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Abstract

Object detection and instance segmentation are emerging technologies, which are ap-

plied in various fields, including autonomous driving, health, fashion, sports, etc. The

current research effort aims at reducing the complexity and speed of these models and

at the same time improving the detection performance. One of the ways to achieve that

is to represent objects in images more efficiently than the state-of-the-art methods. In

this dissertation, we aim to investigate various representations in object detection and in-

stance segmentation, which compresses the information, reduces the training effort, and

at the same time provides meaningful insights into the representation.

We first show how class activation maps (CAMs) provide a reasonable estimate of the

location of persons in thermal camera images, in neural networks trained on only class

labels (weakly supervised). Furthermore, we show that CAMs representation could be

employed to generate bounding boxes with decent accuracy.

Thereafter, we shift the focus of this thesis towards the task of instance segmentation.

We show that the mask information could be compressed in coefficients of the Fourier

series. We experiment with this using a single-stage object detection framework and

compare the performance of our model FourierNet. We illustrate that low-frequency

components of the Fourier series hold the overall shape information of the objects and

higher frequencies contain the corner and edge information. Our model predicts the mask

in polar coordinates, which can only generate star-shaped objects.

To overcome this, we shift our focus to implicit representations. First, we show a

connection of Fourier series with implicit neural networks. We introduce an integer

Fourier mapping and show that it forces periodicity in implicit neural networks. We

explore and analyze the effect of the number of elements and standard deviation on our

performance. Finally, we show that implicit neural representations can be employed for

instance segmentation. We show that sub-sampling the pixel coordinates in an implicit

neural network generates higher resolution output, which improves the qualitative and

quantitative performance.
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Kurzfassung

Objekterkennung und Instanzsegmentierung sind neue Technologien, die in verschiede-

nen Bereichen wie autonomes Fahren, Gesundheit, Mode, Sport usw. eingesetzt wer-

den. Die aktuelle Forschung zielt darauf ab, die Komplexität und Geschwindigkeit

dieser Modelle zu verringern und gleichzeitig die Erkennungsleistung zu verbessern.

Eine Möglichkeit, dies zu erreichen, ist die effizientere Darstellung von Objekten in

den Bildern im Vergleich zu den aktuellen Methoden. In dieser Dissertation wollen wir

verschiedene Repräsentationen in der Objekterkennung und Instanzsegmentierung un-

tersuchen, die die Informationen komprimieren, den Trainingsaufwand reduzieren und

gleichzeitig aussagekräftige Einblicke in die Repräsentation liefern.

Wir zeigen zunächst, wie Class Activation Maps (CAMs) in neuronalen Netzen, die

nur auf Klasseninformationen trainiert werden (schwach überwacht), eine vernünftige

Schätzung der Position von Personen in Wärmekamerabildern liefern. Darüber hinaus

zeigen wir, dass die CAMs-Darstellung verwendet werden kann, um Bounding Boxes

mit angemesse Genauigkeit zu erzeugen.

Danach verlagern wir den Schwerpunkt dieser Arbeit auf die Aufgabe der Segmen-

tierung von Instanzen. Wir zeigen, dass die Maskeninformation in Koeffizienten der

Fourier-Reihe komprimiert werden kann. Wir experimentieren damit unter Verwendung

eines einstufigen Objekterkennungssystems, vergleichen die Leistung und nennen unser

Modell FourierNet. Wir zeigen, dass die niederfrequenten Komponenten der Fourier-

Reihe die allgemeine Forminformation der Objekte enthalten, während die höheren Fre-

quenzen die Ecken und Kanteninformationen enthalten. Unser Modell sagt die Maske

in Polarkoordinaten voraus, wodurch nur sternförmige Objekte erzeugt werden können,

und nicht-konvexe Masken nicht möglich sind.

