Treebank Refinement

Optimising Representations of Syntactic Analyses
for Probabilistic Context-Free Parsing
von

Tylman Ule

Philosophische Dissertation
angenommen von der Neuphilologischen Fakultét
der Universitat Tiibingen

am 12. Juni 2006

Miinchen
2007

Gedruckt mit Genehmigung der Neuphilologischen Fakultét
der Universitdt Tiibingen

Hauptberichterstatter: Prof. Dr. Erhard Hinrichs
Mitberichterstatter: Prof. Dr. Uwe Mo6nnich
Dekan: Prof. Dr. Joachim Knape

Acknowledgements

I am thankful to all the people that have supported me during the years that
I spent working on this thesis.

The one person who was most directly involved in stopping me from
diverging any longer from the main goal of finishing this thesis was Jorn
Veenstra. He was critical about my ideas and ever ready to comment on
them and to discuss the questions that I often had. But he also helped me to
understand that at some point, you simply have to stop producing new ideas,
and that you have to restrict yourself to writing down the most interesting
consequences of the best ideas that you have come up with so far. A lengthy
talk in his own walls abroad laid the basis for this thesis. I did not change it
much lateron.

Frank Miiller helped me to start writing papers at all. He convinced me
that our work was interesting enough to be published, and the reviewers
agreed. Frank and I and our Espresso maker spent many years together, and
I will miss his Cappuccino.

All the time I have been working in Tiibingen, my supervisor Erhard
Hinrichs took the time to listen to my ideas. He supported my plans for the
outline of my thesis and gave me enough freedom to implement them. He was
always friendly and supportive to me and expanded my knowledge of central
topics in numerous courses.

A thesis should have a central idea that connects all of its parts. Kiril
Simov helped me to find it when he invited me to his laboratory in Sofia.
Working and being with him has always been very pleasant, but this time
I was especially lucky, because when reading in his library, I discovered a
paper that would give the central theme to my thesis: Grammar Refinement.

Going on, I was encouraged by most interesting discussions with Detlef
Prescher and Helmut Schmid to stay on my track. Helmut offered me to
modify the source code of his parsers, which made some of the experiments
reported here possible in the first place.

I have been part of the SFB in Tiibingen, and felt encouraged by my
colleagues there. Holger Wunsch commented my plans quietly but precisely

vi Acknowledgements

and helped me keep up my spirit. I was amazed that Heike Telljohann was
always kind and willing to explain the intricacies of TiiBa-D/Z to me. A big
thank you also to the members of my thesis committee, Fritz Hamm, Uwe
Monnich, and Frank Richter.

Before I joined the SFB, I worked in a project with Wolfgang Lezius and
Esther Konig, who helped me believe that we are doing a good job despite
of some problems. Without Lothar Lemnitzer I probably would have done
something completely different, because he drew me to Tibingen and has
been pleasant to work with all the time that I know him. Jochen Saile never
let me down when I had another technical problem.

Thanks also goes to the student staff that helped me build my data and
programs, including Maureen Dunne, Aisling Fleming, Steffen Fromel, Kat-
rina Keogh, Wolfgang Maier, Nicole Maruschka and Sigrid Schmitt.

I found refuge for writing up my book at Wolf Paprotté’s Arbeitsbereich
Linguistik in Miinster — Thank you! The support I had from his staff was
tremendous, including Hendrik Cyrus, Lea Cyrus, Robert Memering and Jo-
hannes Schwall. They did not mind to delve into whatever topic I had to
write down. It was a nice year, thanks!

Last, but not least comes my family. My mother seems to believe in me
even if I am not sure myself that I am doing the right thing. She helps me to
question my ways, and to calmly solve all problems ahead. My grandmother
has always shown me that it’s fun to learn and ask, and that you can under-
stand about everything. And what is more, she let me explain her so many
things that I became confident I had understood them. There is much more
family that helped me complete this thesis, because I could always rely on
them. Thanks to you, Astrid, Christof, Dominique and Joélle. Britta and
Jan, I am not sure whether you realise how much you supported me with
your visits and invitations. And your sense for life, even outside University.

Nadja, I am so happy that we have gone through this together!

You took me through these years — Thanks!

meiner Grofimutter

Contents

1 Introduction

I Parsing and Parser Evaluation

2 Mostly Context-Free Probabilistic Parsing

2.1 Context-Free Grammars
2.2 Probabilistic Context-Free Grammars
2.3 Parsing with Context-Free Grammars

2.4 Parsing with Probabilistic Context-Free Grammars

2.5 Efficient Viterbi Parsing
2.6 Alternative Approaches to Probabilistic Parsing

3 Parser Evaluation

3.1 Parseval
3.2 Relational Evaluation
3.3 Relative Differences in Information

II Representations of Syntactic Analyses

4 A Treebank’s Choice

4.1 Observations: Challenges for Proper Trees
4.1.1 The Objects of Syntactic Annotation
4.1.2 Unattached Elements
4.1.3 Free Constituent Order
4.1.4 Coordination
4.1.5 Named Entities

4.2 Representations of Relations
4.2.1 Class, Sequence, Domination

4.2.2 Arbitrary Relations and Parallel Structures

X

11
12
14
17

21
24
28
30

X Contents

4.3 Encoding the Analyses 68
4.3.1 Proper Trees 69

4.3.2 Crossing Edges, Co-Indexation, and Secondary Edges . 69

4.3.3 The Semantics of a Small Label Set 71

4.4 Conclusion 72

5 PCFG Treebank Grammars 75
5.1 Syntactic Bias of a PCFG Treebank Grammar 76
5.1.1 Bias in TiiBa-D/Z and negra 78

5.1.2 Extending the Label Set 82

5.1.3 Structural and Lexical Preferences 85

5.2 PCFG-Parsing of TiBa-D/Z 88
5.2.1 Parentheses and Punctuation 90

5.2.2 Secondary Edges and Co-Indexation 100

5.2.3 Train and Test Regimes 100

5.2.4 POS-Tagging and Parsing 103

53 Conclusion 107

6 Related Research 109
6.1 Algorithmic Transformations 109
6.2 Tuning a Treebank toa Parser 112
6.3 Parsing German 115
6.4 Conclusion 117
IIT Treebank Refinement 119
7 Including Local Context into Nonterminals 121
7.1 More Context in Context-Free Grammars 122
7.1.1 More Context Required 124

7.1.2 Formal Equivalence of Grammars 132

7.1.3 Experimental Adequacy 133

7.2 Context — Focus — Production 135
7.3 Determining Deviant Distributions 140
7.3.1 x? Goodness-of-Fit 141

7.3.2 x* Merging Infrequent Classes 143

7.3.3 Kolmogorov-Smirnov Goodness-of-Fit 144

7.3.4 Kullback-Leibler Divergence 146

7.3.5 Skew Divergence 147

7.4 Tteratively Adding Local Context 151

7.5 Unconditionally Spreading Parent Information 157

Contents xi

7.6 Conclusion 157
8 Extended Local Context 159
8.1 Relevant Context 159
8.2 Extending Context, 162
8.2.1 Ancestor Context 163
8.2.2 Descendant Context 171
8.2.3 Attribute Context 175

8.3 Lexical Context, 183
8.3.1 Unrestricted Lexical POS Splitting 184
8.3.2 Restricted Lexical POS Splitting 188
8.3.3 Selecting Lexicalised POS Before and During Parsing . 189

8.4 Recursiveness 195
8.4.1 High-Frequent Node Labels 198
8.4.2 MF, Recursively 0. 199
8.4.3 SIMPX, Recursively 199
8.4.4 NX, Recursively 204
8.4.5 The Impact of Lexicalisation in TtiBa-D/Z and negra . 210

8.5 Varying Detail of Input and Output 213
8.6 Evaluation on Final Data Sets 218
87 Conclusion 218
9 Handling Sparse Data 221
9.1 Merging Similar Nodes 223
9.1.1 Similar Parents and Unmergeable Nodes 224
9.1.2 Similarity of Split Nodes 225

9.2 Splitting with Context History 232
9.3 Conclusion 237
10 Treebank Refinement Aiding Supervised Annotation 239
10.1 Methods and Data, 240
10.1.1 Unexpected Productions 240
10.1.2 Ranking Error Candidates 241
10.1.3 Early and Revised Annotation 242
10.1.4 Evaluation via Artificial Errors 243

10.2 Experiments and Results 244
10.3 Discussion and Related Work 248
104 Conclusion 249

11 Conclusions 251

xii Contents

A Label Sets used in negra and TiiBa-D/Z 255
A1 STTSPOS Tags 255
A.2 negra Node and Edge Labels 257
A.3 TiiBa-D/Z Node and Edge Labels 259

B PP-Attachment in negra and TiiBa-D/Z with Edges 263

Bibliography 269

Chapter 1

Introduction

Syntactic parsing plays a central role in the automatic processing of nat-
ural language. Parsing identifies and relates the constituent parts of linear
input, and any application that tries to find out who did what to whom for
some novel input will need to determine the constituent parts of the input
that correspond to who, what, and whom. Ever since the basis of formal
language theory has been laid out by Chomsky (1956), the description of
natural language in terms of context-free grammars was adopted by many
parsing systems. While parsers were initially designed as hand-built rule sys-
tems, the advent of large syntactically annotated language resources in the
1990s, so-called treebanks, has triggered an interest in deriving parsers di-
rectly from these resources. Interestingly, context-free grammars have again
served as the starting point for many of these approaches, because the long
line of research has produced efficient algorithms for parsing with them.

The efficiency comes at some cost, though. It has been shown that context-
free grammars cannot adequately describe certain phenomena in free word
order languages, such as cross-serial dependencies or certain scrambling phe-
nomena. They also show rather limited parsing performance when probabilis-
tic versions of these grammars are derived straightforwardly from treebanks.
The conditioning of probabilistic context-free grammars has consequently
been extended to take into account more contextual information, i.e. param-
eters have been added to the model, resulting in high-performing parsers,
which, however, depart from the original context-free view of language. One
of the most influential extended probabilistic models has been proposed by
Collins (1997) for English. This model has consequently been modified and
applied to other languages, including Czech and German (Collins & al., 1999;
Dubey and Keller, 2003). It has become apparent that the adaptation was
necessary because the languages differ, but also because the different tree-
banks adopt different representations of syntactic analyses.

2 Chapter 1 Introduction

We therefore investigate a different approach to finding a good parser for
a given treebank here. Instead of considering the treebank as fix, so that a
probabilistic model has to be tuned to it and the model has to be extended
appropriately, we consider the grammar formalism as fix, and modify the
treebank so that it represents the syntactic analyses in a way that is more
appropriate for the grammar. This approach is motivated by previous re-
search observing considerable variation in the performance of parsers based
on probabilistic context-free grammars when the representation of syntactic
analyses is modified. We do not intend to modify the analyses, which would
change the parsing task, and therefore we require equivalence between the dif-
ferent representations. This equivalence can be easily guaranteed by using the
original annotation found in the treebank as the standard against which any
parser is evaluated. We also motivate this approach by noting that the shape
of the annotation as we observe it in the treebank on which we perform our
experiments is to some degree arbitrary, and primarily geared towards the
developers and human users of the treebank. The same syntactic analyses
can thus be expressed differently and more appropriately for probabilistic
context-free parsing without loosing any aspect of the original analyses. An
automatic approach for this optimisation, which consistently improves pars-
ing performance on a number of different data sets, is the main contribution
of this thesis. Being automatic, this approach obviates the need for tedious
manual adaptations that are otherwise necessary for different languages, and
also for different representations of syntactic analyses for the same language.

The outline of the thesis is as follows. In the first part, we show how we
parse sentences with a given context-free grammar, and that plain probabilis-
tic versions of such a grammar are still attractive despite their mature age,
because they can parse natural language efficiently (chapter 2). We also show
how we evaluate the success of parsers, and that we rely on a combination
of evaluation metrics in order to avoid being mislead by weaknesses of the
individual metrics (chapter 3).

The second part of this thesis shows how the shape of syntactic anno-
tation in a German treebank has to meet diverse goals such as the faithful
rendering of regularities in the language data, the conformance to existing
annotation standards, and simplicity of the annotation scheme, so that both
annotators and users of the treebank experience a steep learning curve. The
representation of syntactic analyses in the treebank is carefully designed to
meet these partly conflicting requirements (chapter 4). On the other hand,
changes in the representation of syntactic analyses affect the performance of
parsers based on probabilistic context-free grammars that are derived from
the treebank. Context-free grammars are susceptible to changes in the rep-
resentation of analyses because they determine the possible children of a

node exclusively from its label. For similar reasons, probabilistic context-free
grammars are susceptible to changes in the representation of analyses, be-
cause they determine the probability of a subtree of the full tree that serves as
syntactic analysis independent of the position of the subtree in the sentence,
and independent of any words or structure outside the subtree. Parsing per-
formance thus strongly depends on the choice of labels for such a grammar.
This observation is especially important because a probabilistic context-free
grammar can only be derived from most treebanks after they have been
modified, and any modification may affect parsing performance. We there-
fore detail how we modify the German treebank that we use for most of our
experiments (chapter 5). We conclude the second part of this thesis with a
survey of related research that shows how modifications in a treebank can
boost parser performance. These reported modifications are most effective
when determined intellectually and not algorithmically (chapter 6).

The third part of this thesis gives our main contribution. First, we em-
phasise that while context-free grammars are not able to generate certain
configurations that may occur in treebanks, such as cross-serial dependen-
cies, they can still enumerate a limited number of these configurations by
extending the finite set of labels and context-free rules. Evaluation then de-
termines the degree of success of such an enumeration, and in this spirit we
algorithmically modify the treebank and evaluate the success in the experi-
ments of the remaining thesis. We first define a test inspired by Bockhorst and
Craven (2001) that tries to assess whether the usage of the node labels in the
treebank is faithfully captured by probabilistic context-free grammars. The
test compares the distribution of expansions of nodes when more knowledge
is available than just the node label, to the distribution when only the node
label is available, which corresponds to the view of a probabilistic context-free
grammar. We experimentally determine a successful instantiation of the test
that uses an information-based metric and show that repeated applications
of this test and corresponding modifications of the treebank improve pars-
ing performance of plain probabilistic context-free grammars derived from it
(chapter 7). These repeated tests and modifications are what we call Tree-
bank Refinement.

We further present extensions to the test, where we determine the utility
of more information about adjacent nodes for predicting structure from the
perspective of a probabilistic context-free parser. The additional information
includes lexical items, and also optional information that is not part of the
target structure, such as fine-grained grammatical functions when we only
seek to find bracketings without functional labels. A more detailed evaluation
reveals that the extended information helps assigning more complex recursive
structure, while its effect on node labels used for high-frequent flat structure is

4 Chapter 1 Introduction

less strong. We show that any kind of information considered for our method
to test and modify the labels of treebanks improves parsing performance
of probabilistic context-free grammars (chapter 8). A separate chapter is
dedicated to handling sparse data problems that arise when many new node
labels are introduced into a treebank (chapter 9).

Before we conclude, we show that Treebank Refinement can be tuned
to detect rare and unexpected events, and that these events often turn out
to be inappropriate labels originating from annotation errors. We show that
these errors can be found reliably in treebanks for different languages and
at different stages of completion by classifying the node labels modified by
Treebank Refinement in a machine learning paradigm (chapter 10).

Part 1

Parsing and Parser Evaluation

Chapter 2

Mostly Context-Free Probabilistic
Parsing

Syntactic parsing of natural language determines the relations between the
parts of utterances. Sophisticated parsing techniques continue to emerge,
but the early notion of context-free grammars is still a point of reference for
them, because it restricts the problems that are inevitably raised by natural
language, such as ambiguity and unknown input, by a strict formal descrip-
tion of the shape of allowed structure. Context-free parsing also provides a
heritage of algorithms for efficient implementations. In this chapter, we will
introduce context-free grammars and their probabilistic version along with
methods to parse with these grammars. We will also briefly relate methods
for probabilistic context-free parsing to more powerful parsing methods.

2.1 Context-Free Grammars

A context-free grammar defines a formal language. A formal language is a
possibly infinite set of strings of symbols. These strings are called sentences,
and the atomic symbols that make up these sentences are the words of the
language.! The grammar licenses those sentences that are part of the lan-
guage, and at the same time assigns some structure to each sentence.

More formally, a context-free grammar (CFG) G is defined as a four-tuple
consisting of a finite set of non-terminal symbols N from which the structure
is built, a finite set of terminal symbols 7 with 7 N A = () that corresponds
to the words of the language, a unique start symbol S € N that is the root of

"'We prefer to call the strings sentences instead of the equally common term word, to
stress the status of words (otherwise: letters) as atomic symbols throughout our experi-
ments.

8 Chapter 2 Mostly Context-Free Probabilistic Parsing

all structures assigned to the sentences, and finally a finite set of rules R that
expands some non-terminal node to a sequence of one or more non-terminal

or terminal symbols: R C {A — a|A € N,a € {N UT}*}, in short:
G=(WN,S,T,R)

A CFG can be used to both recognise and generate strings of a language. For
generation, the start symbol S is expanded by one of the rules (S — «) € R,
and the expansion continues recursively for all non-terminal symbols in the
right-hand side of each applied rule, eventually generating a sequence of
terminal symbols, i.e. a sentence.

The relation :G> specifies a context-free rewriting of one string into another

along the lines of multiple rule application. We usually just write = when
the grammar G can be inferred from the context. Given a rule

A—pj
from R, and o,y € {N U T}*, then
aAy = afy

means that the string aAvy is rewritten into the string a3~ using the rule
A — (. A finite sequence of these rewritings is called derivation, e.g.

0] = g, Qg = (3, ..., Qup_1 = Quy

derives a,, from «;. = is the reflexive and transitive closure of =. If oy €
{N UT}* and all rewritings use rules from R, then also a,,, € {N U T}*.
Consequently, all derivations that start with the grammar’s start symbol S
and derive strings consisting only of terminals

S=>a, aeT”

describe exactly the strings of the language that is defined by G.

Parsing means that for a given sentence, the combination of rules is de-
termined that generates this sentence; or all distinct combinations, if there
is more than one way to generate it. The CFG’s output for such an input
string is twofold. First, the CFG either succeeds, or fails to accept the in-
put string, i.e. it recognises the input sentence as being part of the language
defined by the grammar or not. Second, it assigns one or more parse trees
to the sentence in case it is part of the language defined by the CFG, i.e.
it analyses the structure of the input sentence. Parse trees are equivalent to
derivations for CFGs when a unique order of rewriting is used, e.g. by always

2.2 Probabilistic Context-Free Grammars 9

expanding the left-most non-terminal symbol at the frontier of a partially
completed parse; otherwise there could be several derivations that lead to
the same parse tree.? Each production A — f3 that takes part in a derivation
by rewriting aAy = «af~ corresponds to a local subtree.> The right-hand
side 3 of the production is a sequence X7, Xs,... X, of terminals and non-
terminals. The resulting local subtree then consists of a top node labelled A,
which dominates a sequence of children labelled X, X5, ..., X,,. The local
subtrees are the building blocks of CFG parses, and it will become relevant
later that these local subtrees can transport information to the rest of the
parse tree only via the category of A (going up) and X3, X, ..., X, (going
down), all of which can only take one of a finite number of values.

Parse trees (or parses for short) are normally used to represent constituent
structure in linguistic analyses, which is what we will do here as well. When
7 is the set of words occurring in a natural language, and N is the set of
categories for syntactic constituents of that language, then the CFG provides
syntactic analyses for sentences of this natural language. Fach sentence w is
assigned the set of parses W (w) by the grammar G, which can have zero or
more elements (again, we usually just write ¥(w)).

We do not give pre-terminal nodes a special status, which naturally map
to parts of speech when terminal nodes correspond to the words of the natural
language recorded in our treebank. Most of our languages use parts of speech
as terminal symbols instead. Even when we assign parts of speech as part
of the parsing process (i.e. as pre-terminal nodes), we do not handle them
any different than other non-terminals. We do not use empty productions,
which corresponds to the requirement that the sentences have at least one
word, or that our treebank does not have sentences without annotation. These
restrictions are arbitrary and do not diminish expressive power of conforming
context-free grammars: avoiding e-productions does not cost any generative
power, as long as the language does not contain the empty string (Hopcroft
and Ullman, 1996, p. 97).

2.2 Probabilistic Context-Free Grammars

For more complex grammars, there will frequently be several parses for one
input sentence, i.e. the sentence will be ambiguous with respect to the gram-
mar. A probabilistic context-free grammar (PCFG) extends a CFG with prob-
abilities assigned to each rule in R. The probabilities P(A — (|A) describe
how probable it is that the left-hand side A of the rule expands to the right-

2The frontier is the set of nodes without any children.
3Rules are also often called productions. We will use both terms interchangeably here.

10 Chapter 2 Mostly Context-Free Probabilistic Parsing

hand side (3, given the left-hand side A. The probabilities of all rules with
the same left-hand side in the set of rules (A —) € R have to sum up
to one in order to form a proper probability distribution over all sentences
generated by G:4
Y PA-p) =1
A—B,Be{NUT }*

The probability of a parse generated by a PCFG is obtained by multi-
plying the probabilities of all rules involved in the parse. A derivation cor-
responds to a series of rule applications, i.e. a parse tree 1 is obtained by
applying rules ri,79,...,7,. The probability of 1 is then obtained as the
product of the probabilities of the rules in its derivation:

P() = P(r1) P(rg) -+ P(r)

If the rules are grouped by their types, and Count,(r) gives the number of
times rule type r occurs in parse ¢, then the probability of the parse is:

P(y) = [Pr)comtet (2.1)

reR

The assumptions that have to hold so that calculating probabilities in
this way is justified have been summarised as three kinds of independence
assumptions for the probabilities of subtrees (Manning and Schiitze, 1999,
p. 384). First, the probability of a subtree depends only on the string of
words that it dominates, and not on where these words occur in a sentence
(place invariance). Second, the probability of a subtree only depends on the
words it dominates, and not on the words in the sentence that it does not
dominate (context-freeness). Last, the probability of a subtree only depends
on the non-terminal nodes inside of the subtree, and not on those outside of
it (ancestor-freeness).

If there are several parses for an input sequence, then each parse is as-
signed a probability, which establishes an order among the parses. We inter-
pret the probability as the quality of a parse, so that the most probable parse
is the parse that describes syntactic structure of the input sentence best ac-
cording to the PCFG.5 We will see in section 5.1 how rule probabilities can
be estimated from treebanks and assume for the moment that they are cho-
sen appropriately. We always use plain PCFG grammars for our experiments

4In fact, an additional prerequisite is that parse trees of infinite depth must not occur
(Prescher, 2002, p. 44). This constraint is always met by the treebank grammars which we
consider for all our experiments (Chi, 1999).

SWe will always ignore ties of several equally probable best parses and assume that our
parser randomly chooses one of them.

2.3 Parsing with Context-Free Grammars 11

and do not introduce lexicalisation as more complex conditioning on lexical
heads that are marked explicitly in the rules of the grammar.5

The idea of allowing ambiguity in a PCFG model of natural language is,
of course, that genuine ambiguity in natural language is reflected by ambigu-
ity in the PCFG model, and that the probabilities in the PCFG model reflect
the preferences for the different readings in their natural-language context.
A PCFG conditions the probability of the expansion of a node only on the
node’s label, so that decisions for putting any local subtree in place rest on
the subtree’s top node. The question immediately arises whether the limited
expressive power of a PCFG caused by these strong independence assump-
tions is sufficient to model relevant context in natural language. Consider
e.g. the sentence Die Schiilerin kennt die Lehrerin (‘The pupil knows the
teacher’) that could also be translated as ‘The teacher knows the pupil’ if
the pupil is contrasted with someone else that the teacher knows. The reason
for this ambiguity is that constituent order is relatively free in German, and
in the example both subject and object are ambiguous between accusative
and nominative case. The default position of the subject is before all parts
of the verb, however. The context that encodes this default position of the
subject is different from the context that is necessary to trigger a non-default
reading, which probably needs to reach beyond even the border of the ex-
ample sentence. It becomes evident that the context-freeness of PCFGs may
prevent the inclusion of the context that is necessary to parse correctly, given
the more general kind of context that triggers the different reading. To what
extent this is the case will be the main topic of this thesis.

2.3 Parsing with Context-Free Grammars

The actual task of determining the rules from a CFG that can be used to
parse an input sentence, and to construct the corresponding parse, or parses,
is performed by a parser. The Earley parser is a well-known and still widely
adopted approach to parsing, using a chart of items that represent possible
constituents of a parse, from which full parses can be read. The chart is filled
bottom-up, restricted by a top-down filter that only allows items to be added
which may eventually lead to a full parse (Earley, 1970). The Earley parser
needs at most cubic time with respect to sentence length, and a chart with
a size that is at most quadratic relative to sentence length (Grune and Ja-
cobs, 1990, p. 155). This means that the time it needs to find all parses for a
sentence grows less than exponentially with respect to the number of words
in the input sentence. The time required by a straightforward parser that

6See however an alternative approach to lexicalisation in section 8.3.

12 Chapter 2 Mostly Context-Free Probabilistic Parsing

builds a chart bottom-up without filtering would be exponential, matching
all the rules’ right-hand sides first against the terminals, and then against the
sequences of terminals and non-terminals that result from the rules applied
so far, until eventually a rule with the start symbol on the left-hand side has
all remaining symbols on its right-hand side (e.g. the straightforward Unger
parser, Grune and Jacobs, 1990, p. 82ff.). In practice, time complexity is
often lower than cubic for the Earley parser, depending on the ambiguity
of the grammar. There are also CFG parsers that have a guaranteed linear
time complexity. They do, however, generally require the grammar to be un-
ambiguous (among other restrictions on the grammar), which is unlikely for
large-scale grammars as expected in the current context. The Earley parser
needs at most quadratic time for such grammars, and linear time for those
grammars where a linear-time method would be applicable. More sophisti-
cated approaches exist that tend to achieve almost linear time more often,
but they require more preprocessing, making them not necessarily more ef-
ficient and convenient to use when grammars change frequently (Grune and
Jacobs, 1990, p. 250).

It is not known beforehand if the grammars that shall be used in the
current context have certain properties that would allow the application of
parsing methods that have a guaranteed worst case linear, or quadratic, time
complexity. It is quite likely that the grammars will be ambiguous, so that
parsing methods with linear complexity cannot be applied. A grammar de-
rived from the Penn Treebank (Marcus & al., 1993), e.g., is quite ambiguous.
According to Klein and Manning (2001b), almost any non-terminal can be
built over almost any span of terminals for such a grammar, so that a flexible
yet rather efficient approach such as the Earley parser seems to be a good
choice for parsing with such a grammar.

2.4 Parsing with Probabilistic Context-Free
Grammars

Without imposing restrictions on the grammar, a parser cannot be guar-
anteed to enumerate all parses in less than cubic time relative to sentence
length. In the current context, however, we focus on PCFG parsing, where our
primary interest is to determine the best of all parses, namely the one with
the highest probability. There is a standard algorithm to find such a parse
more efficiently than by computing the probabilities for all parses generated
by a CFG parser and then selecting the parse with the highest probability.
The idea behind this algorithm is that each non-terminal dominating a sub-

2.4 Parsing with Probabilistic Context-Free Grammars 13

tree in a derivation is the only link between this subtree and the rest of the
tree, which is of course due to the context-freeness assumption on which the
grammar is based. The maximum probability of the subtree can be calculated
once and stored in a chart simply from the most probable combination of a
rule expanding the subtree’s mother node and the probabilities of subtrees
that are dominated by its immediate children.

More formally, our goal is to determine the most probable parse ’QZJ from
all parses ¥(w) for a given string w licensed by our grammar G, i.e.

~

= arg max P
Y = arg Jnax ()

We will now assume a grammar in Chomsky Normal Form, i.e. a grammar
with rules either of the form A — BC or A — a, witha € 7 and A, B,C €
N.7 We write w; ; for a continuous substring of w and let i, j point between
words, where ¢ points into the gap before word ¢, so that w1 is equivalent
to the full string w, when n is the index of the last word: n = |w| — 1.

The chart that is used for parsing consists of entries of the form [A, i, k].
Each entry holds a four-tuple of the form

(P(A :*> wi,k)vB7caj)

to remember the children of the non-terminal A that maximise P(A = w;),
with 0 < i < k < n, along with the actual probability of the whole subtree
headed by A, and rooted in w; j (see figure 2.1). Chart entries for pre-terminal
nodes only hold the probability that the pre-terminal expands to the termi-
nal.

The algorithm first initialises the probabilities for the unary productions,
which are simply the rule probabilities P(A — w; ;1) for each word, i =
0,...,n—1. Consequently, the chart entries [A,i,i+1] foreachi = 0,...,n—1
are filled with the probabilities

P(A - wz’,z'+1)

An induction step then determines all other subtrees with highest P(A =
w; 1) bottom up, so that each entry of the chart is filled with the probability

of the most probable subtree [A, i, k] = (P(A = w;y), B, C, j) found via

max P(A— BCO)P(B = w;;)P(C = w;y)
yOhJ

"Any context-free grammar has an equivalent context-free grammar in Chomsky Nor-
mal Form (Hopcroft and Ullman, 1996, p. 99).

14 Chapter 2 Mostly Context-Free Probabilistic Parsing

Figure 2.1: Best Subtree Spanning w; ,: max4 P(A = Wi k)

for the maximum probability and with:

arg (gpg)ﬂ;) P(A — BO)P(B = w;;)P(C = w;y)
for the corresponding categories of the children B, C of A, plus the marker j
for the words they span.

When the induction terminates, the most probable parse is read from
the chart by starting with the cell that holds the grammar’s start symbol S
and that spans the whole sentence, i.e. entry (S,0,n+ 1). You then read the
children B, C' from it, and the parts of the sentence they span, determined
by j. The full most probable parse can be read from the chart by continuing
with the children B and C' along the same lines. The resulting parse is called
the Viterbi parse. The algorithm is a variation of a dynamic-programming
algorithm known as the inside algorithm. It determines the Viterbi parse with
very small overhead on top of building the chart (Manning and Schiitze, 1999,
p. 3961f.).

2.5 Efficient Viterbi Parsing

A more efficient solution for finding just the most probable parse than we
have just outlined is A* parsing. The inside algorithm requires a full chart,
because only when the root node is assigned its most probable dominated
subtree, the set of edges (i.e. pointers between items) in the chart can be
selected that represent this subtree, and all following subtrees that eventually
lead to the most probable parse. This is so because the Viterbi parse does

2.5 Efficient Viterbi Parsing 15

not necessarily consist only of most probable local subtrees, because several
suboptimal subtrees may yield a higher product of rule probabilities than a
most probable subtree which can build a full parse only in combination with
other low-probability subtrees. A* parsing, in contrast, restricts the search
for the most probable parse to a fraction of all edges, while it still guarantees
that the Viterbi parse is found. An application of A* parsing to English
newspaper text shows that with only a minimal and fix additional time and
space requirements, only 3 % of the processing performed by a PCFG chart
parser has to be carried out, resulting in parsing time of only a few seconds
for an average-length sentence on current hardware (Klein and Manning,
2003a).

Implementations that derive the Viterbi parse via inside probabilities
from a chart without guided search are not necessarily less efficient in terms
of empirical run-time than those using A* parsing. Schmid (2004) shows that
choosing a compact representation for the edges of the chart can be similarly
efficient, reducing the amount of time spent per edge instead of reducing the
number of items processed. He also shows that PCFG Viterbi parsing can be
implemented quite efficiently, and that it can be used to parse unrestricted
natural language data in almost real time, also generating the most probable
parses in only a few seconds on average.®

We are mainly interested in the impact of the representation of linguistic
annotation on parsing performance when following the assumptions of proba-
bilistic context-free parsing. We therefore employ straightforward PCFG esti-
mation and Viterbi parsing, without any smoothing or backing off. This is not
to say that both could not improve performance, but they would affect the
impact of changes in representation on performance. A positive consequence
is that the choice of parsers should not affect the results of our experiments.
We use the implementation of lopar for determining the Viterbi parses in
all of our experiments (Schmid, 2000). We also add evaluation on other con-
sequences of the language models, most prominently the average per-word
perplexity (section 3.3). BitPar is a parser that is extraordinarily efficient in
calculating Viterbi parses, which is very similar to computing inside prob-
abilities (Schmid, 2004) and does not require enumerating all parses. We
therefore use BitPar to compute inside probabilities, which for the grammar
start symbols equals the sentence probability. BitPar is a rather general CYK
parser (Schmid, 2004), and lopar implements a left-corner parsing scheme
(Schmid, 2000). Parsing performance is quite different for lopar and BitPar
Viterbi parsing in terms of memory and time requirements. lopar manages to

8This contrasts sharply with one hour needed for nine words, as reported about a
decade ago in an early PCFG treebank grammar experiment (Krotov & al., 1994).

16 Chapter 2 Mostly Context-Free Probabilistic Parsing

parse all sentences of our smaller tune test data set with the amount of mem-
ory available on our test system.? It comes close to using all of it and needs
about 15 seconds per sentence (depending on the grammar). BitPar uses less
than 60MB of memory under the same conditions, and parses at more than
one sentence per second (preliminary results for sentences of up to 40 words;
more than two sentences per second for some grammars). These differences
in parsing performance had an impact on our choice of parser for the differ-
ent experiments. BitPar is used for the experiments on the larger final data
sets, and also for all experiments on sentences of unrestricted length, which
cannot be performed by lopar due to memory restrictions. Both lopar and
BitPar originally only output the probabilities of the Viterbi parses when
used to generate the parses, which is insufficient for calculating the corpus
perplexity. We chose BitPar for a second go on all experiments in which we
calculate corpus perplexity. Both BitPar and lopar had to be patched to
compute the corpus perplexity and full number of parses, respectively (which
often exceeds the domain of the standard C language’s data type originally
employed in lopar).!?

The efficiency of Viterbi parsing comes at the price of limitations in de-
scriptive power. (P)CFGs describe the class of context-free languages, which
has been extensively studied in formal language theory. It includes all sen-
tences of the regular languages, but cannot describe languages with unre-
stricted complexity. Natural languages do not strictly belong to the class of
context-free languages. It has been shown that there are syntactic phenom-
ena in some natural languages that cannot be adequately described by CFGs,
which seems to render them poor candidates for describing the syntax of nat-
ural language.!! In the current context we will take treebanks as the source
of syntactic description for a language. CFGs are usually not capable of re-
producing all information in a treebank straightforwardly either, but they
do seem to be able to describe adequately the majority of it when appropri-
ately applied, which is indicated by experiments performed e.g. by Klein and
Manning (2003b) and by ourselves below. The advantage of restricting ex-
pressiveness is that PCFGs allow for efficient implementations that provide
most probable parses of unrestricted natural language data, which we hope
has become apparent by now. We will discuss in chapter 5 how a treebank
can be used to determine the probabilities of the rules of a PCFG model.

9A 32bit Debian Linux Opteron 246 with SGB memory, which has slightly more than
3GB of memory available per process. See section 5.2.3 for a description of the data sets.
We do not use cut-offs for low-frequency rules, so that we always use all rules.

0Thanks to Helmut Schmid for making the source code of both parsers available, along
with helpful comments. We use lopar version 3.0 and a BitPar version of July 29, 2004.

"' Most notably cross-serial dependencies exceed context-free power (see section 7.1).

2.6 Alternative Approaches to Probabilistic Parsing 17

2.6 Alternative Approaches to Probabilistic
Parsing

A considerable amount of research has focused on approaches to probabilis-
tic parsing that do not limit the expressiveness of the parsing model in ad-
vance, thus exceeding context-free power. None of them meets the efficiency
of PCFG parsing, while many practically deployable models have appeared
recently.

Malouf and van Noord (2004) describe a parser that applies a hand-
built attribute-value grammar to unrestricted text. It employs the maximum-
entropy framework that allows specifying arbitrary overlapping and non-local
features on the parses. The model is not trained directly on the manually an-
notated parses of a treebank, because the kind of parses available in their
treebank cannot be cast directly into parses of their grammar. An exhaustive
search through all parses generated by the model is too inefficient, either, so
that the model is trained on a subset of parses that impact the model parame-
ters depending on how well the grammar’s parses map to the treebank parses.
When applying the resulting model for parsing, Malouf and van Noord em-
ploy beam search over components of parses in order to deliver parses within
a few seconds. In the end, they show that parsing with more expressive prob-
abilistic grammar formalisms is indeed possible by applying optimisations to
the training and parsing stages, which reduce time and memory requirements
of large-coverage parsing with only a small impact on accuracy.

Other more powerful approaches like Data Oriented Parsing (DOP) also
require optimisations in order to handle the large number of parses that nat-
ural language grammars often have to handle. Sima’an (1996) shows that
determining the most probable parse for such a stochastic tree substitution
grammar is NP-hard, i.e. there is no guaranteed upper bound on the number
of parses, which is smaller than all parses, that you need to search until you
find the most probable parse. The standard way to generate the probabil-
ity of a parse according to the DOP model is to sum over all derivations
leading to the parse, and DOP considers exponentially many of them. As a
result, parsing requires time that is exponential in sentence length. As the
number of different subtrees also grows exponentially with the length of the
training corpus, memory requirements are also exponential. There have been
several approaches to reducing the complexity of the DOP model in practice,
most notably the approximate sampling methods employed by Bod (1995)
to determine the most probable parse, or using the most probable derivation
as the best parse, which can be found using the Viterbi algorithm (though
with some impact on accuracy; Bod, 2000). Even more interesting in the

18 Chapter 2 Mostly Context-Free Probabilistic Parsing

current context is the approach of Goodman (1996a, 2003) to recast a DOP
model as a PCFG that assigns the same sets of parse trees with the same
probabilities as the corresponding tree substitution grammar, but which only
grows linearly in size with the training data. Goodman (2003) also proposes
a new parse selection criterion that reduces the search complexity for finding
the best parse to O(n?), i.e. to the same complexity as is generally required
for PCFGs. The equivalence between an appropriately chosen PCFG and
the DOP model seems to be counter-intuitive at first, given the power of a
model that allows the combination of arbitrary subtrees from training data to
assemble parses. The equivalence highlights a PCFG’s ability to take consid-
erable, even though theoretically limited context into account. It also shows
how PCFG techniques find their way into more powerful parsing models.

The efficiency of PCFG Viterbi parsing thus also appeals where the main
objective is to apply more powerful language models. Such language models
allow the definition of many non-local features that are not necessarily inde-
pendent, without the burden of encoding them in a generative probabilistic
model. As a downside, they are not efficient enough to determine the best
parse from a large number of parses. Less complex models, however, usually
assign all their parses a rank, and it has been observed that you often find
the best parse among a small fraction of parses with high ranks, even though
these models fail to select the best parse reliably (Collins, 2000; Ratnaparkhi,
1999). While only Collins (2000) is based on a generative model that vaguely
resembles a plain PCFG (that from Collins, 1999), one can hope that ade-
quate plain PCFG models may be employed along the same lines when the
number of parses becomes too large, and efficient pre-processing is indispens-
able.

Taskar € al. (2004) even show that feature-based discriminative methods
may consider the full set of parses in a similar framework as used by Collins
(2000) to rerank only the pre-selected top fraction of all parses. They use
Klein and Manning’s (2003b) plain PCFG model as a baseline, and observe
very similar performance when both models have the same kind of limited
access to lexical information. The discriminative model only improves consid-
erably on this score when additional features are specified that are not trivial
to incorporate into generative models, like the word preceding or following
a constituent. Specifically, the final model also scores above Collins (1999)
on the chosen data. It performs parsing in cubic time, and only has a more
costly training phase as a major downside. We would like to note that the
plain PCFG developed in Klein and Manning (2003b) has been chosen as a
starting point. In the present context we rather focus on ways to improve the
structure of the underlying grammar along the lines of Klein and Manning
than on the parser that is used to apply it, as do Taskar é al. We restrict

2.6 Alternative Approaches to Probabilistic Parsing 19

ourselves to plain PCFG parsing for the evaluation of our transformations.
The fact that the powerful discriminative method introduced by Taskar &
al. performs similar to a PCFG model under comparable conditions does not
mean, of course, that it will suffer in the same way as a plain PCFG does
when transformations that optimise PCFG performance along the lines of
Klein and Manning are absent. We expect, however, that it may be useful
for more powerful disambiguation methods, too, to look for a grammar that
represents the parsing problem most adequately. This problem of finding
adequate grammars is our central question.

Plain PCFGs, albeit limited in power, will serve as our parsing model,
because it seems to be rather clear what their main deficiencies are, and
we hope it has become clear that their specific combination of power and
efficiency still makes them attractive even for current approaches to parsing.

Chapter 3

Parser Evaluation

Parser Evaluation tries to assess the performance of a parser. It is at the core
of parser development, because only via evaluation is it possible to compare
alternative approaches to parsing, or to ensure that changes in a parser dur-
ing development do not degrade performance. Evaluating the performance
of a parser, or equivalently of a PCFG’s language model, is not trivial. Ide-
ally, such a model should be evaluated by a method that states in absolute
terms how good it is. It is, however, not known what exactly constitutes lan-
guage performance, and therefore such an evaluation method does not exist.
It should be feasible, though, to assess the performance of a language model
relative to a perfect model, i.e. that of the human mind. This idea is the
basis of the Turing Test, which proposes to assign the role of a human being
to the model to be evaluated, so that our model can be tested via its per-
formance relative to another (perfect) model, i.e. relative to a human being
(Turing, 1950). This test setup, however, assumes that we have a language
model at hand that is capable of a lot more than just performing syntactic
analyses. A syntactic parser does not attempt to provide full analyses of ut-
terances, including semantic and pragmatic interpretations (although those
aspects may turn out to be relevant for best performance). A syntactic parser
only attempts to assign syntactic structure to utterances. Lacking a lot that
makes it a fully workable partner in a dialogue, a syntactic parser cannot be
evaluated directly along the lines of the Turing Test.

The assumption underlying the definition of the task of syntactic analysis
is that there is such a thing as syntactic structure. Given this assumption,
it is therefore appropriate to evaluate the ability of a syntactic parser to as-
sign syntactic structure. Strings of symbols generated by a perfect model (i.e.
the mind) are available in collections of utterances, i.e. corpora, but syntactic
structure is not. This is, of course, where treebanks fit in, which represent as-
sumed syntactic structure for observed utterances. The evaluation task thus

21

22 Chapter 3 Parser Evaluation

has become considerably easier: instead of looking for a function that mea-
sures the absolute performance of a parser, we are now looking for a function
that compares syntactic structure that a parser assigns to given utterances
with the structure that is assumed to properly represent the syntactic ana-
lyses of these utterances. The latter is brought to us in the gold annotation
found in treebanks.

Existing treebanks differ in the kind of syntactic structure that they spec-
ify. The structural information that they assume always seems to be some
kind of directed acyclic graph with labelled nodes (Bird and Liberman, 2001).
Often the graphs are further constrained, e.g. to represent constituent struc-
ture. Not all treebanks base their analyses on constituents, however, which
imply intermediate nodes that do not correspond directly to items observed
in the utterances recorded in corpora. Syntactic analyses encoded strictly
according to dependency analyses of syntax (like the PDT, Bohmova € al.,
2003) do not assume those intermediate nodes. Other treebanks still follow
some of the ideas of dependency analyses, but do so using intermediate nodes
(like negra, Skut & al., 1998). Still others primarily focus on constituent
structure, but still allow for a dependency view on their analyses, by employ-
ing heuristics that map one kind of analysis to another (including TiiBa-D/Z
and the Penn Treebank; Bosco and Lombardo, 2004; Kiibler and Telljohann,
2002).

Given the variation in assumed analyses in treebanks, the question arises
how structure assigned by a parser can be compared to structure given in
a treebank if the underlying representation of syntactic analyses differs be-
tween them (e.g. comparing constituent-based parses agains the analyses in
a dependency treebank). We assume that this question does not only appear
when parser and treebank are incompatible in the first place. Even when
parser and treebank provide similar (e.g. constituent) analyses, the different
views on syntax (e.g. assuming constituency or dependency) are equally im-
portant. Even more so because each view on syntactic analyses has its own
set of evaluation metrics with its flaws and merits, and because there seems to
be no single metric that reliably represents the quality of a syntactic analysis.
The observation that a parser can be tuned to optimise certain metrics, but
usually only at the expense of performing worse at others (Goodman, 1996b)
suggests that applying several well-motivated metrics may come closer to as-
sessing the actual goodness of a parser, which is a quality we cannot judge
directly.

A scaled-down version of modelling all aspects of linguistic performance
requested above could be the degree in which the parser helps solving another
problem for which better evaluation metrics are available. Such an evaluation
in vivo is quite convincing, because it measures the amount of success of a

23

certain application when the parser supports this application. We are more
interested, though, in a parser that is not yet specialised, and seek to optimise
it in the most general way. We therefore stick to evaluation in wvitro and
choose to apply a number of metrics to evaluate the general quality of parses
provided by the parser.

Perfect Match and Coverage

The full match (fm) or keywordperfect match metric, and the number of
unparsed sentences, failed parsesor coverage are rather straightforward and
uncontroversial, but they are also rather coarse metrics. If the syntactic ana-
lysis of a parser for a given utterance corresponds fully to the analysis given
in the treebank, then there is no doubt that the analysis is perfect. The full
match metric gives the proportion of perfect analyses provided by the parser
relative to all tested sentences. Given ir(w) is a gold parse for a sentence,
and ¥ p(w) is the parse proposed by the parser, then the full match ratio for
the strings W in the treebank is

_ wl () = p(w), w e W}
W]

Obviously, this metric is rather coarse, because it does not consider the
degree in which the parses are incorrect, if they are not fully correct. If the
parser returns parses that all are minimally different from the gold parses,
the full match ratio would return its worst verdict of 0% success. The failed
parses (failed) metric analyses the other end of perfection. There may be
utterances where the parser not only presents a wrong parse, but where it is
not able to present any parse at all. The number of those cases is recorded
with this failed metric.! It corresponds to the coverage, which specifies the
fraction of all sentences for which the parser provides some analysis.

If the analysis provided by the parser is not identical to the analysis
presented in the treebank, then there is usually still some overlap between
them. The major question that remains to be answered is thus how big the
penalty should be for deviations from the gold parse. This question turns out
to be rather difficult to answer. A penalty on the quality of the parse may
be zero if the alternative analysis offered by the parser is equally acceptable,
e.g. because the utterance is inherently ambiguous, or the ambiguity does
not matter for the sake of the application that requests the parse. A penalty
may be very large if the wrong reading has been chosen for a sentence with
two very different readings.

fm

We choose to use absolute numbers instead of the standard ratio, because most models
that we examine fail only on very few sentences.

24 Chapter 3 Parser Evaluation

The metrics we will use to evaluate the gradual overlap between the ana-
lysis returned by the parser and the gold parse focus on either constituent,
or dependency structure. A third kind of metric takes advantage of PCFGs
being probabilistic language models, and assesses differences between what
the model predicts and what is found in a corpus. We also report other de-
tails on experiments that we think do not need extensive discussion, most
prominently the number of rules in a specific grammar. We have pointed
out already that generally, fewer rules seem preferable, but it may also be
useful to have more rules in a CFG if they encode more global constraints
(Yoshinaga & al., 2003).

3.1 Parseval

With the advent of treebanks, it was for the first time possible to compare
automatically the output of syntactic parsers with what would be considered
as the perfect syntactic analyses for the same input, constituting an ideal
resource for comparing different parsers, or measuring the impact of changes
in a single parser. Parsers before had of course been developed independently
of these new resources, making such comparisons rather difficult, because
identical analyses would often be expressed by different tree structures, and
identical categories by different labels. Black €/ al. (1991) therefore proposed
to first strip the labels off the tree, and then transform parser output, but also
gold data, so that both agree for identical analyses. They further specified
metrics that would give the degree of correspondence between both if they
would not be identical, based on the sets of tuples of start and end positions
of each constituent in the gold data (the key K) and the parser’s output
(the answer A). Recall is then called the fraction of the number of correct
constituents returned by the parser divided by the number of truly correct
constituents <|K|IFCL|4‘). If the parser returns constituents not in gold data, then
they could either be compatible with the gold parse, i.e. they could both
be part of a single proper tree, or they could be incompatible. The crossing
brackets metric (C'B) counts those constituents that are incompatible. Given
a constituent in gold data is represented by the tuple (f,[) representing the
position of the first word that it dominates, and the position of the last
word, and some constituent in the parser output is represented accordingly
by (f’,1'), then these two constituents represent a pair of crossing brackets
if for any (f’,1’) there is some (f,1), so that f < f’ <1 < [’. Harrison & al.
(1991) present an implementation of these metrics in the Parseval program
and propose to measure also the precision of the parser output, which is
the proportion of correct constituents from all constituents in the parser’s

3.1 Parseval 25

output, |“TZI‘C‘. Additionally, they propose to normalise the absolute number

of crossing brackets as two values: the ratio of all sentences that do not
contain crossing brackets at all, called zero crossing brackets (0 CB), and
the average number of crossing brackets per sentence (the C'B rate).

The idea behind using unlabelled constituents is that a parser that has
been developed independently of the resource against which it should be
tested often would not use the same labels to express the same categories.
Grishman & al. (1992) address this problem by specifying tree transforma-
tions that undo the systematic differences between the structure assumed in
the treebank and the structure assumed by the creators of the parser. Their
goal is to keep the manually devised data unchanged, so that it represents a
proper (unmodified) gold standard that stays the same for all parsers that
use it, and they indeed show that their parser can incorporate alternative
preferences that make it perform better on the Parseval metrics, and they
also add robustness rules that allow parsing increasing amounts of gold data
without diminishing performance.

Parseval metrics in this last incarnation see a treebank as a set of uncon-
nected nodes. They understand each node in a treebank’s annotation as a
triple of start position, end position, and label. A triple that is found in gold
annotation and in the parser’s output is correct, and incorrect if not found
otherwise. Given the set of all triples in gold annotation is K and the set
of triples provided by the parser is Ay, then Parseval also defines labelled
precision and recall on these sets:

PreCigp = 7|AL i KL|
‘ |AL|
reCiy = AL U K|
lab = ——
| KL

Precision and recall are also combined in a geometric mean, where a weighting
factor « is standardly set to 1/2 so that both have equal impact on the
overall so-called F-measure (presented by van Rijsbergen, 1979, p. 134, as
effectiveness measure E, = 1 — F,):

1 _ 2precision X recall

Fa:1/2 = 1 T (1 — Oé) 1 =

precision + recall

precision recall

so that our labelled F-measure is

2precigy X recig
Eab ==

Precigy + reCiap

We do not see a reason to prefer either precision or recall, so that we always
use [,—y/2, or F' for short. An alternative formulation uses a parameter (3,

26 Chapter 3 Parser Evaluation

where Fjg_y = F,—1/2. The same set of metrics for precision, recall, and
weighted average are also specified for the unlabelled start and end position
tuples recorded in the gold annotation set Ky and the parser annotation set
Ay, resulting in:

prec, = 1Av 0 Kl
|Av]
| Ku|

2 precyn; X T€Cyni
Funl =

PrecCynt + TreCynl

Certain requirements should hold for such a combined metric, e.g. that for
any given value of precision, lower values of recall should always give lower
values of the composite measure. Van Rijsbergen (1979) shows that F' is
such a metric. It is the harmonic mean of precision and recall, so that low
values of both are punished, but also large differences between them, so that
performance that does not neglect any of both is rewarded most.

When parsers were first evaluated with Parseval, they usually had not
been developed with the annotation scheme of the gold parses in mind, so
that dropping the labels, and generally transforming the parser’s output to
comply with the gold data were useful, if not necessary steps. We do not
require any mapping of labels or structure, because we are free to adopt the
parser so that it produces parses that agree with our treebank’s annotation
scheme. Even though our parser can be compared directly with test data,
there are weaknesses of the constituent-based view on syntactic structure.
Parseval metrics are based on constituents, which can vary in number with-
out major impact on their interpretation. While their absolute number is
hidden by the normalised precision and recall ratios, it can nonetheless in-
fluence evaluation. Depending on the number of constituents that are used
to represent constituent structure, a single incorrect attachment decision can
have varying impact on the metrics. Figure 3.1 shows the noun phrase der
Junge mit der Gitarre (‘the boy with the guitar’), where the prepositional
phrase is meant to modify the initial noun phrase der Junge as the correct so-
lution (K), but a parser delivers a wrong parse and does not attach it (.A). We
assume two annotation schemes that take a different approach on represent-
ing embedded structure, and compare the impact of these representational
differences on the Parseval scores. The first scheme uses one constituent per
phrasal head (Junge and Gitarre), and lets the constituent extend and in-
clude all dependent constituents (figure 3.1(b)). This is an approach similar
to the flat attachment strategy adopted in the negra treebank (Skut & al.,
1998). The second scheme adds a new constituent for the combination of the

3.1 Parseval 27

Gold Annotation (K) Parser Output (A)

der Junge mit der Gitarre der Junge mit der Gitarre

(a) idealised representation

[der Junge [mit der Gitarre]] [der Junge] [mit der Gitarre]
K={(1,5),(3,5)} A=1{(1,2),(3,5)}
e
Preunt = sy ssy = M2
(0
reCunt = iy @ayy = L/2
Fot = 1/2

(b) negra style bracketing

[[der Junge] [mit [der Gitarre]l] [der Junge] [mit [der Gitarre]]

K ={(1,5),(1,2),(3,5),(4,5)} A=1{(1,2),(3,5),(4,5)}
_ HO2.65),045} _
PréCunt = 1112),6,5),@50
N 3

(¢) TiBa-D/Z style bracketing

Figure 3.1: Parseval is Sensitive to Bracketing Style

28 Chapter 3 Parser Evaluation

two phrasal heads instead (figure 3.1(c)), which is similar to the approach
adopted in the treebank TiBa-D/Z (Telljohann & al., 2004). The status of
the constituents is obviously different. While the upper representation only
shows maximal projections, the lower also shows intermediate projections.
Failing to attach the prepositional phrase to the noun phrase has different
impact on the Parseval evaluation of the parser error in the analyses on the
two sides. In the negra style representation, the error is considered more se-
vere than in the TiiBa-D/Z style representation (F,,; = 0.5 vs. F,,; = 0.86).
The unlabelled crossing brackets metric is similarly unbalanced: it counts a
crossing bracket only in figure 3.1(b) ((1,5) vs. (1,2)). What is more, the ab-
solute number of brackets is lower in the first case, so that a single crossing
bracket has a relatively higher impact. The idealised representation given in
figure 3.1(a) focuses on the single erroneous attachment decision. It shows
directed arcs that link the heads of the constituents, which, however, are
partly determined by the labels of constituents and edges, so that it is based
on more information than is available in the unlabelled bracketings. It adopts
a representation similar to dependency analysis of syntax.

3.2 Relational Evaluation

A weakness of the constituent-based Parseval metrics is that a single incor-
rect attachment decision can cause many brackets to cross. Given the above
observation of impact that varies with the chosen (identically meaningful)
representation, such differences seem to be based on rather unrelated char-
acteristics of the data. Instead, an annotation scheme that focuses on the
meaningful differences and represents them in a normalised way would be
desirable. Lin (1995) proposes such a scheme, which is based on syntactic de-
pendencies between words, i.e. on syntactic analyses that can be represented
as trees without non-terminal nodes. The key and answer sets of parses are
then expressed by tuples representing the positions of head and modifier
(h,m), where standardly a word can be a head to several modifiers, but a
modifier only to a single head (an assumption broken in e.g. certain repre-
sentations of coordinations, see below). The dependency metric is calculated
on the basis of head/modifier tuples in much the same way as the Parseval
metrics are derived from tuples representing bracketings. Figure 3.2 shows
that the key and answer sets are equally intersected to determine recall and
precision, and finally the weighted mean is computed, which we call the F'
score for dependency evaluation.

The major challenge when implementing such a relational evaluation
scheme, of course, is the transformation of constituent-based analyses that

3.2 Relational Evaluation 29

Gold Annotation (K) Parser Output (A)
der Junge mit der Gitarre der Junge mit der Gitarre
K={(2,1),(2,3),(3,5),(5,4)} A={(2,1),(3,5),(5,4)}
_ H@1),35),649H _
PréCunt = {166
1{(2,1),(3,5),(5,4)}|
reCunl = [a.0.2.Go.6a7 — o4

Figure 3.2: Computing the F' score for dependency evaluation

are found in a treebank into dependency analyses, and the choice of the la-
bel set that is used to label the relations. Technically, the method is rather
straightforward (Lin, 1995). Each non-terminal is assigned a head from one
of its children, so that heads percolate up from the lexical level. Wherever a
head does not percolate further up, because a sister head is selected as the
head of its mother node, the lexical item representing the dominated node
is a modifier to the lexical item of the dominating node, and a dependency
link is added between the lexical items representing both heads accordingly.
Thus determining the heads of constituents, and choosing a label for the
resulting dependencies will determine the resulting dependency annotation.
Fortunately, the treebank that we use for most of our experiments, TiiBa-
D/Z, provides a wealth of information concerning heads of constituents, so
that rather few heuristics are necessary.?

Using a dependency representation of TiiBa-D/Z annotation for evalua-
tion is rather appealing, because of the advantages of dependency annotation
over the Parseval metrics, and because the dependency representation can be
deduced from TiBa-D/Z annotation rather straightforwardly. However, we
cannot use dependency annotation to evaluate all our experiments, because
only full annotation of TiiBa-D/Z including edge labels defines the unambigu-
ous mapping outlined above. It is not given for less rich models of TiiBa-D/Z
constituent structure that do not include edge labels. We will therefore only
apply dependency representation to evaluate some experiments.

2Please see Kiibler and Telljohann (2002) for more details on these heuristics.

30 Chapter 3 Parser Evaluation

3.3 Relative Differences in Information

PCFGs define a language model: for each sentence that is part of the lan-
guage that they define, they specify how likely it is to occur. What makes
probabilities useful for evaluation is that a language model should have better
knowledge of the language when it assigns higher probabilities to sentences
that are likely to occur in the language, and lower probabilities to those that
are unlikely to occur. Given that we are talking about a treebank of sufficient
size, we can hope that a PCFG derived from it comes close to modelling the
natural language that it represents, i.e. that it assigns probabilities equally
reliably to an unseen sentence taken from the treebank as to any unseen
sentence drawn from a source other than the treebank.

A language that has only few different sequences of strings that occur very
frequently is easier to predict than one in which all words occur completely
at random. There is a bound on predictability, though: if each sentence in a
language were completely predictable, then it would not convey any informa-
tion. Thus even a very good language model (e.g. that of a human being) will
not be able to predict perfectly the next sentence uttered by someone else, or
otherwise the listener will be bored. The lower bound on the difficulty of pre-
dicting the next part of an utterance, or on the surprise when faced with it,
is called the entropy of the language.® A model usually performs worse than
perfect, and will add to this lower bound that is inherent in the language.
The less entropy a language has according to a model, the better the model
approaches this lower bound. This notion is captured in the relative entropy
between a language model and a language, which we will use for evaluation,
and for which we will show below how it can be computed between a PCFG
and a treebank.

The entropy can be interpreted as the average number of yes/no-questions
you would have to ask on average to guess the next corpus position (or the
number of bits to encode the answer). The entropy H has a closely related
measure called perplexity:

perp = 27

The perplexity thus gives you the average number of equally likely choices
per corpus position, both times assuming a perfectly informed guesser that
asks the minimal number of questions, i.e. always asks first for the choice that
it thinks is most likely to occur. As an advantage over entropy, the notion of
perplexity does not depend on a base of 2 that is arbitrarily chosen.

The cross-perplexity between a corpus ¢ and a language model m, is given

3We base our overview on Prescher (2002) and Cover and Thomas (1991).

3.3 Relative Differences in Information 31

as follows: .

€T Pcross\C, M) = ——F—=
PeTPeross(c,m) VPO

where || is the length of the corpus in words, and P(c) the probability as-
signed to the corpus by the language model. As the cross-perplexity specifies
the average number of equally likely alternatives per corpus position, it aver-
ages in two ways: First, not every word in a sentence will be equally difficult
to guess, i.e. perplexity averages over the different corpus positions. Second,
the probabilities of the different alternatives at an individual corpus posi-
tion are unlikely to be distributed evenly over all alternatives, i.e. perplexity,
when interpreted as the number of different alternatives, averages over the
alternatives. Evidently, it will be more difficult to predict a sentence given the
preceding sentence than to predict a word given the preceding word, which
in turn will be more difficult on average than to predict the letter following
a given letter. It is thus necessary to normalise the entropy with respect to
the size of the predicted unit. Words offer a relatively well-defined unit which
we will use whenever we talk about entropy from now on, especially because
we have data sets which differ in average sentence length. It is also evident
that the difficulty to predict the next word depends on the position in the
utterance. It will be harder, e.g., to predict the first word of a sentence than
to predict what follows as the dots in sagte heute Bundeskanzler ... (‘said
chancellor ... today’) in a German newspaper article from early 2005, where
chances are that Schrider will be uttered next. We are therefore determin-
ing the average per-word cross-entropy between a language and a language
model.

As an example, a corpus consisting exclusively of the words a, b, ¢, d that
are evenly distributed according to figure 3.3(a) faces you with four equally
likely words at each corpus position. A corpus consisting of the same words,

next word? next word?

(a) Equally likely outcomes (b) Unequally distributed outcomes

Figure 3.3: Decision Trees for Guessing the Next Word

but distributed as shown in figure 3.3(b), is easier to predict. A language

32 Chapter 3 Parser Evaluation

model that knows about this distribution and that is asked to guess each
word will first ask for word a, and then for b, ¢, and d, in this order. On
average, this strategy makes the second corpus about as hard to predict
as a corpus with two equally likely alternatives, corresponding to a cross-
perplexity between the model just outlined and the corpus of 2.06.

The cross-perplexity between a language model and a corpus is deter-
mined by the two aspects already mentioned for the cross-entropy: first, how
well the model fits the corpus, and second, how predictable the corpus is.
Given a corpus consisting only of sentences abcd, you would never have to
choose which word comes next — if you knew about it, which would also re-
quire a more powerful model than one that handles each word independently
like the one shown in figure 3.3. A model that perfectly knows about the cor-
pus would amount to a corpus perplexity of 1, i.e. the corpus being totally
predictable, and also to a cross-perplexity of 1 between model and corpus. If
the model’s assumption is that all words are equally likely (a language model
corresponding to figure 3.3(a)), then the cross-perplexity of the model and
this corpus is 4. If you assume an uneven distribution as in figure 3.3(b), then
the cross-perplexity between this model and a corpus with evenly distributed
words like in figure 3.3(a) increases to over 10. Language is unlikely to be
totally predictable, because its purpose is to convey an informative message
from speaker to listener. On the other hand, if there is something known
about the corpus in advance, it becomes more predictable. All experiments
partly know about the data to be predicted, because the training set which
we use to predict the test set is quite similar to it, as both are taken from
the same newspaper, and the same month of the year. For most experiments
even more is known about the test data: the vocabulary is a part-of-speech
tag set instead of the full range of possible German words. As also the size of
the vocabulary determines corpus perplexity, we can use the cross-perplexity
between the corpus and the language model only to compare models that
share the same vocabulary. Among these comparable models, we know that
the one with a lower cross-perplexity is better at predicting the data.

Having briefly discussed cross-perplexity as a metric that measures how
well a model fits some data, and its dependence on the complexity of the
data, we will now turn to the actual computation of the cross-perplexity
between a PCFG model and a corpus. A PCFG assigns zero or more parses
to a given sentence, each with a probability equal to the product of the
probabilities of all rules used within the parse. The sum of the probabilities
of all parses of the sentence is the total probability that the PCFG assigns
to the sentence, because the parses represent all ways in which the PCFG
can generate the sentence. Syntactic annotation in the treebanks considers
sentences as separate units, which is also the assumption under PCFGs. The

3.3 Relative Differences in Information 33

probability of the whole corpus is consequently the product of all sentence
probabilities.

The probability of a sentence can be calculated via the inside algorithm
almost exactly as the most likely parse (see section 2.4). The only differ-
ence is that instead of storing spans of most likely constituents per chart
entry (determined in equation 2.4), each entry [A,, k] just holds the sum of
probabilities of all subderivations of constituent A spanning wj :

k—1
[Ai k=Y > P(A— BC)P(B= w;)P(C S w;y)
j=i+1 A=BCEeR

so that when the chart is filled, the entry for the start symbol spanning the
whole input string holds the probability of the input string according to the
PCFG:

(5,0, [w]] = P(S = wo,ju|)

Sentences that fail to parse are considered in our evaluation, in that the sum
of their lengths is subtracted from the number of words used to compute the
perplexity.

Inside probabilities cannot be easily calculated for cyclic grammars, be-
cause they give part of the probability mass to parses of infinite depth.?
There exist algorithms to calculate it, but they are rather expensive (Klein
and Manning, 2001a). Cyclic grammars occur only rarely in our experiments,
because symbols generating cycles also cause massive ambiguity and are usu-
ally among the first to be removed by our transformations. The parser we
use has been extended by us to deliver only a simple approximation of sen-
tence probability based on parses with the minimal number of applications of
rules forming cycles. Calculating probabilities along these lines ignores pos-
sible derivations (those with repeated rule applications) and thus determines
sentence probabilities that are too low. We nonetheless stick to the simple
sentence probability estimates also for those grammars that are cyclic and
accept that resulting probability estimates may be too low. This results in
perplexity measures that are too high (see equation 3.1 below).

We will now briefly give the remaining steps to derive the cross-perplexity
from sentence probabilities. We assume that sentences w in our corpus W
are probabilistically independent:

P(W) = P(w1>w2a .- aw\W\)

= H P(w)

wew

4In a cyclic grammar, you can start from a node and arrive at the same node again by
traversing edges in a single direction.

34 Chapter 3 Parser Evaluation

where each sentence probability equals the inside probability of the node
with the grammar’s start symbol covering the whole sentence in our PCFG
model:

P(w) = P(S :*> w07|w‘)

We are interested in the average per-word perplexity of a corpus, which for
us are the sentences in the treebank W, given a model, which is our grammar
G. The average per-word perplexity of a corpus is then defined as:

perpcr055(G; W) — 2Hcr-oss(W;G)

where H...ss(W;G) is the cross-entropy between model and corpus, which
equals the negative log-likelihood of the corpus L(W; G) = ﬁ log, P(W):

perpcross(G; W) = 2_L(W;G)
— 2ﬁ logy P(W)

1

I/ PON)

where our grammar gives us P(-), and |W]| is the length of the corpus in words
(Prescher, 2002, p. 51ff.). We will refer to the cross-perplexity perpeross(G; W)
as perp from now on.

Information-based metrics, relational evaluation and the Parseval met-
rics are widely applied, but there are a number of other metrics that we
do not consider. Carroll & al. (1998), e.g., propose to map parses directly
to predicate-argument structure, which is expected to represent the decisions
better that are relevant for the semantic interpretation of a parse. A drawback
is that it is not immediately obvious how to extract the predicate-argument
structure from gold data. The leaf-ancestor metric is another distinct evalua-
tion metric that is equally applicable to constituents and dependency-based
analyses and thus does not require mappings between both types of analyses
(Sampson and Babarczy, 2003). It reacts less nervously to attachment errors
than Parseval and is not equally distracted by increasing the proportion of
trivial annotation at the low end of syntactic trees, because annotation higher
in the tree has more impact on it (Sampson, 2000, p. 66). The main reason
why we do not employ the leaf-ancestor metric is that the other metrics have
been applied more widely, and thus allow for better comparison, although,
admittedly, numbers on different data sets can hardly be compared; just the
behaviour of the metrics is better known. We nonetheless acknowledge that it
would be useful to include the leaf-ancestor metric into the set of standardly
applied metrics in the future.

(3.1)

Part 11

Representations of Syntactic
Analyses

35

Chapter 4
A Treebank’s Choice

We will frequently experiment with grammar models that are derived from
syntactically annotated language data. Collections of such data are called
treebanks, because the annotation found in them usually resembles some
kind of tree. These trees express linguistic analyses that correspond to regu-
larities observed in the data, i.e. they express generalisations that we refer to
as syntactic phenomena. Treebanks exist for a variety of languages, including
German (Abeillé, 2003). For written German, there are two such resources.
First, the negra treebank, which is enlarged and continued as the Tiger tree-
bank (Brants € al., 2002; Skut & al., 1998). Second, the Tibinger Baumbank
des Deutschen/Schriftsprache (TtiBa-D/Z; Telljohann & al., 2004). Tiger and
TiBa-D/Z are similar in that they both comprise data from major newspa-
pers of the 1990s. Both follow the same scheme to assign parts of speech
to words (the Stuttgart-Tibingen Tagset: STTS; Schiller & al., 1995), and
their main goal is to provide syntactic analyses for individual sentences. They
rely on the same tool for annotation, which uses graphs to express the ana-
lyses, so that their analyses also share some formal properties. While the
scope of the annotated phenomena is similar and includes parts of speech,
constituents, and predicate-argument structure, the individual solutions to
encode the analyses are different.

Having two similar treebanks at hand, it is tempting to examine their
differences, and to judge how these differences affect treebank users. Even
within a single treebank, though, similar generalisations may be represented
in different ways. For the major part of this chapter, we will restrict ourselves
to examining alternative representations within a single treebank, because
our main interest is not so much to discuss the differences between treebanks,
but rather the consequences of certain ways to represent syntactic analyses
when there is no obvious representation, or when there are several equally
plausible representations of a syntactic phenomenon.

37

38 Chapter 4 A Treebank’s Choice

ol e 4 500 #1 fir 501
ur
#2 den 500
#g den NK 588 #3 Tag HD 500 @O
#3 Tag NK 5 #500 NX HD 501 B
#500 PP 0 4001 Px o
] 1] /A 5]
fiir den Tag fiir den Tag fiir den Tag
APPR ART NN APPR ART NN APPR ART N

Figure 4.1: Representations of Relations within a Prepositional Phrase

Figure 4.1 shows representational variants of analyses of a prepositional
phrase as an example.! TiiBa-D/Z and Tiger go different ways to annotate
them (see extreme right and left). The graphs correspond to an underlying
representation, which is shown as tables of labelled nodes and edges resem-
bling the export format, which is discussed in more detail below. It is suf-
ficient for us here that terminal and nonterminal nodes correspond to lines,
which are numbered, and which also encode the node label and a (possibly
labelled) edge. The representations as elements of a graph and as entries in
a table are equivalent in the sense that one can be derived from the other by
simple mappings between a line in the table and a node plus its upwards edge
in the graph. Another representation of syntactic relations is the dependency
representation, which is shown in the middle of the figure. This representa-
tion does not provide information about intermediate nodes and their labels,
and is thus not equivalent to the other representations, while it still can
serve to represent syntactic relations that hold between words that make up
prepositional phrases. Different representations thus do exist for a single phe-
nomenon in a language, but also within a single treebank, when we accept
that the dependency representation and the constituent representation, and
also the table representation, express the same relations. The terms that we
will use to discuss these variants are phenomenon, representation, and encod-
ing. A phenomenon is a generalisation that corresponds to patterns observed
in the language data recorded in a treebank, such as a prepositional phrase.
This generalisation is expressed in some representation, which can highlight
certain aspects like constituency or dependency. The encoding is the specific
representation in which the treebank is originally delivered (i.e. the tables in
figure 4.1 for both treebanks). We assign this specific representation a spe-
cial status, because its choice is not arbitrary, and its shape most likely has
consequences for the users of a treebank.

1See appendix A.2 and appendix A.3 for a description of all labels in negra and TiiBa-
D/Z. We do not treat the newer Tiger annotation scheme differently, because for our
purposes both schemes behave identically (Brants and Hansen, 2002).

39

We focus on TiiBa-D/Z as an example and discuss the choice of represen-
tation for selected phenomena in this chapter. Before we turn exclusively to
TiBa-D/Z, however, we will briefly survey some differences between TiiBa-
D/Z and Tiger. TtiBa-D/Z strives to build annotation around a context-free
backbone, while Tiger employs crossing edges from the start to cope with
the relatively free constituent order in German. In Tiger, the clausal node is
the mother of the finite verb and of the verb phrase that groups the remain-
ing non-finite verbal parts and all their complements and adjuncts. As the
elements of the verb phrase may move around rather freely within a German
sentence, this leads to crossing edges whenever they are realised both before
and after the subject or the finite verb (see figure 4.2(a)). TtiBa-D/Z does not

SIMPX
[ON]
) WO @A (O @XIND
o] [o]
Das wollen wir umkehren . Presserummel ist er gewohnt
PDS VMFIN PPER VVINF $. NN VAFIN PPER VVPP $.
Das wollen wir umkehren. Presserummel ist er gewohnt.
That want we to_reverse press_buzz is he used_to
‘We want to reverse this.’ ‘He is used to press buzz.’
(a) Tiger sentence 7489 (b) TuBa-D/Z sentence 8067

Figure 4.2: Crossing Edges in Tiger vs. Co-Indexation in TiiBa-D/Z

allow crossing edges, but groups constituents into so-called topological fields,
which always occur in linear order. The context-free backbone in TiBa-D/Z
encodes the fields rather than the relations between the constituents. Rela-
tions between the verbal parts and their complements and adjuncts are also
recorded, but via edge labels expressing the grammatical functions instead of
via potentially crossing edges. These edge labels are co-indexed in the sense
that they form groups, such as the complements including accusative object
(OA), dative object (OD), genitive object (0G), and the subject (ON), which
all depend on the verbal parts of the clause (see figure 4.2(b)). The verbal
parts of a clause are always found in the same clause, but not necessarily
adjacent to the complements. A similar group of edge labels covers modifiers
of these complements (e.g. the modifiers of the accusative object OA-MOD, of
the dative object OD-MOD, and of the genitive object 0G-MOD). Each modi-

40 Chapter 4 A Treebank’s Choice

fier of a constituent with a certain grammatical function is thus co-indexed
with the constituent via the naming scheme of the edge labels marking the
respective constituents. Co-indexation is rather powerful, because it is just
a different means to express relations between arbitrary nodes in the graph
that carry labels from a predefined subset of all labels.

Formally, the difference between Tiger and TiiBa-D /Z still holds, of course,
that the former employs crossing edges while the latter does not. It is not the
case, though, that Tiger prefers graphs to express syntactic structure on all
levels of the analyses. Tiger encodes syntactic categories in node labels, and
grammatical functions in edge labels. The tree (or rather graph, as it includes
crossing edges) defines argument structure. Internal structure of constituents
is consequently mainly expressed via edge labels, and not in the graph, so
that the resulting annotation graphs are rather flat. TiiBa-D/Z adds topo-
logical fields as a separate descriptive level, and it does not allow edges to
cross (except for a separate class of so-called secondary edges, which are also
present in Tiger). TiiBa-D/Z uses the graph to encode structural informa-
tion inside constituents more extensively than Tiger, resulting in analyses
that consist of more nodes per word on average.

The primary goal of a treebank is to annotate syntactic phenomena in
language data. It is not clear whether the choice of crossing edges, or co-
indexation, offers the best support for this goal. We will not try to answer
this question here. We will instead concentrate on a single treebank and
try to show why its designers choose a certain kind of graph to express the
syntactic analyses. Comparing different representations (e.g. crossing edges
vs. co-indexation) of a specific phenomenon (free constituent order) between
treebanks as outlined above aims at showing which encoding is more ap-
propriate for a certain phenomenon. Instead, we propose to concentrate on
the annotation in TiBa-D/Z, which most likely tries to capture the same
syntactic phenomena as the annotation in Tiger. The initial goal of a tree-
bank is to identify these phenomena (such as constituents, or the relations
between verbs and objects), analyse them, and store descriptions of the ana-
lyses. The ultimate goal of treebank designers is that a user will understand
this analysis and identify the corresponding phenomenon in the same way as
originally intended by the treebank annotators. The analyses are stored by
means of a graph for both Tiger and TiiBa-D/Z, i.e. both use a data model
for storage that is strictly defined in terms of labelled nodes and edges. These
graphs usually take the form of a tree, which seems to be a natural choice
to represent hierarchical structure such as the structure of constituents or
clauses. Other phenomena, such as ambiguous analyses, are not similarly
easy to represent as trees, though.

There seem to be obvious causal connections between the phenomena for

41

which analyses are recorded in a treebank, their encoding as graphs, and
their tree-like graphical representation. Our main interest in this chapter is
to highlight the constraints that interact and determine the individual choice
of encoding and representation of linguistic phenomena. Their choice deter-
mines whether a treebank user understands the annotation in the same way
as the treebank annotators. We will consequently consider phenomena, en-
coding, and representation independently. We will try to show that different
constraints determine their choice, and that they can be partly optimised
independently. The influence of the variation of representations for a differ-
ent application will be our topic in the next chapter, where we will focus on
how different representations of syntactic analyses affect the way that PCFG
parsers capture probabilistic dependencies between the parts of an analysis.
Before we start, we give some more details on TiBa-D/Z and the ezport
format.

A Treebank of German Newspaper Texts: TiiBa-D/Z

TiiBa-D/Z consists of 15260 sentences.? Texts in TiiBa-D/Z come from the
daily newspaper die tageszeitung (taz), covering May 3-7, 1999. Texts have
been automatically segmented into words and sentences with some manual
post-editing. Annotation continues semi-automatically with the support of
the annotate tool (Plaehn, 1998), which aids in annotating and editing parts
of speech and syntactic analyses.

Part of speech (POS) annotation follows the distinctions of classes given in
Schiller ¢ al. (1995). Each word is annotated with a single POS label. Words
are grouped into constituents, and sequences of constituents are grouped into
fields, and sequences of fields are grouped into clauses. Constituents may con-
tain other constituents, and clauses may be part of fields and constituents,
but constituents are never direct children of clauses, so that annotation al-
ways consists of layers of constituents, fields, and clauses that are stacked in
a strict order.

The main principles of syntactic annotation are given in the manual of
the treebank (Telljohann & al., 2003), along with detailed guidelines for the
annotation of the individual types of phrases, fields and clauses. All informa-
tion about the annotation of TtiBa-D/Z that we refer to here is drawn from
this manual or the data itself. Annotation in TiiBa-D/Z follows three main
principles: the flat clustering principle, the longest match principle, and the
high attachment principle. Both the flat clustering and longest match prin-
ciples express a preference to encode syntactic analyses with fewer nodes

2We always refer to the first release of TiiBa-D/Z published in December 2003.

42 Chapter 4 A Treebank’s Choice

when there is a choice to either introduce additional nodes or to add more
branches below existing nodes. Annotation only connects fragments of sen-
tences when there is some kind of dependency relation between them. The
high attachment principle states that when the scope of a modifier cannot
be determined, then it is attached at the lowest position in the tree that
includes all possible interpretations. It is called high attachment principle
because when it is unclear whether a modifier has a less ambiguous reading
that is encoded by lower attachment or a more ambiguous reading encoded
by a higher attachment, then the higher attachment site is chosen.

A declared general goal of TiiBa-D/Z is easy reuse of the treebank. The
annotation should not be influenced by a commitment to a specific linguistic
theory. Instead, the annotation scheme should be based on uncontroversial
assumptions about syntactic structure, yet reflect specific properties of the
annotated language, so that as many potential users as possible can take
advantage of the treebank (Telljohann & al., 2003, p. 8). The treebank man-
ual has the important function to explain the choice of encoding, because
there are situations where the actual analysis of a phenomenon cannot be
easily determined from the general principles outlined above, when there is
no unique obvious way to express an analysis in a tree structure with the
given inventory of labels for labelled nodes and edges.

The export data model

There are some formal restrictions on the design of the annotation which
come from the chosen data model. You are in principle free to choose any
data structure to encode the annotation of your choice. Rather simple graphs
are sufficient to encode a wide variety of (if not all) existing kinds of syn-
tactic annotation (Bird and Liberman, 2001). In practice, however, you will
reuse an existing tool to automate annotation, because such a tool speeds
up annotation, enforces consistency, but is costly to create. The annotation
effort of TiiBa-D/Z reuses the tool annotate, which has originally been pro-
duced to support the annotation of negra, and also aids annotation of Tiger
(highlighting another feature common to these treebanks).

The data model of annotate thus gives a hard constraint on the encod-
ing of syntactic annotation in TiiBa-D/Z. The data model is rather flexible,
though, as it is capable to express more than proper trees (henceforth the ez-
port model; Brants, 1997). It describes sets of unconnected sentences. Each
word has exactly one parent node, which is either a normal non-terminal
node, or the special non-terminal called the wirtual root node (VROOT)
marking the root of each sentence. Being connected to VROOT means being
unattached to any syntactic annotation, because VROOT and all edges lead-

43

ing to VROOT are not shown in the standard representation of the export
data model. Non-terminal nodes also have exactly one parent node, which is
again either a normal non-terminal node or VROOT. Only the descendants of
a non-terminal are excluded from the set of its allowed parents in the export
model, so that edges may cross, but cycles do not occur. There is a separate
type of dependencies called secondary edges, though, which can be used to
represent also cycles. Each non-terminal node, and each word, may have an
unlimited number of secondary edges, which point to an arbitrary node in
the graph that belongs to the same sentence. Each word, non-terminal node,
edge, and secondary edge also has a finite set of attributes with values that
are selected from a finite set of different labels, so that formally, each of these
elements can be seen to have an atomic label from the set of node labels times
the set of attribute labels (see Brants, 1997, for the inventory of attributes).

Secondary edges, and node labels that are connected by their definition
in the treebank manual (i.e. via co-indexation), essentially express relations
between arbitrary nodes in the annotation graph. The difference between
them is formal rather than semantic. Secondary edges connect two nodes
explicitly, and they have a label from a finite set of labels. Co-indexation
also relies on a finite set of labels, but has no other means beside the label
to point to another node. Co-indexation thus has to enumerate every single
relation in the set of labels, because if the label were re-used, it would become
ambiguous: given that a relation of type a is always expressed via the two
labels (aq, as) that mark two nodes in a sentence, then no other two nodes in
this sentence could be co-indexed by the same labels, because it would not
be clear anymore which a; belongs to which a,. Co-indexation may be more
appropriate than secondary edges in situations where an encoding of source
and destination of an edge would be redundant, e.g. when the definition of
co-indexed labels makes it clear that only daughters of the same mother may
be related via the labels.

A graph consists of nodes and edges between the nodes. A rooted tree is
a special kind of graph with a single root node and directed edges that point
away from the root node and connect each mother node with its daughter
nodes. Each node except for the root node in a rooted tree has exactly one
mother node. The root node does not have a mother node. The edges of a tree
do not form cycles. Words are the terminal nodes in the ezport model. When
the daughters of each non-terminal node are ordered so that they occur in
the same order as the words that they dominate directly or indirectly, then
we call the tree a proper tree. Proper trees do not have any crossing edges.
Node labels serve to distinguish different types of nodes.

The export data model that is used to encode syntactic analyses in TiiBa-
D/Z thus has many features in common with proper trees. TiiBa-D/Z further

44 Chapter 4 A Treebank’s Choice

restricts expressiveness of the ezport data model in that daughter nodes
are always ordered in the same sequence as the terminal nodes that they
dominate, i.e. edges do not cross. The definition of the export format does
not rule out non-terminals that do not dominate any word, but this feature
is not used in either TiiBa-D/Z or Tiger.

4.1 Observations: Challenges for Proper Trees

Proper trees are a natural choice to represent constituency, and labels dis-
tinguish categories, so that we seem to have the proper tools at hand now
to encode syntactic analyses. There are some aspects of annotation in TiiBa-
D/Z, however, where it is not clear how to employ proper trees to represent a
syntactic analysis. This section presents some of the more problematic cases
in TtiBa-D/Z, where we focus on the syntactic phenomena, and we compare
how they have been identified and annotated in the treebank, and how the
annotation should be understood by the users of the treebank.

4.1.1 The Objects of Syntactic Annotation

A graph representing a syntactic analysis connects at most as many words as
there are in a sentence. Breaking up the input text into sentences, and identi-
fying words, thus determines important features of the individual graphs, and
the principles of tokenisation and sentence segmentation determine which
elements in a sentence are related syntactically (i.e. words, and not mor-
phemes), and which elements cannot be related (i.e. the words of different
sentences). Information about morphemes may be accessible when atomic
POS tags encode them, but this depends on the choice of POS tags, and
different morphemes in a word still would have to share a single parent.

Segmentation

Word and sentence segmentation in TtiBa-D/Z is originally based on the au-
tomatic segmentation procedures developed for the DEREKO corpus (Ule,
2002). Automatic segmentation has been edited manually when there were
obvious printing errors. Yet the spelling itself was generally not altered (see
also Telljohann & al., 2003, section 3.4.4). Tokenisation and sentence segmen-
tation are revised manually and they therefore only pose problems where
largest units connected by syntactic dependencies exceed the size of sen-
tences, or smallest units collide with the requirements of POS tags.
Sentential arguments can only be attached properly when all words mak-
ing up the main and the subordinate clauses are segmented as a single sen-

4.1 Observations: Challenges for Proper Trees 45

tence. Newspaper texts as found in TiiBa-D/Z contain many quotations in
direct speech, which often consist of several clauses. Examples range from
single quoted words to several fully quoted sentences in a row. Quoted mate-
rial is sometimes considered as an adjunct or argument of the matrix clause
(usually for smaller fragments), but sometimes not (usually for larger seg-
ments that make up full sentences). In TiiBa-D/Z, at most a single sentence
in direct speech that is introduced or finished by indirect speech is segmented
as one sentence. When direct speech consists of more than one sentence, then
only indirect speech preceding the first sentence and connected with a comma
(when introduced by indirect speech), or following the last sentence (when
finished by indirect speech) is segmented into the same sentence as the direct
speech. Relations between direct and indirect speech therefore cannot always
be expressed when sentences are the largest descriptive units.

Parts of Speech

Part of speech tags are atomic labels of the terminal nodes of the annota-
tion graph. They label the individual words that have been identified during
segmentation. Some pairs of function words in German frequently co-occur
and are blended. High-frequent articles and prepositions form a single word
which is found more frequently in written language than the combination of
two words, including zum (‘to the’), zur (‘to the’), im (‘in the’) (Eisenberg &
al., 2005, p. 622). The POS tag set provides tags for these merged forms, so
that the function of a preposition and an article is either expressed by one or
by two words. As a result, syntactic analyses of prepositional phrases contain
noun phrases where the article is either realised within the noun phrase or is
part of the dominating prepositional phrase, as opposed to Tiger, where this
distinction is less explicit (see figure 4.1). Figure 4.3(a) shows two coordinated
prepositional phrases (PX) where the first noun phrase (NX) contains the arti-
cle (ART), while the second article is merged with the preposition (APPRART)
and is part of the PX instead.* Other words can also be merged, but do
not receive dedicated POS tags, as the combinations are much less frequent.
The subject in figure 4.3(b) is not visible as part of the word isser/VAFIN
(blending ist /VAFIN and er/PPER), because the verb was considered more im-
portant, and either a POS tag for a verb or for a pronoun could be assigned
to the word isser.* The secondary edge refint that marks the dependency to
only part of a constituent shows that unser Lou refers to part of isser /VAFIN,
but it is not obvious that it refers to the personal pronoun er (‘he’).

The inventory of a POS tagset could provide a large number of labels

3Part of TiiBa-D/Z sentence 2368.
4Part of TiiBa-D/Z sentence 6974.

46 Chapter 4 A Treebank’s Choice

zZu den Miéchtigen oder zZum Volk So isser halt , unser Lou
APPR ART NN KON APPRART NN ADV VAFIN ADV $, PPOSAT NE
zu den Machtigen oder zum Volk So isser halt, unser Lou
to the powerful or to_ the people So is_he just, our Lou
‘to the powerful or to the people’ ‘That’s how he is, our Lou’

(a) merging preposition and article (b) merging verb and pronoun

Figure 4.3: Segmentation Determines Syntactic Analyses

with separate labels for all combinations, as for APPRART in figure 4.3(a).
Alternatively, segmentation could split isser in figure 4.3(b) into two sepa-
rate words, which could be tagged individually and which could be referred
to subsequently as separate words in syntactic annotation. There is no ded-
icated mechanism in the export model that shows whether two words are
separated by whitespace or not, and TiiBa-D/Z also has no means to encode
this distinction. As a result, the shape of noun phrases embedded in prepo-
sitional phrases may vary depending on where the article is realised, as in
figure 4.3(a), and information about the elements of the syntactic analysis
may be hard to recover, as in figure 4.3(b).

4.1.2 Unattached Elements

In a proper tree, each word and each node is attached to a mother node, and
there is one special root node. TiiBa-D/Z, however, also includes words that
are not attached to any node. Recall that not attached is an interpretation
of the encoding of an edge pointing to VROOT, which is not shown by de-
fault. Unattached nodes fall into two classes: they are either terminal nodes
representing punctuation, or non-terminal nodes representing parentheses.’®

Unattached elements cannot be encoded by proper trees, because they do
not form a connected graph. As being unattached only refers to the repre-
sentation (i.e. invisible), and not to the encoding (i.e. an edge to VROOT),
the problem with unattached elements is rather that it is not guaranteed

°Note that punctuation with “semantic meaning” (Telljohann & al., 2003, p. 22) is
attached.

4.1 Observations: Challenges for Proper Trees 47

that there are no crossing edges, and not that there is an unconnected graph.
While unattached elements in TtiBa-D/Z may turn the annotation into a
graph that is not a proper tree, the unattached elements are properly nested,
i.e. there is always a single parent that dominates the words preceding and
following the parenthesis, or VROOT if there is no sister at one side. When
a new edge is added between this mother and the unattached element, then
this edge and the edges of the unattached element never need to cross the
edges of the remaining graph.

Parentheses in TiiBa-D/Z thus can be modelled by proper trees by con-
necting them to the rest of the annotation graph by an edge. When this edge
is assigned a special status via a dedicated label, then the new representation
as a proper tree can be mapped unambiguously to the original encoding, so
that both can be considered to be equivalent.

4.1.3 Free Constituent Order

German is a language with a rather free constituent order. Any optional or
obligatory arguments of a verb may choose their position relative to the ver-
bal parts of a sentence with great freedom (Eisenberg & al., 2005, p. 881ff.).
The topological field model for German takes care of this freedom, as the
linear series of topological fields in a clause always groups consecutive words.
The topological fields are named according to their position relative to the
verbal bracket, which consists of two fields that contain the verbal parts of
a sentence: the left bracket (linke Klammer, LK) and the verbal complex
(VC). The initial field (Vorfeld, VF) precedes the LK, the final field (Nach-
feld, NF) follows the VC, and the middle field (Mittelfeld, MF) is enclosed
by the verbal bracket. We show a slightly simplified general schema of topo-
logical field sequences that occur in German in table 4.1, where bold field
names indicate obligatory fields, and all other fields may also be empty. The

clause type topological fields

VL KOORD LV C MF VvVC NF
V1 KOORD LV LK MF VC NF
V2 KOORD/PARORD LV VF LK MF VC NF

Table 4.1: Topological Field Sequences in German Clause Types

KOORD/PARORD fields are occupied by coordinating or non-coordinating
particles, and the LV field may contain resumptive constructions (Linksver-
setzung). The scheme follows the naming scheme of TiiBa-D/Z (which in turn
adopts Hohle, 1985). The three clause types are verb-last (VL), including all

48 Chapter 4 A Treebank’s Choice

introduced subclauses, verb-initial (V1), including yes/no-questions and fi-
nite imperative clauses, and verb-second (V2) clauses, including affirmative
clauses. We give an example for each clause type in figure 4.4.5 It is easy to

...y [c die] [me gro®s | [vc sind | [n¢ wie Tennispldtze]
VL: ..., that large are as tennis courts

‘..., that are as large as tennis courts’

[Lk Veruntreute | [ve die AWO Spendengeld | 7
V1: Did _misappropriate the AWO donations ?

‘Did the AWO misappropriate donations?’

[ve Die Zeit der Diirre | [k ist | [ur vorbeti |
V2: The time of drought is over

‘The time of drought is over’
Figure 4.4: Examples for German Clause Types

see that the names verb-last, -initial, and -second refer to the position of the
finite verb within the obligatory fields of a sentence. In a VL clause, the VC
is the last obligatory field, in which we consequently find the finite verb sind,
and we similarly determine the position of the finite verb in the other two
sentences.

The topological field model is descriptive rather than explanatory, i.e. it
does not explain clausal structure as part of a restrictive universal theory of
syntax (Hohle, 1985, p. 339). It nonetheless is a theory, even though only
descriptive, in that it describes the sequence of fields in German sentences
reliably and in that it is compatible with many other accounts of the ordering
of verbal and non-verbal parts of German clauses.”

Constituents may choose a position rather freely in the initial field, in
the middle field, or in the final field. The topological field model does not
have strict implications for the position of constituents in a clause in general,
except for the constraint that the VF may only contain a single constituent,
so that e.g. der Diirre in the V2 clause in figure 4.4 is not ambiguous between
a complement to the verb and a modifier to Die Zeit, but can only modify

6Showing parts of TiiBa-D/Z sentence 2051, sentence 1, and sentence 1486. Please see
appendix A.3 for a description of all field labels.

"Hohle (1985) explicitly compares the current theory with earlier accounts in Herling
(1821), Erdmann (1886), Drach (1937), and Engel (1970).

4.1 Observations: Challenges for Proper Trees 49

Die Zeit. Except for this restriction, the characterisations of the order in
which constituents occur in the fields of a clause describe preferences rather
than hard constraints. Constituent order depends on grammatical features of
the constituents like case or definiteness, but also on semantic features like
animacy or information content (Eisenberg & al., 2005, pp. 882, 889, 1867).

In TiiBa-D/Z, fields are encoded as labelled nodes in exactly the same
way as constituents and clauses. In figure 4.5(a) we see the original annota-
tion of a sentence in TiiBa-D/Z.® When we express the relations between the
constituents within the fields via dependencies, we see that the fields simply
group these constituents, and that the constituents always depend on the
finite part of the verb in the verbal bracket, no matter in which field they
occur (figure 4.5(b))?. We see that constituents correspond to all words dom-
inated directly or indirectly by the head of each constituent (i.e. all parts
of [ux Eine solche Veranstaltung | depend on Veranstaltung/NN), and that
similarly clauses correspond to all nodes dominated directly or indirectly by
the inflected part of the clause’s verbal bracket (here: werden /VAFIN).

Fields, however, do not appear similarly in the dependency graph. They
mark the areas in which the constituents can appear, but they do not di-
rectly specify syntactic relations. The representation of fields as the same
type of nodes as constituents and clauses can therefore be misleading, be-
cause it suggests that both classes of nodes behave identically. There is no
need to adhere strictly to the original representation of TtuBa-D/Z to rep-
resent the encoded information. A conversion to a different representation
normally implies that parts of the information are lost (e.g. field information
in figure 4.5(b)), and that the default reading of an analysis is altered, e.g.
in figure 4.5(b) the relations between the inflected verb and the objects are
much more pronounced than in figure 4.5(a). Such a conversion thus leads to
a different interpretation of the data. We would like to stress that also before
the conversion, a similar kind of interpretation takes place, e.g. the fields in
figure 4.5(a) are more prominent than in figure 4.5(b).

We will use a different representation of nodes representing fields in the
current chapter, which is shown in figure 4.5(c). The verbal parts are placed
against a grey background and provide a frame to the constituents, which
is confined by the clause and breaks it up into fields. We think that a rep-
resentation that stresses the special status of the subclasses of node labels
representing fields may help transport the observations underlying the origi-
nal annotation of TiiBa-D/Z. Grammatical functions of maximal constituents

8TiiBa-D/Z sentence 5230.
9Thanks to Matthias Trautner Kromann for his DGgraph drawing tool that we have
used to render dependency analyses.

Chapter 4 A Treebank’s Choice

VROOT
SIMPX
NX <, D,
[Ho] [on]
[HD] [Ho]

" Eine solche Veranstaltung werden wir leider wiederholen miissen . "
$(ART PIDAT NN VAFIN PPER ADV VVINF VMINF $. $(
(a) original graph

- - OA ON MOD ov -

" Eine solche Veranstaltung werden wir leider wiederholen miissen . "
$(ART PIDAT NN VAFIN PPER ADV VVINF VMINF $. $(
(b) dependency analysis

SIMPX vC
[Ho]
[Ho]
Eine solche Veranstaltung werden wir lelder wiederholen miissen . "
PIDAT VAFIN PPER VVINF VMINF $. $(

(c) topological fields represented as a sequence

Eine solche Veranstaltung werden wir leider

wiederholen miissen.

A such event

will

we unfortunately repeat have to.
‘Unfortunately, we will have to repeat such an event.’

Figure 4.5: Representing Free Constituent Order

4.1 Observations: Challenges for Proper Trees 51

are contrasted with functions of the verbal parts inside the verbal brackets
by moving their function labels up against the bracket. The advantage of
this representation, which highlights the status of topological fields, becomes
more apparent when secondary edges cross field boundaries, or in complex
sentences or coordinations (see below).

The types of relations between the maximal constituents in the fields and
the verbal parts of the sentence are encoded in the edge labels that link the
maximal constituents to the fields. Most dependency relations hold between
the maximal constituents and the parts of the verb, so that it is sufficient
to indicate the type of the relation and the dependent, because the head is
given via the annotation of the verbal bracket. There are also dependencies
that link a maximal constituent to another maximal constituent, or to an
element that is neither a maximal constituent nor part of the verb bracket.
Dependencies between maximal constituents are not encoded via a domi-
nance relation but via a naming scheme of the edge labels. Constituents with
an edge labelled X are the head of a dependency connecting them to the con-
stituent labelled X-MOD. Given a label set that contains an X-MOD for each X,
a single dependent can be specified for each maximal constituent with func-
tion X. This naming scheme is sufficient to express most relations between
constituents and verbs in one clause. There are still situations, though, where
other relations have to be encoded. In these situations, the naming scheme
is augmented by secondary edges.

When there is more than one constituent with function X in the same
clause, then X-MOD becomes ambiguous, and a refmod secondary edge resolves
this ambiguity. Figure 4.6 shows such a sentence where the prepositional
phrase in the final field (NF) could modify either the adverbial or the prepo-
sitional phrase in the middle field, because they both carry modifier edge
labels (MOD and V-MOD), and the edge label MOD-MOD of the prepositional
phrase in the final field generally refers to any modifier.!® The secondary edge
resolves this ambiguity, pointing from the head to the dependent MOD-MOD.

There are also relations that do not hold between maximal constituents
below fields, as was still the case for refmod. These relations link either phrase-
internal or clause-external nodes to a constituent directly dominated by a
field node. As the set of candidate nodes for these relations is much larger
than for two daughters of field nodes, they are expressed exclusively via
secondary edges. Relative clauses often depend on phrase-internal nodes and
are thus often connected to these nodes by a secondary edge labelled refint
for dependencies on phrase-internal nodes (see figure 4.7(a)!!). Complements

0TiiBa-D/Z sentence 3720, without trailing double quotes.
HTiiBa-D/Z sentence 2791.

52 Chapter 4 A Treebank’s Choice

LK MF NF

[Eo]
VXFIN) (ADVX
[Ho] [HD]

Der Regisseur . George Miller , drehte meistens von unten s aus der Perspektive der kleinen Tiere
ART NN $, NE NE $, VVFIN ADV APPR ADV $, APPR ART NN ART ADJA NN $.

Der Regisseur, George Miller, drehte meistens von unten, aus der
The director, George Miller, filmed mostly from below, from the
Perspektive der kleinen Tiere.

perspective of the small animals.

‘The director, George Miller, filmed from below most of the time, from
the perspective of the small animals.’

Figure 4.6: Secondary Edge Disambiguates Co-indexed Modifiers

of verbs in the sentential objects of control verbs are sometimes outside the
sentential object. The edge label refcontr expresses this type of dependencies
(figure 4.7(b)'?).

Secondary edges are also used inside the verbal complex to complement
the edge label set that distinguishes between the head of the verbal complex
(HD) and the verbal objects (OV) that are sister nodes. For up to two elements,
these two edge labels specify exactly the dependency relation between the
parts of the verbal complex. When there are three or more elements, all
elements but the head are related via secondary edges with a refvc label
pointing from selecting to depending verbal object. There is no example in
TiiBa-D/Z where this order deviates from the standard right-to-left order,
so that a general rule of the ordering of verbal objects in the verbal complex
would be sufficient to describe existing data.

The mechanisms that are used to encode relations between the elements
of a German sentence in TiiBa-D/Z instead of crossing edges are thus mainly
co-indexation of edge labels and topological groupings into fields. Where this
is not sufficient, (crossing) secondary edges are used.

12TiiBa-D/Z sentence 1895.

4.1 Observations: Challenges for Proper Trees

NF

R-SIMPX | C MF vC
[oD]
[ON] [HD]
[HD] [HD]
Izet deutet auf die Plastiksandalen , die ihm geblieben sind
NE VVFIN APPR ART NN $, PRELS PPER VVPP VAFIN

Izet deutet auf die Plastiksandalen, die ihm geblieben sind.
Izet points at the plastic sandals, which him left were.

‘Izet points to the plastic sandals, which were left to him.’

(a) phrase-internal modification: refint

SIMPX VF LK MF NF

ON 05

[on] [05]

8
SIMPX
VvC
D [HD]
[HD] [HD]

Die Héauser im musealen Haus gelte es zZu befreien .
ART NN APPRART ADJA NN VVFIN PPER PTKZU VVINF $.
Die Héuser im musealen Haus gelte es zu befreien.

The houses in_the museum house imperative is it to free.
‘It is necessary to free the houses inside the house of the museum.’

(b) clause-external modification: refcontr

Figure 4.7: Clause-external and Phrase-internal Modification

54 Chapter 4 A Treebank’s Choice

4.1.4 Coordination

A coordination in a syntactic analysis groups elements with a similar status
into a single new element. Coordinations can group all three major types of
nodes in TiiBa-D/Z, i.e. clauses, fields and constituents (or words). Coordi-
nation generally assumes close similarity between the coordinated elements.
Only nodes of the same major type can be coordinated in TiBa-D/Z ac-
cordingly, so that a single new element of the same major type emerges,
where such a major type is equivalent to a predefined subset of all node la-
bels. When two or more clauses are coordinated, the two clausal conjuncts
are thus dominated by a new node that also has a label of a clausal type,
and equally fields form a new field node, and constituents a new constituent
node. We will refer to the coordinated elements as conjuncts, to the whole
new construction as coordination, and to the words connecting conjuncts as
conjunctions.

Linear Order

The encoding of a coordination as immediately dominating nodes of the same
major type can be easily expressed in a proper tree as long as the nodes
immediately follow each other, they all have the same node label, and are all
individually coordinated. When one of these requirements is not met, it is
harder to encode the relation among the nodes, and of the whole coordination
to the rest of the clause, in a proper tree.

The elements of coordinations do not always precede each other lin-
early. Conjunctions often appear between coordinate clauses, fields and con-
stituents, so that a single mother node representing the full coordination is
accompanied by a KONJ edge label that is assigned to the conjuncts in order
to distinguish them from the conjunctions. This edge label has been intro-
duced in TiiBa-D/Z, because in some configurations conjuncts otherwise can
be confused with conjunctions (Telljohann & al., 2003, p. 94; Ule and Kiibler,
2004).

Coordinations that coordinate constituents which are separated not only
by conjunctions, but that are realised in more than one field, pose a spe-
cial problem, because field structure and constituent structure do not both
fit easily into a single proper tree. These so-called split-up coordinations are
therefore represented by a tree for the field structure, and additionally by co-
indexed edge labels that connect the coordinated constituents to represent
the full coordination. Only the edge labels representing grammatical func-
tions need to be duplicated for this purpose, because only maximal projec-
tions of constituents below fields are split between fields, and these maximal

4.1 Observations: Challenges for Proper Trees 25

projections always have an edge that describes their grammatical function.
Figure 4.8 shows a subject that consists of two coordinated nominal con-
stituents.!®> Their edge labels ON and ONK encode this connection, where

SIMPX VF LK MF vC NF
Em MOD ONK

? H‘:??: Pl

Der tiirkische Stddtbp] dsident Sul(,y man Demirel war zutiefst ~empdrt und mit ihm der gesamte Generalstab
ART ADJA NE VAFIN ADV VVPP KON APPR PPER ART ADJA NN $.

Der tiirkische Staatsprésident Siilleyman Demirel war zutiefst
The Turkish president Stileyman Demirel was deeply
empdrt und mit ihm der gesamte Generalstab.

outraged and with him the whole General Staff.

‘The Turkish president Siileyman Demirel was outraged, as well as
the whole General Staff.’

Figure 4.8: Co-Indexation of Split-Up Conjuncts

ONK marks the second conjunct and indicates at the same time that the
constituent marked by ON is not the full subject. The fact that ONK can
only refer to the ON in the same clause, and not to any other ON (e.g. in an
embedded clause) is encoded in their attachment to the same clause. No con-
stituent is split into more than two elements in TiiBa-D/Z, so that a pair of
node labels per type of relation is sufficient to connect all conjuncts, avoiding
an excessive proliferation of categories. There are currently eight additional
edge labels for split-up conjuncts: ONK, ODK, OAK, FOPPK, OADVPK, PREDK,
MODK, V-MODK; please see appendix A.3 for a detailed description.

There are thus two methods to link the elements of a coordination, de-
pending on their positions in a sentence: edges and a common parent, or
co-indexed edge labels.

13TiiBa-D/Z sentence 10884.

56 Chapter 4 A Treebank’s Choice

Underspecification

Coordinations generally group conjuncts of the same or, at least, of similar
type. It is thus straightforward to choose a label for the whole coordination
that includes information about the type of the conjuncts by choosing the
same label for the coordination that labels the conjuncts, if this information
should be available at this level at all. If the information about the type of
the conjuncts should not be duplicated and percolated up to the label of the
whole coordination, then an underspecified label can be used instead. An
underspecified label also allows to group conjuncts that differ slightly, but
that still belong to the same major group. Both strategies of duplication and
underspecification are employed in TtiBa-D/Z.

Fields that are coordinated are grouped by a node with a dedicated label
for field coordinations (FKOORD). Thus only the information that some fields
are coordinated percolates up to the node representing the full coordination,
but the node is underspecified with respect to the type of coordinated fields.
Most of the time, FKOORD nodes are not direct mothers to field nodes, be-
cause the conjuncts normally consist of sequences of field nodes, which are
grouped by the specialised node label FKONJ (see figure 4.9(a)!4). When
there is only a single field node, it is directly dominated by the FKOORD
node. Single nodes with a field label and sequences of them can also be
coordinated. This scheme of underspecified conjuncts for sequences of field
labels has been introduced in TiiBa-D/Z. In TiBa-D/S (Stegmann & al.,
2000), from which originates the annotation scheme of TtiBa-D/Z, each field
conjunct enumerates the label sequence of its daughters instead of using an
underspecified FKONJ label. While this was feasible for spontaneous speech,
it turned out to be not useful for the arguably more complex sentence struc-
ture in TtiBa-D/Z, where a larger number of different combinations of field
labels make up the conjuncts, and thus a much larger number of labels was
required.

The constituent representing coordinated clauses also has a clause label.
It is a label for a simplex clause (SIMPX) when simplex clauses are coordi-
nated. It is a label for paratactic construction of simplex clauses (P-SIMPX)
when one of the simplex clauses (usually the second) has a conjunction that
occupies the PARORD field for non-coordinating particles (e.g. denn, weil:

14TiiBa-D/Z sentence 110.
"Wir haben 28.000 Karten verkauft und rechnen mit einem ausverkauften
"We have 28.000 tickets sold and expect with a sold _out
Haus", berichtete er gestern.
house", reported he yesterday.

‘"We have sold 28.000 tickets and expect to be sold out", he reported yesterday.’

4.1 Observations: Challenges for Proper Trees

57

VF LK MF
ON [won]
SIMPX o8]
VF FKOORD
[on]
FKONJ
LK MF
FKONJ [orr]
LK MF vc &
[Ho]
[Ho] [Ho]
[Hp]
" Wir haben 28.000 Karten verkauft und rechnen mit einem ausverkauften Haus " s berichtete er gestern
$(PPER | VAFIN CARD NN VVPP KON VVFIN APPR ART ADJA NN $C 8, VVFIN PPER ADV $.

(a) coordinated sequences of fields

Zur Zeit entwickelt er ein Modell, [r.simpx
[r-simpx nach dem er mit einer Agentin zusammenarbeitet | und

[sivpx damit die bisher blinde Schnittstelle zwischen Grof$- und Kleinverlag

lukrativ zu machen hofft | |.

(b) coordinated clauses of different types
SIMPX

VF

zart
ADJD

und
KoN

geschmackvoll
ADJD $,

von
APPR

Bordeaux
NN

Flieder
NN $,

bis
APPR

gerne
ADV

auch
ADV

Orange
NN

oder
KON

NN VAFIN

(c) coordinated constituents of different types

Figure 4.9: Coordination of Clauses, Fields, and Constituents

58 Chapter 4 A Treebank’s Choice

‘because’). Relative clauses (R-SIMPX) can also be coordinated, and receive
the same label for coordination and conjuncts. These cases represent the vast
majority of clausal coordination in TiBa-D/Z. There are cases, however,
where a simplex clause is coordinated with a P-SIMPX or a simplex clause is
coordinated with a relative clause. There is no specialised label for this pur-
pose that underspecifies clausal coordination, or that expresses some features
of the coordinated sentences when they differ slightly (as does P-SIMPX). In-
stead, another strategy is adopted, and the label of the first conjunct is used
as the label of the whole coordination. Such a coordination of unequal coor-
dinate terms can be observed in the sentence shown in figure 4.9(b), where
the label R-SIMPX is neither underspecified as FKOORD was above, nor does
it give information that applies only to the full coordination as P-SIMPX.15

The same strategy is adopted for constituents. Most of the time, coor-
dinated constituents have exactly the same label, so that the label of the
whole coordination is the same as for each conjunct. There are cases, how-
ever, where different types of constituents are coordinated (see table 4.2).16
The high number of non-NX conjuncts is somewhat misleading, because 300
of the 320 labels are EN-ADD labels, which have an arguably nominal flavour
(Telljohann & al., 2003, p. 47). However, ten percent of the conjuncts fol-
lowing an adverbial phrase (ADVX) in the same coordination are also not
adverbial phrases. The solution to select the label of the first conjunct as the
label of the whole coordination neither underspecifies the children’s types,
nor does it percolate up additional information about mixed-type coordina-
tion reliably (see figure 4.9(c) for an example!7).

Words are rarely direct children of nodes representing coordinations, be-
cause normally, each word is projected to the phrase level first. Words are
only coordinated directly when they are truncated, or when they directly
follow a truncated word in a coordination. A truncated word is POS-tagged
with the tag TRUNC, which applies to words ending in a dash, which replaces
a part of another word after a conjunction (Schiller ¢ al., 1999, p. 74).

15TiiBa-D/Z sentence 8522.
Zur Zeit entwickelt er ein Modell, nach dem er mit einer
At the moment develops he a model, according to which he with an
Agentin zusammenarbeitet und damit die bisher blinde Schnittstelle zwischen
agent works together and so the so_far blind interface between
Grof- und Kleinverlag lukrativ zu machen hofft.
large and small publishing houses lucrative to make hopes.
‘At the moment he is developing a model, according to which he works with an

agent and thereby hopes to render the gap between large and small publishing
houses more lucrative.’

6 Numbers determined from the first 5000 sentences of TiiBa-D/Z.
1"Ti{iBa-D/Z sentence 2300.

4.1 Observations: Challenges for Proper Trees 29

first

following NX PX ADJX ADVX
ADJX 7 558 3
ADVX 1 2 64
EN-ADD 300

FX 1

NX 2498 7 4 3
PX 4 312 12 2
VXINF 1

same 2498 312 558 64
different 320 8 18 8

Table 4.2: Types of First and Following Coordinated Constituents

In summary, coordination is normally encoded via domination, but in
certain situations also via co-indexation. Labels of the whole coordination
are normally either underspecified or identical to the conjuncts’ labels, but
they may also be more specific (P-SIMPX), or unrelated to the conjuncts (for
coordinations of different types of constituents). The conjuncts are normally
nodes, but may also be words when the coordination includes a truncated
word.

4.1.5 Named Entities

Individual objects in the world can have names that unambiguously refer to
them. These named entities are a prominent feature of newspaper articles.
Newspapers report new facts about the entities in the world around us, and
they use names to identify the entities to which these facts relate. Accord-
ingly, the number of named entities that are found in TiiBa-D/Z is rather
high: about twenty percent of all noun phrases (NX) in TiiBa-D/Z are named
entities. The term named entity may also be used to refer to other types of
entities that exist only once in the world, e.g. time and date, which are not

Die Farbpalette ist zart und geschmackvoll, von Bordeaux bis Flieder, gerne
The colour palette is soft and aesthetic, from Bordeaux to lilac, fine
auch Orange oder Rosa.

also orange or pink.

‘The colour palette is soft and aesthetic, from Bordeaux to lilac, also orange or
pink if you like.’

60 Chapter 4 A Treebank’s Choice

marked in TiiBa-D/Z (Telljohann & al., 2003, p. 41).

Named entities cannot be contrasted with phrasal categories. Being a
named entity is rather an attribute to a constituent that allows it to function
as a nominal constituent, while having any phrasal or sentential category
internally. Most named entities consist of noun phrases (NX) or single com-
mon or proper nouns (NN or NE) internally. Other internal types of proper
names are about as frequent as you would expect by their overall frequency
in the treebank, with the exception of foreign material (FX), which makes
up named entities almost as frequently as single nouns, although the label is
much less frequent otherwise. Named entities of a single internal type may
serve as various subtypes of named entities, e.g. a prepositional phrase (PX)
may serve as a person’s name as in von Beust, as a street name as in Unter
den Linden, or as a movie title as in Gegen die Wand (‘Against the Wall’).
Similarly, a single type of named entity may be created from various internal
node types. A movie title which forms an entity may be formed from, e.g., an
adjectival phrase (ADJX) like in Schlaflos in Seattle (‘Sleepless in Seattle’),
from a foreign language phrase (FX) as in Shall we Dance, from a simplex
clause (SIMPX) as in Ich weif$ immer noch, was Du letzten Sommer getan
hast (‘I still know what you did last summer’), or from a prepositional phrase
as in Gegen die Wand.

The flexibility of internal structure obviously can result in syntactic ana-
lyses that would be hard to justify from a strictly syntactic perspective, where
e.g. an adjectival phrase (ADJX) would not be expected to form the head of
a prepositional phrase (PX). You would be forced to such kind of analysis
without an integration of named entities, though, in the sentence [px Seit "
lapux Schlaflos in Seattle |"] gelten Tom Hanks und Meg Ryan als Dream-
Team des Biedersinns.'® Named entities are thus attractive as a mediator
between constituents that have an opaque internal structure, and the rest
of the sentence, for which the whole proper name is an atomic nominal unit
(Telljohann € al., 2003, p. 47).

The ezport data model in TiiBa-D/Z does not provide attributes to node
labels. It only allows to specify atomic node or edge labels. We would like
to create annotation that is interpreted to let any constituent function as

18Ti{iBa-D/Z sentence 3512.
Seit. "Schlaflos in Seattle" gelten Tom Hanks und Meg Ryan als
Since "Sleepless in Seattle", are considered Tom Hanks and Meg Ryan as_the
Dream-Team des Biedersinns.
dream team of unsophisticatedness.
‘Since Sleepless in Seattle, Tom Hanks and Meg Ryan are considered the dream
team for an upright couple.’

4.1 Observations: Challenges for Proper Trees 61

a named-entity noun phrase as a whole, yet keeping its internal analysis
according to the usual syntactic analysis. Keeping the internal syntactic ana-
lysis may be helpful to understand inflection of part of the named entity, like
the inflected surname Bock that corresponds to the function of a genitive
pre-modifier in Humor und Herz beweist [yx Henning Bocks | Inszenierung.
(‘Humour and heart is shown by Henning Bock’s production’)!?. The solu-
tion adopted in TiiBa-D/Z to represent a named entity attribute to a strictly
syntactic internal analysis is to add a node with the label EN-ADD above the
full named entity, where EN-ADD has as its only child a node representing the
constituent according to its internal syntactic analysis. For one of the above
example sentences, this yields the analysis shown in figure 4.10(a). The in-

Seit " Schlaflos in Seattle " Seit " Schlaflos in Seattle "
APPR $(ADJD APPR NE $(APPR $(ADJD APPR NE $(
(a) original annotation (b) intended interpretation

Figure 4.10: Named Entity Encapsulates Internal Analysis in TiiBa-D/Z

tended interpretation is shown on the right-hand side in figure 4.10(b), which
is underlined by the restrictions on the usage of EN-ADD nodes:

e EN-ADD only has a single child, which is the topmost node of the
internal analysis.

e The edge between EN-ADD and its daughter does not have a label.

e The function of the whole named entity is encoded in the edge label
connecting EN-ADD to its parent.

9TiiBa-D/Z sentence 482

62 Chapter 4 A Treebank’s Choice

An alternative to this solution would be to duplicate all phrasal and
clausal node labels, so that each label has a counterpart that encodes the
additional function of a named entity just as the NX/ADJX node in fig-
ure 4.10(b). The disadvantage would be that many new node labels would
have to be introduced, and that the internal syntactic analysis of a proper
noun could not be expressed in the same way as the syntactic analysis of
equivalent constituents outside proper names, because an NX/ADJX node,
viewed atomically, has a different meaning than an ADJX node.?°

It became apparent rather early during the introduction of named en-
tities into TiiBa-D/Z that constituent structure does not always provide a
single node that dominates all and only the words that belong to a single
named entity. Consider e.g. the named entity Vereinigung der Verfolgten des
Nazi-Regimes (‘Association of the Victims of Nazi Persecution’), where the
noun Vereinigung is the head of a complex noun phrase which is modified by
der Verfolgten des Nazi-Regimes according to the annotation principles for
post-nominal modification (see figure 4.11(a)?'; for annotation principles of
postmodification see Telljohann & al., 2003, p. 32). In order to encode the
differences between the analysis as a named entity and according to purely
syntactic principles, a secondary edge labelled EN is added. The edge points
from the dependent part of the named entity to its head, so that we can
construct an intended interpretation as shown in figure 4.11(b), where the
double-sided NX/NX node label again represents a named entity with in-
ternal and external structure. This interpretation results in a different tree
structure, so that a single proper tree will either lead to an interpretation
along the lines of syntactic constituency as in figure 4.11(a), or alternatively
to an interpretation where named entities are units with an opaque inter-
nal structure that takes precedence over a purely syntactic analysis as in
figure 4.11(b), while both analyses can be recovered from the original anno-
tation. An application that focuses on named entities, e.g. may benefit more
from a representation as in figure 4.11(b).?? Secondary edges that encode
conflicting analyses always extend the dependent part of the named entity
by an uninterrupted sequence of words until it includes the head of the named
entity. The additional analysis expressed by the secondary edge labelled EN

20When named entity annotation was introduced into TiiBa-D/Z, it was not clear
whether it could be integrated seamlessly, so that it was desirable to optionally remove all
proper name information and recover the analyses according to the original scheme. The
chosen encoding gives you this option.

21Part of TiiBa-D/Z sentence 557.

22Figure 4.11(b) is not equivalent to figure 4.11(a) in that there is no information about
how the original annotation can be recovered, which could easily be added, the point of
the argument remaining that one analysis is easier to recover than the other.

4.1 Observations: Challenges for Proper Trees 63

OO
@
[Eo]
@O
[HD]
die angeblich kommunistische ~ Vereinigung der Verfolgten des Nazi-Regimes
ART ADV ADJA NN ART NN ART NN
(a) original annotation
NX
[ko] /L
@
[HD]
die angeblich kommunistische ~ Vereinigung der Verfolgten des Nazi-Regimes
ART ADV ADJA NN ART NN ART NN

(b) intended alternative interpretation as named entity

Figure 4.11: Conflicting Syntactic and Named Entity Analyses

64 Chapter 4 A Treebank’s Choice

can therefore always be encoded by a proper tree.

Not all named entities include either a node labelled EN-ADD or a sec-
ondary edge labelled EN. Single proper nouns have their own label NE in the
STTS tag set (Schiller & al., 1999, p. 11). Compounds that consist of a
proper noun and a common noun, however, are tagged as a common noun
(NN). Street or place names like Jannowitzbriicke /NN are a common exam-
ple. In order to highlight their status as a named entity despite their NN
tag, these compounds are also annotated with an EN-ADD node (see fig-
ure 4.1223). When two or more adjacent words individually POS-tagged NE

[HD]
von der Jannowitzbriicke jenseits der Samba
APPR ART NN APPR ART NE
(a) in compounds tagged NN (b) in non-compound tagged NE

Figure 4.12: Proper Nouns

form a single named entity, then they are projected to a noun phrase (NX)
first and only then grouped by EN-ADD. These exceptions arise from the
distinction of parts of speech, and the desire to minimise redundancy.

The annotation of proper names thus consists of either a secondary edge
EN or a single additional node EN-ADD, which is not given for single words
POS-tagged NE, but is given for single proper nouns POS-tagged NN. It en-
codes a parallel analysis of constituency and named entities. The examples
show that the different ways to encode named entities do not all reveal the
intended alternative interpretation immediately, because they prefer the syn-
tactic analysis when it conflicts with the alternative analysis as a named
entity. The ways in which named entities are encoded in TiiBa-D/Z can be
understood better when we highlight such diverse constraints as the desire
to maintain a context-free backbone, an established POS tag set, or the in-
troduction of desirable, but conflicting alternative analyses. The encoding of
named entities resembles the encoding of coordination and free constituent
order in this respect.

ZPart of TiiBa-D/Z sentence 1805 and sentence 238.

4.2 Representations of Relations 65

4.2 Representations of Relations

We have just seen a number of phenomena that cannot be easily encoded in
the proper trees that are the backbone of TiiBa-D/Z’s annotation.?* Nonethe-
less, these phenomena are captured in the treebank by taking advantage of
mechanisms offered by the export data model which go beyond the power
of proper trees. Understanding the encoding of such phenomena in the tree-
bank is complicated by the fact that the same phenomenon can be encoded
in a number of different ways. Named entities, e.g., are encoded by secondary
edges, part of speech labels, or additional non-terminal nodes. This means
that these building blocks of graphs can have a number of different interpre-
tations.

