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make use of all the sophisticated equipment he possesses in his department.

Special acknowledgments I owe Prof. Dr. Peter Thier, who very much sup-
ported my fMRI work at the University Clinic Tübingen and to Prof. Dr. Wolf-
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Chapter 1

Introduction

Interaction between individuals is a constantly encountered situation in the ani-
mal kingdom. The ability to recognize the movements of the counterparts is an
inevitable part of their communication. The recognition of complex movement
patterns is important for example, to identify possible threats by predators, or
to select a weaker animal as prey. Additionally, intra-species communication,
especially of higher animals relies to a large degree on the interpretation of fa-
cial or body movements. While ecological studies have provided evidence for
innate mechanisms of movement recognition in lower vertebrates and also in
higher species (Lorenz, 1965), most likely, also learning mechanisms influence
the processing of complex movements.

Learning mechanisms have so far been studied intensively in the field of ob-
ject recognition. Poggio and Edelman (1990) have shown that the representation
of three-dimensional objects can be learned exclusively from the presentation of
two-dimensional views of the objects. Moreover, Bülthoff and colleagues cre-
ated a set of arbitrary artificial complex shapes and demonstrated that humans
are able to learn to recognize those shapes (Bülthoff and Edelman, 1992; Tarr
and Bülthoff, 1998). Neurophysiological recordings in monkeys identified neu-
ral populations in the inferotemporal cortex, which changed their tuning prop-
erties to become selectively activated by particular views of previously learned
complex objects (Logothetis et al., 1995; Logothetis and Sheinberg, 1996).

Interestingly, the learned representation was view-dependent. This means that
once the object is learned from a particular view, the recognition performance
drops significantly, if the object is presented from a different viewpoint. Only
within very similar viewing angles, does the performance stay high. Similarly,
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2 Introduction

this effect was also observed in the neurophysiological recordings. Many of
the recorded neurons significantly reduced their firing rate, when the object was
presented from a viewpoint that differed significantly from the training view.

Orientation dependence has also been reported in experiments investigating
the recognition of complex movements (e.g Bertenthal and Pinto, 1994; Pavlova
and Sokolov, 2000; Shiffrar et al., 1997; Sumi, 1984). This motivated the hy-
pothesis that objects and movements might be encoded in similar ways (Verfail-
lie et al., 1994). That in turn suggests the possibility that object and movement
recognition might also share similar learning mechanisms. Additionally, a the-
oretical model developed recently by Giese and Poggio (2003) also supports
the possible involvement of learning mechanisms in the recognition of complex
movements. Their model, which represents complex movements on the basis of
learned prototypical example movements, replicates many of the experimental
results obtained in the field of movement recognition.

The similarities between movement and object recognition, together with the
theoretical work provided the motivation for my study to investigate, how learn-
ing shapes the processing of complex movements. In the following sections, I
will briefly review the concepts of visual processing, learning and movement
recognition, which serve as a foundation for the experimental questions. The
different methodological approaches that were used to study the neural corre-
lates of learning are described in Chapter 2. The psychophysical investigations
in Chapter 3 examine the influence of learning on the recognition of complex
movements and the invariant properties of the learned representation. The func-
tional imaging experiments reported in Chapter 4 investigate the contribution
of different visual areas to the learning process by comparing BOLD activity
changes before and after learning. Finally, the theoretical work based on the al-
ready existing neural model for movement recognition (Giese and Poggio, 2003)
intends to evaluate different possible plasticity mechanisms, by which the learn-
ing of complex movements could be accomplished (Chapter 5).

1.1 The Human Visual Cortex

Most of the visual information from the retina gets transferred via the Lateral
Geniculate Nucleus to the primary visual cortex (V1), located at the posterior
pole of the brain. This transfer takes place in a topographically organized man-
ner, that is, neighboring positions on the retina project to neighboring sites in
area V1. The cortical mapping of the visual space is not a one to one repre-
sentation but occurs in a logarithmic fashion, with much larger representations
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Figure 1.1: Left hemisphere of a human brain seen from different viewpoints. Early retinotopic
areas are mapped onto the cortical surface at the occipital pole. Primary visual cortex (V1) is
bordered by two cortical areas that form area V2. Dorsal V2 represents the lower quadrant
and ventral V2 represents the upper quadrant of the visual field. More dorsal primarily motion
processing areas are V3 followed by V3a and more ventral areas primarily involved in form
processing are VP and V4v.

for the foveal region of the retina and gradually smaller representations depend-
ing on the distance of the stimulus from the fovea (Duncan and Boynton, 2003;
Schwartz et al., 1985). While the fovea is represented at the posterior pole, more
peripheral regions are represented anteriorly. This so called retinotopic organi-
zation is observed not only in V1 but also throughout lower- and mid level visual
areas (Levy et al., 2001; DeYoe et al., 1996) (see Figure 1.1).

The description of visual cortical areas has mainly been focussed on two con-
cepts (see Grill-Spector and Malach, 2004, for review). On the one hand, pro-
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cessing along the visual areas can be described in a hierarchical fashion. Visual
analyses at lower levels of this hierarchy are thought to occur within brief tem-
poral intervals and small spatial neighborhoods. The results of this low-level or
local analysis are then passed onto higher levels in the hierarchy, which process
information across larger spatio-temporal extents, resulting in a so-called global
analysis of the scene (DeYoe and Essen, 1988). Alternatively, visual processing
can be described based on functional specialization. A very famous example of
functional specialization divides the visual system into two parallel processing
streams specialized for specific aspects of the visual input. Mishkin and col-
leagues (Mishkin et al., 1983) proposed the existence of a dorsal stream also
called ”where” stream, involved in spatial localization and a ventral ”what”
stream, involved in object and form recognition. Even though both streams are
not completely separated anatomically or functionally, this concept has been fol-
lowed up by many other researchers (e.g. Goodale et al., 1991; Goodale and
Milner, 1992) and proved to be a valid principle in understanding the visual cor-
tex. In the following sections I will focus on the processing of two aspects of
the visual input, namely the processing of motion and the processing of form
information within the visual cortex.

Motion Processing

Most of the motion information from the retina reaches primary visual cortex
via the magnocellular pathway terminating in layer 4B. From layer 4B, the in-
formation gets transferred to areas V2, V3 and V3a. In addition, V1 also has
direct connections to the middle temporal area (MT) (Maunsell and Essen, 1983;
Felleman and Essen, 1991). The anatomical location of these areas suggests that
the perception of motion is mainly accomplished by a network of brain regions
in the dorsal pathway of the human visual system (see Figures 1.1 and 1.2).

In human imaging studies a region called human MT+ (hMT+) complex has
been found to play a central role in the analysis of motion information (Watson
et al., 1993; Dupont et al., 1994; Tootell et al., 1995). This region seems to be a
homologue of the extrastriate motion selective area MT/V5 in the macaque (Rees
et al., 2000). hMT+ is selectively activated by moving versus static stimuli. It
is also involved in the processing of apparent motion (e.g. Goebel et al., 1998),
illusory motion (e.g. Tootell et al., 1995), implied motion (e.g. Kourtzi and Kan-
wisher, 2000a; Senior et al., 2000), and imagined motion (Goebel et al., 1998).
Furthermore, hMT+ has been implicated in the analysis of shape properties like
the perception of object structure from motion (e.g. Orban et al., 1999), and the
processing of static objects that are associated with motion, such as tools (Chao
et al., 1999).
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Figure 1.2: Left hemisphere of a human brain with some areas of the dorsal stream highlighted.
I) symbolizes the dorsal ”where” or ”perception for action” pathway and II) symbolizes the
ventral ”what” or ”perception for identificaion” pathway (Mishkin et al., 1983; Goodale and
Milner, 1992).

However, presentation of stimuli containing motion defined contours, like two
patches of dots moving in opposite directions creating the impression of a bound-
ary at the position where the dot motion differs, leads to selective activation in a
different region of the human brain. An area, responding more strongly to such
motion-defined contour stimuli compared to uniform motion stimuli has been
termed kinetic occipital area (KO) (Oostende et al., 1997; Dupont et al., 1997).
In contrast, Zeki and colleagues reported that the time course of activity in KO
correlates better with activity in area V3 than with activity in the two adjacent
areas, hMT+ and LO. Moreover, when humans perceived shapes generated from
kinetic boundaries or from equiluminant colors, area KO was activated, indepen-
dent of how the shapes were derived. They concluded therefore that area KO is
not specialized for the processing of kinetic contours (Zeki et al., 2003). Another
study reported an area that they termed V3b, which gets activated by second or-
der motion (Smith et al., 1998). Because their area V3b shows close proximity
with area KO, it is most likely that both names refer to the same cortical area.
Therefore this region is also called V3b/KO.

Functional imaging experiments investigating responses for more complex
movement stimuli show activation in areas further up the dorsal stream. One
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area that seems to be particularly involved in the processing of biological move-
ments like full body human or animal movements but also lip, mouth and hand
movements is located in the posterior part of the superior temporal sulcus (STSp)
(e.g. Bonda et al., 1996; Allison et al., 2000; Grossman et al., 2000; Grezes et al.,
2001; Puce and Perrett, 2003). The same area becomes activated by stationary
images that are relevant for actions, such as body postures (Allison et al., 2000).
Recently, another extrastriate area that responds selectively to movies and pic-
tures of human body parts has been described (Downing et al., 2001).

Depending on the type of complex movements, also higher brain areas can be
activated, like the amygdala or the orbitofrontal cortex (Allison et al., 2000). Ad-
ditionally, the ’mirror neuron system’ has been proposed to play a role in move-
ment analysis. The term ’mirror neuron’ refers to the finding of neurons in area
F5 located in the premotor cortex of the monkey that discharge when the mon-
key performs a movement as well as when it observes the very same movement.
Functional imaging studies in humans have identified a possible homologue of
area F5 in broca areas 6 and 44. Possible interpretations of the functional role
of the mirror neurons include action understanding, imitation, understanding of
intentions and empathy (see Gallese et al., 2004; Rizzolatti et al., 2001; Rizzo-
latti and Craighero, 2004, for review). While this system promises to become a
very interesting research field with respect to movement recognition, the focus
of my thesis concentrates on visual areas involved in the processing of complex
movements.

Form Processing

The processing of form information begins in primary visual cortex, which con-
tains neurons analyzing edges, color and brightness of the visual input. This
information is passed on to certain subdivisions of V2 and the processing contin-
ues via VP and V4 mainly along ventral brain regions into the temporal cortex.
However, also presumably dorsal areas in the parietal cortex have been shown to
be selectively activated by the presentation of objects (see Grill-Spector, 2003,
for review).

When talking about form processing, two areas seem primarily to be involved
in the task. The lateral occipital complex (LOC) and a ventral occipito-temporal
region (VOT), which is comprised of a mainly face-selective area (fusiform face
area, FFA) and a house- or scene-selective area (parahippocampal place area,
PPA) (Grill-Spector and Malach, 2004). Interestingly, all these areas seem to re-
spond independent of whether the object is defined by luminace, texture, motion
or stereo cues (e.g. Grill-Spector et al., 1998; Kastner et al., 2000; Kriegeskorte
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et al., 2003; Gilaie-Dotan et al., 2002; Kourtzi and Kanwisher, 2001). While ac-
tivity in early visual areas represents the presence of a physical stimulus, activity
in LOC and VOT is correlated with the actual recognition of the object, deduced
from higher activity in trials, where the object was recognized compared to trials
where observers failed to identify the object (Grill-Spector et al., 2004; Bar et al.,
2001).

The exact type of representation of categories of objects, faces and scenes
within the occipital temporal cortex is still very much under debate. A number
of functional imaging experiments have shown selective activation for specific
categories in certain regions along the temporal cortex. For example, different
areas have been described for the processing of faces, animals, body parts, tools,
places and letter strings (e.g. Kanwisher et al., 1997; Martin et al., 1996; Down-
ing et al., 2001; Beauchamp et al., 2002; Ishai et al., 1999; Cohen et al., 2000).
Based on these findings, Kanwisher and collaborators proposed the hypothesis
that object recognition is accomplished by a set of areas, all specific to a cer-
tain category (Spiridon and Kanwisher, 2002). On the other hand, Haxby and
colleagues follow the idea that the whole temporal cortex serves as a distributed
system for object recognition with overlapping representations for individual cat-
egories (Haxby et al., 2001). A third hypothesis has been put forward by Tarr
and Gauthier, suggesting that objects are not clustered according to their visual
properties but to the type of processing required for recognition. In this view,
the FFA would not be an area specialized for face processing but for the pro-
cessing of fine details between members of a category, the observer has a lot of
experience with (Tarr and Gauthier, 2000).

Having introduced the different visual areas that might play a role in the
recognition of complex movements, the different concepts by which learning
might influence the processing within these areas will be reviewed in the coming
section.

1.2 Perceptual Learning

The term perceptual learning refers to changes in perception caused by expe-
rience. In principle, perceptual learning takes place in any perceptual modality
and throughout adulthood. Improvements can be observed for auditory tasks like
pitch discrimination, somatosensory tasks like spatial resolution and of course
visual tasks like the discrimination of hue (see Gibson, 1953, for review). With
regard to vision, perceptual learning can take place at basically any step of the
visual hierarchy. Early stages of visual analysis are involved in performance
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improvements in orientation discrimination (e.g. Vogels and Orban, 1985) or
vernier acuity, meaning small differences in the offset of two lines (e.g. Poggio
et al., 1992). Intermediate stages are involved in discriminating motion direc-
tion (e.g. Ball and Sekuler, 1982) or in the perception of depth from random-dot
stereograms (e.g. Ramachandran and Braddick, 1973) and high level areas facil-
itate the recognition of individual faces or objects (see Tarr and Bülthoff, 1998;
Tarr and Cheng, 2003, for review).

Several theories have been introduced as a general framework of perceptual
learning. One of which, the reverse hierarchy theory first introduced by Ahissar
and Hochstein (1997), argues, that learning starts at high levels in the cortex and
progresses backwards towards lower levels if those are needed for fine grained
discriminations. A similar theory, called late selection theory, proposes that
higher cortical areas are predominantly involved in perceptual learning. Irrele-
vant information gets filtered out at later stages leaving all information available
for processing. On the other hand, an early selection theory argues for cortical
changes due to perceptual learning as early as possible in the visual hierarchy to
eliminate irrelevant signals already at the beginning (see Fahle, 2004, for com-
parison of early and late selection theory). However, up to now the consensus
seems to be that different processing levels are involved in perceptual learning
and that it is modulated by top-down influences (see Fahle, 2005, for review).

In most of the experiments, perceptual improvements are shown to be specific
with respect to the trained stimulus and the training location. This means that im-
provements of observers to discriminate between a pair of motion directions at a
specific location in the visual field do not transfer to a pair of different directions
at the same spatial location or to the same two directions at a different location
(Ball and Sekuler, 1982). This phenomenon has been reported for many other
perceptual learning tasks (see Gilbert, 1994; Gilbert et al., 2001, for review).
However, Liu and Weinshall repeated the motion discrimination experiment by
Ball and Sekuler (1982) and analyzed the observers’ performance after changing
the training direction. Even though the initial performance for the different train-
ing direction dropped to baseline, the perceptual learning for the new direction
became much faster. This indicates some transfer to the new direction suggest-
ing generalization (Liu and Weinshall, 2000). In another series of experiments
the same researchers (Liu, 1995) showed that the lack of transfer or generaliza-
tion occurs only if the task is ’difficult’. Similarly, Ahissar and Hochstein (1997)
found transfer in a visual search task with line elements, only when the differ-
ence between target and distractor was large enough to allow for easy detection
of the target. They have termed this effect ’Eureka’ effect and explained the phe-
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nomenon with the possibility, that the easy task allows the observer to allocate
attention to the relevant dimensions.

The underlying plasticity mechanisms enabling perceptual improvements are
still very much under debate. One possible hypothesis would explain improve-
ments in performance with changes in the tuning curves of neurons relevant for
the task. Depending on the task, tuning curves could be shifting, sharpening or
broadening with practice. A similar explanation follows the idea that the weights
with which each neuron contributes to the response are adapted in a way that
the best-tuned neuron for the discrimination would be weighted more strongly
(see e.g. Fine and Jacobs, 2002, for review). Experimental evidence from pri-
mate studies investigating changes in tuning curves of individual neurons has
been reported at different levels in the visual hierarchy. Schoups and colleagues
(Schoups et al., 2001) have found changes in the slope of neural tuning within
V1 as a function of training using an orientation discrimination task. Neurons
in area V4 with receptive fields in the trained region of the visual field, narrow
their orientation tuning and increase their responses as a result of training (Yang
and Maunsell, 2004). Also high level areas have been shown to be modulated by
experience. Neurons in inferotemporal cortex (IT) respond to particular objects,
faces and shapes (e.g. Desimone et al., 1984) and the firing of individual neurons
reflects even emerging sensitivity for trained complex shapes the monkey had no
previous experience with (Logothetis et al., 1995).

Literature review on perceptual learning shows that this topic has been inves-
tigated extensively over the last decades. While most of these studies have used
stationary stimuli in order to examine possible learning processes, my work fo-
cusses on influences of learning on the recognition of complex movements. The
research that has been carried out so far using complex human like movements
will be discussed in the following section.

1.3 Biological Motion Perception

Psychophysical Investigations

One of the most striking examples of the ability of the visual system to recover
object information from sparse input is provided by the phenomenon known
as biological motion. This term has been introduced by Gunnar Johansson in
1973 (Johansson, 1973). In his experiments, he attached small light bulbs at
the major joints of a human actor. Following, the actor was filmed walking in
the dark, leaving only the light points visible but not the silhouette of the actor
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Figure 1.3: Positions of the point-lights on the major joints of the actor. Without the silhouette,
a static frame does not contain much information about the movement but a sequence of a few
frames is enough for human observers to identify the portrayed action.

(see Figure 1.3). Even though each individual light point undergoes only trans-
lational, elliptical and/or pendular motions, human observers were readily able
to perceive a human person walking. This experiment showed that the human
visual system is able to integrate the local motion signals that are conveyed by
the individual light points over time and to organize them into a global percept.
Even though for each instantaneous ”snapshot” of the movement sequence, a
very large number of different groupings and connections are possible, the hu-
man visual system organizes and interprets these kind of stimuli in less than 200
ms (Johansson, 1976). Following the first discovery, these stimuli have been
used in numerous psychophysical and functional imaging experiments involving
humans and animals.

The sensitivity of the human visual system extends beyond simple detection
of human locomotion in biological motion displays. In 1977 Cutting and Ko-
zlowski were the first ones to demonstrate that humans are able to judge the
gender of the portrayed person and even identify familiar individuals based on
their point-light animations (Kozlowski and Cutting, 1977). These studies have
been replicated recently showing that humans are able to learn to discriminate be-
tween different point-light individuals (Troje et al., 2005). However, biological
motion displays do not only convey information about human locomotion. Dit-
trich (Dittrich, 1993) compared the observers ability to identify different forms
of locomotion (like walking, jumping and leaping), instrumental behavior (like
hammering, bouncing or stirring) and social actions involving two individuals
(like dancing, boxing and greeting). Even though, recognition performance was
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best for locomotion, observers also performed way above chance level for the
instrumental and the social movements. Moreover, point-light movements even
convey information about the emotional state of the actor. Observers could read-
ily recognize different emotions like fear, anger or joy portrayed in point-light
animations of professional dancers (Dittrich et al., 1996) and even from anima-
tions showing only one arm while drinking or knocking (Pollick et al., 2001).

Evidence from psychophysical studies indicates that the perception of biolog-
ical motion relies on more than just low-level motion detectors specialized for
human movement. Adults easily tolerate changes in temporal delay between the
frames (Thornton et al., 1998), or in dot contrast and spatial frequency (Ahlstrom
et al., 1997). Moreover, the point-lights do not have to be positioned directly at
the joint. Dittrich found only a small decrease in recognition performance when
placing the points between two joints instead directly on the joints (Dittrich,
1993). Even distortions caused by embedding an upright point light figure in
simultaneous moving dot masks do not reduce the perceptual salience of point
light displays substantially. Only very complex masks are able to completely
camouflage the figure (Bertenthal and Pinto, 1994; Cutting et al., 1988; Pinto
and Shiffrar, 1999; Thornton et al., 1998).

Besides masking studies, also investigations of the effect of display inversion
support the hypothesis of global processing of biological motion. Upside-down
presentation of biological motion patterns impairs the ability of infants to dis-
criminate between a point light walker and similar displays (Bertenthal et al.,
1984). The same holds true for adult observers. When the motion patterns were
presented at orientations between 0 and 180 degrees, only an upright oriented
walker was reliably identified (Bertenthal and Pinto, 1994; Pavlova and Sokolov,
2000; Shiffrar et al., 1997). Even when observers were aware of the manipula-
tion of the display, or when they had previous experience with upside down dis-
plays, their performance was much lower than for upright presentations (Sumi,
1984). Troje suggested that the system for biological motion processing operates
in egocentric coordinates. Recognition performance was essentially identical for
conditions in which the observer and the stimuli were oriented upright compared
to a condition where observer and stimuli were rotated by 90 degrees. If how-
ever, the stimuli were presented upright and the observer was lying on the side,
or if the stimuli were rotated 90 degrees and the observer was standing upright,
performance was significantly reduced (Troje, 2003).

Fox and McDaniel (1982) were the first ones to systematically investigate the
perception of biological motion by human infants. Testing three groups of in-
fants at 2, 4 and 6 months they showed that a preference for biological motion
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displays appears by 4 months of age. Their finding led to the hypothesis that the
sensitivity of the human visual system to biological motion displays might be
an innate capacity of the visual system rather than one acquired through expe-
rience. A number of psychophysical studies however, support the involvement
of learning in the recognition of biological motion. It has been shown, that 3-
month-old infants respond to the absolute and relative motions within a single
limb, whereas infants by the age of 5 months primarily respond to the relation
between the limbs and to their bilateral symmetry (Booth et al., 2002). These
findings suggest that the older infants developed perceptual skills that bias them
to organize biological motion displays at the level of the human form. Addition-
ally, biological motion recognition seems to improve with experience. Pavlova
and colleagues found that recognition of point-light displays representing human
and non-human movements by 5-year-old children was substantially improved
compared to children at the age of three (Pavlova et al., 2001).

Animals have also been tested with point-light animations. Using this tech-
nique, it was shown that cats are able to learn to discriminate point-light ani-
mation sequences depicting a cat walking from animations showing the same
dot motion but with randomized starting positions (Blake, 1993). Furthermore,
pigeons trained to discriminate between video sequences of moving pigeons
showed transfer of this learning to point-light displays showing the same move-
ments (Dittrich et al., 1998). Another study showed that pigeons could learn to
discriminate between the movement of a pigeon compared to the movement of
a toy dog both depicted as point-light animations and some could even trans-
fer from the point-light movement to the real movement (Omori and Watanabe,
1996). Recently Vallortigara and colleagues have used an imprinting procedure
to investigate any possible natural predisposition to attend preferentially to bio-
logical motion stimuli. In a series of experiments they showed that newly hatched
chicks without any previous visual experience show a preference for point-light
displays of a hen compared to displays showing random or rigid motion. In-
terestingly, no preference was observed when the chicks had to choose between
the point-light hen and a spatially scrambled version of the same stimulus, leav-
ing the local motion vectors of the individual points unchanged (Vallortigara
et al., 2005). These results indicate the existence of a predisposition that helps
the young chicks to orient their attention towards a class of stimuli which in a
natural environment would most likely correspond to their mother. However,
they also show that the predisposition only exists for a general class of stimuli,
namely semi-rigid objects, independent of the underlying shape of the stimulus.
In Chapter 3, I will use the same stimulus manipulations to investigate, whether
the perceived shape actually influences the learning process.
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Neurophysiology and Brain Imaging

Functional imaging experiments indicate that the perception of point-light dis-
plays leads to activation patterns that are distinct from the activations elicited by
rigid motion (e.g. Grossman et al., 2000; Grezes et al., 2001). Several imaging
studies using biological motion stimuli have found specific activation of the pos-
terior part of the superior temporal sulcus (Beauchamp et al., 2003; Bonda et al.,
1996; Grezes et al., 2001; Grossman et al., 2000; Howard et al., 1996; Puce
and Perrett, 2003; Saygin et al., 2004; Vaina et al., 2001). Interestingly, this re-
gion shows similar activation for full body movements compared to point-light
displays (Grossman and Blake, 2002) and its activation seems to be orientation-
dependent with lower activation for inverted- compared to upright point-light
stimuli (Grossman and Blake, 2001). Even imagination of biological motion
stimuli results in significantly higher activation compared to baseline (Grossman
and Blake, 2001).

Furthermore, the presentation of point-light displays results in strong activa-
tion in a number of other brain regions. Similar to the results obtained from the
superior temporal sulcus, also the fusiform face area (FFA) (Kanwisher et al.,
1997) shows higher activation for intact point-light stimuli compared to their
scrambled versions. This result has been interpreted in several different ways.
Grossman and colleagues (2002) proposed that the FFA might receive direct
feedback projections from the STSp. Another possible explanation is provided
by Peuskens and colleagues (2005) proposing a model where the complex mo-
tion information processed at the level of hMT+ is not only transferred to STSp
for the extraction of the action but also to the ventral areas (e.g. the FFA) for the
analysis of the figure. A third, completely different explanation for the consis-
tent activation of the FFA when contrasting point-light stimuli with their scram-
bled versions could result from a theory originally proposed by Gauthier and
colleagues in the context of face recognition (Gauthier et al., 1999; Tarr and
Gauthier, 2000). According to their theory, the FFA is involved in all types of
subordinate level discrimination, if sufficient expertise is present for the given
stimulus class, which is certainly the case for biological motion stimuli. How-
ever, up to now, no consensus has been reached on this topic.

