Aus dem Klinikum Mutterhaus der Borromäerinnen Trier Abteilung Innere Medizin I

Ärztlicher Direktor: Professor Dr. M. Clemens

Infektionen bei Neutropenie nach Chemotherapie in den Jahren von 1996 bis 2003 am Klinikum Mutterhaus der Borromäerinnen

Inaugural-Dissertation

Zur Erlangung des Doktorgrades

der Medizin

der Medizinischen Fakultät der Eberhard Karls Universität zu Tübingen

vorgelegt von
Markus Armand Eckhardt
aus
Dortmund

2008

Dekan: Professor Dr. I. B. Autenrieth

1. Berichterstatter: Professor Dr. M. R. Clemens

2. Berichterstatter: Professor Dr. H. Hebart

Inhaltsverzeichnis

1.	Ei	nleitung	Seite 16
2.	Pr	oblemstellung	Seite 17
2.1	Eiı	nführung	Seite 17
2.2	Ri	chtlinien entsprechend der Empfehlung von Hughes,	
	W	.T. et. al 1990/1997	Seite 21
2.3	Ri	chtlinien entsprechend der Empfehlung der AGIHO	
	de	r DGHO 1999	Seite 24
2.4	St	andardempfehlung der AGIHO der DGHO, 2.	
	ak	tualisierte Fassung Januar 2001	Seite 29
2.5	Ve	enenkatheter-assoziierte Infektionen bei Patienten	
	in	Neutropenie	Seite 35
2.6	Dia	agnostik und Therapie von Lungeninfiltraten bei	
	fel	orilen neutropenischen Patienten Stand September 2001	Seite 43
2.7	Th	nerapie von Pilzinfektionen in der Hämatologie und	
	Or	nkologie – Leitlinien der AGIHO der DGHO, Stand	
	Oł	ktober 2001	Seite 47
2.8	Inf	fektionsprophylaxe bei neutropenischen Patienten,	
	Le	itlinien der AGIHO der DGHO, Stand 2000	Seite 52
2.9	Ak	tuelle Leitlinien der AGIHO der DGHO zur Behandlung	
	VO	n Patienten in Neutropenie, Stand September 2003	Seite 56
2.9	.1	Therapie bei Fieber unklaren Ursprungs (FUO)	Seite 56
2.9	.2	Venenkatheter-assoziierte Infektionen	Seite 59
2.9	.3	Diagnostik und Therapie pulmonaler Infiltrate	Seite 61
2.9	.4	Invasive Pilzinfektionen, Diagnostik, Therapie und	
		Prophylaxe	Seite 61
3.	Er	gebnisse	Seite 69
3.1	Pa	atientendaten	Seite 69
3.1	.1	Altersdaten	Seite 69
3.1	.2	Diagnosenverteilung	Seite 71
3.2	In	fektionsrate und Aplasiedauer	Seite 74

3.3 Standards der antimikrobiellen Therapie	Seite 83
3.3.1 Antimikrobielle Prophylaxe	Seite 83
3.3.2 Antibiotikatherapie	Seite 88
3.3.3 Antimykotikatherapie	Seite 106
3.3.4 Erregernachweis und Konsequenz	Seite 117
3.4 Vergleich der vorliegenden Daten mit der PEG II Studie	Seite 128
3.4.1 Daten der PEG II Studie	Seite 128
3.4.1.1 Standards der Therapie	Seite 128
3.4.1.2 Patientendaten	Seite 129
3.4.1.3 Ansprechraten auf die Therapie	Seite 131
3.4.2 Vergleich der Daten	Seite 131
3.4.2.1 Vergleichen der Therapiestandards	Seite 131
3.4.2.2 Vergleichen der Patientendaten	Seite 132
3.4.2.3 Vergleichen der Therapieergebnisse	Seite 133
4. Diskussion	Seite 135
4.1 Patientendaten	Seite 135
4.1.1 Altersstruktur	Seite 135
4.1.2 Diagnosestruktur	Seite 135
4.2 Aplasiedaten	Seite 136
4.2.1 Effekt der Aplasiedauer auf die Infektionsrate	Seite 136
4.2.2 Effekt einer Isolation im Aplasiebereich auf die	
Infektionsrate	Seite 138
4.2.3 Effekt der Aplasiedauer auf den Erfolg der	
Ersttherapie und die Sterberate	Seite 140
4.2.4 Effekt der Infektionsart auf den Erfolg der	
Ersttherapie und die Sterberate	Seite 141
4.3Therapiedaten	Seite 142
4.3.1 Effekt der Prophylaxeformen	Seite 142
4.3.2 Effekt der leitlinienorientierten Therapie	Seite 143
4.3.3 Beherrschung einer wahrscheinlichen Pilzinfektion	
mit antimykotischer Therapie	Seite 145
4.3.4 Effekt der Kulturergebnisse auf den Therapieerfolg	Seite 146

5.	Zusammenfassung	Seite 150
6.	Literaturverzeichnis	Seite 152
7.	Abkürzungsverzeichnis (alphabetisch sortiert) und	
	Chemotherapieprotokolle	Seite 156

Tabellenverzeichnis

Tabelle 1	Risikoparameter	Seite 19
Tabelle 2	Erregerspektrum bei Diagnosestellung 1999/2001	Seite 20
Tabelle 3	Kriterien zur Vancomycin Therapie	Seite 23
Tabelle 4	Stufenpläne der Therapieschemata bei	
	Patienten mit FUO, modifiziert entsprechend den	
	Richtlinien von 1999 und 2001	Seite 33
Tabelle 5	Dosierungen der angegebenen Substanzen,	
	modifiziert entsprechend den Richtlinien der DGHO	
	von 2001	Seite 34
Tabelle 6	Diagnosekriterien für systemische, Venenkatheter-	
	assoziierte Infektionen	Seite 39
Tabelle 7	Behandlung Katheter-assoziierter Bakteriämien	
	bei neutropenischen Patienten	Seite 41
Tabelle 8	Technische Durchführung der radiologischen	
	Diagnostik nach H. U. Kauczor und C. P.	
	Heußel (Mainz)	Seite 44
Tabelle 9	Ätiologische Zuverlässigkeit mikrobiologischer	
	Befunde bei neutropenischen Patienten mit	
	Lungeninfiltraten	Seite 46
Tabelle 10	Therapie von Candida Infektionen, modifiziert	
	entsprechend den Leitlinien der AGIHO der	
	DGHO 2001	Seite 48
Tabelle 11	Therapie von Schimmelpilzinfektionen, modifiziert	
	entsprechend den Leitlinien der AGIHO der	
	DGHO 2001	Seite 50
Tabelle 12	Kriterien für den Wechsel von konventionellem	
	Amphotericin B auf Lipidformulierungen	Seite 51
Tabelle 13	Indikationen zur Infektionsprophylaxe bei	
	neutropenischen Patienten entsprechend den	
	Empfehlungen der AGIHO der DGHO, Stand 2000	Seite 55

Tabelle 14	Dosierungsempfehlungen für die neuen	
	Antimykotika entsprechend den Empfehlungen der	
	AGIHO der DGHO	Seite 56
Tabelle 15	Randomisierte Studien zum Einsatz einer	
	antimykotischen Therapie bei Patienten mit	
	neutropenischem Fieber	Seite 57
Tabelle 16	Standardmethoden zur Diagnostik von	
	Katheter-assoziierten Infektionen	Seite 60
Tabelle 17	Ergänzung zur Therapie von Venenkatheter-	
	assoziierten Bakteriämien bei neutropenischen	
	Patienten (siehe auch Tabelle 7)	Seite 60
Tabelle 18	Diagnostische Vorgehen in der Übersicht	
	entsprechend den Leitlinien der AGIHO der	
	DGHO 2003	Seite 64
Tabelle 19	Änderungen in der Therapie von Pilzinfektionen	
	in den Leitlinien 2003	Seite 66
Tabelle 20	Empfehlungen zur antimykotischen Prophylaxe	
	entsprechend den Richtlinien der AGIHO der	
	DGHO, Stand September 2003	Seite 67
Tabelle 21	Verteilung der Patienten auf die einzelnen Jahre	Seite 69
Tabelle 22	Darstellung der Patienten verteilt auf die Risiko-	
	gruppen und die einzelnen Jahre mit Altersdaten	Seite 71
Tabelle 23	Anzahl der Diagnosen absolut	Seite 72
Tabelle 24	Verteilung der Diagnosen auf die einzelnen Jahre	Seite 72
Tabelle 25	Infektionshäufigkeit nach Diagnose und	
	Risikogruppe	Seite 73
Tabelle 26	Chemotherapiezyklen in den einzelnen	
	Jahren mit durchschnittlicher Aplasiedauer	Seite 75
Tabelle 27	Verteilung der Aplasiedauer auf die einzelnen Jahre	
	mit Anzahl der Infektionen	Seite 75
Tabelle 28	Zuordnung der Chemotherapieformen	
	zu den Erkrankungen	Seite 76

Tabelle 29	Chemotherapie, Aplasiedauer und Anzahl der	
	Infektionen auf die einzelnen Jahren aufgeteilt	Seite 77
Tabelle 30	Aufteilung der Chemotherapie ohne Infektion auf	
	die einzelnen Jahre	Seite 79
Tabelle 31	Verteilung der Aplasiedauern und Infektionsrate	
	auf die einzelnen Jahre	Seite 80
Tabelle 32	Durchschnittliche Aplasiedauer nach Jahren und	
	Risikogruppen mit Infektionsrate	Seite 82
Tabelle 33	Risikogruppen und Art der Prophylaxe bei	
	Chemotherapiezyklen mit und ohne Infektion	Seite 84
Tabelle 34	Infektionsrate aufgeteilt nach Prophylaxeform	Seite 85
Tabelle 35	Durchschnittliche Aplasiedauer nach Prophylaxeart	
	für Hochrisiko und Standardrisikogruppe mit und	
	ohne Infektion	Seite 86
Tabelle 36	Aplasiedauer und Erfolg / kein Erfolg der	
	Ersttherapie nach Risikogruppen	Seite 88
Tabelle 37	Art der Infektion verteilt auf die Risikogruppen	
	und Erfolg / kein Erfolg der Ersttherapie	Seite 90
Tabelle 38	Aplasiedauerverteilung und	
	Patientenzahlenverteilung auf die Therapieepisoden	
	für alle Patienten	Seite 91
Tabelle 39	Aplasiedauerverteilung und	
	Patientenzahlenverteilung auf die Therapieepisoden	
	für die Patienten mit Infektion	Seite 91
Tabelle 40	Erfolgreiche Ersttherapie mit Art des	
	Kombinationspartners	Seite 94
Tabelle 41	Nicht erfolgreiche Ersttherapie mit Art des	
	Kombinationspartners	Seite 94
Tabelle 42	Infektionsart und Art der Ersttherapie mit	
	Kombinationspartner bei erfolgreicher	
	antibiotischer Ersttherapie	Seite 95

Tabelle 43	Infektionsart und Art der Ersttherapie mit	
	Kombinationspartner bei nicht erfolgreicher	
	antibiotischer Ersttherapie	Seite 95
Tabelle 44	Erfolgreiche Ersttherapie mit Art des	
	Kombinationspartners nach Therapieepisoden	Seite 96
Tabelle 45	Nicht erfolgreiche Ersttherapie mit Art des	
	Kombinationspartners nach Therapieepisoden	Seite 97
Tabelle 46	Infektionsart und Art der Ersttherapie mit	
	Kombinationspartner bei erfolgreicher antibiotischer	
	Ersttherapie nach Therapieepisoden	Seite 97
Tabelle 47	Infektionsart und Art der Ersttherapie mit	
	Kombinationspartner bei nicht erfolgreicher	
	antibiotischer Ersttherapie nach Therapieepisoden	Seite 98
Tabelle 48	Prozentuale Verteilung der Einhaltung der	
	Therapiestandards bei Ersttherapie	Seite 101
Tabelle 49	Darstellung der Verteilung der verstorbenen	
	Patienten auf die Therapieepisoden	Seite 103
Tabelle 50	Darstellung der Sterberaten bezogen auf die	
	Therapieepisoden	Seite 103
Tabelle 51	Darstellung der Sterberaten bezogen auf	
	die Patienten der Hochrisikogruppe und die	
	Patienten mit akuter Leukämie	Seite 103
Tabelle 52	Zuordnung des Keimnachweises zur Infektion für	
	die verstorbenen Patienten	Seite 105
Tabelle 53	Chemozyklen vor und nach Errichtung des	
	Aplasiebereiches nach Anzahl und mit Infektionsrate	Seite 105
Tabelle 54	Sterberate vor und nach Errichtung des	
	Aplasiebereiches	Seite 105
Tabelle 55	Durchschnittliche Aplasiedauern vor und nach	
	Errichtung des Aplasiebereiches	Seite 106

Tabelle 56	Anzahl der Pilzinfektionen nach Risikogruppen	
	verteilt auf die Therapieepisoden	Seite 107
Tabelle 57	Durchschnittliche Aplasiedauer nach Risikogruppen	
	verteilt auf die Therapieepisoden	Seite 108
Tabelle 58	Zusammenfassung der wesentlichen	
	Zahlen nach Therapieepisoden	Seite 109
Tabelle 59	Anteil der Itraconazol Prophylaxe an den	
	Gesamtpatienten	Seite 109
Tabelle 60	Rate Pilzinfektionen mit und ohne Itraconazol	
	Prophylaxe nach Therapieepisoden unterteilt	
	nach Risikogruppen	Seite 109
Tabelle 61	Darstellung der durchschnittlichen Aplasiedauern	
	verteilt auf die Therapieepisoden unterteilt nach	
	Risikogruppen in Abhängigkeit von der	
	Itraconazol Prophylaxe	Seite 110
Tabelle 62	Anzahl Spiegelbestimmungen mit Darstellung	
	von Mittel-, Maximal- und Minimalwert	Seite 112
Tabelle 63	Gegenüberstellung der Chemotherapieform mit	
	Verteilung auf die Infektionsform	Seite 114
Tabelle 64	Gegenüberstellung der Erkrankungsform mit	
	Verteilung auf die Infektionsform	Seite 115
Tabelle 65	Art der Antimykotikatherapie	Seite 115
Tabelle 66	Verteilung der Patienten auf die	
	Therapieepisoden und Erfolg/Misserfolg der	
	Therapie mit Sterblichkeitsrate der Gesamtgruppen	Seite 116
Tabelle 67	Dosishöhe der Amphothericin-B Therapie	
	und Sterblichkeit	Seite 116
Tabelle 68	Infektionsart und Verteilung des Keimnachweises	Seite 118
Tabelle 69	Zuteilung der Art der Infektion auf die	
	jeweilige Therapieepisode	Seite 119
Tabelle 70	Durchschnittliche Aplasiedauer in Abhängigkeit vom	
	Keimnachweis nach Therapieepisoden	Seite 119

Tabelle 71	Anzahl der Chemotherapiezyklen mit und	
	ohne Keimnachweis nach Therapieepisoden	Seite 120
Tabelle 72	Anzahl der Chemotherapiezyklen mit und	
	ohne Keimnachweis nach Risikogruppen	Seite 120
Tabelle 73	Verteilung der Patienten mit und ohne erfolgreiche	
	Therapien bezogen auf den Keimnachweis	Seite 122
Tabelle 74	Zuordnung der Infektionen zu Untersuchungsmethod	len
	und Darstellung welche Methoden erfolgreich waren	Seite 124
Tabelle 75	Sterberate in Abhängigkeit vom Keimnachweis	
	bezogen auf die Therapieepisoden	Seite 125
Tabelle 76	Ansprechraten der Patienten mit FUO innerhalb	
	der PEG II Studie	Seite 131
Tabelle 77	Therapiejahr mit durchschnittlicher Aplasiedauer,	
	Altersstruktur und Anteil an AML Patienten	Seite 137
Tabelle 78	Darstellung der Risikofaktoren bezogen auf die	
	Errichtung des Aplasiebereiches	Seite 139

Diagrammverzeichnis

Diagramm 1	agramm 1 Flowchart der Therapieschemata bei Patienten		
	mit FUO, modifiziert gemäß der Angaben in		
	Tabelle 4 für Standardrisikopatienten	Seite 32	
Diagramm 2	Prozentuale Verteilung der Patienten auf		
	die einzelnen Jahre	Seite 70	
Diagramm 3	Diagnosenverteilung in %	Seite 72	
Diagramm 4	Zusammenstellung der Infektionsraten in %	Seite 81	
Diagramm 5	Verteilung der Prophylaxeformen	Seite 83	
Diagramm 6	Verteilung der Prophylaxemodalität bei		
	Chemozyklen ohne Infektion mit Unterteilung		
	auf die Risikogruppen	Seite 84	
Diagramm 7	Verteilung der Prophylaxemodalität bei		
	Chemotherapiezyklen mit Infektion und		
	Unterteilung auf die Risikogruppen	Seite 85	
Diagramm 8	Anteil an Infektionsarten bezogen auf		
	die Einzelmedikamentengabe	Seite 87	
Diagramm 9	Anzahl Chemotherapiezyklen mit Infektion in		
	den Therapieepisoden	Seite 91	
Diagramm 10	Verteilung der Infektionsarten	Seite 92	
Diagramm 11	Infektionsarten bei erfolgreicher antibiotischer		
	Ersttherapie	Seite 93	
Diagramm 12	Infektionsarten bei nicht erfolgreicher		
	antibiotischer Ersttherapie	Seite 93	
Diagramm 13	Einhaltung der vorgegebenen		
	Therapiestandards bei Ersttherapie nach		
	Therapieepisode für alle		
	Chemotherapiezyklen mit Infektion	Seite 100	
Diagramm 14	Einhaltung der vorgegebenen		
	Therapiestandards bei erfolgreicher		
	Ersttherapie	Seite 100	

Diagramm 15	Einhaltung der vorgegebenen	
	Therapiestandards bei nicht erfolgreicher	
	Ersttherapie	Seite 101
Diagramm 16	Einhaltung der vorgegebenen	
	Therapiestandards bei den	
	Therapieumstellungen bei nicht	
	erfolgreicher Ersttherapie	Seite 102
Diagramm 17	Verteilung der Infektionsarten bei	
	den verstorbenen Patienten	Seite 104
Diagramm 18	Verteilung des Keimnachweises bei den	
	verstorbenen Patienten	Seite 104
Diagramm 19	Gegenüberstellung der durchschnittlichen	
	Aplasiedauer bei Patienten mit Nachweis	
	bzw. Verdacht auf eine Pilzinfektion und	
	Patienten mit Infektion ohne Nachweis bzw.	
	Verdacht auf eine Pilzinfektion	Seite 107
Diagramm 20	Rate an Pilzinfektionen nach	
	Therapieepisoden	Seite 108
Diagramm 21	Rate an Pilzinfektionen mit und	
	ohne Itraconazol Prophylaxe nach	
	Therapieepisoden für alle Patienten	
	mit einer AML	Seite 110
Diagramm 22	Durchschnittliche Aplasiedauer mit und	
	ohne Itraconazol Prophylaxe nach	
	Therapieepisoden für alle Patienten	
	mit einer AML	Seite 111
Diagramm 23	Rate an Pilzinfektionen in Abhängigkeit	
	von der Spiegelhöhe bei	
	durchgeführter Itraconazol Prophylaxe	Seite 113
Diagramm 24	Sterblichkeitsrate nach Therapieepisoden	Seite 117
Diagramm 25	Prozentsatz Keimnachweis	
	nach Therapieepisoden	Seite 120

Diagramm 26	Prozentsatz Keimnachweis	
	nach Risikogruppen	Seite 121
Diagramm 27	Verteilung der Infektionsarten	
	mit Keimnachweis	Seite 121
Diagramm 28	Verteilung der Infektionsarten	
	ohne Keimnachweis	Seite 122
Diagramm 29	Untersuchungsmethoden zum Nachweis	
	der Keime	Seite 123
Diagramm 30	Anteil erfolgreicher Untersuchungen im	
	Vergleich zur erwarteten	
	Untersuchungsmethode	Seite 125
Diagramm 31	Sterblichkeit bei (Pilz-)Pneumonie aufgeteilt	
	nach Therapieepisoden	Seite 126
Diagramm 32	Sterblichkeit in Abhängigkeit von	
	Therapieumstellungen nach	
	einem Kulturergebnis	Seite 126
Diagramm 33	Sterblichkeit der Patienten mit einer	
	Leukämie in Abhängigkeit von der	
	Therapieepisode und Darstellung	
	der durchschnittlichen Aplasiedauer	Seite 127
Diagramm 34	Flowchart zur Eskalationstherapie bei FUO	
	im Rahmen der PEG Studie	Seite 129
Diagramm 35	Diagnoseverteilung der eingeschlossenen	
	Patienten der PEG II Studie	Seite 130
Diagramm 36	Verteilung der Infektionsarten der	
	eingeschlossenen Patienten der	
	PEG II Studie	Seite 130

1. Einleitung

Im Rahmen dieser Promotionsarbeit soll herausgearbeitet werden:

- a. wie häufig Infektionen bei Patienten, welche einer hochdosierten Chemotherapie unterzogen wurden und nachfolgend eine Aplasiephase von mindestens 5 Tagen durchlebten, in unserer Klinik auftraten;
- b. ob bei Infektionen, entsprechend den geltenden Standards zum jeweiligen Zeitpunkt, eine leitliniengerechte antimikrobielle Therapie durchgeführt wurde:
- c. wie erfolgreich diese im Vergleich zu anderen, bereits in anderen Publikationen beschriebenen, durchgeführt wurde;
- d. wie oft der Erregernachweis gelang, welche Konsequenzen dieses für die Behandlung hatte und welche Arten von Infektionen auftraten.

Da im Beobachtungszeitraum bauliche Maßnahmen ergriffen wurden, wird ebenfalls untersucht, ob dies zu einer signifikanten Steigerung von Pilzinfektionen geführt hat. Zwischen 2000 und 2001 wurde ein spezieller Aplasiebereich mit entsprechenden 2-Bett Zimmern und Schleuse errichtet.

Gleichzeitig stellt sich die Frage inwieweit Katheterinfekte durch besseres Erlernen der standardisierten Handhabung im zeitlichen Ablauf zu reduzieren waren und ob Änderungen im eingesetzten Medikamentenspektrum zu einer Besserung der Therapieergebnisse geführt haben und ob der Kathetertyp (peripher venös, Jugularis-Katheter, Hickmann-Katheter, Port-Katheter) eine Rolle spielt.

Hierzu wurden insgesamt 96 Patienten mit einem Durchschnittsalter von 51,34 Jahren und einer Durchschnitts Aplasiedauer von 13,44 Tagen bei insgesamt 184 Chemotherapiezyklen untersucht.

In die Arbeit wurden insbesondere Patienten mit akuten Leukämien (myeloisch und lymphatisch) und einer Induktionstherapie aufgenommen. Weiterhin wurden Patienten mit hochmalignen und niedrigmalignem NHL, Plasmozytom, M. Hodgkin, Sarkomen und eine Patientin mit Ovarialkarzinom, die entsprechend dosisintensive Chemotherapien erhalten haben, eingeschlossen. Chemotherapiezyklen mit Aplasiephasen unter 5 Tagen wurde nicht berücksichtigt.

Allgemein lässt sich feststellen, dass Infektionen die wichtigste Komplikation nach dosisintensiver Chemotherapie und konsekutiver Neutropenie sind. Bei 85% der Patienten mit akuter Leukämie sind unter intensiver Chemotherapie Neutropeniephasen von zwei bis drei Wochen die Regel. Fast alle diese Patienten machen Infektionen durch oder erleiden Fieberschübe (FUO). Zwischen 5 und 30% dieser Infektionen verlaufen tödlich und ca. 70% der tödlichen Komplikationen werden durch Infektionen verursacht. ¹

2. Problemstellung

2.1 Einführung

Offizielle Leitlinien zur Antibiotikabehandlung von neutropenischen Patienten stehen erst seit 1999 zur Verfügung. Diese sind durch die Arbeitsgemeinschaft Infektiologie in der Hämatologie und Onkologie der Deutschen Gesellschaft für Hämatologie und Onkologie formuliert und werden in dieser Arbeit als Standard angesehen. Seit 2001 gibt es eine aktualisierte Fassung dieser Richtlinien. Vor 1999 gab es keine offiziellen Leitlinien in Deutschland, jedoch wurden bereits in den Arbeiten von Hughes, W.T. et al. 1990 und 1997 Standards formuliert.

An dieser Stelle sollen, bevor die Richtlinien im Einzelnen beschrieben werden, noch einige Definitionen erstellt werden. Diese werden in sämtlichen Richtlinien als Standard betrachtet, und haben sich im Laufe der Zeit nicht verändert.

Neutropenie

Zahl der neutrophilen Granulozyten kleiner $500/\mu l$ oder kleiner 1000 mit erwartetem Abfall unter 500.

Fieber

Oral gemessene Temperatur ohne Hinweis auf nicht-infektiöse Ursachen einmalig größer oder gleich 38,3 Grad C oder zweimalig größer oder gleich 38,0 Grad C für mindestens eine Stunde oder zweimal innerhalb von 12 h.

_

¹ Buchheidt, D., A. Böhme, O. Cornely, G. Fätkenheuer: Dokumentierte Infektionen bei Hämatologischen und Onkologischen Patienten-Empfehlungen zur Diagnostik und Therapie der Arbeitsgemeinschaft Infektiologie der Deutschen Gesellschaft für Hämatologie und Onkologie.

Infektionen

Fieber unklarer Genese (FUO): Als Fieber unklarer Genese wird neuaufgetretenes Fieber ohne richtungweisende klinische oder mikrobiologische Infektionsbefunde gewertet.

Klinisch gesicherte Infektion (CDI): Als klinisch gesicherte Infektion gilt Fieber in Verbindung mit einem diagnostisch eindeutig lokalisiertem Befund, beispielsweise einer Pneumonie, dessen mikrobiologische Pathogenese jedoch nicht bewiesen werden kann.

Mikrobiologisch gesicherte Infektion (MDI): Eine mikrobiologisch gesicherte Infektion liegt vor, wenn neben einem lokalisierbaren Infektionsbefund ein zeitlich und mikrobiologisch plausibler Erregernachweis gelingt oder wenn Infektionserreger in der Blutkultur auch ohne lokalisierten Infektionsherd nachweisbar sind. Für koagulasenegative Staphylokokken und Corynebacterium spezies ist ein mindestens zweimaliger Nachweis aus separat entnommenen Blutkulturen erforderlich, während ein einmaliger Nachweis als Kontamination gewertet wird. Bei Lungeninfiltraten wird der Nachweis in der Blutkultur oder der bronchoalveolären Lavage als zuverlässig angesehen, während Rachenabstriche oder Mundspülflüssigkeit nur im Falle des Keime **Nachweises** obligat pathogener im unmittelbaren zeitlichen Zusammenhang mit dem Auftreten von Lungeninfiltraten verwertbar sind. Bei abdominellen Infektionssymptomen wird der Nachweis von Clostridium difficile mit gleichzeitigem Toxinnachweis aus der Stuhlprobe als Erregersicherung akzeptiert, während andere potentiell pathogene Keime in mindestens zwei konsekutiven Stuhlproben nachweisbar sein müssen. Bei katheterassoziierten Infektionen ist die positive Blutkultur in Verbindung mit dem Nachweis des gleichen Infektionserregers aus dem entfernten Kathetermaterial oder mit einem Abstrich von einer entzündeten Einstichstelle zu fordern. Bei Harnwegsinfektionen wird ein pathologisches Isolat in signifikanter Keimzahl gefordert, bei Wundinfektionen der Keimnachweis aus Abstrich- oder Punktionsmaterial.

Die Definition der Risikogruppen entspricht den Richtlinien der AGIHO der DGHO von 2001. Hierbei ist vor allem die Niedrigrisikogruppe neu definiert. Die

Standardrisiko- und die Hochrisikogruppe sind bereits in den Richtlinien von 1999 enthalten.

Risikogruppen

Niedrigrisiko: Neutropeniedauer kleiner oder gleich 5 Tage ohne einen in der Tabelle 1 aufgeführten Parameter für eine höhere Risikogruppe.

Standardrisiko: Neutropeniedauer zwischen sechs und neun Tagen.

Hochrisiko: Neutropeniedauer von 10 oder mehr Tagen.

Tabelle 1 Risikoparameter

Allgemein	Kein Hinweis auf ZNS-Infektion, schwere Pneumonie			
·ge	oder Katheterinfektion			
	ECOG Performance Scale 0,1,2 (3) Keine Zeichen von Sepsis oder Schock			
	Keine der folgenden Kontraindikationen:			
	Begleiterkrankungen, ausgeprägte abdominelle			
	Beschwerden, intravenöse Supportivtherapie,			
	Dehydratation, rezidivierendes Erbrechen,			
	Notwendigkeit einer ständigen Überwachung			
	(entgleister Diabetes, Hyperkalzämie)			
Orale Antibiotika	Keine Chinolontherapie oder -prophylaxe innerh			
	der letzten 4(-7) Tage Orale Medikation vertretbar			
	Compliance mit oraler Medikation zu erwarten			
Ambulante Behandlung	Medizinische Betreuung sichergestellt			
	Patient lebt nicht alleine			
	Patient/Mitbewohner haben Telefon			
	Patient kann innerhalb einer Stunde eine Klinik			
	erreichen, die Erfahrung in der Behandlung			
	neutropenischer Patienten hat			
	Patient bewusstseinsklar, kennt und versteht Risiken			

An dieser Stelle soll nun noch auf das typische Erregerspektrum eingegangen werden. So gelingt bei etwa einem Drittel der Patienten ein Erregernachweis im Rahmen der initialen Infektion. Bei weiteren 20 – 30% der Patienten kann ein Keimnachweis später geführt werden. Die in Tabelle 2 aufgeführten Erreger machen ca. 90% der nachgewiesenen Spezies aus, wobei zu Beginn Pilzinfektionen bei Lungeninfiltraten eine größere Rolle spielen können.

Tabelle 2 Erregerspektrum bei Diagnosestellung 1999/2001

Häufig weniger häufig

Grampositive Bakterien	
Koagulasenegative Staphylokokken	
Staphylokokkus aureus, 2001 weniger	
Häufig	
Streptococcus species	
Enterococcus faecalis / faecium	
Corynebakterien	
Gramnegative Bakterien	
Escherichia coli	Enterobacter species
Klebsiella	Proteus species
Pseudomonas aeruginosa	Salmonella species
	Haemophilus influenzae
	Acinetobacter species
	Stenotrophomonas maltophilia
	Citrobacter species
Anaerobier	
Clostridium difficile	Bacteroides species
	Clostridium species
	Fusobacterium species
	Propionibacterium species
Pilze	
Candida species	Aspergillus species, 2001 häufig
	Mucor species

2.2 Richtlinien entsprechend der Empfehlung von Hughes, W.T. et. Al 1990/1997

Hierbei handelt es sich nicht um eine offizielle Leitlinie. In dieser Arbeit wurden erste Standards formuliert. 1999 wurde dann über die DGHO erstmals eine für Deutschland gültige Leitlinie formuliert.

Klinische Diagnostik bei initialer Manifestation einer Infektion

Zu Beginn sollte versucht werden, den ersten Fiebertag in Relation zum ersten Tag der erhaltenen Chemotherapie zu setzten. Dies kann Hinweise geben, wie lange die folgende Neutropenie dauern wird. Falls innerhalb der letzten 6 Stunden eine Blutkonserve gegeben wurde ist ein infektiöses Geschehen eher unwahrscheinlich. Infektionszeichen Suche Danach soll eine nach unternommen werden. Häufig betroffene Regionen sind das Peridontium, der Ösophagus, Pharynx, der untere die Lunge, die Perianalregion, Hautverletzungen (Knochenmark-Punktionsstelle, Katheter-Eintrittsstelle) und die Haut um die Nägel.

Danach sind sofort Blutkulturen für Pilze und Bakterien anzulegen. Eine Empfehlung, ob dabei nur periphere Blutkulturen oder auch Blutkulturen aus einem liegenden Katheter entnommen werden sollten, existierte zu dieser Zeit nicht.

Falls eine Katheter-Eintrittsstelle infiziert zu sein scheint, sollte von evtl. austretendem Sekret ebenfalls eine Kultur angefertigt werden.

Im Falle von Durchfall sollten Stuhlkulturen auf Bakterien, Viren und Protozoen sowie ein Test auf Clostridium-difficile-Toxin erfolgen. Im Falle von entsprechenden Symptomen sollten auch eine Urinkultur und eine Liquorpunktion mit Kultur durchgeführt werden.

Ein Röntgen-Thorax sollte zu Beginn (als Ausgangsbefund) und bei entsprechenden Symptomen angefertigt werden. Auf weiterführende Untersuchungen wie Ultraschall, Computertomogramm oder Magnetresonanztomographie sollte bei fortbestehendem Fieber zurückgegriffen werden.

Laborchemische Untersuchungen sollten zumindest jeden dritten Tag durchgeführt werden und ein vollständiges Blutbild, Serumtransaminasen,

Natrium, Kalium, Kreatinin und Harnsäure umfassen. Bei einigen Medikamenten (Amphotericin B, Aminoglykoside und Vancomycin) sollen die Elektrolyte und das Kreatinin regelmäßig bestimmt werden.

Therapiebeginn

Eine Indikation zur antimikrobiellen Therapie besteht bei Patienten mit Fieber (entsprechend der geltenden Definition) und einer absoluten Neutrophilenzahl unter 500/mm³ oder bei einer absoluten Neutrophilenzahl zwischen 500 und 1000/mm³, falls ein weiterer Abfall erwartet wird. Patienten ohne Fieber mit Neutrophilenzahlen unter 500/mm³ und Zeichen einer Infektion sollten ebenfalls behandelt werden.

Therapie bei unerklärtem Fieber

Zur Erstbehandlung bei neutropenischen Patienten mit Fieber wird durch Hughes kein generelles Schema empfohlen. Abhängig von den örtlichen Gegebenheiten des Krankenhauses (z. B. Resistenzspektrum) und individuellen Faktoren des Patienten (z. B. Niereninsuffizienz, Mukositis) können bestimmte Therapieregime variieren.

Prinzipiell werden drei generell mögliche Therapieregime empfohlen:

Bei Indikation zur Vancomycin Therapie nach den Kriterien der Tabelle 3 Vancomycin und Ceftazidim. Ohne Indikation zur Vancomycin Therapie entweder eine Monotherapie mit Ceftazidim oder Imipenem oder eine Duotherapie mit einem Aminoglykosid und einem ß-Lactam mit Pseudomonas-Wirksamkeit.

Bei erfolgreicher Behandlung (Fieberfreiheit innerhalb von 3 Tagen), sollte abhängig davon, ob eine Ätiologie gesichert werden konnte oder nicht, entweder auf eine Antibiose entsprechend Antibiogramm umgestellt werden, oder die Behandlung mit den gleichen Medikamenten fortgesetzt werden. Bei klinisch gesundem Patienten kann evtl. auch auf eine orale Therapie umgestellt werden.

Tabelle 3 Kriterien zur Vancomycin-Therapie (nach Hughes WT et. Al 1990/1997)

Schwere Mukositis

Vorausgegangene Prophylaxe mit Quinolon

Kolonisation mit Methazilin resistenten Staphylokokkus aureus oder Pen.-Ceph.-resist. Streptokokkus pneumoniae

Katheterinfektion

Hypotonie

Modifikation bei fehlendem Ansprechen innerhalb von 72 – 96 Stunden Bei fortbestehendem Fieber über 3 Tage sollte am 4-5 Tag eine erneute Evaluation erfolgen. Abhängig von den Ergebnissen werden durch Hughes folgende Empfehlungen gegeben²:

Bei unverändertem Befund kann die Antibiotikabehandlung fortgesetzt werden. Bei fortschreitender Erkrankung sollte die Antibiose umgestellt werden. Sollte das Fieber über 5 – 7 Tage bestehen bleiben ist Amphotericin B (mit oder ohne Veränderung der Antibiose) dem Regime hinzuzufügen. Statt Amphotericin B kann, abhängig von den Gegebenheiten der Klinik, auch Fluconazol als Antimykose eingesetzt werden.

Beurteilung des Therapieergebnisses und Dauer der Therapiefortführung Das Therapieergebnis wird nach drei Tagen beurteilt. Insbesondere die Entfieberung des Patienten spielt dabei eine Rolle und ist das entscheidende klinische Kriterium. Die Anzahl der neutrophilen Granulozyten spielt eine entscheidende Rolle für die Dauer der Antibiotikatherapie.

Falls der Patient am dritten Tag entfiebert ist, und die Neutrophilenzahl über 500/mm³ am Tag sieben liegt, kann die Behandlung am siebten Tag beendet werden. Liegt die Neutrophilenzahl noch unter 500/mm³, kann bei klinisch gesunden und einer Fieberfreiheit von 5 – 7 Tagen die Antibiose beendet werden, falls noch eine Risikokonstellation (Mukositis, Neutrophilenzahl unter

_

² Hughes WT, Armstrong D, Bodey GP, et al. 1997 Guidelines for the Use of Antimicrobial Agents in Neutropenic Patients with Unexplained Fever, Clinical Infectious Diseases 1997; 25: 551-73

100/mm³, klinische Infektionszeichen) vorliegt, sollte die Antibiose fortgesetzt werden.

Bei durchgehendem Fieber ist abhängig von der Neutrophilenzahl folgendes Vorgehen zu wählen, soweit sich keine Infektion nachweisen lässt:

Bei einer Neutrophilenzahl über 500/mm³ sollte die Antibiose nach 4 – 5 Tagen beendet werden. Bei einer Neutrophilenzahl unter 500/mm³ ist die Antibiose für 2 Wochen fortzusetzen und dann hat eine Nachuntersuchung zu erfolgen. Falls sich dann keine Infektionsstellen finden lassen, ist die Antibiose zu stoppen.

2.3 Richtlinien entsprechend der Empfehlung der Arbeitsgemeinschaft Infektiologie in der Hämatologie und Onkologie der DGHO 1999

Klinische Diagnostik bei initialer Manifestation einer Infektion Vor Beginn der antimikrobiellen Therapie soll eine sorgfältige klinische erfolgen. Besonderes Augenmerk ist Untersuchung auf Haut-Schleimhautveränderungen, Eintrittsstellen zentraler oder peripherer Venenzugänge, Punktionsstellen, obere und tiefe Atemwege, Urogenitalsystem und Abdomen und Perianalregion zu legen. Bei anhaltendem Fieber ist diese Untersuchung täglich zu wiederholen. Zusätzlich gehört das Messen von Blutdruck, Puls- und Atemfrequenz dazu.

An apparativen Untersuchungen ist eine Röntgen-Thorax Aufnahme in 2 Ebenen, bei entsprechender Symptomatik, auch weitere gezielte Aufnahmen, Nasennebenhöhlen mit beispielsweise der Computertomogramm durchzuführen. Die mikrobiologische Initialdiagnostik sieht mindestens zwei separate venöse Blutkulturen aus peripherem Blut für die kulturelle Untersuchung innerhalb von 30 – 60 Minuten, bei liegendem Venenkatheter, zwei weitere Blutproben aus dem Katheter. Eine weitere mikrobiolgische Diagnostik erfolgt nur bei einer entsprechenden Infektionssymptomatik und kann Urinkultur, Stuhlkultur einschließlich Nachweis von Clostridium-difficile-Toxin, Wundabstrich, Liquorkultur und Punktionsmaterial umfassen. Obligat sind dabei Antibiogramme gegen die eingesetzten Medikamente bei allen Kulturen. Bei der klinisch chemischen Diagnostik sind minimal folgende Untersuchungen durchzuführen:

Zweimal wöchentlich Leukozyten und Differentialblutbild, Hämoglobinspiegel, Thrombozytenzahl, SGOT, SGPT, Konzentrationen bzw. Werte von Lactatdehydrogenase, alkalischer Phosphatase, y-GT, Bilirubin, Harnsäure, Kreatinin, Natrium, Kalium, Quick, partieller Thromboplastinzeit und C-reaktives Protein. Bei Hinweis auf eine Sepsis sind regelmäßige Lactatbestimmungen durchzuführen. Bei Patienten, die mit Aminoglykosiden behandelt werden, wird mindestens eine wöchentliche Bestimmung der Plasmatalspiegel unmittelbar vor erneuter Gabe des Aminoglykosides empfohlen. Bei Patienten mit eingeschränkter Nierenfunktion insbesondere unter gleichzeitiger Behandlung mit anderen potentiell nephrotoxischen Substanzen, sind die Intervalle zur Bestimmung der Plasmaspiegel entsprechend kürzer zu wählen, oder Aminoglykoside zu vermeiden.

Bei fehlendem Ansprechen auf die Therapie innerhalb von 72 – 96 Stunden sollen die oben beschriebenen Maßnahmen wiederholt werden. Bei weiterhin negativem Befund der Röntgenaufnahme des Thorax ist eine hochauflösende Computertomographie der Lungen und eine Sonographie der Abdominalorgane zusätzlich durchzuführen.

Therapiebeginn

Die Indikation zur antimikrobiellen Therapie besteht bei

 a.) Fieber einmalig (oral), ohne erkennbare Ursache, von 38,3 Grad C oder über 38 Grad C für mindestens eine Stunde oder zweimal im Abstand bis 24 Stunden

oder zusätzlich

mikrobiologisch dokumentierte Infektion

oder zusätzlich

- klinisch oder radiologisch dokumentierte Infektion

oder

- Patienten ohne Fieber mit Symptomen oder Befunden einer Infektion oder
- klinische Diagnose der Sepsis auch ohne Fieber
- b.) Granulozytenzahl kleiner 500/ μ l oder kleiner 1000/ μ l mit erwartetem Abfall unter 500/ μ l.

Therapie bei unerklärtem Fieber

Therapiebeginn

Die Einleitung der Therapie erfolgt **empirisch sofort nach Abnahme der erforderlichen Blutkulturen**, ohne dass weitere diagnostische Maßnahmen durchgeführt oder ein klinischer oder mikrobiologischer Infektionsnachweis abgewartet werden.

Hierbei kann entweder eine Kombinationstherapie oder ein Monotherapiekonzept verwendet werden. Es sollen gut untersuchte Substanzen Kombinationen mit Wirksamkeit gegen häufige Enterobacteriaceae, Pseudomonas aeruginosa und Staphylokokken eingesetzt werden. Wichtig ist es hierbei besonders, die Patienten engmaschig zu untersuchen, um Therapieversagen, Zweitinfektionen, Nebenwirkungen und resistente Erreger diagnostizieren zu können. Hierbei ist besonders auf die Erregerresistenzen im lokalen Krankenhaus zu achten. In der Monotherapie ist besonders die Pseudomonas aeruginosa Wirksamkeit zu berücksichtigen. Als Wirkstoffe kommen hierbei insbesondere Ceftazidim, Cefepim, Carbapeneme (Imipenem, Meropenem) und Piperacillin mit Tazobactam in Frage.

Bei der Kombinationstherapie muss mindestens ein pseudomonaswirksames Medikament eingesetzt werden. So könnten z.B. folgende Wirkstoffe mit einem Aminoglykosid kombiniert werden: Ceftazidim, Cefepim, Cefotaxim, Ceftriaxon, Piperacillin mit Tazobactam, Azlocillin, Piperacillin. Die aufgeführten Cephalosporine können mit einem der Penicilline (= β -Lactam-Kombination) kombiniert werden, falls gegen Aminoglykoside Kontraindikationen bestehen.

Daten zu Aminoglykosiden liegen vor allem für Netilmicin und Amikacin als einmal tägliche Kurzinfusion vor. Wenige Daten für die Einmalgabe gibt es für Gentamicin oder Tobramycin. Dabei sind regelmäßige Kontrollen der Aminoglykosidspiegel im Serum notwendig. Bei der Anwendung ist vor allem auf die Nierenfunktion zu achten.

Bei Patienten mit systemischen oder tiefen Pilzinfektionen in der Anamnese ist zusätzlich das Antimykotikum Amphotericin B zur antibakteriellen Mono- oder Duotherapie einzusetzen. Bei fehlendem Aspergillushinweis kann auch Fluconazol eingesetzt werden.

Modifikation bei fehlendem Ansprechen innerhalb von 72 – 96 Stunden Es gibt verschiedene Gründe, die ein weiter bestehen des Fiebers trotz eingeleiteter Antibiotikatherapie erklären können. Ursächlich hierfür können nicht-bakterielle Infektionen, eine bakterielle Infektion mit resistenten Erregern, eine neuaufgetretene Zweitinfektion, unzureichende Serum- und Gewebespiegel der Antibiotika bzw. Infektionen an nicht vaskularisierten Stellen (Katheter oder Abszesse) oder Medikamentenfieber sein.

Modifikation entsprechend der Primärtherapie

Indikation: Eine Modifikation der Antibiotikatherapie ist durchzuführen, wenn nach 72 – 96 Stunden noch Fieber über 38,3 Grad C besteht und eine längeranhaltende Neutropeniedauer zu erwarten ist. Die Art der Modifikation richtet sich nach der Gesamtdauer der Granulozytopenie und ggf. zusätzlichen Faktoren wie dem Ausmaß der Schleimhautschädigung und einer eventuell vorausgegangenen systemischen Pilzinfektion.

1. Modifikation bei Granulozytopeniedauer unter 10 Tage (Standardrisiko)

Abhängig davon, ob zuerst mit einer Monotherapie oder einer Dualtherapie behandelt wurde, sollte die erste Modifikation unterschiedlich erfolgen. Nach einer Monotherapie sollte ein zusätzliches Aminoglykosid eingesetzt werden. Nach einer Duotherapie sollte auf ein Carbapenem umgestellt werden. Falls ein Carbapenem bereit in der Primärtherapie eingesetzt wurde, sollte auf ein Chinolon (Ciprofloxacin, Ofloxacin oder Levofloxacin) und ein Glykopeptid (Teicoplanin oder Vancomycin) umgestellt werden.³

Nach Entfieberung und wenn keine dokumentierte Infektion vorliegt, ist die orale Weiterführung der Chinolontherapie möglich. Auch eine orale Therapie mit Cefixim oder die Kombination von Clindamycin mit Ciprofloxacin ist möglich.

Wenn 72 Stunden nach der ersten Modifikation noch Fieber über 38,3 Grad C besteht und eine längere Neutropeniedauer zu erwarten ist, sollte eine

27

³ H. Link, K. Blumenstengel, A. Böhme, O. Cornely, O. Kellner, M. R. Nowrousian, H. Ostermann, X. Schiel, M. Wilhelm: Antimikrobielle Therapie von unerklärtem Fieber in Neutropenie. Standardempfehlungen der Arbeitsgemeinschaft Infektiologie in der Hämatologie und Onkologie der Deutschen Gesellschaft für Hämatologie und Onkologie. Dtsch Med Wochensch. 124, Suppl 1 (1999), S3-S8

systemische antimykotische Therapie erfolgen. Diese kann aus Fluconazol oder Amphotericin B intravenös bestehen.⁴

2. Modifikation bei Granulozytopeniedauer von 10 Tagen oder mehr (Hochrisiko)

Die Sekundärtherapie, Umstellung nach 72 – 96 Stunden Therapie ohne Entfieberung, sollte ein Glykopeptid Antibiotikum enthalten und insbesondere im gramnegativen Keimspektrum noch vorhandene Lücken schließen. Bei Patienten mit noch lang anhaltender Neutropenie sollte hier bereits zusätzlich ein parenterales Antimykotikum eingesetzt werden.

Als Glykopeptid kann entweder Vancomycin oder Teicoplanin kombiniert mit einem Carbapenem eingesetzt werden.

Als Antimykotikum kann Fluconazol oder Amphotericin B (je nach lokalen Risikobedingungen) eingesetzt werden. Sollte nach 72 Stunden auf Fluconazol kein Ansprechen erfolgen dann sollte auf Amphotericin B umgestellt werden.

Bei einer initialen Monotherapie ist die optimale Sequenztherapie noch nicht ausreichend untersucht. Die Erfahrungen der Sequenztherapie stammen überwiegend aus der Studie der Paul-Ehrlich-Gesellschaft für Chemotherapie, bei der in zwei Therapiestudie immer von einer initialen Duotherapie ausgegangen wurde. Generell ist zu empfehlen, nach einer Monotherapie, die Lücken im Wirkspektrum des initial verwendeten Antibiotikums zu schließen.

Bei der initialen Verwendung von Carbapenemen wird zurzeit in der Studie III der Paul-Ehrlich-Gesellschaft die Sequenztherapie mit Chinolonen und Vancomycin oder Teicoplanin und Fluconazol oder Amphotericin B untersucht.

Beurteilung des Therapieergebnisses und Dauer der Therapiefortführung Das Behandlungsergebnis soll 72 Stunden nach Beginn der antimikrobiellen Therapie (initiales Ansprechen), zum Zeitpunkt der Beendigung der antimikrobiellen Therapie (definitives Ansprechen) und nach Ablauf einer Nachbeobachtungszeit (ca. 7 Tage) beurteilt werden.

1

⁴ Edwards, J. E., J. P. Bodey, R. E. Bowden, T. Büchner, J. E. de Pauw, S. G. Fuler, M. A. Channoum, M. Glauser, R. Herbrecht, C. A. Kauffmann, S. Kohuo, P. Martino, F. Meunier, T. Mori, M. A. Pfaller, J. H. Reu, T. R. Rogers, R. H. Rubin, J. Solomkin, C. Visoli, T. J. Walsh, M. White: International Conference for the development of a consensus on the managment and prevention of severe candidal infections. Clin Infect dis, 28 (1997), 43-59

Vorgehen zur Therapiefortführung bei erfolgreicher Behandlung und Nachbeobachtung:

Falls nach 72 Stunden bereits eine Entfieberung aufgetreten ist, sollte das laufende Therapieregime bis zum Erreichen einer Fieberfreiheit von insgesamt 7 konsekutiven Tagen fortgeführt werden, falls die Zahl der neutrophilen Granulozyten weiterhin unter 1000X10⁹/l bleibt. Falls die neutrophilen Granulozyten jedoch über 1000x10⁹/l steigen, genügen 2 weitere fieberfreie Tage nach Eintritt der Entfieberung. Nach Ende der Antibiotikatherapie ist eine Nachbeobachtung von 7 Tagen erforderlich, um eine Sekundärinfektion oder ein Infektionsrezidiv erfassen zu können.

2.4 Standardempfehlung der Arbeitsgemeinschaft Infektiologie in der Hämatologie und Onkologie (DGHO), 2. aktualisierte Fassung Januar 2001

Klinische Diagnostik bei initialer Manifestation einer Infektion

Die klinische Diagnostik, mikrobiologische Initialdiagnostik, die fakultativ durchzuführenden Untersuchungen (bei entsprechender Infektionssymptomatik) und die klinisch-chemische Diagnostik entsprechen den Richtlinien von 1999 und werden hier nicht noch einmal im Einzelnen aufgeführt.

Therapiebeginn

Neu im Vergleich zu den Richtlinien von 1999 ist, dass eine Indikation zur antimikrobiellen Therapie bei Fieber und Neutropenie entsprechend den geltenden Definitionen besteht. Als ausdrückliche Ausnahme gilt jedoch Fieber, das sicher durch nicht infektiöse Ursachen besteht. Auch bei Fieberreaktionen im Zusammenhang mit Bluttransfusionen muss in bis zu 5% der Patienten mit einer Infektion gerechnet werden.

Alle weiteren Indikationen blieben bestehen.

Therapie bei unerklärtem Fieber

Therapiebeginn

Auch hier gilt, dass eine Therapie unverzüglich, nach Abnahme von entsprechenden Kulturen, eingeleitet werden muss. Weitere diagnostische Maßnahmen erfolgen im Anschluss.

Es können entweder Monotherapien oder Kombinationstherapien eingesetzt werden. Es ist insbesondere auf eine Wirksamkeit gegen Enterobacteriaceae, Pseudomonas aeruginosa und Staphylokokken zu achten. Es hat sich gezeigt, dass zunehmend grampositive Erreger (in bis zu 70% der Fälle), Infektionen hervorrufen, da zunehmend eine Antibiotikaprophylaxe mit Chinolonen erfolgt.

Vancomycin sollte in der Primärtherapie nicht eingesetzt werden, da die Selektion von Vancomycin Resistenten Enterokokken droht.

Neu ist die Unterteilung in Risikogruppen mit der neuen Gruppe der Niedrigrisikopatienten. Diese werden in dieser Arbeit ausgeklammert, sollen der Vollständigkeit halber aber hier kurz mit den entsprechenden Therapiekonzepten vorgestellt werden.

Bei diesen Patienten kann, bei Eignung für eine orale Therapie (entsprechend auch den Risikoparametern in Tabelle 1), eine antibiotische Therapie mit Ciprofloxacin und Amoxicillin-Clavulansäure benutzt werden. Evtl. kann man diese auch im Anschluss an eine initiale intravenöse Anbehandlung und Stabilisierung als Sequenztherapie nutzen. Eine Monotherapie mit einem Gyrasehemmer ist ebenfalls möglich, aber weniger gut untersucht. Bei bestehender Penicillinallergie kann Clindamycin oder Cefalexin oder Cefuroxim-Axetil eingesetzt werden. Sollte eine orale Therapie nicht möglich sein, gelten die Empfehlungen für Standard- oder Hochrisikopatienten.

Die Therapieeinleitung in der Monotherapie oder der Duotherapie für Standardund Hochrisikopatienten besteht unverändert zu 1999. Die Empfehlung zum Primären Einsatz von Antimykotika bei Patienten mit Pilzinfektionen in der Anamnese enthält weiterhin Amphotericin B als einziges Medikament.

Modifikation bei fehlendem Ansprechen innerhalb von 72 – 96 Stunden Zusätzlich zu den bekannten Gründen für ein persistierendes Fieber entsprechend den Richtlinien von 1999 wird in den Richtlinien von 2001 besonders noch auf eine Infektion mit vergrünenden Streptokokken hingewiesen.

Modifikation entsprechend der Primärtherapie

Indikation: Unverändert besteht eine Indikation zur Modifikation der Therapie, wenn Fieber über 38,3 Grad C nach einer 72 – 96 stündigen Therapie

fortbesteht. Neu ist, dass im Falle einer klinischen Verschlechterung, die Empfehlung ausgesprochen wird die Therapie frühzeitiger zu verändern. Die Art der Modifikation richtet sich dabei nach den bekannten zusätzlichen Risikofaktoren (Schleimhautschädigung, Pilzinfektion).

Modifikation bei Neutropeniedauer 6 - 9 Tage (Standardrisiko)

Die möglichen Modifikationen nach Mono- oder Duotherapie sind unverändert geblieben. Nach einer Monotherapie kann ein zusätzliches Aminoglykosid eingesetzt werden. Nach Duotherapie kann auf ein Carbapenem umgestellt werden. Falls ein Carbapenem in der Primärtherapie eingesetzt wurde kann auf ein Chinolon plus ein Glykopeptid umgestellt werden.

Nach Entfieberung kann die Chinolon Therapie oral weitergeführt werden oder eine orale Therapie mit Cefixim oder die Kombination Clindamycin mit Ciprofloxacin eingesetzt werden.

Im Unterschied zu den vorigen Richtlinien sollte, falls Fieber über 72 – 96 Stunden weiter besteht, oder eine klinische Verschlechterung eintritt, eine zusätzliche antimykotische Therapie mit Amphotericin B eingeleitet werden. Amphotericin B wird dabei als Standardtherapie empfohlen, obwohl auch Fluconazol möglich ist.

Modifikation bei Neutropeniedauer von 10 Tagen oder mehr (Hochrisiko)

Entgegen den früheren Empfehlungen wird bei Hochriskopatienten eine Glykopeptid Therapie in der Sekundärtherapie nur dann empfohlen, wenn eine schwere Mukositis oder der Verdacht auf eine Katheterinfektion besteht. Die Therapie sollte umgestellt werden, wenn nach 72 – 96 Stunden keine Entfieberung eintritt oder bei klinischer Verschlechterung.

Die Empfehlungen zur Einleitung einer antimykotischen Therapie wurden unverändert belassen. Die übrigen Empfehlungen zur antibakteriellen Therapie wurden ebenfalls nicht verändert.

Beurteilung des Therapieergebnisses und Dauer der Therapiefortführung Das Behandlungsergebnis wird nach 72 Stunden beurteilt. Sind die Kriterien für eine erfolgreiche Behandlung erfüllt, sollte bis zum Erreichen einer Fieberfreiheit über 7 konsekutive Tage weiterbehandelt werden, falls die Neutrophilenzahl unter 1000X10⁹/l bleibt. Bei Neutrophilenzahlen über

1000X10⁹/l genügen 2 fieberfrei Tage, es sollte jedoch für mindestens 7 Tage behandelt werden. Nach Ende der Antibiotikatherapie sollte weiterhin eine Nachbeobachtung von mindestens 7 Tagen erfolgen. Diese sollte auch durchgeführt werden, wenn die Neutrophilenzahl ausreichend ansteigt, da manche Infektionsmanifestationen erst nach oder bei einem Neutrophilenanstieg nachweisbar werden (z. B.: hepato-lienale Candidose). Diese Kontrollen können dann aber auch ambulant erfolgen.

Diagramm 1 Flowchart der Therapieschemata bei Patienten mit FUO, modifiziert gemäß der Angaben in Tabelle 4 für Standardrisikopatienten

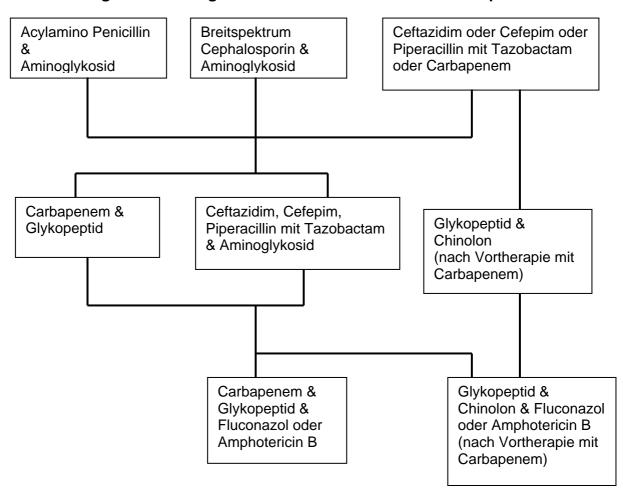


Tabelle 4 Stufenpläne der Therapieschemata bei Patienten mit FUO, modifiziert entsprechend den Richtlinien von 1999 und 2001

Initialtherapie		Oder	Oder
aller Patienten	Acylamino-	34. Generations	Monotherapie mit
	Penicillin und	Cephalosporin und	Cefatazidim, Cefepim,
	Aminoglykosid	Aminoglykosid	Piperacillin mit
			Tazobactam
			oder Carbapenem
Standardrisiko		Oder	Oder
Primäres oder	Carbapenem,	Ceftazidim, Cefepim,	Nach Vortherapie mit
sekundäres	Glykopeptid	Piperacillin mit	Carbapenem:
Therapieversagen	(2001	Tazobactam und	Glykopeptid, Chinolon
1. Modifikation	Glykopeptid nur	Aminoglykosid	
	bei schwerer		
	Mukositis oder		
	Katheterinfekt		
	empfohlen)		
2. Modifikation	Carbapenem,		Oder
	Glykopeptid,		Nach Vortherapie mit
	Fluconazol oder		Carbapenem:
	Amphotericin B		Glykopeptid, Chinolon,
			Fluconazol oder
			Amphotericin B
Hochrisiko		Oder	Oder
Primäres oder	Carbapenem,	Carbapenem,	Nach Vortherapie mit
sekundäres	Glykopeptid,	Glykopeptid,	Carbapenem:
Therapieversagen	Fluconazol	Amphotericin B	Glykopeptid, Chinolon,
1. Modifikation	(2001	(2001 Glykopeptid	Fluconazol oder
	Glykopeptid nur	nur bei schwerer	Amphotericin B
	bei schwerer	Mukositis oder	
	Mukositis oder	Katheterinfekt	
	Katheterinfekt	empfohlen)	
	empfohlen)		
	L		

Tabelle 5 Dosierungen der angegebenen Substanzen, modifiziert entsprechend den Richtlinien der DGHO von 2001

Antibiotika i. v.			
Glykopeptide:	ß-Lactam-Antibiotika	Aminoglykoside:	Chinolone i. v.
Teicoplanin	und Monobactame:	1 x tgl. oder 3 x tgl.:	Ciprofloxacin
1 x 400 mg (1.	Ceftazidim 3 x 2 g/d	Einmalgabe	2 x 400 mg
Tag 2 x 400	Cefepim 3 x 2 g/d	(Kurzinfusion über 30 -	Ofloxacin
mg)	Ceftriaxon 1 x 2 g/d	60 Minuten):	2 x 400 mg
Vancomycin	Imipenem 3 x 1 g	Netilmicin 4-7 mg/kg	Levofloxacin
2 x 1000 mg	oder 4 x 0,5 g/d	Amikacin 15 mg/kg;	1 x 500 mg/d
	Meropenem 3 x 1 g/d	maximal 1,5 g täglich	
	Piperacillin mit	Weniger Daten für:	
	Tazobactam 3 x 4,5	Gentamicin oder	
	g/d	Trobamicin 3-5 mg/kg	
		Cave: Nierenfunktion	
Orale	Ciprofloxacin	Weniger gut untersucht:	Cefixim (bei
Antibiotika-	2 x 500 mg	Ofloxacin 2 x 400 mg	Kindern untersucht)
therapie nach		Levofloxacin 1 x 500	1 x 400 mg
i. v. Therapie		mg/d	oder 2 x 200 mg
			Clindamycin
			3 x 600 mg
Antibiotika-	Ciprofloxacin 2 x 750	Bei Penicillinallergie	
therapie bei	mg plus Amoxicillin-	anstelle von Amoxicillin:	
Niedrigrisiko-	Clavulansäure 2 x	Clindamycin 3 x 600 mg	
patienten	1000 mg	Cefalexin 2 x 1000 mg	
		Cefuroxim-Axetil 2 x 500	
		mg	
Antimykotika	Fluconazol 1 x 400 -	Amphotericin B 0,6 – 1,0	
	800 mg	mg/kg	
		(laut Fachinformation	
		wird eine Testdosis	
		empfohlen. Dabei	
		werden 5 – 10 mg	
		Amphotericin B über	

120 min i. v. verabreicht, bevor die Gesamtdosis wird. gegeben Schüttelfrost wird mit Pethidin und Clemastin behandelt, nicht mit Steroiden. Falls Steroide bei schweren Akutreaktionen gegeben werden müssen, soll nach 1-2 ein Tage Auslaßversuch erfolgen. Auf eine Substitution mit 0,9% NaCl 1-2 I (9-18g) pro Tag ist zu achten. Damit reduziert sich die Nephrotoxizität. Evtl. muss auf ein liposomales Präparat ausgewichen werden.

2.5 Venenkatheter-assoziierte Infektionen bei Patienten in Neutropenie

Bei hospitalisierten Patienten in Neutropenie steigt das Risiko einer Infektion mit zunehmender Dauer der Neutropenie. Dies gilt insbesondere auch für Katheter-Assoziierte Infektionen. Hierbei spielen besonders grampositive Erreger eine Rolle. Dies sind vor allem koagulasenegative Staphylokokken und Staphylokokkus aureus, aber auch Candida spp. und in geringerem Maße gramnegative Bakterien.

Basis für die Diagnostik ist die Blutkultur. Lokale Infektionszeichen sind aber immer mit zu beachten und können hinweisend sein. Bei einem entsprechenden Verdacht sollte der Katheter entfernt und entsprechend mikrobiologisch untersucht werden (Standardverfahren: Abrolltechnik nach Maki mit semiquantitativer Kultur).

Definitionen:

Kolonisation des Katheters: Nachweis einer Besiedlung des Katheters ohne positive Blutkultur.

Lokale Infektion der Katheter Einstichstelle: Es liegen lokale Infektionszeichen (Rötung, Schwellung, Schmerz, purulentes Exsudat) in unmittelbarer Umgebung der Einstichstelle vor.

Katheter-Assoziierte Bakteriämie bzw. Fungämie: Hierbei muss sowohl eine signifikante Bakteriämie/Fungämie vorliegen sowie derselbe Erreger aus einer Katheterkultur nachgewiesen sein. Dabei kann es asymptomatische Bakteriämien und Bakteriämien mit klinischer Symptomatik geben.

Septische Thrombophlebitis: Kombination aus einer Katheter-Assoziierten (eitrigen) Phlebitis und einer Sepsis mit Bakteriämie.

Tunnel- und Tascheninfektionen: Infektion des subkutanen Anteils von getunnelten zentralvenösen Kathetern. Bei implantierten Portsystemen spricht man von einer Tascheninfektion.

Epidemiologie:

In Amerika wird die Anzahl von Katheter Infektion auf 50.000 bis 100.000 pro Jahr geschätzt. Durch eine solche Infektion verlängert sich der Krankenhausaufenthalt um durchschnittlich 7 Tage und die Kosten steigen um ca. 6.000 US-Dollar pro Behandlung.⁵

Inzidenz:

Die Angabe zur Inzidenz von Bakteriämien, die mit Zentralvenen-Kathetern assoziiert sind, wird mit 4 bis 13 pro 1.000 Kathetertage angegeben⁶, während die Rate für peripher platzierte Katheter etwa 1 Zehnerpotenz niedriger liegt. Bei neutropenischen Patienten gibt es nur wenige veröffentlichte Angaben. Im

_

⁵ Adal, K. A., B. M. Farr: Central venous catheter-related infections: a review. Nutrition. 12 (1996), 208-213 2. Guideline for prevention of intravascular device-related infections. Part II. Recommendations for the prevention of nosocomial intravascular device-related infections. Hospital Infection Control Practices Advisory Committee. Am J Infect Control. 24 (1996), 277-293

⁶ Wenzel, R. P., M. B. Edmond: The envolving technology of venous access. N Engl J Med. 340 (1999), 48-50

Rahmen einer deutschen Arbeitsgruppe wurden 1,3 Infektionen pro 1.000 Kathetertage als Infektionsrate bei Patienten mit akuten Leukämien gefunden.⁷

Risikofaktoren:

Die wichtigsten Risikofaktoren für Venenkatheter-Infektionen sind die Liegedauer des ZVK, die Häufigkeit von Manipulationen, die Lokalisation des Katheters und die Durchführung einer parenteralen Ernährung.

Zusätzlich steigt das Risiko einer septischen Komplikation mit der Dauer der Neutropenie.

Pathogenese:

Nahezu alle Venenkatheter sind von Mikroorganismen besiedelt. Bereits nach 24 Stunden bildet sich eine Innenschicht aus Polysaccariden, Fibrin, Fibronektin oder Laminin und wird sowohl von Mikroorganismen als auch vom Wirt (Mensch) gebildet.⁸ Dort können sich Erreger einnisten und sind geschützt vor Abwehrmechanismen des Wirtes sowie gegen Antibiotika.

Hierbei hängt die Adhärenz von physikalischen Eigenschaften des Katheters und von Oberflächeneigenschaften der Bakterien ab. Zusätzlich spielen aber auch Mikrotraumen beim Legen des Katheters die durch Thrombenbildung einen Nährboden darstellen können eine Rolle. Eintrittspforte können die Haut, Katheteranschlußstellen sowie Infusionslösungen sein. Dabei spielt vor allem die Besiedlung der Einstichstelle durch normale Hautflora oder pathogene Keime eine wichtige Rolle. Im Rahmen einer Chemotherapie oder bei einer Graft-versus-Host Reaktion kann es zu einer zusätzlichen Schädigung der natürlichen Schutzbarriere der Haut kommen. Nach der Besiedlung folgen die Vermehrung und schließlich die Streuung in die Blutbahn die zur systemischen Infektion führt.

Erregerspektrum:

Die Erregerangaben in Veröffentlichungen zu Katheter assoziierten Infektionen variieren zum Teil stark und beziehen sich meist nicht auf neutropenische Patienten. Für 50 – 70 % der Katheter assoziierten Bakteriämien sind Gram-

_

⁷ Karthaus, M., T. Doellmann, T. Klimsch, S. Weber, G. Heil, A. Ganser. Incidence of central venous catheter (CVC)-associated blood stream infections in patients treated for acute leukaemia (AL), 39th Interscience Conference on Antimicrobial Agents and Chemotherapy, San Francisco, 1999.

⁸ Raad, I.: Intravascular-catheter-related infections. Lancet. 351 (1998), 893-898

positive Erreger verantwortlich. Meist sind dieses Staphylokokkus epidermidis und andere koagulasenegative Staphylokokken gefolgt von Staphylokokkus aureus und Candida spp. Es werden aber auch Enterokokken, Pseudomonas aeruginosa, Enterobakterien (E. coli und Klebsiella spp.) sowie Corynebacterium jeikeium, Bazillus spp., Acinetobacter baumanii und Stenotrophomonas gefunden.⁹

Diagnostik:

Bei klinischem Verdacht muss sofort die entsprechende Diagnostik eingeleitet werden. Dabei sind febrile Patienten in Neutropenie, bei denen der Verdacht auf eine Katheterinfektion besteht, genauso zu untersuchen wie Patienten mit einem Fieber unklarer Genese.¹⁰

lokale Infektion der Katheter-Eintrittsstelle Die wird primär diagnostiziert. Ergebnisse von Hautabstrichen sind nur mit großer Vorsicht zu Bei Verdacht auf Tunnelinfektionen sollte verwerten. eine Ultraschalluntersuchung des Katheterverlaufs erfolgen. Evtl. kann hier eine Punktion zur raschen Sicherung des Katheters hilfreich sein.

Bei Verdacht auf eine Katheterinfektion sind immer mindesten zwei Paare Blutkulturen (aerob und anaerob, mindest Volumen 20ml) aus einer peripheren Vene und dem zentralen Venenkatheter abzunehmen. Dieses ist auch durchzuführen wenn keine Zeichen einer systemischen Infektion bestehen, aber ein lokaler Infekt vorliegt. Dabei sollte auch auf Pilze untersucht werden.

Falls klinisch die Indikation zur Katheterentfernung besteht sollte die Katheterspitze auf ca. 5 cm Länge abgeschnitten und steril verpackt (ohne Transportzusätze) werden. Die Aufarbeitung sollte innerhalb von 12 Stunden erfolgen. Die mikrobiologische Diagnostik sollte nach der Abrolltechnik nach Maki mit semiquantitativer Kultur erfolgen.¹¹

_

⁹ Sherertz, R. J. Pathogenesis of Vascular Catheter-Related Infections. In: Seifert H, Jansen B, Farr BM, eds. Catheter-Related Infections. New York: Marcel Dekker, 1997: 1-29.

¹⁰ Link, H., K. Blumenstengel, A. Böhme, O. Cornely, O. Kellner, M. R. Nowrousian, H. Ostermann, X. Schiel, M. Wilhelm: Antimikrobielle Therapie von unerklärtem Fieber bei Neutropenie. Standardempfehlungen der Arbeitsgemeinschaft Infektiologie in der Hämatologie und Onkologie. Dtsch Med Wochenschr. 124, Suppl.1 (1999), S3-S8

¹¹ Opie, J. C.: Contamination of internal jugular lines. Incidence in patients undergoing open-heart surgery. Anaesthesia. 35 (1980), 1060-1065

Tabelle 6 Diagnosekriterien für systemische, Venenkatheter-assoziierte Infektionen

Gesicherte Infektion	Wahrscheinliche	Mögliche Infektion
	Infektion	
Nachweis eines	Vorliegen einer lokalen	Nachweis eines Erregers
Erregers an der	Katheterinfektion und	aus einer peripheren und
Katheterspitze und in	positive Blutkultur	einer zentralvenösen
der Blutkultur		Blutkultur
Positive quantitative	Sistieren von bis dahin	Nachweis eines
Blutkultur	bestehendem Fieber	typischen Erregers für
	innerhalb von 48	Katheterinfektionen (S.
	Stunden nach dem	epidermidis, S. aureus,
	Ziehen eines Katheters	Candida spp.)
	plus positive Blutkultur	
		Positive Blutkultur ohne
		Nachweis eines anderen
		Fokus bei liegendem
		Katheter

Therapie:

Bei der Diagnose einer Katheter-Assoziierten Infektion sind folgende therapeutische Aspekte zu beachten:

- 1. Notwendigkeit der Katheterentfernung
- 2. Wahl der antimikrobiellen Therapie
- 3. Dauer der Therapie

In der Literatur finden sich allerdings nur wenige Angaben für neutropenische Patienten. Man muss zwischen komplizierter und unkomplizierter Katheter-Assoziierter Bakteriämie unterscheiden.

Unkomplizierte Katheter-Assoziierter Bakteriämie: Ansprechen auf die antibiotische Therapie mit Entfieberung und steriler Blutkultur innerhalb 48 Stunden.

Komplizierte Katheter-Assoziierte Bakteriämie: Fortbestehen positiver Blutkulturen über mehr als 48 Stunden nach Einleitung einer antibiotischen Therapie; Auftreten einer Endokarditis, Osteomyelitis, septischer Thrombosen oder Embolien oder Bildung von Abszessen. Dann muss die Therapiedauer entsprechend verlängert werden.

Indikation zur Katheterentfernung:

Wesentliche Gründe zur Entfernung des Katheters sind zum Beispiel der Erregertyp. Insbesondere Infektion mit Staphylokokkus aureus, Candida spp. und Mykobakterium fortuitum sind Komplikationsträchtig und erfordern immer die Entfernung des Katheters. Auch bei komplizierten Katheterinfektionen sollte der Katheter entfernt werden. Versuche der Kathetererhaltung haben eine Erfolgschance von maximal 20%. ¹², ¹³

Bei Fieberfreiheit und klinisch stabilem Patienten kann eine Erhaltung versucht werden, insbesondere wenn Corynebacterium jeikeium, Acinetobacter baumannii, Stenotrophomonas maltophilia, Pseudomonas aeruginosa und Bacillus spp. nachgewiesen wurden, da Infektionen mit diesen Erregern eine niedrige Komplikationsrate haben. Bei instabilen Patienten mit septischem Schock, bei persistierendem Fieber oder erneutem Fieber nach Ende der Antibiose ist der Katheter zu entfernen.

Tunnel- und Tascheninfektionen:

Infektionen der Tunnel oder Taschen bei implantierten Kathetern zählen zu den schwerwiegendsten Komplikationen. Bei Infektionen der Austrittsstelle reichen oft Lokalmaßnahmen und Antibiotika aus. Bei Tunnel- und Tascheninfektionen wird jedoch generell die Explantation des Katheters empfohlen.¹⁴,¹⁵

Empirische Therapie:

¹² Dugdale, D. C., P. G. Ramsey: Stapylokokkus aureus bacteremia in patients with Hickman catheters. Am J Med. 89 (1990), 137-141

¹³ Marr K. A., D. J. Sexton, P. J. Conlon, G. R. Corey, S. J. Schwab, K. B. Kirkland: Katheter-related bacteraemia and outcome of attempted catheter salvage in patients undergoing hemodyalisis. Ann Intern Med. 127 (1997), 275-280

¹⁴ Benezra, D., T. E. Kiehn, J. W. Gold, A. E. Brown, A. D. Turnbull, D. Armstrong: Prospective Study of infections in indwelling central venous catheters using quantitative blood cultures. Am J Med. 85 (1988), 495-498

¹⁵ Severien, C., J. D. Nelson: Frequency of infections associted with implanted systems vs. cuffed, tunneld Silastic venous catheters in patints with acute leukaemia. Am J Dis Child. 145 (1991), 1433-1438

Bei einer vermuteten Katheter-Assoziierten Infektion erfolgt die Therapie entsprechend den Richtlinien bei Fieber unklarer Genese (FUO) der Arbeitsgemeinschaft Infektiologie in der Hämatologie und Onkologie der Deutschen Gesellschaft für Hämatologie und Onkologie. Bei Sicherung eines Erregers in der Blutkultur sollte die Therapie entsprechend umgestellt werden, soweit dieses notwendig ist. Dabei sind die Ansprechraten einer empirischen Therapie hoch und in der Studie der Paul-Ehrlich-Gesellschaft (PEG 1) wurde ein Gesamtansprechen von 87% dokumentiert.

Gezielte Therapie:

Vor der Einleitung einer gezielten Therapie muss über die Signifikanz des gefundenen Erregers kritisch nachgedacht werden. Insbesondere bei koagulasenegativen Staphylokokken und Corynebakterien müssen aus zwei Blutkulturen mit gleichem Resistenzmuster nachgewiesen werden. Abstrichuntersuchungen können zu einer Fehlinterpretation Insbesondere darf man keine andere Infektion übersehen und durch die fälschliche Annahme einer Katheterinfektion weitere diagnostische Maßnahmen unterlassen. In der folgenden Tabelle ist die Behandlung von Venenkatheter-Assoziierten Bakteriämien bei neutropenischen Patienten in Abhängigkeit vom Erreger zusammengefasst.

Tabelle 7 Behandlung Katheter-assoziierter Bakteriämien bei neutropenischen Patienten

Erreger	Therapie	Dauer
Staphylokokkus aureus	Isoxazolylpenicillin	Mindestens 2 Wochen
(Oxacillin-empfindlich)	(Penicillinase-festes	i. v.
	Penicillin)	
Staphylokokkus aureus	Glykopeptid	Mindestens 2 Wochen
(Oxacillin-resistent)		i. v.

_

¹⁶ Link H., G. Maschmeyer, P. Meyer, W. Hiddemann, W. Stille, M. Helmerking, D. Adam: Interventional antimicrobial therapy in febrile neutropenic patients. Study Group of the Paul Ehrlich Society for Chemotherapy. Ann Hematol. 69 (1994), 231-243

Koagulasenegative	Nach Antibiogramm,	Bis 5-7 Tage nach
Staphylokokken	Glykopeptid nur bei	Entfieberung bei
	Oxcacillin-Resistenz	persistierender
		Neutropenie
Enterokokken	Aminopenicillin plus	Bis 5-7 Tage nach
	Aminoglykosid, bei Ampicillin	Entfieberung bei
	Resistenz Glykopeptid plus	persistierender
	Aminoglykosid	Neutropenie
Corynebakterien	Glykopeptid	Bis 5-7 Tage nach
	nach Antibiogramm	Entfieberung bei
		persistierender
		Neutropenie
Bacillus spp.	Nach Antibiogramm	Bis 5-7 Tage nach
		Entfieberung bei
		persistierender
		Neutropenie
E. coli, Klebsiella spp.	Nach Antibiogramm	Bis 5-7 Tage nach
und andere		Entfieberung bei
Enterobakterien		persistierender
		Neutropenie
Pseudomonas	Kombination von ß-Lactam-	Bis 5-7 Tage nach
aeruginosa	Antibiotikum mit	Entfieberung bei
	Pseudomonas Aktivität plus	persistierender
	Aminoglykosid	Neutropenie
Acinetobacter baumanii	Nach Antibiogramm	Bis 5-7 Tage nach
		Entfieberung bei
		persistierender
		Neutropenie
Stenotrophomonas	Nach Antibiogramm	Bis 5-7 Tage nach
maltophilia	(Cotrimoxazol)	Entfieberung bei
		persistierender

		Neutropenie
Candida	Fluconazol	Mindestens 2 Wochen
albicans/lusitaniae		
Alle anderen Candida	Amphotericin B	Keine Empfehlung
spp., andere Pilze		

Insbesondere bei Staphylokokkus aureus Bakteriämien besteht die Gefahr einer Absiedlung (z. B. Endokarditis, Osteomyelitis) und die Therapie muss ausreichend lange erfolgen. Bei immunsupprimierten Patienten bedeutet dies eine Therapie von zwei bis vier Wochen.¹⁷

Antibiotic lock Technik

Hierunter versteht man das Einbringen von Antibiotika in das Katheterlumen und belassen über acht bis zwölf Stunden. Es gibt jedoch keine Erfahrungen bei neutropenischen Patienten.

2.6 Diagnostik und Therapie von Lungeninfiltraten bei febrilen neutropenischen Patienten Stand September 2001

Lungeninfiltrate entwickeln sich bei 15-25% aller Patienten mit ausgeprägter Neutropenie nach intensiver Chemotherapie. 18,19 Solche Lungeninfiltrate sind mit einer hohen Letalität verbunden und haben eine vielfältige Ätiologie. 20,21

In der Interventionsstudie II der Paul Ehrlich Gesellschaft (PEG-Studie II) wurde ein Ansprechen bei allen febrilen neutropenischen Patienten mit Lungeninfiltraten durch eine initiale Therapie mit Zugabe von Amphotericin B

_

¹⁷ Raad, II, M. F. Sabbagh: Optimal duration of therapy for catheter-related Staphylokokkus aureus bacteriemia: a study of 55 cases and review. Clin Infect Dis. 14 (1992), 75-82

¹⁸ Link H., G. Maschmeyer, P. Meyer, W. Hiddemann, W. Stille, M. Helmerking, D. Adam, For the Study Group of the Paul Ehrlich Society for Chemotherapy: Interventional antimicrobial therapy in febrile neutropenic patients. Ann Hematol.69 (1994), 231-243

¹⁹ Rossini F., Verga M., Pioltelli P., Giltri G., Sancassani V., Pogliani E.M., Corneo G.: Incidence and outcome of pneumonia in patients with acute leukaemia receiving first induction therapy with anthracycline-containing regimens. Haematologica 2000, 85: 1255-1260

²⁰ Peters S. G., J. A. Meadows III, D. R. Gracey: Outcome of respiratory failure in hematologic malignancy. Chest 94 (1988): 99-102

²¹ Canham E. M., T. C. Kennedy, T. A. Merrick: Unexplained pulmonary infiltrates in the compromised patient. An invasive investigation in a consecutive series. Cancer 52 (1983): 325-329

von 78% erzielt.²² Dieses ist dadurch bedingt, dass ein großer Teil der Lungeninfiltrate in Neutropenie durch Pilze hervorgerufen wird. Bei diesen Patienten sollte also eine frühzeitige, systemische, Aspergillus wirksame Therapie eingeleitet werden.

Stellenwert der Diagnostik

Eine konventionelle Röntgenuntersuchung des Thorax ist bei der Diagnostik nicht ausreichend. Nur durch eine (zeitgleich) durchgeführte CT-Untersuchung lassen sich mit ausreichender Sicherheit Lungeninfiltrate nachweisen. Die CT-Untersuchung sollte in hochauflösender Technik durchgeführt werden und insbesondere im Hinblick auf eine invasive pulmonale Aspergillose untersucht werden.²³

Tabelle 8 Technische Durchführung der radiologischen Diagnostik nach H. U. Kauczor und C. P. Heußel (Mainz)

Thoraxübersicht	- Aufnahme im Stehen in zwei Ebenen	
CT allgemein	 hochauflösender, Rekonstruktionsalgorithmus normaler Rekonstruktionsalgorithmus Weichteilfenster 	kantenbetonter für ein
HRCT	- Schichtdicke 1-2 mm, Schichtabstand 10 nativ, von den Lungenspitzen bis in dibis zu 10 sec. Atemanhaltezeit ("cluster-sch	ie Rezessus mit
Spiral CT	 Schichtdicke 5 mm, Pitch 2, Rekonstrul mm nativ, Inspiration, von den Rezes Lungenspitzen 	

²² Link H., H. Hiddemann, G. Maschmeyer, D. Buchheidt, B. Glass, O. Cornely, M. Wilhelm, M. Helmerking, D. Adam and the PEG Study Group: Antimicrobial therapy in neutropenic Patients with unexplained fever, PEG Study II. Proceedings 37th ICAAC (1997): 372-373

²³ Heussel C. P., H. U. Kauczor, G. Heussel, B. Fischer, P. Mildenberger, M. Thelen: Early detection of pneumonia in febrile neutropenic patients: use of thin-section CT. Am J Roentgenol 169 (1997): 1347-1353

-	Kombinierte HRCT und Spiral CT, durch Schichtdicke 1
	mm, Pitch 2, doppelte Rekonstruktion mit einem Intervall
	von 1 und 5 mm
	-

Im Rahmen der mikrobiologischen Diagnostik sollten Blutkulturen, Rachenabstriche, Mund- oder Rachenspülflüssigkeit, Sputum bzw. Salvia und Bronchialsekret untersucht werden.

Serologische Verfahren spielen zur Zeit noch eine untergeordnete Rolle, jedoch wurden Zeit Sandwich **ELISA** Test und in letzter ein neue Amplifikationstechniken zum Nachweis von Pilz-DNA entwickelt. die möglicherweise in Zukunft eine bessere, nicht invasive Diagnostik ermöglichen.²⁴ Festgehalten werden muss jedoch, dass die diagnostischen Verfahren noch der methodischen Standardisierung bedürfen, und eine diagnostische Abklärung eine frühzeitige Einleitung einer antimikrobiellen Therapie nicht verzögern darf.

Praktisches diagnostisches Vorgehen

Die Primärdiagnostik entspricht dem Vorgehen bei Patienten mit FUO in Neutropenie. Sollten diese Patienten nicht innerhalb von 72 Stunden auf eine antimikrobielle Therapie ansprechen, ist eine erneute klinische, bildgebende und mikrobiologische Diagnostik durchzuführen. Bei pathologischem Thoraxbefund sollte eine Bronchoskopie mit BAL erwogen werden. Bei unauffälligem Thoraxbefund ist innerhalb von 24 Stunden ein Thorax-CT durchzuführen.

Bei dann weiterhin unklaren Befunden, bzw. Patienten mit Lungeninfiltraten, die auf eine empirische Therapie nicht ansprechen, sollte über eine invasive Diagnostik nachgedacht werden (transbronchiale Biopsie, offene Lungenbiopsie oder CT-Gesteuerte perkutane Nadelaspiration).

Empirische antimikrobielle Therapie

Bei febrilen Patienten mit einer Neutropenie über 10 Tage und Lungeninfiltraten sollte die antimikrobielle Therapie aus einem pseudomonaswirksamen ß-Lactam-Antibiotikum und Amphotericin B bestehen. Die Gabe von Amphotericin B wird bis zur Rekonstitution der Hämatopoese und Rückbildung der klinischen und radiologischen Infektionszeichen durchgeführt. Soll die Therapie ambulant fortgeführt werden, kann eine orale Behandlung mit Itraconazol erfolgen.

Therapeutische Alternativen bei Unverträglichkeit von konventionellem Amphotericin B

Bei Unverträglichkeit von konventionellem Amphotericin B sollte mit liposomalem Amphotericin B weiterbehandelt werden (Dosisempfehlung des Herstellers 3,0 mg/kg täglich).

Therapeutisches Vorgehen bei vorliegendem mikrobiologischem Befund Ein mikrobiologischer Befund, der bei einem febrilen neutropenischen Patienten gewonnen wurde, bedarf einer kritischen Bewertung hinsichtlich seiner ätiologischen Bedeutung.

Tabelle 9 Ätiologische Zuverlässigkeit mikrobiologischer Befunde bei neutropenischen Patienten mit Lungeninfiltraten

Ätiologisch zuverlässig	Ätiologisch unbedeutend
Nachweis in der BAL oder Sputum	Nachweis von Enterokokken in
von: Pneumocystis carinii, gram-	Blutkultur, Abstrichen, Sputum oder
negativen Aerobiern, Pneumokokken,	BAL
Mycobacterium tuberculosis oder	
Aspergillus spp.	
Nachweis aus der Blutkultur von:	Nachweis koagulasenegativer
Pneumokokken, vergrünenden	Staphylokokken oder Corynebacterium
Streptokokken, oder gram-negativen	spp. aus jedwedem Material
Aerobiern	

²⁴ Böhme A., M. Karthaus, H. Einsele, M. Ruhnke, T. Südhoff, D. Buchheidt, R. Enzensberger, H. Szelenyi, A. Glasmacher, G. Just-Nübling, H. Gümbel: Diagnostik systemischer Pilzinfektionen in der Hämatologie. Dtsch Med Wschr 124 (1999): S24-30

46

Nachweis von Candida spp. aus
Abstrichen oder Sputum
Jeglicher Keimnachweis aus
Überwachungskulturen, Stuhl- oder
Urinkulturen

Eine kausale Relevanz dieser Keimnachweise für anderweitige Infektionen kann vorliegen!

Vorgehen bei gesicherter Pneumocystis carinii Pneumonie

Bei nachgewiesener Pneumocystis carinii Pneumonie (PcP) wird eine hochdosierte Trimethroprim-Sulfamethoxazol Therapie durchgeführt. Die Dosierung liegt bei 20mg/kg Trimethroprim und 100mg/kg Sulfamethoxazol aufgeteilt auf 4 Gaben täglich intravenös. Die Therapiedauer beträgt zwei bis drei Wochen. Anschließend ist eine Sekundärprophylaxe notwendig.

Operatives Vorgehen bei hochgradig vermuteter oder gesicherter invasiver pulmonaler Aspergillose

Bei Patienten mit unzureichendem Ansprechen auf Amphotericin B und Hämoptysen bzw. dem Risiko einer Arrosionsblutung sollte auch in Neutropenie die operative Sanierung des betroffenen Lungenareals erwogen werden.

2.7 Therapie von Pilzinfektionen in der Hämatologie und Onkologie – Leitlinien der AGIHO der DGHO, Stand Oktober 2001

Invasive Pilzinfektionen sind eine häufige Ursache für Morbidität und Mortalität bei langfristig neutropenischen Patienten. 2001 waren in Deutschland Amphotericin B, Fluconazol, Itraconazol und 5-Flucytosin zur systemischen Behandlung von Pilzinfektionen zugelassen.

Hefepilzinfektionen

Candida Infektionen

Bei lokalen oropharyngealen Candida Infektionen findet sich in der Regel Candida albicans als ursächlicher Erreger. Eine Behandlung ist sowohl topisch als auch systemisch möglich, wobei die topische Gabe deutlich kostengünstiger

ist. Dabei wird die Lösung für 1-2 Minuten im Mund verteilt und dann geschluckt. Bei Versagen dieser Therapie ist auf eine systemische Therapie umzusteigen (siehe Tabelle 10 für Dosierungen und Ablauf).

Bei Systemischen Candida Infektionen wird ebenfalls überwiegend Candida albicans als Ursache gefunden.²⁵ Insbesondere der Nachweis in der Blutkultur ist ein Hinweis auf eine disseminierte Infektion. Die Therapie hängt dabei vor allem von der Art der Immunsuppression des Patienten und dem jeweiligen Erreger ab (Siehe dazu Tabelle 10). Bei neutropenischen Patienten ist bei hoher Mortalität auf eine frühzeitige Therapie zu achten.

Für neutropenische Patienten wird empfohlen eine Therapie für 14 Tage über die Neutrophilenregeneration hinaus durchzuführen, da sonst die Gefahr von Spätkomplikationen droht.

C. tropicalis oder C. glabrata sind gegen Azole dosisabhängig empfindlich oder resistent, weshalb bei Nachweis dieser Erreger in der Regel Amphotericin B bevorzugt wird. C. krusei ist primär Fluconazol resistent, spricht aber auf Amphotericin B an. Bei C. lusitaniae sind primäre, ggf. auch sekundäre Resistenzen bekannt.

Tabelle 10 Therapie von Candida Infektionen, modifiziert entsprechend den Leitlinien der AGIHO der DGHO 2001

Lokale Candida Infektionen	Systemische Candida Infektionen
Oropharyngeale Candida Infektionen:	Candidämie ohne C. krusei oder C.
Amphotericin B Lösung 5 x 100	glabrata bei klinisch stabilem Zustand
mg/Tag oder	und fehlender Vortherapie mit Azolen:
Nystatin Lösung 6 x 1 ml/Tag	Fluconazol 400-800mg/Tag oder
Bei Unverträglichkeit oder Versagen:	Amphotericin B 0,7 mg/kg/Tag, bei
Fluconazol 100 mg/Tag oder	Ansprechen und Regeneration der
Itraconazol Lösung 200mg/Tag	Neutrophilen: Wechsel auf Fluconazol
Bei Versagen von Fluconazol:	Bei Versagen/Unverträglichkeit von

²⁵ Edwards J. E. Jr., G. P. Bodey, R. A. Bowden et al. International Conference for the Development of a Consensus on the Management and Prevention of Severe Candidal Infections. Clin Infect Dis 1997 25: 43-59

Itraconazol Lösung, bei weiterem	konventionellem Amphotericin B und
Nicht-Ansprechen Amphotericin B i. v.	Kontraindikationen zu Fluconazol:
0,3-0,5 mg/kg/Tag	Liposomales Amphotericin B
Ösophageale Candida Infektionen:	Hepatolienale Candidiasis:
Fluconazol 200 mg/Tag oder	Fluconazol 400-800mg/Tag
Itraconazol Lösung 200mg/Tag	Bei Ansprechen: Reduktion der
Bei Versagen der Azole: Amphotericin	Tagesdosis
B i. v. 0,5 mg/kg/Tag	Bei Versagen: Amphotericin B 0,7-1
	mg/kg/Tag
	Bei Versagen/Unverträglichkeit von
	konventionellem Amphotericin B:
	Liposomales Amphotericin B
Anmerkung: Die Loadingdose der	Candidameningitis/-abszesse:
Azole beträgt das Doppelte der	Amphotericin B 0,7-1 mg/kg/Tag evtl.
üblichen Tagesdosis.	mit 5-Flucytosin 4 x 37,5 mg/kg/Tag,
Fluconazol am Tag 1	bei Abszessen ggf. chirurgische
Itraconazol am Tag 1-5	Sanierung
	Candidose des Urogenitaltraktes:
	Nach Resistenzlage:
	Fluconazol 400 mg/Tag
	Amphotericin B 0,7-1 mg/kg/Tag

Infektionen durch Cryptokokkus neoformans

Cryptokokkus neoformans kommt vor allem bei HIV-Infizierten Patienten vor, finden sich aber auch bei hämatologischen Erkrankungen mit T-Zell Defekten, z. B. M. Hodgkin. Die Therapieempfehlungen orientieren sich nach denen für HIV-Patienten. Es sollte eine Kombination aus Amphotericin B (0,7-1 mg/kg/Tag) und 5-Flucytosin (100-150 mg/kg/Tag) durchgeführt werden. Im Anschluss sollte eine Erhaltungstherapie mit Fluconazol folgen.

Infektionen durch Schimmelpilze

Invasive Aspergillusinfektionen werden zunehmend gefunden und spielen besonders bei Patienten mit Leukämien eine große Rolle. Dabei liegt in 80-90% eine invasive pulmonale Aspergillose vor, die eine Letalität von durchschnittlich 50% hat. ²⁶ Bei ZNS Manifestationen kann die Letalität bis zu 100% betragen. Mukormykosen sind eher selten, bei neutropenischen Patienten ist die Prognose insbesondere bei einem pulmonalen Befall mit einer Letalität von 75-80% schlecht. ²⁷

Tabelle 11 Therapie von Schimmelpilzinfektionen, modifiziert entsprechend den Leitlinien der AGIHO der DGHO 2001

Aspergillosen	Mukormykosen
Invasive Pulmonale Aspergillose:	Amphotericin B 1-1,5 mg/kg/Tag
Amphotericin B 1-1,5 mg/kg/Tag	Bei fehlendem Ansprechen:
Bei Unverträglichkeit:	Liposomales Amphotericin B ggf. auch
Liposomales Amphotericin B 1-5	hochdosiert
mg/kg/Tag	
Alternativ:	
Itraconazol Lösung 2 x 200 mg/Tag	
incl. Loading dose oder i. v. 1 x 200	
mg/Tag incl. Loading dose	
Bei gutem Teilansprechen oder	
Neutrophilen Anstieg: Wechsel auf	
Itraconazol oral	
HNO-Trakt:	HNO-Trakt:
Amphotericin B 1(-1,5) mg/kg/Tag mit	Chirurgische Sanierung soweit
chirurgischer Sanierung sofern	möglich
möglich	

^{. .}

²⁶ Denning D. W. Invasive aspergillosis. Clin Infect Dis 1998; 26: 781-805

²⁷ Tedder M., J. A. Spratt, M. P. Anstadt, S. S. Hedge, S. D. Tedder, J. E. Lowe. Pulmonary mucormycosis: results of medical and surgical therapy. Ann Thorac Surg. 1994; 57: 1044-1050

Haut und Weichteile:	ZNS:
Amphotericin B 1 (-1,5) mg/kg/Tag mit	Chirurgische Sanierung soweit
chirurgischem Debridement	möglich
ZNS:	
Amphotericin B 1-1,5 mg/kg/Tag ohne	
ausreichende Effektivität, evtl.	
besseres Ansprechen unter	
Voriconazol	

Seltene Pilze

Als weitere potentielle Erreger invasiver Infektionen bei neutropenischen Patienten sind in kleine Fallserien oder Einzelfällen auch Candida dubliniensis, Trichosporon, Blastoschizomyces und Malassezia beschrieben worden, wobei in der Regel eine Behandlung mit Amphotericin B angezeigt ist.

Tabelle 12 Kriterien für den Wechsel von konventionellem Amphotericin B auf Lipidformulierungen

Parameter	Wechsel indiziert
Kreatininspiegel und Amphotericin B	Anstieg über 2,0 mg/dl oder
	Verdopplung des Ausgangswertes
	innerhalb von 24 Stunden trotz NaCl-
	Behandlung
Kaliumspiegel	Ausgeprägte, i. v. nicht substituierbare
	Hypokaliämie
Intolerable Infusionsreaktionen*	Trotz Ausschöpfung aller supportiver
	Maßnahmen
Nichtansprechen der Mykose	Erregerpersistenz, Zunahme oder
	fehlender Rückgang der
	Manifestationen nach 14 Tagen eine
	adäquat dosierten Therapie**

- *Schüttelfrost, Fieber, Erbrechen, akute pulmonale Komplikationen, schwere Hypotonie
- ** ausgenommen ist eine passagere Zunahme der Lungeninfiltrate während des Neutrophilenanstieges

2.8 Infektionsprophylaxe bei neutropenischen Patienten, Leitlinien der AGIHO der DGHO, Stand 2000

Da Infektionen erheblich die Ergebnisse der Therapie hämatologischer und onkologischer Erkrankungen gefährden, wurden immer wieder Maßnahmen zur Infektionsprophylaxe nach intensiver Chemotherapie diskutiert. Hierbei sind insbesondere Kosten, Aufwand und Nebenwirkungen zu beachten.

Infektionsrisiken

Das Risiko für Fieber hängt vor allem von der Länge der Neutropenie ab und liegt nach 5 Tagen Neutropenie bei 20% und nach 3 Wochen bei 80-100%.²⁸

Fieber und Infektionsart

In 30-50% der Fälle bleibt die Ursache für das Fieber unklar (FUO), in 20-30% wird eine Bakteriämie nachgewiesen, die restlichen Fälle sind die Infektionen lokalisierbar (pulmonal, perineal, Katheter, Sinusitis).

Allgemeine Prophylaxemaßnahmen

Es gibt einige Basismaßnahmen, die zur Prophylaxe von Infektionen beitragen. Hierzu gehören Händedesinfektion vor und nach Patientenkontakt, strenge Indikationsstellung von Antibiotika, Vermeidung von Blasenkathetern, sorgfältige Haut- und Schleimhautpflege der Patienten, Entfernung von Pflanzen und keimarme Nahrung.

Bei der Unterbringung der Patienten ist ein Ein- oder Zweibettzimmer notwendig, dass über eine eigene Toilette und Wasch- oder Duschraum verfügt. Bei längeren Neutropenien sollte zusätzlich eine Umkehrisolation mit Händedesinfektion, Handschuhe und Mund-Nasen-Schutz bei direktem Patientenkontakt und evtl. einem Einzelzimmer durchgeführt werden. Spezielle

²⁸ Bow E. J. Infection risk and cancer chemotherapy: The impact of the chemotherapeutic regimen in patients with lymphoma and solid tissue malignancies. J Antimicrob Chemother 1998: 41 (D); 1-5

Sterileinheiten (Plastikisolatoren, Laminar air flow) sind nicht notwendig.²⁹ Besondere Vorsicht ist bei Baumaßnahmen notwendig, da das Risiko eines Anstieges invasiver Aspergillosen besteht.

Bei der Verpflegung für Standard- und Hochrisikopatienten sollten nur frisch zubereitete, gekochte Speisen verwendet werden. Auf Salate, Rohkost, Nüsse, Trockenobst, Trockengewürze und Körnerbrot sollte verzichtet werden. Geschältes Obst ist unbedenklich, Säfte und Mineralwasser können verwendet werden.

Bei der Körperpflege ist auf häufiges Zähneputzen mit einer weichen Zahnbürste mit anschließender Mundspülung zu achten. Eine sorgfältige Anusreinigung nach Defäkation ist notwendig.

Antimikrobielle Chemoprophylaxe

Der Sinn einer antimikrobiellen Chemoprophylaxe wird kontrovers diskutiert, da die Gefahr einer zunehmenden Resistenzentwicklung besteht und ein Effekt auf das Überleben fraglich ist. Teilweise wurde ein besseres Überleben gesehen, teilweise konnte dieses nicht nachgewiesen werden. 30,31 Zumindest bei Hochrisikopatienten ist die Prophylaxe vertretbar. Bei Niedrig- oder Standardrisikopatienten wird eine Prophylaxe eher nicht empfohlen. Durch Fluorchinolone kann dabei insbesondere die Rate gram-negativer Bakteriämien gesenkt werden. Die besten Ergebnisse wurden dabei mit Ofloxacin und Ciprofloxacin erreicht.

Antimykotische Chemoprophylaxe

Mit oralen Polyen-Suspensionen kann die Rate von oberflächlichen Mykosen und die Kolonisierungsrate gesenkt werden. Eine inhalative Prophylaxe mit Amphotericin B zur Verhinderung von Aspergillusinfektionen ist nicht effektiv. Die Gabe von niedrigen Dosierungen von Amphotericin B (0,1-0,5 mg/kg/Tag) intravenös dreimal wöchentlich zeigte keine bessere Wirksamkeit als Fluconazol (400mg/Tag) bei jedoch schlechterer Verträglichkeit. Nach einer

²⁹ Russell J. A., M. C. Poon, A. R. Jones et al., Allogenic bone marrow transplantation without protective isolation in adults with malignant disease. Lancet 1992; 339: 38-40

³⁰ Young L. S. Antimicrobial prophylaxis in the neutropenic host: Lessons of the past and perspectives for the future. Eur J Clin Microbiol Infect Dis 1988; 7: 93-97

³¹ Engels E., J. Lau, M. Barza. Efficacy of quinolone prophylaxis in neutropenic cancer patients: A metaanalysis. J Clin Oncol 1998; 16: 1179-1187

Aspergillusinfektion kann Amphotericin B jedoch in therapeutischer Dosierung (1 mg/kg/Tag) erfolgreich zur Sekundärprophylaxe eingesetzt werden. Mit Hilfe von Fluconazol (400 mg/Tag intravenös oder oral) kann bei Leukämiepatienten, ähnlich wie mit oralen Polyen-Suspensionen, die Rate von oberflächlichen Candida Infektionen und die Kolonisierungsrate gesenkt werden, und bei Unverträglichkeit oraler Suspensionen alternativ eingesetzt werden. Itraconazol ist zu dieser Zeit zur Prophylaxe noch weniger gut untersucht.

Prophylaxe der HSV-Reaktivierung

Zur Prophylaxe einer HSV-Reaktivierung können 800 mg Aciclovir täglich oral verabreicht werden.³² Wahrscheinlich reicht es aber aus nur bei Stammzelltransplantationen oder Knochenmarktransplantationen eine solche Prophylaxe durchzuführen und ansonsten lediglich therapeutisch zu intervenieren.

Prophylaxe von Venenkatheter-Assoziierten Infektionen

Wesentlich bei der Prophylaxe Venenkatheter-Assoziierter Infektion ist der Umgang mit dem ZVK und die Beachtung von Hygiene-Grundsätzen bei der Insertion unter strenger Indikationsstellung für den Einsatz. Ein erfahrenes, personell gut ausgestattetes Team ist in der Lage die Infektionsrate zu senken. Die günstigste Lokalisation bezüglich des Infektionsrisikos ist der Zugang über die V. subclavia, gefolgt von der Insertion über die V. jugularis rechts. Eine kurze Tunnelung kann das Risiko weiter senken. Eine prophylaktische Antibiotikagabe scheint zur Prophylaxe nicht wirksam zu sein. Der Verband sollte zweimal pro Woche oder jeden zweiten Tag erneuert werden. Die Infusionsschläuche sollten routinemäßig alle 72 Stunden gewechselt werden, jedoch ist nach Infusion fetthaltiger Lösungen und von Transfusion von Blutprodukten ein sofortiger Wechsel notwendig. Eine Verwendung von Infusionsfiltern wird nicht empfohlen.

Pneumocystis carinii Pneumonie Prophylaxe

_

³² Bergmann O. J., S. C. Mogensen, S. Ellermann-Eriksen, J. Ellegaard. Acyclovir prophylaxis and fever during remission-induction therapy of patients with acute myolid leukemia: A randomized, double blind, placebo controlled trial. J Clin Oncol 1997; 15: 2269-2274

³³ Elliot T. S., M. H. Faroqui, R. F. Armstrong, G. C. Hanson. Guidelines for good practice in central venous catheterization. J Hosp Infect 1994; 28: 163-176

Als Mittel der Wahl gilt Trimethroprim/Sulfamethoxazol in einer Dosierung von 800/160 mg dreimal wöchentlich. Alternativ ist auch eine Pentamidin Inhalation in einer Dosierung von 300 mg einmal im Monat möglich.

Tabelle 13 Indikationen zur Infektionsprophylaxe bei neutropenischen Patienten entsprechend den Empfehlungen der AGIHO der DGHO, Stand 2000

Antibakterielle	Antimykotische	Chemoprophylaxe	Pneumocystis
Chemo-	Chemo-	Herpes-simplex-	carinii Pneumonie
prophylaxe	prophylaxe	Virus-	Prophylaxe
		Reaktivierung	
Standardrisiko	Standardrisiko	Standardrisiko	ALL während
Patienten:	Patienten:	Patienten:	Induktion oder
Keine	Keine	Keine Prophylaxe	Reinduktion:
Prophylaxe	Prophylaxe	empfohlen	Bedingt
empfohlen	empfohlen		empfehlenswert
Autologe	Autologe	Autologe	Lymphome mit
SZT/KMT:	SZT/KMT:	SZT/KMT:	aggressiver
Prophylaxe	Prophylaxe	Keine Prophylaxe	Chemotherapie:
unklar	unklar	empfohlen	Prophylaxe unklar
Hochrisiko	Hochrisiko	Hochrisiko	Allogene SZT/KMT:
Patienten:	Patienten:	Patienten:	Bedingt
Bedingt	Bedingt	Prophylaxe unklar	empfehlenswert
empfehlenswert	empfehlenswert		
Allogene	Allogen	Allogene	Wiederholte CD4
SZT/KMT:	SZT/KMT:	SZT/KMT:	Lymphozyten-
Bedingt	Prophylaxe	Bedingt	depletion:
empfehlenswert	unklar	empfehlenswert	vertretbar

2.9 Aktuelle Leitlinien der AGIHO der DGHO zur Behandlung von Patienten in Neutropenie, Stand September 2003

In diesem Teil wird kurz auf die Änderungen in den neuen Leitlinien, die ab 2003 gültig sind, eingegangen. Auf eine ausführliche Darstellung wird dabei verzichtet.

2.9.1 Therapie bei Fieber unklaren Ursprungs (FUO)

In den Leitlinien für 2003 hat sich lediglich etwas in der Therapie der Standardrisiko und der Hochrisiko Patienten geändert. Dabei sind insbesondere einige neue antimykotische Substanzen in die Therapie und die Empfehlungen aufgenommen worden.

Standardrisiko Patienten

Sollte nach der Umstellung der Therapie noch für mehr als 72 Stunden Fieber bestehen ist eine Hinzunahme von Fluconazol empfohlen. Sollte darauf keine Entfieberung erfolgen ist Fluconazol durch Amphotericin B, Itraconazol, Voriconazol oder Caspofungin zu ersetzten.

Tabelle 14 Dosierungsempfehlungen für die neuen Antimykotika entsprechend den Empfehlungen der AGIHO der DGHO

Antimykotika	Dosierung
Itraconazol	Itraconazol kann auch i. v. gegeben werden, an Tag 1 und 2 2 x
	200 mg, 1 x 200 mg bis Tag 5, danach oral fortsetzen
Voriconazol	Für i. v. Gabe: 4 mg/kg alle 12 Stunden
	Startdosis: Tag 1 2 x 400 mg oral oder 2 x 6 mg/kg i. v.
Caspofungin	Startdosis an Tag 1 70 mg, danach Fortsetzung mit 50 mg i. v.
	über 1 Stunde

Hochrisiko Patienten

Bei der ersten Therapieumstellung kann zusätzlich zu Fluconazol oder Amphotericin B auf die neuen antimykotischen Substanzen wie Itraconazol, Voriconazol oder Caspofungin ausgewichen werden. Sollte bei der ersten Umstellung Fluconazol eingesetzt worden sein kann bei weiter bestehendem

Fieber auf Amphotericin B, Itraconazol, Voriconazol oder Caspofungin umgestellt werden.

Tabelle 15 Randomisierte Studien zum Einsatz einer antimykotischen Therapie bei Patienten mit neutropenischem Fieber (modifiziert nach Marr K. A.³⁴)

Jahr	Studie	Therapie	N=	Primärer Endpunkt	Ergebnis
		Arm			
1982	Pizzo	cAmB vs.	50	Infektion	Primärer
	et al.	Placebo			Endpunkt:
					Vorteil für
					cAmB
1989	EORTC	cAmB vs.	132	Entfieberung	Primärer
	IATCG	Placebo			Endpunkt:
					Vorteil für
					cAmB
1996	Viscoli	cAmB vs.	112	Entfieberung	Primärer
	et al.	Fluconazol			Endpunkt:
					Äquivalent,
					Sicherheits-
					Vorteil für
					Fluconazol
1998	Malik	cAmB vs.	106	Kombination von	Primärer
	et al.	Fluconazol		Entfieberung	Endpunkt:
				Tolerabilität,	Äquivalenz,
				Überleben, keine	Sicherheits-
				Infektion	Vorteil für
					Fluconazol

³⁴ Marr K. A.. Empirical antifungal therapy new-options, new tradeoffs. 2002; N Engl J Med 2002; 346:

1998	PEG II	cAmB +	934	Entfieberung	Primärer
		Flucytosin			Endpunkt:
		VS.			Vorteil für
		Fluconazol			Antimykose
		vs. keine			Sekundäre
		Therapie			Analyse:
					Äquivalenz
					Fluconazol
					und cAmB
1998	White	cAmB vs.	213	Kombination von	Primärer
	et al.	ABCD		Entfieberung	Endpunkt:
				Tolerabilität,	Äquivalenz
				Überleben, keine	Sicherheit:
				Infektion	Unterschied
1999	Walsh	cAmB vs.	702	Kombination von:	Primärer
	et al.	L-AmB		Überleben,	Endpunkt:
				Entfieberung,	Äquivalenz
				Remission vorheriger	Sekundäre
				Infektion, keine	Analyse:
				Unterbrechung der	Vorteil
				Therapie	für L-AmB
2000	Winston	cAmB vs.	317	Kombination von:	Primärer
	et al.	Fluconazol		Entfieberung	Endpunkt:
				Tolerabilität,	Äquivalenz
				Überleben, keine	Sicherheit:
				Infektion	Vorteil für
					Fluconazol
2000	Wingard	L-AmB vs.	240	Sicherheit	Primärer
	et al.	ABLC			Endpunkt:
					Vorteil für
					L-AmB

2001	Boogaerts	cAmB vs.	384	Kombination von:	Primärer
	et al.	Itraconazol		Entfieberung	Endpunkt:
				Tolerabilität,	Äquivalenz
				Überleben, keine	Sekundäre
				Infektion, Ende der	Analyse:
				Neutropenie	Vorteil für
					Itraconazol
2002	Walsh	Voriconazol	849	Kombination von:	Primärer
	et al.	vs. AmB		Überleben,	Endpunkt:
				Entfieberung,	Äquivalenz
				Remission vorheriger	Sekundäre
				Infektion, keine	Analyse:
				Unterbrechung der	Unterschied
				Therapie	
2003	Walsh	Caspofungin	1095	Kombination von:	Primärer
	et al.	vs. L-AmB		Überleben,	Endpunkt:
				Entfieberung,	Äquivalenz
				Remission vorheriger	Sekundäre
				Infektion, keine	Analyse:
				Unterbrechung der	Vorteil
				Therapie	Caspofungin

Legende:

cAmB: konventionelles Amphotericin B; ABCD: Amphotericin B kolloidale Dispersion; L-AmB: Liposomales Amphotericin B; ABLC: Amphotericin B Lipid Komplex, N=: Patientenzahl

2.9.2 Venenkatheter-Assoziierte Infektionen

Bei der Diagnostik Venenkatheter-Assoziierter Infektion haben sich neue Gesichtspunkte ergeben. Durch die Einführung neuer Methoden bei der Diagnostik, sind jetzt auch Kolonisations Level, die höher liegen als das Limit für die jeweilige Methode, dazu geeignet eine wahrscheinliche Katheter Infektion zu diagnostizieren und werden auch entsprechend empfohlen.

Tabelle 16 Standardmethoden zur Diagnostik von Katheter-assoziierten Infektionen

Methode	Vorteile	Nachteile
Semiquantitative	Einfacher Gebrauch	Nur Bakterien an der
Abrolltechnik nach Maki		Außenseite des
(bisher empfohlen)		Katheters werden
		festgestellt
Sheretz's Ultraschall	Höhere Sensitivität	Komplexe Handhabung
Methode		
Brun-Buisson's Vortex	Höhere Sensitivität	Keine
Methode mit		
Quantitativen Kulturen		
Blot's Zeitunterschied zur	Einfacher Gebrauch,	Rascher Transport
Positivität von	Katheter kann in Situ	notwendig
Blutkulturen	belassen werden	

Zusätzlich wurden einige neue Medikamente in die Empfehlungen aufgenommen.

Tabelle 17 Ergänzung zur Therapie von Venenkatheter-assoziierten Bakteriämien bei neutropenischen Patienten (siehe auch Tabelle 7)

Erreger	Therapie	Dauer
Oxacillin resistenter Staph.	Glykopeptide und zusätzlich	Mind. 2
Aureus	auch: Linezolid, Quinupristin +	Wochen
	Dalfopristin	
Enterokokken	Linezolid oder	Für 5-7 Tage
	quinupristin/dalfopristin bei	nach
	Vancomycin Resistenz	Entfieberung
Candida albicans	Amphotericin B oder zusätzlich	Mind. 2
	auch: Caspofungin, Voriconazol,	Wochen
	Itraconazol	

Alle andere Candida spp.	Amphotericin B oder zusätzlich	Mind.	2
	auch: Caspofungin, Voriconazol,	Wochen	
	Itraconazol		

2.9.3 Diagnostik und Therapie pulmonaler Infiltrate

Bei der Diagnostik und Therapie pulmonaler Infiltrate haben sich vor allem durch neue Methoden in der Diagnostik und neue antimykotische Medikamente Änderungen ergeben.

In der Diagnostik pulmonaler Infiltrate spielen nun auch der Nachweis von Aspergillus galactomannan (Sandwich ELISA) in der BAL oder im Sputum sowie der Positive Schnellkultur Test von Cytomegalievirus oder der Nachweis des "early antigen" eine Rolle.

Bei der Therapie kam es zum Einzug neuer antimykotischer Substanzen in die Therapie. So sind nun als Alternative zu konventionellem Amphotericin B Voriconazol, Itraconazol und Caspofungin für den Einsatz empfohlen.

Bei Hochrisikopatienten, bei denen eine invasive pulmonale Aspergillose nachgewiesen wurde, ist nach Beendigung der i. v. Therapie eine ambulante, orale Fortsetzung der Therapie mit Itraconazol (400-800 mg/Tag) indiziert. Vorzugsweise ist dabei die erhältliche Itraconazol Lösung zu verwenden. Die Serumspiegel sollten dabei kontrolliert werden und Werte über 500 ng/ml erreichen.³⁵

2.9.4 Invasive Pilzinfektionen, Diagnostik, Therapie und Prophylaxe

Diagnostik:

Die Diagnostik von Pilzinfektionen ist schwierig und stellt hohe Anforderungen. Als häufige Erreger werden insbesondere Aspergillus spp. und Candida albicans gefunden aber auch nicht albicans spp. und andere Organismen (Mucor, Trichosporon) spielen eine immer größere Rolle.

2002 wurde deshalb versucht Kriterien für die Diagnose einer Invasiven Pilz Infektion zu erstellen (invasive fungal infection IFI). Diese wurde von der

"Invasive Fungal Infections Cooperative Group (IFICG) der European Organisation for Research and Treatment of Cancer (EORTC)" und der amerikanischen "Mycoses Study Group (MSG)" veröffentlicht. Dabei wurden drei Stufen vorgeschlagen: bewiesen, wahrscheinlich und möglich.³⁶

Bei der Diagnostik sind histologische, kulturelle, serologische, bildgebende, endoskopische, bioptische und die "polymerase chain reaction" (PCR) von Bedeutung.

Die Symptome einer Pilzinfektion unterscheiden sich generell nicht von denen einer bakteriellen Infektion. Jedoch kann ein unerklärtes Fieber über mehrere Tage unter Breitspektrum Antibiose ein erstes Zeichen sein.

Bei Verdacht auf eine Pilzinfektion sollten, bei entsprechender Möglichkeit, alle gewonnenen Gewebe eines Patienten mikroskopisch auf Pilze untersucht werden.³⁷ Hierbei sollte immer ein Präparat mit der Perjod Säure Schiff Reaktion (PAS) untersucht werden. Liquor kann bei entsprechendem Verdacht auf Cryptococcus neoformans mit Hilfe einer direkten Tinten Präparation zusätzlich zu einem Antigen Test untersucht werden.

Kulturelle Untersuchungen von ursprünglich sterilen Körperflüssigkeiten (z.B. Blut, Pleuraerguss oder Liquor) können ebenfalls helfen. Mehrere Blutkulturen bei Verdacht auf eine Fungämie mit z. B. Bactec Myosis-IC/F Medium können Candida spp. in bis zu 60% der Fälle innerhalb von zwei bis fünf Tage entdecken.³⁸

Es gibt verschiedene Antikörper und Antigen Tests zur Diagnostik von invasiven Candida Infektionen oder Aspergillosen. Antikörper Tests erreichen eine Sensitivität von 17-90% und nützen in der Regel nur in Kombination mit Antigen Tests. Zusätzlich besteht das Risiko, das Immunkomprimierte Patienten nur

³⁶ Ascioglu S., J.H. Rex, B. De-Pauw, J. E. Bennett, J. Bille, F. Crokaert, D. W. Denning, J. P. Donnelly, J. E. Edwards, Z. Erjavec, D. Fiere, O. Lortholary, J. Maertens, J. F. Meis, T. F. Patterson, J. Ritter, D. Selleslag, P. M. Shah, D. A. Stevens, T. J. Walsh. Defining opportunistic invasive fungal infections in immunocompromised patients with cancer and hematopoetic stem cell transplants: an international consensus. Clin Infect Dis 2002; 34: 7-14

³⁵ Glasmacher A., C. Hahn, E. Molitor, G. Marklein, T. Sauerbruch, I.G.H. Schmidt-Wolf. Itraconazol trough concentrations in antifungal prophylaxis with six different dosing regimens using hydroxypropylb-cyclodextrin oral solution or coated-pellet capsules. Mycoses 1999; 42: 591-600

³⁷ Denning D. W., C. C. Kibbler, R. A. Barnes. British Society for Medical Mycology proposed standards of care for patients with invasive fungal infections. The Lancet Infectious Diseases 2003; 3: 230-240

verzögert mit einem Anstieg der Antikörper reagieren. Antigen Tests sind für Candida und Aspergillus spp. sowie Histoplasma und Cryptococcus neoformans erhältlich. Für die Diagnostik von Candida spp. gibt es einen Latex Agglutinationstest "Cand-Tec®" mit einer Sensitivität zwischen 30 und 70% und einer Spezifität von 88%.³⁹ Bei Aspergillus Infektionen hat sich der Galactomanan Nachweis (Pastorex® Aspergillus) mit einer Spezifität von 90-100% und einer Sensitivität von 26-76% bewährt.⁴⁰ In der letzten Zeit hat ein ELISA Test zum Galactomanan Nachweis (Platelia® Aspergillus) in mehreren Untersuchungen eine Sensitivität von 80-100% und eine Spezifität über 90% gezeigt.⁴¹

Eine invasive pulmonale Aspergillose wird am ehesten im HR-CT oder Dünnschicht CT erkannt. Typische Zeichen sind kleine, rundliche Infiltrate mit Halo Zeichen in der Nähe von Gefäßen. Bei der hepato-lienalen Candidose hilft die Ultraschall Untersuchung weiter. Typischer Weise finden sich zentral echoreiche Läsionen mit echoarmen Randsaum in einer Größe von 5-20 mm. Zusätzlich kann auch eine Magnet Resonanz Tomographie mit hoher Sensitivität die Diagnose stellen. Im Fall von neurologischen Auffälligkeiten ist zumindest eine Computer Tomographie notwendig, besser eine Magnet Resonanz Tomographie.

³⁸ Reimer L. G., M. L. Wilson, M. P. Weinstein. Update on detection of bacteremia and fungemia. Clin Microbiol Rev 1997; 10: 444-465

³⁹ Mitsutake K., T. Miyazaki, T. Tashiro, Y. Yammamoto, H. Kakeya, T. Otsubo, S. Kawamura, M. A. Hossain, T. Noda, Y. Hirakata, S. Kohno. Enolase antigen, mannan antigen, Cand-Tec antigen and betaglucan in patients with candidemia. J Clin Microbiol 1996; 34: 1918-1921

glucan in patients with candidemia. J Clin Microbiol 1996; 34: 1918-1921 ⁴⁰ Machetti M., M. Feasi, N. Mordini, M. T. Van-Lint, A. Bacigalupo, J. P. Latge, J. Sarfati, C. Viscoli. Comparison of an enzyme immunoassay and a latex agglutination system for the diagnosis of invasive aspergillosis in bone marrow transplant recipients. Bone Marrow Transplant 1998; 21: 917-921

⁴¹ Maertens J., J. Verhaegen, K. Lagrou, J. Van-Eldere, M. Boogaerts. Screening for circulating galactomannan as a noninvasive diagnostic tool for invasive aspergillosis in prolonged neutropenic patients and stem cell transplantation recipients: a prospective validation. Blood 2001; 97: 1604-1610 ⁴² Caillot D., O. Casasnovas, A. Bernard, J. F. Couaillier, C. Durand, B. Cisenier, E. Solary, F. Piard, T. Petrella, A. Bonnin, G. Couillault, M. Dumas, H. Guy. Improved management of invasive pulmonary aspergillosis in neutropenic patients using early thoracic computed tomographic scan and surgery. J Clin Oncol 1997; 15: 139-147

⁴³ Karthaus M., G. Hübner, R. G. Geissler, G. Heil, A. Ganser. Hepatic lesions of chronic disseminated systemic candidiasis in leukemia patients may become visible during neutropenia: value of serial ultrasound examinations. Blood 1998; 91: 3087-3309

Im Rahmen der Diagnostik pulmonaler Infiltrate kann eine Bronchoskopie mit Bronchiallavage durchgeführt werden.⁴⁴ Im Falle einer Therapie resistenten Ösophagitis oder anhaltenden epigastrischen Schmerzen sollte eine Ösophago-Gastro-Duodenoskopie mit Biopsien durchgeführt werden.

Falls dieses klinisch möglich ist sollten verdächtige Herde (Haut, Lunge, Leber) punktiert werden.

Es gibt einige PCR Tests um Pilz spezifische DNA (18ssu-rRNA, 28S rRNA) zu suchen. 45 Jedoch haben sich PCR Untersuchungen bisher nicht durchgesetzt, da es noch keine standardisierte und etablierte Methode ist.

Tabelle 18 Diagnostische Vorgehen in der Übersicht entsprechend den Leitlinien der AGIHO der DGHO 2003

	Vor	Während	Bei	Fieber	Fieber
	Neutropenie	Neutropenie	Fieber	über	über
	(Hochrisiko)	(Hochrisiko)		48-72 h	1 Woche
Notwendig	Körperliche	Täglich	Blut	Blut	Blut
	Untersuch-	Körperliche	Kulturen	Kulturen	Kulturen
	ung	Untersuch-	peripher	wiederholen	wiederholen
		ung	und von		
	Abdomen		venösen	Körperliche	Körperliche
	Ultraschall	Abstriche von	Kathetern	Untersuch-	Untersuch-
		verdächtigen		ung	ung
	Röntgen	Stellen	Körperliche		
	Thorax		Untersuch-	Abstriche	Abstriche
	evtl. HRCT	Weitere	ung		
		Diagnostik		Kulturen	Kulturen von

⁴⁴ Hohenadel I. A., M. Kiworr, R. Genitsariotis, D. Zeidler, J. Lorenz. Role of bronchoalveolar lavage in immunocompromised patients with pneumonia treated with a broad spectrum antibiotic and antifungal regimen. Thorax 2001; 56: 115-120

⁴⁵ Einsele H., H. Hebart, G. Roller, J. Löffler, I. Rothenhöfer, C. A. Müller, R. A. Bowden, J. A. van Burik, D. Engelhardt, L. Kanz, U. Schumacher. Detection and identification of fungal pathogens in blood by using molecular probes. J Clin Microbiol 1997; 35: 1353-1360

		entsprechend	Röntgen	von Urin,	Urin, Stuhl
		Symptomen	Thorax	Stuhl und	und Sputum
				Sputum	
			Kulturen		CT der
			von Urin,	CT der	Nasen
			Stuhl und	Nasen	Neben-
			Sputum	Neben-	höhlen bei
				höhlen bei	Verdacht
			Abstriche	Verdacht	
					Röntgen
			Weitere	Röntgen	Thorax
			Diagnostik	Thorax evtl.	wöchentlich
			entsprech-	HRCT	evtl. HRCT
			end		
			Symptomen	Abdomen	Biopsie von
				Ultraschall	Organ
				evtl. MR	Herden
				Abdomen	
					Abdomen
				Weitere	Ultraschall
				Diagnostik	evtl. MR
				entsprech-	Abdomen
				end	
				Symptomen	Weitere
					Diagnostik
					entsprech-
					end
					Symptomen
Möglich	Pilz	Pilz		Pilz	Pilz
	Serologie	Serologie		Serologie	Serologie
		oder PCR (2		oder PCR	oder PCR
		X		bei	bei
		wöchentlich)		Hochrisiko	Hochrisiko
				Patienten	Patienten

Empfohlen		Bronchosko	Bronchosko
		pie und BAL	pie und BAL
		bei	bei
		pulmonalen	pulmonalen
		Infiltraten	Infiltraten

Therapie:

In die Therapie haben die bereits besprochenen neuen antimykotischen Substanzen Einzug gehalten und sind in die Empfehlungen aufgenommen worden.

Tabelle 19 Änderungen in der Therapie von Pilzinfektionen in den Leitlinien 2003

Infektion	Änderung
Oropharyngeale Candida	Bei fehlendem Ansprechen auf Itraconazol
Infektion	Lösung kann auch auf Voriconazol oder
	Caspofungin umgestellt werden
Ösophageale Candida	Bei fehlendem Ansprechen auf die
Infektion	Primärtherapie kann auch auf Voriconazol oder
	Caspofungin umgestellt werden
Candidämie	Caspofungin bei Risikopatienten möglich
	Bei Unverträglichkeit zusätzlich auch
	Voriconazol oder Caspofungin
hepato-lienale Candidiasis	Bei fehlendem Ansprechen auf zusätzlich
	Voriconazol oder Caspofungin
Candida Meningitis/Abszesse	Als alternativ Therapie Voriconazol
Candidose des	Abhängig von der Sensibilitätstestung auch
Urogenitaltraktes	Voriconazol oder Caspofungin
Cryptococcus Neoformans	Keine Änderung der Therapie
Infektion	
Invasive pulmonale	Primärtherapie: Voriconazol evtl. auch oral
Aspergillose	Bei Therapieversagen oder Unverträglichkeit:

	zusätzlich Caspofungin, kein Itraconazol nach Voriconazol Vortherapie oder Voriconazol falls initial keine Therapie mit Voriconazol
HNO Trakt Infektionen mit Aspergillus	Therapieregime verändert wie bei invasiver pulmonaler Aspergillose
ZNS Infektionen	Voriconazol oder liposomales Amphotericin B als Standardtherapie jetzt empfohlen
Haut und	Therapieregime verändert wie bei invasiver
Weichteilinfektionen	pulmonaler Aspergillose
Mukormykosen	Keine Änderung der Therapie

Prophylaxe: Tabelle 20 Empfehlungen zur antimykotischen Prophylaxe entsprechend den Richtlinien der AGIHO der DGHO, Stand September 2003

Patienten	Ziel	Medikament	Dosierung	Evidenz
Population				
Konvention-	Mortalitäts-	Fluconazol	50-400 mg/Tag	СІ
elle Chemo-	reduktion	Itraconazol	5 mg/kg/Tag	СІ
therapie	durch Invasive	Suspension	< 5 mg/kg/Tag	СІ
	Pilzinfektionen			
		Itraconazol	Jede Dosis	СІ
		Kapseln		
		Amphotericin B	0,5-1 mg/kg q	CII
			48 h i. v.	
		Amphotericin B	< 0,5 mg/kg q	CII
			48 h i. v.	
		Amphotericin B	20 mg/Tag	СІ
			inhalativ	
Allogene	Mortalitäts-	Fluconazol	400 mg/Tag	ΑI
Transplan-	reduktion		p. o.	
tation	durch Invasive	Fluconazol	50-200 mg/Tag	СІ

	Pilzinfektionen		p. o.	
		Itraconazol	400 mg/Tag	СІ
		Suspension		
		Liposomales	1,0 mg/kg/Tag	СІ
		Amphotericin B	i. v.	
Solide	Jede Indikation	Alle	Jede Dosierung	СІ
Tumore		Antimykotika		
Alle	Jede Indikation	Ketoconazol,	Jede Dosierung	СІ
Anderen		Miconazol,		
		Clotrimazole,		
		Nystatin		

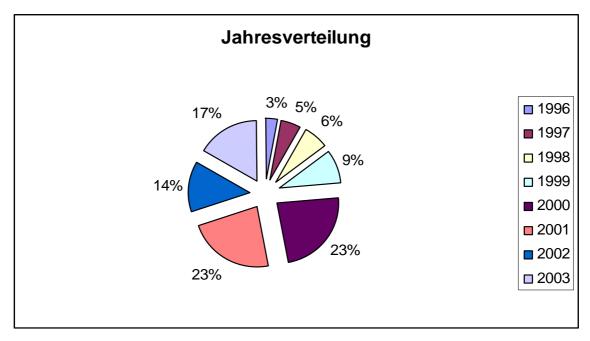
Zusammenfassend lässt sich feststellen, dass lediglich für Patienten nach allogener Knochenmarktransplantation, ein Nutzen für eine antimykotische Prophylaxe mit Fluconazol 400 mg/Tag belegt ist. Für andere Indikationsgebiete gibt es noch keine ausreichenden Daten, jedoch erscheint eine Prophylaxe vor Pilzinfektionen für einige Patientengruppen sinnvoll. Zumindest gibt es bisher keine Daten, die die Anwendung einer Prophylaxe vor Pilzinfektionen prinzipiell als nicht empfehlenswert erscheinen lassen.

3 Ergebnisse

3.1 Patientendaten

3.1.1 Altersverteilung

Insgesamt wurden 96 Patienten in den Jahren von 1996 bis 2003 in unserem Haus mit aplasiogener Chemotherapie behandelt, die eine Neutropenie Phase von mehr als fünf Tagen nach sich zog. Die Auswahl der Patienten erfolgte dabei über die applizierte Chemotherapie mit einer zu erwartenden Aplasiedauer von mehr als 5 Tagen anhand der Chemotherapie. Als Zyklus wurde dabei die Chemotherapiegabe mit entsprechender nachfolgender Aplasiephase im Rahmen eines stationären Aufenthaltes gewertet. Von den 96 behandelten Patienten waren 50 Männer (Anteil 52,08%) und 46 Frauen (Anteil 47,92%).


In Tabelle 21 ist die Anzahl der Patienten auf die einzelnen Jahre verteilt und mit den entsprechenden Altersdaten aufgelistet. Dabei wurden zwischen 1996 und 1999 23 Patienten behandelt, was 24 % der in die Untersuchung aufgenommen Patienten entspricht. 2000 bis 2003 wurden 73 Patienten behandelt, also deutlich mehr. In Diagramm 2 ist die prozentuale Verteilung auf die einzelnen Therapiejahre dargestellt.

Das Durchschnittsalter lag für alle Patienten bei 51,3 Jahre mit einer Altersspanne zwischen 16 und 74 Jahren mit einem Altersmedian von 55 Jahren für die Gesamtpopulation.

Tabelle 21 Verteilung der Patienten auf die einzelnen Jahre

Therapiejahr	1996	1997	1998	1999	2000	2001	2002	2003
Patientenzahl	3	5	6	9	22	22	13	16
Altersdurchschnitt	62,6	42,6	54,3	42,7	47,5	57,6	50,4	53,1
Altersmedian	64	37	56,5	44	49,5	62	52	60

Für die weitere Untersuchung sind in jedem Jahr 2 Risikogruppen an Patienten zu unterscheiden. Die Standardrisikogruppe mit einer Aplasiezeit von 5-10 Tagen und die Hochrisikogruppe mit einer Aplasiezeit von 11 Tagen und mehr. Da zusätzlich untersucht wird, inwieweit die Neuschaffung des Aplasiebereiches einen Einfluss auf die Infektionsrate hatte, muss noch eine Aufteilung in eine Gruppe die vor Schaffung des Aplasiebereiches behandelt wurde und in eine Gruppe die nach Schaffung des Aplasiebereiches behandelt wurde erfolgen.

In Tabelle 22 erfolgt die Darstellung der Altersdaten für die jeweiligen Untergruppen auf die einzelnen Therapiejahre verteilt.

Tabelle 22 Darstellung der Patienten verteilt auf die Risikogruppen und die einzelnen Jahre mit Altersdaten

Hoch- risiko Gruppe	Anzahl Chemo- zyklen	Anzahl Patienten	Alters- median	Durchschnitts- alter	% Anteil Hochrisiko Gruppe
1996	5	3	64	62,6	5,36
1997	10	5	37	42,6	8,93
1998	8	5	58	54,2	8,93
1999	5	3	30	37,6	5,36
2000	18	11	41	44,5	19,64
2001	25	14	66,5	59,6	25,00
2002	9	6	50	53,8	10,71
2003	13	9	64	57,8	16,07
Standard- risiko Gruppe	Anzahl Chemo- zyklen	Anzahl Patienten	Alters- median	Durchschnitts- alter	% Anteil Standardrisiko Gruppe
1996	1	1	69	69	1,75
1997	3	3	37	41,3	5,26
1998	2	2	46,5	46,5	3,51
1999	15	6	49,5	45,3	10,53
2000	23	16	51	48,9	28,07
2001	19	12	62	59,3	21,05
2002	15	9	64	52,9	15,79
2003	13	8	51	49,1	14,04

3.1.2 Diagnosenverteilung

Die größte untersuchte Patientengruppe waren Patienten mit akuten myeloischen Leukämien. Weitere größere Gruppen waren Patienten mit NHL, M. Hodgkin, Plasmozytom und Patienten mit akuter lymphatischer Leukämie. Bei den restlichen Patienten waren zwei Patienten mit einem Ewing Sarkom, jeweils ein Patient mit einem Bronchial Karzinom, Ovarialkarzinom, ein Liposarkom, ein Patient mit einer B-CLL, ein Patient mit einem PNET Tumor und ein Patient mit einem T-NHL, sowie jeweils ein Patient mit einer Blastenkrise bei vorbestehender chronisch myeloproliferativer Erkrankung und eine Patientin mit einer lymphatischen Philadelphia Chromosom positiver lymphatischen Blastenkrise bei vorbestehender chronisch myeloischer Leukämie.

In Diagramm 3 ist die Prozentuale Verteilung der Diagnosen dargstellt und in Tabelle 23 die Absolutzahl der einzelnen Diagnosen.

Diagramm 3 Diagnosenverteilung in %

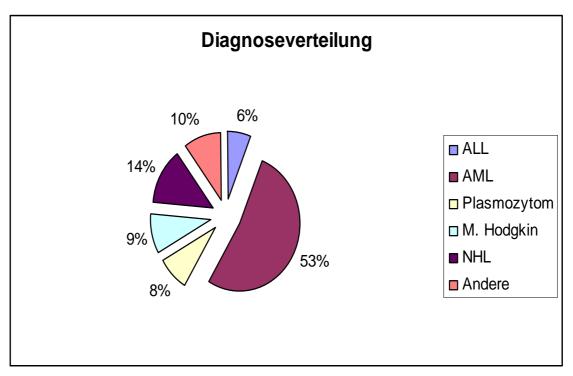


Tabelle 23 Anzahl der Diagnosen absolut

Diagnose	ALL	AML	Plasmozytom	M. Hodgkin	NHL	Andere
Häufigkeit	6	50	8	9	13	10

In Tabelle 24 erfolgt die Verteilung der Diagnosen auf die einzelnen Therapiejahre in ihrer Häufigkeit.

Tabelle 24 Verteilung der Diagnosen auf die einzelnen Jahre

Diagnose	1996	1997	1998	1999	2000	2001	2002	2003
ALL	0	0	1	1	2	1	1	0
AML	3	5	4	3	7	12	5	11
Hodgkin	0	0	0	2	1	3	2	1
NHL	0	0	0	2	5	1	3	2
Plasmozytom	0	0	0	0	4	3	1	0
Andere	0	0	1	1	3	2	1	2

In Abhängigkeit von der Diagnose und der Risikogruppe soll nun noch in Tabelle 25 im Einzelnen die Infektionshäufigkeit für die einzelnen Chemotherapiezyklen dargestellt werden.

Tabelle 25 Infektionshäufigkeit nach Diagnose und Risikogruppe Standardrisikogruppe

Diagnose	Therapiejahr	Infektion	keine Infektion	Infektionsrate
ALL	1998	0	1	0%
	2000	0	2	0%
	2002	0	1	0%
AML	1996	1	0	100%
	1997	1	2	33%
	1999	2	1	66%
	2000	1	3	25%
	2001	1	6	14%
	2002	0	1	0%
	2003	4	0	100%
BC	2000	0	2	0%
B-CLL	1999	0	2	0%
Blastenkrise	2000	1	0	100%
Ewing Sarkom	2002	1	4	20%
_	2003	1	2	33%
Hodgkin	1999	0	6	0%
	2000	0	2	0%
	2001	2	3	40%
	2002	0	3	0%
	2003	1	1	50%
NHL	1999	0	4	0%
	2000	1	8	11%
	2001	2	0	100%
	2002	0	4	0%
	2003	1	2	33%
Ovarial	1998	0	1	0%
Plasmozytom	2000	0	3	0%
	2001	1	2	33%
	2002	0	1	0%
PNET	2001	1	1	50%
T-NHL	2003	1	0	100%
Gesamtergebnis		23	68	25%

Hochrisikogruppe

Diagnose	Therapiejahr	Infektion	Keine Infektion	Infektionsrate
ALL	1998	1	0	100%
	1999	1	0	100%
	2000	2	1	66%
	2001	1	1	50%
	2002	0	1	0%
AML	1996	3	2	60%
	1997	7	3	70%
	1998	7	0	100%
	1999	4	0	100%
	2000	10	1	90%
	2001	16	5	76%
	2002	7	1	87%
	2003	12	1	92%
Blastenkrise	2000	0	1	0%
Liposarkom	2000	1	1	50%
lymphatischer				
Blastenschub	2001	1	1	50%
Plasmozytom	2000	0	1	0%
Gesamtergebnis		73	20	78%

3.2 Infektionsrate und Aplasiedauer

Insgesamt wurde 184 Chemotherapiezyklen mit einer nachfolgenden Aplasiedauer über 5 Tage in dieser Zeit gegeben. Die durchschnittliche Aplasiezeit betrug für alle Patienten 13,4 Tage, entsprach also einer Hochrisikogruppe. Die Aufteilung der Chemotherapiezyklen und die jeweilige durchschnittliche Aplasiedauer in Tagen für die einzelnen Jahre sind in Tabelle 24 dargestellt. Bei den 184 Chemotherapiezyklen gab es nach 91 Zyklen Aplasiedauern bis zu 10 Tagen und nach 93 Zyklen kam es zu einer Aplasiedauer von 11 Tagen und mehr bis zu einer maximalen Aplasiedauer von 55 Tagen. Nach 96 Zyklen kam es dabei zu einer Infektion, während es nach 88 Zyklen zu keiner Infektion kam. Es lag also eine Infektionsrate von 52,17% für alle untersuchten Chemotherapien vor.

In Tabelle 26 ist die Verteilung der Anzahl der Chemotherapiezyklen auf die einzelnen Jahre dargestellt. Gleichzeitig ist die entsprechende durchschnittliche Aplasiedauer für alle Chemotherapien in dem jeweiligen Jahr angegeben.

Tabelle 26 Chemotherapiezyklen in den einzelnen Jahren mit durchschnittlicher Aplasiedauer

Therapiejahr	1996	1997	1998	1999	2000	2001	2002	2003
Chemotherapiezyklen	6	13	10	20	41	44	24	26
Durchschnitts	14,8	16,5	21,3	9,15	12,8	13,4	11,6	14,6
Aplasiedauer								

Zur weiteren Differenzierung ist in Tabelle 27 dargestellt wie häufig in den einzelnen untersuchten Jahren nach einer Chemotherapie Aplasien von 5-10 Tagen und über 10 Tage auftraten. Gleichzeitig ist angegeben wie oft überhaupt Infektionen auftraten und in welchem Prozentsatz es in dem einzelnen Jahr zu einer Infektion kam. Die Infektionsrate ohne Berücksichtigung der Aplasiezeit lag zwischen 33,34% in 2002 und 80% in 1998.

Tabelle 27 Verteilung der Aplasiedauer auf die einzelnen Jahre mit Anzahl der Infektionen

Therapiejahr	1996	1997	1998	1999	2000	2001	2002	2003
5-10 Tage	1	3	2	15	23	19	15	13
Aplasie								
11 oder mehr	5	10	8	5	18	25	9	13
Tage Aplasie								
Infektions-	4	8	8	7	16	25	8	20
häufigkeit								
% Anteil der	66,67	61,54	80	35	39,02	56,82	33,34	76,92
Infektionen								
im Jahr								

Bei der Behandlung der Patienten wurden unterschiedliche Schemata zum Einsatz gebracht. Insbesondere waren dies Induktions-Schemata bei leukämischen Erkrankungen. Hierbei wurden insgesamt 19-mal MAV, 25-mal MAMAC und 40-mal DA appliziert. Zusätzlich kamen auch noch seltener eingesetzte Protokolle bei AML zum Einsatz z. B. in der Rezidiv Therapie wie

IMAC (2), HMAC (2), S-HAI (1), HAM (1), Cytosin/Idarubicin (1), Mito Flag (3) und 1 Zyklus entsprechend dem EORTC Protokoll. Bei der ALL wurden insgesamt 12 Chemotherapiezyklen appliziert. Insgesamt wurden bei AML, ALL, Blastenkrise und lyphatischem Blastenschub 118 Chemotherapiezyklen (Anteil 64,13 %) appliziert. Weitere häufiger eingesetzte Schemata waren BEACOPP (15) gesteigert, Dexa-BEAM (13) und hochdosiert Cyclophosphamid (11) zur Stammzellmobilisation. Seltenere Protokolle waren CHOEP gesteigert (Dosisstufe 4) (8), VIDE (10), VIP-E (3) und EVAIA (2).

In Tabelle 28 wird die Zuordnung der applizierten Chemotherapieformen zu den einzelnen Erkrankungen, bei denen sie gegeben wurden vorgenommen.

Tabelle 28 Zuordnung der Chemotherapieformen zu den Erkrankungen

Diagnose	Chemotherapie	Ergebnis
ALL	Induktion I	5
	Induktion II	5
	Konsolidation	1
	Vorphase BlockA	1
AML	BlockA	1
	Cyclophosphamid	1
	Cytosin/Idarubicin	1
	Cytosin/Mitomycin	1
	DAI	25
	DAI/II	3
	DAI/MAMAC	1
	DAII	15
	EORTC	1
	HAM	1
	H-MAC	2
	I-MAC	2
	Konsolidierung	1
	MAMAC	24
	MAV	18
	MAV/MAMAC	1
	Mito-Flag	3
	S-HAI	1
BC	VIP-E	2
B-CLL	Dexa-BEAM	2
Blastenkrise	MAMAC	1
	MAV	1

Ewing Sarkom	VIDE	8
Hodgkin	B-ALL	1
	BEACOPP	15
	Dexa-BEAM	2
Liposarkom	EVAIA	2
lymphatischer		
Blastenschub	Induktion I	1
	Induktion II	1
NHL	B-ALL	1
	CHOEP	1
	Cyclophosphamid	2
	Dexa-BEAM	9
	DHAP	2
	high CHOEP	7
Ovarialkarzinom	VIP-E	1
Plasmozytom	Cyclophosphamid	8
PNET	VIDE	2
T-NHL	high CHOEP	1

In Tabelle 29 wird die Zuordnung der einzelnen Chemotherapieformen zur Aplasiezeit und Infektionshäufigkeit vorgenommen. Bei Aplasiezeiten bis zu 10 Tage kam es nach 23 Chemotherapien zu einer Infektion. Bei insgesamt 91 applizierten Zyklen kam es also bei 25,3% der Chemotherapien zu einer Infektion. Bei Aplasiezeiten von 11 Tagen und mehr kam es nach 73 Chemotherapiezyklen zu einer Infektion. Bei insgesamt 93 applizierten Zyklen kam es also bei 78,5% der Chemotherapien zu einer Infektion.

Tabelle 29 Chemotherapie, Aplasiedauer und Anzahl der Infektionen auf die einzelnen Jahre aufgeteilt

Aplasiedauer bis 10 Tage:

Therapiejahr	Chemotherapie	Infektionshäufigkeit
1996	DAI	1
1997	MAV	1
1999	DAI	1
	MAMAC	1
2000	B-ALL	1
	DAI	1
	MAV	1
2001	B-ALL	1
	BEACOPP	1

	Cyclophosphamid	1
	DAI	1
	Dexa-BEAM	2
	VIDE	1
2002	VIDE	1
2003	BEACOPP	1
	DAI	2
	DAI/II	1
	DAII	1
	high CHOEP	2
	VIDE	1
Gesamtergebnis		23

Aplasiedauer über 10 Tage:

Therapiejahr	Chemotherapie	Ergebnis
1996	MAMAC	2
	MAV	1
1997	Cytosin/Idarubicin	1
	DAI	1
	EORTC	1
	I-MAC	1
	Konsolidierung	1
	MAMAC	1
	S-HAI	1
1998	DAI	2
	DAII	1
	Induktion II	1
	MAMAC	2
	MAV	2 2
1999	Induktion I	1
	MAMAC	2
	MAV	2 2 3
2000	DAI	3
	EVAIA	1
	H-MAC	1
	Induktion I	1
	Konsolidation	1
	MAMAC	3
	MAV	3 3 5
2001	DAI	5
	DAI/MAMAC	1
	DAII	3
	Induktion I	1
	Induktion II	1
	MAMAC	3

	MAV	2
	MAV/MAMAC	1
	Mita-Flag	1
2002	DAI	1
	DAI	1
	DAI/II	1
	HAM	1
	H-MAC	1
	MAMAC	1
	MAV	1
2003	Cyclophosphamid	1
	Cytosin/Mitomycin	1
	DAI	3
	DAI/II	1
	I-MAC	1
	MAMAC	3
	MAV	2
Gesamtergebnis		73

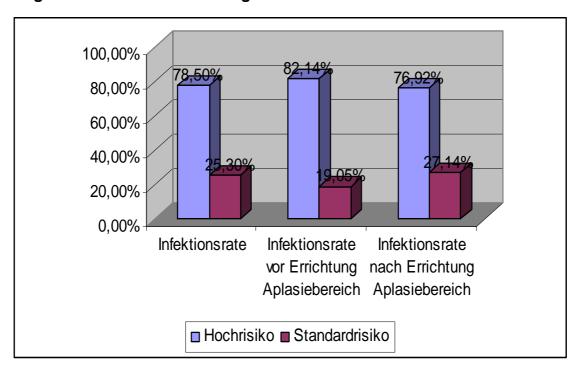
In Tabelle 30 werden die Chemotherapiezyklen ohne Infektion mit ihrer Häufigkeit in den einzelnen Jahren differenziert.

Tabelle 30 Aufteilung der Chemotherapie ohne Infektion auf die einzelnen Jahre

Therapiejahr	Chemotherapie	Ergebnis
1996	DAII	1
	MAV	1
1997	Block A	1
	MAMAC	2 2
	MAV	
1998	VIP-E	1
	Vorphase Block A	1
1999	BEACOPP	6
	Cyclophosphamid	1
	DAII	1
	Dexa-BEAM	2
	high CHOEP	2 3 2
2000	BEACOPP	
	CHOEP	1
	Cyclophosphamid	5
	DAII	3
	Dexa-BEAM	3
	EVAIA	1

	high CHOEP	3
	Induktion I	3 1
	Induktion II	2
	MAMAC	2
	VIP-E	2
2001	BEACOPP	2 2 2 1 2 2 5 2 1
	Cyclophosphamid	2
	DAI	2
	DAII	5
	Dexa-BEAM	2
	Induktion I	
	Induktion II	1
	MAMAC	2 2 1
	MFC	2
	VIDE	
2002	BEACOPP	3
	Cyclophosphamid	
	DAI	1
	Dexa-BEAM	4
	Induktion I	1
	Induktion II	1
	MAMAC	1
	VIDE	4
2003	BEACOPP	1
	DHAP	2
	MAV	1
	VIDE	2
Gesamtergebnis		88

In Tabelle 31 ist noch einmal zusammengestellt, wie sich die Aplasiedauern auf die einzelnen Jahre verteilen und in welchem Prozentsatz es zu Infektionen kam.


Tabelle 31 Verteilung der Aplasiedauern und Infektionsrate auf die einzelnen Jahre

Therapiejahr	Aplasie bis	Aplasie über	Infektionsrate	Infektionsrate
	10 Tage	10 Tage	bei Aplasie bis	bei Aplasie
			10 Tage	über 10 Tage
1996	1	5	100%	60%
1997	3	10	33,3%	70%

1998	2	8	0	100%
1999	15	5	13,3%	100%
2000	23	18	13%	72,2%
2001	19	25	36,8%	72%
2002	15	8	6,6%	87,5%
2003	13	13	61,5%	92,3%

In Diagramm 4 erfolgt die Gegenüberstellung der Infektionsraten für die wesentlichen zu untersuchenden Gesamtgruppen. Es werden einmal die Infektionsraten für die Hochrisikogruppe mit der der Standardrisikogruppe gegenübergestellt und es erfolgt die Aufteilung in die Gruppen die vor Errichtung des Aplasiebereiches behandelt wurden und die die nach Errichtung des Aplasiebereiches behandelt wurden.

Diagramm 4 Zusammenstellung der Infektionsraten in %

Man kann erkennen, dass sich im Bereich der Standardrisikogruppe nur ein geringer Unterschied zeigt, wobei die Infektionsrate nach Errichtung des Aplasiebereiches höher liegt als davor. Die Infektionsrate in der

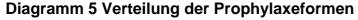
Standardrisikogruppe liegt bei insgesamt 25,3%. In der Gruppe vor Errichtung des Aplasiebereiches liegt die Infektionsrate bei 19,05%, danach bei 27,14%. Im Bereich der Hochrisikogruppe zeigt sich ein größerer Unterschied. Bei insgesamt 93 untersuchten Chemotherapiezyklen kam es bei 78,5% zu einer Infektion. Vor Errichtung des Aplasiebereiches lag die Infektionsrate bei 82,14%, danach nur noch bei 76,92%. Dabei wurden in den Jahren 2000 bis 2003 insgesamt 65 Chemotherapiezyklen mit einer nachfolgenden Aplasie von 11 Tagen und mehr gegeben, in den Jahren 1996 bis 1999 waren es jedoch nur 28.

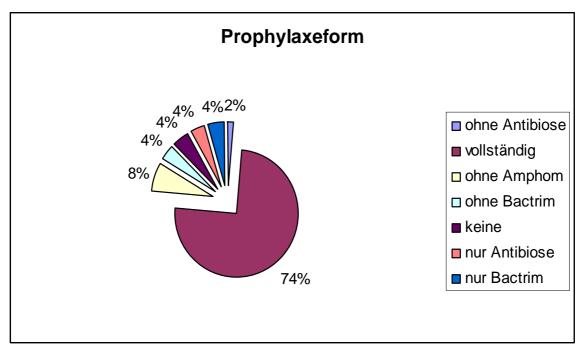
Wenn man sich dabei die Infektionsraten in den einzelnen Jahren ansieht, fällt auf, dass insbesondere in den Jahren 2001 und 2003 die Infektionsrate in der Standardrisikogruppe mit 36,8% und 61,5% besonders hoch ist, während sie insgesamt in den Jahren 2000 bis 2003 bei der Hochrisikogruppe mit 72 bis 92,3% niedriger ist als in den Vorjahren. In dieser Zeit wurden aber auch deutlich mehr Patienten mit einer AML behandelt als in den anderen Jahren.

In Tabelle 32 erfolgt die Darstellung der Durchschnitts Aplasiedauern auf die einzelnen Jahre und Risikogruppen und die jeweilige Infektionsrate sowie die Sterblichkeit bezogen auf die durchgeführten Chemotherapiezyklen der jeweiligen Therapiejahre.

Tabelle 32 Durchschnittliche Aplasiedauer nach Jahren und Risikogruppen mit Infektionsrate

	Aplasie	Infektions	Aplasie	Infektions	Aplasie	Infektions	Sterb-
Therapie	zeit	rate	zeit	rate	zeit	rate	lich-
jahr	gesamt	gesamt	SR	SR	HR	HR	keit
1996	14,8	66,67	8	100	16,2	60	16,7%
1997	16,5	61,54	8,3	33,3	19	70	15,4%
1998	21,3	80	6	0	25,1	100	20,0%
1999	9,15	35	7,3	13,3	14,8	100	0,0%
2000	12,8	39,02	7,6	13	19,5	72,2	0,0%
2001	13,4	56,82	6,8	36,8	18,4	72	4,5%
2002	11,6	33,34	6,3	6,6	20,6	87,5	4,2%
2003	14,6	76,92	6,9	61,5	22,4	92,3	7,7%


3.3 Standard der antimikrobiellen Therapie


3.3.1 Antimikrobielle Prophylaxe

Bei den meisten Patienten mit hochdosierter Chemotherapie wurde eine antimikrobielle Prophylaxe durchgeführt. Bei lediglich 8 der 184 untersuchten Chemotherapiezyklen wurde gar keine Prophylaxe durchgeführt. Dabei wurde im Jahr 2000 1-mal keine Prophylaxe durchgeführt und im Jahr 2002 2-mal und im Jahr 2003 5-mal. Bei den 8 Chemotherapiezyklen kam es 3-mal zu einer Infektion, bei einer Aplasiezeit von 7 bis 18 Tagen, und 5-mal zu keiner Infektion bei einer Aplasiezeit von 5 bis 6 Tagen.

Ansonsten erfolgte eine Prophylaxe im Wesentlichen mit drei Medikamenten. Hauptsächlich eingesetzt wurden dabei Levofloxacin, Amphomoronal Suspension und Trimetoprim / Sulfamethoxazol. Diese wurden teilweise unterschiedlich kombiniert.

In Diagramm 5 erfolgt die Aufteilung der verschiedenen Prophylaxeformen prozentual für alle applizierten Chemotherapien.

In Tabelle 33 werden die Formen der antimikrobiellen Prophylaxe bei allen Chemotherapiezyklen mit und ohne Infektion mit Aufteilung in die jeweiligen Risikogruppen dargestellt. Eine vollständige Prophylaxe entspricht dabei der Gabe aller drei Medikamente. Antibiose entspricht der Gabe von Levofloxacin, Bactrim der Gabe von Trimetoprim / Sulfamethoxazol und Ampho der Gabe von Amphomoronal Suspension.

Tabelle 33 Risikogruppen und Art der Prophylaxe bei Chemotherapiezyklen mit und ohne Infektion

	Hochrisiko	Standardrisiko	Hochrisiko	Standardrisiko
Prophylaxe	mit Infektion	mit Infektion	ohne Infektion	ohne Infektion
keine	2	1	0	5
nur Antibiose	0	0	0	7
nur Bactrim	0	2	0	6
ohne Ampho	2	2	0	10
ohne Antibiose	0	2	1	0
ohne Bactrim	0	1	0	6
vollständig	69	15	19	34
Gesamt-				
ergebnis	73	23	20	68

In Diagramm 6 und 7 erfolgt die graphische Darstellung der Verteilung der unterschiedlichen Prophylaxeformen bei Chemotherapiezyklen ohne Infektion und mit Infektion.

Diagramm 6 Verteilung der Prophylaxemodalität bei Chemozyklen ohne Infektion mit Unterteilung auf die Risikogruppen

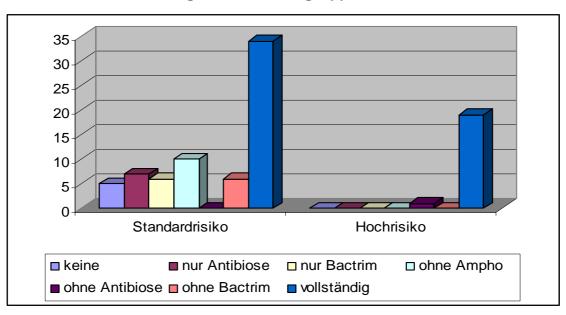
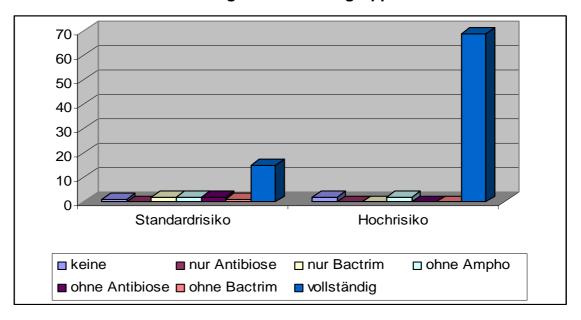



Diagramm 7 Verteilung der Prophylaxemodalität bei Chemotherapiezyklen mit Infektion und Unterteilung auf die Risikogruppen

Bei den 184 untersuchten Chemotherapiezyklen wurde also bei 137 Chemotherapiezyklen eine vollständige Prophylaxe mit allen 3 Medikamenten durchgeführt. Dieses entspricht einer Gesamtrate von 74,5%. Bei den restlichen 25,5% wurde entweder keine oder eine eingeschränkte Prophylaxe durchgeführt.

In Tabelle 34 wird die Infektionsrate für die jeweilige Prophylaxeform dargestellt und gleichzeitig noch mal die Anzahl der betroffenen Chemotherapiezyklen als Infektionen pro Chemotherapiezyklen.

Tabelle 34 Infektionsrate aufgeteilt nach Prophylaxeform

	Infektions-	Infektions-	Infektions-	Anzahl		
Pro-	rate	rate	rate	von	Anzahl	Anzahl
phylaxe	Gesamt	SR	HR	Gesamt	von SR	von HR
keine	37,50	16,67	100,00	3 von 8	1 von 6	2 von 2
nur						
Antibiose	0,00	0,00	NV	0 von 7	0 von 7	NV
nur						
Bactrim	25,00	25,00	NV	2 von 8	2 von 8	NV
ohne						
Ampho	28,57	16,67	100,00	4 von 14	2 von 12	2 von 2
ohne						
Antibiose	66,67	100,00	0,00	2 von 3	2 von 2	0 von 1

ohne Bactrim	14,29	14,29	NV	1 von 7	1 von7	NV
				84 von	15 von	69 von
vollständig	61,31	30,61	78,41	137	49	88
				96 von	23 von	73 von
Gesamt	52,17	25,27	78,49	184	91	93

Insbesondere bei der Hochrisikogruppe zeigt sich ein Vorteil für die Gruppe, die eine vollständige Prophylaxe erhielt. Hier lag die Infektionsrate bei 78,41% während sie bei der Gruppe mit einer nicht vollständigen Prophylaxe bei 80% lag (bei jedoch nur 5 Chemotherapiezyklen). **Ohne Prophylaxe und ohne Amphomoronal kam es immer zu einer Infektion**, während es einmal ohne Antibiose nicht zu einer Infektion kam. In der Standardrisikogruppe zeigt sich kein Vorteil. Die Infektionsrate lag bei vollständiger Prophylaxe bei 30,61% während sie bei nicht vollständiger Prophylaxe nur bei 19,05% lag (49 Zyklen mit vollständiger Prophylaxe und 34 Zyklen mit nicht vollständiger Prophylaxe). In Tabelle 35 sind die durchschnittlichen Aplasiedauern für die jeweiligen Prophylaxearten unterteilt nach der Standardrisiko und der Hochrisikogruppe dargestellt.

Tabelle 35 Durchschnittliche Aplasiedauer nach Prophylaxeart für Hochrisiko und Standardrisikogruppe mit und ohne Infektion

	HR ohne	HR mit	SR ohne	SR mit
Prophylaxe	Infektion	Infektion	Infektion	Infektion
keine		17	5,8	7
nur Antibiose			7,9	
nur Bactrim			6,5	6,5
ohne Ampho		15	6,9	5,5
ohne Antibiose	13			5,5
ohne Bactrim			6,7	9
vollständig	15,2	21,2	6,8	8,5
Gesamtergebnis	15,1	20,9	6,8	7,8

Man kann erkennen, dass die durchschnittliche Aplasiedauer bei den Chemotherapiezyklen mit Infektion deutlich höher liegt als bei den Chemotherapiezyklen ohne Infektion.

In Diagramm 8 sind folgende Informationen zusammengestellt:

- Infektionsrate bezogen auf die Einzelgabe der Medikamente zur Prophylaxe
- 2. Anteil an Sepsisfällen unter der jeweiligen Einzelgabe
- 3. Anteil der nachgewiesenen Pilzinfektion unter der jeweiligen Einzelgabe
- 4. Anteil der PcP Fälle unter der jeweiligen Einzelgabe
- 5. Anteil der Pneumonie Fälle unter der jeweiligen Einzelgabe
- 6. Anteil der Fälle mit entsprechender Prophylaxe bezogen auf alle Fälle

Diagramm 8 Anteil an Infektionsarten bezogen auf die Einzelmedikamentengabe

3.3.2 Antibiotikatherapie

Bei insgesamt 96 der untersuchten 184 Chemotherapiezyklen kam es zu einer Infektion. Unabgängig von der Aplasiedauer konnte bei 26 Infektionen (27,1%) mit der Ersttherapie ein Erfolg erzielt werden, während bei 70 Infektionen (72,9%) eine oder mehrere Therapieumstellungen notwendig wurden. In Tabelle 36 ist dargestellt wie sich die Länge der Aplasiedauer zu einem Erfolg bzw. Misserfolg der Ersttherapie verhält.

Tabelle 36 Aplasiedauer und Erfolg / kein Erfolg der Ersttherapie nach Risikogruppen

Aplasiedauer bis einschließlich 10 Tage

	Erfolg	Kein Erfolg
Aplasiedauer	Ersttherapie	Ersttherapie
5	2	
6	4	
7	2	2
8	3	1
9	4	1
10		4
Gesamt	15	8

Aplasiedauer über 10 Tage

	Erfolg	Kein Erfolg
Aplasiedauer		Ersttherapie
11	1	3
12	1	3
	1	
13	-	4
14	2	3 2
15	1	
16		4
17		6
18	1	11
19	1	1
20	1	3
21	1	
23		4
24	1	2
26		2
27		3
30		1
31		2 2
32		2

37		1
43		1
47		1
48		1
54		1
55		1
Gesamt	11	62

Bei einer Aplasiezeit bis einschließlich 10 Tagen konnte bei 15 von insgesamt 23 Chemotherapiezyklen ein Erfolg der Ersttherapie festgestellt werden (65,2% Erfolgsquote). Bei einer Aplasiedauer über 10 Tagen konnte bei lediglich 11 von insgesamt 73 Chemotherapiezyklen ein Erfolg der Ersttherapie festgestellt werden (15,1% Erfolgsquote).

Zusätzlich fällt auf, das je nach Länge der Aplasiezeit sich die Wahrscheinlichkeit für den Erfolg einer Ersttherapie verändert. Bei einer Aplasiezeit von 5-6 Tagen war die Ersttherapie immer erfolgreich, während sie ab einer Aplasiezeit von 26 Tage nie erfolgreich war. Bei einer Aplasiezeit von 7-10 Tagen (17 Chemotherapiezyklen) war bei 9 von 17 Therapiezyklen eine Ersttherapie erfolgreich (53%), während bei einer Aplasiezeit von 11 bis 24 Tagen (57 Chemotherapiezyklen) bei 11 von 57 Therapiezyklen eine Ersttherapie erfolgreich war (19,3%).

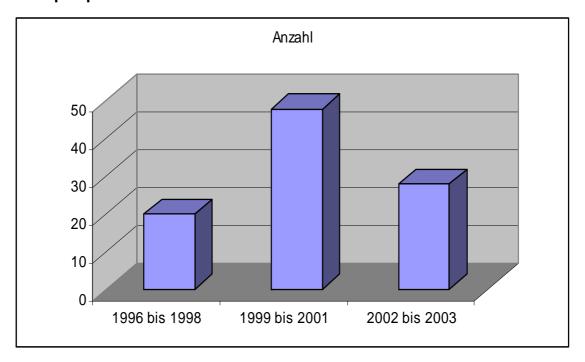

In Tabelle 37 ist die Art der Infektion verteilt auf die Risikogruppen zusammen mit dem Erfolg bzw. Misserfolg einer Ersttherapie dargestellt.

Tabelle 37 Art der Infektion verteilt auf die Risikogruppen und Erfolg / kein Erfolg der Ersttherapie

		Erfolg	Kein Erfolg
Risikogruppe	Infektion	Ersttherapie	Ersttherapie
Standardrisiko	Angina	1	0
	FUO	3	2
	H. zoster	1	0
	Mukositis	4	1
	Pneumonie	3	3
	Pneumonie und		
	Sepsis	0	1
	Sepsis	1	1
	Zahninfektion	1	0
	Zystitis	1	0
Gesamt			
Standardrisikogruppe		15	8
Hochrisiko	Aspergillose	0	2
	Enteritis bei Mukositis	0	1
	FUO	5	13
	hepato-lienal	0	1
	Mukositis	0	3
	Mukositis mit Sepsis	0	1
	Pleuritis	0	1
	Pneumonie	4	23
	pseudom. Kolitis	0	1
	Sepsis	2	16
Gesamt			
Hochrisikogruppe		11	62

Da es erst seit 1999 offizielle Leitlinien der Deutschen Gesellschaft für Hämatologie und Onkologie zur Behandlung neutropenischer Patienten gibt, sind 3 zeitlich zu trennende Gruppen zu unterscheiden. Dies sind erstens Patienten die vor 1999 behandelt wurden, zweitens Patienten die zwischen 1999 und 2001 behandelt wurden und drittens Patienten die ab 2001 behandelt wurden. Die zeitliche Aufteilung für die Chemotherapiezyklen in denen es zu einer Infektion kam erfolgt in Diagramm 9.

Diagramm 9 Anzahl Chemotherapiezyklen mit Infektion in den Therapieepisoden

In Tabelle 38 erfolgt die Darstellung, wie sich alle Aplasiedauern und Patientenzahlen auf die Therapieepisoden verteilen.

Tabelle 38 Aplasiedauerverteilung und Patientenzahlenverteilung auf die Therapieepisoden für alle Patienten

			Aplasiedauer	Durchschnitts
Therapieepisode	Patientenzahl	Chemozyklen	von/bis	Aplasiedauer
bis 1999	14	29	6 bis 55	17,8
1999 bis 2001	53	105	5 bis 54	12,4
ab 2001	29	50	5 bis 48	13,2

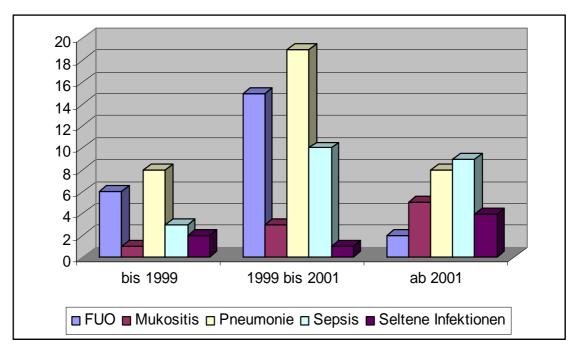

In Tabelle 39 erfolgt die Darstellung wie in Tabelle 36 für alle Therapiezyklen mit einer Infektion.

Tabelle 39 Aplasiedauerverteilung und Patientenzahlenverteilung auf die Therapieepisoden für die Patienten mit Infektion

			Aplasiedauer	Durchschnitts
Therapieepisode	Patientenzahl	Chemozyklen	von/bis	Aplasiedauer
bis 1999	12	20	8 bis 55	20
1999 bis 2001	35	48	5 bis 54	17,1
ab 2001	21	28	5 bis 48	17,4

In Diagramm 10 ist die Verteilung der Infektionsarten auf die drei Therapieepisoden dargestellt.

Diagramm 10 Verteilung der Infektionsarten

Zu den seltenen Infektionen gehörten eine Zystitis, eine Pleuritis, eine schwere odontogene Infektion, eine Angina, eine hepato-lienale Infektion und einmalig ein Herpes zoster. Pneumonien, Mukositis und Sepsis waren häufige Infektionsgeschehen und 23-mal konnte keine Infektionsquelle (FUO) gesichert werden (24%).

In Diagramm 11 und 12 ist dargestellt wie sich die Infektionsarten bei den Chemotherapiezyklen verteilen, bei denen die Ersttherapie erfolgreich war bzw. nicht erfolgreich war.

Diagramm 11 Infektionsarten bei erfolgreicher antibiotischer Ersttherapie

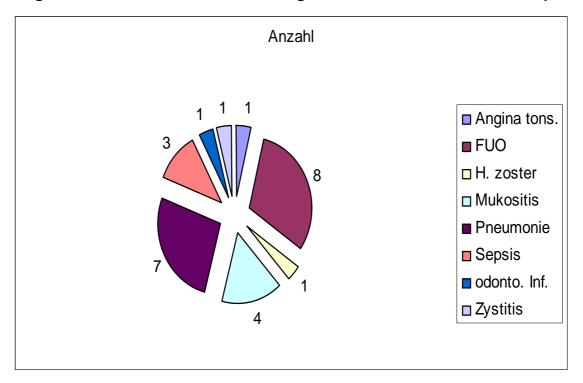
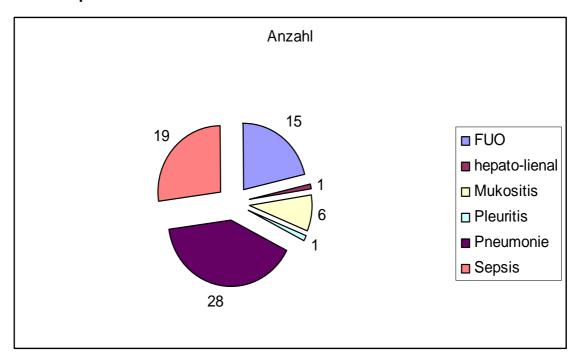



Diagramm 12 Infektionsarten bei nicht erfolgreicher antibiotischer Ersttherapie

In Tabelle 40 ist für alle Patienten, bei denen die Ersttherapie erfolgreich war, die Art der Ersttherapie mit und ohne Kombinationspartner dargestellt, unabhängig von der Therapieepisode.

Tabelle 40 Erfolgreiche Ersttherapie mit Art des Kombinationspartners

Art der Ersttherapie	Kombinationspartner	Anzahl
Piperacillin/Tazobactam	Ciprofloxacin	1
Piperacillin/Tazobactam	Metronidazol	2
Piperacillin/Tazobactam	Fluconazol	1
Piperacillin/Tazobactam	keiner	13
Piperacillin/Tazobactam	Gentamicin	1
Piperacillin/Tazobactam	Clindamycin	1
Piperacillin/Tazobactam	Vancomycin	1
Imipenem	keiner	2
Imipenem	Gentamicin	2
Imipenem	Vancomycin	1
Aciclovir	keiner	1
Gesamtergebnis		26

Bei erfolgreicher Ersttherapie wurde in 50% der Fälle Piperacillin/Tazobactam ohne einen Kombinationspartner als first-line Antibiose gewählt. In Tabelle 41 ist für alle Patienten, bei denen die Ersttherapie nicht erfolgreich war, ebenfalls die Art der Ersttherapie dargestellt, unabhängig von der Therapieepisode.

Tabelle 41 Nicht erfolgreiche Ersttherapie mit Art des Kombinationspartners

Art der Ersttherapie	Kombinationspartner	Anzahl
Ciprofloxacin	Metronidazol	1
Metronidazol	keiner	4
Meropenem	keiner	1
Ceftriaxon	keiner	1
Levofloxacin	Metronidazol	1
Piperacillin/Tazobactam	keiner	41
Piperacillin/Tazobactam	Gentamicin	8
Piperacillin/Tazobactam	Ceftriaxon	1
Piperacillin/Tazobactam	Vancomycin	3
Ampicillin/Sulbactam	keiner	4
Vancomycin	keiner	1
Imipenem	keiner	4
Gesamtergebnis		70

Bei nicht erfolgreicher Ersttherapie wurde in 58,6% der Fälle Piperacillin/Tazobactam ohne einen Kombinationspartner als first-line Antibiose gewählt. In Tabelle 42 ist dargestellt, wie sich die Infektionsart zur Art der Ersttherapie verhält, für die Patienten, bei denen eine antibiotische Ersttherapie erfolgreich war, unabhängig von der Therapieepisode.

Tabelle 42 Infektionsart und Art der Ersttherapie mit Kombinationspartner bei erfolgreicher antibiotischer Ersttherapie

Infektion	Art der Ersttherapie	Kombinationspartner	Anzahl
Angina tons.	Piperacillin/Tazobactam	keiner	1
FUO	Piperacillin/Tazobactam	Metronidazol	1
FUO	Piperacillin/Tazobactam	keiner	2
FUO	Piperacillin/Tazobactam	Clindamycin	1
FUO	Imipenem	keiner	2
FUO	Imipenem	Gentamicin	2
H. zoster	Aciclovir	keiner	1
Mukositis	Piperacillin/Tazobactam	Metronidazol	1
Mukositis	Piperacillin/Tazobactam	Fluconazol	1
Mukositis	Piperacillin/Tazobactam	keiner	2
Pneumonie	Piperacillin/Tazobactam	keiner	5
Pneumonie	Piperacillin/Tazobactam	Gentamicin	1
Pneumonie	Piperacillin/Tazobactam	Vancomycin	1
Sepsis	Piperacillin/Tazobactam	Ciprofloxacin	1
Sepsis	Piperacillin/Tazobactam	keiner	1
Sepsis	Imipenem	Vancomycin	1
Zahninfektion	Piperacillin/Tazobactam	keiner	1
Zystitis	Piperacillin/Tazobactam	keiner	1
Gesamtergebnis	in Infalsting and soit day A	et des Freitherseis für	26

In Tabelle 43 ist die Infektionsart mit der Art der Ersttherapie für die Patienten dargestellt, bei denen die Ersttherapie nicht erfolgreich war.

Tabelle 43 Infektionsart und Art der Ersttherapie mit Kombinationspartner bei nicht erfolgreicher antibiotischer Ersttherapie

Infektion	Art der Ersttherapie	Kombinationspartner	Anzahl
Aspergillose			
(Lunge)	Piperacillin/Tazobactam	keiner	1
Aspergillose			
(Lunge)	Ampicillin/Sulbactam	keiner	1
FUO	Piperacillin/Tazobactam	keiner	5
FUO	Piperacillin/Tazobactam	Gentamicin	4
FUO	Piperacillin/Tazobactam	Vancomycin	1
FUO	Piperacillin/Tazobactam	keiner	4

FUO	Piperacillin/Tazobactam	Ceftriaxon	1
hepato-lienal	Piperacillin/Tazobactam	keiner	1
Mukositis	Piperacillin/Tazobactam	keiner	4
Mukositis	Ampicillin/Sulbactam	keiner	1
Mukositis	Piperacillin/Tazobactam	keiner	1
Pleuritis	Piperacillin/Tazobactam	keiner	1
Pneumonie	Metronidazol	keiner	1
Pneumonie	Meropenem	keiner	1
Pneumonie	Ceftriaxon	keiner	1
Pneumonie	Piperacillin/Tazobactam	keiner	15
Pneumonie	Piperacillin/Tazobactam	Gentamicin	1
Pneumonie	Ampicillin/Sulbactam	keiner	2
Pneumonie	Vancomycin	keiner	1
Pneumonie	Imipenem	keiner	4
Sepsis	Ciprofloxacin	Metronidazol	1
Sepsis	Metronidazol	keiner	3
Sepsis	Levofloxacin	Metronidazol	1
Sepsis	Piperacillin/Tazobactam	keiner	9
Sepsis	Piperacillin/Tazobactam	Gentamicin	3
Sepsis	Piperacillin/Tazobactam	Vancomycin	2
Gesamtergebnis			70

Die gleichen Daten wie in den Tabellen 40 bis 43 werden im nachfolgenden nun noch in Abhängigkeit von den einzelnen Therapieepisoden dargestellt.

Tabelle 44 Erfolgreiche Ersttherapie mit Art des Kombinationspartners nach Therapieepisoden

Art der Ersttherapie	Kombinationspartner	Anzahl	Therapieepisode
Piperacillin/Tazobactam	keiner	2	1996 bis 1998
Imipenem	keiner	1	
Gesamtergebnis		3	
Piperacillin/Tazobactam	Ciprofloxacin	1	1999 bis 2001
Piperacillin/Tazobactam	Metronidazol	2	
Piperacillin/Tazobactam	Fluconazol	1	
Piperacillin/Tazobactam	keiner	4	
Piperacillin/Tazobactam	Gentamicin	1	
Piperacillin/Tazobactam	Clindamycin	1	
Piperacillin/Tazobactam	Vancomycin	1	
Imipenem	keiner	1	
Imipenem	Gentamicin	2	
Aciclovir	keiner	1	
Gesamtergebnis		15	
Piperacillin/Tazobactam	Keiner	7	2002 bis 2003
Imipenem	Vancomycin	1	
Gesamtergebnis		8	

Tabelle 45 Nicht erfolgreiche Ersttherapie mit Art des Kombinationspartners nach Therapieepisoden

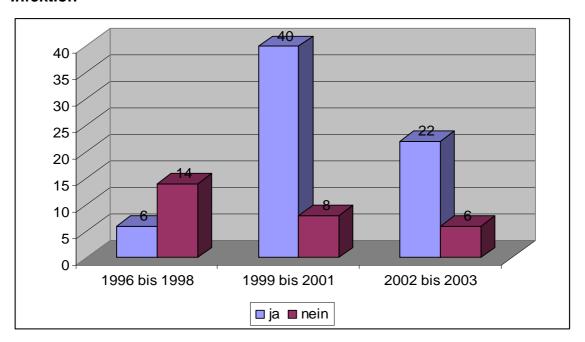
Ersttherapie	Kombinationspartner	Anzahl	Therapieepisode
Metronidazol	keiner	2	1996 bis 1998
Ceftriaxon	keiner	1	
Piperacillin/Tazobactam	keiner	7	
Piperacillin/Tazobactam	Gentamicin	4	
Piperacillin/Tazobactam	Vancomycin	2	
Imipenem	keiner	1	
Gesamtergebnis		17	
Levofloxacin	Metronidazol	1	1999 bis 2001
Piperacillin/Tazobactam	keiner	23	
Piperacillin/Tazobactam	Gentamicin	3	
Piperacillin/Tazobactam	Ceftriaxon	1	
Ampicillin/Sulbactam	keiner	1	
Vancomycin	keiner	1	
Imipenem	keiner	3	
Gesamtergebnis		33	
Ciprofloxacin	Metronidazol	1	2002 bis 2003
Metronidazol	keiner	2	
Meropenem	keiner	1	
Piperacillin/Tazobactam	keiner	11	
Piperacillin/Tazobactam	Gentamicin	1	
Piperacillin/Tazobactam	Vancomycin	1	
Ampicillin/Sulbactam	keiner	3	
Gesamtergebnis		20	

Tabelle 46 Infektionsart und Art der Ersttherapie mit Kombinationspartner bei erfolgreicher antibiotischer Ersttherapie nach Therapieepisoden

	Art der	Kombinations-		
Infektion	Ersttherapie	partner	Anzahl	Therapieepisode
FUO	Piperacillin/Tazobactam	keiner	1	1996 bis 1998
FUO	Imipenem	keiner	1	
Sepsis	Piperacillin/Tazobactam	keiner	1	
FUO	Piperacillin/Tazobactam	Metronidazol	1	1999 bis 2001
FUO	Piperacillin/Tazobactam	keiner	1	
FUO	Piperacillin/Tazobactam	Clindamycin	1	
FUO	Imipenem	keiner	1	
FUO	Imipenem	Gentamicin	2	
H. zoster	Aciclovir	keiner	1	
Mukositis	Piperacillin/Tazobactam	Metronidazol	1	
Mukositis	Piperacillin/Tazobactam	Fluconazol	1	

Pneumonie	Piperacillin/Tazobactam	keiner	3	
Pneumonie	Piperacillin/Tazobactam	Gentamicin	1	
Pneumonie	Piperacillin/Tazobactam	Vancomycin	1	
Sepsis	Piperacillin/Tazobactam	Ciprofloxacin	1	
Angina	Piperacillin/Tazobactam	keiner	1	2002 bis 2003
Mukositis	Piperacillin/Tazobactam	keiner	2	
Pneumonie	Piperacillin/Tazobactam	keiner	2	
Sepsis	Imipenem	Vancomycin	1	
Zahninfektion	Piperacillin/Tazobactam	keiner	1	
Zystitis	Piperacillin/Tazobactam	keiner	1	

Tabelle 47 Infektionsart und Art der Ersttherapie mit Kombinationspartner bei nicht erfolgreicher antibiotischer Ersttherapie nach Therapieepisoden


	Art der	Kombinations-		
Infektion	Ersttherapie	partner	Anzahl	Therapieepisode
FUO	Piperacillin/Tazobactam	Gentamicin	3	1996 bis 1998
FUO	Piperacillin/Tazobactam	Vancomycin	1	
hepato-				
lienal	Piperacillin/Tazobactam	keiner	1	
Mukositis	Piperacillin/Tazobactam	keiner	2	
Pneumonie	Metronidazol	keiner	1	
Pneumonie	Ceftriaxon	keiner	1	
Pneumonie	Piperacillin/Tazobactam	keiner	4	
Pneumonie	Piperacillin/Tazobactam	Gentamicin	1	
Pneumonie	Imipenem	keiner	1	
Sepsis	Metronidazol	keiner	1	
Sepsis	Piperacillin/Tazobactam	Vancomycin	1	
FUO	Piperacillin/Tazobactam	keiner	5	1999 bis 2001
FUO	Piperacillin/Tazobactam	keiner	3	
FUO	Piperacillin/Tazobactam	Ceftriaxon	1	
Mukositis	Piperacillin/Tazobactam	keiner	1	
Pneumonie	Piperacillin/Tazobactam	keiner	9	
Pneumonie	Ampicillin/Sulbactam	keiner	1	
Pneumonie	Vancomycin	keiner	1	
Pneumonie	Imipenem	keiner	3	
Sepsis	Levofloxacin	Metronidazol	1	
Sepsis	Piperacillin/Tazobactam	keiner	5	
Sepsis	Piperacillin/Tazobactam	Gentamicin	3	
Aspergillose	Piperacillin/Tazobactam	keiner	1	2002 bis 2003
Aspergillose	Ampicillin/Sulbactam	keiner	1	
FUO	Piperacillin/Tazobactam	Gentamicin	1	
FUO	Piperacillin/Tazobactam	keiner	1	
Mukositis	Piperacillin/Tazobactam	keiner	1	
Mukositis	Ampicillin/Sulbactam	keiner	1	

Mukositis	Piperacillin/Tazobactam	keiner	1	
Pleuritis	Piperacillin/Tazobactam	keiner	1	
Pneumonie	Meropenem	keiner	1	
Pneumonie	Piperacillin/Tazobactam	keiner	2	
Pneumonie	Ampicillin/Sulbactam	keiner	1	
Sepsis	Ciprofloxacin	Metronidazol	1	
Sepsis	Metronidazol	keiner	2	
Sepsis	Piperacillin/Tazobactam	keiner	4	
Sepsis	Piperacillin/Tazobactam	Vancomycin	1	

Bei 70 Chemotherapiezyklen waren eine oder mehrere Therapieumstellungen notwendig. Im Durchschnitt waren zwei Umstellungen notwendig (zwischen ein eine und sechs). Auf detaillierte Darstellung der einzelnen Therapieumstellungen wird hier verzichtet, da es sich um ein insgesamt sehr heterogenes und oft individuell angepasstes Vorgehen handelt. Dabei ist zusätzlich zu berücksichtigen, dass es für die erste Therapieepisode zwischen 1996 und 1998 gar keine formulierten Therapiestandards für eine Umstellung der Antibiose gab und es ab 1999 für die Standardrisikogruppe für die ersten beiden Modifikationen und für die Hochrisikogruppe lediglich für die erste Modifikation einen vorgegebenen Standard gab.

In Diagramm 13 ist die Verteilung für die Einhaltung der vorgegebenen Therapiestandards nach Therapieepisode für alle betroffenen Chemotherapiezyklen dargestellt.

Diagramm 13 Einhaltung der vorgegebenen Therapiestandards bei Ersttherapie nach Therapieepisode für alle Chemotherapiezyklen mit Infektion

In Diagramm 14 und 15 ist dargestellt wie sich die Einhaltung der Therapiestandards bei Ersttherapie getrennt nach Erfolg bzw. Nichterfolg der Ersttherapie darstellt.

Diagramm 14 Einhaltung der vorgegebenen Therapiestandards bei erfolgreicher Ersttherapie

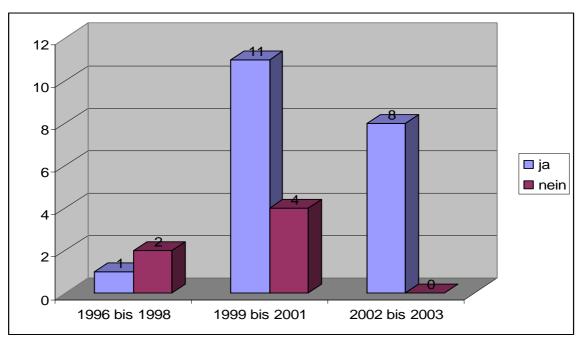


Diagramm 15 Einhaltung der vorgegebenen Therapiestandards bei nicht erfolgreicher Ersttherapie

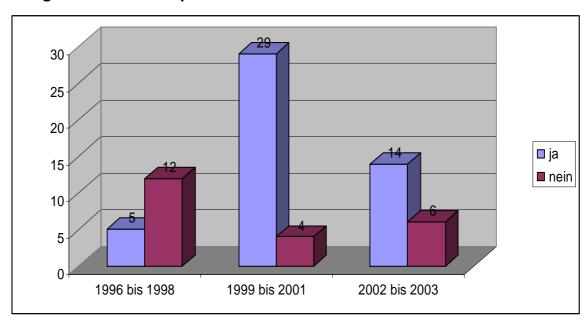
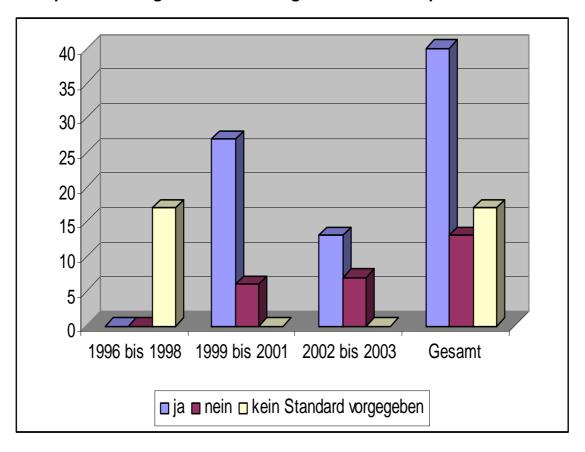



Tabelle 48 Prozentuale Verteilung der Einhaltung der Therapiestandards bei Ersttherapie

Gruppe	1996 bis 1998	1999 bis 2001	2002 bis 2003	Gesamt
• •	1990	2001	2003	Oesann
Erfolgreiche				
Ersttherapie	33,33%	73,33%	100%	76,92%
Nicht erfolgreiche				
Ersttherapie	29,41%	87,88%	70,00%	68,57%
Insgesamt	30,00%	83,33%	78,57%	70,83%

Diagramm 16 Einhaltung der vorgegebenen Therapiestandards bei den Therapieumstellungen bei nicht erfolgreicher Ersttherapie

Insgesamt sind von den 96 Patienten 10 an einer Infektion verstorben. Die Gesamtsterblichkeit ohne Berücksichtigung der Therapieepisoden für alle Patienten lag also bei 10,4%. Bezogen auf die Chemotherapiezyklen kam es bei den 184 durchgeführten Chemotherapiezyklen mit einer entsprechenden Aplasiedauer also in 5,4% zu einem Versterben der Patienten bzw. bezogen auf die Chemotherapiezyklen mit einer Infektion in 10,4% zu einem Versterben.

Die durchschnittliche Aplasiedauer lag für die verstorbenen Patienten bei 22,3 Tagen (zwischen 11 und 55). Von den 10 verstorbenen Patienten hatten 9 eine AML und 1 Patient eine ALL. Das Durchschnittsalter betrug 53 Jahre. Im Folgenden werden die wesentlichen statistischen Zahlen in Tabellenform für diese Patienten dargestellt.

Tabelle 49 Darstellung der Verteilung der verstorbenen Patienten auf die Therapieepisoden

		Durchschnitts		
Therapieepisode	Anzahl	Aplasiedauer		Durchschnittsalter
bis 1999	5		22,6	57,4
1999 bis 2001	2		19	56
ab 2001	3		24	43,7

Tabelle 50 Darstellung der Sterberaten bezogen auf die Therapieepisoden

	Sterberate	Sterberate		Sterberate
	bezogen auf	bezogen auf die	Sterberate	bezogen auf
Therapie	alle Chemo-	Chemozyklen mit	bezogen auf	alle Patienten
Episode	zyklen	Infektion	alle Patienten	mit Infektion
bis 1999	17,24%	25,00%	35,71%	41,67%
1999 bis				
2001	1,96%	4,17%	3,77%	5,71%
ab 2001	6,00%	10,71%	10,34%	14,29%

Tabelle 51 Darstellung der Sterberaten bezogen auf die Patienten der Hochrisikogruppe und die Patienten mit akuter Leukämie

				Sterberate
	Sterberate			bezogen auf
	bezogen auf	Sterberate	Sterberate	die Chemo-
	die Patienten	bezogen auf die	bezogen auf	zyklen der
Therapie	der HR	Chemozyklen der	nemozyklen der die Leukämie	
Episode	Gruppe	HR Gruppe	Patienten	Patienten
bis 1999	38,46%	21,74%	38,46%	17,86%
1999 bis				
2001	7,14%	4,17%	7,14%	3,23%
ab 2001	20,00%	13,64%	17,65%	10,71%

Diagramm 17 Verteilung der Infektionsarten bei den verstorbenen Patienten

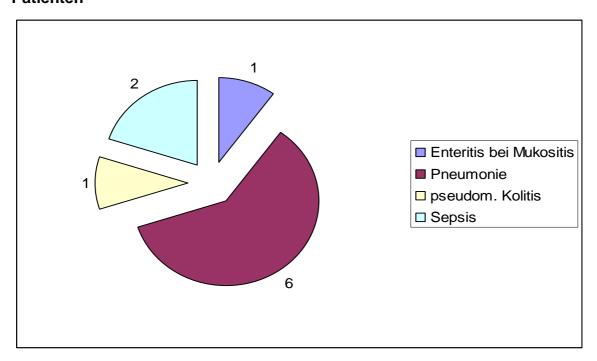
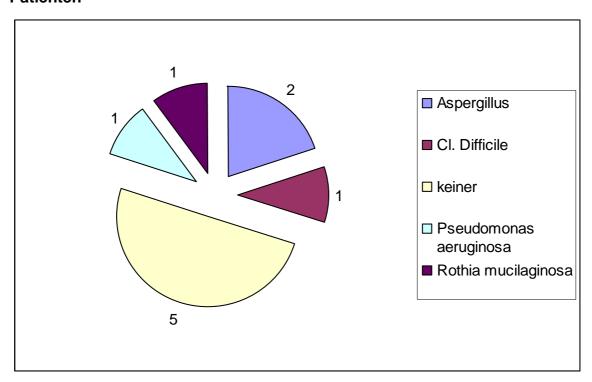



Diagramm 18 Verteilung des Keimnachweises bei den verstorbenen Patienten

In Tabelle 52 erfolgt die Zuordnung des Keimnachweises zu der jeweiligen Infektion.

Tabelle 52 Zuordnung des Keimnachweises zur Infektion für die verstorbenen Patienten

Infektion	Erreger	Anzahl
Enteritis bei		
Mukositis	keiner	1
Pneumonie	Aspergillus	2
	keiner	4
Pseudom. Kolitis	CI. Difficile	1
	Pseudomonas	
Sepsis	aeruginosa	1
	Rothia mucilaginosa	1

Neben der Sterblichkeit im Rahmen der einzelnen Therapieepisoden muss zusätzlich noch die Sterblichkeit vor und nach Errichtung des Aplasiebereiches untersucht werden. Dieser wurde zwischen 2000 und 2001 errichtet. Die Verteilung ist in den folgenden beiden Tabellen dargestellt.

Tabelle 53 Chemozyklen vor und nach Errichtung des Aplasiebereiches nach Anzahl und mit Infektionsrate

Therapieepisode	Gesamt	mit Infektion	ohne Infektion	Infektionsrate
vor Errichtung				
Aplasiebereich	90	43	47	47,78%
nach Errichtung				
Aplasiebereich	94	53	41	56,38%

Tabelle 54 Sterberate vor und nach Errichtung des Aplasiebereiches

	Sterberate	Sterberate bei Chemozyklen mit	
Therapieepisode	Gesamt	Infektion	
vor Errichtung			
Aplasiebereich	5,56%	11,63%	
nach Errichtung			
Aplasiebereich	5,32%	9,43%	

Tabelle 55 Durchschnittliche Aplasiedauern vor und nach Errichtung des Aplasiebereiches

	Durch-		Durch-	Durch-
	schnittliche		schnittliche	schnittliche
	Aplasie-	Spannweite	Aplasie-	Aplasie-
Therapie-	dauer	in	dauer	dauer
Episode	Gesamt	den Jahren	HR Gruppe	SR Gruppe
Vor				
Errichtung				
Aplasiebereich	13,62	9,15 bis 21,30	19,5	7,48
Nach				
Errichtung				
Aplasiebereich	13,27	11,63 bis 14,62	19,89	6,64


3.3.3 Antimykotikatherapie

Lediglich bei 3 der 96 Infektionen bestand eine gesicherte Pilzinfektion. Dabei wurde einmal eine Candida Infektion nachgewiesen und zweimal eine Aspergillose. Ein Großteil der Patienten wurde mit Antimykotika behandelt, um eine wahrscheinliche Pilzinfektion zu behandeln. Dies waren Patienten, bei denen aufgrund von CT Untersuchungen und dem Nachweis von entsprechenden pulmonalen Infiltraten der V. a. eine Aspergillose bestand. Diese Patienten sind in den anderen Kapiteln unter der Infektionsart Pneumonie mit subsumiert, da es sich hier um wahrscheinliche (Pilz-) Infektionen handelt, und nur eine Pneumonie klinisch sicher diagnostiziert werden kann, die eine empirische Therapie nach sich zieht. Trotzdem soll diese wichtige Patientengruppe nun hier noch einmal genau dargestellt werden, wobei die Patienten mit Verdacht auf eine Aspergillose entsprechend mit untersucht werden.

In Diagramm 19 werden die durchschnittlichen Aplasiedauern für die einzelnen Gruppen dargestellt. Dabei wird in folgende Gruppen unterteilt:

- 1. Patienten mit einer sicheren Pilzinfektion
- 2. Patienten ohne Nachweis einer Pilzinfektion (mit Infektion)
- 3. Patienten mit Verdacht auf eine Pilzinfektion
- 4. Die durchschnittliche Aplasiedauer für alle Patienten mit einer Infektion

Diagramm 19 Gegenüberstellung der durchschnittlichen Aplasiedauer bei Patienten mit Nachweis bzw. Verdacht auf eine Pilzinfektion und Patienten mit Infektion ohne Nachweis bzw. Verdacht auf eine Pilzinfektion

Hier zeigt sich, das bei den Patienten, bei denen eine Pilzinfektion nachgewiesen werden konnte die Aplasiedauer am längsten war, während bei den Patienten bei denen kein Verdacht auf eine Pilzinfektion bestand die Aplasiedauer deutlich kürzer war. In Tabelle 56 erfolgt die Verteilung der Pilzinfektionen auf die einzelnen Therapieepisoden mit Unterteilung für die Risikogruppen.

Tabelle 56 Anzahl der Pilzinfektionen nach Risikogruppen verteilt auf die Therapieepisoden

	Pilz-	1996 bis	1999 bis	2002 bis	
Risikogruppe	infektion	1998	2001	2003	Gesamt
Standardrisiko	Ja	0	1	0	1
	Nein	2	9	5	16
	Verdacht	0	2	0	2
Hochrisiko	Ja	1	0	1	2
	Nein	12	21	13	46
	Verdacht	5	15	9	29

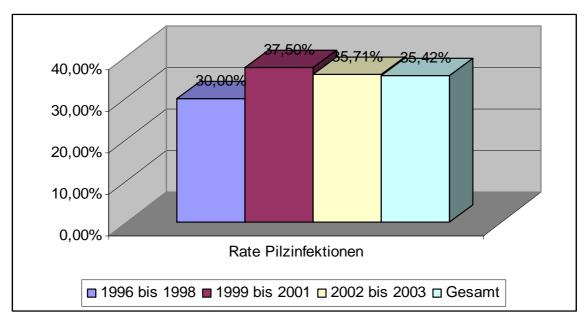

In Tabelle 57 ist in gleicher Verteilung die Durchschnitts Aplasiedauer für die einzelnen Patientengruppen dargestellt

Tabelle 57 Durchschnittliche Aplasiedauer nach Risikogruppen verteilt auf die Therapieepisoden

	Pilz-	1996 bis	1999 bis	2002 bis	
Risikogruppe	infektion	1998	2001	2003	Gesamt
Standardrisiko	Ja		6,0		6,0
	Nein	8,5	7,8	8,4	8,1
	Verdacht		9,5		9,5
Hochrisiko	Ja	55,0		30,0	42,5
	Nein	17,8	19,7	16,2	18,2
	Verdacht	22,6	20,9	22,9	21,8

In Diagramm 20 ist die Rate an Pilzinfektionen für die einzelnen Therapieepisoden dargestellt, wobei nur Patienten mit Infektion berücksichtigt sind.

Diagramm 20 Rate an Pilzinfektionen nach Therapieepisoden

In Tabelle 58 sind für die einzelnen Therapieepisoden noch mal die wesentlichen Zahlen zusammengefasst.

Tabelle 58 Zusammenfassung der wesentlichen Zahlen nach Therapieepisoden

	Anzahl	Pilz-	Rate	Durchschnitts
Therapieepisode	Infektionen	infektionen	Pilzinfektionen	Aplasiedauer
1996 bis 1998	20	6	30,00%	19,950
1999 bis 2001	48	18	37,50%	17,125
2002 bis 2003	28	10	35,71%	17,429
Gesamt	96	34	35,42%	17,802

Im Verlauf der Jahre haben sich die Therapieempfehlungen bei Pilzinfektionen verändert. Zusätzlich fanden neue Medikamente wie Itraconazol Eingang in die Prophylaxe. Dementsprechend verteilt sich auch der Anteil an Patienten, die eine entsprechende Prophylaxe erhalten haben unterschiedlich auf die Therapieepisoden. Dieses ist in Tabelle 59 dargestellt.

Tabelle 59 Anteil der Itraconazol Prophylaxe an den Gesamtpatienten

	Anteil Itraconazol	
Therapieepisode	Prophylaxe	
1996 bis 1998		6,90%
1999 bis 2001		29,52%
2002 bis 2003		40,00%
Gesamt		28,80%

In Tabelle 60 ist dargestellt wie sich die Rate an Pilzinfektionen mit und ohne Itraconazol Prophylaxe verhält. Wobei hier alle Patienten der Therapieepisoden berücksichtigt sind, also nicht nur die mit einer Infektion.

Tabelle 60 Rate Pilzinfektionen mit und ohne Itraconazol Prophylaxe nach Therapieepisoden unterteilt nach Risikogruppen

	Standardrisiko Gruppe		Hochrisiko Gruppe		
	mit	ohne	mit	ohne	
Therapie	Itraconazol	Itraconazol	Itraconazol	Itraconazol	
Episode	Proph.	Proph.	Proph.	Proph.	Gesamt
1996 bis					
1998	kam nicht vor	0,00%	50,00%	23,81%	20,69%
1999 bis					
2001	0,00%	6,25%	31,82%	30,77%	17,14%
2002 bis					
2003	0,00%	0,00%	53,33%	18,18%	20,00%
Gesamt	0,00%	4,11%	41,03%	25,86%	18,48%

Tabelle 61 Darstellung der durchschnittlichen Aplasiedauern verteilt auf die Therapieepisoden unterteilt nach Risikogruppen in Abhängigkeit von der Itraconazol Prophylaxe

	Standardrisiko Gruppe		Hochrisiko Gruppe	
Therapie	mit Itraconazol	ohne Itraconazol	mit Itraconazol	ohne Itraconazol
Episode 1996 bis	Proph.	Proph.	Proph.	Proph.
1998	kam nicht vor	7,5	36,0	19,0
1999 bis 2001	7,8	7,1	19,3	17,7
2002 bis 2003	7,6	6,3	21,7	21,6
Gesamt	7,7	6,9	21,1	18,7

In den beiden folgenden Diagrammen sind einmal die Rate an Pilzinfektionen und zum anderen die durchschnittliche Aplasiedauer für diese Patientengruppen für alle Patienten mit einer AML in Abhängigkeit von der Durchführung einer Itraconazol Prophylaxe für die einzelnen Therapieepisoden dargestellt

Diagramm 21 Rate an Pilzinfektionen mit und ohne Itraconazol Prophylaxe nach Therapieepisoden für alle Patienten mit einer AML

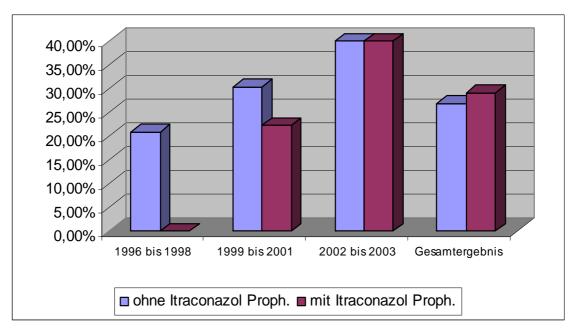
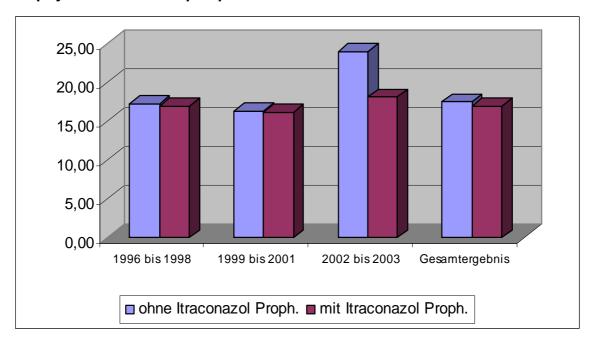



Diagramm 22 Durchschnittliche Aplasiedauer mit und ohne Itraconazol Prophylaxe nach Therapieepisoden für alle Patienten mit einer AML


Ebenfalls im Laufe der Zeit hat es sich durchgesetzt, die Itraconazol Dosierung durch Spiegelbestimmungen zu kontrollieren und dann entsprechend die Dosierung anzupassen. In den Zyklen wurde dabei unterschiedlich oft eine Spiegelbestimmung durchgeführt. Maximal wurde 4 Spiegelbestimmungen in einem Zyklus durchgeführt. Insgesamt wurde bei 53 Chemotherapiezyklen eine Itraconazol Prophylaxe durchgeführt. Dabei wurden bei Chemotherapiezyklen auch Spiegelbestimmungen durchgeführt. In Tabelle 62 ist deshalb für die Patienten, bei denen eine Itraconazolprophylaxe durchgeführt worden ist, die Höhe der Spiegelbestimmungen dargestellt, soweit diese durchgeführt wurden.

Tabelle 62 Anzahl Spiegelbestimmungen mit Darstellung von Mittel-, Maximal- und Minimalwert

Anzahl			
Spiegelbestimmungen	Mittelwert	Maximalwert	Minimalwert
1	0,46	0,46	0,46
	0,50	0,50	0,50
	0,53	0,53	0,53
	0,60	0,60	0,60
	0,67	0,67	0,67
	0,69	0,69	0,69
	0,73	0,73	0,73
	0,76	0,76	0,76
	0,84	0,84	0,84
	0,90	0,90	0,90
	0,94	0,94	0,94
	1,07	1,07	1,07
	1,17	1,17	1,17
	1,50	1,50	1,50
	2,00	2,00	2,00
2	0,30	0,39	0,20
	0,45	0,45	0,45
	0,50	0,74	0,25
	0,58	0,86	0,30
	0,61	0,62	0,59
	0,63	0,65	0,61
	0,66	0,78	0,54
	0,78	1,40	0,15
	1,07	1,60	0,54
	1,15	1,70	0,60
	1,17	1,85	0,48
	1,34	1,68	0,99
3	0,72	1,10	0,20
	0,81	1,00	0,57
	0,95	1,04	0,80
	1,43	1,80	0,80
	1,53	1,87	1,10
4	0,39	0,56	0,32
	0,68	1,92	0,10
	0,73	1,20	0,24
	0,80	1,30	0,24

Anhand dieser Werte können nun Gruppen mit bestimmten Spiegelhöhen eingeteilt werden. Im folgenden Diagramm wird in Abhängigkeit von der Spiegelhöhe die Rate an Pilzinfektionen für die jeweilige Untergruppe dargestellt. Die Zuteilung zur Gruppe erfolgt über den Mittelwert der bestimmten Spiegel.

Diagramm 23 Rate an Pilzinfektionen in Abhängigkeit von der Spiegelhöhe bei durchgeführter Itraconazol Prophylaxe

In Tabelle 63 erfolgt die Gegenüberstellung der Chemotherapieformen mit der Anzahl der sicheren Pilzinfektionen, der Zyklen ohne Nachweis oder Verdacht auf eine Pilzinfektion und die Zyklen mit Verdacht auf eine Pilzinfektion sowie die Rate an Pilzinfektionen (sicher und wahrscheinlich).

Tabelle 63 Gegenüberstellung der Chemotherapieform mit Verteilung auf die Infektionsform

	Sichere	Keine	Verdacht		
	Pilz-	Pilz-	auf		Rate Pilz-
Chemotherapie	infektion	infektion	Pilzinfektion	Gesamt	infektionen
B-ALL		2		2	0,0%
BEACOPP	1	1		2	50,0%
Cyclophosphamid		2		2	0,0%
Cytosin/Idarubicin			1	1	100,0%
Cytosin/Mitomycin	1			1	100,0%
DAI		12	9	21	42,9%
DAI		1		1	0,0%
DAI/II		2	1	3	33,3%
DAI/MAMAC		1		1	0,0%
DAII		3	2	5	40,0%
Dexa-BEAM		2		2	0,0%
EORTC		1		1	0,0%
EVAIA		1		1	0,0%
HAM		1		1	0,0%
high CHOEP		2		2	0,0%
H-MAC			2	2	100,0%
I-MAC			2	2	100,0%
Induktion I		1	2	3	66,7%
Induktion II	1		1	2	100,0%
Konsolidation		1		1	0,0%
Konsolidierung		1		1	0,0%
MAMAC		13	5	18	27,8%
MAV		10	5	15	33,3%
MAV/MAMAC			1	1	100,0%
Mita-Flag		1		1	0,0%
S-HAI		1		1	0,0%
VIDE		3		3	0,0%

In Tabelle 64 erfolgt die Gegenüberstellung der Erkrankungsform mit der Anzahl der sicheren Pilzinfektionen, der Zyklen ohne Nachweis einer Pilzinfektion und den Zyklen mit Verdacht auf eine Pilzinfektion sowie die Rate an Pilzinfektionen (sicher und wahrscheinlich).

Tabelle 64 Gegenüberstellung der Erkrankungsform mit Verteilung auf die Infektionsform

	Sichere	Keine			
	Pilz-	Pilz-	Verdacht auf		Rate Pilz-
Diagnose	infektion	infektion	Pilzinfektion	Gesamt	infektionen
ALL	1	2	2	5	60,00%
AML	1	48	27	76	36,84%
Blastenkrise			1	1	100,00%
Ewing Sarkom		2		2	0,00%
Hodgkin	1	2		3	33,33%
Liposarkom		1		1	0,00%
lymphatischer					
Blastenschub			1	1	100,00%
NHL		4		4	0,00%
Plasmozytom		1		1	0,00%
PNET		1		1	0,00%
T-NHL		1		1	0,00%

Insgesamt bestand bei 34 Chemotherapiezyklen der Verdacht auf eine Pilzinfektion bzw. es konnte eine sichere Pilzinfektion nachgewiesen werden. In 3 Fällen gelang dabei ein sicherer Nachweis. Hier erfolgt nun die Darstellung der Therapie dieser Patienten in Abhängigkeit von der Therapieepisode. In Tabelle 65 erfolgt die Darstellung, wie in den einzelnen Therapieepisoden die Antimykose begonnen wurde, wie Umstellungen durchgeführt wurden und ob bereits eine Itraconazol Prophylaxe durchgeführt wurde.

Tabelle 65 Art der Antimykotikatherapie

			Keine		
Therapie-	Anti-		Itraconazol	Itraconazol	
episode	mykose	Umstellung	Prophylaxe	Prophylaxe	Gesamt
1996 bis 1998	Ampho-B	Ambisome		1	1
		keine	5		5
1999 bis 2001	Ampho-B	keine	8	5	13
		Sempera			
		therapeutisch	2	2	4
	Fluconazo				
	1	keine	1		1
2002 bis 2003	Ampho-B	keine	1	2	3
	Sempera	Caspofungin	1		1
		keine		6	6
Gesamt			18	16	34

Im nun folgenden Abschnitt wird für bestimmte Untergruppen die Sterblichkeitsrate dargestellt. Ausgangsgruppe sind dabei die 34 Patienten, bei denen eine Pilzinfektion nachgewiesen werden konnte bzw. bei denen der Verdacht auf eine Pilzinfektion bestand. In Tabelle 66 ist für alle diese Patienten die Verteilung auf die Therapieepisoden mit Erfolg bzw. Misserfolg der durchgeführten antimikrobiellen Therapie dargestellt und die Sterblichkeit für diese Patientengruppe in den Therapieepisoden.

Tabelle 66 Verteilung der Patienten auf die Therapieepisoden und Erfolg/Misserfolg der Therapie mit Sterblichkeitsrate der Gesamtgruppen

Therapie-	Erfolgreiche	Nicht erfolgreiche		
episode	Therapie	Therapie	Gesamt	Sterblichkeit
1996 bis 1998	4	2	6	33,33%
1999 bis 2001	18		18	0,00%
2002 bis 2003	8	2	10	20,00%
Gesamt	27	4	34	11,76%

In Tabelle 67 erfolgt die Darstellung der Sterblichkeit nach Therapieepisoden für die Patienten, bei denen eine Amphothericin-B Therapie durchgeführt wurde, in Abhängigkeit von der maximal eingesetzten Dosishöhe.

Tabelle 67 Dosishöhe der Amphothericin-B Therapie und Sterblichkeit

Therapie-	Dosis	Therapie-	Kein		
episode	Ampho	erfolg	Therapieerfolg	Gesamt	Sterblichkeit
1996 bis 1998	50 mg	2		2	0,00%
	70 mg		1	1	100,00%
	75 mg	1	1	2	50,00%
	80 mg	1		1	0,00%
1999 bis 2001	30 mg	3		3	0,00%
	40 mg	1		1	0,00%
	50 mg	4		4	0,00%
	60 mg	3		3	0,00%
	70 mg	6		6	0,00%
2002 bis 2003	30 mg		1	1	100,00%
	50 mg	1		1	0,00%
	60 mg	1		1	0,00%
Gesamt		23	3	26	11,54%

In Diagramm 24 sind die Sterblichkeitsraten für einzelne Untergruppen nach Therapieepisoden und gesamt dargestellt.

100,00% ■ Sterblichkeit mit Itra. 90,00% Prophylaxe 80,00% ■ Sterblichkeit ohne ltra. 70,00% Prophylaxe 60,00% □ Sterblichkeit mit 50,00% Umstellung 40,00% □ Sterblichkeit ohne 30,00% Umstellung 20,00% ■ Sterblichkeit unter 10,00% Ampho. 0.00% ■ Sterblichkeit unter Itra. 1996 bis 1999 bis 2002 bis Gesamt Therapeutisch 1998 2001 2003

Diagramm 24 Sterblichkeitsrate nach Therapieepisoden

3.3.4 Erregernachweis und Konsequenz

Nach 96 Chemotherapiezyklen kam es zu Infektionen. Wobei bei 26 bereits die Ersttherapie erfolgreich war, während bei 70 Chemotherapiezyklen eine oder mehrere Umstellungen notwendig waren. Dabei konnte bei insgesamt 30 Infektionen der Erreger nachgewiesen werden. Es gelang also bei 31,25% der Infektionen der Keimnachweis. Dabei konnte bei den 26 Zyklen bei denen die Ersttherapie erfolgreich war in 6 Fällen (23,08%) und bei nicht erfolgreicher Ersttherapie in 25 von 70 Fällen (35,71%) ein Erreger nachgewiesen werden. Die Erreger verteilen sich wie folgt auf die Infektionen.

Tabelle 68 Infektionsart und Verteilung des Keimnachweises

Angina tons.	keiner	1
Aspergillose	Aspergillus	2
Enteritis bei		
Mukositis	keiner	1
FUO	keiner	23
H. zoster	Virus	1
hepato-lienal	keiner	1
Mukositis	Candida	1
	keiner	7
Mukositis mit Sepsis	Staphylokokken	1
Pleuritis	keiner	1
Pneumonie	keiner	30
	Klebsiella	
	Pneumoniae	1
	koagulase neg.	
	Staph.	1
	Pseudomonas	1
Pneumonie und		
Sepsis	keiner	1
pseudom. Kolitis	CI. Difficile	1
Sepsis	E. coli	1
	Klebsiella	_
	Pneumoniae	1
	koagulase neg.	_
	Staph.	3
	Pseudomonas	1
	Rothia mucilaginosa	1
	Staph capitis	1
	Staph epidermidis	6
	Staph. Aureus	1
	I Stanbulakakkan	3
	Staphylokokken	
	Staph haemolyticus	3 2
Zahninfektion Zystitis	1	1

In Tabelle 69 erfolgt die Zuteilung der Infektionsart auf die jeweilige Therapieepisode.

Tabelle 69 Zuteilung der Art der Infektion auf die jeweilige Therapieepisode

Therapieepisode	Infektion	Anzahl
	Enteritis bei	
1996 bis 1998	Mukositis	1
	FUO	6
	hepato-lienal	1
	Pneumonie	8
	pseudom. Kolitis	1
	Sepsis	1 3
1999 bis 2001	FUO	15
	H. zoster	1
	Mukositis	3
	Mukositis mit	
	Sepsis	1
	Pneumonie	19
	Sepsis	9
2002 bis 2003	Angina	1 2 2 5
	Aspergillose	2
	FUO	2
	Mukositis	5
	Pleuritis	1
	Pneumonie	6
	Pneumonie und	
	Sepsis	1
	Sepsis	8
	Zahninfektion	1
	Zystitis	1

In Tabelle 70 erfolgt die Darstellung der durchschnittlichen Aplasiedauer in Abhängigkeit davon ob ein Keimnachweis gelang oder nicht.

Tabelle 70 Durchschnittliche Aplasiedauer in Abhängigkeit vom Keimnachweis nach Therapieepisoden

	1996 bis	1999 bis	2002 bis	
Erregernachweis	1998	2001	2003	Gesamtergebnis
gelungen	13,4	18,5	19,2	17,9
Keiner	22,1	16,6	16,1	17,8
Gesamtergebnis	20,0	17,1	17,4	17,8

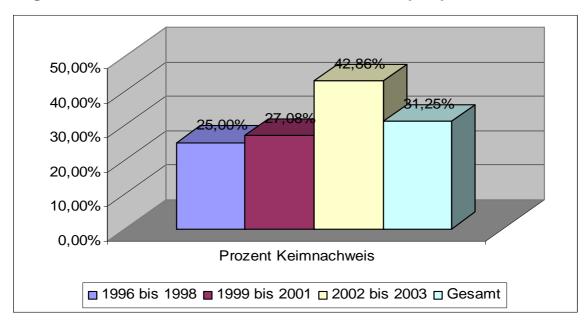

In Tabelle 71 erfolgt die Darstellung der Anzahl an Chemotherapiezyklen nach Therapieepisoden mit und ohne Keimnachweis.

Tabelle 71 Anzahl der Chemotherapiezyklen mit und ohne Keimnachweis nach Therapieepisoden

	1996 bis	1999 bis	2002 bis	
Erregernachweis	1998	2001	2003	Gesamtergebnis
Gelungen	5	13	12	30
Keiner	15	35	16	66
Gesamtergebnis	20	48	28	96

Aus dieser Tabelle ergeben sich folgende Prozentzahlen für die Häufigkeit des Keimnachweises aufgeteilt nach Therapieepisoden.

Diagramm 25 Prozentsatz Keimnachweis nach Therapieepisoden

In der folgenden Tabelle und dem folgenden Diagramm erfolgt die Darstellung, wie oft der Keimnachweis nach Risikogruppen sortiert gelang.

Tabelle 72 Anzahl der Chemotherapiezyklen mit und ohne Keimnachweis nach Risikogruppen

	Hochrisiko-	Standardrisiko-	
Erregernachweis	gruppe	gruppe	Gesamtergebnis
Gelungen	24	6	30
Keiner	49	17	66
Gesamtergebnis	73	23	96

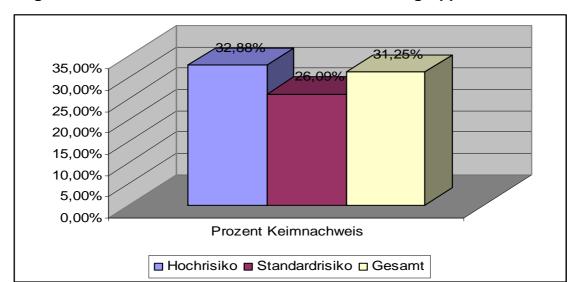
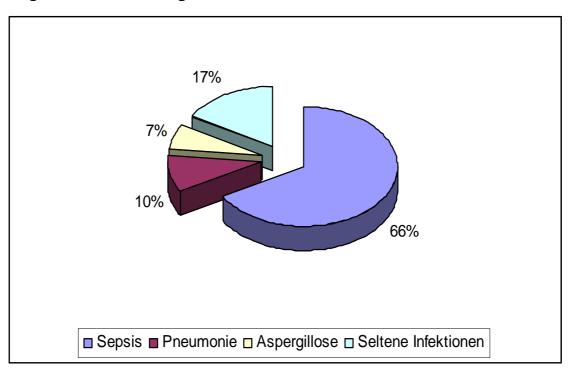



Diagramm 26 Prozentsatz Keimnachweis nach Risikogruppen

In den beiden folgenden Diagrammen erfolgt die Darstellung bei welchen Infektionen ein Keimnachweis gelang bzw. nicht gelang. Dabei sind in den seltenen Infektionen, die zusammengefasst die nur einmal vorkommen.

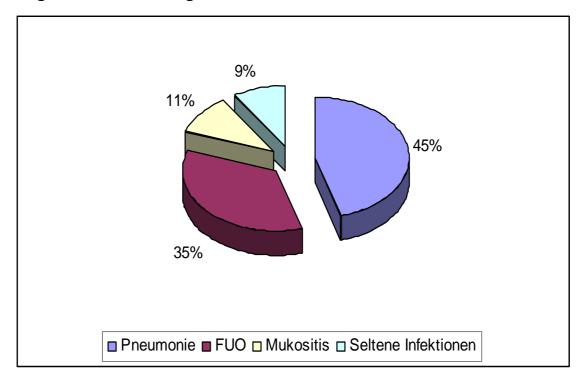


Diagramm 28 Verteilung der Infektionsarten ohne Keimnachweis

Dabei kann man deutlich erkennen, dass es bei bestimmten Infektionen eher gelang den Keim nachzuweisen als bei anderen. So gelang es nur in 3 Fällen bei einer Pneumonie den Erreger zu sichern und in 30 Fällen nicht, jedoch konnte im Falle einer Sepsis der Erreger mit Hilfe von Blutkulturen in 20 Fällen gesichert werden.

In der nächsten Tabelle ist dargestellt, wie sich die Patienten bei denen die Therapie erfolgreich war und die Patienten bei denen die Therapie nicht erfolgreich war auf den Keimnachweis bzw. den fehlenden Keimnachweis verteilen.

Tabelle 73 Verteilung der Patienten mit und ohne erfolgreiche Therapien bezogen auf den Keimnachweis

	Erfolgreiche	Nicht erfolgreiche
Erregernachweis	Therapie	Therapie
Gelungen	26	4
Keiner	60	6
Gesamtergebnis	86	10

Demnach gelang bei 30,23% der Patienten mit erfolgreicher Therapie der Keimnachweis, während bei nicht erfolgreicher Therapie sogar in 40% der Fälle der Keimnachweis gelang.

Um den Keimnachweis zu erlangen wurden bei entsprechendem Verdacht gemäß den geltenden Richtlinien die notwendigen Untersuchungen in die Wege geleitet. Dabei kamen alle mikrobiologischen Methoden (Abstrich, Urin- und Stuhlkultur, Sputum Untersuchung und Blutkultur) und klinischen Methoden zum Einsatz. Im nachfolgenden Diagramm ist dargestellt, mit welchen Methoden der Keimnachweis gelang.

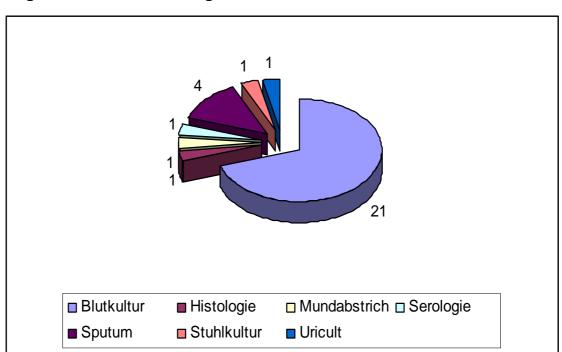


Diagramm 29 Untersuchungsmethoden zum Nachweis der Keime

Dabei zeigt sich, dass am häufigsten mit Hilfe der Blutkultur ein Erregernachweis gelang. Nur selten konnte bei einer Pneumonie mit Hilfe des Sputums ein Erreger nachgewiesen werden. Um etwas über die Sensitivität der einzelnen Untersuchungsmethoden auszusagen erfolgt eine Gegenüberstellung der Häufigkeit von Keimnachweisen in Abhängigkeit von der Art der Infektion, wobei die Infektionen in Gruppen zusammengefasst werden, bei denen eine bestimmte Untersuchungsmethode als besonders geeignet zum Keimnachweis erscheint. So wird z.B. einer Mukositis die Stuhlkultur zugeordnet und einer

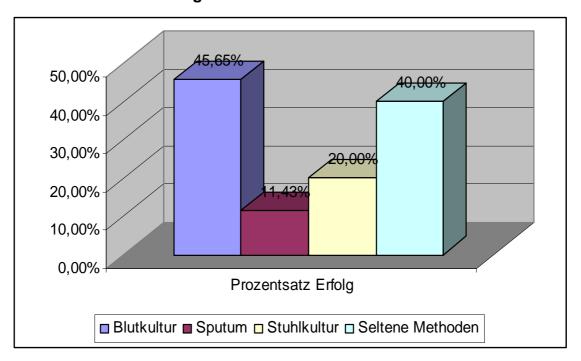

Sepsis die Blutkultur. Besonders schwierig ist dieses natürlich bei den Fällen, bei denen ein FUO vorliegt, da kein Hinweis auf die Infektionsquelle vorliegt. Da hier sicher auch ein größerer Teil nicht entdeckter Bakteriämien vorliegt, werden diese Fälle der Blutkultur zugeordnet, da diese bei allen diesen Fällen auch sicher durchgeführt wurde. In der folgenden Tabelle ist deshalb erstmal dargestellt, wie die Gruppenzuordnung getroffen wurde und wie oft hierbei bestimmte Methoden erfolgreich waren.

Tabelle 74 Zuordnung der Infektionen zu Untersuchungsmethoden und Darstellung, welche Methoden erfolgreich waren

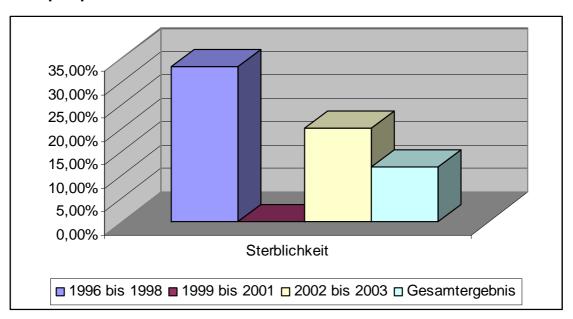
Erwartete Untersuchungs-		Erfolgreiche Untersuchungs-	
methode	Infektion	methode	Anzahl
Abstrich	Angina	nicht erfolgreich	1
	Zahninfektion	nicht erfolgreich	1
Blutkultur	FUO	nicht erfolgreich	23
	hepato-lienal	nicht erfolgreich	1
	Mukositis mit Sepsis	Blutkultur	1
	Pneumonie und		
	Sepsis	nicht erfolgreich	1
	Sepsis	Blutkultur	20
Punktat	Pleuritis	nicht erfolgreich	1
Serologie	H. zoster	Serologie	1
Sputum	Aspergillose	Histologie	1
		Sputum	1
	Pneumonie	nicht erfolgreich	30
		Sputum	3
	Enteritis bei		
Stuhlkultur	Mukositis	nicht erfolgreich	1
	Mukositis	Mundabstrich	1
		nicht erfolgreich	7
	pseudom. Kolitis	Stuhlkultur	1
Urinkultur	Zystitis	Uricult	1

In Diagramm 30 werden nun die Prozentzahlen, die sich aus Tabelle 70 ergeben graphisch dargestellt.

Diagramm 30 Anteil erfolgreicher Untersuchungen im Vergleich zur erwarteten Untersuchungsmethode

In Tabelle 75 werden die unterschiedlichen Sterberaten für die einzelnen Therapieepisoden und gesamt in Abhängigkeit vom Keimnachweis dargestellt.

Tabelle 75 Sterberate in Abhängigkeit vom Keimnachweis bezogen auf die Therapieepisoden


	Sterberate bei	Sterberate ohne	Sterberate
Therapieepisode	Erregernachweis	Erregernachweis	gesamt
1996 bis 1998	40,00%	20,00%	25,00%
1999 bis 2001	0,00%	5,71%	4,17%
2002 bis 2003	16,67%	6,25%	10,71%
Gesamt Sterberate	13,33%	9,09%	10,42%

Dabei unterschied sich insbesondere auch das Überleben in Abhängigkeit davon, ob die Ersttherapie erfolgreich war oder nicht. Bei erfolgreicher Ersttherapie überlebten alle Patienten, während bei nicht erfolgreicher Ersttherapie 14,29% der Patienten starben.

Jetzt soll noch für bestimmte Untergruppen die Sterblichkeitsrate dargestellt werden. In Diagramm 31 ist die Sterblichkeit von (Pilz-)Pneumonien dargestellt,

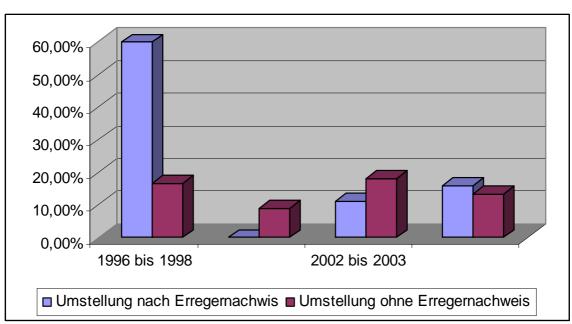

dass heißt für alle Patienten, bei denen entweder der Verdacht auf eine Pilzpneumonie bestand, oder eine Pilzpneumonie gesichert werden konnte.

Diagramm 31 Sterblichkeit bei (Pilz-)Pneumonie aufgeteilt nach Therapieepisoden

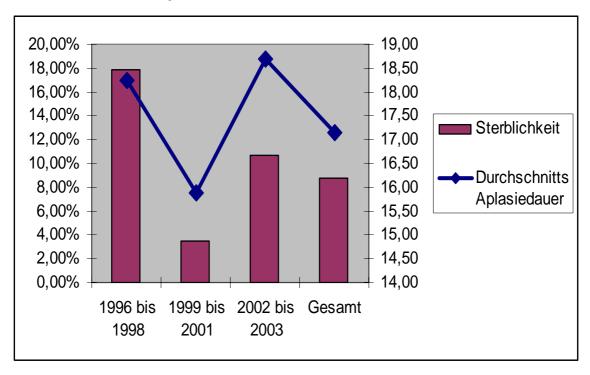

Im jetzt folgenden Diagramm wird die Sterblichkeit für die Patienten dargestellt, bei denen nach einem positiven Kulturergebnis eine Therapieumstellung der Antibiose erfolgte.

Diagramm 32 Sterblichkeit in Abhängigkeit von Therapieumstellungen nach einem Kulturergebnis

Im nun folgenden Diagramm wird die Sterblichkeit für die Patienten mit einer Leukämie in Abhängigkeit von der Therapieepisode zusammenfassend dargestellt.

Diagramm 33 Sterblichkeit der Patienten mit einer Leukämie in Abhängigkeit von der Therapieepisode und Darstellung der durchschnittlichen Aplasiedauer

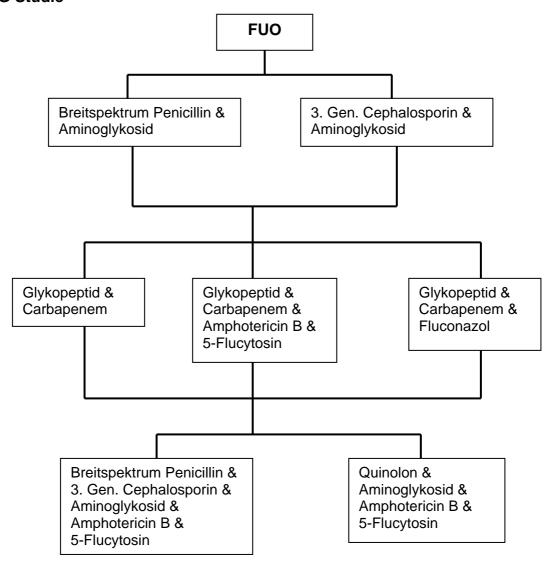
- 3.4 Vergleich der vorliegenden Daten mit der PEG II Studie
- 3.4.1 Daten der PEG II Studie⁴⁶
- 3.4.1.1 Standards der Therapie

Ziel der PEG Studie war es Sicherheit und Effizienz eines empirischen Behandlungsschemas zu testen, wobei frühzeitig der Einsatz von Antimykotika eingeführt wurde. Eingeschlossen wurden Patienten mit einer dokumentierten Infektion oder FUO.

In der Studie wurde folgendes Therapieschema verwendet:

Stufe 1: Breitspektrum Penicillin oder Breitspektrum Cephalosporin in Kombination mit einem Aminoglykosid.

Bei fehlendem Ansprechen (Fieberfreiheit) innerhalb von 72 Stunden erfolgte eine Randomisation auf verschiedene Therapiearme in der Stufe 2 mit folgenden Möglichkeiten:


Stufe 2: Imipenem und ein Gylkopeptid oder Imipenem, Glykopeptid und Fluconazol oder Imipenem, Glykopeptid, Amphotericin B und 5 Flucytosin Bei weiterhin fehlendem Ansprechen (Fieberfreiheit) innerhalb von 72 Stunden erfolgt eine weitere Randomisation auf verschiedene Therapiearme in der Stufe 3.

Stufe 3: Penicillin, Cephalosporin, Aminoglykosid, Amphotericin B und 5 Flucytosin oder Quinolon, Aminoglykosid, Amphotericin B und 5 Flucytosin Im Falle einer Pneumonie erfolgte eine Therapie mit Amphotericin B mit oder ohne 5 Flucytosin.

_

⁴⁶ Acute Leukemias VII, Experimental Approaches and Novel Therapies, Hiddemann et al., Springer Verlag Berlin Heidelberg 1998

Diagramm 34 Flowchart zur Eskalationstherapie bei FUO im Rahmen der PEG Studie

3.4.1.2 Patientendaten

Insgesamt wurden von 1991 bis 1996 1041 Patienten in die PEG II Studie randomisiert. Von diesen Patienten konnten insgesamt 934 Patienten ausgewertet werden. Die Altersspanne lag von 17 bis 92 Jahren. Der Altersmedian lag bei 45,3 Jahren. Die Verteilung zwischen Männern und Frauen lag bei 59,4 % Männern und 40,6 % Frauen.

Diagramm 35 Diagnoseverteilung der eingeschlossenen Patienten der PEG II Studie

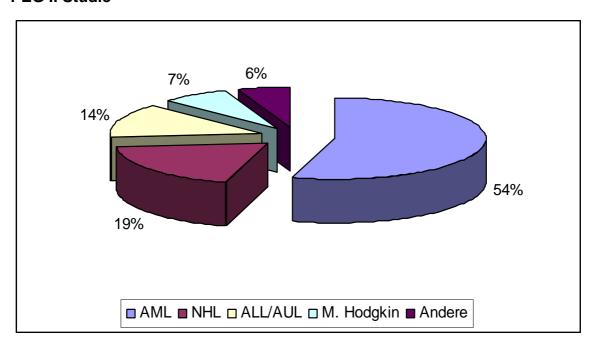
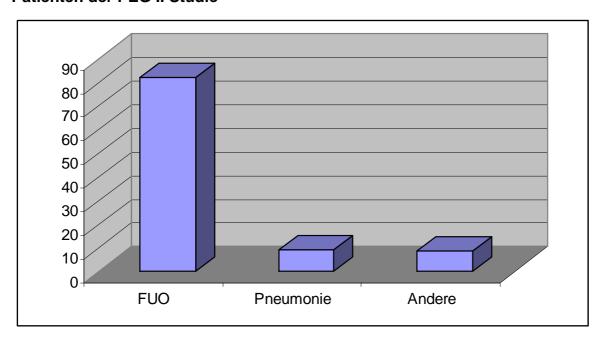



Diagramm 36 Verteilung der Infektionsarten der eingeschlossenen Patienten der PEG II Studie

3.4.1.3 Ansprechraten auf die Therapie

Für die Therapie von Patienten mit FUO wurden die Ansprechraten innerhalb der PEG II Studie veröffentlicht. Es muss zwischen den drei Stufen der Therapieeskalation unterschieden werden. In Tabelle 76 sind die Daten zusammengefasst.

Tabelle 76 Ansprechraten der Patienten mit FUO innerhalb der PEG II Studie

			Rate nicht auswertbarer	
Therapiestufe	Ansprechrate	Sterberate	Patienten	
Stufe 1	51,80%	2,10%		6,50%
Stufe 2	59,10%	1,20%		8,80%
Stufe 3	52,20%	4,30%		26,10%

Zusammenfassend lag die gesamt Ansprechrate für die Patienten mit FUO nach allen Therapiemodifikationen bei 97,7%.

3.4.2 Vergleich der Daten

3.4.2.1 Vergleichen der Therapiestandards

Die vorgegebenen Therapiestandards für die PEG II Studie wie im Diagramm Flowchart zur Eskalationstherapie bei FUO im Rahmen der PEG Studie sind vergleichbar mit den vorgegebenen Therapiestandards bei unseren Patienten, die sich an den Empfehlungen der DGHO orientieren, soweit diese gemäß den Therapieepisoden vorgegeben waren. In der PEG II Studie kamen in den unterschiedlichen Therapiestufen folgenden Medikamente zum Einsatz:

- Stufe 1: Breitspektrum Penicillin oder Breitspektrum Cephalosporin in Kombination mit einem Aminoglykosid.
- Stufe 2: Imipenem und ein Gylkopeptid oder Imipenem, Glykopeptid und Fluconazol oder Imipenem, Glykopeptid, Amphotericin B und 5 Flucytosin
- Stufe 3: Penicillin, Cephalosporin, Aminoglykosid, Amphotericin B und 5 Flucytosin oder Quinolon, Aminoglykosid, Amphotericin B und 5 Flucytosin Gemäß den Empfehlungen der DGHO wurde gemäß einer Risiko Stratifikation (Hochrisiko, Standardrisiko) folgende Therapie gewählt:

Initialtherapie: Breitspektrum Penicillin oder Dritt- Viertgenerations-Cephalosporin in Kombination mit einem Aminoglykosid oder eine Monotherapie mit Ceftazidim, Cefepim, Piperacillin mit Tazobactam oder ein Carbapenem

In der Standardrisikogruppe:

Erste Modifikation: Carbapenem, Glykopeptid oder Ceftazidim, Cefepim, Piperacillin mit Tazobactam in Kombination mit einem Aminoglykosid oder nach Vortherapie mit einem Carbapenem eine Kombination aus Glykopeptid und Chinolon

Zweite Modifikation: Carbapenem, Glykopeptid, Fluconazol oder Amphotericin B oder nach eine Vortherapie mit einem Carbapenem Glykopeptid, Chinolon, Fluconazol oder Amphotericin B

In der Hochrisikogruppe:

Erste Modifikation: Carbapenem, Glykopeptid, Fluconazol oder Carbapenem, Glykopeptid, Amphotericin B oder nach Vortherapie mit einem Carbapenem Glykopeptid, Chinolon, Fluconazol oder Amphotericin B

Folgende Unterschiede sind jedoch vor allem herauszustellen. Die Empfehlungen der PEG II Studie beziehen sich in den veröffentlichten Daten auf die Therapie bei FUO. Es fehlt eine Risikostratifikation bezogen auf die erwartete Aplasiedauer. Dabei besteht kein Unterschied in der durchgeführten Therapie.

3.4.2.2 Vergleichen der Patientendaten

Die Patienten, die in unserem Haus behandelt wurden waren im Durchschnitt älter als in der PEG II Studie. Zwar lag die Altersspanne nur zwischen 16 und 74 Jahren (PEG II Studie 17 bis 92 Jahren), jedoch war der Altersmedian mit 55 Jahren bei einem Gesamtaltersdurchschnitt von 51,3 Jahren deutlich höher als in der PEG II Studie (45,3 Jahre). Der Anteil an Männern lag in der PEG II Studie deutlich höher als bei unseren Patienten. In der PEG II Studie waren fast 60% der eingeschlossenen Patienten Männer, während bei unseren Patienten das Verhältnis fast ausgeglichen war (Anteil Männer 52,08%).

Die Verteilung der Diagnosen ist ähnlich. Den höchsten Anteil machten Patienten mit einer AML aus (PEG II: 54% gegenüber 53%). Der Anteil an Patienten mit einem NHL oder einem M. Hodgkin lag ebenfalls relativ eng beieinander (PEG II: 19% NHL und 7% M. Hodgkin gegenüber 14% NHL und 9% M. Hodgkin). Der Anteil an ALL Patienten war in der PEG II Studie höher als bei uns (PEG II: 14% gegenüber 6%). In unserer Untersuchung spielten Patienten mit einem Plasmozytom eine größere Rolle (8%) und Patienten mit seltenen Erkrankungen machten immerhin 10% der Patienten aus, während bei der PEG II Studie diese Gruppe lediglich 6% ausmachte.

Der Anteil an Patienten mit FUO lag in unserer Gruppe deutlich niedriger als in der PEG II Studie. Zu Beginn der PEG II Studie hatten 82,2% der Patienten ein FUO, während bei uns nur 23,96% der Patienten mit einer Infektion ein FUO durchlebten.

3.4.2.3 Vergleichen der Therapieergebnisse

Bei der PEG II Studie wurden die Therapieergebnisse bei der Behandlung von Patienten mit FUO ausgewertet. Hier werden also nun die Ergebnisse der Patienten mit FUO aus unserer Klinik mit denen der PEG II Studie verglichen. In der PEG II Studie zeigten sich folgenden Ansprechraten auf die Therapie für

Patienten mit

FUO:

Die Initialtherapie führte bei 51,8% zu einem Therapieansprechen. In der ersten Modifikationsstufe erfolgte ein Ansprechen auf die Therapie von 59,1% und in der zweiten Modifikationsstufe erfolgte ein Ansprechen bei 12 von 23 Patienten (52,2%). Insgesamt kam es damit zu einem Ansprechen von 97,7%. Innerhalb der Ersttherapie verstarben 16 Patienten (2,1%). Nach der ersten Modifikation verstarben noch weitere 2 Patienten (2,1%). Nach der zweiten Modifikation verstarb noch ein weiterer Patient (4,3%).

Insgesamt verstarben 6,5% der Patienten innerhalb der Studienepisode.

Der Anteil an Patienten mit FUO lag bei uns deutlich niedriger als in der PEG II Studie. Insgesamt kam bei den untersuchten Chemotherapiezyklen in 23 Fällen als Infektion ein FUO vor. Die durchschnittliche Aplasiedauer bei diesen

Patienten lag dabei bei 17,3 Tagen, lag also im Hochriskobereich für diese Patienten. Keiner dieser Patienten ist dabei verstorben. Bei 8 der 23 Patienten war bereits die Antibiotische Ersttherapie erfolgreich (Ansprechrate: 34,8%). Bei den Patienten bei denen eine Umstellung notwendig wurde waren im Durchschnitt 1,8 Umstellungen notwendig (1 bis 4 Umstellungen). Bei den Patienten bei denen eine Umstellung notwendig wurde lag die Durchschnitts Aplasiezeit bei 19,7 Tagen, also höher als bei den Patienten, bei denen die Ersttherapie bereits wirksam war.

Bei der Ersttherapie wurde in 5 von 8 Fällen der vorgegebene Therapiestandard eingehalten. Bei den Therapieumstellungen wurde in einem Fall der Therapiestandard nicht eingehalten, in den restlichen Fällen wurde entweder der Therapiestandard eingehalten, oder es gab zum Untersuchungszeitpunkt noch keinen vorgegebenen Therapiestandard.

Für die Untergruppe von Patienten mit FUO zeigt sich also nach allen Therapiemodifikationen eine 100% Ansprechrate der Infektion bei einer Sterberate von 0%, obwohl die Ansprechrate auf die Ersttherapie mit 34,8% deutlich niedriger ausfällt als bei der PEG II Studie mit 59,1%.

Insgesamt verstarben 6,5% der Patienten innerhalb der PEG II Studie. Bei uns lag die Sterberate bezogen auf alle Chemotherapiezyklen mit einer Infektion bei 10,4%, wobei jedoch das Risikoprofil bezogen auf die durchlebten Infektionen (insbesondere hoher Anteil an Pneumonien) in unserem Patientengut deutlich ungünstiger ausfiel. Bezogen auf die Sterberate für die Untergruppe an Patienten mit FUO lag unser Ergebnis mit 0% besser als in der PEG II Studie, wobei jedoch auch die relativ kleine Fallzahl bei unserer Unersuchung berücksichtigt werden muss.

4 Diskussion

4.1 Patientendaten

4.1.1 Altersstruktur

Bei den untersuchten Patienten handelt es sich um, auch im Vergleich zu anderen Gruppen, eine Gruppe mit höheren Risiken. So lag das Alter im Median um 10 Jahre höher als z. B. in der PEG II Studie (45 Jahre vs. 55 Jahre), obwohl die Altersspanne mit 16 bis 74 Jahre niedriger liegt als in der PEG Studie mit 17 bis 92 Jahren. Dieses zeigt einen höheren Anteil an älteren Patienten in unserer Gruppe an. Auch über die Therapiejahre verteilt lag der Altersdurchschnitt in unterschiedlichen Bereichen. So schwankte das Durchschnittsalter zwischen 62,6 Jahren in 1996 und 42,6 Jahren in 1997. In den Jahren mit den meisten Patienten, die in unsere Untersuchung eingeschlossen wurden lag das Durchschnittsalter bei 47,5 (2000) bzw. 57,6 (2001) Jahren.

Die Geschlechtsverteilung ist in unserer Gruppe fast ausgeglichen (Anteil der Männer 52,08%).

Insgesamt stellt sich die Altersstruktur also ungünstiger als z.B. in der PEG II Studie dar, da der Altersdurchschnitt höher liegt, was als prognostisch ungünstig zu werten ist.

4.1.2 Diagnosestruktur

Anhand der Verteilung der Diagnosen, zeigt sich ebenfalls ein höheres Risiko für unsere Patienten im Vergleich zur PEG II Studie. Zwar sind die Anteile der Patienten mit AML (53% gegenüber 54%), NHL (14% gegenüber 19%) und M. Hodgkin (9% gegenüber 7%) vergleichbar, der Anteil an ALL (6% gegenüber 14%) Patienten war jedoch in der PEG II Studie höher als in unserer Untersuchung, in der Patienten mit Plasmozytom (8%) und anderen Erkrankungen (10%) deutlich häufiger als in der PEG II Studie (3%) vorkamen. Da Patienten mit einer ALL in der Regel jünger sind als Patienten mit einem Plasmozytom, und die Patienten mit seltenen Grundkrankheiten häufig solide Tumoren hatten (z. B. Bronchialkarzinom, Ovarialkarzinom, Liposarkom), die sich schlechter behandeln lassen, liegt hier, neben dem höheren Alter, ein

zusätzliches Risiko in der Diagnosestruktur unserer Patienten, insbesondere auch gegenüber der PEG II Studie.

Betrachtet man die Diagnosestruktur im Zeitablauf unserer Untersuchung, so zeigt sich, dass insbesondere die absolute Anzahl an Patienten mit AML stark angestiegen ist. In den beiden ersten Jahren lag dabei der Anteil an AML Patienten bei 100%, wobei jedoch auch nur 3 bzw. 5 Patienten in unsere Untersuchung aufgenommen wurden. Erst ab 1998 wurden verstärkt auch Patienten mit anderen Erkrankungen in unserem Haus mit aplasieogenen Chemotherapien behandelt.

4.2 Aplasiedaten

4.2.1 Effekt der Aplasiedauer auf die Infektionsrate

Für die gesamte Gruppe lag die durchschnittliche Aplasiezeit bei 13,4 Tagen, also über 10 Tagen, und entspricht somit einer Hochriskogruppe. Dabei lag die Infektionsrate für alle untersuchten Chemotherapiezyklen bei 52,2%. Dabei ist die Infektionsrate für die Standardrisiko Patienten mit 25,3% deutlich niedriger als für die Hochrisikopatienten mit 78,5%. Dieses zeigt deutlich, dass mit steigender Aplasiezeit die Wahrscheinlichkeit für eine Infektion zunimmt.

In den einzelnen Therapiejahren schwankt die Durchschnitts Aplasiezeit zwischen 9,15 und 21,3 Tagen, wobei jedoch auch zu berücksichtigen ist, dass in den Jahren 1996 bis 1998 nur relativ wenige Patienten in die Untersuchung eingeschlossen wurden, und somit auch nur relativ wenige Chemotherapiezyklen zur Auswertung zur Verfügung standen. In den Jahren 2000 und 2001 war die Chemotherapiezyklen Anzahl am höchsten (41 bzw. 44 Zyklen) und die Aplasiezeit lag in etwa im gesamt Durchschnitt (12,8 bzw. 13,4 gegenüber 13,4 Tagen). Vergleicht man nun die Infektionsraten für die einzelnen Jahre so fällt auf, dass zu Beginn der Untersuchung (1996 bis 1998) die Infektionsraten höher lagen (über 60%), als in den darauf folgenden Jahren (33,34% bis 56,82%). Eine Ausnahme bildet das Jahr 2003 mit einer Infektionsrate von 76,92%.

In den Jahren 1996 bis 1998 lag die durchschnittliche Aplasiedauer höher als in den Jahren 1999 bis 2002. Dieses lag vor allem an einer Zunahme von Patienten aus der Standardrisikogruppe. Es zeigte sich jedoch auch zusätzlich eine Zunahme an Hochrisikopatienten. So lag in 2002 trotz einer durchschnittlichen Aplasiezeit von 11,6 Tagen die Infektionsrate mit 33,34% unter der von 1999, obwohl die durchschnittliche Aplasiezeit mit 9,15 Tagen in diesem Jahr am niedrigsten lag.

Zusätzlich fällt auf, dass in den Jahren, in denen die durchschnittliche Aplasiezeit über 13 Tagen liegt, die Infektionsrate immer über 50% ist.

Es stellt sich nun die Frage, warum die Infektionsrate in 2003 höher liegt als in den Jahren 1999 bis 2002. Betrachtet man hier die einzelnen Gruppen genau, so zeigt sich, dass zum einen die Aplasiedauer mit 14,6 Tagen relativ hoch liegt, zum anderen das Durchschnittsalter mit 53,1 Jahren und einem Median von 60 ebenfalls sehr hoch liegt und zusätzlich der Anteil an Patienten mit einer AML höher ist. Dieses ist noch einmal in Tabelle 77 für die einzelnen Therapiejahre zusammengestellt.

Tabelle 77 Therapiejahr mit durchschnittlicher Aplasiedauer, Altersstruktur und Anteil an AML Patienten

Therapie-	Durchschnitts	Alters-	Alters-	Anteil	Infektions-
jahr	Aplasiedauer	durchschnitt	median	AML/ALL	rate (%)
				Patienten (%)	
1996	14,8	62,6	64	100	66,67
1997	16,5	42,6	37	100	61,54
1998	21,3	54,3	56,5	83	80
1999	9,15	42,7	44	44	35
2000	12,8	47,5	49,5	40	39,02
2001	13,4	57,6	62	59	56,82
2002	11,6	50,4	52	46	33,34
2003	14,6	53,1	60	68	76,92

Anhand dieser Tabelle kann man sehr gut erkennen, das in den Jahren 1996 bis 1998, 2001 und 2003 die Risikostruktur besonders ungünstig war. So lagen in diesen Jahren die durchschnittliche Aplasiedauer, der Altersdurchschnitt, der

Altersmedian und der Anteil an Patienten mit akuter Leukämie besonders hoch. Neben der Aplasiedauer als einem wesentlichen Faktor für die Infektionsrate sind also auch das Alter und die Diagnosestruktur Risikofaktoren für eine erhöhte Infektionsrate.

4.2.2 Effekt einer Isolation im Aplasiebereich auf die Infektionsrate

Zwischen 2000 und 2001 wurde ein Aplasiebereich mit entsprechender Schleuse und 2-Bett Zimmern errichtet. Parallel dazu wurden Schulungen des Personals und Fachqualifikationen durchgeführt. Alle Patienten, die bis einschließlich zum Jahr 2000 behandelt wurden, werden in die Gruppe vor Errichtung des Aplasiebereiches zugeordnet, alle Patienten, die danach behandelt wurden werden in die Gruppe nach Errichtung des Aplasiebereiches zugeordnet.

Für die Infektionsrate zeigt sich beim Vergleich dieser beiden Gruppen ein Anstieg der Infektionsrate von 47,8% auf 56,38% für die Gesamtgruppe. Unterteilt auf die Risikogruppen stellt sich ein etwas anderes Bild dar. Hier steigt die Infektionsrate in der Standardrisikogruppe von 19,05% auf 27,14% und in der Hochrisikogruppe fällt die Infektionsrate von 82,14% auf 76,92%.

Um den Effekt der verbesserten Isolation beurteilen zu können muss anhand der herausgearbeiteten Risikofaktoren (Aplasiedauer, Alter, Diagnosestruktur) eine Risikobeurteilung stattfinden. Zusätzlich muss berücksichtigt werden, dass nicht alle Patienten, die nach der Errichtung des Aplasiebereiches behandelt wurden auch tatsächlich im Aplasiebereich behandelt wurden, sondern teilweise noch immer auf der Allgemeinstation behandelt wurden.

In Tabelle 78 erfolgt die Darstellung der Risikoadjustierung.

Tabelle 78 Darstellung der Risikofaktoren bezogen auf die Errichtung des Aplasiebereiches

Zeitraum	Durchschnittliche	Durchschnittliches	Anteil an
	Aplasiedauer	Alter	Leukämie Patienten
Vor Errichtung	13,62 Tage	47,95 Jahre	57,78%
Aplasiebereich			
Nach Errichtung	13,26 Tage	54,3 Jahre	58,82%
Aplasiebereich			

Gemäß den Risikofaktoren zeigt sich für die Patienten nach Errichtung des Aplasiebereiches ein höheres Risiko. Die durchschnittliche Aplasiedauer liegt zwar etwa auf einem Niveau, das Alter ist jedoch im Durchschnitt deutlich höher, und der Anteil an Leukämiepatienten liegt ebenfalls leicht höher, so dass hierdurch eine höhere Infektionsrate zu erklären ist.

Betrachtet man nur die Patienten, die auch tatsächlich im Aplasiebereich behandelt wurden, so kann man erkennen, dass es sich hier um ein besonderes Risikoklientel handelt. Das Durchschnittsalter liegt bei 52,9 Jahren, der Anteil an Leukämiepatienten liegt bei 85% und die durchschnittliche Aplasiedauer liegt bei 16,6 Tagen. Für diese Patienten liegt die Infektionsrate insgesamt bei 70,73%. Bezogen auf die Hochrisikogruppe liegt die Infektionsrate trotz höherer Risikoindikatoren deutlich unter den 78,5%.

Insgesamt konnte also durch Errichtung des Aplasiebereiches unter Berücksichtigung der Risikoadjustierung eine Reduktion der Infektionsrate erreicht werden.

In der Literatur werden für Patienten mit Neutropenie (bei Neutropenie Grad IV mit Neutrophilen Werten unter 0,5 X 10⁹ /I) zwischen 10-20% und über 50% angegeben.⁴⁷ Berücksichtigt man das Risikoprofil der bei uns behandelten Patienten, so zeigt sich eine vergleichbare Infektionsrate zwischen unseren

⁴⁷ Bow, E.J. Infection Risk and cancer chemotherapy: the impact of the chemotherapeutic regime in patients with lymphoma and solid tissue malignancies Journal of Antimicrobial Chemotherapy 1998; 41:

Patienten (ca. 20% in der Standardrisikogruppe und ca. 80% in der Hochrisikogruppe) und den Angaben in der Literatur.

4.2.3 Effekt der Aplasiedauer auf den Erfolg der Ersttherapie und die Sterberate Insgesamt kam es während der Untersuchung bei 96 Chemotherapiezyklen zu einer Infektion. 23 Infektionen kamen dabei in der Standardrisikogruppe vor und 73 Infektionen in der Hochrisikogruppe. Dabei konnte in der Standardrisikogruppe bei den kurzen Aplasiedauern (5 bzw. 6 Tage) immer ein Erfolg der Ersttherapie verzeichnet werden. Erst ab einer Aplasiedauer von mindestens 7 Tagen waren Therapieumstellungen überhaupt notwendig. Für die Standardrisikogruppe konnte somit eine Erfolgsrate der Ersttherapie von 65,2% erreicht werden.

Für die Hochrisikogruppe lag die Erfolgsrate der Ersttherapie lediglich bei 15,1%, wobei ab einer Aplasiezeit von 26 Tagen immer eine Therapieumstellung notwendig war.

Neben der höheren Infektionsrate bei langer Aplasie zeigt sich also auch, dass bei längerer Aplasiezeit die Therapie einer auftretenden Infektion immer schwieriger wird. Als wesentlicher Faktor muss hierbei der fehlende Anstieg der Leukozyten gesehen werden, um die Infektion erfolgreich zu überstehen. Aus diesem Blickwinkel gesehen, muss dann die Dauer der Aplasiezeit auch Auswirkungen auf die Sterberate haben.

Bei den 96 Infektionen sind insgesamt in 10 Fällen die Patienten verstorben (Gesamtsterblichkeit bezogen auf die Chemozyklen mit Infektion: 10,4%). Dabei lag die durchschnittliche Aplasiezeit mit 22,3 Tagen deutlich über der der Gesamtgruppe. Die Spannweite lag dabei zwischen 11 und 15 Tagen. In Tabelle 47 ist dargestellt, wie sich die Situation in den einzelnen Therapieepisoden darstellt. Dabei fällt auf, dass obwohl die Anzahl an Chemotherapiezyklen in der ersten Episode bis 1999 niedriger lag als in den anderen Episoden, in dieser Zeit genauso viele Patienten verstarben wie in den beiden nachfolgenden Therapieepisoden. Dabei lag die durchschnittliche Aplasiezeit als ein wesentlicher Risikofaktor in der Therapieepisode ab 2001 mit

24 Tagen für die verstorbenen Patienten sogar noch über der von den Patienten bis 1999.

Ein wesentlicher Risikofaktor für das versterben eines Patienten ist eine Aplasiezeit im Hochrisikobereich (über 10 Tage), wobei eine Aplasiezeit von mehr als 20 Tagen einen kritischen Punkt zu markieren scheint.

4.2.4 Effekt der Infektionsart auf den Erfolg der Ersttherapie und die Sterberate Neben der Aplasiedauer hat auch die Infektionsart einen Effekt auf den Erfolg einer antibiotischen Ersttherapie und die Sterberate. Dieses lässt sich gut aus den Diagrammen 9, 10 und 15 erkennen, in denen die Infektionsarten für eine erfolgreiche Ersttherapie, eine nicht erfolgreiche Ersttherapie und die Infektionsarten für die verstorbenen Patienten dargestellt sind. In diesen Diagrammen zeigen sich dabei erhebliche Unterschiede. Bei einer erfolgreichen Ersttherapie sind Pneumonien und Sepsis Fälle deutlich seltener vertreten als bei nicht erfolgreicher Ersttherapie. Dafür ist der Anteil an Fällen mit FUO deutlich höher als in der Gruppe mit nicht erfolgreicher Ersttherapie. Ansonsten spielen in der Gruppe mit erfolgreicher Ersttherapie vorwiegend seltener Infektionen (Angina, H. zoster, Zystitis) eine relativ große Rolle. In der Gruppe mit nicht erfolgreicher Ersttherapie fällt vor allem der hohe Anteil an Fällen mit Pneumonie und Sepsis auf. Diese Infektionen lassen sich in Aplasie offensichtlich nicht besonders gut behandeln. Dieses zeigt sich auch in der Literatur. So wird die Sterblichkeit eines respiratorischen Versagens mit zusätzlicher Beatmung mit 82% angegeben. 48 Bei Patienten mit unklaren Lungeninfiltraten wir die Sterblichkeit abhängig von der zugrunde liegenden Erkrankung und ob eine Infektion gesichert wurde mit 62% bis zu 100% angegeben. 49 Patienten mit einer Pneumonie bzw. dem V. a. eine Pneumonie haben also ein hohes Risiko im Rahmen einer Neutropenie an dieser Pneumonie zu versterben. Fälle mit FUO spielen zwar auch eine größere Rolle, jedoch liegt der Anteil dieser Fälle niedriger als in der Gruppe mit

⁴⁸ Peters S. G., Meadows J. A., Gracey D. R. Outcome of respiratory failure in hematologic malignancy. Chest 1988; 94: 99-102

⁴⁹ Canham E. M., Kennedy T. C., Merrick T.A. Unexplained pulmonary infiltrates in the compromised patient. An invasive investigation in a consecutive series. Cancer 1983; 52: 325-329

erfolgreicher Ersttherapie. Das besondere Risiko von Fällen mit Pneumonie und Sepsis zeigt sich aber vor allem in Diagramm 15. 60% der Patienten die verstarben, verstarben an einer Pneumonie und 20% der Patienten die verstarben, verstarben an einer Sepsis.

Hieraus lässt sich auch erkennen, dass Patienten, die eine Pneumonie erleiden und bei denen die Ersttherapie nicht anspricht, ein besonderes Risiko haben an der Pneumonie zu versterben.

4.3 Therapiedaten

4.3.1 Effekt der Prophylaxeformen

Bei fast allen Chemotherapiezyklen wurde eine Prophylaxe durchgeführt. Lediglich bei 8 der 184 untersuchten Chemotherapiezyklen (4%) wurde gar keine Prophylaxe durchgeführt. Bei diesen Patienten handelt es sich im Durchschnitt um Standardrisiko Patienten mit einer durchschnittlichen Aplasiezeit von 8,75 Tagen. Für diese Patienten lag dabei die Infektionsrate bei 37,5%, was, insbesondere bezogen auf die relativ kurzen Aplasiezeiten, ein hoher Wert ist.

In Tabelle 34 sind für die einzelnen Prophylaxeformen die Infektionsraten mit Unterteilung auf die Risikogruppen dargestellt. Um die Infektionsrate für die unterschiedlichen Prophylaxeformen in ihrer Wirksamkeit beurteilen zu können muss zusätzlich noch Tabelle 35 berücksichtigt werden, in der für die einzelnen Gruppen die durchschnittliche Aplasiedauer dargestellt ist, da die Aplasiedauer ein wesentlicher Risikofaktor für eine Infektion darstellt.

Für die Standardrisikogruppe zeigt sich beim Vergleich der durchschnittlichen Aplasiedauern bei den Chemotherapiezyklen mit Infektion ein höherer Wert als bei den Chemotherapiezyklen ohne Infektion (6,8 gegenüber 7,8 Tage). Dabei ist die durchschnittliche Aplasiedauer für die Standardrisikogruppe mit Infektion und mit vollständiger Prophylaxe mit 8,5 Tagen überdurchschnittlich hoch. Insgesamt liegt die Infektionsrate für Patienten in der Standardrisikogruppe mit vollständiger Prophylaxe mit 30,6% höher als in den restlichen Prophylaxe Gruppen. Analysiert man die restlichen Prophylaxe Gruppen, so fällt insbesondere auf, dass bei fehlender antibiotischer Prophylaxe die

Infektionsrate bei 100% lag. Dabei konnte auch in der Literatur gezeigt werden, dass eine antimikrobielle Prophylaxe in der Lage ist, die Rate an Infektionen und Phasen mit Fieber zu senken, ohne jedoch die Sterblichkeit zu beeinflussen. Hier sind jedoch lediglich 2 Chemotherapiezyklen überhaupt betroffen, so dass hier durchaus auch ein zufälliger Effekt eine Rolle spielen kann. In der Gruppe in der lediglich eine antibiotische Prophylaxe durchgeführt wurde lag die Infektionsrate (bei immerhin 7 Chemotherapiezyklen) bei 0%. Die antibiotische Prophylaxe scheint also in der Standardrisikogruppe besonders wichtig zu sein, während Bactrim und Amphomoronal für die Infektionsrate nur eine untergeordnete Rolle spielen, wobei jedoch im Rahmen dieser Untersuchung keine sicher nachweisbare PcP Pneumonie vorlag.

Auch in der Hochrisikogruppe liegt die durchschnittliche Aplasiedauer für die Chemotherapiezyklen mit Infektion deutlich höher als für die Chemotherapiezyklen ohne Infektion (15,1 Tage gegenüber 20,9 Tage). Die Infektionsrate für die Patienten mit vollständiger Prophylaxe lag dabei bei 78,4%, während sie in der Gruppe mit nicht vollständiger Prophylaxe bei 80% lag, bei jedoch lediglich 5 Chemotherapiezyklen. Für den einen Zyklus ohne Infektion lag dabei die Aplasiezeit bei 13 Tagen, was für diese Gruppe als niedrig einzustufen ist. Für die 4 Chemotherapiezyklen mit Infektion und ohne vollständige Prophylaxe lagen die durchschnittlichen Aplasiedauern bei 17 bzw. 15 Tagen, also auch unterdurchschnittlich. Trotz dieser relativ kurzen Aplasiezeiten lag die Infektionsrate höher als in der Gruppe mit vollständiger Prophylaxe. In der Hochrisikogruppe ist somit eine vollständige Prophylaxe in der Lage die Infektionsrate trotz höherer durchschnittlicher Aplasiezeit zu senken.

4.3.2 Effekt der leitlinienorientierten Therapie

Insgesamt wurde in 70,8% aller Fälle die antibiotische Ersttherapie Leitlinien gerecht appliziert. Dabei lag die Rate in der ersten Therapieepisode mit 30% besonders niedrig und in den nachfolgenden Therapieepisoden mit 83,3 bzw.

⁵⁰ Engels E.A., Lau J. and Barza M. Efficacy of quinolone prophylaxis in neutropenic cancer patients: a metaanalysis. Journal of Clinical Oncology, Vol 16, 1179-1187

78,6% deutlich höher. Insgesamt zeigt sich dabei ein Vorteil für die Gruppe in der die jeweiligen Therapiestandards eingehalten wurden. In der Gruppe mit erfolgreicher Ersttherapie lag die Rate der Einhaltung der Therapiestandards bei 76,9% während in der Gruppe mit nicht erfolgreicher Ersttherapie die Einhaltung der Therapiestandards bei lediglich 68,6% lag. Für Patienten bei denen der vorgegebene Therapiestandard eingehalten wurde, war die Ersttherapie also häufiger erfolgreich.

Bei den Therapieumstellungen ist die Analyse schwieriger. In der Therapieepisode von 1996 bis 1998 gab es keinen Standard. In den restlichen beiden Episoden gab es nur für die ersten Therapieumstellungen einen Standard. Dieser wurde in der Episode von 1999 bis 2001 in 82% der Fälle eingehalten und in der Episode von 2002 bis 2003 in 65% der Fälle eingehalten.

Betrachtet man die verstorbenen Patienten so zeigt sich für die Ersttherapie ein Episodenbezogenes Bild. In der Therapieepsiode von 1996 bis 1998 wurden die verstorbenen Patienten in der Ersttherapie nicht Leitlinien gerecht behandelt. In den beiden nachfolgenden Episoden wurde bei den verstorbenen Patienten in der Ersttherapie immer eine Leitliniengerechte Therapie gewählt. Bei den Therapieumstellungen war in der ersten Therapieepisode kein Standard vorgegeben. In den beiden nachfolgenden Therapieepsioden wurde in 4 von 5 Fällen eine Leitliniengerechte Therapieumstellung durchgeführt. Lediglich einmal wurde in der Episode von 2002 bis 2003 keine Leitlinien gerechte Therapieumstellung durchgeführt.

Demnach scheint eine Leitliniengerechte Therapie in der antibiotischen Ersttherapie mit einer höheren Erfolgsquote versehen zu sein, während bei den Therapieumstellungen eine an die individuelle Situation angepasste Therapie von Vorteil zu sein scheint. Dieses Ergebnis spricht dafür, dass weiterhin Studien zur Optimierung der Therapieumstellungen notwendig sind, bzw. eine feinere Differenzierung für bestimmte Risikosituationen (Länge der Aplasiezeit, V. a. Pilzinfektion).

4.3.3 Beherrschung einer wahrscheinlichen Pilzinfektion mit antimykotischer Therapie

In der untersuchten Gruppe konnte bei lediglich 3 Patienten eine Pilzinfektion gesichert werden. In dieser Patientengruppe lag die Aplasiedauer besonders hoch. Bei den Patienten mit Verdacht auf eine Pilzinfektion lag die durchschnittliche Aplasiedauer ebenfalls deutlich höher als in der Gruppe ohne Verdacht auf eine Pilzinfektion (siehe auch Diagramm 19).

Betrachtet man die Verteilung der Pilzinfektionen nach Risikogruppen verteilt auf die Therapieepisoden (Tabelle 56), so fällt auf, dass in der Standardrisiko Gruppe eine gesicherte Pilzinfektion auftrat. Es handelte sich hierbei jedoch lediglich um eine gesicherte Candidastomatitis (Aplasiezeit 6 Tage), die erfolgreich behandelt wurde. Aufgrund der insgesamt ohnehin kleinen Zahl an gesicherten Pilzinfektionen kann hier keine exakte Analyse erfolgen.

Betrachtet man die Verdachtsfälle, so ergibt sich eine Steigerung, insbesondere im Vergleich zur ersten Therapieepsiode von 1996 bis 1998. Diese Steigerung ist jedoch am ehesten auf eine verbesserte Diagnostik, insbesondere im CT, zurückzuführen. Es wurde im Verlauf der Untersuchung immer häufiger gezielt nach entsprechenden Verdachtsfällen gesucht. Dabei fällt jedoch auf, dass in der letzten Therapieepisode wieder ein geringer Abfall der Rate an Pilzinfektion von insgesamt 37,5% auf 35,7% zu verzeichnen war, wobei die durchschnittliche Aplasiedauer bei 17,1 Tagen (1999 bis 2001) und 17,4 Tagen (2002 bis 2003) vergleichbar war (siehe Tabelle 58). Dieser Rückgang korreliert mit einem Anstieg der Rate an durchgeführten Itraconazol Prophylaxen von 29,5% auf 40% (siehe Tabelle 59).

Diese Analyse bezieht sich auf alle Patienten mit einer Infektion. Analysiert man die Rate an Pilzinfektionen mit und ohne Itraconazol Prophylaxe nach Therapieepsiode unterteilt nach Risikogruppen (Tabelle 60), so ergibt sich auf den ersten Blick ein unerwartetes Bild in der Hochrisikogruppe. In der Standardrisikogruppe ergibt sich erwartungsgemäß mit Itraconazol Prophylaxe eine niedrigere Rate an Pilzinfektionen als ohne Itraconazol Prophylaxe. In der Hochriskogruppe ergibt sich für die Patienten mit einer Itraconazol Prophylaxe eine höhere Rate an Pilzinfektion als ohne. Betrachtet man jedoch die

durchschnittliche Aplasiedauer, so ergibt sich für die Patienten mit einer Itraconazol Prophylaxe eine höhere durchschnittliche Aplasiedauer von 21,1 Tagen gegenüber 18,7 Tagen (siehe Tabelle 61).

Zusätzlich sind die Patienten mit einer Itraconazol Prophylaxe im Durchschnitt älter als die Patienten ohne Itraconazol Prophylaxe (59,7 Jahre versus 47,3 Jahre bezogen auf die Gesamtgruppe).

In der Untergruppe für AML Patienten (Diagramm 21 und 22) ergibt sich ebenfalls ein auf den ersten Blick ungewöhnliches Bild. So liegt die Rate an Pilzinfektionen in der Episode von 2002 bis 2003 mit 40% unabhängig von der Itraconazol Prophylaxe gleich hoch, wobei die durchschnittliche Aplasiezeit in der Gruppe ohne Itraconazol Prophylaxe höher liegt als in der Gruppe mit Itraconazolprophylaxe. Da die Gruppe ohne Itraconazolprophylaxe jedoch mit 5 Chemotherapiezyklen nur sehr klein ist, spielen hier wohl Zufälligkeiten eine Rolle. Insgesamt ergibt sich jedenfalls ein Vorteil für die Patienten, bei denen eine Itraconazol Prophylaxe durchgeführt wurde.

Betrachtet man die Sterblichkeit in der Gruppe mit V. a. Pilzinfektionen bzw. mit sicherer Pilzinfektion, so zeigt sich im Ablauf der Jahre eine Verbesserung des Therapieergebnisses. In der ersten Therapieepisode lag die Sterblichkeit noch bei 33%, während sie in den beiden folgenden Therapieepisoden bei 0% bzw. 20%, also deutlich niedriger lag (Tabelle 66). Dabei lag der wesentliche Unterschied in der Therapie in der therapeutischen Nutzung von Sempera und in der letzten Therapieepisode von 2002 bis 2003 in der Einführung neuer Antimykotika (Caspofungin).

4.3.4 Effekt der Kulturergebnisse auf den Therapieerfolg

Insgesamt konnte bei 30 von 96 Chemotherapiezyklen mit Infektion ein Erreger nachgewiesen werden (31,25%). Dabei gelang der Keimnachweis bei nicht erfolgreicher Ersttherapie häufiger als bei erfolgreicher Ersttherapie.

Bei bestimmten Formen der Infektion war dabei die Wahrscheinlichkeit eines Erregernachweises deutlich niedriger als bei anderen Infektion. So gelang z. B. bei den Fällen mit Mukositis nur in einem von insgesamt 8 Fällen ein Keimnachweis und bei den Pneumonien in 3 von insgesamt 33 Fällen. Bei

Fällen mit Sepsis gelang der Keimnachweis immer. In den Fällen, in denen ein Keimnachweis gelungen ist, kamen vorwiegend Staphylokokken vor. Andere nachgewiesenen Erreger waren z. B. Klebsiella Pneumoniae, Pseudomonas und E. coli.

In Tabelle 70 ist die durchschnittliche Aplasiedauer für die Fälle mit und ohne Keimnachweis dargestellt. Dabei fällt auf, dass in der ersten Therapieepisode die Fälle mit gelungenem Keimnachweis eine niedrigere durchschnittliche Aplasiedauer hatten, als die Fälle ohne gelungenen Keimnachweis. Dieses ändert sich in den darauf folgenden Therapieepisoden. Es gelang durch die zunehmend verbesserte Diagnostik, insbesondere bei Patienten mit längeren Aplasiephasen den Keimnachweis häufiger zu führen. Betrachtet man alle Patienten so differiert die Aplasiedauer praktisch nicht (17,9 gegenüber 17,8 Tagen). Dieses wird noch deutlicher, wenn man den Anteil Chemotherapiezyklen mit Keimnachweis sieht (Tabelle 71 und Diagramm 25). In der ersten Therapieepisode gelang in 25% der Fälle ein Keimnachweis, während in der letzten Therapieepisode von 2002 bis 2003 in 42,86% der Fälle ein Keimnachweis gelang, also insgesamt die Rate an Keimnachweisen annähernd verdoppelt werden konnte. Dieses spricht für eine verbesserte Diagnostik und trägt einen Teil zum guten Therapieergebnis bei. Dabei konnte insbesondere in der Hochrisikogruppe häufiger ein Keimnachweis geführt werden (Tabelle 72 und Diagramm 26).

In den Diagrammen 27 und 28 ist noch einmal detailliert dargestellt, bei welchen Infektionen der Keimnachweis in der Regel gelang, und bei welchen Infektionen der Keimnachweis besonders schwierig war. Dabei zeigt sich, dass bei Fällen mit Sepsis und sonstigen (seltenen) Infektionen relativ häufig ein Keimnachweis gelang, während insbesondere bei Fällen mit Pneumonie und Mukositis nur relativ selten ein Keimnachweis gelang. Die Fälle mit FUO machen mit 35% (bei den Fällen ohne Keimnachweis) die zweitgrößte Gruppe aus. Daraus folgt für die Zukunft, dass insbesondere im Bereich der Diagnostik von Pneumonie bezogen auf den Keimnachweis eine Verbesserung angestrebt werden sollte.

In Tabelle 73 ist dargestellt, wie sich die Häufigkeit einer erfolgreichen Therapie bezogen auf den Keimnachweis verhält. Dabei fällt auf, dass in 40% der Fälle mit nichterfolgreicher Therapie der Keimnachweis gelang. Es war also bezogen auf die Sterblichkeit kein Vorteil, wenn der Keimnachweis gelang. Dieses hängt unter anderem damit zusammen, dass Fälle mit FUO konsequent behandelt wurden, und damit zum guten Ergebnis der Fälle ohne Keimnachweis beigetragen haben und zeigt ebenfalls, das insbesondere bei den schwerkranken Patienten die Diagnostik bezogen auf den Keimnachweis konsequent fortgeführt wurde, um die durchgeführte Therapie über ein Antibiogramm abzusichern.

Von allen Methoden war dabei die Blutkultur am erfolgreichsten. Mit ihr gelang am häufigsten der Keimnachweis, auch wenn man unterstellt, dass z. B. in Fällen von FUO eine unentdeckte Bakteriämie vorliegen kann (Diagramm 29, Tabelle 74 und Diagramm 30). Mithilfe der Sputumdiagnostik gelang bei Fällen mit Pneumonie deutlich seltener der Keimnachweis. Hier gibt es sicher noch ein Verbesserungspotential. Eine Überlegung, die angestellt werden sollte, ist das Einführen von invasiveren Maßnahmen (z. B. Bronchoskopie) zur Diagnostik, um den Anteil an Patienten mit gesichertem Keimnachweis bei Pneumonie zu erhöhen, und hier evtl. das bisher relativ schlechte Therapieergebnis bei Patienten mit Pneumonie zu verbessern.

Insgesamt konnte im Verlauf der Untersuchung die Sterblichkeit an einer Infektion deutlich von 25% Gesamtsterberate in der ersten Therapieepisode gesenkt werden auf 10,71% Gesamtsterberate in der letzten Therapieepisode. Dabei war die Sterblichkeit bei gelungenem Keimnachweis höher als ohne einen Erregernachweis, was jedoch zumindest teilweise auf die guten Therapieerfolge bei FUO, mit einer Sterblichkeit von 0%, zurückzuführen ist. Klammert man die Fälle mit FUO aus, so liegt die Sterblichkeit fast gleichauf (bei ca. 13%) mit einem geringen Vorteil für Patienten mit Erregernachweis.

Dabei zeigt sich insbesondere eine Verbesserung bei der Sterblichkeit der Pilzpneumonie. Betrachtet man die Sterblichkeit für Fälle mit bzw. mit V. a. eine Pilzpneumonie so konnte die Sterblichkeit von der ersten Therapieepisode bis zur letzten Therapieepisode ebenfalls deutlich gesenkt werden, wobei in der

Therapieepisode von 1999 bis 2001 kein entsprechender Patient verstarb, was zum Teil auf das niedrigere Risikoprofil dieser Gruppe zurückzuführen ist. Dieses drückt sich insbesondere im Diagramm 33 aus. Hier lässt sich für die Patienten mit einer Leukämie (als wesentliche Risikogruppe für eine Pilzpneumonie) zeigen, dass in der ersten Therapieepisode durchschnittliche Aplasiedauer, gleichzeitig hoher Sterblichkeit, bei insbesondere im Vergleich zur zweiten Therapieepisode, ebenfalls sehr hoch liegt. In der zweiten Therapieepisode liegen sowohl die Sterblichkeit als auch die Aplasiezeit relativ niedrig, während in der letzten Therapieepisode die Durchschnittsaplasiezeit am höchsten liegt bei gleichzeitig relativ niedriger Sterblichkeit, so dass die Verbesserung der Sterblichkeit insbesondere in dieser Gruppe in hohem Maße auf die verbesserte Therapie (z. B. durch neue die verbesserte im Antimykotika) und Versorgung Aplasiebereich zurückzuführen ist.

5. Zusammenfassung

In dieser Arbeit sollten als wesentliche Punkte herausgearbeitet werden, wie häufig Infektionen bei Patienten mit hochdosierter Chemotherapie auftraten, ob eine Leitlinien gerechte Therapie dieser Infektionen erfolgte, wie erfolgreich die Therapie umgesetzt wurde (im Vergleich zu anderen, bereits publizierten Daten) und in welcher Häufigkeit ein Erregernachweis gelang und welche Konsequenzen dieses für die Therapie hatte.

Insgesamt konnte gezeigt werden, dass in unserer Klinik ein Hochrisikoklientel in diesem Bereich therapiert wurde. Berücksichtigt man als Referenz die PEG II Daten, so waren unsere Patienten im Durchschnitt älter (51,3 gegenüber 45,3 Jahren) und durchlebten die schwerwiegenderen Infektionen (insbesondere hoher Anteil an Pneumonie bei relativ geringem Anteil an Patienten mit FUO) bei durch die Verteilung der Diagnosen in etwa vergleichbarem Risikoprofil. Dabei konnte zwar auf die Gesamtgruppe bezogen nicht ganz die Sterblichkeitsrate der PEG II Daten erreicht werden, insbesondere aber bezogen auf die Patienten mit FUO war unser Ergebnis deutlich besser als in der PEG II Studie.

Bezogen auf eine Leitliniengerechte Therapie wurde bei 70% der Patienten der Therapiestandard bei der Antibiotika Therapie eingehalten. Dabei wurde der Anteil an Leitlinien gerechter Therapie im Laufe der Zeit erhöht und erreichte zum Schluss ca. 80%. Dabei zeigte sich jedoch nur bei dem Anteil an erfolgreicher Ersttherapie ein relevanter Vorteil. Bei den Therapieumstellungen ergab sich ein gemischtes Bild und es scheint so zu sein, dass eine an die individuelle Situation des Patienten angepasste Umstellung der weiteren Therapie notwendig ist. Ziel zukünftiger Studien sollte es deshalb sein neben einer möglichen weiteren Verbesserung der Ersttherapie, für Patienten, bei denen eine Ersttherapie nicht erfolgreich war, Risikofaktoren (Mukositis, Pneumonie) herauszuarbeiten, die ein individuelles Vorgehen bei der Umstellung der Antibiotikatherapie erlauben.

Betrachtet man die Gesamtgruppe, so konnte in fast einem Drittel der Fälle ein Erregernachweis erfolgen. Dabei war die Diagnostik insbesondere bei Fällen mit Sepsis besonders erfolgreich. Bei Patienten mit Pneumonie gelang

hingegen der Keimnachweis nur sehr selten. Hier sollte im weiteren untersucht werden, ob eine aggressivere Diagnostik zum Keimnachweis bei Pneumonien für diese, mit einer besonders hohen Sterblichkeit behaftete Gruppe, zu einer Verbesserung der Therapieergebnisse führt, dieses insbesondere unter Berücksichtigung der Tatsache, das die Patienten, bei denen ein Keimnachweis gelang, kein echter Vorteil in dieser Arbeit gezeigt werden konnte. Hier muss jedoch zusätzlich berücksichtigt werden, dass der Anteil an Fällen mit FUO in der Gruppe ohne Keimnachweis, bei 0% Sterblichkeit in dieser Gruppe, einen wesentlichen Teil des verbesserten Überlebens ausmacht, und es muss berücksichtigt werden, dass die Aplasiedauer bei den Patienten mit positivem Keimnachweis höher lag als in der Gruppe ohne Keimnachweis.

Ein wesentliches Ergebnis der Arbeit ist, dass die Dauer der Aplasie, neben möglichen Begleitkrankheiten (Alter), der wesentliche Risikofaktor sowohl für das Risiko eine Infektion zu erleiden, als auch für das Risiko zu versterben ist. Je kürzer die Aplasiedauer, umso geringer ist das Risiko eine Infektion zu erleiden. Gelingt es dann, die Zeit bis zum Ansteigen der Leukozyten mittels Antibiose zu überbrücken, so überleben die Patienten auch ihre Infektion. Interessant wäre hierbei sicherlich die Untersuchung der Frage, inwieweit eine Infektion das Ansteigen (z. B. über einen Verbrauch) der Leukozyten verhindert, bzw. inwieweit es möglich ist, auch mit Hilfe einer Antibiose diesen Effekt zu unterdrücken, um so ebenfalls ein besseres Ergebnis zu erzielen.

Unter Berücksichtigung dieser Faktoren, hat sich gezeigt, dass mit Hilfe der Einführung eines Aplasiebereiches in unserer Klinik, ein wesentlicher Fortschritt bei Patienten mit hochdosierter Chemotherapie und nachfolgender Aplasie von mehr als 5 Tagen erreicht werden konnte. Unter Berücksichtigung der Risikoadjustierung (Alter, Aplasiedauer) konnte im Verlauf der Therapieepsiode eine Verbesserung bei der Infektionsrate und dem Erfolg einer antibiotischen / antimykotischen Therapie erreicht werden. Neben der Einführung neuer Medikamente zur Therapie, insbesondere von Pilzinfektionen, waren die Optimierung der Therapiestandards und die verbesserte Versorgung in einer zentralen Einheit, die wesentlichen Erfolgsfaktoren für ein verbessertes Outcome der Patienten.

6. Literaturverzeichnis

- 1 Buchheidt, D., A. Böhme, O. Cornely, G. Fätkenheuer: Dokumentierte Infektionen bei Hämatologischen und Onkologischen Patienten-Empfehlungen zur Diagnostik und Therapie der Arbeitsgemeinschaft Infektiologie der Deutschen Gesellschaft für Hämatologie und Onkologie.
- 2 Hughes WT, Armstrong D, Bodey GP, et al. 1997 Guidelines for the Use of Antimicrobial Agents in Neutropenic Patients with Unexplained Fever, Clinical Infectious Diseases 1997; 25: 551-73
- 3 H. Link, K. Blumenstengel, A. Böhme, O. Cornely, O. Kellner, M. R. Nowrousian, H. Ostermann, X. Schiel, M. Wilhelm: Antimikrobielle Therapie von unerklärtem Fieber in Neutropenie. Standardempfehlungen der Arbeitsgemeinschaft Infektiologie in der Hämatologie und Onkologie der Deutschen Gesellschaft für Hämatologie und Onkologie. Dtsch. Med. Wochensch. 124, Suppl 1 (1999), S3-S8
- 4 Edwards, J. E., J. P. Bodey, R. E. Bowden, T. Büchner, J. E. de Pauw, S. G. Fuler, M. A. Channoum, M. Glauser, R. Herbrecht, C. A. Kauffmann, S. Kohuo, P. Martino, F. Meunier, T. Mori, M. A. Pfaller, J. H. Reu, T. R. Rogers, R. H. Rubin, J. Solomkin, C. Visoli, T. J. Walsh, M. White: International Conference for the development of a consensus on the management and prevention of severe candidal infections. Clin Infct dis, 28 (1997), 43-59
- 5 Adal, K. A., B. M. Farr: Central venous catheter-related infections: a review. Nutrition. 12 (1996), 208-213 2. Guideline for prevention of intravascular device-related infections. Part II. Recommendations for the prevention of nosocomial intravascular device-related infections. Hospital Infection Control Practices Advisory Committee. Am J Infect Control. 24 (1996), 277-293
- 6 Wenzel, R. P., M. B. Edmond: The envolving technology of venous access. N Engl J Med. 340 (1999), 48-50
- 7 Karthaus, M., T. Doellmann, T. Klimsch, S. Weber, G. Heil, A. Ganser. Incidence of central venous catheter (CVC)-associated blood stream infections in patients treated for acute leukaemia (AL), 39th Interscience Conference on Antimicrobial Agents and Chemotherapy, San Francisco, 1999.
- 8 Raad, I.: Intravascular-catheter-related infections. Lancet. 351 (1998), 893-898
- 9 Sherertz, R. J. Pathogenesis of Vascular Catheter-Related Infections. In: Seifert H, Jansen B, Farr BM, eds. Catheter-Related Infections. New York: Marcel Dekker, 1997: 1-29.
- 10 Link, H., K. Blumenstengel, A. Böhme, O. Cornely, O. Kellner, M. R. Nowrousian, H. Ostermann, X. Schiel, M. Wilhelm: Antimikrobielle Therapie von unerklärtem Fieber bei Neutropenie. Standardempfehlungen der Arbeitsgemeinschaft Infektiologie in der Hämatologie und Onkologie. Dtsch Med Wochenschr. 124, Suppl.1 (1999), S3-S8
- 11 Opie, J. C.: Contamination of internal jugular lines. Incidence in patients undergoing open-heart surgery. Anaesthesia. 35 (1980), 1060-1065
- 12 Dugdale, D. C., P. G. Ramsey: Staphylokokkus aureus bacteremia in patients with Hickman catheters. Am J Med. 89 (1990), 137-141

- 13 Marr K. A., D. J. Sexton, P. J. Conlon, G. R. Corey, S. J. Schwab, K. B. Kirkland: Katheter-related bacteraemia and outcome of attempted catheter salvage in patients undergoing haemodialysis. Ann Intern Med. 127 (1997), 275-280
- 14 Benezra, D., T. E. Kiehn, J. W. Gold, A. E. Brown, A. D. Turnbull, D. Armstrong: Prospective Study of infections in indwelling central venous catheters using quantitative blood cultures. Am J Med. 85 (1988), 495-498
- 15 Severien, C., J. D. Nelson: Frequency of infections associated with implanted systems vs. cuffed, tunnelled Silastic venous catheters in patients with acute leukaemia. Am J Dis Child. 145 (1991), 1433-1438
- 16 Link H., G. Maschmeyer, P. Meyer, W. Hiddemann, W. Stille, M. Helmerking, D. Adam: Interventional antimicrobial therapy in febrile neutropenic patients. Study Group of the Paul Ehrlich Society for Chemotherapy. Ann Hematol. 69 (1994), 231-243
- 17 Raad, II, M. F. Sabbagh: Optimal duration of therapy for catheter-related Staphylokokkus aureus bacteraemia: a study of 55 cases and review. Clin Infect Dis. 14 (1992), 75-82
- 18 Link H., G. Maschmeyer, P. Meyer, W. Hiddemann, W. Stille, M. Helmerking, D. Adam, For the Study Group of the Paul Ehrlich Society for Chemotherapy: Interventional antimicrobial therapy in febrile neutropenic patients. Ann Hematol.69 (1994), 231-243
- 19 Rossini F., Verga M., Pioltelli P., Giltri G., Sancassani V., Pogliani E.M., Corneo G.: Incidence and outcome of pneumonia in patients with acute leukaemia receiving first induction therapy with anthracycline-containing regimens. Haematologica 2000, 85: 1255-1260
- 20 Peters S. G., J. A. Meadows III, D. R. Gracey: Outcome of respiratory failure in hematologic malignancy. Chest 94 (1988): 99-102
- 21 Canham E. M., T. C. Kennedy, T. A. Merrick: Unexplained pulmonary infiltrates in the compromised patient. An invasive investigation in a consecutive series. Cancer 52 (1983): 325-329
- 22 Link H., H. Hiddemann, G. Maschmeyer, D. Buchheidt, B. Glass, O. Cornely, M. Wilhelm, M. Helmerking, D. Adam and the PEG Study Group: Antimicrobial therapy in neutropenic Patients with unexplained fever, PEG Study II. Proceedings 37th ICAAC (1997): 372-373
- 23 Heussel C. P., H. U. Kauczor, G. Heussel, B. Fischer, P. Mildenberger, M. Thelen: Early detection of pneumonia in febrile neutropenic patients: use of thin-section CT. Am J Roentgenol 169 (1997): 1347-1353
- 24 Böhme A., M. Karthaus, H. Einsele, M. Ruhnke, T. Südhoff, D. Buchheidt, R. Enzensberger, H. Szelenyi, A. Glasmacher, G. Just-Nübling, H. Gümbel: Diagnostik systemischer Pilzinfektionen in der Hämatologie. Dtsch Med Wschr 124 (1999): S24-30
- 25 Edwards J. E. Jr., G. P. Bodey, R. A. Bowden et al. International Conference for the Development of a Consensus on the Management and Prevention of Severe Candidal Infections. Clin Infect Dis 1997 25: 43-59
- 26 Denning D. W. Invasive aspergillosis. Clin Infect Dis 1998; 26: 781-805

- 27 Tedder M., J. A. Spratt, M. P. Anstadt, S. S. Hedge, S. D. Tedder, J. E. Lowe. Pulmonary mucormycosis: results of medical and surgical therapy. Ann Thorac Surg. 1994; 57: 1044-1050
- 28 Bow E. J. Infection risk and cancer chemotherapy: The impact of the chemotherapeutic regimen in patients with lymphoma and solid tissue malignancies. J Antimicrob Chemother 1998: 41 (D); 1-5
- 29 Russell J. A., M. C. Poon, A. R. Jones et al., Allogenic bone marrow transplantation without protective isolation in adults with malignant disease. Lancet 1992; 339: 38-40
- 30 Young L. S. Antimicrobial prophylaxis in the neutropenic host: Lessons of the past and perspectives for the future. Eur J Clin Microbiol Infect Dis 1988; 7: 93-97
- 31 Engels E., J. Lau, M. Barza. Efficacy of quinolone prophylaxis in neutropenic cancer patients: A meta-analysis. J Clin Oncol 1998; 16: 1179-1187
- 32 Bergmann O. J., S. C. Mogensen, S. Ellermann-Eriksen, J. Ellegaard. Acyclovir prophylaxis and fever during remission-induction therapy of patients with acute myolid leukemia: A randomized, double blind, placebo controlled trial. J Clin Oncol 1997; 15: 2269-2274
- 33 Elliot T. S., M. H. Faroqui, R. F. Armstrong, G. C. Hanson. Guidelines for good practice in central venous catheterization. J Hosp Infect 1994; 28: 163-176 34 Marr K. A.. Empirical antifungal therapy new-options, new tradeoffs. 2002; N Engl J Med 2002; 346: 278-280
- 35 Glasmacher A., C. Hahn, E. Molitor, G. Marklein, T. Sauerbruch, I.G.H. Schmidt-Wolf. Itraconazol trough concentrations in antifungal prophylaxis with six different dosing regimens using hydroxypropyl-b-cyclodextrin oral solution or coated-pellet capsules. Mycoses 1999; 42: 591-600
- 36 Ascioglu S., J.H. Rex, B. De-Pauw, J. E. Bennett, J. Bille, F. Crokaert, D. W. Denning, J. P. Donnelly, J. E. Edwards, Z. Erjavec, D. Fiere, O. Lortholary, J. Maertens, J. F. Meis, T. F. Patterson, J. Ritter, D. Selleslag, P. M. Shah, D. A. Stevens, T. J. Walsh. Defining opportunistic invasive fungal infections in immunocompromised patients with cancer and hematopoetic stem cell transplants: an international consensus. Clin Infect Dis 2002; 34: 7-14
- 37 Denning D. W., C. C. Kibbler, R. A. Barnes. British Society for Medical Mycology proposed standards of care for patients with invasive fungal infections. The Lancet Infectious Diseases 2003; 3: 230-240
- 38 Reimer L. G., M. L. Wilson, M. P. Weinstein. Update on detection of bacteraemia and fungemia. Clin Microbiol Rev 1997; 10: 444-465
- 39 Mitsutake K., T. Miyazaki, T. Tashiro, Y. Yammamoto, H. Kakeya, T. Otsubo, S. Kawamura, M. A. Hossain, T. Noda, Y. Hirakata, S. Kohno. Enolase antigen, mannan antigen, Cand-Tec antigen and beta-glucan in patients with candidemia. J Clin Microbiol 1996; 34: 1918-1921
- 40 Machetti M., M. Feasi, N. Mordini, M. T. Van-Lint, A. Bacigalupo, J. P. Latge, J. Sarfati, C. Viscoli. Comparison of an enzyme immunoassay and a latex agglutination system for the diagnosis of invasive aspergillosis in bone marrow transplant recipients. Bone Marrow Transplant 1998; 21: 917-921

- 41 Maertens J., J. Verhaegen, K. Lagrou, J. Van-Eldere, M. Boogaerts. Screening for circulating galactomannan as a noninvasive diagnostic tool for invasive aspergillosis in prolonged neutropenic patients and stem cell transplantation recipients: a prospective validation. Blood 2001; 97: 1604-1610
- 42 Caillot D., O. Casasnovas, A. Bernard, J. F. Couaillier, C. Durand, B. Cisenier, E. Solary, F. Piard, T. Petrella, A. Bonnin, G. Couillault, M. Dumas, H. Guy. Improved management of invasive pulmonary aspergillosis in neutropenic patients using early thoracic computed tomographic scan and surgery. J Clin Oncol 1997; 15: 139-147
- 43 Karthaus M., G. Hübner, R. G. Geissler, G. Heil, A. Ganser. Hepatic lesions of chronic disseminated systemic candidiasis in leukemia patients may become visible during neutropenia: value of serial ultrasound examinations. Blood 1998; 91: 3087-3309
- 44 Hohenadel I. A., M. Kiworr, R. Genitsariotis, D. Zeidler, J. Lorenz. Role of bronchoalveolar lavage in immunocompromised patients with pneumonia treated with a broad spectrum antibiotic and antifungal regimen. Thorax 2001; 56: 115-120
- 45 Einsele H., H. Hebart, G. Roller, J. Löffler, I. Rothenhöfer, C. A. Müller, R. A. Bowden, J. A. van Burik, D. Engelhardt, L. Kanz, U. Schumacher. Detection and identification of fungal pathogens in blood by using molecular probes. J Clin Microbiol 1997; 35: 1353-1360
- 46 Acute Leukemias VII Experimental Approaches and Novel Therapies, Hiddemann et al., Springer Verlag Berlin Heidelberg 1998
- 47 Bow, E.J. Infection Risk and cancer chemotherapy: the impact of the chemotherapeutic regime in patients with lymphoma and solid tissue malignancies Journal of Antimicrobial Chemotherapy 1998; 41: 1-5
- 48 Peters S. G., Meadows J. A., Gracey D. R. Outcome of respiratory failure in hematologic malignancy Chest 1988; 94: 99-102
- 49 Canham E. M., Kennedy T. C., Merrick T.A. Unexplained pulmonary infiltrates in the compromised patient. An invasive investigation in a consecutive series. Cancer 1983; 52: 325-329
- 50 Engels E.A., Lau J. and Barza M. Efficacy of quinolone prophylaxis in neutropenic cancer patients: a metaanalysis. Journal of Clinical Oncology, Vol 16, 1179-1187

7. Abkürzungsverzeichnis (alphabetisch sortiert)

ABCD Amphotericin B kolloidale Dispersion

ABLC Amphotericin B Lipid Komplex

AGIHO Arbeitsgemeinschaft Infektiologie in der Hämato Onkologie

ALL Akute Lymphatische Leukämie

AML Akute Myeloische Leukämie

Ampho-B Amphotericin B

Amphom. Amphomoronal (orales Amphotericin B)

AUL Akute Undifferenzierte Leukämie

BAL Broncho Alveoläre Lavage

BC Bronchial Karzinom

B-CLL B-Zellige Chronisch Lymphatische Leukämie

Bzw. Beziehungsweise

C. Candida

ca. circa

cAmB konventionelles Amphotericin B

CD Cluster of Differentiation

CDI Clinical Detected Infection

CI. Clostridium

CT Computertomographie

d Tag (dies)

DGHO Deutsche Gesellschaft für Hämato Onkologie

DNA Desoyx Nuclein Acid

E. coli Escherichia Coli

ECOG Eastern Cooperative Oncology Group

ELISA Enzym Linked Immuno Sorbend Assey

EORTC European Organisation for Research and Treatment of

Cancer

Et al. und andere

Evtl. eventuell

FUO Fever of unknown origin (Fieber unklarer Genese)

Gen. Generation

Ggf. Gegebenenfalls

h Stunde

H. zoster Herpes zoster

HIV Human Immunodeficienc Virus

HNO Hals Nasen Ohren

HR Hoch Risiko Gruppe

HRCT High Resolution Computertomographie

HSV Herpes Simplex Virus

i. v. intra venös

IFI Invasive Fungal Infection

IFICG Invasive Fungal Infections Cooperative Group

Incl. Inklusive

Itra. Itraconazol

KMT Knochenmark Transplantation

L-AmB Liposomales Amphotericin B

M. Hodgkin Morbus Hodgkin

MDI Mikrobiologic Detected Infection

Mind. Mindestens

MSG Mycoses Study Group

N= Patientenzahl

NaCl Natrium Chlorid

Neg. Negativ

NHL Non Hodgkin Lymphom

NV Nicht Vorhanden

Odonto. Inf. Odontogen Infektion

PAS Perjod acid Schiff Reaction

PcP Pneumocystis Carinii Pneumonie

PCR Polymerase Chain Reaction

PEG Paul Ehrlich Gesellschaft

Pen-Ceph-resist. Penicillin Cephalosporin Resistent

PNET Primitiver Neuroektodermaler Tumor

Proph. Prophylaxe

Pseudom. Pseudomembranös

S. und Staph. Staphylokokkus

SGOT Serum Glutamat Oxalazetat Transaminase

SGPT Serum Glutamat Pyruvat Transaminase

Spp. Species

SR Standard Risiko Gruppe

SZT Stammzelltherapie

tgl. täglich

Tons. Tonsilaris

V. Vena

V. a. Verdacht auf

Vs. versus

z. B. zum Beispiel

ZNS Zentrales Nerven System

ZVK Zentraler Venen Katheter

y-GT Gamma Glutamyl Transpeptidase

MAV
MAMAC
DA
I-MAC
H-MAC
S-HAI
HAM
Cytosin Arabinosid
Mito Flag
EORTC Protokoll
BEACOPP
Dexa Beam
Hochdosiert Cyclophospahmid
CHOEP gesteigert (Stufe 4)
VIDE
VIP-E
EVAIA

Verwendete Chemotherapieprotokolle:

Danksagungen

Bedanken möchte ich mich bei Herrn Prof. Clemens für die zur Verfügung Stellung des Themas und die Betreuung während der Erstellung der Arbeit. Zusätzliche bedanken möchte ich mich auch bei Herrn Oberarzt Dr. med. Mahlberg für die wertvollen Anregungen, die zum gelingen der Arbeit beigetragen haben.

Für die menschliche Unterstützung und die notwendige Geduld möchte ich mich bei meiner Mutter Helma Eckhardt und meiner Freundin Stephanie Tapprich bedanken. Ihre Unterstützung war wichtig für mich, um die Kraft und Zeit zur Fertigstellung zu finden.

Lebenslauf

Angaben zur Person

Name: Markus Eckhardt

Geburtsdatum und –ort: 14.01.1971 in Dortmund

Familienstand: ledig

Staatsangehörigkeit: Deutsch

Schulbildung

08.1977 – 07.1981 Lieberfeld-Grundschule

08.1981 – 07.1990 Goethe-Gymnasium in Dortmund

18.05.1990 Abitur

Bundeswehr

07.1990 – 06.1991 Wehrdienst als Sanitäter

Studium

08.1993 Physikum

08.1994 1. Staatsexamen mit der Note sehr gut

08.1996 2. Staatsexamen mit der Note gut

20.11.1997 3. Staatsexamen mit der Note gut

Berufsausbildung

03.1998 - 08.1999 Arbeit als AIP in der Inneren Medizin bei Prof.

Clemens im Mutterhaus Trier

09.1999 – 06.2004 Arbeit als Assistenzarzt in der Inneren Medizin

bei Prof. Clemens im Mutterhaus Trier

Seit 07.2004 Leiter des Medizin Controllings im Mutterhaus

Trier

06.07.2004 Erlangung der Facharztbezeichnung für

Innere Medizin