Eine neue Strategie zur Identifikation von minor H-Antigenen

der Fakultät für Biologie der Eberhard-Karls-Universität Tübingen

zur Erlangung des Grades eines Doktors der Naturwissenschaften

von

Mathias M. Schuler

aus Stuttgart

vorgelegte

Dissertation

2008

Tag der mündlichen Prüfung: 07. April 2008

Dekan: Professor Dr. H. Mallot

1. Berichterstatter: Professor Dr. Stefan Stevanović

2. Berichterstatter: Professor Dr. Hans-Georg Rammensee

Meiner Familie und meinen Freunden

Inhaltsverzeichnis

1 ALLGEMEINE EINFUHRUNG	5
1.1 REVERSE IMMUNOLOGIE	5
1.1.1 ÜBERBLICK	5
1.1.2 PEPTIDDATENBANK UND DBSNP	6
1.1.3 SNEP UND SNEPv2	7
1.1.4 ANSATZ	7
1.2 IMMUNOLOGISCHE GRUNDLAGEN	8
1.2.1 MHC und Antigenprozessierung	8
1.2.2 T-LYMPHOZYTEN	13
1.3 NEBENHISTOKOMPATIBILITÄTSANTIGENE	15
1.2.3 MHAGS	15
1.2.4 EINZELNUKLEOTIDAUSTAUSCH (SNP) UND ANDERE POLYMORPHISMEN	18
1.2.5 ALLELFREQUENZ UND VERTEILUNG IN GEWEBEN	19
1.2.6 GRAFT-VERSUS-HOST-ERKRANKUNG	20
1.2.7 GRAFT-VERSUS-TUMOR-EFFEKT	22
1.2.8 MHAGS IN DER IMMUNTHERAPIE	23
<u>2</u> <u>METHODEN</u>	25
2.1 ISOLIERUNG VON PBMCS	25
2.2 DURCHFLUSSZYTOMETRIE	25
2.3 ANALYSE ANTIGENSPEZIFISCHER T-ZELLANTWORTEN	26
2.4 FUNKTIONALE T-ZELL-CHARAKTERISIERUNGEN	27
2.5 Untersuchungen zur Bestimmung der Spezifität von T-Lymphozyten	31
2.6 IN VITRO-STIMULATION VON ANTIGENSPEZIFISCHEN T-ZELLEN	32
3 ZIELE DER ARBEIT	35

<u>4</u> <u>N</u>	MATERIAL UND METHODIK	37
4.1	BIOINFORMATIK	37
		37
4.2.1	GENEXPRESSIONSANALYSEN, SEQUENZIERUNG UND HETEROZYGOTIE L MATERIAL	37
	2 Durchführung	42
	T-ZELLKULTUR UND FUNKTIONALITÄTSTESTS	50
4.3.1		50
	2 Durchführung	53
4.3.2	DORCHFOHRONG	33
<u>5</u> <u>E</u>	ERGEBNISSE UND DISKUSSION	65
5.1	HLA-LIGANDEN MIT SNPs UND IHRE VERTEILUNG	65
5.1.1	L POLYMORPHISMEN BEI NATÜRLICHEN LIGANDEN	65
5.1.2	2 Selektion der Kandidaten	73
5.1.3	BLUTSPENDER, ZUORDNUNG UND TYPISIERUNG	88
5.2	T-ZELLVERSUCHE MIT DDX20 UND CCL22	95
5.2.1	L IFNγ-Färbungen DDX20 – Stimulationen mit DC	95
5.2.2	2 ELISPOT	98
5.2.3	3 VITAL ASSAY L1MMS	100
<u>6</u> <u>Z</u>	ZUSAMMENFASSUNG	105
<u>7</u> <u>S</u>	SUMMARY	107
<u>8</u> <u>A</u>	ANHANG	109
8.1	Referenzen	109
8.2	ABKÜRZUNGEN	128
8.3	Publikationen	131
8.4	Danksagung	133
8.5	LEBENSLAUF	135

1 Allgemeine Einführung

1.1 Reverse Immunologie

1.1.1 Überblick

Das Vorgehen, immunogene Peptide vorherzusagen und zu identifizieren, wird reverse Immunologie genannt¹. Das Vorhandensein von HLA-Allel-spezifischen Peptidmotiven² (HLA, *human leukocyte antigen*) ist Ausgangslage für diesen Ansatz. Die charakteristische Länge und Sequenzeigenschaften von Peptiden, die an spezifische HLA-Allele gebunden sind, schränken die unüberschaubare Anzahl an möglichen HLA-Liganden eines gegebenen Proteins ein und ermöglichen ihre Vorhersage. Steht ein interessantes Antigen in Verbindung mit einem spezifischen HLA-Allel mit bekanntem Bindungsmotiv, können Liganden, die sehr wahrscheinlich an das HLA-Molekül binden, vorhergesagt werden. Da dieser Ansatz nicht auf schon existierenden T-Zellen basiert ist es notwendig, T-Zellen gegen das vorhergesagte Epitop zu züchten und somit dessen Erkennung zu bestätigen. Der endgültige Beweis sollte immer eine Reaktion dieser T-Zellen gegen Zellen sein, welche das Antigen exprimieren. Somit wird dessen natürliche Prozessierung gezeigt.

Es gibt mehrere Programme, die die Vorhersage von Epitopen für verschiedene HLA-Allele anbieten, unter anderem BIMAS/HLA_Bind³ oder SYFPEITHI⁴. Vorhersagen sollten auch proteasomale Vorgänge⁵ und den Transport in das endoplasmatische Retikulum⁶ beachten. Ein kürzlicher Ansatz kombiniert alle drei Schritte in einem Vorhersagealgorithmus⁷. Ein zusätzlicher Schritt, um mögliche Epitope nachzuweisen, ist die Nutzung von Vorhersagen beim massenspektrometrischen Nachweis von Peptiden⁸. So wurde auf diesem Wege ein Epitop von MAGE-A1 (MAGE, *melanoma antigen*) auf HLA-A*02 identifiziert und bestätigt⁹.

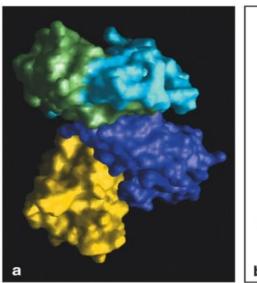
1.1.2 Peptiddatenbank und dbSNP

Sämtliche natürliche HLA-Liganden, die massenspektrometrisch nachgewiesen wurden, werden in der institutseigenen Peptiddatenbank hinterlegt. Neben der Peptidsequenz werden unter anderem auch HLA-Restriktion, Ursprungsgewebe und GeneID des NCBI (The national center for biotechnology information, Bethesda, USA) gespeichert. Die Datenbank dient als Ausgangsbasis für die Suche nach Kandidaten neuer Nebenhistokompatibilitätsantigene (mHag, minor histocompatibility antigens). Die vom NCBI verwaltete Einzelnukleotidpolymorphismendatenbank von Nukleotidsequenzvariationen (dbSNP, The single nucleotide polymorphisms database of nucleotide sequence variations)¹⁰ dient als zentraler Speicher für SNPs und Insertions-/Deletionspolymorphismen. Da die dbSNP keine Rücksicht auf Allelfrequenzen innerhalb von Populationen nimmt, werden alle bekannten SNPs gespeichert. Neben zahlreichen anderen Informationen findet man für jeden SNP die beiden Basenvarianten, Allelfrequenzen, Heterozygotiegrade unterschiedlicher Populationen, Sequenz und ob es sich dabei um eine synonyme oder nicht-synonyme Mutation handelt. Verbindendes Element zwischen Peptiddatenbank und dbSNP ist hierbei die GeneID, ein eindeutiges Merkmal, welches das Herkunftsgen beschreibt.

1.1.3 SNEP und SNEPv2

SNEP – SNP-derived Epitope Prediction¹¹ ist ein Programm zur Vorhersage von Peptiden, die aus Proteinsequenzen mit verschiedenen Aminosäureaustauschen stammen. SNEP benutzt hierzu die Datenbank SWISS-PROT¹² des ExPASy-Servers als Quelle für Proteine für mehrfach nachgewiesene Polymorphismen. Auch können vom Benutzer eingegebene Sequenzen mit selbstgewählten Polymorphismen versehen und Peptide daraus vorhergesagt werden. SNEPv2, welches ein Bestandteil des EpiToolKit¹³ ist, erweitert diese Möglichkeiten um die dbSNP. Die Vorhersage basiert auf den Algorithmen der T-Zellepitopvorhersage-Software SYFPEITHI.

1.1.4 Ansatz


Der Vergleich zwischen Peptiddatenbank und dbSNP liefert eine Liste mit Peptiden, welche natürlich auf HLA präsentiert werden und von denen es Einträge in der dbSNP gibt, welche SNPs innerhalb der Peptidsequenz beschreiben. Die Wahrscheinlichkeit, dass diese Peptide ebenfalls wie ihre Variante als HLA-Ligand auf HLA präsentiert werden ist höher als bei willkürlich ausgesuchten SNPs. Die Gene auf dieser Liste werden dann nach Allelfrequenz, gewebespezifischer Expression oder Zusammenhang mit Erkrankungen selektiert und die vermutlichen Epitope mithilfe von T-Zellversuchen auf ihre Immunogenität hin überprüft.

1.2 Immunologische Grundlagen

1.2.1 MHC und Antigenprozessierung

Haupthistokompatibilitätskomplex-Moleküle (MHC, major histocompatibiltiy complex) befinden sich auf der Oberfläche aller kernhaltigen Zellen. Auf ihnen präsentierte Antigene können von T-Lymphozyten erkannt¹⁴ werden. MHC-Moleküle (im Menschen humanes Leukozytenantigen) werden von einem großen, hochpolymorphen Gencluster auf Chromosom 6 kodiert und in der Regel in die Klassen I, II und III eingeteilt.

MHC-Klasse I-Moleküle sind Heterodimere und bestehen aus einer schweren α -Kette, die nicht-kovalent mit β_2 -Mikroglobulin (β_2 m) verbunden ist (Abbildung 1). Die α -Kette besitzt einen kurzen zytoplasmatischen C-terminalen Teil, eine Transmembrandomäne und drei extrazelluläre Domänen α_1 – α_3 . Eine an beiden Enden geschlossene Peptidbindungsfurche wird durch die beiden N-terminalen Domänen α_1 und α_2 gebildet (Abbildung 2). Sie beherbergt die präsentierten Peptide mit einer Länge von acht bis zehn Aminosäuren. Nicht-kovalente ionische und hydrophobe Wechselwirkungen zwischen Peptid und der α -Kette finden hauptsächlich in den sogenannten Taschen der α_1 -Domäne und den Ankeraminosäuren des Liganden statt und schließen die N- und C-Termini der Peptide mit ein.

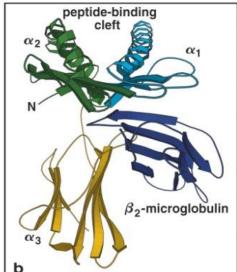


Figure 3-20 part 1 of 2 Immunobiology, 6/e. (© Garland Science 2005

Abbildung 1: Struktur des MHC-Klasse I-Moleküls

a) Moleküloberfläche b) Bänderdiagramm

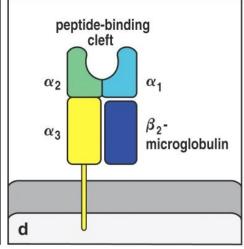
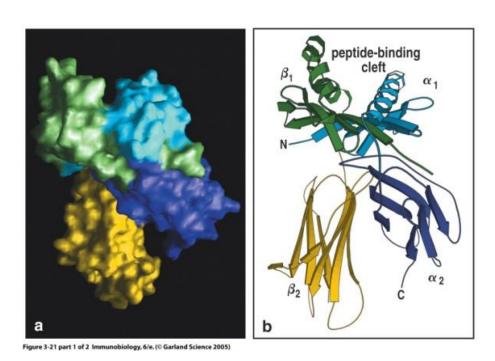
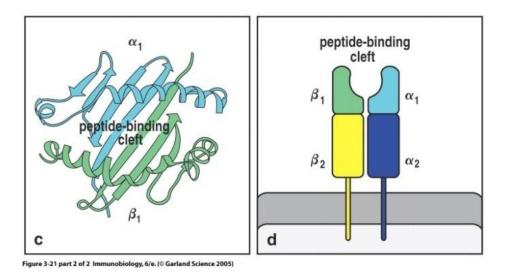


Figure 3-20 part 2 of 2 Immunobiology, 6/e. (© Garland Science 2005)

Abbildung 2: Peptidbindungsfurche MHC I


c) Aufsicht der Bindungsfurche d) Schematische Darstellung

MHC-Klasse I-Moleküle präsentieren Peptide, die durch normalen zellulären Abbau von endogen vorkommenden Proteinen entstehen¹⁵. Das Proteasom, ein großer aus Enzymen bestehender Komplex, produziert Vorläuferpeptide, die einen korrekten C-Terminus, am N-Terminus jedoch Erweiterungen von einigen Aminosäuren besitzen¹⁶ können, die von Aminopeptidasen im Zytosol¹⁷ oder im Endoplasmatischen Retikulum (ER, endoplasmatic reticulum)¹⁸ abgeschnitten werden. Es gibt drei verschiedene proteolytische Aktivitäten im 20S-Kernproteasom mit seinen drei konstitutiven proteolytischen Untereinheiten (δ/Y , Z und X): eine Trypsin-ähnliche (Schnitt nach basischen Aminosäureresten), eine Chemotrypsin-ähnliche (Schnitt nach hydrophoben Aminosäureresten) und eine Caspase-ähnliche nach (Schnitt sauren Aminosäureresten)¹⁹. Unter Einfluss von Interferon γ (IFN γ) kann das konstitutive Proteasom durch den Austausch der Untereinheiten (δ/Y , Z und X), die die aktiven Stellen beinhalten, durch die Untereinheiten MECL1, LMP2 und LMP7 in ein Immunoproteasom umgewandelt werden. Dieses neu geformte Immunoproteasom fördert die Bildung von Peptiden, die auf MHC-Klasse I präsentiert werden²⁰.


Die so produzierten Peptide werden mittels des Transporters, der mit der Antigenprozessierung assoziiert ist (TAP, transporter associated with antigen processing), ins ER transportiert²¹. Die schwere Ketten- β_2 m-Heterodimere werden im ER mit Peptiden beladen, indem sie mit dem Peptidbeladungskomplex interagieren. Der Peptidbeladungskomplex besteht zusätzlich aus dem Transmembran-Glycoprotein Tapasin und dem Chaperon Calreticulin mit der Thioloxidoreductase ERp57²². Die zusammengesetzte MHC I-schwere Kette, das β_2 m und die Peptidkomplexe werden zur Zelloberfläche transportiert, auf der sie dann mit CD8⁺-T-Zellen interagieren.

HLA-DR, -DQ und –DP sind die menschlichen MHC-Klasse II-Moleküle. Die Struktur dieser Moleküle ähnelt insgesamt sehr der der Klasse I-Moleküle, jedoch besteht sie aus zwei polymorphen membranübergreifenden Ketten, der α - und der β -Kette mit jeweils zwei Domänen (Abbildung 3). Im Gegensatz zu MHC-Klasse I-Molekülen ist die Peptidbindungsfurche an beiden Enden offen, dies erlaubt das Binden von längeren Peptiden mit zehn bis fünfzehn Aminosäuren. MHC-Klasse II-Moleküle präsentieren CD4 $^{+}$ -T-Zellen Peptide von exogenen Proteinen, die durch Endozytose aufgenommen wurden oder von internalisierten Plasmamembranproteinen stammen. Das Prozessieren

der exogenen Antigene findet, im Gegensatz zum MHC-Klasse I-Prozessierungspfad, im selben Kompartiment statt wie die Peptidbeladung. MHC-Klasse II- α - und - β -Ketten werden direkt ins ER synthetisiert und zusammen mit der trimeren invarianten Kette (li, *invariant chain*) ins MHC-Klasse II-Beladungskompartiment transportiert. Dort wird das Klasse II-assoziierte invariante-Kettenpeptid (CLIP, *class II-associated invariant chain peptide*), ein Teil der invarianten Kette, welches die Peptidbindungsfurche (Abbildung 4) der MHC-Klasse II-Moleküle besetzt, durch das später präsentierte Peptid ersetzt. Dieser Austausch wird reguliert und katalysiert durch HLA-DM und HLA-DO²³.

Abbildung 3: Struktur des MHC-Klasse II-Moleküls a) Moleküloberfläche b) Bänderdiagramm

Abbildung 4: Peptidbindungsfurche MHC-Klasse II-Molekül c) Aufsicht auf Bindungsfurche d) Schematische Darstellung

Zusammenfassend kann man sagen, dass MHC-Klasse I-Moleküle Peptide von intrazellulären Proteinen, MHC-Klasse II-Moleküle hingegen Peptide von exogenen und Membranproteinen präsentieren. Es wurden jedoch auch alternative Pfade der Peptidentstehung beschrieben. So ist bekannt, dass MHC-Klasse I-Moleküle durch einen Kreuzpräsentation genannten Prozess fähig sind, Peptide aus exogenen Antigenen zu präsentieren²⁴. Auch können intrazelluläre Peptide auf MHC-Klasse II-Molekülen präsentiert werden²⁵. Autophagie spielt hierbei eine Rolle bei der MHC-Klasse II-restringierten Präsentation von Peptiden intrazellulärer Proteine²⁶. Autophagie ist der Abbau intrazellulärer Komponenten in Lysosomen und ist daher im endosomalen/lysosomalen Abbaupfad relevant.

1.2.2 T-Lymphozyten

T-Lymphozyten sind schon in frühen Entwicklungsstadien fähig, entweder $\alpha\beta$ -T-Zellrezeptoren (TCR, *T-cell receptor*) oder $\gamma\delta$ -T-Zellrezeptoren zu exprimieren. Bei $\gamma\delta$ -T-Zellen wird angenommen, dass sie Hitzeschockproteine und unkonventionelle Nucleotide und Phospholipide erkennen, die an nicht-klassische MHC-Moleküle wie CD1 gebunden sind und zusätzlich vermutlich regulatorische Eigenschaften haben. $\alpha\beta$ -T-Zellen erkennen prozessierte Antigene, die auf MHC-Molekülen an der Oberfläche von Zellen präsentiert werden.

Der $\alpha\beta$ -TCR wird von CD8⁺-T-Zellen, CD4⁺-T-Zellen oder NK-T-Zellen exprimiert. Doppelt positive CD4⁺CD8⁺-T-Zellen passieren in ihrer Entwicklung den Thymus, wobei sie durch Selbst-MHC-Moleküle positiv selektiert werden. Die T-Zelle wird CD8-positiv indem sie durch die Bindung an MHC-Klasse I-Moleküle die CD4-Expression verliert. Bindet die T-Zelle hingegen an MHC-Klasse II-Moleküle, wird sie CD4-positiv. T-Zellen, die weder an Selbst-MHC-Klasse I- und II-Moleküle binden, sterben. Durch negative Selektion werden T-Zellen entfernt, die einen T-Zellrezeptor exprimieren, die Selbstpeptide erkennen. Damit werden selbstzerstörerische Immunreaktionen verhindert. Einige Antigene werden in Geweben und Organen präsentiert, jedoch nicht im Thymus. Selbstreaktive T-Zellen erkennen Peptide dieser Antigene und werden in der Peripherie anergisch. Diese Anergie hat ihre Ursache im Fehlen von zusätzlichen notwendigen Signalen während des ersten Antigenkontakts. Dies alles führt dazu, dass T-Zellen zwischen Selbst- und Fremd-bzw. bösartigen Antigenen unterscheiden können.

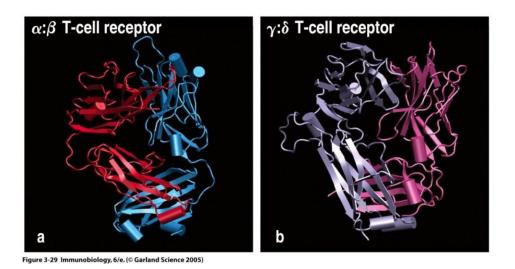


Abbildung 5: Struktur der beiden TCR-Formen

T-Zellen, die sowohl die positive als auch die negative Selektion im Thymus überlebt haben, werden naive T-Zellen genannt. Diese zirkulieren im Körper durch das Blut- und Lymphsystem. Eine T-Zelle wird durch den Kontakt zwischen einer professionellen antigenpräsentierenden Zelle (APC, antigen presenting cell), die einen passenden MHC/Peptid-Komplex bereitstellt, und einem kostimulatorischen zweiten Signal aktiviert. Dieser Prozess wird aktivierte T-Zellen proliferieren und in Effektor-T-Zellen differenzieren. CD8⁺-T-Zellen werden zu zytotoxischen T-Zellen (CTL, cytotoxic T lymphocytes), CD4⁺-T-Zellen entweder zu T_H1- oder zu T_H2-Zellen. CTLs sind befähigt, ihre Zielzellen durch die Induktion von Apoptose zu zerstören. Apoptose wird eingeleitet durch Perforine und Granzyme²⁷ oder durch die Fas-Liganden-Interaktion^{28,29}. T_H1-Zellen sekretieren IFNγ und Interleukin 2 (IL-2)³⁰. Dies führt zur Aktivierung von Makrophagen und CD8⁺-T-Zellen. T_H2-Zellen unterstützen die humorale Immunantwort durch die Sekretion von IL-4³¹ und der darauf folgenden Aktivierung von Antikörpersekretierenden B-Zellen und dem Komplementsystem. Beschrieben wurde auch eine weitere T-Zellpopulation, die CD4⁺ ist und konstitutiv CD25 exprimiert³². Diese Zellen werden regulatorische T-Zellen (Treg) genannt und sind fähig, T-Zellreaktionen zu hemmen.

1.3 Nebenhistokompatibilitätsantigene

1.2.3 mHags

Nebenhistokompatibilitätsantigene sind die Hauptverantwortlichen vieler komplexer Ereignisse bei Gewebe- und Organtransplantationen zwischen MHC-identischen Individuen³³. Die klassische Definition eines mHag geht auf Georg Snell³⁴ zurück. mHag erzeugen weitaus langsamere und chronische Transplantationsabstoßungen als MHC-Unverträglichkeiten. In den 1970er Jahren beschrieb Els Goulmy eine mögliche Beteiligung von mHag an Abstoßungsreaktionen nach Transplantationen³⁵.

Unter Peptidalloreaktivität versteht man das Auslösen einer auf mHag spezifischen T-Zellantwort, diese wurde von Townsend³⁶ als Hypothese aufgestellt und von Wallny und Rammensee bestätigt³⁷. Peptidalloreaktivität tritt auf, wenn ein mHag in einem von zwei HLA-identischen Individuen vorkommt, im anderen jedoch nicht. MHags wurden durch restringierte T-Zellen definiert, die Individuen entnommen und *in vivo* durch Knochenmarks- oder Organtransplantationen und Bluttransfusionen spezifisch aktiviert wurden. Von Schreuder wurde gezeigt³⁸, dass die Genloci der damals bekannten mHags unabhängig von den HLA-Loci vererbt werden. MHags sind natürlich prozessierte, von intrazellulären Proteinen stammende Peptidfragmente, die an MHC-Komplexe assoziieren.

Die Tatsache, dass eine signifikante Anzahl an Knochenmarktransplantationen zwischen HLA-identischen Geschwistern keine Graft-versus-Host-Erkrankung (GvHD, *Graft-versus-Host Disease*) ausbilden, lässt auf eine Hierarchie in der Immunogenität schließen³⁹. *In vitro*-Studien zeigten, dass es vielfache Unterschiede zwischen mHags in verschiedenen HLA-identischen Knochenmarksspender-/-empfängerkombinationen gibt⁴⁰.

Es sind verschiedene Faktoren, die das immunogene Potential eines mHag bestimmen. So könnten zum Beispiel die synergischen Effekte der mHag-spezifischen T_H-CTL-Zusammenarbeit, wie von Roopenian für ein Maus-mHag gezeigt wurde⁴¹, solche Faktoren sein.

Die Affinität der Peptide den MHC-Molekülen gegenüber könnte die immunologische Antwort ebenfalls beeinflussen. So wurde von den Haan gezeigt⁴², dass das mHag HA-2 Peptid zu den natürlich prozessierten Peptiden mit höchster Affinität gehört. Die Affinität der MHC-Klasse I-Peptidbindung ist für den Ausgang einer Immunantwort ausschlaggebend, auch bei subdominanten Epitopen⁴³. Darüberhinaus spielen auch andere Faktoren neben der MHC-Peptidbindungsaffinität eine wichtige Rolle in der Generierung einer Immunantwort⁴⁴.

Der Einfluss von mHags auf Reaktionen, die Organ- und Gewebetransplantationen folgen können, hängt unter anderem von ihrer Gewebeverteilung ab. Die Expression einiger geschlechtsungebundener mHags, wie zum Beispiel HA-1, HA-2 oder HA-5 ist auf die haematopoietische Zellbildung beschränkt⁴⁵, inklusive der epidermalen Langerhans-Zellen⁴⁶. HA-3 und HA-4 werden neben allen anderen Geweben auch auf Nabelschnurendothelzellen und Nierenepithelzellen exprimiert⁴⁵, H-Y nur in Männern. Besonders interessant sind die gewebespezifischen Antigene^{47,48}, welche bei der MHC-Klasse I-restringierten Lyse von Nierenzellen durch Transplantat-infiltrierenden T-Zellen eine Rolle spielen⁴⁹. Es wurde mehrfach beschrieben, dass in an GvHD-erkrankten Patienten nach einer HLA-identischen Knochenmarkstransplantation für anti-Empfänger spezifische CTLs vorkommen. Auch im Graft-versus-Leukämie-Effekt (GvL, *graft-versus-leukaemia*) spielen mHags eine wichtige Rolle. GvL besitzt Ähnlichkeiten zu akuter und chronischer GvHD. Es wird vermutet, dass vom Spender stammende mHag-spezifische T-Zellen an der Entfernung von Leukämiezellen beteiligt sind. Tabelle 1 listet die derzeit bekannten 29 mHags des Menschen auf⁵⁰.

Tabelle 1: Liste bekannter mHagsBekannte mHag, die auf molekularem Niveau identifiziert wurden. Aufgelistet nach der Reihenfolge ihrer Publikation⁵⁰.

mHag [#]	HLA Restriktion	Peptidsequenz##	mHag Gen ^{###}	Chrom. Position	SNP AG+/AG- [*]	mHag Name ^{**}	Referenz		
mHags, l	mHags, kodiert auf autosomalen Chromosomen								
HA-2 ^V	A*0201	YIGELVLVS <u>V</u>	MYO1G	7p13-p11.2	G/A	MYOG1G ^G /A2	den Haan ⁴²		
HA-1 ^H	A*0201	VL <u>H</u> DDLLEA	HMHA1	19p13.3	A/G	HMHA1 ^A /A0201	den Haan ⁵¹		
HA-1 ^H	B60	KECVI <u>H</u> DDL	HMHA1	19p13.3	A/G	HMHA1 ^A /B60	Mommaas ⁵²		
HA-1 ^H	A*0206	VL <u>H</u> DDLLEA	HMHA1	19p13.3	A/G	HMHA1 ^A /A0206	Torikai ⁵³		
HB-1 ^H	B44	EEKRGSL <u>H</u> VW	HMHB1	5q31.3	C/T	HMHB1 ^C /B44	Dolstra ⁵⁴		
HB-1 ^Y	B44	EEKRGSL <u>Y</u> VW	НМНВ1	5q31.3	T/C	HMHB1 ^T /B44	Dolstra ⁵⁵		

HA-8 ^R	A*0201	<u>R</u> TLDKVLEV	KIAA0020	9q22.3	G/C	KIAA0020 ^C /A2	Brickner ⁵⁶
HA-3 ^T	A1	V <u>T</u> EPGTAQY	AKAP13	15q24-25	C/T	AKAP13 ^C /A1	Spierings ⁵⁷
UGT2B	A29	AELLNIPFLY	UGT2B17	4q13	Gendefekt	UGT2B17/A29	Murata ⁵⁸
17 ACC1 ^Y	A24	DYLQ <u>Y</u> VLQI	BCL2A1	15q25.3	A/G	BCL2A1 ^A /A24	Akatsuka ⁵⁹
ACC2 ^D	B44	KEFED <u>D</u> IINW			A/G	BCL2A1 ^A /B44	
LRH-1	В7	TPNQRQNVC	P2RX5	17p13.3	C/- ^{\$}	P2RX5 ^{+C} /B7	de Rijke ⁶⁰
CTL- 7A7 ^K	A3	RVWDLPGVLK	PANE1	22q13.2	T/C	PANE1 ^T /A3	Brickner ⁶¹
ACC-5 ^R	A*3101	ATLPLLCA <u>R</u>	CTSH	15q24-q25	A/G	CTSH ^A /A3101	Torikai ⁶²
ACC-4 ^R	A*3303	WATLPLLCA <u>R</u>				CTSH ^A /A3303	
RDR17 3 ^H	В7	RP <u>H</u> AIRRPLAL	ECGF1	22q13.33	A/G	ECGF1 ^A /B7	Slager ⁶³
DNR-7 ^R	A3	SLP <u>R</u> GTSTPK	SP110	2q37.1	A/G	SP110 ^A /A3	Warren ⁶⁴
LB ADIR-1 ^F	A*0201	SVAPALAL <u>F</u> PA	TOR3A	1q25.2	T/C	TOR3A ^T /A0201	van Bergen ⁶⁵
ACC-6	B44	MEIFIEVFSHF	HMSD	18q21.33	A/G	HMSD ^A /B44	Kawase ⁶⁶
mHaas l	radiart durch V	homologe Gene auf	V Chromosom	uan.			
SMCY	.ouiert auren x- B7				NA	JARID1D/B7	Wang ⁶⁷
		SP <u>S</u> VDKA <u>R</u> AEL	JARID1D	Yq11	NA		wang
SMCY	A*0201	FI <u>D</u> SY <u>I</u> C <u>QV</u>			NA	JARID1D/A0201	. 68
DFFRY	A*0101	IVD <u>C</u> LTEMY	USP9Y	Yq11.2	NA	USP9Y/A0101	Pierce ⁶⁸
UTY	B8	LPHN <u>H</u> T <u>D</u> L	UTY	Yq11	NA	UTY/B8	Warren ⁶⁹
UTY	B60	<u>R</u> ESEE <u>E</u> S <u>V</u> SL			NA	UTY/B60	Vogt ⁷⁰
DBY	DQ5	HIE <u>N</u> FSDIDMGE	DDX3Y	Yq11	NA	DDX3Y/DQ5	Vogt ⁷¹
DBY	DRB1*1501	<u>G</u> STASKGRYIPPH LRN <u>R</u> EA			NA	DDX3Y/DRB1*1 501	Zorn ⁷²
RPS4Y	DRB3*0301	<u>V</u> IKVNDT <u>V</u> QI	RPS4Y1	Yp11.3	NA	RPS4Y1/DRB3*0 301	Spierings ⁵⁷
RPS4Y	B*5201	TIRYPDP <u>V</u> I			NA	RPS4Y1/B5201	Ivanov ⁷³
ACC-3	A*3303	EVLLRPGLHFR	TMSB4Y	Yq11.221	NA	TMSB4Y/A3303	Torikai ⁷⁴

^{**}Ursprünglicher Name des mHag, Exponent gibt, wenn vorhanden, das kodierte antigene Allel als Aminosäure im Einbuchstabencode an. ***Peptidsequenz im Einbuchstabencode, die polymorphe Aminosäure ist, wenn vorhanden, unterstrichen. Bei den Y-chromosomal gekoppelten mHag ist der Unterschied zum X-homologen Allel unterstrichen. ****Die hauptsächlich in haematopoietischen Zellen exprimierten (und daher potentielle Ziele für GvL-Effekte) Gene sind fett gedruckt. **Das polymorphe Nucleotid, welches die Antigenität des autosomalem mHag definiert wird für beide Allele angegeben. Nucleiddeletionen anstelle von SNPs sind als "-" und dem deletierten Nucleotid angegeben. ** Der von den Autoren vorgeschlagene Name eines mHag besteht aus dem offiziellen Gensymbol (definiert durch das HUGO Gene Nomenclature Committee), dem vom antigenen Allel kodierten Nucleotid im Exponenten sowie dem der Restringierung zu Grunde liegenden HLA-Allel. *** UGT2B17 hat eine gesamte Gendeletion als Polymorphismus. Transplantante eines Donors, welchem beide UGT2B17-Allele fehlen, an einen Empfänger mit mindestens einem UGT2B17-Allel werden für GvHD-Effekte verantwortlich gemacht. **Dieses mHag wird durch differenzielle Proteinexpression in Empfänger- und Spenderzellen als Folge eines homozygoten Frameshift nach einer Deletion im Spender verursacht. Eine Cytosindeletion in der Nucleotidsequenz des Exons 3 im P2X5-Gen beim Spender führt zu einem frühzeitigen Translationsabbruch, genauso wie ein Frameshift nach der SNP-Position.

1.2.4 Einzelnukleotidaustausch (SNP) und andere Polymorphismen

Genau wie in anderen Genomen auch ist die Desoxyribonukleinsäure (DNA, *Deoxyribonucleid acid*) des menschlichen Genoms nicht statisch. Sie ist, im Gegenteil, einer großen Anzahl an verschiedenen Typen von vererbbaren Veränderungen, Mutationen unterworfen⁷⁵.

Man unterteilt chromosomale Mutationen, bei denen Chromosomenbrüche und Neuverbindungen zwischen Chromatiden auftreten, in genomische Mutationen mit Duplikationen oder Verlusten einzelner Chromosomen oder des gesamten Chromosomensatzes und in Genmutationen, die, je nach Auswirkung auf die DNA, in verschiedene Gruppen unterteilt werden. Hier wird in Basenaustauschmutationen, Deletionen und Insertionen unterschieden. Deletionen und Insertionen, also das Hinzufügen oder Entfernen einzelner Basen, führen in der Regel Leserasterverschiebungen. Mutationen können auch dahingehend eingeteilt werden, ob sie nur eine DNA-Sequenz betreffen, sogenannte einfache Mutationen, oder ob sie einen Austausch zwischen zwei allelischen oder nicht-allelischen Sequenzen beinhalten. De novo-Mutationen treten in einzelnen Individuen auf, entweder in somatischen Zellen oder in der Keimzellbahn. Keimzellbahnmutationen, die keine letalen oder die Fertilität der Träger störenden Effekte haben, können sich über Nachkommen in einer sexuellen Population vervielfältigen. Allelische Sequenzvariationen werden traditionell als DNA-Polymorphismen beschrieben, wenn sie mit einer Allelhäufigkeit innerhalb einer Population von mehr als 1 % vorkommen. Es gibt eine große Anzahl an verschiedenen DNA-Polymorphismen, der Einzelbasenaustausch (SNPs, single nucleotide polymorphisms) ist einer davon. Mutationen sind der Hauptantrieb der Evolution, können aber auch pathogen wirken. Sie können der direkte Grund für eine Krankheit sein, oder aber auch nur die Suszeptibilität für Erkrankungen erhöhen. Das gewöhnlich niedrige Vorhandensein von Mutationen lässt sich als Balance zwischen evolutionären Neuerungen und pathogenen Mutationen beschreiben. Oft sind Kopierfehler während der DNA-Replikation oder -Reparatur für eine Mutation verantwortlich. Um die Fehlerquote beim Einbau von Basen während der Replikation zu verringern, besitzt die DNA-Polymerase eine integrierte 3'→5' Exonukleaseaktivität, die die Replikation auf

Fehler prüft und korrigiert. Dabei stoppt die DNA-Polymerase beim Einbau einer falschen Base und die Exonuklease schneidet diese Base aus, sodass die DNA-Polymerase nach Einbau der richtigen Base mit ihrer Arbeit fortfahren kann. Ein Einzelbasenaustausch betrifft, wie der Name vermuten lässt, einzelne Basen. Bei den meisten SNPs wird ein einzelnes Nukleotid durch ein anderes, sich vom Ursprünglichen unterscheidendes Nukleotid ersetzt. Auch einfache Insertions-/Deletionsmutationen, InDel genannt, können SNPs erzeugen. Normalerweise haben SNPs immer zwei Allele. Nur etwa 1,5 % des menschlichen Genoms kodieren für Proteine, folglich werden die meisten SNPs in nicht-kodierender DNA gefunden. SNPs treten etwa alle 100 bis 300 Basen auf. Man unterscheidet bei Mutationen im kodierenden Teil des Genoms synonyme und nicht-synonyme Mutationen. Synonyme oder stille Mutationen haben keinen Einfluss auf die Sequenz des Genprodukts. Eine synonyme Mutation erzeugt einen Codonwechsel, aber es wird dennoch dieselbe Aminosäure kodiert. Dies ist aufgrund der Degeneration des genetischen Codes möglich, dass also verschiedene Tripletts für ein und dieselbe Aminosäure kodieren. Eine Ausnahme bilden Mutationen, die als synonym erscheinen, jedoch einen Effekt auf das Spleißen der mRNA (messenger Ribonucleic Acid) haben und somit die gespleißte mRNA-Sequenz verändern können. Nicht-synonyme Mutationen stehen im Interesse dieser Dissertation. Bei ihnen wird die Sequenz des Genprodukts geändert, da durch den Basenaustausch ein für eine andere Aminosäure codierendes Codon entsteht. Somit gibt es je nach Allel verschiedene Proteinsequenzen.

1.2.5 Allelfrequenz und Verteilung in Geweben

Die Allelfrequenz eines Allels beschreibt dessen Verteilung in bestimmten Populationen. Kommt ein Allel sehr selten vor, so ist die Wahrscheinlichkeit äußerst gering, dass T-Zellen eines Individuums mit anderen Allelen für ein Gen diesem seltenen Allel begegnen werden. Ist die Allelfrequenz hingegen zu hoch, ist eine mHag-Reaktion ebenfalls gering, die meisten T-Zellen werden das Allel bereits aus ihrem eigenen Körper kennen und aufgrund der Fremd/Selbst-Erkennung nicht darauf reagieren können. Beides sind Ausschlusskriterien für mHag-Kandidaten, eine Untergrenze wurde für diese

Arbeit bei 1 % Vorkommen in einer Population definiert. Alle Allele mit einem Vorkommen dazwischen sind als mHag-Kandidaten interessant.

Daten über Allelfrequenzen finden sich zum einen in Datenbanken wie der dbSNP, zum anderen wurden durch Typisierungen von Blutspendern Daten erhoben, die Rückschlüsse auf Allelfrequenzen zulassen. Die gewebsspezifische Expression von mHag-Kandidaten ist besonders im Hinblick auf stammzellbasierte Immuntherapien interessant. Sind mHags nur auf einem Gewebetyp zu finden, idealerweise auf Tumorgewebe, so sind sie eine sehr gute Ausgangslage für Graft-versus-Tumor-Reaktionen. Finden sie sich hingegen ubiquitär auf vielen unterschiedlichen Geweben, kann man mHags eher als Auslöser der Graft-versus-Host-Erkrankung sehen. Genexpressionsdaten über viele unterschiedliche Normalgewebe und verschiedene Tumorarten wurden mithilfe der Affymetrix Microarray-Technik erstellt.

1.2.6 Graft-versus-Host-Erkrankung

Die Graft-versus-Host Erkrankung ist eine der häufigsten Komplikationen bei hämatopoetischer Stammzelltransplantation (SCT, stem cell transplantation). Sie tritt mit einer Häufigkeit von 30 bis 80 % bei Transplantatempfängern auf⁷⁶. GvHD wurde erstmals 1958 von Simonsen⁷⁷ und detailliert 1966 von Billingham⁷⁸ beschrieben. GvHD tritt auf, wenn das Transplantat immunologisch kompetente Zellen enthält, der Empfänger Gewebeantigene exprimiert, die nicht im Spender vorkommen und der Empfänger nicht in der Lage ist, eine effektive Immunantwort gegen die transplantierten Zellen zu induzieren. Die Mediatoren von GvHD im Empfänger sind dendritische Zellen, T-Zellen, NK-Zellen, Makrophagen, Zytokine und Oberflächenmarker auf Immunzellen (MHC, mHags).

Der Empfänger besitzt in der Regel ein durch Bestrahlung oder Chemotherapie geschwächtes Immunsystem. Eine Ausnahme bilden Neugeborene vor der Ausbildung eines eigenen Immunsystems. Sie sind von Natur aus immungeschwächt. Risikofaktoren, eine GvHD auszubilden, sind fehlende HLA-Übereinstimmung, Empfänger und Spender

sind unterschiedlichen Geschlechts, das Alter des Empfängers, die Zahl der transplantierten T-Zellen, frühere Bluttransfusionen beim Empfänger und niedrige Konzentrationen an Immunsuppressiva im Empfänger. Die Folgen von geschwächtem Immunsystem, langsamer Genesung und Immunsuppression sind lebensgefährliche Infektionen und Tod.

Eine akute GvHD tritt in der Regel in den ersten Wochen nach einer Transplantation auf. Bei nicht-identischen HLAs oder nicht verwandten Spendern hat sie eine höhere Häufigkeit. Klinische Symptome sind Dermatitis, Hepatitis und Enteritis. Auch das Immunsystem an sich wird gestört, eine höhere Infektionsanfälligkeit ist die Folge. GvHD beginnt zunächst an der Haut von Handflächen, Fußsohlen, Ohren und Mundschleimhaut. Später werden auch Leber und Gastrointestinaltrakt betroffen. Chronische GvHD wird durch unterschiedliche klinische Symptome von akuter GvHD unterschieden. Bei chronischer GvHD treten vor allem Bindegewebserkrankungen wie Lupus erythematosus, Sjögren-Syndrom oder Skleroderma auf. Die klassische Definition von GvHD besagt, dass GvHD als chronisch zu bezeichnen ist, wenn sie zum ersten Mal nach 80 bis 100 Tagen nach Knochenmarkstransplantation auftritt oder über diesen Zeitpunkt hinaus anhält. Sie kommt in 30 bis 60 Prozent der Empfänger vor, besonders dann, wenn hämatopoetische Stammzellen anstelle von Knochenmark transplantiert werden und wenn der Spender kein HLA-identisches Geschwister ist⁷⁹. In ihrer milden Form zeigt sich chronische GvHD durch Beeinträchtigung der Haut und der Schleimhäute von Auge, Mund oder Vagina. Auch ist die Leberfunktion leicht betroffen. Diese Symptome sind bei der schweren Form verstärkt, bis hin zu Serositis, Hepatitis und Leberzirrhose, ernsthafte Schädigungen des Gastrointestinaltrakts oder auch Broncholitis obliterans. An chronischer GvHD Erkrankte können Alopecia und Pigmentstörungen entwickeln und haben eine erhöhte Anfälligkeit für Hautkrebs und für durch Viren und Pilze hervorgerufene Hautinfektionen. Schließlich können Erkrankte auch Autoantikörper entwickeln und bei intensiver Hautbeeinträchtigung an Thrombozytopenie leiden, beides führt zu erhöhter Sterblichkeit⁸⁰.

Die transfusionsinduzierte GvHD ist eine seltene und in der Regel sehr ernste Komplikation bei Bluttransfusionen. Sie tritt auf, wenn Spender und Empfänger denselben HLA-Haplotyp besitzen, Spenden von Verwandten ersten oder zweiten Grades benutzt werden oder innerhalb von Populationen mit begrenztem HLA-Haplotyp-Pool. Auch bei geschwächter zellvermittelter Immunität des Empfängers kann sie auftreten. Sie zeigt sich durch klinische Symptome wie Fieber, Diarrhö, Leberfunktionsstörungen und akutem Knochenmarksversagen ein bis zwei Wochen nach Bluttransfusionen. Diese Art der GvHD kann durch Gamma-Bestrahlung der Blutspenden vor der Transfusion vermieden werden⁸¹. Syngene GvHD tritt bei Spenden zwischen identischen Zwillingen auf. Obwohl Spender und Empfänger genetisch identisch sind, kann sich diese seltene und unerwartete GvHD entwickeln.

1.2.7 Graft-versus-Tumor-Effekt

Unter Graft-versus-Leukämie-Aktivität versteht man den immunvermittelten Antitumoreffekt, der bei allogener Übertragung von hämatopoietischen Stammzellen in Patienten mit hämatologischen und soliden Tumoren^{82,83} auftritt. Der GvT-Effekt korreliert in positivem Sinne mit der GvHD. Beide Effekte werden in großem Maße durch alloreaktive Spender-T-Zellen vermittelt, die mHags erkennen.

Adoptive Immuntherapie mit Donor-Lymphozyten-Infusion (DLI, donor lymphocyte injection) bewirkt eine starke GvT-Aktivität in einigen Patienten mit einem Wiederauftreten von Leukämie nach allogener Stammzelltransplantation ^{84,85}. Dieser Effekt wird zum Teil durch Erkennung von mHags ausgelöst ⁸⁶, die auf leukämischen Blasten präsent sind. HA-1 spezifische T-Zellen sind so in Patienten ohne GvHD für GvT-Aktivität verantwortlich ⁸⁷. Ziel-T-Zellepitope, die in GvT-Reaktionen involviert sind, sind entweder autologe tumor-assoziierte Antigene (TAA, tumour-associated antigens) ⁸⁸ oder allogene mHags ⁸⁹, die von Tumoren exprimiert werden. HA-1-spezifische CTLs wurden aus Patienten nach allogener Stammzelltransplantation isoliert ⁹⁰. Die *in vitro*-Beobachtung, dass HA-2-spezifische CTLs leukämische Zellen lysieren, gab den Grund zur Annahme ihrer Beteiligung an GvT ⁹¹. Auch für die mHags HB-1 und BCL2A1 wurde dies gezeigt ^{54,59}. Auch in GvT-Effekten soliden Tumoren gegenüber scheinen mHags eine Rolle zu spielen. Das hämatopoetisch-restringierte HA-1 zeigt abweichende mRNA-

Expression in Zellen primär solider Tumoren, HA-1 CTLs lysieren auch solide Tumorzelllinien *in vitro*⁹². Tykodi zeigte 2004⁹³, dass auch HA-1-, HA-3- und HA-8-spezifische CTLs in Patienten mit Nierenzellkarzinom (RCC, *renal cell carcinoma*) vorkommen und *in vitro* zytotoxische Aktivität gegenüber Karzinomzellen zeigten. Beide Studien, Tykodi und Klein, zeigen, dass sowohl mHags mit einer breiteren Verteilung, als auch auf bestimmte Gewebe beschränkte mHags in der Vermittlung von GvT-Effekten eine Rolle spielen.

1.2.8 mHags in der Immuntherapie

Das Auslösen der wünschenswerten GvT-Reaktion ist die wichtigste Funktion von mHags in der stammzellbasierten Immuntherapie. Nicht nur bei den unterschiedlichen Leukämien, sondern auch bei Erkrankungen an soliden Tumoren besteht die Möglichkeit einer das schädliche Gewebe gerichteten Immunreaktion gegen Empfängerorganismus. Befindet sich ein mHag zum Beispiel ausschließlich auf Tumorgewebe und ist ansonsten nicht bis sehr wenig exprimiert und wird von T-Zellen erkannt, so können diese T-Zellen das Antigen auf den Tumorzellen erkennen und diese lysieren⁵⁰. Auch für Therapien mit adoptivem Transfer, bei dem T-Zell-Populationen außerhalb des Körpers kultiviert und vermehrt werden und anschließend dem Körper zurückgeführt werden, sind mHags als Ziel wichtig. Möglichst viele mHags zu kennen hilft auch bei der Vermeidung von GvHD-Erkrankungen. So kann neben dem Abgleich der HLA-Allele auch ein Abgleich der mHags vor einer Stammzelltransplantation zur Leukämiebehandlung stattfinden, um das Risiko von Abstoßungsreaktionen zu minimieren. Auch adoptiver Transfer von regulatorischen T-Zellen, die auf mHags spezifische CTLs regulieren und hemmen können, dient als Mittel zur Abwehr oder Abschwächung von GvHD-Reaktionen. Schließlich können auch transgene TCR dazu beitragen, Abstoßungsreaktionen folgenschwere bei Empfängern von Stammzelltransplantaten zu vermeiden, indem transgen hergestellte regulatorische T-Zellen mit auf mHag-spezifischen TCR adoptiv transferiert werden.

2 Methoden

2.1 Isolierung von PBMCs

Monozyten und Lymphozyten fasst man unter dem Begriff PBMC (*peripheral blood mononuclear cell*) zusammen. Durch einen Dichtezentrifugationsvorgang werden weitere Blutbestandteile wie Erythrozyten, Thrombozyten und neutrophile Granulozyten abgetrennt. Heparinisiertes frisches, erythrozytenabgereichertes oder leukozytenangereichtes Blut wird verdünnt und auf eine Lösung von Ficoll-Hypaque aufgetragen. Die Lösung besteht aus dem Polysaccharid Ficoll und der iodhaltigen Verbindung Metrizamid und hat eine Dichte von 1,077 g/mL. Die Zellen verhalten sich bei der Zentrifugation gemäß ihrer Dichte: im Pellet findet man Granulozyten und Erythrozyten, PBMCs bilden eine Interphase zwischen Ficoll und Plasma, aus der sie isoliert werden.

2.2 Durchflusszytometrie

Durchflusszytometrie, oder auch FACS (fluorescence activated cell sorting) genannt, beruht auf der Reflexion von optischen Signalen an einer Zelle, nachdem diese mit einem Laserstrahl getroffen wurde. Zellen werden durch eine Kapillare gesaugt und passieren einzeln einen Laserstrahl. Zur Detektion der reflektierten Strahlen kommen Photomultiplier zum Einsatz. Streulicht wird von jeder Zelle Fluoreszenzimpulse, wenn die Zellen mit fluoreszenz-gefärbten Antikörpern gebunden sind. Das verwendete Gerät (FACS-Calibur von Becton Dickinson) besitzt einen Diodenlaser (635 nm) und einen Argonlaser (488 nm) sowie vier Fluoreszenzkanäle unterschiedlicher Wellenlänge. Zellgröße, Zellwandstruktur und intrazelluläre Bestandteile beeinflussen das Streulicht. Das Vorwärtsstreulicht (FSC, forward scatter) ist ein Maß für die Zellgröße, das Seitwärtsstreulicht (SSC, side scatter) für die Granularität. Gegen bestimmte Oberflächenmerkmale gerichtete und mit fluoreszierenden Farbstoffen gekoppelte Antikörper können ebenfalls nach Inkubation auf den Zellen detektiert werden. Zelltypen können somit anhand ihrer vorhandenen Oberflächenmarker definiert werden.

2.3 Analyse antigenspezifischer T-Zellantworten

Für die Immunologie ist es von außerordentlichem Interesse, die Immunantwort bei Autoimmunität, Infektion, Transplantation oder nach einer Impfung zu beobachten. Die normalerweise niedrige Häufigkeit von T-Zellen, die für ein Antigen spezifisch sind, ist ein dauerhaftes Problem von antigenspezifischen T-Zellantworten. Die Anzahl von naiven peripheren T-Zellen wurde auf 4x10⁻⁸ bis 2x10⁻⁵ geschätzt⁹⁴. Auch gibt es unterschiedliche Funktionalität und Aktivierungspfade zwischen naiven, Effektor- und Gedächtnis-T-Zellen. Untersuchungen von T-Zellantworten werden durch verschiedene Merkmale gekennzeichnet: Testgenauigkeit, die Nachweis- und Quantitätsgrenze, Spezifität, Linearität und Reichweite, Unempfindlichkeit, Robustheit und die Systemtauglichkeit. Die Richtigkeit und Exaktheit des Testergebnisses führt auf die Testgenauigkeit zurück. Dies wird als Nähe des Testergebnisses zum wahren Wert definiert und kann nur durch den Vergleich mit einem Standard berechnet werden. Die Genauigkeit oder Wiederholbarkeit einer Untersuchung wird als die Nähe zwischen Untersuchungsergebnissen gleicher Proben definiert. Standardabweichung und Varianz sind die dafür benutzten Parameter, eine Positivprobe ist hierfür ebenso unabkömmlich. Die Nachweisgrenze einer Methode ist ihre Fähigkeit, kleinste Mengen einer Substanz mit einer sicheren Verlässlichkeit zu entdecken und kann durch Negativkontrollen bestimmt werden. Die Empfindlichkeit einer Methode ist das Verhältnis zwischen richtig positiven innerhalb der positiven Ergebnisse (so gleicht zum Beispiel eine hohe Empfindlichkeit einer geringen Menge an falsch negativen Ergebnissen). Die Empfindlichkeit ist der Parameter, der am meisten durch Hintergrundstörungen beeinflusst wird. Spezifität gibt die Fähigkeit wieder, echte negative Werte als negativ zu erkennen. Eine hohe Spezifität entspricht einer geringen Menge an falsch positiven Daten. Bei einer verlässlichen Methode, um T-Zellantworten zu messen, sollten Genauigkeit, Präzision, Empfindlichkeit und Spezifität trotz Änderungen von äußeren Faktoren wie Instrumente oder Reagenzien gleich bleiben.

2.4 Funktionale T-Zell-Charakterisierungen

T-Zellen antworten mit messbaren Effekten, nachdem sie in Kontakt mit von MHC-Komplexen auf Zielzellen präsentierten Antigenen gekommen sind. Diese Effekte können Zytokinexpression, die Expression von Aktivierungsmarkern, Proliferation, Degranulation, Zytotoxizität gegenüber Zielzellen und bzw. oder Trogozytose sein. Es existieren mehrere Methoden für den Nachweis von Zytokinen, die von Antigenspezifischen T-Zellen exprimiert werden. All diese Untersuchungen können für verschiedene Zytokine verwendet werden, abhängig von der erwartenden Funktionalität der Zellen. Interferon γ (IFN γ) ist eines der wichtigsten Zytokine für den Nachweis von aktivierten CD8⁺- oder CD4⁺-T-Zellen. Zytokinexpressionsuntersuchungen auf Proteinniveau sind der klassische ELISA⁹⁵ (*enzyme linked immunosorbent assay*) oder ähnliche Proteinnachweisuntersuchungen wie der zytometrische Beadnachweis⁹⁶. Diese Methoden erlauben den gleichzeitigen Nachweis mehrerer Zytokine in einer Probe. Auf (messenger ribonucleic acid) wird die quantitative Echtzeit-Polymerasekettenreaktion (qRT-PCR, quantitative real time polymerase chain reaction) benutzt. Diese Untersuchung basiert darauf, dass cDNA durch PCR amplifiziert wird und einer strikten mathematischen Gleichung folgt, wobei jeder Amplifikationszyklus zwei Kopien mit jeweils individuellen Oligonukleotidarten produziert⁹⁷. Um einzelne zytokinsekretierende T-Zellen zu zählen, gibt es drei Methoden: den Enzym-gekoppelten Immunospottest^{98,99} (ELISpot, *enzyme linked immunospot assay*), intrazelluläre Zytokinfärbung¹⁰⁰ und den direkten Nachweis von Zytokinen¹⁰¹. Der ELISpot-Test basiert auf denselben Grundsätzen wie der ELISA. Eine Mikrotiterplatte, deren Boden aus Nitrozellulose besteht, wird mit einem Antikörper beschichtet, an welches das jeweilige Zytokin bindet. Antigenspezifische T-Zellen, entweder unsortierte periphere mononukleäre Zellen aus Blut oder CD8⁺ oder CD4⁺-T-Zellen, werden auf der Platte zusammen mit dem zu testenden Antigen inkubiert. Die Erkennung des Antigens führt zu der Freisetzung des fraglichen Zytokins, welches dann auf dem mit Antikörper beschichteten Plattenboden gebunden wird. Die Freisetzung von Zytokinen wird durch einen enzymmarkierten Nachweisantikörper und einem korrespondierenden farbgebenden Substrat, welches unlöslich am Boden der Platte ausfallen muss, sichtbar gemacht. Farbige Punkte markieren hierbei Zytokin-freisetzende T-Zellen. Der ELISpot-Test erfordert eine Stimulation mit synthetischen Peptiden von kurzer Dauer. Hierfür werden T-Zellen in vitro stimuliert. Dennoch werden nur T-Zellen nachgewiesen, die schon in vivo aktiviert waren, naive T-Zellen sekretieren keine Zytokine bei kurzzeitiger Stimulation. Daher ist der ELISpot-Test nützlich, um die Menge und Funktionalität von antigenspezifischen T-Zellen ex vivo zu bestimmen. Die Ergebnisse können als relative Häufigkeit von antigenspezifischen T-Zellen angegeben werden. Dies ermöglicht einen direkten Vergleich zwischen der Stärke von in vivo T-Zellantworten zwischen Patientengruppen und zwischen verschiedenen klinischen Studien 102-104. Das Anfärben intrazellulärer Zytokine basiert auf dem direkten Nachweis der intrazellulären Zytokinexpression mit fluorochrom-gekoppelten Antizytokin-Antikörpern nach kurzer Aktivierung mit Antigenen. Diese Untersuchung kann durchgeführt werden mit PBMC¹⁰⁵, Gesamtblut 106,107, Lymphknoten oder anderen biologischen Flüssigkeiten. Der Nachweis intrazellulärer Zytokine zeigt das Problem, dass Zytokine in der Regel sehr schnell sekretiert werden und sich von der sekretierenden Zelle ausbreiten. Eine sechsstündige Inkubationszeit ist daher optimal, um hohe Level von zytokinsekretierenden Zellen für IL-2, IL-4, IFN γ und TNF α und um eine maximale Intensität der Zytokinfärbung zu erreichen¹⁰⁶. Die Sekretion der Zytokine wird in der Regel in den letzten vier Stunden der Inkubation durch Zugabe sekretionsinhibierender Medikamente wie Monensin oder Brefeldin A unterbrochen¹⁰⁸. Nach Färbung mit Oberflächenmarkern wie Anti-CD8 oder Anti-CD4 wird die Zellmembran mit nicht-ionischen Detergenzien permeabilisiert und anschließend intrazellulär das nachzuweisende Zytokin gefärbt. Für den direkten Zytokinnachweis werden Zellen mit einer Fangmatrix markiert, z.B. anti-Zytokinantikörper, die nicht-kovalent an die Zelloberfläche gebunden sind und später mit einem Fluoreszenz-markierten Zweitantikörper gefärbt werden können. Da hierdurch die Lebensfähigkeit der Zellen nicht beeinträchtigt wird, ist diese Methode für

Lebendzellsortierungen sehr gut geeignet. Aktivierte T-Zellen exprimieren Proteine, die auf ruhenden T-Zellen nicht gefunden werden. Allgemeine Aktivierungsmarker sind: CD69, CD25 und HLA-DR in menschlichen T-Zellen. Einzelzelluntersuchungen wurden verwendet, die Flusszytometrie-Färbungen der Oberflächenmarker von aktivierten T-Zellen benutzen¹⁰⁹. Die Nachteile dieser Methode sind die engen, eindeutigen Zeitfenster, in denen die Moleküle exprimiert werden und die Tatsache, dass diese Oberflächenmarker auch in Subpopulationen von ex vivo isolierten T-Zellen in Abwesenheit des Antigens gefunden werden 110. Die T-Zellproliferation ist ein sehr wichtiger in vitro Parameter für die in vivo-Funktion. Die Proliferation von T-Zellen als Antwort auf in vitro-Stimulation wird allgemein durch eine radioaktive Methode bestimmt, die auf der Aufnahme von [3H]Thymidin in neu hergestellter DNA basiert111. Diese in weiten Bereichen angewandte Methode hat jedoch einige Nachteile. Zum einen erfordert sie Einrichtungen, in denen mit radioaktivem Material gearbeitet werden kann. Zum anderen gibt sie nur Informationen über die Gesamtproliferation, nicht jedoch über die Proliferation einzelner, spezifischer Teile der T-Zellpopulation. Alternative Methoden, um die Proliferation von T-Zellen zu messen, sind die Bewertung der CD38-Expression auf T-Zellen durch Flusszytometrie und der ELISA-Nachweis, der auf 5-Brom-2'Deoxyuridin (BrdU) basiert¹¹², welches in neu synthetisierte DNA von proliferierenden T-Zellen eingelagert wird. Des Weiteren ist es möglich, Zellen mit dem Fluoreszenzfarbstoff 5,6-Carboxyfluoresceindiactetatsuccinimidylester (CFSE) Vorhinein zu färben¹¹³. Proliferation als Antwort auf Antigenerkennung bewirkt eine Verminderung der CFSE-Intensität die direkt durch Flusszytometrie bestimmt werden Antigenspezifische zytotoxische T-Zellen können durch Degranulation nachgewiesen werden. Die Aktivierung von CTLs führt zur Fusion zytotoxischer Granula und der Zellmembran und zur Freisetzung in die extrazelluläre Umgebung. Proteine wie CD107a/b, die normalerweise auf der Membran der Granula gefunden werden, werden vorübergehend zur Zellmembran angeordnet. Dieser Effekt ist sehr stark mit Zytotoxizität assoziiert und kann dazu benutzt werden, antigenspezifische CD8⁺-T-Zellen nachzuweisen und auszusortieren¹¹⁴. Das ist möglich mit einer Untersuchung einzelner Zellen mithilfe der Färbung von Zellen während und nach ihrer Aktivierung mit fluoreszierenden anti-CD107a/b-Antikörpern und Flusszytometrie. Die Fähigkeit,

Zielzellen zu lysieren, ist eine weitere Funktion aktivierter CD8⁺-T-Zellen. Der ⁵¹Chromfreisetzungstest (CRA, chromium release assay) tas, 115,116 kann sowohl bei frischen Zellen zur Bestimmung der Effektoraktivität oder bei CTL-Linien der Gedächtnisfunktion eingesetzt werden. Zielzellen werden mit ⁵¹Cr(VI)O₄²⁻ angereichert, eine radioaktive Verbindung, die über Anionentransportersysteme in die Zelle gelangt. Im Zytoplasma wird es anschließend zu ⁵¹Cr(III) reduziert. Da Cr(III) im Inneren der Zelle bleibt, ist die zelluläre Anhäufung von ⁵¹Cr deutlich erleichtert¹¹⁷. Die mit Chrom angereicherten Zellen werden mit dem Effektorzellen (CD8⁺-T-Zellen) zusammen mehrere Stunden inkubiert. Erkennen die Effektorzellen die antigenpräsentierenden Zielzellen, lysieren sie diese und das ⁵¹Cr wird freigesetzt und kann im Überstand nachgewiesen werden. Dieser Nachweis ist sehr nützlich für die Bestimmung der direkten Zytotoxizität von T-Zellen, ist aber für ex vivo-Studien unbrauchbar, die eine Quantifizierung von antigenspezifischen CD8⁺-T-Zellen in einer gemischten Lymphozytenpopulation erfordern. Ein Standard-CRA bestimmt CTL-Häufigkeiten nur falls er als Titrationsuntersuchung durchgeführt wird. Der sogenannte VITAL-Assay¹¹⁸ dient ebenfalls als Nachweis für die spezifische Effektoraktivität von CTLs. Ein Vorteil gegenüber der Chromfreisetzungsmethode ist, dass keine radioaktiven Substanzen benötigt werden. Beim VITAL-Assay werden Zellen, die von den Effektoren nicht erkannt und folglich nicht lysiert werden dürfen, mit Far Red gefärbt. Zellen, die erkannt werden sollen und somit auch lysiert werden, werden mit CFSE gefärbt. Es wird eine Mischung aus beiden Zielzelltypen erstellt und mit Effektorzellen inkubiert. Die Auswertung erfolgt am FACS, bei einer spezifischen Erkennung und Lyse bleibt nun die Population der Far Red-gefärbten Zellen gleich, die Population der CFSE-gefärbten nimmt jedoch mit steigender Effektorzahl ab - sie werden getötet und sind somit nicht mehr im FACS nachweisbar. Die Auswertung erfolgt über die Verhältnisse zwischen Zielzellen, die nicht getötet werden dürfen und denen, die getötet werden sollen. Es wird ein Schwellenwert errechnet, die Varianz der Kontrollen. Sind die einzelnen Verhältnisse über diesem Schwellenwert, so findet keine Lyse statt, sind die Verhältnisse zweimal so groß wie die Varianz, so findet unspezifische Lyse durch unspezifische Erkennung statt.

2.5 Untersuchungen zur Bestimmung der Spezifität von T-Lymphozyten

Für eine Quantifizierung von antigenspezifischen T-Lymphozyten unter Beachtung ihrer Spezifität ist die Analyse mittels fluoreszierender multimerer MHC-Peptid-Reagenzien (Tetramere) nützlich¹¹⁹. Diese Tetramere können antigenspezifische T-Zellen identifizieren und anreichern und zusammen mit anderen Methoden Auskunft über Funktionen geben. Tetramere werden in vitro hergestellt, indem die schwere Kette des MHC in Anwesenheit von β_2 -Mikroglobulin und einem spezifischen Peptidliganden gefaltet wird. Rekombinante schwere Ketten des MHC-Klasse I-Moleküls, die ein kurzes C-terminales Substratpeptid für BirA-vermittelte Biotinylierung tragen, werden in Escherichia coli produziert, von Einschlusskörperchen gereinigt, zusammen mit synthetischen Peptiden und β_2 -Mikroglobulin gefaltet und biotinyliert. Lösliche Tetramerkomplexe werden hergestellt, indem entsprechend der spezifischen Verwendung mit Fluorochrom markiertes Streptavidin, ein dem Avidin ähnliches Protein von Streptomyces avidinii mit vier Bindungsstellen für Biotin¹²⁰, den aufgereinigten MHC/Peptidmonomeren zugegeben wird. MHC/Peptid-Tetramere binden an T-Zellen, die einen MHC/Peptid-spezifischen T-Zellrezeptor besitzen und können durch Flusszytometrie nachgewiesen werden. Phänotypische Charakterisierung von Zellen, die durch Tetramerfärbung nachgewiesen werden, wird durch den möglichen parallelen Nachweis von co-exprimierten Oberflächenantigenen ermöglicht¹²¹. MHC-Klasse II-Peptid-Tetramere wurden für Untersuchungen der CD4⁺-T-Zellantworten entwickelt¹²²⁻ ¹²⁴. Aber auch, wenn diese multimeren MHC/Peptid-Reagenzien neue Möglichkeiten der Analyse ganzer T-Zellantworten gegen ein gegebenes Epitop eröffnen, gibt es immer noch einige Grenzen. Zum einen können MHC/Peptid-Tetramere, die stabil an TCR binden, eine minimale Bindungsfähigkeit zeigen. Infolgedessen kann es passieren, dass funktionale T-Zellen in diesen Untersuchungen nicht erfasst werden aufgrund der Temperatur¹²⁵⁻¹²⁷ Beispiel der Färbebedingungen wie zum Tetramerkonzentration. MHC/Peptid-Tetramere interagieren darüber hinaus auch mit dem CD8/CD4-Corezeptor und könnten daher die Bindung von Anti-CD8-Antikörpern beeinflussen^{128,129}. Dies kann wiederum zu peptidunabhängiger Bindung und falsch positiven Ergebnissen führen. Es ist auch bekannt, dass MHC/Peptid-Tetramere an andere Rezeptoren wie zum Beispiel den immunglobulinähnlichen Rezeptoren von Killerzellen (KIRs, *killer cell immunoglobuline-like receptor*) oder immunglobulinähnlichen Transkripten (ILTs, *immunoglobulin-like transcripts*) auf natürlichen Killerzellen binden können¹³⁰⁻¹³².

2.6 In vitro-Stimulation von antigenspezifischen T-Zellen

Der Nutzen von antigenspezifischen T-Zellen in der adoptiven Immuntherapie korreliert mit der Injektion großer Mengen von zuvor amplifizierten antigenspezifischen T-Zellen. Es ist daher wichtig, T-Zellen, die für ein gewünschtes Antigen spezifisch sind, aus einer Gesamt-T-Zellpopulation zu trennen. Es ist möglich, T-Zellen entweder durch spezifische Antigene oder unspezifisch zu stimulieren und zu vermehren. In gemischten T-Zellpopulationen kann sich die Zusammensetzung nach einer von Antigenen unabhängigen Stimulation ändern, weil nicht alle Unterpopulationen sich auf dieselbe Art und Weise teilen und überleben. Gemischte T-Zellpopulationen können jedoch durch fluoreszenz-aktivierte oder magnetische Affinität (MACS, magnetic affinity cell sorting) getrennt werden 119,133-135. Einzelne Unterpopulationen können auch durch Verdünnungsreihen kloniert werden 136. Antigenunabhängige Vermehrung von T-Zellen wird durch polyklonale Mitogene oder stimulatorische Antikörper, in der Regel in Verbindung mit Zytokinen wie IL-2, erreicht¹³⁷. Es sind etliche Antikörper wie zum Beispiel Anti-CD3¹³⁷ bekannt, die die T-Zellstimulation unterstützen. CD28¹³⁸, 4-1BB¹³⁹ oder auch CD27^{140,141} sind einige gegen kostimulatorische Antigene gerichtete Antikörper, die ebenfalls unterstützend wirken können. Polyklonale Mitogene können unter anderem Concanavalin A (ConA)¹⁴² oder Phytohaemagglutinin (PHA)¹⁴³ sein. Für die Stimulation und Proliferation von antigenspezifischen T-Zellen in vitro gibt es mehrere Ansätze. Gedächtnis-T-Zellen können mit Peptiden stimuliert werden 144 oder mit Proteinen, die auf unprofessionelle antigenpräsentierende Zellen geladen werden innerhalb der autologen primären Zellen, mit autologen B-Lymphoblastoidzelllininen oder allogenen Zelllinien. Die Expansion naiver T-Zellen, *in vitro-Priming* genannt, kann durch autologe von Monozyten stammende Dendritische Zellen¹⁴⁵ oder autologen aktivierten mit Antigenen (z.B. Peptiden¹⁴⁶) beladenen B-Lymphozyten¹⁴⁷ erfolgen. Das Produzieren dieser professionellen antigenpräsentierenden Zellen ist jedoch teuer, zeitintensiv und nur eine geringe Anzahl kann isoliert und produziert werden. Es gibt weitere Ansätze mit künstlichen antigenpräsentierenden Zellen (aAPC, *artificial antigen presenting cell*). Allogene Tumorzellen, z.B. K562, können mit costimulatorischen und Adhäsionsmolekülen wie CD80, 4-1BBL, LFA-3 oder ICAM-1 transfiziert werden¹⁴⁸. Mögliche Auswirkungen der Allostimulation werden durch Transfektion von einzelnen Peptid/HLA-Komplexen in HLA-defiziente Zellen vermieden¹⁴⁹. Weitere Ansätze für aAPCs sind mit rekombinanten MHC/Peptid-Komplexen (Monomere) beladene künstliche Mikrosphären^{150,151}, Lipidvesikel¹⁵² oder HLA-defiziente Zelloberflächen¹³⁵.

3 Ziele der Arbeit

Eine neue Strategie zur Identifikation neuer Nebenhistokompatibilitätsantigene mit einem Ansatz der reversen Immunologie war Ziel dieser Dissertation. Das innerhalb der Diplomarbeit "SNEP – SNP-derived epitope prediction" entwickelte Programm "SNEP¹¹" diente als Ausgangsbasis der Suche. Die Strategie basiert auf dem Vergleich zweier Datensätze – einem mit natürlichen, von Geweben extrahierten und analysierten HLA-Liganden und der dbSNP mit fast allen bekannten SNPs. Die somit gefundenen natürlichen HLA-Liganden, von denen bekannt ist, dass sie in ihrer Sequenz nichtsynonyme SNPs tragen, wurden mittels verschiedener Selektionsparameter wie Allelfrequenz und Gewebespezifität auf Kandidaten reduziert, mit denen T-Zell-Stimulations- und Funktionalitätstests durchgeführt wurden. Die finale Definition eines mHag erfolgt dann über T-Zellfunktionalitätstests oder in vivo-Versuchen in Mäusen. Ziel der Arbeit ist es, neue mHag mit der Kombination dieser unterschiedlichen Methoden zu finden und bis zu der spezifischen Erkennung durch T-Zellen und der folgenden Lyse von antigentragenden Zielzellen zu charaktierisieren. Um in Zukunft Graft-versus-Host-Erkrankungen auszuschließen oder Graft-versus-Tumor-Reaktionen zu induzieren, ist es wichtig, die Liste bisher bekannter Nebenhistokompatibilitätsantigene zu erweitern und somit eine Basis für zukünftige stammzellbasierte Immuntherapietechniken zu bilden.

4 Material und Methodik

4.1 Bioinformatik

Eine Textdatei der natürlichen Liganden mit den Informationen über gefundene Sequenz und dem entsprechenden Gen (GeneID) wurde mittels eines Skripts mit der dbSNP verglichen und eine weitere Textdatei mit den gefundenen Übereinstimmungen erstellt. Dieses enthält Informationen über die Peptidsequenz, die Startposition des Peptids in der Proteinsequenz, der Mutation (in Form von AS_alt – Position – AS_neu), dem Proteinnamen, der GeneID und der dbSNP-Referenznummer. Diese Liste dient als Ausgangsbasis für die Selektion der Kandidaten.

4.2 Genexpressionsanalysen, Sequenzierung und Heterozygotie

4.2.1 Material

Soweit nicht anders angegeben, stammen alle Glaswaren von der Firma Schott und alle Chemikalien von den Firmen Merck, Sigma oder Roth.

Tabelle 2: Auflistung des für molekulargenetische Arbeiten benutzten Materials

10x Puffer für PCR
Peqlab (Erlangen)

1st strand Puffer
Invitrogen (Karlsruhe)

2nd strand Puffer
Invitrogen (Karlsruhe)

ABI PRISM® BigDye® Terminator version
Applied Biosystems (Darmstadt)

3.1 Cycle Sequencing Kit

Acetatazid
Merck (Darmstadt)

Acetatazid Merck (Darmstadt)
Agarose Biozym (Oldendorf)
Amersham Säulchen GE Healthcare (München)
Ampliscribe Puffer Biozym (Oldendorf)

ATP Promega (Mannheim)

Bioanalyzer Reagenzien Agilent Technologies

(Waldbronn)

Chloroform Serva (Heidelberg)

CTP Promega (Mannheim)

DNA Ligase Invitrogen (Karlsruhe)

dNTPs Promega (Mannheim)

DTT Sigma-Aldrich (München)

EDTA Roth (Karlsruhe)

Enzym Mix Affymetrix (High Wycombe, UK)

Ethanol Merck (Darmstadt)

Ethidiumbromid Roth (Karlsruhe)

GTP Promega (Mannheim)

IVT Puffer Affymetrix (High Wycombe, UK)

Lysophosphatische Säure (LPA) Sigma-Aldrich (München)

NTP mix Affymetrix (High Wycombe, UK)

Nuclease-freies Wasser Promega (Mannheim)

oligodT-T7 Primer Biomers (Ulm)

PBS Cambrex (Lonza)

Phenol Sigma-Aldrich (München)

PLG Heavy 0,5 ml Eppendorf (Hamburg)

QIAamp DNA Blood Mini Kit Qiagen (Hilden)

Qiagen Ladepuffer Qiagen (Hilden)

QIAgen RNAlater Tissue Stroke Tubes Qiagen (Hilden)

Qiagen RNeasy Plus Minikit Qiagen (Hilden)

QIAquick Gel Extraction Kit Qiagen (Hilden)

QIAquick PCR Purification Kit Qiagen (Hilden)

Random Hexamer Primer Biomers (Ulm)

RNA 6000 Leiter Agilent Technologies

(Waldbronn)

RNA 6000 Pico Assay Agilent Technologies

(Waldbronn)

RNase H Biozym (Oldendorf)

RNase Inhibitor Promega (Mannheim)

RNAsin Promega (Mannheim)

Sawads Taq-Polymerase Peqlab (Erlangen)

SmartLadder Eurogentec (Köln)

Superscript II Invitrogen (Karlsruhe)

T4 DNA Polymerase Biozym (Oldendorf)

T4gp32 GE Healthcare (München)

T7 RNA Polymerase Promega (Mannheim)

Tris Sigma-Aldrich (München)

U133 2.0 Human Microarrays Affymetrix (High Wycombe, UK)

UTP Promega (Mannheim)

Primer

CCL22 Biomers (Ulm)

forward primer: AAGTCTGTCTGAAACCAGAGGC

T_m = 50° C; GC-Gehalt: 55 %

reverse primer: AGTTGCTTGAAGCGCCAC

T_m = 51° C; GC-Gehalt: 61 %

DDX20 Biomers (Ulm)

forward primer: ACCTGTGGAAATCATCAGGC

T_m = 51° C; GC-Gehalt: 50 %

reverse primer: TGTCTTCATCTGGATTCCAGG

T_m = 51° C; GC-Gehalt: 47 %

FKBP2 Biomers (Ulm)

forward primer: AGATACAGTGGCGGTGGAAC

T_m = 51° C; GC-Gehalt: 55 %

reverse primer: CCAAGCACTCTCTGGTCCTC

T_m = 51° C; GC-Gehalt: 60 %

GH1 MWG Biotech (Ebersberg)

forward primer: CTTCCCAACCATTCCCTTATC

T_m = 57,9° C; GC-Gehalt: 47,6 %

reverse primer: TCATTCATTTTCCTCCCTCCC

T_m = 57,9° C; GC-Gehalt: 47,6 %

IL12A MWG Biotech (Ebersberg)

forward primer: ATTGAAGATGGATGTGCTTGG

T_m = 55,9° C; GC-Gehalt: 42,9 %

reverse primer: ACGGTTTGGAGGGACCTC

T_m = 58,2° C; GC-Gehalt: 61,1 %

MAGED2 Biomers (Ulm)

forward primer: AAAGGGAGGCCTTGTTGG

T_m = 51° C; GC-Gehalt: 55 %

reverse primer: CCCCAGAGGCTTTTGAGAC

T_m = 51° C; GC-Gehalt: 57 %

PBXIP Biomers (Ulm)

forward primer: AACCTCGGTGGAGGGAAG

T_m = 51° C; GC-Gehalt: 61 %

reverse primer: ATCATCATCACCTGTCTGTTGC

T_m = 51° C; GC-Gehalt: 45 %

STMN1 Biomers (Ulm)

forward primer: CATGAGCCATGGTACCTGG

T_m = 51° C; GC-Gehalt: 57 %

reverse primer: CAAAGTGCCAAAGAATCATCTG

T_m = 52° C; GC-Gehalt: 40 %

TFE2 Biomers (Ulm)

forward primer: CAGGACGCACATGTGCAC

T_m = 51° C; GC-Gehalt: 61 %

reverse primer: AGAACGAGGCAGGAACAC

T_m = 51° C; GC-Gehalt: 57 %

TYROBP Biomers (Ulm)

forward primer: AGAAATGCCTCTCTGAGGAGG

T_m = 52° C; GC-Gehalt: 52 %

reverse primer: AGTATTGGGGAGCGGTCTG

T_m = 51° C; GC-Gehalt: 57 %

VCAM1 MWG Biotech (Ebersberg)

forward primer: CCTTATCACTGCTTTGATTCCC

 T_{m} = 58,4° C; GC-Gehalt: 45,5 %

reverse primer: CAGGGAAGTCTGCCTCTCAG

T_m = 61,4° C; GC-Gehalt: 60 %

4.2.2 Durchführung

4.2.2.1 RNA- Extraktion aus Geweben

Bei -80°C gelagertes Gewebe wird in flüssigen Stickstoff gegeben. Mithilfe von Mörser und Pistill wird ein etwa 30 mg schweres Gewebestück unter ständiger Stickstoffgabe abgetrennt und in ein Eppendorf-Reaktionsgefäß gegeben, welches mit 1,5 mL RNAlater-Flüssigkeit gefüllt ist. Das Gewebestück wird mit dem Mikropistill grob zerstört und in 600 µL RLT plus-Puffer gegeben. Die folgende Homogenisierung findet in einer QIAShredder-Säule statt, indem die Säule 2 Minuten bei maximaler Geschwindigkeit zentrifugiert wird. Anschließend wird nochmals 3 Minuten bei maximaler Geschwindigkeit zentrifugiert, der Überstand in eine gDNA-Entfernungssäule pipettiert und diese in ein neues Auffangröhrchen platziert. Nach 30-sekündiger Zentrifugation wird die Säule verworfen und 600 µL 70%iger Ethanol auf den Durchfluss gegeben. Maximal 700 µL dieses Gemischs wird auf eine RNeasy-Säule gegeben und auf ein 2 mL-Auffangröhrchen gesetzt. Nach 15-sekündiger Zentrifugation bei maximaler Geschwindigkeit wird der Durchfluss verworfen und für den Waschschritt 700 µL RW1-Puffer auf die Säule gegeben. Nach einer weiteren 15-sekündigen Zentrifugation beim maximaler Geschwindigkeit und Verwerfen des Durchflusses werden 500 μL RPE-Puffer zugegeben und nochmals 15 Sekunden zentrifugiert. Auch dieser Durchfluss wird verworfen und nach einer weiteren Zugabe von 500 μL RPE-Puffer folgt eine 2-minütige Zentrifugation. Um die Säule zu trocknen, wird sie in ein neues Auffangröhrchen gestellt und wieder 2 Minuten zentrifugiert. Schlussendlich wird die Säule auf ein 1,5 mL-Auffangröhrchen gesetzt und es wird 30-50 µL RNAse-freies Wasser zur Elution daraufgetropft. Nach 1-minütiger Zentrifugation bei maximaler Geschwindigkeit befindet sich nun die extrahierte RNA im Durchfluss und wird bis zur weiteren Verwendung bei -20° oder -80°C aufbewahrt.

4.2.2.2 DNA-Extraktion aus Blut

200 μL Blut werden in ein Reaktionsgefäß gegeben, indem 20 μL Qiagen Protease oder Proteinase K vorgelegt wurden. Nach der Zugabe von 200 µL AL-Puffer und 15sekündigem Mischen wird das Reaktionsgefäß 15 Minuten bei 56°C inkubiert. Darauf wird 200 µL 100%iger Ethanol zugegeben und nochmals 15 Sekunden gemischt. Der gesamte Inhalt wird in eine Zentrifugationssäule von Qiagen übertragen und in ein 2 mL-Auffangröhrchen gestellt und 1 Minute bei 6 000 g zentrifugiert. Anschließend wird die Säule in ein neues Röhrchen gegeben und es werden auf die Säule 500 µL AW1-Puffer als erster Waschschritt pipettiert und nochmals 1 Minute bei 6 000 g zentrifugiert. Wieder wird die Säule auf ein neues Auffangröhrchen gestellt und 500 µL AW2-Puffer für den zweiten Waschschritt hinzugegeben. Nun wird 3 Minuten bei maximaler Geschwindigkeit zentrifugiert, das Auffangröhrchen ausgetauscht, und nochmals 1 Minute bei maximaler Geschwindigkeit zentrifugiert. Schließlich werden 200 µL AE-Puffer oder zweifach destilliertes Wasser als Elutionsmittel auf die Säule pipettiert, diese in ein Aufbewahrungsröhrchen gegeben und nach 1-minütiger Inkubation bei Raumtemperatur bei 6 000 g 1 Minute lang zentrifugiert. Bei Bedarf kann dieser letzte Schritt wiederholt werden. Die sich jetzt im Aufbewahrungsröhrchen befindende DNA kann bei -20°C gelagert werden.

4.2.2.3 DNA-Extraktion aus Zellen

Es werden 5 Millionen Zellen benötigt. Sind diese bei -80°C in Einfriermedium (10% DMSO, 90% FCS) gelagert, werden sie zunächst in 10 mL PBS resuspendiert und 5 Minuten bei 1 500 rpm zentrifugiert. Es erfolgt ein nochmaliges Waschen in 5 ml PBS und eine erneute Zentrifugation für 5 Minuten bei 1 500 rpm. Endlich werden sie in 800 μ L PBS resuspendiert. Von diesen werden 200 μ L entnommen und wie mit der entsprechenden Menge Blut wie oben beschrieben weiter verfahren.

4.2.2.4 Amplifikation der entsprechenden Gene

Um die entsprechenden Nukleotidsequenzen auf ihre Allele hin zu typisieren, wird dieser Ausschnitt mithilfe der PCR amplifiziert. Hierzu wird pro Ansatz 1 μL DNA, 1 μL 10 mM dNTPs, 5 μL 10x Puffer, jeweils 2 μL 0,2 μM Vorwärts- und Rückwärtsprimer, 1 μL Polymerase und 38 μL destilliertes, nucleasefreies Wasser verwendet. Es ergibt sich also ein Ansatzvolumen von 50 μL. Die Amplifikation findet mit folgendem Programm statt: Zunächst folgt ein Aktivierungsschritt von 15 Minuten bei 95° C, gefolgt von 30 Wiederholungen der folgenden drei Schritte: 30 s 95° C, 30 s Tm Primer, 30 s 72° C. Als letzter Schritt folgen 10 Minuten bei 72° C. Die erhaltenen Amplifikationsprodukte werden nun aufgereinigt, indem 250 µL PBE-Puffer zugegeben und alles auf eine Qiagen-Säule gegeben wird. Nach einer 1-minütigen Zentrifugation bei mehr als 10 000 rpm wird der Durchfluss verworfen und 750 µL PE-Waschpuffer auf die Säule pipettiert. Nach einem weiteren 1-minütigen Zentrifugationsschritt bei mehr als 10 000 rpm wird die Säule auf ein Aufbewahrungsröhrchen gegeben und zur Elution 40 µL EB-Puffer direkt auf den Filter der Säule pipettiert. Nach einer Minute Inkubation bei Raumtemperatur erfolgt eine weitere Zentrifugation bei mehr als 10 000 rpm und einer Minute Dauer. Um zu prüfen, ob die Amplifikation erfolgreich war, werden 5 μL des Eluats zusammen mit 2 μL Ladepuffer und 3 μl ddH₂O auf ein Agarosegel geladen und unter UV-Licht betrachtet. Das Gel besteht aus 0,3 g Agarose, welche in 30 ml destilliertem Wasser aufgekocht wurde und der 600 μL 50x TAE-Puffer sowie 1,5 μL Ethidiumbromid hinzugefügt wurden. Als Standardleiter werden 1,5 μL SmartLadder benutzt. Nach einem Lauf von 30 Minuten bei 100 V kann das Gel unter UV-Bestrahlung betrachtet werden. Das so erhaltene aufgereinigte Amplifikat kann nun entweder bei kommerziellen Sequenzierdiensten oder selbst mit folgendem Protokoll sequenziert werden.

4.2.2.5 Sequenzierung

5 nmol Amplifikat werden mit 1 μ L 5pM Primer, 2 μ L BigDye gemischt und mit Wasser auf 10 μ L Gesamtmenge aufgefüllt. Für jede Leserichtung, also für Vorwärts- und Rückwärtsprimer, wird ein Ansatz benötigt. Das Amplifikationsprogramm für die Sequenzier-PCR besteht aus 35 Zyklen mit jeweils 30 Sekunden bei 95°, 55° und 60°C. Anschließend werden zu diesem Sequenzieransatz 15 μ L Wasser gegeben und auf Amersham Sephadex-Säulchen geladen. Diese wurden zuvor auf ein 2 ml Reaktionsgefäß gestellt und 1 Minute bei 4400 rpm zentrifugiert. Das Eluat wird nun 2 Minuten bei 95°C linearisiert und im ABI Prism 300 sequenziert.

Alle sequenzierten Proben wurden im Labor amplifiziert, qualitativ untersucht und von der Firma MWG Biotech (Ebersberg) sequenziert.

4.2.2.6 Genexpressionsanalyse

Ausgangsmenge für eine Genexpressionsanalyse auf Affymetrix U133 2.0 Plus Human Mikroarrays sind 10-50 ng RNA. Die RNA wird in zwei Schritten amplifiziert. Alle Schritte erfolgen auf Eis. Zunächst wird die RNA auf 20 ng in 30 μ L Nuklease-freiem Wasser eingestellt. Dann werden 10 μ g LPA, 4 μ l NaOAc (pH 5,5) zugegeben und gut gemischt. Nach Zugabe von 80 μ l 100%igem Ethanol (Temperatur -20°C) erfolgt eine Inkubation über Nacht. Anschließend wird 30 Minuten bei 13 000 rpm und 4 °C zentrifugiert und der Überstand abgenommen und verworfen. Mit 400 μ L 80%igem Ethanol (-20°C) wird gewaschen und 5 Minuten zentrifugiert. Erneut wird der Überstand verworfen. Nach nochmaligem Waschen wird das Pellet an Luft vollständig getrocknet. Für 20 ng RNA werden 20 ng oligodT-T7-Primer in einem Volumen 1,5 μ L hinzugegeben und das Pellet vorsichtig resuspendiert. Bei 4-minütiger Inkubation bei 70°C werden die RNA und der Primer denaturiert. Der Erststrang-Reverse Transkriptase-Mix wird hergestellt, er besteht pro Ansatz aus 2 μ L 5x Erststrangpuffer, 1 μ L 100 mM DTT, 0,5 μ L 10 mM dNTPs, 0,5 μ L 8,0 mg/ml T4gp32, 0,5 μ L 40 U/ μ l RNase Inhibitor und 0,5 μ L 200 U/ μ L Superscript

II. Von dieser Mischung wird 1 µL auf die RNA/Primer-Mischung gegeben und 5 Minuten bei 37°C, 5 Minuten bei 42°C, 50 Minuten bei 48°C und 10 Minuten bei 70°C inkubiert und anschließend wieder auf Eis gelagert. Der Zweitstrangmix besteht aus 3 µL 5x Zweitstrangpuffer, 0,3 µL 10 mM dNTPs, 0,44 µL DNA Polymerase I 4U, 0,02 µL Rnase H 0,2 U, 0,1 μL DNA Ligase 1 U und 9,14 μL H₂O. 13 μl dieser Mischung werden dem Ansatz hinzugefügt und mithilfe der Pipette gemischt. Es erfolgt eine zweistündige Inkubation bei 16°C. Anschließend werden 2 U T4 DNA-Polymerase hinzugegeben, 15 Minuten bei 16°C und 10 Minuten bei 70°C inkubiert. Nachdem das Gesamtvolumen mit 60 μL Wasser auf 75 μL gebracht wurde, werden 75 μL Phenol/Chloroform (1:1) gut untergemischt. Ein PLG Heavy 0,5 mL-Röhrchen wird durch 30-sekündige Zentrifugation bei 13 000 g vorbereitet, das Gemisch daraufgegeben und weitere 5 Minuten bei 13 000 g zentrifugiert. Die überstehende wässrige Phase wird danach in ein neues 0,5 mL Gefäß gegeben. 5 μg LPA und 40 μL 7,5 M NH₄OAC werden zupipettiert, gemischt und auf Eis gekühlt. Nach Zugabe von 250 μL 100 %igen Ethanol wird über Nacht bei -20°C gefällt. Nun folgt die erste in vitro-Transkription. Nach 20-minütiger Zentrifugation bei 13 000 g wird der Überstand verworfen und das Pellet mit 500 μL 80 %igem -20°C kaltem Ethanol gewaschen, nochmals 5 Minuten bei 13 000 g zentrifugiert und der Überstand verworfen und endlich an Luft komplett getrocknet. Die Reagenzienmischung für die erste in vitro-Transkription wird vorbereitet, nachdem die benötigten Reagenzien Raumtemperatur erreicht haben. Die Mischung besteht pro Ansatz aus 2 µL 10x Ampliscribepuffer, je 1,5 µL 100 mM ATP, CTP, GTP, UTP, 2 µL 100 mM DTT, 0,8 µL RNase Inhibitor 30 U, 8,3 μ L H₂O und 1 μ L T7 RNA Polymerase 80U. 20 μ L hiervon werden auf das Pellet gegeben und dieses durch leichtes Schütteln darin gelöst. Nach 9stündiger Inkubation bei 42°C werden 80 µL H₂O hinzugegeben, das Ganze in ein 1,5 mL-Gefäß überführt und 350 μL RLT-Puffer mit 3,5 μL β-Mercaptoethanol zugegeben. Weitere 250 µL Ethanol werden untergemischt, alles auf eine RNeasy-Säule geladen und 15 Sekunden bei 8 000 g bei Raumtemperatur zentrifugiert. Die Säule wird anschließend auf ein neues Auffangröhrchen gesetzt und nach Zugabe von 500 µL RPE-Puffer erfolgt ein weiterer Zentrifugationsschritt von 15 Sekunden bei 8 000 g. Der Durchfluss wird verworfen und die Säule mit weiteren 500 µL RPE-Puffer gewaschen. Nach 1-minütiger Zentrifugation bei 8 000 g wird der Durchfluss erneut verworfen und verbleibende Tropfen auf dem Plastikring in der Säule mittels einer Pipette entfernt. Zum Trocknen wird 2 Minuten bei 8 500 g zentrifugiert. Die Säule wird nun auf ein Aufbewahrungsröhrchen gestellt und 30 μL H₂O werden direkt auf den Filter der Säule gegeben, 30 Sekunden inkubiert und 2 Minuten bei 8 500 g zentrifugiert. Dieser Schritt wird wiederholt und der Durchfluss anschließend in ein 0,5 mL-Gefäß überführt. 1 μL wird zur Analyse im Bioanalyzer entnommen und durch 1 μL H₂O ersetzt. Nun folgt die zweite cDNA-Synthese. Hierzu werden 10 μg LPA und 4 μL 3 M NaOAc (pH 5,5) zugegeben und gemischt. Nach Hinzufügen von 80 μL 100 %igem -20° C kaltem Ethanol erfolgt eine zweistündige Inkubation bei -20°C. Es folgen 30 Minuten Zentrifugation bei 13 000 g bei 4° C und die Entfernung des Überstands. Mit 400 μL 80 %igem -20° C kaltem Ethanol wird das Pellet zweimal mit 5-minütiger Zentrifugation gewaschen und anschließend an Luft komplett getrocknet. 0,5µL random hexamer-Primer werden hinzugefügt und das Pellet so gut wie möglich darin gelöst. Die RNA wird nun zusammen mit dem Primer bei 70°C 4 Minuten lang denaturiert und auf Eis gekühlt. Erneut wird der Erststrangmix erstellt und 5 µl davon dem Pellet hinzugefügt. Nach Inkubationen (15 Minuten bei 37°C, 15 Minuten bei 42°C, 20 Minuten bei 50°C, 10 Minuten bei 55°C und 15 Minuten bei 65°C) wird 1 U RNase H zugegeben und leicht gemischt. Es erfolgt eine weitere Inkubation von 30 Minuten bei 37°C und 2 Minuten bei 95°C. 100 ng T7 oligodT-Primer werden auf Eis zugegeben und nach 10 Minuten bei 42°C wieder auf Eis gelagert. Nun wird der Zweitstrangmix vorbereitet, diesesmal jedoch ohne Ligase. 65 µL der eiskalten Mischung werden hinzugegeben und 2 Stunden bei 14°C inkubiert. Weitere 15 Minuten Inkubation bei dieser Temperatur erfolgen nach Zugabe von 10 U T4 Polymerase, anschließend 10 Minuten 70°C. 75 μL Phenol/Chloroform (1:1) werden zugegeben, erneut in ein durch 30-sekündiger Zentrifugation bei 13 000 g vorbereitetes PLG Heavy-Röhrchen überführt und 5 Minuten bei 13 000 g zentrifugiert. Die wässrige Phase wird abgenommen, in ein 0,5 mL-Reaktionsgefäß überführt und 5 µg LPA sowie 40 μL 7,5 M NH₄Oac und 250 μL 100 %igen -20°C kalten Ethanol zugegeben. Erneut folgt eine Inkubation bei -20°C über Nacht. Die zweite in vitro-Transkription erfolgt mithilfe des Affymetrix-Färbekits. Hierzu wird 30 Minuten bei 13 000 g zentrifugiert und der Überstand entfernt. Mit 500 μL 80 %igem -20°C kaltem Ethanol und 5 Minuten Zentrifuge bei 13 000 g wird gewaschen und das Pellet anschließend 3 Minuten getrocknet. Die ivT-Mischung von Affymetrix besteht aus 4 μL 10x IVT-Puffer, 12 μL NTP- Mix, 4 μ L Enzymmix und 20 μ L H₂O pro Ansatz. Es folgt 16 Stunden Inkubation bei 37°C. 60 μ L H₂O werden zugegeben und erneut mithilfe des Rneasy Cleanup-Kits von Qiagen wie oben beschrieben aufgereinigt. Schließlich wird die so hergestellte künstliche RNA (aRNA, *artificial RNA*) fragmentiert. Hierzu werden 8 μ g RNA, 8 μ L 5x Fragmentierungspuffer mit Wasser auf 20 μ L gebracht und 35 Minuten bei 94°C inkubiert. Zur weiteren Analyse wird die aRNA an die Microarray-Facility Tübingen weitergegeben.

4.2.2.7 Analyse der RNA mithilfe des Agilent Bioanalyzer

Hierfür wird der Agilent 2100 Bioanalyzer mit dem RNA 6000 Pico Assay verwendet. Zunächst werden die Messelektroden am Bioanalyzer gereinigt. Hierzu werden 350 µL RNase-freies Wasser in die Näpfe einer Elektrodenreinigerplatte gegeben und diese für 5 Minuten mit geschlossenem Deckel in das Gerät gestellt. Nach Entnahme der Platte werden die Elektroden 30 Sekunden an Luft getrocknet. 5 μL der RNA 6000 Leiter werden in ein 1,5 mL Mikrofugenröhrchen gegeben und 2 Minuten bei 70° C inkubiert. 745 μL RNase-freies Wasser werden zugeben, gemischt und in 10 μL Aliquots bei -80° C aufbewahrt. Die Reagenzien des RNA 6000 Pico Assays werden 30 Minuten bei Raumtemperatur gelagert und anschließend 550 µL der RNA 6000 Pico Gelmatrix in ein Filterröhrchen gegeben und 10 Minuten bei 1500 g zentrifugiert. Anschließend wird das Gel in 65 μL-Portionen aliquotiert. Die Gel-Färbe-Mischung wird hergestellt, indem 1 μL RNA 6000 Pico Farbkonzentrat in ein 65 µL-Gelaliquot pipettiert, gut gemischt und 10 Minuten bei 13 000 g zentrifugiert wird. Ein neuer RNA Picochip wird in die Priming-Station gelegt und 9 µL der Gel-Farb-Mischung werden in den unteren mit G markierten Napf gegeben und mittels der Vorrichtung auf dem Chip verteilt. Danach werden auch die beiden anderen mit G markierten Näpfe mit je 9 µL Gel-Färbe-Mischung gefüllt. 9 µL der RNA 6000 Pico Konditionierungslösung werden in den mit CS markierten Napf, 5 µl des RNA 6000 Pico Markers in den mit einer Leiter markierten Napf sowie in die restlichen 11 Probennäpfe gegeben. Letztlich werden 1 μL RNA 6000 Leiter aus den Aliquoten in den Leiternapf und je 1 µL Probe in die Probennäpfe pipettiert und der Chip 1 Minute auf dem Schüttler vorbereitet. Hiernach legt man ihn in das Agilent 2100 Bioanalyzer-Gerät und startet die Messung der RNA. Nach erfolgter Messung werden die Elektroden des Geräts erneut mit RNase-freiem Wasser gereinigt.

4.3 T-Zellkultur und Funktionalitätstests

4.3.1 Reagenzien

Tabelle 3: Auflistung des für T-Zellarbeiten verwendeten Materials.

100 mL Reagenzienreservoir	Corning (Kaiserslautern)
1D1k	Mabtech (Hamburg)
24er Napfplatte	Corning (Kaiserslautern)
6er Napfplatte	Corning (Kaiserslautern)
96er Napfplatte	Corning (Kaiserslautern)
96er Napfplatte mit rundem Boden	Corning (Kaiserslautern)
anti-4-1BB	BD (Heidelberg)
Anti-PE Beads	Miltenyi (Bergisch Gladbach)
BCIP/NBT-Tablette B5655	Sigma-Aldrich (München)
Bovines Serumalbumin (BSA)	Roth (Karlsruhe)
CD19-FITC	BD (Heidelberg)
CD28	Immunotools (Friesoythe)
CD4-FITC	BD (Heidelberg)
CD8-APC	BD (Heidelberg)
CD8-PE	BD (Heidelberg)
CD8-PerCP	BD (Heidelberg)
CFSE	Invitrogen (Karlsruhe)
Cryoröhrchen 2 mL	Greiner Bio-One (Frickenhausen)
Cytofix/Cytoperm	BD (Heidelberg)
Dampfsterilisator KSG 113	KSG (Olching)
Dampfsterilisator Sauter 11-6-9 HS1-FD	Sauter (Niederhollabrunn)
Dimethylsulfoxid (DMSO)	Merck (Darmstadt)
Dithiothreitol (DTT)	Sigma-Aldrich (München)
DNase I grade III	Böhringer-Ingelheim (Biberach)
Dulbecco's Phosphate buffered saline	Lonza (Wuppertal)

(PBS)

ELISPOT-Reader Immunospot Cellular Technologies (Aalen)

Ethylendiamintetraessigsäure (EDTA) Roth (Karlsruhe)

ExtrAvidin-Alkalinphosphatase E2636 Roth (Karlsruhe)

FACS Calibur BD (Heidelberg)

FACS Canto BD (Heidelberg)

FACS-Röhrchen 0,5 mL Greiner Bio-One (Frickenhausen)

FACS-Röhrchen 5 mL BD (Heidelberg)

Far Red Invitrogen (Karlsruhe)

Ficoll PAA (Pasching, A)

Formaldehyd Sigma-Aldrich (München)

Fötales Kälberserum (FCS) PAA (Pasching, A)

Gammacell 1000 Elite Nordion International (Fleurus, B)

Gentamycin Invitrogen (Karlsruhe)

Glasflaschen Schott (Mainz)

Glycin Roth (Karlsruhe)

GM-CSF Apotheke des Uniklinikums Tübingen

Golgistopp BD (Heidelberg)

Guanidin Sigma-Aldrich (München)

HCl Merck (Darmstadt)

HEPES Roth (Karlsruhe)

Humanes Serum CC Pro (Oberdorla)

IFNg-Catch Miltenyi (Bergisch Gladbach)

IFNg-Detektionsantikörper-PE Miltenyi (Bergisch Gladbach)

IFNg-PE BD (Heidelberg)

IFNg-Secretion Assay Kit Miltenyi Biotec (Bergisch Gladbach)

IL12 PromoCell (Heidelberg)

IL-2 R&D (Wiesbaden)

IL-4 R&D (Wiesbaden)

IMDM PAA (Pasching, A)

Sigma-Aldrich (München) Ionomycin Kanülen 26 G Braun (Melsungen) L-Arginin Sigma-Aldrich (München) Lipopolysaccharid (LPS) Sigma-Aldrich (München) LS-Säule Miltenyi (Bergisch Gladbach) Millipore (Billerica, MA, USA) Millipore Amicon Ultra-15 Millipore (Billerica, MA, USA) Millipore Stericup Express 0,22 μm MilliporePBTK Membran 76 mm Millipore (Billerica, MA, USA) Sigma-Aldrich (München) NaAc NaCl Merck (Darmstadt) NaH₂PO₄ Merck (Darmstadt) NaOCI Roth (Karlsruhe) NaOH Merck (Darmstadt) Natriumazid Merck (Darmstadt) Penstrep Invitrogen (Karlsruhe) Pepstatin Roche (Mannheim) Phenylmethylensulfonylfluorid (PMSF) Boehringer-Ingelheim (Biberach) Phorbol-12-myristat-13-acetat (PMA) Sigma-Aldrich (München) Phytohämagglutinin (PHA) Sigma-Aldrich (München) Reaktionsgefäße Eppendorf (Hamburg) Greiner Bio-One (Frickenhausen) Röhrchen 15 mL, 50 mL RPMI 1640 + GlutaMAX + Hepes Invitrogen (Karlsruhe) Sigma-Aldrich (München) Saponin Spritzen 1 mL, 5 mL, 10 mL, 50 mL BD (Heidelberg) Stericup 500 mL 0,22 µm Millipore (Schwalbach) Sterifilter 0,22 µm Corning (Kaiserslautern) Streptavidin Sigma-Aldrich (München) Streptavidin-APC Invitrogen (Karlsruhe) Streptavidin-beschichtete Mikrosphären Bangs Laboratories (Fishers, IN, USA) Streptavidin-PE Invitrogen (Karlsruhe) Trypanblau Merck (Darmstadt)

Tween 20	Sigma-Aldrich (München)
Urea	Serva (Heidelberg)
X-Vivo 20	Cambrex (Charles City, IA, USA)
Zellkulturflaschen 50 mL, 250 mL, 550 mL	Greiner Bio-One (Frickenhausen)
β -Mercaptoethanol	Sigma-Aldrich (München)

Die in dieser Arbeit verwendeten Peptide wurden im eigenen Labor von Patricia Hrstić synthetisiert.

4.3.2 Durchführung

4.3.2.1 Isolation von Lymphozyten aus peripherem Blut mittels Dichtegradiententrennung

Benötigt werden 50 mL Blut aus Blutspenden, PBS, Ficoll und 50 mL Falconröhrchen. Zunächst wird das Blut in ein Falconröhrchen überführt und auf ein zweites aufgeteilt. In jedes wird PBS zugegeben, bis 50 mL Blut/PBS-Gemisch in jedem Röhrchen sind. Weitere vier Röhrchen werden mit je 15 mL Ficoll vorbereitet und mit je 25 mL PBS/Blut-Gemisch überschichtet. Es folgt eine 20-minütige Zentrifugation bei 20° C und 2 000 rpm mit ausgeschaltener Bremse. Anschließend wird die Interphase, welche PBMC enthält, vorsichtig entnommen und in ein neues Röhrchen mit 30 ml PBS überführt. Nach einer weiteren Zentrifugation von 8 Minuten bei 20° C und 1 800 rpm, wieder mit eingeschaltener Bremse, wird der Überstand verworfen, das Pellet resuspendiert und zweimal mit 10 mL PBS gewaschen und erneut jeweils 5 Minuten bei 20° C und 1 500 rpm zentrifugiert. Die jetzt erhaltenen Zellen werden dann je nach Absicht weiterverarbeitet.

4.3.2.2 Einfrieren und Auftauen von Zellen

Einfriermedium wird aus 10 % DMSO und 90 % fetalem Kälberserum hergestellt. Zellen werden in der gewünschten Konzentration in 1 oder 2 mL Einfriermedium in eine Einfrierbox bei Raumtemperatur gegeben und bei -80° C aufbewahrt. Da die Einfrierbox sehr langsam abkühlt, werden die Zellen schonend ebenfalls langsam eingefroren. Auftaumedium besteht aus IMDM + 2 % HS + 50 mM β -Mercaptoethanol + 1 % Penstrep + 1% Gentamycin + 3 μ g/mL DNase I grade III. Eingefrorene Zellen werden in Auftaumedium gegeben, abzentrifugiert und anschließend in ihr Kultiviermedium überführt.

4.3.2.3 Stimulation mit dendritischen Zellen

Hierfür wird T-Zellmedium (TCM, T-cell medium) verwendet, welches aus RPMI 1640 mit GlutaMAX und 25 mM Hepes sowie 10 % hitzeinaktiviertem humanem Serum und je 1% Penstrep und Gentamycin besteht. Das Zellpellet am Ende der Leukozytenisolation wird in 20 mL TCM aufgenommen und die Zellzahl bestimmt. Hierzu werden 10 μL Zellsuspension entnommen und in 90 μL Trypanblau gegeben, hiervon wiederum 10 μL auf die Neubauer Zählkammer gegeben und vier Großquadrate ausgezählt. Die Zahl wird dann durch vier geteilt und mit 20⁶ multipliziert. Für den DC-Adhärenzschritt werden 100 – 120 x 10⁶ Zellen benötigt, der Rest wird in 2 x 10⁷ Aliquoten eingefroren. Die Zellen werden in 15 mL X-Vivo 20 + 1% Penstrep + 50 μg/mL Gentamycin + 1% Glutamin aufgenommen und jeweils 5 mL in drei Näpfe einer 6-Napf-Platte pipettiert. Es folgt eine zweistündige Inkubation im Brutschrank bei 37° C. Danach wird das Medium abgenommen und in 50 mL Falconröhrchen überführt und die Näpfe zweimal mit PBS nachgespült. Die PBLs, die sich nun im Falconröhrchen befinden, werden in 10 mL TCM mit 5 ng/mL IL-2 und 5 ng/mL IL-7 inkubiert. Sie werden für die CTL-Induktion benötigt. Die adhärierten Monozyten in der 6-Napf-Platte werden mit 5 mL TCM pro Napf, 100 ng/mL GM-CSF und 30 ng/mL IL-4 (Immunotools) bzw. 20 ng/mL IL-4 (R&D) inkubiert. Am dritten und fünften Inkubationstag werden nochmals die gleichen Mengen IL-7 und IL-4 zugegeben, am siebten Tag werden die nun unreifen DCs mit 5 μL LPS zur Reife gebracht. Nach 24 Stunden werden die CTLs mit peptidbeladenen DCs induziert. Hierzu werden zunächst die reifen DCs geerntet, der Überstand der Näpfe wird in ein Röhrchen überführt und die Näpfe mit je 5 mL PBS+E (PBS + 5 mM EDTA) 5 Minuten im Brutschrank inkubiert und danach die adhärierten Zellen gründlich entfernt und in das Röhrchen überführt. Unter dem Mikroskop wird überprüft, ob alle Zellen aus dem Napf entfernt wurden. Das Röhrchen wird nun 5 Minuten bei 1 500 rpm zentrifugiert und mit TCM gewaschen. Nachdem die Zellzahl nach der schon beschriebenen Methode bestimmt wurde, werden auf einer 24-Napf-Platte mindestens 3 Näpfe pro Peptid mit je 5 x 10⁵ DCs in 1 mL TCM gefüllt. Die DCs werden nun mit Peptid beladen. Man löst 1 mg des Peptids in 100 μLDMSO und gibt 900 μL ddH₂O hinzu. Die DCs werden pro Peptid in der entsprechenden Anzahl in 1 mL TCM aufgenommen und pro Ansatz 25 μg/mL Peptid hinzugegeben. Es folgt eine Inkubation im Brutschrank für zwei Stunden. Währenddessen werden die inkubierten PBLs gezählt und in die 24-Napf-Platte vorgelegt, pro Napf 3 x 10⁶ PBL in 1 mL TCM. Nach der Inkubation werden die DCs entsprechend mit TCM verdünnt, sodass pro Napf 5 x 10⁵ DCs in 1 mL TCM zugegeben werden. Das Endvolumen in jedem Napf ist also 2 mL. Nach einer siebentägigen Inkubation im Brutschrank erfolgt die erste Restimulation. Es gibt zwei Möglichkeiten der Restimulation. Sind noch PBMCs eingefroren, so kann mit diesen restimuliert werden, andernfalls mit reinem Peptid. Die Restimulation mit PBMC beginnt damit, dass die CTLs in der 24-Napf-Platte abgenommen werden und ihre Zellzahl bestimmt wird. 5 x 10⁵ CTLs werden pro Napf (pro Peptid mindestens 3 Näpfe) auf einer neuen 24-Napf-Platte in 1 mL TCM pro Napf vorgelegt. Die eingefrorenen autologen PBMC werden aufgetaut und zweimal mit TCM gewaschen. Nach Bestimmen der Zellzahl werden pro Napf 2,5 x 10⁶ PBMC eingesetzt. Die entsprechende Menge PBMC pro Peptid wird entnommen und in 1 mL TCM aufgenommen. 25 µg/mL Peptid werden zugegeben und zwei Stunden im Brutschrank inkubiert. Danach werden die nun mit Peptid beladenen Zellen durch 30 Gy Bestrahlung inaktiviert und mit TCM verdünnt. Pro Napf werden also 2,5 x 10⁶ mit Peptid beladene bestrahlte PBMC in 1 mL TCM zugegeben, sodass wieder ein Endvolumen von 2 mL erreicht wird. Für die Restimulation mit Peptid allein werden zunächst 1 mL der 2 mL pro Napf entnommen und 10 µg/mL Peptid hinzugegeben. Nach einer zweistündigen Inkubation im Brutschrank wird 1 mL neues TCM zugegeben. Alle 2 Tage, beginnend mit dem ersten Tag nach der Restimulation werden 2 ng/mL IL-2 zugegeben, die Restimulation alle 7 Tage wiederholt. Nach drei bis vier Restimulationen können erste Funktionstests durchgeführt werden.

4.3.2.4 Synthese von aAPCs

Die Beads, die mit MHC-Monomeren und kostimulatorischen Molekülen zu beschichten sind, werden in 96-Napf-Platten in genau derselben Anordnung synthetisiert wie die T-Zellen, die mit ihnen stimuliert werden sollen. Pro Napf werden immer 1 x 10⁶ MHCbeschichtete Beads hergestellt, dies reicht für vier Stimulationen mit jeweils 200 000 Beads aus. Es werden immer Beads mit zwei unterschiedlichen MHC-Monomer-Dichten auf deren Oberfläche hergestellt: high density-Beads mit 20 nM MHC-Monomer und low density mit 200 pM MHC-Monomer. Die kostimulierenden Antikörper anti-CD28 und anti-4-1BB werden im Verhältnis 1:3 und in einer Gesamtkonzentration von 20 nM eingesetzt. Dazu werden zunächst die entsprechenden MHC-Monomere in PBE auf eine Konzentration von 5 μg/mL (Stimulation mit hoher MHC-Dichte) oder auf 0,05 μg/mL (Stimulation mit geringer MHC-Dichte) verdünnt und 50 µL dieser Verdünnungen pro Napf pipettiert. Auch die kostimulatorischen Antikörper werden in PBE so eingestellt, dass nach Zugabe von 50 µL dieser Antikörpermischung pro Napf eine Gesamtkonzentration von 20 nM bezogen auf das Gesamtvolumen von 250 µL des Beladungsansatzes vorliegt. Darauf wird die errechnete Menge der mit Streptavidin beschichteten Beads entnommen und zweimal in 10 mL PBE gewaschen. Anschließend werden die Beads in PE auf eine Konzentration von 6,6 x 10⁶ Beads/mL eingestellt und in iedes Well 1 x 10⁶ Beads pipettiert. Nach Inkubation von 30 Minuten auf einem Flachschüttler bei 1 000 rpm wird die Platte viermal mit 200 µL PBE pro Napf gewaschen und die MHC-beschichteten Beads in 200 µL PBE resuspendiert. Gelagert werden kann diese Platte bei 4° C mehrere Wochen lang. Für die erste Stimulation wird aus jedem Napf der Platte mit den MHC-beladenen Beads 50 µL entnommen und auf eine neue 96-Napf-Platte übertragen. Dies entspricht den für eine Stimulation notwendigen 200 000 Beads. Jeder Napf wird zweimal mit je 200 μ L TCM gewaschen und in 100 μ L TCM mit 10 ng/mL IL-12 resuspendiert und zu den ausplattierten T-Zellen zugegeben. Am Tag 4, 11 und 18 nach der ersten Stimulation werden aus jedem Napf 100 μ L Medium entnommen und 100 μ L Medium mit 160 U/mL IL-2 zugegeben. Am Tag 8 und 15 erfolgt eine Restimulation, hierbei werden 100 μ L Medium entnommen und neue MHC-beladene Beads mit IL-12 wie am ersten Tag hinzugegeben. Die Hälfte der Zellen wird am Tag 21 abgenommen und für eine spätere FACS-Analyse mit Tetramer wie beschrieben gefärbt. Die restlichen Zellen werden erneut stimuliert oder für funktionelle Nachweise eingesetzt.

4.3.2.5 Stimulation mit aAPC

2 x 10⁹ Zellen werden nach der Leukaphareseaufreinigung in 10 mL PBS aufgenommen und der Rest eingefroren. Es werden zu den 10 mL PBS 250 µL OKT8-Antikörper zugegeben und 15 Minuten bei 4°C auf einem Rotator inkubiert und anschließend mit 30 ml PBE und einer 10-minütigen Zentrifugation bei 1 500 rpm und 4°C gewaschen. Der Überstand wird verworfen und es werden 9 mL PBE und 1 mL Streptavidin-PE zugegeben. Nach einer weiteren Inkubation von 15 Minuten bei 4°C wird erneut gewaschen. Zur Magnet-unterstützten Zellsortierung (MACS, magnetic assisted cell sorting) wird nun eine LS-Säule kalibriert, indem die Säule mit 3 mL PBE gewaschen wird. Die Zellen werden nun in 500 μL PBE resuspendiert, auf die Säule gegeben und diese dreimal mit 3 mL PBS gewaschen. Die Säule wird dann dem Magneten entnommen und in ein 15 mL Röhrchen gestellt und die CD8⁺-Zellen mittles eines sterilen Stempels aus der Säule herausgedrückt. Die Zellen werden anschließend zentrifugiert und in warmem TCM aufgenommen und gezählt. Zwischen der CD8⁺-T-Zellanreicherung und der ersten Stimulation sollten mindestens vier Tage liegen, sodass die OKT8-Antikörper mit den gebundenen Streptavidinbeads abdiffundieren können. Die Zellen werden gezählt und in TCM auf eine Konzentration von 1 x 10⁷ Zellen/mL eingestellt. Die äußeren Näpfe einer 96-Napf-Platte werden mit 250 µL PBS gefüllt, um die Verdunstung in den inneren Näpfen zu minimieren. 100 μL Zellsuspension werden in jeden Napf gegeben und bis zur Zugabe der Stimulationsbeads im Brutschrank inkubiert.

4.3.2.6 Intrazelluläre IFNγ-Färbung ohne Tetramere

Um festzustellen, ob es antigenspezifische Zellen in der stimulierten Kultur gibt, kann man die Produktion von IFN γ messen. Wird IFN γ produziert, so erkennt ein Teil der Kultur das Antigen und kann für weitere Funktionalitätstests benutzt werden. Hierzu werden die Zellen für die Färbung auf einer 96-Napf-Platte mit rundem Boden ausplattiert und eine Woche ohne IL-2 inkubiert. Es werden pro Napf 400 000 Zellen in 200 μ L TCM benötigt und pro Antigen Tripletts und je ein Napf für Fremdpeptid, PMA/Ionomycin-Positivkontrolle und 4 Näpfe für die Einzelfärbungen der unterschiedlichen Farben benötigt. Die Platte wird dann bei 1 800 rpm 3 Minuten bei Raumtemperatur zentrifugiert und mit je 200 μ L TCM pro Napf gewaschen. Anschließend werden 200 μ L TCM mit 5 μ g entsprechendem Peptid und, um die Sekretion von IFN γ ins Medium zu verhindern, Golgi-Stopp Lösung zugegeben. Nach 6-stündiger Inkubation werden die Zellen angefärbt und im FACS (*Fluorescence assisted cell sorting*) analysiert. Folgende Medien werden für die Färbung benötigt:

- PBEA (PBS + 0,5% BSA + 2 mM EDTA + 0,01% Natriumazid)
- PFEA (PBS + 2% FCS + 2 mM EDTA + 0,01% Natriumazid)
- Permwash (PBS + 0,1% Saponin + 0,5% BSA + 0,02 % Natriumazid)

Die Platte wird nach der Inkubation 2 Minuten bei 1 800 rpm zentrifugiert und mit 200 μ L PBEA gewaschen. Die Antikörperverdünnung für die erste Färbung wird vorbereitet. Pro Well benötigt man 50 μ L PBEA mit 1:100-Verdünnung des CD4-FITC-Antikörpers und 1:20-Verdünnung des CD8-PerCP-Antikörpers. Für die Einzelfärbungen werden vier Näpfe benötigt, einer mit 50 μ L PBEA alleine, einer mit 50 μ L PBEA und 1:100-Verdünnung CD4-FITC, einer mit 50 μ L PBEA und 1:20-Verdünnung CD8-PerCP und einen mit 50 μ L PBEA und 1:200-Verdünnung CD8-PE. Nach 20-minütiger Inkubation bei 4°C wird die Platte zweimal mit PFEA gewaschen und anschließend die Zellen mit 100 μ L Cytofix/Cytoperm pro Napf permeabilisiert. Nach einer weiteren 20-minütigen Inkubation und erneutem zweimaligen Waschen mit Permwash wird der IFN γ -PE-Antikörper in einer 1:250-Verdünnung in 50 μ L Permwash auf die Zellen gegeben und 30 Minuten bei 4°C inkubiert. Danach wird zweimal mit Permwash und einmal mit PFEA

gewaschen und die Zellen mit Fixierlösung (PFEA + 1% Formaldehyd) fixiert. Anschließend können die Zellen im FACS analysiert werden.

4.3.2.7 IFNγ-Anreicherungsassay

Um aus den stimulierten Zellen diejenigen auszusortieren, welche INFγ produzieren und diese weiterhin zu kultivieren, wird der IFNy-Anreicherungsassay benutzt. In jeden Napf mit 2 mL Zellsuspension, aus dem IFNγ-produzierende Zellen aussortiert werden sollen, wird 5 μg/mL Peptid hinzugegeben. Nach einer 6-stündigen Inkubation im Brutschrank werden für jeden Ansatz 10 Millionen Zellen, 100 mL kalter PBE-Puffer, 100 μL kaltes TCM und 10 mL warmes TCM benötigt. Zunächst werden die Zellen mit 10 mL kaltem PBE gewaschen und 10 Minuten bei 300 g und 4 °C zentrifugiert. Das Pellet wird in 80 μL kaltem TCM resuspendiert und 20 μL IFNγ-Catch-Reagens wird zugegeben. Nach 5 Minuten Inkubation auf Eis werden 10 µL warmes TCM hinzupipettiert und 45 Minuten bei 37° C auf dem Rotator inkubiert. Währenddessen werden die Feeder-Zellen vorbereitet. Dazu werden pro Fraktion insgesamt 1 Million PBMCs von drei verschiedenen Spendern in 1 mL TCM und 100 000 Tumorzellen (hier: LG2-EBV-Zellen) ebenfalls in 1 mL TCM resuspendiert. Die Tumorzellen werden 25 Minuten, die PBMC 4 Minuten und 13 Sekunden bestrahlt und somit inaktiviert. Nach einmaligem Waschen mit TCM werden zunächst die PBMC in 0,5 mL TCM resuspendiert und anschließend zu den Tumorzellen gegeben. 0,5 μg/mL PHA und 150 U IL-2 werden zugegeben und bis zur Weiterbenutzung im Brutschrank aufbewahrt. Die inkubierten Zellen werden nun auf Eis gestellt und mit kaltem Puffer 10 Minuten bei 300 g und 4° C zentrifugiert. Nachdem sie in 80 μL kaltem Puffer resuspendiert wurden, wird 20 μL PE-markierter IFNγ-Detektionsantikörper zugegeben und 15 Minuten bei 4° C inkubiert. Erneut wird gewaschen und mit 500 µL kaltem PBE resuspendiert. Man benötigt nun 2 LS-Säulen für die Aufreinigung. Die Säulen werden mit 3 mL PBE gespült und die erste Säule in den MACS-Separator gestellt. Die Zellsuspension wird in die Säule pipettiert und anschließend die Säule dreimal mit 3 mL PBE gespült. Die erste Säule wird nun entfernt

und die zweite Säule in den MACS-Separator gestellt. Die erste Säule stellt man nun in die zweite und pipettiert 5 mL kaltes PBE in die erste Säule. Nach dreimaligem Waschen der Säule mit je 3 mL PBE werden die Säulen aus dem Separator entnommen und die zweite Säule auf ein Auffangröhrchen gestellt. Mit 5 mL kaltem PBE werden die Zellen von den Magneten gelöst und anschließend zweimal mit TCM gewaschen und in 1 mL TCM resuspendiert. Die Feederzellen werden zugegeben und solange mit den aussortierten Zellen inkubiert, bis das Medium gewechselt werden muss. Anschließend wird die Stimulationsreihe wie oben beschrieben fortgesetzt.

4.3.2.8 Ex vivo-Tetramerfärbung

Um Tetramere zu erhalten, wurden Peptid-MHC-Monomere entweder mit Streptavidin-PE oder mit Streptavidin-APC bei 4° C in 10 Schritten versetzt. Bei jedem Schritt wurde 10 % der Gesamtmenge an Streptavidin zugegeben und 30 Minuten auf dem Rotator im Dunkeln bei 4° C inkubiert. Für die Tetramerfärbung sind folgende Puffer herzustellen:

- Tetramer-Färbepuffer TSB: 50% PBS + 50% hitzeinaktiviertes FCS + 2 mM EDTA + 0,01% Natriumazid
- PFEA (s.o.)
- PBEA (s.o.)
- FACS-Fix: PFEA + 1% Formaldehyd

Alle Schritte erfolgen auf Eis. Tabelle 4 listet die verwendeten Antikörper auf.

Tabelle 4: Antikörper für die Tetramerfärbung

Monoklonaler Antikörper	Hersteller	Verdünnung
Maus anti-human CD8-FITC	Laborintern markiert Klon	1:100
	OKT8 (25 μg/mL)	
Maus anti-human CD8-PE	Immunotools Klon MEM-31	1:200
Maus anti-human CD8-PerCP	BD Klon SK1	1:20
Maus anti-human CD8-APC	BD Klon SK1	1:50

Die Färbung wird unsteril in 96-Napf-Platten durchgeführt, Zentrifugationen finden bei 660 g und 4°C für 2 Minuten statt. Die Antikörper werden in PBEA entsprechend verdünnt und der Lösung 10 μg/mL freies Streptavidin zugesetzt, um an den Zellen durch die Zellkultur gebundenes Biotin zu blockieren. Ohne diese Blockade würde freies Streptavidin-PE oder -APC unspezifisch an die Zellen binden und den Hintergrund erhöhen. APC-Tetramere werden TBS auf 2 g/mL, PE-Tetramere auf 5 μg/mL verdünnt und Präzipitate bei 13 000 rpm 5 Minuten bei 4°C abzentrifugiert. Pro Färbung werden 200 µL Tetramerlösung verwendet. Für die Einzelfärbungen werden die an CD8 gekoppelten Farbstoffe FITC, PE, PerCP und APC benutzt. Neben der Färbung mit Tetramer werden die Zellen auch mit anti-CD8-PerCP markiert. Die T-Zellen werden in eine 96-Napf-Platte aliquotiert und zweimal mit 200 μL PBEA gewaschen. Die Zellpellets werden in 50 µL Antikörperlösung resuspendiert und bei 4°C im Dunkeln für 20 Minuten inkubiert. Nach zweimaligem Waschen mit 200 μL PFEA werden die pelletierten Zellen in 50 μL Tetramerlösung resuspendiert und 30 Minuten bei 4°C im Dunkeln inkubiert. Erneut wird dreimal mit 200 μL PFEA gewaschen und in 100 – 200 μL FACS-Fix resuspendiert und im FACS analysiert.

4.3.2.9 Kombinierte Tetramer- und intrazelluläre IFNγ-Färbung

Diese kombinierte Färbung ist im Grunde identisch mit der oben beschriebenen intrazellulären IFN γ -Färbung. Es wird hier nur auf die Abweichungen eingegangen. Die Zellen werden nach ihrer sechsstündigen Inkubation pelletiert und die Tetramere in TSB auf eine Konzentration von 5 µg/mL eingestellt. Die T-Zellen werden mit 200 µL PBEA gewaschen und in 50 µL Antikörperlösung (CD-PerCP und unkonjugiertes Streptavidin) inkubiert für 20 Minuten bei 4°C. Nach zwei Waschschritten mit 200 µL PFEA werden die Zellen in 50 µL Tetramerlösung resuspendiert, 30 Minuten bei 4°C inkubiert und nochmals zweimal mit 200 µL PFEA gewaschen. Die nachfolgenden Schritte sind mit der intrazellulären Färbung ohne Tetramere identisch.

4.3.2.10 ELISPOT

Der Elispot kann entweder ex vivo mit frisch aus Blut isolierten Zellen stattfinden oder mit bereits stimulierten. Am ersten Tag werden 500 000 bis 1 Million Zellen pro Napf einer 96-Napf-Platte in 200 μL TCM und 5 ng/mL IL-4 sowie 5 ng/mL IL-7 inkubiert. Pro Peptid und Spender benötigt man drei Näpfe, sowie je drei für Positiv- und Negativkontrolle und einen für die Mediumkontrolle. Am zweiten Tag werden je 100 μl Medium abgenommen und mit frischem TCM ersetzt, auch werden die zu testenden Peptide in einer Konzentration von 1 µg/mL hinzugegeben. Ein Medientausch findet ebenfalls am dritten und fünften Tag statt, zusätzlich wird 2 ng/mL IL2 zugegeben. An Tag acht wird zum letzten Mal IL-2 zugegeben, bis Tag 12 wird täglich das Medium kontrolliert und bei Bedarf erneuert. An Tag 13 wird die ELISPOT-Platte mit 5 μg/mL 1-D1K-Antikörper in PBS beladen, indem von der Mischung 100 μL in jeden Napf gegeben werden und über Nacht bei 4°C inkubiert werden. Am 14. Tag wird die ELISPOT-Platte zweimal mit TCM gewaschen (200 μL/Napf) und 1 h mit 50 μL TCM/Napf im Brutschrank inkubiert. Die Zellen auf der 96-Napf-Platte werden mit Peptid beladen (1 μg/mL) und erschütterungsfrei 26 h im Brutschrank inkubiert. Tag 15 beginnt nach der 26-stündigen Inkubation mit dem Waschen der Platte, das erste Mal mit je 200 µL PBS Tween 0,05%, das zweite Mal mit 200 µL destilliertem Wasser gefolgt von fünfmaligem Waschen mit 200 μL PBS Tween 0,05%. Der Zweitantikörper 7-B6-1-MabTech (0,3 μg/mL) wird in PBS BSA 0,5% gelöst und je 100 μL in jeden Napf gegeben. Nach zweistündiger Inkubation bei Raumtemperatur wird erneut fünf Mal mit je 200 µL PBS Tween 0,05% gewaschen. ExtrAcvidin-Alkalinphosphatase wird 1:1000 in PBS BSA 0,5% verdünnt und je 100 μL pro Napf zugegeben. Während der nun folgenden einstündigen Inkubation bei Raumtemperatur wird gleichzeitig eine BCIP/NBT-Tablette in 10 mL destilliertem Wasser im Dunkeln gelöst und nach dreimaligem Waschen der Platte mit 200 μL PBS Tween 0,05% und dreimaligem Waschen mit 200 µL PBS je 100 µL BCIP/NBT in jeden Napf pipettiert und etwa 10 Minuten im Dunkeln entwickelt. Sobald eine Reaktion erkennbar ist, wird die Platte gründlich unter fließendem destilliertem Wasser gewaschen und getrocknet. Anschließend folgt die Auswertung der ELISPOT-Platte mit dem ELISPOT-Lesegerät.

4.3.2.11 Chromfreisetzungsnachweis

Um die Funktionalität der für das Antigen spezifischen CTLs zu zeigen, wird ein Chromfreisetzungsnachweis durchgeführt. Hierzu werden zunächst die Zielzellen je nach Anforderung definiert und eine entsprechende Menge von 210 000 Zellen pro Triplettansatz bereitgestellt. Die Zellen werden aufgetaut und über Nacht in 5 mL Medium in einer 6-Napf-Platte im Brutschrank inkubiert. Von den Effektorzellen werden pro Ansatz 1,4 Millionen insgesamt benötigt. Die Zielzellen werden nach der Inkubation über Nacht mit 20 μg Peptid und 20 μL⁵¹Chrom eine Stunde inkubiert und anschließend dreimal gewaschen. Nun werden Effektor- und Zielzellen in Verhältnissen von 30:1, 10:1, 3:1, 1:1 und 0,3:1 auf einer 96-Napf-Platte zusammengebracht. Ein Napf ohne Effektorzellen liefert Daten für die Spontanfreisetzung des Chroms, also des Hintergrundes, ein weiterer Napf mit einer Positivkontrolle gibt Aufschluss über die maximale Freisetzung. Nach 6 Stunden werden 50 µL des Überstandes pro Napf abgenommen und auf eine Auszählplatte gebracht, getrocknet und ausgewertet. Nach weiteren 18 Stunden wird dies wiederholt. Haben die Effektorzellen nun das Antigen auf den Zielzellen erkannt und diese lysiert, so ist die Freisetzung von internalisiertem Chrom groß.

4.3.2.12 VITAL-Assay

Ein weiterer Test um die zytotoxischen Eigenschaften der stimulierten Zellen zu testen, ist der sogenannte VITAL-Assay¹¹⁸. Zielzellen werden am ersten Tag aufgetaut und über Nacht in Kultur genommen. Pro Napf, Ansatz und Farbe werden 5 000 Zielzellen benötigt, also 30 000 Zielzellen pro Ansatztriplett. Kontrollzellen, welche von den CTLs nicht getötet werden sollten, werden mit Far Red gefärbt, Zielzellen, welche erkannt und getötet werden sollen, mit CFSE. Am zweiten Tag werden die Zielzellen mit RPMI gewaschen und der CFSE- bzw. Far Red-Puder in je 10 μL DMSO gelöst. Nach

Resuspension der Zielzellen in 2 ml RPMI werden 1,5 μL CFSE zu den zu tötenden Zellen gegeben und 1,5 μL Far Red zu den Zellen, die nicht erkannt werden sollen. Beide Farbstoffe werden 10 Minuten bei Raumtemperatur inkubiert und anschließend werden die Zellen einmal mit RPMI gewaschen und mit 10 μg/mL Peptid in 1 mL RPMI und 5% FCS über Nacht im Brutschrank inkubiert. Am dritten Tag werden die Effektorzellen auf 60 000 in 100 μL Medium eingestellt und 1:3-Verdünnungen von 30:1 (E:Z-Ratio) bis 0,3:1 erstellt. Eine Kontrolle ohne Effektoren wird ebenfalls vorbereitet. Die Zielzellen werden auf eine Konzentration von 5 000 Zellen pro Farbe und Napf in 100 μL Medium gerbracht und zu den Effektorzellen zugegeben. Es folgt eine weitere Inkubation über Nacht im Brutschrank. Nachdem das Medium am vierten Tag abzentrifugiert wurde werden die Zellen fixiert und im FACS ausgewertet.

5 Ergebnisse und Diskussion

5.1 HLA-Liganden mit SNPs und ihre Verteilung

5.1.1 Polymorphismen bei natürlichen Liganden

Zum Zeitpunkt der Abfrage befanden sich Daten von 3191 natürlichen HLA-Liganden in der Peptiddatenbank. Die dbSNP enthielt 11 170 620 Einträge über SNPs. 513 natürliche HLA-Liganden enthalten in ihrer entsprechenden DNA-Sequenz nicht-synonyme SNPs. Von diesen Liganden stammen 231 von HLA-Molekülen. Nach Entfernung dieser und doppelter Einträge sind letztlich 173 Peptidsequenzen für die weitere Auswahl verwertbar. Tabelle 5 listet sämtliche Peptide mit in der dbSNP hinterlegten SNPs ohne jedoch die 213 Liganden aus HLA-Molekülen. In Tabelle 6 werden die Peptidsequenzen gezeigt, die für die weitere Selektion benutzt worden sind. Statistisch gesehen besitzen etwa 16 % aller in der Peptiddatenbank eingetragenen Peptide polymorphe Stellen, etwa 5 % sind für die weitere Suche nach mHags interessant.