Um dies zu überwinden verlagern wir unseren Schwerpunkt auf die implizite Darstel-

lung. Zunächst stellen wir eine Verbindung zwischen der Fourier-Reihe und impliziten

neuronalen Netzen her. Wir führen das Integer-Fourier-Mapping ein und zeigen, dass

es eine Periodizität in impliziten neuronalen Netzen erzwingt. Wir untersuchen und

analysieren die Auswirkungen der Anzahl der Elemente und der Standardabweichung

auf unsere Leistung. Schließlich zeigen wir, dass die implizite neuronale Repräsenta-

tion für die Segmentierung von Instanzen verwendet werden kann. Wir zeigen, dass

die Unterabtastung der Pixelkoordinaten in einem impliziten neuronalen Netz eine höher

aufgelöste Ausgabe erzeugt, die die qualitative und quantitative Leistung verbessert.
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Chapter 1

Introduction

In the last two decades, the computer vision and machine learning communities have

been transformed. A major contributor to this advancement has been the availability of

data and the convenience of generating new data from devices such as mobile phones/-

cameras. The ample amount of data along with high-performance machines has enabled

computer scientists to train machine learning models for real-world tasks. In recent

years, these models have been successfully deployed in industries, including automotive,

security, medical and commerce. The pivotal factors which pushed the industries to ma-

chine learning solutions are the state-of-the-art performance both in terms of accuracy

and speed. Also, the cost of training a model has recently made comparable and viable

to competitive solutions.

It must be emphasized that recently deep learning has shown promise in fields that

were never thought to be a natural choice for machines. For example, GPT-3 (Brown

et al. (2020)) generates human-like text and performs incredibly well on language tasks.

Similarly, with StyleGAN (Karras et al. (2020)), one can generate realistic human faces

with the ability to control facial features for the user. These tasks were traditionally con-

sidered the artist’s domain, which required extensive human time and patience. However,

a computer user can generate art effortlessly now with the help of these models.

With the advancements in research methods, there is still a need to deploy these models

in real-world systems. For industrial applications, it is of utmost importance that the

models are robust to varying conditions. For example, an autonomous car perception

system must account for weather conditions and unseen scenarios. This is important,

since these are safety-critical systems, and human lives could be endangered by wrongly

perceived environments. Also, the perception systems should run in real-time on limited

hardware on the systems. This typically adds some constraints to the size and type of

models that could be employed.

Another important aspect is the interpretability of the systems. Humans interacting

with autonomous systems are always more confident and comfortable when they know

the reasons for the decision-making. Deep Learning models are typically considered a

black box because they do not provide any intermediate representations. This usually

concerns humans, especially in situations where a decision contradicts the user, even

though being equally plausible. Therefore, it is desirable to have intermediate represen-
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Chapter 1 Introduction

tations.

Lastly, the financial and environmental cost of training deep learning models should

justify their use. Normally industries will always converge on a cheaper solution that

fulfills their requirements. Therefore, researchers need to keep these aspects in mind

while developing new ideas.

1.1 Object detection and instance segmentation

Object detection is one of the most widely researched topics in computer vision. For-

mally, object detection refers to classifying the type of objects (e.g person, cat, chair,

etc) and finding their spatial locations in a given image. The spatial location of objects

is typically represented by a bounding box. In certain situations, it is desirable to have

a finer localization than just a bounding box. In such scenarios, one can classify each

pixel of an object as being part of an object or not. This is a pixel-wise classification of

all instances of objects termed as instance segmentation.

The most widely developed models of object detection and instance segmentation are

in the autonomous driving industry. For any autonomous system, perception is the fore-

most part of its pipeline. A typical pipeline of autonomous cars is shown in figure 1.1.

The systems perceive the environment first, before predicting the objects’ future behav-

ior and planning their trajectory. A wrongly perceived environment could be catastrophic

for the whole pipeline. Studies have shown that until recently, the major cause of poor

performance in autonomous driving is mis-detections. There is a strong effort from the

computer vision community to improve the object detection frameworks and make them

more robust.

