context-Free Grammar

DG Dependency Grammar

DPSG Discontinuous Phrase Structure Grammar

FTAG Feature Structure Based Tree-Adjoining Grammar

GCFG Generalized Context-Free Grammar

GF Grammatical Framework

GPSG Generalized Phrase Structure Grammar

HG Head Grammar

HPSG Head-Driven Phrase Structure Grammar

ID/LP Immediate Dominance/Linear Precedence

ITG Inversion Transduction Grammar

LIG Linear Indexed Grammar

229

230 acronyms

LFG Lexical Functional Grammar

LMG Literal Movement Grammar

IG Indexed Grammar

LCFRS Linear Context-Free Rewriting System

LTAG Lexicalized Tree-Adjoining Grammar

MCFG Multiple Context-Free Grammar

MCTAG Multi-Component Tree-Adjoining Grammar

MG Minimalist Grammar

MTT Meaning Text Theory

NRCG Negative Range Concatenation Grammar

OSRCG Ordered Simple Range Concatenation Grammar

PMCFG Parallel Mulitple Context-Free Grammar1

PSG Phrase Structure Grammar

RCG Range Concatenation Grammar

SDTG Syntax-Directed Transduction Grammars

SRCG Simple Range Concatenation Grammar

TSG Tree Substitution Grammar

TT-MCTAG Multi-Component Tree-Adjoining Grammar with Tree
Tuples

TAG Tree-Adjoining Grammar

TIG Tree Insertion Grammar

UCFG Unordered Context-Free Grammar

1 Parallel Multiple Context-Free Grammar shares the acronym with Probabilistic Mul-
tiple Context-Free Grammar. In this work, however, PMCFG is only used once in the
sense of Parallel MCFG (see p. 87), in all other places, it means Probabilistic MCFG.

B.2 treebanks 231

VTAG Vector Tree-Adjoining Grammar

WCDG Weighted Constraint Dependency Grammar

WOSRCG Wellnested Ordered Simple Range Concatenation
Grammar

XDG eXtensible Dependency Grammar

b.2 treebanks

The following list contains all treebanks which have been mentioned,
together with their acronyms.

BTB BulTreebank

NeGra NeGra Treebank

NeGra-Dep NeGra dependency treebank (Daum et al., 2004)

PDT Prague Dependency Treebank

PTB Penn Treebank

TIGER TIGER Treebank

TIGER-DP TIGER dependency treebank (Forst et al., 2004)

TIGER-Dep TIGER dependency treebank (Daum et al., 2004)

TüBa-D/Z Tübingen Treebank of Written German

b.3 other acronyms

The following list contains other acronyms which have been used.

CNF Chomsky Normal Form

CSP Constraint Satisfaction Problem

DAG Directed Acyclic Graph

DOP Data-Oriented Parsing

232 acronyms

FOM Figure-of-Merit

GES Generative Enumerative Syntax

MCS Mild Context-Sensitivity

MTS Model-Theoretic Syntax

POS Part-of-Speech

LHS left-hand side

RHS right-hand side

TA Thread Automata

VPP Valid Prefix Property

WDP Weighted Deductive Parsing

B I B L I O G R A P H Y

Abeillé, A., Clément, L., and Toussenel, F. (2003). Building a treebank
for French. In Abeillé, A., editor, Treebanks, chapter 10, pages 165–
187. Kluwer, Dordrecht.

Aho, A. V. (1968). Indexed Grammars – An extension of Context-Free
Grammars. Journal of the ACM, 15(4):647–671.

Angelov, K. (2009). Incremental parsing with Parallel Multiple
Context-Free Grammars. In Proceedings of the 12th Conference of the
European Chapter of the Association for Computational Linguistics, pages
69–76, Athens, Greece. Association for Computational Linguistics.

Baker, J. K. (1979). Trainable grammars for speech recognition. In
Proceedings of the Spring Conference of the Acoustical Society of America,
pages 547–550, Boston, MA.

Bangalore, S., Boullier, P., Nasr, A., Rambow, O., and Sagot, B. (2009).
MICA: A probabilistic dependency parser based on Tree Insertion
Grammars (application note). In Proceedings of Human Language Tech-
nologies: The 2009 Annual Conference of the North American Chapter of
the Association for Computational Linguistics, Companion Volume: Short
Papers, pages 185–188, Boulder, CO. Association for Computational
Linguistics.

Barthélemy, F., Boullier, P., Deschamp, P., and Éric Villemonte de la
Clergerie (2001). Guided parsing of Range Concatenation Lan-
guages. In Proceedings of the 39th Annual Meeting of the Association
for Computational Linguistics, pages 42–49, Toulouse, France. Associ-
ation for Computational Linguistics.

Barton Jr., G. E. (1985). On the complexity of ID/LP parsing. Compu-
tational Linguistics, 11(4):205–218.

Becker, T., Joshi, A. K., and Rambow, O. (1991). Long-distance scram-
bling and Tree-Adjoining Grammars. In Proceedings of the Fifth Con-
ference of the European Chapter of the Association for Computational

233

234 bibliography

Linguistics, pages 21–26, Berlin, Germany. Association for Compu-
tational Linguistics.

Becker, T., Rambow, O., and Niv, M. (1992). The derivational genera-
tive power of formal systems or scrambling is beyond LCFRS. IRCS
report 92-38, University of Pennsylvania, Philadelphia, PA.

Beeri, C. and Ramakrishnan, R. (1991). On the power of magic. Journal
of Logic Programming, 10(3-4):255–299.

Bellman, R. (1957). Dynamic Programming. Princeton University Press,
Princeton.

Bertsch, E. and Nederhof, M.-J. (2001). On the complexity of some
extensions of RCG parsing. In Proceedings of the Seventh International
Workshop on Parsing Technologies, pages 66–77, Beijing, China.

Bies, A., Ferguson, M., Katz, K., McIntyre, R., Tredinnick, V., Kim, G.,
Marcinkiewicz, M. A., and Schasberger, B. (1995). Bracketing guide-
lines for the Treebank II Style Penn Treebank Project. ftp://ftp.

cis.upenn.edu/pub/treebank/doc/manual/, December 4, 2010.

Bikel, D. M. (2001). Randomized parsing evaluation comparator (sta-
tistical significance tester for evalb output). http://www.cis.upenn.
edu/~dbikel/software.html#comparator, February 19, 2012.

Bikel, D. M. and Chiang, D. (2000). Two statistical parsing models ap-
plied to the Chinese treebank. In Proceedings of the Second Workshop
on Chinese Language Processing at ACL 2000, pages 1–6, Hong Kong.
Association for Computational Linguistics.

Bille, P. (2005). A survey on tree edit distance and related problems.
Theoretical Computer Science, 337(1-3):217–239.

Billott, S. and Lang, B. (1989). The structure of shared forests in am-
biguous parsing. In Proceedings of the 27th Annual Meeting of the
Association for Computational Linguistics, pages 143–151, Vancouver,
BC. Association for Computational Linguistics.

Black, E., Abney, S., Flickenger, D., Gdaniec, C., Grishman, R., Harri-
son, P., Hindle, D., Ingria, R., Jelinek, F., Klavans, J., Liberman, M.,
Marcus, M., Roukos, S., Santorini, B., and Strzalkowski, T. (1991). A

ftp://ftp.cis.upenn.edu/pub/treebank/doc/manual/
ftp://ftp.cis.upenn.edu/pub/treebank/doc/manual/
http://www.cis.upenn.edu/~dbikel/software.html#comparator
http://www.cis.upenn.edu/~dbikel/software.html#comparator

bibliography 235

procedure for quantitatively comparing the syntactic coverage of En-
glish grammars. In Price, P., editor, Fourth DARPA Speech and Natural
Language Workshop, pages 306–311, San Mateo. Morgan Kaufmann.

Blevins, J. P. (1990). Syntactic complexity: Evidence for discontinuity and
multidomination. PhD thesis, University of Massachusetts, Amherst,
MA.

Bockhorst, J. and Craven, M. (2001). Refining the structure of a
stochastic Context-Free Grammar. In Proceedings of the 17th Inter-
national Joint Conference on Artificial Intelligence (IJCAI-2001), pages
1315–1320, Seattle, WA. Morgan Kaufmann.

Bod, R. (1993). Using an annotated corpus as a stochastic grammar.
In Proceedings of the Sixth Conference of the European Chapter of the
Association for Computational Linguistics, pages 37–44, Utrecht, The
Netherlands. Association for Computational Linguistics.

Bod, R. (1995). Enriching Linguistics with Statistics: Performance Mod-
els of Natural Language. Number 1995-14 in University of Amster-
dam ILLC Dissertation Series. Academische Pers, Amsterdam, The
Netherlands.

Bod, R. and Scha, R. (1996). Data-oriented language processing:
An overview. Technical Report LP-96-13, Departement of Com-
putational Linguistics, University of Amsterdam, Amsterdam, The
Netherlands.

Bod, R., Scha, R., and Sima’an, K., editors (2003). Data-Oriented Pars-
ing. CSLI Studies in Computational Linguistics. CSLI Publications,
Stanford, CA.

Bodirsky, M., Kuhlmann, M., and Möhl, M. (2005). Well-nested draw-
ings as models of syntactic structure. In Tenth Conference on Formal
Grammar and Ninth Meeting on Mathematics of Language, pages 195–
203, Edinburgh, UK.

Booth, T. L. and Thomson, R. A. (1973). Applying probability mea-
sures to abstract languages. IEEE Transactions on Computers, C-
22(5):442–450.

236 bibliography

Boullier, P. (1996). Another facet of LIG parsing. In Proceedings of
the 34th Annual Meeting of the Association for Computational Linguis-
tics, pages 87–94, Santa Cruz, CA. Association for Computational
Linguistics.

Boullier, P. (1998). Proposal for a Natural Language Processing syn-
tactic backbone. Research Report 3342, INRIA-Rocquencourt, Roc-
quencourt, France.

Boullier, P. (1999). Chinese numbers, MIX, scrambling, and Range
Concatenation Grammars. In Proceedings of the Ninth Conference of the
European Chapter of the Association for Computational Linguistics, pages
53–60, Bergen, Norway. Association for Computational Linguistics.

Boullier, P. (2000a). A cubic time extension of Context-Free Grammars.
Grammars, 3:111–131.

Boullier, P. (2000b). Range Concatenation Grammars. In Proceedings of
the Sixth International Workshop on Parsing Technologies, pages 53–64.

Boullier, P. and Deschamp, P. (1988). Le système SYNTAXTM – manuel
d’utilisation et de mise en oeuvre sous UNIXTM. http://syntax.

gforge.inria.fr/syntax3.8-manual.pdf, January 4, 2012.

Boullier, P. and Sagot, B. (2009). Parsing directed acyclic graphs with
Range Concatenation Grammars. In Proceedings of the 11th Interna-
tional Conference on Parsing Technologies (IWPT’09), pages 254–265.
Association for Computational Linguistics.

Boyd, A. (2007). Discontinuity revisited: An improved conversion to
context-free representations. In Proceedings of The Linguistic Annota-
tion Workshop (LAW) at ACL 2007, pages 41–44, Prague, Czech Re-
public. Association for Computational Linguistics.

Brants, S., Dipper, S., Hansen, S., Lezius, W., and Smith, G. (2002).
The TIGER Treebank. In Hinrichs, E. W. and Simov, K., editors,
Proceedings of the 1st Workshop on Treebanks and Linguistic Theories,
pages 24–42, Sozopol, Bulgaria.

Brants, T. (1997). The NeGra Export format. CLAUS Report 98,
Computational Linguistics Department, Saarland University, Saar-
brücken, Germany.

http://syntax.gforge.inria.fr/syntax3.8-manual.pdf
http://syntax.gforge.inria.fr/syntax3.8-manual.pdf

bibliography 237

Bresnan, J., editor (1982). The mental representation of grammatical rela-
tions. MIT Press, Cambridge.

Buch-Kromann, M. (2009). Discontinuous Grammar – A dependency-
based model of human parsing and language learning. VDM Verlag.

Bunt, H. (1991). Parsing with Discontinuous Phrase Structure Gram-
mar. In Tomita, M., editor, Current Issues in Parsing Technology, pages
49–63. Kluwer, Dordrecht.

Bunt, H. (1996). Formal tools for describing and processing discontin-
uous constituency structure. In Bunt, H. and van Horck, A., editors,
Discontinuous Constituency, volume 6 of Natural Language Processing,
pages 63–83. Mouton de Gruyter, Berlin.

Bunt, H., Thesingh, J., and van der Sloot, K. (1987). Discontinuous
constituents in trees, rules and parsing. In Proceedings of the Third
Conference of the European Chapter of the Association for Computational
Linguistics, pages 203–210, Copenhagen, Denmark. Association for
Computational Linguistics.

Burden, H. and Ljunglöf, P. (2005). Parsing Linear Context-Free
Rewriting Systems. In Proceedings of the Ninth International Work-
shop on Parsing Technology, pages 11–17, Vancouver, BC. Association
for Computational Linguistics.

Burke, M., Cahill, A., O’Donovan, R., van Genabith, J., and Way, A.
(2004). Treebank-based acquisition of wide-coverage, probabilistic
LFG resources: Project overview, results and evaluation. In Workshop
Beyond shallow analyses – Formalisms and statistical modeling for deep
analyses at IJCNLP ’04, Sanya City, Hainan, China.

Butt, M., King, T., Niño, M.-E., and Segond, F. (1999). A Grammar
Writer’s Cookbook, volume 95 of CSLI Lecture Notes. CSLI Publications,
Stanford, CA.

Cahill, A. (2004). Parsing with Automatically Acquired, Wide-Coverage,
Robust, Probabilistic LFG Approximations. PhD thesis, Dublin City
University, Dublin, Ireland.

238 bibliography

Campbell, R. (2004). Using linguistic principles to recover empty cate-
gories. In Proceedings of the 42nd Meeting of the Association for Compu-
tational Linguistics (ACL’04), Main Volume, pages 645–652, Barcelona,
Spain. Association for Computational Linguistics.

Caraballo, S. A. and Charniak, E. (1998). New figures of merit for best-
first probabilistic chart parsing. Computational Linguistics, 24(2):275–
298.

Champollion, L. (2011). Lexicalized Non-Local MCTAG with Domi-
nance Links is NP-Complete. Journal of Logic, Language and Informa-
tion, 20:343–359.

Charniak, E. (1996). Tree-bank grammars. Technical Report CS-96-02,
Department of Computer Science, Brown University, Providence, RI.

Charniak, E. (1997). Statistical parsing with a Context-Free Grammar
and word statistics. In Proceedings of the 14th National Conference on
Artificial Intelligence, pages 598–603.

Charniak, E. (2000). A maximum-entropy-inspired parser. In Proceed-
ings of the 1st Meeting of the North American Chapter of the Association
for Computational Linguistics, pages 132–139, Seattle, WA. Associa-
tion for Computational Linguistics.

Charniak, E., Johnson, M., Elsner, M., Austerweil, J., Ellis, D., Haxton,
I., Hill, C., Shrivaths, R., Moore, J., Pozar, M., and Vu, T. (2006).
Multilevel coarse-to-fine PCFG parsing. In Proceedings of the Human
Language Technology Conference of the North American Chapter of the
ACL, pages 168–175, New York, NY. Association for Computational
Linguistics.

Chen-Main, J. (2006). On the generation and linearization of multi-
dominance structures. PhD thesis, Johns Hopkins University, Balti-
more, MD.

Chen-Main, J. and Joshi, A. (2010). Unavoidable ill-nestedness in natu-
ral language and the adequacy of tree local-MCTAG induced depen-
dency structures. In Proceedings of the Tenth International Workshop
on Tree Adjoining Grammar and Related Formalisms (TAG+10), New
Haven, CT.

bibliography 239

Chen-Main, J. and Joshi, A. (2012). A dependency perspective on the
adequacy of Tree Local Multi-component Tree Adjoining Grammar.
Manuscript.

Chi, Z. and Geman, S. (1998). Estimation of Probabilistic Context-Free
Grammars. Computational Linguistics, 24(2):299–305.

Chiang, D. (2003). Statistical parsing with an automatically extracted
Tree Adjoining Grammar. In Bod et al. (2003), pages 299–316.

Chiang, D. (2004). Uses and abuses of intersected languages. In Pro-
ceedings of the Seventh International Workshop on Tree Adjoining Gram-
mar and Related Formalisms (TAG+7), pages 200–315.

Chiang, D. (2007). Hierarchical phrase-based translation. Computa-
tional Linguistics, 33(2):201–228.

Chomsky, N. (1956). Three models for the description of language.
Information Theory, IEEE Transactions, 2(3):113–124.

Chomsky, N. (1957). Syntactic Structures. Mouton, The Hague, Paris.

Chomsky, N. (1981). Lectures on Government and Binding: The Pisa Lec-
tures. Mouton de Gruyter, Berlin.

Chomsky, N. (1995). The Minimalist Program. MIT Press, Cambridge.

Chu, Y. and Liu, T. (1965). On the shortest arborescence of a directed
graph. Science Sinica, 14:1396–1400.

Clark, S., Hockenmaier, J., and Steedman, M. (2002). Building deep
dependency structures using a wide-coverage CCG parser. In Pro-
ceedings of the 40th Annual Meeting of the Association for Computational
Linguistics, pages 327–334, Philadelphia, PA. Association for Com-
putational Linguistics.

Cocke, J. and Schwartz, J. T. (1970). Programming languages and their
compilers: Preliminary notes. Technical report, Courant Institute of
Mathematical Sciences, New York University.

Collins, M. (1997). Three generative, lexicalised models for statistical
parsing. In Proceedings of the 35th Annual Meeting of the Association for
Computational Linguistics, pages 16–23, Madrid, Spain. Association
for Computational Linguistics.

240 bibliography

Collins, M. (1999). Head-Driven Statistical Models for Natural Language
Parsing. PhD thesis, University of Pennsylvania, Philadelphia, PA.

Collins, M. (2000). Discriminative reranking for natural language pars-
ing. In Proceedings of the 17th International Conference on Machine
Learning (ICML 2000), San Francisco, CA. Morgan Kaufmann.

Collins, M. and Duffy, N. (2002). New ranking algorithms for parsing
and tagging: Kernels over discrete structures, and the voted percep-
tron. In Proceedings of the 40th Annual Meeting of the Association for
Computational Linguistics, pages 263–270, Philadelphia, PA. Associa-
tion for Computational Linguistics.

Collins, M., Hajič, J., Ramshaw, L., and Tillmann, C. (1999). A statis-
tical parser for Czech. In Proceedings of the 37th Annual Meeting of
the Association for Computational Linguistics, pages 505–512, College
Park, MD. Association for Computational Linguistics.

Collins, M. and Koo, T. (2005). Discriminative reranking for natural
language parsing. Computational Linguistics, 31(1):25–70.

Corazza, A., Lavelli, A., and Satta, G. (2008). Measuring parsing diffi-
culty across treebanks. Manuscript retrieved from http://www.dei.

unipd.it/~satta/publ/paper/ecc.pdf, September 1, 2011.

Corazza, A., Lavelli, A., Satta, G., and Zanoli, R. (2004). Analyzing
an Italian treebank with state-of-the-art statistical parsers. In Third
Workshop on Treebanks and Linguistic Theories (TLT-2004), Tübingen,
Germany.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2003). In-
troduction to Algorithms. MIT Press, Cambridge, 2nd edition. 4th
printing.

Covington, M. A. (2001). A fundamental algorithm for dependency
parsing. In Proceedings of the 39th Annual ACM Southeast Conference,
pages 95–102, Athens, GA.

Crescenzi, P., Gildea, D., Marino, A., Rossi, G., and Satta, G. (2011).
Optimal head-driven parsing complexity for Linear Context-Free
Rewriting Systems. In Proceedings of the 49th Annual Meeting of the As-
sociation for Computational Linguistics. Association for Computational
Linguistics.

http://www.dei.unipd.it/~satta/publ/paper/ecc.pdf
http://www.dei.unipd.it/~satta/publ/paper/ecc.pdf

bibliography 241

Daniels, M. W. (2005). Generalized ID/LP Grammar: A Formalism for
Parsing Linearization-Based HPSG Grammars. PhD thesis, The Ohio
State University, Columbus, OH.

Daum, M., Foth, K., and Menzel, W. (2004). Automatic transformation
of phrase treebanks to dependency trees. In Proceedings of the Fourth
International Conference on Language Resources and Evaluation, Lisbon,
Portugal. European Language Resources Association (ELRA).

Debusmann, R., Duchier, D., and Kruijff, G.-J. (2004). Extensible De-
pendency Grammar: A new methodology. In Proceedings of the Work-
shop on Recent Advances in Dependency Grammars at COLING 2004,
Geneva, Switzerland.

Dempster, A., Laird, N., and Rubin, D. (1977). Maximum likelihood
from incomplete data via the EM algorithm. Journal of the Royal
Statistical Society, 39(1):1–38. Series B.

Dienes, P. and Dubey, A. (2003a). Antecedent recovery: Experiments
with a trace tagger. In Proceedings of the 2003 Conference on Empirical
Methods in Natural Language Processing, pages 33–40, Sapporo, Japan.
Association for Computational Linguistics.

Dienes, P. and Dubey, A. (2003b). Deep syntactic processing by com-
bining shallow methods. In Proceedings of the 41th Annual Meeting of
the Association for Computational Linguistics, pages 431–438, Sapporo,
Japan. Association for Computational Linguistics.

Dikovsky, A. and Modina, L. (2000). Dependencies on the other side
of the curtain. Traitement automatique des langues, 41(1):67–96.

Dubey, A. and Keller, F. (2003). Probabilistic parsing for German using
sisterhead dependencies. In Proceedings of the 41th Annual Meeting of
the Association for Computational Linguistics, pages 96–103, Sapporo,
Japan. Association for Computational Linguistics.

Earley, J. (1970). An efficient context-free parsing algorithm. Commu-
nications of the Association for Computing Machinery, 13(2):94–102.

Edmonds, J. (1967). Optimum branchings. Journal of Research of the
National Bureau of Standards, 71B:233–240.

242 bibliography

Eisner, J. (1996a). Efficient normal-form parsing for Combinatory Cat-
egorial Grammar. In Proceedings of the 34th Annual Meeting of the
Association for Computational Linguistics, pages 79–86. Association for
Computational Linguistics.

Eisner, J. (1996b). Three new probabilistic models for dependency
parsing: An exploration. In Proceedings of COLING 1996: The 16th
International Conference on Computational Linguistics, volume 1, pages
340–345, Copenhagen, Denmark.

Eisner, J. and Satta, G. (1999). Efficient parsing for Bilexical Context-
Free Grammars and Head Automaton Grammars. In Proceedings of
the 37th Annual Meeting of the Association for Computational Linguistics,
pages 457–464, College Park, MD. Association for Computational
Linguistics.

Emms, M. (2008). Tree distance and some other variants of Evalb.
In Proceedings of the Sixth International Language Resources and Eval-
uation (LREC’08), pages 1373–1379, Marrakech, Morocco. European
Language Resources Association (ELRA).

Engel, U. (1988). Deutsche Grammatik. Groos, Heidelberg.

Evang, K. (2011). Parsing discontinuous constituents in English. Mas-
ter’s thesis, University of Tübingen, Tübingen, Germany.

Evang, K. and Kallmeyer, L. (2011). PLCFRS parsing of English dis-
continuous constituents. In Proceedings of the 12th International Con-
ference on Parsing Technologies (IWPT 2011), pages 104–116, Dublin,
Ireland.

Forst, M., Bertomeu, N., Crysmann, B., Fouvry, F., Hansen-Schirra, S.,
and Kordoni, V. (2004). Towards a dependency-based gold standard
for German parsers: The TiGer Dependency Bank. In Proceedings
of The 5th International Workshop on Linguistically Interpreted Corpora
(LINC-04) at COLING 2004, pages 31–38, Geneva, Switzerland.

Foth, K. A., Daum, M., and Menzel, W. (2004). Interactive grammar de-
velopment with WCDG. In The Companion Volume to the Proceedings
of 42st Annual Meeting of the Association for Computational Linguistics,
pages 122–125, Barcelona, Spain. Association for Computational Lin-
guistics.

bibliography 243

Frank, A. (2001). Treebank conversion for LTAG grammar extraction.
In Proceedings of The 3rd Workshop on Linguistically Interpreted Corpora
(LINC-2001) at Annual Meeting of Societas Linguistica Europaea, Leu-
ven, Belgium.

Frank, R. (2002). Phrase Structure Composition and Syntactic Dependen-
cies. MIT Press, Cambridge.

Fredman, M. L. and Tarjan, R. E. (1987). Fibonacci heaps and their
uses in improved network optimization algorithms. Journal of the
ACM, 34:596–615.

Gaifman, H. (1965). Dependency systems and phrase-structure sys-
tems. Information and Control, 8:304–337.

Gallo, G., Longo, G., Pallottino, S., and Nguyen, S. (1993). Directed
hypergraphs and applications. Discrete Applied Mathematics, 42(2-
3):177–201.

Gardner, P. P. and Giegerich, R. (2004). A comprehensive comparison
of comparative RNA structure prediction approaches. BMC Bioinfor-
matics, 5:140–148.

Gazdar, G. (1988). Applicability of Indexed Grammars to Natural Lan-
guages. In Natural Language Parsing and Linguistic Theories, pages
69–94. Reidel, Dordrecht.

Gazdar, G., Klein, E., Pullum, G. K., and Sag, I. (1985). Generalized
Phrase Structure Grammar. Basil Blackwell, Oxford.

Gerdes, K. and Kahane, S. (2001). Word order in German: A formal
dependency grammar using a topological hierachy. In Proceedings
of the 39th Annual Meeting of the Association for Computational Lin-
guistics, pages 220–227, Toulouse, France. Association for Computa-
tional Linguistics.

Gildea, D. (2001). Corpus variation and parser performance. In Pro-
ceedings of the 2001 Conference on Empirical Methods in Natural Lan-
guage Processing, Pittsburgh, PA.

Gildea, D. (2010). Optimal parsing strategies for Linear Context-Free
Rewriting Systems. In Human Language Technologies: The 2010 Annual

244 bibliography

Conference of the North American Chapter of the Association for Compu-
tational Linguistics, pages 769–776, Los Angeles, CA. Association for
Computational Linguistics.

Gildea, D. (2011). Grammar factorization by tree decomposition. Com-
putational Linguistics, 37(1):231–248.

Goldberg, Y. and Elhadad, M. (2010). An efficient algorithm for easy-
first non-directional dependency parsing. In Human Language Tech-
nologies: The 2010 Annual Conference of the North American Chapter of
the Association for Computational Linguistics, pages 742–750, Los An-
geles, CA. Association for Computational Linguistics.

Gómez-Rodríguez, C., Carroll, J., and Weir, D. (2011). Dependency
parsing schemata and mildly non-projective dependency parsing.
Computational Linguistics, 37(3):541–586.

Gómez-Rodríguez, C., Kuhlmann, M., and Satta, G. (2010). Efficient
parsing of well-nested Linear Context-Free Rewriting Systems. In
Human Language Technologies: The 2010 Annual Conference of the North
American Chapter of the Association for Computational Linguistics, pages
276–284, Los Angeles, CA. Association for Computational Linguis-
tics.

Gómez-Rodríguez, C., Kuhlmann, M., Satta, G., and Weir, D. (2009a).
Optimal reduction of rule length in Linear Context-Free Rewriting
Systems. In Proceedings of Human Language Technologies: The 2009
Annual Conference of the North American Chapter of the Association for
Computational Linguistics, pages 539–547, Boulder, CO. Association
for Computational Linguistics.

Gómez-Rodríguez, C. and Nivre, J. (2010). A transition-based parser
for 2-planar dependency structures. In Proceedings of the 48th Annual
Meeting of the Association for Computational Linguistics, pages 1492–
1501, Uppsala, Sweden. Association for Computational Linguistics.

Gómez-Rodríguez, C. and Satta, G. (2009). An optimal-time binariza-
tion algorithm for Linear Context-Free Rewriting Systems with fan-
out two. In Proceedings of the Joint Conference of the 47th Annual Meet-
ing of the ACL and the 4th International Joint Conference on Natural
Language Processing of the AFNLP, pages 985–993, Singapore. Associ-
ation for Computational Linguistics.

bibliography 245

Gómez-Rodríguez, C., Weir, D., and Carroll, J. (2009b). Parsing mildly
non-projective dependency structures. In Proceedings of the 12th Con-
ference of the European Chapter of the Association for Computational Lin-
guistics, pages 291–299, Athens, Greece. Association for Computa-
tional Linguistics.

Goodman, J. (1998). Parsing Inside-Out. PhD thesis, Computer Science
Group, Harvard University, Cambridge, MA. Technical Report TR-
07-98.

Goodman, J. (2003). Efficient parsing of DOP with PCFG-reductions.
In Bod et al. (2003).

Gorn, S. (1967). Explicit definitions and linguistic dominoes. In Sys-
tems and Computer Science, London, ON. University of Toronto Press.

Groenink, A. V. (1996). Mild context-sensitivity and tuple-based gen-
eralizations of Context-Free Grammar. Technical Report CS-R9634-
1996, Centrum voor Wiskunde en Informatica (CWI), Amsterdam,
The Netherlands.

Groenink, A. V. (1997). Surface without Structure – Word order and
tractability in Natural Language analysis. PhD thesis, Utrecht Univer-
sity, Utrecht, The Netherlands.

Grove, K. (2010). mcfgcyk. http://conf.ling.cornell.edu/kgrove/

mcfgcky/, February 3, 2011.

Hajič, J., Böhmová, A., Hajičová, E., and Vidová-Hladká, B. (2000). The
Prague Dependency Treebank: A three-level annotation scenario. In
Abeillé, A., editor, Treebanks: Building and Using Parsed Corpora, pages
103–127. Kluwer, Amsterdam.

Hajičová, E., Kirschner, Z., and Sgall, P. (1999). A manual for analytic
layer annotation of the Prague Dependency Treebank (English trans-
lation). Technical report, ÚFAL MFF UK, Prague, Czech Republic.

Hall, J. and Nivre, J. (2008a). A dependency-driven parser for German
dependency and constituency representations. In Kübler and Penn
(2008), pages 47–54.

http://conf.ling.cornell.edu/kgrove/mcfgcky/
http://conf.ling.cornell.edu/kgrove/mcfgcky/

246 bibliography

Hall, J. and Nivre, J. (2008b). Parsing discontinuous phrase structure
with grammatical functions. In Nordström, B. and Ranta, A., editors,
Advances in Natural Language Processing, volume 5221 of Lecture Notes
in Computer Science, pages 169–180. Springer, Gothenburg, Sweden.

Han, C.-h., Yoon, J., Kim, N., and Palmer, M. (2000). A feature-based
lexicalized Tree Adjoining Grammar for Korean. Technical Report
IRCS-00-04, University of Pennsylvania, Philadelphia, PA.

Harkema, H. (2001). Parsing Minimalist Languages. PhD thesis, Univer-
sity of California at Los Angeles, Los Angeles, CA.

Havelka, J. (2007). Beyond projectivity: Multilingual evaluation of con-
straints and measures on non-projective structures. In Proceedings
of the 45th Annual Meeting of the Association for Computational Linguis-
tics, pages 608–615, Prague, Czech Republic. Association for Com-
putational Linguistics.

Hays, D. G. (1964). Dependency theory: A formalism and some obser-
vations. Language, 40(4):511–525.

Hockenmaier, J. (2003). Data and Models for Statistical Parsing with Com-
binatory Categorial Grammar. PhD thesis, School of Informatics, Uni-
versity of Edinburgh, Edinburgh, UK.

Hockenmaier, J. and Steedman, M. (2002a). Acquiring compact lexical-
ized grammars from a cleaner treebank. In Proceedings of the Third
International Conference on Language Resources and Evaluation, Las Pal-
mas, Spain. European Language Resources Association (ELRA).

Hockenmaier, J. and Steedman, M. (2002b). Generative models for
statistical parsing with Combinatory Categorial Grammar. In Pro-
ceedings of the 40th Annual Meeting of the Association for Computational
Linguistics, pages 335–342, Philadelphia, PA. Association for Com-
putational Linguistics.

Höhle, T. (1986). Der Begriff "Mittelfeld" – Anmerkungen über die
Theorie der topologischen Felder. In Akten des Siebten Internationalen
Germanistenkongresses 1985, Göttingen, Germany.

Holan, T., Kuboň, V., Oliva, K., and Plátek, M. (1998). Two useful mea-
sures of word order complexity. In Proceedings of the Workshop on

bibliography 247

Processing of Dependency-Based Grammars at COLING-ACL’98, pages
21–29, Montréal, Canada. Association for Computational Linguis-
tics.

Hopcroft, J. E. and Ullman, J. D. (1979). Introduction to Automata Theory,
Languages and Computation. Addison-Wesley.

Hotz, G. and Pitsch, G. (1994). Fast uniform analysis of Coupled
Context-Free Languages. In Proceedings of the 21th International Collo-
quium on Automata, Languages and Programming (ICALP’94), volume
820 of Lecture Notes in Computer Science, pages 412–423, Berlin, Hei-
delberg. Springer.

Huang, L. and Chiang, D. (2005). Better k-best parsing. In Proceedings
of the Ninth International Workshop on Parsing Technology, pages 53–64,
Vancouver, BC. Association for Computational Linguistics.

Hudson, R. (1984). Word Grammar. Basil Blackwell, Oxford.

Huybregts, R. (1984). The weak inadequacy of context-free phrase
structure grammars. In de Haan, G., Trommelen, M., and Zonn-
eveld, W., editors, Van periferie naar kern, pages 81–91. Foris, Dor-
drecht.

Jijkoun, V. (2003). Finding non-local dependencies: Beyond pattern
matching. In The Companion Volume to the Proceedings of 41st Annual
Meeting of the Association for Computational Linguistics, pages 37–43,
Sapporo, Japan. Association for Computational Linguistics.

Johnson, D. B. (1975). Finding all the elementary circuits of a directed
graph. SIAM Journal on Computing, 4(1):77–84.

Johnson, M. (1985). Parsing with discontinuous constituents. In Pro-
ceedings of the 23rd Annual Meeting of the Association for Computational
Linguistics, pages 127–132, Chicago, IL. Association for Computa-
tional Linguistics.

Johnson, M. (1998). PCFG models of linguistic tree representations.
Computational Linguistics, 24(4):613–632.

Johnson, M. (2002). A simple pattern-matching algorithm for recov-
ering empty nodes and their antecedents. In Proceedings of the 40th
Annual Meeting of the Association for Computational Linguistics, pages

248 bibliography

136–143, Philadelphia, PA. Association for Computational Linguis-
tics.

Joshi, A. (1985). How much context-sensitivity is necessary for char-
acterizing structural descriptions? In Dowty, D., Karttunen, L., and
Zwicky, A., editors, Natural language processing: Theoretical, computa-
tional and psychological perspectives, pages 206–250. Cambridge Uni-
versity Press, New York.

Joshi, A. and Sarkar, A. (2003). Tree Adjoining Grammars and their
application to statistical parsing. In Bod et al. (2003), pages 253–281.

Joshi, A. K. (1987). An introduction to Tree Adjoining Grammars.
In Manaster-Ramer, A., editor, Mathematics of Language. John Ben-
jamins, Amsterdam.

Joshi, A. K., Levy, L. S., and Takahashi, M. (1975). Tree Adjunct Gram-
mars. Journal of Computer and System Science, 10(1):136–163.

Joshi, A. K. and Schabes, Y. (1997). Tree-Adjoining Grammars. In
Rozenberg, G. and Salomaa, A., editors, Handbook of Formal Lan-
guages, volume 3, pages 69–124. Springer, Berlin, New York.

Kaeshammer, M. and Demberg, V. (2012). German and English tree-
banks and lexica for Tree-Adjoining Grammars. In Proceedings of the
Eighth International Language Resources and Evaluation (LREC’12), Is-
tanbul, Turkey. European Language Resources Association (ELRA).
To appear.

Kahane, S., Nasr, A., and Rambow, O. (1998). Pseudo-projectivity: A
polynomially parsable non-projective dependency grammar. In Pro-
ceedings of the 36th Annual Meeting of the Association for Computational
Linguistics and 17th International Conference on Computational Linguis-
tics, volume 1, pages 646–652, Montreal, QC. Association for Com-
putational Linguistics.

Kallmeyer, L. (1999). Tree Description Grammars and Underspecified Repre-
sentations. PhD thesis, University of Tübingen, Tübingen, Germany.
Technical Report IRCS-99-08 at the Institute for Research in Cogni-
tive Science, Philadelphia.

bibliography 249

Kallmeyer, L. (2009). A declarative characterization of different types
of Multicomponent Tree Adjoining Grammars. Research on Language
and Computation, 7(1):55–99.

Kallmeyer, L. (2010a). On mildly context-sensitive non-linear rewrit-
ing. Research on Language and Computation, 8(4):341–363.

Kallmeyer, L. (2010b). Parsing beyond Context-Free Grammar. Springer,
Heidelberg.

Kallmeyer, L., Lichte, T., Maier, W., Parmentier, Y., and Dellert, J.
(2008a). Developing a TT-MCTAG for German with an RCG-based
Parser. In Proceedings of the Sixth International Language Resources
and Evaluation (LREC’08), Marrakech, Morocco. European Language
Resources Association (ELRA).

Kallmeyer, L., Lichte, T., Maier, W., Parmentier, Y., Dellert, J., and
Evang, K. (2008b). TuLiPA: Towards a multi-formalism parsing en-
vironment for grammar engineering. In Proceedings of the Workshop
on Grammar Engineering Across Frameworks (GEAF) at COLING 2008,
pages 1–8, Manchester, UK.

Kallmeyer, L. and Maier, W. (2009). An incremental Earley parser for
Simple Range Concatenation Grammar. In Proceedings of the 11th
International Conference on Parsing Technologies (IWPT’09), pages 61–
64, Paris, France. Association for Computational Linguistics.

Kallmeyer, L. and Maier, W. (2010). Data-driven parsing with Proba-
bilistic Linear Context-Free Rewriting Systems. In Proceedings of the
23rd International Conference on Computational Linguistics (COLING
2010), pages 537–545, Beijing, China.

Kallmeyer, L. and Maier, W. (2012). Data-driven parsing with Proba-
bilistic Linear Context-Free Rewriting Systems. Computational Lin-
guistics, 39(1). Accepted for publication.

Kallmeyer, L., Maier, W., and Parmentier, Y. (2009). An Earley pars-
ing algorithm for Range Concatenation Grammars. In Proceedings of
the ACL-IJCNLP 2009 Conference Short Papers, pages 9–12, Singapore.
Association for Computational Linguistics.

250 bibliography

Kallmeyer, L., Maier, W., and Parmentier, Y. (2009). Un Algo-
rithme d’Analyse de Type Earley pour Grammaires à Concaténation
d’Intervalles. In Conférence sur le Traitement Automatique des Langues
Naturelles - TALN’09, Senlis France. ATALA.

Kallmeyer, L., Maier, W., and Satta, G. (2009). Synchronous rewriting
in treebanks. In Proceedings of the 11th International Conference on
Parsing Technologies (IWPT’09), pages 69–72, Paris, France. Associa-
tion for Computational Linguistics.

Kallmeyer, L. and Parmentier, Y. (2008). On the relation between
Multicomponent Tree Adjoining Grammars with Tree Tuples (TT-
MCTAG) and Range Concatenation Grammars (RCG). In Second
International Conference on Language and Automata Theory and Appli-
cations (LATA 2008), Revised Papers, Lecture Notes in Computer Sci-
ence, pages 263–274. Springer, Tarragona, Spain.

Kallmeyer, L. and Satta, G. (2009). A polynomial-time parsing algo-
rithm for TT-MCTAG. In Proceedings of the Joint Conference of the 47th
Annual Meeting of the ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP, pages 994–1002, Singapore.
Association for Computational Linguistics.

Kanazawa, M. (2009a). A prefix-correct Earley recognizer for Multi-
ple Context-Free Grammars. In Proceedings of the Ninth International
Workshop on Tree Adjoining Grammar and Related Formalisms (TAG+9),
pages 49–56.

Kanazawa, M. (2009b). The pumping lemma for well-nested Multiple
Context-Free Languages. In Diekert, V. and Nowotka, D., editors,
Developments in Language Theory, 13th International Conference (DLT
2009), volume 5583 of Lecture Notes in Computer Science, pages 312–
325. Springer, Stuttgart, Germany.

Kanazawa, M. and Salvati, S. (2010). The copying power of well-nested
Context-Free Grammars. In Dediu, A.-H., Fernau, H., and Martín-
Vide, C., editors, Fourth International Conference on Language and Au-
tomata Theory and Applications, volume 6031 of Lecture Notes in Com-
puter Science, pages 344–355, Berlin, Heidelberg. Springer.

Kaplan, R., Riezler, S., King, T. H., Maxwell, J. T., Vasserman, A., , and
Crouch, R. (2004). Speed and accuracy in shallow and deep stochas-

bibliography 251

tic parsing. In naacl-hlt-04, pages 97–104, Boston, MA. Association
for Computational Linguistics.

Kasami, T. (1965). An efficient recognition and syntax-analysis algo-
rithm for context-free languages. Scientific report AFCRL-65-758,
Air Force Cambridge Research Lab, Bedford, MA.

Kato, Y., Seki, H., and Kasami, T. (2006). Stochastic multiple Context-
Free Grammar for RNA pseudoknot modeling. In Proceedings of the
Eighth International Workshop on Tree Adjoining Grammar and Related
Formalisms (TAG+8), pages 57–64. Association for Computational
Linguistics.

Klein, D. and Manning, C. D. (2001). Parsing and hypergraphs. In Pro-
ceedings of the Seventh International Workshop on Parsing Technologies,
Beijing, China.

Klein, D. and Manning, C. D. (2003a). A∗ parsing: Fast exact viterbi
parse selection. In Proceedings of the 2003 Human Language Technol-
ogy Conference of the North American Chapter of the Association for Com-
putational Linguistics, pages 40–47, Edmonton, AB. Association for
Computational Linguistics.

Klein, D. and Manning, C. D. (2003b). Accurate unlexicalized parsing.
In Proceedings of the 41th Annual Meeting of the Association for Compu-
tational Linguistics, pages 423–430, Sapporo, Japan. Association for
Computational Linguistics.

Klein, D. and Manning, C. D. (2003c). Fast exact inference with a
factored model for Natural Language parsing. In Advances in Neural
Information Processing Systems 15 (NIPS), pages 3–10, Vancouver, BC.
MIT Press.

Klein, P. N. (1998). Computing the edit-distance between unrooted
ordered trees. In Proceedings of the 6th annual European Symposium on
Algorithms (ESA), pages 91–102.

Knuth, D. E. (1977). A generalization of Dijkstra’s algorithm. Informa-
tion Processing Letters, 1(6):1–5.

Kracht, M. (2003). The Mathematics of Language. Mouton de Gruyter,
Berlin.

252 bibliography

Kromann, M. T. (2003). The Danish Dependency Treebank and the
DTAG treebank tool. In Second Workshop on Treebanks and Linguistic
Theories (TLT-2003), Växjö, Sweden.

Kruijff, G.-J. M. (2002). Formal and computational aspects of depen-
dency grammar: History and development of DG. Technical report,
FoLLI, the Association for Logic, Language and Information. ESS-
LLI 2002 Course Notes.

Kübler, S. (2005). How do treebank annotation schemes influence pars-
ing results? Or how not to compare apples and oranges. In Recent
Advances in Natural Language Processing 2005 (RANLP 2005), pages
293–300, Borovets, Bulgaria.

Kübler, S., Hinrichs, E. W., and Maier, W. (2006). Is it really that diffi-
cult to parse German? In Proceedings of the 2006 Conference on Empir-
ical Methods in Natural Language Processing, pages 111–119, Sydney,
Australia. Association for Computational Linguistics.

Kübler, S., Maier, W., Rehbein, I., and Versley, Y. (2008). How to com-
pare treebanks. In Proceedings of the Sixth International Language Re-
sources and Evaluation (LREC’08), pages 2322–2329, Marrakech, Mo-
rocco. European Language Resources Association (ELRA).

Kübler, S. and Penn, G., editors (2008). Proceedings of the Workshop on
Parsing German. Association for Computational Linguistics, Colum-
bus, Ohio.

Kudo, T. and Matsumoto, Y. (2004). A boosting algorithm for classifi-
cation of semi-structured text. In Proceedings of the 2004 Conference
on Empirical Methods in Natural Language Processing, pages 301–308,
Barcelona, Spain. Association for Computational Linguistics.

Kuhlmann, M. (2007). Dependency Structures and Lexicalized Grammars.
Doctoral dissertation, Saarland University, Saarbrücken, Germany.

Kuhlmann, M. and Möhl, M. (2007a). Mildly context-sensitive depen-
dency languages. In Proceedings of the 45th Annual Meeting of the As-
sociation for Computational Linguistics, pages 160–167, Prague, Czech
Republic. Association for Computational Linguistics.

bibliography 253

Kuhlmann, M. and Möhl, M. (2007b). The string-generative capacity of
regular dependency languages. In Proceedings of the 12th Conference
on Formal Grammar (FG-2007), Dublin, Ireland.

Kuhlmann, M. and Nivre, J. (2006). Mildly non-projective dependency
structures. In Proceedings of the COLING/ACL 2006 Main Conference
Poster Sessions, pages 507–514, Sydney, Australia. Association for
Computational Linguistics.

Kuhlmann, M. and Satta, G. (2009). Treebank grammar techniques
for non-projective dependency parsing. In Proceedings of the 12th
Conference of the European Chapter of the Association for Computational
Linguistics, pages 478–486, Athens, Greece. Association for Compu-
tational Linguistics.

Kunze, J. (1975). Abhängigkeitsgrammatik, volume 12 of Studia grammat-
ica. Akademie-Verlag, Berlin.

Lambek, J. (1958). The mathematics of sentence structure. American
Mathematical Monthly, 65:154–170.

Langer, H. (1998). Experimente mit verallgemeinerten lookahead-
algorithmen. In Schröder, B., Lenders, W., Hess, W., and Portele,
T., editors, Computer, Linguistik und Phonetik zwischen Sprache und
Sprechen. Tagungsband der 4. Konferenz zur Verarbeitung natürlicher
Sprache - KONVENS-98, pages 69–82, Frankfurt am Main. Peter Lang
Verlag.

Lee, L. (2002). Fast Context-Free Grammar parsing requires fast
Boolean matrix multiplication. Journal of the ACM, 49(1):1–15.

Levenshtein, V. I. (1966). Binary codes capable of correcting deletions,
insertions, and reversals. Soviet Physics Doklady, 10(8):707–710.

Levine, R. D. and Meurers, D. W. (2006). Head-Driven Phrase Struc-
ture Grammar: Linguistic approach, formal foundations, and com-
putational realization. In Brown, K., editor, Encyclopedia of Language
and Linguistics. Elsevier, Oxford, second edition.

Levy, R. (2005). Probabilistic Models of Word Order and Syntactic Discon-
tinuity. PhD thesis, Stanford University.

254 bibliography

Levy, R. and Manning, C. (2003). Is it harder to parse Chinese or
the Chinese treebank? In Proceedings of the 41th Annual Meeting of
the Association for Computational Linguistics, pages 439–446, Sapporo,
Japan. Association for Computational Linguistics.

Levy, R. and Manning, C. (2004). Deep dependencies from context-
free statistical parsers: Correcting the surface dependency approxi-
mation. In Proceedings of the 42nd Meeting of the Association for Compu-
tational Linguistics (ACL’04), Main Volume, pages 327–334, Barcelona,
Spain. Association for Computational Linguistics.

Lichte, T. (2007). An MCTAG with tuples for coherent constructions
in German. In Proceedings of the 12th Conference on Formal Grammar
(FG-2007), Dublin, Ireland.

Lichte, T. (2012). Analyse kohärenter Konstruktionen mit TAG-
Varianten. Manuscript.

Lin, D. (1995). A dependency-based method for evaluating broad-
coverage parsers. In Proceedings of the 14th International Joint Confer-
ence on Artificial Intelligence (IJCAI 95), pages 1420–1427, Montreal,
QC.

Ljunglöf, P. (2004). Expressivity and Complexity of the Grammatical Frame-
work. PhD thesis, Göteborg University, Gothenburg, Sweden.

Ljunglöf, P. (2004). Grammatical Framework and Multiple Context-
Free Grammars. In Proceedings of the 9th Conference on Formal Gram-
mar (FG-2004), Nancy, France.

Lobin, H. (1993). Koordinationssyntax als prozedurales Phänomen, vol-
ume 46 of Studien zur deutschen Grammatik. Narr, Tübingen.

Magerman, D. M. (1995). Statistical decision-tree models for parsing.
In Proceedings of the 33th Annual Meeting of the Association for Compu-
tational Linguistics, pages 276–283, Cambridge, Massachusetts, USA.
Association for Computational Linguistics.

Maier, W. (2004). n2cf – Umwandeln des TIGER-Korpus in eine kon-
textfreie Struktur. Term paper, University of Tübingen.

bibliography 255

Maier, W. (2006). Annotation schemes and their influence on pars-
ing results. In Proceedings of the Student Research Workshop at COL-
ING/ACL 2006, pages 19–24, Sydney, Australia. Association for Com-
putational Linguistics.

Maier, W. (2010). Direct parsing of discontinuous constituents in Ger-
man. In Seddah et al. (2010).

Maier, W. and Kallmeyer, L. (2010). Discontinuity and non-projectivity:
Using mildly context-sensitive formalisms for data-driven parsing.
In Proceedings of the Tenth International Workshop on Tree Adjoining
Grammar and Related Formalisms (TAG+10), pages 119–126, New
Haven, CT.

Maier, W. and Lichte, T. (2011). Characterizing discontinuity in con-
stituent treebanks. In Formal Grammar. 14th International Conference,
FG 2009. Bordeaux, France, July 25-26, 2009. Revised Selected Papers,
volume 5591 of Lecture Notes in Artificial Intelligence, pages 167–182,
Berlin, Heidelberg, New York. Springer-Verlag.

Maier, W. and Søgaard, A. (2008). Treebanks and mild context-
sensitivity. In de Groote, P., editor, Proceedings of the 13th Confer-
ence on Formal Grammar (FG-2008), pages 61–76, Hamburg, Germany.
CSLI Publications.

Manning, C. D. and Schütze, H. (1999). Foundations of Statistical Natural
Language Processing. MIT Press, Cambridge.

Marcus, M., Kim, G., Marcinkiewicz, M. A., Macintyre, R., Bies, A.,
Ferguson, M., Katz, K., and Schasberger, B. (1994). The Penn Tree-
bank: Annotating predicate argument structure. In ARPA Human
Language Technology Workshop, pages 114–119.

Marcus, M. P., Santorini, B., and Marcinkiewicz, M. A. (1993). Build-
ing a large annotated corpus of English: The Penn Treebank. Com-
putational Linguistics, 19(2):313–330. Special Issue on Using Large
Corpora: II.

Matsuzaki, T., Miyao, Y., and Tsujii, J. (2005). Probabilistic CFG with
latent annotations. In Proceedings of the 43th Annual Meeting of the
Association for Computational Linguistics, pages 75–82, Ann Arbor, MI.
Association for Computational Linguistics.

256 bibliography

McDonald, R. and Pereira, F. (2006). Online learning of approximate
dependency parsing algorithms. In Proceedings of the 11th Conference
of the European Chapter of the Association for Computational Linguistics,
pages 81–88, Trento, Italy. Association for Computational Linguis-
tics.

McDonald, R., Pereira, F., Ribarov, K., and Hajič, J. (2005). Non-
projective dependency parsing using spanning tree algorithms. In
Proceedings of Human Language Technology Conference and Conference
on Empirical Methods in Natural Language Processing (HLT/EMNLP),
pages 523–530, Vancouver, BC. Association for Computational Lin-
guistics.

McDonald, R. and Satta, G. (2007). On the complexity of non-
projective data-driven dependency parsing. In Proceedings of the
Tenth International Conference on Parsing Technology, pages 121–132,
Prague, Czech Republic. Association for Computational Linguistics.

Mel’čuk, I. (1988). Dependency Syntax: Theory and Practice. Suny Series
in Linguistics. State University of New York Press.

Michaelis, J. (2001a). Derivational minimalism is mildly context-
sensitive. In Moortgat, M., editor, Selected papers of Logical Aspects
of Computational Linguistics, Third International Conference (LACL’98),
volume 2014 of Lecture Notes in Computer Science, pages 179–198,
Grenoble, France. Springer.

Michaelis, J. (2001b). On Formal Properties of Minimalist Grammars. PhD
thesis, Potsdam University, Potsdam, Germany.

Michaelis, J. (2001c). Transforming Linear Context-Free Rewriting Sys-
tems into Minimalist Grammars. In de Groote, P., Morrill, G., and
Retoré, C., editors, Proceedings of Logical Aspects of Computational Lin-
guistics, 4th International Conference (LACL’01), volume 2099 of Lec-
ture Notes in Computer Science, pages 228–244. Springer, Le Croisic,
France.

Michaelis, J. and Kracht, M. (1997). Semilinearity as a syntactic in-
variant. In Retoré, C., editor, Selected Papers of Logical Aspects of Com-
putational Linguistics, First International Conference (LACL’96), volume
1328 of Lecture Notes in Computer Science, pages 68–95, Nancy, France.
Springer.

bibliography 257

Miyao, Y. (2006). From Linguistic Theory to Syntactic Analysis: Corpus-
oriented Grammar Development and Feature Forest Model. PhD thesis,
University of Tokyo, Tokyo, Japan.

Miyao, Y. and Tsujii, J. (2008). Feature forest models for probabilistic
HPSG parsing. Computational Linguistics, 34(1):35–80.

Nakanishi, R., Takada, K., and Seki, H. (1997). An efficient recognition
algorithm for Multiple Context Free Languages. In Fifth Meeting on
Mathematics of Language, pages 1–5, Schloss Dagstuhl, Germany. The
Association for Mathematics of Language.

Nasr, A. and Rambow, O. (2004). A simple string-rewriting formalism
for dependency grammar. In Recent Advances in Dependency Gram-
mar at COLING 04, pages 17–24, Geneva, Switzerland.

Nederhof, M.-J. (1997). Solving the correct-prefix property for TAGs.
In Fifth Meeting on Mathematics of Language, pages 124–130, Schloss
Dagstuhl, Germany. The Association for Mathematics of Language.

Nederhof, M.-J. (1998). An alternative LR algorithm for TAGs. In
Proceedings of the 36th Annual Meeting of the Association for Compu-
tational Linguistics and 17th International Conference on Computational
Linguistics, volume 1, pages 946–952, Montreal, QC. Association for
Computational Linguistics.

Nederhof, M.-J. (1999). The computational complexity of the correct-
prefix property for TAGs. Computational Linguistics, 25(3):345–360.

Nederhof, M.-J. (2003). Weighted deductive parsing and Knuth’s algo-
rithm. Computational Linguistics, 29(1):1–9.

Nederhof, M.-J. and Satta, G. (2006). Estimation of consistent Prob-
abilistic Context-Free Grammars. In Proceedings of the Human Lan-
guage Technology Conference of the North American Chapter of the ACL,
pages 343–350, New York, NY. Association for Computational Lin-
guistics.

Neuhaus, P. and Bröker, N. (1997). The complexity of recognition of
linguistically adequate dependency grammars. In Proceedings of the
35th Annual Meeting of the Association for Computational Linguistics,
pages 337–343, Madrid, Spain. Association for Computational Lin-
guistics.

258 bibliography

Nivre, J. (2003). An efficient algorithm for projective dependency pars-
ing. In Proceedings of the Eighth International Workshop on Parsing Tech-
nologies, pages 149–160, Nancy, France.

Nivre, J. (2006). Constraints on non-projective dependcy parsing. In
Proceedings of the 11th Conference of the European Chapter of the Associ-
ation for Computational Linguistics, pages 73–80, Trento, Italy. Associ-
ation for Computational Linguistics.

Nivre, J., Hall, J., Nilsson, J., Chanev, A., Eryigit, G., Kübler, S., Mari-
nov, S., and Marsi, E. (2007). MaltParser: A language-independent
system for data-driven dependency parsing. Natural Language Engi-
neering, 13(2):95–135.

Nivre, J. and Nilsson, J. (2005). Pseudo-projective dependency pars-
ing. In Proceedings of the 43th Annual Meeting of the Association for
Computational Linguistics, pages 99–106, Ann Arbor, MI. Association
for Computational Linguistics.

Osenova, P. and Simov, K. (2004). BTB-TR05: BulTreebank Stylebook.
Technical Report 05, BulTreeBank Project, Sofia, Bulgaria.

Parikh, R. (1966). On Context-Free Languages. Journal of the Association
for Computing Machinery, 13:570–681.

Parmentier, Y. and Maier, W. (2008). Using constraints over finite sets
of integers for Range Concatenation Grammar parsing. In Nord-
ström, B. and Ranta, A., editors, Advances in Natural Language Pro-
cessing, volume 5221 of Lecture Notes in Computer Science, pages 360–
365, Gothenburg, Sweden. Springer.

Pauls, A. and Klein, D. (2009). K-best A∗ parsing. In Proceedings of the
Joint Conference of the 47th Annual Meeting of the ACL and the 4th Inter-
national Joint Conference on Natural Language Processing of the AFNLP,
pages 958–966, Singapore. Association for Computational Linguis-
tics.

Pereira, F. C. N. and Warren, D. H. D. (1983). Parsing as deduction.
In Proceedings of the 21st Annual Meeting of the Association for Compu-
tational Linguistics, pages 137–144, Cambridge, MA. Association for
Computational Linguistics.

bibliography 259

Petrov, S. (2009). Coarse-to-Fine Natural Language Processing. PhD thesis,
University of California at Berkeley, Berkeley, CA.

Petrov, S. (2010). Products of random latent variable grammars. In
Human Language Technologies: The 2010 Annual Conference of the North
American Chapter of the Association for Computational Linguistics, pages
19–27, Los Angeles, CA. Association for Computational Linguistics.

Petrov, S., Barrett, L., Thibaux, R., and Klein, D. (2006). Learning ac-
curate, compact, and interpretable tree annotation. In Proceedings of
the 21st International Conference on Computational Linguistics and 44th
Annual Meeting of the Association for Computational Linguistics, pages
433–440, Sydney, Australia. Association for Computational Linguis-
tics.

Petrov, S. and Klein, D. (2007). Improved inference for unlexicalized
parsing. In Human Language Technologies 2007: The Conference of the
North American Chapter of the Association for Computational Linguis-
tics; Proceedings of the Main Conference, pages 404–411, Rochester, NY.
Association for Computational Linguistics.

Plaehn, O. (1999). Probabilistic parsing with Discontinuous Phrase
Structure Grammar. Master’s thesis, Saarland University, Saar-
brücken, Germany.

Plaehn, O. (2004). Computing the most probable parse for a Discontin-
uous Phrase-Structure Grammar. In Bunt, H., Carroll, J., and Satta,
G., editors, New developments in parsing technology, volume 23 of Text,
Speech And Language Technology, pages 91–106. Kluwer.

Pollard, C. (1984). Generalized Phrase Structure Grammars, Head Gram-
mars and Natural Language. Doctoral dissertation, Center for the
Study of Language and Information, Stanford University, Stanford,
CA.

Pollard, C. and Sag, I. (1994). Head-Driven Phrase Structure Grammar.
CSLI Publications, Chicago.

Prescher, D. (2005). Inducing head-driven PCFGs with latent heads:
Refining a tree-bank grammar for parsing. In Gama, J., editor, Pro-
ceedings of the 16th European Conference on Machine Learning (ECML

260 bibliography

2005), volume 3720 of Lecture Notes in Artificial Intelligence, pages
292–304, Berlin, Heidelberg. Springer.

Prolo, C. A. (2000). An efficient LR parser generator for Tree Adjoin-
ing Grammars. In Proceedings of the Sixth International Workshop on
Parsing Technologies, pages 207–218.

Prolo, C. A. (2003). LR Parsing for Tree Adjoining Grammars and its
Application to Corpus-based Natural Language Parsing. PhD thesis, De-
partment of Computer and Information Science, University of Penn-
sylvania, Philadelphia, PA.

Pullum, G. K. (2007). The evolution of model-theoretic frameworks
in linguistics. In Model-Theoretic Syntax @ 10 at ESSLLI 2007, pages
1–10, Dublin, Ireland.

Pullum, G. K. and Scholz, B. C. (2001). On the distinction between
model-theoretic and generative-enumerative syntactic frameworks.
In de Groote, P., Morrill, G., and Retoré, C., editors, Proceedings
of Logical Aspects of Computational Linguistics, 4th International Con-
ference (LACL’01), volume 2099 of LNAI, pages 17–43, Le Croisic,
France. Springer.

Radzinski, D. (1991). Chinese number-names, tree adjoining lan-
guages, and mild context-sensitivity. Computational Linguistics,
17(3):277–299.

Rafferty, A. and Manning, C. D. (2008). Parsing three German tree-
banks: Lexicalized and unlexicalized baselines. In Kübler and Penn
(2008), pages 40–46.

Rambow, O. (1994). Formal and computational aspects of Natural Language
syntax. PhD thesis, University of Pennsylvania, Philadelphia, PA.

Rambow, O. and Satta, G. (1996). Synchronous models of language.
In Proceedings of the 34th Annual Meeting of the Association for Compu-
tational Linguistics, pages 116–123, Santa Cruz, CA. Association for
Computational Linguistics.

Rambow, O. and Satta, G. (1999). Independent parallelism in finite
copying parallel rewriting systems. Theoretical Computer Science,
223(1-2):87–120.

bibliography 261

Ranta, A. (2004). Grammatical Framework, a typetheoretical grammar
formalism. Journal of Functional Programming, 14(2):145–189.

Reape, M. (1991). Parsing bounded discontinuous constituency. In
Computational Linguistics in the Netherlands. Papers from the First CLIN-
meeting, Utrecht, The Netherlands.

Reape, M. (1994). Domain union and word order variation in German.
In Nerbonne, J., Netter, K., and Pollard, C. J., editors, German in
Head-Driven Phrase Structure Grammar, volume 46 of CSLI Lecture
Notes, pages 151–198. CSLI Publications, Stanford, CA.

Rehbein, I. and van Genabith, J. (2007a). Evaluating evaluation mea-
sures. In Proceedings of the 16th Nordic Conference of Computational
Linguistics NODALIDA-2007, pages 372–379, Tartu, Estonia.

Rehbein, I. and van Genabith, J. (2007b). Treebank annotation schemes
and parser evaluation for German. In Proceedings of the 2007 Joint
Conference on Empirical Methods in Natural Language Processing and
Computational Natural Language Learning (EMNLP-CoNLL), pages
630–639, Prague, Czech Republic. Association for Computational
Linguistics.

Rehbein, I. and van Genabith, J. (2007c). Why is it so difficult to
compare treebanks? TIGER and TüBa-D/Z revisited. In Sixth In-
ternational Workshop on Treebanks and Linguistic Theories, pages 115–
126, Bergen, Norway. Northern European Association for Language
Technology (NEALT).

Resnik, P. (1992). Probabilistic Tree-Adjoining Grammars as a frame-
work for natural language processing. In Proceedings of COLING
1992: The 14th International Conference on Computational Linguistics,
pages 418–424, Nantes, France.

Richter, F. and Sailer, M. (1995). Remarks on linearization. Reflections
on the treatment of LP-rules in HPSG in a Typed Feature Logic.
Magisterarbeit, University of Tübingen, Tübingen, Germany.

Riezler, S., King, T. H., Kaplan, R. M., Crouch, R., Maxwell, J. T., and
Johnson, M. (2002). Parsing the Wall Street Journal using a Lexical-
Functional Grammar and discriminative estimation techniques. In

262 bibliography

Proceedings of the 40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 271–278, Philadephia, PA. Association for
Computational Linguistics.

Roark, B. (2001). Robust Probabilistic Predictive Syntactic Processing. PhD
thesis, Brown University, Providence, RI.

Rosenkrantz, D. J. and Lewis, P. M. (1970). Deterministic left-corner
parsing. In Proceedings of the 11th Annual Symposium on Switching
and Automata Theory (SWAT 1970), pages 139–152, Washington, DC.
IEEE Computer Society.

Sag, I. A. and Wasow, T. (1999). Syntactic Theory: A Formal Introduction.
CSLI Publications, Stanford, CA.

Sagot, B. (2005). Linguistic facts as predicates over ranges of the sen-
tence. In Blache, P., Stabler, E., Busquets, J., and Moot, R., editors,
Proceedings of Logical Aspects of Computational Linguistics, 5th Interna-
tional Conference (LACL 2005), volume 3492 of Lecture Notes in Com-
puter Science, pages 271–286, Bordeaux, France. Springer.

Sagot, B. and Satta, G. (2010). Optimal rank reduction for Linear
Context-Free Rewriting Systems with fan-out two. In Proceedings
of the 48th Annual Meeting of the Association for Computational Lin-
guistics, pages 525–533, Uppsala, Sweden. Association for Computa-
tional Linguistics.

Sampson, G. and Babarczy, A. (2003). A test of the leaf-ancestor metric
for parse accuracy. Journal of Natural Language Engineering, 9:365–
380.

Sangati, F. and Zuidema, W. (2009). Unsupervised methods for head
assignments. In Proceedings of the 12th Conference of the European
Chapter of the Association for Computational Linguistics, pages 701–709,
Athens, Greece. Association for Computational Linguistics.

Sarkar, A. (1998). Conditions on consistency of probabilistic Tree Ad-
joining Grammar. In Proceedings of the 36th Annual Meeting of the
Association for Computational Linguistics and 17th International Confer-
ence on Computational Linguistics, volume 1, pages 1164–1170, Nantes,
France. Association for Computational Linguistics.

bibliography 263

Sarkar, A. and Joshi, A. (1996). Coordination in Tree Adjoining Gram-
mars: Formalization and implementation. In Proceedings of COLING
1996: The 16th International Conference on Computational Linguistics,
pages 610–615, Copenhagen, Denmark.

Satta, G. (1992). Recognition of Linear Context-Free Rewriting Sys-
tems. In Proceedings of the 30th Annual Meeting of the Association for
Computational Linguistics, pages 89–95, Newark, DE. Association for
Computational Linguistics.

Satta, G. (1994). Tree-Adjoining Grammar parsing and Boolean matrix
multiplication. Computational Linguistics, 20(2):173–192.

Scha, R. (1990). Taaltheorie en taaltechnologie; competence en per-
formance. In de Kort, R. and Leerdam, G. L. J., editors, Computer-
toepassingen in de Neerlandistiek, pages 7–22. LVVN, Almere.

Schabes, Y. (1992). Stochastic lexicalized Tree-Adjoining Grammar. In
Proceedings of COLING 1992: The 14th International Conference on Com-
putational Linguistics, pages 425–432, Nantes, France.

Schabes, Y. and Joshi, A. K. (1988). An Earley-type parsing algorithm
for Tree Adjoining Grammars. In Proceedings of the 26th Annual Meet-
ing of the Association for Computational Linguistics, pages 258–269, Buf-
falo, NY. Association for Computational Linguistics.

Schabes, Y. and Waters, R. C. (1995). Tree Insertion Grammar: A
cubic-time, parsable formalism that lexicalizes context-free gram-
mar without changing the trees produced. Computational Linguistics,
21(4):479–514.

Schluter, N. and van Genabith, J. (2008). Treebank-based acquisition
of LFG parsing resources for French. In Proceedings of the Sixth In-
ternational Language Resources and Evaluation (LREC’08), pages 2909–
2916, Marrakech, Morocco. European Language Resources Associa-
tion (ELRA).

Schöning, U. (2001). Theoretische Informatik – kurzgefasst. Spektrum-
Hochschultaschenbuch. Spektrum, Akademischer Verlag, Heidel-
berg, Berlin, 4th edition.

264 bibliography

Schuler, W., AbdelRahman, S., Miller, T., and Schwartz, L. (2010).
Broad-coverage parsing using human-like memory constraints.
Computational Linguistics, 36(1):1–30.

Schulte, C. (2002). Programming Constraint Services, volume 2302 of
Lecture Notes in Artificial Intelligence. Springer-Verlag.

Seddah, D., Kübler, S., and Tsarfaty, R., editors (2010). Proceed-
ings of the NAACL HLT 2010 First Workshop on Statistical Parsing of
Morphologically-Rich Languages. Association for Computational Lin-
guistics, Los Angeles, CA.

Seki, H., Matsumura, T., Fujii, M., and Kasami, T. (1991). On Multiple
Context-Free Grammars. Theoretical Computer Science, 88(2):191–229.

Sekine, S. and Collins, M. J. (1997). EVALB bracket scoring program.
http://nlp.cs.nyu.edu/evalb/, January 3, 2012.

Shen, L. and Joshi, A. K. (2005). Incremental LTAG parsing. In Proceed-
ings of Human Language Technology Conference and Conference on Em-
pirical Methods in Natural Language Processing (HLT/EMNLP), pages
811–818, Vancouver, BC. Association for Computational Linguistics.

Shieber, S. M. (1984). Direct parsing of ID/LP grammars. Linguistics
and Philosophy, 7(2):135–154.

Shieber, S. M. (1985). Evidence against the context-freeness of natural
language. Linguistics and Philosophy, 8:333–343.

Shieber, S. M., Schabes, Y., and Pereira, F. C. N. (1995). Principles and
implementation of deductive parsing. Journal of Logic Programming,
24(1&2):3–36.

Sikkel, K. (1997). Parsing Schemata. Texts in Theoretical Computer
Science. Springer, Berlin, Heidelberg, New York.

Sima’an, K. (1996). Computational complexity of probabilistic disam-
biguation by means of tree grammars. In Proceedings of COLING
1996: The 16th International Conference on Computational Linguistics,
volume 2, pages 1175–1180, Copenhagen, Denmark.

Sima’an, K. (1999). Learning efficient disambiguation. Illc dissertation
series 1999-02, Utrecht Institute of Linguistics OTS, Utrecht, The
Netherlands.

http://nlp.cs.nyu.edu/evalb/

bibliography 265

Skut, W., Krenn, B., Brants, T., and Uszkoreit, H. (1997). An annota-
tion scheme for free word order languages. In Proceedings of the 5th
Applied Natural Language Processing Conference, pages 88–95, Wash-
ington, DC.

Sleator, D. and Temperley, D. (1993). Parsing English with a link gram-
mar. In Proceedings of the Third International Workshop on Parsing Tech-
nologies, pages 277–291, Tilburg, The Netherlands.

Søgaard, A. (2011). A O(|G|n6) time extension of inversion transduc-
tion grammars. Machine Translation. To appear.

Søgaard, A., Lichte, T., and Maier, W. (2007). The complexity of linguis-
tically motivated extensions of Tree-Adjoining Grammar. In Recent
Advances in Natural Language Processing 2007 (RANLP 2007), pages
548–553, Borovets, Bulgaria.

Stabler, E. P. (1997). Derivational minimalism. In Retoré, C., editor,
Selected Papers of Logical Aspects of Computational Linguistics, First In-
ternational Conference (LACL’96), volume 1328 of Lecture Notes in Com-
puter Science, pages 68–95, Nancy, France. Springer.

Steedman, M. (2000). The Syntactic Process. MIT Press, Cambridge.

Suhre, O. (2000). Computational aspects of a grammar formalism for
languages with freer word order. Diplomarbeit, University of Tübin-
gen, Tübingen, Germany. Arbeitspapier des SFB 340, Nr. 154.

TEI Consortium, editor (2010). TEI P5: Guidelines for Electronic
Text Encoding and Interchange. Version 1.8.0, Last updated on Novem-
ber 5th 2010, chapter 18 Feature Structures. TEI Consor-
tium. http://www.tei-c.org/release/doc/tei-p5-doc/en/html/

FS.html, November 15, 2010.

Telljohann, H., Hinrichs, E., Kübler, S., and Zinsmeister, H. (2006).
Stylebook for the Tübingen Treebank of Written German (TüBa-
D/Z). Technischer Bericht, Seminar für Sprachwissenschaft, Uni-
versität Tübingen, Tübingen, Germany. Revidierte Fassung.

Tesnière, L. (1959). Eléments de syntaxe structurale. Klincksieck, Paris.

http://www.tei-c.org/release/doc/tei-p5-doc/en/html/FS.html,
http://www.tei-c.org/release/doc/tei-p5-doc/en/html/FS.html,

266 bibliography

Tounsi, L., Attia, M., and van Genabith, J. (2009). Parsing Arabic us-
ing treebank-based LFG resources. In LFG09, Proceedings of the 14th
International LFG Conference, CSLI Publications, pages 583–586, Cam-
bridge, UK.

Tsarfaty, R. and Sima’an, K. (2007). Three-dimensional parametriza-
tion for parsing morphologically rich languages. In Proceedings of the
Tenth International Conference on Parsing Technologies, pages 156–167,
Prague, Czech Republic. Association for Computational Linguistics.

Ule, T. (2003). Directed treebank refinement for PCFG parsing. In Sec-
ond Workshop on Treebanks and Linguistic Theories (TLT-2003), Växjö,
Sweden.

Ule, T. (2006). Treebank Refinement. Dissertation, University of Tübin-
gen, Tübingen, Germany.

Uszkoreit, H. (1986). Linear precedence in discontinuous constituents:
Complex fronting in german. CSLI report CSLI-86-47, Center for the
Study of Language and Information, Stanford University, Stanford,
CA.

Valiant, L. G. (1975). General context-free recognition in less than cubic
time. Journal of Computer and System Science, 10:191–229.

van Cranenburgh, A., Scha, R., and Sangati, F. (2011). Discontinu-
ous data-oriented parsing: A mildly context-sensitive all-fragments
grammar. In Proceedings of the Second Workshop on Statistical Parsing
of Morphologically Rich Languages (SPMRL 2011), Dublin, Ireland.

Versley, Y. (2005). Parser evaluation across text types. In Fourth Work-
shop on Treebanks and Linguistic Theories (TLT 2005), Barcelona, Spain.

Vijay-Shanker, K. and Joshi, A. K. (1985). Some computational prop-
erties of tree adjoining grammars. In Proceedings of the 23rd Annual
Meeting of the Association for Computational Linguistics, pages 82–93,
Chicago, IL. Association for Computational Linguistics.

