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Abstract 

This paper compares two well-known 
multiobjective memetic algorithms through 
computational experiments on 0/1 knapsack 
problems. The two algorithms are MOGLS 
(multiple objective genetic local search) of 
Jaszkiewicz and M-PAES (memetic Pareto 
archived evolution strategy) of Knowles & Corne. 
It is shown that the MOGLS with a sophisticated 
repair algorithm based on the current weight 
vector in the scalar fitness function has much 
higher search ability than the M-PAES with a 
simple repair algorithm. When they use the same 
simple repair algorithm, the M-PAES performs 
better overall. It is also shown that the diversity 
of non-dominated solutions obtained by the M-
PAES is small in comparison with the MOGLS. 
For improving the performance of the M-PAES, 
we examine the use of the scalar fitness function 
with a random weight vector in the selection 
procedure of parent solutions. 

1. INTRODUCTION 

Memetic algorithms are one of the most successful 
metaheuristics in combinatorial optimization. Recently 
memetic algorithms have been applied to multiobjective 
optimization problems for efficiently finding their Pareto-
optimal or near Pareto-optimal solutions (Ishibuchi & 
Murata (1998), Jaszkiewicz (2002a), Knowles & Corne 
(2000b)). It was demonstrated in some comparative 
studies (Jaszkiewicz (2001), Jaszkiewicz (2002b), 
Knowles & Corne (2000c)) that MOGLS (multiple 
objective genetic local search) of Jaszkiewicz (2002a) and 
M-PAES (memetic Pareto archived evolution strategy) of 
Knowles & Corne (2000b) have high search ability to 
efficiently find near Pareto-optimal solutions of 

multiobjective 0/1 knapsack problems. For example, it 
was clearly shown in Jaszkiewicz (2002b) that the 
MOGLS outperformed SPEA (strength Pareto 
evolutionary algorithm), which is a well-known high-
performance evolutionary multiobjective optimization 
algorithm (Zitzler et al. (2000), Zitzler & Thiele (1999)). 
An interesting observation is that the final conclusions of 
those comparative studies are somewhat different. While 
Knowles & Corne (2000c) concluded that their M-PAES 
was superior to the MOGLS, Jaszkiewicz (2001, 2002b) 
concluded that his MOGLS outperformed the M-PAES.  

In this paper, we try to find why such different 
conclusions were derived with respect to the relative 
performance of the two multiobjective memetic 
algorithms. For this purpose, we compare the MOGLS 
and the M-PAES with each other in the same manner as 
Jaszkiewicz (2001) and Knowles & Corne (2000c) 
through computational experiments on the nine 
multiobjective 0/1 knapsack problems originally used in 
the computational experiments of Zitzler & Thiele (1999). 
Then we examine the effect of two important factors on 
the relative performance of the two algorithms. They are 
the implementation of greedy repair and the specification 
of the population size. The importance of these factors 
was pointed out by Jaszkiewicz (2001, 2002b). Our 
experimental results partially support his claim. 

As in the above-mentioned comparative studies, our 
experimental results show that the M-PAES cannot find a 
variety of non-dominated solutions over a wide range of 
each objective. On the other hand, the MOGLS can find 
non-dominated solutions over a much wider range of each 
objective than the M-PAES. Based on these observations, 
we try to improve the performance of the M-PAES by 
incorporating the scalar fitness function with a random 
weight vector of the MOGLS into the selection procedure 
of the M-PAES. More specifically, we use tournament 
selection based on the scalar fitness function with a 



 

  

random weight vector. Whenever a pair of parents is to be 
chosen, weight values are randomly updated. It was 
shown in Ishibuchi et al. (2003) that the performance of a 
simple MOGLS of Ishibuchi & Murata (1998) was 
improved by increasing the selection pressure (i.e., using 
the tournament selection instead of the roulette wheel 
selection and increasing the tournament size).  

This paper is organized as follows. In Section 2, we 
briefly explain our computational experiments, which are 
designed in the same manner as the existing comparative 
studies (Jaszkiewicz (2001), Knowles & Corne (2000c)). 
In Section 3, we point out the effect of the implementation 
of greedy repair and the specification of the population 
size on the relative performance of the MOGLS and the 
M-PAES. In Section 4, the use of the scalar fitness 
function with a random weight vector is examined. 
Section 5 concludes the paper. 