Nodes, edges, and their labels, which are the parts of the export data
model, all express certain basic relations in a graph, e.g. the dominance re-
lation between mothers and their daughters, or a categorial status. We have
just pointed out that a single type of relation in a tree does not always cor-
respond to a single type of phenomenon in TiiBa-D/Z, so that for the parts
of the graphs used to encode syntactic annotation, the natural interpretation
does not necessarily correspond to the interpretation that is given in treebank
documentation. We suggest that the difference between the natural and the
suggested interpretation of the annotation graphs can make the interpreta-
tion of the analyses in the treebank considerably harder. In order to clarify
the natural interpretation of the parts of a graph, we would like to outline
the basic types of relations naturally expressed via trees in this section.

We have seen different encodings of the same phenomenon, but we have
also seen different representations of a single encoding, e.g. when topological
fields are either represented by nodes or by sequential areas in a rectangle
as in figure 4.5, or when named entities are either represented by an addi-
tional EN-ADD node or by a single two-sided node as in figure 4.10. As we
have already seen, these different representations are not fully determined
by a certain encoding. This freedom can be used to represent the encoding
provided by a treebank in such a way that the natural interpretation of this
representation comes closest to the interpretation suggested in the treebank’s
manual. Different representations encompass small visual variants, like intro-
ducing colours to distinguish different parts of a graph, but we also intend
to call more fundamental changes in the way that the same information is
transported different representations of this information.

Different representations of a certain encoding are not necessarily equiv-
alent. The dependency analysis shown in figure 4.5(b), e.g., does not include

24 Context-free grammars generate proper trees (Telljohann & al., 2004).

66 Chapter 4 A Treebank’s Choice

the extent and the names of the fields. In a sentence as given in figure 4.6,
where middle and final fields (MF, NF) directly follow each other, the fields
cannot be recovered from the dependency representation without additional
knowledge. We do not specify exactly what we mean by additional knowl-
edge because we do not need any additional knowledge for our purposes, as
all transformations that we perform in our experiments in later chapters can
be trivially undone by merging given sets of node labels. The dependency rep-
resentation, however, is not equivalent to the original encoding in this way.
Representing topological fields as a sequence as in figure 4.5(c) is equivalent
with the original annotation, though. Constituents are rendered as nodes and
edges according to the original encoding. Fields are arranged in a sequence
according to the sequence of daughters of the clausal node. The rectangular
area below a field contains exactly the daughters of the field node in the orig-
inal tree encoding. The clausal node label is given in the upper left corner of
the sequence of fields, and corresponds to the mother node of all field daugh-
ter nodes in the original encoding. All terminal nodes that are unconnected
by visible edges (e.g. the punctuation marks as in figure 4.5(c)), as well as
the top clausal nodes, are connected to the VROOT node by unlabelled edges
in the original encoding. The attachment of the punctuation marks to the
fields and clauses is not specified in the original encoding. We group punctu-
ation marks with clauses and parentheses according to heuristics described
in detail later (see section 5.2.1). As long as the representation is equivalent
with the original encoding, we are free to choose the representation that has
an interpretation resembling best the intended interpretation of the original
encoding according to the treebank manual.

4.2.1 Class, Sequence, Domination

Labels of nodes correspond naturally to categories of nodes, and edge labels
to categories of relations. A hierarchical structure of categories, i.e. categories
with subcategories, can be represented quite naturally by subsets of the full
set of all categories. These subsets can not only be used interchangeably, e.g.
when a constituent has an edge with a label from the subset of grammatical
functions, e.g. either accusative or dative object. Relations can also hold
between the members of different subsets, so that relations are expressed
via class membership. When one set of nodes has edges with labels from
the subclass of grammatical functions, and another set of nodes has labels
from the subclass of fields that form the verbal bracket, then these two sets
express the relation between the verbal parts of a clause and its arguments by
virtue of their class memberships. Their relation can be naturally expressed
by co-indexation as just outlined.

4.2 Representations of Relations 67

Labels are atomic. When a new class has to be defined that shares features
with other classes, then this can only be accomplished with a new node label.
In order to express e.g. underspecification or ambiguity, a new label has to
be specified for each combination of subclasses when an ambiguity has to
be represented explicitly, and a new label for each kind of underspecification
is required, which limits the usefulness of labels to represent compositional
information.

Sequences are naturally represented by a linear sequence of symbols.
The words in a sentence are thus normally given in their linear order. Even
unattached punctuation marks find their position in a sentence accordingly.
Similarly, the fields in a clause always follow each other linearly, so that it
seems natural to arrange them on a line as well. In TiiBa-D/Z, fields are en-
coded as labelled nodes in exactly the same way as constituents and clauses.
These three major classes of nodes are distinguished by their labels, which
form disjunct classes. Despite their similar appearance, fields always appear
in linear order, and not in hierarchical relations. They can thus be best ren-
dered as a linear sequence as shown before, where linear precedence between
the constituents is recorded as well as their position relative to the sentence
bracket.

A rooted tree naturally represents domination, when the edges are all
drawn into a single direction, which is usually from the root node at the top
of the graph to the leaves at the bottom. A node that dominates another
node is represented by edges connecting the node with a node below it in
the tree. A node directly dominates another node when there is a single
edge between them, and indirectly when a path of connected nodes and
edges connects them. More restricted proper trees represent the structure
where all words dominated either directly or indirectly by any node form
a continuous sequence. Constituent structure and clause structure can be
naturally represented by proper trees in most sentences in TiiBa-D/Z.

4.2.2 Arbitrary Relations and Parallel Structures

Some relations in the syntactic analyses of TiiBa-D/Z do not correspond
naturally to dominance relations in proper trees. We have seen that free
constituent order together with coordination can result in constituents that
are split between two fields and are thus discontinuous. We have similarly
seen that constituents can modify other constituents despite being realised
rather freely and discontinuously at different positions in a sentence. As these
relations cannot be expressed via the dominance relations in a proper tree,
it is rather natural to represent them via less restricted edges, i.e. arbitrary
connections between two nodes, or secondary edges in terms of the export

68 Chapter 4 A Treebank’s Choice

model. We have also seen that classes of labels can express arbitrary relations
in a graph just as well. Both are used to represent arbitrary relations in the
syntactic annotation of TiBa-D/Z.

Proper trees are also not well suited to represent alternative structural
analyses as they arise e.g. from genuine ambiguity, or from the desire to ex-
press more than one analysis at once, where each analysis corresponds to a
different tree. TiiBa-D/Z employs different mechanisms to encode alterna-
tive analyses, such as secondary edges to encode named entities, or different
places of attachment, where a higher attachment of a modifier encodes a more
ambiguous modification (Telljohann & al., 2004, p. 80ff.). While alternative
and conflicting full tree structures are hard to represent in a single graph, we
think that it is rather natural to interpret the height of the attachment of a
single node to represent an ambiguous scope.

The difference between what we term a representation and an encoding is
that an encoding is given by the way in which a treebank is delivered, while
there is more than one representation that can be derived from it. All have a
default interpretation, such as a node representing a part of a hierarchy, and
a label representing a class. A representation may differ from the encoding,
by e.g. representing a node as a part of a linear sequence, or a label as a
part of a subclass of labels (as we have proposed for fields). We argue that it
is useful to consider the default interpretation of a representation, in order
to choose the most suitable representation for the type of relation expressed
by part of an annotation graph, as there is some freedom to choose different
representations for a single encoding.

4.3 Encoding the Analyses

Different representations of a single encoding of syntactic analyses suggest
different interpretations, so that more useful representations can be preferred.
Also the original encoding of the analyses in TiiBa-D/Z that follow the ez-
port data model is only one of a number of possible ways to encode the
analyses. The choice of encodings is restricted in a different way than the
choice of representations of a single encoding, though. First, the tool that
is used to produce syntactic annotation is the annotate tool, which includes
its own style to represent graphs. This style is the same as that shown in
figure 4.5(a), where all nodes are rendered in the same way, and similarly
all edges, secondary edges, and edge and node labels do not have visually
distinct subtypes. Subclasses that are defined via subsets of labels of a sin-
gle type of element in a graph cannot be represented in a distinct way by
annotate. Second, the chosen encoding targets treebank annotators rather

4.3 Encoding the Analyses 69

than treebank users. Annotators will usually have better command of the
treebank manual than the average user, and will therefore usually be able to
handle more complicated encodings of certain phenomena, even though the
representation provided by annotate may not be the most natural choice for
the given phenomenon. Annotators will also prefer encodings that take best
advantage of the automation offered by the annotation tool. When e.g. an
arbitrary relation between two elements in a sentence can be encoded either
by a secondary edge or by co-indexed edge labels, and the labels are assigned
more reliably automatically than the secondary edges, then annotation will
be faster due to better automation when edge labels are used to encode the
relation.

4.3.1 Proper Trees

Generally, the elements of a graph used to encode linguistic analyses have
default interpretations as outlined above. Proper trees express hierarchical re-
lations between nodes, and node and edge labels imply that there are classes
of nodes and edges. As the proper trees are the “backbone” (Telljohann &
al., 2004) of TiiBa-D/Z’s annotation, they seem to offer a useful represen-
tation of core facts of the treebank’s annotation, even though the default
interpretation of trees as dominance relations does not seem perfect for e.g.
sequences of topological fields. The encoding is supplemented by the treebank
manual, though, so that nodes labels can depart from expressing just identity
or difference, and can instead model subclasses of nodes. That is, instead of
discriminating subtypes of nodes by their representation, they can be distin-
guished via the definition of classes of labels in the treebank manual. The
meaning of a graph, which normally corresponds to the default interpretation
of its visual representation, is then partly overridden by the treebank manual.
Using the manual and the treebank side by side is still rather straightforward
as long as the different levels of description in the annotation are expressed
by different means, e.g. parts of speech via labels on terminal nodes, or coor-
dination via dominance relations in a proper tree. While the former is always
true in TtBa-D/Z, the latter is not, because syntactic relations such as co-
ordinations can become so complex that they are hard to express via proper
trees and are consequently modelled by other means.

4.3.2 Crossing Edges, Co-Indexation, and Secondary
Edges

When other means than proper trees need to be used to express syntac-
tic relations, then the ezport model offers more than one way to do that.

70 Chapter 4 A Treebank’s Choice

Crossing edges are ruled out by design in TiBa-D/Z, but secondary edges
are subject to even less restrictions than crossing edges, and we have also
seen that co-indexed labels can link arbitrary parts of a graph just as well,
given an appropriate label set. Both co-indexation and secondary edges are
used in TtiBa-D/Z for different purposes that have been discussed separately
above. We would like to recall here that co-indexation distinguishes subtypes
of node labels, including constituents, fields, and clauses. The labels repre-
senting parts of speech on terminal nodes are also disjunct from all other
labels. There are also subclasses of edge labels specifying heads and non-
heads inside phrases, and those that mark different types of complements or
modifiers. Finally, there is another subclass of edge labels for conjuncts of
modifiers, and one more for conjuncts of complements. Co-indexation works
with a modest amount of edge labels to link the complements and modifiers
to a verb, and the conjuncts of a coordination, because the scope of nodes to
which the edge labels point is restricted to those within the same class. That
is, classes of node labels (for fields and clauses) interact with other classes
of labels (edges for modifiers and complements) when they are in a certain
dominance relation (edge labels of nodes within the fields of a clause). The se-
mantics of this interaction is specified in the treebank manual. When classes
of nodes are in similar relations as expressed by the edge labels, but their
position in the syntactic annotation graph does not allow the application of
co-indexation via edge labels, then secondary edges are used for the same
purpose (the refint/refcontr edges for phrase internal/clause external modifica-
tion). Secondary edges are also used to extend the number of distinctions in
the label set for modifier edges (via refmod), or for the edge labels of verbal
complements (refvc). Finally, secondary edges are used to express alternative
analyses that assign named entities a more prominent status.

The idea to use a restricted inventory of relations, and to use more con-
strained graphs to describe more constrained phenomena, comes, of course,
from the desire to express the observations about syntactic structure in the
most accessible way. E.g., accusative objects occur alone more often than
with a modifier, than with a modifier that has a modifier itself. A modi-
fier to a modifier occurs even more rarely in situations where there is more
than one other modifier in the same clause. It thus seems to be a straight-
forward solution to assign the accusative object its own edge label OA, and
also to define an edge label OA-MOD for a modifier of an accusative object,
and another edge label for a modifier of a modifier MOD-MOD that points to
OA-MOD. Distinguishing ambiguous modifiers of modifiers explicitly via edge
labels instead would result in many more edge labels like OA-MOD-MOD. The
approach of TiiBa-D/Z to use the secondary edge labelled refmod for these
rather infrequent cases instead seems to be an elegant solution, even though

4.3 Encoding the Analyses 71

only the treebank manual shows the rather complex interaction between all
these types of edges and edge labels.

Technically speaking, also unattached elements do have edges in the orig-
inal encoding of the annotation of TiiBa-D/Z, which link the unattached
elements to VROOT. These edges often cross other edges, e.g. for commas
that introduce a relative clause. These edges thus have a semantics that is
transported well by their visual representation as an invisible edge. A repre-
sentation that stays near the formal encoding, though, is less easy to interpret
directly, because it is not immediately clear what it means to be connected
directly to the root node of the sentence.

4.3.3 The Semantics of a Small Label Set

The desire to reduce the size of the label set and recurring to more powerful
means in more complicated situations as outlined above may render the ap-
plication of the labels more difficult. Some information about dependencies
is only available via default interpretations given in the treebank manual.
In verbal complexes with two or more parts, each part selects the part pre-
ceding it. When there are two parts, the last one is assigned a HD edge to
mark it as a head. When there are three or more parts, these dependencies
are individually given via secondary edges labelled refvc, so that dependencies
are all given rather explicitly by changes in the annotation. The dependen-
cies between pre-nominal modifiers, on the other hand, are not given equally
explicitly in the annotation, but are specified only in the manual to hold
between adjacent nodes from left to right (Telljohann & al., 2003, p. 30).

A definition of default readings via the manual can be even harder to
interpret for the annotation of grammatical functions when the case of the
complements is ambiguous. According to the manual, “if case assignment is
ambiguous, we decide on the more plausible grammatical function respec-
tively on the more plausible sequence of grammatical functions” (Telljohann
¢ al., 2003, p. 80). As a consequence, the sentence in figure 4.13 is not
distinguishable from a sentence where cases of the complements are not am-
biguous.?> The given sentence, of course, is semantically not ambiguous, so
that the ambiguity of case in the articles can be resolved by the annota-
tors nonetheless. It also seems that a sentence which is truly ambiguous and
that cannot be resolved by the annotators by semantic means is rather a
theoretical consideration, because such a sentence does not occur in the tree-
bank, probably exactly because speakers try to prevent the ambiguity. The
attachment site of a modifier also represents ambiguity of scope in a way

Z>Example from (Telljohann & al., 2003, p. 79).

72 Chapter 4 A Treebank’s Choice

SIMPX VF LK MF
[on]
[Eo]
VXFIN (NX)
Ein Bad in der Menge verhindert das Sicherheitsgitter
ART NN APPR ART NN VVFIN ART NN $.

Ein Bad in der Menge verhindert das Sicherheitsgitter.
A bath in the crowd prevents the security gate.

‘The security gate prevents a bath in the crowd.’

Figure 4.13: Ambiguous Case Not Given in Edge Labels

that can be misinterpreted. Higher attachment does not mean that all nodes
c-commanded by the modifier are modified, but just that the modifier could
modify any one node c-commanded by it.

Reluctantly adding new node labels in order to keep the number of differ-
ent node labels manageable can also result in rather different meanings of a
single label. The FKONJ label, which groups coordinated sequences of fields
by default, is also used to group sequences of fields appearing in the initial
field (VF) when parts of the sentence are topicalised. Figure 4.14 shows an
example.

4.4 Conclusion

The shape of syntactic annotation as we find it in a treebank like T{iBa-
D/Z is determined by a number of factors that are not fully independent.
It can be seen from different perspectives, and we think that it is useful to
distinguish the encoding of the annotation in some kind of data structure, the
visual representation of these data structures that follows some conventions,
and finally the information that should be transported in the analyses. These
different perspectives help to keep track of the different needs that a treebank
is trying to serve, and to highlight the freedom to meet any of the needs
independent of the others.

It will be paramount for a treebank to carry interesting information and

4.4 Conclusion 73
SIMPX
VF LK MF
FKONJ [ON] MOD
MF vC
[HD]
[HD] [HD]
Einfach warten will er nicht
ADJD VVINF | VMFIN PPER PTKNEG $.
Einfach warten will er nicht.

Simply to wait wants he not.

‘He does not want to simply wait.’

Figure 4.14: FKONJ Groups Sequences of Topicalised Fields

to be easy to use at the same time.?® It should be kept in mind, though, that
the degree in which this general goal is accomplished is usually judged by
the interpretation of a certain representation of the analyses. What is more,
the analyses are accompanied by a number of interacting basic principles and
details about the application of these principles in less standard situations,
that are only available via the treebank manual. In the end, what is reason-
ably simple and revealing depends on the individual needs of anyone who
interacts with the treebank.

The annotators are primarily interested in consistency and speed. A small
and possibly overloaded set of labels might best meet their needs, accompa-
nied by the support of existing tools. They will also accept to reuse existing
standards to achieve a steep learning curve. All of this may be at the ex-
pense of customised solutions and obvious representations for all analyses.
Treebank users will be happy when their linguistic assumptions help them
understand the rendering of the analyses, i.e. when what they have learned
to be the linguistic interpretation of a certain graph corresponds to the in-
terpretation suggested by the treebank manual. Finally, a machine that uses
the annotated data will also need an understanding of the analyses, while its
understanding of generalisations and dependencies may be again different,

26Syntactic analyses have long been requested to be “reasonably simple and revealing”
(Chomsky, 1956).

74 Chapter 4 A Treebank’s Choice

making yet another representation of the analyses desirable.

Even when these representations are not equivalent, it can be useful to
derive different representations from a single treebank (Nivre, 2003). Dipper
€9 al. (2004) show that a similar strategy can also help adapting the treebank
manual to the different needs of treebank users. In the following chapters,
we will try to study how the freedom of representation of syntactic analyses
can be used to let probabilistic context-free models of syntax make better
use of the data provided in treebanks. In this goal we follow the designers
of TiiBa-D/Z, whose “annotation scheme tries to strike a balance between
pragmatic requirements on the one hand and linguistic reality on the other
hand” (Telljohann & al., 2003, p. 15).

Chapter 5

PCFG Treebank Grammars

In this chapter we introduce standard methods for deriving probabilistic
context-free grammars from treebanks. Seemingly arbitrary choices of repre-
sentations of syntactic structure can have considerable impact on the perfor-
mance of parsers based on PCFG treebank grammars (section 5.1). With that
in mind, we show how we extract a probabilistic context-free grammar from
TiBa-D/Z, especially with respect to those characteristics of the original en-
coding of the treebank for which there is no straightforward representation
that is compatible with a PCFG (section 5.2).

The analyses in a treebank all follow the same principles, which are laid
out in a manual that accompanies the treebank. This manual can be un-
derstood as a descriptive grammar with an emphasis on example sentences
collected in the treebank. This perspective suggests that the regularities of
the syntactic analyses of the treebank form a kind of grammar by example:
a treebank grammar. This term has been coined rather soon after the advent
of the Penn Treebank, for PCFGs directly read off it (Charniak, 1996), and
later came to be used for many kinds of computational (and mostly proba-
bilistic) grammars derived from treebank data (Abeill¢, 2003, gives several
examples). A reason for early treebank grammars being mostly PCFGs may
be that the encoding of the Penn Treebank uses proper trees with node labels,
which can be translated into a PCFG by rather straightforwardly mapping
the original annotation to the nodes and rules of a PCFG. In addition to the
formal similarity between the encoding of treebank data and the structure
assumed by the grammar, there is, however, also the question whether the
semantics of node labels is captured well by the computational grammar, and
whether the distribution of analyses in the treebank is faithfully captured by
the derived grammar. We will mainly focus on the questions of probabilistic
faithfulness and formal similarity in the following two sections.

The next section shows that the seemingly obvious translations from tree-

75

76 Chapter 5 PCFG Treebank Grammars

banks to PCFGs do not necessarily exhibit the desired probabilistic behaviour
when used in a PCFG model, even if PCFGs are powerful enough to produce
the annotation graphs found in the treebank.

5.1 Syntactic Bias of a PCFG Treebank
Grammar

Syntactic annotation in a treebank is usually encoded as directed acyclic
graphs with labelled nodes, which can be represented as a tree with words as
leaves and possibly crossing edges. If each tree is rooted, and its edges do not
cross, then the rules of the context-free grammar that are needed to license a
sentence can be easily obtained by adding a rule A — [to the CFG for each
non-terminal node A in the tree, where (3 is the sequence of direct children of
A, and by including all encountered non-terminal or terminal symbols into
N or T. If there is a single type of root node for all sentences, then this is
the start symbol S of the CFG; if there is more than one root node in the
sentences, then a new nonterminal is added to N, which will be the CFG’s
start symbol S, and for each type of sentence root in the treebank, a new rule
is added to the set of rules R, where the new rule’s left-hand side is S, and the
type of the sentence root node is the rule’s right-hand side. The role of S'is the
same as that of the export model’s special VROOT node label (Brants, 1997):
it is the single root node which is the parent of all otherwise orphaned nodes
in each sentence, where the connection of these nodes to VROOT is not shown
in the standard graphical representation. The PCFG treebank grammars we
derive from TiBa-D/Z all have VROOT as their start symbol. We will use
VROOT and S interchangeably; the former for examples from TiiBa-D/Z, the
latter for more general examples. A terminological clarification seems to be
in order here on node labels in an annotation graph, syntactic categories in a
syntactic analysis, and (non-)terminal symbols in CFGs. The (non-)terminal
symbols in CFGs cannot be separated from their type, while the nodes in
an annotation graph, and in a syntactic analysis have separate labels, or
separate categories, respectively. All three essentially mean the same when
each node has an atomic non-empty type, so that we employ all three variants
depending on the context.

When we build our grammar only from rules that we find in a treebank,
then the frequency of a rule and of the non-terminal symbol on its left-hand
side in the syntactic graphs of all sentences of the treebank can be used to
determine the maximume-likelihood estimate of the probability that the non-
terminal expands to this rule in a PCFG. Given that the rule A — § occurs

5.1 Syntactic Bias of a PCFG Treebank Grammar 7

freq(A — (3) times in the treebank, and the non-terminal A occurs freq(A)
times (possibly also in other rules), then the maximum-likelihood estimate
of the expansion probability can be calculated as

Obtaining a PCFG from a treebank is thus straightforward (Charniak, 1996),
and has soon become the basis for high-performing parsers (e.g. on the Penn
Treebank: Charniak, 1997; Collins, 1997). Simply deriving rules from the
original annotation and using their relative frequencies as probabilities, es-
timates these probabilities according to the maximum likelihood principle,
i.e. the model probabilities are chosen so that the probability of the data is
maximised. This is the parameter setting that makes it most probable that
the rule occurs as many times as it is actually observed, given the constraints
of the probabilistic model. In particular, no probability mass is allocated for
events not encountered, i.e. the resulting model assigns perfect probabilities
to seen data, but it is deficient for events not encountered before, to which it
assigns zero probability. This is a problem, because in the end, the treebank
is only an incomplete sample of the language we seek to describe.
Maximum-likelihood estimation of a treebank grammar that is already
present in the form of proper trees without crossing edges or other compli-
cations thus is remarkably straightforward. Treebanks are often not easy to
map to a context-free representation in such an unambiguous way, though.
They often contain information where several representations are possible,
and none is explicitly preferred by the corpus providers. Before we turn to
those representational issues that force us to choose a new representation
for parts of the treebank, we will investigate the effect of seemingly equiva-
lent choices for representing aspects of syntactic descriptions. We call them
seemingly equivalent, because they can be represented directly by a CFG, but
providers of different corpora choose different representations, with negligible
consequences for the interpretation of the main syntactic observation when
presented to a human user. We are in a position where two quite comparable
representations of similar information are available for German, namely that
of the negra and TiiBa-D/Z treebanks. We use these two existing annotation
schemes and consider a made-up example of prepositional phrase attachment.
We contrast the representation of high and low attachment of the preposi-
tional phrase in both schemes and examine the consequences of the different
representations of the same contrast for the preferred parses in a derived
PCFG treebank grammar. The observation that certain representations of
syntactic phenomena have considerable impact on the interpretation under
derived PCFG models is not new. Johnson (1998) has discussed theoretically

78 Chapter 5 PCFG Treebank Grammars

inspired examples for English. We follow up with examples resembling the
annotation in two existing German corpora.

5.1.1 Bias in TiiBa-D/Z and negra

PCFGs condition the expansion of rules only on the parent of the tree frag-
ment corresponding to the rule: the probability P(A — 3|A) of arule A — 3
depends only on the type of A. A made-up example shows the consequences
for assigning syntactic structure. The two sentences Er ertappt den Dieb mit
dem Fahrrad. vs. Er verfolgt den Dieb mit dem Fahrrad. are intended to
highlight the difference between the two verbs wverfolgen (‘chase’) and ertap-
pen (‘catch red-handed’), and the different requirements of the verbs for the
attachment of the prepositional phrase mit dem Fahrrad (‘with the bike’) as
part of the noun phrase den Dieb mit dem Fahrrad (‘the thief with the bike’)
or as optional prepositional phrase to the verb wverfolgen (see figure 5.1). We

SIMPX SIMPX
VF LK MF VF LK MF
|
NX
N\X VX'FIN NX NX VX'FIN NX
PPER VVFIN NN APPR PPER VVFIN NN APPR
Er verfolgt den Dieb mit dem Fahrrad Er ertappt den Dieb mit dem Fahrrad

‘He chases the thief with the bicycle’ ‘He catches the thief with the bicycle’

(a) High Attachment (b) Low Attachment

Figure 5.1: Artificial Example of German PP attachment in TiiBa-D/Z

first show syntactic analyses for both sentences according to the TiiBa-D/Z
annotation scheme. For the moment we ignore edge labels, which carry infor-
mation about headedness and grammatical functions (including optionality),
and only consider the major clause, field, and constituent node labels for the
sake of simplicity.

We label the two sentences (a) (verfolgen) and (b) (ertappen), and imag-
ine a corpus with n sentences that is made up exclusively of h times sen-
tence (a) and [times sentence (b) with at least one of each sentences (h,[l >
1;h #). Rule probabilities that are read off the treebank by maximum

5.1 Syntactic Bias of a PCFG Treebank Grammar 79

likelihood estimation are as follows:

h
P(SIMPX — VF LK MF) =1 P(VVFIN — verfo/gt):h—H
P(VF — NX)=1 z
P(PPER — Er)=1 P(VWWFIN — ertappt):?
P(LK — VXFIN) =1 P(NX — PPER)— h+1
P(VXFIN — VVFIN) =1 3Z+4§
P(PX — APPRNX) =1 P(NX — ARTNN)= 0 t2
3h + 4l
P(ART — den)=1/2 3
P(NN — Dieb)=1/2 P(MF — NXPX)= =
P(APPR — mit) =1 P(MF — NX) = l
P(ART — dem)=1/2 +1
l
P(NN — Fahrrad) =1
()=1/2 P(NX = NXPX) = o

The probability of the first parse (a) is the product of all rules in the corre-
sponding derivation (only non-unity rules are given):

P(#]uw")
= P(NX — PPER)P(VVFIN — verfolgt)
P(MF — NX PX)
P(NX — ART NN) (ART — den) P(NN — Dieb)
P(NX — ARTNN) P(ART — dem) P(NN — Fahrrad)

The probability of the second parse (b) given the first sentence (a) as input
is accordingly:

P("w")
= P(NX — PPER) P(VVFIN — verfolgt)
P(MF — NX)P(NX — NXPX)
P(NX — ART NN) P(ART — den) P(NN — Dieb)
P(NX — ARTNN) P(ART — dem) P(NN — Fahrrad)

Parse (a) will be selected for sentence (a) when its probability is higher than

80 Chapter 5 PCFG Treebank Grammars

parse (b):
P(¢"|w") > P(¢"w")

o P(MF — NXPX)>P(MF — NX)P(NX — NXPX)
ho L

W1~ h+13h+4l

h(3h + 4l

¥>1 (5.1)

Resolving equation 5.1 for h we have:

=

VT -2

h >
3

l

Calculating the ratio for sentence (b):
P(¢"w’) > P(¢"u’)

to find the more likely parse of sentence (b) yields exactly the same result,
because P(VVFIN — verfolgt) is replaced by P(VVFIN — ertappt) on
both sides of the inequation and can therefore be cancelled out:

P(¢"|w”) > P(¢"|w”)
< P(¢") > P(¢")
VT -2
; l
2N h > 0221 (5.2)

& h

As a result, we will either always assign parse (a) or parse (b) to all input
sentences, only depending on the ratio h/l in the corpus. In other words, the
parse is selected without considering the impact of the verb on the syntactic
structure, but only by comparing the likelihood of small disconnected tree
fragments that are used in the PCFG models. This means that on top of
ignoring lexical preferences, “PCFGs are also deficient on purely structural
grounds” (Manning and Schiitze, 1999, p. 419-421). PCFGs incorporate pref-
erences for larger unlexicalised subtrees, but these structural preferences do
not match the original data in our example.

The deficiency to model lexical preferences is partly expected for an un-
lexicalised grammar, and the deficiency to model structural preferences high-
lights the well-known independence assumptions, which shed a light on the
importance of node labels, on which rest expansion probabilities. An unde-
sirable consequence of unclear structural preferences is that the ratio of the

5.1 Syntactic Bias of a PCFG Treebank Grammar 81

maximum-likelihood estimate of the probabilities of the two parses is differ-
ent from the ratio of their relative frequencies in the corpus, i.e. the parse
occurring more frequently in a corpus may be never selected: equation 5.2 is
always satisfied for, e.g., h = 1/3 [, and the less frequent parse (a) will al-
ways be selected in the resulting PCFG treebank grammar. We will return to
discussing lexical and structural preferences of PCFGs in section 5.1.3 below
after concluding with our examples.

We now compare the syntactic annotation in the TiiBa-D/Z scheme with
the annotation of the same pair of sentences in the negra annotation scheme,
which is given in figure 5.2. The probabilities, again extracted from a corpus

S S
NP
NP PP PP
PPER VVFIN ART NN APPR ART NN PPER VVFIN ART NN APPR ART NN
Er verfolgt den Dieb mit dem Fahrrad Er ertappt den Dieb mit dem Fahrrad
(a) High Attachment (b) Low Attachment

Figure 5.2: Artificial Example of German PP attachment in negra

consisting of h times sentence (a) and [times sentence (b) by maximum
likelihood estimation are as follows:

P(S — PPER VVFIN NP PP) =

P(VVFIN — verfolgt) =

P(PPER — Er
P(ART — den

)=1

) =1/

P(NN — Dieb)=1/2 P(NP — ARTNN) =

P(APPR — mit) =1

P(ART — dem)=1/2 P(S — PPER VVFIN NP) =

P(NN — Fahrrad) =1
)=1

P(PP — APPR ART NN

P(VVFIN — ertappt) =

= = = = >

P(NP — ARTNNPP)=

>
+

82 Chapter 5 PCFG Treebank Grammars

so that the parse (a) is preferred over parse (b) for sentence (a) if
P(¢"|w") > P(¢"|w")

& P(S — PPER VVFIN NP PP)
P(NP — ARTNN)> P(S — PPER VVFIN NP)
P(NP — ART NN PP)

o h h - l l
h+lh+1" h+ll+h
& h > 1 (5.3)

Again, the parse selection is independent of the input sentence, because
the lexical probabilities of the verbs appear identically on both sides of the
inequation and are cancelled out. Thus we prefer parse (a) over parse (b) for
both sentences whenever sentence (a) is more frequent in our corpus than
sentence (b).

The difference between equation 5.1 for TiiBa-D/Z and equation 5.3 for
negra is caused by differences in the encoding of high and low attachment
of the prepositional phrase. TiiBa-D/Z introduces a new noun phrase node
on top of the existing noun and prepositional phrase nodes while negra de-
taches the edge connecting the prepositional phrase node and the sentence
node in (a) and reattaches the edge to the noun phrase node in (b), keep-
ing the number of nodes constant. The new node that TiiBa-D/Z introduces
in (b) instead has the same label as non-recursive noun phrases, effectively
overloading the NX label to be used in a more general way.

5.1.2 Extending the Label Set

Another quite straightforward mapping of negra, or TiiBa-D/Z annotation
to a PCFG is to include edge labels as decoration to node labels, so that
the edge label from the edge that links a node to its mother is appended
to the node label. Appendix B shows that subcategorising all node labels
accordingly changes the ratio between the probabilities of parse (a) and (b)
to h/l also for TtiBa-D/Z, which satisfies the obvious desideratum that the
full parses should have the same probabilities according to the PCFG as
the parses have in the data from which the PCFG was derived. Adding all
edge information, however, also yields a higher number of node labels, and
consequently a higher number of rule types (18 vs. 20 for using no vs. all
edge label information in our toy example).

We can also try to achieve the same result by renaming just a single node
in the TiiBa-D/Z annotation: either the top NX of the complex noun phrase,

5.1 Syntactic Bias of a PCFG Treebank Grammar 83

or the NX that directly dominates the head of the complex noun phrase,
effectively splitting the node label according to its more specific function
(recursive vs. non-recursive). In the first case, we percolate up the internal
information about recursiveness to the top of the phrase, reading NX#1 as
“NX dominating another NX”. The suffix “#1” is arbitrary, and we read it
as “the first change”. In the second case we percolate it down nearer to the
lexical head of the phrase (NX#1 is an “NX dominated by another NX”).
In both cases, we add a single new non-terminal symbol to our grammar,
where changing the upper NX does not increase the number of rules, and
changing the lower NX increases it by one (see figure 5.3). Changing the

SIMPX SIMPX
VF LK MF VF LK MF
| |

NX#I NX

NX VXFIN N NX VXFIN NX#1 NX
. A ﬁA LN N

PPER VVFIN APPR PPER VVFIN ART NN APPR ART NN
Er ertappt den Dieb mit dem Fahrrad Er ertappt den Dieb mit dem Fahrrad
(a) Low Attachment, Special Top NX (b) Low Attachment, Special Lower NX

Figure 5.3: Modifications of the Low Attachment from figure 5.1

upper node label to a unique new name (figure 5.3(a)) yields the following
rule probabilities:

P(SIMPX — VF LK MF) =1 P(VWFIN — verfolgt) = ——
P(VF — NX)=1 hti
P(PPER — Er)=1 P(VWWFIN — ertappt):%

P(LK — VXFIN) =1 bt
P(VXFIN — VVFIN)=1 P(NX — PPER):3h+3z
P(PX — APPRNX) =1 P(NX — aRTIN)= 2hE2

P(ART — den)=1/2 3h + 31

P(NN — Dieb)=1/2 P(MFHNXPX):hLH
P(APPR — mit) =1 I
P(ART — dem)=1/2 P(MF — NX#1)=,—
P(NN — Fahrrad) =1/2 P(NX#1 — NXPX)=

The relation between the probabilities of the two parses becomes the same

84 Chapter 5 PCFG Treebank Grammars

as the relation between the frequencies of each parse in the treebank again:

P(¢"|w®) > P(¢"[w?)
& P(MF — NXPX)
P(NX — ARTNN) > P(MF — NX#1)
P(NX#1 — NXPX)
P(NX — ART NN)
ho2ht2l 1 2ht
h+13h+3l" h+1 3h+3l

& h > 1 (5.4)

The effect is the same as adding all edge information (see appendix B), but
the number of new non-terminals is lower than when all edge information
is added. Adding fewer non-terminals is generally preferable, because this
generally results in fewer rule types that have to be estimated from the same
amount of data.

The lower NX node cannot be assigned a new label to achieve the same
result. Imagining a treebank consisting of [times the parse shown in fig-
ure 5.3(b), plus h times the parse from figure 5.1(a) yields the following rule
probabilities:

P(VVFIN — verfolgt) = R
P(SIMPX — VFLKMF)=1 htl
P(VF — NX)=1 P(VVFIN — ertappt):%
P(PPER — Er)=1 h++l
P(LK — VXFIN)=1 P(NX — PPER):?)h—i—Bl
P(VXFIN — VVFIN) =1 PONX — ART N) oh+1
P(PX — APPRNX) =1 3h + 3l
P(ART — den)=1/2 P(NX#1 — ARTNN)=1
P(NN — Dieb)=1/2 P(MF—>NXPX):L
P(APPR — mit) =1 h;tl
P(ART — dem)=1/2 P(MFHNX):?
P(NN — Fahrrad) =1/2 I

P(NX — NX#1PX)=

5.1 Syntactic Bias of a PCFG Treebank Grammar 85

The relation between the probabilities of the two parses then is:

P(¢%|w®) > P(¢|w?)
& P(MF — NXPX)
P(NX — ART NN)
P(NX — ARTNN)> P(MF — NX)
P(NX — NX#1 PX)
P(NX — ART NN)
h o 2h+1 2h+1 l I 2h+1

h+13h+313h+3l h+l3htsl3htsl
& h(2h+1) > I?

1 1
24 RP+=-hl—=012>0

2 2
5 1
h S
SR
& h > 0541 (5.5)

Assuming a standard PCFG model, it thus turns out to be possible to
encode just the appropriate additional information in node labels that lets
the resulting model assign different interpretations to unseen data just as
often as these analyses were seen in the data on which it is based (here: low
vs. high attachment). It is not immediately obvious, however, which node
labels to change in order to find the best compromise between the number of
newly introduced node labels and the faithfulness to structural preferences
observed in the treebank.

5.1.3 Structural and Lexical Preferences

While the discussion so far has focused on structural preferences, it would
be desirable to choose high or low attachment depending on the lexical form
of the verb as well. In a PCFG framework this implies that the left-hand-
side of the rule that is central for the attachment decision has to include
information on the verb. In our example in figure 5.1, the full sequence of
nodes (VVFIN, VXFIN, LK, SIMPX, MF) separates the relevant left-hand sides
from the verb. The appropriate parse will be more likely only when the lexical
information of the verb is present on both ends of the sequence at the same
time. In the end, the following should always hold without depending just
on the structural preference characterised by %:

P(¢"|w") > P(¢"lw*)

86 Chapter 5 PCFG Treebank Grammars

and

P(¢"|w’) > P(¢"|w’)
The number of nodes involved in the connection between a lexical item and
the corresponding production thus seems to be higher than for the local
structural preferences considered before, where changing just one node was
sufficient.

This example shows the differences and the similarities between lexical
and structural preferences from a probabilistic context-free point of view.
Both need similar changes to the grammar to be reproduced faithfully by it,
i.e. changes to node labels so that the contextual differences are within reach
of PCFG conditioning. The difference lies mainly in the distance that needs
to be bridged in the syntactic description, measured by the minimal number
of nodes that need to be modified to represent the difference. Structural pref-
erences for us will consequently be all preferences that can be captured in
only few dedicated node labels, as opposed to lexical preferences, which typ-
ically link a node at the fringe of the syntactic description with another node
higher up the tree, or even down the fringe again, crossing part of the tree.
We know that this distinction is far from clear-cut, but as there is no fun-
damental difference between both kinds of preferences from our perspective,
we use structural preferences just to start exploring the problem of encoding
preferences in node labels in general. There are also cases where very frequent
lexical items have strong impact on syntactic structure that is very near (e.g.
commas starting relative clauses), which also surface as preferences in our
experiments. We thus exclude the problem of lexical preferences for most of
our experiments only as a simplifying restriction, and use the degree in which
they can be reflected in the annotation as a measure for the sensitivity of our
method.

Manning and Schiitze (1999) discuss three different independence assump-
tions on which we rely when we calculate the probability of a parse as the
product of the context-free rules in it (p. 384). Recall that we calculate the
probability of a parse ¢ simply as P(¢)) = [],or P(r)?°"() (equation 2.1
on p. 10), where the distributions of expansion probabilities of nonterminals
are assumed to be

place invariant — a subtree has always the same probability independent
of its position in the string,

context-free — the probability of a subtree does not depend on words that
it does not dominate, and

ancestor-free — the probability of a subtree does not depend on any domi-
nating non-terminals outside the subtree.

5.1 Syntactic Bias of a PCFG Treebank Grammar 87

These assumptions obviously also underly the modelling of our examples on
the previous pages. In the original annotation in figure 5.1, the probability
that an NX expands into a pronoun, or a base, or a complex noun phrase,
does not depend on whether it appears in the initial field or in the middle field
(place invariance), and it does not depend on any terminal or non-terminal
node outside the subtree that it dominates (context- and ancestor-freeness).
The same assumptions still hold for all nodes in figure 5.3(a), of course, and
in particular for the new node labelled NX#1. The difference between NX in
figure 5.1 and NX#1 in figure 5.3(a) is that NX#1 only appears in the middle
field, so that there is no other place where place invariance could apply, and
similarly that the expansion of NX#1 is ancestor-free, but it never appears
but below MF, so that in effect, the probability of NX#1 expanding into
anything when it does not have the ancestor MF is zero.

We have seen by example that due to these independence assumptions
inherent in PCFGs, the representation of linguistic information has direct
impact on the grammar’s ability to select the correct parse, and context-
freeness, ancestor-freeness and place invariance can have different impact.
PCFG rule probabilities that are estimated via likelihoods being read directly
off a treebank do not necessarily prefer full parses that are more frequent in
the treebank. In the first TtiBa-D/Z representation of prepositional phrase
attachment, e.g., the low attachment has to be more than four times as fre-
quent in the treebank than the high attachment to be chosen at all. Small
modifications in the representation are sufficient to achieve better estimation,
because e.g. information about an ancestor that would otherwise be outside
of reach of PCFG conditioning according to the ancestor freeness assump-
tion is moved into reach of conditioning via labels that carry the relevant
information. However, not all modifications lead to optimal results, and the
modifications are dependent on the treebank and on the amount of infor-
mation included in the PCFG representation from the original parses. More
information generally leads to more complex models, but may also represent
syntactic preferences more adequately. Even though the original encoding of
syntactic information seems to suggest a certain context-free representation
(e.g. either with all or without any edge labels), none of these obvious choices
may be optimal for our goal of capturing linguistically relevant observations
in a PCFG. What surfaces here is the effect of different representations of
treebank annotation. The default representation may be perfectly reasonable
for those who produce and use the treebank, because it is a well-established
solution to label noun phrases of different complexity with the same label
(an occasional bar added to the label just highlighting their status). On the
other hand, a PCFG may be perfectly able to learn the prevalence of a com-
plex configuration from a corpus when certain labels are modified, as we

88 Chapter 5 PCFG Treebank Grammars

have shown above. Both representations do not have to coincide, and it is
actually quite unlikely that they do, given the different capabilities and as-
sumptions of human beings and PCFGs about the semantics of node labels.
Both assume a semantics of labels and structure, but PCFGs do so just on
the basis of treebank evidence and focusing on very local context for any
particular label, allowing links that connect nodes to their grandparents or
to surrounding words only via a naming scheme that looks peculiar to the
human eye.

Capturing the semantics of treebank annotation, which is originally best
suited for the linguistically informed human corpus annotator, in an anno-
tation scheme that allows the rather limited and different point of view of
a PCFG to take advantage of the original semantics, is at the heart of our
undertaking. A more general automatic means thus seems to be desirable to
transform an annotation scheme that is optimal for human corpus develop-
ers and users, into a scheme that grants context-free methods access to the
knowledge encoded in the treebank. The description of a novel method with
this goal will be the topic of chapters 7 and 8, and chapter 6 surveys existing
approaches to this problem. Before we turn to these methods, however, we
will describe how we turn the annotation of TiiBa-D/Z into proper trees.

5.2 PCFG-Parsing of TiiBa-D/Z

The Penn Treebank was the source of early PCFGs derived from a treebank,
because its annotation was rather easy to map to proper trees. But even for
the Penn Treebank there are cases where it is not obvious what the best
context-free representation of a treebank’s syntactic annotation is. The Penn
Treebank, e.g., adopts the notion of null elements that mark the position of
elements in the syntactic description that are either not realised, or where the
realised position in a sentence does not coincide with the position where it is
assumed to appear in the syntactic description. Empty elements that are not
realised are introduced for, e.g., the subjects of infinitive clauses or objects
in passive voice. The resulting empty (e-)productions can still be modeled by
our context-free grammars. Keeping them, however, adds considerable com-
plexity to parsing, because non-terminals that are not anchored in any visible
word can appear in many places. Traces also appear in the Penn Treebank
as empty elements on the level of words. They are realised at a different
position than where they are assumed to belong in the syntactic descrip-
tion. Making the connection explicit via edges instead of via co-indexation
can therefore force edges to cross, because traces effectively allow connecting
arbitrary non-terminals and terminals. Figure 5.4 shows a sentence where a

5.2 PCFG-Parsing of TtiBa-D/Z 89

clausal subject (S-1) is extraposed from sentence-initial position, leaving a

*

pleasure to teach her

Figure 5.4: Labels encode edges

trace marked as *EXP-1* (Bies & al., 1995, p. 271). The dotted line, which
is not present in the original annotation, could be used as an alternative to
the coindexed S-1 and *EXP-1*. Using co-indexed traces, however, avoids
crossing edges and is thus nearer context-free power. Plachn (1999) shows
that an extended algorithm that probabilistically models grammars similar
to PCFGs, but allows crossing edges, is a much more complex task, resulting
in exponential complexity.

The alternative empty elements like *EXP-1* and * in Figure 5.4, how-
ever, also add complexity to parsing. Few treebanks are therefore used for
obtaining PCFGs without prior transformations that give them the shape
of proper trees without e-productions or crossing edges. Charniak (1996),
e.g., reports that he simply ignores traces. Even though the Penn Treebank
consists of simple labelled bracketings inserted into the text, which look re-
markably similar to proper trees that can be directly converted into a PCFG,
it thus turns out that “any grammar extracted from this bracketed corpus re-
quires the adoption of a number of assumptions whose alteration would lead
to different results” (Gaizauskas, 1995). This problem holds for other tree-
banks as well, of course. Each attempt to extract a PCFG from a treebank
is faced with similar problems, which may not be too important, because the
PCFG may only be needed to filter out candidate parses for more powerful
methods (Frank € al., 2003). Other attempts use the derived PCFG tree-
bank grammar directly for parsing, so that the effect of transformations is of
direct importance (e.g. Dubey and Keller, 2003; Schiehlen, 2004).

90 Chapter 5 PCFG Treebank Grammars

In summary, transformations of syntactic annotation encoded in tree-
banks are necessary whenever the annotation follows a model more powerful
than CFGs, but they are also often applied when the annotation is already
quite similar to proper trees. We have seen before that differences in represen-
tation severely influence the decisions taken by the resulting PCFG models.
TiBa-D/Z, of course, is no exception here. In this section we discuss repre-
sentational issues that have to be solved to arrive at a context-free represen-
tation of TiiBa-D/Z, and the solutions that we adopt. The major problems
are those areas discussed in section 4.1 where proper trees are either subopti-
mal or genuinely insufficient for representing the assumed syntactic structure
provided by the annotation. We also describe other relevant pre-processing,
including POS-tagging, and our division of data into train and test sets.

5.2.1 Parentheses and Punctuation

The start symbol is not visible in the default representation of the export data
model, because it gives this start symbol (VROOT) a special status. VROOT
is the root symbol of each sentence’s annotation graph in TiiBa-D/Z, and
any terminal or non-terminal node in a sentence has it as a parent if this
node is not explicitly attached to another node via a (visible) edge (Brants,
1997). We call all nodes attached that are attached explicitly to a node other
than VROOT; all remaining nodes are unattached. Nodes with an unattached
status do not exist in a CFG, so that a mapping has to be defined to cap-
ture this information in a CFG. In the simplest case, VROOT just becomes
the explicit new mother of the formerly unattached non-terminal or terminal
nodes as proposed above, marked by a distinct edge label. This solution is
sufficient for the SIMPX node and the final full stop in figure 5.5. The other
unattached nodes, i.e. the two commas and the NX nonterminal, cannot be
mapped analogously, because they are surrounded by words that have a com-
mon mother node that is not linked to them via an explicit edge. Figure 5.6
shows the same sentence as figure 5.5, but this time the implicit edges from
all unattached nodes to VROOT are shown as light grey lines, and it is easy
to see that some of them cross explicit edges. The unattached constituent
labelled NX forms what we will call a parenthesis, i.e. an unattached non-
terminal node without an explicit mother surrounded by words that have a
common mother, and normally separated from these words by commas. The
lowest common mother of the preceding and following words of the parenthe-
sis (SIMPX in figure 5.5/5.6) is the node to which it can be easily attached,
resolving one of the crossing edges. This is the approach pursued for attach-
ing parentheses in all our experiments. We always append the pipe symbol
(1) to the existing label of parentheses instead of using an edge label, so

5.2 PCFG-Parsing of TtiBa-D/Z

91

SIMPX
[ON]
[HD] [HD]
[HD] [HD] [HD] [HD]
Zufriedene Mitarbeiter S0 das Kalkiil arbeiten ~ motivierter
ADJA NN S, ADV ART NN S, VVEFIN ADJD S.

Zufriedene Mitarbeiter, so das Kalkiil, arbeiten motivierter.
work

Happy

staff,

so the idea,

more motivated.

‘Happy staff, that is the idea, work with more motivation.’

Figure 5.5: Unattached Elements: Parenthesis and Punctuation

VROOT
SIMPX
[ON]
<, NX O O,
[HD] [HD]
[HD] [HD] [HD] [HD]
Zufriedene ~ Mitarbeiter S0 das Kalkiil arbeiten motivierter
ADJA NN S, ADV ART NN S, VVEFIN ADJD S.

Figure 5.6: Unattached Elements with VROOT shown

92 Chapter 5 PCFG Treebank Grammars

that information about their status is also evaluated in experiments where
edge labels are ignored. Parentheses are rather infrequent (3 in the first 100
sentences of TiiBa-D/Z) and there is usually a node that dominates all and
only the words that make up the parenthesis, which makes them rather easy
to handle.

Punctuation is never attached in TiBa-D/Z and it usually occurs be-
tween constituents, which makes the decision where to attach the punctua-
tion harder.! Punctuation marks are distinct from parentheses in that they
are more directly linked to the rest of syntactic structure. They are part of
a closed class of lexical items, and occur frequently. They rarely occur in
sequences, and they usually separate constituents or clauses. They therefore
provide interesting additional information for parsing, which is directly avail-
able in annotation schemes that explicitly map them to certain positions in
clauses, or constituents (as in the BulTreeBank or the Prague Dependency
Treebank, PDT, Bohmova & al., 2003; Osenova and Simov, 2004). While
still attached near the constituents that they belong to, they are “at the
very bottom of the pecking order” for other schemes (Bies € al., 1995, p. 54,
about quotation marks in the Penn Treebank). Still other schemes leave them
completely unattached to the syntactic annotation. This is true for the TiiBa-
D/Z, on which rests the main focus here, but also for the negra and Tiger
treebanks (Brants and Hansen, 2002; Skut & al., 1998; Telljohann & al.,
2003).

The potential usefulness of punctuation for parsing when appropriately
anchored in syntax has been pointed out before (Doran, 2000; Jones, 1994).
For us, punctuation seems to be especially valuable because on top of being
connected to syntax, punctuation is far less ambiguous than other lexical
items of input sentences, which is underlined by the few tagging errors ob-
served for the POS tags $., $, (both no errors), and $((0.22 % errors).?

While punctuation is present in TiiBa-D/Z as part of input data, but not
explicitly linked to syntactic analyses, we will now try to answer the question
at which position in syntactic annotation it seems to give maximum bene-
fit for parsing. The difference between the equally unattached parentheses
and punctuation is, that the former are usually enclosed by words of a sin-
gle constituent, while the latter tend to occur at the end of, or in between
constituents (which is partly what makes them valuable for annotation). At-
tachment, thus, can still be represented by an edge carrying a new label, but
finding the place of attachment is harder for punctuation.

"'We do not consider those punctuation marks here that replace e.g. prepositions, and
which are tagged as the word they replace in TtiBa-D/Z (Telljohann & al., 2003, p. 22).

2All errors are dashes that are wrongly tagged as punctuation despite replacing the
preposition gegen. The error rates correspond to the upper right cell of table 5.6.

5.2 PCFG-Parsing of TtiBa-D/Z 93

There are at least three obvious ways in which punctuation can be han-
dled. First, it could be ignored, leading to a grammar that only considers
linguistically motivated constituents along the lines of the original annota-
tion. Second, punctuation marks and brackets may be attached at a position
that is least decisive about their attachment site, which is arguably their
highest possible attachment in a tree without crossing any edges. Last, they
may be attached to a syntactic unit to which they belong most, i.e. lower in
the tree. These three options will have an impact on the resulting treebank
grammars. Table 5.1 summarises the expected impact on the grammar.

‘ H #rules ‘ generalises ‘ information ‘

ignore few better losing
highest attach || many worse preserving
lower attach medium | better preserving & relocating

Table 5.1: Expected Impact of Punctuation on Grammar

The simplest strategy of removing all punctuation requires the insertion
of removed punctuation after parsing, so that parses can be compared with
the same test data as all other experiments. The second strategy of attach-
ing unattached elements as high as possible in the syntactic tree simply
determines the lowest common parent of the left and right sisters of the
unattached punctuation marks, to which they are then attached. If there
are several unattached elements next to each other, then all of them are at-
tached to the lowest parent of the left and right sisters of the full sequence.
If there is no sister to any one side (i.e. the unattached element forms the
beginning or end of the sentence), then the element is attached to the start
symbol of the sentence (i.e. to VROOT). While attachment sites thus can
be determined unambiguously for highest attachment, and the strategy of
removing all unattached material is also quite clear, the third option needs
additional clarification. In the remainder of this section, we propose a heuris-
tics that defines attachment sites for a subset of unattached punctuation.
Experiments will show the impact on performance of all three modes of han-
dling unattached elements, motivating our choice of the more informed low
attachment strategy.

The third strategy determines certain relative attachment points depend-
ing on the type of punctuation. Depending on the type, pairs of elements are
jointly reattached (quotation marks /~["?]1$/3), the elements are reattached
individually (e.g. comma or full stop /" [, .1$/), or kept in their default high-
est attachment position (e.g. dash or asterisk /~ [-*1$/). The attachment is

3We adopt the Perl regular expression syntax (Wall & al., 2000) to match words.

94 Chapter 5 PCFG Treebank Grammars

left unchanged mainly for infrequent elements, where information about pos-
sible usages was felt to be too sparse to devise a general strategy (e.g. for
the equation sign /"=$/), or where the original position normally seems to
be appropriate (as for the ellipsis /"\.\.\.$/).

We will now informally describe the reattachment algorithm. A loop en-
closes the following choice of reattachments. Whenever something is reat-
tached, the loop restarts. All unattached elements are expected to be attached
in highest position before the loop starts, i.e. in their position according to
the second strategy. The punctuation marks /~[">-“*\[\]1=] I\.\.\.$/ and
all others mentioned in the second step below are left as is and considered as
being not existant in the following first step. The following loop is repeated
per sentence until no more words are reattached:

/~($/ Attach to following lowest non-terminal node.

/7)$/ Attach to preceding lowest non-terminal node.

A simple heuristics that handles the frequent case of orphaned non-
terminals or appositions enclosed in brackets acceptably well (see fig-
ure 5.7; arrows mark reattachment, and dashed lines previous highest
attachment of formerly crossing edges).

/" [,;1$/ Attach in original position, when preceding or following sister has
KONJ edge.

Else attach to the highest clausal descendant of the following, or, if
there is none, of the preceding node (we start from highest attachment).
If there is none, continue looking in the same way for a following or
preceding node with an FKOORD label, one which is unattached, or
has an APP edge, and attach it to the first found. We thus prefer to
attach commas and semicolons to following clausal nodes, as in the
prototypical case of the relative clause in the final field.

Else leave in original position.

/" [:.17/18/ Attach to preceding highest node. Normally this is the matrix
clause.

When this loop has finished, punctuation marks that are assumed to occur
in balanced pairs but whose counterparts need to be determined first are
handled as follows in a second step:

/" ["?18/ Wherever there appears an even number in one sentence, attach
to the lowestmost common parent node of the

5.2 PCFG-Parsing of TtiBa-D/Z 95

SIMPX
[on]
@
[APP] [APP]
NX) LK MF
Berlin (taz) - Die Welthandelsorganisation (WTO) ist fithrungslos
NE $(NE $($(ART NN $(NE $(VAFIN ADJD $.

Berlin (taz) - Die Welthandelsorganisation (WTO) ist fithrungslos.
Berlin (taz) - The World Trade Organisation (WTO) is leader-less.

‘Berlin (taz) - The World Trade Organisation (WTO) is without a leader.’

Figure 5.7: Reattach Brackets to Lowest Following/Preceding Nonterminal

following word for a quotation mark with an even number, and of the

preceding word for a quotation mark with an uneven number.?

There are several problems with these heuristics, and we do not claim that
they work perfectly in all cases. We do hope, however, that they assign punc-
tuation marks to more appropriate places most of the time. Figure 5.8 shows
a sentence with a high number of punctuation marks (11 of the 30 words)
as found in TiiBa-D/Z (figure 5.8(a)), where punctuation is attached when
following the heuristics just given (figure 5.8(c)), and when simply attached
as high as possible (figure 5.8(b)). The annotation as shown in figure 5.8(a)
cannot be used as is by a PCFG, because there are unattached elements and
more than a single start symbol. The thick edges in figures 5.8(b) and 5.8(c)
mark edges modified during reattachment.

Figure 5.8(c) shows some success, e.g. for reattaching all commas to ap-
propriate positions, which enclose the parenthesis so Uli ("Die Nische ist
maoglich!") Wilkes, and introduce the subclause "dafi Fernsehen mehr sein
kann als oktroyierte Meinung”, which, moreover, also includes quotation
marks at positions that embrace direct speech. The full stop at the end
of the sentence has also been assigned an appropriate position after the final
field (NF) as last part of the clause (SIMPX). The prescription for brackets,

4We start numbering with zero.

poyoR}jeU () ‘SOSOT[JUIR] PUR UOIJRNJOUNJ R'C OINSTI]

UOIRIOUUY JURGEAL], [RUISLI) (®)

NX

T

@ @
[on] [o]
D QXFID ADVX
[Eo] [Fo] [Eo]
Die Zuschauer sollen . so Uli (" Die
ART NN WEIN S, apv NE 5(5(ART

Die Zuschauer sollen SO Uh
The audience should, so Uli

Fernsehen mehr sein kann als

television more be can than octroyed

[ev]
[Eo]
Nische it moglich ! ") Wilkes . merken
NN VAFIN ADJD s(5(NE s, VvINg

-Dle Nische ist moglich |

("the niche is possible!")

oktroyierte Melnungmj
opinion"

@D
3
SIMPX
@B
Gz
@ O QO
(= N - R mm
® @O @D @A @
T S I) D
daly Fernsehen mehr sein kann als oktroyierte Meinung
EX KOUS NN PIS VAINF VMFIN KOKOM ADJA NN S(

ﬂ Wilkes merken mdaﬁ

Wilkes, "that

realise,

‘The audience should realise, according to Uli ("the niche is there!") Wilkes, "that television can

be more than octroyed opinion".

no

96

SIRWIRIN) YURAI], HIDJ ¢ I0rdey))

5.2 PCFG-Parsing of TtiBa-D/Z

97

VROOT

o1
@D
o)

ke

Wilke
Nz s,
jSlrma):

ﬁll%

:
o O Ozt
S‘]

NN

ADJA

VAFIN ADJD

NN

(b) Highest Attachment (¢) Low Attachment Heuristics

Figure 5.8: Punctuation and Parentheses, Reattached

98 Chapter 5 PCFG Treebank Grammars

however, prevents a perfect attachment of quotation marks inside the paren-
thesis. Quotation marks are handled after all other punctuation. Brackets
are attached first to the lowestmost preceding/following node (being sure
shots), blocking a higher attachment of the double quotes at the start of the
parenthesis. The heuristic is not intelligent enough to handle the sequence of
balanced punctuation of different types enclosing the parenthesis: first, the
left bracket is attached lowestmost (the quotation mark being ignored) to
the following noun phrase (NX). The right bracket is assigned a new position
next, but cannot be reattached, because the exclamation mark blocks its way:
after the exclamation mark has been attached, the EN-ADD has become the
lowestmost possible attachment position of the rightmost bracket. When the
quotation marks are considered after no more punctuation marks have been
attached in the first stage, their linear position in the sentence does not allow
any other attachment than that shown in figure 5.8(c).

This is the first of a series of changes that augments treebank data, but
preserves the information available in the original data. When the added
information about attachment of punctuation is removed, the original data
resurfaces. In the next chapter, we will introduce a method that explores
similarly reversible changes in treebank data. Then, and now, we will use
evaluation via the metrics and the PCFG model previously introduced, to
assess the benefit of the changes for this kind of parsing. Evaluation is al-
ways performed on the original representation, i.e. it does not include a direct
estimate on the quality of transformations, but only via the effect of transfor-
mations on improved parsing. Accordingly, table 5.2 shows the performance
of three PCFG models derived from the treebanks without changes, and with
punctuation attached high and low.

‘ Punctuation H ignored ‘ attached high ‘ attached low ‘

Parseval Fj,, 80.03 83.15 83.48
Parseval F,,, 83.72 86.72 87.15
unparsed 0 1 0
grammar rules 2134 3132 3432
complete match || 20.57 % 22.24 % 21.55%

avgerage sent CB || 3.23 2.39 2.18
0CB 49.69 % 54.56 % 55.43 %
<2CB 68.99 % 74.34 % 76.07 %
perp 14.51 12.45 13.49

Table 5.2: Impact of Punctuation on Plain PCFG Parsing Performance

Despite the partial failure of both reattachment heuristics, table 5.2 shows

5.2 PCFG-Parsing of TtiBa-D/Z 99

that using and reattaching punctuation considerably boosts performance.
Lower attachment increases the weighted average of precision and recall both
labelled and unlabelled, does not lead to unparsed sentences, and has the low-
est crossing brackets (C'B) figures. As a downside, low attachment increases
the number of rules, because the types of rules applied high in a tree becomes
smaller. The lower reduction of cross-perplexity is probably also related to
the higher number of rules, while cross-perplexity is still lower than when
punctuation is ignored. The single rule VROOT — SIMPX $., e.g., which
describes the top of most main clauses with high attachment of punctuation,
is turned into many rules with low attachment of punctuation, where the full
stop is the final child of the main clause (SIMPX), and is not outside of it.
Table 5.3 shows rules from low attached training data with SIMPX as their
left-hand side which occur more than 100 times, plus corresponding rules
from high attached training data. Having those rules once with, and once

‘ H frequency of occurrence ‘

attachment strategy low highest
with trailing $. yes ‘ no yes ‘ no
| VROOT — SIMPX (§.) | 0]5801 [4871 278]

SIMPX — VF LK MF ($.) 1715 | 627 0] 2020
SIMPX — VF LK MF VC ($.) 1397 | 364 0] 1615
SIMPX — VF LK MF NF ($.) 694 68 0 30
SIMPX — §, C MF VC ($.) 0] 762 0 0
SIMPX — C MF VC ($.) 24 82 0| 1140
SIMPX — VF LK MF $, NF ($.) 33 4 0 695
overall types lhs = SIMPX 223 | 340 0 411
overall tokens lhs = SIMPX 6018 | 4345 0] 10363

Table 5.3: Main Clause Rule Frequencies vs. Attachment of Punctuation

without punctuation, of course yields more rule types overall than factoring
out the trailing $. into VROOT — SIMPX $. most of the time. The advan-
tage of ending a sequence of fields with a full stop rather than disconnecting
the full stop from that sequence is that you can assign distinct probabili-
ties for matrix clause field sequences, as opposed to e.g. coordinated field
sequences. In addition to the slightly better F' performance, we think that
this is a good reason for using low attachment of punctuation as the basis
for all our remaining experiments despite the increase in the number of rules.
The overall number of rule types does not increase as dramatically to twice
the original number as suggested by table 5.3 (where it is 12 low vs. 7 high,
from cells with zero frequencies). Instead, it grows to 563 from 411 types

100 Chapter 5 PCFG Treebank Grammars

for the highly affected rules with SIMPX as left-hand side, and to only 3432
from 3132 rule types overall (see table 5.2). This moderate increase is accom-
panied by better generalisation, exemplified by the 223 new low attachment
rules covering more of the treebank than the 340 unchanged rules (second
last row of columns two and three in table 5.3).

5.2.2 Secondary Edges and Co-Indexation

The information encoded in secondary edges is rather restricted and covers
relations that cannot be easily expressed by proper trees, even when co-
indexation is used to resolve the major part of crossing edges. Information
encoded via secondary edges includes the structure of proper names when it
deviates from constituent analyses, the internal dependency structure of large
verbal complexes (which usually follows a default rule), and relations that do
not hold between direct children of field nodes, i.e. either clause-external or
phrase-internal relations (see section 4.3.2). Secondary edges are ignored in
all our experiments. As a consequence, all information encoded in secondary
edges is neither annotated nor part of the evaluation in our experiments.

Co-indexation is mostly used to cope with free constituent order in Ger-
man. It can relate complements or adjuncts to their modifiers with a rather
small set of labels (with edge labels ending in -MOD), or to their other parts in
split-up coordinations (with edge labels ending in K; see table A.5 in the ap-
pendix). Co-indexation via edge labels is part of all experiments that include
edge labels, and otherwise not considered.

5.2.3 Train and Test Regimes

All experiments that we perform follow the standard setup where the data set
is split into data for training and data for testing. A training set is necessary
because the language model used for parsing is derived almost exclusively
from treebank data. The language model used for POS tagging takes advan-
tage of additional data which will be described below, and pre-processing
as described earlier in this chapter uses hand-crafted heuristics, which are
the only other sources of information on top of TiiBa-D/Z that determine
parsing results.

The training and testing regime should guarantee a faithful assessment
of parser performance, and will be more convincing with more test data.
Setting aside more test data conflicts with the goal of maximising the amount
of training data, however, which is desirable because treebank data is the
most important source of information for building the language model. Cross-
validation is a solution for maximising training data on the one hand, and

5.2 PCFG-Parsing of TtiBa-D/Z 101

reducing the risk of biased test data through the choice of too small, and
therefore unrepresentative samples. Cross-validation splits the data into n
subsets of similar size and performs n experiments that use each of the n parts
as test data once, and the remaining n — 1 parts as training data. Results
of all trials are averaged, where standard deviation shows if performance is
uniform over all data. Unfortunately, such a setup is prohibitively expensive
in our case, because repeating our search for more adequate representations
of treebank data mn times, and, equally importantly, parsing all sentences of
the treebank with a PCFG parser, costs several days instead of less than a
day.® We have instead settled on a single split of treebank data following the
division of the newspaper data into days. We perform our experiments on
the first release of TiiBa-D/Z, which consists of the five days of newspaper
data from May 3-7, 1999. Of these days, the last two have been annotated
first and have been revised most intensively afterwards. We have therefore
used them as test data since the beginning of our research. May 5 has been
added last and only partly, because at the time of publication of TiiBa-D/Z,
only part of it had been fully revised. We have opted against using every nth
sentence as training data, because we think that a realistic scenario of parsing
unseen data will more likely be based on training data from the same source
(here: newspaper) than on training data from the same text (here: newspaper
article).

We determine certain parameters during the course of experiments to
optimise performance, so that performance is geared towards the test data
we use in these tune experiments, and we cannot guarantee that we would
have arrived at the same settings for a different set of test data. In order to
assess the generality of optimisations, we tune the model on a tune test set
which is distinct from the final test set for the final evaluation of the model.
Final evaluation is only performed once for parameter settings selected via
experiments on tune data. The division of the whole of T{iBa-D/Z into a tune
and final data set, and of both sets into data used for training and testing
is shown in table 5.4. Tune test is included in final train data, so that not
the same model is evaluated on the final data set, which can be seen as a
disadvantage, but the amount of training data is increased by more than 40 %
for the final evaluation. The table shows that a rather high fraction of data
is set aside for testing. The split of the treebank into tune/final train/test
sections has been determined rather early during treebank annotation and
was meant to guarantee that enough data is available for testing. Although
the amount of data consequently available for constructing a model is rather
limited as a downside, we think that the advantages make up for this. First,

5This situation has only changed with the advent of BitPar at the end of our research.

102 Chapter 5 PCFG Treebank Grammars

May, | 3. 4, 5. | 6 [7]

sentences with up to 40 words

words 48607 50289 23765 | 50327 | 65868
sentences 3077 3090 1457 3067 4009
nodes 58505 60711 28503 | 60362 | 78721

tune data set

train test
words 122661 50327
sentences 7624 3067
nodes 147719 60 362
final data set
train test
words 172 988 65 868
sentences 10691 4009
nodes 208 081 78721

unrestricted length

words 53217 56492 26384 | 56422 | 73926
sentences 3170 3215 1511 3190 4174
nodes 63858 67850 31506 | 67480 | 87902

unrestricted final data set

train test
words 192515 73926
sentences 11086 4174
nodes 230 694 87902

Table 5.4: Division of TtiBa-D/Z into tune and final data sets

5.2 PCFG-Parsing of TtiBa-D/Z 103

larger amounts of test data yield more reliable evaluation, especially when
cross-validation is not an option. Second, we hope to establish a division
into train and test data that is easy to follow by others, so that results stay
comparable (e.g. Miiller, to appear; Veenstra € al., 2002, already follow the
same setup). We especially hope that with a new release of TiiBa-D/Z, the
division can be kept.

If not specified otherwise, all experiments are performed on sentences with
up to 40 words from the tune data set, and all frequency information is also
drawn from this set by default.

5.2.4 POS-Tagging and Parsing

Using a language model that is derived from training data that does not cover
all of the expected test data always raises the question of how to handle input
symbols that are unknown to the model, i.e. how we handle unknown words
with a treebank grammar obtained via maximum-likelihood estimation. A
standard method for handling unknown words is to define a frequency cut-
off, under which all words in the training data are handled like unknown
words in the test data, assuming that words that are unknown in test data
behave like low-frequency words in training data. Unknown words in test
data are consequently replaced by the same new symbol representing the
unknown words in the training data. This approach targets open word classes
like proper names, adjectives or full verbs which can be expected to behave
similar to other members of their class.

In most of our experiments we have observed that first applying a POS
tagger completely detached from parsing, as a preprocessing step, performs
better than letting the parser assign POS tags as preterminals, as part of the
parsing process. This is contrary to other experiments where POS tagging
is rather a by-product of parsing (Beil & al., 2002; Hinrichs and Trushkina,
2003), or where POS tags for words seen in training data are assigned dur-
ing parsing, and a POS tagger is only used as back-off (Collins, 1997) The
differences to our results seem to be related to peculiarities of the treebank
on which we perform our experiments (see section 8.4). As a consequence,
most of our experiments, including those that perform best, take POS tags
as input, which completely hide the word forms, so that the unknown words
problem becomes less significant, because POS tags describe classes of word
forms and are less numerous, and, most of all, form a closed class. Nonethe-
less, there are POS tags that do not appear in test data. The partitioning
of the data results in two tags not seen in the tune training set, describing
substituting possessive pronouns (PPOSS; e.g. meines ‘mine’) and imperative
auxiliary verbs (VAIMP; e.g. Sei ‘Be’). The next least frequent tag occurs

104 Chapter 5 PCFG Treebank Grammars

once in training data (the participle perfect of modal verbs VMPP; e.g. Er hat
gewollt/VMPP. ‘He has wanted.’).® All other POS tags occur twenty times or
more. It is unlikely that following the standard approach outlined above and
replacing VMPP in the training data, and VMPP plus VAIMP and PPOSS in test
data, will generalise well for parsing sentences containing these unknown in-
put symbols. Instead, we map the tags not seen in TtiBa-D/Z training data
to other tags for all input sentences, taking advantage of the hierarchical
structure of the STTS tag set used in TtiBa-D/Z (Schiller & al., 1995, and
appendix A.1). All words marked as imperative auxiliaries are retagged as
the more frequent class of imperative full verbs (VVIMP), and those tagged as
substituting possessive pronouns are assigned the proper noun tag (NE). The
former decision rests on the intuition that all imperative verbs behave simi-
larly. The latter decision may be less intuitive, but genitive proper names are
expected to show a behaviour that is distributionally similar to substituting
possessive pronouns (noun phrases that can express possession consisting of
a single word without an article). Both assumptions cannot be completely
correct (otherwise there would not have been any motivation for the replaced
tags in the first place) but are considered an acceptable solution for backing
up from unknown input symbols for the task of handling unrestricted text.
Prior POS tagging is performed with the tnt tagger, which uses a second-
order Markov model, and a suffix trie for guessing unknown words (Brants,
2000).” Table 5.5 shows results from experiments that were carried out to
determine the usefulness of large but less closely related additional manually
tagged texts that were available for our experiments. The table shows two ad-
ditional resources called DEREKO and Tiger. DEREKO is a corpus of about
360 000 manually POS-tagged words that partly come from the same newspa-
per as does TiiBa-D/Z (183 040 words from the taz of September 2-17, 1986;
TiiBa-D/Z has been originally bootstrapped from another part of DEREKO
data); otherwise texts mostly come from novels (see Ule and Miiller, 2004).
The other resource is the Tiger treebank consisting of about 700 000 words of
newspaper data that also include POS tags (although from the Frankfurter
Rundschau instead of the taz, Brants & al., 2002). Both use the STTS
tagset, with minor deviations from Schiller & al. (1995). TiiBa-D/Z departs
from the standard and changes the POS tag PAV to PROP, with identical be-
haviour. Tiger also changes this tag, but deviates also in other respects from
the STTS. First, the tag PIDAT is dropped, and PIAT is used instead. Second,
prepositions that modify numerals are tagged ADV. Third, a new tag NNE is

SIncluding additional external POS training data as outlined below changes these num-
bers to 5/2/3 for PPOS/VAIMP /VMPP, so that the problem stays the same.
"We use tnt version 2.2c¢ with default settings.

5.2 PCFG-Parsing of TtiBa-D/Z 105

test on full TiiBa-D/Z, train on:

Tiger X X
DEREKO taz 1986 X

DEREKO w/o TZ X X
accuracy % 94.8 1 95.1 | 95.3 | 95.5
unknown words % 11 16 | 15 9

test on TiiBa-D/Z via 10-fold CV, train on:

rest of TiiBa-D/Z X X X X
Tiger X b X
DEREKO taz 1986 X
DEREKO w/o TZ X
accuracy % 95.7 1 96.0 | 96.3 | 96.4
unknown words % 9 12 9 9

Table 5.5: POS Tagging Performance Depending on Training Material

introduced to partly replace NN for compounds of proper names and common
nouns. Last, the STTS tag PAV is renamed to PROAV in a similar way as in
TiiBa-D/Z (Smith, 2003). The last two changes can easily be undone, which
is what we do (mapping the Tiger version to the TiiBa-D/Z version). The
first two changes cannot be undone without human intervention, so that we
choose to keep them, resulting unfortunately in slightly different behaviour
of the tags across our training data. Another normalisation we perform on
the additional Tiger training data is to replace two-character double quotes
/7¢|”’$/ with single-character double quotes /"/, which is the preferred rep-
resentation in TiBa-D/Z.

Two sets of experiments have been performed to evaluate the usefulness
of the additional data. First, all of TtiBa-D/Z has been set aside as test
data, and the tagger was trained on combinations of Tiger and parts of
DEREKO material, which was divided into a larger and a smaller set. The
larger set (DEREKO w/o TZ) only excludes those days of newspaper data
that constitute TiiBa-D/Z. The smaller set (DEREKO taz 1986) is a subset
of the larger set restricted to only newspaper data. The upper part of table 5.5
shows that similar data (DEREKO taz 1986) seems to be more important
than large amounts of slightly different data (Tiger), while a combination of
both performs best. Having seen the importance of similar data, we show in
the lower half of the table that best results are indeed achieved when the
training data most closely resembles test data: training the tagger on nine
tenths of the treebank (240000 words) outperforms Tiger as training data,
despite Tiger’s size. Best performance of slightly over 96 % is similar to what

106 Chapter 5 PCFG Treebank Grammars

Brants (2000) reports on negra (the predecessor of Tiger).

We conclude from these experiments that as much data as possible should
be used from TiiBa-D/Z, in combination with Tiger and all DEREKO ma-
terial. This is the setup that we will follow in all our experiments involving
POS tagging as an independent preprocessing step. As we do not use ten-fold
cross-validation for our parsing experiments but a fix split between (tune or
final) train and test data, we can only include data from TiBa-D/Z for tag-
ging the test set from the respective training set, where we always include
sentences of unrestricted length. When we use treebank data to produce a
syntactic model, we try to build it from training data that is as similar as
possible to the test data on which its performance will be evaluated. As
a consequence, we train a first tnt POS model on additional data and tag
TiiBa-D/Z training data with that first model. We train a second POS model
on the additional data plus the TiiBa-D/Z train data, and tag TtuBa-D/Z
test data with that second model. The syntactic model that is derived from
the automatically POS-tagged TiiBa-D/Z training data will then find similar
regularities in the (possibly erroneous) POS tags in the training data as in
the POS tags of the test data, so that it can try to reproduce the correct syn-
tactic annotation on similar sequences of POS tags in test data as the model
has captured in train data. Table 5.6 shows performance on the previously
established data sets accordingly, where the train part is tagged with a POS
model derived from Tiger and DEREKO without TiBa-D/Z, and the test
part with a model additionally based on the train part. These POS tags are
the basis of all our parsing experiments that are based on POS tags alone.
We would like to note that the final test set seems to be harder to tag than all
other data. It seems to be even more dissimilar from the remaining treebank
data than the external data is from the train sets.

‘ H train ‘ test ‘
tune data set 95.9% | 96.0 %
final data set 95.8% | 95.6 %

unrestricted final data set || 95.8% | 95.5%

Table 5.6: POS Tagging Accuracy for Parsing

We think that this setup is a good compromise for the demands on train-
ing data.. First, according to the graph produced by Brants (1999) for negra
(Skut € al., 1998), more training data seems to increase performance mainly
due to the reduction of the more difficult guesses on unknown words. Second,
it is very important to build a language model from data that is very similar
to the data on which the language model should be applied (Gildea, 2001).

5.3 Conclusion 107

Some experiments are also carried out on words as input for determining
candidates for closed-class lexicalisation (see section 8.3), raising again the
unknown word problem. The results have been produced by replacing infre-
quent unknown words (encountered three times or less) with a special symbol
as outlined above. For these experiments, smoothing has not been switched
off explicitly, so that results are obtained via linear interpolation as defined
in the implementation of lopar.

Performing POS tagging as a step that comes prior to parsing and that is
completely separate does not prevent handling of unknown words from taking
place, of course. It just moves it completely out of the scope of parsing,
and into the scope of a specialised preprocessor, which does a very good
job at determining the morphosyntactic class of unknown words. We think
that this decision is justified for two reasons. First, because it allows for
easier interpretation of the interaction between the input of the parser and
its output, which will become rather important when we try to interpret
consequences of treebank transformations. Second, because the level of POS
tags seem to be a useful layer of abstraction in TiBa-D/Z, judged by its
effect on parsing performance (see section 8.4.5).

Edges that connect words with non-terminal nodes may carry HD labels.
in order to preserve this information and not to extend the set of POS tags,
we add non-terminal nodes above all words that have this label, and label
these nodes with the POS tags and a trailing +HD. This transformation is
performed in all our experiments, even when edge labels are not subject to
evaluation, in order to keep the overall number of nodes constant, which is
necessary to keep some of the evaluation metrics comparable. The additional
nodes are always transformed back into word edge labels prior to evaluation.

5.3 Conclusion

PCFGs offer efficient means to determine most likely parses, which makes
them attractive for assigning syntactic structure to natural language despite
their limited ability to take context into account. Even though these limi-
tations may prevent them from reaching state-of-the-art performance, their
simplicity makes them interesting starting points for more powerful methods
that may use them simply to filter out very unlikely parses, or to add exactly
only those features that exceed their power.

Treebanks provide syntactic analyses, which are normally encoded in
tree-like structures. These structures often closely resemble proper trees as-
signed to strings by PCFGs. This resemblance gives an easy way to derive
context-free grammars along with rule probabilities, arriving at PCFG tree-

108 Chapter 5 PCFG Treebank Grammars

bank grammars. The ease of this approach is questioned by the fact that
the choice of graphs to represent the analyses has an impact on how PCFGs
capture the probabilities of larger configurations of nodes in treebanks. Con-
sequently, syntactic analyses that are meant to express the same linguistic
observation but that are encoded differently do not necessarily find their way
into PCFG models in the same way.

This chapter has shown how syntactic annotation in treebanks can be
changed manually in order to improve parsing with language models of re-
stricted power, by modifying edges or node labels and by evaluating the im-
pact of these changes. Our goal is to keep the amount of manually performed
transformations minimal, making as much information as possible that is
available in the treebank also available for PCFGs. In this chapter, we have
concentrated on information that is initially outside the scope of context-free
language models, like unattached punctuation, and we have shown how we
move it inside the scope of the models. The following chapters will focus on
alternative ways to represent the information already within reach of these
restricted models, replacing manual optimisations we have employed so far
with automatic transformations.

Chapter 6
Related Research

Differences in the representations of syntactic analyses have an impact on
the way they are perceived by human users and by machines. The same
analyses can be represented in different ways, so that they become more useful
for a given purpose. There is a line of research that focuses on the impact
of representational issues on the performance of Probabilistic Context-Free
Grammars for mainly two reasons. First, Context-Free Grammars provide
a rather simple framework, so that it is possible to understand the effect
of changes in the representation on the behaviour of the grammar. Second,
the quality of annotation produced by parsers that rely on the simplifying
assumptions of PCFGs does not seem to have reached its peak yet, so that
optimisations of annotation quality are accompanied by efficient execution.
In this chapter, we focus on related research that either modifies the structure
of PCFGs as a goal in itself, or as a means to improve parser performance. We
also mention most closely related approaches to syntactic parsing of German.

6.1 Algorithmic Transformations

Some researchers try to overcome the limitations of PCFGs by systematically
changing the structure of the grammar model without human intervention.
They introduce information about parents into the node labels or perform an
exhaustive search over all possible distinctions of node labels in a grammar
that is generated from a treebank, or they define an objective function that
guides changes in grammar structure in unsupervised training.

109

110 Chapter 6 Related Research

Johnson (1998)

Johnson (1998) examines the representations of syntactic analyses in the
Penn Treebank and notes that the likelihood estimates of the syntactic ana-
lyses according to a plain PCFG treebank grammar differ from the corre-
sponding frequencies obtained from training data. He motivates different
changes in a treebank that are likely to produce more faithful estimates,
including a reduction in the number of nodes, so that a PCFG’s insensitiv-
ity to non-local dependencies loses impact, and also including an increase in
the number of node labels, which incorporate more contextual information.
He gives linguistically inspired variants of the original analyses according
to these two strategies and compares the performance of the correspond-
ing PCFG treebank grammars by means of a simple corpus containing two
different forms of PP-attachment in what he calls Chomsky adjunct represen-
tation, in a flattened tree representation, and in the original Penn Treebank
representation. He finally examines parent annotation, where the label of the
mother node is appended to the label of each node in the treebank.

It turns out that for all different representations, the PCFG estimate
differs from the observed frequencies for almost all ratios of high vs. low PP-
attachment in his corpus. The same transformations are finally applied to
the Penn Treebank and the resulting PCFG treebank grammar is evaluated
against held-out test data. In this more realistic scenario the parent annota-
tion outperforms all other transformations in terms of precision and recall. A
more detailed analysis of the benefit of parent annotation shows that split-
ting the high-frequent noun phrase and sentential node labels accounts for
a major part of the improvement in performance. Johnson points out that
“what makes a tree representation a ‘good choice’ for PCFG modelling seems
to be quite different to what makes it a good choice for a representation of
a linguistic theory” (p. 630). Instead of “considerations of parsimony” that
influence the choice of representations in linguistic theories, a PCFG is faced
with a trade-off between bias and variance, i.e. when more detailed node la-
bels reduce the bias that is inherent in the model, the variance increases at
the same time, because less training data is available per type of rule.

Belz (2002b)

Belz (2002b) calls the information that could be relevant to estimate PCFG
production probabilities more reliably the local structural context. She deter-
mines whether information about this context should be included into the
node label by searching the space of grammars that is defined by a certain
mazimally split Grammar (Max Grammar) and all grammars that can be

6.1 Algorithmic Transformations 111

derived from that grammar by merging node labels. Splitting in this context
means using two or more distinct node labels instead of a single original node
label, and merging accordingly means that a single node label replaces two
or more previously distinct node labels in a grammar.

The search for a better grammar is guided by an objective function that
maximises Fj,, for parsing the Penn Treebank with the grammar. Starting
from the Max Grammar and proceeding by merging allows for an efficient
Partition Search instead of a standard cycle involving generating and eval-
uating a PCFG treebank grammar for each attempt to merge nodes, which
would become prohibitively costly. A beam search is used that maintains n
best partitions of the node set of the Max Grammar and that replaces b of
them by randomly selected partitions that include more merges and that per-
form better according to the objective function. Grammar size is minimised
at the same time, because increasing numbers of merges correspond to fewer
rules. Beam search is employed instead of exhaustive search because the size
of the search space grows exponentially with the number of different node
labels ¢ in the Max Grammar. Complexity of the given algorithm is only
O(nbi).

The best performing Max Grammar in the experiments reported by Belz
(2002b) starts with node labels that are suffixed by the node label of their
parent node in the treebank, where evaluation tests the performance of the
annotation of noun phrases. Results on full parsing of the same data set show
similar improvements (Belz, 2002a). It should be noted that only modifica-
tions of the grammar that are given a priori via the definition of the Max
Grammar can be considered. While parent annotation proves to be useful,
the benefit of other information such as more distant node labels or lexical
information is not tested.

Bockhorst and Craven (2001)

Bockhorst and Craven (2001) optimise a grammar that parses sequences of
nucleotides in ribonucleic acid (RNA). Their goal is to recognise a class of
RNA sequences that terminate an important part of the process of building
a gene from a protein. These so-called terminators are described by a PCFG
that has been designed from features proposed in prior research. Typically,
terminators assume the shape of a loop, so that the bases at the end of the
sequence map to complementary bases earlier in the sequence in reverse or-
der. Generally, this kind of dependency can be straightforwardly modelled
by PCFGs. The parameters of a corresponding PCFG are determined via
unsupervised learning with the inside-outside algorithm (i.e. an expectation
maximisation algorithm). Learning is carried out on a corpus of RNA se-

112 Chapter 6 Related Research

quences that are known or proposed to be terminators.

Bockhorst and Craven address a problem of this approach, which is
the fact that when the initial structure of the grammar is deficient, then
parametrisation cannot arrive at the best performance that is possible for
more appropriate PCFG models. They define Grammar Refinement, which
spots node labels in the grammar that perform the function of two or more
node labels in a hypothesised optimal grammar. Grammar Refinement con-
sists of a Refinement Operator and a Refinement Heuristics. The operator
applies to the grammar and replaces a symbol on the right-hand side of a
given production with a new symbol. At the same time, it duplicates all pro-
ductions that have the replaced symbol on their left-hand sides, where the
duplicates receive the new symbol as left-hand side. The heuristics deter-
mines to which node the operator should be applied. The choice is based on
the parameter estimates of the PCFG model according to the inside-outside
algorithm. The heuristics compares the distribution of productions of a node
label with the distribution of its productions when it is also part of the right-
hand side of a specific rule. A x? statistical test is used to compare these
distributions as well as the Kullback-Leibler divergence.

Experiments are performed on a corpus of 142 positive examples and 125
negative examples that all have a length of 50 symbols (i.e. bases). Four differ-
ent grammars are compared on the task of identifying terminators, including
two baselines and Grammar Refinement with both methods to compare dis-
tributions. The first baseline is the original grammar, and the second baseline
is a grammar where the Refinement Operator is applied randomly. Changes
that are directed instead of random outperform both baselines, where using
the x? test to determine the kind of transformation performs better than
when Kullback-Leibler divergence is used. No overfitting of the data is ob-
served up to the maximum of 25 newly added node labels. Some of the
changes introduced agree with known features of terminators that were not
considered in the initial grammar.

6.2 Tuning a Treebank to a Parser

Few parsers operate directly on treebank data, so that transformations of
the data are inevitable. Many attempts to syntactic parsing further specialise
their conditioning on the specific properties of a treebank in order to improve
performance (Charniak, 1999, p. 9), and often additional transformations
are performed on top of those that are strictly necessary. Collins (1999), e.g.,
systematically relabels non-recursive noun phrases, because this modification
eliminates many analyses preferred by PCFGs yet never seen in the training

6.2 Tuning a Treebank to a Parser 113

data (p. 211). Two attempts to explore systematically such transformations
show best the influence of the chosen representation on parser performance.

Klein and Manning (2003b)

Klein and Manning (2003b) show that relying simply on a plain PCFG tree-
bank grammar in combination with prior transformations of the treebank
can improve performance further than previously assumed. Prior to them, it
was common wisdom that poor performance of such an approach was due
to limited access to lexical information, and that such access could only be
granted by more complex conditioning of the probabilistic models. They ar-
gue that most useful information for parsing does not come from bilexical
dependencies between two lexical items, but that resorting to monolezical
dependencies between a lexical head and some surrounding structure works
almost as well. Probabilities of monolexical dependencies require less data
for reliable estimation, and when the set of lexical items to be considered for
inclusion into the model is further reduced to high-frequent function words,
then the transformations can even be controlled and interpreted by inspec-
tion.

Consequently, several linguistically motivated changes to the structure of
the Penn Treebank are performed and evaluated in a “partially manual hill-
climb”. Changes mainly attack well-known peculiarities of the treebank such
as the rather flat structure, or overly general POS tags for punctuation and
auxiliary verbs, but they also introduce new distinctions like splitting verb
phrase labels to mark those with finite head verbs (raising performance by
2.7% Fiap). Other transformations mark node labels dominating a unary pro-
duction (further distinguishing unary determiners and unary adverbs), add
parent annotation to POS tags, and further distinguish the general POS tags
for six different types of prepositions, for the special auxiliaries be and have,
the conjunctions but and &/, and the percent sign. Functional annotation is
added for temporal noun phrases, and clauses are marked in raising and con-
trol constructions. Possessive noun phrases receive distinct labels, and finally,
attachment height is encoded by distinguishing non-recursive noun phrases,
those that contain some verb (of a modifying relative clause), or that have
some right-most noun phrase descendant.

All these changes lead to a performance that is between early and best
performing lexicalised parsers. The benefit of these transformations is es-
pecially significant given that they “could presumably be used to benefit
lexicalised parsers as well”. It would be desirable, though, to automate the
process of finding the parts of a treebank that should be modified, because
considerable effort is necessary to determine them by manual hill-climb.

114 Chapter 6 Related Research

Schiehlen (2004)

Schiehlen (2004) attacks a different parsing problem with a similar motiva-
tion as Klein and Manning (2003b). He shows that a German corpus (the
negra treebank) can also be optimised by close inspection of the properties
of the language, and by considering the encoding of the analyses in the tree-
bank. He evaluates the performance of a PCFG treebank grammar derived
from the transformed corpus by Parseval and dependency metrics, and uses
the latter to direct optimisations. Transformations of the treebank often show
opposite effects on performance according to the two metrics.

Some changes to the treebank are directly comparable to those applied
by Klein and Manning (2003b) and include splits of auxiliary verb POS tags,
adding functional information to non-terminal node labels, or marking verb
phrases for finite or infinitival head verbs. Other modifications are not as
successful as they proved to be for Klein and Manning, such as attempts to
generalise rules either by markovisation (i.e. splitting right-hand sides of rules
into Markov chains) or by merging certain labels of nodes (grouping coordina-
tions, or distinguishing pre-terminals from non-terminals, or multi-word from
single-word lexemes). Some other modifications target specific properties of
German, such as percolating case information from the node that covers the
full argument down to the level of POS tags, which gives the highest individ-
ual performance boost. Still other modifications are closely connected to the
encoding of syntactic annotation in negra, such as marking sentential nodes
as relative clauses, which standardly receive the same label, or by splitting
collections of subsequent sentential trees that were erroneously concatenated
under a single root by the annotators. Finally, external information is added
to the treebank in the shape of subcategorisation information and a named
entity recogniser.

The majority of transformations improves performance over the baseline
individually, and shows greater improvements in combination. Performance
on the test set is better than that of a lexicalised parser (Dubey and Keller,
2003) on a very similar test set even when only few of the above transforma-
tions are applied. The effect of transformations on a German data set is thus
noticeable, while the effort of Klein and Manning (2003b) has to be repeated
in order to find the most useful changes.

6.3 Parsing German 115

6.3 Parsing German

Several treebanks exist for German,! and roughly as many times these data
sets have been used to produce and evaluate syntactic parsers. Unfortunately,
even results for the same treebank are rarely comparable, because no stan-
dard division into development and test sets seems to have emerged for them.
We therefore only briefly introduce those approaches also using context-free
grammars for full parsing, and do not compare the absolute figures of Par-
seval or dependency evaluation between the approaches. We know of three
attempts to perform or support full syntactic parsing of German with PCFGs
including Schiehlen (2004) above. Further attempts exist to parse German
with other models such as memory-based parsing or discontinuous phrase
structure grammar (Kiibler, 2002; Plaehn, 1999), or where PCFGs are em-
ployed to a different end, e.g. to determine subcategorisation frames or to
assign POS tags that are morphologically more detailed (Beil & al., 1999;
Trushkina and Hinrichs, 2004).

Dubey and Keller (2003)

Dubey and Keller (2003) re-implement the parser presented by Collins (1999)
and evaluate it on a data set that is very similar to the one used by Schiehlen
(2004). They are the first to perform full syntactic analysis via probabilistic
parsing for German. They point out that peculiarities of German such as free
constituent order, and of the negra treebank require appropriate changes in
the grammar model. Some of the choices specific to the treebank are also
pointed out by Schiehlen (2004), such as the general label for main, subordi-
nate, and relative clauses. Dubey and Keller (2003) try to find out whether
successful models developed for English and the Penn Treebank are equally
applicable to their data, and specifically, whether lexicalisation provides the
same benefit for German as it does for English.

They perform two sets of experiments and evaluate success via Parseval
Fiup. Parsing is always performed on previously POS-tagged text in order to
factor out differences caused by smoothing probabilities of lexical items. They
first measure performance of a plain PCFG treebank grammar and compare
it with straightforward head-lexicalisation (Carroll and Rooth, 1998) and
with a model similar to Collins (1999) that also markovises the right-hand
sides of rules (Collins, 1997). They restrict the latter model to use only de-
pendencies between dominating heads (called head-head dependencies), and
not between neighbouring heads (sister-head dependencies). Much to their

!Tiger, negra, TiiBa-D/S and TiiBa-D/Z have been introduced in chapter 4.

116 Chapter 6 Related Research

surprise, both lexicalised models perform worse than the unlexicalised base-
line. This observation still holds when additional information in the form of
function labels is added to the node labels. Rather flat learning curves show
that this behaviour is not caused by sparse data. Instead, a second set of ex-
periments shows that it is caused by differences in the encoding of syntactic
analyses between the Penn Treebank, for which the parsers were originally
developed, and negra. In negra, the nominal part of a prepositional phrase is
marked by edge labels, and not by an additional phrasal node. Incorporat-
ing conditioning on neighbouring heads into the probabilistic model boosts
performance considerably.

Just as a treebank can be tuned to a PCFG parser, a parser can be tuned
to a treebank. In fact, it seems to be necessary to tune a parser in order to
achieve best performance. The space of possible extensions to conditionings
of rule expansions is vast, so that intuition about the peculiarities of a lan-
guage, and more specifically of a treebank, have to restrict this space in order
to allow parameter estimation in the given framework.

Frank & al. (2003)

Frank & al. (2003) filter the input of a constraint-based HPSG parser by a
PCFG that annotates topological fields. Their goal is to improve through-
put and robustness of the constraint-based parser that delivers detailed and
precise analyses. In addition to enhancing efficiency, they also try to take
advantage of the probabilistic verdicts on the quality of alternative parses
licensed by the constraint-based parser to rank the otherwise equivalent ana-
lyses.

Obviously, the compatibility of the analyses of both parsers is a prerequi-
site to their combination. Filtering via a topological field parser seems to be
especially suitable, because topological fields provide an underspecified and
theory-neutral description of full syntactic analyses, and can be determined
efficiently and reliably (Becker and Frank, 2002; Veenstra € al., 2002). The
constraint-based parser is directed via priorities assigned to edges considered
for parses depending on their compatibility with given bracketings. Edges
producing crossing brackets, e.g., are penalised, while rewards or penalties
can be specified for any matching constraints. These rewards and penalties
are changed from their default values when the topological field parser has
high confidence in a parse. Confidence is determined from the tree entropy
of the corresponding parse according to the PCFG, and from an expected
accuracy determined from average precision per label type on separate train
and test data. The combination of both parsers is evaluated in terms of cov-
erage and speed relative to the constraint-based parser alone. The speed is

6.4 Conclusion 117

consistently doubled and reaches its peak when only topological field struc-
ture with low entropy or very high expected accuracy is considered. Filtering
by topological fields outperforms similar filtering by chunk bracketings.

Frank & al. (2003) show the usefulness of PCFG models as pre-processors
for more powerful but less efficient parsers. The success of PCFG models
on annotating clause structure in terms of topological fields is an essential
prerequisite to these results, as well as the compatibility of topological fields
with other kinds of analyses.

6.4 Conclusion

Syntactic parsing with plain PCFGs is a current research topic and shows
considerable success in supporting less efficient parsing methods, and in terms
of absolute performance, where it was considered to have no chance of reach-
ing performance levels of more sophisticated approaches to probabilistic pars-
ing until recently. Most of this research focuses on the deficiencies of PCFGs
in their ability to model relevant context and determines appropriate changes
in the representation of syntactic analyses found in treebanks. Decorating
node labels with additional information seems to be the method of choice,
as opposed to introducing or removing nodes and edges, which is performed
mainly when coverage is an issue and right-hand sides of rules are broken up
into Markov chains. Changes guided by close inspection of treebank analyses
are most successful but also most costly. The insight that representations of
syntactic analyses found in treebanks are not necessarily optimal for PCFG
parsing, and that equivalent representations can be found that are more ap-
propriate for this task is a recurring idea in the research mentioned here.

Part 111

Treebank Refinement

119

Chapter 7

Including Local Context into
Nonterminals

Context-free grammars are in widespread use, because there are algorithms
that allow calculation of all parses in at most cubic time relative to the length
of the sentence, and much less on average for calculating only a best parse
for probabilistic context-free grammars (Klein and Manning, 2003a). Despite
their simplicity, they are capable of modelling recursiveness, which is vital for
processing natural language, where embedding is theoretically unbounded. At
the same time, it is clear that natural language has phenomena that exceed
the descriptive power of context-free grammars, most prominently cross-serial
dependencies.

Our focus is on syntactic parsing, performed by learning from a treebank.
Reading a probabilistic context-free grammar directly off a treebank (Char-
niak, 1996) has more often than not resulted in poor parsing results (Corazza
¢ al., 2004; Dubey and Keller, 2003). In fact, such treebank grammars often
serve as a baseline, because they can be easily obtained and applied using new
data and standard algorithms. Their weakness has usually been attributed
to the inability of context-free grammars to model context adequately. A
line of research adding sophisticated extensions to CFGs has led to the best
performing parsers to date, mainly adding lexical and dependency informa-
tion not captured well in the node labels of the underlying treebank (Collins,
1999).

Parsers based on context-free grammars, but extended to handle lexical
dependencies, and thus departing from the rules given in treebank annota-
tion, have proven to be very successful. It is unclear, though, to what extent
these extended models exceed descriptive power of CFGs. The limitations of
CFGs with respect to their ability to model context are usually especially
severe in combination with certain representations of context in treebank an-

121

122 Chapter 7 Including Local Context into Nonterminals

notation of syntactic phenomena. Choosing an annotation scheme has strong
impact on their performance (see section 5.1), but the annotation scheme
of a treebank is primarily chosen to let linguists encode and interpret syn-
tactic analyses. Human labour performing the annotation is costly, so that
also practical considerations will have an influence on choosing an annotation
scheme for a treebank.

The annotation scheme of a manually annotated treebank will therefore
be just complex enough to allow encoding of the desired analyses. Redun-
dancy will be avoided, because human annotators should be faced with the
minimal set of decisions, avoiding inconsistencies caused by slips of the pen,
or lack of attention, and last but not least redundancy will be avoided in or-
der to save labour. Trees will be chosen to look like the trees commonly used
to describe linguistic analyses. The stylebook that encodes the interpretation
of the annotation will be present in the users’ minds, and it will usually be
necessary to read it in conjunction with the annotation in order to under-
stand the annotators’ decisions. This means that a probabilistic context-free
grammar, which only predicts a node’s expansion from its label, has no access
to this information. In TiiBa-D/Z’s representation of German, e.g., a noun
phrase in the complementiser field is represented by the same node label as
a noun phrase in the middle field. Expansion probabilities differ once you
know about the larger context, however, which will not surprise a human
user looking at the tree in total.

The weakness of a PCFG is simple to paraphrase. It is the weakness of
node labels to distinguish expansion probabilities properly when used in dif-
ferent broader contexts. A number of questions arise when trying to put this
paraphrase into use to improve the performance of a PCFG. These questions
will be discussed in this chapter: In which way are context-free grammars
limited when they describe natural language syntax (section 7.1)? Which
information should be included into a node label (section 7.2)7 How can
the difference between expected and observed behaviour of a node label be
assessed (section 7.3)7 When does the increase in grammar detail have nega-
tive impact on performance (section 7.4)? Simply adding information about
the parent node label to each node in the treebank has proven remarkably
efficient and will serve as a comparison in conclusion (section 7.5).

7.1 More Context in Context-Free Grammars

Context-Free Grammars have their name from limitations in carrying in-
formation through the nodes of a structural analysis. They capture relations
between immediately dominating nodes and between sister nodes in (context-

7.1 More Context in Context-Free Grammars 123

free) production rules. These rules establish links between the sister nodes
that are given in their right-hand sides, and between these sisters and their
common parent given in the left-hand side of each rule. Relations to grand-
children (of a left-hand side) or grand-parents (of a symbol in a right-hand
side) cannot be stated directly in a single rule.

These relations can only be stated by adding new non-terminals for this
purpose (see figure 7.1). If a direct connection needs to be drawn between
A and its grand-children C, D, E, this can be accomplished by assigning B
a new unique label when it is part of a right-hand side of a rule with A as
left-hand side (we use the new node label B-A). As a consequence, each tree
fragment as shown in figure 7.1(a) is rewritten as shown in figure 7.1(b).
When we express tree fragments as rules, then the context which determines
the application of the context-free rule B-A — C D E is now extended to
include B’s parent (see the corresponding rules below the tree fragments in
figure 7.1). The name Context-Free Grammars is thus misleading insofar as

A A A-S
I | |
... B ... B-A ... B-A
C D E C D E C-B D-B E-B
A — ...B... A — ...BA... AS — ... B-A..
B — CDE B-A — CDE B-A — C-BD-BE-B
(a) plain node labels (b) selective extension (c) parent annotation

Figure 7.1: Adding Local Context via New Node Labels

it does not mean that context cannot be modelled at all. [t means instead
that all context that is relevant for the expansion of a non-terminal symbol
has to be expressed in the choice of the symbol. Parent annotation introduces
this kind of information for all node labels (see figure 7.1(c), assuming A is
dominated by S).

As each non-terminal node is the only link between the inside below it
and the outside above it, and the number of different non-terminal nodes
that encode links is finite, there can only be a finite number of links passing
through each node. The same is true for links between the elements in the
smallest subtrees of two levels, which correspond to the rules of a CFG. There
is only a finite set of these rules, too, so that in summary, there is only a
finite number of types of dependencies that a CFG can encode between the

124 Chapter 7 Including Local Context into Nonterminals

nodes in trees of any size. If the number of newly introduced nodes were not
finite, then the grammar would achieve more than context-free power (Grune
and Jacobs, 1990, p. 45). It is in this sense that CFGs have limited expressive
power for structural descriptions. Note that the restricted number of types
of dependencies does not necessarily limit the number of tuples that form a
dependency. Certain types of dependencies can be repeated an unrestricted
number of times, like that of direct adjacency of two terminal symbols, or
between terminal symbols that are separated by a sequence of terminal sym-
bols that can be derived from a fix sequence of non-terminal symbols (see
figure 7.2).! In the remainder of this section we try to analyse in which way

Gregular = (N = 57 Gembed = (N = Sa
S =S5, S =S5,
T = {a,b}, 7 ={a,b},
R ={(S — abS), (S — ab)}) R = {(S — aSb), (S — ab)})
L(Gregular> = {(ab)n‘n S N} L(Gembed) = {anbn|n S N}
I O N I
a b a b a b a a a b b b

(a) dependencies between adjacent termi- (b) fix sequence of intervening non-
nal symbols terminal symbols derives string that sep-
arates dependent terminal symbols

Figure 7.2: Unlimited Number of Dependents in CFGs

renaming nodes in CFGs, i.e. enumerating certain dependencies, is more re-
stricted than solutions available in a more powerful grammar formalism that
can describe these dependencies generically.

7.1.1 More Context Required

Cross-serial dependencies are a structural configuration that is different from
both types of dependencies shown in figure 7.2. A cross-serial dependency
consists of tuples of elements that are connected, where all first elements
of all tuples occur first, and then the second elements of all tuples follow
in the same order, and then the third elements, and so on. A cross-serial

1GTegulW is right-linear and therefore regular.

7.1 More Context in Context-Free Grammars 125

dependency consisting of n tuples of words, a; and b;, where all a; precede all
b;, and both are in the same order, thus is Log = {ajasas ... a,b1bsbs ... by}
Cross-serial dependencies do not occur in English, but they are necessary to
describe dependencies between words in sentences for some languages that
have a less restricted word order.

Dutch is such a language. The Dutch sentence Jan Piet Marie zag helpen
zwemmen (‘Jan saw Piet help Marie swim’), e.g., has the form ajasagb;bebs,
whereas its English translation groups the pairs as a;bjasbyasbs. Figure 7.3
shows the syntactic dependencies between the words (cf. Joshi, 1985). On the

Jan saw Piet help Marie swim Jan Piet Marie zag helpen zwemmen

(a) regular dependencies in English (b) cross-serial dependencies in Dutch
Figure 7.3: Dependencies between Pairs of Words

left-hand side it shows the right-branching structure of English, which can
obviously be described by the rather simple context-free grammar G,eguiar
given in figure 7.2(a), because each pair of dependents consists of adjacent
terminal nodes. Figure 7.3(b) gives an analysis of the dependencies between
the pairs of elements in the Dutch sentence. There is no obvious context-free
rendering of this analysis, because the terminal symbols are neither adjacent,
nor can the intervening non-terminals in such a kind of sentence be derived
from a fix sequence of non-terminal symbols without losing any dependencies.
The crossing edges in the graphical representation highlight that a model with
more descriptive power is required.

We see that dependencies connecting pairs of words may be much easier
to describe than in the case of cross-serial dependencies, when we look at
our English translation, where they form the regular language L(Geguiar)-
Dependencies may be much more difficult to express, too, e.g. when all words
may occur in any order. An example for such a language would be

Lfree = {w|w € {a,b, c}* A count(a) = count(b) = count(c)}

As complete freedom of word order does not seem to be a prevalent feature of
natural language, we are less interested in modelling it, as this may result in
an unnecessarily complex model (example and reasoning follows Joshi, 1985).

In order to capture cross-serial dependencies, we need a grammar model
that is slightly more powerful than Context-Free Grammars, like Tree Adjoin-
ing Grammars (TAGs), which are mildly context-sensitive. They allow mod-
elling Les (and of course Lyeguiar), but not Ly,... TAGs use a finite set of so-

126 Chapter 7 Including Local Context into Nonterminals

called elementary trees to specify structural descriptions.? Elementary trees
are either initial trees or auxiliary trees. Initial trees consist of connected
non-terminals, and the grammar’s start symbol is the single non-terminal at
their top. At the frontier, they only have terminal symbols. Auxiliary trees
are very similar to initial trees, but they may have a different non-terminal
symbol at the top, and they have exactly the same non-terminal symbol at
the frontier. Except for this non-terminal, all other symbols at the frontier
are terminals. Auxiliary trees can be inserted into initial trees via a so-called
adjoin operation. This operation replaces one non-terminal symbol S in an
initial tree with the auxiliary tree that has a matching non-terminal symbol
at the top and at the frontier. The auxiliary tree is inserted between the
outside above S of the initial tree and the inside below S. The product of an
adjoin operation may be the input for further applications of it. Adjoining
allows TAGs to describe linguistic phenomena that go beyond context-free
power, including cross-serial dependencies. Dependencies in TAGs hold be-
tween the nodes of an elementary tree. These dependencies are visualised by
links. Adjoining may insert trees between the landing points of the links, so
that the links between the nodes of the newly inserted trees may cross the
links that have existed before.

Figures 7.4 and 7.5 show how TAGs can be used to analyse our exam-
ple sentence that contains three cross-serial dependencies (all analyses taken
from Joshi, 1985, with changes in the decoration of node labels). The left-
hand side of figure 7.4 shows the initial tree «, and the auxiliary tree 5. We
do not show the words that would lead to three different initial and auxil-
iary trees with the yields Jan zag (o1/01), Piet helpen (ag/32) and Marie
zwemmen (as/fB3). The dashed lines show the links between the two parts
of the initial and auxiliary trees that belong together, and that become sep-
arated by adjoining auxiliary trees. The rest of figure 7.4 shows sentential
trees, i.e. trees that give a complete analysis of a string of terminal symbols
after adjoining auxiliary trees. The first sentential tree ~; is simply the initial
tree az. The subsequent sentential trees are generated by adjoining auxiliary
trees at the nodes surrounded by circles: 75 is produced by adjoining 35 to 74,
replacing the encircled S in 7;. When the words of the sentence are put into
linear order, the dotted lines of the links cross, as shown in the last sentential
tree 73 given separately in figure 7.5. A context-free grammar does not have
the device of adjoining auxiliary trees, which allows parts of the same tree
to be separated by inserted material, so that dependencies cross.

When the elementary trees are not composed via the adjoin operation,
and instead the non-terminals at the frontier of auxiliary trees are simply

2We follow the description of TAGs given in Joshi (1985).

7.1 More Context in Context-Free Grammars 127

\
v

zZwemmen_

v|P "‘g;
/s v
S e
; Piet
,
/‘\ Marie, € /\
NP S VP NP VP
| | | |
N V- N v
|
(&
Marie3 e

Figure 7.4: Elementary and Sentential TAG Trees

128 Chapter 7 Including Local Context into Nonterminals

Jaun1 Piet2 Marie3 zag, helpen2 zZwemmen,

Figure 7.5: A TAG Analysis of Cross-serial Dependencies (73)

7.1 More Context in Context-Free Grammars 129

replaced by other elementary trees, then we return to context-free power, and
instead of TAGs we have context-free grammars which pose local constraints
on non-terminal nodes. The inclusion of parent information as outlined before
is such a constraint: node B has to be dominated by A, or

B— CDE/DoMm(A)

in the notation of Joshi and Levy (1982). Local constraints are also capable
of expressing more complex concepts like command: COM(A B C), where “B
immediately dominates A and B dominates C, not necessarily immediately”
(which contains an unbounded dependency; Joshi and Levy, 1982).

Local constraints may express, e.g., that two (or any given number of)
cross-serially dependent words are dominating the node in the left-hand side
of a context-free rule. The difference of major impact on descriptive ade-
quacy between a CFG and a TAG with respect to cross-serial dependencies
is that the latter are capable of describing cross-serial dependencies between
an arbitrary number of dependents, which are not explicitly enumerated in
the inventory of elementary trees. Enumerating them all would be against
the idea behind TAG of describing only minimal facts on syntactic trees, i.e.
facts that cannot be derived from other minimal trees via the adjoin opera-
tion. Enumerating cross-serial dependencies allows grammars with context-
free power, however, to describe cross-serial dependencies up to a certain
maximal level of embedding.

A context-free grammar with the nonterminals

N = {S,NP,N, VP, V}
and the rules
R={(S—=SV),(S—NPSVP),(S— NP VP), (VP — V), (NP — N)}

could generate the same tree as TAG (omitting the obvious rules that expand
N and V into words or the empty symbol). It would, however, overgenerate,
because it does not encode the connections between the parts of the trees
that are represented by the dashed lines. We have seen that the only way to
encode a connection between two nodes in a CFG is via local constraints,
i.e. via rules connecting nodes that directly dominate each other. Encoding a
connection between the highest and lowest V in figure 7.5 thus would require
changing all intervening node labels so that they incorporate the information
that a number of cross-serial dependencies passes through them. This could
be accomplished by changing the individual S to e.g. Ss3, Ss2, S31, S30, S20, S0,
where Si; means that k left cross-serial dependents and [right cross-serial

130 Chapter 7 Including Local Context into Nonterminals

dependents are expected below Sg;. The order in which the first and second
elements of the pairs are expected is encoded in the labels, too, when we define
that the highest k is expected as the first terminal node in the input sentence,
and the highest [is expected as the last terminal node. The rules in figure 7.6
follow this prescription, as shown in the analysis for Jan Piet Marie zag helpen
zwemmen given next to it. Instead of the explicit dashed lines that express

S33 — Sga V Sy
Szz — S31 V

S31 — Sz V

S3g — NP S,y VP
Sog — NP Sq9 VP
Si0 — NP VP

NP — N

VP — V,

V, —e

V \Y,

Jan.} Piet, Marie zag, helpen, zwemmen,

Figure 7.6: A Context-Free Analysis of Three Cross-serial Dependencies

linked nodes in TAG we imagine that all V belong together when £ of the
lowest Sy. dominating the left descendant plus [of the lowest S.; dominating
the right dependent equals four, or generally, the number of dependencies
plus one. Piet (dominated by Sgg) and helpen (dominated by Ssz) would thus
form a dependency, because 2 + 2 = 4. Despite of the similar appearance,
there is a major difference between the imitation of the TAG analysis via
a CFG and the original TAG analysis, though. The number of dependents
is unlimited in the TAG analysis, while it is bound for CFGs, where a set
of dedicated node labels has to be available for each number of dependent
pairs, and where the number of different node labels is finite. The impact of
this shortcoming is heavy when we assume that our language faculty obeys
similar rules, which would disallow us to utter sentences above a certain

7.1 More Context in Context-Free Grammars 131

number of dependent pairs. Such a restriction is linguistically unconvincing
and theoretically unappealing. The situation is different and the impact is less
heavy when we restrict ourselves to modelling a certain finite language sample
(e.g. our treebank), where the number of pairs of words or constituents that
are engaged in a cross-serial dependency is always finite, and thus also has
a finite maximum size. Recognising cross-serial dependencies up to this size
is perfectly feasible with context-free power as we have just seen. Note that
both context-free and tree-adjoining grammars do not produce analyses that
are similar to those depicted in figure 7.3(b). Both grammars do, however,
produce analyses that can be interpreted to express the same analysis as the
simple characterisation presented there, so that both TAG and CFG analyses
require a certain effort in interpretation.
The full CFG that produces the parse tree in figure 7.6:

GC'F - (N = {533> S32a S317 S30> SZOa SlOa NPa Na VPa V7 Ve}a
S = 5337
T = {Jan, Piet, Marie, zag, helpen, zwemmen},

R = {as given in figure 7.6, plus rules for all words})

describes a finite amount of context, so that the tree fragment dominated
by Ss3 is big enough to dominate all nodes that are involved in the cross-
serial dependency. In fact, all nodes Si; always occur in a given order when
Ss3 occurs, and Ggp produces only the analysis shown in figure 7.6. In this
sense, the tree fragment connecting S33 with all NP and V could be replaced
by the single node S¢g3 and the single production Scgs — NP NP NP V V V
(see figure 7.7). Just as we have given a prescription for how k and | mark

S

CS3

Scss — NP NP NPV VYV
NP — N

N N N \% \% \%

Jan Piet Marie zag helpen zwemmen

Figure 7.7: Alternative Context-Free Analysis of Cross-serial Dependencies

the parts of the tree that belong together, we can also say that the node
Scs3 encodes a cross-serial dependency of three tuples, or the corresponding

132 Chapter 7 Including Local Context into Nonterminals

tree fragment in Gop if we prefer a more verbose representation. The full
grammar is:

Gorrpar = (N = {Scss, NP, N, V},
S = Scss,
T = {Jan, Piet, Marie, zag, helpen, zwemmen},
R = {(Scss — NP NP NP V V V), (NP — N),

plus rules for all words})

Geor and Gepppar define the same language, but not the same structural
analyses, in terms of nodes and edges. Semantically, they are equivalent,
because we define them to express the same phenomenon.

7.1.2 Formal Equivalence of Grammars

In a formal sense, equivalence between grammars is defined as describing the
same language (weak equivalence), or describing the same language and at
the same time assigning the same structural analyses to each string of the
language (strong equivalence). From what we have seen so far it is clear that
there are TAGs for which there are no strongly equivalent CFGs. It is also true
that there are TAGs for which there are no weakly equivalent CFGs, e.g. the
TAG that describes the language L = {a"b"¢"|n > 1} cannot be modelled
by a CFG. It is interesting to apply these notions of formal equivalence
to the grammars Grag, Gor and Geopprar, which all describe cross-serial
dependencies. It is clear that Gra¢ and Gop are neither strongly nor weakly
equivalent. Gop and Gopppar are weakly equivalent but not strongly so,
because they assign different structure to the same strings. This difference
highlights that strong equivalence heavily depends on representational issues,
because it does not consider the interpretation of a structural description,
which is not part of the formal model. We have seen above that the single
top symbol S¢gs in Gopprar can be interpreted to be just a shorthand for all
symbols Sss, ... S1g in Gop, in the sense that Scg3 simply replaces a finite set
of rules and nodes used exclusively here. Gor and Gopprar are not strongly
equivalent only due to this representational variation.

We would like to draw a line between the structure assigned by a model
and the interpretation of this structure, so that these two steps are consid-
ered independently. We are used to describe syntactic structure using the
notational vocabulary of formal languages (trees with typed nodes), but we
are not used to interpret the resulting trees from the perspective of a gram-
mar model with restricted power. A node label in a context-free grammar

7.1 More Context in Context-Free Grammars 133

is atomic, and two node labels are either identical or different. As a conse-
quence, the labels S33 and Ss, in figure 7.6 are as different as the labels VP
and NP, although the node labels suggest to a linguist by convention that the
sentential nodes S;; are more closely related. A linguist who knows German
will hardly argue that there is no connection between the verb’s subcat frame
and the case markers of the words that it takes as arguments, even though
there is no evidence of case information in the nodes of the graph he uses to
describe constituent structure that connects the verb and its arguments.
We argue that the limitations of context-free language models to take
relevant context into account are less severe when we choose a formally ad-
equate representation of syntactic analyses instead of a given linguistically
adequate representation. As long as both representations convey the same in-
formation, they can be optimised independently. A certain type of grammar
may require certain notational variants to model a certain syntactic configu-
ration faithfully, and these formally adequate representations usually do not
coincide with the variants preferred by treebank annotators and users.

7.1.3 Experimental Adequacy

Our goal is to judge whether a context-free grammar that has certain restric-
tions on its ability to model context is appropriate for our task of parsing
natural language data. The notion of formal equivalence does not help us
here, because in order to determine equivalence, we need two grammars, or
the exact set of sentences in the languages that they license. We do not
have the grammar that produces our natural language data. We only have
a sample of natural language that we find in a treebank. From this sam-
ple together with the analyses provided by the treebank annotators we can
gather that certain phenomena may exist in a language. We cannot judge,
though, whether a grammar that we use is equivalent in a formal sense to
the grammar that has produced the data. Even when our grammar is able
to reproduce all strings and all analyses in our treebank faithfully, we do
not know whether this corresponds to equivalence, as our grammar cannot
be tested against strings that are not in our sample. For example, a simple
grammar that just enumerates all analyses in our treebank will most likely
not be equivalent to our natural language grammar, because it will fail mis-
erably on any sentence not recorded in the treebank. Our experimental setup
therefore tests performance of the grammar on data that has not been used
during the construction of the grammar (see section 5.2.3).

Context-free language models can define languages that include languages
which exceed context-free power. L = {a"b"c"|n € N}, e.g., is not context-
free, whereas Loy, = {a"b"c™|n € N;m € N} is; and L C Lyyer. On the

134 Chapter 7 Including Local Context into Nonterminals

one hand, context-free languages tend to overgenerate, because they fail to
model certain restrictions. On the other hand, they can take advantage of
the semantics of node labels to undergenerate, i.e. to model a subset of the
desired language. For a given upper bound [€ N, a CFG can model L4, =
{a™b™mc™|m <1}, and Lynger C€ L C Loyer-

The degree to which our grammar can cope with the complexities in our
treebank shows how adequate it is for our problem of modelling syntactic
structure. We cannot test a grammar for equivalence with a grammar pro-
ducing natural language by using a treebank. We can, however, say that a
grammar that reliably reproduces the analyses provided in the treebank is
powerful enough for exactly this task. We are not very interested in notational
variations of analyses that can be interpreted to express the same observa-
tion like the variants given by Ger and Gepprar. We are more interested
in configurations that truly exceed the power of our type of grammar. Even
for data that is truly problematic for CFGs, it may be sufficient to enumer-
ate syntactic configurations when the context-free grammar is not capable to
model them in a general way. We determine the degree to which our grammar
succeeds to model these configurations experimentally. We judge the gram-
mar’s analyses by normalising notational variants. We vary the notation for
the grammar, in order to find the best representation for our grammar among
those equivalent to the analyses provided by the treebank annotators.

Standard evaluation methods give us a normalised interpretation of syn-
tactic analyses. The idea of relational evaluation is to give us a reduced in-
ventory of relations that allows us to test similarity of interpretations instead
of strong equivalence. When we define a mapping of both our CFG analysis
consisting of a single node as given in figure 7.7 and of our analysis accord-
ing to TAG as given in figure 7.5 to a dependency analysis, then both the
dependency analyses will look exactly like our most abstract representation
of cross-serial dependencies in figure 7.3(b).

Apart from practical considerations that force us to model only a finite
subset of natural language, there are also theoretical considerations that sug-
gest that there are bounds on the number of types of dependencies, and on
the number of dependents in natural language. A trivial but hard bound on
the number of dependents in any sentence is the limited lifetime of a human
being, which however, does not seem to be low enough, because it is unlikely
that all series of dependencies that can be uttered in a lifetime are stored in
a human brain. Other considerations are more precise, suggesting e.g. that
central embedding, which can even be modelled by CFGs without an upper
bound, is very infrequent at more than four levels. Sampson (2001) argues
that multiple central embedding is possible after all (a view not held by all of
his colleagues), and he indeed has recorded a number of embeddings of up to

7.2 Context — Focus — Production 135

four levels (p. 18). His records show that assuming a small maximum depth
of embedding covers most data. This is in line with Karlsson (2004), who has
found a single example that exceeds the depth of four on the more common
type of final embedding, which is the rather special case of the nursery rhyme
“This is the house that Jack built”. Enumeration might be more appealing for
central, and maybe even for other forms of embedding than even an already
rather restricted CFG model. The restrictions of CFG models may thus turn
out to be not as harmful as suggested by their failure to generate unlimited
numbers of cross-serial dependencies.

We try to determine the success of a CFG to model language experi-
mentally. We generate a probabilistic context-free grammar from part of our
treebank as outlined in chapter 5. Apart from the changes mentioned there
that are necessary to model the treebank analyses with a CFG at all, we
leave the nodes and the edges of the original analyses unchanged in all our
experiments. We only modify node labels, which can turn a grammar that
vastly overgenerates into a grammar that slightly undergenerates and cor-
rectly describes complex syntactic configurations up to a certain complexity
although beyond the power of the grammar in the general case. The map-
ping that we need in our experiments reported below is simple, because we
only specify subclasses of given node labels and leave the rest of the graph
unchanged (merging classes of nodes as discussed in section 9.1 is an excep-
tion). After assigning the respective original class to each label, the type of
linguistically adequate analysis is restored (e.g. stripping kl from Sy, restores
S in figure 7.6). Our goal is thus to add contextual information in new node
labels when certain types of context have not been distinguished by the tree-
bank designers, and when introducing these distinctions leads to a language
model that performs better. We have shown that even distinctions exceeding
the power of CFGs can be made to a certain degree by enumerating instead
of generating them, when a prescription to interpret their representation is
given.

7.2 Context — Focus — Production

Context-freeness assumptions in PCFGs are harmful where they result in
models that over- or underestimate the probabilities of derivations. Correct
derivations, for us, are stored in a treebank, and in a context-free perspec-
tive, these derivations consists of a sequence of independent decisions. We
thus compare automatically annotated and correct gold data by comparing
these atomic decisions. They will occur in just the correct frequencies on av-
erage, because this is how the model has been obtained: by maximising the

136 Chapter 7 Including Local Context into Nonterminals

likelihood of the data for the given model. What is more relevant here is how
much the atomic decisions change when more context is taken into account.
The answer to this question directly shows the negative impact of context-
freeness assumptions. If the production probability of a certain non-terminal
stays the same, no matter in which context it occurs, then context-freeness
assumptions will not have negative impact. Recall that one of the indepen-
dence assumptions inherent in PCFGs is that the probability of a subtree
only depends on the non-terminal nodes inside of the subtree, and not on
those outside of it. If, in contrast, the distribution of children of a certain
type of node is different when looking only at the subset of its occurrences
in a certain context, then this node label is likely to be a good candidate for
inclusion of this context.

There are three parts that serve to compare a given context-free language
model with a model containing more context. The first part is a certain node
label which is examined in order to find out whether it is appropriate. We
will henceforth call this node the focus node. The focus node connects the
two other parts of a derivation tree that we need for a comparison: the inside
and the outside of the tree relative to the focus node (see figure 7.8).

root

outside \

inside 'Al‘ focus node
B

/N

C D E

Figure 7.8: A Focus Node Connects Inside and Outside of a Local Tree

Looking at a top-down derivation of a sentence, we will normally consider
the focus node to be on the left-hand side of a context-free production rule
that has the focus node’s children on the right-hand side. The context that
should be tested for inclusion will then be in the outside of the tree according
to figure 7.8. A very simple scenario where only the parent of the focus node
is tested against inclusion is shown in figure 7.9. The parent is the minimal
upward context, because any information from the outside part of the tree

7.2 Context — Focus — Production 137

root
A
context
focus
production

Figure 7.9: Top-down view on context — focus — production

that should be included into the focus node needs to pass through the parent
node.

Transferring these general observations to labelled nodes in a treebank,
we assume that a constituent label generalises perfectly when its children
do not change systematically with the context in that it occurs. In order to
verify this hypothesis, we take a look at noun phrases (NX) in TiiBa-D/Z,
and how the distribution of their productions changes under certain parents,
namely the complementiser field (C), the middle field (MF), or embedded
in a complex noun phrase as given in figure 7.10 below. Table 7.1 shows
the occurrence frequencies of three different expansions of noun phrases that
consist only of single words, represented by their POS: a substituting relative
pronoun (PRELS), a common nouns (NN) and a personal pronoun (PPER).
The second column shows the number of times each production is observed

Context
all C MF NX
Production obs. exp. obs. exp. obs. exp. obs.
PRELS 1805 33 1503 424 2 632 3
NN 13922 256 0 3274 1361 4878 7366
PPER 5641 104 0 1326 3797 1976 100
others 79947 1472 363 18799 18663 28011 28029
all 101315 1866 23823 35498

Table 7.1: Selected Productions of Focus NX in Parent Context

in the whole treebank (all). The subsequent three pairs of columns show

138 Chapter 7 Including Local Context into Nonterminals

the observed frequencies of the productions when looking only at nodes in
certain contexts (obs.) and also the number of times each production would
be expected assuming the same distribution in this context as over the whole
corpus (ezp.). The parent nodes that make up the contexts represent the
Middle Field, the Complementiser Field and a complex noun phrase. The
second last row gives frequencies of productions not listed separately in the
table (others), and the last row shows how many times the focus node occurs
in each context overall (all).?

The example shows that the distribution of productions of nodes labelled
NX changes considerably with context. For all productions and all given con-
texts, the node label alone fails to predict the observed frequencies. The
information present in the contexts is at least twofold. First, the Complemen-
tiser Field and the Middle Field represent distinct linear positions in German
clauses. Second, the NX context represents part of a complex noun phrase
(i.e. recursive embedding), as opposed to a focus NX that is dominated by
nodes with field labels. A production consisting of POS in conjunction with
a field context only allows for a simple focus noun phrase.

Figure 7.10 shows a tree fragment with an example for each case that is
underrated according to Table 7.1: relative pronouns are frequently found in
the Complementiser Field, personal pronouns in base noun phrases in the
Middle Field, and common nouns in the embedded part of complex noun
phrases.

According to the division of the data into context, focus and production,
there is a link missing between the context and the focus for all three types
of NX in context. Dividing all NX into subclasses, with one new subclass
for each context, alleviates the problem of incorrect context-free estimations
of productions. The new estimation still predicts production probabilities
only from the focus node label, but the new labels incorporate contextual
information. The new name can be chosen arbitrarily, as long as it only occurs
in one type of context. For the new node labels that occur exclusively in
one context, the expected occurrence frequencies match exactly the observed
frequencies, i.e. in table 7.1, the exp. and obs. columns become identical for
the C, MF and NX contexts. Node label transformations of this kind are what
we will call Treebank Refinement.

3The two occurrences of PRELS in MF are errors. Recall that we base our experiments
on automatically POS-tagged data.

4Figure 7.10 is taken from TiiBa-D/Z sentence 1266: Die Soloalben , die er im Laufe
der achtziger Jahre verdffentlichte , hatten nichts mehr vom Disco-Glamour friher Japan-
Tage . (‘The solo albums that he released during the eighties had no connection to the
disco glamour of early Japanese days.’) Focus and Production are shown in bold, and the
context with a double outline.

7.2 Context — Focus — Production 139

[HD]
die er im Laufe der achtziger Jahre verffentlichte
PRELS PPER APPRART NN ART ADJA NN VVEIN

Figure 7.10: Unexpected Productions of a Focus Node in Context

From a more general point of view, the focus node connects some parts
of the inside and the outside of a tree. This does not necessarily have to
happen in a top-down fashion, which would imply that some part of the
outside has impact on all children of the focus node. It could also be the
case that only part of the inside (i.e. only some children) are connected to
the outside. This can be accommodated into the notion of context, focus
and production by reversing the direction from top-down to bottom-up (see
figure 7.11). This extension to the notion of context will be discussed, along

root

prod uﬁ

focus———— =B

context

K»CDE

Figure 7.11: Bottom-up View on Context — Focus — Production

with others, in chapter 8. In the remainder of this chapter, we will restrict
ourselves to parent node context in a top-down view.

140 Chapter 7 Including Local Context into Nonterminals

7.3 Determining Deviant Distributions

A PCFG language model obtained from a treebank can be harmed by exag-
gerated independence assumptions. In the last section we have argued that
the appropriateness of node labels, which express these assumptions, can
be tested by looking for node labels that differ in predicted distributions of
productions between smaller and wider contexts.

The distributions are given by the frequencies of productions of focus
nodes with and without context. The reference distribution is the distribution
of productions of a focus node alone. This equals the frequencies that are used
to estimate a PCFG from the treebank by maximum-likelihood estimation.
Given a certain focus node type, the set of different productions and their
frequencies is easily obtained from treebank data. For a given focus node type,
this results in a set of productions with accompanying frequencies. Adding
a context results in choosing a subset of productions from this reference set,
with corresponding (reduced) frequencies.

To determine the most deviant distribution in a treebank, we look at
all types of focus nodes in turn, and for each focus node type we look at
all types of contexts in turn. For each combination of focus node type and
context type, we have a number of different production types as sketched in
figure 7.12, which shows a single focus node type f that occurs in context
types ¢; and co. In these contexts we find three different production types

1 c
| c 2

ANy

N [P
/\

P, P,

Figure 7.12: Some Occurrences of a Single Focus Node Type in a Treebank

p1, P2, P3, where p; occurs twice and the other two types just once. We write
this as

freq(cy > f — p1) = freq(ct > f — p2)

—1
freqlca > f —p1) = freqlcy, > f —p3) =1 (7.1)

The focus node f occurs two times with production p;, and once with each

7.3 Determining Deviant Distributions 141

po and ps, which we write as

frea(f = pm) =2)
freq(f — p2) = freq(f — ps) =1
The reference distribution is given by the frequencies in equation 7.2. This
distribution is compared with each subdistribution given by a distinct context
type in equation 7.1. We consequently determine freq(c > f — p) = 0 for
any production p that has never been observed for focus node f in context
c.
These frequencies are all we consider for the deviance metric

D(e>fIf)

which compares the behaviour of the focus node f in the reference case with
its behaviour when it occurs in context ¢. When we are looking for the most
deviant distribution of a focus node f, then we are looking for some context ¢
that maximises D. When we are looking for the most deviant distributions in
a treebank, we seek to find the largest D for any combination of focus node
and context. We expect such a deviant distribution to be a good candidate
for renaming, because it represents most harmful independence assumptions
according to our method.

We seek to compare distributions of events that follow a certain fre-
quency distribution. One of them represents the underlying distribution. The
other distribution is assumed to originate from the same distribution, and we
would like to test whether this is actually the case. Inferential statistics of-
fers goodness-of-fit tests, which try to answer exactly the question whether an
observed distribution is the same as an assumed underlying distribution, i.e.
in our case whether the contextual distribution is drawn from the reference
distribution.

7.3.1 x? Goodness-of-Fit

We need a test which is non-parametric, because we do not know any de-
tails about the distributions. A standard non-parametric test is Pearson’s
x? test (Rinne, 1997, p. 552), which will serve as the first instantiation of
our deviance metric, D®. We use this test as a goodness-of-fit test, which
checks whether a distribution fits an assumed underlying distribution. The
underlying distribution is our reference distribution, represented by produc-
tion frequencies of the focus node in all its contexts. In our notation, the

142 Chapter 7 Including Local Context into Nonterminals

value of the test can be determined as:

Do = ¥ (frea(c > f —p) = eaplc > | —p))” (7.3)

2 cplc> F =)
where Py is the set of productions of node f, and exp(c > f — p) is the
expected frequency of a focus f having production p in context ¢, judged by
the overall co-occurrence frequencies of ¢ > f and f — p in the corpus:

cnle> fp) = D reg(s)

We next apply D* straightforwardly to TiiBa-D/Z. The focus node in con-
text with the highest x? value is what we call the most deviant distribution.
It is NX below EN-ADD, which occurs 1944 times.> The x? value is 36 275,
which means that the null hypothesis that the distribution of EN-ADD > NX
corresponds to the distribution of NX over the whole corpus can be rejected
at the 100 % level. Such a 100 % level does not make sense, and is caused
by low frequencies that fall below minimal requirements of the y? test: no
exp(c > f — p) should be lower than one, and at most 20 % should be
lower than 5; also required are freg(c > f — p) > 10, and |[Py| > 2.5 In
our case, there are 122 productions, and 90 of them are expected less than
once, and 108 are expected less than five times, corresponding to 90 % of
all types. There are 60 more ¢ > f candidates that can be interpreted to
have such an overly high significance. Still, it seems plausible to subclas-
sify NX whenever it occurs below EN-ADD from a linguistic point of view
judged by the largest contributor to the overall y? test result, which is EN-
ADD > NX — NE NE. A constituent consisting of two words with proper
name tags is much more frequently a complex named entity than a plain
noun phrase. Their exp(c > f — p) = 49.95 and freq(c > f — p) = 1201,
so that this configuration alone makes up 73 % of the overall y? value.
Other candidates also reach the same overly high confidence level, all in
all 88. EN-ADD > NX has been chosen because its x? value is higher than that
of all other candidates. As a third selection criterion after confidence level
and absolute test value, those ¢ > f that occur with fewer productions are
preferred, confidence level and x? being equal. We motivate this criterion by
our search for specialised (i.e. rather infrequent) consistent usage of a general

Results reported in this section have been obtained on the tune training set described
in chapter 5. Only freq(c > f — p) > 10 are considered, and edge labels are ignored.

6Minimal requirements seem to be given in the literature mostly as rules of thumb.
Ours come from Rinne (1997), p. 552.

7.3 Determining Deviant Distributions 143

node label. Another ¢ > f with similarly high values is D“%(VROOT >
VXINF||VXINF) = 5396, i.e. an infinite verb which is not attached to any
constituent in a sentence, vs. an infinite verb in general. It derives the high
x? from eight productions occurring rarely (5 x 1, 1 x 2, and 1 x 3 times).
All these occurrences represent errors in language productions (e.g. Er hofft,
"daf$ dieses denkwiirdige Ereignis irgendwann véllige Normalitdt sein sein
wird”. ‘He hopes "that this memorable event will be be normal someday"’;
our emphasis), or verbs that cannot be attached easily to the rest of the
sentence (Gehort: Fidel-Bastro-Festival. ¢ Overheard: Fidel-Bastro-Festival.’;
our emphasis). These usages are rare, but they occur still much less often than
expected. This behaviour rather points to unusual, or erroneous language use,
which can be exploited for detecting errors (chapter 10), but it does not seem
to be useful for improving parsing performance, which should rather focus
on more frequent events.

7.3.2 x? Merging Infrequent Classes

The 2 test can be applied to a modified data set to overcome the problem
of low marginal frequencies. Standard test instructions allow classes to be
regrouped by instructions determined independently of the observed events.
We do not follow this requirement closely and simply merge the smallest
classes iteratively, until all production frequencies comply with the require-
ments given in the previous section. If the requirements are not met when
only two classes remain, then merging of classes fails. Classes are merged so
that

1. if some freq(c > f — p) < 10 exist, then the two least frequent classes
with least contribution to y? are merged,

2. else, all freq(c > f — p) = 0 are merged with the least frequent
remaining production that least contributes to x2,

3. else if any exp(c > f — p) < 1, or too many exp(c > f — p) < 5, then
the two productions occurring most often with least contribution to x?
are merged,

as long as more than two classes remain. This can be written as equation 7.4,
where the 73]5 is the set of productions after the minimal number of produc-
tion regroupings that satisfy the x? test requirements on minimal frequencies:

DS _ Z (fre(J(C> f—>p)—exp(c> f—>p))2

cwple > [— p) (74)

R
pE’Pf

144 Chapter 7 Including Local Context into Nonterminals

This production regrouping heuristics tries to keep high contributors to
overall x2, but it is neither certain that the resulting regrouping is optimal
in some sense, nor does it guarantee that any regrouping is found at all. No
regrouping is found e.g. for the best candidate of DS, EN-ADD > NX, where
all productions but NE NE NN, FM FM and $(EN-ADD NX $(are grouped
into a single class. These three productions are all expected less than once,
so that only part (3) of the heuristic applies, which will not result in at least
two classes satisfying the test requirements. The other candidate of D¢,
VROOT > VXINF, can never comply with the requirements, because there
are less than 20 occurrences, and at least two classes with ten events each
are required. Last, but not least, merging productions as outlined above is
not statistically sound.

A technical drawback of D is that for each combination of ¢ > f, a
potentially high number of low-frequency events has to be merged, which is
inefficient. An even more important drawback is that a certain context that
frequently co-occurs with only one type of production, but with no other
production, will never be chosen. D“f chooses MF > NX as most deviant
candidate for renaming from our TiiBa-D/Z data set, i.e. noun phrases in
the middle field, with D“®(MF > NX||NX) = 6790, covering 11 188 focus
nodes. Only five alternative ¢ > f have been found to comply with our choice
of a > 0.9 for statistical significance. This means that the null hypothesis,
that the distribution in context is the same as the reference distribution, can
be rejected at the 90 % level. Noun phrases in the Middle Field consist much
more often of personal or reflexive pronouns (PPER, PRF) than expected, so
this choice does not run counter to intuition.

7.3.3 Kolmogorov-Smirnov Goodness-of-Fit
D ESE is neither statistically sound, nor overly efficient, so that searching for
other metrics seems to be in order. Another non-parametric test, which more-
over has less demands on minimal frequencies, is the Kolmogorov-Smirnov
goodness-of-fit test, which will serve as the third instantiation of our deviance
metric, D%, This test compares cumulative probability distributions, and
judges goodness-of-fit by their largest difference:

D" = . {naﬁ) | |Fre(p<is) — Fr(p<i>)|, p<is> € Py (7.5)
i=1,...,[Ps

7.3 Determining Deviant Distributions 145

where

> fregle > f — peys)

ch(p<i>) = freq(c > f)
23:1 freq(f — p<j>)
Ff(p<i>) = fT€Q(f)

It is not obvious how the productions p.;~ should be sorted, because
there is no intrinsic ordering of node labels or sequences of them (i.e. of pro-
ductions). While mnemonics of node labels partly support lexical ordering,
a lexical sort order is less convincing for capturing productions consisting of
two or more symbols. The ordering is important because the outcome of the
test depends on the order of productions, p.;~. While there is no inherent or-
der in production types, the lexical order of the node labels that make up the
production defines a consistent ordering for a given corpus so that we use it
to order p_;~. Still, it is somewhat unsatisfactory that node labels, which are
by definition arbitrary, have an impact on the result of the deviance metric.

The deviance metric is normalised to 0 < D®9 < 1, so that two corpora
with exactly the same distribution of ¢ > f, but of different sizes, yield
the same D as opposed to e.g. D%, which increases with sample size.
Statistical significance of D values depends on the number of production
types Py and Ps. = {p € Py|freq(c > f — p) > 0} according to n:

ning .
— [with ny = [Py, na = | Py

ny + 77,2] floor

The relation is not linear, but lower n require a strictly higher D% to
achieve the same statistical significance. Requiring that the smallest distri-
bution with |Pf| = |Ps.| = 1 is different at the 0.9 level of significance
corresponds to DX > 0.9. The treebank does not contain any matching
c>f.7

Values for D %9 that conservatively approximate significance values at a
0.9 level can be computed by 1.073/4/n. We define a new deviance metric
D%55 =1.073/y/n D%S. There are 44 ¢ > f tuples in the corpus that have
DXSS > 0.9, i.e. for which the assumption that they are drawn from the
focus node’s distribution can be rejected at the 90 % level. The most deviant
focus node type is the simplex sentence in the final field (NF > SIMPX),
of which 1560 appear in TiiBa-D/Z. The third best candidate according to
D55 is EN-ADD > NX, which has also been proposed by D¢,

"Threshold values taken from Rinne (1997), p. 595.

146 Chapter 7 Including Local Context into Nonterminals

The Kolmogorov-Smirnov goodness-of-fit test can be computed efficiently
and is less susceptible to low-frequency productions in the corpus than plain
2. There is an overlap with productions that are judged by D%® to deviate
from what is expected from a PCFG prediction (see table 7.2 below). Yet, its
outcome is determined by otherwise arbitrary decisions in corpus compila-
tion, because sort order is based on lexical ordering, which is arbitrary given
that node labels are nominally, and not ordinally different. While consistent
for a single data set, sort order may change when nodes are renamed, which is
an undesirable side-effect when using node labels to carry information about
context as we do.

7.3.4 Kullback-Leibler Divergence

The Kullback-Leibler Divergence is not a statistical test, but an information-
based metric that describes the amount of information necessary on top of a
given distribution to model a second distribution. It is also known as relative
entropy (see section 3.3). Given the distribution of all productions of a focus
node over the whole treebank prob(f — p) and the distribution of produc-
tions in a certain context prob(c > f — p), the Kullback-Leibler Divergence
is computed as

prob(c > f — p)
prob(f — p)

DEE = Z prob(c > f — p)log,

pE'Pf

(7.6)

We estimate probabilities via maximum-likelihood, so that we have

prob(c > f — p) = fr;i(e(;(i J;?)P)

prob(s —p) = I E)

D%L(¢c > f||f) measures the average number of bits that we need to
encode the probability distribution of focus node f in context ¢ starting from
the overall distribution of productions of f. It finds that EN-ADD > SIMPX
is most different from NX alone. It turns out that most simplex clauses that
make up a named entity are special in that they are enclosed by quotation
marks (25 of the overall 32 occurrences found). The four most deviant ¢ > f
are all rather infrequent (see table 7.2 below). Only C > NX occurs somewhat
more frequently (769 times).

The D &L metric normalises occurrence frequencies, yielding log-likelihood
ratios as approximations of probability distributions. When there is a focus

7.3 Determining Deviant Distributions 147

node fy in context ¢y with freq(cy > fo — p) =n x freq(c; > f1 — p) for
all p € Py, and Py = Py, = Py,, then DXE(¢c; > fi||f1) = DEE(cy > follfo)-
In other words, nodes occurring more frequently have the same deviance ac-
cording to DXF as long as the number of different production types is the
same, and each production occurs the same number of times more frequently.

In a parsing experiment, you will expect node types more frequently in
novel input data that also occur more frequently in training data. If a mis-
leading node label occurs more frequently, it will also have more impact on
parsing performance, so that all else being equal, more frequent nodes are
likely to be better candidates for Treebank Refinement. A straightforward
way to introduce frequencies into D®7 is to multiply it by its frequency in
the treebank:

D" (e > [f) = freale > f) x D" (c > f|If) (7.7)

which proposes again EN-ADD > NX as the most deviant ¢ > f, occurring a
much more frequent 1944 times (see table 7.2 below).
Stressing the impact of D%, and penalising events that are less frequent
than a certain minimal threshold f,,;,, we finally specify
DL (e > fIF) = (freg(c > f) = fin) x 207710 (78)

fmin

so that the perplexity, and not the entropy, is considered equally important
as occurrence frequency.

7.3.5 Skew Divergence

The metrics 7.6 to 7.8 are not defined if the domain of the first distribution
is not a subset of the domain of the second distribution. This will never
happen when a set of productions is compared to its superset as in the
case of comparing a node’s behaviour in certain contexts with its overall
behaviour. A robust metric, however, that allows judging the distance of two
different subsets that overlap only partially, can be useful for merging nodes
instead of splitting them. Distributions of nodes with similar behaviour may
overlap only partially, so that each distribution contains productions not
found in the other one (see chapter 9). The Kullback-Leibler Divergence can
still be calculated in such circumstances when you define Olog% = 0 and
plog § = oo (Manning and Schiitze, 1999, p. 72). However, when comparing
the distance between two distributions, it is not clear whether all distributions
with a larger domain than the first distribution should be handled similarly by
having D(p||q) = oo. It is more likely appropriate to penalise an incomplete
domain heavily, but still differentiate between how much of the domain is

148 Chapter 7 Including Local Context into Nonterminals

missing, and how similar the two distributions are on where their domains
overlap. The Skew Divergence accomplishes this by smoothing the second
distribution with the first (Lee, 2001):®

; p(x)
DEP(pllq) = m;(p D108 T (= a)p(e)

The smoothing factor o adds a parameter to the metric. We rely on
observations that indicate best performance for highest o (Lee, 2001). An «
near 1 also has the benefit of coming close to the behaviour of the Kullback-
Leibler divergence, which is also theoretically appealing. We therefore choose
to set a = 0.99 in all our experiments, so that:

prob(c > f — p)
0.99 prob(f — p) + 0.01 prob(c > f — p)

(7.9)

Note that this metric shows greatest additional benefit over the Kullback-

Leibler divergence only for merging nodes. We still prefer it where both could

be used, because experiments below show that the metrics behave similarly

when we split node labels, and because we think that it is useful to have a
constant deviance metric to make experiments easier to compare.

We also define Skew Divergence metrics that are weighted by occurrence

= Z prob(c > f — p)logs

pepf

frequencies similar to DX and DKLP above:
D" (c > f|If) = freq(c > f) x D*P(c > f]|f) (7.10)
DEPR (e > fIlf) = (Freale > f) = fuin) x 277700 (7.11)

Table 7.2 shows the five most deviant nodes in context for all metrics,
from what would be expected when looking at the focus node labels alone,
compared to the distribution of the nodes in a context consisting of their
parent’s node label. The first column lists the metrics, and the following
columns give the first five highest-rated context and focus nodes in decreasing
order, and their frequencies. The ¢, f node labels are given without > in each
cell for space reasons. For the metrics that take a minimal frequency as a
parameter, we set f,;, = 10, which then is the minimal frequency for ¢ > f
to be considered at all.

8The original definition turns the parameters around because it trusts the model more
than it trusts the estimated frequencies: so(q,7) = D(7r || ag + (1 — a)r). We trust the
model less and exchange arguments; the other order led to a slight reduction in parsing per-
formance with the resulting treebank grammar according to Parseval Fj,; after changing
the most deviant node in context.

7.3 Determining Deviant Distributions 149
DS EN-ADD NX C NX VROOT NX NF NX VF SIMPX
1944 769 1370 159 717
DCSE MF NX R-SIMPX C VC VXFIN | FKONJ MF | MF ADVX
11188 794 2307 1079 4354
D KSS NF SIMPX NX NX EN-ADD NX | NX ADJX | VF SIMPX
1560 16 086 1944 7918 717
DXL |l EN-ADD SIMPX | R-SIMPX R-SIMPX LV NX C ADVX C NX
32 18 12 24 769
DSP C ADJX EN-ADD SIMPX | NX SIMPX LV NX LV SIMPX
14 32 110 12 45
DXLF I EN-ADD NX NX NX MF NX C NX NF SIMPX
1944 16 086 11188 769 1560
DSPF I EN-ADD NX NX NX MF NX NF SIMPX C NX
1944 16 086 11188 1560 769
DXLP C NX EN-ADD NX VF SIMPX | VROOT NX | NF SIMPX
769 1944 717 1370 1560
DfODP C NX EN-ADD NX VF SIMPX | NF SIMPX | VROOT NX
769 1944 717 1560 1370

Table 7.2: Most Deviant ¢ > f and their Frequencies for Several Metrics

150 Chapter 7 Including Local Context into Nonterminals

Except for the unweighted information-based metrics D®% and D5P,
none of the chosen focus nodes in context is very rare, and many, if not all
of them seem to be candidates that could also be predicted to behave differ-
ently from a linguistic point of view than judged by the more general node
label alone. Discussing only the most relevant examples that are given in
the second column, there are two types of named entity (EN-ADD>NX and
EN-ADD>SIMPX), which contain more often NE POS tags in the former, or
more often simpler, and quoted, clauses in the latter case, as pointed out
before. Simplex clauses in the final field will be introduced by a conjunction,
or a comma, more often than a SIMPX in general (NF>SIMPX). The com-
plementiser field only allows a very restricted set of constituents, which are
moreover quite special in their internal structure (C>NX; C>ADJX). Finally,
and maybe least obviously, noun phrases in the middle field contain pronouns
much more frequently than noun phrases on average (MF>NX).

The information-based metrics show a high degree of overlap as soon as
they are frequency-weighted (DXEE DKLP DSPE DSDZP) We take this to
indicate that smoothing of the Kullback Leibler Divergence by Skew Diver-
gence works well, and that the type of weighting by frequency does not overly
matter. We also observe that C > NX wins over EN-ADD > NX when the
divergence is raised to the exponent, because

DHL(C > NX||NX) = 5.31
DXL(EN-ADD > NX||NX) = 3.62

so that the former is judged more deviant than the latter by the factor

25.31—3.62

e — Y
1934/759

and similarly for D*P.

There are numerous other ways to measure distances between distribu-
tions (Lee, 1999). Only our secondary goal is to find a node label having the
most unexpected productions (via a statistical test), or the productions that
need most additional information for modelling based on PCFG conditioning
(via an information-based metric). Our primary goal is to find node labels
that are not optimal for PCFG parsing. We only assume that our secondary
objective functions (unexpectedness/divergence) are connected to our pri-
mary objective function (parsing performance). We try to assess the benefit
of the metrics with respect to parsing performance by observing the impact
of only splitting the most deviant node in context and by computing Par-
seval Fiy, (Pev Fiu) on the tune data set without edge labels, and also the
cross-entropy between the PCFG language model and the treebank (perp).

7.4 Tteratively Adding Local Context 151

Results are given in table 7.3, which shows the annotation performance when
obtaining a treebank grammar from a treebank where the top scoring candi-
date for each metric is assigned a new label. The table is ordered by the F
score, with a plain treebank grammar read off the original treebank serving
as the baseline in the last row. Most splits improve performance (rows have

Pev Fj, | prec. recall || perp
fonfnp, Diﬁ’f 84.10 % | 85.60 % | 82.65 % || 13.23
DKSS 84.08 % | 85.51% | 82.69% || 13.14
DCS, DELE DSPEY 8407 % | 84.97 % | 83.19% || 13.33
DCSE 83.90 % | 85.22 % | 82.63 % || 13.19
DKL 83.47% | 84.96 % | 82.04 % || 13.49
DSP 83.47% | 84.96 % | 82.04 % || 13.49
unrefined 83.48 % | 84.99 % | 82.02% || 13.49

Table 7.3: Performance after Renaming Single Most Deviant ¢ > f

been collated where several metrics propose the same split). Some splits yield
an absolute increase of 0.5 % Parseval Fj,;,. On the other hand, the first splits
of DXL and DSP even harm performance, highlighting the importance of
frequent events. Cross-perplexity is accordingly reduced for all but the last
transforms.

7.4 Iteratively Adding Local Context

Renaming a single focus node type all over the treebank when it occurs in a
certain context noticeably increases PCFG performance. Many of the highest-
rated candidates presented in the previous section represent occurrences in
the corpus where renaming does not alter any of the contexts of the other
candidates. For D{PF e.g., three disjunct subsets of NX are proposed (below
C, EN-ADD and VROOT), and two disjunct subsets of SIMPX (below VF and
NF). It is quite likely that these independent subsets also have independent
contribution to performance gains. Renaming all of them would take advan-
tage of this observation. Nonetheless, after the first renaming according to
D{PP . statistics change, because there is a new node label (formerly NX be-
low C), and the number of occurrences of NX is accordingly reduced. So the
only way to properly find the next candidate is to reapply the metric to all

152 Chapter 7 Including Local Context into Nonterminals

¢ > f in the modified treebank, and to determine and then change the next
top candidate. Maximum deviance is likely to drop, but there is no reason
to assume monotonous decline, because the focus node that is changed could
well be the context of the subsequent iteration, maybe transporting relevant
information from a more distant context into reach of just parent context.
A corresponding example from a treebank would be the percolation of
linguistic information up or down a tree. We take a look at the influence
that the not-so-immediate context may have on the content of noun phrases.
Looking back at figure 7.10 on page 139, we have seen a noun phrase (NX)
expanding to a personal pronoun (PPER). This NX belongs to the middle field
(MF) of a relative clause (R-SIMPX). Table 7.4 shows that the probability of

‘ Context H any H MF H MF#1 ‘
‘ NX — H abs ‘ rel H abs ‘ rel H abs ‘ rel ‘
PPER 2491 | 5.3% || 1719 | 154% || 77 | 11.5%

other 44247 | 94.7% || 9469 | 84.6 % || 594 | 88.5%

Table 7.4: Percolation of Features Changes Relative Frequencies

the NX expanding into a PPER does not only depend on the immediate parent
MF, which considerably raises the expectation of encountering a pronoun
(from 5.3% to 15.4%). It also depends on the clause type, which can lower
the expected ratio of personal pronouns to 11.5% when the clause type is
encoded in MF#1 as a result from a transformation that changes all MF into
MF#1 that satisfy R-SIMPX > MF. This new node label percolates down the
information about the grand-parent of NX to the parent of NX, and lowers
the expectation to come across a personal pronoun even when looking at the
more narrow parent node context.

Table 7.4 also shows that it cannot be predicted exactly when the pro-
cess of finding deviant node labels and renaming them will finish, because
new relevant context can result from splits. However, splitting will eventu-
ally come to an end when we specify a minimal threshold of the deviance
metric, because the same split is never performed twice, and there is only a
limited number of nodes in the corpus, yielding a finite set of (f, ¢) tuples. A
single focus node can be split more than once, though, if its context changes
after it has been first split. This is the reason why D(f > ¢||f) is not neces-
sarily monotonically decreasing. Contexts may change, and may reveal new
deviations from the expected distribution of productions.

A synopsis of Treebank Refinement is given in algorithm 1. It consists of
three loops. The two inner loops iterate through all (¢, f) type tuples found in
the treebank and store the largest value of the deviance metric that has been

7.4 Tteratively Adding Local Context 153

Algorithm 1 Iteratively Relabelling Nodes in Context

1: repeat

2 d—0

3 for all f € F do > Focus node types F
4: for all c € C; do > Context types Cy of f
5: d— D(c> f|f) > Deviance of focus in context
6 if d > d then

7 (d, f, &) — (d, f,c)

8 end if

9: end for

10: end for

11: if d > minimum deviance threshold then

12: RENAMEFOCUSINCONTEXT(f, ¢)

13: end if

14: until d < minimum deviance threshold

observed, along with the corresponding (¢, f). If it is above a given thresh-
old, the corresponding focus nodes are renamed in the treebank and the inner
loops are entered once more. The subroutine RENAMEFOCUSINCONTEXT(f, ¢)
changes all occurrences of f that occur in context ¢ to one single new unique
node label per iteration of the outer loop.? In case of ties, and if D(c > f||f)
is a weighted value, then the unweighted value is also compared, and the
larger unweighted value is preferred. Examples are D and D“9F_ where
the weighted value is the significance level of the statistical test, and the
underlying value is the x? value. For all information-based metrics that are
weighted by frequency, the underlying value is the divergence (D P or DEEL),
and the final value is the weighted divergence. Finally, for D %% the under-
lying value is the corresponding value given by D and the final value is
1.073/+/n x D5 to arrive at a value resembling a statistical confidence. The
complexity of the algorithm depends on the number of focus nodes |F|, the
number of contexts per focus node |{(c, f)|c € Cy, f € F}|, on the complex-
ity of determining D(c > f||f) (usually |P|), and on the minimum weight
threshold. Except for the threshold, all factors may increase after each iter-
ation.

Applying algorithm 1 to the tune data set, and using D yields changes
in performance per iteration as shown in figure 7.13. The shape of the curve
is similar to a curve produced by evaluating only topological field labels
(figure 7.14, as presented in Ule and Veenstra, 2004), hinting at a general

SDP
10

9We will always append a hash (#) and the number of the current iteration to the
existing node label to create a unique new node label.

154 Chapter 7 Including Local Context into Nonterminals

87.5 ‘ ‘ ‘ ‘ ‘ ‘ ‘] 100000
87
86.5
86

-4 10000

85.5

Fpoa

85

Maximum Deviance

84.5 - 1000

84

83.5 F

o ; ; ; ; ; ; ; ; 100
0 5 10 15 20 25 30 35 40 45
Iterations

Figure 7.13: All Node Labels: F' and d by Iteration for D{PF

7.4 Tteratively Adding Local Context 155

characteristic of the iterative behaviour of Treebank Refinement.

1 100000
- 10000
1 ©
(8]
c
K
3
E_ [a)
w IS
>
£
X
]
i =
- 1000

Iterations

Figure 7.14: Topological Fields: F' and d by Iteration for D$PP

We will also use the iterative behaviour to reflect on the appropriate-
ness of the deviance metrics, because choosing the best metric is not easy
according to table 7.3 alone. The metric D“® does not seem to be reliable
given its failure to handle low-frequency events. The remaining three metrics
perform similarly. The D% metric performs best, yet it is very inefficient
and theoretically not satisfactory. D59 can be computed more efficiently,
but depends on the otherwise arbitrary lexical order of node labels. D*5P
and likewise D% do not increase performance after the first split, and seem
to concentrate too heavily on low-frequency events. Given that D*PF and
Dfmll?f seem to approximate their Kullback-Leibler counterparts quite well
leaves them as most interesting candidates. The choice between weighting
frequency and cross-entropy alike, or emphasising cross-entropy, is what re-
mains. On the one hand, D*P¥ performs worse than its counterpart DSE f
after the first iteration. On the other hand, the best candidate of D*PF is
the second-best of D]§m13 f , making it likely that it will be selected in D“PF’s
next iteration. Table 7.3 does not reveal the performance of repeated appli-
cations of the metric so that we repeat it for the more promising metrics

156 Chapter 7 Including Local Context into Nonterminals

d > |iterations || Pev Fiu prec. recall || perp

DESS 111,073 50 87.32% | 87.70 % | 86.94 % || 10.94
DSPEY 7.97 50 87.29 % | 87.62 % | 86.96 % || 10.82
DEPE I 250 45 87.27% | 87.70 % | 86.86 % || 10.93
DESE 0.9 24 84.67 % |85.92 % | 83.45% || 13.05

base n/a 0 83.48 % |84.99 % | 82.02 % || 13.49

Table 7.5: Performance after a Maximum 50 Iterations

Dmeif, DSPE DESS and DR in table 7.5 for several iterations. The num-
ber of iterations is limited to 50, because performance does not seem to
change drastically any more at least for D PP during the last iterations in
figure 7.13.

The curves shown in figure 7.13 and 7.14 suggest that high performance
is reached rather early at least with D{P”. In order to test this behaviour
for the other metrics, we determine their performance for a single reduced
number of 38 iterations, corresponding to best performance in figure 7.13.
We test performance only of D %59 and DPF given the overall poor results

of DYS% in table 7.5. Results are given in table 7.6. Stopping earlier achieves

‘ H Pev Flu ‘ prec. ‘ recall H perp ‘

DESS 87.30 | 87.70 | 86.90 || 11.06
DSPE 87.31 | 87.75 | 86.87 || 10.87
Dybr 87.41 | 87.86 | 86.97 || 11.00

Table 7.6: Performance after 38 Iterations

a better performance for D{P? and DSPF | but not for DE59 which seems
to indicate an ability to perform relevant splits early and thus minimising the
changes in the treebank and consequently the size of the derived grammar.
These experiments are admittedly quite crude, and stopping after 38 itera-
tions is a biased towards D{PF, being the only metric for which dependence
on the number of iterations has been sufficiently evaluated. We nonetheless
think that the combination of a good F' score and low cross-entropy after
rather few changes to the treebank justifies the choice of D{P" as our metric
for all remaining experiments. We also choose the corresponding stopping

condition of d > 350 for all our remaining experiments.

7.5 Unconditionally Spreading Parent Information 157

7.5 Unconditionally Spreading Parent
Information

A very successful yet simple approach to transforming a treebank for al-
leviating independence assumptions has been proposed by Johnson (1998).
Without looking at the distribution of nodes, he proposes to give each la-
bel in a treebank the information about the parent category for all nodes at
once. He shows that this transformation can considerably improve parsing
accuracy of a derived plain PCFG treebank grammar. Adding context to all
nodes by adding parent labels to node labels everywhere and at once would
resemble an unconditional split of all nodes in a single iteration in Treebank
Refinement. This kind of splitting would only be possible to obtain with
algorithm 1 if all children were found before their parents. This is highly
unlikely, and only possible if for any ¢ > f, ¢ never equals f. The simple
parent encoding (JP) performs surprisingly well in comparison to Treebank
Refinement (TR) as can be seen in table 7.7. The main advantage of Tree-

‘Trial ‘ base H TR ‘ JP ‘
Iteration | 0O 38 n/a
Pev Fj,, | 83.48 || 87.41 | 87.30
perp 13.49 || 11.00 | 10.94
failed 0 0 1
rules | 3432 || 4652 | 5731

Table 7.7: Unconditional Parenting and Selective Parenting

bank Refinement over Johnson’s parent encoding seems to be that similar
performance can be achieved with fewer changes in the grammar and that
the changes are individually motivated. We will show in the next chapter
that the difference in performance widens, and fewer rules and higher Parse-
val Fj,, are also accompanied by lower perplexity when we extend the notion
of context beyond parent nodes to, e.g., parents and grandparents, or when
using it with contexts below focus nodes.

7.6 Conclusion

The famous context-freeness of context-free grammars is a limitation that
does not exclude all kinds of contexts from being modelled correctly. There
is only an upper bound on the number of different types of contexts that a
CFG can capture, so that it seems to be feasible to model a substantial part

158 Chapter 7 Including Local Context into Nonterminals

of the limited number of different types of contexts observed in a treebank
when the set of non-terminals is extended accordingly.

Probabilities that are given via the frequencies with which a certain kind
of context is observed in a treebank can be very useful to decide which context
should be included first into the context-free grammar. We have introduced
an objective function that compares the behaviour of a node type judged by
its label alone and its behaviour when more context is available for condi-
tioning together with the node label. This objective function compares the
PCFG way to assign probabilities with a model that assumes less strong
independence between a context of a node and its expansion probability.

At the heart of this function is a deviance metric that can be instantiated
in several ways. We have explored statistical tests and information-based met-
rics and experimentally determined the most promising metric. It is based
on the Skew Divergence, which is a smoothed version of the relative entropy
between a probabilistic model and a given distribution. It is an information-
based metric which shows best improvements for PCFG parsing when addi-
tionally weighted by the frequency of the node type we examine. We finally
show that multiple applications of the objective function iteratively increase
parsing performance and lift it on par with results achieved by a simpler
well-known transformation while the size of the grammar is increased con-
siderably less, and the individual changes can serve as a characterisation of
problematic node labels.

Chapter 8

Extended Local Context

Extending the scope of contextual information that is considered for con-
ditioning expansion probabilities is paramount to improve PCFG parsing
performance. This chapter tries to outline which context might be relevant
for inclusion (section 8.1), and extends the notion of context introduced in
the previous chapter accordingly (section 8.2). Context that includes lexi-
cal items poses specific problems (section 8.3) and can help disambiguating
especially recursive and complex syntactic structure (sections 8.4 and 8.5).

8.1 Relevant Context

The goal of parsing natural language is to assign structure to utterances.
Structure groups part of an utterance and relates it to other parts of it, so
that it ultimately relates words to other words. Constituent-based analyses,
which generate hierarchical, or tree structures, assume that certain groups
of words, or constituents, have a special status, in that they act as a single
entity. In dependency analyses of syntax, the relations are always established
directly between words. Both can be related. It has been shown that for
TiBa-D/Z a dependency analysis can be derived from constituent struc-
ture, because a head is specified for each constituent, marking the word that
prominently represents it (see section 3.2). Constituent analyses, on the other
hand, can also be approximated by dependency analyses, with respect to the
relations that constituents specify between words, so that both ways to de-
scribe the syntactic structure of utterances bear close resemblance (Charniak
and Carroll, 1992).

When assigning syntactic structure with a PCFG, the words are con-
nected via a number of nodes and edges that are given by the assigned parse
tree with the corresponding constituent structure. Heads of constituents are

159

160 Chapter 8 Extended Local Context

rarely separated by just one node, including those words that are assumed to
represent the major elements of sentences, such as verb, the objects, and the
subject. Figure 8.1 shows the original constituent analysis and the derived
dependency analysis of an example sentence from TiBa-D/Z. The depen-

SIMPX
3

VF LK (PX) Ve

[ON]
Der Senat ist einen Klotz am Bein losgeworden
ART NN VAFIN ART NN APPRART NN VVPP S.

- ON - OA - - ov

Der Senat ist einen Klotz am Bein losgeworden

ART NN VAFIN ART NN APPRART NN VVPP S,

Der Senat ist einen Klotz am Bein losgeworden.
The senate is a block at the leg got rid of.

‘The senate has got rid of an obstacle.’

Figure 8.1: Constituent and Dependency Analyses

dency arcs between the verbal parts and the parts of the accusative object
connect the lexical items that are commonly assumed to disambiguate the at-
tachment of the prepositional phrase. In the example sentence, these are the
items that include the lexical head of the verbal phrase loswerden, the head
of the accusative object, Klotz, and the head of the item to attach, Bein.
These three lexical items are connected via three arcs in the dependency
analysis, and via seven nodes (losgeworden — Bein), or four nodes (Klotz —
Bein) in the constituent analysis.!

!This dependency representation assumes that the inflected verb is the head of the
sentence, and that the prepositional phrase has a nominal head (see also section 3.2).

8.1 Relevant Context 161

In the example, the attachment is decided below the MF node in the con-
stituent model. Perfect context for the node MF to decide whether to expand
it to PX NX| or just to NX, would include the lexical head of the sentence, and
thus all the nodes and edges necessary to reach it, following the dependency
arcs: SIMPX-VC-VXINF-losgeworden. Perfect context, that is, for a proba-
bilistic model that assumes P(X — Y/|context) instead of P(X — Y|X), where
context includes all information relevant for the expansion of X. For English,
experiments have shown that lexical items can help deciding PP-attachment
problems (Hindle and Rooth, 1993), and indeed, highest performing parsers
adopt the notion of head-lexicalisation (e.g. Collins, 1999). These parsers
also achieve high performance on the German negra corpus when slightly
modified (Dubey and Keller, 2003).

The algorithm for inclusion of context into node labels presented in the
previous chapter is highly unlikely, if not unable, to detect such a context con-
sisting of SIMPX-VC-VXINF-losgeworden in order to condition the expansion
of MF on it, by renaming node labels so that the probability is determined
as P(MF — NX|SIMPX-VC-VXINF-losgeworden). First, the percolation of a
feature using parent context requires that structural information above the
focus node changes systematically with structural information below it. If
both items are linked via their lowest common ancestor, like MF and losge-
worden via SIMPX in the example sentence, then the connection cannot be
discovered, because there is no node label higher in the tree that changes
systematically with both items. Second, no lexical information has been used
yet, rendering it impossible in a language like German, where constituent
order is rather free, to tell apart structural differences that are linked to case
or to open-class lexical items like losgeworden in the example. Third, all chil-
dren of a focus node are related as a whole to their parents, because they
always make up an atomic production. We will extend the notion of context
in this chapter to loosen these restrictions: We will allow information to per-
colate up, as well as down a tree; we will consider lexical information; finally,
we will allow information to cross several nodes at once.

It seems that the ideal probabilistic context should be selected from the
set of all paths, or even from all branching paths (i.e. subtrees), of the syn-
tactic analysis of a sentence. There is evidence, however, that parsing per-
formance can be improved considerably by restricting the search to more
local contexts. The results of Klein and Manning (2003b) relate directly to
the performance of early lexicalised parsers mentioned above (Hindle and
Rooth, 1993), and outperform them. They use lexical elements, but rather
than looking for open-class words, they concentrate on closed-class words.
Performing just closed-class lexicalisation circumvents the problem of esti-
mating probabilities for rare or unseen events, which should usually not be

162 Chapter 8 Extended Local Context

considered to be zero. Handling these events is a major problem of parsers,
and is normally handled by a combination of smoothing and backing-off, i.e.
by allocating and assigning part of the overall probability mass to unseen
events, or by resorting to simpler estimates (e.g. of word classes instead of
word forms) when exact estimates are not available (Manning and Schiitze,
1999, p.. 196ff. and 217ff.). Collins (1999) backs off bilexical frequencies by
using co-occurrence frequencies of one lexical item and a node label instead.
Comparing the original distribution of bilexical co-occurrence patterns with
the back-off distribution containing only a single lexical item amounts to
comparing the effect that two lexical items have on syntactic structure with
the impact of a single item. It turns out that the two distributions are re-
markably similar (Bikel, 2004).

It thus seems that individual lexical items on their own can have consid-
erable impact on syntactic structure. They seem to trigger certain analyses,
and in absence of complete information, these preference patterns can im-
prove parsing. It is in this sense that we seek to find relevant context: there
are relevant local connections between words and structure (as pointed out
by Bikel, 2004), and between local subgraphs that only cover small parts
of whole syntactic analyses (as pointed out by Klein and Manning, 2003b).
Rather than trying to incorporate dependencies between distant elements of
a sentence that would likely overload focus nodes in the sense of the con-
necting nodes presented in the previous chapter, we try to model relevant
local phenomena, resulting in a model that selects the best parse more often.
The more distant connections may ultimately be handled separately by more
powerful methods than with plain PCFGs, once the coarser preferences are
incorporated into a treebank grammar transformed by the methods discussed
here.

8.2 Extending Context

We stick to the same question as presented in the previous chapter: Do pro-
ductions of a focus node change consistently with context? The focus remains
a single node in the syntactic description in what follows. What we will ex-
tended now is the context. Instead of being restricted to the parent node, it
also may include an arbitrary number of nodes on a path through the tree in
a single direction, beginning from the node adjacent to the focus node. What
can also change is the direction, so that in the same direction as before,
instead of the parent context we have an ancestor context. In the opposite
direction, this amounts to a descendant context. The production changes ac-
cordingly: it is still the sequence of direct children for ancestor context, but

8.2 Extending Context 163

it is the parent node for descendant context. A final extension pertains to the
subclassification of categories that is often available for syntactic categories,
for which there is not always an obvious level of detail: the attribute con-
text allows selecting some optional information that is available for nodes.
All these extensions to the original notion of parent context are discussed in
turn below.

8.2.1 Ancestor Context

A path that connects the focus node and one or more nodes into the direction
of the root of the tree is an extended context that we call ancestor context. It
tests dependence on more distant nodes than parent context. While parent
context is generally able to percolate information up or down a tree, it is
dependent on directly dominating material. If that is not found, e.g. because
the parent of the focus node is always the same, but the grand-parent changes
consistently with the productions of the focus node, then ancestor context
can, and parent context cannot detect this connection. Ancestor context still
looks strictly for dependencies in a top-down direction. Similarly to parent
context, it is thus not capable of determining the relevance of another node
at the same level or below the focus node directly, so that e.g. dependence
on terminal nodes cannot be tested directly.

The deviance metrics can be used as before with the only difference that
there are more contexts available for each focus node. In addition to the
parent context, which remains part of ancestor context, a single new atomic
context is added for each node in the treebank that dominates the parent
(i.e. for each grandparent), or dominates the grandparent, and so on.

In figure 8.2 there are two new contexts 2-1 and 3-2-1 on top of the
parent context 1 for the focus node, which has a bold outline at the centre of
the figure. The number of contexts per node thus increases with the average
depth of trees. In TiiBa-D/Z, there are 944 227 ancestor contexts in the tune
train set, as opposed to 217 221 parent contexts.

Once a relevant context is found that consists of more than a single node,
also the corresponding context nodes are assigned new unique labels, with the
exception of the most distant contextual node, because a single connection
can already be modelled by PCFGs. If the focus node X is split in e.g. context
3-2-1 in figure 8.2, then the context nodes 1 and 2 are changed in addition
to the focus node. By convention we rename nodes by affixing a hash and the
number of the current iteration. Assuming the context was the most deviant
in the first iteration, then the unique suffix #1 marking this split is added to
the focus node and to all but the most distant context nodes. We choose a
different suffix for renaming nodes of the context in order to avoid incidental

164 Chapter 8 Extended Local Context

ancestor/F @)

contexts

focus

Figure 8.2: Ancestor Contexts

identity between the name of contextual and focus nodes. We consequently
choose the suffix "#1 for the context nodes, i.e. the suffix of the focus node
with an initial tilde 7, turning the context into 3-2"#1-1"#1 (see figure 8.3).

Figure 8.3: Renamed Focus and Ancestor Context Nodes

It is obvious that many more ancestor than parent contexts are consid-
ered for each focus node. Larger contexts can carry information over larger
distances, but they also introduce more changes into the treebank, resulting
in more different rule types and less data for estimation of each rule’s proba-
bility. Larger contexts are therefore only used if they yield higher deviances
than smaller contexts. If the same largest deviance is found for some smaller

8.2 Extending Context 165

context, then the (¢, f) with the smaller context is strictly preferred. Algo-
rithm 1 is changed accordingly to algorithm 2, introducing a comparison of
context size. The subroutine SMALLERTHAN(z, y) compares contexts = and

Algorithm 2 Iteratively Relabelling Nodes in Extended Contexts

1: repeat

2 d—0

3 for all f € F do > Focus node types F
4 for all c € C; do > Context types Cy of f
5: d<— D(c> f|f) > Deviance of focus in context
6 if d>dV (d=d A SMALLERTHAN(c, ¢)) then

7 (d, f,é) — (d, f,c)

8 end if

9: end for

10: end for

11: if d > minimum deviance threshold then

12: RENAMEFOCUSINCONTEXT(f, ¢)

13: end if

14: until d < minimum deviance threshold

y, returning True if the first context = is smaller than the second context vy,
where the number of ancestor nodes in the context is compared.

Changing the treebank iteratively using ancestor context of any depth
changes results from parent context as shown in table 8.1. The number of
contexts in parent context equals the number of nodes in the training set,
because each node has a non-terminal node as a parent, or if unattached, the
special parent VROOT. The row Contexts Tokens gives the fixed number of
individual contexts, and not the number of different types of contexts, which
changes after each iteration.

Ancestor context consisting of more than just the parent of a node is used
only four times. Still, Parseval Fj,, slightly increases and cross-perplexity
slightly drops. Among the first ten iterations, there is a single case where
more than the parent node is selected as context: C—PX in the third iteration,
covering 148 occurrences of NX. Figure 8.4 shows schematically the third
split with larger context (focus node NX#3) together with the first split
(focus NX#1), that both describe the special behaviour of noun phrases in
the C field. The context is above the focus nodes for both splits, depicted
by the continuous arrows pointing from the context into the direction of
the focus node. NX is first split in parent context C, and receives the new
unique name NX#1. NX#3 behaves unexpectedly in context C—PX, so that
the context is partly renamed as well in order to bring this distributional

166 Chapter 8 Extended Local Context

‘ Context H parent ‘ ancestor ‘
Parseval F 87.41 87.62
PETD 11.00 10.80
Iterations 38 42
parent contexts 38 38
other ancestor contexts 0 4
Focus tokens renamed 46 379 50597
Context tokens renamed 0 6298
Grammar Rules 4652 4748
Failed 0 0

| Context Tokens [217221 | 944227 |

Table 8.1: Ancestor Context vs. Parent Context

Constituent @

4)
POS PRELS+HD

Figure 8.4: Ancestor Context connecting C Field and NX

8.2 Extending Context 167

preferences into reach of a probabilistic context-free grammar (represented by
the new unique name PX"#3). The dotted arrows give the most unexpected
productions of the focus nodes in the wider context (both times the head-
marked substituting relative pronoun PRELS).? Figure 8.5 shows a sentence
with all ancestor context splits applied, and shows an example for NX#3.3 It
also shows that the noun phrase in the C field and the finite verb phrase in the
verbal complex (VXFIN) are connected via splits to the relative clause label
(R-SIMPX), resulting in the new node labels C#21 and VC#19. These changes
are given step by step in figure 8.6, where (a) corresponds to the original
annotation, (b) to the annotation after iteration 3, (c) after iteration 19, and
finally (d) after iteration 21. C#21 represents the complementiser field and
VC#19 the verbal complex of relative clauses (as opposed to simplex clauses).
Both make up a chain of uniquely named nodes connecting the parts of the
relative clause that have characteristic behaviour while originally labelled
like nodes also found in other sentence types. More specifically, VC#19 has
mostly finite verbal productions, and C#21 holds mostly noun phrases or
prepositional phrases with relative pronouns. The latter are found in NX
that have been turned into NX#3. All three together only occur in relative
clauses, because VC#19 and C#21 have been renamed every time they appear
below R-SIMPX. Together, they describe the distinct behaviour of the verbal
bracket in relative clauses.

Parent context breaks up the split of prepositional phrases in the com-
plementiser field into two not quite equivalent splits, in contrast to the single
split that creates new focus and context nodes PX™#3 and NX#3 for all C-
PX"#3 > NX#3 in ancestor context. In parent context, noun phrases inside
prepositional phrases are first split into a separate class, and only much later,
prepositional phrases in the complementiser field are split into a class of their
own (covering 43 occurrences). Noun phrases inside prepositional phrases in
the complementiser field consists almost exclusively of relative pronouns in
combinations such as an dem (‘at which’), auf der (‘on which’), diber den
(‘over which’), making them highly distinct from other PX. In ancestor con-
text, 148 PX in the C field are split as part of the context of NX#3. While
parent context also finds some regularities for those PX, ancestor context
seems to be able to detect them more directly.

Another example that shows how ancestor context with more than parent
context leaves a trace through the tree, so that larger context can become
available to context-free productions, is given in figures 8.7 and 8.8. The

2Please note that we interpret PRELS+HD as POS tags here, although they are mod-
elled as additional nonterminals by the PCFG (see section 5.2.4).

3T{iBa-D/Z sentence 8818. The initial parenthesis Schlimmer noch: (‘Even worse:’) has
been omitted from the original sentence.

Chapter 8 Extended Local Context

168

SIMPY)

Den Kleinen plagte jlingst nachts ein Alptraum , in dem er zur Blattlaus
ART NN VVFIN ADV ADV ART NN $, APPR PRELS PPER APPRART NN
Den Kleinen plagte jiingst nachts ein Alptraum, in dem er zur Blattlaus mutierte.

The little boy troubled recently at night a nightmare, in which he into the plant louse turned.
“The little boy was troubled by a nightmare recently, in which he turned into a plant louse.’

Figure 8.5: Example Sentence split with Ancestor Context (cf. figure 8.4)

mutierte
VVFIN

8.2 Extending Context 169

s in dem er zur Blattlaus mutierte s in dem er Zur Blattlaus mutierte
$, APPR PRELS PPER APPRART NN VVFIN $, APPR PRELS PPER APPRART NN VVFIN
(a) original annotation (b) iteration 3: C PX > NX

s in dem er zur Blattlaus mutierte s in dem er zZur Blattlaus mutierte
$, APPR PRELS PPER APPRART NN VVFIN $, APPR PRELS PPER APPRART NN VVFIN
(c¢) iteration 19: R-SIMPX > VC (d) iteration 21: R-SIMPX > C

Figure 8.6: Individual Changes in C/VC of figure 8.5

170 Chapter 8 Extended Local Context

figures list all splits that involve simplex clauses (SIMPX) and the verbal
complex (VC), culminating in a description of the verbal complex in simplex
clauses embedded in the final field (NF). We would like to stress that fig-
ures 8.4, 8.7 and 8.8 do not necessarily show tree fragments that occur as
a whole in the treebank. They rather show focus nodes that do not occur
without their contexts in the transformed treebank, e.g. VXFIN#42 in fig-
ure 8.7 does not occur without VC™#40, but VC~#40 may well occur without
VXFIN#42, because due to the iterative behaviour of Treebank Refinement,
only a later split can depend on a former split, and not vice versa. At the

VROOT @

Field
Clause
SIMPX~#30
Field
A A v
VMFIN+HD PTKZU+HD VVINF

Figure 8.7: Ancestor Context Splits of Simplex Clause/Verbal Bracket Labels

same time, these splits characterise the behaviour of the verbal bracket in
simplex clauses. In the order of iterations, SIMPX#5 in figure 8.7 captures
distinct behaviour of simplex clauses in the final field (mainly the verb-last
order of verbal brackets, and a leading comma as expressed in $, C MF VC).
Later, split #40 marks the non-finite part of these subclauses, which of-
ten contains combinations of the verb particle zu and a non-finite full verb
(PTKZU+HD VVINF). Given that the right sentence bracket contains such a
non-finite verbal part, the finite verbal part of the verbal complex (if any)
consists mostly of a modal or auxiliary verb (split #42). Figure 8.9 shows

8.2 Extending Context 171

avV »
VFLK MFVC CMFVCS, $,MFVCS$, $(VF LK MF $($,CMFVCS$, VFLK MF

Figure 8.8: Ancestor Context Splits of Simplex Clause Labels

an example sentence where splits #40 and #42 connect sisters in the verbal
complex of a subclause embedded in the final field. Last, if the verbal com-
plex does not contain a non-finite part (all of which have been renamed to
VXINF#40 before), then it usually consists of a single finite verb (VC#41).