Tabelle 5: Sämtliche Peptide mit bekannten SNPs ohne HLA-Moleküle

Protein Name	Peptide	•	Mutation		dbSNP
		start pos		ID	ref
ABCC3	VLFGKALNPK	709	K718M	8714	11568584
ACTA2	EAGPSIVHR	366	H373P	59	1062398
ACTB	APEEHPVLL	97	P98S	60	11546910
ACTB	APRAVFPSI	26	A26V	60	11546929
ACTB	APRAVFPSI	26	L32P	60	11546900
ACTB	APRAVFPSI	26	P33S	60	11546917
ACTB	ESGPSIVHR	364	G366S	60	11546903
ACTB	GRDLTDYLM	182	L183R	60	11546934
ACTB	ISKQEYDESGPSIVHRKCF	357	G366S	60	11546903
ACTB	KSYELPDGQVI	238	L243P	60	11546899
ACTB	LEKSYELPDGQVI	236	L243P	60	11546899
ACTB	LRVAPEEHPVL	94	G96V	60	11546931
ACTB	LRVAPEEHPVL	94	P98S	60	11546910
ACTB	NELRVAPEEHPV	92	G96V	60	11546931
ACTB	NELRVAPEEHPV	92	P98S	60	11546910
ACTB	QEYDESGPSIVHRK	360	G366S	60	11546903
ACTB	RVAPEEHPV	95	G96V	60	11546931
ACTB	RVAPEEHPV	95	P98S	60	11546910
ACTB	RVAPEEHPVL	95	G96V	60	11546931
ACTB	RVAPEEHPVL	95	P98S	60	11546910
ACTB	RVAPEEHPVLLT	95	G96V	60	11546931

ACTB	RVAPEEHPVLLT	95	P98S	60	11546910
ACTB	WISKQEYDESGPSIVHRKCF	356	G366S	60	11546903
ACTG1	APEEHPVLL	97	E100Q	71	11549188
ACTG1	APEEHPVLL	97	L102P	71	11549172
ACTG1	APEEHPVLL	97	P102T	71	11549229
ACTG1	APPERKY	331	A331P	71	11549200
ACTG1	APRAVFPSI	26	H32P	71	11549231
ACTG1	APRAVFPSI	26	M30V	71	11549243
ACTG1	IIAPPERKY	329	A331P	71	11549200
ACTG1	IKIIAPPERKY	327	A331P	71	11549200
ACTG1	KSYELPDGQVI	238	K238N	71	11549200
ACTG1	LEKSYELPDGQVI	236	K238N	71	11549173
ACTG1	LRVAPEEHPVL	94	E100Q	71	11549188
ACTG1	LRVAPEEHPVL	94	L102P	71	11549172
ACTG1	LRVAPEEHPVL	94	P102T	71	11549229
ACTG1	NELRVAPEEHPV	92	E100Q	71	11549188
ACTG1	NELRVAPEEHPV	92	L102P	71	11549172
ACTG1	NELRVAPEEHPV	92	P102T	71	11549229
ACTG1	RVAPEEHPV	95	E100Q	71	11549188
ACTG1	RVAPEEHPV	95	L102P	71	11549172
ACTG1	RVAPEEHPV	95	P102T	71	11549229
ACTG1	RVAPEEHPVL	95	E100Q	71	11549188
ACTG1	RVAPEEHPVL	95	L102P	71	11549172
ACTG1	RVAPEEHPVL	95	P102T	71	11549229
ACTG1	RVAPEEHPVLLT	95	E100Q	71	11549188
ACTG1	RVAPEEHPVLLT	95	L100Q	71	11549172
ACTG1	RVAPEEHPVLLT	95	P102T	71	11549172
ACTG1	TTAEREIVR	202	A204V	71	11549225
ACY1		390		95	6804746
	IYTRLLPAL LTDRELEEY		C393R H570R		13306092
ADD1		567		118	
ADD1	LTDRELEEY	598	H601R	118	13306092
ADD1	LTDRELEEY	598	H601R	118	13306092
ADFP	QKIQDAQDKLY	272	F281L	123	3780220
AKR1C2	RLLEMILNK	171	E179K	1646	2518042
ALDOB	GLSERCAQY	130	R134S	229	10123355
ALDOB	TEKVLAAVY	206	E207Q	229	3739721
ANPEP	VYGPMKNYL	714	C716G	290	1042550
APOA2	EKSKEQLTPLIKKAGTELVN	66	A81T	336	12824
APOA2	EKSKEQLTPLIKKAGTELVN	66	173T	336	1803091
ARFGAP3	RYFDEPVEL	355	R355S	26286	1018448
ATP5B	MVGPIEEAVAKADKLAEEHSS	509	K522N	506	11542643
ATP5B	YMVGPIEEAVAKADKLAEEHSS	508	K522N	506	11542643
ATP5I	MVPPVQVSPLIKLGRYSAL	1	I13L	521	1131666
ATP5I	VPPVQVSPLIKLGRYSAL	2	113L	521	1131666
ATP6AP2	ERIPDVAAL	40	A43P	10159	11553346
ATP6AP2	ILKSPGSVVFR	21	F30L	10159	11553344
B2M	YVSGFHPSDIE	46	E56K	567	11553042
C4B	APPSGGPGFLSIERPDSRPP	464	L478P	432395	999780
C4B	APPSGGPGFLSIERPDSRPPR	464	L478P	432395	999780
C4B	GGPGFLSIERPDSRPP	468	L478P	432395	999780
CCL22	ARLQTALLV	2	A2D	6367	4359426
CDC42EP3	GOFPGHNEF	- 76	H77Q	10602	
CDC42EP3	GQFPGHNEFF	76	H77Q	10602	
COMT	RYLPDTLLL	146	L149P	1312	13306279
COMT	RYLPDTLLL	196	L199P	1312	13306279
COPE	RSVDVTNTTF	110	1117T	11316	10330
COPE	RSVDVTNTTF	110	1117T	11316	10330
				1520	
CURN	TGKLVSLSAQNLVD	156	S161T		1059604
CUBN	WVIKTEMGKVL	502	1504M	8029	2228053
CYCS	ERADUAY	90	196L	54205	3211449
CYCS	ERADLIAYL TDVDDBS	91	196L	54205	3211449
DDX20	TPVDDRISL	688	R693S	11218	197414
DKC1	IMLPGVLRY	315	1321L	1736	2728726

DNPEP	PSLSHNLLVD	466	S469T	23549	1801951
FAU	RFVNVVPTF	115	P122T	2197	1064907
FDPS	EVLEYNAIGGKY	113	I120V	2224	2148136
FDPS	SYSHIMALI	387	1391V	2224	17456
FKBP2	MRLSWFQVL	1	Q7R	2286	11545831
FKBP2	MRLSWFQVL	1	Q7R	2286	11545831
FLJ10803	ALGPPLNIHY	63	H72Y	55744	11552602
FLJ22671	RIGSGLKALL	219	1220V	79919	11899555
FN1	GATYNIIVEALKDQ	1955	11960V	2335	1250209
FN1	GATYNIIVEALKDQ	2075	12080V	2335	1250209
	•				
FN1	GATYNIIVEALKDQ	2109	I2114V	2335	1250209
FN1	GATYNIIVEALKDQ	2134	I2139V	2335	1250209
FN1	GATYNIIVEALKDQ	2200	12205V	2335	1250209
FN1	GATYNIIVEALKDQ	2256	12261V	2335	1250209
FOLH1	KYADKIYSI	606	N613S	2346	2988341
FTL	GVSHFFRELAEEKREG	47	1495	2512	11553262
FTL	GVSHFFRELAEEKREG	47	K59R	2512	11553260
FTL	VSHFFRELAEEKREG	48	149S	2512	11553262
FTL	VSHFFRELAEEKREG	48	K59R	2512	11553260
GAPDH	GVFTTMEKAGAH	100	H111Q	2597	11549322
GAPDH	STGVFTTMEKAGAH	98	H111Q	2597	11549322
GAPDH	STGVFTTMEKAGAHL	98	H111Q	2597	11549322
GAPDH	TGVFTTMEKAGAH	99	H111Q	2597	11549322
GAPDH	TGVFTTMEKAGAHL	99	H111Q	2597	11549322
GDF5	AALLDVRSVP	275	A276S	8200	224331
GH1	NLELLRISLLL	58	C65S	2688	6174
GH1	NLELLRISLLL	83	C90S	2688	6174
GH1	NLELLRISLLL	98	C105S	2688	6174
GLB1	VRILPLLL	6	L10P	2720	7637099
GNAS	WEDEGVRAC	140	H146R	2778	11554274
GNAS	WEDEGVRAC	154	H160R	2778	11554274
GNB2L1	KDVLSVAF	106	E108V	10399	11540186
GNB2L1	SHFVSDVVI	63	F65L	10399	11540192
GNB2L1	TGYLNTVTV	192	A197T	10399	11540199
GRHPR	GRIGQAIAR	162	Q170R	9380	12002324
HBA1					
	AAHLPAEFTPAV	111	N119T	3039	1058069
HBA1	AAHLPAEFTPAVH	111	N119T	3039	1058069
HBA1	AHVDDMPNAL	72	A72G	3039	3180281
HBA1	SLDKFLASVSTVL	125	D127E	3039	1058334
HBA1	VLSPADKTNVKA	2	F11V	3039	1799896
HBA1	VLSPADKTNVKAAWGKVGAHAGEYGAEALER	2	A22V	3039	11548605
HBA1	VLSPADKTNVKAAWGKVGAHAGEYGAEALER	2	F11V	3039	1799896
HBA1	VLSPADKTNVKAAWGKVGAHAGEYGAEALERM	2	A22V	3039	11548605
HBA1	VLSPADKTNVKAAWGKVGAHAGEYGAEALERM	2	F11V	3039	1799896
HBA1	VLSPADKTNVKAAWGKVGAHAGEYGAEALERMF	2	A22V	3039	11548605
HBA1	VLSPADKTNVKAAWGKVGAHAGEYGAEALERMF	2	F11V	3039	1799896
HBA2	AAHLPAEFTPAV	111	L120P	3040	17134763
HBA2	AAHLPAEFTPAV	111	N119T	3040	1058069
HBA2	AAHLPAEFTPAVH	111	L120P	3040	17134763
HBA2		111	N119T	3040	1058069
	AAHLPAEFTPAVH				
HBA2	AHVDDMPNAL	72	A72G	3040	3180281
HBA2	SLDKFLASVSTVL	125	D127E	3040	1058334
HBA2	VLSPADKTNVKA	2	F11V	3040	1799896
HBA2	VLSPADKTNVKAAWGKVGAHAGEYGAEALER	2	A22V	3040	11548605
HBA2	VLSPADKTNVKAAWGKVGAHAGEYGAEALER	2	F11V	3040	1799896
HBA2	VLSPADKTNVKAAWGKVGAHAGEYGAEALERM	2	A22V	3040	11548605
HBA2	VLSPADKTNVKAAWGKVGAHAGEYGAEALERM	2	F11V	3040	1799896
HBA2	VLSPADKTNVKAAWGKVGAHAGEYGAEALERMF	2	A22V	3040	11548605
HBA2	VLSPADKTNVKAAWGKVGAHAGEYGAEALERMF		F11V	3040	1799896
HBB	GKVNVDEVGGEALGRLLVVYPWTQRF	17	K40Q	3043	11549407
HBB	LVVYPWTQR	33	K40Q	3043	11549407
טטוו	LVVII VVIQIV	J.J	NTUC	2043	11343407

HBB	LVVYPWTQRF	33	K40Q	3043 11549407
HBB	LVVYPWTQRFFES	33	K40Q	3043 11549407
HBB	TPEEKSAVTAL	5	E7V	3043 334
HBB	VHLTPEEKSAVT	2	E7V	3043 334
HBB	VHLTPEEKSAVTAL	2	E7V	3043 334
HBB	VHLTPEEKSAVTALWGKVNVDEVGGEALGRL	2	E7V	3043 334
HBB	VHLTPEEKSAVTALWGKVNVDEVGGEALGRLL	2	E7V	3043 334
HBB	VVYPWTQR	34	K40Q	3043 11549407
HBB	VVYPWTQRF	34	K40Q	3043 11549407
HBB	VYPWTQRF	35	K40Q	3043 11549407
HBB	YPWTQRF	36	K40Q	3043 11549407
HBXIP	EHAGVISVL	122	A124V	10542 11541366
HDAC1	RMLPHAPGV	371	A378G	3065 16834961
HDLBP	ISVPIFKQF	584	H591Q	3069 11555547
HDLBP	ISVPIFKQF	584	H591Q	3069 11555547
HEG	LLDLSSSSES	412	P418S	57493 2981546
HIST1H2BA	LLLPGELAKHAV	102	L102S	255626 1137659
HIST1H2BA	REIQTAVRL	94		
	-		L102S	255626 1137659
HMGB1	APKRPPSAF	94	L98P	3146 2388544
HMOX1	EVIPYTPAM	103	L106P	3162 9282702
HMOX1	KIAQKALDL	149	H152Q	3162 5755713
HSCARG	TLLEDGTFKV	23	I23T	57407 11557236
HSPCA	ALRDNSTMGY	618	1625M	3320 11547532
IL12A	VTIDRVTSY	241	M247T	3592 1042155
KIAA0101	WQKGIGEFF	61	E67G	9768 11554320
KIAA0101	WQKGIGEFF	61	F68S	9768 11554309
KRT18	ALLNIKVKL	365	L373V	3875 17467
KRT18	RLASYLDRV	90	A92V	3875 11551623
KRT18	RLASYLDRV	90	A92V	3875 11551623
KRT18	RLASYLDRV	90	H90R	3875 11551641
KRT18	RYALQMEQL	330	F338L	3875 11551635
KRT18	RYALQMEQL	330	H334Q	3875 11542066
KRT8	KLLEGEESRL	393	R401W	3856 2277330
LAMP2	RLFPVPGSGLV	5	A11G	3920 3180515
LAMP2	RLFPVPGSGLV	5	G13W	3920 12853266
LBP	AISDYVFNTASLVYHEE	280	D283G	3929 2232607
LBP	AISDYVFNTASLVYHEE	280	H294R	3929 2232608
LBP	ISDYVFNTASLVYHEE	281	D283G	3929 2232607
LBP	ISDYVFNTASLVYHEE	281	H294R	3929 2232608
LOC124685	EAFVRHIL	143	L146V	124685 12947985
LOC124685 LOC151579	FVRHILSG FQKIVVLF	145 218	L146V M223V	124685 12947985 151579 13324635
LOC151579	KAFQKIVVL	216	M223V	151579 13324635 387991 8020508
LOC387991	NEVVTREY	154	I157V	387991 12895553
LOC387991	NEVVTREY	154	Q159R	
LOC388460	YEITEQRKI	165	Q170R	388460 15146
LOC389308	FLASESLIKQI	31	P34S	389308 11746993
LOC389342	SEALEAARI	62	L65M	389342 11558125
LOC391847	ILMEHIHKL	124	E127G	391847 17073568
LOC402057	RDNYVPEVSALDQEI	81	A82D	402057 11704463
LOC402057	RDNYVPEVSALDQEI	81	A88V	402057 1804357
LOC402057	RDNYVPEVSALDQEI	81	L91S	402057 1804358
LOC402057	RRDNYVPEVSALDQEI	80	A82D	402057 11704463
LOC402057	RRDNYVPEVSALDQEI	80	A88V	402057 1804357
LOC402057	RRDNYVPEVSALDQEI	80	L91S	402057 1804358
LOC402142	LPDLEGRTHIF	330	Q336R	402142 11720059
LOC440927	ILHDDEVTV	15	H17Q	440927 11554439
LOC441073	DEVQVVRGHY	7	D7Y	441073 11542517
LOC441073	DEVQVVRGHY	7	H13R	441073 25789
LOC441744	KLLEPVLLL	61	L65P	441744 1804475
MAGED2	VEVPETPKA	37	E44K	10916 11555928
MCM5	ASPSSIRSL	132	S136T	4174 2307334
MKI67IP	YLFGERLLEC	109	R114T	84365 4848158
				1.000

1.0.75	IO DELENA	764	07660	0064	2045022
MVP	KVRELELVY	764	Q766R	9961	3815823
MYL6	AEIRHVLVTL	72	L81M	4637	1131230
MYL6	AEIRHVLVTL	107	L116M	4637	1131230
MYL6	DYVEGLRVF	53	H54Y	4637	1804000
MYL6	DYVEGLRVF	88	H89Y	4637	1804000
NAT8	ILDTGTIQL	174	G178S	9027	1062862
NAT8	ILDTGTIQL	174	N179T	9027	1062863
NDUFC2	LVKREDYLY	74	E78G	4718	11544626
NNMT	SSTMANNEGLFSLVARKLSRPL	243	P245T	4837	1050207
NOL11	AEVYRILSV	107	A115V	25926	2291284
NQ01	AMYDKGPFRSK	131	R139W	1728	4986998
NUP133	AEVDDQLTI	99	P106T	55746	428231
OAS3	WENPRVLSF	865	H869R	4940	16942374
ORM1	LGEFYEALDCLRIPK	156	K170R	5004	1126780
PBXIP1	ARLPWAGQL	624	G628W	57326	11559159
PCSK1N	GGVGLLVLLL	13	L17V	27344	11538179
PGK1	VPSIKFCLDNGAK	44	L51S	5230	11541575
PHGDHL1	RLFPPLRQR	242	P245R	337867	7318420
PLXNC1	FLVTVIHTL	1065	P1072T	10154	865246
PPA2	LLMKNCNGGAI	278	K282N	27068	13787
PRMT1	LFKDKVVL	58	K60M	3276	1804486
PRMT1	LFKDKVVL	62	K64M	3276	1804486
PRMT1	LFKDKVVL	76	K78M	3276	1804486
PSMD2	EVVSEPFRSF	581	E585Q	5708	11545179
PSMD2	THTTPVLL	867	P869T	5708	1802799
PTGFRN	FKYPLLIGVG	829	1837V	5738	10801922
RAB7	APNTFKTLDSWRDE	92	A93P	7879	11549756
RAB7	APNTFKTLDSWRDEF	92	A93P	7879	11549756
RBPSUH	STDKAEYTFY	317	D319H	3516	1064376
RBPSUH	STDKAEYTFY	318	D31911	3516	1064376
RBPSUH	STDKAEYTFY	319	D32011	3516	1064376
RBPSUH					
	STDKAEYTFY	332	D334H	3516	1064376
RPA3	AQFIDKPVCF	18	A25V	6119	11548197
RPL13	APRPASGPIRP	47	L50P	6137	11546499
RPL19	ILMEHIHKL	137	F138L	6143	11554156
RPL24	SLADIMAKR	86	F87L	6152	1061543
RPL27	KIKSFVKVY	67	168L	6155	10539
RPL31	NEVVTREY	18	E19G	6160	11551484
RPL35A	ARDETEFYL	35	A39T	6165	11547008
RPL35A	ARDETEFYL	35	F41S	6165	11547007
RPL35A	REHTALLKI	22	H24Y	6165	11547009
RPL8	AEGIHTGQFVY	79	A79V	6132	11539903
RPL8	AEGIHTGQFVY	79	A79V	6132	11539903
RPS17	QVTQPTVGMNFKTPRGP	118	K129R	6218	11552839
RPS17	QVTQPTVGMNFKTPRGPV	118	K129R	6218	11552839
SAA1	WAAEVISDARENIQR	71	A75V	6288	10766466
SAA1	WAAEVISDARENIQR	71	S77T	6288	1671926
SAA2	RPAGLPEKY	114	C117G	6289	11540206
SEC23B	SLLPPDALVGL	156	L163M	10483	6112008
SH3BGRL3	EVTRILDGK	23	E23K	83442	1127560
SSR1	VLFRGGPRGSLAVA	19	L28S	6745	7746261
STAT1	DSFPMEIRQY	24	P27T	6772	11549696
STAT3	EELQQKVSY	285	H288Q	6774	1064110
STMN1	SVPEFPLSPPK	31	F37L	3925	11538111
SYNE1	SVYDSVLQK	4470	14475V	23345	4870093
SYNE1	SVYDSVLQK	4541	14546V	23345	4870093
TAGLN2	YGMPRQIL	192	F199L	8407	11556957
TCF3	KPQTKLLIL	584	P585R	6929	1052793
TMEM41A	ALFSWDTVFK	215	A215V	90407	12107045
TMEM50A	HACGVIATI	57	A58V	23585	3093647
TMSB10	ASFDKAKLK	11	F13L	9168	1804517
				3230	_00.01,

TUBA6	ERPTYTNLNRLISQ	220	E220G	84790	11546602
TUBA6	ERPTYTNLNRLISQ	220	P222Q	84790	11546623
TUBB	LYDICFRTL	207	C211W	203068	3 11546750
TUBB2B	LRFPGQLNA	240	A248V	347733	3 2808001
TYROBP	YSDLNTQRPY	101	H110Y	7305	14714
TYROBP	YSDLNTQRPY	102	H111Y	7305	14714
UBB	FVKTLTGK	4	F8L	7314	11550545
UBB	QIFVKTLTGK	2	F8L	7314	11550545
VCAM1	IIYFARKANMK	624	1624L	7412	3783615
VCAM1	IIYFARKANMK	716	1716L	7412	3783615
VIL2	KENPLQFKF	72	L75P	7430	11550707
VPS35	DELHYLEVY	72	L77S	55737	11550462
ZNF9	RECTIEATA	169	E170V	7555	11542610

Tabelle 6: HLA-Liganden mit bekannten SNPs ohne Doppelungen und HLA-Moleküle

Peptide	Peptide start pos	SNP	Protein name	Gene ID	dbSNP ref
AAHLPAEFTPAVH	111	N119T	HBA2	3040	1058069
AAHLPAEFTPAVH	111	L120P	HBA2	3040	17134763
AALLDVRSVP	275	A276S	GDF5	8200	224331
AEGIHTGQFVY	79	A79V	RPL8	6132	11539903
AEIRHVLVTL	72	L81M	MYL6	4637	1131230
AEVDDQLTI	99	P106T	NUP133	55746	428231
AEVYRILSV	107	A115V	NOL11	25926	2291284
AHVDDMPNAL	72	A72G	HBA2	3040	3180281
ALFSWDTVFK	215	A215V	TMEM41A	90407	12107045
ALGPPLNIHY	63	H72Y	FLJ10803	55744	11552602
ALLNIKVKL	365	L373V	KRT18	3875	17467
ALRDNSTMGY	618	1625M	HSPCA	3320	11547532
AMYDKGPFRSK	131	R139W	NQO1	1728	4986998
APEEHPVLL	97	E100Q	ACTG1	71	11549188
APKRPPSAF	94	L98P	HMGB1	3146	2388544
APNTFKTLDSWRDEF	92	A93P	RAB7	7879	11549756
APRAVFPSI	26	L32P	ACTB	60	11546900
APRAVFPSI	26	P33S	ACTB	60	11546917
APRAVFPSI	26	A26V	ACTB	60	11546929
APRAVFPSI	26	H32P	ACTG1	71	11549231
APRAVFPSI	26	M30V	ACTG1	71	11549243
APRPASGPIRP	47	L50P	RPL13	6137	11546499
AQFIDKPVCF	18	A25V	RPA3	6119	11548197
ARDETEFYL	35	F41S	RPL35A	6165	11547007
ARDETEFYL	35	A39T	RPL35A	6165	11547008
ARLPWAGQL	624	G628W	PBXIP1	57326	11559159
ARLQTALLV	2	A2D	CCL22	6367	4359426
ASFDKAKLK	11	F13L	TMSB10	9168	1804517
ASPSSIRSL	132	S136T	MCM5	4174	2307334
DELHYLEVY	72	L77S	VPS35	55737	11550462
DEVQVVRGHY	7	H13R	LOC441073	441073	25789
DEVQVVRGHY	7	D7Y	LOC441073	441073	11542517
DSFPMEIRQY	24	P27T	STAT1	6772	11549696
DYVEGLRVF	88	H89Y	MYL6	4637	1804000
EAGPSIVHR	366	H373P	ACTA2	59	1062398
EELQQKVSY	285	H288Q	STAT3	6774	1064110
EHAGVISVL	122	A124V	HBXIP	10542	11541366
EKSKEQLTPLIKKAGTELVN	66	A81T	APOA2	336	12824
EKSKEQLTPLIKKAGTELVN	66	173T	APOA2	336	1803091
ERADLIAYL	91	196L	CYCS	54205	3211449
ERIPDVAAL	40	A43P	ATP6AP2	10159	11553346

220	E220G	TUBA6	84790	11546602
220	P222Q	TUBA6	84790	11546623
103	L106P	HMOX1	3162	9282702
113	I120V	FDPS	2224	2148136
23	E23K	SH3BGRL3	83442	1127560
581	E585Q	PSMD2	5708	11545179
829	1837V	PTGFRN	5738	10801922
31	P34S	LOC389308	389308	11746993
1065	P1072T	PLXNC1	10154	865246
145	L146V	LOC124685	124685	12947985
2256	12261V	FN1	2335	1250209
468	L478P	C4B	432395	999780
13	L17V	PCSK1N	27344	11538179
130	R134S	ALDOB	229	10123355
76	H77Q	CDC42EP3	10602	2231503
182	L183R	ACTB	60	11546934
162	Q170R	GRHPR	9380	12002324
57	A58V	TMEM50A	23585	3093647
716	1716L	VCAM1	7412	3783615
327	A331P	ACTG1	71	11549200
174	G178S	NAT8	9027	1062862
174	N179T	NAT8	9027	1062863
15	H17Q	LOC440927	440927	11554439
21	F30L	ATP6AP2	10159	11553344
124	E127G	LOC391847	391847	17073568
137	F138L	RPL19	6143	11554156
315	1321L	DKC1	1736	2728726
281	D283G	LBP	3929	2232607
281	H294R	LBP	3929	2232608
	H591Q	HDLBP		11555547
				6804746
		LOC151579	151579	13324635
		GNB2L1	10399	11540186
		VIL2	7430	11550707
	H152Q		3162	5755713
				10539
			3856	2277330
			441744	1804475
	P585R		6929	1052793
		ACTG1		11549173
		MVP		3815823
		FOLH1	2346	2988341
	L243P			11546899
	K78M			1804486
				1126780
				2981546
				13787
				11720059
				2808001
				13306092
				11544626
				11546750
				11545831
				11551484
				8020508
				12895553
				6174
				1801951
				11550545
				3780220
118	K129R	RPS17	6218	11552839
	220 103 113 23 581 829 31 1065 145 2256 468 13 130 76 182 162 57 716 327 174 174 15 21 124 137 315 281	220 P222Q 103 L106P 113 L120V 23 E23K 581 E585Q 829 I837V 31 P34S 1065 P1072T 145 L146V 2256 I2261V 468 L478P 13 L17V 130 R134S 76 H77Q 182 L183R 162 Q170R 57 A58V 716 I716L 327 A331P 174 G178S 174 N179T 15 H17Q 21 F30L 124 E127G 137 F138L 315 I321L 281 D283G 281 H294R 584 H591Q 390 C393R 216 M223V 106 E108V 72 <	220 P222Q TUBA6 103 L106P HMOX1 113 I120V FDPS 23 E23K SH3BGRL3 581 E585Q PSMD2 829 I837V PTGFRN 31 P34S LOC389308 1065 P1072T PLXNC1 145 L146V LOC124685 2256 I2261V FN1 468 L478P C4B 13 L17V PCSK1N 130 R134S ALDOB 76 H77Q CDC42EP3 182 L183R ACTB 162 Q170R GRHPR 57 A58V TMEM50A 716 I716L VCAM1 327 A331P ACTG1 174 G178S NAT8 174 N179T NAT8 15 H17Q LOC440927 21 F30L ATP6AP2 124 E127G	103

RECTIEATA	169	E170V	ZNF9	7555	11542610
REHTALLKI	22	H24Y	RPL35A	6165	11547009
REIQTAVRL	94	L102S	HIST1H2BA	255626	1137659
RFVNVVPTF	115	P122T	FAU	2197	1064907
RIGSGLKALL	219	1220V	FLJ22671	79919	11899555
RLASYLDRV	90	A92V	KRT18	3875	11551623
RLASYLDRV	90	H90R	KRT18	3875	11551641
RLFPPLRQR	242	P245R	PHGDHL1	337867	7318420
RLFPVPGSGLV	5	A11G	LAMP2	3920	3180515
RLFPVPGSGLV	5	G13W	LAMP2	3920	12853266
RLLEMILNK	171	E179K	AKR1C2	1646	2518042
RMLPHAPGV	371	A378G	HDAC1	3065	16834961
RPAGLPEKY	114	C117G	SAA2	6289	11540206
RRDNYVPEVSALDQEI	80	A88V	LOC402057	402057	1804357
RRDNYVPEVSALDQEI	80	L91S	LOC402057	402057	1804358
RRDNYVPEVSALDQEI	80	A82D	LOC402057	402057	11704463
-			COPE		
RSVDVTNTTF	110	I117T	ACTB	11316 60	10330 11546910
RVAPEEHPVLLT	95	P98S			
RVAPEEHPVLLT	95	G96V	ACTB	60	11546931
RVAPEEHPVLLT	95	L102P	ACTG1	71	11549172
RVAPEEHPVLLT	95	P102T	ACTG1	71	11549229
RYALQMEQL	330	H334Q	KRT18	3875	11542066
RYALQMEQL	330	F338L	KRT18	3875	11551635
RYFDEPVEL	355	R355S	ARFGAP3	26286	1018448
RYLPDTLLL	196	L199P	COMT	1312	13306279
SEALEAARI	62	L65M	LOC389342	389342	11558125
SHFVSDVVI	63	F65L	GNB2L1	10399	11540192
SLADIMAKR	86	F87L	RPL24	6152	1061543
SLDKFLASVSTVL	125	D127E	HBA2	3040	1058334
SLLPPDALVGL	156	L163M	SEC23B	10483	6112008
SSTMANNEGLFSLVARKLSRPL	243	P245T	NNMT	4837	1050207
STDKAEYTFY	332	D334H	RBPSUH	3516	1064376
SVPEFPLSPPK	31	F37L	STMN1	3925	11538111
SVYDSVLQK	4541	14546V	SYNE1	23345	4870093
SYSHIMALI	387	1391V	FDPS	2224	17456
TEKVLAAVY	206	E207Q	ALDOB	229	3739721
TGKLVSLSAQNLVD	156	S161T	CTSS	1520	1059604
TGVFTTMEKAGAHL	99	H111Q	GAPDH	2597	11549322
TGYLNTVTV	192	A197T	GNB2L1	10399	11540199
THTTPVLL	867	P869T	PSMD2	5708	1802799
TLLEDGTFKV	23	123T	HSCARG	57407	11557236
TPVDDRISL	688	R693S	DDX20	11218	197414
TTAEREIVR	202	A204V	ACTG1	71	11549225
VEVPETPKA	37	E44K	MAGED2	10916	11555928
VHLTPEEKSAVTALWGKVNVDEVGGEALGRLL	2	E7V	HBB	3043	334
VLFGKALNPK	709	K718M	ABCC3	8714	11568584
VLFRGGPRGSLAVA	19	L28S	SSR1	6745	7746261 1799896
VLSPADKTNVKAAWGKVGAHAGEYGAEALERMF	2	F11V	HBA2	3040	
VLSPADKTNVKAAWGKVGAHAGEYGAEALERMF	2	A22V	HBA2	3040	11548605
VPPVQVSPLIKLGRYSAL	2	I13L	ATP5I	521	1131666
VPSIKFCLDNGAK	44	L51S	PGK1	5230	11541575
VRILPLLL	6	L10P	GLB1	2720	7637099
VSHFFRELAEEKREG	48	K59R	FTL	2512	11553260
VSHFFRELAEEKREG	48	149S	FTL	2512	11553262
VTIDRVTSY	241	M247T	IL12A	3592	1042155
VYGPMKNYL	714	C716G	ANPEP	290	1042550
WAAEVISDARENIQR	71	S77T	SAA1	6288	1671926
WAAEVISDARENIQR	71	A75V	SAA1	6288	10766466
WEDEGVRAC	154	H160R	GNAS	2778	11554274
WENPRVLSF	865	H869R	OAS3	4940	16942374
WISKQEYDESGPSIVHRKCF	356	G366S	ACTB	60	11546903
WQKGIGEFF	61	F68S	KIAA0101	9768	11554309
WQKGIGEFF	61	E67G	KIAA0101	9768	11554320

WVIKTEMGKVL	502	1504M	CUBN	8029	2228053
YEITEQRKI	165	Q170R	LOC388460	388460	15146
YGMPRQIL	192	F199L	TAGLN2	8407	11556957
YLFGERLLEC	109	R114T	MKI67IP	84365	4848158
YMVGPIEEAVAKADKLAEEHSS	508	K522N	ATP5B	506	11542643
YPWTQRF	36	K40Q	HBB	3043	11549407
YSDLNTQRPY	102	H111Y	TYROBP	7305	14714
YVSGFHPSDIE	46	E56K	B2M	567	11553042

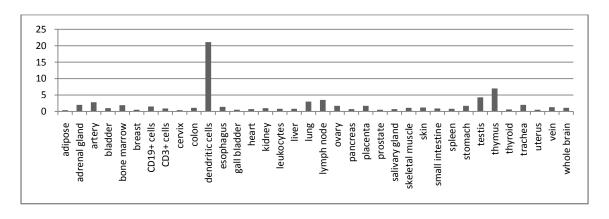
5.1.2 Selektion der Kandidaten

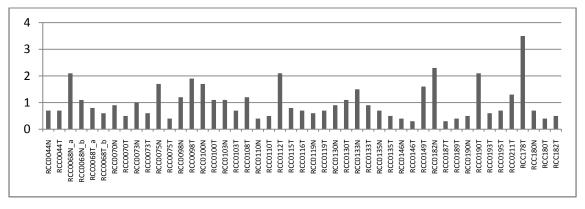
Zunächst wurden die in Tabelle 7 aufgelisteten Peptide durch eine Vorauswahl herausgesucht, hierbei waren Bezug zu Erkrankungen wie Leukämie oder soliden Tumoren und das Herkunftsgewebe des natürlichen Liganden wichtig.

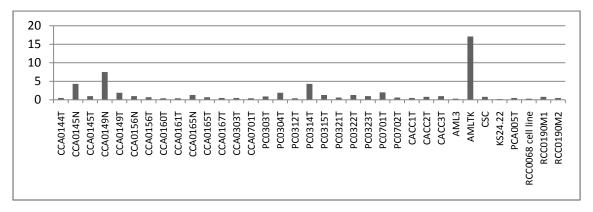
Für eine feinere Selektion von mHag-Kandidaten, die weiter untersucht wurden, dienten Informationen über Gewebeverteilung, Allelfrequenzen und der SYFPEITHI-Score, der die Wahrscheinlichkeit einer Präsentation auf dem entsprechenden HLA-Molekül beschreibt.

Wichtigstes und somit ausschlaggebendes Kriterium ist die Allelfrequenz. Ein Kandidat wurde ausgeschlossen, wenn ein Allel der beiden Alternativen zu 100 %, das andere zu 0 % in einer Population vorkommt oder wenn bei den Sequenzierungen der Blutspender nur eines der beiden Allele gefunden wurde. Kommen jedoch beide Allele zu mindestens 1 % vor, oder wurden beide Allele in den Sequenzen der Blutspender gefunden, so wurde dieser Kandidat weiter berücksichtigt. Ein weiteres, wenn auch schwächeres Kriterium, ist die Gewebeverteilung der Kandidaten. Die aussichtsreichsten Kandidaten kommen nur in Geweben vor, die direkt mit einer Erkrankung in Verbindung stehen oder werden in diesen Geweben deutlich überexprimiert. Dies sind Kandidaten für das Erzeugen einer gezielten GvT-Reaktion. Ist die Expression hingegen ubiquitär, so können diese Kandidaten eher für das Auslösen der unvorteilhaften GvHD-Reaktion verantwortlich sein. Letztlich enthält auch die Anzahl an SYFPEITHI-Punkten, die ein Kandidatenpeptid hat, Informationen über die Präsentationswahrscheinlichkeit eines Peptids. Als Schwelle wurde hier der halbe Wert der maximal erreichbaren Punktzahl eines Peptids definiert. Viel versprechend gilt hier, wenn die Peptidvariante über dieser

Schwelle liegt. Die Tabellen 7 und 8 sowie die Abbildungen 6-16 zeigen die elf selektierten Kandidaten. Die qualifizierenden Eigenschaften jedes einzelnen Kandidaten werden bei den Abbildungen der jeweiligen Genexpressionsdaten (Abbildungen 6 – 15) erläutert. Dabei zeigt das obere Diagramm die Expression in unterschiedlichen Normalgeweben, das mittlere Diagramm in Geweben aus Tumoren und Normalgeweben aus Nierenzellkarzinomen, das untere Expressionsdaten aus unterschiedlichen Tumorund Normalgeweben sowie Zelllinien. Tabelle 7 erläutert die Herkunftsproteine der Kandidaten, deren Allelfrequenz soweit in der dbSNP hinterlegt und ihren SYFPEITHI-Wert. Tabelle 8 fasst die Gewebespezifität laut Informationen aus der SWISS-PROT und der laboreigenen Genexpressionsdatenbank TissueExpress zusammen.

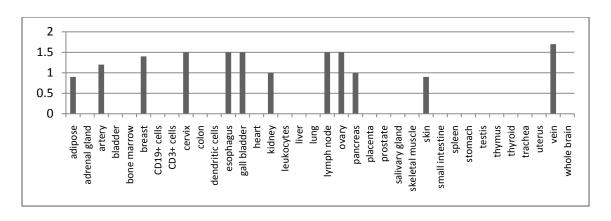

Tabelle 7: mHag-Kandidaten

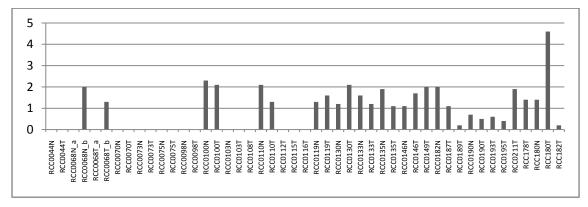

Kürzel	Proteiname	Peptide HLA -Ligand	Peptid- variante	HLA	SYFPEITHI Punkte	Allelfrequenz in Prozent
CCL22	Small inducible cytokine A22 [Precursor]	A RLQTALLV	DRLQTALLV	B*14	28/30	A 95,8 D 4,2 (European)
DDX20	Dead-box protein 20	TPVDDRISL	TPVDDSISL	B*35	n/a	R 80,8 S 19,2 (European)
GH1	Growth hormone 1	NLELLRI S LLL	NLELLRI C LLL	A*02	22/20	S 97,5 C 2,5
FKBP2	FK506-binding protein 2 [Precursor]	MRLSWF Q VL	MRLSWF R VL	B*1402	28/28	n/a
IL12A	Interleukin-12 alpha chain [Precursor]	VTIDRV T SY	VTIDRV M SY	B*1501 (alt B*62)	16/15	T 0 M 100
MAGED2	Melanoma- associated antigen D2	VEVPETP K A	VEVPETP E A	B*4101	25/24	n/a
PBXIP1	Pre-B-cell leukemia protein 1	arlp w agql	arlp g agql	B*27	26/28	n/a
STMN1	Leukemia- associated phosphoprotein p18	SVPEFPLSPPK	SVPEFP F SPPK	A*1101	n/a	n/a
TFE2	Transcription factor E2-alpha	K P QTKLLIL	K R QTKLLIL	B*07	23/13	R 0 P 100
TYROBP	TYRO protein tyrosine kinase- binding protein [Precursor]	YSDLNTQRP Y	YSDLNTQRP H	A*01	31/16	H 0 Y 100
VCAM1	CD106, Vascular cell adhesion protein 1 [Precursor]	IIYFARKANMK	LIYFARKANMK	A*03	18/18	I O L 100

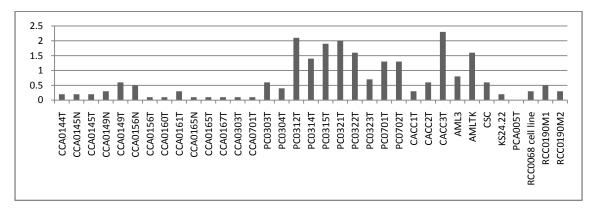

Tabelle 8: mHag-Kandidaten, Gewebeverteilung

Kürzel	Peptide HLA-Ligand	Peptid- variante	HLA		verteilung ⁷ TissueExpress	Quelle des Liganden*
CCL22	A RLQTALLV	DRLQTALLV	B*14	macrophage, monocyte-derived DC, thymus	DC, AMLTK	AML01
DDX20	TPVDDRISL	TPVDDSISL	B*35	Plazenta, Hoden, Epithel	RCC	AML04
FKBP2	MRLSWF Q VL	MRLSWF R VL	B*1402	T cells, Thymus	ubiquitär	H0301
GH1	NLELLRI S LLL	NLELLRI C LLL	A*02		Plazenta	AML03/04
IL12A	VTIDRV T SY	VTIDRV M SY	B*1501 (alt B*62)		CCA	CML85
MAGED2	VEVPETP K A	VEVPETP E A	B*4101	Widely expressed in normal tissue	PC	WIL-JON
PBXIP1	arlp w agql	arlp g agql	B*27	preB tx factor	RCC	RCC112_T
STMN1	SVPEFP L SPPK	SVPEFP F SPPK	A*1101	brain, neurons, testis, leukemic lymphocytes	Gehirn, Thymus, Hoden, RCC, CCA, PC, CAC	CML85
TFE2	K P QTKLLIL	KRQTKLLIL	B*07	Hair follicles, keratocytes	,	RCC100
TYROBP	YSDLNTQRP Y	YSDLNTQRP H	A*01	Monocytes	Leukozyten, DC, Knochenmark, Lunge, Milz	RCC193
VCAM1	IIYFARKANMK	LIYFARKANMK	A*03	DCs, endothelial cells	Milz,	RCC211

^{*}Quelle der Liganden gibt an, aus welchem Gewebe die natürlichen HLA-Liganden eluiert und nachgewiesen wurden.

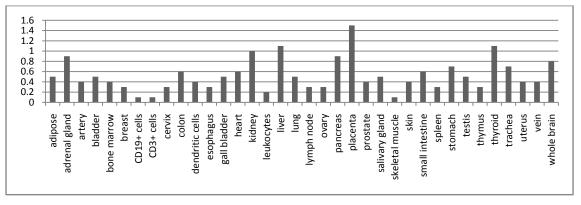


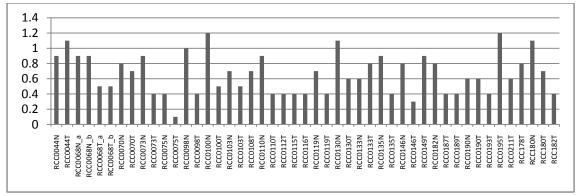



Abbildung 6: Genexpression CCL22

Abkürzungen: RCCXXXXT = Nierenzellkarzinomtumorgewebe, XXXX gibt die interne Bennennung der einzelnen Patienten an; RCCXXXN = Normalgewebe aus Nierenzellkarzinomen; CCA = Colonkarzinom; PC = Pancreaskarzinom; CACC = Cholangiozelluläres Karzinom; AML = akute myeloide Leukämie (Zelllinie); CSC = Mammakarzinomzelllinie; KS24.22 = Mammakarzinomzelllinie; PCA = Prostatakarzinom.

Der natürliche HLA-Ligand ARLQTALLV stammt aus dem CCL22-Protein (small inducible cytokine A22 precursor) und wird auf B*14-Molekülen präsentiert. Aminosäurenaustausch findet an Position 1 statt, A wird durch D ersetzt, man erhält DRLQTALLV als Peptid. Der SYFPEITHI-Score erhöht sich durch diesen Austausch um 2 Punkte von 28 für ARLQTALLV auf 30 für DRLQTALLV. Im Falle von B*14 liegt der Schwellenwert bei 20 Punkten, beide Peptidvarianten liegen also deutlich darüber. Somit ist ein Kriterium, nämlich die Wahrscheinlichkeit einer Präsentation der Peptidvariante, erfüllt. Ein weiteres Kriterium ist die Verbreitung beider Allele in einer Population. Für den natürlichen Liganden ARLQTALLV ergibt sich eine Verbreitung laut dbSNP von 95,8 % für das Allel A in einer europäischen Population, für das Allel D und somit für die Variante DRLQTALLV eine Verbreitung von 4,2 %. In den Genexpressionsdaten wird deutlich, dass CCL22 vor allem in DCs und in der AMLTK-Zelllinie, einer Leukämiezelllinie überexprimiert ist, also eine Gewebespezifität und der Bezug zu einer Erkrankung vorliegt. Diese Daten decken sich auch mit den Angaben aus der SWISS-PROT, hier wird CCL22 als spezifisch für Makrophagen, DCs und Thymus angegeben. Das Herkunftsgewebe des HLA-Liganden ist die Leukämiezelllinie AML01. CCL22 eignet sich von diesen Daten her ausgezeichnet für weitere Untersuchungen.





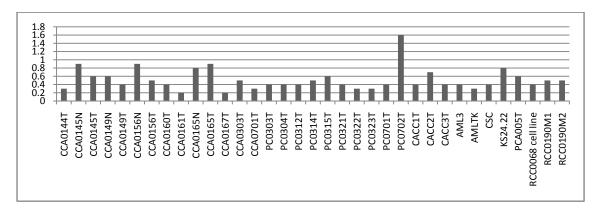
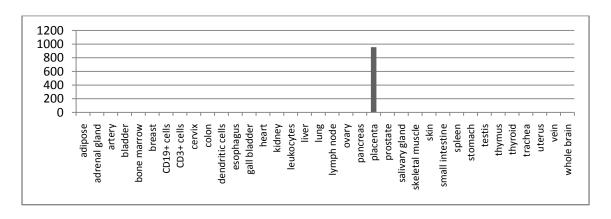
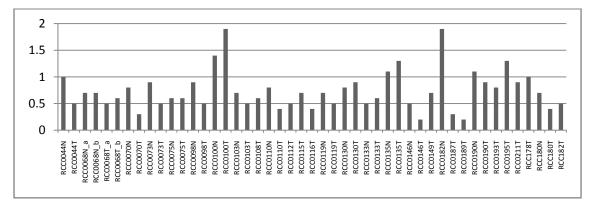


Abbildung 7: Genexpression DDX20

DDX20, das *dead-box protein 20*, liefert den Liganden TPVDDRISL und die Variante TPVDDSISL. Ersteres Peptid mit dem Allel D kommt zu 80,8 %, das mit Allel S zu 19,2 % in einer europäischen Population vor. Der natürliche HLA-Ligand TPVDDRISL wurde von der Leukämiezelllinie AML04 eluiert, laut SWISS-PROT kommt DDX20 vor allem in Plazenta, Hoden und Epithelgewebe vor. Die Genexpressionsdaten zeigen ein ubiquitäres Expressionsmuster, in einzelnen Nierenzellkarzinomgeweben wird DDX20 etwa doppelt so stark exprimiert wie in den Normalgeweben. DDX20 eignet sich aufgrund seiner Allelverteilung gut zur Weiterbearbeitung.





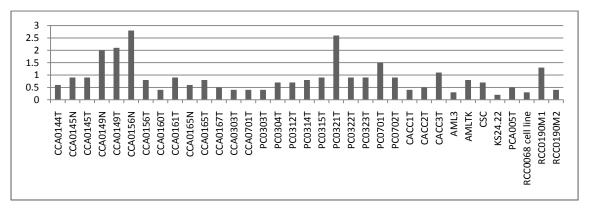
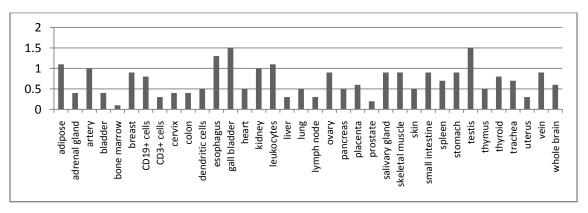


Abbildung 8: Genexpression FKBP2

FKBP2, das FK506-bindende Protein 2, ist Quellprotein des B*1402-Liganden MRLSWFQVL mit der polymorphen Stelle Q und der Variante MRLSWFRVL mit R als Aminosäurenalternative. Allelfrequenzen liegen für diesen SNP in der dbSNP nicht vor. FKBP2 wird laut SWISS-PROT vor allem im Thymus und in T-Zellen gefunden, die Daten der Genexpressionsdatenbank TissueExpress lassen auf eine ubiquitäre Expression schließen. Der SYFPEITHI-Score für beide Peptidalternativen ist 28, somit deutlich über dem Schwellenwert 20. Das gefundene Peptid stammt von der Zelllinie HO301, einer B-lymphoblastoiden-Zelllinie.



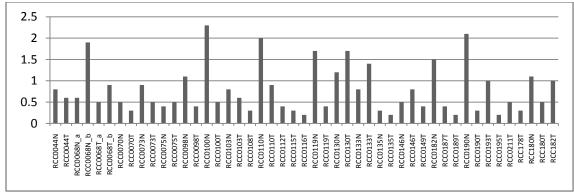


Abbildung 9: Genexpression GH1

Sehr prominent ist die Expression des Wachstumshormons 1 (GH1, growth hormon 1) in der Plazenta. Hier findet man eine 955-fache Überexpression zum Referenzgewebe Normalniere. Das Peptid NLELLRISLLL wurde auf den Leukämiezelllinien AMLO3 und AMLO4 gefunden. Der SNP tauscht hier in S gegen C, als Peptidvariante erhält man somit NLELLRICLLL. Die in der dbSNP hinterlegten Allelfrequenzen ergeben für S eine Verbreitung von 2,5 %, für C 97,5 %. Der Schwellenwert für HLA-A*02 liegt für die SYFPEITHI-Punkte bei 18, NLELLRISLLL erhält 22 Punkte, NLELLRICLLL 20 Punkte. Auch hier wird das Peptid durch das Vorkommen beider Allele in einer Population interessant.

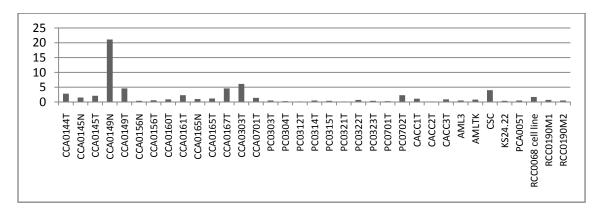
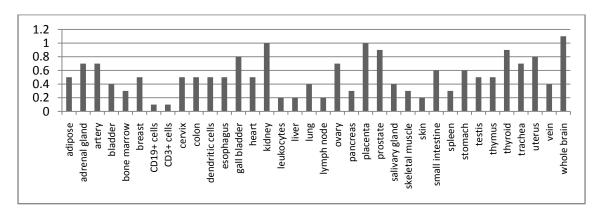
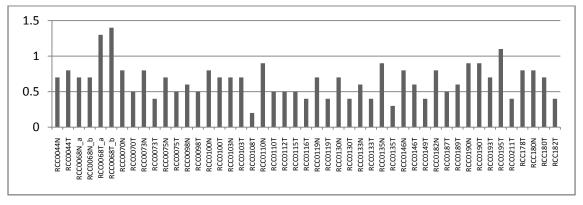
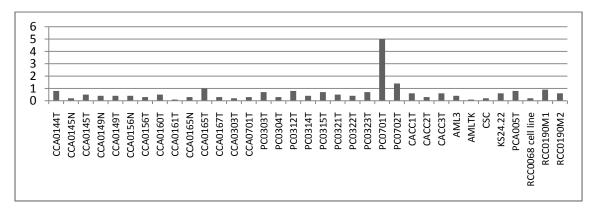
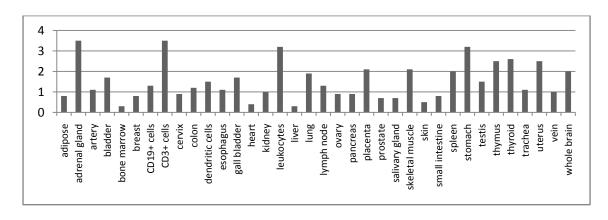
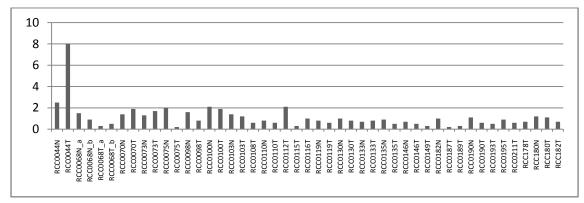





Abbildung 10: Genexpression IL12A

Auf B*1501-Molekülen der chronisch-myeloischen Leukämiezelllinie CML85 wurde das Peptid VTIDRVTSY des IL-12A-Proteins gefunden. Dessen in der dbSNP gefundener Polymorphismus, der Austausch des zweiten T zu M, ergibt als Peptidvariante VTIDRCMSY, welcher zu 0 % in Menschen bisher gefunden wurde. Hier sind also die Daten der Blutspendertypisierungen wichtig. Zur Gewebespezifität gibt es in der SWISS-PROT keine Informationen, laut Genexpressionsdaten gibt es eine Überexpression im Normalgewebe eines Colonkarzinoms. VTIDRCTSY bekommt 16 SYFPEITHI-Punkte, die Variante 15. Beides liegt deutlich unterhalb des Schwellenwerts von 20.





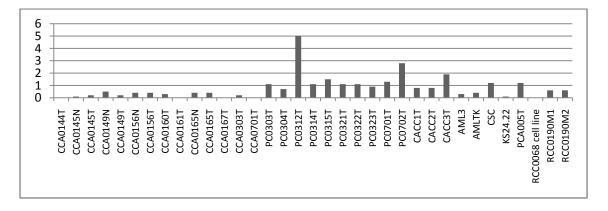
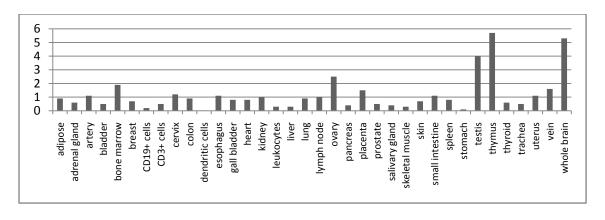
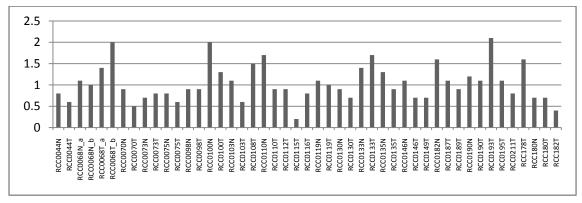


Abbildung 11: Genexpression MAGED2

MAGED2 wird zwar laut SWISS-PROT in sehr vielen Geweben exprimiert, ist jedoch aufgrund seiner Assoziation zu Melanomen von Interesse. Einzig in einem Pankreaskarzinom wird es laut Genexpressionsdatenbank überexprimiert, die anderen Gewebe decken sich mit den Angaben der SWISS-PROT. Für Allelfrequenzen sind keine Daten in der dbSNP vorhanden, gefunden wurde das Peptid VEVPETPKA auf WIL-JON-Zellen, einer humanen Leukämiezelllinie. Dieses Peptid erhält einen SYFPEITHI-Wert von 25, die Variante VEVPETPEA (Austausch K nach E) 24. Für B*4101 ergibt sich ein Schwellenwert von 16. Beide Peptide liegen also darüber.





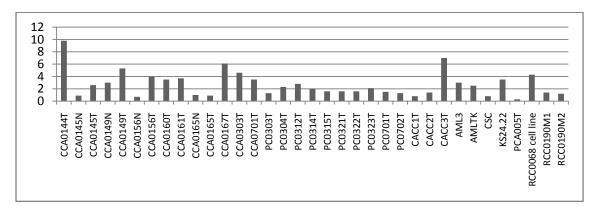
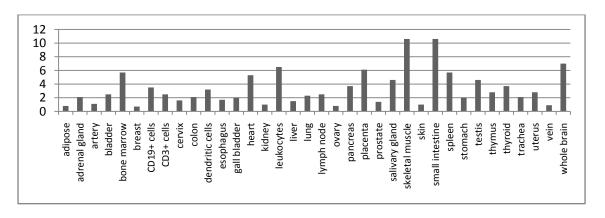
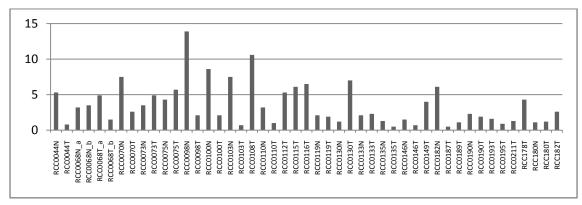


Abbildung 12: Genexpression PBXIP1

ARLPWAGQL des Prä-B-Zellleukämie-Transkriptionsfaktors 1 (PBXIP1) wurde von B*27-Molekülen des RCC112Ts eluiert. Die Peptidvariante lautet ARLPGAGQL mit 28 SYFPEITHI-Punkten im Vergleich zu 26 Punkten des natürlichen Liganden. Der Schwellenwert für B*27 liegt bei 19. Daten zu Allelfrequenzen sind nicht in der dbSNP notiert, laut der laborinternen Genexpressionsanalysen wird PBXIP1 in einem RCC-Rumor und einem Pankreaskarzinom überexprimiert.





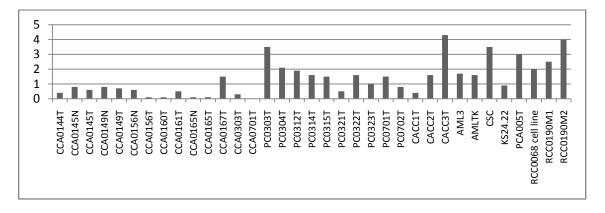
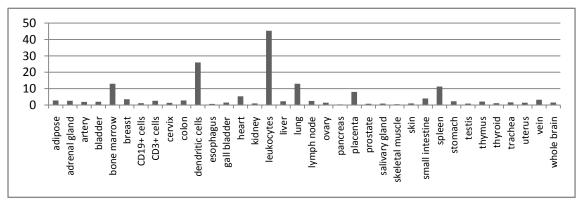
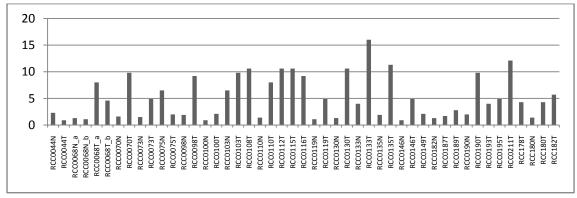


Abbildung 13: Genexpression STMN1

Auf der chronisch-myeloischen Leukämiezelllinie CML85 wurde auch das Leukämieassoziierte Phosphoprotein p 18 (STMN1) und das daraus stammende Peptid
SVPEFPLSPPK gefunden. In der dbSNP ist ein nicht-synonymer SNP vermerkt, der zur
Peptidvariante SVPEFPFSPPK führt, also das Leucin durch ein Phenylalanin ersetzt.
Restringiert wird der natürliche Ligand auf A*1101, Daten über Allelfrequenzen der
beiden Allele liegen nicht vor. SWISS-PROT und Genexpressionsdatenbank geben eine
Expression vor allem im Gehirn und Neuronen, den Hoden, leukämischen Lymphozyten
sowie einigen RCC-, CACC- und CCA-Tumoren an.





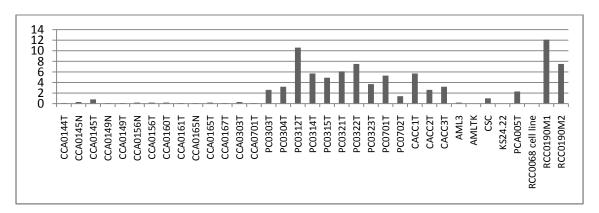
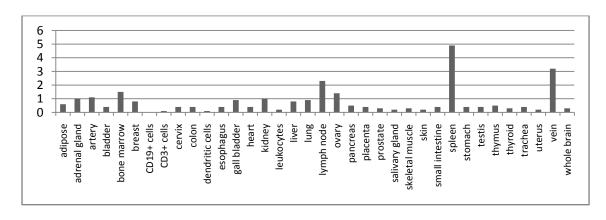
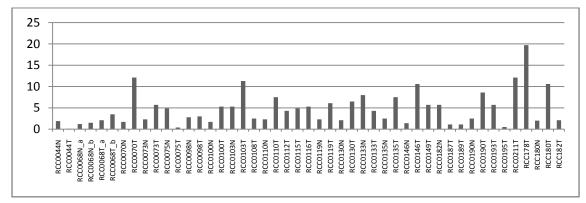


Abbildung 14: Genexpression TFE2

Der Transkriptionsfaktor E2-alpha (TFE2) liefert als B*07-Ligand auf RCC100 das Peptid KPQTKLLIL, die dbSNP die Variante mit Arginin statt Prolin KRQTKLLIL. TFE2 wird vor allem auf Haarfollikeln und Keratozyten exprimiert, die Genexpressionsdaten geben ein unregelmäßiges Expressionsmuster ohne Präferenzen an. Die Allelfrequenz für das Arginin wird in der dbSNP mit 0 % angegeben, für Prolin mit 100 %. Auch der SYFPEITHIScore von 23 für KPQTKLLIL unterscheidet sich von den 13 für KRQTKLLIL, der Schwellenwert bei 15.





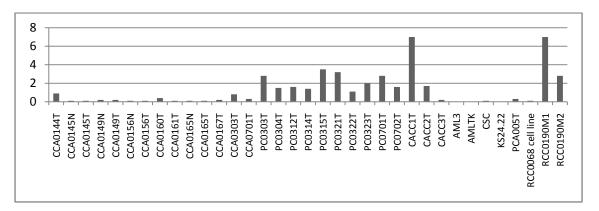


Abbildung 15: Genexpression TYROBP

Einen noch größeren Unterschied in den SYFPEITHI-Punkten zeigen die beiden Alternativen YSDLNTQRPY und YSDLNTQRPH auf A*01 des Tyrosin-Kinase-bindenden Proteins (TYROBP) von 31 zu 16. Der Schwellenwert liegt hier bei 20. Laut dbSNP kommt das Histidin an der letzten Position nicht im Menschen vor, das Tyrosin hingegen zu 100 %. Die SWISS-PROT gibt als hauptsächliches Expressionsgewebe Monozyten an, die Assoziation zu immunologisch relevanten Geweben zeigt auch die TissueExpress – in Leukozyten, DCs, Knochenmark, Lunge und Milz wird TYROBP deutlich überexprimiert. Gefunden wurde YSDLNTQRPY auf RCC193.

Abbildung 16: Genexpression VCAM1

VCAM1 oder CD106 (vaskuläres Zelladhäsionsprotein) kommt laut SWISS-PROT vor allem in DCs und endothelialen Zellen vor, bei unseren eigenen Genexpressionsanalysen vor allem in der Milz und auf einigen RCC-Tumorgeweben. Gefunden wurde es als A*03-Ligand auf RCC211.

5.1.3 Blutspender, Zuordnung und Typisierung

In Tabelle 9 werden die zu den einzelnen Kandidatenpeptiden (im Weiteren über das entsprechende Proteinkürzel abgekürzt) ausgesuchten Blutspender und die Typisierungsergebnisse gezeigt. Abgereicherte Erythrozytenkonzentrate, die von den Blutspenden im Institut für klinische und experimentelle Transfusionsmedizin des Universitätsklinikums Tübingen bereitgestellt wurden, sind mit Zahlenkombinationen abgekürzt, Leukapharese-Produkte, ebenfalls vom eben genannten Institut, mit Buchstaben/Zahlen-Kombinationen und laborinterne Blutspender mit Buchstaben. PBMC wurden aus diesen Spenden aufgereinigt und eingefroren und DNA erfolgreich aus allen Spenden isoliert. Typisierungen wurden für die Kandidaten CCL22, DDX20, GH1, IL12A, MAGED2, PBXIP1, STMN1, TFE2, TYROBP und VCAM1 durchgeführt. FKBP2 wurde aufgrund seiner ubiquitären Expression ausgeschlossen.

Tabelle 9: Zuordnung der Blutspender zu den mHag-Kandidaten, Typisierungsergebnis

Spendernummer	SNP	Aminosäureaustausch	sequenziert durch
CCL22			
	-		
L2MMS	С	Α	MWG
420	С	A	MWG
428	C/A	A/D	MWG
462	C/A	A/D	MWG
499	С	A	MWG
543	С	A	MWG
559	С	A	MWG
572	С	A	MWG
573	С	Α	MWG
591	С	Α	MWG
738	С	Α	MWG

117	\sim	_

STST	С	R	MWG
CéGou	С	R	MWG
SiK	С	R	MWG
L1MMS	С	R	MWG
L3MMS	С	r	MWG
GRC-212	С	R	MWG
504	С	R	MWG
506	С	R	MWG
524	C/A	R/S	MWG
571	С	R	MWG
634	С	R	MWG
645	С	R	MWG
654	С	R	MWG
664	С	R	Qiagen
672	С	R	Qiagen
730	С	R	Agowa
732	С	R	Qiagen
736	С	R	Agowa
747	С	R	Agowa
760	С	R	Agowa
809	С	R	MWG
857	С	R	MWG
858	С	R	MWG
859	С	R	MWG
862	С	R	MWG
870	С	R	MWG
883	С	R	MWG
893	С	R	MWG

898	С	R	MWG
1106	C/A	R/S	MWG
1136	С	R	MWG
GH1	_		
MMS	G	С	im Labor
604	С	S	im Labor
IL12A	_		
476	T	M	MWG
550	Т	M	MWG
579	Т	M	MWG
587	Т	M	MWG
595	Т	M	MWG
597	Т	M	MWG
604	Т	M	MWG
630	Т	M	MWG
664	Т	M	MWG
771	Т	M	MWG
779	Т	M	MWG
789	Т	M	MWG
792	Т	M	MWG
801	Т	M	MWG
809	Т	M	MWG
829	Т	M	MWG
832	Т	M	MWG

MAGED2			
477	Α	К	MWG
653	Α	К	MWG
703	Α	К	MWG
719	Α	К	MWG
800	Α	К	MWG
803	Α	К	MWG
858	Α	К	MWG
PBXIP			
741	Т	W	MWG
757	Т	W	MWG
771	Т	W	MWG
STMN1			
mms	— С	L	MWG
	— С С	L L	MWG MWG
mms			
mms 500	С	L	MWG
mms 500 504	C C	L L	MWG MWG
mms 500 504 506	c c c	L L L	MWG MWG
mms 500 504 506 516	c c c	L L L	MWG MWG MWG
mms 500 504 506 516 524	c c c c	L L L L	MWG MWG MWG MWG
mms 500 504 506 516 524 535	C C C C	L L L L	MWG MWG MWG MWG
mms 500 504 506 516 524 535 571	C C C C		MWG MWG MWG MWG MWG
mms 500 504 506 516 524 535 571 575	C C C C C		MWG MWG MWG MWG MWG MWG

668	С	L	MWG
688	С	L	MWG
695	С	L	MWG
740	С	L	MWG
753	С	L	MWG
766	С	L	MWG
TFE2			
	_		
420	С	R	MWG
428	С	R	MWG
543	С	R	MWG
556	С	R	MWG
562	С	R	MWG
563	С	R	MWG
566	С	R	MWG
574	С	R	MWG
575	С	R	MWG
591	С	R	MWG
604	С	R	MWG
608	С	R	MWG
610	С	R	MWG
619	С	R	MWG
639	С	R	MWG
684	С	R	MWG
695	С	R	MWG
703	С	R	MWG
740	С	R	MWG
741	С	R	MWG

TYROBP	_		
430	Υ	Т	im Labor
452	Υ	Т	im Labor
490	Υ	Т	im Labor
494	Υ	Т	im Labor
504	Υ	Т	im Labor
572	Υ	Т	MWG
575	Υ	Т	MWG
591	Υ	Т	MWG
593	Υ	Т	im Labor
617	Υ	Т	im Labor
VCAM1			
	_		
420	Α	1	MWG
428	Α	1	MWG
499	Α	1	MWG
550	Α	1	MWG
556	Α	1	MWG
562	Α	1	MWG
563	Α	1	MWG
566	Α	1	MWG
573	Α	1	MWG
587	Α	1	MWG
591	Α	1	MWG
608	Α	1	MWG
610	Α	1	MWG
630	Α	1	MWG
639	Α	1	MWG

858	Α	1	MWG
803	Α	1	MWG
775	Α	1	MWG
740	Α	1	MWG
736	Α	I	MWG

Tabelle 10 fasst die Typisierungsergebnisse zusammen. Unter allen 134 erfolgreichen Sequenzierungen wurden 4 heterozygote Spender entdeckt, jeweils 2 für CCL22 und DDX20.

Tabelle 10: Zusammenfassung der Typisierungsergebnisse

mHag-	Anzahl der sequenzierten Spender /	Anzahl heterozygoter	
Kandidat	Gesamtspenderzahl	Spender	
CCL22	11	2	
DDX20	31	2	
GH1	2	0	
IL12A	17	0	
MAGED2	7	0	
PBXIP	3	0	
STMN1	18	0	
TFE2	21	0	
TYROBP	10	0	
VCAM	20	0	
insgesamt	134	4	

Aufgrund dieser Typisierungsergebnisse wurden CCL22 und DDX20 für weitergehende Experimente ausgewählt. Das Auffinden von Trägern beider Allele in einem vergleichbar geringen Datensatz sowie die erfüllten, oben genannten Kriterien qualifizieren die beiden Kandidaten für T-Zellstimulationsversuche.

5.2 T-Zellversuche mit DDX20 und CCL22

5.2.1 IFNγ-Färbungen DDX20 – Stimulationen mit DC

5.2.1.1 Spender 664

Spender 664 exprimiert selbst homozygot das Peptid B*35/TPVDDRISL. Die Ergebnisse (B) und (C) in Abbildung 17 sind daher erwartungsgemäß negativ – die T-Zellen erkennen das körpereigene Antigen nicht. Wird jedoch mit der Variante B*35/TPVDDSISL, dem körperfremden Peptid, stimuliert, so erkennen CD8⁺- und CD4⁺-T-Zellen dieses Peptid und produzieren IFNy.

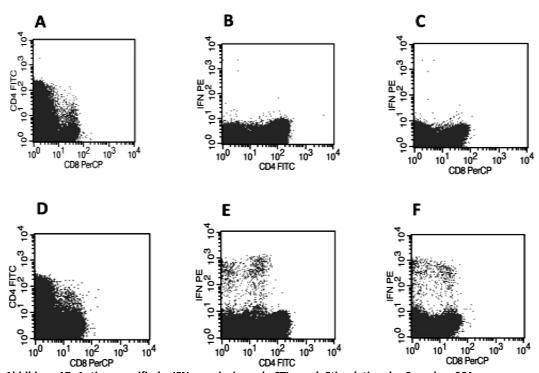
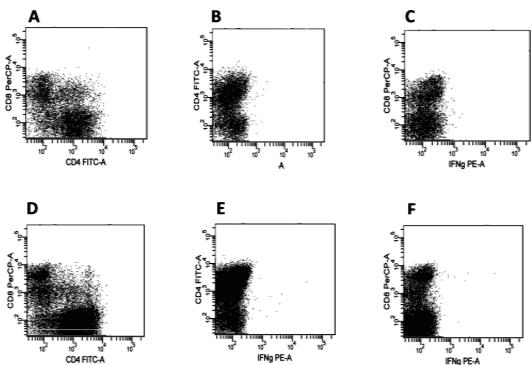



Abbildung 17: Antigenspezifische IFN γ -produzierende CTLs nach Stimulation des Spenders 664 (A)-(C) PBMCs eines gesunden HLA-B*35-positiven Spenders wurden ex vivo mit CD8-PerCP, CD4-FITC und IFN γ -PE gefärbt, um das Vorhandensein von zytokinproduzierenden, antigenspezifischen CD8 † -T-Zellen nach 3 Stimulationen mit dem natürlichen HLA-Liganden B*35/TPVDDRISL nachzuweisen. (D)-(F) Stimulation und Färbung desselben Spenders mit der Peptidvariante B*35/TPVDDSISL. Alle Versuche wurden in Triplikaten durchgeführt und es wird jeweils ein repräsentativer Datensatz gezeigt.

5.2.1.2 Spender 1106

Spender 1106 ist heterozygot in dem untersuchten DDX20-Allel und exprimiert somit beide Peptidalternativen. Aufgrund der negativen Selektion während der T-Zellentwicklung werden die meisten autoreaktiven T-Zellen aus dem T-Zellpool entfernt, somit reagiert Spender 1106 erwartungsgemäß und zeigt keine T-Zellantwort gegen die beiden Peptide.

Abbildung 18: Antigenspezifische IFN γ -produzierende CTLs nach Stimulation des Spenders 1106 (A)-(C) PBMCs eines gesunden HLA-B*35-positiven Spenders wurden ex vivo mit CD8-PerCP, CD4-FITC und IFN γ -PE gefärbt, um das Vorhandensein von cytokinproduzierenden, antigenspezifischen CD8 † -T-Zellen nach 3 Stimulationen mit dem Peptid B*35/TPVDDRISL nachzuweisen. (D)-(F) Stimulation und Färbung desselben Spenders mit dem Peptid B*35/TPVDDSISL. Alle Versuche wurden in Triplikaten durchgeführt und es wird jeweils ein repräsentativer Datensatz gezeigt

5.2.1.3 Spender L1MMS

Auch die Zellen dieses für das R-Allel homozygoten Spenders erkennen das körpereigene Peptid nicht. Jedoch erkennen 75,2 % aller $CD8^+$ -T-Zellen, die IFN γ produzieren bzw. 3,1% aller analysierten Zellen das fremde Peptid und sind somit antigenspezifisch stimuliert worden. Man erkennt deutlich, dass es vor allem $CD8^+$ -Zellen sind, und keine $CD4^+$ -Zellen, die stimuliert wurden ((E) und (F)).

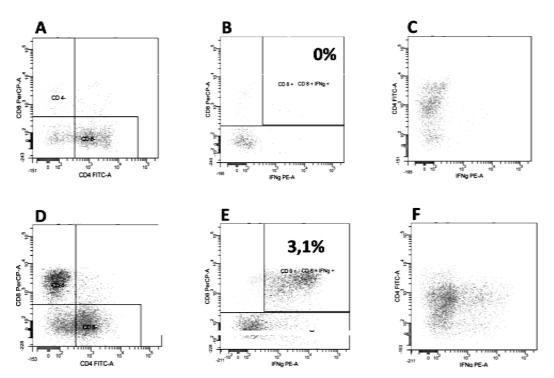



Abbildung 20: Antigenspezifische IFN γ -produzierende CTLs nach Stimulation des Spenders L1MMS (A)-(C) PBMCs eines gesunden HLA-B*35-positiven Spenders wurden ex vivo mit CD8-PerCP, CD4-FITC und IFN γ -PE gefärbt, um das Vorhandensein von zytokinproduzierenden, antigenspezifischen CD8 † -T-Zellen nach 3 Stimulationen mit dem Peptid TPVDDRISL nachzuweisen. (D)-(F) Stimulation und Färbung desselben Spenders mit dem Peptid TPVDDSISL. Alle Versuche wurden in Triplikaten durchgeführt und es wird jeweils ein repräsentativer Datensatz gezeigt

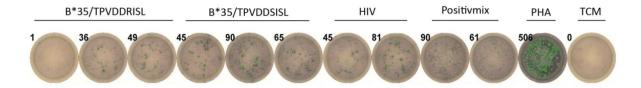

5.2.2 Elispot

Abbildung 21: ex vivo-ELISPOT des Spenders L1MMS

Sowohl Negativ- als auch Mediumkontrolle (TCM) sind wie erwartet negativ, die Positivkontrolle PHA entsprechend positiv. Die ELISPOTs mit dem körpereigenen Peptid B*35/TPVDDRISL und dem körperfremden Peptid B*35/TPVDDSISL sind negativ. Da auf den Positivmix ebenfalls keine Antworten zu sehen sind, kann davon ausgegangen werden, dass der Spender von den Viren, aus denen die Peptide für den Positivmix stammen, zum Zeitpunkt der Blutspende noch nicht befallen war. Aufgrund der schwachen PHA-Reaktion kann man von einer insgesamt schlechten Reaktion des Spenders ausgehen.

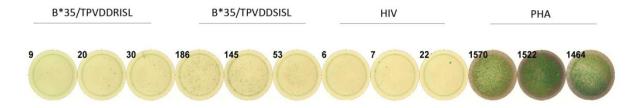

In Abbildung 21 wird das Ergebnis des *ex vivo*-ELISPOTS des Spenders L1MMS mit dem körpereigenen Peptid B*35/TPVDDRISL und der körperfremden Variante B*35/TPVDDSISL gezeigt. Für das körpereigene Peptid wurden keine T-Zellen gefunden, die es erkennen. Auch das körperfremde Peptid wird nicht erkannt – es existiert also noch keine T-Zellpopulation, die mit dem Peptid schon einmal in Kontakt war und der positive Stimulationsnachweis kann daher als *in vitro-Priming* der antigenspezifischen T-Zellen gewertet werden.

Abbildung 22: ex vivo-ELISPOT des Spenders L3MMS

Die Negativkontrolle (HIV) zeigt einen hohen Hintergrund. Der Positivmix ist ebenso wie die Positivkontrolle positiv. Der ELISPOT mit dem körpereigenen Peptid B*35/TPVDDRISL ist negativ, mit dem körperfremden Peptid B*35/TPVDDSISL positiv.

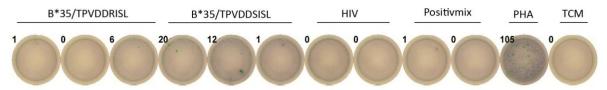
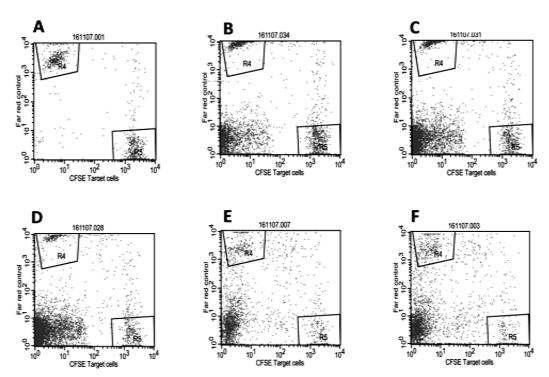

Spender L3MMS zeigt, wie in Abbildung 22 gezeigt, einen hohen Hintergrund bei der Negativkontrolle HIV. Dies muss bei der Bewertung der Ergebnisse der beiden Peptidvarianten berücksichtigt werden. Auch hier sind keine T-Zellen nachzuweisen, die reaktiv gegen das körpereigene Peptid B*35/TPVDDRISL sind, jedoch scheint es einige T-Zellen zu geben, die das körperfremde Peptid B*35/TPVDDSISL erkennen.

Abbildung 24: ex vivo-ELISPOT des Spenders 664

Negativ- und Positivkontrolle zeigen die erwarteten Reaktionen. Der ELISPOT mit dem körpereigenen Peptid B*35/TPVDDRISL ist negativ, mit dem körperfremden Peptid B*35/TPVDDSISL positiv.

Auch Spender 664 hat eine schon im Körper vorkommende T-Zellpopulation gegen das körperfremde Peptid B*35/TPVDDSISL, deren antigenspezifische Funktionalität im oben beschriebenen Stimulationsversuch schon gezeigt wurde. Das körpereigene Peptid wird jedoch aufgrund der negativen Selektion im Thymus nicht erkannt.


Abbildung 25: ex vivo-ELISPOT des Spenders L2MMS

Sowohl Negativ- als auch Mediumkontrolle (TCM) sind wie erwartet negativ, die Positivkontrolle PHA entsprechend positiv. Der ELISPOT mit dem körpereigenen Peptid B*14/ARLQTALLV ist negativ, mit dem körperfremden Peptid B*14/DRLQTALLV positiv. Da auf den Positivmix ebenfalls keine Antworten zu sehen sind, kann davon ausgegangen werden, dass der Spender von den Viren, aus denen die Peptide für den Positivmix stammen, zum Zeitpunkt der Blutspende noch nicht befallen war.

Zellen eines HLA-B*14-positiven Spenders wurden mit dem natürlichen HLA-Liganden B*14/ARLQTALLV und der Peptidvariante B*14/DRLQTALLV mit künstlichen antigenpräsentierenden Zellen stimuliert. Bei der anschließenden Tetramerfärbung wurde jedoch eine unspezifische Bindung der Tetramere festgestellt, dies lässt auf eine fehlerhafte Tetramerherstellung schließen. Daten werden hierzu nicht gezeigt. Im *ex vivo*-ELISPOT wird jedoch eine T-Zellpopulation sichtbar, die das körperfremde Peptid erkennt. Es kann daher vermutet werden, dass auch in Stimulationsversuchen eine antigenspezifische Reaktion nachzuweisen sein wird.

5.2.3 VITAL Assay L1MMS

Ein weiteres Kriterium, um vom Kandidaten zu einem vollwertigen mHag zu gelangen, ist ein erfolgreicher Funktionalitätstest. Nachdem durch Stimulationsversuche und der antigenspezifischen Produktion von IFNy eine Population von T-Zellen herangezüchtet wurde, werden mit dieser Tötungsnachweise durchgeführt. Ein Chromfreisetzungstest wurde begonnen, jedoch aufgrund einer fehlerhaften Chrominternalisierung in den zu tötenden Zielzellen war dieser nicht aussagekräftig. Da die maximale Freisetzung an Chrom, also die Positivkontrolle durch künstlich lysierte Zellen, und die Negativkontrolle, die Spontanfreisetzung von Chrom von Zellen, die ohne Effektorzellen inkubiert wurden, gleich groß waren, lässt dies auf eine fehlerhafte Aufnahme des radioaktiv markierten Chroms in die Zielzellen schließen. Eine weitere Erklärung wäre ein zu weit fortgeschrittener radioaktiver Zerfall des benutzten Chroms, sodass zu wenig noch aktives, messbares Chrom in der Chromlösung vorhanden und von daher nicht nachzuweisen war. Es war nur noch eine geringe Menge an Effektor-T-Zellen nach dem Chromfreisetzungsnachweis übrig, aus diesem Grund wurde der VITAL-Assay durchgeführt. Für diesen benötigt man nur einen Bruchteil an Zellen im Vergleich zum Chromfreisetzungstest. Als Zielzellen wurde eine B-Zell-Leukämie-Zelllinie ausgesucht, die GRC-212. Diese besitzt wie die antigenspezifischen T-Zellen die HLA-Allele A*02 und B*35 und ist in diesem sowie im Allel für das Peptid TPVDDRISL homozygot. Wird diese Zelllinie nun mit dem körpereigenen Peptid B*35/TPVDDRISL beladen, dann sollten diese Zellen nicht von den Effektorzellen lysiert werden. Auch unbeladene GRC-212 dürfen nicht getötet werden. Andernfalls sind die zu testenden Effektorzellen unspezifisch und erkennen nicht nur das Kandidatenantigen, sondern zeigen alloreaktive Effekte. Werden GRC-212 hingegen mit dem Peptid B*35/TPVDDSISL beladen, also der Peptidvariante, welche von den Effektorzellen während der Stimulation spezifisch erkannt wurde, wird erwartet, dass diese Zellen von den Effektorzellen lysiert werden. Alloreaktivität wurde ausgeschlossen, indem als Zielzellen auch Zellen des im fraglichen Peptid heterozygoten Spenders 1106 und eines Spenders mit gänzlich anderen HLA-Allelen als Spender L1MMS benutzt wurden. Alloreaktivität kann ausgeschlossen werden, wenn von allen Zielzellen nur die GRC-2121-B*35/TPVDDSISL lysiert werden.

Abbildung 26: VITAL-Assay

Zellen des B*35-positiven Spenders 664 wurden über 5 Wochen mit dem Peptid B*35/TPVDDRISL und der körperfremden Peptidvariante B*35/TPVDDSISL stimuliert und mit Zielzellen in verschiedenen Verhältnissen auf ihre Lysefähigkeit untersucht. GRC-212-Zellen wurden mit B*35/TPVDDRISL beladen und mit Far Red gefärbt und sind im oberen Gatter R4 zu sehen. GRC-212-Zellen, die mit B*35/TPVDDSISL beladen und mit CFSE gefärbt wurden, sind im Gatter R5 sichtbar. Deutlich sichtbar ist die Abnahme der mit CFSE gefärbten Zellen mit steigender Effektorenzahl. Alle Versuche wurden in Tripletts durchgeführt, jeweils ein Datensatz wird repräsentativ gezeigt.

- (A) Kontrolle ohne Effektorzellen
- (B) Effektor:Zielzell-Verhältnis 0,3:1
- (C) Effektor:Zielzell-Verhältnis 1:1
- (D) Effektor:Zielzell-Verhältnis 3:1
- (E) Effektor:Zielzell-Verhältnis 10:1
- (F) Effektor:Zielzell-Verhältnis 30:1

In Abbildung 26 werden repräsentativ für alle VITAL-Assay-Ergebnisse der verschiedenen Zielzellen die Ergebnisse für die GRC-212-B*35/TPVDDRISL und GRC-212-B*35/TPVDDSISL gezeigt. Die im oberen linken Gatter R5 zu sehenden Zellen sind jene, die mit B*35/TPVDDRISL beladen wurden, den Effektor-T-Zellen als körpereigen bekannt sind und folglich nicht lysiert werden. Im unteren rechten Gatter R4 sind die Zellen sichtbar, die mit dem für die Effektorzellen fremden Peptid B*35/TPVDDSISL beladen wurden. Sie werden lysiert, ihre Anzahl nimmt mit steigender Effektorzahl ab. Effektoren und Zielzellen wurden in den Verhältnissen 0,3:1, 1:1, 3:1, 10:1 und 30:1 (B-F) inkubiert.

Tabelle 13: Verhältnisse der Kontrollzellen und der Zielzellen

Aus der FACS-Analyse der gefärbten Kontrollzellen (GRC-212-B*35/TPVDDRISL) und der Zielzellen (GRC-212-B*35/TPVDDSISL) wurden Verhältnisse gebildet, in dem die Anzahl der noch lebenden Kontrollzellen durch die Anzahl der noch detektierbaren Zielzellen geteilt wurde. Dies wurde für jedes Effektor:Zielzellverhältnis in Tripletts durchgeführt und die Standardabweichung (Stabw) und der Mittelwert berechnet. Die Prozentangabe der Lyse wurde ebenfalls für jedes Verhältnis in Tripletts berechnet, in dem das entsprechende R5/R4-Verhältnis durch das Produkt von Mittelwert der Kontrolle und 100 geteilt wird und von 100 abgezogen wurde. Die Angabe entspricht somit der Anzahl der lysierten Zellen in Prozent. Die Zahl der nicht-lysierten Zellen ergibt sich aus der Division von R5/R4-Verhältnis und dem Produkt des Mittelwerts der Kontrollen und 100.

R5/R4-Verhältnis	Α	В	С	Stabw	MW
0	1.64	1.68	1.68	0.02	1.67
0,3 zu 1	1.32	1.21	1.41	0.10	1.31
1 zu 1	1	1.66	1.38	0.33	1.35
3 zu 1	1.08	1.43	1.34	0.18	1.28
10 zu 1	0.76	8.0	0.95	0.10	0.84
30 zu 1	0.59	0.68	0.72	0.07	0.66
% Lyse	A	В	С	Stabw	MW
0	0	0	0	0	0
0,3 zu 1	20.80	27.40	15.40	6.01	21.20
1 zu 1	40.00	0.40	17.20	19.88	19.20
3 zu 1	35.20	14.20	19.60	10.91	23.00
10 zu 1	54.40	52.00	43.00	6.01	49.80
30 zu 1	64.60	59.20	56.80	3.99	60.20

Tabelle 13 zeigt das Verhältnis zwischen nicht-lysierten Zellen und lysierten Zellen. Die Auswertung des VITAL-Assays erfolgt mit einigen statistischen Methoden. Zunächst wird für jeden Test das Verhältnis zwischen Zellen, die nicht lysiert werden dürfen (Gatter R5) und denen, die lysiert werden sollen (Gatter R4) berechnet. Für jedes Effektor-Zielzellverhältnis (E:T) wurden nun Mittelwert und Standardabweichung berechnet.

Formel zur Berechnung der Mittelwerte: $MW = \frac{\sum_{i=1}^{n} x_i}{n}$

Formel zur Berechnung der Standardabweichung: $Stabw = \sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(x_i-MW)}$

Schon hier sieht man, dass die einzelnen Mittelwerte mit steigender E:T-Ratio deutlich abnehmen. Als nächsten Schritt wurde die Lyse der einzelnen Tests in Prozent berechnet. Hierzu wurde folgende Formel verwendet:

Berechnung der Lyse in Prozent:
$$100 - \frac{\frac{R5}{R4}}{100 \times MW_{Kontrolle}}$$

Somit erhält man die Angabe des lysierten Anteils der Zielzellen in Prozent. Die Kontrolle wurde durch diese Berechnungen auf 0 % gesetzt, Maximallyse ist folglich 100 %. Auch hiervon werden Mittelwert und Standardabweichung berechnet. Deutlich sichtbar ist auch hier der Anstieg der Lyse von 0 % bei der Kontrolle auf 60,2 % bei einem E:T von 30:1.

Tabelle 14: Spezifische Lyse in den einzelnen Triplikaten

Als oberer Grenzwert der spezifischen Lyse wurde der Variationskoeffizient der Kontrollen berechnet und definiert. Liegt ein R5/R4-Verhältnis über diesem Schwellenwert, so wird unspezifische Lyse angenommen, liegt er darunter, so geht man von spezifischer Lyse aus. Der Variationskoeffizient errechnet sich aus der Division der Standardabweichung durch das Produkt des Mittelwerts und 100. Dabei werden die Standardabweichung und der Mittelwert der Kontrollen benutzt. Bis auf zwei unspezifische Lysen (B 1:1 und B3:1) sind alle Lysen spezifisch.

Variationskoeffizient Kontrollen				1.39
	Α	В	C	
Negativkontrolle	-	-	-	
0,3 zu 1	+	+	+	
1 zu 1	+	-	+	
3 zu 1	+	-	+	
10 zu 1	+	+	+	
30 zu 1	+	+	+	

Unspezifische Lyse wird ausgeschlossen, indem man einen Schwellenwert definiert. Liegt ein Wert der R5/R4-Verhältnisse aus Tabelle 13 über diesem Wert, so spricht man von unspezifischer Lyse, der Wert wird somit als nicht geeignet markiert, wie in Tabelle 14

sichtbar bei den E:T = 1:1-B- und E:T = 3:1-B-Daten. Als Schwellenwert wird der Variationskoeffizient der Kontrollen eingesetzt. Berechnet wird dieser mit der Formel:

$$Variationskoeffizient\ der\ Kontrollen = \frac{Stabw_{Kontrolle}}{100\ \times MW_{Kontrolle}}$$

Für diesen Versuch ergibt sich daher ein Variationskoeffizient von 1,39. Vergleicht man die einzelnen Testergebnisse der einzelnen E:Ts, so sieht man, dass bis auf beide eben genannte Daten alles spezifische Lyse-Ergebnisse sind.

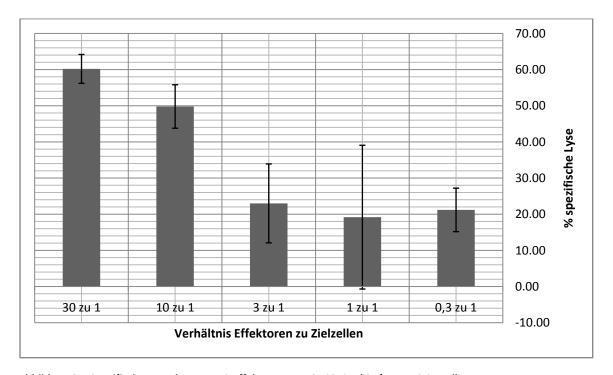


Abbildung 27: Spezifische Lyse der L1MMS-Effektoren von GRC212-B*35/TPVDDSISL-Zellen Der größere Standardfehler bei 1:1 und 3:1 ergibt sich aus den 2 unspezifischen Lysen.

Abbildung 27 zeigt nun grafisch aufbereitet das Ergebnis des VITAL-Assays der Effektor-T-Zellen L1MMS und den Zielzellen GRC-212-B*35/TPVDLLRISL und GRC-212-B*35/TPVDDSISL. Die hohe Abweichung bei den Verhältnissen 3:1 und 1:1 kommt von den beiden unspezifischen Lyse-Ergebnissen in jeweils einem der untersuchten Triplikate. Zusammenfassend kann man sagen, dass die Effektorzellen die Zielzellen erkennen, jene mit fremden Peptid lysieren und jene mit bekanntem Peptid eben nicht. DDX20 kann daher als vielversprechender Kandidat für ein neues mHag bezeichnet werden.

6 Zusammenfassung

Die Bedeutung von mHags für die Medizin geht von der Vermeidung von unerwünschten Abstoßungsreaktionen im Empfänger von Stammzelltransplantationen, sogenannten Graft-versus-Host-Erkrankungen, bis zum vorteilhaften Einsatz in Stammzelltransplantation-basierten Immuntherapien zur Behandlung von Leukämien und soliden Tumoren, den Graft-versus-Tumor-Effekten. Je höher die Zahl der bekannten mHags ist, desto wahrscheinlicher ist das Auslösen oder Vermeiden dieser Reaktionen. Es ist daher von großem Interesse, neue mHags zu finden, auch und gerade über neue Strategien wie die in dieser Arbeit gezeigte. In dieser Arbeit wurde eine neue Strategie zur Suche von minor H Antigenen im Rahmen der reversen Immunologie entwickelt. Zunächst wurde nach natürlich prozessierten, auf HLA präsentierten und molekular nachgewiesenen Liganden gesucht, von denen bekannt ist, dass es Varianten mit Aminosäurenaustauschen in der präsentierten Peptidsequenz gibt. Die Liste mit diesen Liganden wurde aufgereinigt, von Doppelungen und Peptiden aus HLA-Molekülen befreit und die übrig gebliebenen Liganden anhand ihrer Gewebespezifität oder ihrer Assoziation zu Erkrankungen wie Leukämien oder soliden Tumoren auf einen kleineren Kandidatenpool selektiert. Dieser Pool wurde durch Allelfrequenzen und das Nachweisen von beiden Allelen in eigener Arbeit auf zwei Kandidaten reduziert, mit denen dann T-Zellstimulationsversuche und Funktionalitätsnachweise durchgeführt wurden. Es konnte gezeigt werden, dass T-Zellen das Peptid B*35/TPVDDSISL spezifisch erkennen und beginnen, Interferon gamma zu produzieren. In einem Funktionalitätstest konnte weiterhin gezeigt werden, dass diese T-Zellen das Epitop auf allogenen Zellen ebenfalls spezifisch erkennen und diese Zellen lysieren. Alloreaktive Effekte konnten weitgehend ausgeschlossen werden. Für das aus CCL22 stammende Peptid B*14/DRLQTALLV konnte eine Population von T-Zellen im Blut eines Spenders nachgewiesen werden, ein erstes Anzeichen dafür, dass auch hier reaktive, antigenspezifische Zellen vorhanden sind. Weiteres Vorgehen, um aus den mHag-Kandidaten mHags werden zu lassen, sind funktionale Nachweise mit transfizierten Zellen, Lyse von Zellen, die im jeweils fremden Peptid homozygot sind.

7 Summary

Minor H antigens are of great significance in medicine, there scope of action ranging from the prevention of undesirable rejection reactions in recipients of stem cell transplantations, so-called Graft-versus-Host disease reactions, to the beneficial effects of stem cell based-immunotherapies against leukaemia and solid tumours. The higher the number of known mHags, the higher the probability to provoke or to prevent these reactions. Therefore, it is of great interest to discover new mHags with or even through new strategies like the one described in this work.

A novel strategy for the search of new minor H antigens within reverse immunology has been developed in this doctorate. First, naturally processed, presented and molecularly verified HLA ligands with known variants bearing amino acid exchanges in their presented peptide sequence were targeted for the search. The results list has been cleaned of sheathings and HLA molecule-derived peptides and the remaining peptides have been selected on the basis of their tissue specificity or their association to diseases such as leukamia or solid tumours. Finally, two candidates were selected for T-cell stimulation tests and functionality assays.

It could be shown that T cells specifically recognize the peptide B*35/TPVDDSISL and start to produce Interferon gamma. A functionality assay with these T cells resulted in the specific lysis of allogen cells carrying the recognized peptid as an epitope. Alloreactive effects have been excluded to a large extent. A population of T cells recognizing the CCL22-derived peptide B*14/DRLQTALLV could be detected in a blood donor.

8 Anhang

8.1 Referenzen

- 1. Viatte S, Alves PM, Romero P. Reverse immunology approach for the identification of CD8 T-cell-defined antigens: Advantages and hurdles. Immunology and Cell Biology. 2006;84:318-330.
- 2. Falk K, Rotzschke O, Stevanovic S, Jung G, Rammensee HG. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature. 1991;351:290-296.
- 3. Parker KC, Bednarek MA, Coligan JE. Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J Immunol. 1994;152:163-175.
- 4. Rammensee HG, Bachmann J, Emmerich NPN, Bachor OA, Stevanovic S. SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics. 1999;50:213-219.
- 5. Nussbaum AK, Kuttler C, Hadeler KP, Rammensee HG, Schild H. PAProC: a prediction algorithm for proteasomal cleavages available on the WWW. Immunogenetics. 2001;53:87-94.
- 6. Peters B, Bulik S, Tampe R, Van Endert PM, Holzhutter HG. Identifying MHC class I epitopes by predicting the TAP transport efficiency of epitope precursors. J Immunol. 2003;171:1741-1749.
- 7. Tenzer S, Peters B, Bulik S, et al. Modeling the MHC class I pathway by combining predictions of proteasomal cleavage, TAP transport and MHC class I binding. Cell Mol Life Sci. 2005;62:1025-1037.

- 8. Schirle M, Keilholz W, Weber B, et al. Identification of tumor-associated MHC class I ligands by a novel T cell-independent approach. Eur J Immunol. 2000;30:2216-2225.
- 9. Pascolo S, Schirle M, Guckel B, et al. A MAGE-A1 HLA-A A*0201 epitope identified by mass spectrometry. Cancer Res. 2001;61:4072-4077.
- 10. Sherry ST, Ward M, Sirotkin K. dbSNP-database for single nucleotide polymorphisms and other classes of minor genetic variation. Genome Res. 1999;9:677-679.
- 11. Schuler MM, Donnes P, Nastke MD, Kohlbacher O, Rammensee HG, Stevanovic S. SNEP: SNP-derived epitope prediction program for minor H antigens. Immunogenetics. 2005;57:816-820.
- 12. Gasteiger E, Jung E, Bairoch A. SWISS-PROT: connecting biomolecular knowledge via a protein database. Curr Issues Mol Biol. 2001;3:47-55.
- 13. M. Feldhahn PT, M.M. Schuler, N. Hillen, S. Stevanovic, H.-G. Rammensee, O. Kohlbacher EpiToolKit A web server for computational immunomics. Nucleic Acids Research. 2008;submitted.
- 14. Zinkernagel RM, Doherty PC. Restriction of in-vitro thymus derived cell mediated cytotoxicitx in lymphocytic choriomeningitis within a syngenic or semi allogenic system Nature (London). 1974;248:701-702.
- 15. York IA, Goldberg AL, Mo XY, Rock KL. Proteolysis and class I major histocompatibility complex antigen presentation. Immunological Reviews. 1999;172:49-66.
- 16. Kloetzel PM. Generation of major histocompatibility complex class I antigens: functional interplay between proteasomes and TPPII. Nature Immunology. 2004;5:661-669.

- 17. Stoltze L, Schirle M, Schwarz G, et al. Two new proteases in the MHC class I processing pathway. Nature Immunology. 2000;1:413-418.
- 18. Rock KL, York IA, Goldberg AL. Post-proteasomal antigen processing for major histocompatibility complex class I presentation. Nature Immunology. 2004;5:670-677.
- 19. Groll M, Ditzel L, Lowe J, et al. Structure of 20S proteasome from yeast at 2.4 angstrom resolution. Nature. 1997;386:463-471.
- 20. Dick TP, Ruppert T, Groettrup M, et al. Coordinated dual cleavages induced by the proteasome regulator PA28 lead to dominant MHC ligands. Cell. 1996;86:253-262.
- 21. Lankat-Buttgereit B, Tampe R. The transporter associated with antigen processing: Ffunction and implications in human diseases. Physiological Reviews. 2002;82:187-204.
- 22. Dick TP, Bangia N, Peaper DR, Cresswell P. Disulfide bond isomerization and the assembly of MHC class I-Peptide complexes. Immunity. 2002;16:87-98.
- 23. Cresswell P. Assembly, transport, and function of MHC class II molecules. In: Paul WE, ed. Annual Review of Immunology; 1994:259-293.
- 24. Moron G, Dadaglio G, Leclerc C. New tools for antigen delivery to the MHC class I pathway. Trends in Immunology. 2004;25:92-97.
- 25. Chicz RM, Urban RG, Gorga JC, Vignali DAA, Lane WS, Strominger JL. Specificity and promiscuity among naturally processed peptides bound to HLA-DR alleles. Journal of Experimental Medicine. 1993;178:27-47.
- 26. Dengjel J, Schoor O, Fischer R, et al. Autophagy promotes MHC class II presentation of peptides from intracellular source proteins. Proceedings of the National Academy of Sciences of the United States of America. 2005;102:7922-7927.