Even though, the motion related areas hMT+ and the kinetic occipital area
(KO) do not show significantly higher activation for point-light compared to
scrambled stimuli, they are believed to provide strong afferent connections to
the STSp (Grossman et al., 2000; Grezes et al., 2001; Vaina et al., 2001; Howard
et al., 1996). During the presentation of biological motion, frequently activation
in the cerebellum has also been observed (e.g. Grossman et al., 2000; Vaina et al.,
2001). The activity patterns induced by complex movement stimuli are task-
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dependent and can change fundamentally if subjects perform a low-level motion
vision task, rather than biological motion recognition (Vaina et al., 2001). An
imaging study specifically investigating the learning of direction discrimination
has demonstrated learning-dependent changes of the activity in different cortical
areas, including area MT and in the cerebellum (Vaina et al., 1998).

Recently, also selective activation of premotor areas during the presentation
of point-light stimuli has been observed (Saygin et al., 2004). Neurons in these
areas seem to be activated during the observation of an action as well as during
the execution of the the same action. Although first observed in monkeys, (e.g.
Gallese et al., 1996; Rizzolatti et al., 1996b, 2001), studies in humans have also
demonstrated the involvement of motor and premotor areas in action observation
indicating that humans may use their own motor representations in order to un-
derstand the actions of others (e.g. Grafton et al., 1996; Rizzolatti et al., 1996a;
Decety et al., 1997).

Neurophysiological studies investigating point-light animations have so far
focussed on the superior temporal polysensory area (STPa) in monkeys, a possi-
ble homolog of the STSp area in the human. Oram and Perrett (1994) found neu-
rons responding selectively to particular whole body movements (e.g. a walking
human). The majority of these cells were also tuned to the direction of walking
and responded similarly when the movements were presented as point-light ani-
mations. They interpreted their findings in a way that cells in the STPa are able
to compute form from motion inputs alone, without relying on the presence of
additional form inputs.

1.4 Aim of Thesis and Experimental Questions

As pointed out in the previous sections, the recognition of complex movements is
a fundamental function of our everyday life. Results from object recognition, bi-
ological motion processing and theoretical modeling indicate that learning could
play an important role in shaping the processing of complex movements in the
human brain. The aim of this thesis is to systematically investigate visual learn-
ing mechanisms, focussing on three main questions:

1. Are humans able to learn to discriminate between very similar complex
movement patterns and what are the possible constraints that influence the
learning process?
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2. What are the neural correlates of the learning process in the different areas
of the visual cortex and is there a difference between the learning of human
like movements compared to artificial articulated movement patterns at the
level of the BOLD response?

3. Is it be possible to implement biologically plausible learning mechanisms
into an already existing model for biological movement recognition and
can the model be used to simulate the BOLD activity changes obtained
from the functional imaging experiments in order to test different hypoth-
esis about the underlying plasticity mechanisms?

According to the three main research questions, the thesis is divided into three
experimental chapters.

Chapter 3 reports a series of psychophysical experiments that investigated
whether humans are able to learn to differentiate between complex movement
patterns. These patterns belonged to three different groups of movements and
were all presented as point-light animations. The first group was composed of
natural human movements, the second one consists of movements of artificial
skeleton models containing nine segments moving in an articulated fashion and
the third one consisted of the same human movements as the first one, but this
time the spatial positions of the individual points were scrambled. The main fo-
cus of the psychophysical investigations was to identify possible differences in
the learning process between the three different groups with respect to the time
scale of the learning and the invariance properties of the learned representation.
To control for the learning history of the subjects, all stimuli were generated by
motion morphing. In this way it was possible to create stimuli that were com-
pletely novel to the observer. Additionally, motion morphing by linear combina-
tion of prototypical movements allowed to precisely control the spatio-temporal
similarity between the individual stimuli.

Chapter 4 presents the results of a series of functional imaging experiments
that were carried out to identify possible neural correlates of the learning pro-
cess. Because the stimuli across the conditions that had to be compared were
very similar, a special fMRI adaptation paradigm was used to acquire the images.
This technique allows to identify possible sub-populations of neurons within the
same voxel that contribute to the encoding of different movement stimuli. In
addition to the experimental runs, several localizer runs were acquired for ev-
ery observer to reliably detect the visual areas involved in low-level, mid-level
and high-level motion and form processing (namely V1, V2, V3, V3a, VP, V4v,
V3b/KO, hMT+/V5, FFA and STSp). By analyzing the fMRI signal separately
for each of these areas, it became possible to identify learning processes at all
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stages of the visual hierarchy. The main focus of the imaging experiments was
to pinpoint learning induced neural plasticity mechanisms in the visual cortex
and to identify possible differences between the learning of natural human-like
movements compared to artificial articulated movement patterns.

The final experimental chapter of this thesis deals with the theoretical im-
plementation of the experimental results. The theoretical part was based on an
already existing neural model for biological motion recognition, which was ex-
tended by the implementation of biologically plausible learning rules. Specific
detectors of complex form and optic flow fields were learned automatically along
with the temporal order with which these features arise during the movement se-
quence. Additionally, a neural adaptation mechanism was implemented at the
highest level of the model. The goal of the theoretical part was to be able to
simulate a whole run of a real fMRI experiment and to determine whether the
simulated BOLD responses are in accordance with measured BOLD responses.
In the future, this model could then be used to test different hypothesis about
how learning shapes the processing of complex movements in the human brain.



Chapter 2

Methods

2.1 Psychophysics

The term psychophysics entered the scientific world in 1860, when Gustav
Fechner (a German physicist) published his work entitled ”Elemente der Psy-
chophysik”. In this book, he introduced the concept of a psychological world,
that exists next to the physical world. Like in the physical world, where objects
can be measured in physical units, corresponding sensations can be measured in
psychological units. In the so called Weber’s law

∆Φ = kΦ (2.1)

he tried to formulate a mathematical relationship between the two, where an in-
crease in a stimulus that is just noticeably different (∆Φ) is a constant proportion
k of the stimulus. Thereby, measuring a single discrimination threshold for one
stimulus intensity predicts the discrimination threshold for many other stimulus
intensities. Weber’s Law can be applied to many different sensory modalities
like brightness, sound, mass, pressure or temperature. While the size of the
Weber fraction k varies across modalities, it tends to be a constant within a spe-
cific modality. Even though Fechner’s idea that sensations might become repre-
sentable by numbers and therefore, psychology might become an exact science
did not hold true, he still was the founder of a ”new” psychology, investigating
human performance with the help of exact scientific apparatus.

Today, the term psychophysics stands for the study of the relationship between
the physical world and the psychological world. By studying questions regard-
ing detection or discrimination thresholds, or reaction times, psychologists try to
infer underlying neural processing steps purely from the ”outside”. The fact that

17
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it is non invasive is one of the main advantages of psychophysics. This makes it
possible to study even complex experimental questions using human participants
as subjects. However, the drawback is that it is very difficult to to design exper-
iments that are suitable to exactly pinpoint the underlying neuronal mechanisms
involved in the processing. Therefore, a combination of psychophysical investi-
gations with other experimental procedures like neurophysiological recordings,
functional imaging or theoretical modeling, may advance the understanding the
processing mechanisms that form the basis of the observed behavior.

In detection threshold experiments, the stimulus is presented in several in-
tensities and the task for the observer is to report, at which intensity he is able
to perceive it. Discrimination threshold experiments measure how different two
stimuli have to be, so that the observer can reliably tell the difference. Because
the stimuli will be presented in a variety of intensities, psychophysical exper-
iments usually result in the measure of a so called psychometric function. A
psychometric function usually resembles a sigmoid function with the observer’s
response to the stimuli, displayed on the ordinate and the variable stimulus pa-
rameter on the abscissa. For example, the measure of detectability used in a
psychometric function is the percentage of detections at a given intensity. How-
ever, there most certainly will be a range of intensities, for which the observer
will be uncertain about the detection of the stimulus. An additional complication
when measuring the percentage of detection is that the observer might show a
response bias. This bias would shift the whole psychometric function towards
the right or left and might mislead the interpretations. A more detailed analysis
of the performance of the observer that is independent of a possible response bias
will be discussed in the next section.

Signal Detection Theory

A measure of accuracy independent of a possible bias of the observer can be ob-
tained using signal detection theory Swets et al. (1961). In the psychophysical
experiments reported in Chapter 3, observers view two complex movement stim-
uli presented in succession. The task for the observer is to decide whether the
two stimuli were identical or whether they were different. The trials, in which
the stimuli were actually identical correspond to the signal present condition,
whereas the trials, where the two movements were different belong to the signal
absent or noise condition. The ability of the observer to discriminate between
signal present and signal absent (or noise) trials is represented by the sensitivity
index or d-prime (d′).
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Figure 2.1: Concept of signal detection theory. The dotted line represents the criterion of
the observer. Depending on the shift of the criterion towards right or left, the hits and the false
alarms increase and decrease, respectively. The measure of d′ depends only on the differences
of the means of the two distributions and is therefore independent of the criterion and therewith
a possible bias of the observer.

The design of the reported experiments is a so called two alternative forced
choice (2AFC) paradigm. In terms of signal detection theory the responses of the
observer can be classified into four different categories. He could correctly iden-
tify the two stimuli as being different (hit, H), or as the same (correct rejection,
CR). Yet, he could also falsely decide that the two stimuli were different even
though they were identical (false alarm, FA) or judge the two stimuli as being
identical, even though they were different (miss, M). The measure of d′ is inde-
pendent of a possible response bias of the observer, because it takes into account
not only the hits, but also the false alarms. If for example the observer would
show a bias for the response ”different”, we would obtain a high hit rate ( H

H+M
),

but also a high false alarm rate ( FA
FA+CR

), because he would frequently answer
”different” even though the stimuli were identical. Exactly the opposite result
would be found if the observer shows a bias towards answering ”identical”.

Because the task is initially very difficult, there will be always some uncer-
tainty for the observer as to whether the stimuli were different (signal present) or
identical (signal absent or noise). Whether the observer is sensitive to the differ-
ence depends on the stimulus strength but also on the amount of noise present.
This noise could come from external sources like the monitor, the stimuli are pre-
sented on, but also from internal sources like the visual system of the observer.
If the noise is random, sampling it over time will produce a normal distribution,
with its mean at the average noise level (the dotted curve in Figure 2.1). If there
is a recurring signal present, its energy will be added to the background noise.
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Therefore, sampling the signal present trials over time would also result in a nor-
mal distribution, but with a higher mean (the solid curve in Figure 2.1). The
spread of the two curves depends on the amount of noise in the system. The less
the noise present, the more separated the two curves become.

The decision of the observer is mainly influenced by two factors. One of it
is the signal strength or in our case the difference between the two successive
stimuli. If the difference is increased, the task becomes easier, which results in
less overlap of the two curves. The second one is called criterion. Because the
observer has to take a binary decision as to whether the stimuli were identical or
different, he will set a level of ”difference” based on which he determines if the
stimuli were different. The criterion is displayed in Figure 2.1 by a vertical dotted
line which divides the graph into four parts corresponding to hits, misses, false
alarms, and correct rejections. Even though, the criterion might be influenced
by certain expectations or a bias of the observer towards one of the two possible
answers, a shift of the vertical line will alter both the hit rate and the false alarm
rate together.

The sensitivity index (d′) is a measure of the difference between the means of
the signal present and the signal absent distributions. It can be calculated solely
from the observers hit and false alarm rates. This is accomplished by converting
the proportions of hits and false alarms to z-scores (a measure that normalizes
for the mean and the variance of a distribution).

d′ = z(H)− z(FA) (2.2)

In our case, larger absolute values of d′ would indicate that the observer is more
sensitive to the differences between the two presented stimuli. The formula also
shows that the value of d′ is independent of the criterion the observer has adopted.

2.2 Magnetic Resonance Imaging

In Chapter 4, the results of the functional imaging experiments investigating the
neural correlates of the learning of complex movements will be discussed. The
present section intends to provide an introduction to the method of fMRI and
to highlight certain concepts and processing steps involved in the analysis of
functional imaging data.
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2.2.1 Principles of Functional Magnetic Resonance Imaging

Basic Physics of Magnetic Resonance Imaging

All protons, neutrons and electrons forming an atom possess an intrinsic angular
momentum called spin. While the magnitude of this spin is the same for all of
them, they can vary in their main axis of spin. Important for the image acqui-
sition is the spin of the protons. When protons and neutrons combine to form a
nucleus, they combine in pairs of oppositely oriented spins leaving atoms with
even numbers of protons with no net spin. Hydrogen however, with only one pro-
ton at its nucleus has a net spin. This spin leads to the formation of a magnetic
dipole, providing the Hydrogen atom with the properties of a small magnet.

The main components of a nuclear magnetic resonance (NMR) experiment
are a large magnetic field (B0), Hydrogen atoms and a coil. The coil has to act
as a transmitter as well as a receiver. A single Hydrogen atom can be present
in two different spins (+1/2 and -1/2). However, because of the huge number of
Hydrogen atoms contained in a small brain volume, in principle, all spin axes
are present. If the Hydrogen atoms are placed inside B0, their dipoles tends to
align with the magnetic field. Because of the spin of the proton, the alignment
does not happen at once but the spin axis of the proton precesses around the
field axis. The frequency of this precession is the resonant frequency of nuclear
magnetic resonance and is proportional to the magnetic field. Over time, the
dipole tends to gradually align with the magnetic field. The time constant of
this relaxation is called T1. A typical value for T1 in the human body is around
1 second. In reality, only a small number of dipoles gets oriented along the
main field because other forces like thermal motions prevent the dipoles from
settling. Nevertheless, this small amount of correctly oriented dipoles creates
a weak equilibrium magnetization (M0) or longitudinal magnetization aligned
with the field. M0 is however very small compared to the strong magnetic field
B0.

In the transmitting state, a brief oscillating current (for a few milliseconds) is
applied to the coil which induces an oscillating magnetic field (B1) in the sample
that is perpendicular to B0. Even though B1 is much smaller than B0, applied in
the correct frequency (radio frequency, RF) it is sufficient to tip M0 away from
B0, resulting in transverse magnetization MT . After the transmission, the coil
switches into the receiving state. MT is now precessing around B0 and induces
a current in the coil. This current decays exponentially over time with a time
constant called T2 or T∗

2 because the dipoles start to get out of phase. After some
time, the transverse magnetization is no longer measurable, whereas M0 builds
up again along the main magnetic field B0.
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Figure 2.2: MR images of the same section with different tissue contrasts. a) shows a T1-
weighted high resolution volume scan and b) a low resolution T ∗

2 -weighted image acquired with
echo planar imaging (EPI). Depending on the TR chosen, it is possible to highlight different
aspects in the image like for example the gray-white matter boundary in a).

Because most of the brain volume is composed of water, the hydrogen atoms
in each of the water molecules will be the main source of the signal. However,
different parts of the brain contain slightly different amount of water. Nerve
cells, for example, are relatively rich in water, whereas the myelin around the
long nerve fibers contain less of it. This can be used to generate contrast between
the gray matter, the underlying white matter and the cerebrospinal fluid (CSF) of
the brain in a proton density weighted image.

Another way to create contrast in the image is by using the two time constants
T1 and T∗

2. At a magnetic field of 1.5 Tesla (which is about 30000 times stronger
than the natural magnetic field at the surface of the earth), T1 corresponds to
about 900 ms for gray matter, 700 ms for white matter and 4000 ms for CSF.
If the repetition time TR (the time between two radio frequency pulses) is short,
the signal for white matter will recover more strongly than the signal for CSF,
resulting in bright white matter and dark CSF in the image. In a similar way, also
T2 can be used to produce different contrasts. T∗

2 for white matter is about 70
ms for gray matter 90 ms and 400 ms for cerebrospinal fluid. When the signal
acquisition time is delayed, gray and white matter will appear dark and CSF
white (Figure 2.2).

To regain the initial longitudinal magnetization, the next RF pulse can only be
applied at a time several times larger than T1 (about 20 seconds). Because it is
crucial to acquire as many images as possible to increase the statistical power of
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the results, it is desirable to reduce the time between two RF pulses (repetition
time or TR). If TR is small, the recovery of the longitudinal magnetization is
incomplete and therefore smaller than the initial M0. This in turn results in a de-
creased transverse magnetization and thus the measured MR signal will also be
smaller. However, if the repetition time is kept constant, the subsequent MR sig-
nals will be smaller than the first one but, nevertheless, constant and are therefore
also called steady-state signals.

The location in the brain where the measured MR signal is obtained from, is
encoded in three steps for the three main axes x, y and z. Usually encoding the
position along the x, y and z axis are called frequency encoding, phase encoding
and slice encoding, respectively. Because the resolution with which each encod-
ing step takes place is limited, the final image of the whole brain is described in
terms of voxels (rectangular blocks) containing a certain volume of brain tissue.

In principle, each position encoding requires a new RF pulse, leading to a very
high number of pulses, each separated by the fixed TR. This leads to very long
scanning times for the acquisition of a single image. Since such long acquisition
times are not feasible for functional imaging, one possibility to reduce image
acquisition time is echo planar imaging (EPI). With this technique, a single RF
pulse can be used to generate the full data set for a low resolution image (see
Figure 2.2). This means that, depending on the hardware, the image of a single
”brain slice” can be acquired within 30 - 100ms giving the opportunity to acquire
many slices to cover the whole brain within about 2 seconds.

While EPI imaging is suitable for functional scans, the resolution of the im-
ages is low. To relate individual functional differences to specific brain struc-
tures, at least one high resolution 3D scan of the whole brain is needed (see also
section 2.2.3). A commonly used volume-imaging sequence is called MP-RAGE
(Magnetization Prepared Rapid Gradient Echo Image), which acquires one vol-
ume in about eight minutes (see Figure 2.2).

Brain Metabolism

Neurons fire action potentials to communicate with each other. Action poten-
tials are based on rapid influx of Sodium (Na+) ions into the cell membrane
downstream a concentration gradient. To maintain the concentration gradient
Na+ ions have to be transported out of the cell and Potassium ions (K+) into the
cell. This transport requires energy, which is delivered mainly in the form of
adenosine triphosphate (ATP). The transport of Na+ and K+ ions against their



24 Methods

concentration gradient is coupled to the hydrolysis of ATP to adenosine diphos-
phate (ADP). The Na-K-ATPase (also known as Na/K pump) transports three
sodium ions and two potassium ions with the breakdown of each ATP.

Another important mechanism that consumes energy is the transport of cal-
cium ions. The fusion of the synaptic vesicles with the synaptic membrane and
thereby the release of neurotransmitters at the synapse is induced by massive in-
flux of calcium ions into the synapse along a concentration gradient. Like for the
sodium ions, the calcium ions have to be transported outside the synapse against
the concentration gradient, which is again achieved by the consumption of ATP.
Additional energy in form of ATP is needed for re-uptake of the neurotransmit-
ters.

To maintain the concentration gradients and thereby the functioning of the
neurons, the reservoir of ATP has to be constantly refilled. To restore the supply
of ATP, ADP has to be converted back into ATP. This is done in two steps namely,
glycolysis and the trans-carboxylic acid cycle involving glucose and oxygen. The
supply of these two molecules is provided by the capillary system.

Taken together, the activity of neurons results in an increase of energy con-
sumption. The restoration of this energy depends on the availability of glucose
and oxygen delivered by the blood stream. This results in an increase of cerebral
blood flow (CBF) around the activated region. (The exact spatial distribution
of this increase is still under debate). For reasons not yet fully understood, the
increase in CBF is much higher than the actual cerebral metabolic rate of oxy-
gen consumption (CMRO2) (Fox and Raichle, 1986; Fox et al., 1988). This
fact leads to a substantial increase of oxygenated haemoglobin relative to de-
oxyhaemoglobin in the venous blood at the activated region. The next section
will show how this change can be used to measure the blood oxygenation level
dependent (BOLD) change for functional magnetic resonance imaging.

Blood Oxygenation Level Dependent fMRI

The term magnetic susceptibility describes the fact that all samples placed in a
magnetic field become partly magnetized. The strength of this magnetization
is called susceptibility and it depends on the composition of the sample. When
materials with different susceptibilities are close together, it leads to distortions
of the magnetic field. While this can be a problem for imaging areas where air
and bone interface, this effect is essential for functional imaging.

Fully oxygenated blood has about the same susceptibility as other brain tis-
sues but deoxyhaemoglobin is paramagnetic and thus alters the susceptibility
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of the blood. An increase in deoxyhaemoglobin therefore leads to local distor-
tions of the static magnetic field B0 around the blood vessels. Spins in this non-
uniform magnetic field now precess at different frequencies causing more rapid
phase dispersal and decay of the NMR signal. Therefore, changes in blood oxy-
genation can cause changes in the MR decay parameter, T∗

2, leading to changes
in image intensity in T∗

2-weighted images. This process is the basis of the BOLD
contrast on which most fMRI studies are built up.

Although the fact that deoxyhaemoglobin is paramagnetic and leads to local
field distortions around red blood cells was known already since 1982 (Thulborn
et al., 1982), Ogawa and colleagues provided the first evidence that changes in
brain oxygenation could be followed with MR imaging (Ogawa et al., 1990).
Shortly afterwards, several studies reported increase in MR signal specific to the
stimulated brain area (Bandettini et al., 1992; Frahm et al., 1992; Ogawa et al.,
1992). This was the start of functional magnetic resonance imaging based on the
BOLD effect.

At a first glance it seems counterintuitive that the local MR signal increases
with brain activation based on an increased blood oxygenation. Whereas at rest,
about 40% of the blood oxygen gets metabolized, the previous section reviewed
that an increase of brain activity leads to a strong increase of CBF, although
CMRO2 only increases moderately. By this mechanism, the venous blood at an
active state is more oxygenated than at rest.

The measured BOLD response to a brief stimulation is called the impulse
hemodynamic response. Measuring the time course of the hemodynamic re-
sponse typically results in a gradually increasing signal starting about 2 sec-
onds after stimulation onset. This delay has been attributed to the fact that the
blood needs some time to flow from arteries to capillaries and draining veins
(Kwong et al., 1992). After 6 to 8 seconds, the hemodynamic response reaches
a plateau phase and slowly decreases again after stimulation offset. Often the
signal does not return straight to baseline but decreases even further resulting in
a post-stimulus undershoot for tens of seconds (Buxton et al., 1998; Frahm et al.,
1996; Logothetis et al., 1999). The exact shape of the hemodynamic response
function differs between observers but also between stimulated regions of the
cortex (Glover, 1999).

Neural Correlates of the BOLD Signal

Recently, much research has been dedicated to investigate the neuronal events
underlying the BOLD signal changes (Logothetis et al., 2001). Electrophysi-
ological studies in awake behaving animals usually measure extracellular field
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potentials (EFPs). The release of an action potential by a neuron is characterized
by a local influx of positive ions (e.g. Na+) into the axon. This so called inward
current traveling down the core of the axon or dendrite has to be compensated
by an outward current at an inactive site, flowing back through the extracellular
medium to the site where the inward current took place. The current flowing
within this closed loop is called extracellular field potential and can be measured
with an electrode placed nearby in the tissue. A single electrode measures the
spatio-temporal mean of all EFPs in its surrounding. One way of extracting the
spiking activity of individual neurons from the mean EFP is by placing the elec-
trode very close to the spiking neuron. In this way, the mean EFP is dominated
by the individual firing rate of the neuron.

While the main output of a neuron is determined by the action potential, the
occurrence and the frequency of an action potential is determined by the inte-
gration of sub-threshold local communication between the neuron and its sur-
rounding excitatory and inhibitory neurons, via its dendrites. To separate the
local integration processes from the spiking activity, the mean EFP can be di-
vided into two components by applying specific filtering techniques. High-pass
filtering (cut-off 300-400 Hz) measures the multiunit spiking activity (MUA),
while low-pass filtering (cut-off < 200 Hz) reflects the local synaptic voltages,
also called local field potentials (LFP) (Logothetis, 2002, 2003).

To investigate the neural origin of the BOLD response, Logothetis and col-
leagues measured local field potentials, multi-unit spiking activity and BOLD
responses simultaneously (Logothetis et al., 2001). In general, they found a very
good correlation of both physiological measurements with the BOLD response.
However, investigating the effect of stimulus duration provided a tool to disso-
ciate between LFPs and MUA. While visual stimulation of 12 seconds and 24
seconds resulted in very similar multi-unit activity measurements, the local field
potentials as well as the BOLD response showed a prolonged increase for the
24 second stimulation. This was the first evidence that the BOLD response pri-
marily reflects the input and the local processing of neuronal information rather
then the output measured in terms of action potentials. However, despite much
research in this area, the exact correlation between the measured BOLD signal
and the underlying neuronal activity still remains largely unclear.

2.2.2 Experimental Design

A suitable experimental design is critical for any functional imaging study. Usu-
ally, only about a few percent of the overall BOLD signal measured by fMRI
is related to the experimental question. In this section, the two most commonly
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used experimental designs will be described and their strengths and limitations
to answer certain questions will be discussed.

Block Design

The most commonly used experimental design in functional imaging studies is
called the Block- or Boxcar Design. In this design, multiple trials of the same
condition are grouped into blocks, and blocks belonging to different conditions
are presented alternatively (see Figure 2.3). Each block is usually presented for
16 to 20 seconds. That is because the hemodynamic response to the stimulus is
additive, which means the integral of the hemodynamic response function (HRF)
increases, as more stimuli are presented in succession. However, presenting the
same condition for a long time, might lead to the result that low frequency noise
and linear trends present in the signal, become correlated with one of the condi-
tions.

Ideally, the different conditions presented as alternating blocks differ only
with respect to one modality. The logic behind this paradigm is therefore to com-
pare the signal for the individual conditions and those areas showing significant
higher activation for one condition compared to the other, should be involved in
the processing of this modality. This interpretation is based on the concept of
pure insertion, where the change in one modality does not affect the processing
of the contents already present in both conditions. Yet, if the assumption fails,
it might actually be the case that the subtraction of the conditions highlights the
interaction of the modality of interest with all the other processing steps already
involved in both conditions, which would mislead the subsequent interpretations
(Aguirre and D’Esposito, 2000).

The main disadvantage of the block design is that stimuli from the same con-
dition are presented consecutively for several trials, which makes the stimulus it-
self very predictable for the observer. Since it is well established that the BOLD
signal is strongly modulated by attention (e.g. O’Craven et al., 1997; Ress et al.,
2000), this could lead to additional confounds in interpreting the results.

Event Related Design

An alternative approach is to present individual single trails of different condi-
tions, which are spaced in time so that each trial elicits its own hemodynamic
response function. Subsequently, all HRFs belonging to the same condition
are averaged. In this way it is possible to compare the size and shape of the
HRFs across conditions. Savoy and colleagues have shown that stimuli as short
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Figure 2.3: Illustration of the different experimental designs in functional imaging experi-
ments.

as 34 ms are capable of eliciting a measurable change of the BOLD response,
which means that even stimuli of very short duration can be used in event related
designs (Savoy et al., 1995).

The main advantage of this design is that individual trials can be presented in
random order because trials of the same condition do not have to be presented
in blocks anymore. This allows for a much better control in terms of potential
confounds like habituation, anticipation or strategy effects. Another strength of
event related designs is that it allows post hoc analyses. For example, trials can
be grouped afterwards based on correct or incorrect answers. While it is easier to
control this design in terms of attention, the main downside is that only very few
HRFs can be measured per condition. Because the change of the BOLD signal
in response to a stimulus is very low and noisy, this design has a much lower
statistical power compared to a block design.
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Figure 2.4: A: Raw signal data from one-, two- and three-trial clusters are superimposed
onto one graph. It shows a larger and prolonged hemodynamic response as the number of trials
increase. B: The estimated contribution of each trial event is shown. The hemodynamic response
adds in a roughly linear fashion. (Image from Dale and Buckner, 1997)

A way of increasing the statistical power in event related designs is to decrease
the time interval between the individual trials (Figure 2.3). Dale and Buckner
(1997) reported that the BOLD signal increases roughly linear, if two or more
stimuli are presented in rapid succession (Figure 2.4). Based on this finding, it
became possible to decrease the inter-stimulus interval (ISI) because the HRF
for an individual stimulus could be estimated despite the overlap in HRF’s for
successive stimuli. For this design, also called rapid event related design, it is
necessary however, to precisely control the order of the individual trials. To
avoid possible confounds by preceding trials, the order of the trials has to be
counterbalanced to ensure that trials of each condition are preceded and followed
by trials of the other conditions equally often.

fMRI Adaptation

Because the resolution of functional imaging scans is limited, the BOLD activity
changes reported are actually mean activities averaged over many thousands of
neurons. These neurons can be grouped into separate populations, all of which
having different response characteristics. One problem with classical functional
imaging designs is that due to the averaging it becomes impossible to visualize
these differences. One possibility to circumvent this problem is a design called
fMRI adaptation. This method is based on the finding that the repetition of the
same stimulus over time results in a decrease of neural activity, which is evident
at the level of single neurons as well as the hemodynamic response (e.g. Li et al.,
1993; Henson et al., 2000). Applied in the correct way, this repetition suppres-
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Figure 2.5: Fitted time
courses of the hemo-
dynamic response to

the presentation of two
identical point-light

stimuli and two differ-
ent point-light stimuli.

sion or adaptation effect can be utilized to characterize neuronal populations at a
spatial resolution beyond the single voxel (e.g. Grill-Spector and Malach, 2001).

The basic paradigm contains two conditions. In the first condition, identical
stimuli are presented, leading to an immediate decrease of the fMRI signal. The
second condition holds stimuli that are varied along one dimension. If the neural
populations within one voxel are insensitive to the stimulus change, the measured
fMRI signal would be similar to the one obtained from the first condition. If
however, the neurons are sensitive to the transformation, the neural response
would not adapt and the measured signal would be higher compared to the first
condition (Figure 2.5).

fMRI adaptation has been widely used by researchers investigating the en-
coding of various stimulus properties in the visual cortex. Recent human fMRI
studies have tested specifically, whether the obtained adaptation effects for dif-
ferent stimulus features are consistent with results from electrophysiological ex-
periments with monkeys, e.g. to the direction of motion (e.g. Huk and Heeger,
2000). Other human fMRI studies used adaptation paradigms to test for selec-
tivity to shape in higher visual areas, e.g. in the lateral occipital complex (LOC)
(e.g. Malach et al., 1995). The same technique was used to test the effect of dif-
ferent stimulus transformations, namely position, size, orientation, and illumi-
nation change, on the BOLD signal in the LOC (e.g. Grill-Spector et al., 1999).
Adaptation effects have also been observed in higher cognitive tasks, such as
semantic classification of objects (Buckner and Koutstaal, 1998) and procedural
motor learning (Karni et al., 1995). The fMRI adaptation paradigm is also par-
ticularly useful in learning studies. With this technique it would become possible
to investigate whether sensitivity to trained stimulus changes would be accom-
panied by an increase of the fMRI signal after learning.
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Several models have been proposed to explain how and why adaptation effects
occur (see Grill-Spector et al., 2006, for review). One possibility would be that
all neurons within a population show a similar degree of reduction in their firing
rate in response to repeated presentations of the same stimulus. This so called
”fatigue model”, would result in a general decrease of activity that would affect
all neurons in the same way (Grill-Spector and Malach, 2001). A different expla-
nation for reduced activity has been proposed by Desimone and colleagues. In
their ”sharpening model” repetition effects are explained in terms of a learning
process in which tuning curves are sharpened resulting in a sparser representa-
tion of the stimulus (Desimone, 1996; Wiggs and Martin, 1998). A third model
called ”facilitation model” illustrates adaptation as a result of faster processing
and shorter latencies or durations of neural firing (James and Gauthier, 2006).
However, additional research in neurophysiology as well as functional imaging
is needed to verify these theories.

2.2.3 Data Analysis

Prior to every fMRI experiment, one has to decide, on the areas of brain that are
of interest. During the scan, a predefined number of slices will be scanned cover-
ing that area (Figure 2.6). Depending on the size of the area, the distance between
each of the slices and the speed of the scanner, the whole set of slices, called one
volume, will be acquired within 1 to 4 seconds. In the end, the whole fMRI
experiment consists of hundreds of such volumes. This creates several compli-
cations when analyzing the data. Since the slices are acquired individually, there
will be a time difference of several seconds between the most ventral and the
most dorsal slices. Another problem arises from head movement since the sub-
jects might slightly change position over the course of the whole experiment.
Furthermore, linear or non-linear trends might be evident during the experiment
because of changes in the biorhythm of the subject or changes in physical param-
eters like temperature etc.. Finally, in order to circumvent individual variations
of the brain anatomy, the data has to be spatially normalized

Slice Timing Correction

The fact that the different slices are collected at different points in time means
that the corresponding hemodynamic response functions are acquired at different
points with respect to time. Hence the HRF appears to rise faster for a voxel that
is collected later in time compared to the voxel in an previous slice. With the
help of slice timing correction, the data can be modified in a way that the HRF is
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Figure 2.6: a: Sagital section of the brain. The white lines show the positions of the 24 slices
per volume during the fMRI experiment. b: Presented are the 24 individual slices acquired per
volume.

sampled for all slices at the same time. This is necessary to be performed before
the statistical analysis, where all slices are assumed to be acquired at once.

For this purpose, one slice of the volume has to be chosen as a reference slice.
Usually this will be either the first or the middle slice of each volume. Following,
all other slices of the volume will be shifted in time to match with the reference
slice by interpolation. All slices acquired earlier in time than the reference slice
will be weighted with their corresponding slice in the subsequent volume. Yet,
all slices measured after the reference slice will be weighted with their corre-
sponding slice in the previous volume. The only slice that is not shifted is the
reference slice. In this way, the time series of each voxel will be shifted in time,
as if the whole volume was acquired at the same point in time. Alternatively,
instead of only using only one model for the hemodynamic response function,
one can additionally include its temporal derivative to allow for deviations in the
timing (Smith, 2001).

Certainly, the interpolation will lead to the introduction of artifacts into the
data. These errors will be most prominent for slices that have to be shifted the
most, that is the ones lying most distal from the reference slice. Therefore, it
is important to maximally reduce the acquisition time per volume and to choose
the reference slice in a way that it overlaps with the areas where the effects are
expected to occur.
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Motion Correction

Because the whole fMRI scan lasts for several minutes, head movement has to
be accounted for. The result of the head movements is that individual voxels
might not correspond to the same location in the brain throughout the scan. This
however, will make the data very difficult to interpret because every comparison
across conditions is based on the assumption that the area covered by each voxel
does not change. In general, head movement will introduce an additional source
of noise, which reduces statistical power. In the worst case, the head movement
could be correlated with one of the conditions, which might lead to significant
activation differences not due to the stimuli or task (Brammer, 2001).

To minimize the influence of head motion, all volumes are realigned to a ref-
erence volume. The realignment process works as a rigid transformation not
affecting the size or shape of the brain, but only allows transformation and ro-
tation of the whole volume in x, y and z direction. The new value of the fMRI
signal after realignment for each voxel is calculated by interpolating the signal
of neighboring voxels.

The motion correction cannot be accomplished completely, if the head move-
ment is too large. In this case the algorithm which tries to minimize the least
square difference between the individual volume and the reference volume,
might stay in a local minimum. Another problem is that the brain is not com-
pletely rigid. Due to heart beat and respiration, the shape and size of the brain
might vary slightly. Also the imaging process itself might interfere with the
motion correction because head movements change the overall magnetic field
leading to inhomogeneities causing reduced signal in the affected areas. Finally,
the interpolation method to estimate the fMRI signal in the voxels leads to inter-
polation errors, further reducing the quality of the data (Ashburner and Friston,
2000; Frackowiak et al., 1997).

Temporal Filtering

Changes in global blood flow, changes of physical parameters or changes in the
scanner hardware can alter the mean intensity of the image independent of func-
tional activity (see Figure 2.7). One possibility to reduce this noise is by high
pass filtering the signal. This high-pass filtering will remove low frequency vari-
ations in the data, without significantly altering signals correlated to the stimulus.
For each pixel in the image, the time course is extracted, Fourier transformed,
multiplied by a Gaussian filter, and inverse Fourier transformed. A possible con-
found might arise, if only very few blocks per condition are acquired and if the
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Figure 2.7: The figure shows the changes in BOLD intensity during the course of the experi-
ment. While the signal varies across conditions as expected, one can also observe a linear trend
with generally lower intensities at the beginning of the experiment and higher ones in the end.
This trend can be removed using temporal filtering.

conditions are additionally separated in time. In this case, temporal filtering
might reduce the differences between the conditions because they would appear
in the low frequency domain.

Spatial Smoothing

To use a multi-subject analysis it might be useful to spatially smooth the data. In
this way, the fMRI data will be blurred prior to statistical analysis. This might
initially reduce spatial resolution, but it eventually results in an increased signal-
to-noise ratio by reducing high frequency noise. Also small differences in fre-
quencies will be reduced making the comparison between several subjects easier.

To smoothen the data, the volume data is convolved with a 3D Gaussian
kernel, the width of which has to be adjusted to the spatial resolution of the
fMRI data. The smoothing kernel is defined by the Full Width Half Maximum
(FWHM), which is usually two to three times larger than the voxel size. If the
size of the area of interest is known, one can adjust the FWHM accordingly since
the size of the FWHM determines the spatial clustering that is emphasized.

Spatial Normalization

An fMRI experiment requires data acquisition from several subjects to increase
statistical power. However, individual variations with respect to the size and
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Figure 2.8: The figure displays the talairach coordinate system superimosed on a high reso-
lution 3D scan. Assigning locations of activation in terms of Talairach space allows to compare
results between different research groups.

organization of the brain requires the alignment of all individual brains to one
standard brain. In this way, activations can be compared across subjects and
inferences about underlying brain structures can be made.

Spatial normalization between the individual brain and a template brain to
match overall size, shape and orientation is done using 12 linear parameters
(translation in x, y, and z direction, roll, pitch, yaw and resizing in all direc-
tions and shearing in all directions). Each linear transformation affects the entire
3D volume in the same way. This results in a good fit of the overall structure. To
correct for individual parts of the brain that might be shaped differently between
the subjects, it is possible to apply a set of nonlinear transformations after the
initial normalization step (Jenkinson, 2001).

A template brain that allows to compare specific activation sites across re-
search groups is the Talairach brain or the Talairach space (Figure 2.8). In this
space, the anterior commissure serves as reference point and every voxel in the
brain can be referred to as the distance in x, y and z direction from this point. The
problem with this method and spatial normalization in general is that individual
variability across different brains is very large and therefore a precise matching
of gyri and sulci would create severe local distortions. To reduce this distor-
tions, most normalization software smoothes the images before normalization.
Therefore, even though the brains are normalized, individual gyri and sulci do
not match exactly. As a consequence, stereotaxic coordinates do not necessarily
refer to a specific location along a particular sulcus. Because of this, stereotaxic
coordinates have also been referred to as probabilistic (Mazziotta et al., 1995).
An additional problem in inter-individual comparisons is that brain functions
may not always be found at a specific location of the sulcus. Zilles and col-
leagues noted that ”sulci are not generally valid landmarks of the microstructural
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organization of the cortex” (Zilles et al., 1997). However, up to now, describing
brain function in terms of stereotaxic coordinates and cortical cytoarchitecture is
the best way to compare between individual subjects.

2.3 Motion Morphing

All the stimuli used in the experiments reported in the following chapters of the
thesis were derived from motion morphing. Motion morphing algorithms inter-
polate between prototypical trajectories, resulting in new trajectories that blend
between the properties of the prototypes (e.g. Bruderlin and Williams, 1995; Wi-
ley and Hahn, 1997). The method used to generate the morphed stimuli for the
experiments is called spatio-temporal morphable models and was developed by
Giese and Poggio in 2000. This method allows the generation of new trajectories
by linear combination of different prototypical trajectories in space-time.

A complex movement presented as a point-light display is composed of indi-
vidual movement of 10 to 12 feature points. Each of these points moves along a
certain trajectory over time. When two different movements are combined, the
spatio-temporal correspondence problem between these points has to be solved.
That is, corresponding points in space-time of the trajectories of the dots between
the two movement patterns have to be defined. These points differ with respect
to space and time. For example, the maximum extension of the ankle during a
walking movement and a running movement are corresponding points. If the an-
kle point of the walking movement serves as a reference, the corresponding ankle
point of the running movement will be characterized by a shift in time, because
the ankle will reach its maximum extension earlier in the gait cycle. It is also
characterized by a shift in space because the ankle might be extended farther.

Figure 2.9 depicts the concept of spatio-temporal correspondence. The tra-
jectories of the prototypical movement patterns n can be described by the time-
dependent vector xn(t). The different trajectories x1 and x2 differ from each
other by the spatial shifts ξ(t) and the temporal shifts τ(t). The transformation,
by which x2 can be transformed into x1 can be described as

x2(t) = x1(t + τ(t)) + ξ(t) (2.3)

The spatio-temporal correspondences are calculated by minimizing the sum of
the spatial and the temporal shifts under the constraint, that the temporal shifts
define a new time variable that is always monotonically increasing. Further de-
tails about the underlying algorithm are described in Giese and Poggio (2000).
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Figure 2.9: The figure shows the concept of spatio-temporal correspondence. Spatio-temporal
correspondence between two trajectories x1(t) and x2(t) is defined by the spatial shifts ξ(t) and
the temporal shifts τ(t) that map the two trajectories onto each other. These shifts are indicated
by the gray lines. (Figure modified from Giese and Poggio (2000).

To generate smooth interpolations between several movement patterns, one
of the movements has to be defined as the reference trajectory and the spatio-
temporal shifts for the other movements will be computed with respect to that
reference movement. In a next step, linearly combined spatial and temporal shifts
between the individual movement n and the reference movement are computed
as:

ξ(t) =
N∑

n=1

wnξn(t) (2.4)

τ(t) =
N∑

n=1

wnτn(t) (2.5)

The weigths wn define the contribution of the individual movement to the lin-
ear combination. For all the experiments reported in this thesis, the sum of the
weights was constrained to 1. The new trajectory of the morphed movement
pattern can be computed with the help of Equation 2.3 , where x1 refers to the
reference movement, and by applying the spatial and temporal shifts ξ(t) and
τ(t) to the reference movement.

The technique of spatio-temporal morphable models has already been used
in a number of psychophysical experiments (e.g. Giese and Lappe, 2002; Giese
et al., 2003). In these experiments it has been verified that this technique re-
sults in smooth interpolations between different movement patterns like walking
and running. Moreover, when observers were asked to rate the naturalness of the
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presented movements, their rating for the individual prototypical movements was
very similar to their rating for the morphed stimuli. Additionally, the results ob-
tained from observers judging the perceptual similarity between several morphed
stimuli matched quite well with the actual distance between these movements in
the morphing space.

These results motivated the use of spatio-temporal morphs to investigate
learning processes in the recognition of complex movements. The following
chapter reports a series of psychophysical experiments, where these stimuli have
been applied.



Chapter 3

Psychophysical Investigations

This chapter reports the results of a series of psychophysical experiments to in-
vestigate the involvement of learning mechanisms for the recognition of complex
movements. The main research questions that will be discussed are:

1. Are humans able to learn to discriminate between very similar complex
movement patterns?

2. Does the learning process depend on the perceived naturalness of the stim-
uli or on the compatibility of the movement with human kinematics?

3. Do the learned representations for the different stimuli share the same in-
variant properties, known from natural movement recognition?

To investigate these questions, we trained human observers to discriminate
novel motion patterns that were generated by motion morphing. We tested the
learning of different classes of novel movement stimuli. One group of stimuli
was fully consistent with human movements. A second class of stimuli was
based on artificial skeleton models that were inconsistent with human and ani-
mal bodies. A third group of stimuli specified the same local motion informa-
tion as human movements, but was inconsistent with an underlying articulated
shape. Participants learned both classes of articulated movements very fast in
an orientation-dependent manner. Learning speed and accuracy were strikingly
similar, and independent of the similarity of the stimuli with biologically rele-
vant body shapes. For the class of stimuli without underlying articulated shape,
however, we did not observe significant improvements of the recognition perfor-
mance after training. Our results indicate the existence of a fast visual learning
process for complex articulated movement patterns, which likely forms the basis
of biological motion perception. This process seems to operate independently of

39
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the consistency of the patterns with biologically relevant body shapes. However,
it seems to require the compatibility of the learned movements with a global
underlying shape1.

3.1 Introduction

The ability to recognize complex movements and actions is critical for the sur-
vival of many species. Consequently, the human visual system is very skilled
in the extraction of information from movements, even for strongly impover-
ished stimuli like point-light displays (Johansson, 1973). Neonates are able to
imitate facial and manual gestures (Meltzoff and Moore, 1977), suggesting that
the recognition of complex movements might, at least partially, depend on innate
mechanisms for the processing of biologically important human movements (Fox
and McDaniel, 1982).

However, motion recognition might also critically depend on visual learning.
A dependence on learning has been demonstrated for a broad range of visual
tasks ranging from lower-level vision tasks like orientation discrimination, hy-
peracuity or direction discrimination (e.g. Ball and Sekuler, 1987; Mayer, 1983;
Poggio et al., 1992) to higher level tasks such as face- or object recognition (see
Fine and Jacobs, 2002; Goldstone, 1998; Tarr and Bülthoff, 1998, for review).
Studies on object recognition indicate that observers are able to learn novel com-
plex shapes, and that the resulting representation shows view-dependence (Edel-
man and Bülthoff, 1992). Moreover, neurophysiological experiments in mon-
keys support the existence of neurons in the inferotemporal cortex that learn to
respond selectively to novel complex 3D shapes (Logothetis et al., 1995). Many
of these neurons show view-dependent tuning.

The central role of learning in the visual recognition of complex shapes mo-
tivates the hypothesis that the recognition of complex movement patterns might
also be based on learning. Evidence supporting this hypothesis was provided by
studies showing that human observers learn to recognize individuals based on
their facial or full-body movements (e.g. Hill and Pollick, 2000; Kozlowski and
Cutting, 1977; O’Toole et al., 2002; Troje et al., 2005). Moreover, the detection
of point-light walkers in dynamic noise can be improved through visual learn-
ing (Grossman et al., 2004). Furthermore, the recognition of biological motion
is dependent on stimulus orientation, like the recognition of stationary objects

1The paper reporting the work presented in this chapter is currently under review at the Jour-
nal of Vision. (Jastorff J, Kourtzi Z, Giese MA: Learning to recognize complex movements:
Biological vs. artificial trajectories)
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(Bertenthal et al., 1987; Pavlova and Sokolov, 2000; Sumi, 1984). Consistent
with these psychophysical findings, biological-motion sensitive neurons in the
superior temporal sulcus (STS) of monkeys show view-dependent modulation
of their firing rate (Perrett et al., 1985), and imaging studies indicate reduced
fMRI activity in human STS for the presentation of inverted point-light walkers
(Grossman and Blake, 2001). This suggests that complex movements and static
shapes might be encoded by similar view-dependent mechanisms (c.f. Verfaillie
et al., 1994). That such learning mechanisms provide a computationally power-
ful explanation of biological motion recognition has been shown by theoretical
models that account for many experimental results (Giese, 2000; Giese and Pog-
gio, 2003).

Our study investigated the learning of complex motion patterns that were ei-
ther biologically relevant or artificial. One class of non-biological stimuli was ar-
ticulated, but based on skeleton models without biological relevance. The other
class of artificial stimuli had the same local motion information as human mo-
tion, but no underlying global shape. All three stimulus classes were carefully
balanced in terms of low-level stimulus properties. In particular, we tried to ad-
dress the question which biological properties of complex motion stimuli might
be critical for the learning process. For the generation of stimuli with highly
controlled spatio-temporal properties we exploited new techniques for trajectory
manipulation by motion morphing, and for the approximation of such morphs by
real human movements.

We conducted four main experiments and two control experiments. Experi-
ment 1 shows that humans can learn novel articulated movements very quickly.
In addition, it demonstrates that human-like and artificial articulated movements
are learned equally fast and accurate. The similarity of the learning of the two
stimulus classes is confirmed by Experiment 2, which demonstrates that the
learned representation for both stimulus types is orientation-dependent, like nor-
mal biological motion perception. Experiment 3 rules out the possibility that the
observed similarity between the learning of human-like and artificial articulated
movement patterns is due to the fact that the both stimulus classes were gener-
ated by motion morphing. Consistent with Experiment 1, we obtained striking
similarities between the learning of (non-morphed) real human movements and
artificial patterns. Experiment 4 demonstrates that the presence of an underlying
global shape is crucial for the fast learning of complex movement patterns.
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3.2 Experimental Specifications

3.2.1 Participants

34 individuals (15 male, 19 female, mean age: 27.6 years) participated in this
study (11 in Experiment 1, 9 in Experiment 2, 7 in Experiment 3 and 7 in Ex-
periment 4). All participants had normal or corrected-to-normal vision. Many
of them had participated in psychophysical experiments before, but no one had
ever been exposed to the same or similar morphing stimuli. Participants were
tested individually and gave written informed consent to participate in the study
and were paid for participation.

3.2.2 Stimuli

Visual Stimulus Presentation

The stimuli were presented as point-light walkers consisting of 10 dots. The
dot trajectories were generated by motion morphing (see below) between three
prototype trajectories (natural human or artificial movements). The stimuli were
displayed using an Apple Macintosh G4 computer and a Sony color monitor
(75 Hz frame rate; 1024x768 pixels resolution) that was viewed binocularly
from a distance of 40 cm. Stimulus presentation and recording of the partici-
pants’ responses was accomplished with the MATLAB Psychophysics Toolbox
(Brainard, 1997). The stimuli were shown as black dots on a gray background,
and each dot had a diameter of 0.5 degrees visual angle (Figure 3.1). In order to
prevent participants from using low-level strategies for accomplishing the task,
the stimulus dots were not presented on the major joints. Instead, for every frame
the dot positions were chosen randomly and uniformly distributed along the bone
segments that were immediately adjacent to the relevant joint (c.f. Beintema and
Lappe, 2002, for a similar stimulus manipulation). The maximum displacements
were 30 % of the bone length away from the joints. This manipulation does
not disrupt the perception of biological motion. However, it efficiently prohibits
the use of local strategies, like comparing the relative positions of individual dot
pairs (Jastorff et al., 2003). The lifetime of the dots was 1 frame. The size of
the stimuli was 5 x 10 degrees, and their position was randomized within an area
of ±2 degrees horizontally and vertically. During each trial, the stimuli were
presented for four movement cycles (90 frames per cycle).
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Tracking of Human Movements

Prototypical human movement trajectories were obtained by tracking the two-
dimensional joint positions in videos showing an actor performing different
movements. The actor moved along a line that was orthogonal to the view di-
rection of the camera. All movements were executed periodically for multiple
cycles, but only a single cycle of each movement was used for motion morphing.
First the translation of the body center was subtracted by fitting the translation of
the hip with a linear function of time. The resulting movement looks like a per-
son performing the movement on a treadmill. The body points that were tracked
manually were the head, shoulders, elbows, wrists, hip, knees and ankles. For
the generation of the point-light stimuli the positions of the shoulder and the
head markers were averaged, resulting in a stimulus with 10 dots. The tracked
trajectories were time-normalized and smoothed by fitting them with a second
order Fourier series. The resulting periodic trajectories served as prototypes for
the generation of human-like novel movements. We used four groups of human
movements, each containing three prototypical movements.