One of the most recent use cases of object detection and segmentation has been in the

medical industry. Computed Tomography (CT) scans and Magnetic Resonance Imaging

(MRI) scans provide detailed images of internal body parts and organs. These images

are critical for healthcare providers in identifying lesions and diagnosing diseases such

as cancer. However, this diagnosis is difficult because the areas of concern are not iden-

tifiable by humans and sometimes experts’ opinions also differ. For this purpose, deep

learning frameworks have shown promise in finding lesions, characterizing and measur-

ing them, and then describing them in a radiological report. For example, MULAN (Yan

et al. (2019)) is a network that jointly detects, tags, and segments lesions in a variety of

Figure 1.1: A typical pipeline of autonomous driving vehicles.
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1.2 Object Representations

(a) Internal CT scan and the detection

from MULAN (Yan et al. (2019))

(b) An example of instance segmentation

from our network.

Figure 1.2: Some examples of object detection and instance segmentation

body parts. Figure 1.2a shows one of the examples of this network.

In agriculture, object detection has been widely used in many applications such as

plant/fruit disease detection, animal health, crop monitoring, etc. Object detection is also

a useful tool in retail where its often employed in people counting systems and customer

interests. Other applications also include surveillance in security critical places.

1.2 Object Representations

One of the fundamental questions concerning object detection is the way objects can

be represented. Representations play a pivotal role in the performance and speed of the

models. Similarly, different representations can affect how users interpret the predictions

of the model. In this section, we will provide an overview of possible ways objects can

be represented using bounding boxes and masks and analyze their characteristics.

The typical approach for localizing objects in images is to predict a bounding box

around the objects. A bounding box can be represented by the pixel locations of the

top left corner of the box and the height and width of the box. This approach has been

the standard for famous object detectors such as YOLO (Redmon and Farhadi (2018))

and Mask R-CNN (He et al. (2017)). Figure 1.3a shows an example prediction from

YOLO v3. Recently, FCOS (Tian et al. (2019)) first predicts the centroid of the object

and then the distance to the top, bottom, left, and right of the box (see figure 1.3b).

This proved helpful for objects whose center of mass does not match the center of the

box. One can also represent an object with a polygon. ExtremeNet (Zhou et al. (2019a))

3
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(a) Yolo v3 (Redmon and

Farhadi (2018)) (b) FCOS (Tian et al. (2019))

(c) ExtremeNet (Zhou et al.

(2019a))

Figure 1.3: Some coarse polygon representations

predicts four extreme points around an object and constructs a polygon (figure 1.3c).

This representation can be interpreted as a coarse segmentation mask having only four

contour points.

The most straightforward and widely employed representation for instance segmen-

tation masks is a grid representation (see figure 1.4a). Mask R-CNN (He et al. (2017))

is a two-stage detector, which first predicts a region of interest (ROI) and then classifies

each pixel in the ROI to be either inside or outside the object boundary. This is an in-

tuitive strategy that also suits the framework of a convolutional neural network, since it

preserves spatial information. Two-stage methods consistently show better performance

in terms of mask quality in the literature. However, these two-stage methods are gen-

erally slow and complicated during operation. Also, one can also argue that predicting

all pixels is redundant because we only need to know the boundary contour of an object.

Especially, the amount of redundant pixels increases manifolds in case of higher resolu-

tion output and larger objects. Therefore, there is a need to find compact representations

and faster architectures.

Dense RepPoints (Yang et al. (2019)) predicts points near and inside the boundary of

objects (figure 1.4b) and generates a contour by making a concave hull from these dense

points. This certainly requires fewer parameters to define a mask compared to grid rep-

resentation. However, dense points still require a large number of points to represent a

mask. PolarMask (Xie et al. (2020)) uses polar coordinates to represent the mask. They

predict the length of rays to the boundary of the object from a fixed center point as shown

in figure 1.4c. This representation has the advantage of having few parameters and an in-

4



1.3 Aim and contribution

(a) Grid representation (He

et al. (2017))

(b) Dense Representation

(Yang et al. (2019))

(c) Polar representation

(Xie et al. (2020))

Figure 1.4: Mask representations

tuitive representation. However, there are also some limitations regarding the complexity

of the masks they can represent. