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1. Abstract 
 

The development of real-time functional Magnetic Resonance Imaging (rtfMRI) 

and the advance in computer technology allow us to acquire functional brain 

images and analyze them during an ongoing task. Studies with rtfMRI have shown 

that a healthy human participant can learn to self-regulate the activity of a single 

brain area. The regulation training is guided by the feedback signal (e.g., visual 

feedback), which reflects the blood-oxygen-level dependent (BOLD) signal of the 

target area. In these approaches univariate methods were used to generate 

feedback signals and further analysis. As univariate methods perform statistical 

tests on a single voxel independently, it is not considered how the target area 

interacts with other brain areas and how the interaction changes over the learning.  

In contrast, multivariate methods can determine the brain states from a 

combination of activity of multiple brain voxels/areas.  

 Based on these points, this dissertation is dedicated to develop a new 

multivariate pattern method based on the support vector machine to better 

understand spatial interactions of multiple brain areas. This method is used to 

analyze the changes of activation patterns in the whole brain induced by the self-

regulation training in the right anterior insular cortex. In the second phase, the 

multivariate pattern analysis is used to build an fMRI Brain-Computer Interface 

(BCI) system by classifing the fMRI signals and providing visual feedback in real 

time. This system successfully classifies multiple discrete emotional states from 

the fMRI signal. In the last part, the multivariate pattern classifier is used to look 

over a potential BCI application by trying to find the brain area which is associated 

with movement intention. Through these approaches, it is demonstrated that the 

multivariate pattern analysis can be successfully used to improve the current fMRI-

BCI and understand the brain changes induced by neurofeedback training.
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2. Synopsis 
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2. 1. Introduction 
With the development of the real-time functional magnetic resonance imaging 

(fMRI) and the improvement of other preprocessing techniques (Sitaram, Lee et al. 

2011), several studies (Yoo and Jolesz 2002; Posse, Fitzgerald et al. 2003; 

Weiskopf, Veit et al. 2003; Yoo, Fairneny et al. 2004; deCharms, Maeda et al. 

2005; Caria, Veit et al. 2007; Rota, Sitaram et al. 2009) have demonstrated that 

human subjects using real-time fMRI feedback can learn voluntary self-regulation 

of localized brain regions: the amygdala (Posse, Fitzgerald et al. 2003),  the 

anterior cingulate cortex (ACC) (Weiskopf, Veit et al. 2003), the anterior insular 

cortex (Caria, Veit et al. 2007; Caria, Sitaram et al. 2010; Ruiz, Lee et al. 

submitted), sensorimotor regions(Yoo and Jolesz 2002), cortical activations 

related to auditory attention (Yoo, O'Leary et al. 2006), right inferior frontal gyrus 

(IFG) associated with language processing (Rota, Sitaram et al. 2009). Recent 

studies (deCharms, Maeda et al. 2005; Rota, Sitaram et al. 2009; Caria, Sitaram 

et al. 2010; Ruiz, Lee et al. submitted) reported that the learning to regulate a 

circumscribed brain region can lead to specific behavioral consequences. 

DeCharms and colleagues (deCharms, Maeda et al. 2005) demonstrated that the 

self-regulation of rostral ACC was significantly associated with changes in the 

perception of pain. Rota et al. (2009) reported that experimental subjects, while 

they were trained to self-regulate IFG, significantly improved their accuracy for the 

identification of affective prosodic stimuli (but not for syntactic stimuli). In Caria et 

al. (2010), it was shown that learning of self-regulation of the anterior insula 

induced change in valence ratings of the aversive pictures (either an emotionally 

negative or a neutral picture). Ruiz et al. (submitted) showed that learned self-

regulation led to changes in the perception of emotional faces in schizophrenic 

patients.  

 Standard neuroimaging experiments with fMRI use univariate methods 

where all the statistical tests are separately performed at each voxel. In contrast, 

multivariate methods can recognize spatial and temporal patterns of activity from 

multiple distributed voxels in the brain. Multivariate methods accumulate weak 

information available at multiple locations to jointly decode cognitive states 

although information at any single location cannot differentiate between the states 

(Haynes and Rees 2006). Recent studies (Mitchell, Hutchinson et al. 2003; 

Kamitani and Tong 2005; Haynes and Rees 2006; Haynes, Sakai et al. 2007; 
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Soon, Brass et al. 2008; Lee, Halder et al. 2010) have applied multivariate 

methods to increase sensitivity of fMRI analysis. Laconte and his colleagues 

(LaConte, Peltier et al. 2007) developed an fMRI BCI system by employing a 

multivariate pattern classification method called support vector machines (SVM). 

While most fMRI-BCI studies to-date have investigated self-regulation of brain 

activity at one or two region-of-interests (ROIs) using univariate analysis, 

multivariate methods allow for real-time feedback of a whole network of brain 

activity pertaining to a task. 

 
 

2. 2. Research questions and direction of my PhD 
Even though it has been demonstrated that healthy human participants and 

patients can volitionally regulate BOLD signals from a single target area, it still 

remains unknown how other regions of the brain respond during the regulation 

training of the target area and how they functionally interact. For instance, with the 

respect to the insular cortex regulation, emotional episodes were used as a 

cognitive strategy (Caria, Veit et al. 2007; Caria, Sitaram et al. 2010). However, 

these studies did not fully consider the interaction between the brain regions 

associated with emotion during regulation of the target area.      

        To better understand brain changes induced by the fMRI-BCI training, my 

PhD research focused on the cerebral reorganization during learning of self-

regulation of the insular cortex by analyzing brain changes in the system level with 

multivariate pattern analysis (Lee, Ruiz et al. in press) and multivariate Granger 

causality modeling (Lee, Ruiz et al. in press; Ruiz, Lee et al. submitted) (Chapter 
2. 4). For the multivariate pattern analysis of fMRI signal, I developed a novel 

algorithm called ‘Effect Mapping’ (EM) (Chapter 2. 3) (Lee, Halder et al. 2010) 

based on the support vector machine (SVM) (Vapnik 1998; Schölkopf, Burges et 

al. 1999; Schölkopf and Smola 2002).  

 In addition, I built an fMRI-BCI based on the multivariate pattern analysis by 

using the Effect-map and the SVM classification (Chapter 2. 5) (Sitaram, Lee et al. 

in press). This system was used to recognize multiple discrete emotional states, 

such as happiness, disgust, and sadness from fMRI signals, in healthy individuals 

instructed to recall emotionally salient episodes from their lives. 
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 Lastly, I investigated a potential BCI application for rehabilitation of patients 

suffering from stroke and other movement disabilities. As the detection of brain 

activity related to movement intention could be used to activate neuroprostheses 

in patients with difficulties performing motor imagery, I examined whether a 

multivariate pattern classifier can decode movement intention and the type of 

movement (i.e., left or right) (Chapter 2. 6) (Ruiz, Lee et al. in preparation). 

 

 

2. 3. Effect-Mapping based on support vector machines 
As a multivariate pattern analysis method, support vector machines (SVMs) have 

been widely used for brain signal analysis and decoding (LaConte, Strother et al. 

2005; Mourao-Miranda, Bokde et al. 2005; Mourao-Miranda, Reynaud et al. 2006; 

Haynes, Sakai et al. 2007; Mourao-Miranda, Friston et al. 2007; Soon, Brass et al. 

2008). In a typical SVM analysis of fMRI signals, BOLD values from all brain 

voxels of each repetition time (TR) are contained in an M-dimensional (M: number 

of the brain voxels) input vector x . SVM determines the output  from the input 

vector x  as follows:  

y

0wy T += xw  

where the weight vector w  and the constant value , which are estimated by a 

SVM training algorithm from the training dataset, define a linear decision 

boundary, T is transpose of a vector. 

0w

 Studies (LaConte, Strother et al. 2005; Mourao-Miranda, Bokde et al. 2005; 

Mourao-Miranda, Reynaud et al. 2006; Mourao-Miranda, Friston et al. 2007) so far 

have generated functional maps using the vector of weight values w generated by 

the SVM classification process, or alternatively by mapping the correlation 

coefficient between the fMRI signal x  at each voxel and the output  determined 

by the SVM. However, these approaches are limited as they do not incorporate 

both the information involved in the SVM output of a brain state, namely, the 

BOLD activation at voxels and the degree of involvement of different voxels as 

indicated by their weight values. An important implication of the above point is that 

two different datasets of BOLD signals, presumably obtained from two different 

experiments, can potentially produce two identical hyperplanes (i.e., the identical 

and ) irrespective of their differences in data distribution. Yet, the two sets of 

y

w 0w
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signal inputs could correspond to different functional maps. With this 

consideration, I proposed a new method called Effect Mapping (EM) based on 

SVM (Lee, Halder et al. 2010) for efficient multivariate analysis of fMRI data. Effect 

Mapping considers both the effect of the voxel activation to the output of a 

classifier, and the weight vector of the estimated SVM model. EM measures the 

effect of each voxel to the classifier output by computing Mutual Information (MI) 

between the voxel and the output (see Lee et al. 2010 for more detail).  

 To compare the capability of functional maps for detecting important spatial 

patterns of brain activity, brain voxels having the highest functional values in 

magnitude was selected from the functional maps. Then, the selected voxels in the 

data were used to assess classification performance in the data. In this 

comparison, EM showed similar performance to the other previous methods (see 

Lee et al. 2010 for more detail) while all the methods identified different sets of 

voxels as most informative. It might indicate that the performance in classification 

can be highly dominated by the voxels commonly selected. To better understand 

this result, in the second comparison, overlapping and non-overlapping activations 

from two maps were considered separately. Classification accuracies from 

overlapping areas of two competing functional maps and two non-overlapping 

areas of two competing functional maps were compared. This method of 

comparison gives insight into how well one functional map can identify 

discriminating voxels which the other functional map does not. In addition, this 

consideration is crucial when the competing methods identify different functional 

areas as most informative. In this comparison, the classification accuracy from 

overlapping area of two competing maps was similar to the classification 

accuracies of the voxels entirely selected from each map. However, in the 

performance comparison with non-overlapping area, EM outperforms the two 

previous methods (see Lee et al. 2010 for more detail).   

  

 

2. 4. Multivariate analysis of Insula regulation 
To investigate cerebral reorganization induced by real-time fMRI feedback training, 

I used the fMRI data from a previous experiment (Caria, Veit et al. 2007) from 6 

healthy participants who underwent 5 training sessions of self-regulation of the 

anterior insular cortex (Caria, Veit et al. 2007). In this dataset, the first session 
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required participants to perform insula regulation without feedback. Subsequent 

feedback sessions consisted of regulation blocks and baseline blocks. During 

feedback sessions, normalized average BOLD signal from the right anterior insula 

was presented to the participants in real time in the regulation blocks as changing 

bars of a graphical thermometer (For more detail about experimental protocol and 

information about participants see Caria et al., 2007).  

 Spatial distribution of brain activity was investigated by applying EM in a 

group analysis. To observe the learning effect over the sessions with respect to 

the recruitment of distributed brain areas, it was assessed how many brain voxels 

are highly involved to discriminate regulation and baseline. It was measured by 

applying several thresholds in magnitude of effect values (EVs) and observing 

general characteristics of distribution of EVs. As the feedback training proceeds, 

more voxels acquire low EVs with a number of voxels keeping high EVs (see Fig. 

2 in Lee et al. 2011).  In a specified threshold, the session performed without 

feedback showed smaller clusters of voxels with higher and intermediate EVs 

spread over the whole brain. It can be interpreted as that a large number of brain 

areas involved in the task. However, in application of the same threshold in the 

feedback sessions many voxels having intermediate EVs disappeared, indicating 

probably the gradual disengagement of unnecessary connections (see Fig. 2 in 

Lee et al. 2011). 

 To extend the evidence, temporal interaction of ROIs selected from the E-

maps was investigated. For this analysis, the Granger Causality (GC) model 

based on vector autoregressive models (VAR) was used (Goebel, Roebroeck et 

al. 2003). Particularly, after assessing the connectivity between ROIs, the Causal 

Density (CD; a measure of the number of connections between ROIs in a 

functional network (Seth 2005; Lee, Ruiz et al. accepted; Ruiz, Lee et al. 

submitted)) and the Averaged Connection Strength (ACS; Lee, Ruiz et al. 

accepted) were used (see Lee, Ruiz et al. accepted for more detail). They 

measure the extents of change of significant temporal interactions across sessions 

over the brain areas. 
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 Session 1 (the session without feedback) shows the lowest CD of the 

functional network. As the learning proceeds with feedback, the causal density 

reaches a peak value in session 3 and decreases in the later sessions, indicating 

that the shape of temporal recruitment follows an 'inverted-U' curve, but the causal 

density in session 5 is still higher than in session 1 (see Fig. 4A in Lee et al. 2011 

for more detail). An investigation of ACSs between ROIs indicates that the 

strength of temporal recruitment in some ROIs increases monotonically from 

session to session (see Fig. 4B in Lee et al. 2011 for more detail). 

 Multivariate pattern-based spatial analysis indicated that feedback training 

leads to more spatially focused recruitment of areas relevant for learning and 

emotions. Effective connectivity analysis revealed that initial training is associated 

with increase of network density, while further training "prunes" redundant 

connections but "strengthens" relevant connections. Based on the fundamental 

assumption that the brain operates as a system where spatially distributed brain 

areas interact with one another, this research shows evidence for brain 

reorganization at the system level during self-regulation training of the right 

anterior insula. 

 

        

2. 5. An fMRI-Brain Computer Interface based on real-time spatial 
pattern classification 
2. 5. 1. The methods 
The real-time brain state classification system consists of image acquisition 

system and fMRI-BCI which performs image processing, brain state classification 

and visual feedback (see Fig.1). The image acquisition system uses the standard 

echo planar imaging (EPI) sequence with the modification, which allows functional 

image files to be stored in a specified directory in real time. The real-time 

sequence incorporated the following image acquisition parameters: repetition time 

(TR) = 1.5 s, echo time (TE) = 30 ms, matrix size = 64 x 64, 16 slices (voxel size = 

3.3 x 3.3 x 5.0 mm3, slice gap = 1 mm).  After acquisition of the functional brain 

images, they were transferred into another computer for the following processes. 

In the fMRI-BCI, Brain state classification is performed in the following steps (see 

Fig. 2): (1) signal preprocessing for online head-movement correction and spatial 

smoothing, (2) informative voxel selection by the method of Effect mapping (Lee, 
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Halder et al. 2010) resulting in the brain mask, (3) classifier retraining based on 

the brain mask obtained in step 2, and (4) real-time classifier testing on new data 

using the brain mask, (5) generation of visual feedback. 

 

  

 
Fig. 1. The real-time fMRI brain state classification 

  

 

 
Fig. 2. Flow chart for fMRI signal preprocessing and classification.  
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2. 5. 2. Real-time classifications and feedback of multiple emotional brain 
states 
The newly built fMRI-BCI system was applied to decode the brain state of a 

human during recalls of 3 different emotions (happiness, disgust, and sadness). 

The experiment includes three parts: experiment 1 for real-time binary 

classification of happiness and disgust, experiment 2 for multiclass classification of 

happiness, disgust, and sadness, and experiment 3 for assessing the effect of 

extended feedback training. Twelve healthy subjects participated in experiment 1, 

4 subjects in experiment 2, and 2 subjects in experiment 3.  

 The experiment 1 included 4 succeeding stages: (1) data collection for 

classifier training, (2) training classifiers, (3) testing the classifier without feedback, 

and (4) testing the classifier with feedback. These two tests were performed to 

compare real-time classification performance in the absence and presence of 

feedback to evaluate the eventual application of real-time brain state decoding for 

BCI and clinical rehabilitation. This binary classification tests without and with 

feedback were successfully performed with 92% ± 6% and 80% ± 13%, 

respectively (chance accuracy = 50%). In addition, 4 out of the 12 participants in 

experiment 1 participated in additional runs to test whether the classifier could 

robustly decode brain states even when participants do not use the same emotion 

inducing strategies that were used during training sessions. This classification test 

also showed high prediction accuracies without feedback (80% ± 10%) and with 

feedback (65% ± 18%). 

 The experiment 2 was designed to test real-time multiclass classification, 

both with and without feedback. In the experiment 2, three different emotion blocks 

(happiness vs. disgust vs. sadness) were alternating. Then, a 3-class classifier 

was used to decode brain states in the testing sessions. The classification 

accuracies in this test were 62% ± 14% without feedback and 60% ± 16% with 

feedback (chance accuracy=33%), indicating that multiple discrete emotion can be 

decode in the brain.  

 As shown in the experiment 1, one might argue why the performance with 

feedback is worse than without feedback. In the experiment 3, to assess whether 

feedback training helps participants to improve emotion recall, we recruited two 

more participants and trained them on two-class (happy vs. disgust) classification, 

for 3 sessions (in addition to 2 sessions for collection of training samples). To 
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adapt the classifier to the changes in the participant's brain activation induced by 

thermometer feedback and learned regulation, the classifier was retrained after 

each feedback session on the 2 latest runs of dataset in a style of moving window. 

In this experiment, both participants have gradual increasing performance (see 

Fig. 4C in Sitaram and Lee et al. 2010 for more detail). 

 To assess whether the classification accuracy was really determined by 

brain states induced by emotional recalls of participants (this is, to verify whether 

this classification was done with irrelevant information such as physiological 

confounds), an offline analysis is performed with the Effect-map (Lee et al., 2010) 

and further evaluation of classification accuracy of ROIs identified by the Effect-

map. The analysis identified the medial frontal cortex (MFC), anterior cingulate 

cortex (ACC), insular cortex, superior temporal gyrus (STG), posterior cingulate 

cortex (PCC) and precuneus as the associated areas with the emotional task. This 

result is in line with the previous studies (Phan, Wager et al. 2002; Amodio and 

Frith 2006), and therefore support that participants performed emotion imagery 

and that the SVM results are reliable.  

 Based on these results it was demonstrated that emotional imagery can be 

successfully decoded in real-time, and an fMRI-BCI based on brain state 

classification can be used to provide visual feedback of emotional states for 

potential applications in the clinical treatment of dysfunctional affect. 

 

 

2. 6. Decoding movement intention in the human brain 
During scanning sessions, the experimental protocol was visually presented to the 

participants. The protocol consisted in an event-related design composed of 3 

successive conditions, i.e., fixation, movement intention and imagery conditions. 

Duration of the fixation condition was integral multiples of 1 TR (TR=1.5sec). 

Movement-intention condition of 1TR was presented with a symbol indicating the 

type of the forthcoming motor imagery (i.e., left and right imagery). A participant 

was explicitly instructed not to imagine yet but to wait until the symbol indicating 

the onset of the imagery appeared on the screen. For an imagery condition of 3 

TRs (4.5 seconds) a participant was asked to perform kinesthetic motor imagery of 

hand/arm movement (see Ruiz, Lee et al. in preparation for more detail).   
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 To assess prediction accuracy of left and right conditions (i.e., left and right 

fixations, left and right intentions, and left and right imageries) in specific brain 

areas, brain masks of posterior parietal cortex (PPC), supplementary motor area 

(SMA), premotor cortex (PMC), and primary motor cortex (M1) were created.  

Here, fixation condition was artificially split into left and right fixation based on the 

following conditions (left or right intention) for the convenience of analysis. Then, 

classification accuracies in the areas across time points were measured through 

cross-validation of classification (leave-one-session-out cross-validation; see Ruiz, 

Lee et al. in preparation for more detail). 

 

 

 
 

Fig. 3. Decoding accuracy of condition left vs. right hand/arm in the specified brain area (% mean 
accuracy ± % standard error of the mean). At the point T0, classification accuracy is calculated 
from data obtained from left and right fixation. T1 and T2 indicate the onset of intention and 
imagery conditions. The (*) and (**) indicate the significant level P<.01 and P<.0001 in the one-
sample t-test, respectively. Since T3 (the broken line), decoding accuracies are significant higher 
(with P<.0001) than the chance level in the one-sample t-test. 
 

 

 

 In this analysis, decoding accuracies in the classification of left and right 

conditions increased across time points (see Fig. 3). The performance in the PPC 
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is significantly different from the chance level at onset time of intention (T1; P<.01) 

and at onset time of imagination (T2; P<.01). With consideration of the 

hemodynamic delay (4.5s; 3 TR), classification accuracy at onset time of intention 

(T4) is greater than chance level for all regions of interest. In addition, the PPC, 

PMC and SMA show higher accuracies than M1 during movement intention and 

imagery. 

 This investigation showed that movement intention and the type of 

movement can be decoded in the PPC and premotor regions associated with 

motor planning. As movement intention was detectable before motor imagery in 

time, it might be feasible to predict the type of forthcoming motor execution in 

these areas. This finding suggests that the future BCI based on reading the 

movement intention from PPC can help patients who have frontal lesions or who 

have difficulties in performance of motor imagery. 

 

 

2. 7. Discussion 
In my PhD research, I proposed a new method for multivariate pattern analysis, 

called Effect Mapping, based on support vector machines. As this method 

incorporates both components (the weight vector and the input vector) to 

determine the output of SVM, and includes the consistency measure from 

distribution of the input vectors and the outputs of SVM, it could better identify 

informative voxels from the trained SVM. It was successfully applied in both online 

and offline analyses of fMRI signals.  

 An application of Effect Mapping in association with multivariate Granger 

causality model to the fMRI data obtained from the fMRI-BCI training provided an 

insight into how the brain reorganizes as self-regulation learning proceeds. 

Particularly, this study showed evidence for the functional cerebral reorganization 

induced by the fMRI-BCI learning for the first time. However, this analysis can at 

best cautious conclusion as the analysis could be performed only 6 participants, 

and the cognitive strategies used varied from person to person without any 

behavioral measurement. To better understand how the brain reorganizes 

functional activation and optimizes the use of resource with the respect to the 

energy consumption and the computation efficiency, future studies would need to 
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systematically control for confounding variables and incorporate monitoring of 

behavioral changes during self-regulation. 

 An additional part of my study involved the development of an online 

pattern classifier in an fMRI-BCI system. To construct a robust fMRI-BCI, my 

implementation contained preprocessing steps such as online head-movement 

correction, spatial smoothing, and voxel selection. However, as this system needs 

many sessions of fMRI data collection necessary to train classifiers, it set a 

practical limitation on its application to fMRI-BCI. Future studies should look to 

reduce time duration for classifier training. Or, it would be also a potential future 

direction to develop a subject independent system as it need not collect data to 

train classifier by using data collected from others. This subject independent 

system would be useful in clinical rehabilitation, where patients with brain 

abnormalities pertaining to motor, cognitive or emotion processing could be 

retrained to achieve normal level of functioning by providing feedback from a real-

time pattern classifier that is trained on healthy subjects. Also, it would be 

promising to build an fMRI-BCI system based on spatial-temporal patterns as the 

present work ignored the temporal pattern of brain activity.  

 In real-time classification of brain states during emotional recall, binary 

classification between happiness and disgust, and multi-class classification among 

happiness, disgust, and sadness were successfully performed with high 

classification accuracy (Sitaram, Lee et al. in press). Particularly, robust prediction 

accuracies were observed even when participants were intentionally instructed to 

use different strategies between SVM training and testing runs, indicating the 

ability of the classifier to generalize across varied emotion imagery strategies and 

memory recall scenarios. Additionally, this study provided the first objective 

comparison, through pattern classification, of the degree of involvement of 

different brain regions in emotion imagery and regulation. This technique could be 

applied in a number of ways for research in affective neuroscience as well as in 

the treatment of emotional disorders. In the current work, we did not investigate 

changes in behavior through feedback training based on the brain states induced 

by recalling of emotional episodes, a topic that could be further scrutinized in 

future studies. 

 Lastly, it was showed that movement intention and the type of movement 

could be decoded from the human fronto-parietal cortex, opening up the possibility 
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for developing movement intention based prosthetics. However, it was difficult to 

clearly separate the intention period and the imagery period, and there was no 

additional monitoring of signals related to motor execution such as eye movement 

and electromyography (EMG) during performance of the task, issues that are 

currently being addressed in a continuation of the study. 
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s0010 INTRODUCTION

p0010 Functional magnetic resonance imaging (fMRI) allows non-invasive

assessment of brain function with high spatial resolution and whole brain

coverage, by measuring changes of the blood oxygenation level-

dependent (BOLD) signal. Although the BOLD response is an indirect

measure of neural activity, there is accumulating evidence suggesting the

close coupling between BOLD and electrical activity of the neurons
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(Logothetis, 2008). It is postulated that the combined effect of increases

and decreases in deoxygenated hemoglobin content resulting from

changes in cerebral blood volume, cerebral blood flow, and oxygen

metabolism following neural firing results in the BOLD signal (Buxton,

Uludağ, Dubowitz, & Liu, 2004). fMRI data typically consist of time-

series of several hundred 3D images across the brain over a period of

time, with each image acquired every few seconds. fMRI usability and

applications have been somewhat limited by the offline mode of data anal-

ysis, due to the large size of the data, very intensive computation involved

in preprocessing and analysis of fMRI images. Fortunately, innovations in

high-performance magnetic resonance scanners and computers, combined

with developments in techniques for faster acquisition, processing and

analysis of MR images, have burgeoned a fresh round of developments in

fMRI methodology for scientific research and clinical treatment. Real

time fMRI (rtfMRI) permits simultaneous measurement and observation

of brain activity during an ongoing task. Online single subject preproces-

sing and statistical analysis of functional data is now possible within a single

repetition time (TR), of 1.5�2 s. Novel applications based on rtfMRI have

been developed in the last decade, including fMRI data quality assessment,

neurosurgical monitoring, and neurofeedback for self-regulation of brain

activity. Adding to the above developments are more recent advances in

multivariate pattern classification of fMRI signals based on which brain

activations in a whole neural network, rather than just a single brain region,

could be potentially decoded and modulated (LaConte et al., 2007, Sitaram

et al., 2010). Here, we first review historical developments in rtfMRI, fol-

lowed by an overview of a fMRI Brain�Computer Interface (fMRI�BCI)

system for enabling decoding and self-regulation of brain activity, and finally

discuss the results of several studies on healthy individuals and patient popu-

lations for clinical treatment of neuropsychological disorders.

s0015 HISTORICAL DEVELOPMENT OF REAL-TIME fMRI

p0015 Functional imaging experiments typically follow a serial procedure in

which fMRI images are first acquired from one or more participants per-

forming the tasks under investigation, followed by an offline procedure of

signal preprocessing of the images and statistical mapping that may take

several days. This sequential processing approach has initially developed

due to the large size of data generated in neuroimaging experiments,
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whose processing and analyses incurred high computational costs.

However, it is to be admitted that lack of online implementation of fMRI

preprocessing and analysis could limit its applicability and usability in sev-

eral ways.

p0020 First, experimenters cannot monitor data quality during scanning in

the absence of online processing. Considering the high cost of MRI scan-

ning, a system for monitoring of data quality is useful for saving the costs

and efforts to obtain good quality data. If an investigator can detect arti-

facts correlated to the stimulus in real-time, such as head motion or other

physiological artifacts, it enables him or her to re-acquire the data imme-

diately. Furthermore, in the absence of online analysis, it is hard to modify

an experimental design based on the physiological and behavioral changes

of the participant. These limitations were first overcome by the pioneer-

ing work of Cox and colleagues.

p0025 Cox and colleagues (Cox, Jesmanowicz & Hyde, 1995) first proposed

a method to analyze brain activation in real-time by computing correla-

tion between a voxel’s BOLD signal and a reference time series of the

experimental design in a recursive manner to reduce the computational

demands. Statistical maps of the brain were obtained in real-time by col-

oring voxels that show higher correlations than a user-specified threshold.

However, this method did not yet correct for non-specific noise originat-

ing in the scanning instrument. Voyvodic (1999) reported an approach to

improve the flexibility of the experimental paradigm with a software pro-

gram for accurate, real-time paradigm control and online fMRI analysis.

The paradigm control included simultaneous presentation of stimuli, auto-

matic synchronization to an fMRI scanner, and monitoring of a variety of

physiological and behavioral responses. The online analysis performed

MR image reconstruction, head motion correction in the translational

motion, and statistical tests for block or event-related design. Since then,

many studies have improved the image acquisition process in terms of

data quality, speed, and statistical power (Gao and Posse, 2003; Posse et al.,

1999, 2001, 2003; Weiskopf et al., 2005; Yoo et al., 1999) and algorithms

(Bagarinao et al., 2003; Cox & Savoy, 2003; Cox et al., 1995; Cox &

Jesmanowicz, 1999; Gao & Posse 2003; Gembris, Taylor, Schor, Frings,

Suter, & Posse, 2000; LaConte et al., 2007; Sitaram et al., 2010; Smyser

et al., 2001; Voyvodic, 1999).

p0030 Further developments in multiecho echo-planar imaging (mEPI)

increased the functional contrast-to-noise ratio (CNR) by sampling multi-

ple echoes in a single shot of radio frequency (RF) pulse (Posse et al.,
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1999). This method is suitable for rtfMRI as it allows the detection of

small signal changes within each echo (of 30�40 ms in a 3T scanner).

Adaptive multi-resolution EPI (Panych & Jolesz, 1994) achieved high spa-

tial and/or temporal resolution in regions of functional activations distrib-

uted throughout the brain by selectively detecting those regions with RF

encoding in multiple stages. Such a method can zoom into the regions of

activations while ignoring quiescent regions. Yoo and his colleagues (Yoo

et al., 1999) implemented a real-time adaptive acquisition system with a

multi-resolution EPI to extract signals from cortex and allow more effi-

cient data acquisition time.

p0035 Another notable improvement in imaging was in removing magnetic

susceptibility artifacts. Due to the differences in magnetic susceptibilities

of different imaged parts, such as air, bone, different brain tissues, the

static magnetic field is not homogenous near borders of two brain regions.

Particularly, in air�tissue interfaces such as the regions of the basal brain

and frontal sinuses greater geometric distortions occur. When one radio-

frequency excitation pulse is applied to a slice in single-shot imaging and

a read-out time (TRO) of about 10�40 ms is used to encode the slice, the

inhomogeneities cause local shifts near the air�tissue interfaces (the mis-

alignment of the functional images to wrong anatomical structure) in the

resonance frequency (1/TRO5 25�100 Hz). Several methods (Andersson,

Hutton, Ashburner, Turner, & Friston, 2001; Jezzard & Balaban, 1995;

Kybic et al., 2000; Studholme, Constable, & Duncan, 2000; Zaitsev,

Hennig, & Speck, 2004) have been suggested to reduce the geometric dis-

tortion. However, not every one of these methods may be suitable for

real-time applications as they require additional reference scans and

computational time. Weiskopf and colleagues (Weiskopf et al., 2005)

developed a real-time method to allow for simultaneous acquisition and

distortion correction of functional images contributing further to the

development of real-time fMRI.

p0040 Taken together, many different algorithms have been developed for

the acquisition and real-time processing of fMRI signals. To improve the

sensitivity of functional imaging, correction of head movement artifacts is

a challenging problem. According to Cox and Jesmanowicz (1999), if two

neighboring voxels differ in intrinsic brightness by 20%, then a motion of

10% of a voxel dimension can result in a 2% signal change � comparable

to the BOLD signal change at 1.5T (Bandettini et al., 1992; Cox &

Jesmanowicz, 1999). In addition, if movement correlates with a given

task/stimuli, it can elicit false activations (Hajnal et al., 1994). If movement
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is not correlated with the task/stimuli, signal changes due to the move-

ment can change or reduce the actual activation in functional images

(Cox & Jesmanowicz 1999). Cox and his colleagues (1999) reported an

online method for head-movement correction by an algorithm for three-

dimensional (3D) image rotation and shifting (a rigid body model; since

the head moves as a whole, it is assumed that motion of the head can be

estimated in three directions for translation and three directions for rota-

tion) by generalizing the shears factorization directly to three dimensions.

However, this approach is not suitable for real-time applications as the

time needed for realignment of 80 images is estimated to be several min-

utes. Mathiak and Posse (2001) reported a real-time method of head

motion correction in which rigid body (from six parameters including

three for translation and three for rotation) transformation was applied in

the interval between acquisitions of two functional images. Besides

improving the performance of realignment of the functional images, an

error (indicating potentially noise or artifact) added by the realignment

process also would need to be considered. Mathiak and Posse (2001) pro-

posed that at least three slices with an image matrix of 643 64 would be

required to reduce the error in the estimated movement parameters to less

than 1% of the voxel size.

p0045 Further concerning realignment, a variety of real-time pre-processing

techniques for the corrections of respiration artifacts, spatial smoothing

(Posse et al., 2003) and spatial normalization to stereotactic space (Gao &

Posse 2003) have been developed. To identify significant voxels in online

analysis, methods such as correlation (Cox et al., 1995), general linear

model (Caria et al., 2007, 2010; Rota et al., 2009; Ruiz et al., 2008;

Smyser et al., 2001; Weiskopf, Veit, Wilhelm, & Elena, 2003), and t-tests

(Voyvodic, 1999) have been used.

p0050 The above technical advances in rtfMRI enabled the development of

fMRI-BCI systems (see the following sections) for self-regulation of brain

activity with neurofeedback to study plasticity and functional reorganiza-

tion. Neurofeedback is based on the psychological theory of instrumental

learning, i.e., training in the presence of contingent reward (Skinner,

1938; Weiskopf et al., 2004). Studies have reported different methods for

the generation of reward. Yoo and Jolesz (2002) used the statistical map of

brain activations as visual feedback. Posse et al. (2003) gave participants

verbal feedback of the BOLD signal change in the amygdala at intervals of

60 s. Weiskopf et al. (2003) introduced real-time feedback by showing

two time courses of the BOLD signal in two circumscribed brain regions,
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namely, rostral�ventral and dorsal anterior cingulate cortex, which were

updated at an interval of 2 s. DeCharms, Christoff, Glover, Pauly,

Whitfield, & Gabrieli (2004) built an fMRI-BCI system to guide self-

regulation of the somatomotor cortex with visual feedback of three differ-

ent time courses, in the target ROI, in a background ROI (irrelevant to

the task performance), and difference between the two ROIs. Recent

studies (Caria et al. 2007, 2010; deCharms et al., 2004, 2005; Rota et al.

2009) have used visual feedback in the interval of 1�2 s.

s0020 OVERVIEW OF THE fMRI�BCI SYSTEM

p0055 fMRI�BCI could be defined as a closed loop system that extracts brain

signals from regions of interest and/or classifies patterns of brain activity

from a whole neural network in real-time, so that this information can be

provided to the subject as contingent feedback to enable him to volitionally

control the brain activity. In general, an fMRI�BCI system is comprised

of the following subsystems: (1) the subject, (2) signal acquisition, (3) pre-

processing, (4) signal analysis, and (5) feedback generation. Depending on

the purpose of the experiment, the subject would be instructed and trained

to perform mental tasks guided by the feedback information. Here, we

describe the last four subsystems mainly based on the fMRI�BCI system

built in the Institute of Medical Psychology and Behavioral Neurobiology,

University of Tübingen, Germany. The word real-time in the following

sections implies that signal processing is performed within a single TR (for

example, 1.5 s).

s0025 Signal Acquisition
p0060 Experiments are conducted on a 3Twhole body scanner using a standard

12 channel head coil (Siemens Magnetom Trio Tim, Siemens, Erlangen,

Germany). In principle, scanners from other manufacturers and with

other field strengths could be used for fMRI�BCI development. Whole

brain images of the subject are acquired using an EPI pulse sequence

which is modified to export functional images to the host computer of

the scanner. Pulse sequence parameters used for signal acquisition in our

experiments were as follows: repetition time TR5 1.5 seconds, echo

time TE5 45 msec, flip angle5 70 degree, number of slices5 16, band-

width5 1.3 KHz/pixel, FOVPE/RO5 210, image matrix5 643 64, voxel

size5 33 33 5mm3. These parameters could be modified keeping in

mind, however, the trade-off between signal-difference to noise ratio, also
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called the contrast-to-noise ratio (CNR), and the spatio-temporal resolu-

tion. Intrinsic parameters that modify the inherent signal produced by a

volumetric element (voxel) of the tissue, such as TR, TE, and flip angle

affect the CNR. Extrinsic parameters do not affect the measured tissue,

but influence the mechanics of the data collection, e.g., spatio-

temporal resolution (Brown & Semelka, 1999). In the setup of the para-

meters for real-time signal acquisition, a suitable compromise must be

made between spatial resolution, i.e., FOV, image matrix and slice

thickness, number of slices, and temporal resolution, i.e., TR. In our

fMRI�BCI experiments, the repetition time was reduced to 1.5 seconds

(compared to 2�3 s in a conventional fMRI experiments) to increase the

temporal resolution of BOLD signal, while the number of slices was

reduced to 16 (from 25�30 slices in conventional fMRI measurement)

and slice thickness was increased to 5 mm. With these parameters, ade-

quate spatial and temporal resolutions for functional image acquisition

were provided. However, the older MRI operating software provided by

manufacturers (e.g., Syngo, version VB13 and before, Siemens Medical

Solutions, Erlangen, Germany) did not have a provision for online export

of functional images. To retrieve images in real-time for online processing,

a generalized image reconstruction module was inserted into the conven-

tional EPI sequence provided by Siemens (Caria et al., 2007, 2010; Rota

et al., 2009; Sitaram et al., 2010; Weiskopf et al., 2003). This module

receives EPI k-space raw data from the MRI scanner hardware, recon-

structs whole brain images before start of the next volume of the brain,

and stores them in a pre-specified directory that could be immediately

accessed for another program to perform online preprocessing and analysis.

Fortunately, recent versions of scanner operating software (e.g., Siemens

Syngo version VB15, VB17 and VA30) have provided a standard option to

enable real-time export of functional images, simplifying and standardizing

the future development of real-time fMRI.

s0030 Pre-processing
p0065 After the acquisition of each volume of EPI images, various online

pre-processing steps could be performed for artifact removal and noise

reduction. To prevent artifactual signals caused by head movement, head

padding and bite bars could be used. In addition, through a head-motion

correction step, we could monitor how much the participants move in

6 directions (3 translations and 3 rotations) in real-time, and instruct them
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to avoid such movement. Head movement can be inferred by monitoring

the time courses of the head movement parameters. Patients could then

be reminded to avoid moving if excessive head movement is observed. In

addition to this motion correction, pre-processing also includes spatial

smoothing to reduce the effect of noise, and de-trending to remove linear

trends in the BOLD time-series.

s0035 Signal Analysis
p0070 After completion of pre-processing steps, whole-brain images are used for

statistical analysis and generation of functional maps. For real-time statisti-

cal analysis, a variety of algorithms that perform subtraction of two differ-

ent conditions, correlation analysis, or general linear model could be

used. Real-time statistical analysis is usually performed either by analyzing

recent time samples of data extracted from a sliding window or by incre-

mentally analyzing all data acquired up to a given time point. The sliding-

window method is superior in reflecting the current brain state as it uses

the most recent information. However, this method is not statistically

powerful because a limited number of samples are used in the statistical

test. In contrast, the incremental method provides more robust informa-

tion by using all the data acquired up to a given time point.

p0075 Studies (Caria et al., 2007, 2010; deCharms et al., 2004; Rota et al.,

2009) have also used the subtraction method of determining activation

maps where signals in the baseline condition are subtracted from the acti-

vation condition in a sliding window to provide feedback information in

the ROIs. The correlation method (Cox et al., 1995; Gembris et al.,

2000; Posse et al., 2001) is applied by computing the correlation coeffi-

cient between the time-series of the measured BOLD signal at each voxel

and the reference (or design) time-series representing the change in the

task conditions, and assessing the coefficients with a specified threshold.

The correlation method can be used in either a sliding-window fashion

or an incremental fashion.

p0080 General Linear Model (GLM) is now a standard method of analysis of

functional images to estimate the parameters that fit the measured time-

series of BOLD signal at each voxel, with a linear summation of multiple

experimental and confounding effects weighted by the corresponding

parameters. A GLM for two different conditions and one confounding

effect produces three parameters to best fit the measured time-series of

BOLD signal at a voxel. These parameters are computed independently
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for all the voxels of the brain and then used for statistical tests such as the

t-test and the F-test. As an example, the t-test can be applied on the first

parameter values over all the brain voxels, where the parameter magni-

tudes correspond to involvement of each voxel in the first condition.

These statistical tests identify the voxels that are significant (i.e., activated

solely in the corresponding condition) in the tests. However, since the

number of samples (i.e., scanned images) is limited in real-time applica-

tions, Bagarinao et al. (2003) developed a method of real-time GLM by

updating the parameters in GLM as new data become available. Similarly,

the commercially available real-time fMRI analysis software, Turbo Brain

Voyager (TBV, Brain Innovations, Maastricht, Netherlands) used in our

fMRI�BCI setup (Caria et al., 2007, 2010; Rota et al., 2009; Ruiz et al.,

2008; Weiskopf et al. 2003) uses real-time GLM by applying the recursive

least squares regression algorithm (Pollock, Green, & Nguyen, 1999) to

update GLM estimation incrementally.

p0085 All of the above methods are univariate methods as all the statistical

tests are separately performed at each voxel. In contrast, multivariate

methods can recognize spatial and temporal patterns of activity from mul-

tiple distributed voxels in the brain. Multivariate methods accumulate

weak information available at multiple locations to jointly decode cogni-

tive states although information at any single location cannot differentiate

between the states (Haynes & Rees 2006). Recent studies (Cox & Savoy

2003; Mitchell et al., 2003; Kamitani & Tong, 2005; Haynes & Rees

2006; Haynes, Sakai, Rees, Gilbert, Frith, & Passingham, 2007; Harrison &

Tong 2009; Lee et al., 2010) have applied multivariate methods to

increase sensitivity of fMRI analysis. Laconte and his colleagues (2007)

developed an fMRI�BCI system by employing a multivariate pattern

classification method called support vector machines (SVM). While most

fMRI�BCI studies to date have investigated self-regulation of brain activ-

ity at one or two ROIs using univariate analysis, multivariate methods

allow for real-time feedback of a whole network of brain activity pertain-

ing to a task.

p0090 We have recently implemented a real-time classification method for

automatically recognizing multiple emotional brain states from fMRI sig-

nals (Sitaram et al., 2010; see Figure 9.1). In our study, participants were

instructed to recall two (happy and disgust) or three (happy, disgust, and

sad) salient emotional episodes in a block design paradigm. While partici-

pants performed emotional imagery, whole brain images were acquired

and pre-processed in real-time to correct for head-motion artifacts and
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spatially smoothed to improve signal-to-noise ratio. As the number of

voxels in the brain images is too large (tens of thousands, depending on

the scanning parameters) for a pattern classifier to handle efficiently, a

computational method called feature selection needs to be carried out to

reduce the data size and improve the efficacy of classification. We have

developed a novel method of feature selection called effect mapping (Lee

et al., 2010). In practice, the emotion classifier is first trained for each par-

ticipant on a set of initial data taken out of two sessions of the experi-

ment. The trained classifier is then used to recognize online (at intervals

of 1.5 s) the states of emotion, namely, happy, disgust or sad, as the partic-

ipant engages in emotional imagery. In our study, participants were pro-

vided real-time visual feedback of the state of their brain based on the

Scanner

Participant Visual feedback fMRI-BCI
Computer

H

Scanner host computer

Real-time
echoplaner

imaging
sequence

Brain
images

Perl script for
transferring images

to fMRI-BCI

–Preprocessing
–Feature selection

–Brain state classification
–Feedback generation

f0010 Figure 9.1 The Tübingen real-time fMRI brain state classification system is comprised
of the following subsystems: an image acquisition subsystem, which is a modified
version of the standard echo-planar imaging (EPI) sequence written in C and exe-
cuted on the scanner host computer; and an fMRI�BCI subsystem, which performs
image preprocessing, brain state classification and visual feedback, implemented in C
and Matlab scripts (Mathworks, Natwick, MA) and executed on a 64-bit Windows
desktop. A Perl-script on the scanner host transfers the acquired images after every
scan (at an interval of 1.5s) to the fMRI-BCI computer. (Reproduced from NeuroimageAU : 4

with permission.)
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classifier output. Our study, performed on 18 healthy individuals, showed

that fMRI�BCIs built using a pattern classifiers can robustly decode mul-

tiple brain states (average classification accuracy .80%) in real time and

provide feedback of the states.

s0040 Feedback Generation
p0095 As explained earlier, the results of real-time signal analysis in the ROI or

in the network determined by the pattern classifier can be transformed to

generate contingent feedback to the participant. Recent studies have

shown the usefulness of feedback in learning to regulate the BOLD signal

in one or more regions of the brain with fMRI�BCI (Caria et al., 2007,

2010; deCharms et al., 2004, 2005; Posse et al., 2003; Rota et al., 2009;

Ruiz et al., 2008). In addition, Lee and his colleagues (2008) reported the

effects of neurofeedback in self-regulation training by showing that insula-

regulation training with feedback leads to cerebral reorganization in the

brain regions relevant to emotion processing (Lee, Sitaram, Ruiz, &

Birbaumer, 2008). In studies with rtfMRI (Caria et al., 2007, 2010;

deCharms et al., 2004, 2005; Posse et al., 2003; Rota et al., 2009; Ruiz

et al., 2008), different forms of feedback have been used. Except for one

study that used verbal feedback (Posse et al., 2003), most studies to date

(Caria et al., 2007; deCharms et al., 2004, 2005; Rota et al., 2009; Ruiz

et al., 2008) have used visual feedback. Hinterberger et al. (2003) showed

that visual feedback compared to auditory feedback leads to better learn-

ing in self-regulation of slow cortical potential (SCP; change of cortical

potential below 1 Hz) using an EEG-BCI. As fMRI experiments gener-

ally have more acoustic background noise, visual feedback is presumably

more effective. Visual feedback has been provided in a variety of forms

such as time courses of BOLD activity in target areas updated in real-

time, functional maps based on online statistical analysis, and virtual reality

based animation. Using the conventional univariate method of analysis,

feedback can be based on one or more ROIs by combining them in the

form of additive or subtractive contrasts. The subtraction of BOLD signals

of the reference area from that of the ROI can result in more robust feed-

back as the BOLD activity in the reference area reflects the global change

of brain due to head movements, swallowing and systemic changes in

BOLD. More sophisticated methods of feedback computation could

potentially include correlational analysis between time-series of BOLD

activations in the ROIs, bivariate or multivariate methods of functional

connectivity computation using Granger causality modelling (GCM), and
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multivariate pattern classification (Laconte et al., 2007; Sitaram et al.,

2010). Future developments in the adaptation of existing brain signal anal-

ysis methods to real-time requirements will dictate how well these meth-

ods could be used in fMRI-BCI applications.

s0045 fMRI�BCI IN RESEARCH AND CLINICAL TREATMENT

p0100 In the last decades, neurofeedback based on electrical brain signals has

been successfully applied to train subjects to self-regulate different compo-

nents of the electroencephalogram, leading to measurable behavioral

changes. EEG neurofeedback has been therapeutically applied to neuro-

logical and psychiatric disorders, such us intractable epilepsy, stroke,

locked-in syndrome and amyotrophic lateral sclerosis (Birbaumer, 2006;

Fuchs, Birbaumer, Lutzenberger, Gruzelier, & Kaiser, 2003; Kotchoubey

et al., 2001; Kubler, Kotchoubey, Kaiser, Wolpaw, & Birbaumer, 2001;

Murase, Duque, Mazzocchio, & Cohen, 2004; Strehl et al., 2006). For its

part, the development of real-time fMRI and fMRI�BCI has been more

recent. In the next sections, we will review the studies that have been

conducted so far with this new technique on healthy subjects, and the

attempts to implement this methodology on clinical populations.

s0050 fMRI�BCI Studies in Healthy Population
s0055 Regulation of Brain Regions of Emotion
p0105 The modulation of brain areas related to emotional processing has been of

particular interest for fMRI�BCI research. Posse and colleagues (Posse

et al., 2003) used rtfMRI and feedback of amygdala activation to reinforce

mood induction. Amygdala modulation can be of special importance due

to its role in emotion processing and learning, and due to its involvement

in several neuropsychiatric disorders (Buchanan, 2007; Lawrie, Whalley,

Job, & Johnstone, 2003; Pause, Jungbluth, Adolph, Pietrowsky, & Dere,

2010). A group of six healthy subjects performed a paradigm of self-

induction of mood to alternate between neutral and sad affective states

while in the scanner. After each trial, subjects received verbal feedback of

the signal change of BOLD activation in the amygdala. Subjects success-

fully achieved sad induction, and their self-mood ratings correlated with

the level of activity in the amygdala. Therefore, this study showed that

real-time fMRI could be used to monitor the activations of a particular

brain area, and suggested that feedback may influence perceived mood.

However, as both the task of self-induction and BCI feedback were
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presented simultaneously, it was not possible to ascertain whether amyg-

dala self-regulation was actually achieved due to the BCI feedback.

p0110 Weiskopf and colleagues from our group (Weiskopf et al., 2003) inves-

tigated whether fMRI�BCI could be applied to achieve self-regulation of

the anterior cingulate cortex (ACC). The ACC is part of the limbic sys-

tem and is subdivided into a dorsal “cognitive division” (ACcd), and a

rostral-ventral “affective division” (Acad) (Bush, Luu, & Posner, 2000). A

healthy subject was instructed to upregulate the activations of these areas,

presented to him as a continuously updated visual feedback (delay ,2 s),

introducing the concept of “immediate feedback” of the BOLD signal.

Using imagery of landscapes, sports, and social interaction in many train-

ing sessions, the subject achieved a significant increase of the BOLD signal

between up-regulation and baseline blocks. Additionally, the signal in the

affective ACC increased across the sessions of training, suggesting a

“learning effect”. Although it was not possible to correlate the BOLD sig-

nal change with any behavioral measurement, the participant rated the

valence and arousal of his affective state as more positive for regulation

blocks compared to baseline blocks. Hence, this single subject study was

one of the first that convincingly showed that BOLD signal of circum-

scribed brain regions can be self-regulated using fMRI�BCI, and that

self-regulation by fMRI�BCI training might lead to affective modifica-

tions. Studies have shown (Caria et al., 2007, 2010) that a robust ability to

self-regulate a brain region can be learned with contingent feedback, and

not with sham feedback, nor with mental imagery without feedback.

p0115 Further to this study, our group investigated whether healthy subjects can

voluntarily gain control over anterior insular activity using fMRI�BCI

(Caria et al., 2007). The insula cortex is an anatomically complex mesocorti-

cal structure, part of the paralimbic system that plays a central role in sensory

integration, emotion, and cognition, including such functions as olfaction,

gustation, autonomic functions, temperature and pain perception, and self-

awareness (for reviews see Augustine, 1996; Craig, 2009; Ture, Yasargil,

Al-Mefty, & Yasargil, 1999). Modulation of the insular activity with

fMRI�BCI training might be relevant for treatment of different psychiatric

diseases as social phobia, antisocial behavior, schizophrenia, and addictive

disorders (Nagai, Kishi, & Kato, 2007; Naqvi & Bechara, 2009). In this

study, nine healthy subjects were trained to voluntarily control the BOLD

signal of the anterior insular cortex, using fMRI�BCI in four feedback ses-

sions. The visual feedback was the normalized and continuously updated

average BOLD signal from the right anterior insula, presented to the subjects

239Real-Time Regulation and Detection of Brain States from fMRI Signals

Coben 978-0-12-382235-2 00009



by means of thermometer bars. All participants were able to successfully reg-

ulate the BOLD signal, and training resulted in a significantly increased acti-

vation cluster in the anterior portion of the right insula across sessions.

However, self-regulation could not be achieved by a control group trained

with sham feedback, suggesting that successful self-regulation is achieved by

contingent fMRI feedback. This work was the first group study that showed

that volitional control of emotionally relevant brain areas can be attained by

fMRI�BCI training.

p0120 Given this, can learned self-regulation produce a measurable behav-

ioral modification? In a later study, Caria and colleagues (Caria et al.,

2010) explored the relationship between brain self-regulation and emo-

tional behavior using fMRI�BCI. Healthy participants underwent four

fMRI�BCI scanning sessions to modulate the BOLD response in the left

anterior insula guided by visual feedback (as in the previous study). After

each modulation block of self-regulation and baseline, participants were

presented with either an emotionally negative or a neutral picture taken

from the International Affective Picture System (IAPS; Lang, Bradley, &

Cuthbert, 1997). Immediately after presentation, participants were required

to rate the picture using the Self-Assessment Manikin (Lang, 1980).

Participants learned to increase and decrease the BOLD response signifi-

cantly in the anterior insula guided by contingent feedback, and behavioral

data showed a significant difference of valence ratings of the aversive

pictures in the last session. These results demonstrate that fMRI�BCI

manipulation of paralimbic regions such as insula is possible and can modu-

late a specific emotional response.

p0125 A question that arises from these studies is whether, in addition to

behavioral modification, does self-regulation of circumscribed brain areas

also lead to cerebral reorganization. In a further analysis of our data

reported in Caria et al. (2007), we investigated (Lee et al., 2008) changes

in brain connections associated with anterior insula self-regulation. We

used multivariate support pattern analysis and effective connectivity analy-

sis with Granger causality modeling (Seth, 2009). Our analyses revealed

changes in the neural network of emotion regulation represented by an

inverted U-curve of connectivity densities across the sessions of self-

regulation. Feedback training resulted in an initial increase of the density

of the connections among regions such as the left and right insula, ACC,

medial prefrontal cortex, dorsolateral prefrontal cortex, and amygdala.

Further training seemed to indicate pruning of presumably redundant

connections and strengthening of potentially relevant connections. This
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effect can be of special importance as it shows that BCI might be used to

build a more efficient neural pathway, especially for conditions in which

abnormal neural connectivity is implied (as in autism and schizophrenia).

p0130 In a very recent study, Hamilton and colleagues (Hamilton et al.,

2010) tested whether healthy individuals can downregulate the activity of

the subgenual anterior cingulate (sACC) cortex with fMRI�BCI. Studies

have shown that downregulation of this region produced by deep brain

stimulation led to a sustained antidepressive effect in patients with

treatment-resistant depression, suggesting that endogenous modulation by

BCI might be used as a therapeutic approach (Lozano et al., 2008;

Mayberg et al., 2005). Using “positive affect strategies” and visual contin-

gent feedback of the BOLD signal, eight healthy women were able to

downregulate the BOLD signal from sACC. The learned downregulation,

however, did not persist in a subsequent session where subjects were not

provided with feedback. However, the study included a psychophysiologi-

cal interaction (PPI) analysis of functional connectivity (Friston et al.,

1997) which showed that BCI training was associated with a decreased

correlation (connectivity) between sACC and posterior cingulate cortex.

Similar to the study performed by Lee and colleagues (2008), this finding

indicates that fMRI�BCI training leads to changes in the effective con-

nectivity of a network subserving a task.

p0135 Prediction of emotional states from brain activity constitutes a major

scope of affective neuroscience. It could solve several pressing clinical pro-

blems such as the assessment of affect in verbally incompetent people with

dementia, minimally conscious state, and locked-in-syndrome, and the

detection of deception. Recent advances in multivariate pattern classifica-

tion of functional magnetic resonance imaging (fMRI) signals are espe-

cially important due to the high spatial resolution, whole brain coverage,

and non-invasiveness of fMRI. As mentioned earlier, in a recent study

(Sitaram et al., 2010) we showed that an online support vector machine

(SVM) can be built to recognize two discrete emotional states, such as

happiness and disgust, from fMRI signals in healthy individuals instructed

to recall emotionally salient episodes from their lives. The classifier also

showed robust prediction rates in decoding three discrete emotional states

(happiness, disgust, and sadness) in an extended group of participants.

Subjective reports collected from participants ascertained that they per-

formed emotion imagery, and that the online classifier decoded emotions

and not arbitrary states of the brain. This study also showed a relationship

between the participants’ affect scores as measured by positive and
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negative affect scores (PANAS) and the subjective ratings of their perfor-

mance in the emotion imagery task, indicating that participants who

report greater negative affect rate themselves relatively lower in their abil-

ity to perform the imagery task. Offline whole-brain classification as well

as region-of-interest classification in 24 brain areas previously implicated

in emotion processing revealed that the frontal cortex was critically

involved in emotion induction by imagery. Finally, we demonstrated an

adaptive pattern classifier-based real-time feedback system with which

subjects were trained to enhance the functional network of emotion regu-

lation by repeated training. AU : 5
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f0015 Figure 9.2 (See Color Plate section) Exemplary brain activation maps generated from
a single subject whole brain SVM classification showing discriminating voxels for: (a)
happy vs disgust classification, (b) happy vs sad classification and (c) disgust vs sad
classification. Brain regions: oMFC, orbital medial frontal cortex; arMFC, anterior ros-
tral MFC (based on Amodio et al., 2006); OFC, orbitofrontal cortex; ACC, anterior cin-
gulate cortex; PCC, posterior cingulate cortex.
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s0060 Motor System
p0140 In one of the earliest fMRI�BCI studies, Yoo and Jolesz (2002) tested

whether subjects could self-regulate the activity of motor areas by fMRI

neurofeedback. Brain activations from sensorimotor regions produced by

a simple finger-tapping task were extracted by fMRI, in five healthy parti-

cipants. Through sessions of regulation, participants were asked to adapt

their hand motor strategies in order to expand the functional activations

in the motor cortex, guided by the brain activations maps provided as

visual feedback, at the end of each block of regulation. After a few trials

of training, all participants were able to adapt their motor strategies to

successfully expand their brain activations in the ROI.

p0145 DeCharms and colleagues (deCharms et al., 2004) used a hand motor

imagery task in six participants who were instructed to optimize their strat-

egies in order to increase the activations in the somatomotor cortex, while

receiving ongoing real-time fMRI visual feedback of the level of activa-

tions in these brain regions. A significant monotonic activation increase in

the ROI across training was also found. Furthermore, a control group of

subjects who were trained in the scanner in an identical task, but without

valid rtfMRI information (sham feedback), did not achieve self-regulation.

p0150 Other studies have attempted to use fMRI�BCI technology to translate

brain activity into direct control of computers and robots. Yoo and collea-

gues (Yoo et al., 2004) used fMRI to decode brain activities associated with

four distinct covert functional tasks (mental calculation, mental speech gen-

eration, and motor imagery of sequential finger position of right and left

hand), and subsequently translated these activations into predetermined

computer commands for moving four directional cursors. Three healthy

participants were able to make a cursor navigate in a 2D maze demonstrat-

ing “spatial navigation by thought”. The same group (Lee, Ryu, Jolesz,

Cho, & Yoo, 2009), later explored the use of fMRI�BCI to control a

robotic arm. The BOLD signal extracted from primary motor areas (M1)

of right and left hemispheres were used to adjust vertical and horizontal

coordinates of this external device. Three healthy subjects attempted to

move the robotic arm using motor imagery to activate M1 with the help of

visual feedback to adjust the level of cortical activation. With different

degrees of success, participants were able to gain voluntary control of two-

dimensional movement of the robotic device. These preliminary studies can

be of crucial importance for future therapeutic attempts in patients with

motor dysfunctions due to stroke, brain or spinal injury, or degenerative

disorders.
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s0065 Auditory System
p0155 Yoo and colleagues tested the feasibility of using fMRI neurofeedback for

the regulation of cortical activations related to auditory attention (Yoo

et al., 2006). Eleven healthy participants passively received auditory stimu-

lation in the scanner to determine the auditory areas as regions of interest.

During the regulation sessions, participants were instructed to engage in

an attentional task (listening to the auditory stimuli) in order to increase

the volume of activation within the ROI. Between scanner sessions, ver-

bal feedback of the activation of auditory areas was given to the subjects.

The experimental group successfully increased the BOLD signal in left

auditory areas and other extra-temporal areas. A control group that was

not given feedback of the activations in the auditory cortex did not

achieve consistent increase in activations in the region, indicating the

importance of feedback in self-regulation.

s0070 Language Processing
p0160 In an experiment conducted by our team, fMRI�BCI was used to train

subjects to achieve self-control of right inferior frontal gyrus (BA 45), and

to measure whether this voluntary increase of the BOLD signal would

modulate language processing (Rota et al., 2009). All seven subjects of the

experimental group achieved voluntary self-regulation of the activation-

level recorded in the target ROI, with a progressive increase of the level

of activation in the right BA 45 across training sessions. Short-term

behavioral effects of self-regulation with regard to language processing

were explored by comparing accuracy levels and reaction times before

and after feedback training in prosodic and syntactic tasks. During the

self-regulation of BA 45, experimental subjects significantly improved

their accuracy for the identification of affective prosodic stimuli (but not

for syntactic stimuli), confirming the role of inferior frontal gyrus in the

processing of emotional information. These results pointed out that self-

regulation of prefrontal cortical areas by fMRI�BCI is possible, and could

be explored as a means to normalize dysfunctional cortical networks to

enhance cognitive and/or behavioral disturbances associated with clinical

disorders.

s0075 fMRI�BCI Studies in Clinical Populations
p0165 The studies described above showed that fMRI�BCI can enable healthy

subjects to achieve voluntary control of circumscribed brain areas. Some
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of these studies have also shown behavioral changes and cerebral changes

due to fMRI�BCI practice. The next paragraphs describe how far we

have gone in the applications of fMRI�BCI with neurological and psy-

chiatric disorders.

s0080 Pain Perception
p0170 Chronic pain is a major health problem causing untold suffering for mil-

lions of patients, and economic burden worldwide. DeCharms and collea-

gues (deCharms et al., 2005) focused on the use of self-regulation of

rostral ACC (rACC) to investigate the modulation of pain perception.

This area, among others, is involved in mediating the conscious percep-

tion of pain (Mackey & Maeda, 2004; Petrovic & Ingvar, 2002; Wager

et al., 2004). The results of fMRI�BCI training in a group of healthy

subjects showed that is it possible to gain deliberate control of the rACC

activation aided by contingent fMRI feedback, and that self-regulation is

significantly associated with changes in the perception of pain caused by a

noxious thermal stimulus. Going one step further, they demonstrated that

similar self-regulation can be achieved by a group of chronic pain patients

who reported decrease in the level of ongoing pain after the fMRI�BCI

training. It remains to be seen if such behavioral changes persist in the

long-term.

s0085 Stroke Rehabilitation
p0175 In recent work by our group, Sitaram and colleagues (2010) assessed the

feasibility of fMRI�BCI feedback training for enabling healthy indivi-

duals and stroke patients to regulate the ventral premotor cortex (PMv),

an area involved in observation, imagery, and execution of movement

(Grezes & Decety, 2001). The authors hypothesized that upregulation of

the BOLD signal in the PMv would facilitate motor cortical output from

primary motor cortex (M1). Each fMRI�BCI feedback session consisted

of four runs of self-regulation training. Results showed that training

enabled participants to learn to upregulate the BOLD response of PMv.

To measure behavioral effects of self-regulation, the authors used paired

pulses of transcranial magnetic stimulation (TMS) to induce intracortical

inhibition and facilitation, and simultaneously measured motor evoked

potential (MEP) on the participant’s finger. Results showed evidence for

reduction in intracortical inhibition after feedback training compared to

the same situation before feed back training, and even further reduction

during self-regulation of PMv.
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s0090 Tinnitus Treatment
p0180 Tinnitus, the perception of sound in the absence of an auditory stimulus,

is a common chronic disorder with limited treatment options that can

adversely impact the quality of life of the patients. Current views of

its neural basis include an over-activation of the auditory network

(Eggermont, 2005; Kleinjung et al., 2005). Six patients with chronic tin-

nitus were examined by Haller, Birbaumer, & Veit (2010). After localizing

the primary auditory cortex, patients were instructed to down-regulate

the BOLD activity of this area aided by contingent visual feedback. Most

of the patients learned to down-regulate their activations in the auditory

ROI. Furthermore, a linear decrease in the auditory activations was

detected over training sessions. After a single day of BCI training there

was a decrease of the subjective report of tinnitus in two of six partici-

pants. This preliminary data suggests that fMRI�BCI potentially could

produce beneficial effects for the treatment of this disorder.

s0095 Mental Disorders
p0185 So far, two chronic and irreversible mental disorders have been the focus

of interest in our group: psychopathy and schizophrenia. Psychopathy is a

severe personality disorder often considered untreatable. Studies by our

group have shown that persons diagnosed with psychopathy fail to activate

prefrontal cortex and limbic regions (including insula cortex, cingulate

cortex, left amygdale, and orbitofrontal cortex) during a fear-conditioning

task (Birbaumer et al., 2005; Veit et al., 2002). Therefore, we hypothe-

sized that upregulation of these areas could facilitate the acquisition of

aversive conditioning, potentially modifying the behavioral manifestations

of the disorder. Using a similar paradigm as Caria et al. (2007), we trained

individuals with criminal psychopathy to self-regulate anterior insular cor-

tex with fMRI�BCI. Preliminary results showed for the first time that

such persons can learn self-regulation of left anterior insula. Furthermore,

self-regulation led to an increase in the effective connectivity of the brain

network involved in emotional processing.

p0190 In a second study, we made the first attempt to apply fMRI�BCI

with schizophrenic patients (Ruiz et al., 2008; full article in press). The

first aims of this study were to evaluate whether schizophrenic subjects

can achieve volitional regulation of anterior insula cortex activity by

fMRI�BCI training, and to explore the relationship between the capabil-

ity to self-regulate and other aspects of their symptomatology. Insula cor-

tex was chosen as the ROI based on the increasing evidence that insula

246 Ranganatha Sitaram et al.

Coben 978-0-12-382235-2 00009



dysfunction might be critically involved in different aspects of schizo-

phrenic psychopathology. Secondly, we explored whether self-regulation

is associated with a behavioral modification of facial emotion recognition.

Finally, we studied whether learned self-regulation can modulate the fun-

ctional connectivity of the emotional brain network (measured by

Granger causality modelling). Nine chronic schizophrenic patients, mod-

erately symptomatic and under antipsychotic medication, were recruited.

The training consisted of twelve sessions of fMRI-BCI during which

patients were trained using online visual feedback of bilateral anterior

insula activity. Our results showed that after a few sessions of training,

patients learned to self-regulate the BOLD response in the insula cortex

(see Figure 9.3). Self-regulation was not achieved, however, in a later ses-

sion conducted without fMRI-feedback (transfer session).

p0195 The capability to self-regulate was negatively correlated with the

severity of negative symptoms and the duration of the illness. After

learned insula self-regulation, patients detected significantly more disgust

faces, in line with the extensive evidence of the role of insula in face dis-

gust recognition. However, for reasons that need more exploration,
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dard error across training sessions. The white bars represent the mean and standard
error for the transfer session.
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patients detected less happy faces during self-regulation. Volitional control

of insula was also associated with a modulation of the perception of emo-

tion intensity. Finally, volitional self-regulation led to a significant enhance-

ment of the effective connectivity arising from the insula cortex on both

hemispheres, and of the emotional network in general.

p0200 These results showed that with adequate training, these schizophrenic

subjects were able to learn volitional regulation of the insula cortex by

fMRI�BCI. Learned self-regulation led to changes in the perception of

emotional faces, one of the hallmarks of schizophrenic dysfunction, thus

providing evidence that behavioral modulation by this new technique in

schizophrenia is possible. The enhancement of the connectivity in brain

emotional network suggests that fMRI�BCI may be useful in “re-

connecting” abnormal neural connections in schizophrenia.

s0100 CONCLUSIONS

p0205 New developments in computer and device technology, and signal pro-

cessing have brought fresh enthusiasm and interest in real-time neuroim-

aging. Several new applications of this technique, most significantly led by

research in brain�computer interfaces, are being developed and tested.

rtfMRI has inspired a promising new approach to cognitive neuroscience.

There is a growing evidence that learned control of the local brain activity

through rtfMRI can be used as an independent variable to observe its

effects on behavior. fMRI�BCI has enabled anatomically specific control

of subcortical and cortical areas (some of them not accessible to ele‘ctro-

physiological methods), such as amygdala, insular regions, cingulate regions,

and sensorimotor cortex. Encouraged by the behavioral modifications fol-

lowing self-regulation training, there have been several new attempts to

apply this methodology to neuropsychiatric disorders.

p0210 The above studies and novel developments of BCI methodology

can open up opportunities for studies in psychiatric populations and possi-

ble future therapeutic applications. However, before the full clinical appli-

cation of fMRI�BCI, some important aspects have to be addressed and

explored by further studies. fMRI�BCI is an expensive and difficult to

implement technology. Furthermore, to date none of the mentioned stud-

ies has convincingly shown that self-regulation can be generalized “out of

the scanner setting”, without the help of on-going contingent feedback.

Whether the behavioral changes produced by fMRI�BCI are more than

a short-term effect, has yet to be explored.
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p0215 Finally, these findings have opened a fundamental question, that is,

“How does learned regulation of the BOLD signal in the brain influence

behavior?” A clearer understanding of the neural mechanisms underlying

the BOLD response perhaps will lead us to answer this question. Perhaps

fMRI�BCI will, itself, be employed to help understand the relationships

between neural activity, the BOLD response and behavior.
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Abstract: There is a growing interest in using support vector machines (SVMs) to classify and analyze
fMRI signals, leading to a wide variety of applications ranging from brain state decoding to functional
mapping of spatially and temporally distributed brain activations. Studies so far have generated func-
tional maps using the vector of weight values generated by the SVM classification process, or alterna-
tively by mapping the correlation coefficient between the fMRI signal at each voxel and the brain state
determined by the SVM. However, these approaches are limited as they do not incorporate both the
information involved in the SVM prediction of a brain state, namely, the BOLD activation at voxels
and the degree of involvement of different voxels as indicated by their weight values. An important
implication of the above point is that two different datasets of BOLD signals, presumably obtained
from two different experiments, can potentially produce two identical hyperplanes irrespective of their
differences in data distribution. Yet, the two sets of signal inputs could correspond to different func-
tional maps. With this consideration, we propose a new method called Effect Mapping that is generated
as a product of the weight vector and a newly computed vector of mutual information between BOLD
activations at each voxel and the SVM output. By applying this method on neuroimaging data of overt
motor execution in nine healthy volunteers, we demonstrate higher decoding accuracy indicating the
greater efficacy of this method. Hum Brain Mapp 00:000–000, 2010. VC 2010 Wiley-Liss, Inc.

Keywords: fMRI; multivariate analysis; multivariate pattern analysis; support vector machine
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INTRODUCTION

Pattern-based methods use sophisticated machine learn-
ing techniques, such as multilayer neural networks and

support vector machines to discriminate spatial, temporal,
and spectral patterns in a system. Such methods have
been successfully used in character recognition, speech
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recognition, and image recognition applications [Jain et al.,
2000]. Rapid progress in the application of data mining
and statistical techniques and the growth of computing

power has enabled the efficient manipulation and han-

dling of large amounts of neuroimaging data, acquired

from high resolution brain scans of several time points, for

multivariate pattern analysis [Haynes and Rees, 2006;

Norman et al., 2006]. Multivariate pattern classification

and analysis methods have been used with great success

in several neuroimaging studies, including unconscious

antecedents of free decisions [Soon et al., 2008], lie detec-

tion [Davatzikos et al., 2005], visual processing [Haxby

et al., 2001; Kamitani and Tong, 2005], and emotion

[Mourao-Miranda et al., 2007].
In contradistinction to univariate analysis which evalu-

ates each brain location separately although brain activity
was measured from many thousands of locations simulta-
neously, multivariate analysis is based on the insight that
multiple, spatially distributed regions act in consort during
a task. Pattern analysis methods also provide an objective
criterion for determining the importance of different brain
regions in a given task by simply comparing the accuracy
of decoding a task from signals extracted from individual
brain regions or a group of brain regions [Haynes et al.,
2007; Soon et al., 2008]. Pattern classification can be used
not only to separate different task conditions or brain
states, but also to test consistency of brain activation across
tasks or sessions, and to track temporal transitions of brain
states [Polyn et al., 2005].

Among different pattern classification methods, SVMs
are one of the most widely used methods for fMRI signals
[LaConte et al., 2005; Mourao-Miranda et al., 2005, 2006,
2007]. Support vector machines (SVMs) are a set of super-
vised learning methods used for classification and regres-
sion. By considering input data as two sets of vectors in
an M-dimensional space, a linear SVM will construct a
separating hyperplane in that space. A good separation is
achieved by maximization of the margin, whose boundary
is the distance to the separating hyperplane from the input
vectors (i.e., support vectors) closest to it [Schölkopf and
Smola, 2002; Schölkopf et al., 1999; Vapnik, 1995]. The cri-
terion can be denoted as a quadratic optimization problem
and the best solution can therefore be found by applying
optimization theory. The advantage of SVMs in real-world
applications is their superior performance in classification
accuracy with small sample sizes and high dimensional
inputs.

Some applications of SVM to fMRI signals generated
functional maps by displaying the weight value at each
voxel [Mourao-Miranda et al., 2005, 2006, 2007]. The stud-
ies maintained that the weight vector can identify the
most discriminating voxels by multivariate analysis since
the weight vector is the direction along which the input
vectors from two conditions differ most. These studies
considered only one (i.e., the weight vector) of the two fac-
tors that determining an SVM output, namely, the weight

vector and the input vector. It needs to be highlighted that
SVMs are trained on the input samples to minimize the
classification-error rates by computing the weight vector
solely from support vectors that reside near the border of
the hyperplane. It follows from this consideration that the
weight vector so computed is not completely influenced
by the statistical distribution of input vectors. As such,
using the weight vector alone to generate functional maps
is equivalent to presenting only a part of the information.

LaConte et al. used the pair-wise correlation between
the BOLD signal at each voxel and distance from the mar-
gin [LaConte et al., 2005]. This approach derives from the
consideration that the distance from the separating hyper-
plane is related to ease of discrimination, and based on the
intuition that the sample closest to the hyperplane is most
difficult to classify. Although the distance is related to dis-
crimination, it does not follow that the farthest sample is
the most important for discrimination as it may contain
very little information about data distributions of the tasks
(see Theory for more detail). Additionally, this approach
does not exploit the advantage of multivariate analysis of
the SVM due to its univariate measure.

In this study, we propose a new functional-mapping
method to identify the voxels more closely related to the
actual importance in classification. The method incorporates
information from both the weight vector and the input vec-
tors that together determine the SVM output. Toward this
end, we first derive the formula for a new quantity called
the effect value (EV). Effect value for a single voxel is
defined as the statistical relation (mutual information; see
Theory for detail) between the voxel and the SVM output,
multiplied by the corresponding weight value of the SVM.
Subsequently, we compare the proposed method with the
functional maps generated by the previous methods. The
comparison is done quantitatively by evaluating classifica-
tion performance from the voxels identified as informative
in competing functional mapping approaches generated
based on data acquired during overt motor execution. We
chose fMRI data from the overt motor execution task for
this investigation, as this task is easier to execute consis-
tently across runs and among all healthy volunteers, so that
differences in classification accuracy is more readily attrib-
utable to differences in the performance of the classifiers per
se than due to artifactual effects of unreliable data.

THEORY

First, we summarize the basic concept of SVM and the
procedure for applying SVM to fMRI data. Next, based on
considerations of the theoretical basis of SVM and the limi-
tations of the conventional interpretation of SVM, we pro-
pose the new method.
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Support Vector Machine (SVM)

In a typical SVM analysis of fMRI signals, BOLD values
from all brain voxels of each repetition time (TR) are con-
tained in the M-dimensional (M: number of all the brain
voxels) input vector xi (notation: Xindex of sample; bold font
indicates a column vector, xindex of voxel

index of sample). SVM determines
a scalar class label Li from xi as follows:

Li ¼ sgnðyi ¼ wTxi þ bÞ;
i ¼ 1; :::; N; ðN : number of input vectorsÞ (1)

where the weight vector w and the constant value b,
which are estimated by a SVM training algorithm from the
training dataset, define a linear decision boundary, T is
transpose of a vector, sgn(.) is a sign function, sgn(x) ¼
11, 0, 21 if x[ 0, x ¼ 0, x\ 0, respectively.

When the input vectors xi and the design labels Li
D (if

the input vector comes from a condition of interest, then
Li

D ¼ 1; on the other hand if the input vector comes from a
rest condition or a control condition, then Li

D ¼ 21) are
taken from the training dataset, the linear SVM algorithm
attempts to find a separating hyperplane y ¼ wT x 1 b ¼ 0
in the feature space. The weight vector w of a linear SVM
is obtained by minimizing objective function of Eq. (2)
with constraints Eqs. (3) and (4),

1

2
wTwþ C

XN

i¼1
ni; (2)

with Li
DðwTxi þ bÞ � 1� ni; (3)

and ni � 0 (4)

where the slack variable ni is introduced to describe a non-
separable case (i.e., data that cannot be separated without
classification error), C denotes the weighting on the slack
variable (i.e., the extent to which misclassification is
allowed). The minimization of Eq. (2) is originated from
concept of the maximization of the margin (length of the
margin ¼ 2/kwk2), whose boundaries are defined as y ¼
wT x 1 b ¼ �1 built from support vectors (i.e., SV ¼ {xi|yi

¼ wT xi 1 b ¼ �1}) in each class.
The main objective function Eq. (2) and constraint terms

Eqs. (3) and (4) can be combined into one nonconstraint
form by the introduction of a Lagrange multiplier. From
the formula, the weighted vector w can be obtained:

w ¼
XN

i¼1
aiLi

Dx
i (5)

Here, ai is the Lagrange multiplier and its value deter-
mines whether the input vector xi is a support vector or

not. When ai is nonzero, the corresponding input vector is
the support vector.

Interpretation of SVM Results

In fMRI studies using SVM, an intuitive way to analyze
the results of SVM training might be to overlay the weight
vector onto brain images [Mourao-Miranda et al., 2005].
Although this method describes which weight value pro-
duces the larger effects, the method is limited due to the
fact that the output y is not estimated from the weight vec-
tor alone, but also from the input vector containing the
BOLD values at each voxel. In addition, this method has
disadvantages as different datasets pertaining to different
tasks may generate identical hyperplanes (see Fig. 1A).

LaConte et al. used feature space weighting (FSW) to
generate the functional maps from the SVM results
[LaConte et al., 2005]. This approach used a distance mea-
sure from the separating hyperplane to the estimated out-
put of SVM, leading to a weighted average contrast
function (i.e., the contrast value at each time weighted by
distance measure from the margin). Although they
reported a relationship between the distance and discrimi-
nability, theoretically, the distance of the input vectors
from the separating hyperplane is not completely repre-
sentative of the given task (see Fig. 1B). In addition, gener-
ation of the functional maps by using pixel-wise
correlation between single voxel activation and the con-
trast function might not accurately represent the distinc-
tion between the classified brain states because it does not
take into account the multivariate contribution of the
weight vector to the SVM output.

Typically, SVM maximizes the distance between two
hyperplanes composed from support vectors of each class
without considering the data distribution of all the input
vectors. As seen in Eq. (5), the weight vector is a weighted
sum of only the support vectors and does not incorporate
any information from the nonsupport vectors. In addition,
when the input vectors of one condition (þ1 or -1) are con-
sidered, one single activation pattern would represent the
class. That is, many repetitions of one task lead to similar
activation patterns in the brain regions associated with the
task (i.e., small variance in elements of a class or higher
signal-to-noise ratio (SNR)). In this view, important or
essential elements of the input vectors from a class would
be expected to show higher consistency or lower variance
of activations across several samples. However, Figure 1C
illustrates that the elements of the input vectors corre-
sponding to the higher weight values do not necessarily
repeat with higher consistency. In Figure 1C, three differ-
ent input vectors result in similar SVM output with the
same weight vector. This shows that consideration of only
a single component, i.e., the weight vector, is not enough
to determine the effect of individual elements of the input
vector on the SVM output. This argument calls for the
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combined application of the weight vector and the input
vector in obtaining legitimate functional activations.

Effect Mapping (EM)

Effect mapping considers both the effect of the voxel
activation to the output of a classifier, and the weight vec-
tor of the estimated SVM model. EM measures the effect
of each voxel to the classifier output by computing mutual

information (MI) between the voxel and the output. MI is

defined as the amount of information that one random

variable contains about another random variable [Cover

and Thomas, 1991]. That is, when two random variables X

and Y occur with a joint probability mass function p(x,y)

and marginal probability function p(x) and p(y), the entro-

pies of the two random variables and the joint probability

are given respectively by:

HðXÞ ¼
X

x2X

�pðxÞlog pðxÞ;

HðYÞ ¼
X

y2Y

�pðtÞ log pðyÞ;

and HðX; YÞ ¼
X

x2X

X

y2Y

�pðx; yÞlog pðx; yÞ:

MI, I(X;Y), is the relative entropy between the joint dis-
tribution and the product distribution, i.e.

Figure 1.

Illustrations of characteristics of an SVM. (A) Two different datasets

(red and blue) having the same separating hyperplane (y ¼ wT x þ b

¼ 0). Even though the two datasets have different distributions (a red

line: distribution of dataset 1, a blue broken line: distribution of data-

set 2), SVM trained with each dataset separately can determine the

same separating hyperplane (i.e., the same weight vector). (B) Distri-

bution of the SVM outputs. Distance of an input vector from the sep-

arating hyperplane is proportional to the SVM output, greater

distance indicating greater separation between the conditions. In con-

dition 1, SVM output y1 is closer to mean or the center of distribu-

tion (a red broken line) than SVM output y2. Therefore, it is likely

that there are more samples close to x1 than to x2. However, in

terms of data distribution, x1 is more important than x2 even though

x1 is closer to the separating hyperplane than x2. (C) Illustration of

the determination of the SVM output with the weight vector and the

input vectors. In (C), for the trained SVM model y ¼ 10x1 þ 2x2 �
7x3 � x4, there are three input vectors, particularly nonsupport vec-

tors, classified to the same class (þ1). When the importance of each

element of the input vectors is considered based on the magnitude

of the corresponding weight value, the 1st (10) and 3rd (�7) ele-
ments are the two most important ones [Mourao-Miranda et al.,

2005]. If the brain state of one class (þ1 or -1) can be represented as
one spatial pattern, importance of each element of the input vectors

could be considered based on consistency of the elements. The val-

ues (2.0, 2.1, and 1.9) of the 1st element (x1) are consistent across

the input vectors, but the values (3.0, 2.0, and 1.0) of the 3rd element

(x3) do not show any consistency even if the SVM output are consist-

ent, and the corresponding weight value is large. This shows that the

importance of an element of the input vectors is not simply propor-

tional to the magnitude of the corresponding weight value alone.

Rather, the effective importance of an element depends on both the

weight value and the sample data distribution considered together.

[Color figure can be viewed in the online issue, which is available at

www.interscience.wiley.com.]
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IðX; YÞ ¼ HðXÞ þHðYÞ �HðX; YÞ

¼
X

x2X

X

y2Y

pðx; yÞlog pðx; yÞ
pðxÞpðyÞ

(6)

Because of the variance of mutual information based on
entropies H(X) and H(Y), normalized mutual information
is defined as [Maes et al., 1997]:

~IðX; YÞ ¼ IðX; YÞ
HðXÞ þHðYÞ (7)

As shown in Figure 2, ~I(xi; y) can take into consideration
consistency of xis based on data distribution of y on the
assumption that the probability density of the SVM out-
puts decrease with increase of y. Distribution of the SVM
outputs, y, in our analysis also reflects this assumption
well. In addition, ~I(xi; y) reflects the nonlinear dependen-
cies between distribution of xi and y better than a simple
correlation method.

Hence, the effect value (EV) Ek of a voxel k, designed to
take into consideration the above points, is defined as:

Ek ¼ wk
~Iðxk; yÞ; k ¼ 1; :::; M ðM : number of voxelsÞ (8)

where y is the SVM output after excluding the sign func-
tion, wk and xk are weight value and activation in voxel k,
respectively.

MATERIALS AND METHODS

Participants and Experimental Protocol

We analyzed fMRI data from nine right-handed healthy
college students (age: 26.4 � 5.2). None of the participants
had any history of neurological or psychiatric disorders.
The study was approved by the ethics committee of the
Faculty of Medicine of the University of Tuebingen. Stim-
uli were presented in a block design. There were two
active conditions (left-hand (LH) and right-hand (RH)
movements) and a resting condition. During active condi-
tions, each participant was instructed to move his/her
palm and fingers freely. Participants were asked to restrict
movement above the wrist, for example, in the elbows and
shoulders. Each active and inactive condition (rest state)
lasted 30 s (15 scans). In our analysis, 12 active condition
blocks (6 LHs þ6 RHs) from 2 runs of fMRI measurement
were used to train SVM and make comparisons.

Data Acquisition

Functional images were acquired on a 3.0 T whole body
scanner, with a standard 12-channel head coil (Siemens
Magnetom Trio Tim, Siemens, Erlangen, Germany). A
standard echo-planar imaging sequence was used (EPI; TR
¼ 2 s, TE ¼ 30 ms, flip angle a ¼ 78�, bandwidth ¼ 2.232
kHz/pixel). Thirty-two slices (voxel size ¼ 3 � 3 � 3.75
mm3, slice gap ¼ 1 mm), AC/PC aligned in axial orienta-
tion were acquired.

Preprocessing and Classification

Preprocessing was performed with SPM5 (Wellcome
Department of Imaging Neuroscience, London) and classi-
fication was performed using MATLAB (The Mathworks,
Natick, MA) scripts.

We performed realignment of functional images, core-
gistration between functional images and structure image,
and normalization of functional and structure images onto
the Montreal Neurological Institute (MNI) space. After
selecting nonbrain areas with a brain mask (i.e., a brain
mask file ‘‘mask.img’’) generated with SPM5, z-normaliza-
tions (z-value: (x-mean(x))/standard deviation(x), x: sam-
ples) were applied across all the time-series of each voxel
on each run of each participant data separately to correct
for the variance of BOLD signals of different runs and dif-
ferent participants. Whole brain images from each TR
were used to generate input vectors to the SVM classifier,
and individual scans were classified.

The freely available SVM software SVMlight [Joachims,
1999] was used to implement the classifier. Linear SVMs
were trained with a fixed regularization parameter C ¼
105 (i.e., hard margin SVM) to remove variability of

Figure 2.

Illustration of mutual information in consistent (i.e., most of xi s

are mapped into y ¼ 1; a red broken line of circle of Figure A),

and inconsistent (i.e., mapping of xi s are inconsistent without

showing a dominant probability in a point; a blue broken line of

ellipse of Figure B) mappings. A probability of each mapping

point is denoted as Pa,b ¼ p(xi ¼ a, y ¼ b). In all the figures,

data distribution is shown in one condition (y > 0) with the

assumption that all the input vectors are correctly classified, and

p(y) decreases with increase of y (i.e., p(y ¼ 1) > p(y ¼ 2)) due

to the fact that a SVM model in such high dimensional data as

fMRI data has many support vectors, and many of SVM outputs

reside in a region close to hyperplanes, y ¼ wT x þ b ¼ �1,
composed of support vectors. Figures A and B show the nor-

malized mutual information between xi and y. With regard to

mapping of xis into the SVM outputs y, A shows higher probabil-

ity in one point reflecting higher consistency than B, and higher

mutual information than B. [Color figure can be viewed in the

online issue, which is available at www.interscience.wiley.com.]
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Figure 3.

Functional maps from a group analysis of non-smoothed data. In

functional maps (F(SW)-, W(eight)-, and E(ffect)-maps) computed

from the SVM outputs, clusters with positive value (red) corre-

spond to the positive SVM weight values, while clusters with nega-

tive values (blue) correspond to the negative SVM weight values.

In B, E-map is drawn after rescaling the EVs of Eq. (8) for the pur-

pose of display (to make extreme values to be smaller) with the

following formula: lEk ¼ sgn(Ek) log(1 þ |Ek|/std (|E|)) where

std(|E|) is the standard deviation of all Ek. These maps show six

horizontal slices every 12 mm obtained from the whole brain in

MNI space. The functional maps are drawn by selecting 5% of vox-

els (for the purpose of display) having the highest values in magni-

tude. (A) F-map. (B) I-, W-, and E- maps. The I-map shows a

distributed pattern of mutual information between the input vec-

tor and the SVM output (without the sign function; y ¼ wT x þ b).

In principle, mutual information is zero or positive, but for the

purpose of comparison with other methods, the values are multi-

plied by the sign of the SVM weight values. [Color figure can be

viewed in the online issue, which is available at www.interscience.

wiley.com.]

Figure 4.

Ratio of area of clusters remaining after applying the second-level threshold to total area of voxels

remaining after applying the first-level threshold. The first-level thresholds 10, 5, and 2.5%, are

used in A–C, respectively. The second-level thresholds {10, 30, 50, 70} are used in all the figures.

[Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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classification performance dependent on the regularization
parameter C. In the classification procedure, the LH and
RH were given 1 and -1 as design labels for the SVMs.
Nine-fold cross validation (CV) [Hastie et al., 2001] was
applied in group data of nine participants. In each fold,
the data of eight participants were used to train an SVM
classifier, and then the data of one remaining participant
were used to test the classifier.

Computation of Probability

In the computation of mutual information, joint distribu-
tion and marginal distributions were performed with two-
dimensional joint histogram and one-dimensional histo-
gram (http://www.cs.rug.nl/�rudy/matlab/). In our
analysis, numbers of bins of the histogram were defined
as N1/3 (N: number of samples; (8 � 180)1/3 ¼ 11 bins).

Comparison of Functional Maps

To prevent the double dipping problem [Kriegeskorte
et al., 2009], comparisons were made with nine-fold CV
from group data of nine participants. In each fold, the
data of eight participants were used to train an SVM, and
to compute functional maps (i.e., F(SW)-, I-, W(eight)-,
E(ffect)-maps) (see Fig. 3). To compare the capability of
functional maps for detecting important spatial patterns of
brain activity, the top x% of brain voxels (e.g., 5%) having
the highest functional values in magnitude was selected
from the functional maps. Then, the selected voxels in the
data of eight participants were used to train a linear SVM

Figure 5.

Comparison of cross-validation results (i.e., classification accura-

cies (mean classification accuracy rate (%) � standard error of

the mean (%))) from voxels selected by the functional maps. All

figures are drawn with nine-fold CV on non-smoothed data. After

selecting top 10, 5, 2.5, and 1% brain voxels in magnitude in each

functional map, the selected voxels were used to evaluate classifi-

cation accuracy, respectively. [Color figure can be viewed in the

online issue, which is available at www.interscience.wiley.com.]

Figure 6.

Comparison of cross-validation results (i.e., classification accura-

cies; mean classification accuracy rate (%) � standard error of

the mean (%)) for overlapping and non-overlapping areas of two

different types of functional map. All figures are drawn with

nine-fold CV on nonsmoothed data. In A, C, and E, after select-

ing top 10, 5, 2.5, and 1% brain voxels in magnitude from two

functional maps, overlapping and nonoverlapping area (based on

the concept of ‘‘relative complement’’) were used to evaluate

classification accuracy, respectively. In B, D, and F, after selecting

top 10, 5, 2.5, and 1% brain voxels in magnitude from two func-

tional maps, ratios of area taken by the voxels commonly

selected from the two functional maps to the total area taken

by all the selected voxels were shown. In each figure, legends

from one functional map (i.e., E, F, I, and W), and legends from

two functional maps (i.e., E and F, E and I, and E and W) indicate

the results from the exclusive selected voxels from one func-

tional map and commonly selected voxels from two functional

maps, respectively. (A) Performance comparison between E- and

F-maps. (B) Ratio of overlapping area of E- and F-maps. (C) Per-

formance comparison between E- and I-maps. (D) Ratio of over-

lapping area of E- and I-maps. (E) Performance comparison

between E- and W-maps. (F) Ratio of overlapping area of E- and

W-maps. [Color figure can be viewed in the online issue, which

is available at www.interscience.wiley.com.]
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with C ¼ 105, and the same voxels in the data of one
remaining participant were used to classify.

Additionally, when comparing between two functional
maps generated by two competing methods, it is possible
that the decoding accuracies of the two maps are similar
due to common voxels selected by these methods, yet the
two methods might indicate different sets of voxels as
most informative. This consideration is critical if differen-
ces of activation patterns from two functional maps are
obtained in different functional areas or on the border of
two functional areas. As an example, let us assume that
two patterns of voxels in the visual cortex, encompassing
brain areas such as V1, V2, V3, and V4, are generated by
two different functional mapping methods. It is conceiva-
ble that the two methods provide similar decoding accura-
cies, but one method (e.g., E-map) identifies voxels from
the V1 and V3 areas as most informative, while the other
(e.g., W-map) identifies brain areas from the V1 and V4
areas as most informative. Given this, the open question
is: which functional area between the V3 and V4 areas is
more involved in the given task, acknowledging that V1 is
the common area of activation. To be able to answer this
question in our study, overlapping and nonoverlapping
activations from two competing maps were considered
separately in the voxel selection process. One SVM classi-
fier for overlapping areas of the two competing functional
maps, and two separate SVM classifiers for two nonover-
lapping areas of the two competing functional maps were
trained from the BOLD activations from the voxels
selected. Then, the trained SVMs were tested to classify
the data of one remaining participant. For instance, in
comparing between nonoverlapping areas of E- and W-
maps, voxels only generated by E-map but not by W-map
were used to train an SVM and classify the test dataset af-
ter selecting the top x% of brain voxels from both of E-
and W-maps, and vice versa. This method of comparison
gives insight into how well one functional map can iden-
tify discriminating voxels which the other functional map
does not. In addition, if voxels selected from the two dif-
ferent maps show similar decoding accuracy, and decod-
ing accuracies from commonly selected voxels are also
comparable to the decoding accuracy from all the voxels
selected from each method, it is likely that the classifica-
tion performance is more dependent on the overlapping
voxels than on the nonoverlapping voxels. To evaluate the
performance of functional maps more clearly, therefore, it
is useful to test the decoding accuracy from nonoverlap-
ping (i.e., exclusively selected voxels) areas. In addition,
information such as the amount of overlap and how much
decoding accuracy from the overlapping voxels is close to
decoding accuracy from all the selected voxels provides
greater insight for the purpose of comparison.

Clustering Functional Maps

To compare functional maps in terms of the degree of
spread of local patterns or the degree of focus, areas occu-
pied by different clusters was calculated in each map. The
top x% of voxels (e.g., 5%), hereafter called first-level
threshold, having the highest functional values (i.e., FSW
value in the F-map, I value in I-map, weight value in W-
map, and EV in E-map) in magnitude were selected. The
selected voxels were clustered by the surface connection
method [Thurfjell et al., 1992]. Then, the ratio of the area of
clusters consisting of at least ‘‘x’’ voxels (where x ¼ 10, 30,
50, and 70), hereafter called second-level threshold, to total
area of the selected voxels was computed. Increasing the
minimum size of clusters to be selected indicates that the
selected clusters get larger and area occupied by all the
selected clusters remains the same or becomes smaller.

RESULTS

Classification

We first evaluated whether SVM could consistently clas-
sify the fMRI group data between left- and right-hand
movement conditions. Our analysis indicated that SVM
could discriminate between LH and RH conditions with
an average accuracy of over 90% (95.8% � 1.2%).

Comparison of Functional Maps

Characteristics of activation clusters of each functional
map are presented by showing ratios of the area occupied
by selected clusters after second-level thresholding to total
area of voxels selected with first-level threshold (see Fig.
4). The selection of voxels of Figure 4 was performed
with the same method as Figure 3, but with more number
of thresholds, i.e., 10, 5, and 2.5%. The graphs of Figure
4B show the characteristics of clusters in Figure 3. The
F-map illustrates that larger clusters occupy most of the
selected area (see Fig. 4). In contrast, the W-map shows
more wide-spread clusters (see Figs. 3 and 4) with higher
ratios of the area taken by small clusters. The E-map dis-
plays an intermediate degree of spread between the I-
map and the W-map. However, characteristics of cluster
area from the E-map obtained after decreasing the 1st-
level threshold (i.e., from 10 to 5% and 2.5%) resembles
those from F-/I-maps.

Figure 5 shows comparison of decoding performance in
the selected voxels by four functional maps (F-/W-/I-/E-
maps). The decoding accuracy of E-map is similar to or
slightly higher in the numbers of selected voxels (10, 5,
2.5, and 1%) than the others.

In Figure 6, classification accuracies of overlapping,
and nonoverlapping, exclusively selected voxels are
shown for the top x% (10, 5, 2.5, and 1%) of brain voxels
in each type of functional map. These comparisons were
performed on nonsmoothed data, on two types of
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functional maps at a time. Commonly selected voxels from
the two functional maps provide higher classification
accuracy in all the thresholds than exclusively selected
voxels. Also, the decoding accuracies from the overlapping
area are almost same as those of all the selected voxels
from each functional map even when ratio of the overlap-
ping area is not much high (i.e., below 70%) (see Figs. 5
and 6). Exclusively selected voxels from E- map provides
higher classification accuracy in all the thresholds than F-/
I-maps (see Fig. 6A,C). In comparison between E- and W-
maps, E-map provides higher prediction accuracies in
thresholds 10, 5, and 2.5%, while W-map shows better per-
formance in 1% of brain voxels (see Fig. 6E).

DISCUSSION

The present study demonstrates that effect-mapping
could be an alternative method in the multivariate analy-
sis of fMRI data by considering both discriminability and
data distribution. As shown in Figures 3 and 4, the E-
map shows intermediate level of sparseness or focus in
comparison to the mutual information method, and the
weight-vector method. This could be explained by the
process of derivation of EV, and thus effect mapping can
merge the effect of each voxel on the SVM output in a
multivariate way as a result of multiplying the SVM
weight vector with the mutual information. In addition,
E-mapping combines the univariate (I-map) and previous
multivariate approaches [W-map; Mourao-Miranda et al.,
2005, 2006, 2007] as a hybrid of the two methods. It can
also be shown that decrease of the weight value at each
voxel based on the normalized MI value in effect-value
is regarded as a sort of constraint method of multivariate
analysis, and the multivariate characteristics, therefore,
remain in the Effect-map. We showed that E-mapping
can identify the voxels more closely related to classifica-
tion than the other methods previously used as it
includes both the contributing factors that determine the
output of SVM: the differing importance of spatially dis-
tributed brain voxels as represented by the weight vec-
tor, and the statistical distribution of the brain
activations in the voxels as represented by the mutual in-
formation between each voxel activation and the SVM
output. Figure 1A indicated that the SVM weight vector
is a linear combination of the support vectors and does
not represent the statistical distribution of the input pat-
terns, and thus SVMs trained from different datasets
potentially may have the same weight vector. Although
the separating hyperplane is optimal in terms of general-
ization performance, it is a discriminative function in the
dimension of the given input vectors. In Figure 1B, it
was shown that greater distance of the sample from the
separating hyperplane need not necessarily indicate more
importance in data distribution in all the cases. The dif-
ference between the I-map and W-map depicted in
Figure 3B reiterates the previous theoretical illustration
of Figure 1C.

With these points of view, we have evaluated the effi-
cacy of different methods of multivariate functional map-
ping: weight vector mapping [Mourao-Miranda et al.,
2005, 2006, 2007], feature-space-weighting [LaConte et al.,
2005], mutual information mapping, and the proposed
effect mapping, by comparing the classification accuracy
of the brain states based on each method for increasing
levels of threshold of voxel selection. The comparison was
performed in two ways: (1) by comparing the performance
from all the voxels selected by each method (see Fig. 5),
(2) by comparing the performance from overlapping and
nonoverlapping voxels between the methods (see Fig. 6).
The first approach showed a small but consistent improve-
ment in prediction by the effect mapping method over the
other two methods. However, the second approach gives
more insight into the workings of the three methods. It
shows that the overlapping voxels or common voxels
selected by the two different methods provides most of
the information necessary for prediction of the brain states
indicated by the highest classification accuracy (around
96%). However, since the maps identify the nonoverlap-
ping areas as well as the overlapping areas as informative,
it is still necessary to evaluate the areas exclusively identi-
fied as informative from the two different methods. Voxels
exclusively identified as informative by the FSW or the
weight vector method did not perform as well in pattern
classification as the voxels exclusively identified as inform-
ative voxels by the EM method. Additionally, according to
Op de Beeck et al. [2008], ‘‘The word ‘‘map’’ is generally
used to refer to a gradient of selectivities along the cortical
sheet. By contrast, ‘‘module"—in the context of brain func-
tion—refers to the clustering of selectivities in discrete
regions, with clear selectivity discontinuities at the boun-
daries of these regions.’’ At the current state of art, since it
is not clear which brain functions are maps and which
others are modules, it is premature to select a fixed num-
ber of voxels for the purpose of optimal thresholding to
provide the highest decoding accuracy. When one
observes the classification accuracies at different threshold
levels (see Figs. 5 and 6), it is apparent that EM produces
consistent prediction accuracies at most thresholds in com-
parison to other mapping methods. This is a significant
advantage for both brain-state decoding and functional
mapping applications, as one need not conduct a compre-
hensive search for the best threshold.

In conclusion, our theoretical explications and empiri-
cal analysis indicate that the new technique of effect
mapping could enhance the identification of brain activa-
tion patterns in various perceptive and cognitive tasks.
Although our proposed method partially overcomes the
limitations in the previous methods, there are still disad-
vantages with computing the mutual information in a
univariate way. In addition, the influence and the rela-
tionship between overlapping areas and nonoverlapping
areas could be considered to understand the SVM out-
put and obtain more accurate functional maps in
neuroimaging.
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Introduction

Advances in magnetic resonance data acquisition and 

processing techniques have enabled the implementation of 

real-time functional magnetic resonance imaging (rtfMRI) 

by online processing of fMRI signals.1 With rtfMRI the blood 

oxygen level dependent (BOLD) signal can be used to provide 

participants with information about the actual level of activity 

in circumscribed brain regions.1-3 Studies have reported that 

healthy participants as well as patients are able to learn to 

control activity in different brain areas4-8 and such modula-

tion may lead to behavioral changes,9,10 thus anticipating 

the development of treatment methods for neurological dis-

orders. In spite of these exciting developments, it is still not 

clear how cortical and subcortical regions reorganize during 

self-regulation training.

Studies have shown that the activity of the insular cortex 

is correlated with participants’ perception of emotional 

states.11-13 In a meta-analysis of positron emission tomogra-

phy and fMRI studies of emotional tasks, Phan et al14 revealed 

that anterior cingulate and insula are positively correlated 
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Abstract

Background. Studies with real-time functional magnetic resonance imaging (fMRI) demonstrate that humans volitionally regu-
late hemodynamic signals from circumscribed regions of the brain, leading to area-specific behavioral consequences. Methods 
to better determine the nature of dynamic functional interactions between different brain regions and plasticity due to 
self-regulation training are still in development. Objective. The authors investigated changes in brain states while training 6 
healthy participants to self-regulate insular cortex by real-time fMRI feedback. Methods. The authors used multivariate pat-
tern analysis to observe spatial pattern changes and a multivariate Granger causality model to show changes in temporal 
interactions in multiple brain areas over the course of 5 repeated scans per subject during positive and negative emotional 
imagery with feedback about the level of insular activation. Results. Feedback training leads to more spatially focused recruit-
ment of areas relevant for learning and emotion. Effective connectivity analysis reveals that initial training is associated with 
an increase in network density; further training “prunes” presumably redundant connections and “strengthens” relevant 
connections. Conclusions. The authors demonstrate the application of multivariate methods for assessing cerebral reorga-
nization during the learning of volitional control of local brain activity. The findings provide insight into mechanisms of 
training-induced learning techniques for rehabilitation. The authors anticipate that future studies, specifically designed with 
this hypothesis in mind, may be able to construct a universal index of cerebral reorganization during skill learning based on 
multiple similar criteria across various skilled tasks. These techniques may be able to discern recovery from compensation, 
dose–response curves related to training, and ways to determine whether rehabilitation training is actively engaging neces-
sary networks.
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with emotional recall and emotional tasks with high cognitive 

demand. With consideration of the above, in a previous study, 

we trained participants with rtfMRI neurofeedback to modu-

late their BOLD activity in the right anterior insula4 and then 

focused more on the task-related increases and decreases in 

brain activation in selected regions of interest (ROIs), such as 

the left and right anterior insula.

Related to the recent studies4-8 on self-regulation learning 

with the aid of neurofeedback information, studies on skill 

learning15-18 with neuroimaging techniques are of particular 

interest. In these studies, 2 main ideas were proposed in the 

extant literature to explain the mechanism behind skill acqui-

sition.15 The first proposes that learning can take place 

through the efficient use of specific neuronal circuits (eg, 

Hebbian learning). The second idea emphasizes that skill 

acquisition goes through stages,16,17 that is, different processes 

are associated with the different levels of skill and complexity 

of the task.18 It is then proposed that different stages of skill 

acquisition may use different neural substrates. Petersen 

et al15 maintained that although these 2 mechanisms may 

appear different, they may not necessarily be exclusive, 

emphasizing further that changes in neural circuit efficiency 

and differences in processing are part of skill acquisition in 

almost all situations and that changes in activation across 

brain areas may be a common theme in learning paradigms. 

With this reasoning, more recent studies have investigated 

skill acquisition on a range of motor, visuomotor, perceptual, 

and cognitive tasks.15,19-21 In the majority of these studies, 

effects were reported as increases or decreases of activation 

in brain areas related to task performance, but it has not been 

shown how the interaction between spatially distributed brain 

regions can change as a system due to learning and how the 

brain optimizes the function. Based on the aforementioned 

considerations, we hypothesized that if learning takes place 

in stages and each stage of learning leads to more efficient 

use of neuronal circuits, then transition from one stage of 

learning to the next could be observed as changes in network 

connectivity, in addition to the changes in the activations of 

brain regions being connected.

To this end, we applied 2 different multivariate methods 

to fMRI data to reveal changes in the brain activity during 

self-regulation training. First, we used the effect mapping 

method22 based on support vector machines (SVMs) to observe 

changes in the spatial activation patterns in the brain across 

the training sessions. Second, we implemented multivariate 

Granger causality modeling (GCM) to compute directed causal 

influences between spatially distributed voxels of the brain. 

From this model, we calculated the causal density (CD23; the 

density of network connection) and the average of causal 

strength (ACS; the average strength of causal connections in 

the network) to reveal temporal changes in the network across 

learning sessions. We expected that certain measures of the 

2 methods, namely, quantification of changes of spatial acti-

vation patterns and CD and ACS, could together indicate the 

changes in network connectivity during learning to self-

regulate insula.

Materials and Methods
Participants and Experimental Protocol

Our study was performed on fMRI data collected from 

6 healthy participants who underwent 5 fMRI scanning ses-

sions in a day in the previous study.4 The first session required 

participants to perform insula regulation without feedback. 

Subsequent feedback sessions consisted of 4 regulation blocks 

(22.5 seconds each) during which participants had to learn 

to increase insular activity, alternating with 5 baseline blocks 

(22.5 seconds each) during which they were instructed to 

return to baseline-level activity. During feedback sessions, 

the normalized average BOLD signal from the right anterior 

insula was presented to the participants in real time as chang-

ing bars of a graphical thermometer. For more details about 

the experimental protocol and information about participants, 

see Caria et al.4

Data Acquisition
Functional images were acquired on a 3.0-T whole body 

scanner, and a standard 12-channel coil was used as a head 

coil (Siemens Magnetom Trio Tim, Siemens, Erlangen, 

Germany). A standard echo-planar imaging sequence was 

used (TR � 1.5 seconds, matrix size � 64 × 64, effective echo 

time TE � 30 ms, flip angle � � 70°, bandwidth � 1.954 kHz/

pixel). Sixteen oblique axial slices (voxel size � 3.3 × 3.3 × 

5.0 mm3, slice gap � 1 mm) were acquired.

Preprocessing and Classification
Preprocessing was performed with SPM5 (Wellcome Depart-

ment of Imaging Neuroscience, London, England), and clas-

sification was performed using MATLAB (The Mathworks, 

Natick, MA) scripts.

We performed realignment, coregistration, and normaliza-

tion onto the Montreal Neurological Institute space. Finally, 

the data were smoothed spatially with a Gaussian kernel of 

8 mm full width at half maximum. For the preprocessed data, 

a mask of nonbrain areas was created by removing voxels 

below a specified intensity value in a mean image of whole 

scans. The aforementioned mask was applied to all the func-

tional images of all the participants, and z normalizations 

(z value: (x � mean(x))/standard deviation(x), x: samples) 

were applied across all the time series on each single-participant 

data separately because variance of BOLD signals of different 

participants should be considered. All brain voxels from each 

single scan are collected into an input vector, whose design 

label is given based on its condition (1 for the regulation 

condition and �1 for the rest condition). To account for the 
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hemodynamic delay, the design label was shifted by 4 scans 

(6 s), and then the data from the completed 8 blocks (4 blocks 

from the regulation � 4 blocks from the baseline) of all the 

6 participants were used to construct the input vectors of 

classifiers. To classify the data of the 2 given conditions 

(ie, regulation vs baseline) across sessions, SVM (linear SVM 

with the regularization parameter C � 1, using SVMlight24) 

were used in each separate session. Classification performance 

from data within a session was evaluated through 6-fold cross-

validation.25 In each fold, the data of 5 participants were used 

to train an SVM classifier, and then the data of 1 remaining 

participant were used to test the classifier. This process was 

repeated across all the folds without the testing sets overlap- 

ping across folds (ie, leave-one-subject-out cross-validation).

Multivariate Spatial Analysis
To analyze spatial patterns of brain activity, we used a mul-

tivariate method called effect mapping (EM).22 It reveals 

changes in the spatial patterns of activity across training 

sessions. EM was shown to be stronger when compared with 

other methods in both theoretical and empirical points of 

view in our previous study.22

To identify informative voxels from the SVM model, which 

separates 2 conditions by finding the separating hyperplane, 

the EM measures the effect of each voxel in multivoxel space 

to the SVM output by considering both the factors (ie, the 

input vectors and the weight vector; y � wTx � w
0
, where y is 

the SVM output, w is the weight vector, and x the input vec-

tor), which determine the SVM output. The effect of each 

voxel to the classifier output is measured by computing nor-

malized mutual information (NMI26) between the voxel and 

the SVM output.

Hence, the effect value (EV) E
k
 of a voxel k is defined as 

(see Lee et al22 for more details):

E
k
 � w

k
Ĩ(x

k
; y), k � 1,. . .,M (M: number of voxels), (1)

where Ĩ(x
k
; y) is the NMI between the voxel and the output, 

w
k
 and x

k
 are the SVM weight value and activation in voxel 

k, respectively.

After normalizing the absolute value of E
k
 from Equation (1), 

we obtain the following relation:

nE
k
 � sgn(E

k
) log(1 � |E

k
| / std (|E|)), k � 1,. . .,M,�  (2)

where sgn(·) is a sign function and std (|E|) is the standard 

deviation of all E
k
. In the present study, Equation (2) (nE

k
) 

was used to compute the EV at each voxel to make E(ffect)-

maps from different sessions comparable. Hereafter, the EV 

indicates nE
k
.

To compare quantitatively the effect of learning on changes 

in the recruitment of spatially distributed brain areas, we 

applied thresholds of EV � Th × E
max

 and EV � Th × E
min

 in 

each session separately. Here, Th (where Th � 0.1, . . ., 0.7) 

is the threshold values, and E
max

, E
min

, and EV are a maximum 

and minimum value of effect values and an effect value at a 

single voxel, respectively. The application of these thresholds 

is equivalent to the situation of removing voxels that are not 

significantly important for the learning and retaining those 

that are directly involved in it.

BOLD Signal Difference
To evaluate BOLD signal changes of the selected brain region 

in all the sessions, the BOLD signal difference was defined 

as (BOLD
reg

 � BOLD
base

)/BOLD
base

 * 100.

Effective Connectivity Analysis
In our temporal analysis, Granger causality (GC) models 

were computed for all sessions based on vector autoregressive 

models (VARs).27 When ROIs were selected from the E-map 

generated from multivariate SVM analysis, the time-series 

vector b(n) of BOLD activations of the ROIs is defined under 

the VAR process as

 
b A b e( ) ( ) ( ) ( ),n i n i n

i

p

= − − +
=

∑
1  

(3)

where p is the maximum number of past values considered 

for estimating the current vector, A(i) contains the estimated 

coefficients of ith delayed time samples, and residual vector 

e(n) in sample point n. In this VAR process, the causality from 

b
j
(n) (the time series of the corrected BOLD activations at 

voxel j) to b
k
(n) (the time series of the corrected BOLD acti-

vations at voxel k) is evaluated as follows. If e
k
(n) is increased 

by excluding b
j
(n), it implies that b

k
(n) Granger-causes b

j
(n). 

This can be tested by using the F test of the null hypothesis.

Based on our hypothesis that self-regulation learning leads 

to more efficient use of neuronal circuits, the areas having 

higher EVs in the last session could be regarded as part of 

a core network related to regulating activation of the insular 

cortex, and hence assessment of the connectivity of this 

network over time would allow us to understand the changes 

in the network during the learning. To this end, local maxima 

having the highest effect values were selected from the E-map 

of the last session of the group analysis.

Then, preprocessing steps (realignment, time reslicing, 

normalization, and smoothing) were performed. The time series 

of BOLD values from 27 voxels forming a cube of 3 × 3 × 3 

voxels, comprising the local maximum and 26 adjacent voxels, 

were obtained based on our observation that a single cluster 

may have multiple local maxima, each one of these maxima 

potentially showing different temporal dynamics. Given this, 

time series of a single voxel might not be robust against noise 

or other artifacts.

In the Granger connectivity analysis, the greater the num-

ber of samples the greater is the reliability of the results. 
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From this it follows that a small number of brain images from 

a session of a single participant do not allow the effective 

connectivity analysis with many selected ROIs. Therefore, 

in our analysis, rather than performing the connectivity analy-

sis in a single participant, data from a session of all the par-

ticipants were used together in the analysis. Although this 

approach might have limitation in the provision of strong 

evidences with statistical significance, it could nevertheless 

be an alternative method to overcome the problem of limited 

number of samples commonly available in fMRI time series.

To determine effective connectivity in the regulation peri-

ods, only signals corresponding to the regulation conditions 

from the group data were used in the analysis. To correct for 

intersubject variations in BOLD values, the mean value in 

each subject was subtracted, and then the data from each subject 

were concatenated to form a set of group data. The GC analysis 

was carried out by adopting the Causal Connectivity Toolbox23 

to work with fMRI signals. In the estimation process of A(i) 

in Equation (3), the end part of time courses of each regulation 

block was excluded in the right-hand side of Equation (3) to 

prevent parameter values to be wrongly estimated due to dis-

continuities between the concatenated regulation blocks. Con-

sider the time series b[1, . . ., n, . . ., N], where N is the number 

of samples. Let us assume that a discontinuity occurs at the 

index n, the discontinuity represented by b(n), where n is the 

start index of a new block. Let the model order be 2. In our 

analysis, we have not used b(n � 1) and b(n � 2) in the right-

hand side of this formula to estimate A(i) because b(n) needs 

b(n � 1) and b(n � 2), that is, b(n) 	 �A(1)b(n � 1) � A(2)b 
(n � 2) , and b(n � 1) needs b(n) and b(n � 1), that is, b(n � 1) 	 

�A(1)b(n) � A(2)b(n � 1). As the discontinuity occurs at n 

and parameter matrix A computed from the relation between 

b(n) and b(n � 1) would be wrong, we excluded such points, 

that is, b(n) 	 �A(1)b(n � 1) � A(2)b(n � 2) and b(n � 1) 	 

�A(1)b(n) � A(2)b(n � 1) , in the estimation of A.

To find the model order p in Equation (3), Bayesian informa-

tion criteria23,25 were used. After estimating the parameters, the 

F test was used to evaluate the connection strength between 

ROIs. To reveal changes in the temporal interactions among 

different brain areas due to feedback training, CD and ACS were 

computed for all the training sessions. For our analysis, CD and 

ACS should reflect the global trend of temporal dynamics at the 

system level. For this purpose, GCM is a more appropriate 

method than dynamical causal model28 or psychophysiologic 

interaction,29 as GCM can be used to analyze changes in the 

effective connectivity of multiple brain regions.23

The CD23 reflects the degree of interaction among the ROIs 

as defined by the following equation:

 
CD =

−
GC

N N2 1( )
,
 

(4)

where GC is the total number of significant causal connec-

tions observed and N the number the ROIs. In addition, to 

investigate the change of connection strength across sessions, 

the ACS in each causal network is newly defined as follows:

 
ACS = = ≠∑ log( )

,
, ,

F

GC

iji j i j

N

1

 
(5)

where F
ij
 is the F value corresponding to connection from 

ROI j to ROI i.

Results
SVM Classification

To investigate our hypotheses, we first evaluated whether SVM 

could consistently classify the fMRI signals between regulation 

and baseline conditions. Our analysis indicated that SVM could 

discriminate between regulation and baseline conditions in the 

feedback sessions (T[23] � 20.9, P 
 10�10) with an average 

accuracy of more than 80% in most of the cases, whereas the 

average accuracy of classification in the first session without 

feedback (T[5] � 3.4, P 
 .02) was lower than with feedback, 

indicating the importance of contingent feedback in success-

ful regulation of brain activity (see Figure 1). In addition, the 

high classification accuracies during the sessions with feed-

back represent that the E-maps from all the sessions are reli-

able for subsequent analysis and interpretation.

Cerebral Reorganization  
During Learning of Self-Regulation
Spatial interaction of brain activity. Spatial distribution of brain 

activity was investigated by applying EM in a group analysis 

by using fMRI signals from 6 participants as input to the pat-

tern classifier (see Figure 2). When Th � 0.2, Figure 2A and 

B show characteristics of the E-maps across sessions. Appli-

cation of the threshold to the first session (performed without 

feedback) resulted in smaller clusters of voxels with higher 

Figure 1. Classification accuracy of group data in the 6-fold 
cross validation (leave-one-subject-out approach; mean accuracy 
[%] � standard error of the mean [%])
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and intermediate EVs spread over the whole brain, suggesting 

the involvement of a large number of brain areas. However, 

application of the threshold in the feedback sessions resulted 

in focused activations in a few brain regions, indicating prob-

ably the gradual disengagement of unnecessary connections. 

Particularly, in session 5, the distribution is more focused 

and localized in comparatively fewer areas, such as the lingual 

gyrus, middle occipital gyrus, supplementary motor area, 

anterior cingulate, right anterior insula, putamen, and dorso-

lateral prefrontal cortex (see Figure 2A and Table 1). In com-

paring clusters composed of the discriminating voxels of 

each session, the number of clusters and the average of the 

minimum distances between clusters in all the sessions were 

computed. As the learning proceeds, the number of clusters 

decreases, and the average of the minimum distance between 

local maxima increases, indicating focused activation (see 

Figure 2B). In addition, the application of several thresholds 

shows more general characteristics of distribution of EVs 

across sessions. As the feedback training proceeds, more 

voxels acquire low EVs with a number of voxels keeping 

high EVs (see Figure 2C).

In addition, BOLD signal changes of areas having higher 

EVs in session 5, that is, right dorsolateral prefrontal cortex 

(DLPFC), left inferior frontal gyrus (IFG), right Putamen, and 

anterior cingulate cortex (ACC), were investigated in a further 

analysis (see Figure 3). In this analysis, the BOLD signals of 

the areas during the feedback sessions are higher than in the 

nonfeedback session. However, the signals gradually decrease 

with learning in the feedback sessions but are still higher in 

the last session than in the first session (no feedback session), 

suggesting “inverted-U curves” of BOLD signal control.

Temporal interaction in brain activity. To extend the evidence 

for the cerebral spatial distribution of brain activity, temporal 

interaction was also investigated. After selecting ROIs based 

on the aforementioned spatial analysis (see Table 1), temporal 

interactions between time series of BOLD signals in the ROIs 

were investigated using the multivariate Granger causality 

analysis from the estimation of vector autoregressive models.27 

Figure 2. Multivariate analyses of group data over training sessions. (A) E-maps in session 1 (without feedback), and sessions 2 and 5. 
E-maps are shown after applying a threshold given by the relation: EV (effect value) � 0.2E

max
 and EV � 0.2E

min
. Application of this threshold 

removes voxels that are not significantly important for regulation and retains those that are directly involved. In the functional maps, clusters 
with positive EVs (red) correspond to the positive support vector machine (SVM) weight values, whereas clusters with negative EVs (blue) 
correspond to the negative SVM weight values. When compared with sessions 1 and 2, the E(ffect)-map of session 5 shows more focused 
activations, indicating the effect of learning on functional reorganization of the brain. (B) From the aforementioned voxels selected in each 
session, mean values of minimum distances between local maxima and numbers of clusters are plotted. (C) Numbers of remaining voxels 
after thresholding EVs with EV � Th E

max
 and EV � Th E

min
 (Th � 0.1, 0.2, . . ., 0.7; eg, “A” and “B” are obtained with Th � 0.2) in all the 

sessions. This method shows the distributions of EVs across sessions. The E-maps of the 5 sessions have similar number of voxels having 
high EVs (eg, threshold � 0.5). Whereas the E-map from session 5 shows many voxels having low EVs, the E-map from session 1 shows many 
voxels having intermediate EVs. The E-maps from sessions 2, 3, and 4 show similar characteristics, but the number of the voxels having lower 
EVs increases gradually as the feedback training proceeds. This suggests that, as the feedback training proceeds, more voxels acquire low EVs 
(ie, voxels irrelevant to the task performance), indicating that fewer voxels are involved in the task
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To evaluate how temporal recruitment of brain regions in 

all sessions changes, the CD,23 a measure of the number of 

connections between selected ROIs in a functional network, 

was used after finding significant connections between the 

ROIs. The investigation was done with F test for the con-

nections between the ROIs (ie, the estimated model param-

eters) with P 
 .05 (see Figure 4A). Session 1 shows the 

lowest CD of the functional network. As the training proceeds 

with feedback, the causal density reaches a peak value in 

session 3 and decreases in sessions 4 and 5, indicating that 

the shape of temporal recruitment follows an “inverted-U” 

curve. After performing an F test for the connections between 

the ROIs with P 
 .0001, ACSs between connections during 

all the sessions were investigated (see Figure 4B). An inves-

tigation of ACSs between ROIs indicates that the strength 

of temporal recruitment in some ROIs increases monotoni-

cally from session to session.

Discussion
The performances in classification accuracy (see Figure 1) 

and BOLD signal activations in right anterior insula (paired 

samples T test between session 5 and session 1, t � 4.86, 

P 
 .005; see Figure 5) with and without contingent feedback 

confirmed that the participants were able to perform the given 

task successfully.

Table 1. Maxima and Minima in the Final Session in a Group Analysis

MNI Coordinates �

No. Region of (De)activation BA x y z EV

 1 Middle occipital gyrus L �17 �89 �5 �3.06
 2 Middle occipital gyrus R 26 �92 5 �2.67
 3 Lingual gyrus R 20 �86 �5 �2.61
 4 SMA R  6 3 7 60 2.39
 5 Middle occipital gyrus L �36 �86 �5 �2.27
 6 Anterior cingulate R (ACC) 7 17 40 1.99
 7 Insula R 47 33 17 0 1.97
 8 Precentral R (SMA)  6 46 �3 50 1.96
 9 Insula R 43 20 �5 1.91
10 Anterior cingulate R 32 7 26 25 1.59
11 Lentiform nucleus R (putamen R) 20 0 10 1.56
12 Anterior cingulate L �7 17 40 1.56
13 Precentral gyrus L (SMA) �50 �7 45 1.47
14 Putamen R 30 3 0 1.46
15 Precentral gyrus L  6 �40 �10 55 1.41
16 Inferior frontal gyrus L (IFG L) �56 13 0 1.35
17 Middle frontal gyrus R (DLPFC R) 46 33 40 20 1.32
18 Middle frontal gyrus L (DLPFC L)  6 �53 3 45 1.28
19 Middle temporal gyrus L �53 �73 20 1.28
20 Angular R 46 �50 25 �1.2
21 Pallidum R (putamen R) 20 3 �5 1.19
22 Precentral gyrus R 30 �26 65 �1.19
23 Superior temporal gyrus R (STG R) 22 66 �43 20 1.18

Abbreviations: ACC, anterior cingulate cortex; BA, Brodman area; DLPFC, dorsolateral prefrontal cortex; EV, effect value; MNI, Montreal Neurological 
Institute; SMA, supplementary motor area; STG, superior temporal gyrus.

Figure 3. Blood oxygen level dependent (BOLD) signal differences 
in selected brain regions in the first (nonfeedback) feedback sessions 
in right dorsolateral prefrontal cortex (DLPFC), right Putamen, left 
inferior frontal gyrus (IFG), anterior cingulate cortex (ACC) suggest 
“inverted-U” curves of activation patterns. Each bar shows mean 
difference (%) � standard error of the mean (%)
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From Figures 1 and 2A, one might argue that the visual 

activations could solely improve the classification during the 

feedback sessions compared with the nonfeedback sessions. 

However, higher classification in session 3 than in session 2 

clearly indicates that something more than just visual activa-

tion is helping increase the classification. Furthermore, there 

are other brain areas (see Figure 3) to show greater differences 

between regulation and baseline in the feedback sessions than 

in the nonfeedback session. In particular, since activations in 

the target area (insula) are significantly different in the feed-

back sessions compared with the nonfeedback sessions, the 

classification accuracy would reflect these differences.

In the multivariate spatial analysis with the E-mapping 

method, decrease of redundancy and more focused brain acti-

vation might indicate that training results in more economic 

use of brain resources during volitional regulation of the 

region. Since the aim of our multivariate spatial analysis is 

to show how the brain reorganizes across training sessions as 

a system rather than to identify the brain areas related to the 

task at a significant statistical level, we have decided to show 

the characteristics of spatial patterns over a broad range of 

thresholds. Figure 2C clearly shows that the number of voxels 

having lower EVs (ie, indicating probably voxels not so impor-

tant to the task) increases gradually as the training proceeds. 

In addition, due to the present limitations of the statistical 

significance tests (eg, difficulty to determine what level is the 

best to assess a given hypothesis), we believe that showing 

the spatial characteristics over a wide range of threshold values 

would be comprehensive and complete. The changes of BOLD 

signal difference of the selected regions (see Figure 3), par-

ticularly the BOLD signal increase in the early part of training 

and the decrease in the late part of training, would further 

support our hypothesis.

In the effective connectivity analysis, the CD and the ACS 

might indicate global trends of neural processing during learn-

ing. Since the formation and maintenance of neural activation 

and communication among multiple, distant brain areas in 

such a mental task requires blood and oxygen supply to the 

sites,30,31 denser networks might expend more energy. With 

more training in the presence of contingent feedback, par-

ticipants reported only 1 or 2 of the most effective imagery 

strategies that consistently affected the thermometer bars. 

This focusing of strategies to a few effective ones might 

explain the gradual reduction in the causal density of the 

functional network with the high levels of the average con-

nection strength. Even though our connectivity analysis could 

not provide any summary statistics in the group level due to 

limitation in the time samples of brain images, the general 

trends of both of CDs over sessions (see Figure 4A) and the 

BOLD signal changes in the multiple areas (see Figure 3) 

Figure 4. Functional interaction of brain regions in the group 
data. The analyses were done after F test for the connections 
between the regions of interest (ROIs) with P 
 .05 in (A) 
and P 
 .0001 in (B). (A) Causal density in all the sessions. 
(B) Average connection strength between connections. The 
causal density of the functional network decreases in session 
5 indicating substantial “pruning” (A) yet “strengthening” (B) of 
the connections between ROIs

Figure 5. Blood oxygen level dependent (BOLD) signal difference 
in right anterior insular cortex. BOLD signal differences in all the 
feedback sessions are higher than in the nonfeedback session. Each 
bar shows mean difference (%) � standard error of the mean (%)
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might be in line with previous research on skill learning, 

which tends to show evidence for an inverted-U-shaped learn-

ing curve due to reallocation of cognitive resources in lan-

guage expertise,32 motor skill learning,33 and attentional 

expertise in meditation.34

The self-regulation mainly involves the prefrontal cortex, 

especially the DLPFC, presumably responsible for retrieval 

of emotional memories35,36; the ACC, implicated in atten-

tional processing14; the right insula as a site for the meta-

representation of interoceptive signals37,38; the left IFG for 

verbalization of emotional episodes39; and the putamen, 

engaged in reinforcement learning and feedback/reward 

processing.40,41 The repeated appearance of SMA may indi-

cate motor response elements in the images.42-45 We hypoth-

esize that if the imagery of positive or negative emotions is 

effective (as seen in the last session of the feedback training), 

it may elicit activations in the SMA, indicating neural dis-

position toward action (eg, approach, withdrawal).

Our results provide supporting evidence for the “scaffold-

ing-storage” theory.15 In this framework, a set of supporting 

brain regions form a scaffold to manage a novel demand in 

unskilled performance. After sufficient practice, neural pro-

cesses are performed more efficiently, decreasing activation 

in the scaffolding regions but increasing activation in those 

areas underlying the critical task-specific processes. Based 

on this framework, in our study, right DLPFC, left IFG, right 

Putamen, and ACC increasing in BOLD activation levels 

(see Figure 3) during early feedback sessions and decreasing 

in later feedback sessions may represent the scaffolds. How-

ever, it is not entirely clear which areas and connections are 

directly involved in emotion processing per se and which are 

related to supporting elements in task learning.

To investigate the learning effects of rtfMRI feedback 

training, positive or negative imagery of emotion were used 

in the present study. A limitation of the current work is that 

different strategies to induce emotion were not systematically 

classified, and thus the indirect measure used here does not 

indicate to what extent different strategies affect the brain 

through practice.