- 27. Shiver JW, Su L, Henkart PA. Cytotoxicity with target DNA breakdown by rat basophilic leukemia cells expressing both cytolysin and granzyme A. Cell. 1992;71:315-322.
- 28. Fisher GH, Rosenberg FJ, Straus SE, et al. Dominant interfering fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell. 1995;81:935-946.
- 29. Suda T, Takahashi T, Golstein P, Nagata S. Molecular cloning and expression of the Fas ligand, a novel member of tumor necrosis factor family. Cell. 1993;75:1169-1178.
- 30. O'Garra A, Robinson D. Development and function of T helper 1 cells. Advances in Immunology, Vol 83. 2004;83:133-162.
- 31. Li-Weber M, Krammer PH. Regulation of IL4 gene expression by T cells and therapeutic perspectives. Nature Reviews Immunology. 2003;3:534-543.
- 32. Suri-Payer E, Amar AZ, Thornton AM, Shevach EM. CD4(+)CD25(+) T cells inhibit both the induction and effector function of autoreactive T cells and represent a unique lineage of immunoregulatory cells. Journal of Immunology. 1998;160:1212-1218.
- 33. Goulmy E. Human minor histocompatibility antigens. Current Opinion in Immunology. 1996;8:75-81.
- 34. Barth R, Counce S, Smith P, Snell GD. Strong and weak histocompatibility gene differences in mice and their role in the rejection of homografts of tumors and skin. Ann Surg. 1956;144:198-204.
- 35. Goulmy E, Termijtelen A, Bradley BA, van Rood JJ. Allo-immunity to human H-Y. Lancet. 1976;2:1206-1206.
- 36. Townsend ARM, Gotch FM, Davey J. Cyto-toxic T-cells recognize fragments of the influenza nucleoprotein. Cell. 1985;42:457-467.

- 37. Wallny HJ, Rammensee HG. Identification of classical minor histocompatibility antigen as cell-derived peptide. Nature. 1990;343:275-278.
- 38. Schreuder GMT, Pool J, Blokland E, et al. A genetic-analysis of human minor histocompatibility antigens demonstrates mendelian segregation independent of HLA. Immunogenetics. 1993;38:98-105.
- 39. Storb R, Deeg HJ, Whitehead J, et al. Methotrexate and cyclosporine compared with cyclosporine alone for prophylaxis of acute graft versus host-disease after marrow transplantation for leukemia. New England Journal of Medicine. 1986;314:729-735.
- 40. Marijt EAF, Veenhof WFJ, Goulmy E, et al. Multiple minor histocompatibility antigen disparities between a recipient and 4 HLA-identical potential sibling donors for bone-marrow transplantation. Human Immunology. 1993;37:221-228.
- 41. Roopenian DC, Davis AP, Christianson GJ, Mobraaten LE. The functional basis of minor histocompatibility loci. Journal of Immunology. 1993;151:4595-4605.
- 42. Denhaan JMM, Sherman NE, Blokland E, et al. Identification of a graft-versus-host disease-associated human minor histocompatibility antigen. Science. 1995;268:1476-1480.
- 43. Chen WS, Khilko S, Fecondo J, Margulies DH, McCluskey J. Determinant selection of major histocompatibility complex class I-restricted antigenic peptides is explained by class I-peptide affinity and is strongly influenced by nondominant anchor residues. Journal of Experimental Medicine. 1994;180:1471-1483.
- 44. Barber LD, Parham P. The essence of epitopes. Journal of Experimental Medicine. 1994;180:1191-1194.

- 45. Debueger M, Bakker A, Vanrood JJ, Vanderwoude F, Goulmy E. Tissue distribution of human minor histocompatibility antigens ubiquitous versus restricted tissue distribution indicates heterogeneity among human cytotoxic lymphocyte-T-defined non-MHC antigens. Journal of Immunology. 1992;149:1788-1794.
- 46. van Lochem E, van der Keur M, Mommaas AM, de Gast GC, Goulmy E. Functional expression of minor histocompatibility antigens on human peripheral blood dendritic cells and epidermal Langerhans cells. Transpl Immunol. 1996;4:151-157.
- 47. Yard BA, Kooymans-Couthino M, Reterink T, et al. Analysis of T cell lines from rejecting renal allografts. Kidney Int Suppl. 1993;39:S133-138.
- 48. Poindexter NJ, Naziruddin B, McCourt DW, Mohanakumar T. Isolation of a kidney-specific peptide recognized by alloreactive HLA-A3-restricted human CTL. Journal of Immunology. 1995;154:3880-3887.
- 49. Poindexter NJ, Steward NS, Shenoy S, et al. Cytolytic T-lymphocytes from human renal-allograft biopsies are tissue-specific. Human Immunology. 1995;44:43-49.
- 50. Akatsuka Y, Morishima Y, Kuzushima K, Kodera Y, Takahashi T. Minor histocompatibility antigens as targets for immunotherapy using allogeneic immune reactions. Cancer Science. 2007;98:1139-1146.
- 51. den Haan JMM, Meadows LM, Wang W, et al. The minor histocompatibility antigen HA-1: A diallelic gene with a single amino acid polymorphism. Science. 1998;279:1054-1057.
- 52. Mommaas B, Kamp J, Drijfhout JW, et al. Identification of a novel HLA-B60-restricted T cell epitope of the minor histocompatibility antigen HA-1 locus. Journal of Immunology. 2002;169:3131-3136.

- 53. Torikai H, Akatsuka Y, Miyauchi H, et al. The HLA-A*0201-restricted minor histocompatibility antigen HA-1(H) peptide can also be presented by another HLA-A2 subtype, A*0206. Bone Marrow Transplantation. 2007;40:165-174.
- 54. Dolstra H, Fredrix H, Maas F, et al. A human minor histocompatibility antigen specific for B cell acute lymphoblastic leukemia. Journal of Experimental Medicine. 1999;189:301-308.
- 55. Dolstra H, de Rijke B, Fredrix H, et al. Bi-directional allelic recognition of the human minor histocompatibility antigen HB-1 by cytotoxic T lymphocytes. European Journal of Immunology. 2002;32:2748-2758.
- 56. Brickner AG, Warren EH, Caldwell JA, et al. The immunogenicity of a new human minor histocompatibility antigen results from differential antigen processing. Journal of Experimental Medicine. 2001;193:195-205.
- 57. Spierings E, Vermeulen CJ, Vogt MH, et al. Identification of HLA class II-restricted H-Y-specific T-helper epitope evoking CD4+ T-helper cells in H-Y-mismatched transplantation. Lancet. 2003;362:610-615.
- 58. Murata M, Warren EH, Riddell SR. A human minor histocompatibility antigen resulting from differential expression due to a gene deletion. Journal of Experimental Medicine. 2003;197:1279-1289.
- 59. Akatsuka Y, Nishida T, Kondo E, et al. Identification of a polymorphic gene, BCL2A1, encoding two novel hematopoietic lineage-specific minor histocompatibility antigens. Journal of Experimental Medicine. 2003;197:1489-1500.
- 60. de Rijke B, van Horssen-Zoetbrood A, Beekman JM, et al. A frameshift polymorphism in P2X5 elicits an allogeneic cytotoxic T lymphocyte response associated with remission of chronic myeloid leukemia. J Clin Invest. 2005;115:3506-3516.

- 61. Brickner AG, Evans AM, Mito JK, et al. The PANE1 gene encodes a novel human minor histocompatibility antigen that is selectively expressed in B-lymphoid cells and B-CLL. Blood. 2006;107:3779-3786.
- 62. Torikai H, Akatsuka Y, Miyazaki M, et al. The human cathepsin H gene encodes two novel minor histocompatibility antigen epitopes restricted by HLA-A*3101 and -A*3303. British Journal of Haematology. 2006;134:406-416.
- 63. Slager EH, Honders MW, van der Meijden ED, et al. Identification of the angiogenic endothelial-cell growth factor-1/thymidine phosphorylase as a potential target for immunotherapy of cancer. Blood. 2006;107:4954-4960.
- 64. Warren EH, Vigneron NJ, Gavin MA, et al. An antigen produced by splicing of noncontiguous peptides in the reverse order. Science. 2006;313:1444-1447.
- 65. van Bergen CAM, Kester MGD, Jedema I, et al. Multiple myeloma-reactive T cells recognize an activation-induced minor histocompatibility antigen encoded by the ATP-dependent interferon-responsive (ADIR) gene. Blood. 2007;109:4089-4096.
- 66. Kawase T, Akatsuka Y, Torikai H, et al. Alternative splicing due to an intronic SNP in HMSD generates a novel minor histocompatibility antigen. Blood. 2007;110:1055-1063.
- 67. Wang W, Meadows LR, Denhaan JMM, et al. Human H-Y a male specific histocompatibility antigen derived from the SMCY protein. Science. 1995;269:1588-1590.
- 68. Pierce RA, Field ED, den Haan JMM, et al. Cutting edge: The HLA-A*0101-restricted HY minor histocompatibility antigen originates from DFFRY and contains a cysteinylated cysteine residue as identified by a novel mass spectrometric technique. Journal of Immunology. 1999;163:6360-6364.

- 69. Warren EH, Gavin MA, Simpson E, et al. The human UTY gene encodes a novel HLA-BS-restricted H-Y antigen. Journal of Immunology. 2000;164:2807-2814.
- 70. Vogt MHJ, Goulmy E, Kloosterboer FM, et al. UTY gene codes for an HLA-B60-restricted human male-specific minor histocompatibility antigen involved in stem cell graft rejection: characterization of the critical polymorphic amino acid residues for T-cell recognition. Blood. 2000;96:3126-3132.
- 71. Vogt MHJ, van den Muijsenberg JW, Goulmy E, et al. The DBY gene codes for an HLA-DQ5-restricted human male-specific minor histocompatibility antigen involved in graft-versus-host disease. Blood. 2002;99:3027-3032.
- 72. Zorn E, Miklos DB, Floyd BH, et al. Minor histocompatibility antigen DBY elicits a coordinated B and T cell response after allogeneic stem cell transplantation. Journal of Experimental Medicine. 2004;199:1133-1142.
- 73. Ivanov R, Aarts T, Hol S, et al. Identification of a 40S ribosomal protein S4 Derived H-Y epitope able to elicit a lymphoblast-specific cytotoxic T lymphocyte response. Clinical Cancer Research. 2005;11:1694-1703.
- 74. Torikai H, Akatsuka Y, Miyazaki M, et al. A novel HLA-A*3303-restricted minor histocompatibility antigen encoded by an unconventional open reading frame of human TMSB4Y gene. Journal of Immunology. 2004;173:7046-7054.
- 75. Strachan Tom RAP. Human Molecular Genetics 3 (ed 3). London: Garland Science; 2004.
- 76. Gilliam AC. Update on graft versus host disease. Journal of Investigative Dermatology. 2004;123:251-257.

- 77. Simonsen M, Engelbrethholm J, Jensen E, Poulsen H. A study of the graft-versus-host reaction in transplantation to embryos, F1 hybrids, and irradiated animals. Annals of the New York Academy of Sciences. 1958;73:834-841.
- 78. Billingham RE. The biology of graft versus host disease. Vol. 62: Harvey Lectures; 1996:21.
- 79. Carpenter PA, Sanders JE. Steroid-refractory graft-vs.-host disease: past, present and future. Pediatric Transplantation. 2003;7:19-31.
- 80. Akpek G, Lee SJ, Flowers ME, et al. Performance of a new clinical grading system for chronic graft-versus-host disease: a multicenter study. Blood. 2003;102:802-809.
- 81. Pamphilon D. Transfusion-associated graft versus host disease.; 2002.
- 82. Srinivasan R, Barrett J, Childs R. Allogeneic stem cell transplantation as immunotherapy for nonhematological cancers. Seminars in Oncology. 2004;31:47-55.
- 83. Barrett A. Allogeneic stem cell transplantation for chronic myeloid leukaemia. Seminars in Hematology. 2004;40:59-71.
- 84. Kolb HJ, Mittermuller J, Clemm C, et al. Donor leukocyte transfusion for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients. Blood. 1990;76:2462-2465.
- 85. Porter DL, Antin JH. The graft-versus-leukemia effects of allogeneic cell therapy. Annual Review of Medicine. 1999;50:369-386.
- 86. Vanderharst D, Goulmy E, Falkenburg JHF, et al. Recognition of minor histocompatibility antigens on lymphocytic and myeloid leukemic-cells by cytotoxic T-cell clones. Blood. 1994;83:1060-1066.

- 87. Kircher B, Wolf M, Stevanovic S, et al. Hematopoietic lineage-restricted minor histocompatibility antigen HA-1 in graft-versus-leukemia activity after donor lymphocyte infusion. Journal of Immunotherapy. 2004;27:156-160.
- 88. Molldrem JJ, Komanduri K, Wieder E. Overexpressed differentiation antigens as targets of graft-versus-leukemia reactions. Current Opinion in Hematology. 2002;9:503-508.
- 89. Spierings E, Wieles B, Goulmy E. Minor histocompatibility antigens big in tumour therapy. Trends in Immunology. 2004;25:56-60.
- 90. Hambach L, Goulmy E. Immunotherapy of cancer through targeting of minor histocompatibility antigens. Current Opinion in Immunology. 2005;17:202-210.
- 91. Goulmy E. Minor histocompatibility antigens: Allo target molecules for tumor-specific immunotherapy. Cancer Journal. 2004;10:1-7.
- 92. Klein CA, Wilke M, Pool J, et al. The hematopoietic system-specific minor histocompatibility antigen HA-1 shows aberrant expression in epithelial cancer cells. Journal of Experimental Medicine. 2002;196:359-368.
- 93. Tykodi SS, Warren EH, Thompson JA, et al. Allogeneic hematopoietic cell transplantation for metastatic renal cell carcinoma after nonmyeloablative conditioning: Toxicity, clinical response, and immunological response to minor histocompatibility antigens. Clinical Cancer Research. 2004;10:7799-7811.
- 94. Lang KS, Moris A, Gouttefangeas C, et al. High frequency of human cytomegalovirus (HCMV)-specific CD8(+) T cells detected in a healthy CMV-seropositive donor. Cellular and Molecular Life Sciences. 2002;59:1076-1080.
- 95. Engvall E, Perlmann P. Enzyme-linked immunosorbent assay (ELISA) quantitative assay of immunoglubulin-G. Immunochemistry. 1971;8:871-&.

- 96. Carson RT, Vignali DAA. Simultaneous quantitation of 15 cytokines using a multiplexed flow cytometric assay. Journal of Immunological Methods. 1999;227:41-52.
- 97. Kammula US, Marincola FM, Rosenberg SA. Real-time quantitative polymerase chain reaction assessment of immune reactivity in melanoma patients after tumor peptide vaccination. Journal of the National Cancer Institute. 2000;92:1336-1344.
- 98. Czerkinsky CC, Nilsson LA, Nygren H, Ouchterlony O, Tarkowski A. A solid-phase enzyme linked immunospot (ELISPOT) assay for enumeration of specific antibody-secreting cells. Journal of Immunological Methods. 1983;65:109-121.
- 99. Scheibenbogen C, Romero P, Rivoltini L, et al. Quantitation of antigen-reactive T cells in peripheral blood by IFN gamma-ELISPOT assay and chromium-release assay: a four-centre comparative trial. Journal of Immunological Methods. 2000;244:81-89.
- 100. Jung T, Schauer U, Heusser C, Neumann C, Rieger C. Detection of intracellular cytokines by flow-cytometry. Journal of Immunological Methods. 1993;159:197-207.
- 101. Manz R, Assenmacher M, Pflueger E, Miltenyi S, Radbruch A. Analysis and sorting of live cells according to secreted molecules, relocated to a cell-surface affinity matrix. Proceedings of the National Academy of Sciences of the United States of America. 1995;92:1921-1925.
- 102. Asai T, Storkus WJ, Whiteside TL. Evaluation of the modified ELISPOT assay for gamma interferon production in cancer patients receiving antitumor vaccines. Clinical and Diagnostic Laboratory Immunology. 2000;7:145-154.
- 103. Currier JR, Kuta EG, Turk E, et al. A panel of MHC class I restricted viral peptides for use as a quality control for vaccine trial ELISPOT assays. Journal of Immunological Methods. 2002;260:157-172.

- 104. Keilholz U, Weber J, Finke JH, et al. Immunologic monitoring of cancer vaccine therapy: Results of a workshop sponsored by the Society for Biological Therapy. Journal of Immunotherapy. 2002;25:97-138.
- 105. Picker LJ, Singh MK, Zdraveski Z, et al. Direct demonstration of cytokine synthesis heterogeneity among human memory/effector T-cells by flow-cytometry. Blood. 1995;86:1408-1419.
- 106. Nomura LE, Walker JM, Maecker HT. Optimization of whole blood antigen-specific cytokine assays for CD4(+) cells. Cytometry. 2000;40:60-68.
- 107. Suni MA, Picker LJ, Maino VC. Detection of antigen-specific T cell cytokine expression in whole blood by flow cytometry. Journal of Immunological Methods. 1998;212:89-98.
- 108. Nylander S, Kalies I. Brefeldin A, but not monensin, completely blocks CD69 expression on mouse lymphocytes: efficacy of inhibitors of protein secretion in protocols for intracellular cytokine staining by flow cytometry. Journal of Immunological Methods. 1999;224:69-76.
- 109. Caruso A, Licenziati S, Corulli M, et al. Flow cytometric analysis of activation markers on stimulated T cells and their correlation with cell proliferation. Cytometry. 1997;27:71-76.
- 110. Amlot PL, Tahami F, Chinn D, Rawlings E. Activation antigen expression on human T cells .1. Analysis by two-colour flow cytometry of umbilical cord blood, adult blood and lymphoid tissue. Clinical and Experimental Immunology. 1996;105:176-182.
- 111. Schwartz RH, Jackson L, Paul WE. T-lymphocyte-enriched murine peritoneal exudate cells. 1. reliable assay for antigen-induced T-lymphocyte proliferation. Journal of Immunology. 1975;115:1330-1338.

- 112. Maghni K, Nicolescu OM, Martin JG. Suitability of cell metabolic colorimetric assays for assessment of CD4+T cell proliferation: comparison to 5-bromo-2-deoxyuridine (BrdU) ELISA. Journal of Immunological Methods. 1999;223:185-194.
- 113. Lyons AB, Parish CR. Determination of lymphocyte division by flow-cytometry. Journal of Immunological Methods. 1994;171:131-137.
- 114. Rubio V, Stuge TB, Singh N, et al. Ex vivo identification, isolation and analysis of tumor-cytolytic T cells. Nature Medicine. 2003;9:1377-1382.
- 115. Brunner KT, Mauel J, Cerottin.Jc, Chapuis B. Quantitative assay of lytic action of immune lymphoid cells in 51CR-labelled allogeneic target cells in vitro inhibition by isoantibody and by drugs. Immunology. 1968;14:181-&.
- 116. Thorn RM, Henney CS. Enumeration of specific cytotoxic T cells. Nature. 1976;262:75-77.
- 117. Arslan P, Beltrame M, Tomasi A. Intracellular chromium reduction. Biochimica Et Biophysica Acta. 1987;931:10-15.
- 118. Hermans IF, Silk JD, Yang J, et al. The VITAL assay: a versatile fluorometric technique for assessing CTL- and NKT-mediated cytotoxicity against multiple targets in vitro and in vivo. J Immunol Methods. 2004;285:25-40.
- 119. Altman JD, Moss PAH, Goulder PJR, et al. Phenotypic analysis of antigen-specific T lymphocytes. Science. 1996;274:94-96.
- 120. Weber PC, Ohlendorf DH, Wendoloski JJ, Salemme FR. Structural origins of high-affinity biotin binding to streptavidin. Science. 1989;243:85-88.
- 121. Ogg GS, McMichael AJ. Quantitation of antigen-specific CD8+ T-cell responses. Immunology Letters. 1999;66:77-80.

- 122. Kwok WW, Liu AW, Novak EJ, et al. HLA-DQ tetramers identify epitope-specific T cells in peripheral blood of herpes simplex virus type 2-infected individuals: Direct detection of immunodominant antigen-responsive cells. Journal of Immunology. 2000;164:4244-4249.
- 123. Meyer AL, Trollmo C, Crawford F, et al. Direct enumeration of Borrelia-reactive CD4 T cells ex vivo by using MHC class II tetramers. Proceedings of the National Academy of Sciences of the United States of America. 2000;97:11433-11438.
- 124. Novak EJ, Masewicz SA, Liu AW, Lernmark A, Kwok WW, Nepom GT. Activated human epitope-specific T cells identified by class II tetramers reside within a CD4(high), proliferating subset. International Immunology. 2001;13:799-806.
- 125. Fong L, Hou YF, Rivas A, et al. Altered peptide ligand vaccination with Flt3 ligand expanded dendritic cells for tumor immunotherapy. Proceedings of the National Academy of Sciences of the United States of America. 2001;98:8809-8814.
- 126. Whelan JA, Dunbar PR, Price DA, et al. Specificity of CTL interactions with peptide-MHC class I tetrameric complexes is temperature dependent. Journal of Immunology. 1999;163:4342-4348.
- 127. Youde SJ, Dunbar PRR, Evans EML, et al. Use of fluorogenic histocompatibility leukocyte antigen-A*0201/HPV 16 E7 peptide complexes to isolate rare human cytotoxic T-lymphocyte-recognizing endogenous human papillomavirus antigens. Cancer Research. 2000;60:365-371.
- 128. Daniels MA, Jameson SC. Critical role for CD8 in T cell receptor binding and activation by peptide/major or histocompatibility complex multimers. Journal of Experimental Medicine. 2000;191:335-345.

- 129. Denkberg G, Cohen CJ, Reiter Y. Critical role for CD8 in binding of MHC tetramers to TCR: CD8 antibodies block specific binding of human tumor-specific MHC-Peptide tetramers to TCR. Journal of Immunology. 2001;167:270-276.
- 130. Colonna M, Navarro F, Bellon T, et al. A common inhibitory receptor for major histocompatibility complex class I molecules on human lymphoid and myelomonocytic cells. Journal of Experimental Medicine. 1997;186:1809-1818.
- 131. Kollnberger S, Bird L, Sun MY, et al. Cell-surface expression and immune receptor recognition of HLA-B27 homodimers. Arthritis and Rheumatism. 2002;46:2972-2982.
- 132. Nagorsen D, Monsurro V, Wang E, Marincola FM. Characterization of CD8(-) HLA class I/epitope tetrameric complexes binding T cells. Journal of Immunotherapy. 2002;25:379-384.
- 133. Bodinier M, Peyrat MA, Tournay C, et al. Efficient detection and immunomagnetic sorting of specific T cells using multimers of MHC class I and peptide with reduced CD8 binding. Nature Medicine. 2000;6:707-710.
- 134. Day CL, Seth NP, Lucas M, et al. Ex vivo analysis of human memory CD4 T cells specific for hepatitis C virus using MHC class II tetramers. Journal of Clinical Investigation. 2003;112:831-842.
- 135. Luxembourg AT, Brunmark A, Kong Y, et al. Requirements for stimulating naive CD8(+) T cells via signal 1 alone. Journal of Immunology. 1998;161:5226-5235.
- 136. Gillis S, Smith KA. Long-term culture of tumor-specific cytotoxic T-cells. Nature. 1977;268:154-156.
- 137. Riddell SR, Greenberg PD. The use of anti-CD3 and anti-CD28 monoclonal antibodies to clone and expand human antigen-specific T-cells. Journal of Immunological Methods. 1990;128:189-201.

- 138. Garlie NK, LeFever AV, Siebenlist RE, Levine BL, June CH, Lum LG. T cells coactivated with immobilized anti-CD3 and anti-CD28 as potential immunotherapy for cancer. Journal of Immunotherapy. 1999;22:336-345.
- 139. Tan JT, Ha J, Cho HR, et al. Analysis of expression and function of the costimulatory molecule 4-1BB in alloimmune response. Transplantation. 2000;70:175-183.
- 140. Borst J, Hendriks J, Xiao YL. CD27 and CD70 in T cell and B cell activation. Current Opinion in Immunology. 2005;17:275-281.
- 141. Sunderplassmann R, Pickl WF, Majdic O, Knapp W, Holter W. Cross-linking of CD27 in the presence of CD28 costimulation results in T-cell proliferation and cytokine production. Cellular Immunology. 1995;164:20-27.
- 142. Stavy L, Treves AJ, Feldman M. Effect of concanavalin-A on lymphocyte-mediated cytotoxicity. Nature. 1971;232:56-&.
- 143. Allen LW, Svenson RH, Yachnin S. Purification of mitogenic proteins derived from Phaseolus vulgaris isolation of potent and weak phytohemagglutinins possesing mitogenic activity. Proceedings of the National Academy of Sciences of the United States of America. 1969;63:334-&.
- 144. Townsend ARM, Rothbard J, Gotch FM, Bahadur G, Wraith D, McMichael AJ. The epitopes of influenza nucleoprotein recognized by cytotoxic lymphocytes can be defined with short synthetic peptides. Cell. 1986;44:959-968.
- 145. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392:245-252.

- 146. Kleihauer A, Grigoleit U, Hebart H, et al. Ex vivo generation of human cytomegalovirus-specific cytotoxic T cells by peptide-pulsed dendritic cells. British Journal of Haematology. 2001;113:231-239.
- 147. Schultze JL, Seamon MJ, Michalak S, Gribben JG, Nadler LM. Autologous tumor infiltrating T cells cytotoxic for follicular lymphoma cells can be expanded in vitro. Blood. 1997;89:3806-3816.
- 148. Maus MV, Thomas AK, Leonard DGB, et al. Ex vivo expansion of polyclonal and antigen-specific cytotoxic T lymphocytes by artificial APCs expressing ligands for the T-cell receptor, CD28 and 4-1BB. Nature Biotechnology. 2002;20:143-148.
- 149. Latouche JB, Sadelain M. Induction of human cytotoxic T lymphocytes by artificial antigen-presenting cells. Nature Biotechnology. 2000;18:405-409.
- 150. Motta I, Lone YC, Kourilsky P. In vitro induction of naive cytotoxic T lymphocytes with complexes of peptide and recombinant MHC class I molecules coated onto beads: role of TCR/ligand density. European Journal of Immunology. 1998;28:3685-3695.
- 151. Oelke M, Maus MV, Didiano D, June CH, Mackensen A, Schneck JP. Ex vivo induction and expansion of antigen-specific cytotoxic T cells by HLA-Ig-coated artificial antigen-presenting cells. Nature Medicine. 2003;9:619-624.
- 152. Goldstein SAN, Mescher MF. Cell-sized, supported artificial membranes (pseudocytes) response of precursor cytotoxic lymphocytes to class-I MHC proteins. Journal of Immunology. 1986;137:3383-3392.

8.2 Abkürzungen

aAPC artificial antigen presenting künstliche antigenpräsentierende Zelle

cell

APC antigen presenting cell antigenpräsentierende Zelle

BrdU 5-bromo-2'deoxuridin

CACC cholangiocellular carcinoma cholangiozelluläres Karzinom

CCA colon carcinoma Dickdarmkarzinom

CCL22 small inducible cytokine A22

CLIP class II-associated invariant Klasse II-assoziiertes invariante-Kettenpeptid

chain peptide

ConA Concanavalin A

CRA chromium release assay Chromfreisetzungsnachweis

CTL cytotoxic T cell zytotoxische T-Zelle

dbSNP The single nucleotide polymorphisms database of nucleotide sequence

variations

DDX20 dead-box protein 20

DLI donor lymphocyte infusion Spenderlymphozyteninfusion

DNA deoxyribonucleic acid Desoxyribonukleinsäure

ELISA enzyme-linked immunosorbent asssay

ELISPOT enzyme-linked immunospot assay

ER endoplasmic reticulum Endoplasmatisches Retikulum

FACS fluorescence-activated cell fluoreszenzaktiviertes Zellsortieren

sorting

FKBP2 K506-binding protein 2

FSC forward scatter Vorwärtsstreulicht

GH1 growth hormone 1

GvHD graft-versus-host disease Graft-versus-Host-Erkrankung

GvL graft-versus-leukaemia effect Graft-versus-Leukämie-Effekt

GvT graft-versus-tumour effect Graft-versus-Tumor-Effekt

HLA human leukocyte antigen Humanes Leukozytenantigen

IFN Interferon

li invariant chain invariante Kette

IL Interleukin

IL12A Interleukin 12 a-chain

ILT immunoglobuline-like transcript

Indel insertion/deletion Insertions/Deletionspolymorphismus

polymorphism

KIR killer cell immunoglobuline-like receptor

MACS magnetic affinity cell sorting

MAGE *melanoma antigen* Melanomantigen

mHag minor histocompatibility Nebenhistokompatibilitätsantigen

antigen

MHC major histocompatibility Haupthistokompatibilitätskomplex

complex

mRNA messenger RNA

NCBI National Center for Biotechnology Information

PBMC peripheral blood mononuclear Mononukleäre Zellen des peripheren Blutes

cells

PBXIP1 Pre-B cell leukaemia protein 1

PC pancreas carcinoma Bauchspeicheldrüsenkarzinom

PCA prostate carcinoma Prostatakarzinom

PCR polymerase chain reaction Polymerasekettenreaktion

PHA Phytohämagglutinin

qRT- quantitative real-time PCR quantitative Echtzeit-PCR

PCR

RCC renal cell carcinoma Nierenzellkarzinom

RNA ribonucleic acid Ribonukleinsäure

SCT stem cell transplantation Stammzelltransplantation

SNP single nucleotide Einzelnukleotidpolymorphismus

polymorphism

SSC side scatter Seitwärtsstreulicht

STMN1 Leukaemia-associated phosphoprotein p18

TAA tumour-associated antigens tumorassoziierte Antigene

TAP transporter associated with der mit der Antigenprozessierung assozierte

antigen processing Transporter

TCM *T-cell medium* T-Zellmedium

TCR T-cell receptor T-Zellrezeptor

TFE2 Transcription factor E2-alpha

T_H helper T cell T-Helferzelle

TNF tumour necrosis factor Tumornekrosefaktor

T_{reg} regulatory T cell regulatorische T-Zelle

TYROBP TYRO protein tyrosine kinase-binding protein

VCAM1 CD106, vascular cell adhesion protein 1

8.3 Publikationen

- Schuler M.M., Rudolf D., Doennes P., Kohlbacher O., Wernet D., Rammensee H.-G., Stevanovic S. A novel minor histocompatibility antigen expressed by the DDX20 gene and found through reverse immunology. *Manuscript in preparation*. 2008.
- Feldhahn M., Thiel P., Schuler M.M., Hillen N., Stevanovic S., Rammensee H.-G., Kohlbacher O. EpiToolKit – A web server for computational immunomics. Nucleic Acid Research. submitted. 2008.
- 3. **Schuler M.M.**, Nastke M.-D., Stevanovic S. SYFPEITHI: Database for Searching and T-Cell Epitope Prediction. Methods in Molecular Biology: Immunoinformatics: Predicting immunogenicity in silico. 75-94. 2007.
- 4. Tomiuk J., Bachmann L., Bauer C., Rolfs A., Schöls L., Roos C., Zischler H., **Schuler M.M.**, Brunter S., Riess O., Bauer P. Repeat expansion in spinocerebellar ataxia type 17 (SCA17) alleles of the TATA-box binding protein (TBP) gene: An evolutionary approach. European Journal of Human Genetics 15(1):81-7. 2007.
- 5. **Schuler M.M.** SNEP SNP-derived Epitope Prediction. Ein Programm zur Vorhersage von T-Zellepitopen aus Nebenhistokompatibilitätsantigenen. Diplomarbeit. 2005.
- Schuler M.M., Dönnes P., Nastke M.-D., Kohlbacher O., Rammensee H.-G., Stevanovic S. SNEP: SNP-derived Epitope Prediction Programme for minor H antigens. Immunogenetics 57(11):816-820. 2005.
- 7. **Schuler M.M.**, Dönnes P., Nastke M.-D., Kohlbacher O., Rammensee H.-G., Stevanović S. SNEP: SNP-derived Epitope Prediction for minor H antigens. Immunobiology 210:510. 2005.

8.4 Danksagung

Das, was Fortschritt genannt wird, vollzieht sich,

wie die ganze geistige Geschichte der Menschheit,

nicht in der Masse, sondern in einer kleinen Minderheit von Menschen.

Das war immer so. Unsere Aufgabe ist es nicht,

die unkorrigierbare Welt zu belehren,

sondern immer wieder diese Minderheit zu bilden.

Hermann Hesse

DANKE

HANS-GEORG RAMMENSEE

STEFAN STEVANOVIĆ

Oliver Kohlbacher Pierre Dönnes Karl-Peter Hadeler Jürgen Tomiuk Jost Kömpf Birgitt Schönfisch Friedrich Schlecht

KONRAD-ADENAUER-STIFTUNG E.V.

Dr. Daniela Tandecki

Desi Rudolf Dominik Maurer Nina Hillen

Patricia Hrstić Sabrina Kuttruff Stefan Löb Franziska Löwenstein

Margret Müller Beate Pömmerl Jessica Spreu Lynne Yakes

Sascha Alex Jan Daniel + Miriam AH Tübingen-Reutlingen e.V.

Goran Thea Lu + Heidrun Carsten

GANZ BESONDEREN DANK AN MEINE FAMILIE

Meinen Eltern Cornelia und Martin

Meinen Brüdern Michael und Daniel

Meinen Großeltern Gertrud, Theophil, Irma und Helmut

8.5 Lebenslauf

Mathias Martin Schuler

geboren am 17. Dezember 1979 in Stuttgart

Familienstand: ledig

Schulische Laufbahn

1990 – 1999 Theodor-Heuss-Gymnasium Mühlacker

Juni 1999 Abitur

Studium der Biologie

Oktober 2000 – September 2001 Grundstudium der Biologie

Universität Karlsruhe

Oktober 2001 – September 2002 Grundstudium der Biologie

Universität Tübingen

Oktober 2002 – September 2004 Hauptstudium der Biologie

Universität Tübingen

Fächer: Humangenetik, Immunologie,

Biomathematik

September 2004 – Mai 2005 **Diplomarbeit**

Universität Tübingen, Institut für

Zellbiologie,

Abteilung Immunologie

Leitung: Professor Dr. H.-G.

Rammensee

Arbeitsgruppe: Professor Dr. S.

Stevanović

"SNEP - Ein Programm zur Vorhersage von

Nebenhistokompatibilitätsantigenen"

Mai 2005 **Diplom in Biologie, "sehr gut"**

Promotion

Juni 2005 – April 2008

Doktorarbeit

Universität Tübingen, Institut für Zellbiologie, Abteilung Immunologie

Leitung: Professor Dr. H.-G. Rammensee

Arbeitsgruppe: Professor Dr. S. Stevanović "Eine neue Strategie zur Identifikation von minor H Antigenen"