2. COMPUTATIONAL EXPERIMENTS 

As test problems, we use the nine multiobjective 0/1 
knapsack problems of Zitzler & Thiele (1999). Each test 
problem has two, three or four objectives and 250, 500 or 
750 items. We refer to each test problem as a k-n problem 
where k is the number of knapsacks (i.e., the number of 
objectives) and n is the number of items. The nine test 
problems are denoted as 2-250, 2-500, 2-750, 3-250, 3-
500, 3-750, 4-250, 4-500 and 4-750. Those test problems 
are written in a generic form as follows: 
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In this formulation, x is a binary vector of the length n 
(i.e., n

nxxx }1,0{)...,,,( 21 ∈ ), ijp  is the profit of item j 
according to knapsack i, ijw  is the weight of item j 
according to knapsack i, and ic  is the capacity of 
knapsack i. For details of the test problems, see Zitzler & 
Thiele (1999). The same test problems were used in the 
comparative studies of Jaszkiewicz (2001, 2002b) and 
Knowles & Corne (2000c). 

The MOGLS of Jaszkiewicz (2002a) uses the scalar 
fitness function with a random weight vector: 
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When a pair of parents is chosen, first the weight vector is 
randomly specified. Next the best K solutions are selected 
from the current population (CS) with respect to the scalar 
fitness function with the current weight vector. Then two 
parents are randomly chosen from those K solutions. In 
this manner, mating restriction is implemented in the 
MOGLS where a pair of similar parents in the objective 
space is selected for generating an offspring. A local 
search procedure is applied to the generated offspring 
using the scalar fitness function with the current weight 
vector. In the original proposal of the MOGLS by 
Jaszkiewicz (2002a), local search is iterated until a locally 
optimal solution is found. On the other hand, no local 
improvement procedure except for a greedy repair 
algorithm is used in his recent comparative study (2002b). 
In this paper, we use two parameters for terminating local 
search for each solution as in Jaszkiewicz (2001) and 
Knowles & Corne (2000c). One is the maximum number 
of local search moves (i.e., l_opt) and the other is the 
maximum number of consecutive fails of local search 
moves (i.e., l_fails). We also use these two parameters in 
the M-PAES. In both algorithms, a neighboring solution 
is generated by applying a bit-flip mutation with a 
probability of 4/n to each bit of the current solution as in 
Jaszkiewicz (2001) and Knowles & Corne (2000c). 

The M-PAES was proposed in Knowles & Corne (2000b) 
by introducing a population and a recombination 
operation to a multiobjective local search algorithm: 
(1+1)-PAES (Pareto archived evolution strategy) of 
Knowles & Corne (2000a). While each solution is 
evaluated using the scalar fitness function in the MOGLS, 
Pareto ranking is used in the M-PAES. The concept of 
crowding is also utilized for evaluating each solution in 
the M-PAES. Two secondary populations (i.e., a local 
archive H and a global archive G) are stored separately 
from the main population P. The local archive H is used 
for evaluating each solution in local search while a pair of 
parent solutions is randomly chosen from GP

�
 for 

generating an offspring. 

Some parameter values in our computational experiments 
are summarized in Table 1. In this table, max_evals is the 
total number of evaluated solutions, which is used as the 
stopping condition of each algorithm in this paper. Our 
parameter specifications in the M-PAES and the MOGLS 
are almost the same as those in Knowles & Corne (2000b, 
2000c) and Jaszkiewicz (2001), respectively. 

As the performance measure, we use the coverage 
measure ),( ⋅⋅C  of Zitzler & Thiele (1999) for comparing 
the two multiobjective memetic algorithms. This measure 
mainly evaluates the relative convergence speed to the 
Pareto front of the two algorithms. So we also visually 
examine the diversity of obtained solutions. For various 
performance measures and their characteristic features in 
multiobjective optimization, see Knowles & Corne (2002). 



 

  

Table 1: Parameter values in our computational experiments. 
 

Initial population size K || CS  l_fails l_opt max_evals 
Problems 

M-PAES MOGLS MOGLS MOGLS M-PAES & MOGLS 

2-250 30 150 20 3,000 20 100 75,000 

2-500 40 200 20 4,000 20 100 100,000 

2-750 50 250 20 5,000 5 20 125,000 

3-250 40 200 20 4,000 20 50 100,000 

3-500 50 250 20 5,000 20 50 125,000 

3-750 60 300 20 6,000 5 20 150,000 

4-250 50 250 20 5,000 20 50 125,000 

4-500 60 300 20 6,000 20 50 150,000 

4-750 70 350 20 7,000 5 20 175,000 
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Figure 1: Results on 2-objective problems.      Figure 2: Results on 3-objective problems.     Figure 3: Results on 4-objective problems. 
 
 
3. EXPERIMENTAL RESULTS 

3.1  EFFECT OF GREEDY REPAIR 

Zitzler & Thiele (1999) used a simple greedy repair 
algorithm where the items were removed in the increasing 
order of the maximum profit/weight ratio over all 
knapsacks. The same greedy repair algorithm was used in 
Knowles & Corne (2000c). We first used this greedy 
repair algorithm in the MOGLS and the M-PAES in our 
computational experiments. Experimental results are 
summarized in Figs. 1-3 where the average value of the 
coverage measure over 30 runs is calculated for each test 
problem. A solution set obtained by a single run of each 
algorithm is depicted in Fig. 4 for the 2-500 problem. As 
shown in those figures, the M-PAES outperformed the 
MOGLS for the two-objective and three-objective 
problems in terms of the coverage measure. The same 
conclusion was derived in Knowles & Corne (2000c). 

In the comparative studies of Jaszkiewicz (2001, 2002b), 
a more sophisticated greedy repair algorithm was used in 
the MOGLS where the items were removed in the 
increasing order of the following ratio: 

Total profit (knapsack 1)

T
ot

al
 p

ro
fi

t (
kn

ap
sa

ck
 2

)

M-PAES
MOGLS

17500 18000 18500 19000 19500

17500

18000

18500

19000

19500

20000

 

Figure 4: Results on the 2-500 problem. 
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That is, the current weight vector )...,,,( 21 kλλλ  was 
taken into account. Note that this greedy repair algorithm 
can be used only for the MOGLS with the scalar fitness 
function. We executed computational experiments using 



 

  

the MOGLS with this greedy repair algorithm. Then we 
compared the MOGLS with the M-PAES where only the 
MOGLS used the sophisticated greedy repair algorithm. 
Experimental results are shown in Fig. 5 and Fig. 6. From 
these figures, we can see that the MOGLS outperformed 
the M-PAES. The same conclusion was derived in 
Jaszkiewicz (2001, 2002b). It should be noted that the 
MOGLS and the M-PAES did not use the same greedy 
repair algorithm in Fig. 5 and Fig. 6. 
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Figure 5: Results on 2-objective problems. Different greedy 
repair algorithms were used in the MOGLS and the M-PAES. 
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Figure 6: Results on 3-objective problems. Different greedy 
repair algorithms were used in the MOGLS and the M-PAES. 

3.2  EFFECT OF POPULATION SIZE 

In Knowles & Corne (2000c), the population size (i.e., the 
size of CS ) in the MOGLS was specified as 100. 
Jaszkiewicz (2001, 2002b) claimed that the poor 
performance of the MOGLS in Knowles & Corne (2000c) 
was due to this parameter specification and the use of the 
simple greedy repair algorithm of Zitzler & Thiele (1999). 
We examine the performance of the MOGLS with the 
sophisticated greedy repair algorithm using various 
specifications of || CS . Since || CS  is determined by the 

size of the initial population S and the value of K as 
|||| SKCS ×= , we varied the size of S as =|| S 5, 10, 20, 

50, 100, 200, 500 and used the constant value of K 
( 20=K ). Experimental results are summarized in Fig. 7 
and Fig. 8 where the M-PAES was executed under the 
conditions of Table 1 as in the previous subsection. From 
those figures, we can see that the performance of the 
MOGLS was not so sensitive to the size of CS if it was 
not too large. It should be noted that the MOGLS with the 
sophisticated greedy repair algorithm was compared with 
the M-PAES with the simple greedy repair algorithm. 
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Figure 7: Results on the 2-250 problem. Different greedy repair 
algorithms were used in the MOGLS and the M-PAES. 
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Figure 8: Results on the 2-500 problem. Different greedy repair 
algorithms were used in the MOGLS and the M-PAES. 