Vijay-Shanker, K. and Joshi, A. K. (1988). Feature structure based Tree
Adjoining Grammar. In Proceedings of COLING 1988: The 12th Inter-
national Conference on Computational Linguistics, pages 714–719, Bu-
dapest, Hungary.

bibliography 267

Vijay-Shanker, K., Weir, D., and Joshi, A. K. (1987). Characterising
structural descriptions used by various formalisms. In Proceedings
of the 25th Annual Meeting of the Association for Computational Linguis-
tics, pages 104–111, Stanford, CA. Association for Computational
Linguistics.

Vijayshanker, K. (1987). A study of tree-adjoining grammars. PhD thesis,
University of Pennsylvania, Philadelphia, PA.

Villemonte de la Clergerie, E. (2002). Parsing Mildly Context-Sensitive
Languages with Thread Automata. In Proceedings of COLING 2002:
The 19th International Conference on Computational Linguistics, Taipei,
Taiwan.

Viterbi, A. J. (1967). Error bounds for convolutional codes and an
asymptotically optimum decoding algorithm. IEEE Transactions on
Information Theory, 13(2):260–269.

Vogel, C. and Bunt, H. (1992). Representing discontinuous con-
stituency: Motivations and complexity. In Proceedings of the Pacific
Rim International Conference on Artificial Intelligence, Seoul, South Ko-
rea.

Vogel, C. and Erjavec, T. (1994). Restricted Discontinuous Phrase Struc-
ture Grammar and its ramifications. In Martin-Vide, C., editor, Cur-
rent Issues in Mathematical Linguistics, pages 131–140. Elsevier, Ams-
terdam.

Weir, D. (1988). Characterizing Mildly Context-Sensitive Grammar For-
malisms. PhD thesis, University of Pennsylviania, Philadelphia, PA.

Wu, D. (1997). Stochastic Inversion Transduction Grammars and bilin-
gual parsing of parallel corpora. Computational Linguistics, 23(3):377–
404.

Wurmbrand, S. (2001). Infinitives. Restructuring and Clause Structure,
volume 55 of Studies in Generative Grammar. de Gruyter, Berlin, New
York.

Xia, F. (2001). Investigating the Relationship between Grammars and Tree-
banks for natural languages. Doctoral dissertation, University of Penn-
sylvania, Philadelphia, PA.

268 bibliography

XTAG Research Group (2001). A Lexicalized Tree Adjoining Grammar
for English. Technical report, Institute for Research in Cognitive
Science, University of Pennsylvania, Philadelphia, PA.

Yeh, A. S. (2000). More accurate tests for the statistical significance
of result differences. In Proceedings of COLING 2000: The 18th Inter-
national Conference on Computational Linguistics, pages 947–953, Saar-
brücken, Germany.

Yli-Jyrä, A. (2003). Multiplanarity – a model for dependency struc-
tures in treebanks. In Second Workshop on Treebanks and Linguistic
Theories (TLT-2003), Växjö, Sweden.

Younger, D. H. (1967). Recognition and parsing of Context-Free Lan-
guages in time n3. Information and Control, 10(2):189–208.

Zhang, K. and Shasha, D. (1989). Simple fast algorithms for the edit-
ing distance between trees and related problems. SIAM Journal of
Computing, 18:1245–1262.

Zwicky, A. (1986). Concatenation and liberation. In Proceedings of the
Twenty-Second Regional Meeting (General Session) of the Chicago Lin-
guistics Society, pages 65–74.

I N D E X

A∗ parsing, 95
alphabet, 17
annotation, 25

constituency –, 99
dependency –, 122

attachment score, see evaluation

beam search, 109
best-first parsing, 109
binarization

for Simple Range Concatenation Grammar, 158
block degree, 24
bottom-up parsing

for Range Concatenation Grammar, 68
bracket scoring, see evaluation

center embedding, 30
Chomsky Normal Form, 29
closure properties, 18
Combinatory Categorial Grammar, 115
complexity, 57
CoNLL format, 123
constituency structure, 21

discontinuous –, 132
context daughter, see Discontinuous Phrase Structure Grammar
context summary estimate, see outside estimates
Context-Free Grammar, 27

derivation, 27
derivation tree, 28
ε-free –, 29
leftmost derivation, 92
Probabilistic –, 92

derivation probabilities, 92
inside/outside probabilities, 93
lexicalization, 107

269

270 index

Unordered –, 49
copy language, 33
corpus, 25
Coupled Context-Free Grammar, 48
cross-serial dependencies, 3, 31
CYK parsing

for Probabilistic Context-Free Grammar, 95
for Range Concatenation Grammar, 67

Data-Oriented Parsing, 113
deduction system, 53

weighted –, 94
Definite Clause Grammar, 182
dependency parsing

grammar-based, 125
graph-based, 124
hybrid, 125
transition based, 124

dependency structure, 21
non-projective –, 132

dependent, 21
derivation

for Context-Free Grammar, 27
for Generalized Context-Free Grammar, 38
for Linear Context-Free Rewriting System, 40
for Range Concatenation Grammar, 44

derivation probabilities
for Probabilistic Context-Free Grammar, 92
for Probabilistic Simple Range Concatenation Grammar, 168

derivation tree
for Context-Free Grammar, 28
for Simple Range Concatenation Grammar, 46
for Tree-Adjoining Grammar, 33

Discontinuous Phrase Structure Grammar, 49, 50
Probabilistic –, 118

discotree, see Discontinuous Phrase Structure Grammar
dominance, 21

Earley parsing
for Context-Free Grammar, 55

index 271

for Range Concatenation Grammar, 69
for Simple Range Concatenation Grammar, 79

edge degree, 153
edge-factored model, 128
equivalence of formalisms, 30

strong –, 30
weak –, 30

Evalb, see evaluation
evaluation

for constituency parsing
bracket scoring, 105, 187
Evalb, 105
tree edit distance, 106, 188

for dependency parsing
attachment score, 213
completely correct sentences, 213

export format, 104

figure-of-merit, see best-first parsing

gap, 132
gap degree, 132
gap filler, 135
Generalized Context-Free Grammar, 38

derivation, 38
Generalized Phrase Structure Grammar, see ID/LP
generative capacity

strong –, 2
weak –, 2

Generative-Enumerative Syntax, 26
grammar annotation, 110, 158
grammar formalism, 26
Grammatical Framework, 41
graph, 19

acyclic –, 19
connected –, 20
labeled –, 20
path, 19

head

272 index

– of a phrase, 161
in dependency structures, 21

head marking algorithm, 161
Head-Driven Phrase Structure Grammar, 121

ID/LP, 49
ill-nestedness, 133
inference rule, 53
Inversion Transduction Grammar, 86
item, 53
item filter, 83, 179

k-ill-nestedness, 134

language, 18
leftmost derivation

for Context-Free Grammar, 92
for Simple Range Concatenation Grammar, 167

level types, 153
Lexical Functional Grammar, 121
Linear Context-Free Rewriting Systems, 39

derivation, 40
Linear Indexed Grammar, 36
Literal Movement Grammar, 48

markovization
for Probabilistic Context-Free Grammar, 110
for Probabilistic Simple Range Concatenation Grammar, 165

maximal node, 135
Maximum Likelihood Estimation

for Probabilistic Context-Free Grammar, 98
for Probabilistic Simple Range Concatenation Grammar, 167

MCS formalism, see mildly context-sensitive formalism
mild context-sensitivity, 31
mild non-projectivity, 8
mildly context-sensitive formalism, 32
Minimalist Grammar, 48, 87
multi-planarity, see planarity
Multiple Context-Free Grammar, 41

Probabilistic –, 120

index 273

outside estimates
for Probabilistic Context-Free Grammar, 95
for Probabilistic Simple Range Concatenation Grammar, 169

parent annotation, see markovization
parsing, 53

data-driven –, 2, 91
probabilistic –, 1
symbolic –, 1

pivot formalism, 6
planarity, 153
priority queue, 95, 178
Probabilistic Wrapping Grammar, 180
pseudo-projectivity, 154, 182
punctuation attachment, 190

range, 43
Range Concatenation Grammar, 41

clause instantiation, 44
– using CSP, 75

derivation, 44
ε-free –, 42
linear –, 42
non-erasing –, 42

range constraint vector, 64
range vector, 43
recognition, 51
regular dependency languages, 153
reranking, 122
resolution of crossing branches, 192

side condition, see inference rule
Simple Range Concatenation Grammar, 45

binarization, 158
deterministic, 161
head-outward, 162
optimal, 163

derivation, 44
derivation tree, 46
extraction, 137

274 index

leftmost derivation, 167
Ordered –, 47
Probabilistic –, 167

derivation probabilities, 168
Well-nested Ordered Simple –, 140

synchronous rewriting, 149
– in grammars, 151

syntactic structure, 22

tightness, 99, 167
top-down parsing

for Range Concatenation Grammar, 65
tree, 20

labeled –, 21
ordered –, 21

tree edit distance, see evaluation
Tree Substitution Grammar, 113
Tree-Adjoining Grammar, 32

auxiliary tree, 32
derivation, 32
derivation tree, 33
Feature Structure Based –, 33
initial tree, 32
Multi-Component –, 35

– with tree tuples, 36
Probabilistic –, 113

treebank, 9, 25
constituency –, 9
dependency –, 9

Valid Prefix Property, 74

Weighted Deductive Parsing, 94, 169
well-nestedness, 133
word, 17

yield, 23
yield block, 24

	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	1 Introduction
	1.1 Background
	1.2 Contributions
	1.3 Overview

	2 Definitions
	2.1 Basic Definitions
	2.2 Grammatical Description
	2.3 Symbolic Parsing

	3 Symbolic Parsing beyond CFG
	3.1 Parsing Range Concatenation Grammar
	3.2 Parsing Simple Range Concatenation Grammar
	3.3 Related Work
	3.4 Conclusion

	4 Data-Driven Parsing using CFG
	4.1 Probabilistic Parsing and Data-Driven Parsing
	4.2 Data-Driven Constituency Parsing
	4.3 Data-Driven Dependency Parsing
	4.4 Simple RCG for Data-Driven Parsing

	5 Discontinuity and Non-Projectivity in Treebanks
	5.1 Introduction
	5.2 Quantifying Discontinuity and Non-Projectivity
	5.3 Synchronous Rewriting
	5.4 Related Work
	5.5 Conclusion

	6 Data-Driven Parsing beyond CFG
	6.1 Obtaining a Probabilistic Grammar
	6.2 Parsing
	6.3 Implementation
	6.4 Related Work
	6.5 Conclusion

	7 Parsing Discontinuous Constituents
	7.1 Evaluation
	7.2 Treebank-Specific Preprocessing
	7.3 Experiments
	7.4 Related Work
	7.5 Conclusion

	8 Parsing Non-Projective Dependencies
	8.1 Evaluation
	8.2 Treebank-Specific Preprocessing
	8.3 Experiments
	8.4 Related Work
	8.5 Conclusion

	9 Conclusion
	A Head Rules for NeGra
	B Acronyms
	B.1 Formalisms
	B.2 Treebanks
	B.3 Other Acronyms

	Bibliography
	Index
	Index