A similar effect can be observed between the left and right sentence brack-
ets of non-embedded clauses, shown in the left half of figure 8.7. Split #30
mainly adds the information to the VC label that the verbal complex is part
of a main clause, but because the context is also changed to 0-SIMPX~#30,
this information becomes available to a subsequent split of the left verbal
bracket. The left bracket in this case will contain mostly modal or auxiliary
verbs (split #33). In the end, the nodes shown in figure 8.7 form a unit that
models local context spanning a set of connected nodes in a syntactic tree.
The nodes are connected to form the local context via distributional infor-
mation that has percolated up and down the tree via splitting of node labels
in the way just outlined.

Preferences for certain field sequences in certain contexts can be observed
for the class of clausal nodes in figure 8.8. The most probable sequences of
split nodes that are given at the bottom of the figure are quite similar for all
simplex clauses in resumptive constructions (LV), directly in the initial field
(VF), and in adverbial phrases (ADVX; splits #4, #15 and #27). Coordinated
simplex clauses show different behaviour in the initial field than elsewhere, in
that the clause is ended more often by a verbal complex below VF (SIMPX#39
and SIMPX#38).

8.2.2 Descendant Context

Descendant context changes the direction of looking at focus nodes in context.
So far, the production has always consisted of the nodes below the focus node,
making anything above the focus node a candidate for context. Descendant
context refers to a context below the focus node, so that the production is the
single node above the focus node, i.e. the focus node’s parent node. There is

Chapter 8 Extended Local Context

172

SIMPX
[os]
SIMPX#!
MF
[ON] MOD
@O
[HD]
VF LK MF NX#11
[HD] [ON] [OA]
@O @ED O (N O ADVIO @pu®
[HD] [HD] [HD] [HD]
[rgendwann fragt man sich warum diese Inszenierung nicht an einem ' normalen ! Theater laufen kann
ADV VVFIN PIS PRF PWAV PDAT NN PTKNEG APPR ART S (ADJA S NN VVINF VMFIN

Irgendwann fragt man sich,

Sometimes asks one oneself, why

not

n a

‘normal’

theatre run

warum diese Inszenierung nicht an einem 'normalen’ Theater laufen kann.

this staging can.

‘At some stage you ask yourself why this kind of production cannot be staged in a 'normal’ theatre.’

Figure 8.9: Example Sentence Split with Ancestor Context (cf. figure 8.7)

8.2 Extending Context 173

not a single node that is definitely part of a descendant context, as was the
parent node for ancestor context. Instead, any child can be the initial part of
descendant context, and any descendant of this child can extend the context
to form an alternative larger context.*

A node in a syntactic tree links information between its exterior (the
outside part) and its interior (the inside part; see figure 7.8 on page 136).
Parent and ancestor context link some information in the exterior of a tree
to the root of the interior. It may be useful to determine the most relevant
inside information, too, that needs to be linked to the outside. Descendant
context tries to do this and assesses the information below a node that would
be relevant to predict its upward production (the parent). Figure 8.10 shows

focus

';K\descendant
contexts

Figure 8.10: Descendant Context

a tree with a focus node in the centre. The descendants of the focus node are
all numbered. Each number represents one context, because each numbered
node is connected via a unique sequence of nodes to the focus node. The
resulting set of descendant contexts thus is { 1, 2-1, 3-1, 4, 5, 6-5, 7-5, 8-5,
9, 10-9 }. We order the nodes in the name of contexts always left to right
from most distant to closest to focus node.

The number of contexts per focus node is larger for descendant context
than for ancestor context. There are as many descendant contexts for a focus
node as there are descendants to the node, and this number grows with the
depth and the width of a tree. Table 8.2 shows that descendant context adds
roughly six times the number of parent contexts for TiiBa-D/Z. Parseval F,,
increases over parent context, and also over ancestor context.

4The parent node always refers to the node dominating the focus node. Parent context
is an ancestor context of length one. In descendant context, the parent node corresponds
to the production.

174 Chapter 8 Extended Local Context

‘ Context H parent ‘ descendant ‘
Pev F 87.41 87.74
perp 11.00 10.67
Iterations 38 40
parent contexts 38 0
child contexts 0 36
other descendant contexts 0 4
Focus tokens renamed 46 379 56 760
Context tokens renamed 0 1033
Grammar Rules 4652 5438
Failed 0 1

| Contexts [217221] 1390136 |

Table 8.2: Descendant Context vs. Parent Context

Linking a parent to a characteristic child as with ancestor context mainly
captures dominance relations: whether a noun phrase (NX) that has an ar-
ticle as one of its children is dominated by a field node or by another NX
in TiiBa-D/Z amounts to saying that the noun phrase is either complex or
simple. When there is an NX parent, nothing is said about whether the orig-
inal NX with the article is the head of the complex noun phrase or not —
this information is encoded separately in edge labels. A field label parent
provides additional information about the linear position of the noun phrase
in the sentence. Most of the time, adjective phrases containing a predicative
adjective (descendant context POS tag ADJD) appear in the middle field
(production MF), much more often than in the initial field (VF). They are
also part of complex constituents (below ADJX, PX, ADVX), but the most
unexpected position of an ADJX that has an ADJD child is in the middle
field when contrasted with the behaviour of all ADJX. Many other splits for
descendant context reveal similar discrimination of linear position, e.g. per-
sonal pronouns (PPER) have the same preference for the middle field, while
interrogative or demonstrative pronouns (PWS, PDS) prefer the initial field.
While this information may be rather obvious for the reader, it is hidden for
PCFGs in the node label NX that is the same for all these pronouns.

Descendant context seems to be more useful for annotation schemes that
use rather flat trees to represent syntactic structure. In flat trees, there are
more types of productions for ancestor context, and consequently produc-
tions tend to be less frequent, which is a challenge for metrics comparing
distributions. Descendant context, on the other hand, singles out one of the
sister nodes of such a production and makes it the context for the descendant

8.2 Extending Context 175

context production. Figure 8.11 schematically shows a subtree containing six
sister nodes, and compares ancestor and descendant context of depth one.
The focus node is given as a hollow circle/rectangle. Descendant context

. I
- @) - —
. 1
(a) descendant context (b) ancestor context

Figure 8.11: Ancestor and Descendant Context in a Flat Tree

(depicted as circles) is able to connect a single child node (the context) with
a single parent node (the production; figure 8.11(a)). Ancestor context, on
the other hand, always connects the parent (as part of the context) with
all of the focus node’s children (the production; depicted as rectangles in
figure 8.11(b)). The more children a node tends to have, or the flatter the
annotation scheme tends to be, the more this difference will matter. Table 8.2
shows that the number of different context types with size greater one stays
the same between ancestor and descendant context (cf. table 8.1), while the
number of occurrences is lower for descendant context (row “Context tokens
renamed”). This indicates that descendant context is more selective. On the
other hand, ancestor context can take the relations between sister nodes into
account, which are then all linked in total to their grandparent. Performance
for descendant context slightly increases over ancestor context.

Descendant and ancestor context consider mutually exclusive sets of con-
texts for inclusion into node labels, so that joining both sets of (¢, f) can-
didates and selecting the most deviant focus in context is an obvious conse-
quence. Table 8.3 shows that applying both kinds of context improves per-
formance slightly indeed. The context size never exceeds two nodes (the rows
“other ancestor/descendant context” always refer to exactly two nodes of
context). Interestingly, the number of newly introduced rules is lower than
using descendant context alone, which may partially explain the better per-
formance.

8.2.3 Attribute Context

Attribute context is an extension to ancestor and descendant context that
also considers optional information. So far, we have always used node labels as

176 Chapter 8 Extended Local Context
Context parent & c?e%%%srfg;nt
Pev Fig 87.41 87.91
perp 11.00 10.64
Iterations 38 42
parent contexts 38 30
other ancestor contexts 0 2
child contexts 0 9
other descendant contexts 0 1
Focus tokens renamed 46 379 50930
Context tokens renamed 0 1033
Grammar Rules 4652 5142
Failed 0 0

| Contexts | 217221 | 2384363 |

Table 8.3: Combined Descendant and Ancestor Context vs. Parent Context

input that represent immutably given information. Evaluation of the output
has always been performed on the set of non-terminal and terminal node
labels as given in TiiBa-D/Z. The edge labels that are present in TtiBa-D/Z
but that have not been considered so far represent additional information
that may help assigning structure, even when edge labels are not subject
to evaluation themselves. Attribute context tries to make this additional
information available to the (¢, f, p) view of probabilistic local context. For
each node in the syntactic tree, one or more attributes can be specified,
and the values of these attributes are added to the sequence of nodes that
make up ancestor or descendent context. For each sequence of ancestor or
descendant nodes, a new context is added for each permutation of attribute
values for the sequence of nodes starting with the most distant context node
and continuing to the focus node (c,, ..., cs, c1, f), resulting in new contexts
(alcn), cnyalcn1), - .. alca), c2,a(cr), e1,a(f)), where a(-) represents one of
the attributes of a node, including the empty attribute, and ¢; represents
a child of the focus node in descendant context, or the parent of the focus
node in ancestor context (see figure 8.12).% o, ..., c, consequently refer to
the more distant context nodes, so that the set of contexts for a node f is
given as Cy = {(a(cp), cn, a(Cn-1), - .., a(c2), ca,alcr), c1,a(f))}-

As an example, the middle field of figure 8.1 is shown again in fig-
ure 8.13(a). Considering only all descendant contexts for the top NX node,

5The idea of using optional context evolved from personal communication with Helmut
Schmid.

8.2 Extending Context 177

Label Attributes

additional descendant attribute contexts for focus f:
al,b1,c1 221 2b12c1 321l 3b1l 3cl

Figure 8.12: Attribute and Descendant Context

and stopping at POS tags, all descendant contexts without attribute context
are given in figure 8.13(b). The additional contexts found with attribute con-
text are given in figure 8.13(c). It is immediately obvious that much more
contextual information is considered for inclusion into node labels with at-
tribute context.

The increased number of contexts should pay off through new insights
into deviant distributions of productions. Looking at examples from treebank
data, you find e.g. that NX focus nodes prefer production MF in descendant
attribute context OA, meaning accusative objects are more likely to occur in
the middle field, and even more so in context PX—0A, representing accusative
objects modified by a prepositional phrase. All NX disregarding their function
modified by a PX show yet another behaviour. Table 8.4 shows the relative
frequencies of the fields in which noun phrases appear that are acting as
accusative objects (OA), that are additionally modified by a PX (PX-0A), or
that are modified by a PX disregarding their function (PX). The behaviour

Context
Production || OA ‘ PX-0A ‘ PX H any
VF 6 % 6 % 12% 9%
MF MN% | 93% | 29% || 24%
C 3% 1% 0% 2%
others 0% 0% |59% || 65%

| absolute [4695 | 544 [3374 | 46738 |

Table 8.4: Distribution of Productions for NX Descendant Contexts

of all four seems to differ sufficiently to make all the contexts interesting
candidates for inclusion into the focus node label.

178

Chapter 8 Extended Local Context

einen Klotz am Bein
ART NN APPRART NN

(a) top NX is focus node

{NX,
ART-NX,
NN-NX,

PX,
APPRART-PX,
NX-PX,
NN-NX-PX}

(b) descendant contexts

{ OA,

HD-NX-0A,
NX-OA,
HD-NX,

ART-HD-NX-0A,
ART NX OA,
ART-HD-NX,

HD-NN-HD-NX-OA,
NN-HD-NX-0A,
HD-NN-NX-0A,
HD-NN-HD-NX,
HD-NN-NX,
NN-HD-NX,
NN-NX-OA,

PX-0A,
APPRART-PX-0A,

HD-NX-PX-O0A,
HD-NX-PX,
NX-PX-O0A,

HD-NN-HD-NX-PX-0A,
NN-HD-NX—-PX-0A,
HD-NN-NX—-PX—0A,
HD-NN-HD-NX-PX,
NN-NX-PX-0A,
NN-HD-NX-PX,
HD-NN-NX-PX }

(c) additional attribute contexts

Figure 8.13: Edge Labels as Attribute Contexts for a Fragment of Figure 8.1

8.2 Extending Context 179

While contexts so far have consisted of information that has been defined
to be part of the transformed treebank a priori, attribute context considers
information for optional inclusion. Primary candidates for these attributes
are information already present in the treebank, when their status with re-
spect to the parsing goal is not fully clear. In TiiBa-D/Z there are a number
of edge labels that add information to node labels, but it is not obvious
whether including this information into node labels will improve parsing per-
formance or not. These edge labels include grammatical functions for con-
stituents embedded in topological fields, or apposition, head, and conjunct
labels for edges that connect nodes in complex constituents, or that connect
topological fields in field coordinations. Attribute context may test all these
edge labels for their influence on the behaviour of the nodes. If they do not
influence their behaviour, then they will likely only create a new type of node
that behaves just like before, i.e. they will reduce the amount of training data
without improving parsing performance. If they influence the behaviour of
the nodes, however, they may provide a good motivation to split nodes.

Attributes may also be created with information derived from the tree-
bank, e.g. features of lexical items such as case information, suffixes, or base-
forms. As the additional information is only present in the contexts, but the
productions still contain only information relevant for evaluation, attribute
context can be seen as selecting additional information to predict a given
goal, wherever the additional information consistently co-occurs with the
goal.

Algorithm 2 (p. 165) does not need to be changed to work with attribute
context, because we only need to extend the set of contexts C to include
attribute contexts. As in ancestor and descendant context before, smaller
contexts are strictly preferred to larger contexts. A context is smaller if it
contains fewer nodes, or, given it has the same number of nodes, if it has
fewer attributes. The function SMALLERTHAN() is correspondingly changed
to compare the number of descendant contexts. See algorithm 3 for the fi-
nal definition of this function covering ancestor, descendant and attribute
contexts.

The number of contexts in a treebank using attribute context is the num-
ber of ancestor or descendant contexts times the size of the set of permuta-
tions for all attributes of the nodes in these contexts. Table 8.5 shows the
number of contexts that are considered when all edge labels in TtiBa-D/Z are
added as attributes (row Contexts). The number increases only moderately
over plain ancestor and descendant context, because not all nodes carry edge
information, and never more than one edge label.

The major problem of adding more information to node labels is data
sparseness. Adding information to node labels means adding new produc-

180 Chapter 8 Extended Local Context

Algorithm 3 Comparing Context Sizes
1: function SMALLERTHAN(¢y, ¢2)

2 ny < COUNTNODES(¢q)

3 ny < COUNTNODES(¢s)

4: a; < COUNTATTRIBUTES(cq)

5: as «+— COUNTATTRIBUTES(¢2)
6
7
8

9

> The number of nodes in ¢;

> The number of nodes in ¢»
> The number of attributes in ¢;
> The number of attributes in ¢,
if ny < Ny then

return True
else if ny = ny A a; < ay then

return True

10: else
11: return False
12: end if

13: end function

ancest. /desc.

Context ancest. & desc. | ¢ attribute
Pev Fju 87.91 87.38
perp 10.64 11.14
Iterations 42 76
parent node contexts 30 23
parent attribute contexts 0 3
other ancestor contexts 2 4
child node contexts 9 8
child attribute contexts 0 35
other descendant contexts 1 40
Focus tokens renamed 50930 85527
Context tokens renamed 1033 8810
Grammar Rules 5142 8102
Failed 0 1
| Contexts | 2384363 | 6287564 |

Table 8.5: Ancestor/Descendant Context and Attribute Context

8.2 Extending Context 181

tions, or reducing the amount of data available per class. The added infor-
mation is useful as long as it helps predicting annotation. Attribute context
starts with few information (the non-attribute context) and adds informa-
tion if it supports predicting annotation, following the paradigm of iteratively
fitting node labels to the parsing task and the treebank.

Noun phrases with different grammatical functions show that attributes
carry information that is relevant for disambiguating syntactic annotation,
which may, however, be too fine-grained if used unconditionally for all nodes.
Nominative noun phrases tend to occur more frequently in the initial field,
while accusative and dative noun phrases tend to occur in the middle field
(see table 8.6). Grammatical functions, however, will be most useful to de-

Grammatical Function
Field || oN | oA | oD | oG
VF 39% | 6% | 8% | 0%
MF || 55% | 91% | 91% | 100 %
C 6% | 3% | 0% | 0%
| absolute || 9508 | 4695 | 695 | 11 ||

Table 8.6: Preferred Fields of NX with Grammatical Functions

termine structure when they can be anchored in lexical items, which so far is
not the case. Attribute context may be restricted to ancestor context, to test
whether constituents with certain grammatical functions have distinct types
of children. On the other hand, the grammatical function attribute in con-
junction with descendant context may help deciding whether a constituent
is part of a complex constituent (thus having no grammatical function at-
tribute), or is attached to some field. The result of splitting in individual
contexts that all correspond to a single function will be more fine-grained
than the broad, and probably more useful, division between a part and the
maximal projection of a complex constituent. Instead of deciding whether a
constituent is attached to a field or to another constituent, a new subclass
will be added for each constituent type in every function, because this is what
the attribute contexts capture.

In our tune data set, the splits in figure 8.14 are all triggered by differ-
ent grammatical functions, but the behaviour of all prepositional phrases is
the same — they prefer to appear in the middle field.® A single uniform split
of all PX with any of these functions at once will probably help improve
parsing performance more than the individual splits when assigning gram-
matical functions is not part of the parsing goal. Merging these nodes could

6We show attribute context in rectangular boxes.

182 Chapter 8 Extended Local Context

MF
IEEEACAN U S
GF :V-MOD :OPP :FOPP :MOD :PRED

Figure 8.14: Attribute Splits Leading to Identical Productions

be promising, which will be discussed in chapter 9.

Not all splits triggered by attributes carrying edge labels show this degree
of uniformity in productions and should therefore be merged. Figure 8.15
shows many splits that are ultimately triggered by a proper name tag NE
in a noun phrase NX. Most different edge labels subsequently lead to splits

MF NX#3 0 NX#22
A

y
EN-ADD#74 EN-ADD#744#76 EN-ADD#72

Constituent EN-ADD

Figure 8.15: Attribute Splits Leading to Different Productions

diversifying EN-ADD, which appears as a subject (ON) mostly in the middle
field, and as part of an apposition (APP) mostly in the initial field. Many of
the remaining proper names containing an NX#1 are not part of a sentence
(EN-ADD#74), or are part of a complex constituent, always depending on
the edge label included via attribute context (the two other splits shown).
These very detailed splits of a single node label could hint at a per-
formance of the iterative refinement that has gone past its peak. A curve
plotting performance per iteration for including still more contextual infor-
mation does not show a steep decrease, however (figure 8.27 on page 210).

8.3 Lexical Context 183

Splits rather seem to add relevant information, but not the ideal type for
simply assigning structure without edge labels, as we evaluate it.

8.3 Lexical Context

Lexicalisation grants a grammar access to lexical information. Heads of con-
stituents take this information to higher levels in syntactic structure, where
the heads considered more important percolate further up a tree, dominat-
ing the other heads. Lexicalisation is considered the key to high-performance
parsing, because syntactic structure is normally arranged to make the lexical
heads of constituents meet in the proper order. Experiments have demon-
strated that lexical information can help resolving structural ambiguities
(Hindle and Rooth, 1993), and in fact, the best performing parsers to date
lexicalise treebanks for parsing (Charniak, 2001; Collins, 1997; Collins é al.,
1999; Ratnaparkhi, 1999; Taskar & al., 2004).

Lexicalisation can be added to the context — focus — production view on
treebanks straightforwardly. Experiments in the previous chapters have all
been performed on POS tags as terminal symbols, but it is easy to extend
the fringe of syntactic trees with word forms, promoting POS tags to non-
terminals.” Lexicalisation via lexical context is thus simply an increase in
the level of detail of the POS tag set. The STTS tagset has been widely
applied, but whether it provides the best level of abstraction for parsing is
not obvious. It is rather likely that at least some information about case may
be useful where constituent order is as free as in German. We do not try to
show the impact of explicit case information directly here, because German
word forms are often ambiguous with respect to case and therefore not trivial
to disambiguate morphologically. Instead, we concentrate on frequent word
forms, which may also be correlated to certain morphological readings. POS
tags that are promoted to nonterminal symbols can serve as focus nodes in
addition to being only productions and context in ancestor and descendant
context, respectively, so that POS tags, too, can be refined when they ap-
pear to be too general. Figure 8.16 shows how POS tags are lifted into a
position where they can act as focus nodes, so that the lexical items form
the new fringe of the tree. The intended result of applying refinement to
the resulting treebank are changes in POS node labels that allow percola-
tion of lexical information up a tree wherever the former POS tag in the
position of a nonterminal node label does not represent well the connection
between local contextual changes above it and changes in the distribution of
the lexical items that it dominates. Note that via a combination of ances-

"Pre-terminals are not considered separately here.

184 Chapter 8 Extended Local Context

(v
(D)
(w)

@ (00 (i)
(ier) (NN+HD) (cinen)

einen Klotz
aRT W () (o)
(a) TiBa-D/Z (b) POS Terminals (¢) Lexical Terminals

Figure 8.16: Extending Context to cover Lexical Items

tor, descendant, attribute, and lexical context, all overly general node labels
modified to improve parsing performance by Schiehlen (2004) and by Klein
and Manning (2003b) can also be found by Treebank Refinement, including
node labels specialised by partial selection of functional edge labels and POS
tag splitting based on high-frequent word forms.

8.3.1 Unrestricted Lexical POS Splitting

The difficulty in adding the appropriate amount of lexical information to POS
tags is mainly caused by the high number of different word forms. Lexical
items are known to have a very skewed frequency distribution, resulting in a
high number of low-frequency types that are unlikely to be found frequently
enough in new data to deserve individual treatment in order to improve
parsing. There are methods for estimating probabilities for these problematic
classes, and while we do not deny the usefulness of such approaches, we still
stick to plain PCFG parsing nonetheless in order to examine its behaviour
when it is unaffected by other methods that re-distribute probability mass.
Any smoothing or backing-off being absent from our method of transforming
the treebank prior to, and during parsing, there is of course the danger of
introducing too many splits that do not generalise well to unseen test data.
Table 8.7 indeed shows that straightforwardly applying Treebank Refinement
to a treebank, so that words, and not POS, form the fringe of trees performs
poorly: Parseval Fj,;, only reaches 67.5%, and almost 3 % of all sentences fail
to parse. This result is accompanied by a rather high number of 323 splits.
Note that cross-perplexity is not directly comparable, because the vocabulary
differs between the experiments.

The nodes that are split in this experiment tend to have high numbers
of productions, and they have many productions that appear just once in

8.3 Lexical Context 185

Context ancest. & desc. ar(lggelset}.d/((:izﬁsc.
Pev Fi, 87.91 67.49
perp 10.64 118.24¢
Iterations 42 323
parent node contexts 30 29
parent attribute contexts 0 0
other ancestor contexts 2 232
maximum ancestors 2 3
child node contexts 9 45
child attribute contexts 0 0
other descendant contexts 1 17
maximum descendants 2 7
Focus tokens renamed 50930 166713
Context tokens renamed 1033 288 824
Grammar Rules 5142 14742
Failed 0 88

| Contexts | 2384363 | 3855945 |

“Unique terminal vocabulary: unknown words in test and train set, and words seen
three times or less in train set replaced by special new unknown symbol (section 5.2.4).

Table 8.7: Straightforward Lexicalisation via Lexical Context

186 Chapter 8 Extended Local Context

the contexts that trigger the splits. Being expected even less, they sum up
to a high overall deviance, making them top candidates for splitting. Classes
containing many word form types, each with low frequency, are typically
open word classes, like nouns or adjectives. These classes feature prominently
among the lexically triggered splits. Table 8.8 shows the node label types that
are split in this experiment with a context or a production covering lexical
items, and adjectives and nouns are indeed by far most frequently the subject
of a split (column times split). They make up for more than half of the overall
323 splits.

‘ times split ‘ label ‘

109 NN
29 ADJA

27 NE

19 VVFIN

12 ART, VVPP

11 ADJD

10 ADV

7 VVINF

6 ADVX

3 CARD, KON

2 APPR, VXINF

1 APPRART, KOUS, PIS, PPER

Table 8.8: Splits Triggered by Lexical Items for Unrestricted Lexicalisation

Sparsely populated classes are difficult to compare for similarity metrics,
and while D7PF proved relatively robust in this respect in the experiments
presented in the previous chapter, it seems to give a large number of infre-
quent events too much importance for our purpose now. Note that closed-
class POS are split as well, but much less frequently (e.g. ART in row 6). Splits
seem to be triggered not by a few high-frequency lexical items (the declared
target of our method), but rather by large sets of infrequent words. Accord-
ingly, lexical items are part of the context of splits only 20 times, while they
occur in productions an overwhelming 256 times. Note also that the influence
of lexical items seems to extend over just the lowest levels of syntactic struc-
ture, because two splits of constituent labels are triggered by lexical items
as well (ADVX and VXINF). Thus there seems to be a connection between
lexical items and syntactic structure that is accessible to refinement despite
these poor initial results.

A closer look at the lexically induced splits that are performed due to

8.3 Lexical Context 187

a large number of low-frequency productions shows that many of the focus
nodes have almost exclusively low-frequency productions. This is mostly true
for the frequent open-class POS NN and ADJA, but table 8.9 shows that also
other open-class POS tags show this behaviour. The table shows all POS

‘ Focus POS H unique ‘ all ‘ % once ‘
VVPP 1251 1622 77.13
ADJD 1151 1576 73.03

NN 23643 | 33842 | 69.86
ADJA 4405 6483 | 67.95
VVFIN 2723 4111 66.24
VVINF 682 1070 | 63.74

NE 3928 7440 52.80
CARD 156 355 43.94
ADV 306 1621 18.88
PIS 12 106 11.32
APPR 25 991 2.52
KOUS 5! 224 2.23

APPRART 3 213 1.41
PPER 7 668 1.05

ART 8 1484 0.54

KON 1 325 0.31

Table 8.9: Unique Productions of Lexically Induced Splits

tags that have been split due to productions covering lexical items, e.g. VVPP
in the initial field that has the productions Ergdinzt, Alarmiert, Angedeutet,
Angefangen, and 25 others, where the first is seen twice, and all others once
(the exact context is VF-VC-VXINF-VVPP+HD). The second column gives
the number of unique types of productions for this focus POS, and the third
column gives the number of all types of productions, including those where
the production is seen more than once. The last column gives the fraction of
unique productions from all productions. What is striking is that lexicalised
adverb POS tags (ADV) have a rather low number of unique productions, more
similar to the closed POS classes at the lower end of the table than to the
open classes at the top. It seems that certain adverbs trigger splits because
they frequently co-occur with distinct structure, making them interesting
candidates in the current framework.

188 Chapter 8 Extended Local Context

8.3.2 Restricted Lexical POS Splitting

A straightforward approach to excluding harmful classes of POS with many
low-frequency productions would be to exclude sets of POS depending on
whether their definition suggests that they include open-class words or not.
The case of adverbs indicates, however, that there are word forms with POS
labels covering mostly open-class words that still could be useful for pars-
ing, because they correlate frequently to syntactic structure that is quite
unexpected given the POS tag alone. A different approach to reducing the
number of problematic low-frequency productions is to lexicalise a given set
of (POS, word form) tuples, which may also include relevant open-class word
forms. The selection should be guided by the frequency of the production,
i.e. the frequency of the lexical item, and by the relevance of the production
for the split, i.e. its contribution to the overall deviance leading to the split.
Table 8.10 shows the five biggest contributors to the overall deviance among
the productions that lead to splitting ADV the first and second time (splits
#36 and #117). It shows that there are a few rather frequent productions

(a) split #36 in context VF-ADVX-ADV+HD
| % deviance | obs | exp | production |

9 47 6.52 So
6 31 3.36 Da
5 24 2.65 Dann
4 39 13.25 dann
4 20 2.65 Jetzt

‘ 687 occurrences in 175 productions ‘

(b) split #117 in context ADJX#13-ADVX-ADV+HD

‘% deviance‘ obs ‘ exp ‘ production ‘

32 58 7.25 S0

9 17 2.05 ganz
7 11 0.83 viel
6 11 1.15 sehr
5) 7 0.49 etwas

‘ 210 occurrences in 61 productions ‘

Table 8.10: First Two ADV Splits Involving Lexical Items

that are also much more frequent than expected, making them large contrib-
utors to the overall deviance. The table also shows that capitalisation seems
to be important. Most of the adverbs in split 36 are uppercase, so that the

8.3 Lexical Context 189

split seems to be triggered by the fact that adverbs in the initial field are
mostly uppercase (see context in table 8.10(a)). The fact that these adverbs
are sentence-initial may seem surprising from the perspective of the ADV tag
alone, but it probably does not contribute much to better parsing, because if
the first input symbol for a parser is an adverb, it will likely be put into the
initial field (VF) anyway. Since Dann and dann are both selected, there also
seems to be a contribution of lexical items proper, underlined by split 117,
where all adverbs are lowercase (see table 8.10(b); ADJX#13 in the split’s
context prefers to occur in MF, ADJX or VF).

8.3.3 Selecting Lexicalised POS Before and During
Parsing

On the one hand, the application of Treebank Refinement to lexicalisation
should be restricted to splits triggered by mostly high-frequency word forms,
i.e. it should be restricted mostly to closed-class POS. On the other hand,
selecting closed-class POS a priori based on their definition misses those word
forms tagged with an open-class POS that still have mono-lexical impact on
syntactic structure, and will also fail to handle the uppercase feature, which
seems to be rather orthogonal to the lexical item feature. We intend to stress
the difference to bilexical dependencies between two words (e.g. the heads of
phrases for attaching PPs) when using the term mono-lexical, which describes
the dependence of structure on single lexical items.

Our strategy to solve the problem of selecting lexical items that could have
an individual impact on syntactic structure is to ignore case distinctions by
normalising case, reapply splitting, and select some splits that have POS tags
as focus. We select those (POS, word form) tuples that have been triggered by
descendant contexts, because minimal frequency and deviance requirements
for splitting a node at all are definitely met for descendant context. Secondly,
all ancestor context splits are included where the productions cover lexical
items, and production frequency and contribution to deviance meet a certain
minimal threshold. In order to allow all possibly interesting information to be
considered for subcategorising the POS tags by lexical items, we use attribute
context, which has the potential of connecting grammatical function edge
labels with lexical items.

Parsing performance is influenced by splitting the treebank, but also by
either annotating POS separately before parsing, or as part of assigning syn-
tactic structure. All experiments apart from the one reported in Table 8.7
have used unmodified STTS POS tags as input symbols that completely hide
all lexical items. Lexicalisation that is triggered by ancestor context results

190 Chapter 8 Extended Local Context

in a modified set of POS tags that are selected depending on structure that
dominates the tags, i.e. on information not available to the POS tagger. POS
tag splits triggered by descendant context including just the lexical item are
compatible with POS tagging as a preprocessing step, but only less than ten
percent of all splits have such kind of context. The remaining splits cannot
be performed on the basis of word forms and POS tags alone, because the
POS tags are split lexically in ancestor contexts that depend on the parse,
which is obviously not available prior to parsing, so that POS tagging as pre-
processing is not an option. The parser can use word forms as input symbols
as well as POS tags, so that the easiest way to use lexical information is
splitting the treebank and letting the parser operate directly on word forms
as input with a grammar derived from the lexically split treebank. Table 8.11
shows results for this approach and contrasts it with results for the pretag-
ging approach as described in the previous section (row presplit).® In the third

parse on words pretag, parse
TR‘ lexicalisation || struct ‘ POS ‘ perp® || struct ‘ POS ‘ perp

[=] — | 80.54 [92.38 | 127.59 || 83.48 | 96.04 | 13.49 |

+ unrestricted 67.49 | 82.67 | 118.24

+ | no NN,NE,ADJA || 76.45 | 86.98 | 94.06 n/a

+ cc and ADV 86.02 | 94.77 | 98.99

+ presplit n/a 87.79 ‘ 96.04 ‘ 15.86
+

| — | 85.43] 94.28 | 105.32 [| 87.91 | 96.04 [10.64 |

®Third and last rows with the same unique terminal vocabulary, all others are different
and unique.

Table 8.11: POS Tagging & Parsing Performance vs. Lexicalisation

row, it shows performance on an untransformed treebank. The last row shows
performance after Treebank Refinement with ancestor and descendant con-
text, where the pretag, parse columns repeat results given before. The parse
on words columns show results when the parser is fed with words instead of
POS tags. The remaining four rows show results for unrestricted lexical POS
splitting (lexicalisation/unrestricted), or when the three POS NN, NE, ADJA are
excluded from splitting (lezicalisation/no NN,NE,ADJA4), i.e. those POS with
very many unique productions. The next row shows results when all closed-
class POS plus ADV (everything but ADJA, ADJD, CARD, NE, NN, ADJD, VVFIN,

8Most experiments in table 8.11 use only ancestor and descendant context in order to
reduce run-time. Additional attribute context is only used in the presplit row to determine
subcategorised POS.

8.3 Lexical Context 191

VVINF, VVPP) can be split (cc and 4DV). These three experiments require the
parser to select POS tags based on syntactic structure. They therefore cannot
be used with pretagging and are only given in the parse on words columns.
The remaining presplit row performs unrestricted lexical POS splitting with
ancestor, descendant and attribute context, and selects POS for splitting that
are either split in descendant context, or where productions occur at least
10 times, and their contribution to the sum according to equation 7.9 is at
least 0.1. We show POS tagging performance (POS columns) and Parseval
Fup over all node labels (struct), as well as cross-perplexity (perp). When we
do not use lexicalisation at all, the difference between parse on words and
optimal POS tagging performance (pretag, parse) is cut in half by applying
Treebank Refinement with ancestor and descendant context (a difference of
3.66 in the first, and 1.76 points in the last row). In row cc and 4DV, POS
tagging accuracy is lifted by another 0.5 %. The PCFG parser thus can take
advantage of the additional lexical information in the POS tags. The differ-
ence to best Parseval performance also decreases, but parsing with words as
input still stays clearly behind the pretagging approach (best Parseval for
both strategies in bold). While absolute parsing performance is not of direct
importance for the evaluation of relative parsing improvements achieved by
splitting, lower absolute parsing performance is not desirable. The ability of
the POS tagger to handle unknown words may be the reason for its better
POS tagging performance. The parser does not use sophisticated smoothing
to handle unknown words, but the method outlined in section 5.2.4. Cross-
perplexity is only comparable between identical vocabularies. The first and
last experiments in the parse on words column have the same vocabulary.
They are also comparable to all other experiments that operate directly on
words. All other experiments have individual vocabularies and therefore the
cross-perplexities are not directly comparable (numbers in italics).

In the following, we will discuss some more details of the presplit experi-
ment that gives highest Parseval Fj,;, performance, i.e. on the experiment that
determines the POS to be split by lexical items prior to parsing. It turns out
that refinement using contexts of unlimited size, and considering lexical items
below all POS tags results in a very high number of contexts (17281 628),
which cannot be handled by our current implementation or Treebank Refine-
ment. We therefore restrict contexts in two ways. First, descendant contexts,
which make up the largest proportion of all contexts, are restricted to a max-
imum length of three. Second, we exclude some of the POS tags that are not
blocked by our thresholds.

In the above presplit experiment, there are four kinds of open-class POS

9Both determined heuristically.

192 Chapter 8 Extended Local Context

where at least one production exceeds the thresholds: ADV, NN, NE and VVINF.
Adverbs (ADV) will be considered fully, given their many high-frequency pro-
ductions observed in table 8.9. There are nine common nouns (NN), three
proper names (NE), and one non-finite full verb (VVINF) that are involved
in lexical splits in the same experiment (see table 8.12), in addition to four-
teen adverbs. One can imagine a very specific usage for each of these lexical

| POS | word form (frequency) |
NE dpa (66), taz (55), Christoph (16)
NN Kto. (20), Foto (12), Tel. (12), Volksbiihne (13), Theater (11),

Mai (12), Kommentar (10), Betr. (10), Uhr (10)
VVINF | tun (19)

Table 8.12: Open-Class POS in Unrestricted Lexical POS Splitting

items, where they are potentially good candidates for predicting structure.
For example, dpa and taz usually identify the source of a newspaper article in
an unattached noun phrase preceding the newspaper article (denominating
the article’s source: Deutsche Presseagentur and the taz newspaper, respec-
tively). Similarly, there are (surprisingly many) authors whose first name is
Christoph, which are also frequently mentioned at the beginning of an ar-
ticle in a similar way. The common noun Foto can often be found at the
same position, denominating the source of photographs. Similarly, Kommen-
tar (‘commentary’) and Betr. as abbreviation of betrifft (‘with respect to’)
frequently introduce articles. Quite specific usage can also be attributed to
the other common nouns, appearing in calls for donations (Kto., for account
number), contact information (7el., for telephone number), or announce-
ments (the generic and proper names of theatres: Theater, Volksbiihne; the
time and date: Uhr, Mai). Frequencies for all these words are rather low
(given in brackets), so that we do not loose too many cases of mono-lexical
structural dependencies when the respective POS are excluded from splitting.
We will consequently ignore all words given in table 8.12 and never split the
POS NE, NN, and VVINF in order to reduce the search space for relevant con-
texts. It is likely that in more restricted domains a higher number of more
frequent open-class words will emerge that could be interesting candidates
for lexicalised POS, and including them would be more advisable. Despite
being revised manually, note that all these items have been originally selected
by fully automatic means.

Table 8.13 shows all remaining lexical splits, i.e. the POS tags and the lexi-
cal items that are assigned individual new subclasses of the original POS. The
table specifies how we perform closed-class lexicalisation in all our remaining

8.3 Lexical Context 193

‘ POS ‘ word form ‘
$C | -)(/

$. :

ADV | anders bis da dann dort ganz gar gestern heute hier jetzt

mehr schliefSlich sehr so

APPR | als bei bis in nach neben tber vor zu

ART | das den der des die eine einen

KON | aber denn doch

PPER | es thm thn ihr thnen mir uns

Table 8.13: (POS, word form) selected for Partial Lexicalisation

lexicalised experiments. There seem to be different reasons for splitting the
POS tags. The punctuation marks tagged $(are often found in unattached
noun phrases (-) or in conjunction with proper names ((,), /). The colon
(1) is found at the end of orphaned noun phrases much more frequently than
in sentence-final position as the other members of $., like the full stop or
the exclamation mark. A larger class of the words shown in Table 8.13 is
frequently assigned a wrong POS tag. Most adverbs are always tagged cor-
rectly (anders, dann, dort, ganz, gar, gestern, heute, hier, jetzt, schliefSlich,
sehr). Of the remaining words, only the preposition neben and the personal
pronouns es, thm, thn and ihnen are always tagged correctly.

Mistagging function words can have severe impact on parsing, which we
try to illustrate with bis, which is POS-tagged rather unreliably. It has the
gold POS tags ADV, APPR, KON, and KOUS and it is annotated with the accuracy
shown in table 8.14 in tune train data. The tags label bis as a (subordinating)

| gold | accuracy | mistagged as (% of all occurrences) |

ADV 5.4% | APPR (95 %)

APPR | 71.7% | ADV (13 %), KON (5 %), KOUS (2 %)
KON 17.8% | APPR (57 %), ADV (3 %),

KOUS | 63.6% | APPR (46 %)

Table 8.14: POS Tagging Accuracy for bis

conjunction, a preposition or an adverb, and these analyses will obviously
have different impact on syntactic structure. Splitting the POS tag of bis
whenever it is (correctly or not) tagged as ADV or APPR gives the parser a
chance to resolve this ambiguity on a higher level for most of the errors
shown in table 8.14. Subclassifying POS tags manually has proven useful for
some of these tags, too (Miiller and Ule, 2002).

194 Chapter 8 Extended Local Context

All definite articles in table 8.13 except for des are also sometimes tagged
incorrectly as relative pronouns, so that assigning them lexicalised POS tags
may help along the same lines. Giving the parser access to the lexical forms
of articles also reveals some information about case. Most articles are not un-
ambiguously correlated with case as is einen, which always marks accusative
case, or des for genitive case. They do, however, show only restricted am-
biguity like das, die or eine, which can be only accusative or nominative.
The behaviour with respect to tagging errors and morphological ambiguity
is rather similar for personal pronouns (PPER). Percolating these frequent
function words beyond the level of POS tags may thus help using case infor-
mation for parsing.

Subcategorising the POS tags of the conjunctions has yet another benefit
for parsing. Normally, POS tags of conjunctions (KON) occur below noun
phrases most of the time. The conjunctions aber, denn and doch, however,
deviate from this behaviour, because they are mainly found in sentence-initial
position, i.e. in the KOORD field (aber, doch), or the PARORD field (denn).
Moreover, paratactic constructions differ from other coordinations only in the
lexical element of the conjunction, so that the PARORD field or the P-SIMPX
clause type (for paratactic construction) could never be assigned reliably
without access to the conjunction (the prototypical paratactic conjunction
is denn; Telljohann & al., 2003, pp. 88 and 106; note that we normalise all
words to lowercase here).

The remaining lexicalised POS tags are mainly adverbs that are frequently
found as modifiers of the verb (V-MOD: gestern, heute, dort, jetzt, hier) or
as general modifiers (MOD: mehr, gar, dann, da, so). The adverb anders
frequently modifies a predicate (PRED), as in Wie immer war friher alles
ganz anders. (‘As usual, everything used to be completely different.”). Still
other adverbs modify adjective phrases (so, ganz, sehr), or are themselves
the heads of complex phrases (gestern and heute) as in erst seit gestern (‘only
since yesterday’).

Introducing lexicalisation to refinement, either by applying the parser
directly to words, or by pre-splitting POS, does not beat results obtained
without lexical context. This is rather surprising, given that words carry a
wealth of information not available in plain POS tags. Some of the lexical
information seems to be especially important in a language like German that
has rather rich inflectional morphology, and rather free constituent order.
The results that did not show too much improvement with lexicalisation,
though, were results of evaluation metrics not specifically geared towards
peculiarities of German, nor to those of the TtiBa-D/Z annotation scheme.
The next section tries to examine whether introducing more, and especially
lexical, context into node labels has other more noticeable effects on parsing
TiBa-D/Z.

8.4 Recursiveness 195

8.4 Recursiveness

The small change to the worse that closed-class lexicalisation inflicts on the
labelled Parseval F-score is somewhat surprising, given that lexical informa-
tion is normally deemed quite relevant, which is confirmed by experiments
that examine the usefulness of closed-class lexicalisation for parsing German
(Schiehlen, 2004). A closer look beyond the standard Parseval evaluation re-
veals some differences between the data used in those experiments and ours,
though. Parseval specifies a weighted average of precision and recall on the
node labels given in the annotation of a treebank. We have argued so far that
the node labels of a treebank may be overly specific or too general, and will
extend this question on the evaluation of parser results.

Constituent labels in a generative framework capture the generalisation
that a language allows recursion in all situations where a node can be em-
bedded into a node with the same kind of label. In a treebank this means
that noun phrases, whether complex or simple, always receive the same la-
bel. There will be, however, many more simple noun phrases (at least one for
each NN and NE POS tag in TiiBa-D/Z) than complex ones (only where an NX
makes up a single complex constituent together with another constituent).
When we count all noun phrases (NX) as complex that dominate at least one
other NX, and the rest as simple, then the fraction of simple noun phrases
from all NX is more than 75 %. Looking at the performance of the baseline
model on simple vs. complex NX, we find a Parseval Fj,;, of 93 % on simple
vs. 45 % on complex NX. Performance on simple NX comes near POS tagging
performance on the set of tags that are directly dominated by NX in the test
set most of the time, which is 95.2% (NN, ART, NE, KON and PPER, covering
80 % of all words dominated by simple NX, the rest being covered by 22
other POS tags). Noun phrases also often make up a rather large proportion
of syntactic structure of a treebank (31 % of the nodes in TiiBa-D/Z tune
test data). When Parseval metrics are optimised for a parser and a treebank,
then the overall number of correctly annotated nodes with the respective
label needs to be maximised. This figure will naturally be dominated by the
24 % of all nodes that are simple NX in TtiBa-D/Z. A closer inspection of
the less frequent but more complex constituents thus seems in order to shed
more light on the value added by the parser on top of the POS tagger.

Table 8.15 gives the frequencies of occurrence of all node labels in the
TiBa-D/Z tune test data set. Each node label is subdivided into two groups
according to the number of nodes of the same type that it dominates directly
or indirectly: level 0 (or simple) when it does not dominate any node of
the same type, and not level 0 (or complez) if it does. The labels are also
grouped into those belonging to the constituent domain, and those that make

196 Chapter 8 Extended Local Context

TopF, Clause Constituents
level 0 ‘ not level 0 level O ‘ not level 0
| all || 19487 | 1584 | 33405 | 586 |
type MF 4423 | SIMPX 1230 NX 14429 NX 4558
freq LK 3291 VF 151 PX 4283 PX 727
SIMPX 3100 NF 128 || VXFIN 4272 | ADJX 326
VF 2914 MF 63 || ADJX 4119 | ADVX 214
VC 2727 | R-SIMPX 9 || ADVX 3226 | EN-ADD 21
C 992 | FKOORD 2 || VXINF 2058 | VXINF 18
NF 869 | FKONJ 1 || EN-ADD 896 | VXFIN 15
FKONJ 397 FX 72 FX 7
R-SIMPX 344 DM 33
FKOORD 205 DP 17
KOORD 168
PARORD 24
LV 20
P-SIMPX 13
VCE 0

Table 8.15: Frequency of Recursive and Non-Recursive Node Label Usage

up topological field and clause structure. With the single information about
recursion added, it becomes apparent that those nodes that form the higher
levels of complex structure are considerably less frequent, and that they do
not show the same frequency distribution as their level 0 counterparts. Es-
pecially for topological fields, these differences may give a false impression of
performance when performance differs between the simple and the complex
case. The middle field (MF) is an extreme example, where the complex case
shows up in less than two percent of all cases, although this label is the most
frequent topological field label overall.

By averaging over all occurrences of each label, the parseval metrics are
likely to be a bit too optimistic about performance, assuming that perfor-
mance on complex structure can be even more interesting than performance
in the base case. Performance in the complex case touches phenomena such as
coordination or clause attachment in TtiBa-D/Z. Figure 8.17(a) shows base-
line performance on the untransformed treebank in the leftmost bar (plain).
The next two bars distinguish between simple and complex usage of node la-
bels (not/level 0), and between all individual levels of recursion for all node
labels (levels). It shows that a plain PCFG performs slightly worse when sim-
ple and complex usage of node labels is evaluated separately (a drop of 1.3 %),

8.4 Recursiveness 197

100
100
10

50
50
50

83.5 82.2 71.2

plain not/level O levels

(a) baseline performance

© © ©
™ ™ ™
@ -att-cc
O -att+cc
@ +att-cc
O +att +cc
max delta %
o o o
+4.4 +5.1 +6.4
plain not/level O levels

(b) A Fjup between Parseval baseline and split performance

Figure 8.17: Parseval Fj,, Discriminating Levels of Recursion

198 Chapter 8 Extended Local Context

and considerably worse when each level of recursion is evaluated separately
(a drop of 12.3 %). In contrast, plain Parseval performance of 83.5 % does not
seem too bad in absolute terms at first glance. It becomes evident that overall
Parseval evaluation following the original node labels of TiiBa-D/Z can be
quite different from also evaluating the level of recursion for some, or all lev-
els. Evaluating each level of embedding separately gives a more fine-grained
impression of differences in performance between the levels.

Figure 8.17(b) shows the changes in baseline performance caused by pars-
ing with a treebank grammar obtained from a refined treebank. The four bars
correspond to four combinations of using ancestor and descendant context
with or without closed-class lexicalisation (cc) or attribute context (att).
While absolute performance is still best for just ancestor and descendant
context, the improvements between the splitting regimes differ when evalu-
ating all levels of recursion separately, and distinguishing recursive and non-
recursive usage works almost as well as the annotation of plain node labels
(87.9% vs. 87.3%).

8.4.1 High-Frequent Node Labels

Figures 8.18, 8.21 and 8.24 look closer into those node labels that represent
labels of the most frequent non-recursive (level 0) or recursive (not level 0)
types of fields/clauses, or constituents (first row of type freq for table 8.15).
Together, they make up 72 % of all nodes in the treebank. You cannot score
above 43 % Parseval F,; if these fields are annotated with zero Fj,;, and you
cannot fall below 84 % when they score perfectly at Fj,, = 1, just to give a
rough impression of their impact on plain Parseval F-score. The figures con-
sist of a left part (b) that shows baseline performance of the untransformed
treebank grammar, and a right part (a) that shows absolute difference in
Fip between the performance of the baseline grammar and the four gram-
mars derived from the four different Treebank Refinement regimes, given by
optional attribute context (4/— att) and optional closed-class lexicalisation
(4/— cc). The baseline is given in bars and numbers below the bars. Evalua-
tion is performed either on the original unchanged node labels with Parseval
Flap (plain), on node labels that distinguish between level zero and dominat-
ing some node of the same type (not/level 0), and last, on labels where each
level of recursion is evaluated separately (levels). In addition to the overall
performance for distinction of level 0, or every single level, which is given
in the upper left, all individual levels are also evaluated separately in the
centre. Finally, performance of either level 0 or on all other levels is given
separately on the right-hand side. Frequencies for each subclass are also given
below the bars. All these details are repeated for the split grammars, where

8.4 Recursiveness 199

the numbers below the bars represent the maximum positive change after
transformation. All Parseval Fj,;, relate to results on the tune test data set,
and also frequencies, which are given below the baseline bars, are drawn from
this set. Note that unattached nodes are represented by distinct node labels,
so that sentential parentheses found embedded in a sentence do not count as
recursion. Largest F' values are marked bold for the middle parts.

8.4.2 MF, Recursively

Figure 8.18 shows Parseval performance on middle field nodes (MF), which
are the most frequent TopF /clause node labels overall. MF nodes show a
maximum recursion of depth one, i.e. a MF node dominates at most a single
other MF node. Almost all middle fields are non-recursive (4347 of 4486).
Note that the FKOORD label groups coordinations of all kinds of field labels,
in contrast to clausal or phrasal nodes, which are used recursively to represent
coordination. Seven MF nodes have been split in the +att 4+cc experiment,
and one of these splits connects recursive MF nodes directly via local context
(i.e. either by context included directly in a node, or via the most likely
production of such a node). This local context is shown in figure 8.19(a). 11 of
the recursive MF nodes annotated by the parser are linked via the SIMPX#60
shown. The splitting regime —att —cc, which performs best overall, splits
MF nodes just once, but also connects recursive MF usage via local context.
Although this link between recursive MF is more direct (see figure 8.19(b)),
it applies to only three parses. The sentential node connecting recursive MF
is most frequently R-SIMPX, which is never split by any of the four splitting
regimes. Relative clauses thus do not seem to behave unexpectedly when
embedded in a middle field.

Figure 8.20 shows Parseval Fj,, for MF nodes after each iteration of re-
finement for the +att +cc. Iterations where the focus of the split is an MF
node are marked with small squares. MF nodes mostly seem to benefit from
splits applying to other nodes: the biggest improvement is caused by split
#2, which marks noun phrases in the complementiser field and thus allows
more reliable annotation of verb-last sentences, including their MF.

8.4.3 SIMPX, Recursively

SIMPX nodes appear in a much greater variety of recursion levels — they are
nested up to six levels deep (see figure 8.21). However, most of their popula-
tion occurs in configurations of up to three levels (almost 99 % of the overall
4330 occurrences in the test set). For all SIMPX nodes, splitting improves
performance quite drastically. Even those parts of more frequent recursive

200

Chapter 8 Extended Local Context

jonay T

s|eAs| Z

[9A3| T

LyEY
9Z8

s|ans| z

0O 2 4 6 8 10 12
T N N I NN S |
[
b —
[y —
—/
+
[—
gl |
i —
level 0
level 0
0 2 4 6 8 10 12

o@om
FEEEE
FR-3-3-3-1

+

gdddd
©£3838
5
B

not level 0

0 [9A8]30U ureyd
7'9+

s|ans|
7’9+

€9+

0O 2 4 6 8 10 12

0O 2 4 6 8 10 12

0 2 4 6 8 10 12

(a) A Flqp between baseline and split performance

9L
Ley

level 0

level 0

ey
8'¢8

auljaseq
sulleseq m

AKouanbayy

not level 0

0O 20 40 60 80 100

S |

2%
>

0 |9A3)10U ured
2'¢8

SELE
T18

1Z8

(b) baseline performance and frequency

Figure 8.18: Parseval Fj,, for Levels of MF Recursion

8.4 Recursiveness 201

Field MF
A

Constituent ADVX#25 Feld @
A
Clause SIMPX#60 Clause @

| -,

Field ° @ Fidd $, CMEVCH24 S,

(a) +att +cc (b) —att —cc

Figure 8.19: Local Context Connecting MF Recursion

" Nk ca
—— \E“%mw%f
87 IadCA
ﬂ \Z

86 / 1

85 — 7
o
Y T \/\J
w

84 /

83

MF plain Fg_y ——+—
split focus is MF]
82
81
0 10 20 30 40 50 60 70 80

Iterations

Figure 8.20: Iterative Performance on MF with +cc and +att Context

UOTISINIY XIS JO S[PAST 10] 9°LT TeadsIe :1g'{ oInSIg

Kouenbaiy pue soueurroyrad aureseq (q)

80 100

20 40 60

0

40 60 80 100

20

o

79.2 652
plain

80 100

40 60

20

o

|
not/level 0

@ baseline
baseline
frequency

100

77.8
1793

1 level

100

o

E

evels

100

25.2
193

18.7
203

=]
14.8
237

3 levels

100

0.0
13

4 levels

100

3

5 levels

o] 100
I

1

6 levels

level 1 level 2 level 3 level 4 level 5

level 0

not level 0

level 0

100

100

n

54.4
1230

T

68.4
3100

soueuriojrad 91jds pue oureseq ueamjaq 9°Ly v (e)

20

10

100

50

20

10

+9.3 +19.6
plain not/level 0
@ -att-cc
O -att+cc
@ +att-cc
O +att+cc
max delta %

g
3

. 300

+29.1

+11.5 +33.0

1level 2 levels

20

10

100

50

+19.0
levels

I

+44.3

i

+37.8

1l

+42.4

3 levels

100

50

1

+50.0

Iy

+37.5

I

+43.8

Il

+47.1

4 levels

100

50

o

il

+100.0

e
+100.0

il

+100.0

0.0

5 levels

100

50

0.0

0.0

0.0

0.0

0.0

0.0

6 levels

level 5

level 4

level 3

level 2

level 1

level 0

not level 0

level 0
10

20

10

20

+27.7

Il

+17.5

¢0¢

1X0JU0) T80T PIpUXy § 193deyn)

8.4 Recursiveness 203

structures that have a poor baseline performance come close to being accept-
able after refinement. E.g. the lower node of a recursive SIMPX structure of
depth two reaches 74 % Fj,;, after refinement (baseline: 41 %), and of depth
three 57 % (15 %). Overall performance according to evaluation by levels of
recursion accordingly gains more than plain evaluation: +19 % for levels (over
a baseline of 60 %) vs. +9 % for plain (over 79 %). The increase for four lev-
els of recursion is accordingly quite large (between 38 and 50 points) and in
sharp contrast with the zero baseline. No SIMPX node seems to suffer from
splitting. Even some low-frequent parts of structures nested five levels deep
are annotated correctly, while not found at all in the baseline parses. Similar
to MF nodes, SIMPX nodes do not seem to benefit from lexical, or attribute
context. We think that this is due to complex sentence structure being less
directly connected to lexical items than complex constituent structure.
Figure 8.22 shows plain performance of the refined treebank grammar on
SIMPX nodes after each iteration of the +att +cc setting. Most of the overall

89

88 TZEﬁNAA“ﬂ*“NPikkkﬁ%hhkw'“kk&KPKFF
. |

; Tf“
|
!

Fpe

83

82

SIMPX plain F[3=1 —
split focus is SIMPX : [J

81

o |
e

A

78
0 10 20 30 40 50 60 70 80

Iterations

Figure 8.22: Iterative Performance on SIMPX with +cc and +att Context

improvement of 9% F originates in four splits (9, 12, 15, 48). The first two
of these splits have SIMPX nodes as their focus (see figure 8.23(a)). These
SIMPX#9 and SIMPX#12 make up 55 % of all SIMPX nodes that appear in
recursion of at least three levels in the parser’s output. The context triggering
the SIMPX splits shown in figure 8.23(a) covers relations between clause
structure and topological fields: coordinated simplex clauses are found below
another SIMPX node, and a SIMPX node in a final field (NF) preferably groups
verb-last sentences. The fact that an NX label covers punctuation much more

204 Chapter 8 Extended Local Context

VROOT @
Field SIMPX @ Clause @

‘ A
v v '
L KONJ $,CMFVC Constituent NX#2 @
v v
PRELS+HD NN+HD $#
(a) SIMPX focus (b) complementing SIMPX

Figure 8.23: Splits Improving Annotation of SIMPX Nodes

frequently when found unattached than it does elsewhere (e.g. in a SIMPX)
is another structural preference, as is the fact that the complementiser field
holds subordinating conjunctions much more frequently in simplex clauses
than in relative clauses (expressed via the complement set of C#48 that
encodes a preference for relative pronouns for the C field of R-SIMPX). These
local contexts are included into the other two node label splits that are most
helpful for annotating SIMPX nodes given in figure 8.23(b). The #: expresses
a lexical split of the POS tag $. that occurs where it dominates a colon, as in
sub-headings like Kino: (‘at the cinema’), Premiere: (‘first night’), which are
often found at the beginning of certain newspaper articles. This split has been
introduced by closed-class lexicalisation, but despite the name, you could also
think of a colon as a structural indicator instead of a prototypical lexical item.
Punctuation marks seem to be more closely connected to complex sentence
structure than to semantics here. The splits shown in figure 8.23 have been
considered most important in a splitting regime with access to closed-class
lexical information and all edge labels (+att +cc). Still, among the contexts
selected by Treebank Refinement, those that represent structural preferences
seem to be most useful for improving the annotation of SIMPX nodes. Rather
than lexical selection, these contexts express structural preferences.

8.4.4 NX, Recursively

Noun phrases (NX) have the most frequent node label overall — they repre-
sent more than 30 % of all nodes in TtuBa-D/Z. They are found in rather

8.4 Recursiveness 205

complex configurations of up to seven levels of embedding (see figure 8.24).1°
More than seventy percent of all their occurrences are found in rather flat
noun phrases of depth one or two, but NX nodes are spread more evenly
over recursive constructions of different complexity than SIMPX nodes: noun
phrase nodes that are part of complex noun phrases of four or more levels
make up more than ten percent of all occurrences. Performance varies quite
drastically with nesting. On base noun phrases (level 0 NX with any number
of dominating NX), Parseval F},; is quite high for the baseline model already
and reaches 92.8 %. Base noun phrases make up more than three quarters of
all NX nodes. Performance gains from splitting for all but the most complex
noun phrases. While this improvement is rather low for base noun phrases
(+0.5 %), it reaches almost 20 % for more complex configurations (where
there are five levels of NX, maximum shown in bold). Despite this increase,
only the less complex configurations with up to three levels of embedding are
lifted beyond an F' of 50 % by splitting. Baseline performance even fails to
exceed the level of 50 % F' for determining those NX that dominate another
NX (not level 0). Splitting improves on this quite considerably, reaching more
than 60 % with attribute context and closed-class lexicalisation.

The results generally show a tendency of the more agnostic parameter
sets (no attribute context, no closed-class lexicalisation) to prefer the high-
frequent structures with lower complexity (cells to the lower left). Recursive
structure gains through all kinds of splitting, while closed-class lexicalisation
and attribute context both perform worse alone than in combination for noun
phrases.

The types of context that are used to trigger splitting seem to have a dif-
ferent impact on assigning structure containing NX nodes than for structure
containing MF and SIMPX nodes. For all but the most infrequent config-
urations of NX (i.e. for zero to five levels of recursion), attribute context
wins in combination with closed-class lexicalisation. It seems to be here that
closed-class lexicalisation has its most positive effect on parsing performance.
On the other hand, the increase is very low for base noun phrases for this
splitting regime, so that overall, +att +cc just reaches a similar increase in
performance as ancestor and descendant context alone for plain evaluation.

Figure 8.25 shows performance per iteration on NX nodes for the +att +cc
setting. Like the other two curves for performance per iteration, figure 8.25
first shows a steep increase up to near maximum performance, and then
stays within a small corridor for the remaining iterations. Refinement does

1ONX nest seven levels in e.g. mit [Rufland [als [Ressourcenlieferant und [[militirischer
Ausrister [Indiens] und [Chinas]]], bis hin zu Atomwaffen]]]] (‘Russia delivering commodi-
ties and military goods to India and China, including nuclear weapons’) in TiiBa-D/Z
sentence 2409.

UOISINDSY XN JO S[PA9T] 10} L [eAosIR] :§7 R 9INSIq

Aouonbaxj pue ooueuriojrod aurpseq (q)

100

20

50 100

0

8 8
— —
8 8
8 8
< g
& Q
o o
83.6 828 545
plain levels
not/level 0
@ Dbaseline
baseline
frequency
(=]
- jl
311
° 694
S
8 j
Il m
453 20.0
1785 841
jl i =
758 499 298
7091 4492 1927
llevel 2levels 3levels

50 100

0

50 100

0

0 50 100
I -
I

|

13.9
76
=] —_
20.9 3.8
240 79
=] =
10.8 7.2
259 85
(=] =
11.7 8.0
304 96
=) =

201 11.2
677 201

4 levels 5 levels

14.3
19

=
14.3
37

6 levels

50 100

7 levels

level 1 level 2 level 3 level 4 level 5 level 6

level 0

not level 0
50 100

0

level 0
50 100

0

45.0
4558

92.8
14429

soueuriojrad 91[ds pue sulfaseq usemiaq °Ly v (e)

10

2

o

20

-20

il B

+2.6
plain

+2.6

—att -cc
—att +cc
+att -cc
+att +cc

opom

max delta %

20

-20

mOm0

+7.2

1level

il

+16.8

(il

+15.0

2 levels

not/level 0

20

-20

+9.1
levels

il

+17.1

il

+17.8

il

+15.4

3 levels

20

-20

o=l

+13.9
acll]
‘1856
il

+16.1

acll]

+11.9

4 levels

20

-20

n]

+18.3

ol

+19.3
el
+10.8
l:lD

+14.0

m-al

+13.3

5 levels

20

-20

+15.8

| EgE

+1.9

Iaas
+7.3

6 levels

20

-20

0.0

0.0

0.0

0.0

0.0

0.0

0.0

7 levels

level 1 level 2 level 3 level 4 level 5 level 6

level 0

not level 0

level 0
000 025 050 0

20

10

90¢

1X0JU0) T80T PIpUXy § 193deyn)

8.4 Recursiveness 207

86.5
86 f
85.5 f\
85 f‘//‘
84.5
84 /

83.5 |

Z
<

NX plain FB=1 ——
split focus is NX i [J

83

0 10 20 30 40 50 60 70 80
Iterations

Figure 8.25: Iterative Performance on NX with +cc and +att Context

not seem to require an exact stopping condition judged by the curves for
MF, SIMPX and NX. Quite a high proportion of all splits applies to focus
NX nodes, which can be partly explained by their high overall frequency, in
combination with the split metric D meDZ_ f , which prefers high-frequency focus
nodes in context. But it also seems that TiiBa-D/Z’s NX nodes are overly
general for PCFGs. Figure 8.26(a) shows local context transformed into those
NX nodes that are the main contributors to improvements in plain NX perfor-
mance among those initial splits that lift performance on NX nodes to near its
peak (iteration 1-30). Interestingly, there are as many NX focus nodes among
these first iterations that do not seem to lift NX performance as there are NX
focus nodes that lift performance (the former shown in figure 8.26(b)). The
NX node splits that increase performance single out nominal constituents in
proper names (split #1) and unattached NX (#15). They also include head
information from edge labels to mark nested nominal constituents that tend
to be part of prepositional phrases (#22), and to mark the nominal lower end
of complex constituents to prefer die as an article followed by a single com-
mon noun (#23). NX#23 thus links closed-class lexicalisation directly to the
constituent label via its most frequent production. The remaining two splits
improving performance on NX do this as well, in effect, although the lexical
information is not visible in the local context presented in the figure. The sin-
gle most helpful split for NX, which includes the accusative object edge label
OA into noun phrases (NX#4), encodes a preference for accusative objects
to appear in the middle field, while nominative objects (ON; the subjects)

208 Chapter 8 Extended Local Context

VROOT
EN-ADD VF PX
A
Constituent @
NN+HD $.#: ART#die NN+HD
Constituent
POS NE

(a) improving NX annotation

Field °
Constituent @ MF
‘ A 2

1 »
PRED

PRELS+HD PPER+HD#47

:V-MOD :ON-MOD

PPER#hm

(b) neutral with respect to NX annotation

Figure 8.26: Splits of NX Nodes Before Optimal Performance

8.4 Recursiveness 209

prefer to occur in the initial field (NX#3). The resulting new nodes show
a preference for different productions, including der as article followed by a
common noun in the nominative case, and den and einen in the accusative
case (not shown in the figures).

The same mix of structural and lexical contextual information is present
in the NX splits that do not have a noticeable effect on NX performance
(figure 8.26(b)). There is an explicit connection to lexical items via local
context for dative objects (OD): NX nodes with an OD edge label are first
split because they prefer to occur in the middle field, resulting in a new node
label NX#6. This node label later triggers a split of dominated personal pro-
nouns to prefer ihm. All splits of NX triggered by edge labels representing
grammatical functions encode a preference for a certain linear position in the
sentence. Those shown in figure 8.26(b) are less frequent than those improv-
ing NX performance shown in figure 8.26(a). Additionally, the splits in the
lower part of the figure seem to connect the grammatical functions less often
with anchors in closed-class lexicalisation. Table 8.16 shows the frequency of
occurrence for NX#3 to NX#8 in tune train data. The splits of NX in context

‘ node H NX#3 ‘ NX#4 H NX#5 ‘ NX#6 ‘ NX#7 ‘ NX#8 ‘
has edge ON OA PRED oD V-MOD | ON-MOD
frequency 8892 4554 798 692 261 206

ce-lex child || 23.1% | 22.2% || 194% | 18.6% | 10.7% | 14.1%

Table 8.16: NX Splits Linking Grammatical Functions and Lexical Items

ON and OA that increase performance on NX are much more frequent than
the rest, and they also include more often at least one production containing
POS tags that have been lexicalised (row cc-lex child). The split heuristics
looks for a context in one direction (here: the attribute context) and looks
for a correlation with the other direction (here: the dominating node). The
correlation between the dominating field label nodes as context and the chil-
dren of the NX as productions, which partly have been lexicalised, seems to
be much weaker than the correlation between attribute descendant context
and the field label productions. The preferences correlating with the more
frequent grammatical functions ON and OA are local enough to be captured
by Treebank Refinement. The preferences for the less frequent grammatical
functions, however, seem to be too fine-grained to be encoded into node la-
bels to improve performance. The splits #5 to #8 all encode a preference for
appearing in the middle field. This more general preference may be useful if
applied to all these nodes at once, generating a single new node label instead
of four distinct labels (see discussion of merging node labels in chapter 9).

210 Chapter 8 Extended Local Context

We would like to show finally that the overall performance curve of Parse-
val F},, per iteration is again similar to the individual curves for MF, SIMPX
and NX (all with +att +cc, see figure 8.27).

88 ‘ ‘ ‘ ‘ - ‘ ; — 100000
875 X

87
86.5 N

-4 10000
86

Fpoa

85.5

85

Maximum Deviance

41000
84.5]

84

83.5

o ; ; ; ; ; ; ; 100
0 10 20 30 40 50 60 70 80
Iterations

Figure 8.27: Iterative Behaviour with Extended Context

8.4.5 The Impact of Lexicalisation in TiiBa-D/Z and
negra

Closed-class lexicalisation has only access to articles, prepositions, personal
pronouns, conjunctions, adverbs, and some punctuation marks, so that it can
never disambiguate attachment ambiguities on the basis of the heads of the
constituents to attach. Instead, certain configurations of closed-class word
forms hint at a certain default modification structure. The article des/ART,
e.g., prefers to be embedded into two NX like in figure 8.28. Most of the noun
phrases including this article are analysed similarly, apart from about two
percent that are part of a prepositional phrase (wdrend/trotz/anldisslich des
...; ‘during’/‘in spite of’/‘on the occasion of the ..."). Figure 8.29 shows the
distribution of grandparents of all articles (ART) that have been lexicalised in
the tune train set according to closed-class lexicalisation. The figure clearly

8.4 Recursiveness 211

(N
<
der Entwurf des Antrages
ART NN ART NN

Der Entwurf des Antrags
the draft of the proposal

‘the draft of the proposal’

Figure 8.28: Default Genitive Modification Structure for des/ART

100%

75% 1 — e N VE
Y MF

50% —
B PX
NX

25% —+— — I N

Il others
0% \ I \ \ \ \

das den der des die eine einen

Figure 8.29: Proportion of Grandparents for some Articles (ART)

212 Chapter 8 Extended Local Context

shows that des/ART tends to be embedded into a complex noun phrase much
more frequently than der/ART or den/ART.M Tt is in this sense that richer
structural information via attribute context allows annotating configurations
of complex constituents more reliably. Parses cannot be chosen according to
the lexical heads, but configurational preferences are adapted so that there
is a more fine-grained default constituent structure.

Results of plain evaluation have been found to be dominated by level 0
nodes for NX; MF and SIMPX node labels. Structural preferences are only
anchored in closed-class lexicalised POS, which can only provide structural
preferences as just outlined, but which cannot take advantage of full lexical
information. More lexical information is accessible when the parser operates
directly on words, without POS tagging as a preprocessing step. This ap-
proach has not come up to the same performance as using POS tags as input
to the parser, though. It seems that the dominance of level 0 annotation and
its close link to POS tags cause this behaviour.

The strength of the link between POS tags and the lowest layer of syntac-
tic annotation is related to the amount of surprise that a certain node domi-
nates a given POS tag, which is given by the conditional entropy H (N|T") of
the distribution of pre-terminal node labels N € A given a POS tag terminal
T € T.'%2 Table 8.17 shows this conditional entropy, which can be calculated
as HIN|T) = =) 7> yp(T,N)log, p(N|T') (Manning and Schiitze, 1999,
p. 64). The numbers are derived from the first 1000 sentences of negra and

‘ Treebank H plain ‘ lexicalised ‘ A ‘
TiBa-D/Z 0.24 0.12 0.12
negra 2.41 0.88 1.53

Table 8.17: Conditional Entropy of Level 0 Node Labels Given POS

TiBa-D/Z using only gold POS tags (column plain), and alternatively af-
ter adding the words to the POS everywhere (column lezicalised). The last
column shows the decrease in the entropy caused by adding the lexical in-
formation. The predicted sequence of POS tag parents is obviously not suf-
ficient to fully construct the lowest level of annotation, which would need at
least tags that mark the beginning of a constituent, and the following tags
belonging to the same parent, and those that do not belong to the parent
(e.g. IOB tags, Tjong Kim Sang and Veenstra, 1999). We still think that
the figures highlight a difference between the treebanks even if they do not

HUThe direct parent of ART is always NX; counts include uppercase variants.
12We do not distinguish random variables and basic outcomes notationally here, because
both refer to the same events.

8.5 Varying Detail of Input and Output 213

measure exactly how predictable the full syntactic annotation is, given the
POS tags. Given a POS tag, it seems to be much easier to predict the lowest
level of syntactic annotation for TtiBa-D/Z than for negra. Adding lexical
information to all POS tags reduces the suprise for negra much more than
for TiiBa-D/Z, which is likely to explain the contrast between the positive
effect of lexicalisation observed by Schiehlen (2004) for negra and the smaller
impact on the results reported here for TiiBa-D/Z.

Attempting to assign complex structure in TtiBa-D/Z seems to be espe-
cially unrewarding with respect to Parseval Fj,,, because an incorrect com-
plex annotation is penalised twice (a missing constituent only penalises recall;
a wrong additional constituent also penalises precision). A strategy that fo-
cuses only on high-frequent less-complex structure would just leave out the
complex constituent (only a penalty on recall) and could moreover concen-
trate on that part of syntactic structure that is easily predictable from POS
tags. Ignoring all complex (not level 0) structure amounts to ignoring just
12 % of all nodes. Ignoring just complex constituents only ignores 9.8 % of
all nodes. A parser capable of annotating base (level 0) structure perfectly
while ignoring all complex structure would achieve an Parseval Fj,, of 93 %,
or 95 % if recursive topological fields were also covered perfectly. The anno-
tation scheme of TiiBa-D/Z in combination with plain Parseval evaluation is
thus especially geared towards less complex structure, and gives an arguably
bad impression of performance on those parts of structure that are more
difficult and more informative. Evaluating recursive structure separately as
shown here may give a more balanced impression on parser performance.

8.5 Varying Detail of Input and Output

Table 8.18 summarises results on lexicalised and unlexicalised experiments
considering edges as attribute context or not, and it adds an evaluation of
the annotation of grammatical functions. It also adds results on including
all edge labels a priori as an alternative to attribute context. The table tries
to highlight the impact of different input information on PCFG performance
before and after refinement, and adds evaluation of some structural relations
that are an essential aspect of complex constituents.

The first two columns show which information is provided as input to
parsing on top of labelled constituents, where no additional information
means that labels are used as given in TtuBa-D/Z, and the POS tags as
provided by tnt according to the STTS. The edge column shows additional
information from edge labels that is either provided as optional information
to splitting via attribute context (att), or by affixing each node label with

214 Chapter 8 Extended Local Context

input unsplit performance split performance
parseval functions parseval functions
edge | lex
plain not/10 | parsv dep || plain not/10 | parsv dep
83.5 822 n/a 87.9 87.2 n/a
cc || 83.3 82.0 87.8 87.1
att as above 87.4 86.7 | H1.1 16.2
att | cc 87.4 86.7 | 56.8 2.8
fix 85.0 78.8 | 54.0 55.1| 8.8 80.0 | 56.3 59.1
fix | cc || 8.2 787 | 57.0 575 8.8 79.7 | 59.6 61.3

Table 8.18: Performance on Structure and Functions

the dominating edge label a priori (fiz). The second column (lez) shows a cc
when closed-class lexicalisation is performed as introduced before. The next
four columns under the heading unsplit performance show performance of a
plain PCFG treebank grammar with node labels representing the respective
input information. The two parseval columns show Parseval Fj, on con-
stituents (plain), and on labelled constituents with those constituents being
evaluated as a separate class that do not contain any other constituents of
the same type (column not/10). The functions columns evaluate a subset of
edge labels representing grammatical functions. Column parsv shows Parse-
val Fj, on all node labels embroidered with an edge label representing one of
the grammatical functions accusative, dative, genitive, or nominative object
(represented by the edge labels OA, OD, OG, ON), sentential or prepositional
object (0S, OPP), or predicative (PRED). This column thus shows Parseval
Fj,, on constituents representing maximal projections of one of these gram-
matical functions in a sentence. It neither evaluates whether the head of
the constituent has been determined correctly, nor which is the word that
it depends on (both would require additional edge labels as head markers).
This is what the next column (dep) shows. It gives the dependency evalua-
tion on the same set of grammatical functions derived from the constituent
structure, i.e. Fj,, on the tuples representing dependency arcs between the
heads of clauses and the objects being assigned one of these functions (as
outlined in section 3.2). Note that all functions columns rely on information
encoded in edge labels, because this is where TiiBa-D/Z encodes head per-
colation and grammatical functions; the functions evaluation can thus only
be performed when edge labels are always present in the output (fiz in first
column) or when edge labels are an optional part of the output (att after
splitting). It cannot be performed where edge labels are not considered at
all. The dependency evaluation moreover relies on an uninterrupted chain of

8.5 Varying Detail of Input and Output 215

correct edge labels, while the parseval evaluation of edge labels relies on just
a single correctly annotated constituent. The last four columns under the
heading split performance show the same set of evaluation metrics as for the
unsplit experiments after applying Treebank Refinement.

The top left cell represents the baseline performance. Unconditionally
adding edge labels on input, or including local contextual information via
splitting, always lifts performance over this baseline. Adding closed-class lex-
icalisation to POS labels mostly has a positive effect on annotating functions.
The best performance without refinement is obtained by subcategorising all
node labels by their edge labels (1.9 % over baseline; bottom left cell). Inter-
estingly, performance on embedded constituents does not increase equally,
but drops below baseline to 78.7 % (last row). Splitting, as an alternative,
always increases performance over the unsplit models (split performance vs.
unsplit performance). Especially embedded performance benefits from split-
ting. The third row (no edge, no cc) has the best Parseval results, and almost
the highest increase: Fj,, on plain node labels increases by 4.4 %, and em-
bedded performance even by 5% (best shown in bold). While plain parseval
performance also benefits from splitting with hard-wired edge labels on in-
put (last row), the increase is much lower, and also the absolute performance
is lower than when splitting is applied to original node labels. Embedded
performance is also lifted beyond the unsplit case, but turns out to be more
than 7 % lower than without hard-coded edge labels.

Plain Parseval performance using optional information for splitting (first
column att) is between zero edge input and fiz edge input. Performance on
embedded elements is closer to the best performance than to performance
for a priori adding all edge label information to the node labels. Attribute
context, however, does not beat just ancestor and descendant contexts ac-
cording to plain Parseval evaluation. This might be due to splitting being
uni-directional, and attribute information being too fine-grained for support-
ing the annotation of constituent structure (too many cases like in figure 8.14,
or 8.26(b); possible remedies will be discussed in chapter 9).

The benefit of using edge information via attribute context compared to
using no edge information at all is that where attributes are included into
node labels, the corresponding edge labels can be retrieved from the node
labels. The parsv and dep columns of the middle att experiments show per-
formance on grammatical functions that have been retrieved from the node
labels after splitting and that have been selected by Treebank Refinement
as attribute contexts. Performance on dependencies is very low, because a
single missing edge label breaks all dependencies that rely on the percolation
of the corresponding information up the constituent structure. Edge labels
will be ignored for attribute context when Treebank Refinement does not de-

216 Chapter 8 Extended Local Context

tect high deviance in the distribution of productions between their presence
and absence, so that constituents without edge labels are likely to occur,
producing gaps that break percolation of grammatical function information.
The parsv column, however, evaluates only the correct detection of those
maximal projections that have a grammatical function. These results are less
than 3% below the best performing experiment in the last row (56.8 % vs.
59.6 % in table 8.18). They are slightly below the unsplit case with fiz edges,
but table 8.19 shows that attribute context often gives higher precision than
recall. Again, recall is predictably worse because attributes will not always

fix edge unsplit, cc lex att edge split, cc lex
precision | recall | Fi,, || precision | recall | Fiq

ON 70.4 74.4 | 72.3 73.2 70.7 | 71.9
OA 45.5 49.6 | 47.5 52.6 53.0 | 52.8
oD 28.7 15.1 | 19.8 49.4 30.6 | 37.8
0G 0.0 0.0 0.0 0.0 0.0 0.0
0s 47.7 35.0 | 40.4 0.0 0.0 0.0
OPP 26.9 30.5 | 28.6 26.4 30.3 | 28.2
PRED 39.2 29.8 | 33.9 31.0 12.6 | 179

| all | 569 [571 |570] 611 | 531 [56.8]

GF

Table 8.19: Precision and Recall on Constituents with Grammatical Func-
tions

be present in the output (e.g. the function of a subject sentence 0S cannot
be retrieved at all because it has never been used as an attribute context).
Given that dependencies cannot be anchored in open-class word forms,
but only in closed-class word forms that have an impact on constituent struc-
ture without edge labels, the rather low figures on disambiguating labelled
dependencies are not surprising. The unlabelled dependencies reflect the de-
gree in which structure and grammatical functions are correlated via those
preferences that are anchored in single lexical items, as opposed to the dis-
ambiguation of labelled functions, which will normally be anchored in more
than one lexical item. Table 8.20 shows performance on the same set of de-
pendencies representing grammatical functions, but disregarding the labels.
The results show the difference between selecting the proper dependents of
the clausal heads (unlabelled) and assigning them the correct function (la-
belled). Again, splitting uniformly improves performance. The difference be-
tween labelled and unlabelled performance indicates that the correct heads
of constituents are identified much more frequently than the labelled perfor-
mance suggests, and that the heads of these constituents are often related to

8.5 Varying Detail of Input and Output 217

input unsplit
edge | lex unlabelled labelled
Prec Rec F Prec Rec F
fix 75.8 72.0 73.8 | 56.6 53.7 55.1
fix | cc 76.9 73.1 750 | 59.0 56.1 57.5
| | split I

att 74.7 13.8 23.3 | 52.1 9.6 16.2
att | cc || 33.1 2.1 4.0 | 23.2 1.5 2.8
fix 774 77.0 772|593 59.0 5H9.1
fix | cc || 78.1 76.8 77.4|61.7 60.8 61.3

Table 8.20: Labelled and Unlabelled Grammatical Function Dependencies

the correct clausal heads. The claim that heads of constituents are often cor-
rectly identified is also backed by the not/I0 performance for splitting with
attribute context in table 8.18. Joining the correct level 0 nodes to complex
structure is the prerequisite to selecting one of them as the head of the result-
ing complex constituent. Many of the resulting constituents will be complex
in the sense of containing recursive node labels. The claim that these heads
are related to the proper clausal heads is also backed by the ability to assign
the proper clause structure. Clause structure in TtiBa-D/Z is given by topo-
logical field structure, and performance on topological fields parsing reaches
90 % Flap, which is an increase of 10 % over the baseline (table 8.21).

input unsplit split
edge ‘ lex || Prec Rec Fjy || Prec Rec Fig

79.1 80.9 80.0 || 89.7 90.8 90.2
cc || 82,5 839 83.2| 89.3 904 89.9

att as above 9.6 89.9 &9.7
att ce 89.1 894 R&9.3
fix 87.5 82.4 84.9 | 89.2 84.3 86.7

fix | cc || 87.3 823 84.7] 889 84.0 864

Table 8.21: Topological Field Parsing Parseval Performance

The evaluation of grammatical functions annotation gives a more favour-
able impression of the utility of closed-class lexicalisation: all Parseval eval-
uations of grammatical functions annotation benefit from it. Splitting also
never fails to improve performance of the assignment of grammatical func-
tions. Attribute context never beats pure ancestor and descendant context
for plain evaluation, and it never beats fiz inclusion of all edge labels in con-

218 Chapter 8 Extended Local Context

junction with splitting on functions evaluation. It does, however, beat both
alternative combinations, i.e. it beats fiz inclusion of edges on plain Parseval,
and no additional information on functions evaluation. It thus constitutes a
compromise that can be achieved fully automatically. Best performance with
respect to a certain evaluation is achieved when input information is most
similar to the desired output information in conjunction with Treebank Re-
finement.

8.6 FEvaluation on Final Data Sets

Evaluation so far has heavily explored the tune data set. We will therefore
continue with experiments that are performed on the final test data that has
remained untouched so far. We repeat the experiments that performed best
overall according to Parseval Fj,, (no edge, —cc), those that scored best ac-
cording to dependency evaluation (fix edge, +cc), and which showed a small
drop in the former plus acceptable unlabelled precision on grammatical func-
tions (att edge, —cc). Lexicalisation is kept identical for the tune and final
data sets of the (fix edge, 4+cc) experiments, which has the advantage that
perplexities are more comparable. All results are quite stable between exper-
iments. While Parseval F' tends to be lower on the final data set, and more so
on the final data set of unrestricted length, the dependency evaluation seems
to benefit from more training data and increases over the results obtained for
the tune data set (recall that the final data sets include the full tune train
and test data). Perplexities drop only for attribute context. Interestingly,
baseline performance seems to suffer more for parsing the final data set and
longer sentences than all results obtained after Treebank Refinement. While
the number of rules grows for the larger final data sets, the coverage is about
constant, and stays almost complete for all but the fix edges experiments.

8.7 Conclusion

In this chapter we have shown how Treebank Refinement introduces various
kinds of local context into the node labels of a treebank. We have extended
the search space of contexts beyond parent context, using the same objec-
tive function as introduced in the previous chapter. We have evaluated the
effect of Treebank Refinement on parsing performance with Parseval and
dependency metrics. Parseval evaluation following the original node label
distinctions has been complemented by separately evaluating the subclasses
of node label types that are more frequent and easier to predict.

data set tune < 40 words final < 40 words final, unrestricted length
experiment base | -e/-c | fe/+c | ae/-c || base | -¢/-c | fe/+c | ae/-c | base | -e/-c | fe/+¢ | ae/-c
iterations n/a 42 47 76 n/a 56 74 97 n/a 62 75 110
Pev Fiu 83.48 | 87.91 | 86.76 | 87.38 || 83.12 | 87.77 | 87.22 | 87.33 || 82.37 | 87.34 | 86.57 | 87.10
Pev Fn 87.15 | 90.02 | 89.20 | 89.58 || 86.89 | 89.86 | 89.52 | 89.44 | 86.21 | 89.43 | 88.90 | 89.24
GF dep Fjup n/a | n/a | 61.25 | 16.24 | n/a | n/a | 63.31 | 17.93 n/a | n/a | 62.49 | 18.84
GF dep Fyy || n/a | n/a | 77.43 | 2329 || n/a | n/a | 79.80 | 25.18 n/a | n/a | 79.03 | 26.75
perp 13.49 | 10.64 | 16.55* | 11.18 || 13.85 | 10.69 | 16.42% | 11.06 || 13.83 | 10.64 | 16.45% | 10.86
failed 0 0 13 1 0 0 20 0 0 0 14 0
rules 3432 | 5142 | 10068 | 8102 || 4160 | 6613 | 13632 | 10744 || 4557 | 7489 | 14902 | 12390
10° contexts || n/a | 2.384 | 2.384 | 6.288 || n/a | 3.367 | 3.367 | 8.893 || n/a | 3.862 | 3.862 | 11.050

*Terminal POS vocabulary obtained through identically restricted lexical POS splitting.

Table 8.22: Parsing Performance on Tune and Final Data Sets

UOISNPUO)) /'

61¢

220 Chapter 8 Extended Local Context

We have shown that Treebank Refinement improves performance over
the baseline in all modes of evaluation, whether according to the plain or
more detailed Parseval analysis, or according to dependency analysis of ma-
jor grammatical functions. It also improves performance when input infor-
mation varies in detail. The benefit of Treebank Refinement is not limited
to performance improvements, though. It produces results that are accessi-
ble to human judgement and that can therefore help understanding parsing
problems that are caused by the interplay of treebank design and parser.
It has become apparent for the annotation scheme of TiiBa-D/Z that only
a few node label types dominate Parseval results, and that these nodes are
closely linked to POS tags. Visualisation of the splits performed by Treebank
Refinement also reveals preferences for certain configurations of nodes that
would otherwise remain hidden.

Treebank Refinement strengthens connections between nodes by including
local context on the one hand, and by changing production probabilities of
these new nodes on the other hand. It is an iterative process that can result in
chains of connected nodes. These chains of nodes have been presented as local
context that can be depicted by graphs covering the nodes that are connected
via contexts, or preferred productions. The contexts that are included into
the nodes of TiiBa-D/Z via Treebank Refinement rarely exceed the size of
two nodes for those parameter sets that perform best. Including context
into node labels means that the modified focus nodes never occur without
their context, and it seems that the size of such a context is limited. On the
one hand, the search space of Treebank Refinement could be extended even
further to detect connections between more distant nodes. On the other hand,
limiting the amount of context seems preferable when the resulting treebank
is only considered as cleaner with respect to overly general node labels, and
not as a perfect parsing model in its own right. The application of Treebank
Refinement only alters node labels and leaves the nodes and the edges that
connect them unchanged, so that we prefer to see it as a preprocessing step
to those approaches to parsing that are able to handle more distant relations
and unseen events more gracefully than a plain PCFG.

Chapter 9

Handling Sparse Data

Sparse data is often a problem when natural language is processed. Data
is sparse when examples for different types of events are rare, so that with
a given number of examples, you cannot predict reliably which events to
expect in the future. Approaches that infer occurrence probabilities from
manually augmented data like we do in Treebank Refinement have to invest
considerable labour into producing such data. The natural preference thus is
to reduce the required amount of training data as much as possible.

If the number of different types of events is limited, and the distribution
of probabilities is even, then it is rather easy to predict reliably how often a
type of event will be observed in the future. Natural language, however, often
shows a high, or even a theoretically unlimited number of different types of
events. Moreover, the probability of a few types of events is typically very
high, while very many types of events occur only rarely (the distribution is
skewed). The distribution of word forms is a typical case in point. Each day,
thousands of new word forms are being coined that will find their way into
training data for machine learning only slowly, if at all (see e.g. Lemnitzer,
2003, for German). On the other hand, function words like articles or pro-
nouns will occur in virtually any sentence of German, with little variation
over time. These differences have been our motivation for parsing on partly
lexicalised POS tags, where the small (closed) class of high-frequent function
words is partly made available to the syntactic parser, while the large (open)
classes of e.g. nouns and adjectives are handled by the POS tagger, which
assigns them general POS tags. The open word classes are the major source
of sparse data on the lexical level, and these problematic classes appear only
as a closed class of more general word-class information to the parser.

The problem of sparse lexical data is thus moved out of direct scope of our
syntactic parser. Problems of data sparseness still remain, though. Treebank
Refinement specialises a treebank for PCFG parsing by incorporating con-

221

222 Chapter 9 Handling Sparse Data

textual information into node labels. PCFGs consider node labels as atomic
pieces of information (as opposed to e.g. unification grammars; Johnson,
2003), so that the number of different types of node labels has to increase
to accommodate additional contextual information. Treebank Refinement as
we have seen it so far only splits node labels, so that the number of examples
per focus node in context necessarily decreases for all modified nodes, and
the number of different rewritings of a non-terminal is increased when any
of its children is modified. The number of rules, which always increases after
Treebank Refinement, reflects these changes.

The motivation for Treebank Refinement indeed is to find subclasses of
node labels that are distinguished by their behaviour in a certain context,
which is distinct from that of the original more general node label. The curves
of either overall Parseval performance (as shown in e.g. figure 7.13) or for
individual node labels (e.g. in figure 8.25) all show a characteristic levelling
out after an initial increase. Parseval metrics average over correctness of
all nodes in a treebank, so that nodes that are annotated correctly more
frequently have a higher impact than those which are less frequent. The
deviance metric D 3PP which we generally employ, prefers more frequent
deviant node labels. The curves thus level out, because the frequency of more
specialised subclasses of node labels decreases, so that the positive effect of
each new node label on parsing performance also decreases. At some stage,
new node labels will become so specific that they cannot be applied in parses
of unseen data, so that another, less appropriate node label has to be used
instead.

All curves of Parseval performance that we have shown do not drop
sharply in performance during the iterations performed until our stopping
condition is met. It is likely, though, that at some stage, tree fragments are
created via connected contexts that formulate conditions on input symbols
that are met only rarely in novel data. The experiments carried out on words
as input symbols in section 8.3.1 may serve as an extreme example, where
specialised noun phrase labels were created for sets of words that were ob-
served only once in the majority of cases (see table 8.9). These over-specific
node labels seem to be a reason for poor performance, which in this experi-
ment is also accompanied by reduced coverage. Most other experiments show
just below, or exactly 100 % coverage, however, so that specialisation is not
excessive and at least one parse can be produced. We can therefore concen-
trate on evaluation metrics judging the quality of annotation to judge the
benefit of Treebank Refinement for most experiments.

Still, there is the latent danger of splitting nodes too often, as exempli-
fied by those splits of NX that are neutral with respect to their annotation
performance (figure 8.26(b) and repeated below). This chapter tries to show

9.1 Merging Similar Nodes 223

how to undo or prevent those splits that are harmful for parser performance.
We will first discuss a merge operator that merges nodes originating in pre-
vious splits, and a variant of generating contexts, so that splits can look into
the splitting history of contextual nodes, which also can help reducing the
number of different node labels. Both approaches try to attack the problem
of sparse data arising from continuously splitting node labels.

9.1 Merging Similar Nodes

Bockhorst and Craven (2001) propose to refine a PCFG so that it reflects
observed probabilities of strings more faithfully. They do not only propose a
split operator, which has been the inspiration for our own Treebank Refine-
ment split operator. They also propose to complement splitting by a merge
operator. Splits add node labels where a single node label covers distinct
usages which can be distinguished by a larger context. The motivation for a
complementary merge operator is to merge node labels that behave similarly,
and thus to reduce the number of different types of nodes in order to increase
the number of examples per class. Although Bockhorst and Craven suggest
to use such a merge operator, they do not specify or discuss it in detail.

We will now describe such a merge operator to complement splitting in
Treebank Refinement. Following the abstract definition of the split operator,
we are looking for a function that merges two types of nodes that behave
identically or very similarly despite their differing labels. We have already
seen examples for splits that are likely to be too fine-grained to improve
parsing performance on our task of annotating all bracketings correctly in
data labelled with node labels unadorned by edge labels. Figure 9.1 repeats
details from an experiment we have seen in section 8.4.4, where attribute
descendant contexts have triggered splits of NX nodes (see figure 8.26). Each

VF MF MF

A A T4 Y

:ON :0A :PRED :0D :V-MOD :ON-MOD
(a) frequent (b) less frequent

Figure 9.1: NX Splits Triggered by Grammatical Functions

subclass of NX originating in a split has the same property of appearing

224 Chapter 9 Handling Sparse Data

preferably in either the middle or initial fields (MF/VF). All four splits shown
in figure 9.1(b) do not improve performance on NX (see figure 8.25), and they
also do not improve overall Parseval performance (figure 8.27), despite being
performed in rather early iterations. The two splits shown in figure 9.1(a),
in contrast, improve both Parseval performance on NX and overall Parseval
performance. A major difference between these two sets of splits is their
frequency, which is between five and forty times higher in the first set than
in the second set (see table 8.16). The second set thus seems to include good
candidates for merging when edge labels are not considered in evaluation.
Performance on plain node labels may be increased by merging nodes NX#5
to NX#8 into a single new node that generalises their property to appear
preferably in the middle field.

9.1.1 Similar Parents and Unmergeable Nodes

A problem appears when the example just outlined is compared with our
short definition of merging just given, which just requires similar behaviour,
which could translate into similarity in either ancestor or descendant context.
We would like to let a merge operator see non-terminal symbols as atomic
symbols, just like the split operator and PCFGs do, where node labels do
not carry any further information besides being identical to, or different from
other node labels. However, other nodes can be imagined to show a similar
preference for middle field parents as the NX presented above, and thus may
also be considered to be similar. The last five prepositional phrase labels (PX)
shown in figure 9.2 produced in the same experiment as those in figure 9.1,
e.g., show a similar preference for appearing below MF nodes. Similarly, PX

VF MF
.V V.
‘ :OA-MOD :ON-MOD :V-MOD :FOPP :PRED

Figure 9.2: PX Splits Triggered by Grammatical Functions

with ON-MOD and OA-MOD edge labels resemble NX with ON in their prefer-
ence for appearing in the initial field (VF). There are only few field labels, and
most constituents normally occur either in the initial or middle fields, as just
seen for PX and NX nodes. As a consequence, many rather different classes of

9.1 Merging Similar Nodes 225

nodes may be merged, including most other classes of non-verbal constituents
carrying grammatical function edge labels, when we use the distribution of
parents of nodes with a grammatical function as a basis to determine similar-
ity. It does not seem to be desirable from a linguistic point of view to merge
such a wide variety of nodes, and it will not help us to recreate labelled gold
annotation, either. We thus need to restrict our notion of similarity driving
merging in some way. A rather simple restriction is to impose the same per-
spective as ancestor context, and judge similarity of nodes by the similarity
between the distributions of sequences of their children, which show greater
variety than the distributions of parents of a focus node in descendant con-
text. Similarity of nodes is then based on distributions with more types of
different events.

The untransformed treebank gives us a set of node labels that have been
chosen in accordance with linguistic assumptions about the syntactic cate-
gories of constituents, fields, and clauses. We accept that these distinctions
should not be undone, because we assume that the gold standard defines our
parsing goal. We would thus like to prevent merging of any initial categories.
This can be achieved by restricting merges to only those nodes that have
been split before. This restriction complies with our declared goal of undoing
the detrimental effects of overly fine-grained splits.

Our deviance metrics compare pairs of distributions. When more than
two nodes are tested for similarity, we establish an overall similarity of a set
of nodes as the average similarity between all pairs in the set of nodes. We
also require that the deviance of no single pair exceeds a certain threshold.
We thus also require that the set of similar node labels contains the full
transitive closure of mutually similar node labels.

9.1.2 Similarity of Split Nodes

We have chosen Skew Divergence as a deviance metric for splitting, which has
the advantage over Kullback-Leibler Divergence that it is also defined when
the domains of the distributions that we seek to compare are not identical,
and even when neither is a subset of the other. Even though the Kullback-
Leibler Divergence may be defined to be either zero or infinite when one or
the other domain is undefined (see section 7.3.5), Skew Divergence has the
advantage that differences caused by gaps in either domain are smoothed
and do not cause infinite or zero difference. We have used the DSD P metric
for determining divergence between distributions, which weighs Skew Diver-
gence with the frequency of focus nodes in context, so that those that are
both very frequent and very deviant receive highest scores. For merging, we
are looking for most similar nodes instead. When we use DSD P to determine

226 Chapter 9 Handling Sparse Data

very similar nodes instead of very different nodes, and lower values of the
metric translate to higher similarity, then lower frequency also translates to
higher similarity. Our main target is to find merges between nodes that im-
prove context-free probabilistic parsing according to our evaluation metrics.
Nodes that show a similar distribution of sequences of children, and that are
moreover very frequent, have a high impact on parsing performance. On the
other hand, our main motivation for merging similar nodes is that these nodes
may be low-frequent by-products of our split metric, which uni-directionally
increases the number of node types and thus reduces their average frequency.
It is thus unclear whether frequencies should have the same impact on the de-
viance metric for merging as they have in D]§m13 f , or none at all. We therefore
merge using both D7PF in the same way as we use it for splitting, and the
corresponding unweighted metric D?, and compare results. A third option
would be to let higher frequencies further reduce the deviance metric, which
we do not test here.

We choose those experiments as our starting point that have been split
extensively and that have shown best performance, which includes the exper-
iments with or without attribute context, and with or without lexical POS
splitting. We do not consider the experiments based on node labels decorated
with edge information before splitting, because our merge operator cannot
undo the inclusion of these edge information, as opposed to edge information
added during splitting via attribute context. We find that for these four ex-
periments, the pair with the lowest deviance has 0.06 for the edge —, lex cc
experiment (rows first avg. merge DP /DPF in tables 9.1 and 9.2). The
other experiments all start with a value closer to the deviance of the last split
(column last split vs. last avg. merge). Unweighted final D P decreases from
left to right, because the attribute context and lexical POS splitting seem
to detect more instances of deviant nodes in context, so that lower D*P
still beats the threshold for splitting due to higher numbers of occurrences,
as splitting is performed with D{PF where higher frequencies increase de-
viance. The search effort is always equal for all experiments in tables 9.1
and 9.2, because the number of nodes that have to be mutually compared is
217221 for all of them.

We definitely do not intend to undo exactly the splits we have introduced
before, so that we only merge sets of nodes with an average similarity that is
lower than the divergence of the last split performed on the underlying data
set. The threshold for splitting that we have used in the underlying exper-
iments is 350, which we use as a threshold for merging in the experiments
using the same metric (D 3PF) as well. The experiments using the unweighted
metric D 5P use thresholds derived from the last split D PP values given in
the row last split D5 in table 9.1.

There are only few iterations in all experiments where sets of similar

9.1 Merging Similar Nodes 227

edge - - att att
lex - cc - ce
last split D5 4.15 2.89 1.22 0.96
first avg. merge D P 0.82 0.06 0.31 0.31
last avg. merge D 5P 4.11 2.33 1.15 0.84
iterations 7 6 7 5)
nodes merged 15 13 20 16
5066 5917 7720 8985

7 rules (—76) (—52) (—298) (—155)
10.64 15.84 11.25 16.38

perp (£0) (—0.02) (40.07) (40.05)
87.9 87.8 87.2 87.4

Pev Flap (+£0) (£0) (~0.2) (+0.2)
. 0 13 1 14
failed (+0) (+0) (+0) (+0)

Table 9.1: Merging with D P after Splitting

edge - - att att
lex - cc - cc
last split D3P 353 354 353 492
first avg. merge D {PF 117 21 144 82
last avg. merge D PP 193 117 303 303
iterations 2 3 3 6
nodes merged 4 6 12 18
5134 5958 8049 9048

7 rules (~8) (-11) (~53) (~82)
10.64 15.86 11.19 16.34

perp (£0) (£0) (40.01) (40.01)
87.9 87.8 87.4 87.4

Pev Flap (£0) (£0) (£0) (+0.2)
. 0 13 1 14
failed (£0) (£0) (£0) (£0)

Table 9.2: Merging with D{PF after Splitting

228 Chapter 9 Handling Sparse Data

nodes are merged. Performance after the first iteration (not shown here) as
measured by cross-perplexity, Parseval Fj,;, and the number of rules, shows
the same tendency as the results after all iterations according to the tables.
Changes relative to the underlying experiments are shown in brackets and
small numbers. We note that apart from the reduction in the number of
rules, no other evaluation criteria show major changes. Reduction in the
number of rules is higher after all iterations than after the first iteration for
all experiments. Reduction is also always higher for experiments that employ
the unweighted metric D*P.

The two pairs that show highest similarity among all sets of merged nodes
are both in the edge —, lex cc column. For the D P metric, verbal complexes
(VC) are merged that have been previously split in two different contexts.
The two splits have marked verbal complexes either dominated by a relative
clause (R-SIMPX) node, where the verbal complex contains a finite verb ex-
cept for some annotation errors and ellipses, or verbal complexes dominating
a finite verb, where the verb complexes are usually part of a clause in the
final or the initial fields (NF/VF). Thus, both subtypes of VC mostly occur in
subordinate clauses. Merging these two subtypes of verbal complexes accom-
plishes our goal of undoing splits generating distinct labels for nodes with
similar behaviour. The second most similar pair of labels that is merged are
subcategories of adverbial (ADVX) and prepositional constituent labels. The
PX subtype dominates almost exclusively words tagged as adverbial inter-
rogative or relative pronouns marked as heads (PWAV+HD) when appearing in
the complementiser (C) field. Constituents labelled ADVX are found in the
C field very often when they contains a PWAV marked as head. Merging these
ADVX and PX seems to be defendable looking at their behaviour, but we do
not desire merging any categories defined in the original treebank.

There is only one other pair of originally different node labels that is
merged. Both finite and non-finite verbal chunks (VXFIN/VXINF) often dom-
inate a single finite verb when they are part of a coordination (KONJ edge
label; last merge of the edge att experiments using the D 3PF metric). Note
that POS tags have been assigned automatically, and that the difference be-
tween some finite and non-finite verbs often confuses automatic POS taggers
in German (Miiller and Ule, 2002). Coordination poses a further problem, so
that the corresponding distribution of finite and non-finite POS tags shown
in table 9.3 probably results from the inability of the POS tagger to disam-
biguate verbal finiteness in certain situations (sorted by overall frequency;
only frequencies above zero shown). Despite being originally different cate-
gories, merging VXINF and VXFIN can probably be justified in this specific
situation, because both categories obviously behave rather similarly in an
automatically POS-tagged treebank. The table also highlights another as-

9.1 Merging Similar Nodes 229

VXFIN VXINF
VVPP+HD 2 34
VVFIN+HD 17 7
VVINF+HD 3 15
VVINF+HD 0 15
PTKZU+HD VVINF 0 6
VMFIN+HD 5 0
ADJD+HD 0 4
NN+HD 1 3
VAFIN+HD 4 0
VVIZU+HD 2 2

Table 9.3: Distribution of Children of Coordinated VXFIN or VXINF

pect of specialising the node labels of a treebank. The ability to specialise
on errors of the new combined VXFIN/VXINF node label can be used as a
goal in itself to spot errors in the annotation of the treebank. We will try
to examine this behaviour of the approach for spotting annotation errors in
more detail in chapter 10.

Merging these verbal chunks is performed last in both experiments, and
the similarity between the nodes is rather low according to the metric (row
last avg. merge in table 9.2). Looking at the many gaps in both distributions
of VXFIN and VXINF, table 9.3 also indicates that similarity is not very high
anymore, despite the low number of merged nodes (row nodes merged in
table 9.2), so that merging seems to apply only rarely.

Algorithm 4 shows pseudocode of the merging algorithm. The function
TRANSITIVECLOSURE(f, M, d) returns the transitive closure of nodes in M
including f that are mutually at least as similar as d (see algorithm 6). If the
transitive closure is not a subset of M, then it returns the empty set. Two
nodes f; and f, are similar if MAXDEVIANCE(f;, fi) < d (see algorithm 5).
The function RENAMEFOCUSINCONTEXT (M) in algorithm 4 is called to
assign new labels to all merged nodes. It is redefined from the function in
algorithm 1 so that it assigns all nodes in M a single new unique node label.
We do not claim that the algorithms shown here are optimal. They closely
resemble our current implementation.

We have shown that merging nodes is feasible, and that the number of
rules, which corresponds to the degree of fragmentation of training data, can
be reduced by merging. However, the reduction achieved in experiments is
rather small, and other evaluation metrics show only minimal changes, and
not always to the better.

230 Chapter 9 Handling Sparse Data

Algorithm 4 Iteratively Merging Similar Nodes

1: repeat

2 d « maximum deviance threshold

3 for all f; € F do > See text for initial restrictions on F
4: for all f, € F\ {fi} do

5: d «— MAXDEVIANCE(f1, f2)

6 if d < d then > Find all pairs below threshold
7 M — MU{fi, fa}

8 end if

9 end for

10: end fqr
11: do —d
12: for all f € M do

13: M « TRANSITIVECLOSURE(f, M, d)

14: if ./\/lf 7’é () then

15: n <« £ |My| (IMy| —1) > Number of different pairs in My
16: d—1 D femy faemp\ s, MAXDEVIANCE(f1, f2)

17: if d < dy then > Determine lowest average deviance
18: (d07 fO) — (d7 f)

19: end if

20: end if

21: end for

22: if Usen My # 0 then > At least one mergeable set found
23: RENAMEFOCUSINCONTEXT(M ;)

24: end if

25: until Ufe/\/l Mf =0

Algorithm 5 Maximum Pairwise Deviance
1: function MAXDEVIANCE(fi, fo)

2: dig < D(f1] f2)
3: do1 — D(fo| 1) > D() may be asymmetric
4: return max{ds, do; }

5. end function

9.1 Merging Similar Nodes 231

Algorithm 6 Transitive Closure of Similar Nodes

1:
2
3
4.
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

function TRANSITIVECLOSURE(f, M, d)

Mf — f
Mnew — @
repeat > Find all nodes in M (transitively) similar to f
Mf — Mf U Mnew
for all f, € M; do
for all f, € M\ M; do
if MAXDEVIANCE(f1, f2) < d then
Mnew — Mnew U {fZ}
end if
end for
end for
until M,,., =0
for all f; € M do > Check all mutual similarities
for all fo € M\ {f1} do
if MAXDEVIANCE(f1, f2) > d then
return ()
end if
end for
end for
return M;

22: end function

232 Chapter 9 Handling Sparse Data

9.2 Splitting with Context History

Most restrictions that we impose on the merge operator try to put the most
interesting group of candidates into focus. These interesting candidates are
those that have been split previously from a common type of node for differ-
ent reasons, mainly because splitting as we use it considers a single context
at a time, so that it cannot detect several contexts at once that have a similar
effect on the focus node’s behaviour. After these individual splits, the new
node labels are not related any more for PCFG treebank grammars gener-
ated from the transformed treebank, and examples are unnecessarily sparse
for the subclasses of the original node label. Undoing splits is a dangerous
business, because it may cross boundaries we would like to keep (hence our
restrictions), but also because merging of nodes and undoing previous splits
is a combination that could be desirable after each iteration, so that new
splits are based on the largest possible classes of node labels. This closer
combination is dangerous, however, because it is immediately clear that al-
ternating splits and merges can easily enter an infinite loop without further
restrictions.

We propose another solution to handle overly split node labels that avoids
these problems. Instead of breaking up merging and splitting into two sep-
arate operations, we base splits on the treebank in several earlier states in
addition to the current state. We allow the splits to be triggered by contexts
which have been modified by previous splits as we have done so far, or also
by more general contexts, by undoing some of the splits during searching for
contexts. The only requirement on the generalisation of the context is that
changes to the context that have occurred before the creation of the focus
node cannot be undone. All changes to the context that have occurred after
the creation of the focus node can be undone without harming the guaran-
teed stopping condition. In the beginning, most nodes are still unsplit, so
that each context which is considered during the search for deviant nodes in
context is only accompanied by other contexts from the context history as
soon as nodes change in it.

When we have a focus node in context (¢, ¢,—1, ..., C2, c1, f) as we know it
from chapter 8, then Cy = (¢, ¢p1, ..., 2, ¢1), as before, is the first context
for f for which the distribution of productions over the whole treebank is
collected in order to judge its deviance from f without a context. This context
is the only context that we have considered so far. The context history now
strips the most recent change from C; and again records the distribution of
productions over the whole treebank for f in this context, or in a context
where the context history contains the context we are looking for. The history
of the context only goes back as far as the iteration in which f has been last

9.2 Splitting with Context History 233

modified. Otherwise, the same splits could be repeated infinitely, which we
want to avoid.

Given f has been split in iteration ¢f, ¢; in iteration i.,, and so on, and
¢; is the context node ¢; with all splits undone that are more recent than
iteration 7, then the set of contexts C; as we have used it in algorithm 2 is
extended to C}L with new contexts from context history, so that

)

Ch={(c.ch_y,...,ch,c}) iy <i<max{ic,... i} }
Each context taken from the context history (i.e. where ¢ < max{i.,,..., ., })

gives possibly access to more examples from the treebank hidden by later
splits. The remaining algorithm can be used as before.

Experiments confirm that initially, the splits are identical to those ob-
tained without looking into the context history, but after a number of itera-
tions, there seem to be more general splits when context history is considered.
We repeat the same experiments as we have used as a basis for merging, and
that have shown most promising results for Parseval and dependency Fj,;, be-
fore, now considering context history (see table 9.4). We do not repeat here
those experiments where edge labels are immutably given, because they can-
not be undone by context history. We notice that performance is better for
most experiments and most metrics with context history, including perp be-
tween the resulting models and test data, with least impact on Parseval Fj,;.!
We notice a considerable increase in dependency Fj,, for the experiment us-
ing attribute context and closed-class lexicalisation (column edge att,lex cc),
where data sparseness is greatest according to the number of rules. The in-
crease in dep Fj,, in contrast to the rather constant GF Parseval Fj,, can be
explained by the percolation of information necessary for establishing depen-
dencies in constituent trees, which requires an uninterrupted chain of edges
including marks for heads, conjuncts, and appositions (HD, KONJ, APP). The
individual grammatical functions gain most on recall. Generally, precision is
much higher than recall for them (see table 9.5, and also table 8.20). Low-
frequent grammatical functions are still out of scope of Treebank Refinement:
0G, OPP and 0S make up only about 10 % of all functions; OG occurs only
four times in test data (see frequencies in column gold). High-frequent gram-
matical functions like ON (more than 50 % of all functions) benefit most from
splitting with context history. There are only two undesirable effects. First,
experiments disregarding edges (edge —) show an increase in the number of
rules. Second, the number of contexts increases that has to be searched. The
most important result in the present context, however, is the reduction in

!Note that the stopping condition has been set according to the iterative behaviour of
Parseval of the edge —, lex — experiment as described in section 7.4.

234 Chapter 9 Handling Sparse Data

edge — — att att
lex - cc - ce
. . 43 94 71 125
iterations (+1) (=5) (—5) (—10)
5278 6378 7086 8106

7 rules (+136) (+409) (—1016) (—1024)
10.63 15.86 10.99 15.97

perp (—0.01) (£0) (—0.19) (—0.36)
87.8 88.0 87.8 87.5

Pev Fia (=0.1) (+0.2) (+0.4) (+0.1)
52.0 27.3

GF Pev Fiy n/a n/a (+0.9) (40.5)
15.5 16.6

dep Fia n/a n/a (~0.7) (+13.8)
22.2 22.3

dep Fyni n/a n/a (—0.9) (+18.3)
. 0 13 1 14
failed (£0) (+0) (£0) (+0)

4232650 4521594 7792852 7723835
contexts < (| 1848987) (+2137231) (+1505288) (+1436271)

Table 9.4: Relative Changes with Context History

9.2 Splitting with Context History 235

GF precision recall Fa, gold
T TR g
A L GiLe) (e 2051
00 gy s (sw 32
0G (i(?.b? (i(?.b()] (i(()).b? 4
0s (i(?.b(; (i(?.b(; (i(?.b()) 420
PP gx) (08 (i OO
PRED (s Gml) (ae 5%

Table 9.5: Precision and Recall of Grammatical Function Dependencies for
the edge att, lex cc Experiment Including Context History

the number of rules in those experiments that originally led to the highest
number of rules (edge att).

The contexts column shows that many more contexts have to be searched
than without context history. The numbers refer to the last iteration. They
increase per iteration, being identical in the first iteration. Note that while
the search effort is higher according to the set of inspected contexts, the
experiments often require fewer iterations to complete.

Context history inspects statistics from old states of the treebank in addi-
tion to those emerging from splits. Contexts without split nodes from context
histories are more frequent, so that they can score higher for deviance metrics
that take frequencies into account. An example for fragmentation of data that
can be undone is the connection between lexicalised POS occurring in the
middle field and their grammatical functions as modifiers (MOD). These mod-
ifiers are quite frequently the adverbial phrases nicht mehr (‘not anymore’)
and gar nicht (‘not at all’), as in Ich kann mir das nicht mehr erkliren.
(‘I cannot explain this anymore.”) or In Frankfurt dagegen wird gar nicht
erst abgestimmt. (‘In Frankfurt, however, elections will not be held in the
first place.”). Other less frequent constituents also behave similarly, like ganz
nebenbei (‘by the way’), noch nicht (‘not yet’), nun wirklich (‘sure enough’),
immer mehr (‘more and more’), noch nie (‘never so far’), dberhaupt nicht

236 Chapter 9 Handling Sparse Data

(‘not at all’), and others. Including specialised node labels for these special
adverbial phrases that are rather frequently used in German allows annotat-
ing the function of the corresponding constituents rather easily. Before these
modifiers are annotated, a number of other labels are generated by splits,
including middle fields in various positions. Middle field nodes are split when
they are part of a clause in the final field, or of a coordinated or relative
clause, or when coordinated with another middle field. Of all 105 modifiers
in all these middle fields in our training data, only 55 occur in middle fields
that have not been split before we try to mark gar nicht etc. as modifiers.
All split middle fields contain about equally many of our modifiers (10 to
17). With context history, the context MF-MOD-ADVX-ADVX > ADV+HD
covers all of them in the MF symbol, because statistics for each instance of
e.g. MF#117 in MF#117-MOD-ADVX-ADVX > ADV+HD (where MF#117
is part of a relative clause) are all subsumed under MF after going back into
the split history and stripping #117. The same experiment without context
history fails to state this connection directly. We do not generally include
MOD in the evaluation of grammatical functions. For the edge att, lex cc ex-
periment, MOD achieves a dependency Fj,;, of 2.7 % without, and 16.8 % with
context history (precision jumps from 25 % to 61 %).

Figure 9.3 shows another example with more local consequences. It is

Sein grofster Coup : Waffenhandel
PPOSAT ADJA NN $.#: NN $.

Figure 9.3: Sentence-Final Punctuation Marks Unattached NX

the first split where the experiments with and without context history differ
(the eleventh split of non-terminals). The split of NX that dominates a POS
tag for sentence-final punctuation ($.) almost exclusively marks unattached
noun phrases. Both experiments with and without context history are based
on lexically split POS, where colons (:) receive their own subclass of the

9.3 Conclusion 237

$. tag (see table 8.13). The experiment using context history can undo this
split when gathering the statistics and therefore finds more examples, lead-
ing to the split, whereas the experiment without context history suffers from
fragmentation of the data, so that it cannot find sufficient examples for a
split. Both unattached NX in figure 9.3 contribute to statistics for the con-
text $. < NX when context history is considered, whereas $. < NX and
$.#: < NX are strictly different without context history. With context his-
tory, the example sentence increases the number of events for $. < NX by
two, and for $.#: < NX by one, so that the special behaviour of the $.#:
tag is recorded along with the more general behaviour of the $. tag.

Our initial problem in this chapter were NX and PX that have been split
according to their grammatical functions, which were not frequent enough
individually to improve parsing. Context history cannot undo these splits, but
it can help handling phenomena equally in all children of these new nodes.
If there was, e.g., a certain adjectival modifier depending on the position of
the NX in the middle field and common to all NX#4 to NX#8 in figure 9.1,
then with context history a single context MF-NX > ADJX would cover all
focus ADJX at once despite occurring below different subtypes of NX.

9.3 Conclusion

We have concentrated in this chapter on sparse data problems that arise
specifically where node labels in a PCFG are split to reflect more fine-grained
usage patterns. We have given two approaches that can help reducing the
number of rules in the treebank grammar read off the modified treebank,
where the number of rules is correlated to the number of different node labels.
The first approach tries to collect several node labels that behave similarly
and merges them to form a single new label. Merging may also apply to
originally distinct node label types, so that we restrict it to apply only to
previously split nodes. Together with other restrictions on the set of nodes to
be merged, the merge operator applies much less frequently than splitting,
and achieves a small decrease in the number of rules.

The second approach to reducing the detrimental effect of overly splitting
node labels tries to undo earlier splits of node labels already during the
splitting process. The splits are undone only for the collection of statistics
of upcoming splits, and they are undone only in the contexts, so that each
step back into the context history offers larger classes unharmed by splitting,
where the steps correspond to earlier iterations. At the same time, more
informative but smaller classes produced in later iterations are also available.
Using context history during splitting gives a greater decrease in grammar

238 Chapter 9 Handling Sparse Data

size in experiments originally leading to larger grammars, and using context
history also has an overall positive effect on other evaluation criteria.

We thus think that a more extensive search for contexts to be included
into node labels is more promising than undoing splits by merging nodes
after splitting them first, especially where extrinsically defined distinctions
between node labels should not be undone. Merges between nodes that belong
to different linguistically motivated categories usually indicate subclasses of
these node labels that tend to behave similarly, or plain annotation errors.

Chapter 10

Treebank Refinement Aiding
Supervised Annotation

Setting up language resources involves considerable effort, because human
intervention is inevitable and costly. Human annotators are essential, because
they usually outperform automatic methods in terms of annotation accuracy,
but they still make their own kind of errors. In addition to genuine mistakes,
they do not always behave identically each time when presented with the
same infrequent problem. Thus one can expect a number of errors to be
present in any hand-built language resource.!

We divide these errors into the following categories: violations of the an-
notation guidelines and wiolations of language principles not covered by the
annotation guidelines. Additionally, following Blaheta (2002), errors can also
be: detectable — errors that are easy to spot and fix by using queries over
the annotation that define impossible configurations and transformations for
correction; fizable — errors which can be found automatically, but that re-
quire human intervention for correction; systematic inconsistencies — errors
which are not covered by the annotation guidelines, or errors not described
precisely enough in the guidelines. These two classifications of errors in anno-
tated corpora are orthogonal, but not independent: we can expect errors that
are violations of the annotation guidelines to be usually detectable and fix-
able, and those that are a violation of language principles, but not covered by
the annotation guidelines, to be more frequently systematic inconsistencies.

Each class of errors requires a specific way for detection and correction.
Detectable errors covered by the guidelines are the easiest in this respect.
They can be addressed by encoding the guidelines in a formal way and by test-
ing the corpus for consistency. Detecting the other types of errors requires ad-

!This chapter is a revised version of joint work with Kiril Simov (Ule and Simov, 2004).

239

240 Chapter 10 Treebank Refinement Aiding Supervised Annotation

ditional linguistic knowledge. Such knowledge is not always available or easy
to acquire, so that other mechanisms are desirable for error detection. We di-
vide those methods into symbolic and non-symbolic approaches. The symbolic
approaches are based on (linguistically motivated) pattern matching selecting
possible deviations from linguistically correct occurrences. Patterns can be
devised by human annotators, or they can be extracted (semi-)automatically
from the corpus itself. The non-symbolic approaches use statistical methods
to find rare events in the annotated corpus, where an event is a certain frag-
ment of the annotation. In general, these methods can find errors in each
of the above categories, but they are especially useful when pattern-based
approaches are not easily applicable, because patterns are difficult to find.

We present such a non-symbolic method that attacks errors and incon-
sistencies in structural annotation, and that shows good performance across
languages and annotation schemes. We detect errors and inconsistencies that
appear as unexpected events in a corpus using Treebank Refinement on ar-
tificially introduced errors and apply machine learning to produce fully au-
tomatically a list of likely error candidates.

10.1 Methods and Data

10.1.1 Unexpected Productions

Treebank Refinement aims at spotting productions of nonterminal nodes in
treebanks that behave not as expected when they appear in certain contexts.
Treebank Refinement looks at all types of nonterminal nodes f in a treebank
and compares the distribution of each of f’s productions over the whole tree-
bank with its productions when appearing under a certain parent node (the
context type ¢ € Cy; we use only parent context here). Treebank Refinement
is applied iteratively, and in each iteration it delivers a single type of focus
node f that has the most unexpected distribution of productions in a certain
context c. As before, we compare the distributions of the different production
types p € Py of node f. In order to compare these distributions, we employ
the x? metric, which computes the sum of squared differences between ex-
pected and observed frequencies of node type f having production type p in
context type ¢, normalised by the expected frequency (repeated here from
equation 7.3):

pes = 3 (frea(c > f —p) = eaplc > | —p))”

= czplc>] = p)

10.1 Methods and Data 241

The y? statistical test prescribes minimal values for expected and ob-
served frequencies (see section 7.3.1). With lower values, the test yields higher
significance than it should, making it statistically unsound. We use this as
a feature, and (mis-)employ the x? test for spotting errors: very unexpected
events (exp(c > f — p) < 1) are rated high even when occurring few times
(e.g. when freq(c > f — p) = 1 and exp(c > f — p) = 1/1000, then
D% 2 1000). An event thus is a (context, focus, production) triple: (c, f, p).
We argue that very unexpected events, which moreover occur rarely in a cor-
pus, may well be errors. We call these unexpected events error candidates.

10.1.2 Ranking Error Candidates

Treebank Refinement typically involves several hundred iterations, and each
iteration covers a focus node in context with many different productions,
yielding a high number of possibly erroneous corpus positions. In order to
focus on the most likely candidates, we choose to employ a supervised ML
regime using memory-based learning as implemented in Timbl (Daelemans
€ al., 2003).2 We introduce artificial errors into the corpus and generate the
following features that characterise error candidates from the (c, f, p) triples,
resulting in positive training data:

freq(c > f — p) occurrences observed in the corpus

exp(c > f — p) the expected number of occurrences

2
(frea(e> f—p)—eap(c>f—p))
cap(c>f—p)

DS the overall D over all p € P

its contribution to D ¢°

termratio fraction of overall D contributed by this triple
rank triple is rank highest contributor to D¢

rankratio the relative position as contributor: rank/|Py|
alt the number of other contributors to D, i.e. |Py| — 1
freq(c > f) the number of times ¢ dominates f

iter the iteration of Treebank Refinement detecting (c, f,p)

iterratio fraction of iter from all Treebank Refinement iterations

2We use Timbl version 4.3.1 for our experiments.

242 Chapter 10 Treebank Refinement Aiding Supervised Annotation

The motivation for the above list of features is to present all non-symbolic
information to Timbl that could be relevant for identifying errors. Output
of the ML stage is four classes: error in f, error in p, error in ¢, or no error.
Combinations are not represented as separate classes: f is also used when an
additional error occurs in p or ¢, and p is also the class for errors in p and
c. Having more classes or just binary classes did not improve precision but
harmed recall on the most reliable focus node.

Our method of error detection is based on the ranking of the error candi-
dates with respect to the parameters provided by Treebank Refinement. We
apply ML techniques to support ranking the error candidates because the
actual ranking is hard to define explicitly, as there are many dependencies
among the parameters. However, recall of ML is rather low overall, so that we
rejoin the ML output with all other error candidates. We sort the resulting
list of triples so that generally triples marked as errors by ML and occurring
less frequently are given first. The sort keys we use are (with matching list
items sorted first):

1 freqc> f —p) <3 6 smaller exp(c > f — p)
2 ML says focus node error 7 higher rankratio

3 ML predicts some error 8 higher termratio

4 rankratio = termratio 9 lower iterratio

5 smaller freq(c > f — p)

The sort keys 2 and 3 account for the machine learner’s reliable classi-
fication. Key 4 prefers focus nodes that have few but equally unexpected
productions. The other keys generally rank those events higher that are less
expected, and that occur infrequently. This sorting combines all information
acquired by Treebank Refinement and the machine learner in a single ordered
list. The resulting list of error candidates is presented to a human annotator,
who has to judge whether the errors are true positives.

10.1.3 Early and Revised Annotation

We apply error detection to two manually annotated treebanks: BulTreeBank
and TiBa-D/Z (see chapter 4). BulTreeBank (BTB) is an HPSG-based tree-
bank for Bulgarian annotated with detailed syntactic information (Simov
¢ al., 2001). It contains more than 10000 sentences that have been ex-
tracted from grammars of the Bulgarian language and from electronic texts.
Its annotation scheme is constituency-based. However, each constituent is
additionally classified with respect to head-dependant relations like: head-
complement, head-subject, etc. Keeping the original word order unchanged,
we have introduced discontinuous constituents. The reference interaction

10.1 Methods and Data 243

among the constituents is expressed by coreferential relations. In the ex-
periments reported below we use the most elaborated part of the treebank,
which consists of 580 sentences.

We use four data sets for our experiments, one from BulTreeBank and
three from TiiBa-D/Z, consisting of less revised data (early), almost finished
data (late), both representing snapshots of the treebank during development,
and release data (release), which includes the sentences of the early and late
data sets, but which has undergone more extensive revisions corresponding
to the first public release of the treebank (see table 10.1 below for the sizes
of the data sets; TiiBa-D/Z is further abridged to TZ).

We operate on the export data model for both treebanks (see chapter 4),
representing linguistic annotation as directed acyclic graphs with labelled
nodes and edges, only ignoring secondary edges (see section 5.2). It is sig-
nificant how the structure of the annotation in a treebank is represented in
the export model, because this representation determines the distribution of
the relevant events. When generating the export representation of the data
sets, we decided to ignore information about grammatical functions in order
to overcome sparse data problems caused by infrequent lexical information.

10.1.4 Evaluation via Artificial Errors

Evaluation of methods like ours is a challenge, because the original training
material is meant to be error free, and the results can only be evaluated
indirectly by manually checking whether the method discovers some errors in
the treebank, which only yields precision, but not recall of the method. Thus
we need a corpus of errors for training and testing. In order for the resulting
corpus to be objective, we decided to introduce artificial errors automatically
and randomly by permuting node labels in a given percentage of all nodes.
This procedure has the advantage of introducing a set of errors with given
properties, such as the number of the introduced errors, their nature (via
changing the list of the categories involved), or the places to introduce them
(via patterns for selecting a subset of nodes in the treebank).

We are aware that randomly changing node labels does not resemble
all kinds of errors equally well, but will be more similar to typing errors
(where a wrong label is accidentally selected) than to misinterpreted larger
structures. Randomly changed node labels may even be correct according
to the annotation guidelines when the guidelines do not prescribe a single
solution. It will also be useful, though, when those parts of the guidelines
become apparent that allow to annotate a single phenomenon in several ways.

244 Chapter 10 Treebank Refinement Aiding Supervised Annotation

10.2 Experiments and Results

We perform two sets of experiments that concentrate on the ability of error
detection to spot artificial errors, and on its ability to spot proper errors
in the original data. For evaluating the ability of error detection to detect
artificial errors, we inject errors into 1%, 0.1% and 0.01% of the nodes
in the BulTreeBank, and TtuBa-D/Z early/late/release datasets. Treebank
Refinement is applied to these twelve data sets with the stopping condition
of a < 1.2 Each resulting list of error candidates is classified by ML using
ten-fold cross-validation and then sorted to produce a ranked list as explained
above. Table 10.1 shows the actual number of artificial errors introduced into
the datasets and the overall number of these errors covered by the full list
produced by error detection, i.e. all errors present in some part of the (¢, f, p)
triples in the list. Table 10.2 shows precision and recall of the ML stage for
the focus error class.

‘ H BTB ‘ TZ late ‘ TZ early ‘ T7Z release ‘

sent. 580 3074 7398 15260
nodes || 15013 | 56601 | 132640 | 318596
1.00% || 155/44 | 579/362 | 1279/856 | 31682641
0.10% || 12/5 | 57/38 | 125/90 | 306/246
0.01% || 2/0 10/6 10/8 35,26

Table 10.1: Artificial Errors Introduced/Detected

‘ H BTB ‘ TZ late ‘ TZ early ‘ TZ release ‘
1.00% || 0.42/0.35 | 0.72/0.72 | 0.60/0.65 | 0.68/0.69
0.10% 0.0/0.0 | 0.49/0.59 | 0.44/0.61 | 0.73/0.69
0.01% 0.0/0.0 0.0/0.0 0.0/0.0 0.30/0.30

Table 10.2: ML Precision/Recall for focus Errors

In addition to the number of errors present in the error detection list,
it is most relevant how much human labour is needed to decide whether an
error candidate is an actual error.* Given that human labour involved in
finding an error is proportional to the number of corpus positions that have
to be checked to find a true error, figure 10.1 shows the amount of labour

3In a statistically valid experiment, « is the certainty that the null hypothesis of two
distributions being equal can be rejected.
4Note that a single (¢, f,p) can occur many times in a corpus.

10.2 Experiments and Results 245

necessary to find a certain fraction of the artificial errors when 1%, 0.1 %
and 0.01 % of the nodes are relabelled incorrectly. They plot the number
of wrongly proposed error candidates per correctly identified error, i.e. the
number of corpus positions without an error you have to check manually
until you find a true error. The x-axis shows the percentage of all artificial
errors covered by the top ranks of the list so far when going through the list
top-down. Figure 10.1 shows that for all combinations of size and language
of treebanks, and for all relative numbers of artificial errors, error detection
points to many true artificial errors first. It shows good performance in that
for spotting up to 25% of all errors, you have to check at most ten corpus
positions per error. In most cases you find more than 50% of the errors by
looking at two corpus positions per error. The method seems to be applicable
already to relatively small corpora (BulTreeBank), and it performs well for
unfinished (TiBa-D/Z early) as well as for highly edited data (BulTreeBank
and TiBa-D/Z release). As expected, it seems to be easier to spot errors in
cleaner and larger data sets.

Figure 10.2 shows the more standard ROC curve representation for rank-
ing classifiers (Fawcett, 2003). ROC curves plot true positives on the Y axis
against false positives on the x-axis. A perfect classifier starts from the ori-
gin and proceeds to 100 % true positives without ever producing any false
positives. ROC curves are especially useful to check whether a classifier can
distinguish reliable from less reliable answers. When it knows which answers
are reliable, it will give them first, and return a high number of true positives
per false positive. Only later, when the classifier has exhausted all its reliable
answers, it goes on with the less reliable classifications, resulting in more
false positives per true positive. Such a conservative behaviour corresponds
to a steep initial increase, and is especially desirable when there are large
numbers of negative instances (Fawcett, 2003, p. 5). This is the case for the
problem at hand, where we have up to 99.99 % negative instances, and we
are looking for a classifier that can distinguish the few positive instances (i.e.
the errors) from the large number of negative instances (all other nodes).
The curves in Figure 10.2 show very good performance initially. They also
show a tendency to allow spotting more of the introduced errors for larger
data sets.

The second set of experiments tries to evaluate the relevance of error
detection for detecting proper errors in the original data sets. For one of the
above experiments (BulTreeBank, 0.1 % artificial errors) we checked whether
there are genuine errors in the original data among the first candidates of
artificial errors. We found that among the first 27 error candidates, there were
11 such errors. The remaining 16 candidates include five examples where the
guidelines are unclear, and eleven productions that are correct, but rare. We

246 Chapter 10 Treebank Refinement Aiding Supervised Annotation

artificial errors in 1% of all nodes

100 T T T T T T T T
i
10 B
B
£
s
@ 1 4
[
2
@
a
@
<
= 0.1 4
@
o
a
Q
0
8
BulTreebank —— q
TuBa-D/Z early -
TuBa-D/Z late -
TiBa-D/Z release
0.001 AR - 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90
% of all errors at start of list
artificial errors in 0.1% of all nodes
1000 T T T T T T T T
: |
100 |- B
B
£
8
@ 10 4
o
=
o}
a
0
g
= 1r B
@
o
(=%
Q
@
8
01 | BulTreebank —— B
' TiBa-D/Z early -
I : TiBa-D/Z late --
' : TiBa-DJ/Z release
P S S ‘ ‘ ‘ ‘ ‘ ‘
0 10 20 30 40 50 60 70 80 90
% of all errors at start of list
artificial errors in 0.01% of all nodes
10000 T T T T T T T T
1000 |- j | B
B i i
< |
5 [
® 100 | 3 B
o ———
=
o}
a
0
g
= 10 B
@
o
Q
Q
&
8
1F & BulTreebank —— B
TuBa-D/Z early -
TiBa-D/Z late --
TiBa-D/Z release
01 L L L L L L L L
0 10 20 30 40 50 60 70 80 90

% of all errors at start of list

Figure 10.1: False Positives per True Positive

10.2 Experiments and Results

100

80

% true positives

20

100

80

% true positives

40

20

100

80

60

40

% true positives

20

artificial errors in 1% of all nodes

40

T T T T

BulTreebank ——

TuBa-D/Z early - -

TuBa-D/Z late -- -
TiBa-D/Z release

1 1 1 1

20 40 60 80
% false positives

artificial errors in 0.1% of all nodes

T T T T

BulTreebank ——

TuBa-D/Z early - -

TuBa-D/Z late -- -
TiBa-D/Z release

1 1 1 1

20 40 60 80
% false positives

artificial errors in 0.01% of all nodes

T T T T

BulTreebank ——

TuBa-D/Z early - -

TuBa-D/Z late -- -
TuBa-D/Z release

! ! ! !

20 40 60 80
% false positives

100

Figure 10.2: ROC Curves for Classification of Errors

248 Chapter 10 Treebank Refinement Aiding Supervised Annotation

performed a similar experiment for TtiBa-D/Z, checking the highest ranked
candidate errors of the release data set that are found by training Timbl
on data with 0.01 % artificial errors and applying it to the original, clean
data. The resulting error detection list shows 12 true errors and 3 unclear
cases among the first 20 candidates. Errors included e.g. a finite verb within
an infinite verbal phrase, and a missing field node between sentential and
phrasal nodes. Rerunning the same experiment with Timbl trained on data
with 0.1 % artificial errors results in 2 errors and 9 unclear cases among the
first 30 candidates, indicating that the training data should resemble the
rather clean target data.

It is likely that randomly changing node labels does not resemble well the
distribution of naturally occurring errors. We are optimistic, though, that
only few kinds of natural errors cannot be detected at all, because figure 10.1
shows that more than 75% of all errors can be found for large and clean
datasets.

10.3 Discussion and Related Work

Error detection as presented here focuses on errors that distort the probabil-
ity distribution of context-free productions. While these errors may only be
a subset of all errors, we believe that they are very relevant for improving
the usefulness of a corpus as a training resource for parsers, because proba-
bilistic parsers usually condition the probability of a node’s production fully
or partly on the node label. Error detection can thus be seen as a means to
clean a corpus from errors particularly harming performance of parsers that
rely heavily on node labels, like those based on PCFG models. The abstract
units considered in this work are defined as a context-free grammar, i.e. as
productions in the context of a parent node. But the method is not restricted
to this definition of (¢, f,p) triples. It could equally be defined in terms of
e.g. dependency relations, where f is the syntactic category of some word in
a sentence, and c is the category of the head on which it depends, and p the
set of categories representing its children.

There are several lines of related research. Dickinson and Meurers (2003)
use the notion of variation n-grams — a sequence of word form tokens with
different annotations in different occurrences in the corpus. The variations
between n-grams are likely to indicate errors in the corpus. Their method
is similar to ours in that potential errors need to be inspected by humans.
However, in our case there is a measure which helps us to rank candidate
errors. In their method, the context of potential errors is defined by (lexical)
word form tokens, whereas we use syntactic categories rather than word

10.4 Conclusion 249

forms. Kvéton and Oliva (2002) show how errors can be detected in POS-
tagged corpora. Their approach is based on searching for impossible n-grams
in a corpus. They directly point to the occurrences of errors, but at the same
time their method depends on hand-crafted definitions of relevant n-grams.
An advantage of this method over ours is that it is in principle able to detect
errors that occur systematically in certain contexts; however, it requires more
linguistic knowledge.

Each corpus contains two types of linguistic information, which we call
explicit and implicit information. The former is usually given in the docu-
mentation of a corpus, and the latter is based on the annotators’ intuition
encoded in the particular annotation; both can be erroneous. As pointed out
before, explicit errors are usually easy to spot via clear rules. Spotting im-
plicit errors requires at least a description of the places where these errors
may occur, a description of the context on that the errors depend, and a
method for recognising potential errors in a context. Defining errors relative
to implicit linguistic information to a great extent requires linguistic intu-
ition and also experiments for verification. The advantage of our method
is that it is not limited to certain definitions of errors and contexts. More-
over, the model generated in the ML stage of error detection abstracts away
from language-specific details and thus allows training on a larger and bet-
ter developed treebank of one language and applying the resulting model to
a treebank of a different language for which less training data is available.
Similar to the other methods for detecting errors, our approach will be most
useful in an interactive environment. We have therefore incorporated an in-
terface for the error list into the CLaRK interactive annotation tool that
navigates to the candidate error positions, and also allows to apply symbolic
pattern matching techniques to find errors.’?

10.4 Conclusion

We have presented a method for detecting errors and inconsistencies in the
structural annotation of treebanks. The method is based on the observation
that the productions of nonterminals should behave consistently across all
contexts in a corpus. We generalise from the output of a statistical test by
applying machine-learning to features extracted from its output. The method
performs well across different languages and sizes of corpora, and evaluation
shows that the method is reliable, independent of corpus size, annotation
quality, and target language, so that it seems to be well suited to validate
corpora that still undergo annotation at any level of completion.

5Available at http://www.bultreebank.org/clark.

Chapter 11

Conclusions

We have presented Treebank Refinement, which is a method that tunes the
representation of syntactic analyses in a treebank to the specific needs of
probabilistic context-free parsers. We have shown that the choice of repre-
sentations of syntactic analyses in a treebank determines the performance of
PCFG parsers but is rarely chosen to satisfy their specific needs. Their known
weakness to model contextual information can be alleviated by choosing rep-
resentations that introduce more contextual information into node labels.
Treebank Refinement defines a function that selects and modifies node labels
in the original representation that lack this kind of contextual information.
From a more general point of view, the success of this method shows that
it is useful to choose more appropriate representations for different tasks,
and to consider the design decisions that determine the shape of the original
representation of analyses of any treebank.

We have applied Treebank Refinement to a German treebank and found
that the changes in the annotation that it suggests are easy to understand.
They lead to a considerable improvement in performance of syntactic parsing
via PCFGs that compares favourably with an alternative treebank transfor-
mation, which at the same time introduces more changes to the treebank. Be-
ing easy to follow, the individual changes proposed by Treebank Refinement
can be evaluated manually and lead to a more detailed understanding of the
annotation in the treebank. The judgements about the individual changes
show characteristic patterns for annotation errors and can accordingly be
employed to direct annotators to inconsistencies in a treebank.

Treebank Refinement builds on previous work that examines the connec-
tions between PCFG parsing performance and the shape of the context-free
grammar, first and foremost on the idea of Grammar Refinement by Bock-
horst and Craven (2001). It adds to related work in several respects. First,
it competes with other methods to transform treebank grammars in order to

251

252 Chapter 11 Conclusions

improve parser performance. Most successful methods carefully analyse the
data at hand and propose changes accordingly, either in a framework of strict
PCFG parsing that is similar to ours (Schiehlen, 2004), or as a pre-processing
step for more powerful parsers (Collins, 1999). Treebank Refinement does not
require the same effort. Quite to the contrary, it can be used to automate the
search process and spot candidate changes. In contrast to other automatic
methods (Belz, 2002b; Johnson, 1998), the motivation for changes proposed
by Treebank Refinement is easier to understand, because each modification
is described by its area of application (via focus and context), and also moti-
vated by differences in behaviour (i.e. in production frequencies). The other
methods often apply more changes and thus lead to larger grammars, or have
a smaller search space for information to include into node labels. The sec-
ond obvious class of competitors to Treebank Refinement are more powerful
syntactic parsers. The main difference to them is that these parsers are usu-
ally geared towards a specific language or to a specific treebank by extending
contextual sensitivity appropriately (Collins, 1999; Dubey and Keller, 2003).
Instead, Treebank Refinement does not define a parser but changes the input
to a parser. It is thus rather complementing more powerful parsing methods
than competing with them, as it specialises node labels if they are used for
very different purposes. The complexity of parsing can thus be kept low where
the parsers try to cope with simple structural preferences that can equally be
expressed by more appropriate node labels. Using Treebank Refinement in
conjunction with plain PCFG parsing focuses on these structural preferences
and defines a baseline that can be reached by automatic means and that can
be utilised efficiently by standard PCFG parsers.

There are several obvious areas for future research. Extending the search
space for candidate modifications has proved useful already, but we had to
restrict descendant and lexical contexts for considerations of efficiency. A
more efficient implementation will allow us to search all ancestor and de-
scendant contexts, and possibly also allow searching for relevant contexts
across branching paths. Attribute context has so far only been used to offer
parts of the original annotation as optional information to Treebank Re-
finement. Any other information could be introduced as attributes as well,
including underspecified morphological analyses or the depth of embedding.
The former will be useful when certain open-class words prefer to appear
in distinct positions depending on their ambiguity class, and the latter can
distinguish the behaviour of node labels depending on their usage as chunk
or complex phrase labels. The application of Treebank Refinement to other
treebanks is a further interesting area for future research. Preliminary ex-
periments on the Penn Treebank have shown that Treebank Refinement can
be combined successfully with parent annotation and manual optimisations,

253

and some of the modifications proposed by Treebank Refinement were in fact
unintentional omissions. Preliminary experiments on the Italian Syntactic-
Semantic Treebank (Montemagni € al., 2003) have also resulted in improved
PCFG parsing performance, moreover indicating that the original POS tag
set should be more fine-grained for better performance. Treebank Refinement
thus seems to be widely applicable for parsing, understanding, and correcting
syntactically annotated data.

Appendix A

Label Sets used in negra and
TiBa-D/Z

A.1 STTS POS Tags

POS tags according to Schiller & al. (1995), which are common to TiiBa-
D/Z and negra except for the aberrations mentioned in section 5.2.4. English
descriptions follow Telljohann & al. (2003).

Tag Description

ADJA attributive adjective

ADJD adverbial or predicative adjective

ADV adverb

APPR preposition; left circumposition
APPRART preposition plus article

APPO postposition

APZR right circumposition

ART definite or indefinite article

CARD cardinal number

FM foreign language material

ITJ interjection

KOUI subordinating conjunction with zu plus infinitive
KQOUS subordinating conjunction with clause
KON coordinating conjunction

KOKOM particle of comparison, no clause

NN noun

NE proper noun

continued on next page

255

256

Appendix A Label Sets used in negra and TiiBa-D/Z

Tag Description

PDS substituting demonstrative pronoun
PDAT attributive demonstrative pronoun
PIS substituting indefinite pronoun

PIAT attributive indefinite pronoun without determiner
PIDAT attributive indefinite pronoun with determiner
PPER irreflexive personal pronoun

PPOSS substituting possessive pronoun
PPOSAT attributive possessive pronoun

PRELS substituting relative pronoun

PRELAT attributive relative pronoun

PRF reflexive personal pronoun

PWS substituting interrogative pronoun
PWAT attributive interrogative pronoun

PWAV adverbial interrogative or relative pronoun
PAV pronominal adverb

PTKZU zu plus infinitive

PTKNEG negative particle

PTKVZ separated verb particle

PTKANT answer particle

PTKA particle with adjective or adverb
TRUNC first part of truncated word

VVFIN finite main verb

VVIMP imperative, main verb

VVINF infinitive, main verb

VVIZU infinitive plus zu, main verb

VVPP past participle, main verb

VAFIN finite auxiliary verb

VAIMP imperative, auxiliary verb

VAINF infinitive, auxiliary verb

VAPP past participle, auxiliary verb

VMFIN finite modal verb

VMINF infinitive, modal verb

VMPP past participle, modal verb

XY non-word containing special characters

continued on next page

A.2 negra Node and Edge Labels 257

Tag Description

$, comma

$. sentence-final punctuation

$(other sentence internal punctuation

Table A.1: STTS POS Tags

A.2 negra Node and Edge Labels

The tables follow the list and description of labels that comes with the negra
corpus (see Albert & al., 2003, for a detailed description of the similar label
set of the Tiger treebank).

Label

Description

AA
AP
AVP
CAC
CAP
CAVP
CCP
CH
CNP
co
CPP
cs
CVP
vz
DL
ISU
MPN
MTA
NM
NP
PP

QL

superlative phrase with am
adjective phrase

adverbial phrase

coordinated adposition
coordinated adjective phrase
coordinated adverbial phrase
coordinated complementiser
chunk

coordinated noun phrase
coordination

coordinated adpositional phrase
coordinated sentence
coordinated verb phrase (non-finite)
coordinated infinitive with zu
discourse level constituent
idiosyncratic unit

multi-word proper noun
multi-token adjective
multi-token number

noun phrase

adpositional phrase
quasi-language

continued on next page

258 Appendix A Label Sets used in negra and TiiBa-D/Z

Label Description

S sentence
VP verb phrase (non-finite)
\4 infinitive with zu

Table A.2: negra Node Labels

Label Description

AC adpositional case marker
ADC adjective component

AMS measure argument of adjective
APP apposition

AVC adverbial phrase component
cC comparative complement
CD coordinating conjunction
clJ conjunct

CM comparative conjunction
CP complementiser

DA dative

DH discourse-level head

DM discourse marker

GL prenominal genitive

GR postnominal genitive

HD head

Ju junctor

MC comitative

M instrumental

ML locative

MNR postnominal modifier

MO modifier

MR rhetorical modifier

MW way (directional modifier)
NG negation

NK noun kernel modifier

NMC numerical component

OA accusative object

OA2 second accusative object

continued on next page

A.3 TiBa-D/Z Node and Edge Labels

259

Label Description

0oC
0G
PD
PG
PH
PM
PNC
RC
RE
RS
SB
SBP
SP
SvP
ucC
VO

clausal object

genitive object
predicate
pseudo-genitive
placeholder
morphological particle
proper noun component
relative clause

repeated element
reported speech

subject

passivised subject (PP)
subject or predicate
separable verb prefix
(idiosyncratic) unit component
vocative

Table A.3: negra Edge Labels

A.3 TiiBa-D/Z Node and Edge Labels

The tables follow Telljohann & al. (2003).

Label Description

NX noun phrase

PX prepositional phrase

ADVX adverbial phrase

ADJX adjectival phrase

VXFIN finite verb phrase

VXINF non-finite verb phrase

FX foreign language phrase

DP determiner phrase

LV resumptive construction (Linksversetzung)
VF initial field (Vorfeld)

LK left sentence bracket (Linke Satzklammer)
MF middle field (Mittelfeld)

continued on next page

260 Appendix A Label Sets used in negra and TiiBa-D/Z
Label Description
VC verb complex (Verbkomplex)
NF final field (Nachfeld)
C complementiser field (C-Feld)
KOORD field for coordinating particles
PARORD field for non-coordinating particles
FKOORD coordination consisting of conjuncts of fields
MFE middle field between VCE and VC
VCE VC with split finite Ersatzinfinitiv verb
FKONJ conjunct consisting of more than one field
SIMPX simplex clause
R-SIMPX relative clause
P-SIMPX paratactic construction of simplex clauses
DM discourse marker
EN-ADD named entity
Table A.4: TiiBa-D/Z Node Labels

Label Description

HD head

- non-head

KONJ conjunct

ON nominative object (=subject)

oD dative object

OA accusative object

0G genitive object

0S sentential object

OPP prepositional object

OADVP adverbial object

OADJP adjectival object

PRED predicate

oV verbal object

FOPP optional prepositional object

VPT separable verb prefix

APP apposition

MOD ambiguous modifier

ON-MOD modifier of the nominative object

continued on next page

A.3 TuBa-D/Z Node and Edge Labels 261

Label Description

OD-MOD modifier of the dative object

OA-MOD modifier of the accusative object

0G-MOD modifier of the genitive object

OPP-MOD modifier of the prepositional object

0S-MOD modifier of the sentential object

PRED-MOD modifier of the predicate

FOPP-MOD modifier of the optional prepositional object
OADJP-MOD modifier of the adjectival object

V-MOD modifier of the verb

MOD-MOD modifier of another modifier

ONK second split-up nominative object conjunct
ODK second split-up dative object conjunct

OAK second split-up accusative object conjunct
FOPPK second split-up optional prepositional object conjunct
OADVPK second split-up adverbial object conjunct
PREDK second split-up conjunct of the predicate
MODK ambiguous second split-up modifier

V-MODK second split-up conjunct of the verb modifier

Table A.5: TiiBa-D/Z Edge Labels

Appendix B

PP-Attachment in negra and
TiBa-D/Z with Edges

We show how PCFG estimates of high and low PP attachment change when
all edge labels are appended to the node labels in the example given in
section 5.1.

High and low attachment according to the annotation scheme of Ti{iBa-

D/Z is shown in figure B.1.

SIMPX SIMPX

VF LK MF VF LK MF
\
NX- OA
PX-FOPP

NX—\ON VXFIN-HD ?O\A NX-HD NX-ON VXFIr'HD NX-HD ﬁHD
PPER-HD VVFIN-HD ART NN-HD APPR NN-HD PPER-HD VVFIN-HD ART NN-HD APPR NN-HD

Er verfolgt den Dieb mit dem Fahrrad Er ertappt den Dieb mit dem Fahrrad

(a) high attachment (b) low attachment

Figure B.1: German PP Attachment in TiiBa-D/Z with all Edge Labels

Maximum-likelihood estimates of the rule probabilities are accordingly:

P(VF — NX-ON
P(NX-ON — PPER
P(PPER-HD — Er
P(LK — VXFIN-HD

P(SIMPX — VF LK MF

P(VXFIN-HD — VVFIN-HD
P(PX-FOPP — APPR NX-HD
P(PX — APPR NX-HD

)=1)=1
)=1)=1
)=1)=1
)=1)=1

263

264 Appendix B PP-Attachment in negra and TiiBa-D/Z with Edges

P(NX-HD — ART NN-HD) =1
P(ART — den)=1/2
P(NN-HD — Dieb)=1/2
P(APPR — mit) =1

P(ART — dem)=1/2
P(NN-HD — Fahrrad) =1/2

h
P(VVFIN-HD folgt) = ———
(— verfolgt) .
h
P(MF — NX-OA PX-FOPP) = ;——
h
P(NX-OA ART NN-HD) = ——
(- L
l
P(VVFIN-HD tappt) = ——
(— ertappt) = —

l
P(MF NX-OA)= ——
(MF = NXOA)=7=7

l
P(NX-OA NX-HD PX) = ——
(NX-OA =)=

so that the high attachment parse of the sentence in figure B.1(a) has the
probability

P(¢"w")
= P(VVFIN-HD — verfolgt)
P(MF — NX-OA PX-FOPP) P(NX-OA — ART NN-HD)
P(ART — den) P(NN-HD — Dieb)
P(ART — dem) P(NN-HD — Fahrrad)

and the low attachment parse of the same sentence has the probability

P("w")
= P(VVFIN-HD — verfolgt)
P(MF — NX-OA) P(NX-OA — NX-HD PX)
P(ART — den) P(NN-HD — Dieb)
P(ART — dem) P(NN-HD — Fahrrad)

265

so that the first parse is selected when

P(¢"w®) > P(¢"|w")
& P(MF — NX-OA PX-FOPP)
P(NX-OA — ART NN-HD) > P(MF — NX-OA)
P(NX-OA — NX-HD PX)

h h - [l
h+lh+1" h+1h+1
& h > 1 (B.1)

Accordingly, both attachments can be represented according to the negra
annotation scheme as shown in figure B.2.

NP-OA

NP-OA PP-MO /\PPMNR

PPER-SB VVFIN-HD ART-NK NN-NK APPR-AC ART-NK NN-NK PPER-SB VVFIN-HD ART-NK NN-NK APPR-AC ART-NK NN-NK
Er verfolgt den Dieb mit dem Fahrrad Er ertappt den Dieb mit dem Fahrrad
(a) high attachment (b) low attachment

Figure B.2: German PP attachment in negra with all Edge Labels

266 Appendix B PP-Attachment in negra and TiiBa-D/Z with Edges

Maximum-likelihood estimates of the rule probabilities are accordingly:

P(PPER-SB — Er)=1
P(ART-NK — den)=1/2
P(NN-NK — Dieb)=1/2
P(APPR-AC — mit) =1
P(ART-NK — dem) =1/2
P(NN-NK — Fahrrad) =1/2
P(PP-MO — APPR-AC ART-NK NN-NK) =1
P(PP-MNR — APPR-AC ART-NK NN-NK) = 1
h
P(S — PPER-SB VVFIN-HD NP-OA PP-MO) = ;—
h
P(VVFIN-HD folgt) = ——
(— verfolgt) o
h
P(NP-OA ART-NK NN-NK) = ——
(NP-OA —)=
P(S — PPER-SB VVFIN-HD NP-OA) = L
h+1
P(VVFIN-HD — ertappt) = hL—i—l
P(NP-OA — ART-NK NN-NK PP-MNR) = hL—l—l

so that the high attachment parse of the sentence in figure B.2(a) has the
probability

P(¢"w")
= P(VVFIN-HD — verfolgt)
P(S — PPER-SB VVFIN-HD NP-OA PP-MO)
P(NP-OA — ART-NK NN-NK)
P(ART-NK — den) P(NN-NK — Dieb)
P(ART-NK — dem) P(NN-NK — Fahrrad)

267

whereas the low attachment parse of the same sentence has the probability

P("w")
= P(VVFIN-HD — verfolgt)
P(S — PPER-SB VVFIN-HD NP-OA)
P(NP-OA — ART-NK NN-NK PP-MNR)
P(ART-NK — den) P(NN-NK — Dieb)
P(ART-NK — dem) P(NN-NK — Fahrrad)

so that the high attachment parse is selected when the following inequation
holds:

P(¢"|w?) > P(¢"|w)
& P(S — PPER-SB VVFIN-HD NP-OA PP-MO)
P(NP-OA — ART-NK NN-NK)
>
P(S — PPER-SB VVFIN-HD NP-OA)
P(NP-OA — ART-NK NN-NK PP-MNR)

N h h - l [
h+lh+1 h+l1l+h
& h > 1

We see that both annotation schemes provide treebank grammars for
which the ratio between the likelihoods of both parses equals the ratio be-
tween the occurrence frequencies in the treebank when we use edge informa-
tion as additional decoration on all node labels.

Bibliography

Abeillé, Anne, ed. (2003). Treebanks: Building and using Parsed corpora,
vol. 20 of Text, Speech and Language Technology. Dordrecht: Kluwer.

Albert, Stefanie, Jan Anderssen, Regine Bader, Stephanie Becker, Tobias
Bracht, Sabine Brants, Thorsten Brants, Vera Demberg, Stefanie Dip-
per, Peter Eisenberg, Silvia Hansen, Hagen Hirschmann, Juliane Janitzek,
Carolin Kirstein, Robert Langner, Lukas Michelbacher, Oliver Plaehn,
Cordula Preis, Marcus Pufel, Marco Rower, Bettina Schrader, Anne
Schwartz, George Smith, and Hans Uszkoreit (2003). TIGER Annotations-
schema. Universitit des Saarlandes. FR 8.7 Computerlinguistik. Univer-
sitdt Stuttgart. Institut fiir Maschinelle Sprachverarbeitung. Universitét
Potsdam. Institut fiir Germanistik.

Becker, Markus and Anette Frank (2002). A Stochastic Topological Parser
for German. In: Proceedings of the 19th International Conference on Com-
putational Linguistics, vol. 1, pp. 71-77. Taipei, Taiwan.

Beil, Franz, Glenn Carroll, Detlef Prescher, Stefan Riezler, and Mats Rooth
(1999). Inside-Outside Estimation of a Lexicalized PCFG for German. In:
Proceedings of the 37th Annual Meeting of the Association for Computa-
tional Linguistics. College Park, Maryland, USA.

Beil, Franz, Detlef Prescher, Helmut Schmid, and Sabine Schulte im Walde
(2002). Evaluation of the Gramotron Parser for German. In: Proceedings of
the Workshop ‘Beyond PARSEVAL — Towards improved evaluation mea-
sures for parsing systems’ at the 3rd International Conference on Language
Resources and Fvaluation, pp. 52-59. Las Palmas, Spain.

Belz, Anja (2002a). Learning grammars for different parsing tasks by parti-
tion search. In: Proceedings of the 19th International Conference on Com-
putational Linguistics. Taipei, Taiwan.

Belz, Anja (2002b). PCFG Learning by Nonterminal Partition Search. In:

269

270 Bibliography

Proceedings of the 6th International Colloguium on Grammatical Inference,
pp. 14-27. Amsterdam, the Netherlands.

Bies, Ann, Mark Ferguson, Karen Katz, and Robert MacIntyre (1995). Brack-
eting Guidelines for Treebank II Style Penn Treebank Project. Technical
report, University of Pennsylvania.

Bikel, Daniel M. (2004). A Distributional Analysis of a Lexicalized Statis-
tical Parsing Model. In: Proceedings of the 2004 Conference on Empirical
Methods in Natural Language Processing, pp. 182—189. Barcelona, Spain.

Bird, Steven and Mark Liberman (2001). A formal framework for linguistic
annotation. Speech Communication, 33(1,2):23-60.

Black, Ezra, Steven Abney, Dan Flickinger, C. Gdaniek, Ralph Grishman,
P. Harrison, Donald Hindle, Robert Ingria, Frederik Jelinek, Judith Kla-
vans, Mark Liberman, Mitchell Marcus, Salim Roukos, Beatrice Santorini,
and T. Strzalkowski (1991). A Procedure for Quantitatively Comparing the
Syntactic Coverage of English Grammars. In: Proceedings of the DARPA
Workshop on Speech and Natural Language. Pacific Grove, California.

Blaheta, Don (2002). Handling noisy training and testing data. In: Proceed-
ings of the 2002 Conference on Empirical Methods in Natural Language
Processing, pp. 111-116. Philadelphia, PA, USA.

Bockhorst, Joseph and Mark Craven (2001). Refining the Structure of a
Stochastic Context-Free Grammar. In: Proceedings of the Seventeenth In-

ternational Joint Conference on Artificial Intelligence. Seattle, Washing-
ton, USA.

Bod, Rens (1995). Enriching Linguistics with Statistics: Performance Models
of Natural Language. Ph.D. thesis, University of Amsterdam.

Bod, Rens (2000). Parsing with the Shortest Derivation. In: Proceedings
of the 18th International Conference on Computational Linguistics, vol. 1.
Saarbriicken, Germany, Nancy, France, and Luxembourg, Luxembourg.

Bohmovéa, Alena, Jan Haji¢, Eva Haji¢ova, and Barbora Hladka (2003). The
Prague Dependency Treebank: A Three-Level Annotation Scenario. In:
Abeillé (2003), ch. 7.

Bosco, Cristina and Vincenzo Lombardo (2004). Dependency and relational
structure in treebank annotation. In: Proceedings of the COLING 2004
Workshop on Recent Advances in Dependency Grammar, pp. 1-8. Geneva,
Switzerland.

Bibliography 271

Brants, Sabine, Stefanie Dipper, Silvia Hansen, Wolfgang Lezius, and George
Smith (2002). The TIGER Treebank. In: Proceedings of the First Workshop
on Treebanks and Linguistic Theories. Sozopol, Bulgaria.

Brants, Sabine and Silvia Hansen (2002). Developments in the TIGER Anno-
tation Scheme and their Realization in the Corpus. In: Proceedings of the
Third International Conference on Language Resources and Evaluation,

pp. 1643-1649. Las Palmas, Spain.

Brants, Thorsten (1997). The NeGra Export Format for Annotated Corpora.
Technical report, Universitat des Saarlandes. Computerlinguistik.

Brants, Thorsten (1999). TnT user’s manual. Technical report, Universitét
des Saarlandes.

Brants, Thorsten (2000). TnT — A Statistical Part-of-Speech Tagger. In:
Proceedings of the 6th Applied Natural Language Processing Conference.
Seattle, WA, USA.

Carroll, Glenn and Mats Rooth (1998). Valence induction with a head-
lexicalized PCFG. In: Proceedings of the Third Conference on Empirical
Methods in Natural Language Processing. Granada, Spain.

Carroll, John, Ted Briscoe, and Antonio Sanfilippo (1998). Parser evaluation:
a survey and a new proposal. In: Proceedings of the First International
Conference on Language Resources and Fvaluation, pp. 447-454. Granada,
Spain.

Charniak, Eugene (1996). Tree-bank Grammars. Technical report CS-96-02,
Brown University, Department of Computer Science.

Charniak, Eugene (1997). Statistical Parsing with a Context-free Grammar
and Word Statistics. In: Proceedings of the Fourteenth National Conference
on Artificial Intelligence. Menlo Park.

Charniak, Eugene (1999). A Maximum-Entropy-Inspired Parser. Technical
report CS-99-12, Brown University.

Charniak, Eugene (2001). Immediate-Head Parsing for Language Models.
In: Proceedings of the 39th Annual Meeting of the Association for Compu-
tational Linguistics. Toulouse, France.

Charniak, Eugene and Glenn Carroll (1992). Two Experiments on Learning
Probabilistic Dependency Grammars from Corpora. In: Workshop Notes
for Statistically-Based NLP Techniques, pp. 1-13.

272 Bibliography

Chi, Zhiyi (1999). Statistical properties of probabilistic context-free gram-
mars. Computational Linguistics, 25(1):131-160.

Chomsky, Noam (1956). Three Models for the Description of Language. IRE
Transactions of Information Theory, 1T-2(3):113-124.

Collins, Michael (1997). Three Generative, Lexicalised Models for Statistical
Parsing. In: Proceedings of the 35th Annual Meeting of the Association for
Computational Linguistics. Madrid, Spain.

Collins, Michael (1999). Head-Driven Statistical Models for Natural Language
Parsing. Ph.D. thesis, University of Pennsylvania.

Collins, Michael (2000). Discriminative Reranking for Natural Language
Parsing. In: Proceedings ICML-2000. Stanford, CA.

Collins, Michael, Jan Hajic, Lance Ramshaw, and Christoph Tillmann (1999).
A Statistical Parser for Czech. In: Proceedings of the 37th Annual Meeting

of the Association for Computational Linguistics. College Park, Maryland,
USA.

Corazza, Anna, Alberto Lavelli, Giorgio Satta, and Roberto Zanoli (2004).
Analyzing An Italian Treebank with State-of-the-art Statistical Parsers.
In: Proceedings of the Third Workshop on Treebanks and Linguistic Theo-
ries, pp- 39-50. Tiibingen, Germany.

Cover, Thomas M. and Joy A. Thomas (1991). FElements of Information
Theory. New York et al.: John Wiley & Sons.

Daelemans, Walter, Jakub Zavrel, Ko van der Sloot, and Antal van den Bosch
(2003). TiMBL: Tilburg Memory Based Learner, version 5.0. Reference
Guide. Technical report ILK 03-10, Tilburg University.

Dickinson, Markus and Walt Detmar Meurers (2003). Detecting Inconsisten-
cies in Treebanks. In: Proceedings of the Second Workshop on Treebanks
and Linguistic Theories. Vaxjo, Sweden: Vixjo University Press.

Dipper, Stefanie, Michael Gotze, and Stavros Skopeteas (2004). Towards
User-Adaptive Annotation Guidelines. In: Proceedings of the COLING
2004 5th International Workshop on Linguistically Interpreted Corpora,
pp. 23-30. Geneva, Switzerland.

Doran, Christine (2000). Punctuation in a Lexicalized Grammar. In: Pro-
ceedings of the 5th International Workshop on Tree Adjoining Grammars
and Related Formalisms. Paris, France.

Bibliography 273

Drach, Erich (1937). Grundgedanken der Deutschen Satzlehre. Frank-
furt/Main: Diesterweg.

Dubey, Amit and Frank Keller (2003). Probabilistic Parsing for German us-
ing Sister-Head Dependencies. In: Proceedings of the 41st Annual Meeting
of the Association for Computational Linguistics. Sapporo, Japan.

Earley, Jay (1970). An efficient context-free parsing algorithm. Communica-
tions of the ACM, 13(2):94-102.

Eisenberg, Peter, Jorg Peters, Peter Gallmann, Cathrine Fabricius-Hansen,
Damaris Niibling, Irmhild Barz, Thomas A. Fritz, and Reinhard Fiehler,
eds. (2005). Duden. Die Grammatik, vol. 4. Mannheim et al.: Dudenverlag.

Engel, Ulrich (1970). Regeln zur Wortstellung. In: Forschungsberichte des
Instituts fir deutsche Sprache, (Ed.) Ulrich Engel, vol. 5, pp. 7-148. 0.0.

Erdmann, Oskar (1886). Grundzige der deutschen Syntax nach ihrer
geschichtlichen Entwicklung. Erste Abteilung. Stuttgart: Cotta.

Fawcett, Tom (2003). ROC Graphs: Notes and Practical Considerations for
Researchers. Technical report HPL-2003-4, HP Laboratories, Palo Alto,
CA, USA.

Frank, Anette, Markus Becker, Berthold Crysmann, Bernd Kiefer, and Ulrich
Schéfer (2003). Integrated Shallow and Deep Parsing: TopP meets HPSG.
In: Proceedings of ACL-2003. Sapporo, Japan.

Gaizauskas, Robert (1995). Investigations into the Grammar Underlying
the Penn Treebank II. Research Memorandum CS-95-25, Department of
Computer Science, Univeristy of Sheffield, Sheffield, United Kingdom.

Gildea, Daniel (2001). Corpus Variation and Parser Performance. In: Pro-
ceedings of the 2001 Conference on Empirical Methods in Natural Language
Processing, pp. 167-202.

Goodman, Joshua (1996a). Efficient Algorithms for Parsing the DOP Model.
In: Proceedings of the Conference on Empirical Methods in Natural Lan-
guage Processing. Barcelona, Spain.

Goodman, Joshua (1996b). Parsing Algorithms and Metrics. In: Proceedings
of the 34th Annual Meeting of the Association for Computational Linguis-
tics, pp. 177-183. San Francisco.

274 Bibliography

Goodman, Joshua (2003). Efficient Parsing of DOP with PCFG-reductions.
In: Data-Oriented Parsing, (Eds.) Rens Bod, Remko Scha, and Khalil
Sima’an, Center for the Study of Language and Information - Studies in
Computational Linguistics. Chicago University Press.

Grishman, Ralph, Catherine Macleod, and John Sterling (1992). Evaluating
parsing strategies using standardized parse files. In: Proceedings of the
Third Conference on Applied Natural Language Processing. Trento, Italy.

Grune, Dick and Ceriel J.H. Jacobs (1990). Parsing Techniques - A Practical
Guide. Chichester, England: Ellis Horwood.

Harrison, Philip, Steven Abney, Ezra Black, Dan Flickenger, Claudia
Gdaniec, Ralph Grishman, Donald Hindle, Robert Ingria, Mitch Marcus,
Beatrice Santorini, and Tomek Strzalkowski (1991). Evaluating syntax per-
formance of parser/grammars of English. In: Proceedings of the Workshop
On FEvaluating Natural Language Processing Systems.

Herling, S. H. A. (1821). Uber die Topik der deutschen Sprache. In: Abhand-
lungen des frankfurtischen Gelehrtenvereins fiir deutsche Sprache, Drittes
Stiick, pp. 296-362. Frankfurt/Main.

Hindle, Donald and Mats Rooth (1993). Structural Ambiguity and Lexical
Relations. Computational Linguistics, 19(1):103-120.

Hinrichs, Erhard W. and Julia S. Trushkina (2003). N-gram and PCFG
Models for Morpho-Syntactic Tagging of German. In: Proceedings of the
Second Workshop on Treebanks and Linguistic Theories. Vaxjo, Sweden:
Vixjo University Press.

Hohle, Tilman N. (1985). Der Begriff ,Mittelfeld‘. Anmerkungen iiber die
Theorie der topologischen Felder. In: Kontroversen, alte und neue. Akten
des 7. Internationalen Germanistenkongesses, (Ed.) A. Schone, pp. 329—
340. Gottingen.

Hopcroft, John E. and Jeffrey D. Ullman (1996). Einfihrung in die Au-
tomatentheorie, Formale Sprachen und Komplexititstheorie. Bonn et al.:

Addison-Wesley, 3rd ed.

Johnson, Mark (1998). PCFG Models of Linguistic Tree Representations.
Computational Linguistics, 24(4):613-632.

Bibliography 275

Johnson, Mark (2003). Learning and parsing stochastic unification-based
grammars. In: Proceedings of the 16th Annual Conference on Compu-
tational Learning Theory and 7th Kernel Workshop (COLT/Kernel’03),

(Eds.) Bernhard Scholkopf and Manfred K. Warmuth, vol. 2777 of Lecture
Notes in Computer Science. Springer.

Jones, Bernard E. M. (1994). Exploring the Role of Punctuation in Parsing
Natural Text. In: Proceedings of the 15th International Conference on
Computational Linguistics, vol. 1. Kyoto, Japan.

Joshi, Aravind K. (1985). Tree adjoining grammars: How much context-
sensitivity is required to provide reasonable structural descriptions? In:
Natural Language Parsing. Psychological, Computational, and Theoretical
Perspectives, (Eds.) David R. Dowty, Lauri Karttunen, and Arnold M.
Zwicky, Studies in Natural Language Processing, ch. 6, pp. 206-250. New
York: Cambridge University Press.

Joshi, Aravind K. and Leon S. Levy (1982). Phrase Structure Trees Bear
More Fruit than You Would Have Thought. American Journal of Com-
putational Linguistics, 8(1).

Karlsson, Fred (2004). Constraints on Clausal Embedding Complexity. In:
Proceedings of the Third Workshop on Treebanks and Linguistic Theories.
Tibingen, Germany. Invited Talk.

Klein, Dan and Christopher D. Manning (2001a). An O(n3) Agenda-Based
Chart Parser for Arbitrary Probabilistic Context-Free Grammars. Tech-
nical report, Stanford University.

Klein, Dan and Christopher D. Manning (2001b). Parsing with Treebank
Grammars: Empirical Bounds, Theoretical Models, and the Structure of
the Penn Treebank. In: Proceedings of the 39th Annual Meeting of the
Association for Computational Linguistics, pp. 330-337. Toulouse, France.

Klein, Dan and Christopher D. Manning (2003a). A* Parsing: Fast Exact
Viterbi Parse Selection. In: Proceedings of the Human Language Technology
Conference and the jth Meeting of the North American Association for
Computational Linguistics. Edmonton, Canada.

Klein, Dan and Christopher D. Manning (2003b). Accurate Unlexicalized
Parsing. In: Proceedings of the 41st Annual Meeting of the Association for
Computational Linguistics, pp. 423-430. Sapporo, Japan.

276 Bibliography

Krotov, Alexander, Robert Gaizauskas, and Yorick Wilks (1994). Acquiring a
Stochastic Context-Free Grammar from the Penn Treebank. In: Proceed-
ings of Third Conference on the Cognitive Science of Natural Language
Processing, pp. 79-86. Dublin.

Kvéton, Pavel and Karel Oliva (2002). (Semi-)Automatic Detection of Er-
rors in PoS-Tagged Corpora. In: Proceedings of the 19th International
Conference on Computational Linguistics. Taipei, Taiwan.

Kiibler, Sandra (2002). Memory-Based Parsing of a German Corpus. Ph.D.
thesis, Universitat Tiibingen, Tiibingen, Germany.

Kiibler, Sandra and Heike Telljohann (2002). Towards a Dependency-Based
Evaluation for Partial Parsing. In: Proceedings of the Workshop ‘Beyond
PARSEVAL — Towards improved evaluation measures for parsing sys-
tems’ at the 3rd International Conference on Language Resources and Eval-
uation. Las Palmas, Spain.

Lee, Lillian (1999). Measures of Distributional Similarity. In: Proceedings of
the 37th Annual Meeting of the Association for Computational Linguistics,
pp. 25-32. College Park, Maryland, USA.

Lee, Lillian (2001). On the Effectiveness of the Skew Divergence for Statistical
Language Analysis. In: Proceedings of the 8th International Workshop on
Artificial Intelligence and Statistics, pp. 65-72. Key West, Florida.

Lemnitzer, Lothar (2003). Ist das nicht doch alles das Gleiche? Regeln und
Distanzmafse zur Berticksichtigung orthographischer Idiosynkrasien bei der
Abbildung von Textsegmenten auf lexikalische Einheiten. In: Sprache
zwischen Theorie und Technologie. Festschrift fiir Wolf Paprotté zum 60.
Geburtstag, (Eds.) Lea Cyrus, Hendrik Feddes, Frank Schumacher, and
Petra Steiner, pp. 135-148. Wiesbaden: DUV.

Lin, Dekang (1995). A Dependency-based Method for Evaluating Broad-
Coverage Parsers. In: Proceedings of the Fourteenth International Joint
Conference on Artificial Intelligence, pp. 1420-1427. Montréal, Québec,
Canada.

Malouf, Robert and Gertjan van Noord (2004). Wide Coverage Parsing with
Stochastic Attribute Value Grammars. In: Proceedings of Workshop “Be-
yond Shallow Analyses — Formalisms and statistical modeling for deep ana-
lyses” at the First International Joint Conference on Natural Language
Processing. Sanya City, Hainan Island, China.

Bibliography 277

Manning, Christopher D. and Hinrich Schiitze (1999). Foundations of Sta-
tistical Natural Language Processing. Cambridge, Mass. et al.: MIT Press.

Marcus, M., S. Santorini, and M. Marcinkiewicz (1993). Building a large an-
notated corpus of English: the Penn Treebank. Computational Linguistics,
19(2):313-330.

Montemagni, Simonetta, Francesco Barsotti, Marco Battista, Nicoletta Cal-
zolari, Ornella Corazzari, Alessandro Lenci, Antonio Zampolli, Francesca
Fanciulli, Maria Massetani, Remo Raffaelli, Roberto Basili, Maria Teresa
Pazienza, Dario Saracino, Fabio Zanzotto, Nadia Mana, Fabio Pianesi, and
Rodolfo Del Monte (2003). Building The Italian Syntactic-Semantic Tree-
bank. In: Abeillé (2003), pp. 189-210.

Miiller, Frank Henrik (to appear). A Finite State Approach to Shallow Pars-
ing and Grammatical Functions Annotation of German. Ph.D. thesis, Sem-
inar fiir Sprachwissenschaft, Universitat Tiibingen, Tiibingen, Germany.

Miiller, Frank Henrik and Tylman Ule (2002). Annotating topological fields
and chunks — and revising POS tags at the same time. In: Proceedings of
the 19th International Conference on Computational Linguistics. Taipei,
Taiwan.

Nivre, Joakim (2003). Theory-Supporting Treebanks. In: Proceedings of
the Second Workshop on Treebanks and Linguistic Theories, pp. 117-128.
Vixjo, Sweden: Vaxjo University Press.

Osenova, Petya and Kiril Simov (2004). BulTreeBank Stylebook. Technical
report BTB-TRO05, Linguistic Modelling Laboratory, Institute for Parallel
Processing, Bulgarian Academy of Sciences, Sofia, Bulgaria.

Plaehn, Oliver (1998). Annotate Bedienungsanleitung. Technical report,
Universitat des Saarlandes. Computerlinguistik, Saarbriicken.

Plachn, Oliver (1999). Probabilistic Parsing with Discontinuous Phrase
Structure Grammar. Master’s thesis, Universitdt des Saarlandes, Saar-
briicken, Germany.

Prescher, Detlef (2002). EM-basierte maschinelle Lernverfahren fir natir-
liche Sprachen. Ph.D. thesis, IMS, Universitdat Stuttgart, Stuttgart.

Ratnaparkhi, Adwait (1999). Learning to Parse Natural Language with Max-
imum Entropy Models. Machine Learning, 34:151-175.

278 Bibliography

van Rijsbergen, C.J. (1979). Information Retrieval. London: Butterworths,
2nd ed.

Rinne, Horst (1997). Taschenbuch der Statistik. Verlag Harri Deutsch, 2nd
ed.

Sampson, Geoffrey (2000). A Proposal for Improving the Measurement of
Parse Accuracy. International Journal of Corpus Linguistics, 5(1):53-68.

Sampson, Geoffrey (2001). Empirical Linguistics. London and New York:
Continuum International.

Sampson, Geoffrey and Anna Babarczy (2003). A test of the leaf-ancestor
metric for parse accuracy. Natural Language Engineering, 9(4).

Schiehlen, Michael (2004). Annotation Strategies for Probabilistic Parsing in
German. In: Proceedings of the 20th International Conference on Compu-
tational Linguistics, pp. 390-396. Geneva, Switzerland.

Schiller, Anne, Simone Teufel, Christine Stockert, and Christine Thielen
(1999). Guidelines fiir das Taggen deutscher Textcorpora mit STTS
(Kleines und grofses Tagset). Technical report, IMS and SfS, Stuttgart
and Tiibingen, Germany.

Schiller, Anne, Simone Teufel, and Christine Thielen (1995). Guidelines fiir
das Taggen deutscher Textcorpora mit STTS. Technical report, IMS and
SfS, Stuttgart and Tiibingen, Germany. Draft.

Schmid, Helmut (2000). Lopar: Design and Implementation. Arbeitspa-
piere des Sonderforschungsbereichs 340 149, IMS, Universitdt Stuttgart,
Stuttgart.

Schmid, Helmut (2004). Efficient Parsing of Highly Ambiguous Context-Free
Grammars with Bit Vectors. In: Proceedings of the 20th International Con-
ference on Computational Linguistics, pp. 162—168. Geneva, Switzerland.

Sima’an, Khalil (1996). Computational Complexity of Probabilistic Disam-
biguation by means of Tree-Grammars. In: Proceedings of the 16th Inter-
national Conference on Computational Linguistics, vol. 2, pp. 1175-1180.
Copenhagen, Denmark.

Simov, Kiril, Gergana Popova, and Petya Osenova (2001). HPSG-based syn-
tactic treebank of Bulgarian (BulTreeBank). In: A Rainbow of Corpora:
Corpus Linguistics and the Languages of the World, (Eds.) Andrew Wilson,
Paul Rayson, and Tony McEnery, pp. 135-142. Munich: Lincom-Europa.

Bibliography 279

Skut, Wojciech, Thorsten Brants, Brigitte Krenn, and Hans Uszkoreit (1998).
A Linguistically Interpreted Corpus of German Newspaper Texts. In: ESS-
LLI Workshop on Recent Advances in Corpus Annotation. Saarbriicken,
Germany.

Smith, George (2003). A Brief Introduction to the TIGER Treebank. Version
1. Technical report, Universitit Potsdam, Potsdam, Germany.

Stegmann, Rosmary, Heike Telljohann, and Erhard W. Hinrichs (2000). Style-
book for the German Treebank in VERBMOBIL. Verbmobil-Report 239,
Eberhard-Karls-Universitat Tiibingen, Tiibingen.

Taskar, Ben, Dan Klein, Michael Collins, Daphne Koller, and Christopher D.
Manning (2004). Max-Margin Parsing. In: Proceedings of the 2004 Con-
ference on Empirical Methods in Natural Language Processing, pp. 1-8.
Barcelona, Spain.

Telljohann, Heike, Erhard W. Hinrichs, and Sandra Kiibler (2003). Stylebook
for the German Treebank of Written German (TiBa-D/Z). Technical
report, Seminar flir Sprachwissenschaft, Universitit Tiibingen, Tiibingen,
Germany.

Telljohann, Heike, Erhard W. Hinrichs, and Sandra Kiibler (2004). The
TiBa-D/Z Treebank — Annotating German with a Context-Free Back-
bone. In: Proceedings of the jth International Conference on Language
Resources and Evaluation. Lisbon, Portugal.

Tjong Kim Sang, Erik F. and Jorn Veenstra (1999). Representing Text
Chunks. In: Proceedings of the Ninth Conference of the European Chapter
of the Association for Computational Linguistics. Bergen, Norway.

Trushkina, Julia and Erhard W. Hinrichs (2004). A Hybrid Model for
Morpho-syntactic Annotation of German with a Large Tagset. In: Pro-
ceedings of the 2004 Conference on Empirical Methods in Natural Language
Processing. Barcelona, Spain.

Turing, A. M. (1950). Computing Machinery and Intelligence. Mind, New
Series, 59(236):433-460.

Ule, Tylman (2002). DEREKO Linguistic Markup. Technical report, SfS,
Universitat Tiibingen, Tiibingen, Germany.

Ule, Tylman and Sandra Kiibler (2004). From Constituent Structure to De-
pendencies, and Back. In: Pre-Proceedings of The International Conference
on Linguistic Evidence. Tiibingen, Germany.

280 Bibliography

Ule, Tylman and Frank Henrik Miiller (2004). KaRoPars: Ein System zur
linguistischen Annotation grofer Text-Korpora des Deutschen. In: Au-
tomatische Textanalyse. Systeme und Methoden zur Annotation und Ana-
lyse natiirlichsprachlicher Texte, (Eds.) A. Mehler and H. Lobin. Opladen:
Westdeutscher Verlag.

Ule, Tylman and Kiril Simov (2004). Unexpected Productions May Well be
Errors. In: Proceedings of the 4th International Conference on Language
Resources and Fvaluation, vol. 5, pp. 1795-1798. Lisbon, Portugal.

Ule, Tylman and Jorn Veenstra (2004). Iterative Treebank Refinement.
In: Proceedings of the 14th Meeting of Computational Linguistics in the
Netherlands. Antwerp, Belgium.

Veenstra, Jorn, Frank Henrik Miiller, and Tylman Ule (2002). Topological
Fields Chunking for German. In: Proceedings of the Sixzth Conference on
Natural Language Learning. Taipei, Taiwan.

Wall, Larry, Tom Christiansen, and Jon Orwant (2000). Programming Perl.
Beijing et al.: O’Reilly, 3rd ed.

Yoshinaga, Naoki, Kentaro Torisawa, and Jun’ichi Tsujii (2003). Comparison
between CFG filtering techniques for LTAG and HPSG. In: Proceedings of
the 41st Annual Meeting of the Association for Computational Linguistics.
Sapporo, Japan.