Generation of Artificial Articulated Movements

Prototypical trajectories for the artificial stimuli were generated by animation of
multiple artificial skeleton models with 9 bones that were linked in the same way
as a human skeleton (Figure 3.1b). The shapes of the skeletons were chosen to
be highly dissimilar from biologically relevant body structures. The trajectories
of the joint angles αn(t) of the 8 joints of the skeletons were given by sinusoidal
functions of time:

αn(t) = αn + βnsin(ωt + φn) (3.1)

The frequency ω, and amplitudes βn were matched with typical values of joint
trajectories of human actors during natural movements. In this way, low-level
properties for human-like and artificial stimuli were coarsely balanced. Twelve
different prototypical artificial movements were generated and divided into four
groups, each containing three prototypes.

Motion Morphing

Motion morphing algorithms interpolate between prototypical trajectories, re-
sulting in new trajectories that blend between the style properties of the pro-
totypes (e.g. Bruderlin and Williams, 1995; Wiley and Hahn, 1997). Recently,
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Figure 3.1: Human-like and artificial articulated stimuli. Snapshots from the sequence of a
human-like (a) and an artificial articulated (b) point-light stimulus. Point positions were ran-
domly displaced along the bones of the skeleton in each frame to minimize the influence of
low-level strategies (dashed lines not shown during the experiment).

such methods have been exploited to generate stimuli for psychophysical exper-
iments (Giese and Lappe, 2002; Troje, 2002). For our experiment we applied a
method already introduced in Section 2.3 that creates new trajectories by linear
combination of three prototypical trajectories in space-time (Giese and Poggio,
2000). It has been shown that this method results in natural-looking morphs for
interpolations between different natural gaits (see Giese and Lappe, 2002, for
details). Formally, the morphs were given by the equation

New motion pattern = c1 (Prototype 1) +
c2 (Prototype 2) + c3 (Prototype 3)

where the weights ci determine how much the individual prototypes contribute
to the morph. When the weight of a prototype is high, the linear combina-
tion strongly resembles this prototype. (Weight combinations always fulfilled
c1 + c2 + c3 = 1). The weight vectors (c1, c2, c3) define a metric space, and
the distances between these vectors provide a measure for the spatio-temporal
similarity of the corresponding trajectories. By varying the distance between the
weight vectors, we were able to control the difficulty of the stimulus discrimina-
tion precisely.

Using this algorithm, we generated three different stimulus groups for each
type of movement (human-like and artificial patterns). The first group, called
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Figure 3.2: Pattern space defined by motion morphing. Morphs were generated by linear
combination of the joint trajectories of three prototypical patterns (Prototypes 1 to 3). Three
groups of stimuli were generated by choosing different combinations of linear weights: Center
Stimuli with equal weights of all three prototypes; Test Off-Center Stimuli with one prototype
weighted slightly higher than the others; and Training Off-Center Stimuli for which the weight
of one prototype significantly exceeded the other two.

Center stimuli in the following, is characterized by equal weights of all proto-
types in the linear combination (c1 = c2 = c3). The other two groups were
characterized by non-equal weights of the prototypes in the motion morph. For
the group of Test Off-Center stimuli, the weights for one prototype only slightly
exceeded the weights of the other two (ci > cj = ck; i, j, k defining the three pro-
totypes). For the third group, called Training Off-Center stimuli in the following,
one prototype was weighted significantly higher than the others (ci >> cj = ck)
(Figure 3.2).

We confirmed that the physical distances between the trajectories of the Cen-
ter and Test Off-Center stimuli for human-like and artificial stimuli were com-
parable by computing the mean Euclidean distance between the dot trajectories
(distance 0.073 for human-like and scrambled human-like stimuli vs. 0.085 for
the artificial patterns). This makes it very unlikely that our results can be ex-
plained by simple low-level motion or spatial differences between the dot trajec-
tories.

The triples of human movements serving as prototypes for the generation of
the human-like stimuli were carefully chosen to guarantee that the resulting in-
terpolations looked like a human actor could execute them (e.g. by morphing
between three different types of boxing or locomotion). For the generation of
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the artificial movements, we chose triples of prototypes leading to smooth inter-
polated movements without particularly salient features. Example stimuli can be
downloaded from: http://www.uni-tuebingen.de/uni/knv/arl/demo/index.htm

3.2.3 Procedure

For each observer, two of the four human-like stimulus groups and two out of
the four artificial stimulus groups were chosen randomly. The experiment started
with a brief practice session of four trials, showing four example stimuli without
feedback (2 human-like and 2 artificial stimuli). Participants were instructed
to respond immediately after making their decision. However, no explicit time
constraint was imposed.

In all trials participants had to compare Center stimuli with Off-Center stimuli
in a pair comparison paradigm. Each trial started with the presentation of a
Center Stimulus for four gait cycles, followed either by the same Center Stimulus
or by an Off-Center Stimulus (generated from the same triple of prototypes, four
movement cycles). The prototype contributing with the highest weight to the
Off-Center Stimulus was chosen randomly. In a two-alternative forced choice
paradigm, participants had to report whether the second stimulus matched the
first one.

The experiment consisted of three test blocks that were interleaved by two
training blocks. In the test blocks, Center stimuli had to be discriminated from
Test Off-Center stimuli. Each stimulus group was presented 3 times in random
order, resulting in 12 trials overall. During test trials no feedback about correct
discrimination was provided. Based on a pilot experiment with a different set
of observers, we adjusted the similarity of the Test Off-Center to the Center
Stimuli in order to achieve an average performance level of about 60 % before
training. The training blocks consisted of 32 trials (8 repetitions per stimulus
group). During training participants had to discriminate between Center and
Training Off-Center stimuli and received feedback about their performance.

3.2.4 Approximation of Motion Morphs by Real Human
Movements

We have developed a special method to approximate trajectories generated by
motion morphing by real human movements. Tests with such approximat-
ing stimuli are important because even human-like motion morphs, generated
by space-time interpolation, might violate important constraints of real human
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Figure 3.3: Setup for approximating human-like motion morphs by real human movements. A
point light walker, animated with the trajectories generated by motion morphing, is superposed to
an on-line video of the actor walking on a treadmill. The actors movements are motion captured
(using reflecting markers on shoulders, elbows, wrists, knees and ankles, head and hip). The
recorded trajectories closely approximate the trajectories of the human-like motion morph, but
fulfill exactly the laws of motion of real human movements. Based on the processed trajectories,
point light stimuli with ten dots were generated by averaging the positions of the head and the
shoulder markers as well as the hip markers.

movements. In this case, a comparison between artificial and human-like morphs
would not permit conclusions about differences between biological and artificial
patterns, since similarities might just reflect the fact that all morphs violate these
constraints.

We used a special setup that is illustrated in Figure 3.3. A human actor on
a treadmill tried to imitate the movements of (human-like) morphs. The actor
viewed a superposition of an online video of his own movement and a point-
light stimulus, whose movements were defined by the motion morph. The actor
tried to align the joints of his body, as accurately as possible, with the positions
of the dots of the point-light walker, monitoring himself on the video screen.
After several minutes of training, the actor was able to accomplish a relatively
accurate reproduction of the movements of the point-light walker (reproducing
88 % of the variance of the two-dimensional joint trajectories).

The movements of the actor were recorded using a VICON 612 motion cap-
ture system with 6 cameras. The 3D positions of 22 reflecting markers were
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recorded with a sampling frequency of 120 Hz, and an accuracy below 1 mm.
The resulting trajectories were processed using commercial software by VICON.
From each movement several movement cycles were recorded, and the cycle that
was most similar (after projection on the two-dimensional plane) to the imitated
point-light stimulus was selected for stimulus generation. Based on the pro-
cessed marker trajectories, point-light stimuli with ten dots were generated and
presented with the same frame rate as the original stimuli.

3.3 Results

3.3.1 Experiment 1: Learning of Human-like vs. Artificial
Articulated Movements

The first experiment compared the discrimination learning between two types of
articulated motion stimuli: Movements that closely approximated human move-
ments, and movements based on artificial skeleton models that were quite dis-
similar from biologically relevant movements of humans and animals. With this
experiment we tried to clarify two questions: (1) Are humans able to learn the
discrimination between artificial articulated motion patterns without biological
relevance, and how fast is this learning? (2) Is there a difference between the
learning of biologically relevant and artificial articulated movements?

Participants were trained with two types of point-light stimuli: human-like
stimuli, generated by morphing between real human movements, and artificial
articulated movements, generated by morphing between trajectories that were
generated with artificial skeleton models (see Methods). If the human visual
system contained special mechanisms for the learning of biologically important
movements, one would expect that learning of human-like patterns should be
faster and potentially more accurate than the learning of completely artificial
patterns. If however, the visual system was disposing of a general mechanism
for the learning of movements that is independent of biological relevance, no
difference would be expected.

Results and Discussion

Participants perceived the human-like stimuli as human movements, whereas the
artificial articulated patterns typically resulted in very inconsistent interpreta-
tions between subjects (e.g. ”mechanical device” or ”weird spider”). Figure 3.4a
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Figure 3.4: Discrimination learning for human-like vs. artificial ar-ticulated movements. Panel
a shows the mean percentages of correct responses for Experiment 1 (+ s.e.m.) in the three test
blocks for the human-like stimuli (black), and for artificial articu-lated movements (gray). Panel
b shows the mean response times (+ s.e.m.) in the three test blocks separately for human-like
and the artificial articulated movements (N=11).
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shows the recognition performance (percent correct) for the human-like stim-
uli (black bars) and the artificial articulated patterns (gray bars) for the three
test blocks. Starting close to chance level, participants show very similar im-
provements of discrimination performance for both stimulus types. Two training
blocks with only 16 repetitions of each center stimulus were sufficient to im-
prove performance to a level above 80 % correct responses for both stimulus
types. A two-way repeated measures ANOVA reveals a significant main effect
of the number of the test block (F(2,20) = 7.9, p < .01). Neither the main ef-
fect of stimulus type (F(1,10) < .1, p = .98), nor the interaction were significant
(F(2,20) <1, p = .61).

Figure 3.4b shows the response times for the two stimulus types. Consis-
tent with the increase in performance, the response times decrease after training
for both stimulus types in a very similar way. This observation was confirmed
by an analysis of variance showing a significant main effect of the number of
test blocks (F(2,20) = 6.8, p < .01), but no significant influence of stimulus type
(F(1,10) < 1, p = .54) and interaction (F(2,20) = 1.7, p = .32).

These results indicate that the human visual system disposes of a learning
mechanism for articulated movement patterns that works equally well for bi-
ologically relevant and artificial patterns. Furthermore, less than 20 stimulus
repetitions during training were sufficient for participants to increase their per-
formance significantly. This indicates relatively fast visual learning for such
articulated movement patterns.

Since the discrimination during the test blocks of our experiments (discrim-
ination between Center and Test off-Center stimuli) was more difficult than the
discrimination during the training blocks (discrimination between Center and
Training off-Center stimuli (see Methods), our result implies also that the suc-
cessful learning of a simpler discrimination facilitated the more difficult discrim-
ination during the test blocks. The same phenomenon has been reported in other
perceptual learning experiments before (e.g. Ahissar and Hochstein, 1997; Liu
and Weinshall, 2000; Mackintosh, 1974).

To further investigate the selectivity of the learning process, we conducted two
additional control experiments. The first control experiment tested the transfer
of the learning to novel untrained stimuli of the same type. Two human-like
and two artificial articulated stimuli were randomly chosen for training. In the
test blocks, however, all four stimuli from each stimulus type (human-like and
artificial movements) were presented. In this way, we could test whether the
improvements due to training would transfer to novel similar stimuli that had not
been part of the training set.
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Our results show that improvements during training did not transfer to novel,
untrained stimuli. The observers’ performance for the novel stimuli did not
change significantly, while we obtained significant improvements for the trained
stimuli. This was confirmed by a three-way ANOVA that revealed a significant
main effect of the number of the test block (F(2,16) = 4.7, p < .05), and a signif-
icant interaction (F(3,24) = 3.5, p < .05) between the number of test block and
the familiarity (Trained vs. Novel stimuli). An additional contrast analysis based
on the significant interaction revealed significant improvements for the trained
groups (human-like: F(1,8) = 8.6, p < .01 ; artificial articulated: F(1,8) = 13.8,
p < .01) but not for the untrained groups (human-like: F(1,8) < 1, p = .43 ; arti-
ficial articulated: F(1,8) < 1, p = .98). This result implies that the learning was
highly specific for the trained patterns and did not transfer to untrained patterns
generated from different prototypical movements. Moreover, it implies that the
observed effects cannot be explained by general factors, like increasing familiar-
ity with the task or increasing efficiency of the processing of biological motion.

The second control experiment tested the necessity of the training blocks with
feedback for the learning process. The three test blocks were presented with-
out intermediate training. In this case, discrimination performance did not in-
crease significantly (no significant main effect of the number of the test block;
F(2,18) < 1, p = .91). Like for Experiment 1, we did not observe significant dif-
ferences between human-like and artificial articulated stimuli in this control ex-
periment (no main effect of stimulus type F(1,9) < 1, p = .93, and no interaction
F(2,18) < 1, p = .46). This implies that training together with feedback is essential
for the improvement during learning. This experiment provides also additional
evidence against the explanation of the observed changes by unspecific familiar-
ity or practice effects.

3.3.2 Experiment 2: Orientation Dependence of the Learned
Representation

A characteristic property of the recognition of biological motion is its strong
view and orientation dependence. Rotation of point-light walkers in the im-
age plane against the familiar upright orientation substantially degrades recog-
nition performance (e.g. Bertenthal et al., 1987; Bülthoff et al., 1998; Pavlova
and Sokolov, 2000; Sumi, 1984). Experiment 2 tested whether such orientation
dependence also applies to newly learned representations of human-like and ar-
tificial articulated patterns.
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Figure 3.5: Orientation
dependence of the learned

representation. Mean percent-
ages of correct responses

(+ s.e.m.) for three test
blocks. Training stimuli were

rotated against the test stim-
uli in the image plane (by

90 deg). Recognition rates
are shown for the human-

like movements (black), and
for the artificial articu-lated

movements (gray), (N=9).

To test orientation dependence, we modified Experiment 1 by training the par-
ticipants with stimuli that were rotated by 90 degrees in the image plane against
the test stimuli, which were presented upright.

Results and Discussion

In accordance with the orientation dependence of normal biological motion
recognition, we did not find any significant improvement of recognition perfor-
mance in the test blocks for both stimulus types when the training stimuli were
rotated against the test stimuli (Figure 3.5). This was confirmed by a repeated-
measures ANOVA, which did not show a significant influence of the number
of test blocks (F(2,16) = 1.6, p = .22). In accordance with the previous experi-
ments, we did not obtain significant differences between the two stimulus types
(F(1,8) < 1, p = .89) and no significant interaction (F(2,16) < 1, p = .76).

This result implies that, like for normal biological motion patterns, the repre-
sentations for the novel learned patterns are strongly orientation dependent. This
result seems consistent with the hypothesis that biological motion recognition
is based on the learning of orientation or view-dependent templates (Giese and
Poggio, 2003; Verfaillie, 2000). This suggests that biological motion recognition
might be based on similar principles as the view-based recognition of complex
static shapes (see Tarr and Bülthoff, 1998, for review).
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Figure 3.6: Real human
movements compared
with artificial movements.
Shown are the d-prime
values for the human-like
stimuli (black), the arti-
ficial articulated stimuli
(gray), and real human
movements approximat-
ing human-like morphs
(white) for the three test
blocks (+ s.e.m.) (N = 7).

3.3.3 Experiment 3: Comparison with Real Human Move-
ments

A possible criticism of Experiment 1 is that, since all stimuli were generated
by motion morphing, none of them might provide an appropriate approximation
of real human movements. This would explain why we did not find differences
between human-like and artificial stimuli. In order to exclude this possibility,
we have developed a method for approximating human-like motion morphs by
movement trajectories of a real human actor (see Methods).

In Experiment 3 we compared the learning of three stimulus classes: artificial
articulated movements, human-like morphs and real human movements. Other-
wise, the design of this experiment was identical to Experiment 1.

Results and Discussion

The results of Experiment 3 are summarized in Figure 3.6. Based on a different
set of participants, this experiment replicates the results of Experiment 1. For
a more detailed analysis of differences between the different stimulus types we
applied a signal detection analysis and computed d-prime values. In accordance
with the improvement in performance in Experiment 1, the d′ values increase
significantly with the number of test blocks (F(2,12) = 3.8, p ¡ .05), whereas there
is no significant influence of the stimulus type (F(2,12) < 1, p = .48) and no in-
teraction (F(4,24) < 1, p = .86). In particular, there is no significant difference
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between real human movements and the artificial articulated patterns. These
results confirm that the similarities between the learning of human-like and ar-
tificial articulated patterns in Experiment 1 are not an artifact that was induced
by the fact that the stimuli were generated by motion morphing. The same simi-
larity is found for the comparison between real human movements and artificial
articulated patterns.

3.3.4 Experiment 4: Learning of Stimuli With and Without
Global Underlying Shape

Experiments 1-3 have demonstrated strong similarities for the learning of
human-like and artificial articulated movement patterns. This raises the ques-
tion if any movement pattern of similar complexity can be learned, even if a
global underlying shape or skeleton cannot be perceived. To test this question
we compared the learning of human-like movements with the learning of move-
ment patterns without underlying global shape.

To generate stimuli without global underlying shape we spatially scrambled
the human-like movement patterns, i.e. we added temporally constant random
position offsets to the individual dot positions. This operation destroys the con-
sistency of the movements with an underlying articulated shape. However, since
the offsets are temporally constant, it does not affect the local motion information
present in the stimuli. The offsets were constrained to ensure that the scrambled
stimuli covered the same spatial area as the original human-like stimuli. None of
the tested participants was able to recognize an articulated shape in any of these
scrambled stimuli.

The experimental design was identical to Experiment 1. For each subject,
two human-like morphs were randomly chosen and presented intact, while the
remaining two human-like morphs were presented as scrambled stimuli.

Results and Discussion

The results of Experiment 4 from the three test blocks are presented in Fig-
ure 3.7. In this case, the learning process seems to be different for the two
stimulus classes. While the initial d-prime values for both stimulus types are
close to 0, only the performance for the natural-looking morphs is increasing
significantly (like in the previous experiments). The performance for the scram-
bled stimuli in the test blocks did not increase over the training. This obser-
vation is confirmed by a repeated measures ANOVA with the factors stimu-
lus type (intact / scrambled) and number of test block (Pretest, Post-test 1 and
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Figure 3.7: Human-
like movement stimuli
compared with scram-
bled human-like stimuli.
Shown are the d-prime
values for the intact
human-like stimuli (gray)
and the scrambled stimuli
(black) in the individual
test blocks (+ s.e.m.),
(N = 7).

Post-test 2). We obtained a significant main effect of stimulus type (F(1,6) = 11.1,
p < .05) and of the number of the test block (F(2,12) = 8.3 , p < .01). The inter-
action was marginally significant (F(2,12) = 3.8 , p = .05).

Interestingly, a separate analysis of the trials in the training blocks suggests no
differences in performance during training between the intact and the scrambled
stimuli. A repeated measures ANOVA reveals a significant improvement from
the first training block to the second training block (F(1,6) = 10.6 , p < .05) for
both stimulus types (no significant effect of stimulus type (F(1,6) < 1 , p = .41)
and interaction (F(1,6) < 1 , p = .79). This result suggests that subjects learned to
discriminate between the training stimuli. However, they were not able to gen-
eralize to the test stimuli with smaller distances between center and Off-center
stimuli in the morphing space.

An additional analysis of the response times shows that the observed differ-
ence between intact and scrambled movements in the test blocks cannot be at-
tributed to a speed-accuracy trade off. Comparing the response times between
the two stimulus types (in the test blocks) we found no significant differences
(F(1,6) < 1 , p = .72). This clearly indicates that subjects were trying to succeed
for both stimulus types.

Experiments 1-3 focused on the learning of articulated movements, i.e. move-
ments with an underlying global shape. Experiment 4 suggests that the presence
of such shapes seems to be critical for the learning process, or at least for the
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generalization to more difficult discriminations of very similar stimuli. Learning
seems thus to be substantially facilitated in presence of a skeleton, or potentially
also other global shapes.

3.4 Discussion

Our study investigated the visual learning of complex movement patterns that
shared specific properties with natural human movements. We studied discrim-
ination learning for stimulus pairs that were generated by motion morphing, al-
lowing for a precise control of the spatio-temporal similarities between the stim-
uli and their low-level properties. Our experiments show that humans can learn
to recognize novel articulated movement patterns very quickly, after less than
20 stimulus repetitions. Like for normal biological motion, the learned visual
representation seems to be strongly orientation-dependent, i.e. stimuli were rec-
ognized only if they were presented with the same orientation as the training
patterns. Interestingly, learning speed and accuracy for human movements and
completely artificial articulated patterns were very similar. Familiarity or bio-
logical relevance of the underlying kinematics or skeleton seems thus not to be
critical for the visual learning process. Contrasting with this result, motion stim-
uli without underlying global shape could not be learned equally fast, even when
their local motion properties were identical to human motion. This suggests that
the binding or grouping of the individual stimulus elements into a global per-
cept might strongly facilitate the learning. The similarity of our stimuli with
normal biological motion stimuli, and the fact that the learning was strongly
orientation-dependent makes it likely that the investigated learning process plays
also a central role in normal biological motion recognition.

The observed strong similarity between learning of human-like and artificial
articulated movements was highly reproducible. This similarity was observed in
Experiment 1-3 and in the two additional control experiments (in total for 46 par-
ticipants and 8 different movement stimuli). In addition, we found reproducible
improvements of performance with training, and strongly selective differences
between trained and untrained stimuli. These observations, and the fact that we
found a difference between the learning of normal and scrambled human stimuli
rule out the possibility that the observed similarity between the two classes of
articulated stimuli just reflects a lack of sensitivity of our paradigm or behavioral
measures.

Our study provides some insights that contribute to the question of what is
’special’ about biological motion perception, or at least for the visual learning
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of such stimuli. Biological movements are characterized by several properties
that might be critical for their perception: (1) general smoothness properties of
the trajectories, (2) the consistency with an underlying global shape or skeleton,
and (3) the familiarity or biological relevance of these shapes and the associated
motion patterns. Our experiment shows that the last property is not critical for
fast learning of complex movements. However, the second property seems to be
critical.

By construction, all our stimuli shared the first property, similar smoothness
of the trajectories. Smoothness is closely related to the consistency of the move-
ments with ’laws of motion’ that are typical for motor behavior (Viviani and
Flash, 1995). An example is the ’two-thirds power law’ (Lacquaniti et al., 1983)
signifying that curvature and speed of planar human movements are linked by a
power law. Psychophysical experiments have shown that simple motion stimuli
fulfilling this law appear smoother (Viviani and Stucchi, 1992). The joint trajec-
tories used for the generation of our stimuli were in agreement with this motor
invariant. (The exponents of the power law were determined by linear regression,
applied to the logarithms of velocities and curvatures, yielding exponents rang-
ing between .31 and .36 for human-like and artificial articulated movements.)
It remains to be clarified in future experiments whether a violation of general
smoothness properties impairs fast visual learning. Well-controlled experiments
of this type might be very difficult to realize, since it would have to be excluded
that differences between stimuli with different smoothness are not just reflect-
ing differences in low-level motion processing, induced by the different motion
energy distributions of such stimuli.

There are several possible explanations why learning of human-like and arti-
ficial articulated patterns are similar, whereas learning of scrambled patterns is
much more difficult. First, there might be a mechanism that recognizes com-
plex movements by matching the underlying articulated shape (e.g. Beintema
and Lappe, 2002; Giese, 2000; Giese and Poggio, 2003; Marr and Vaina, 1982;
Vaina and Bennour, 1985; Webb and Aggarwal, 1982). This mechanism might
operate independent of the biological relevance of such shapes. Second, the
recognition of motion patterns might be based on features of intermediate com-
plexity which only arise for motion that is derived from smoothly deforming or
articulated shapes. And third, there could be top-down influences of shape recog-
nition that facilitates the learning of motion patterns. The existence of such-top
down influences is suggested by a number of psychophysical and imaging stud-
ies showing that local motion perception and the activity in motion-related brain
areas are modulated by the recognition of shapes, if they are typically associ-
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ated with body movements (e.g. Chatterjee et al., 1996; Kourtzi and Kanwisher,
2000a; Peuskens et al., 2005; Senior et al., 2000).

The importance of top-down mechanisms seems also consistent with our
observation that more difficult discriminations between articulated movements
were facilitated by previously learned simpler discriminations of similar patterns.
The same phenomenon has been observed in other visual learning experiments
(e.g. Liu and Weinshall, 2000; Mackintosh, 1974), and has also been termed per-
ceptual ”Eureka” (Ahissar and Hochstein, 1997). It has been explained by the
learning of a more effective allocation of attention to features or stimulus dimen-
sions that are relevant for the discrimination. A high importance of top-down
influences in motion recognition is suggested by several psychophysical experi-
ments (Cavanagh et al., 2001; Thornton et al., 2002). The results of our experi-
ments suggest that an underlying global shape, and potentially form recognition,
might strongly facilitate such top-down processes.

Another implication of our study is that consistency with a preexisting inter-
nal (dynamic) body model seems not to be required for fast visual learning of
complex movements. Such internal models likely contribute to the perception of
imitable body movements (e.g. Fadiga et al., 1995; Grafton et al., 1997; Prinz,
1997; Wilson and Knoblich, 2005; Wolpert et al., 2003). Recent imaging ex-
periments suggest that neural structures that are involved in the representation
of such internal models are also activated by point-light walkers (Saygin et al.,
2004). However, we think that it is unlikely that the learning of the artificial ar-
ticulated patterns was based on such internal body models, since their kinematics
differed strongly from human bodies and specified non-imitable movements. The
contribution of internal models to the recognition of artificial stimuli could po-
tentially be clarified in brain imaging studies that compare activity distributions
for the two articulated stimulus types.

Several studies have suggested that infants have an innate preference for the
processing of biological motion (Fox and McDaniel, 1982; Grezes et al., 2001;
Johansson et al., 1980; Meltzoff and Moore, 1977; Pavlova et al., 2003). A pref-
erence for biological motion stimuli has also been observed in animals (e.g.
Blake, 1993). For example, unexperienced newly-hatched chicks demonstrate
an innate predisposition to approach motion stimuli that share specific low-level
properties with biological movements (Vallortigara et al., 2005). However, this
preference seems not to be selective for the global stimulus structure, since the
animals were equally attracted by scrambled and intact point-light displays of
hens. Also, this innate preference seemed not to be selective for movements of
different species, e.g. own species vs. predators. Yet, an innate predisposition to
attend to stimuli with low-level properties that are typical for biological move-
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ments might be very helpful to support the learning of more subtle biologically
important differences between complex motion stimuli. Our results complement
these studies about potential unspecific innate factors by providing a detailed
investigation of stimulus properties that seem to be critical for the learning of
detailed distinctions between different biological movements.

Summarizing, we have demonstrated the existence of a fast visual learning
process for the holistic structure of complex motion patterns. This process shares
important properties with normal biological motion perception and seems not to
differentiate between biologically relevant and non-biological articulated move-
ments, as long as they convey the percept of a global form. Learning might thus
play a central role for understanding the perception of biological motion and
actions.
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Chapter 4

Functional Imaging Studies

The psychophysical results from the previous chapter showed that the discrim-
ination between very similar complex movements can be learnt. In a series of
functional imaging studies, we wanted to verify which visual areas might be in-
volved in this learning process and if we would obtain differences at the BOLD
activity level between the human-like movements and the artificial movement
patterns. Our results indicate that learning novel human-like actions shaped
higher-level processing of known action categories by enhancing motion analysis
in hMT+/V5, V3B/KO and generalization to novel movements similar to proto-
typical actions in STSp, FFA. However, learning artificial movements bolstered
the formation of representations for novel movement patterns by enhancing the
processing in these areas as well as retinotopic regions. These findings support a
central role of experience-based plasticity in the recognition of complex move-
ments and action understanding1.

4.1 Introduction

The recognition and understanding of complex movements and actions is criti-
cal for survival and social interactions in the dynamic environments we inhabit.
Thus, it is no surprise that the human visual system is highly skilled in action
recognition even from highly impoverished articulated point light displays (e.g.
Beintema and Lappe, 2002; Bertenthal et al., 1984; Fox and McDaniel, 1982;

1The paper reporting the work presented in this chapter is currently under review at Neuron.
(Jastorff J, Giese MA, Kourtzi Z: Visual learning shapes the processing of actions in the human
visual cortex).
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Hill and Pollick, 2000; Johansson, 1973; Thornton et al., 1998). Understand-
ing the neural mechanisms that mediate this skill has been a topic of increasing
interest in cognitive neuroscience. Several recent studies have investigated the
link between action recognition and production (see Hommel et al., 2001; Wil-
son and Knoblich, 2005, for review) and its neural substrates in the monkey
(Rizzolatti and Craighero, 2004) and the human (e.g. Decety et al., 1997; Ia-
coboni et al., 1999) brain. While some studies propose innate mechanisms for
the recognition of body movements (e.g. Fox and McDaniel, 1982), others pro-
vide evidence for the importance of learning. In particular, action understanding
has been proposed to be accomplished by internal simulation of motor behavior
(Haruno et al., 2001) that forms the basis for understanding other people’s mental
states and emotions (Blakemore and Decety, 2001; Frith and Frith, 1999; Gallese
et al., 2004). On the other hand, studies showing that visual learning improves
observers’ performance in detecting human actions in noise (Grossman et al.,
2004) and recognizing individuals from their facial or body movements (Hill
and Pollick, 2000; Knappmeyer et al., 2003; O’Toole et al., 2002; Troje et al.,
2005) suggest that action understanding is enhanced and refined by experience.
Despite the importance of learning in the recognition of biological movements,
several questions remain open. Does learning of novel complex movements de-
pendent on their similarity to motor behavior and how can artificial movement
patterns that do not appear to match existing motor programs be leant? What
are the neural substrates of this learning in the human visual cortex? Does learn-
ing result in localized or distributed experience-based plasticity across stages of
visual analysis?

We addressed these questions using concurrent psychophysical and fMRI
measurements. To understand the role of experience-based plasticity in the pro-
cessing of complex movements, we compared discrimination learning of human-
like movements that are known to the observers (e.g. walking, running), and
artificial complex movements that had biological movement properties but were
unknown to the observers and were interpreted as dissimilar from typical human
or animal movements (Figure 4.1a,b). To study the learning of novel exemplars
for each of these stimulus classes we generated movement sequences with well-
defined spatio-temporal properties using a motion morphing technique that mod-
els new movements as linear combinations of sets of three prototypical example
trajectories (Giese and Lappe, 2002; Giese and Poggio, 2000). By appropriate
choice of the weights of the prototypes in the linear combinations, we were able
to vary parametrically and smoothly the similarity between the generated move-
ments. That is, similar stimuli corresponded to movements that were close in
the continuous morphing space, while dissimilar stimuli corresponded to more
distant movements (Figure 4.1c). For each stimulus class, observers were pre-
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Figure 4.1: Individual frames of point light stimuli representing a) a human like stimulus and
b) an artificial pattern (the dashed lines connecting the joins were not shown during the experi-
ment). c) Metric space defined by motion morphing. Morphs were generated by linear combi-
nation of the joint trajectories of three prototypical patterns (Prototypes 1-3). Three groups of
stimuli were generated by choosing different combinations of linear weights: 1) Center Stimuli,
for which each of the three prototypes contributed to the resulting morph with equal weights
(33.33%), 2) near Off-Center Stimuli, for which the weight for one of the prototypes was on
average 60% and for each of the other two prototypes 20%, and 3) far Off-Center Stimuli, for
which the weight for one of the prototypes was on average 75% and for each of the other two
prototypes 12.5%.

sented with two movements sequentially and judged whether they were the same
or different. Initially, observers performed this task in the scanner. Observers
were then trained in the laboratory with feedback for three consecutive days, and
then tested again in the scanner.

The fMRI measurements employed an event-related adaptation paradigm
(Grill-Spector et al., 2001; Kourtzi and Kanwisher, 2000b). This technique ex-
ploits the phenomenon of adaptation or repetition suppression that results in de-
creased fMRI responses for repeated presentation of the same stimulus compared
to presentation of different stimuli. Recent electrophysiological evidence sug-
gests that this phenomenon may reflect neural adaptation in stimulus-selective
ensembles of neurons (Sawamura et al., 2006). We compared the adapted re-
sponse evoked by the same movement shown twice with responses evoked by
movements that differed in their properties (very similar, less similar, dissimi-
lar) depending on their distance from each other in the morphing space. fMRI
selective adaptation indicated by higher fMRI responses for different that iden-
tical movements would suggest sensitivity in the measured neural populations
to the differences between movements critical for the discrimination task. We
tested fMRI selective adaptation in areas implicated in the processing of biolog-
ical motion (STSp, FFA) (Beauchamp et al., 2003; Bonda et al., 1996; Grezes
et al., 2001; Grossman and Blake, 2002; Peuskens et al., 2005; Puce and Perrett,
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Figure 4.2: Regions of interest visualized on the flattened cortical surface of the left and the
right hemisphere of one subject. The functional activation maps represent the early retinotopic
regions, V3b/KO, hMT+/V5, the fusiform face area (FFA) and the posterior part of the superior
temporal sulcus (STSp). Dark gray: sulci; light gray: gyri. STS: Superior temporal sulcus, ITS:
Inferior temporal sulcus, OTS: Occipital temporal sulcus. A, anterior; P, posterior.

2003; Vaina et al., 2001), physical motion (hMT+/V5) (Tootell et al., 1995), rel-
ative motion (V3b/KO) (Dupont et al., 1997), and retinotopic visual areas that
were independently localized in each observer (Figure 4.2; Table S1). We rea-
soned that improvement of the observers’ performance in discriminating between
movements and increased fMRI selective adaptation after training would provide
evidence for experience-based plasticity in the measured cortical areas that me-
diate behavioral learning.

Our findings provide novel evidence that the human brain learns to recognize
novel biological actions by reorganizing the processing of complex movements
across stages of visual analysis. In particular, improvement in observers per-
formance for the discrimination of movements after training was coupled with
increased fMRI selective adaptation across multiple visual areas, suggesting en-
hanced learning-dependent sensitivity to the critical features for the discrimina-
tion of movements in these areas. Learning of artificial movements dissimilar
from familiar action patterns bolstered the processes critical for building repre-
sentations for unknown motion patterns; that is, integration of novel dynamic
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configurations in early visual areas (V3a, Vp, V4), analysis of global move-
ment patterns in higher motion-related areas (hMT+/V5, V3b/KO), and process-
ing of the biological movement characteristics in biological motion-related areas
(STSp and FFA). However, learning of human-like movements enhanced primar-
ily higher-level motion processes; that is, global motion processing in motion-
related areas, and generalization (Giese and Poggio, 2003; Poggio and Edelman,
1990) to novel exemplars based on their similarity to prototypical members of
known movement categories (human actions) in biological motion-related areas.

4.2 Experimental Specifications

4.2.1 Participants

Thirty four students from the University Tübingen participated in this study:
twelve in Experiment 5, eleven in Experiment 6 and eleven in Experiment 3.
The data from two subjects in Experiment 1 and two subjects in Experiment 7
were excluded either due to excessive head movement or poor psychophysical
performance in the training sessions. Informed consent was obtained from all
subjects and the experiments were approved by the local ethics commission of
the University Tübingen.

4.2.2 Stimuli

All stimuli (5 x 10 degrees of visual angle) were presented as 10 white dots
(0.5 degrees of visual angle) on a black background. In order to minimize the
effect of low-level position cues, the points were not presented exactly at the
joint position, but were randomly jittered along the segments of the skeleton.
The displacement varied randomly between 0% and 20% of the segment length
in every frame of the animation. A similar manipulation had been applied in
previous studies of biological motion (Beintema and Lappe, 2002).

The stimuli used in Experiments 5, 6 and 7 were identical to the stimuli used
in Chapter 3. The human-like stimuli used for Experiments 5 and 6 (Figure 4.1a)
were obtained by tracking the two-dimensional joint positions in video movies of
a human actor facing orthogonally to the view axis of the camera while perform-
ing different movements. 18 movements were recorded including locomotion,
dancing, aerobics and martial arts sequences. Twelve points were tracked man-
ually (head, shoulders, elbows, wrist, hip, knees and ankles) but the positions of
the shoulder and the head markers were averaged for stimulus presentation.
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The artificial movement stimuli used in Experiment 7 (Figure 4.1b) were gen-
erated by animation of eighteen different artificial skeleton models with 9 seg-
ments. The skeletons were chosen to be highly dissimilar from naturally oc-
curring body structures. Debriefing of the observers showed that they did not
provide any consistent interpretations of these stimuli in contrast with the human
like movement stimuli that were recognized accurately by all observers. None of
the observers interpreted any artificial pattern as a human action. Some observers
interpreted these artificial movements as peculiar animal movements (38% of
observers), dynamic mechanical devices (21% of observers) or perceived mov-
ing disconnected dots without any particular global interpretation (35% of ob-
servers). The joint angle trajectories αn(t) of each skeleton were defined in the
same way like in the psychophysical experiments in Chapter 3:

αn(t) = αn + βnsin(ωt + φn) (4.1)

Their frequency ω and amplitudes βn were matched with that of typical joint
trajectories of human actors during natural movements. This procedure resulted
in 18 artificial movement prototypes. In addition, the segment length and the area
covered by the artificial stimuli were matched with the human-like movements
in order to control for differences in the low-level properties of the two stimulus
classes.

All stimuli were generated using motion morphing. We applied an algorithm
known as spatio-temporal morphable models that was introduced already in Sec-
tion 2.3. Each stimulus was defined as linear combinations of three prototypical
movements:

New motion pattern = c1 (Prototype 1) +
c2 (Prototype 2) + c3 (Prototype 3)

The weights ci determined how much the individual prototypes contributed to
the morph. When the weight of one prototype was very high, the linear combi-
nation strongly resembled this prototype. (Weight combinations always fulfilled
c1 + c2 + c3 = 1). The weight vectors (c1, c2, c3) defined a Euclidian space of
movement patterns that provided a metric of the spatio-temporal similarity be-
tween the patterns. This has been verified in additional studies applying multi-
dimensional scaling to similarity judgments between stimuli generated by this
method (Giese et al., 2003). This metric space allowed us to precisely manipu-
late the difficulty of the discrimination task by varying the distance between the
movements in morphing space. This morphing technique was used to generate
three different classes of stimuli: a) Center Stimuli, for which each of the three
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prototypes contributed to the resulting morph with equal weights (33.33%), b)
near Off-Center Stimuli, for which the weight for one of the prototypes was 60%
and for each of the other two prototypes 20%, and c) far Off-Center Stimuli, for
which the weight for one of the prototypes was 75% and for each of the other two
prototypes 12.5% (Figure 4.1c). These weights resulted in a gradual change in
the physical similarity between morphs as indicated by measurements of the Eu-
clidean distances between the stimulus trajectories. For human-like movements,
the mean distance between the trajectories of the Center and the near Off-Center
stimuli was 0.073, the Center and the far Off-Center stimuli 0.117, and the Cen-
ter and the Prototype stimuli 0.172. For the artificial movements, the Euclidean
distance between the artificial Center and near Off-Center Stimuli was 0.085,
indicating that the physical differences in the stimulus space generated for the
human-like movements and the artificial patterns were very similar.

To ensure that the human-like morphed movements appeared natural, we
morphed between prototypes from the same movement category (e.g. running,
limping and marching or three different types of boxing movements). Previous
studies have shown that the technique of spatio-temporal morphing interpolates
smoothly between quite dissimilar gait patterns (e.g. walking and running), re-
sulting in motion morphs that look highly natural (Giese and Lappe, 2002). In
addition, in a pilot experiment we collected naturalness ratings (scale 1: unnat-
ural, 5: natural) for each of the morphed stimuli. Only human-like stimuli with
high naturalness ratings (4 or 5) were used in Experiments 5 and 6.

Finally, the scrambled point light stimuli used for the localizer of biological
motion-related areas were generated by randomizing the initial starting position
of every point in the intact point-light displays of these human actions, while
preserving the original motion vector of each individual point. The scrambled
and intact point-light displays were matched for area and dot density.

4.2.3 Design and Procedure

Each subject participated in one of three experiments. In addition, for each sub-
ject we mapped the early retinotopic areas (1 run), the kinetic occipital area,
V3b/KO (1 run), the middle temporal area: hMT+/V5 (1 run) and biological
motion-related areas, namely the posterior superior temporal sulcus: STSp and
the fusiform face area: FFA (2 runs).
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Experiment 5: Learning Novel Biological Movements

Pre-Training scanning session (day 1): The observers were presented with six
different groups of human-like biological movements. Each group consisted of
movement morphs between three prototypical natural human actions from the
same category (e.g. three different locomotion patterns or three kinds of box-
ing movements). Four different conditions were tested: a) Identical: the same
center stimulus was presented twice, b) Very Similar: a center stimulus was pre-
sented, followed by a near off-center stimulus, c) Less Similar: a center stimulus
was followed by a far off-center stimulus, and d) Dissimilar: a center stimulus
was followed by a prototype. The scanning session consisted of four event-
related runs without feedback. The observers were instructed to judge whether
two successively presented stimuli were the same or different. Each run started
and ended with an eight second fixation epoch. Every run consisted of 20 ex-
perimental trials for each of the four conditions and 20 fixation trials that were
interleaved with the experimental trials. Each trial lasted 4 seconds and started
with the first stimulus (one movement cycle) presented for 1300ms, followed by
a 100ms blank, a second stimulus for 1300ms followed by a blank interval of
1300ms. The history of the conditions was matched so that each condition, in-
cluding the fixation condition, was preceded equally often by trials from each of
the other conditions (Kourtzi and Kanwisher, 2000b).

Training sessions (day 2-4): Each subject participated in three training ses-
sions in the lab on consecutive days. Each session consisted of a total of 282
trials, 47 trials per movement group. Each trial consisted of two sequentially
presented movements. The first movement was a center stimulus, while the sec-
ond one was either the same center (Identical), a near off-center (Very Similar)
or a far off-center (Less Similar). Observers were not trained in the Dissimi-
lar condition, as their accuracy performance was high before training. The Less
Similar condition was included during training, as previous studies have shown
that an easier discrimination facilitates learning in a difficult task (Ahissar and
Hochstein, 1997; Liu, 1999). Each movement was presented for 5200 ms (four
cycles) with an ISI of 500 ms between movements followed by a blank interval
of 1100 ms. In a two alternative forced choice task, subjects were instructed to
report, whether the two stimuli in a trial were the same or different. Feedback
was provided throughout training. After each training session, the observers’
performance was tested in one experimental run without feedback, similar to
those during scanning (Figure 4.3).

Post-Training scanning session (day 5): After completion of the training ses-
sions, the subjects were tested on the following day in the scanner on the same
stimuli and conditions as in the pre-training scanning session.
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Figure 4.3: Mean be-
havioral performance
(% different) during the
training sessions in the
laboratory for Experi-
ments 5 (panel a) and 7
(panel b).

Experiment 6: Trained vs. Untrained Human-like Movements

The experiment consisted of three days of training, followed by one scanning
session (day 4). The training procedure was similar to that of Experiment 5 with
the exception that three out of the six different movement groups were selected
for training (trained stimuli) while the other three groups were only presented
during the scanning session without any training (untrained stimuli). The stimuli
used for training and the untrained stimuli were counterbalanced across subjects.
During each training session, observers were trained with feedback for 141 trials;
that is 47 trials for each of the three movement groups.

Post-Training scanning session: Four conditions were tested: a) Identical
Trained: the same trained center stimulus was presented twice in a trial, b) Very
Similar Trained: a trained center stimulus was followed by a trained near off-
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center stimulus, c) Identical Untrained: the same untrained center stimulus was
presented twice in a trial, d) Very Similar Untrained: an untrained center stimu-
lus was followed by an untrained near off-center stimulus. As in Experiment 5,
the scanning session consisted of four event-related runs without feedback. The
observers were instructed to judge whether two successively presented stimuli
were the same or different. Each run consisted of 20 experimental trials for each
of the four conditions and 20 fixation trials that were balanced for their history.
Each trial lasted 4 seconds and started with the first stimulus (one movement
cycle) for 1300ms, followed by a 100ms blank, the second stimulus for 1300ms
followed by a blank interval of 1300ms.

Experiment 7: Learning Novel Artificial Complex Movements

The experiment consisted of a Pre-Training scanning session (day 1) followed
by three consecutive days of training (day 2-4), and a Post-Training scanning
session (day 5). The procedure and design for the training and scanning sessions
was the same as in Experiment 6 with the exception that artificial movement
stimuli were used.

4.2.4 Imaging

Data were collected in a 3T Siemens scanner (University Clinic, Tübingen) with
gradient echo pulse sequence (TR=2s, TE=30ms, FA=80) for 24 axial slices
(3x3x5 resolution) using a standard head coil.

4.2.5 fMRI Data Analysis

The fMRI data were processed using Brain Voyager 2000. After removing lin-
ear trends, temporal filtering as well as correcting for head movements, the 2D
functional data were aligned to the 3D anatomical data and co-registered across
scanning sessions.

For each individual subject, the retinotopic visual areas, hMT+/V5 and
V3B/KO were localized based on standard mapping procedures (Dupont et al.,
1997; Engel et al., 1994; Tootell et al., 1995). Area STSp was defined as the set
of contiguous voxels along the superior temporal sulcus that showed significantly
stronger activation (p < 10−4) for intact than scrambled point-light walkers, con-
sistent with previous studies (Bonda et al., 1996; Grossman and Blake, 2002;
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Figure 4.4: Time
courses of the fMRI re-
sponses and fits across
conditions for the Pre-
Training and the Post-
Training scanning ses-
sions in Experiment 5.
The peak points of the
fMRI time courses were
obtained by fitting the
percent signal change in
each ROI with a hemo-
dynamic response model
based on the difference
of two gamma functions,
as described previously
(Boynton and Finney,
2003). Fits and peak time
points were obtained for
all experiments.
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Vaina et al., 2001) (Table 4.1). Similarly, stronger activation (p < 10−4) for in-
tact than scrambled point-light walkers was observed in a region at the fusiform
gyrus that overlaps with the face selective area FFA, consistent with previous
studies (Grossman and Blake, 2002). This overlap was verified by significantly
stronger responses to intact than scrambled faces tested in five of the observers
that participated in Experiment 5 (Table 4.1). A recent fMRI study of high spa-
tial resolution (1.4x1.4x2.0) showed that only a subregion of the FFA is involved
in the processing of body parts and therefore possibly of biological movements
(Schwarzlose et al., 2005). Identifying this subregion could have strengthened
our effects in the FFA, as it would minimize partial volume effects from neural
populations in this region that are non-selective to biological motion. Unfortu-
nately, the resolution used in our study (3x3x5) did not allow us to discern this
subregion.

For each ROI, we calculated the fMRI response by extracting the signal inten-
sity for every trial from trial onset (0 - 14 sec) and averaging across trials for each
condition. The resulting time courses were converted to percent signal change
relative to the fixation condition and averaged across runs and subjects, as de-
scribed previously. Because of the hemodynamic response properties, the peak
of the BOLD signal is expected to occur with a delay of several seconds after
trial onset. Fitting the time course data with the hemodynamic response func-
tion and ANOVA analysis across time points for each ROI indicated that peak
time fMRI responses occurred between four and six seconds after trial onset,
consistent with the hemodynamic response properties (Figure 4.4, 4.5) Thus, we
used the average fMRI response at these time points for further statistical anal-
ysis of the differences between conditions. Repeated-measures ANOVAs and
contrast analyses on significant interactions (Greenhouse-Geisser) for Training

LH RH
Area X Y Z X Y Z
SPSp -48 (±4) -49 (±2) 10 (±3) 48 (±3) -47 (±4) 13 (±3)
FFA -38 (±3) -46 (±4) -13 (±4) 37 (±4) -43 (±5) -13 (±4)
FFA (face) -36 (±2) -47 (±4) -16 (±3) 35 (±3) -41 (±4) -14 (±4)
hMT+ / V5 -38 (±3) -63 (±3) 3 (±4) 42 (±3) -60 (±2) 4 (±4)
V3b / KO -33 (±3) -83 (±3) 2 (±3) 33 (±4) -80 (±3) 4 (±3)

Table 4.1: Mean Talairach coordinates and standard deviations (in parentheses) for biolog-
ical motion-related areas: STSp: posterior superior temporal sulcus; FFA: fusiform face area
localized with intact and scrambled biological motion stimuli; FFA (face): fusiform face area lo-
calized with intact and scrambled faces and motion-related areas; hMT+ / V5: middle temporal
area; V3b / KO: kinetic occipital area.
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Figure 4.5: Time-to-peak for each ROI and experiment based on the fits of the fMRI time
courses with the hemodynamic response model (Figure 4.4). All time courses across conditions,
ROIs and experiments peaked between four and six seconds, consistent with the hemodynamic
response properties. The shaded gray regions represent these time points that were averaged to
quantify the fMRI responses for each individual subject in each ROI.

(Pre-Training, Post-Training scanning session), Condition (Identical, Very Sim-
ilar, Less Similar, Dissimilar), and Stimulus (Trained, Untrained) were used for
the analysis of the psychophysical and fMRI time course data.

4.3 Results

4.3.1 Experiment 5: Learning Novel Human-like Movements

Behavioral performance: Figure 4.6a, shows the observers’ performance (per-
centage of different responses) in discriminating novel human-like movements
during scanning before (Pre-Training) and after (Post-Training) training. Ob-
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servers were highly accurate in discriminating identical and dissimilar stimuli be-
fore training. However, the observers’ performance was significantly improved
for very similar and less similar stimuli after training (F(3,27) = 26.69, p < 0.001).

fMRI data: biological motion-related areas: Figure 4.6b shows the fMRI re-
sponses in areas involved in biological motion processing (STSp and FFA) be-
fore and after training in discriminating novel human-like movements. We ob-
served stronger fMRI responses when different movements were presented in
a trial (Very Similar, Less Similar, Dissimilar) than when the same movements
were presented twice, consistent with previous adaptation studies (Grill-Spector
et al., 2001). Interestingly, fMRI selective adaptation was observed both before
(STSp: F(3,27) = 6.38, p < 0.01, FFA: F(3,27) = 3.25, p < 0.05) and after training
(STSp: F(3,27) = 6.09, p < 0.01, FFA: F(3,27) = 10.06, p < 0.001) in these areas.

These fMRI selective adaptation effects before and after training are illus-
trated more clearly by means of a rebound index (Figure 4.6c). This index was
calculated by dividing fMRI responses in each condition by responses to the
identical condition. An index of one indicates adaptation due to repetition of the
same stimulus, while an index higher than one indicates recovery from adapta-
tion and thus neural sensitivity to differences between the stimuli presented in
a trial. Figure 4.6c shows neural sensitivity in areas STSp and FFA (rebound
index higher than 1) for differences between human-like movements both before
and after training. Comparison of the rebound index before and after training
showed enhanced fMRI selective adaptation after training (STSp: F(2,18) = 4.11,
p < 0.05, FFA: F(2,18) = 2.89, p < 0.05). Thus, these results suggest that learning
facilitates the discrimination of biological movements by enhancing the sensitiv-
ity of neural populations in biological motion-related areas (STSp, FFA) to the
differences between novel human-like movements.

fMRI data: motion-related areas: In contrast to the activations in biological
motion-related areas, fMRI selective adaptation was observed in motion-related
areas (hMT+/V5, V3b/KO) after, but not before training (Figure 4.6d). That is,
significantly stronger fMRI responses were observed when different movements
were presented in a trial than when the same movements were presented twice
after (hMT+/V5: F(3,27) = 5.54, p < 0.01, V3b/KO:F(3,27) = 4.02, p < 0.05) but
not before training (hMT+/V5: F(3,27) = 1.11, p = 0.36, V3b/KO: F(3,27) = 1.05,
p = 0.39).

Figure 4.6e summarizes these learning effects showing that rebound indices
were not significantly different from one before training indicating adaptation,
but were significantly higher than one after training indicating recovery from
adaptation and emerging sensitivity to stimulus differences. Comparison of the
rebound indices before and after training showed significantly higher fMRI se-
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Figure 4.6: a) Psychophys-
ical data obtained during
the scanning sessions before
training (Pre-Training) and
after training (Post-Training).
The data are expressed as per-
cent of different judgments
to the successive presenta-
tion of two movement stimuli
per trial (% different). b) Av-
erage peak fMRI response
across subjects in biolog-
ical motion-related areas
(STSp, FFA) before and after
training. c) Rebound indices
for the fMRI responses in
biological motion-related
areas (STSp, FFA) before
and after training. d) Aver-
age peak time points of the
fMRI time course across
subjects in motion-related
areas (hMT+/V5, V3B/KO)
before and after training.
e) Rebound indices for the
fMRI responses in motion-
related areas (hMT+/V5,
V3B/KO) before and after
training. Error bars indicate
standard error of the mean
across subjects (SEM)
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a)

b)

Figure 4.7: Normalized fMRI data of each subject are plotted against the corresponding psy-
chophysical response in the different conditions for Pre-Training and Post-Training scanning
sessions separately for a) biological motion-related areas and b) motion-related areas. Regres-
sions for STSp and hMT+/V5 are shown by solid lines, whereas for FFA and V3B/KO by dashed
lines. See Table 4.2 for regression statistics.

lective adaptation after training (hMT+/V5: F(1,18) = 9.02, p < 0.01, V3b/KO:
F(1,18) = 8.95, p < 0.01). These results suggest that neural sensitivity to dif-
ferences between human-like movements, as measured by fMRI, emerges in
motion-related areas only after training, in contrast to biological motion-related
areas that exhibit some sensitivity to these differences before training.

Comparison of behavioral performance and fMRI responses To further quantify
the relationship between the behavioral and fMRI learning effects, we conducted
a regression analysis on the individual subjects psychophysical and fMRI data
across areas (Figure 4.7). Before training, a significant correlation was observed
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between behavioral performance and fMRI responses in biological motion but
not motion-related areas. However, after training these correlations were sig-
nificant across all areas (Table 4.2). This analysis provides additional evidence
for a link between behavioral improvement and experience-dependent neuronal
changes. In particular, improvement in the discrimination of novel human-like
movements due to training is reflected by enhancement of the neural sensitivity
to the critical differences between movements for this discrimination in biologi-
cal motion-related areas and emerging sensitivity in motion-related areas.

4.3.2 Experiment 6: Learning Specificity vs. Generalization

We investigated whether the learning effects observed for novel human-like
movements were specific to the trained movements or generalized to untrained
stimuli. We focused on the Identical and Very Similar conditions as the data
from Experiment 5 showed the most prominent learning effects for very simi-
lar movements. We followed the same training procedure as in Experiment 5,
but conducted only one scanning session after training, as these conditions had
been already tested before training in Experiment 5. Behavioral improvement
and enhancement of fMRI selective adaptation for trained stimuli would indicate
learning. Similar learning effects for trained and untrained stimuli would indi-
cate generalization to novel stimuli, whereas stronger effects for trained than for
untrained stimuli would suggest learning that is specific for the trained move-
ment patterns.

Behavioral performance: Figure 4.8a shows that the observers’ accuracy was
significantly higher (F(1,10) = 8.03, p < 0.05) for trained compared to untrained
stimuli in discriminating very similar movements but did not differ for identical
trained and untrained movements. Thus, the learning effects observed in Exper-
iment 5 were specific to the trained movements as indicated by a) the similar

Pre-Training Post-Training
Area STSp FFA hMT+ KO STSp FFA hMT+ KO
R 0.41 0.38 0.24 0.20 0.51 0.58 0.51 0.45
p 0.01 0.01 0.16 0.24 < 0.01 < 0.01 < 0.01 < 0.01
F(1,34) 6.69 5.87 2.10 1.43 12.01 17.34 12.20 8.73

Table 4.2: Regression analysis of fMRI and behavioral responses before (Pre-Training) and
after (Post-Training) training across regions of interest for Experiment 5.
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Figure 4.8: a) Psy-
chophysical data

(% different) dur-
ing scanning after
training. Rebound

indices for b) biolog-
ical motion-related
areas (STSp, FFA)

and c) motion-related
areas (hMT+/V5,
V3B/KO). Error

bars represent SEM.

performance for untrained very similar movements in this experiment and the
same movements before training in Experiment 5, and b) the similar behavioral
improvement for these stimuli after training in the two experiments.

fMRI data: biological motion-related areas: Figure 4.8b shows fMRI selec-
tive adaptation effects (rebound indices > 1) for trained and untrained very
similar movements in areas involved in biological motion processing (STSp,
FFA); that is, fMRI responses were significantly stronger for very similar than
identical movements (STSp: F(1,10) = 32.33, p < 0.001, FFA: F(1,10) = 10.56,
p < 0.01). This fMRI selective adaptation was enhanced after training, as in-
dicated by the higher rebound indices for trained than untrained movements
(STSp: F(1,10) = 5.41, p < 0.05, FFA: F(1,10) = 6.31, p < 0.05). These results are
consistent with the findings from Experiment 5 showing that significant fMRI
selective adaptation for very similar movements before training in biological
motion-related areas was enhanced after training. Importantly, these findings
suggest that experience-based plasticity is specific to the trained movements and
does not generalize to untrained stimuli.

fMRI data: motion-related areas: fMRI selective adaptation (rebound indices)
for very similar movements was observed for trained but not untrained stim-
uli (Figure 4.8c) in motion-related areas (hMT+/V5, V3b/KO). That is, fMRI
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responses for very similar stimuli were significantly higher than responses for
identical stimuli for the trained movements (hMT+/V5: F(1,10) = 8.59, p < 0.05,
V3B/KO: F(1,10) = 6.42, p < 0.05), but not for the untrained movements
(hMT+/V5: F(1,10) < 1, p = 0.82, V3b/KO: F(1,10) < 1, p = 0.38). Thus, consis-
tent with the results from Experiment 5, these results suggest that neural popu-
lations in motion-related areas develop sensitivity for very similar novel human-
like movements after training that is specific to the trained stimuli.

4.3.3 Experiment 7: Learning Novel Artificial Complex
Movements

It is possible that the learning effects observed for novel human-like movements
were due to the fact that observers were familiar with the prototypical actions
used to generate the novel spatio-temporal movement morphs. As a result, train-
ing could have enhanced the observers’ ability to generalize and discriminate
between novel exemplars from the same class of movements. To control for
the possible effect of prior knowledge about the stimulus class, we used novel
artificial complex movements. These patterns shared similar biological motion
characteristics with human actions (i.e. articulation, approximately sinusoidal
joint motion, consistency with the 2/3 power law), but were constructed based
on artificial skeletons that were chosen to be highly dissimilar from naturally oc-
curring body structures and thus were not interpretable as typical human or ani-
mal actions (see section 4.2). As for the human-like stimuli, we tested the effect
of training on behavioral performance and fMRI responses when observers dis-
criminated novel artificial movement patterns that were generated based on spa-
tiotemporal linear interpolation between prototypical patterns. Observers were
tested with identical and very similar movements in two scanning sessions, one
before and one after training. For each scanning session, half of the stimuli were
the same as those presented during the training session (trained), while the rest
of the stimuli were presented only during the scanning sessions (untrained).

Behavioral performance: Figure 4.9a shows that observers exhibited sig-
nificantly higher accuracy for trained than for untrained movements after
(F(1,8) = 15.06, p < 0.01) but not before (F(1,8) < 1, p = 0.37) training. As
in Experiment 5, before training the observers’ performance for very similar
stimuli was less accurate than for identical stimuli. However, after training
the observers’ performance in discriminating very similar movements improved
significantly while their performance with identical movements did not change
(F(1,8) = 29.41, p < 0.01).
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Figure 4.9: a) Psychophysical data (% different) during scanning before (Pre-Training scan-
ning session) and after training (Post-Training scanning session). Rebound indices for b) biolog-
ical motion-related areas (STSp, FFA) and c) motion-related areas (hMT+/V5, V3B/KO) before
and after training. Error bars represent SEM.
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fMRI data: biological motion-related areas: Figure 4.9b shows fMRI selec-
tive adaptation effects (rebound indices) for very similar movements specific to
the trained stimuli after but not before training in biological motion-related ar-
eas (STSp, FFA). That is, we observed significantly stronger fMRI responses for
very similar artificial movements compared to identical movements when the ob-
servers were tested with the trained stimuli (STSp: F(1,8) = 7.06, p < 0.05, FFA:
F(1,8) = 6.65, p < 0.05), but no significant differences when the observers were
tested with the untrained stimuli (STSp: F(1,8) = 2.71, p = 0.14, FFA: F(1,8) < 1,
p = 0.58). No significant fMRI selective adaptation was observed before train-
ing (STSp: F(1,8) = 1.84, p = 0.21, FFA: F(1,8) < 1, p = 0.39). In contrast to
fMRI selective adaptation for human-like movements before training in biolog-
ical motion-related areas (Experiment 5), neural sensitivity for artificial move-
ments emerged only after training and was specific to the trained stimuli.

fMRI data: motion-related areas: Similar to the activations in biological motion-
related areas, fMRI selective adaptation (Figure 4.9c) specific to the trained
movements was observed after but not before training in motion-related ar-
eas (hMT+/V5, V3b/KO). That is, no significant differences were observed be-
tween very similar and identical artificial movements before training (hMT+/V5;
F(1,8) < 1, p = 0.36, V3b/KO: F(1,8) = 1.31, p = 0.28). However, after training,
we observed significantly stronger fMRI responses for very similar compared
to identical movements when the observers were tested with the trained stimuli
(hMT+/V5: F(1,8) = 5.40, p < 0.05, V3b/KO: F(1,8) = 5.25, p < 0.05), but no
significant differences when the observers were tested with the untrained stim-
uli (hMT+/V5: F(1,8) < 1, p = 0.93, V3b/KO: F(1,8) < 1, p = 0.52). Thus, in
motion-related areas neural sensitivity to the differences between very similar
artificial movements emerged only after training, and this learning was specific
to the trained stimuli.

4.3.4 Learning of Novel Complex Movements in Retinotopic
Visual Cortex

We further examined whether retinotopic visual areas are engaged in the learning
of biological movements. We tested fMRI responses for human-like and artificial
movements in Experiments 6 and 7 that tested comparable conditions (trained,
untrained stimuli).

Figure 4.10a shows fMRI selective adaptation (rebound indices) for trained
and untrained human-like movements across retinotopic visual areas (Experi-
ment 6). No significant differences were observed in the fMRI responses for
very similar and identical movements when the observers were presented with
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Figure 4.10:
Rebound in-

dices based on
the activations

in the retino-
topic visual
areas for a)

Experiment 6
(Post-Training
scanning ses-

sion) and b)
Experiment 7
(Pre- and the

Post-Training
scanning ses-
sions). Error

bars repre-
sent SEM.

trained or untrained stimuli. Areas V3a and V4 showed a trend for stronger
fMRI selective adaptation for trained compared to untrained stimuli, but these
effects did not reach significance (Table 4.3). Figure 4.10b shows fMRI selective
adaptation effects (rebound indices) for the artificial movement stimuli (Experi-
ment 7). Before training, no significant fMRI selective adaptation was observed
for the stimuli used in the training sessions or the untrained stimuli. However,
after training we observed stronger fMRI selective adaptation for trained than
untrained movements in V3a, Vp and V4 but not in V1, V2, or V3 (Table 4.3).

The lack of fMRI selective adaptation for very similar biological and artificial
movements in V1 and V2 suggests that our findings in higher visual areas were
due to learning differences in the global structure rather than the local features
of the movements. Interestingly, ventral (VP, V4) and dorsal (V3a) retinotopic
areas, downstream from primary visual cortex showed enhanced fMRI selective
adaptation specific to trained movements. These effects were more prominent
for artificial than human-like movements suggesting that learning novel artifi-
cial patterns may recruit earlier (middle level) stages of visual analysis, whereas
learning novel human-like movements may shape higher-level motion processes.
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4.4 Discussion

Our results provide novel evidence for experience-based neural plasticity in the
human visual cortex that mediates the learning of novel human-like and artificial
complex movements. In particular, our study reveals the following main find-
ings: First, by combining psychophysical and fMRI selective adaptation mea-
surements, we demonstrate that training to discriminate highly similar complex
movements results in behavioral improvement and increased neural sensitivity
to differences between these movements that may represent the critical features
for their discrimination (Figure 4.11). These learning effects were specific to
the trained movements and did not generalize to untrained stimuli, suggesting
movement-specific learning rather than a general improvement on the discrim-
ination task that generalizes across different stimuli. Second, our results re-
veal that this experience-based plasticity is distributed not only across areas that
are known to be involved in the processing of biological motion (STSp, FFA)
but also across areas implicated in the analysis of physical motion (hMT+/V5,
V3b/KO). Interestingly, we observed differences in the learning for different
classes of complex movements across these areas. That is, biological motion-
related areas exhibited a small but significant sensitivity to differences between
very similar human-like movements before training that was enhanced after
training. This finding is consistent with the specificity of these areas in the anal-
ysis of biological motion (Beauchamp et al., 2003; Bonda et al., 1996; Grezes
et al., 2001; Grossman and Blake, 2002; Peuskens et al., 2005; Vaina et al., 2001)
and their role in action understanding (Blakemore and Decety, 2001; Rizzolatti
and Craighero, 2004). In contrast, such sensitivity emerged only after training in
motion-related areas, consistent with their role in learning of global motion con-
figurations (Vaina et al., 1998; Zohary et al., 1994). Third, behavioral improve-

Experiment 6 Experiment 7
Post-Training Pre-Training Post-Training

ROI F(1,10) p F(1,8) p F(1,8) p
V1 < 1.0 0.45 1.21 0.15 1.09 0.34
V2 1.87 0.10 < 1.0 0.47 2.85 0.07
V3 < 1.0 0.45 < 1.0 0.19 2.05 0.09
V3a 2.33 0.08 < 1.0 0.49 6.19 < 0.01
VP < 1.0 0.47 2.42 0.08 5.53 < 0.05
V4v 1.76 0.11 1.82 0.11 3.35 < 0.05

Table 4.3: Statistical analysis (repeated measures ANOVA) on fMRI responses across condi-
tions in retinotopic areas for Experiments 6 and 7.
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Figure 4.11: a) Differences in
the rebound indices before and af-

ter training (Post-Training rebound
index minus Pre-Training rebound
index) for the very similar human-

like (Experiment 5) and artificial
movements (Experiment 7; trained
stimuli) in biological motion- and

motion-related areas. These learning
effects were similar for human-like

movements and artificial patterns
in motion-related areas. However,
in biological motion-related areas
differences in the fMRI selective

adaptation before and after training
were stronger for artificial patterns
than human-like movements, con-
sistent with fMRI selective adap-
tation for human-like movements
before training in these areas. b)
Differences in behavioral perfor-

mance (% different responses) be-
tween the Pre-Training and Post-

Training sessions for the same exper-
iments. Error bars represent SEM.

ment and emerging neural sensitivity after but not before training were observed
in motion and biological motion-related areas for artificial biological movements
with which the observers had no previous experience. Further, learning of arti-
ficial rather than human-like movements engaged retinotopic visual areas (V3a,
Vp, V4).

Could these differences in the learning of human-like and artificial move-
ments be due to low level differences in the stimuli or differences in the ob-
servers’ performance? We think that this is unlikely, as the two stimulus classes
were matched for their low-level properties (area, number of dots, number of
segments), and the distances between stimuli in the morphing space (see Sec-
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tion 4.2). Further, both stimulus types fulfilled the ’two-thirds power law’ that
links the curvature and the speed of approximately planar human movements.
Jittering of the dots on the segments ensured that observers learned the global
movement configurations rather than simply the local positions of the dots2 (see
Experimental Specifications, 4.2). Finally, the psychophysical performance of
the observers and the behavioral learning effects were similar for human-like
and artificial movements (Figure 4.11b), suggesting that the differences in the
fMRI activation patters for these stimulus classes could not be due to differences
in the observer’s performance.

It is also unlikely that differential attentional allocation could account for the
observed pattern of fMRI responses. In contrast to our fMRI results, an atten-
tional load explanation would predict higher fMRI responses when the discrim-
ination task was hardest as difficult conditions require prolonged, focused atten-
tion resulting in higher fMRI responses (Ress et al., 2000). We observed the
opposite effect: fMRI responses were highest for conditions in which the dis-
crimination was easiest and subjects responded fastest (Figure 4.12). Further,
the quick succession of randomly interleaved trials ensured that the observers
could not attend selectively to particular conditions. Moreover, it is unlikely
that the fMRI learning effects observed were due to the fact that the observers
were more attentive after than before training for the trained compared to the
untrained movements, as the task was more demanding before training and for
the untrained stimuli. Reaction times in these difficult discrimination conditions
were the slowest (Figure 4.12) rather than very fast, as it would be expected if
the observers had given up and were simply guessing in these conditions. These
psychophysical data indicate that observers were engaged in the task and not
responding randomly both before and after training. Further, any increases in
general alertness or arousal would result in increases in fMRI response across
the visual areas (Ress et al., 2000). This is not consistent with the lack of fMRI
learning effects that we observed in the primary visual cortex that is known to
be modulated both by learning (Furmanski et al., 2004; Kourtzi et al., 2005) and
attention (Ress et al., 2000). Finally, it is not likely that our learning results
could be significantly confounded by eye movements. Eye movement record-
ings showed that the subjects were able to fixate for long periods of time and
any saccades did not differ systematically in their number, amplitude or duration
before and after training.

2This observation has been verified in preceding piloting experiment that are not reported in
this thesis.
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Figure 4.12: Reaction times (seconds) across conditions for all three Experiments. No sig-
nificant differences were observed in the reaction times across conditions in Experiment 5 (Pre-
Training: F(3,27) = 2.56; p = 0.07; Post-Training: F(3,27) = 1.42; p = 0.26), Experiment 6 (Post-
Training: F(1,10) = 3.34; p = 0.12) and Experiment 7 (Pre-Training: F(1,8) = 3.22; p = 0.11;
Post-Training: F(1,8) < 1; p = 0.82). In Experiment 7, significantly faster reaction times were
observed for the trained than untrained stimuli in the Post-Training scan (F(1,8) = 9.07; p = 0.02)
but not in the Pre-Training one (F(1,8) < 1; p = 0.43).

Distributed Experienced-based Plasticity for Visual Learning

Visual learning has been demonstrated in a variety of tasks (see Fine and Ja-
cobs, 2002; Goldstone, 1998, for review) from the detection and discrimination
of form and motion properties to face and object recognition. Electrophysiolog-
ical (Gilbert et al., 2001; Zohary et al., 1994) and imaging (Dolan et al., 1997;
Grezes et al., 1999; Kourtzi et al., 2005; Tarr and Cheng, 2003; Vaina et al.,
1998) studies have investigated the neural correlates of these learning effects
across visual areas. Learning of biological motion has been studied psychophys-
ically in the context of facial movements and recognition of individual actors
(Hill and Pollick, 2000; Knappmeyer et al., 2003; Troje et al., 2005). A recent
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fMRI study (Grossman et al., 2004) has shown that learning improves observers’
performance in detecting biological movements in noise and enhances fMRI re-
sponses in STSp and FFA. Unlike in our experiments, the learning effects in this
study transferred to novel untrained stimuli, suggesting neural changes related
to improved segmentation of the target movement from the motion of the back-
ground noise rather than specific encoding of novel complex motion patterns.

Our study advances our understanding of the experience-based plasticity
mechanisms involved in the learning of novel complex biological movements
in several respects. First, our experiments investigated the role of learning in the
discrimination of novel biological movements that mediate recognition of indi-
vidual actions rather than detection from their background that engages scene
segmentation processes. Such learning entails analysis of the distinctive features
of movements that are critical for the discrimination task, and thus results in rep-
resentations specific to the trained stimuli. Second, the use of complex artificial
movements that were matched for low level and biological movement features
with human-like movements, but lack consistent interpretations related to famil-
iar human actions allowed us to investigate in a controlled manner the learning
of biological movements independent of the observers previous knowledge about
specific movement patterns. Third, the combination of advanced spatiotemporal
morphing techniques for the stimulus generation and fMRI selective adaptation
paradigms provided us with sensitive tools for studying parametrically the link
between changes in behavioral performance and the sensitivity of neural popula-
tions for the critical features involved in the discrimination of biological move-
ments after training.

Our findings provide novel insights in understanding this link between
experience-based behavioral improvement and neural plasticity that mediates
learning of biological movements across visual areas in the human brain. Specif-
ically, similarities in the learning substrates for human-like and artificial move-
ments suggest similar mechanisms for the learning of these classes of complex
movements. In particular, increased sensitivity for these movements was ob-
served after training in motion and biological motion-related areas. It is likely
that training results in processing of the common features shared by these two
movement classes (i.e. local motion configurations and biological properties) in
these areas. Interestingly, some differences in the learning substrates for human-
like and artificial movements were also observed. Learning to discriminate be-
tween members of novel categories of artificial movements resulted in emerging
sensitivity only after training in these higher-motion analysis areas and retino-
topic areas that are involved in the integration of motion (V3a) and form (Vp,
V4). However, learning new exemplars from known human movement cate-
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gories appeared to shape existing representations of human actions in biological
motion-related areas. This interpretation is consistent with the observation that
neural sensitivity to movement differences that was evident in these areas before
training was further enhanced after training.

These findings for learning of biological movements extend previous neuro-
physiological (Logothetis et al., 1995) and imaging (Gauthier et al., 1999) stud-
ies showing enhanced responses in higher occipito-temporal areas for learning
novel object classes and generalizing across novel exemplars presented at orien-
tations close to those of known class members. An area of special interest for
the study of experienced-based plasticity in the temporal cortex is area FFA, as
it has been implicated in the learning of novel object classes (Gauthier et al.,
1999) as well as the selective processing of faces (Kanwisher et al., 1997) and
biological motion (Grossman and Blake, 2002; Peuskens et al., 2005). A recent
fMRI study suggests that high spatial resolution imaging may facilitate the iden-
tification of separate subregions within the fusiform cortex specialized for these
functions (Schwarzlose et al., 2005). The resolution used in our experiments did
not allow us to localize such subregions in FFA. As a result, the learning-induced
changes we observed in the FFA are consistent with specialized mechanisms for
the processing of biological features and learning of novel stimulus classes.

Measuring Experience-based Neural Plasticity with fMRI

One of the advantages of using fMRI for the study of learning is that it allows
us to investigate experience-based plasticity changes in multiple human brain
areas simultaneously. However, the spatio-temporal resolution of this method
is suitable for studying neural plasticity changes at the level of large-scale neu-
ral populations rather than the single neuron. As a result, our study can not
discern whether the increased fMRI selective adaptation for very similar move-
ments after training is due to changes in the tuning of neurons selective for these
movements or recruitment of larger numbers of neurons that become sensitive to
these differences after training (Gilbert et al., 2001).

To study learning-dependent changes in subpopulations of neurons at a reso-
lution beyond that of the typical human fMRI voxel, we used an fMRI selective
adaptation paradigm (Grill-Spector et al., 2001; Kourtzi and Kanwisher, 2000b).
This paradigm allow us to study neural sensitivity to feature differences that me-
diate discrimination between stimuli, as neurons responding to these features
are intermingled within each voxel and thus could not be measured at the stan-
dard fMRI resolution. Recent electrophysiological studies provide evidence that
fMRI adaptation effects are related to neural adaptation at the level of single
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neurons (Sawamura et al., 2006; Tolias et al., 2005). fMRI selective adapta-
tion has been used extensively for studying the processing of motion patterns
(Huettel et al., 2004; Huk et al., 2002; Tolias et al., 2001). Our study is the
first to introduce this paradigm as a sensitive tool for studying the processing
and learning of complex biological movement patterns. In particular, we rea-
soned that enhanced fMRI selective adaptation for differences between stimuli
(movements) after training provides a measure of changes in neural sensitivity
due to learning. Given the complexity of the BOLD signal, fMRI selective adap-
tation studies can not discern whether the neural sensitivity observed at the scale
of large neural populations reflects selectivity as measured by the spike output
of individual neurons or adapted input from other neural populations within or
across cortical areas (Sawamura et al., 2006; Tolias et al., 2005). These limita-
tions notwithstanding, fMRI selective adaptation for motion has been verified in
several single cell recording studies in area MT (e.g. Petersen et al., 1985). In our
study, the lack of fMRI selective adaptation after training in V1 and V2 suggests
that learning-dependent changes in neural sensitivity in higher visual areas could
not be simply attributed to adaptation of input responses from the primary visual
cortex.

Finally, studies using methods with higher temporal resolution than fMRI
would be helpful in discerning feedforward from feedback processes in the learn-
ing of biological movements. Specifically, it is possible that learning of artificial
movements could be implemented in a bottom-up manner from retinotopic to
higher visual areas by enhancing processes of increasing complexity ranging
from the integration of local configurations to the analysis of global motion fea-
tures and biological motion properties. Alternatively, learning could begin at
higher visual areas by enhancing the processing of the global biological char-
acteristics of these movements and proceed to early retinotopic areas that have
higher resolution necessary for the finer discrimination of differences between
movements at the level of local configurations (Ahissar and Hochstein, 1997).
Similarly, learning novel human-like movements could implicate top-down pro-
cesses that support generalization to novel movements from known templates of
human actions via feedback from motor areas that are thought to represent mod-
els for these actions (Saygin et al., 2004; Wolpert et al., 2003). The fMRI selec-
tive adaptation observed for differences between human-like movements before
training in biological motion-related areas (STSp / FFA) could be attributed to
such feedback processes. It is possible that the lack of fMRI selective adaptation
before training in other areas or for artificial movements was due to limited fMRI
sensitivity in detecting small differences in the activity of neural populations. An
alternative explanation is that feedback processes from motor areas may modu-
late more strongly processing of movements in biological motion-related areas
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that are involved in the action understanding network (Blakemore and Decety,
2001; Rizzolatti and Craighero, 2004), rather than motion-related or retinotopic
areas. Similarly, internal motor models are more likely to exist before training
for human-like than for the artificial movements. However, it is possible that the
similarity of these stimulus classes in their stimulus characteristics (e.g. com-
pliance with the 2/3 power law) may encourage interpretations of novel artificial
movements using internal motor models which could be further enhanced by
learning. Further work is necessary to investigate whether learning to discrim-
inate artificial movements results in shaping not only visual representations but
also motor models in parieto-frontal networks.

In conclusion, despite the spatio-temporal limitations of the fMRI resolu-
tion, our study advances our understanding of experience-based plasticity mech-
anisms for the learning of complex movements in the human visual cortex at the
level of large-scale neural populations. Learning a novel class of movements is
implemented by enhancing the sensitivity of local, global pattern motion and bi-
ological movement detectors across multiple stages of visual analysis, whereas
learning novel exemplars of a known class (human-like actions) shapes the class
representations by enhancing the sensitivity of global motion detectors and the
generalization of biological movement detectors to novel class members. These
findings provide novel insights into the mechanisms of human action understand-
ing and the basis for future combined fMRI and neurophysiological studies that
will shed light to neural plasticity mechanisms at the level of single neurons and
their interactions within and across cortical areas involved in the visual analysis
of movements and the planning of actions.



Chapter 5

Theoretical Modeling

5.1 Introduction

Although the functional imaging experiments have identified changes in BOLD
activity in various areas of the visual cortex, these findings do not conclusively
explain how learning shapes the processing of complex movements. While we
were successfully utilizing an fMRI adaptation paradigm to increase the spatial
resolution, we are limited in explaining how the properties of single neurons or at
least small populations of neurons change in the context of learning. One possi-
ble way to test different predictions about the underlying plasticity mechanisms
is the use of theoretical models.

In the previous years, many different research groups have started to inves-
tigate theoretical mechanisms by which the recognition of complex movements
can be accomplished (see Aggarwal and Cai, 1999; Gavrila, 1999; Giese, 2006;
Moeslund and Granum, 2001, for review). However, only a small number of
these groups have tried to constrain their models in a way that the utilized mech-
anisms could actually mimic biologically plausible processes.

The model that will be used in this chapter has been recently developed by
Giese and Poggio (2003) (Figure 5.1). Their model accomplishes movement
recognition on the basis of learned prototypical movement patterns, which are
encoded by neural feature detectors specialized for the detection of complex
shapes and optic flow patterns. The receptive field sizes and the tuning prop-
erties of the model neurons are closely matched with those of real neurons in
the visual cortex. Additionally, several simulations have shown that the model
reproduces many results from psychophysical experiments and physiology that
have been discovered in the context of biological motion recognition.

91
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The model consists of two parallel processing streams that are analogues to
the dorsal and ventral pathway proposed for the human visual cortex (Mishkin
et al., 1983; Goodale and Milner, 1992). These streams analyze form and optic
flow information separately but converge at the level that corresponds to the su-
perior temporal sulcus in humans and monkeys. Both pathways consist of four
hierarchy levels which extract either form or optic flow features with increasing
complexity as well as position and size invariance along the different levels. In
the following section, I will briefly review the composition of the individual lay-
ers of the form and the motion pathway (see also Table 5.1). The exact details
of how the properties of the neurons in the individual layers are modeled are
described in Giese and Poggio (2002).

Form Pathway

Analog to the simple cells in primary visual cortex, the neurons of the first hier-
archy level are modeled as Gabor filters. These local orientation detectors exist
in two different spatial scales and eight orientations.

The neurons at the next hierarchy level show a certain degree of position and
scale invariance, which is achieved by pooling the responses of neurons with
the same orientation preference but different receptive field positions and spatial
scales. The pooling is accomplished by a maximum-like operation to guarantee
a high degree of feature selectivity and invariance (e.g. Riesenhuber and Poggio,
2002). Such properties have been reported for complex cells in V1 and neurons
in areas V2 and V4.

In the next hierarchy level, single neurons represent the shape of whole body
configurations. An example could be the different body postures during a walk-
ing cycle (see also Figure 5.3a). Since these neurons are selective for specific
snapshots of the movement cycle, they are termed ’snapshot neurons’. Such
snapshot neurons could be analogous to the view-tuned neurons discovered in
the infero-temporal cortex of the monkey (Logothetis et al., 1995). The snapshot
neurons are modeled by radial basis functions that are trained with the output
vectors of the complex cells in the previous hierarchy level. Additionally, the
snapshot neurons are embedded in a recurrent neural network that assures that
their responses are sequence selective. That is, all snapshot neurons possess
lateral connections to all the other snapshot neurons in this layer. These connec-
tions are however asymmetric in a way, that they have excitatory connections to
neurons that code subsequent body configurations and inhibitory connections to
neurons coding preceding body configurations.
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Figure 5.1: Schematic representation of the neural model for biological motion recognition
modified from Giese and Poggio (2003). The model consists of two separate pathways for the
analysis of from and optic flow information. Both pathways are organized in a hierarchical
fashion starting with local analysis (small receptive fields (RF)) at lower levels of the hierarchy.

The highest hierarchy level of the model contains neurons that temporally
smooth and summate the activity of the individual snapshot neurons for a certain
movement. In the end, each of these ’motion pattern neurons’ would correspond
to a whole movement sequence like walking, limping or running. However, this
is an oversimplification of the physiological processes it is more likely that bio-
logical movements are encoded on the basis of population responses in the supe-
rior temporal sulcus.

Motion Pathway

Like the form pathway, also the motion pathway consists of four hierarchy lev-
els that analyze optic flow information with increasing complexity. The first
level consists of local motion energy detectors that correspond to motion direc-
tion selective neurons in primary visual cortex and component motion selective
detectors in MT, with their corresponding receptive field size.
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Model neurons Area Number of Receptive
neurons field size

Form pathway
Simple cells V1, V2 1010 0.6◦ , 1.2◦

Complex cells (V1, V2) V4 128 4◦

(View-tuned) IT, EBA, STS, FFA 63-840 > 8◦
snapshot neurons
Motion pattern neurons STS, FAA, F5 3-40 > 8◦

Motion pathway
Local motion detectors V1, V2, MT 1147 0.9◦

Local OF MT, MST transl. 72 3.5◦
pattern detectors MST KO expan./contr. 2 x 50
Complex OF STS, FFA 63-840 > 8◦
pattern detectors
Motion pattern neurons STS, FAA, F5 3-40 > 8◦

Table 5.1: The table represents some of the details of the model. OF = optic flow, transl. =
translation, expan. = expansion, contr. = contraction.

The second level of the motion pathway consist of two types of local optic
flow detectors. The first type is selective for translation flow at four different
orientations and two different speeds. Their responses are computed by sum-
mation of the activity of local motion detectors coding similar motion directions
and speeds. The second type is selective for opponent motion. The response of
these neurons is computed by multiplying the responses of adjacent local motion
detectors with opposite direction preference. Whereas the first type of optic flow
detectors mimics the properties of neurons in area MT, the second type models
the features of neural populations observed in area MST and KO.

The neurons in the next layer of the model are motion pattern neurons that
encode, like the snapshot neurons of the form pathway, the complex optic flow
patterns that occur during the movement. One example could be the opponent
motion information coming from the arms and legs that move in opposite direc-
tions during the walking cycle. Similar to the form pathway, the motion pattern
neurons are modeled using radial basis functions that receive their inputs form
the previous layer of the model. In the same way, they also have asymmetric
lateral connections to achieve sequence selectivity.

The final layer of the motion pathway consists of the same motion pattern
neurons already described in the form pathway. If form and optic flow informa-
tion has to be analyzed separately, it is possible to introduce individual sets of
motion pattern neurons for the form and the motion pathway.
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Figure 5.2: Illustration of the different learning steps implemented in the model. The neuronal
representation (”snapshot neurons”) for the features of the individual frames was learned using a
Kohonen self organizing map (SOM) (see equation 5.11) Every feature vector corresponds to the
activity of 35 complex cells, which showed the highest variance over the course of the animation.
The correct asymmetric lateral connectivity between the individual snapshot neurons was learned
using a time dependent hebbian learning rule (see equation 5.4)

Taken together, the properties of the neurons in the individual layers of the
model are designed to mimic the properties of real neurons in the visual process-
ing streams. One of the goals of the modeling part of my thesis was to introduce
biologically plausible learning mechanisms into the model, so that the feedfor-
ward connections of the complex cells (layer 2) of the model to the snapshot
neurons in layer 3 can be learned automatically. Additionally, we wanted to ex-
plore different mechanisms, by which the correct asymmetric lateral connectivity
between the individual snapshot neurons can be learned (feedback connectiv-
ity)(Figure 5.2). For the presented modeling work, we concentrated on the form
pathway, but the mechanisms discussed will be equally applicable to the motion
pathway.

5.2 Learning of the Feedback Connectivity

The recognition of biological movements and actions is an important visual func-
tion. The perception of body as well as facial movements can be explained by
the recognition of temporal sequences of form and optic flow patterns (God-
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dard, 1992; Giese and Poggio, 2003). A neural encoding of such temporal se-
quences can be realized in a physiologically plausible way by recurrent neural
networks with asymmetric lateral connections (Giese and Poggio, 2003; Mineiro
and Zipser, 1998; Xie and Giese, 2002). One possible mechanism for the learn-
ing of such connections is time-dependent hebbian plasticity. Recent experi-
ments show that spikes initiated at the axon hillock can back-propagate into
the dendrites, due to their active properties (Stuart and Sakmann, 1994). These
backpropagating signals provide information about previous activity states of
the neuron. It also has been shown that the occurrence of LTP vs. LTD depends
critically on the timing between pre- and postsynaptic spikes (Markram et al.,
1997; Bi and Poo, 1998). Time-dependent synaptic plasticity is suitable for the
realization of temporal sequence learning. In particular, it has been shown that
spike-timing-dependent plasticity in cortical neurons can be related to the tem-
poral difference learning rule (Rao and Sejnowski, 2001), where an activated
synapse is strengthened or weakened depending on the sign of the difference be-
tween two temporally subsequent output signals (Sutton, 1988; Montague and
Sejnowski, 1994)1.

After a short description of the network (section 5.2), we propose different
Hebbian learning rules that can be used to establish the required form of lateral
connectivity (section 5.3). After a mathematical analysis of the stability proper-
ties of these learning rules (section 5.4), we will present a number of simulations
that compare the learning rules with respect to their efficiency and robustness
(section 5.5).

5.2.1 Recurrent Neural Network Model

The recurrent neural network that we used for the encoding of temporal se-
quences of body shapes or optic flow patterns has been originally proposed by
Amari (1972). Sequence selectivity arises in this Hopfield-like network, if a suit-
able asymmetric form is chosen for the lateral connections. Signifying by u(t),
the activity vector of all Ns neurons in the network, the dynamics is given by the
differential equation:

τ

(
du(t)

dt

)
+ u(t) = W̃(t)f(u(t)) + s(t)− h (5.1)

1The Learning of the feedback connectivity has been published as: Jastorff J, Giese MA
(2004): Time-dependent hebbian rules for the learning of templates for visual motion recogni-
tion. In Ilg U, Bülthoff HH, Mallot H (eds): Dynamic Perception; Infix, Berlin, 151-156.
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Figure 5.3: (a) Illustration of the laterally connected network with units encoding body shapes
arising during a walking cycle. (b) Sum of the absolute values of the elements of the weight
matrix as a function of time for the learning rules 5.2, 5.3 (a, weights having positive and negative
values, and b, weights being restricted to non-negative values), and for learning rule 5.4).

The matrix W̃(t) = −wIM + WT (t) defines the synaptic strength of the
lateral connections. It consists of a constant inhibitory part that ensures a suffi-
cient level of lateral inhibition, and a second term that changes during learning.
(M is a matrix with only one elements, and wI is a positive constant.) We used
a step activation function with f(z) = 1 for z > 0 and f(z) = 0 otherwise.
The time-dependent feed-forward inputs are given by the signal vector s(t). The
time constant τ was chosen to be 200ms and the positive parameter h defines the
resting activity level.

For the simulations, we derived the input signal vector from the complete
model for biological motion recognition (Giese and Poggio, 2003) showing a
walker as stimulus. The input signal can be approximated by a localized positive
activity pulse that moves along the neural network over time. In our implementa-
tion the recurrent network contained 20 neurons (Figure 5.3). After the training
of the lateral connections the network was tested with respect to its stability,
sequence selectivity, and tuning with respect to stimulus speed and direction.
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5.2.2 Learning Rules:

The most simple form of a time-dependent Hebbian rule can be written in matrix
form by the differential equation:

τw
dW

dt
= s(t)f

(
uT (t−∆t)

)
(5.2)

Consistent with the classical Hebbian postulate, the synaptic weight matrix
W changes with the product of the presynaptic activity vector s(t) and the post-
synaptic activity vector f(u(t)), where the postsynaptic activity level enters the
equation with the positive time delay ∆t. It is crucial that the time constant τw of
the learning rule is much larger than the time constant τ of the network dynamics
and the duration of the encoded actions.

It is well-known that the simple Hebbian rule is unstable. This implies that the
elements of the weight matrix tend to become unbounded after several stimulus
presentations (Dayan and Abbott, 2001). This can be prevented by introduction
of competition between the different synapses by weight normalization. One
possibility to realize such competition is to modify learning rule 5.2 by subtrac-
tion of a term that depends on the sum of the input signal vector s(t). Let m be an
Ns-dimensional vector whose components are all one, then a modified learning
rule is given by:

τw
dW

dt
=

[
s(t)− mT s(t)m

Ns

]
f
(
uT (t−∆t)

)
(5.3)

It is shown in section 5.2.3 that this form of normalization imposes a rigid
constraint on the sum of the weights in each column of the matrix W. This
implies that increases of some weights lead to decreases of others, stabilizing
the behavior of the weights during learning. We tested another version of this
learning rule where we restricted the weights to non-negative values.

Another way to stabilize the learning process is to impose a constraint on the
sum of synaptic weights that is supported by each neuron. A limitation of the
maximum number of synapses that is supported by individual neurons seems to
be suggested by electrophysiological data (Miller, 1996). A learning rule that
implements this constraint can be written in matrix form:

τw
dW

dt
=
[
s(t)mT −mmTW(t) + αM

]
Du (5.4)

where Du is a diagonal matrix with the elements Du,kk = f(uk(t − ∆t)). The
positive constant α determines the sum of the weights in each column of the
weight matrix W (see section 5.2.3). In the final implementation the weights
were additionally constrained to be non-negative.
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Figure 5.4: Plot of the
weight matrix learned with
rule 5.4. (I) Initial weight
matrix with all elements set to
zero. (II), (III) and (IV) show
the weight matrix after 15, 30
and 45 stimulus repetitions.

5.2.3 Stability Analysis

For the chosen simple learning rules the effect of the normalization term can be
analyzed mathematically if the positivity constraint for the weights is dropped.
We assume in the following an idealized input signal vector s(t) that is given
by a positively activated region with constant shape that moves along the neural
network .

Stability Analysis for Learning Rule (5.3):

By multiplying both sides of equation 5.3 with m we can derive a differential
equation for the vector νT (t) = mTW(t) that defines the sums of the weights
in the columns of the weight matrix. The sum σ = mT s(t) does not depend
on time because of the constant shape of the moving input peak. The resulting
differential equation

τw
dmTW

dt
= τwv̇T (t) =

[
σ − Ns

Ns

σ

]
f
(
uT (t−∆t)

)
≡ 0T (5.5)
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implies vT = mTW = const. This implies that the column vectors of the
weight matrix remain within hyperplanes with normal vector m. Still the
weights can diverge tangentially to these hyperplanes. If the weights are ad-
ditionally constrained to positive values they remain bounded within the interval
0 ≤ Wmn ≤ max(mTW(0)).

Stability Analysis of Learning Rule (5.4):

Multiplication of equation 5.4 with m yields:

τw
dmTW

dt
= τwv̇T (t) =

[
(σ + αNs)m

T −Nsv
T (t)

]
Du (5.6)

Let T signify the cycle time of the walking stimulus. The temporal dynamics
of the learning process is much slower than the activation dynamics of the net-
work (τw � T, τ), so that we can average the dynamical equation 5.6 over time
(Guckenheimer and Holmes, 1983). If the activation of the network is close to
a form-stable solution that moves with the stimulus signal along the network we
obtain with the time-averaged signals

y(t) =
1

T

∫ t+T

t
v(t)dt (5.7)

1

T

∫ t+T

t
f (u(t−∆t)) dt ≈ f0m (5.8)

where the constant f0 fulfills 0 < f0 < 1. We obtain the following approximative
dynamical equation for the averaged quantities:

τw
dy

dt
= τwẏ(t) =

[
(σ + αNs)m

T −Nsy(t)
]
f0 (5.9)

The last dynamics is stable because Ns and f0 are always positive. The sta-
tionary solution can be easily computed to be

y∗ = m
(σ + αNs)

Ns

(5.10)

The stable sum of weights of the columns of W depends on the constant α, and
on the strength of the input signal s(t). Again the weight vector can change
orthogonal to the vector m without affecting the previous dynamical equations.
If the weights are restricted to positive values the learning rules produce stable
results.
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Figure 5.5:
Development of the in-
teraction kernel over
time for learning rule
5.4. The weight kernel de-
velops quickly with only
marginal changes after 25
stimulus repetitions.

5.2.4 Simulation Results

The sum of the absolute values of the weight matrix learned with different learn-
ing rules is shown in Figure 5.4. As predicted, the simple Hebbian learning rule
5.2 leads to unbounded growth of the weight vector. No direction selectivity
arises in the network because all units become activated after some time. Also
learning rule 5.3 is suboptimal. If the weights were not constrained to posi-
tive values, consistent with the mathematical analysis, the sum of the weights
remains constant, but the absolute values of the weights grow and become un-
bounded, since positive and negative weights compensate each other in the sum
(curve 3a). Only if the weights were restricted to non-negative values, the learn-
ing rule converges to a stable weight kernel, after a large number of gait cycles
(curve 3b). For learning rule 5.4 we found a much faster stabilization of the
learned weight distribution. After only eight gait cycles the sum of the weights
reaches its plateau.

Figure 5.5 presents the learned weight distributions using rule 5.4 with ad-
ditional positivity constraint for the Wij . The learned weight distribution is pe-
riodic with respect to the neuron number, reflecting the periodic nature of the
stimulus. The figure shows the learned lateral weight kernel as function of the
index difference between the connected neurons. This kernel can be obtained by
averaging the weights that connect neurons with the same relative distance in the
network over all neurons.

After 25 stimulus presentations the form of the kernel remains quite stable.
This fast learning is compatible with the psychophysical data obtained in Chap-



102 Theoretical Modeling

Figure 5.6:
Development of direc-

tion selectivity for learn-
ing rule 5.4: (I) shows

the stimulus signal s(t)
for the stimulus in nor-

mal and inverse temporal
order. (II) illustrates the
output activity after 25
stimulus presentations,
and (III) the sum of the

activity of all neurons for
the correct (solid line)
and the inverse tempo-
ral order (dashed line).

ter 3, demonstrating substantial improvements during the learning of novel bio-
logical motion patterns after 20 stimulus presentations.

Figure 5.6 illustrates that during the learning process substantial sequence se-
lectivity arises. After 25 presentations we find strong dependence on temporal
order. If the stimulus (panel I) is presented in reverse order much weaker ac-
tivity arises in the network than for the correct temporal order of the stimulus
frames (panel II). The proposed learning rule is thus suitable for establishing se-
quence selectivity with a small number of training trials. Panel (III) shows that
the activity level for correct temporal order substantially increases already after
10 stimulus presentations and reaches a plateau after about 40 presentations. The
activity for the reverse temporal order stimulus remains at low levels throughout
the whole training.

5.2.5 Conclusion

We have discussed different time-dependent Hebbian learning rules to establish
sequence selectivity in a recurrent neural network for biological motion recogni-
tion. Most efficient were learning rules that enforce a constant sum of synaptic
weights that are supported by each neuron, combined with a lower bound for the
connection strength. Both assumptions seem physiologically plausible, because
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usually excitatory synapses cannot change into inhibitory ones, and because neu-
rons can only supply transmitter for a limited number of synapses (Miller, 1996).
Given the high number of recurrent connections in the visual cortex, it seems
plausible that lateral connections play an important role, potentially also for the
realization of sequence selectivity.

5.3 Learning of Feedforward Connectivity

In many areas of the cortex, groups of neighboring neurons are engaged in the
processing of similar features. In the visual cortex, these neuronal populations
are also called microcolumns, because they are usually organized along a vertical
cylindrical volume of cortex. Such a Population could serve for example, to
analyze a particular stimulus feature like the orientation of an edge present in
the stimulus. At the next higher level of organization, microcolumns engaged in
the processing of similar features are arranged in specialized areas. These areas
could be involved for example, in the analysis of edge orientation, colors or optic
flow fields.

In terms of theoretical modeling, the described organization of the cortex can
be interpreted as a continuous, two-dimensional feature map. In the literature,
multiple approaches have described, how such feature maps can be learned with-
out supervision. The one I am going to apply to map the responses of the differ-
ent complex cells onto individual snapshot neurons was originally developed by
Kohonen (1982). The benefit of this algorithm is that the similarity in the sig-
nals will be automatically converted into proximity of neurons in the network so
that neurons representing similar features will in this way be grouped together,
much like in the cortex. Kohonen maps, also called self organizing feature maps
(SOM) have already been applied for example, for the modeling of orientation
selective neurons in primary visual cortex (e.g. Obermayer et al., 1990).

To visualize the learning process we will for now concentrate only on the
form pathway, since the mechanisms with which the connectivity for the mo-
tion pathway can be learned are identical. Layer two of the model consists of
128 complex cells (see Table 5.1). For each frame of the animation, these cells
are more or less activated, depending on whether their preferred orientation was
present in their receptive field. Out of these 128 neurons, the 35 with the high-
est variance over all frames of the animation are chosen as it is assumed that
they provide the most useful information to identify the movement. Because the
whole movement was represented by a movie containing 72 frames, we chose a
chain of 72 neurons for the Kohonen map. After the training process, these 72
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neurons would correspond to the different snapshot neurons of the layer three
of the model. To map the 35-dimensional feature vector for each frame of the
animation onto a certain neuron we applied the Kohonen algorithm.

The initial values for the features were chosen randomly for each snapshot
neuron. The training procedure consists of, finding the neuron with its feature
vector having the minimum Euclidean distance compared to the feature vector
of the input frame. This neuron would correspond to the one that is best tuned
to represent the input frame. The next step is called the learning step. Here, the
feature vector of the chosen neuron will be updated in a way that after learning,
this neuron is tuned sharper to the features of the input frame. Mathematically,
this is done by:

wnew
r = wold

r + εhrr′

(
v −wold

r

)
(5.11)

where the vector wr refers to the feature vector of the winning neuron and the
vector v to the responses of the different complex cells of the input frame.

There are two additional parameters influencing the learning process. ε deter-
mines the size of each learning step (0 < ε < 1). We chose ε to be a function ε(t),
which decreases exponentially with the number t of the learning steps from large
initial values to small final values. This results in rapid learning at the beginning
of the training process which allows to coarsely correct the feature vectors of
the different snapshot neurons. For large ε, the fluctuation of the map caused by
each learning step is very large. Therefore, ε has to decrease over time to finally
stabilize the map in an equilibrium state.

The second parameter h is called the neighboring function. The neighboring
function refers to the fact that not only the feature vector with the smallest eu-
clidean distance gets updated but also the neighboring neurons are affected by an
amount that decays with their distance from the best tuned neuron. This distance
dependence is modeled by the following Gaussian function:

hrr′ = e

(
−(r−r′)2

2σ2
E

)
(5.12)

where r′ is the position of the neuron with the smallest euclidean distance and r
is the the position of the neuron that gets updated. The feature vector of the best
tuned neuron will hence be updated the most since r′ = r, in that case.

The radius σE of the Gaussian determines the distance at which the input
stimulus frame causes corrections to the map (0 < σ < 1). Similar to the learn-
ing parameter ε, also σ is chosen as a function σ(t), starting at a large initial
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Figure 5.7: Activity of the individual snapshot neurons after training the model for 35 repeti-
tions of the same stimulus. Panel a) shows the activity if the stimulus is presented in the correct
temporal order (the stimulus, the model has been trained with) and panel b) represents the activity
of the same neurons if the temporal order of the training stimulus is reversed.

value σ(0) and decreasing exponentially with the number of learning steps, to-
wards a small final value. This can be interpreted as gradually increasing the
”selectivity” of the individual neurons in the course of the learning process.

Because the feature vectors vary smoothly over time, this learning process
will lead to a neuronal chain of snapshot neurons, in which neighboring frames
of the animation will be represented by neighboring snapshot neurons. To pre-
vent that a single snapshot neuron is continuously selected, we introduced an
additional adaptation term, which increases the Euclidean distance if the same
neuron wins continuously and thereby reduces the likelihood that it gets selected
for the next input frame.

Figure 5.7 displays the activity in the network that combines the unsuper-
vised learning of the feedforward and the feedback connections. The model was
trained with 35 presentations of a human person walking towards the left, viewed
from the side. If the stimulus is presented in the correct temporal order as de-
picted in panel a), a wave of activity is traveling across the network representing
the activity of the individual snapshot neurons for the different frames of the an-
imation. Panel b) shows the activity of the snapshot neurons when the temporal
order of the stimulus is reversed. These results indicate that we were success-
fully implementing the simultaneous learning of a neural representation for the
individual frames occurring during the gait cycle (snapshot neuron) as well as
the correct lateral connectivity between them to guarantee sequence selectivity.
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In the next section, we will further extend the model to simulate BOLD activity
changes observed during our functional imaging experiments (see Chapter 4).

5.4 Modeling of BOLD Activity Changes

One possible way of testing the different hypotheses about the underlying plas-
ticity mechanisms of the reported BOLD activity changes in Chapter 4, is by
applying theoretical models. As described previously, the model we are em-
ploying in this chapter consists of two parallel streams that are specialized for
the processing of form and optic flow information. The advantage of using this
model is that the different visual areas we were analyzing in Chapter 4, are also
represented in the different layers of the model. This would allow us to directly
test possible explanations of how learning influences the processing of complex
movements, by changing the properties of the model neurons at the different
layers or alter the connections between the layers. However, to identify, how
changes in the internal structure of the model relate to BOLD signal activity, we
have to extend the model in a way that the activity of the model neurons gets
translated into BOLD responses. Hence later on it will be possible to compare
the simulated BOLD responses with the measured BOLD responses in Chapter
4 and to see how changes at the level of the model neurons affect the simulated
BOLD activity.

As an equivalent of real neural activity, we used the activity of the different
motion pattern neurons in the highest hierarchy layer of the model (see Figure
5.1). Like in the previous sections, we concentrated on the activity of the form
pathway, but the reported mechanisms are equally applicable to the motion path-
way. As a starting point, we trained the model with five different movement
stimuli (walking, runnning, marching, jumping and boxing), which resulted in
the formation of 5 different motion pattern neurons, each of which specifically
tuned to the features of one of the stimuli.

To match the functional imaging experiments as closely as possible, we stim-
ulated the model after training not only with a single stimulus but with a whole
sequence of stimuli. To this end, we created a continuous series of trials be-
longing to three different conditions. The first condition, which corresponded to
the ”identical” condition in Chapter 4, contained the same movement stimulus
presented twice. The second condition was analogous to the ”dissimilar” con-
dition and consisted of two different movement stimuli presented in succession.
The third condition contained no stimulus and corresponded to the ”fixation”
condition.
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Figure 5.8: Activity
of the different motion
pattern neurons for the
presentation of a sequence
of movement stimuli. We
observed reduced activity
(adaptation), if the same
movement was presented
within a very short time
interval.

The timing of the trials was identical to the timing used in Chapter 4, where
a single trial lasted for four seconds. Each movement stimulus used for the sim-
ulations consisted of 21 frames. To match the timing of the fMRI experiments,
every trial started with the presentation of the first movement for 21 frames, fol-
lowed by a blank for 2 frames. Afterwards the second movement was presented
for 21 frames and the trial ended with another 21 frames containing no stim-
ulus. Taken together, every trial of the simulation contained 65 frames, which
corresponds to four seconds of the real fMRI experiment.

The whole simulation consisted of 60 trials, with 20 trials per condition. The
order of the trials was counterbalanced in exactly the same way as in the func-
tional imaging experiments (e.g. Kourtzi and Kanwisher, 2000b).

One possible explanation for the reduced BOLD activity we observed for the
presentation of two identical stimuli compared to the presentation of two dif-
ferent stimuli during our functional imaging experiments could be a repetition
suppression mechanism at the neural level (see section 2.2.2 for discussion of
different adaptation mechanisms). To model this adaptation mechanism, we had
to extend the model by the implementation of an adaptation term, which reduces
the activity of the motion pattern neuron gradually, if the same neuron is active
over a longer period of time. Before the implementation of the adaptation term,
the dynamics of the motion pattern neuron was described by:

τuu̇(t) + u(t) =
∑
n

f(zn(t)) (5.13)
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where u represents the activity of the motion pattern neuron, f is a sigmoidal
nonlinear threshold and zn describes the activity of the individual snapshot neu-
rons that are involved in the representation of this movement. τu is the time
constant for the temporal smoothing of the motion pattern neuron (150ms).

The adaptation term is modeled analogous to a leaky integrator given by the
following equation:

τaȧ(t) + a(t) = u(t) (5.14)

with τa >> τu (1 second) and a(t) ≥ 0, because the adaptation term is restricted
to contain positive values.

Consequently, the simulated activity of the motion pattern neurons was de-
rived by combining the two equations in the following way:

τuu̇(t) + u(t) =
∑
n

f(zn(t))− γa(t) (5.15)

where γ was set to 0.015 to scale the adaptation term accordingly.

The parameter τa was adjusted in a way that the activity of the motion pattern
neuron is significantly reduced if the same movement is presented twice in a
single trial, but recovers from adaptation for subsequent trials. The effect of the
adaptation mechanism on the activity of the motion pattern neurons is displayed
in Figure 5.8. For trials in which the same stimulus is presented twice, the same
motion pattern neuron is active over the whole trial. This results in an increase
of the adaptation term, which in turn reduces the activity of the neuron. It can
clearly be seen that if the same neuron is activated within a very short interval,
the activity of the second activation is reduced compared to the first one. If
however, two different stimuli are presented during one trial, different motion
pattern neurons get activated, which results in no adaptation.

To simulate BOLD activity changes, we convolved the train of activity of the
motion pattern neurons with a hemodynamic response function, which was ob-
tained in a real fMRI experiment performed with exactly the same conditions
2. Because the fMRI experiment was scanned with a TR of two seconds, the
time course of the hemodynamic response function was sampled only every two
seconds. To obtain the values for a continuous BOLD response that are needed
for the convolution, we fitted the percent signal change within the superior tem-
poral sulcus for the ”different” condition with a hemodynamic response model
based on the difference of two gamma functions. The difference between two

2The experiment served as a pilot experiment for the functional imaging experiments in Chap-
ter 4 and is not reported in this thesis.
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Figure 5.9: Simulated and real BOLD activity changes. Panel a) shows the simulated BOLD
activity changes for the presentation of either two identical movement stimuli or two different
stimuli per trial. Panel b) shows the measured BOLD activity changes in the superior temporal
sulcus for the presentation of either twice the same point-light stimulus or two different point-
light stimuli.

gamma functions predicts a biphasic response when the second function, h2(t),
has a slower time course than the first. This smooth parametric function pro-
vides a continuous description of the BOLD response and provides an estimate
of parameters such as maximum height and delay (Boynton and Finney, 2003).

h(t) = h1(t)− h2(t) + k (5.16)

where hi(t) is defined as

hi(t) =
((t− δi)/τi)

(ni−1)e−(t−δi)/τi

τi(ni − 1)!
(5.17)

The phase delay parameters n1 and n2 were set to 5.5 and 11.5, respectively, and
the remaining parameters were allowed to vary freely. The baseline parameter k
was set to 0. The best fit of the time course was obtained for δ1 = 2.46, τ1 = 0.66,
δ2 = 6.27 and τ2 = 0.18.

Following the convolution, we performed exactly the same data analysis that
was used in Chapter 4 to extract the time courses for the individual conditions.
That is, we extracted the simulated hemodynamic response function separately
for each trial and converted it to percent signal change by subtracting the aver-
aged activity of the preceding two trials. Afterwards, we averaged the percent
signal change for all trials belonging to the same condition. That way, the sim-
ulations would also test whether the assumption of linearity holds true, when
the order of the conditions is precisely counterbalanced. This assumption is the
foundation of rapid event-related fMRI designs.
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Figure 5.9 displays our simulated BOLD response obtained from the model
(panel a) and the BOLD activity changes obtained in the real functional imaging
experiment (panel b). Even though they do not match exactly, we believe that
our simulation provides a good approximation of the real fMRI data.

Based on this result, we can conclude that an adaptation mechanisms that is
based on repetition suppression provides a possible explanation for the effect that
the fMRI BOLD signal decreases when the same stimulus is presented repeat-
edly. Furthermore, the assumption of linearity of the BOLD signal, which is the
foundation of rapid event-related fMRI designs, seems to hold true, because the
very same processing steps applied for the analysis of real and simulated fMRI
data, lead to very similar hemodynamic response functions. In the future, the
extended model could be used to test different predictions about the underlying
activity changes observed in our functional imaging experiments.



Chapter 6

General Discussion

6.1 Summary

Experimental evidence in the field of object recognition suggests that learning
plays a key role in our ability to identify novel objects. Three dimensional ob-
jects seem to be represented in the cortex on the basis of learned two dimensional
views of the objects (e.g. Bülthoff and Edelman, 1992; Logothetis et al., 1995;
Logothetis and Sheinberg, 1996; Poggio and Edelman, 1990; Tarr and Bülthoff,
1998). In a theoretical model developed recently by Giese and Poggio (2003), the
concept of learning has been transfered to the of domain of movement recogni-
tion. The simulation results of this model, which represents complex movements
on the basis of learned prototypical patterns, show a high degree of similarity
with the experimental findings in the field of movement recognition. The aim
of this thesis was to investigate learning processes and their underlying neural
correlates in the recognition of complex movements.

In a series of psychophysical experiments (Chapter 3), we have shown that hu-
mans are able to learn to discriminate between very similar exemplars of complex
movements presented as point-light stimuli very quickly after less than 20 stim-
ulus repetitions. This learning process applies not only for movements that are
similar to natural human movements, but is equally efficient for completely novel
artificial skeletons. These artificial stimuli were composed of nine segments and
shared certain low level properties with human movements (e.g. smoothness
of the trajectories, frequency and amplitude of the movement) but differed with
respect to their kinematics and biological relevance. Like for normal biolog-
ical motion recognition, the learned representation was orientation dependent
for both stimulus groups (e.g Bertenthal and Pinto, 1994; Pavlova and Sokolov,
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2000; Shiffrar et al., 1997; Sumi, 1984), which indicates that the same neural
mechanisms might be involved in their encoding. However, motion stimuli that
consisted of the same local motion trajectories as the human like movements, but
with perturbed spatial relations between the dots so that the stimulus appeared
no longer articulated, could not be learned equally fast.

These results indicate that learning of complex movements is strongly facili-
tated by the binding or grouping of individual dot or joint movements on the level
of limbs and possibly even at the entire body level. The organization of the indi-
vidual dot movements into a global percept could be achieved via a combination
of bottom-up and top-down processes, where mid level feature detectors could
signal the relationship between neighboring dots and top down processes help
to organize these configurations at the level of a global shape. This information
could finally converge in higher level motion and form areas.

The involvement of top-down processing in biological motion recognition is
supported by several psychophysical investigations (e.g Cavanagh et al., 2001;
Thornton et al., 2002). Moreover, the observation that learning generalizes from
an easier discrimination to a more difficult discrimination has been obtained in
other visual learning experiments (e.g Liu and Weinshall, 2000; Mackintosh,
1974) and provided the basis for the formulation of the reverse hierarchy theory,
which postulates that learning starts at higher areas in the cortex and progresses
backwards towards lower levels (Ahissar and Hochstein, 1997).

Another important observation deduced from the psychophysical experiments
was that there seems to be no advantage for the learning of stimuli that are in ac-
cordance with the human kinematics. Recently, several studies have investigated
the possible link between action recognition and action production (see Hom-
mel et al., 2001; Wilson and Knoblich, 2005, for review). It has been proposed
that movement recognition can be accomplished by the internal simulation of
the motor programs that lead to that movement (Haruno et al., 2001) and that
this internal simulation provides the basis for understanding other peoples emo-
tions and mental states (e.g Blakemore and Decety, 2001; Frith and Frith, 1999;
Gallese et al., 2004). Since the kinematics of the artificial articulated movements
differed significantly from the one of normal human movements, it seems un-
likely, that their recognition was based on such internal simulations. However,
it cannot be completely ruled out, that learning also involves the formation of
motor models for the artificial stimuli, even though in this case, one might ex-
pect a slight disadvantage for the learning of these stimuli, since motor models
of human-like movements should already exist prior training.

Taken together, since our human-like stimuli were very similar to natu-
ral biological movements, and the learned representation showed orientation-
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dependency, it seems plausible that the investigated learning mechanisms play
a central role in normal biological motion recognition. To investigate possible
neural correlates of the learning process, we conducted a series of functional
imaging studies that were described in Chapter 4.

Concentrating on the visual areas involved in the processing of biological
motion, we could demonstrate that learning to discriminate between very similar
complex movements results in increased neural sensitivity to the differences be-
tween these movements. These learning induced changes in BOLD activity did
not generalize to novel untrained movement patterns, suggesting that the investi-
gated learning mechanism is stimulus specific rather than an effect of familiarity
with the task.

Even though the psychophysical investigations in Chapter 3 showed a high
degree of similarity between the learning of human-like and artificial articu-
lated movements, our fMRI experiments highlighted small but significant dif-
ferences in the corresponding BOLD activity changes. Using an fMRI adapta-
tion paradigm, we found that the presentation of very similar human like move-
ments led to significant recovery from adaptation in the classical biological mo-
tion areas (posterior superior temporal sulcus and fusiform face area) already
before training. This result indicates the existence of partially distinct neural
populations for the different human like movements already prior to training,
which is consistent with the findings showing the specificity of these areas in
the analysis of biological motion (Beauchamp et al., 2003; Bonda et al., 1996;
Grezes et al., 2001; Grossman and Blake, 2002; Peuskens et al., 2005; Vaina
et al., 2001). However, after training selective adaptation effects not only in-
creased in the STSp and the FFA, but also became evident in the primarily mid
to high level motion processing middle temporal (hMT+/V5) and kinetic oc-
cipital (V3b/KO) areas, consistent with their role in learning of global motion
configurations (Vaina et al., 1998; Zohary et al., 1994).

In contrast to the human like movements, we observed no selective adapta-
tion effects for the artificial articulated movements, with which the subjects had
no prior experience, in any of the investigated areas before the training. Yet af-
ter training, we found very similar adaptation effects, like in the case of human
like movements. That is, selective recovery from adaptation in the STSp, FFA,
hMT+/V5 and V3b/KO was observed for the consecutive presentation of two
similar movement patterns in contrast to the presentation of two identical pat-
terns. Additionally, we also obtained this effect in mid level motion and form
processing areas, namely V3a, VP and V4v. The involvement of retinotopic ar-
eas in the learning of artificial articulated patterns could signal the fact that these
stimuli were completely novel to the observers. The recruitment of mid level fea-
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ture areas could thereby help the observer to interpret the internal link structure
of these novel skeleton models.

The main findings of the imaging experiments can be summarized as follows:
I) Discrimination learning between similar complex movement stimuli involves
distributed plasticity processes occurring across a whole range of visual areas
sparing only low level areas V1 and V2. II) While partially distinct neural pop-
ulations exist prior training in classical biological motion areas for human-like
movements, which get refined due to the training process, distinct neural rep-
resentations for artificial articulated movements emerge in the very same areas
only after training. III) Additional mid level motion and form areas are recruited
for the learning of artificial articulated patterns, possibly to support the grouping
of the individual dots for previously unknown skeleton structures.

Although, our results imply plasticity processes in a wide range of visual ar-
eas, the technique of functional imaging is not suitable to determine the exact
neural mechanisms that underlie this plasticity. As a result, we cannot discern
whether the increased fMRI selective adaptation for very similar movements af-
ter training is due to changes in the tuning of neurons selective for these move-
ments or due to the recruitment of larger numbers of neurons that become sensi-
tive to these differences after training (Gilbert et al., 2001).

Additionally, we cannot discern bottom-up from top-down processes in the
learning of biological movements. It is possible, that the learning of artificial ar-
ticulated patterns could be implemented in a bottom-up manner from retinotopic
to higher visual areas by enhancing processes of increasing complexity ranging
from the integration of local configurations to the analysis of global motion fea-
tures and biological motion properties. Alternatively, learning could begin at
higher visual areas by enhancing the processing of the global biological char-
acteristics of these movements and proceed to early retinotopic areas that have
higher resolution necessary for the finer discrimination of the differences be-
tween the movements.

Similarly, learning of novel human-like movements could implicate top-down
processes that support generalization to novel movements from known templates
of human actions. These templates could be stored in the biological motion-
related areas (STSp/FFA). Alternatively, motor areas that are thought to repre-
sent models for human actions (Saygin et al., 2004; Wolpert et al., 2003), could
influence the processing in the biological motion-related areas via feedback pro-
cesses. The selective adaptation effects prior training in these areas could be
attributed to either of the two explanations.

To investigate the different explanations in terms of bottom-up or top-down
processing, we proposed to use a theoretical model, which would allow to simu-
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late possible learning mechanisms and connectivity changes due to the learning
process. However, to utilize this model for testing the different hypotheses, we
had to extend it by the implementation of physiologically plausible learning rules
as well as a mechanism, by which BOLD signal changes observed in the func-
tional imaging experiments could be simulated.

The simulations were based on an already existing neural model for biological
motion recognition (Giese and Poggio, 2003). Their model consists of two par-
allel pathways and accomplishes movement recognition on the basis of learned
prototypical movement patterns, which are encoded by neural feature detectors
specialized for the detection of complex shapes and optic flow patterns. Both
pathways consist of four hierarchy levels which extract either form or optic flow
features with increasing complexity as well as position and size invariance along
the different levels. Taken together, the properties of the neurons in the individ-
ual layers of the model are designed to mimic the properties of real neurons in
the visual processing streams.

To learn the feedforward connections from the complex cells (layer 2) of the
model to the snapshot neurons in layer 3, we applied an algorithm that was orig-
inally developed by Kohonen (1982). The outcome of this algorithm was that
each snapshot neuron learned to represent a single frame of the animation in a
fully unsupervised way.

To guarantee the sequence selectivity of the recognition, we additionally had
to implement a mechanism by which the correct asymmetric lateral connectivity
between the individual snapshot neurons could be learned (feedback connectiv-
ity). After testing several time dependent hebbian learning rules, we developed a
physiologically plausible learning rule, which achieves stable learning of lateral
connectivity by imposing only two constraints. These were that the maximum
synaptic weight each neuron can support is constrained and that the neurons are
not allowed to change from an excitatory into and inhibitory one and vice versa.
Following the extension of the model, our simulations showed that the imple-
mented learning rules led to specific recognition of individual movement patterns
in a fully unsupervised way. Moreover, stable recognition could be achieved af-
ter only 30 stimulus repetitions, which is consistent with the learning speed of
human observers obtained in the psychophysical experiments in Chapter 3.

To simulate real BOLD activity changes, we additionally implemented a
neural adaptation mechanism at the highest hierarchy level of the model.
Following simulations verified that consecutive activation of the same mo-
tion pattern neuron resulted in a decrease of activity of this neuron. This
effect is analogous to a repetition suppression effect currently discussed
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as one possibility for observed adaptation effects in fMRI experiments
(Sawamura et al., 2006; Tolias et al., 2005).

Finally, we used the model to test, if the implemented adaptation mechanism
would explain the reduced BOLD activity observed in response to the consecu-
tive presentation of two identical stimuli. After simulating a whole fMRI experi-
ment and performing exactly the same data analysis used for real fMRI data, we
obtained modeled hemodynamic response functions that show great similarity
with actually measured hemodynamic responses in the superior temporal sulcus.
This shows that the implemented adaptation mechanism based on repetition sup-
pression provides a suitable explanation for the reduced BOLD activity observed
for the consecutive presentation of identical stimuli. In addition, the simulation
verified that the assumption of linearity of the BOLD signal seems to hold true
and can be exploited in rapid event-related designs, once the stimulus sequence
is sufficiently counterbalanced.

We propose that after the extensions, this model could provide the foundation
to test the different hypotheses about plasticity mechanisms at the neuronal level
that underlie the observed BOLD activity changes during our functional imaging
experiments.

6.2 Outlook

Certainly, the presented results lead to further questions with regard to the learn-
ing of complex movements. While our experiments identify articulation as one
decisive factor in the learning process, other stimulus manipulations could high-
light different processing constraints. A possible stimulus manipulations could
involve for example, a violation of the 2/3 power law, which is believed to be an
inherent principle of biological movements (Lacquaniti et al., 1983; Viviani and
Flash, 1995). However, those manipulations might lead to different low level
properties in the stimuli, which would be difficult to match.

By design, our functional imaging experiments focussed on visual areas in-
volved in the processing of form and motion. It is however undoubted that also
other cortical areas are involved in the recognition of complex movements. One
possibility is the so called action-perception circuit, linking the superior tempo-
ral sulcus with parietal and prefrontal areas (see Hommel et al., 2001; Rizzolatti
and Craighero, 2004; Wilson and Knoblich, 2005, for review). A very interest-
ing question would be to investigate the contribution of the premotor cortex in
this respect. Recently, Saygin and colleagues (2004) reported selective activation
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of premotor areas for biological motion stimuli. Investigating selective adapta-
tion processes in premotor cortex during discrimination learning could identify
possible sites of top-down modulations in terms of internal motor models (e.g.
Wolpert et al., 2003). Additionally, it would be very interesting to explore possi-
ble differences between human-like stimuli, which could be internally simulated
and artificial articulated movements, for which, at least prior learning, no such
models should exist.

The modeling work completed so far provides a theoretical framework to in-
vestigate the underlying plasticity mechanisms observed in our experiments. Al-
though so far the model has only been tested in two experimental conditions
serving as a ’proof of principle’, further modeling should involve the exact sim-
ulation of our experiments to compare the simulated data with the real BOLD
activity. By training the model with the prototypical movement stimuli used
for the human like movements, it would become possible to examine the hy-
pothesis that representations for similar movements already present in the bio-
logical motion-related areas provide the basis of the selective adaptation effects
observed, already prior to training. By changing connections between and within
the individual layers of the model, one could test the modifications that would
lead to the best approximation of the data in order to replicate the adaptation
effects at different levels in the hierarchy. Furthermore, modeling of parietal or
prefrontal areas would enable us to investigate possible top-down influences on
the activity changes.

In addition, the model could be used to investigate, if the proposed learning
mechanisms would also be suitable to learn more realistic stimuli, like natural
movements extracted from video sequences. Furthermore, the model could be
used to derive quantitative predictions that could in turn be tested psychophysi-
cally or in additional functional imaging studies.

Taken together, additional experiments possibly together with neurophysio-
logical recordings are necessary to completely understand the neural correlates
of movement recognition.
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