We also performed computational experiments using the 
same simple greedy repair algorithm in the MOGLS and 
the M-PAES. Experimental results are summarized in Fig. 
9 and Fig. 10. From these figures, we can see that the M-
PAES outperformed the MOGLS on the two-objective 
test problems in terms of the convergence speed to the 
Pareto front when they were compared under the same 
greedy repair algorithm. As shown in Figs. 7-10, the 
effect of greedy repair is much more significant than the 
specification of the population size. 
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Figure 9: Results on the 2-250 problem. The same greedy repair 
algorithm was used in the MOGLS and the M-PAES. 
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Figure 10: Results on the 2-500 problem. The same greedy 
repair algorithm was used in the MOGLS and the M-PAES. 
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Figure 11: Average CPU time for the 2-500 problem. 

In Fig. 11, we show the average CPU time of the M-
PAES and the two versions of the MOGLS for the 2-500 
problem (i.e., average CPU time in the computational 
experiments in Fig. 8 and Fig. 10). It should be noted that 
the M-PAES was executed under the conditions of Table 
1 while the various values of the size of the current 
population (i.e., || CS ) were examined for the MOGLS. 

From Fig. 11, we can see that the effect of || CS  on the 
average CPU time was not monotonic. We can also see 
that the average CPU time did not strongly depend on the 
implementation of greedy repair. In Fig. 11., the M-PAES 
needed longer CPU time than the MOGLS in many cases. 

4. MODIFICATION OF M-PAES 

As shown in Fig. 4, the M-PAES cannot find a variety of 
non-dominated solutions over a wide range of each 
objective. Moreover, as shown in Figs. 1-3, the relative 
performance of the M-PAES in comparison with the 
MOGLS degrades as the problem size increases. Even 
when they used the same simple greedy repair algorithm, 
the MOGLS outperformed the M-PAES on the large test 
problems in Fig. 2 and Fig. 3 (i.e., 3-750 and 4-750). 

We try to improve the performance of the M-PAES by 
using the scalar fitness function with a random weight 
vector in its selection procedure. In the original M-PAES, 
a pair of parent solutions is randomly chosen from GP �  
for generating an offspring. We modify this selection 
procedure as follows: A pair of parent solutions is chosen 
by tournament selection from GP �  based on the scalar 
fitness function with a random weight vector. When 
another pair of parent solutions is to be chosen, the weight 
vector is randomly updated.  

In Fig. 12, we compare our modified M-PAES with the 
original M-PAES by depicting a single solution set 
obtained by a single run of each algorithm for the 2-750 
test problem. It should be noted that our modified M-
PAES is exactly the same as the original M-PAES when 
the tournament size is one. By increasing the tournament 
size, the selection pressure is increased and more similar 
parents are likely to be selected (see Ishibuchi et al. 
(2003)). Fig. 12 suggests a possibility that the use of the 
scalar fitness function can improve the search ability of 
the M-PAES on multiobjective 0/1 knapsack problems.  
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Figure 12: Results by our modified M-PAES on the 2-750 
problem. The simple greedy repair algorithm was used.  



 

  

5. CONCLUDING REMARKS 

We compared the MOGLS of Jaszkiewicz (2002a) and 
the M-PAES of Knowles & Corne (2000b) with each 
other through computational experiments on 
multiobjective 0/1 knapsack problems. We showed that 
the MOGLS with the sophisticated repair algorithm based 
on the current weight vector in the scalar fitness function 
clearly outperformed the M-PAES with the simple repair 
algorithm. When they used the same simple repair 
algorithm, the M-PAES performed better on two-
objective and three-objective test problems while the 
MOGLS performed better on four-objective test problems. 
We also tried to improve the performance of the M-PAES 
by the use of the scalar fitness function in its selection 
procedure. This modification improved the search ability 
of the M-PAES on multiobjective 0/1 knapsack problems. 
While we could not include experimental results due to 
the page limitation, we observed the improvement in the 
search ability of the M-PAES on multiobjective 0/1 
knapsack problems by the introduction of mating 
restriction schemes (Ishibuchi & Shibata (2003a, 2003b)). 
In our computational experiments, we always used the 
simple repair algorithm in the M-PAES as in the existing 
comparative studies. We can, however, use the 
sophisticated repair algorithm in the M-PAES as in the 
MOGLS. As expected, its use significantly improved the 
performance of the M-PAES on multiobjective 0/1 
knapsack problems (see Fig. 13). 
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Figure 13: Results on the 2-750 problem. The original M-PAES 
used the simple greedy repair algorithm while our modified M-
PAES with the tournament size 5 in Section 4 used the 
sophisticated greedy repair algorithm for comparison. 