Based on the fundamental assumption that the brain oper-

ates as a system where spatially distributed brain areas interact 

with one another, the present study provides evidence for 

brain reorganization at the system level in terms of transi-

tions in different measures of network connectivity. However, 

it is to be noted that the present study is a reanalysis of the 

previously collected data of self-regulation training.4 Con-

sequently, due to the limitations of the experimental design 

and analysis technique, and the absence of behavioral mea-

sures of learning, we could not completely establish the dif-

ferent stages of reorganization pertaining to different stages 

of learning. Nevertheless, we believe that the multivariate 

network measures proposed and demonstrated here, such as, 

changes in the spatial patterns of activity (including number 

of clusters, distance between local maxima, and number of 

voxels having lower EVs), causal density, and average causal 

strength, would be valuable in assessing and understanding 

cerebral reorganization at different stages of learning. We antici-

pate that future studies, specifically designed with this hypoth-

esis in mind, may be able to construct a universal index of 

cerebral reorganization during skill learning based on the mea-

surement of multiple criteria (changes of spatial patterns, causal 

density, causal strength, etc) in multiple types of skilled tasks.
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Abstract  
 

Growing evidence indicates the critical role of posterior parietal cortex (PPC) in coding 

movement intention. Recently, brain computer interfaces (BCIs) and neuroprosthetics 

have emerged as promising tools for rehabilitation of patients suffering from stroke and 

other movement disabilities.  The detection of brain activity related to movement 

intention could be used to activate neuroprostheses in patients with frontal lesions or with 

difficulties performing motor imagery. The present study examines whether a 

multivariate pattern classifier can decode movement intention and the type of movement, 

from PPC in an event related functional magnetic resonance (fMRI) paradigm. Univariate 

statistical analysis was first performed to ascertain the role of PPC in movement intention, 

and then a spatio-temporal support vector machine (SVM) was used to predict left vs. 

right hand movement intention. Our results show that movement intention can be 

detected by patterns of brain activations in the PPC, supplementary motor area (SMA) 

and premotor cortex (PMC) with above chance accuracy. Furthermore, high prediction 

accuracies could be obtained while discriminating between left and right hand movement 

intention and imagery. Our results indicate that movement intention and the type of 

movement could be decoded from the human fronto-parietal cortex, opening up the 

possibility for developing movement intention based prothetics.  
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Introduction 
Neuroprosthetic devices and Brain Computer Interfaces (BCIs) have recently emerged as 

potential tools for the treatment of motor disabilities (Birbaumer and Cohen, 2007; Buch 

et al., 2008; Wolpaw et al., 2002). Experiments have shown that it is possible to use brain 

signals to decode mental states to operate an external device. Majority of current 

approaches to developing neuroprosthetics in humans relay on the capability of the 

patients to perform motor imagery, despite the fact that motor imagery impairments have 

often been found after brain lesions (Gonzalez et al., 2005; Malouin et al., 2004; Sabate 

et al., 2007). Hence, it could be useful to decode movement information in the cognitive 

steps that precede motor execution or imagery.  It has been suggested that BCIs that 

detect “movement intention” and use this information to operate a neuro-prosthethic 

device could better benefit the rehabilitation of these patients (Andersen and Cui, 2009; 

Mulliken et al., 2008; Musallam et al., 2004). Movement intention is a high-level 

cognitive function needed for early movement planning that can specify both the type of 

movement and the target for that movement (Andersen and Buneo, 2002). The use of 

brain activations during movement intention for neuro-prosthetics could have a temporal 

advantage due to the fact that the prosthetic device would receive a decoded signal before 

the performance of motor execution or motor imagery.  
    Evidence has been accumulating in the last years about the role of parietal cortex in 

action planning. Several studies in primates have shown that the posterior parietal cortex 

(PPC) contains anatomically segregated regions, i.e. “intentional maps” that code for the 

planning of different movements (Andersen and Buneo, 2002; Fogassi et al., 2005; 

Mazzoni et al., 1996; Quian Quiroga et al., 2006; Sakata et al., 1995; Snyder et al., 1997, 

2000). Neuroimaging and lesion studies in humans have also shown the involvement of 

fronto-parietal areas in motor intention and awareness (Berti et al., 2005; Haggard, 2005, 

2008; Lau et al., 2004; Sirigu et al., 2004). In this sense, a recent study in brain tumour 

patients demonstrated that electrical stimulation of the inferior parietal cortex (IPC) 

causes a strong intention and desire to move, while higher intensities of stimulation in 

this area led to illusory movement awareness, thus providing insight that both motor 

intention and motor awareness emerge from activations of parietal regions, before motor 

execution (Desmurget et al., 2009). 
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   Therefore, if a multivariate pattern classifier could be developed to detect movement 

intention and the type of movement from signals originating in PPC, such a system would 

be beneficial for rehabilitation of patients with movement disabilities. This study would 

furthermore point to an alternative region for operating neuroprosthetics, away from 

sensorimotor areas, which are often damaged in patients suffering from motor disability.   

   It has been pointed out (Haynes et al., 2007) that multivariate approaches are more 

sensitive in decoding brain states as they integrate spatial and temporal information from 

different regions of the brain, in contrast to univariate statistical parametric mapping 

(SPM) which analyses each brain location in isolation. Multivariate pattern classification 

of neuroimaging data is establishing itself as a powerful approach for decoding cognitive, 

affective and perceptual states, represented by the following recent studies: neural 

antecedents of voluntary movement (Soon et al., 2008), unconsciously perceived sensory 

stimuli (Haynes and Rees, 2006; Haynes et al., 2007), visual processing (Kamitani and 

Tong, 2005), information-based mapping (Kriegeskorte et al., 2006), memory recall 

(Polyn et al., 2005), detection of deception (Davatzikos et al., 2005) and emotion 

perception (Pessoa and Padmala, 2005). 

   In the present study, we hypothesised that different patterns of blood-oxygen-level 

dependent (BOLD) activations in PPC will be elicited by movement intention and that 

these different activations will be specific for the type of movement to be performed (left 

vs. right hand/arm). We further hypothesised that a multivariate pattern classifier could 

be used to decode movement intention and the type of movement based on the BOLD 

activity of PPC. Towards this end, we used an event-related fMRI paradigm in which 

movement intention is elicited in participants by informing them about the upcoming 

kinaesthetic motor imagery that they have to perform (left or right hand/arm), but 

explicitly instructing them to suppress the execution of imagery until indicated. This 

movement suppression paradigm requires participants to withhold an intended movement 

imagery, knowing the upcoming direction of movement. We also extended the analysis of 

multivariate classification to motor imagery in order to explore if it is possible to decode 

kinaesthetic imagery from PPC. Finally, we also compared the prediction accuracy of the 

multivariate pattern classifier for decoding movement intention and motor imagery 

between PPC, and other areas involved in motor planning and execution, namely 
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supplementary motor area (SMA), premotor cortex (PMC) and primary motor cortex 

(M1). 

   To investigate if differential patterns of activation are elicited for movement intention 

and motor imagery for left or right hand/arm, first we performed the traditional univariate 

SPM analysis, and to later demonstrate that such patterns could reliably be predicted 

using classification algorithms, we employed a spatio-temporal support vector machine 

(SVM). 

 

Materials and Methods 
Participants  

Ten healthy participants (5 males/5 females, age range 21-26 years) were recruited. They 

were right handed as assessed by the Edinburgh Handedness Inventory (Oldfield, 1971) 

and emmetropic. All participants gave informed consent to participate in the study that 

has been approved by the local ethics committee of the Faculty of Medicine of the 

University of Tübingen. 

 

FMRI data acquisition 

Experiments were conducted using a 3-Tesla MR Trio system (Siemens, Erlangen, 

Germany) with a standard 12 channel head coil. Functional image acquisition spanned 

the whole brain with 16 slices (voxel size=3.3×3.3×5.0 mm3, slice gap=1 mm). Slices 

were AC/PC aligned in axial orientation. A standard echo-planar imaging (EPI) sequence 

was used (TR=1.5 seconds, matrix size=64×64, effective echo time TE=30 ms, flip angle 

α=70°, bandwidth=1.954 kHz/pixel). For superposition of functional maps upon brain 

anatomy a high-resolution T1-weighted structural scan of the whole brain was collected 

from each participant (MPRAGE, matrix size=256×256, 160 partitions, 1 mm3 isotropic 

voxels, TR=2300 ms, TE=3.93 ms, TI=1100 ms, α=8°). In order to reduce movements 

two foam cushions immobilized the participant’s head. Participants were instructed not to 

move, to remain relaxed and breathe regularly to avoid potential BOLD artefacts due to 

changes in the vasculature irrelevant to the task. 

 

Experimental protocol 
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During the scanning sessions, the experimental protocol was visually presented to the 

participants by a mirror attached to the head-coil and using the Presentation software 

(Neurobehavioral Systems, Inc., CA, USA). The protocol consisted in an event-related 

design of successive runs composed of fixation, movement intention and imagery blocks, 

in that order, with varying fixation durations (see Fig. 1). Fixation block durations were 

pseudo-randomized to integral multiples of 1 TR (1.5 seconds), between 1 and 5 TR. 

Movement intention blocks of 1 TR were presented with an arrow (left or right) 

indicating the side of the forthcoming motor imagery. Participants were explicitly 

instructed not to imagine yet but to wait until the symbol indicating the onset of the 

imagery appeared on the screen. For the 4.5 seconds long imagery blocks participants 

were told to perform kinaesthetic motor imagery of hand/arm movement. The movement 

that had to be imagined incorporated a sequence of three sub-movements: reaching an 

imagery tool placed about 10 centimetres in front of the hand, grabbing it, and flexing the 

arm lifting the imagined object towards the ipsilateral shoulder. This sequence of 

movements was used because it has been shown that complex imagined movements 

produce stronger brain activations (Lotze et al., 1999; Wolbers et al., 2003). Participants 

mentally conducted these movements with right or left hand/arm.  Prior to scanning, 

participants underwent an initial training task on the patient table of the scanner in the 

same position as during the experiment. The training consisted of a few trials of actual 

movement execution with each hand/arm to facilitate and to enhance the vividness of 

subsequent imagery (Thyrion and Roll, 2009)  

 

 [Fig.1 about here] 

 

  During the scanning, participants were instructed to keep their gaze steady at the center 

of the screen where the visual stimuli were presented. Stimuli were adjusted in visual 

attributes (color, size, general shape).  For each participant four scanning sessions were 

conducted with each session being identical in its paradigm. One session consisted of 20 

runs of fixation, movement intention, and imagery blocks, for each hand/arm, resulting in 

40 trials in total. Left and right hand/arm trials were pseudo-randomized. Participants 

familiarized themselves with the protocol before the beginning of the scanning session. 
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Off-line data analysis 

fMRI data analysis was performed using statistical parametric mapping 5 (SPM5) 

(http://www.fil.ion.ucl.ac.uk/spm/software/spm5/, Wellcome Department of Imaging 

Neuroscience) running on Matlab (MathWorks, Inc., Natick, MA). For spatial 

preprocessing and data analysis each of the four time-series per participant were 

realigned and resliced (3x3x3 mm) after unwarping in phase encoding direction 

(anterior/posterior) to account for magnetic susceptibility artefacts. The anatomical 

images were corrected for intensity inhomogenities and then normalized to MNI space. A 

segmentation into white and gray matter was performed. The echoplanar images were 

then coregistered with the anatomical images. To achieve this, the mean of the realigned 

functional images was taken as a reference image. Finally, the realigned functional 

images were spatially normalized to the Montreal Neurological Institute (MNI) template. 

The resulting images were smoothed with an 8 mm (full width at half maximum 

(FWHM)) Gaussian filter.  FMRI data were high-pass filtered (cut off period 128 

seconds). For each individual participant, a general linear model (GLM) was applied to 

the time-course of each voxel (Worsley and Friston, 1995). The movement parameters 

estimated during the realignment procedure were introduced as covariates of no-interest 

into the general linear model.   

 

Support Vector Classification  

Preprocessing was performed with SPM5, and classification was performed using 

MATLAB (The Mathworks, Natick, MA) scripts. 

   To evaluate decoding accuracy from data of specific brain areas, brain masks of PPC, 

SMA, PMC, and M1 were created with WFU PickAtlas Toolbox. The masks were 

created by using Brodmann area (BA) as follows: BA 5 + 7 + 39 + 40 for PPC, mesial 

part of BA 6 for SMA, the remaining part of BA 6 for PMC, and BA 4 for M1. 

Particularly, for separation of the mask of the PMC from the mask of BA6, the mask of 

the SMA (in the aal labels of WFU PickAtlas Toolbox) was subtracted from that of BA6.  

   Input vectors containing BOLD activations in the masks for SVM training were 

prepared in the following manner. For intention and imagery conditions, BOLD values 
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from each individual brain area (PPC, SMA, PMC, and M1) of each single scan were 

collected into the input vector. For the fixation condition, BOLD values from each 

individual brain area were collected into an input vector as a mean scan of all the scans. 

In our investigation, the input vectors were derived from normalized MNI space without 

spatial and temporal smoothing. To classify the data between various conditions namely, 

intention (including left and right) vs. fixation, and left vs. right (i.e., left and right 

fixations, left and right intentions, and left and right imageries) across time points, SVM 

(linear SVM with the regularization parameter C=1, based on libSVM 

(http://www.csie.ntu.edu.tw/wcjlin/libsvm)) was implemented. The fixation condition 

was artificially split into two separated conditions, i.e., left and right fixation, for the 

convenience of analysis. The design labels of the SVM classifier are defined, in general, 

as follows: input vectors from the condition A and B were taken as 1 and -1, respectively. 

The classification performance from data was evaluated through 4-fold cross validation 

(CV) (Hastie et al., 2001). In each fold, data of 3 sessions were used to train an SVM 

classifier, and then the data of 1 remaining session were used to test the classifier.   

    The pattern analysis accounted for the delay in the homodynamic response with 

respect to the stimulus onset by introducing an equivalent delay in the input data set. This 

was achieved by right-shifting the design labels by a factor of 3 TR (4.5 s) and by 

incorporating and additional 4.5 s of subsequent activation values at all the selected 

voxels. 

 

Multivariate spatial analysis with Effect map 

Based on the parameters of the trained SVM model, we analyzed the fMRI data with the 

Effect Mapping (EM) (Lee et al., in press). To identify informative voxels from the SVM 

model, the EM measures the effect of each voxel in multi-voxel space to the SVM output 

by considering two factors, namely, the input vectors and the weight vector; 

0wy T += xw , where y  is the SVM output, w is the weight vector, and x  the input 

vector which determine the SVM output. The effect of each voxel on the classifier output 

is measured by computing normalized Mutual Information (NMI) between the voxel and 

the SVM output.   
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MI is defined as the amount of information that one random variable contains about 

another random variable (Cover and Thomas, 1991). That is, when two random variables 

X and Y occur with a joint probability mass function ),( yxp  and marginal probability 

function )(xp  and )(yp , the entropies of the two random variables and the joint 

probability are given respectively by: 

∑∑

∑∑

∈ ∈

∈∈

−=

−=−=

Xx Yy

YyXx

yxpyxpYXHand

ypypYHxpxpXH

),(log),(),(

,)(log)()(,)(log)()(

    (1) 

MI, );( YXI , is the relative entropy between the joint distribution and the product 

distribution, i.e., 

),()()();( YXHYHXHYXI −+=   (2) 

To correct for variance of mutual information based on entropies )(XH  and )(YH , 

normalized mutual information is defined as (Maes et al., 1997): 

)()(
);();(~

YHXH
YXIYXI

+
=

 (3) 

Hence, the effect value (EV) kE  of a voxel k is defined as: 

);(~ yxIwE kkk = , Mk ,,1L=  (M: number of voxels)  (4) 

where y  is the SVM output after excluding the sign function, kw  and kx  are the SVM 

weight value and activation in voxel k, respectively.  

   After normalizing the absolute value of kE  from Eq. (4), we obtain the relation: 

( ),)(/1log)sgn( EstdEEnE kkk +=  Mk ,,1L=   (5) 

where sgn(.) is a sign function, and )( Estd  is the standard deviation of all kE . In the 

present study, Eq. (5) ( knE ) was used to compute the EV at each voxel to make E(ffect)-

maps from different subjects and fold of CV be comparable. 

    With different contrasts, i.e., intention vs. fixation, and left vs. right over time points 

(left and right fixations, left and right intentions, and left and right imaginations), E-maps 

were separately obtained from data taken together from all the 4 areas, (i.e.,  PPC, PMC, 
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SMA, and M1) of the participants. The E-maps from a contrast for 4-fold CV of all 

subjects (i.e., 40 E-maps; 4 E-maps from 4-fold CV and 10 participants) were averaged 

into an E-map for a group analysis, and then the averaged map was smoothed spatially 

with 5 mm Fixed Width Half Maximum (FWHM) to minimize distortion of the map for 

ease of interpretation. In the interpretation of the E-map, positive and negative EVs were 

related the design labels, 1 and -1, of the SVM classifier, respectively. That is, if the 

design labels of two conditions are exchanged, the sign of EVs are also reversed.  

 

Results 
Univariate analysis 

First, we investigated the brain activations elicited during movement intention. A group 

level analysis showed that movement intention elicited high activations in SMA and IPC 

(angular gyrus and supramarginal gyrus) for both left and right hand/arm (see Table 1) 

 

 [Table1 about here] 

 

A subtraction analysis performed to check whether differential activation patterns for left 

and right hand/arm movement intention are statistically significant revealed a 

lateralization effect for fronto - parietal areas (see Fig. 2).  

 

[Fig. 2 about here] 

 

Multivariate Analysis 

Classification accuracies between intention and fixation were assessed to check whether 

movement intention for left and right hand/arm can be discriminated from fixation. The 

analysis was performed separately with and without the hemodynamic delay. Even 

without the inclusion of the hemodynamic delay, the decoding accuracies in all the areas 

(PPC, SMA, PMC, and M1) were greater than 50% (see Fig. 3A). In addition, E-maps in 

the 2 time points, namely at zero delay and at 3 scan delay, showed clear difference in 

activation patterns of the SMA. The E-map without hemodynamic delay shows negative 
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EVs in SMA, while the E-map with hemodynamic delay showed positive EVs in this 

area (see Fig. 3B). 

[Fig.3  about here] 

To reveal whether functional activation patterns between left and right conditions in 

the 4 areas can be discriminated, decoding accuracies of the 4 areas across time points 

were evaluated. In this analysis, decoding accuracies increased across time points after 

the onset time of motor imagery (see Fig. 4A). With consideration of the 

hemodynamic lag (4.5s; 3 TR), decoding classification accuracy at onset time of 

intention (T4) is greater than chance level for all regions of interest. In addition, the 

PPC, PMC and SMA show higher accuracies than M1 during movement intention and 

imagery. 

[Fig.4  about here] 

 

Discussion 
The main aim of this study was to examine whether a multivariate pattern classifier 

can be used to decode movement intention from the human PPC. In order to elicit a 

repeatable movement intention, we designed a paradigm in which participants were 

required to suppress movement, with the knowledge of the movement direction, and 

the knowledge that they will be required to move in a short while. Univariate 

methodology was used to visualize brain activations elicited by movement intention. 

Supporting our hypothesis, SPM analysis showed that PPC (particularly inferior 

parietal lobule) was highly activated prior to the execution of motor imagery, 

indicating involvement of this area in movement intention. The importance of PPC in 

movement has also been emphasised by several studies performed in the last years that 

have suggested that PPC acts as “sensorimotor interface”, converting sensory 

information into motor commands (“inverse transformation model”) and integrating 

sensory input with previous and ongoing motor commands (“forward model”), thus 

playing a crucial role in movement planning, online movement, and maybe future 

movement plans (for a review see: (Buneo and Andersen, 2006). 
   SMA was also highly activated during movement intention blocks. This pattern of 

activation is concordant with electrophysiological and neuroimaging studies that have 
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shown the involvement of SMA (and pre-SMA) in overt movement preparation 

(Deiber et al., 1996; Michelon et al., 2006; Simon et al., 2002) and in motor imagery 

preparation (Caldara et al., 2004; Cunnington et al., 2005; Jankelowitz and Colebatch, 

2002). The above studies supported the idea that both motor execution and motor 

imagery involve similar pre-movement brain processes and that SMA codes motor 

information for the “readiness for movement”, for overt or covert execution 

(Cunnington et al., 2005). Furthermore, electrical stimulation of this area can elicit an 

“urge to move”, without overt motor activity (Fried et al., 1991). Hence, it has been 

proposed that SMA could also play a direct role in motor intention (Haggard, 2005, 

2008; Lau et al., 2004). 

   Our results also showed that movement intention is lateralized in the PPC and SMA, 

pointing to the potential value of movement intention decoding for BCI and neuro-

prosthetics.  

   Two main analyses were performed with the multivariate method. First, we 

examined whether it was possible to discriminate movement intention vs. fixation. For 

all four target areas (PPC, SMA, PMC and M1) prediction accuracies were above 

chance level. As we expected for the role of PPC in movement intention, this area had 

especially higher prediction values, although much variation was seen among subjects. 

The high prediction accuracy obtained for movement intention for PMC is congruent 

with its documented role in motor preparation and planning (for reviews see: (Abe and 

Hanakawa, 2009; Hoshi and Tanji, 2004, 2007). The fact that this finding was not 

reflected as PMC activations in univariate analysis, points to SVM's ability to pickup 

discriminating voxels which SPM misses.  

    If the hemodynamic delay is considered, the prediction accuracy for the 

discrimination between intention to move vs. fixation in the target areas improves, 

reaching values in the range 75- 85% for PPC, PMC and SMA. The significance of 

including the hemodynamic delay is reflected best in the classification performance 

and discriminating voxels in the SMA. When no hemodynamic delay is applied (zero 

delay), SMA shows a prominent deactivation (see Fig. 3b), barely detecting the 

intention condition. However, as the delay is gradually increased to 3 TR, SMA shows 

an increasing activation, and improved discrimination for the intention condition.  
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    The different results obtained with and without the application of the hemodynamic 

delay can have important implications for BCI classification. The values reported for 

prediction accuracy even without adjusting for the sluggish BOLD response were 

above chance, showing that an online BCI or a prosthetic based on movement 

intention can be feasible. However, according to our results, the multivariate pattern 

classifier can only decode with higher accuracies if the classifier is remodelled in 

consideration of the delay. A BCI based on electrical brain activity, measured by 

electroencephalography (EEG), magnetoencephaolography (MEG), 

electrocorticograph (EcoG) or implanted electrodes, which are not affected by the 

hemodynamic delay but has adequate resolution to extract signals from PPC or SMA, 

may overcome the above limitations and hence could be more suitable for clinical 

applications. 

    The second aspect examined by SVM analysis was whether the multivariate 

classifier can discriminate between right and left hand/arm movement intention. In 

general, the mean prediction accuracy of PPC showed above chance values across 

different time points. With the incorporation of the hemodynamic delay, and 

considering T4 as the onset of movement intention, prediction accuracy for left and 

right movement intention improves for all target areas reaching a range of 70-80% in 

PPC. Also, after incorporating the hemodynamic delay, high classification accuracy 

values (> 70%) for left and right hand/arm motor imagery was seen for PPC, SMA and 

PMC. This observation is again congruent with the prior literature that has shown that 

premotor regions and PPC are actively involved in motor imagery (Fleming et al., 

2009; Gerardin et al., 2000; Hanakawa et al., 2003; Lotze et al., 1999).  

   Another aspect to consider is that for both movement intention vs. fixation and left 

vs. right movement intention/imagery classification, a general tendency of higher 

prediction accuracies for PPC, PMC and SMA compared to that for M1 was found 

across almost every time point. These findings are concordant with the idea that 

premotor and parietal regions play a predominant role in different aspects of action 

planning (Andersen and Cui, 2009; Hanakawa et al., 2008) and with the observation 

that primary motor cortex is inconsistently activated during motor imagery, and 
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usually in a lower degree than during motor execution (Dechent et al., 2004; Gerardin 

et al., 2000; Hanakawa et al., 2008), and for a review see:(Munzert et al., 2009). 

   Our work has limitations. Although participants were explicitly instructed at the 

beginning of each new run of the experiment protocol that they should avoid 

movement or imagery during the intention block, we could not ascertain weather they 

followed the instructions by any physiological measurement, such as 

electromyography (EMG). With regard to the inclusion of hemodynamic delay in our 

multivariate analysis, we applied a fixed value of the delay for the different brain areas 

that were investigated, although recent evidence suggests that the hemodynamic delay 

may not have the same properties across different regions of the brain (Logothetis, 

2008). The brain masks for PPC, SMA, PMC and M1 were generated from an 

anatomical template and were not derived from subject specific activations, i.e., by a 

functional localizer. The unspecific nature of these masks could have adversely 

affected the decoding performance to some extent. 

      What implications do these findings have for BCI and motor rehabilitation? 

Our study has shown that it is possible to decode movement intention and the type of 

movement with high prediction accuracy from PPC and premotor regions involved in 

motor planning. As movement intention occurs before motor execution and motor 

imagery, our results show that it is feasible to use signals from these areas in 

anticipation of motor imagery. In patients with frontal lesions or with difficulties to 

perform motor imagery, decoding movement intention from PPC can have practical 

benefits. If a paradigm similar to the one used here is implemented, a portable BCI 

based on EEG or near infrared spectroscopy (NIRS) (Birbaumer, 2006; Sitaram et al., 

2007) could be built to operate a neuro-prosthetic device as an “intention BCI”. 
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Figure Legends 
Fig. 1. Stimulus presentation paradigm. The paradigm consisted of a fixation block 

varying in length between 1 and 5 TR (pseudo-randomized) followed by randomized 

right or left hand/arm movement intention block and kinaesthetic motor imagery. During 

the onset of the movement intention block, the participants received an indication of the 

chosen side for the forthcoming imagery. Movement intention and imagery durations 

were fixed with 1.5 and 4.5 seconds respectively. 

 

Fig. 2. Movement intention lateralization. Areas more activated for the contrast left > 

right movement intention included activations in right SMA (MNI coordinates: 15,-23, 

66; t = 11.47), right inferior parietal lobule (MNI coordinates: 34,-45,46;  t = 9.01), and 

right superior parietal lobule (MNI coordinates: 26,-60,55; t = 8.67).  For the contrast 

right > left movement intention the highest activations included left primary motor cortex 

(MNI coordinates: -26,-29,61; t = 9.75), left rolandic operculum (MNI coordinates: -44,-

22,11; t = 7.84), and left superior parietal lobule (MNI coordinates: -28,-58,52; t = 7.81). 

Results are depicted on a standard brain (sagittal view; left column depicting the right 

hemisphere; right column depicting the left hemisphere). Subtraction analysis was 

performed on the group level using data acquired via second-level random effects 

analysis, P < 0.001, uncorrected. Colour bar represents t-values. 

 

Fig. 3. Decoding accuracy of fixation vs. movement intention in 4 brain areas (PPC, 

SMA, PMC, M1) and the corresponding E(ffect)-maps. (A) Classification accuracy over 

10 participants (% mean accuracy ± % standard deviation). The classification accuracy 

was computed from 40 classification accuracies (i.e., 4-fold CV X 10 participants). The 

figure shows two decoding accuracies: without consideration of hemodynamic delay (i.e., 

at the onset of stimulus) and with consideration of hemodynamic response (i.e., 3 scan 

delay (4.5s)). (B) E-maps corresponding to the decoding accuracies with hemodynamic 

delay of 0 and 3 scans. In the computation of the E-maps, design labels of the intention 

and fixation for a SVM classifier are given as 1 and -1, respectively. E-maps are drawn 

by selecting 10% of voxels having the highest EV. For the purpose of display, positive 

and negative EVs are coded into red and blue color. 
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Fig. 4. Decoding accuracy of condition left vs. right hand/arm in the specified brain area 

across all conditions (intention and imagery) and the corresponding E-maps. (A) 

Classification accuracy over 10 participants across conditions (% mean accuracy ± % 

standard deviation). The mean accuracy and standard deviation were computed from 40 

classification accuracies (i.e., 4-fold CV X 10 participants). At the point T0, classification 

accuracy is calculated from data obtained from left and right fixation. T1 and T2 indicate 

the onset of intention and imagery conditions. T4 (red broken line) and T5 (blue broken 

line) represent the onsets of intention and imagery conditions, respectively, in the 

presence of hemodynamic delay. (B) E-map in T5. This map shows 6 horizontal slices at 

spatial interval of 6 mm obtained from the 4 areas (i.e., PPC, SMA, PMC, and M1) in 

MNI space. In computation of the E-maps, design labels of the left and right hand/arm for 

a SVM classifier are assigned as 1 and -1, respectively. After selecting top 20% of voxels 

having the highest EV, the E-maps are drawn for the purpose of display. Positive and 

negative EVs are shown as into red and blue colored pixels.  
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An important question that confronts current research in affective neuroscience as well as in the treatment of
emotional disorders is whether it is possible to determine the emotional state of a person based on the
measurement of brain activity alone. Here, we first show that an online support vector machine (SVM) can
be built to recognize two discrete emotional states, such as happiness and disgust from fMRI signals, in
healthy individuals instructed to recall emotionally salient episodes from their lives. We report the first
application of real-time head motion correction, spatial smoothing and feature selection based on a new
method called Effect mapping. The classifier also showed robust prediction rates in decoding three discrete
emotional states (happiness, disgust and sadness) in an extended group of participants. Subjective reports
ascertained that participants performed emotion imagery and that the online classifier decoded emotions
and not arbitrary states of the brain. Offline whole brain classification as well as region-of-interest
classification in 24 brain areas previously implicated in emotion processing revealed that the frontal cortex
was critically involved in emotion induction by imagery. We also demonstrate an fMRI-BCI based on real-
time classification of BOLD signals from multiple brain regions, for each repetition time (TR) of scanning,
providing visual feedback of emotional states to the participant for potential applications in the clinical
treatment of dysfunctional affect.

© 2010 Elsevier Inc. All rights reserved.

Introduction

Prediction of emotional states from brain activity constitutes a
major scope of affective neuroscience and would solve several
pressing clinical problems such as the assessment of affect in verbally
incompetent people with dementia, minimally conscious state and
locked-in-syndrome, and the detection of deception. Recent advances
in multivariate pattern classification of functional magnetic resonance
imaging (fMRI) signals are especially important due to the high spatial
resolution, whole brain coverage and non-invasiveness of fMRI. It has
been pointed out (Haynes and Rees, 2006) that multivariate
approaches are more sensitive in decoding brain states as they
integrate spatial and temporal information from different regions of
the brain, in contrast to univariate statistical parametric mapping
(SPM) which analyses each brain location in isolation.

Studies on pattern classification of fMRI signals can be grouped into
three major themes. Firstly, a number of methodological studies aimed
to incorporate and adapt the existing methods in the field of machine
learning to the classification of fMRI signals (LaConte et al., 2003, 2005;
Martinez-Ramon et al., 2006; Shaw et al., 2003; Strother et al., 2004).
LaConte and colleagues examined the classification of block-design fMRI
data using linear discriminant analysis (LDA) (LaConte et al., 2003) and
support vector machines (SVM) (LaConte et al., 2005) in contrast to
canonical variates analysis (CVA). Mourao-Miranda and colleagues
(2005) compared SVM and the Fisher linear discriminant (FLD)
classifier and demonstrated that SVM outperforms FLD in prediction
accuracy aswell as in robustness of the spatialmaps obtained. Shawand
colleagues (2003) showed that preprocessing strategies such as spatial
and temporal smoothing and classification parameters could be derived
in a subject-specific manner to result in optimal prediction. Martinez-
Ramon and colleagues (2006) later developed an approach for multi-
class classification by segmenting partially normalized activation maps
into functional areas using a neuroanatomical atlas, classified each area
separately with local classifiers, and finally performed a weighted
aggregation of the multiclass outputs.
A second topic of research pertains to the application of pattern

classification for obtaining greater insight into spatial and temporal
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patterns of brain activity during cognitive, affective and perceptual
states, represented by the following recent studies: neural antecedents
of voluntary movement (Soon et al., 2008), visual processing (Kamitani
and Tong, 2005), memory recall (Polyn et al., 2005), detection of
deception (Davatzikos et al., 2005) and emotion perception (Pessoa and
Padmala, 2005).
A third class of studies in pattern classification of brain signals, to

which thepresentwork belongs, is related to the rapidly advancingfield
of brain–computer interfaces (BCIs) and neurorehabilitation. A series of
studies (Caria et al., 2006; deCharmset al., 2004, 2005; Posse et al., 2003;
Rota et al., 2006; Sitaram et al., 2005; Veit et al., 2006; Weiskopf et al.,
2003, 2004; Yoo et al., 2004; Yoo and Jolesz, 2002) with fMRI-BCIs
demonstrated that healthy individuals as well as patients can learn
voluntary regulation of localized brain regions and presented evidence
for behaviouralmodifications that accompany self-regulation training. If
the neurobiological basis of a disorder is known in terms of abnormal
activity in certain regions of the brain, fMRI-BCI can be potentially
targeted to modify activity in those regions with high specificity for
treatment. However, a disadvantage of the existing fMRI-BCIs is in the
restriction to one single region of interest (ROI) for extracting signals
and providing feedback of activation to the participant. A major
argument for moving away from deriving feedback signals from single
ROIs is that perceptual, cognitive or emotional states generally recruit a
distributed network of brain regions rather than single locations.
Training subjects to merely increase or decrease BOLD signals in single
ROIs may not completely model the network dynamics of the target
brain state. Applyingmultivariate pattern classification presents itself as
a potential solution to this problem as it does not make prior
assumptions about functional localization and cognitive strategy.
However, due to the limited computational time and resources available
during online decoding, much of the offline classification methods
developed so far might not be directly applicable to real-time fMRI.
LaConte and colleagues (2007) reported the first real-time fMRI system
with multivariate classification. Using SVM, the authors showed the
feasibility of online decoding and feedback from single (repetition time,
TR) fMRI data during block-design left- and right-hand motor imagery
and further demonstrated the classifier's ability todecode other formsof
cognitive and emotional states. The present study is in line with the
above work and extends by demonstrating robust online classification
and feedback of multiple emotional states.
fMRI-BCI is a promising tool for affective neuroscience and has

shown potential for neurorehabilition to alleviate emotional disorders
such as anxiety, sociopathy, chronic pain and schizophrenia and brain
communication in the locked-in syndrome (Caria et al., 2007;
deCharms et al., 2005; Rota et al., 2008; Ruiz et al., 2008). However,
Phan et al. (2002) in a meta-analysis indicated that emotions such as
happiness, sadness, fear, anger and disgust activate networks of
several brain regions such as insula, amygdala, hippocampus,
thalamus, medial and lateral prefrontal cortex, orbitofrontal cortex
and anterior and posterior cingulate. In consideration of the above
evidence and the limitations of single ROI feedback, we intended to
implement a high performance real-time SVM classifier that could
decode as well as provide feedback of emotional states of the brain
from fMRI signals. It would be beneficial if the classifier could learn to
generalize across intra-subject variations of emotion regulation.
The purpose of the present study is to demonstrate that multiple

discrete emotional states (e.g., happy, disgust and sad) could be
classified and the information could be fed back to the participant in
real time. We first demonstrate two-class classification between happy
anddisgust emotions as these twoemotions are quite distinct fromeach
other in emotional valence. Further, these emotions are interesting from
the point of view of clinical applications—namely, rehabilitation in
patients with dysfunctional affect. A novelty of the present work is the
demonstration of the generalization of classification by training the
classifier on one type of imagery or scenario and testing it on another
type of imagery. In other words, we show that the classifier is able to

distinguish between two different imageries, e.g., winning a lottery and
playing with a pet, as the same emotion, i.e., happy.
However, performing two-class (happy vs. disgust) classification

alone may raise the question whether the classification is between
positive and negative emotions in general, or whether specific
discrete emotions could indeed be classified. To answer this question,
we further aimed to demonstrate multiclass classification of 3 discrete
emotional states, namely, happy, disgust and sad. We chose sad as the
third emotion to show that the classifier can distinguish between two
emotions that are similar in valence (e.g., negative), namely, disgust
and sad.
We first demonstrate in 12 healthy volunteers, a high performance,

real-time, two-class prediction of positive (happy) and negative
(disgust) emotions and visual feedback of the predicted brain states
for each TR. We show that robust classification performance could be
obtained even with limited computational time by the application of
preprocessing (realignment, detrending and spatial smoothing) and a
method of feature selection called Effect mapping. Our previous work
(Lee et al., 2010) has already reported results of rigorous comparisons
between the Effect mappingmethod and some of the existingmethods,
showing clearly that the Effect mapping method fares better in
classification performance.
Further to the two-class classification, we illustrate for the first

time a multiclass (happiness, disgust and sadness) prediction and
neurofeedback on 4 more healthy volunteers. To test whether
classifier-based feedback training can help participants to improve
emotion regulation, we trained two additional healthy participants for
three sessions of feedback training. Finally, to obtain greater insight
into the brain regions activated in emotion imagery and regulation,
we carried out the following offline analyses: (1) SVM classification
and Effect mapping of whole brain fMRI signals and (2) ROI
classification of fMRI signals extracted from 24 brain regions
previously implicated in emotion imagery and regulation.

Methods

Our aim was to develop a system that could train a classification
model based on an initial set of fMRI data and brain state labels
determined by the experimental protocol (training data set),
thereafter to use the classification model to predict brain states
from every volume of brain images (at the end of each repetition time,
TR) that are acquired from the scanner, and to subsequently update
the visual feedback based on the classifier's prediction.

Real-time Implementation

The real-time brain state classification system (Fig. 1) comprises of
the following subsystems: (1) image acquisition subsystemwritten in
the C programming language, (2) fMRI-BCI that performs image
preprocessing, brain state classification and visual feedback, coded in
a combination of C programming language and Matlab scripting
language (Mathworks, Natwick, MA). The image acquisition system is
centered around a modified echo-planar imaging (EPI) sequence
developed in-house on the Siemens 3T TIM whole body scanner
(Siemens Magnetom Trio Tim, Siemens, Erlangen, Germany), based
on the image acquisition software, Syngo version VB13. We used the
same real-time EPI sequence that was employed in our earlier studies
on real-time fMRI (Rota et al., 2006, 2008; Weiskopf et al., 2003). The
original implementation was described in Weiskopf et al. (2003). In
brief, a standard echo-planar imaging sequence provided by the firm
Siemens (Erlangen, Germany) was modified in collaboration with the
manufacturer. The modifications enabled storage of functional image
files in the ANALYZE format (*.hdr, *.img) to a specified directory of
the host computer of the MRI scanner. The EPI sequence, otherwise,
had facilities for changing the MR parameters, such as repetition time
(TR), echo time (TE), number of slices and so on, similar to a standard
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EPI sequences available from the manufacturer. In other words, no
parameters needed be hard-coded into the sequence.
Functional images were acquired with a standard 12-channels head

coil by the real-time EPI sequence and were then stored in a
user-specified directory on the scanner host computer. Sixteen images
pertaining to 16 slices (voxel size=3.3×3.3×5.0 mm3, slice
gap=1 mm) were accessible for preprocessing and further analysis at
the end of each repetition time. The real-time sequence incorporated
the following image acquisition parameters: TR=1.5 s, matrix
size=64×64, echo time TE=30 ms, flip angle α=70°, band-
width=1.954 kHz/pixel. For superposition of functional maps upon
brain anatomy, during offline analysis, a high-resolution T1-weighted
structural scan of the whole brain was collected from each subject
(MPRAGE, matrix size=256×256, 160 partitions, 1 mm3 isotropic
voxels, TR=2300 ms, TE=3.93 ms, TI=1100 ms, α=8°). The Perl-
scriptwas a simple program that copied the functional image files in the
ANALYZE format from a folder in the host computer to a Windows
workstation that hosted the fMRI-BCI system.
The fMRI-BCI reads the images as they arrive, and performs online

preprocessing, brain state classification and generation of visual
feedback to the participant. Unlike LaConte and colleagues (2007), we
did not alter the image reconstruction (IR) system of the scanner in
implementing the fMRI-BCI. As thepresent study incorporates additional
preprocessing steps such as online realignment, spatial smoothing and
feature extraction, we anticipated that these procedures may introduce
unpredictable delays that may affect the online reconstruction of the
functional images in the image reconstruction system(IRS). To avoid this
potential problem, we implemented online preprocessing, feature
extraction and classification as a separate softwaremodule andexecuted
it on the fMRI-BCI workstation. We implemented this subsystem in a

64-bit version of Matlab (version 7.1, Mathworks, Natwick, MA) by
building around the C-language implementation of the core engine from
SVMlight (Joachims, 1999). This approach offered us flexibility in
repeated modify-and-test software life cycle of several intermediate
implementations of preprocessing, brain masking, feature/voxel selec-
tion and feedback algorithms.
Real-time brain state classification on each participant is performed

in several steps, as depicted in the Fig. 2. First, signal preprocessing is
performed on each volume of brain images as they arrive from the
scanner. In this step, real-time realignment for head motion correction
and spatial smoothing are performed. In our implementation, the
preprocessing was performed online during SVM training as well as
testing (see Fig. 2). In the next step, a first-pass feature selection is done,
whereby brain voxels are selected by choosing voxels above a user-
specified intensity threshold. Subsequently, a second-pass thresholding
is done, bywhich informative voxels are chosen fromthefirst-passbrain
mask by training an SVM classifier on the training data set. In the
penultimate step, the classifier is retrained on the samedata set but now
with the features selected in step 3. Finally, the classifier is testedonnew
data collected from the same participant.

Real-time preprocessing

To correct for head motion artifacts, all brain scans were realigned
to the first brain scan of the first run. The real-time implementation
was adapted from the realignment algorithm (Ashburner et al., 2003;
see Supplementary information and http://www.fil.ion.ucl.ac.uk/
spm/doc/books/hbf2/) of SPM2. After realignment, the images were
spatially smoothed in real-time with an 8-mm fixed width half
maximum (FWHM) window.

Fig. 1. The real-time fMRI brain state classification system comprises of the following subsystems: (1) image acquisition subsystem, which is a modified version of the standard echo-
planar imaging (EPI) sequence written in C and executed on the scanner host computer, and (2) fMRI-BCI subsystem, which performs image preprocessing, brain state classification
and visual feedback, implemented in C and Matlab scripts (Mathworks, Natwick, MA) and executed on a 64-bit Windows desktop. A Perl-script on the scanner host transfers the
acquired images after every scan (at an interval of 1.5 s) to the fMRI-BCI computer.
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Support vector classification

To classify an individual scan of fMRI data, all brain voxels or
selected brain voxels from each repetition time (TR) can be composed
of an input vector xj. SVM determines a scalar class label Yi (Yi=sgn
(yi=wTxi+b)=±1, i=1,…, N, where N is the number of input
vectors, T is the transpose of a vector, b is a constant value, sgn(.) is a
signum function, sgn(x)=+1, 0,−1 if xN0, x=0, xb0, respectively)
from the input vector.
When the input vectors xi and the designed labels YiL are taken

from the training data set, the weight vector w of SVM is obtained by
minimizing objective function L of Eq. (5) with constraints
Eqs. (6) and (7),

L=
1
2
w

T
w + C∑

N

i=1
ξi; ð5Þ

withYi
LðwT

x
i + bÞ≥1−ξi; ð6Þ

andξi≥0 ð7Þ

where slack variable ξi is introduced to describe a non-separable case,
i.e., data that cannot be separated without classification error, C
denotes the weighting on the slack variable, i.e., the extent to which
misclassification is allowed, and a value of C=1 was used in our
implementation because of the following reasons. Firstly, model
selection to determine the C value is hard to perform in the context of
real-time classification due to limitations of time available for SVM
training. What is important is that real-time, online classification
should work robustly in the majority of participants and sessions. In
many previous fMRI classification studies (Haynes et al., 2007;
LaConte et al., 2005, 2007; Mourao-Miranda et al., 2005, 2007,
2006; Soon et al., 2008), C=1 was successfully used. Furthermore,

LaConte et al. (2005) showed that prediction accuracy does not vary
much with the selection of C.

Feature selection and SVM training

The performance of a pattern classifier could be improved by a
procedure called feature selection, where informative features from the
data are extracted for input to the classifier. We performed feature
selection in 2 steps: (1) a first-pass intensity thresholding and (2) a
second-pass voxel selection using Effect mapping (Lee et al., 2010). For
the first-pass intensity thresholding, an image of the brain, called
intensity thresholded mask, was created by removing voxels below a
certain BOLD intensity value in a mean image of all the brain scans. For
the second-pass feature selection, training data from 2 runs were
divided into 5 sequential subsets. That is, each subset consisted of 4.5
blocks (for example, in the case of binary classification: 2.5 blocks of
condition happy, 2 blocks of condition disgust or 2.5 blocks of condition
disgust, 2 blocks of conditionhappy) froma total numberof 24blocks. Z-
normalization (z-value: (x-mean(x))/standard deviation(x), x: sam-
ples) was applied across all the time-course signals at each voxel to
account for the variability of BOLD signals across runs. Z-normalization
was performed to correct for the variability of the BOLD signal and to
convert it to a signal of zero mean and unit variance. BOLD values from
brain voxels of the subsetswere used to create input vectors for training
SVMs and subsequently to generate five Effect maps (please see
Section 3.5 for a description of the Effectmaps). Informative voxelswere
selected by applying a threshold on themean of five Effectmaps (Fig. 2).
The online SVM classification software written in Matlab allows for
specifying user-specified threshold. The threshold that was incorporat-
ed in this study was 0.5 for all participants and sessions. In our
experience, this threshold provided a good balance between reduction
of the size of the data inputwhilemaintaining good prediction accuracy.
Finally, an SVM was trained from the BOLD values of the feature-
selected voxels after Z-normalization across all the training samples.

Fig. 2. Flow chart for fMRI signal preprocessing and classification. Brain state classification is performed in the following steps: (1) signal preprocessing for online realignment and
spatial smoothing, (2) first-pass feature selection for selecting brain voxels by applying an intensity threshold resulting in a brain mask, (3) second-pass thresholding for selecting
informative voxels from the first-pass brain mask by the method of Effect mapping resulting in the final brain mask, (3) classifier retraining based on the brain mask obtained in step
3, and (4) real-time classifier testing on new data using the second-pass brain mask.
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Ideally, SVM output yi should be centered about zero, so that when
the output is greater than zero the brain state is assigned to one
emotion (e.g., happy), andwhen it is less than zero it is assigned to the
other emotion (e.g., disgust). However, due to participants' head
movements and other systemic changes, a gradual drift in the
classifier output can be expected (LaConte et al., 2007). To remove
this bias during online classification, we subtracted the mean of the
SVM outputs during the rest condition from each SVM output during
the active condition (i.e., happy or disgust).

Effect mapping

Based on the parameters of the trained SVM model, we analyzed
the fMRI data with a newmeasure called effect value (Lee et al., 2010)
which estimates the effect of the BOLD activation at each voxel on the
classifier output by first computing the mutual information between
the voxel and the output, and then multiplying it with the weight
value of the voxel as estimated by SVM. Mutual information (MI) is
derived from relative entropy or the Kullback–Leibler divergence,
which is defined as the amount of information that one random
variable contains about another random variable (Cover and Thomas,
1991). Hence, the effect value (EV) Ek of a voxel k is defined as:

Ek = wkIðxk; yÞ; k= 1; ⋯;M ð8Þ

where I(xk; y) is the mutual information between the voxel and the
output, y is the SVMoutput after excluding the sign function,wk and xk
are weight value and activation at voxel k, respectively. To reduce the
variability of EVs from Eq. (8) dependent on data set, normalization of
Ek from Eq. (9) was applied as follows:

lEk = sgnðEkÞ logð1 + stdðjEjÞÞ; k = 1; ⋯;M ð9Þ

where sgn(.) is a signum function, and std(|E|) is standard deviation
across all the brain voxels. For ease of voxel selection based on the EVs,
we have used Eq. (9) for generating the Effect maps at the contrast:
happy vs. disgust in binary classification, and happy vs. disgusted,
happy vs. sad, and disgusted vs. sad, in our multiclass classification,
respectively. Such maps can be thresholded at a suitable level by
visual inspection by the experimenter and the resulting map can be
used as a brain mask. This brain mask is subsequently applied to
functional images arriving at each time point (TR), to reduce the data
dimension and to choose the most important voxels for classification.

Generation of visual feedback

Visual feedback was provided in the form of a graphical
thermometer whose bars increase or decrease in number from the
baseline value (represented by the middle red dashed line of the
thermometer) proportional to the classifier output after each TR. The
thermometer could be operated in two modes by selection in our
Matlab toolbox: (1) feedback mode and (2) non-feedback mode. In
the non-feedback mode, the thermometer was displayed without any
bars for the whole duration of the experiment. In the feedback mode,
the graphical thermometer is shown in an animated fashion by
increasing or decreasing the number of bars. The classifier output after
correction of the classifier drift was used to generate the visual
feedback. Depending on the classification result, i.e., +1 or −1, the
thermometer bars were updated with respect to the previous TR in
the positive or negative direction, respectively. The thermometer was
designed to indicate not only the correctness of classification (in
terms of the bar changing in the positive or negative direction) at the
end of each TR, but also the cumulative performance of the past trials
in terms of the height of the bars above or below the baseline. This
way the participant receives feedback about his instantaneous

(defined by the length of the TR) brain state as well as his past
performance.

Multiclass classification

The objective of the multiclass classification experiment was to
test whether the online classifier is able to classify three discrete
emotions, namely, happy, sad and disgust. The multiclass problem
was formulated as a problem of finding the best classification among
three trained binary classifiers (i.e., classifier 1: happy vs. disgust,
classifier 2: happy vs. sad, and classifier 3: disgust vs. sad) based on
the selected voxels from an Effect map of each combination as
described above.
Multiclass classificationwas performed based on the framework of

error correcting output code (ECOC) from 3 binary classifications
(Mourao-Miranda et al., 2006). The ECOC method assigns a unique
binary string of length n, called the “code word”. Subsequently, n
binary classifiers are trained, one for each bit position of the binary
string. During the classifier testing, new data are classified by
evaluating each of the binary classes to arrive at an n-bit string,
which is then compared to all the different codewords. The test data is
finally assigned to the code word that is the closest based on a
distance measure. In our approach to the ECOC, each class has its own
code mi as follows: m1=[1 1 0] for classifier 1 (happy vs. disgust),
m2=[−1 1 0] for classifier 2 (happy vs. sad), m3=[0 −1 −1] for
classifier 3 (disgust vs. sad). Let p be a vector of predictions from the 3
classifiers. Then, the final decision was made by selecting the closest
code from the prediction vector r = minarg i = 13distðmi;pÞ. We used
the Euclidian distance measure in our implementation.

Experimental paradigm

Our experiment (Fig. 3) was divided into three parts: experiment 1
for investigating real-time binary classification, experiment 2 for
further feasibility testing of multiclass prediction, and experiment 3
for assessing the effect of extended feedback training with a real-time
classifier. Twelve healthy students from the Department of Medicine,
University of Tuebingen, Germany, participated in experiment 1 and
four more students participated in experiment 2. The participants
were aged in the range of 22–26 years, with a mean age of 25 years.
All participants signed a written informed consent, and the study was
approved by the local institutional review board.
Experiment 1 (see Fig. 3) was envisioned in 4 succeeding stages,

each stage prepared as a block-design protocol with alternating blocks
of happy and disgust imagery of 24-s duration, interleaved with rest
blocks of 4.5-s duration. In each run, there were 6 blocks of happy
imagery, 6 blocks of disgust imagery and 12 blocks of rest. In total, 233
scanswere collected in a run including the 5 initial scans that were not
used in the analysis, due to magnetic equilibration effects that could
potentially distort the data. The rest blocks were incorporated for the
sole purpose of avoiding cognitive and emotional overload due to
sudden changes of imagery. During classifier training (stage 1)
containing 2 runs of the above protocol, there were 12 blocks of
happy imagery, 12 blocks of disgust imagery and 24 blocks of rest.
During each type of the emotional imagery block, an empty
thermometer (without feedback) was shown at the centre of the
screen with a letter beside it indicating the participant to perform
happy (‘H’) or disgust (‘D’) mental imagery. The purpose of the empty
thermometer during the SVM training stage was to maintain
consistency in visual stimulation with the testing stage during
which the thermometer could be updated for visual feedback of the
brain state. Two runs of the stage 1 protocol were performed to collect
sufficient amount of data for training the SVM classifier (stage 2).
Participants were instructed well in advance of the experiment to

identify one or more emotional episodes from their personal lives for
each type of emotion (e.g., happy, sad or disgust) that they were
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required to recall during the experimental blocks. To maintain
consistency between classifier training and testing conditions we
showed participants pre-selected pictures as a reminder of the specific
type of emotion imagery that they need to use in each session. Towards
this end, participants were asked to identify one picture from the
International Affective Picture System(IAPS) (Langet al., 1997) that best
epitomised each type of emotional episode. At the beginning of a
training or testing run, participants were shown each selected picture
for a duration of 30 s to remind and strengthen their emotional recall
strategies. We could have alternately displayed text to describe and
remind them of the specific imagery to use, but we found that pictures
capturedmore succinctly the complexity of anemotional recall scenario.
However, to avoid a potential problem that subjectsmight just recall the
images rather than the emotion, we specifically instructed subjects to
use the IAPS images asmere references to their imagery and to elaborate
on the images to invoke the required discrete emotion (happy, disgust
or sad emotion). We later confirmed the type and level of emotion
imagery they performed with an interview and subjective rating (see
Table 1 and Supplementary Table 2).

Stages 3 and 4 were meant to test the classifier without and with
feedback, respectively. These two tests were performed to compare
real-time classification performance in the absence and presence of
feedback to evaluate the eventual application of real-time brain state
decoding for BCI and clinical rehabilitation. At the end of each run,
participants were asked, over the scanner audio system, to complete a
self-assessment scale (1–9, 1 indicating poor performance and 9
indicating best performance) of their level of emotion regulation for
each type of emotion. The purpose of this self-report was to perform
an offline analysis of the correlation between subjective report and
online classifier performance.
Four out of the 12 participants in experiment 1 underwent an

additional run of the stage 4 protocol to test whether the classifier
could robustly predict emotion states even when participants do not
use the same emotion inducing strategies that were used during SVM
training runs. To assess whether feedback training helps participants
to improve emotion recall, we recruited two more participants and
trained them on two-class (happy vs. disgust) classification for 3
sessions (in addition to 2 sessions for collection of training samples).

Fig. 3. Experimental protocol. Both binary (happy and disgust) and multiclass (happy, sad and disgust) classification experiments were performed in 4 succeeding stages, each stage
prepared as a block-design protocol with alternating blocks of emotion imagery each of 24-s duration, interleaved with rest blocks of 4.5-s duration. During SVM training, an empty
thermometer was shown at the centre of the screen with a letter beside it indicating the participant to perform happy (‘H’), disgust (‘D’) or sad (‘S’) mental imagery. Two runs of the
stage 1 protocol were performed to collect data for training the SVM classifier (stage 2). Stages 3 and 4 were performed to test the classifier without and with feedback, in that order.
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To adapt the classifier to the changes in the participant's brain
activation with thermometer feedback and learned regulation, we
retrained the classifier after each feedback session on a combined data
set of the training data set (collected in the absence of feedback) and
the feedback data set (collected in the presence of feedback).

Experiment 2 was designed to test real-time multiclass classifica-
tion, both with and without feedback. Four more student participants
(mean age=25) were recruited for this experiment. Conceptually,
experiment 2 was designed similar to experiment 1, except that
additional blocks pertaining to a third emotion (sadness) was added

Table 1
PANAS scores, subjective ratings and strategies for binary and multiclass emotion imagery.

Subject Mean positive
affect sub-score
of PANAS

Mean negative
affect sub-score
of PANAS

Subjective ratings of emotion imagery (scales 1–9, 1=worst, 9=best)* Strategies for happy (H),
disgust (D) and sad (S)
emotions

Training run 1 Training run 2 Test run (no feedback) Test run (with feedback)

Binary classification with same strategies for training and testing
S1 30 24 7.5 7.5 6 6.5 H: romantic love

D. toilet/feces
S2 41 21 6 6 6 5 H: family reunion

D: eating insects
S3 26 12 8 7.5 7.5 7.5 H: good marks in exams

D: blood in an open wound
S4 26 13 6 6.5 6 7 H: graduation day

D: a dirty toilet
S5 27 26 6.5 5 4.5 4.5 H: riding a bike

D: infected skin wound
S6 20 23 2.5 3 4 3.5 H: romantic love

D: feces
S7 28 30 6 6 5.5 6.5 H: romantic love

D: a dirty toilet
S8 28 18 9 6 6 7 H: baby

D: a dirty toilet
S9 29 22 6.5 6 5 6 H: friends gathering

D: a dirty toilet
S10 34 10 7 7 7 9 H: cats

D: an used toilet
S11 23 16 7 8 9 H: friends gathering

D: dirty and sick people
S12 4 8 9 9 H: falling in love

D: spiders

Binary classification with different strategies for training and testing
S9 28 13 7 6.5 6.5 5.5 Training runs:

H: romantic love
D: baby with feces
Testing runs:
H: family reunion
D: dirty bathroom

S10 14 17 6 7 6 7.5 Training runs:
H: romantic love
D: spiders
Testing runs:
H: party with friends
D: dirty bathroom

S11 39 10 8.5 8.5 8 9 Training runs:
H: romantic love
D: toilet
Testing runs:
H: playing the guitar
D: rotten food

S12 43 11 8 8.5 8 6.5 H: getting the visa
D: a dirty laboratory
Testing runs:
H: romantic love
D: toilet

Multiclass classification with same strategies for training and testing
S13 31 10 7.7 8.4 8 7.7 H: pets

D: toilet
S: braking up with boyfriend

S14 24 14 7.7 7.8 7.7 7.8 H: graduation day
D: toilet
S: death of a friend

S15 27 11 6.2 8 8 9 H: a boat trip
D: bloody car accident
S: braking up with boyfriend

S16 14 16 6.8 7.3 6.3 7.8 H: romantic love
D: spiders
S: view of blind beggars

*Values correspond to the mean between happy and disgust score in binary classification, or between happy, disgust and sad scores in the multiclass classification.
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to train and test a three-class classifier. That is, each run consists of 4
blocks of each emotion with 12 blocks of rest condition. The block
length is exactly same as the binary case. The total duration of each
run of experiment 2 was also 233 scans (5.825 min).
Experiment 3 was conducted to answer the question: How can a

pattern classifier provide contingent feedback in a self-regulation
application where participants are normally expected to improve
their ability with training to induce themselves into desired brain
states? One way to approach this would be by adapting the classifier
to participant's learning by incrementally retraining the classifier with
new samples at the end of each session of feedback training. We have
adapted this method in an extended experiment in two participants to
incrementally enhance the classifier's ability to recognize changes in
brain activity with self-regulation learning. We trained participants
on 2-class (happy vs. disgust) classification, with 3 sessions of
feedback training (in addition to 2 sessions for collection of training
samples) in a day. We retrained the classifier after each feedback
session by combining the previous training set with the new test data.
Thermometer feedback was provided as described in section 3.6.
Participants were instructed to perform emotion recall in order to
increase the bars of the thermometer. They were told that thermom-
eter bars going up meant that they were doing the task right and bars
going down meant that they were probably not doing it right.

Offline whole brain and ROI analysis with classification

To assess the level of involvement of different brain regions, two
additional types of SVMclassificationswere performed offline: (1) single-
subject whole brain analysis with the E-map (Lee et al., 2010) (binary
classificationon12 subjects andmulticlass classificationon1 subject), and
(2) ROI analysis (binary classification on 12 subjects). We expected that
BOLD signals from brain regions known to be involved in emotion
processing would show higher decoding accuracy for the discrete
emotions under consideration (i.e., happy and disgust) than in other
regions. Our ROI analysis is based on the expectation that classification
accuracy will be higher in ROIs that have been previously implicated in
emotion regulation and induction (Amodio andFrith, 2006;Ochsner et al.,
2005, 2004; Phan et al., 2002). Towards this end, fMRI images for all
participants were preprocessed with the following procedures: realign-
ment, normalization to MNI space, and spatial smoothing with 8 mm
Gaussian FWHM. First, single-subject whole brain classification was
performed wherein BOLD signals from all brain voxels for each TR were
collected into an input vector. For the ROI classification, 24 masks (see
Supplementary Fig. 2) from brain regions previously reported to be
involved in emotion imagery, recall and regulation (Amodio and Frith,
2006; Ochsner et al., 2005, 2004; Phan et al., 2002) were applied to the
preprocessed data to extract BOLD signals as input to separate classifiers.
Z-normalization was performed on the BOLD values at each voxel across
the whole time course to correct for the variance of BOLD signals of
different runs and different participants. The normalized BOLD values
from each ROI of each TR were then collected into an input vector. Data
from2 training sessionsand1 testing sessionwereused inboth the single-
subject whole brain and ROI classifications. Linear SVM, with the
regularization parameter C=1, based on freely available SVM library
SVMLight (Joachims, 1999) was used to perform both single-subject and
ROI classifications. The single-subjectwhole brain analysiswasperformed
based on the E-maps obtained after training a separate SVMmodel from
each participant's data. The ROI classification performance was evaluated
through 12-fold cross validation (CV). In each fold, the data of 11
participants were used to train the classifier, and then the data of 1
remaining participant were used to test the classifier.

Affect scores and subjective ratings of emotion recall

Before thebeginningof fMRIdata collection,weaskedeachparticipant
to fill out the Positive Affect Negative Affect Schedule (PANAS), which is a

psychometric scale developed to measure the independent constructs of
positive and negative affect both as states and traits (Watson et al., 1988).
PANAS contains a list of 10 descriptors for positive scale: attentive,
interested, alert, excited, enthusiastic, inspired, proud, determined, strong
and active; and 10 descriptors for negative scale: distressed, upset-
distressed; hostile, irritable-angry; scared, afraid-fearful; ashamed, guilty;
nervous, and jittery. The PANAS has been found to exhibit the following
characteristics: (1) a significant level of stability in every time frame; (2)
no consistent sex differences; (3) inter-correlations and internal
consistency reliabilities are all acceptably high (ranging from 0.86 to
0.90 for PA and 0.84–0.87 for NA); (4) the reliability of the scales is
unaffected by the time instructions used; and (5) has high scale validity
and high item validity.
At the end of each SVM training or testing run, participants were

instructed to rate their degree of success in being able to recall each
type of emotion (i.e., happiness, disgust or sadness) for each block of
the run on a scale of 1–9, where 1 represented the worst and 9
represented the best regulation (see Table 1).

Results

PANAS scores and subjective reports of emotion imagery

Participants used several emotion recall scenarios and imagery
strategies for inducing themselves into happy, disgust and sad (see
Table 1).
A negative correlation was found between the mean of the

negative subscale of the PANAS and participants' ratings of their
performance in emotion imagery tasks of session 3 (rs=−.74, pb .01)
and 4 (rs=−.72, pb .01). A similar trend was also found for session 2
(rs=−.56, p=.07, two-tailed). No significant correlations were
found between positive subscale of the PANAS and the participants'
ratings of their performance across the sessions of emotion imagery
task. Also, no significant correlations were found between the
prediction accuracy either with the PANAS scores, or with partici-
pants' ratings of their performance in emotion imagery.
In addition, we collected subjective reports of the intensity of the

emotion attained, attention to the imagery task and the consistency of the
mental strategywithin each session, in a 9-point scale (1—worst, 9—best).
Due to lack of scanning time, these data could be collected only in a subset
ofparticipants: 4participants in thebinaryclassificationand4participants
in the multiclass classification (see Supplementary Table 2).

Real-time binary and multiclass classification

Fig. 4 shows the prediction accuracies of the online classifier for all
participants for SVM testing runs, with and without feedback, for
binary classification (see Figs. 4a and b) and for multiclass
classification (see Fig. 4c). Fig. 4a shows the performance of the
binary classifier when participants used the same type of emotion
imagery both during SVM training and testing runs (e.g., a participant
used imageries of family reunion for happy emotion and eating insects
for disgust emotion, respectively). Fig. 4b shows the performance of
the binary classifier when participants used different types of emotion
imagery during SVM training and testing runs (e.g. a participant used
imageries of romantic love for happy emotion and baby with feces for
disgust emotion for SVM training; and family reunion for happy
emotion and dirty bathroom for disgust emotion for SVM testing). The
online classifier showed the following classification accuracies across
participants, indicated by mean and standard deviation of correct
classification: (1) for binary classification (chance accuracy=50%)
testing with same emotion imagery, without feedback (92%±6%) and
with feedback (80%±13%) (see Fig. 4a); (2) for binary classification
testing with different emotion imagery, without feedback (80%±
10%) and with feedback (65%±18%) (see Fig. 4b); and (3) for
multiclass classification (chance accuracy=33%) testing without
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feedback (62%±14%) and with feedback (60%±16%). Classification
performance indicates the beneficial effects of online realignment,
feature selection and optimized experimental procedures. Robust
prediction accuracies were seen even when participants were
intentionally instructed to use different strategies between SVM
training and testing runs, indicating the ability of the classifier to
generalize across varied emotion imagery strategies and memory
recall scenarios.
Significantly higher accuracies of the SVM classifier were found in

the sessions without feedback (median=88.5) compared to the
sessions with feedback (median=76), z=−2.02, pb .05, r=−.37
(Wilcoxon signed-rank test). To assess the effect of extended feedback
training on participants' performance, we trained 2 new participants
for 3 sessions of emotion recall in the presence of feedback and
incremental retraining of the classifier. Our results show that
classification performance improves already in the second feedback
session and classification accuracy continues to be maintained in the
third session (see Fig. 4d). However, by the end of 5 training sessions,
participants were unable to continue due to tiredness and hence
feedback training had to be stopped. Nevertheless, our data suggests
that feedback training with incrementally retrained classifier could
enhance participant's performance.

SVM outputs for binary and multiclass classification

Supplementary Figs. 3a and b show the online SVM output for a
participant before and after bias removal. Examination of the SVM
outputs across different participants for multiclass classification
showed robust classifier performance on a block-by-block basis
within each testing session (see Supplementary Fig. 3c).

Effect maps and ROI classification performance

Extensive results of the single-subject whole brain classification
and Effect maps generated thereof (in an offline analyses performed

after the real-time experiments to reveal the discriminating brain
regions) have been documented in the Supplementary information
(Supplementary Sections 2.2 and 2.3, including supplementary
Table 3 (a–k), Supplementary Fig. 1 (a–k) and Table 4 (a–c)). The
Supplementary Tables also provide, for each brain region, the effect
value (EV) and the cluster size, which together indicate the degree of
importance of the cluster in discriminating between the emotions.
Much inter-subject variability was observed in brain activations,
possibly due to the diverse emotion imageries employed by the
participants (see Table 1 for list of emotion imageries). The following
brain regions were also observed as commonly activated among the
participants: orbital medial frontal cortex (oMFC), anterior rostral
medial frontal cortex (arMFC) and posterior rostral medial frontal
cortex (prMFC) (these anatomical segregation were based on Amodio
and Frith (2006)); superior and lateral frontal cortices, anterior
cingulate cortex (ACC), insula, superior temporal gyrus (STG),
primary and association areas of the visual cortex, posterior cingulate
cortex (PCC) and precuneus. In terms of Brodmann areas, the
following areas were commonly observed: BA10, 11, 14 and 25
belonging to the oMFC, BA32 to arMFC, BA8, 9 to the prMFC; and
BA17, 18 and 19 belonging to the visual cortex. Fig. 5 shows
exemplary Effect maps depicting the 3 contrasts of (happy vs.
disgust), (happy vs. sad) and (disgust vs. sad) emotions.
To better identify the most important brain regions for emotion

imagery and regulation, we performed offline ROI classifications,
based on fMRI signals extracted from 24 different brain masks (see
Supplementary Fig. 2) previously implicated in emotion processing
(Amodio and Frith, 2006; Ochsner et al., 2005, 2004; Phan et al.,
2002). This analysis was conducted separately on 12 subjects who had
performed happy and disgust imagery (see Fig. 3, Table 1). Our results
(see Fig. 5d) reveal that high classification performance (N75%) was
obtained in the following brain regions: middle frontal gyrus (MiFG),
superior frontal gyrus (SFG), ventrolateral prefrontal cortex (VLPFC),
STG and precuneus. Other ROIs that showed high prediction rates
included dorsolateral prefrontal cortex (DLPFC), ACC and the insula.

Fig. 4. Online SVM classification performance. (a) Binary classification (happy vs. disgust) accuracies (chance level=50%) in 12 participants who used the same emotion imageries
during both SVM training and testing sessions. (b) Binary classification accuracies in 4 participants who used different emotion imageries between SVM training and testing sessions.
(c) Multiclass classification (happy vs. disgust vs. sad) accuracies (chance level=33%) in 4 participants who used same emotion imageries in SVM training and testing sessions. (d)
Classification accuracies (chance level=50%) of extended feedback training on 2 participants on two-class (happy vs. disgust) classification.
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Discussion

The present implementation of brain state decoding and fMRI-BCI
is based on real-time SVM classification of fMRI signals after online
headmotion correction, spatial smoothing and feature selection based

on our new approach called Effect mapping (EM) (Lee et al., 2010).
EM is a method of generating functional activations by multiplying
two types of information at each voxel of the brain: (1) SVM trained
weight value at the voxel, and (2) and the mutual information (MI)
between the BOLD value at the voxel and the SVM output. Activation

Fig. 5. Effect maps generated from single-subject whole brain SVM classification showing discriminating voxels for: (a) happy vs. disgust classification (for participant S1), (b) happy
vs. sad classification and (c) disgust vs. sad classification (for participant S13). Second level threshold appliedwas 0.5, slices shown are in the range, Z(MNI coordinates)=−11 to+10
in steps of 3 units. Brain regions: oMFC—orbital medial frontal cortex, arMFC—anterior rostral MFC (based on Amodio and Frith, 2006); OFC—orbitofrontal cortex, ACC—anterior
cingulate cortex, PCC—posterior cingulate cortex. (d) Prediction accuracy of 24 regions of interest (ROIs) in a single-subject ROI classification from 12 participants performing happy
and disgust motor imagery. ROIs: Subgenual—subgenual cingulate (BA25), Nac—nucleus accumbens, PVC—primary visual cortex, DLPFC—dorsolateral prefrontal cortex, LiG—lingual
gyrus, VLPFC—ventrolateral prefrontal cortex, STG—superior temporal gyrus, MiTG—middle temporal gyrus, MFG—medial frontal gyrus, SFG—superior frontal gyrus, MiFG—middle
frontal gyrus.
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maps so derived represent a hybrid of univariate and multivariate
functional mapping, resulting at once in spatially distributed activa-
tions as well as in large clusters centered about brain regions
presumably important for discriminating between the brain states.
In the present study, EM was used as the basis for feature selection to
reduce the multidimensionality of fMRI data, and to choose the most
discriminating clusters of voxels for classification. Our results show
that the application of feature selection results in consistently good
predictions of emotions for binary classification as well as for
multiclass classification.
Subjective reports collected from participants ascertained that

participants performed emotion imagery and that the online classifier
decoded emotions and not arbitrary states of the brain. This study also
shows a relationship between the participants' affect scores as
measured by PANAS and the subjective ratings of their performance
in the emotion imagery task, indicating that participants who report
greater negative affect rate themselves relatively lower on the
imagery tasks.
One may expect that higher subjective reports of success in

recalling emotions should correlate with higher prediction accuracies.
However, one should note that pattern classification works well and
shows higher accuracy based on how similar the samples in the test
set are in comparison to the training set. The greater the similarity, the
greater is the accuracy. However, if the test set has different brain
signals generated due to higher success in recall than in the training
set, then the similarity of patterns is reduced and so is the
classification accuracy. This means that improved success in recalling
emotions may not result in greater decoding accuracy. This is in
contrast to the situation with single ROI real-time feedback experi-
ments where improved success in recall may correlate with higher %
BOLD in the target region of interest.
This may then lead one to ask the question: How then can a

pattern classifier provide contingent feedback in a self-regulation
application where participants, including patients, are normally
expected to improve their ability (with more training) to induce
themselves into desired brain states? One way to approach this would
be by adapting the classifier to participant's learning by incrementally
retraining the classifier with new samples at the end of each session of
feedback training. Another way could be to carry out feedback
training of patients or beginners using a brain state classifier which
has been previously trained on data from experts or individuals who
are already good at self-regulation. In this approach, the classifier
would show improved performance as the trainees achieve brain
states similar to the experts. In such a classifier, one can expect
improved prediction accuracy with greater success in recall or
regulation. In any method, the experimenter has the prerogative to
ascertain whether the participant is performing self-regulation as
desired and whether the relevant brain regions are activated by
scrutinizing the multivariate functional activations.
In our experiments, the performance of the classifier in the presence

of feedback was lower than in its absence although a few participants
performed better in the presence of feedback than in its absence. This
lower accuracyof the classifierwhen the feedbackwas introduced could
be due to as yet unlearned ability of the participants to perform
consistent emotion imagery while simultaneously monitoring the
thermometer. These data are in line with self-reports by participants
after scanning sessions, about the difficulties they had in performing
emotion regulation when feedback was introduced for the first time. It
has been known that the introduction of feedback initially creates a task
conflict between attention to the imagery task and the visual feedback
(Rota et al., 2008), which could be overcomewith longer training (Caria
et al., 2007; deCharms, 2008; Rota et al., 2008). A second reason for the
reduction in classification performance could be the extra activation of
thevisual cortexdue to the graphical animationof the thermometer that
was previously absent during the classifier training. This additional
BOLD activation could act as noise or confound to the classifier input,

reducing its prediction accuracy. To overcome the above limitations and
to assess the effect of extended feedback training on participants'
performance, we recruited two more participants and trained them on
two-class (happy vs. disgust) classification, with 3 sessions of feedback
training by incorporating an incrementalmethod of classifier retraining.
Our results show that participants did learn to improve their
performance in the presence of feedback. An elaborate study on the
effects of feedback training is beyond the scope of this work. Future
studies could be dedicated to the systematic evaluation of the effect of
feedback training on self-regulation performance, behaviour and
changes in relevant neural network.
We performed additional offline pattern classification and multi-

variate statistical mapping based on the EM (Lee et al., 2010)
approach to identify brain regions for discriminating emotion under
consideration. Our results are in line with previous findings. Firstly,
the most observed involvement of the medial frontal cortex in our
clusters of activation and Effect maps is of interest. A theoretical
review of the involvement of medial frontal cortex (MFC) by Amodio
and Frith (2006) delineates the functional roles of the 3 regions of
MFC, namely, arMFC, prMFC and oMFC. The authors associated the
activation of the arMFC (the most anterior part of the frontal cortex
including BA10, BA32 and rostral ACC) with the monitoring of one's
own emotional state, such as rating one's emotions in response to
pictures of varying valence. Themore posterior region, the rostral MFC
(prMFC), including BA8, BA9 and dorsal ACC, is activated by cognitive
tasks such as action monitoring and attention. The orbital MFC
(oMFC), including BA10, BA14 and BA25, was linked to themonitoring
of task outcomes associatedwith punishments or rewards. Activations
of the prefrontal cortex, ACC and insula found in our analyses are in
line with an influential meta-analysis by (Phan and colleagues (2002)
which states that the MFC has a general role in emotional processing
and that induction by emotion imagery recruits the anterior cingulate
and insula. Our offline analyses serve to confirm that participants
performed emotion imagery and that the SVM results are reliable.
Additionally, to our knowledge, our study provides the first objective
comparison, through pattern classification, of the degree of involve-
ment of different brain regions (see Fig. 5 and Supplementary Table 4)
in emotion imagery and regulation.
In our real-time implementation of the SVM classifier, we

programmed the online SVM classifier and the BCI system in a
combination of C programs and Matlab scripts on a dedicated
workstation. This design decision was beneficial in the following
ways: (1) it allowed us greater flexibility in the repeated software
cycle of source code modification and testing, (2) it helped us avoid
interfering with the normal operation of the scanner and (3) it
resulted in faster SVM training and online SVM online classification.
This modular approach to software design has an added advantage in
that when future versions of the scanner operating software (e.g.,
Syngo version VB15) are implemented, it is no longer necessary for the
user to modify, recompile and relink the SVM classification source
code.
Our decision to use was SVM based on recent developments in the

pattern classification of neuroimaging data (LaConte et al., 2003,
2005; Martinez-Ramon et al., 2006; Shaw et al., 2003; Strother et al.,
2004). SVM has been shown to have certain advantages in the
classification of fMRI signals in comparison to other methods such as
linear discriminant analysis (LaConte et al., 2005) and multilayer
neural network. SVM is less sensitive to preprocessing (LaConte et al.,
2005), better capable of handling large data sizes (Haynes and Rees,
2006), techniques developed to perform multiclass classification and
most importantly produces unique optimal solutions (Collobert et al.,
2006). Although, SVM model training is computationally more
intensive, current availability of faster yet cheaper processors more
than compensate for this drawback (LaConte et al., 2007).
Onlinemulticlass brain state decoding has potential applications in

lie detection (critical lies, non-critical lies and truths), BCIs (detecting
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multiple movement states and thoughts) for communication and
control, to name a few. The majority of the present implementations
of brain state decoding including real-time classification, however,
have two main drawbacks. Firstly, the present methods work based
on spatial pattern of brain activity alone as input in discriminating
different states of the brain and ignore the temporal pattern or time
evolution of brain activity. Considering that brain states may differ in
their temporal signature, in terms of time evolution of activity in one
region and also in terms of its dynamic interaction with other regions
of the brain, spatial classification of brain activity alone is largely
limiting. For example, emotion regulation involves the dynamic,
temporal evolution of BOLD activity connecting different parts of the
limbic region that includes insula, amygdala, anterior cingulated
cortex and medial prefrontal cortex. Hence, a pattern classification
system that uses both spatial and temporal information but does so in
a computationally efficient way so that it could be used in real-time
would be of great practical importance and should be the focus of
future research.
Another limitation of our present work and possible topic of future

research is the lack of an implementation for real-time, subject-
independent classification of brain states. Existing methods are
optimized for each participant because SVM training is carried out
on subject-specific data. However, these methods have two major
disadvantages: (1) one needs to collect initial data for classifier
training that consumes time and participant's attention and involve-
ment, and (2) this approach is not suitable for certain applications
such as real-time lie detection for forensics and security on persons
from whom data for SVM training might not be available. An adaptive
classifier needs to be developed similar to those previously developed
in the pattern recognition field for subject-independent speech and
character recognition. Such a subject-independent brain state classi-
fier could then be applied to new subject data without prior classifier
training, and in addition, could be adapted to the idiosyncrasies of
every individual's brain size, shape and activation patterns. An
essential technical improvisation to be achieved in this regard is the
real-time coregistration and normalization of functional images to a
standard brain so that inter-subject variations in brain size, shape and
activations could be overcome. We anticipate that a subject-
independent classifier could find use in clinical rehabilitation, where
patients with brain abnormalities pertaining to motor, cognitive or
emotion processing could be retrained to achieve normal level of
functioning by providing feedback from a real-time pattern classifier
that is trained on healthy subjects. By repeated operant training with
contingent reward from the classifier, patients could perhaps learn to
mimic brain activation of healthy individuals in order to ameliorate
their problem.
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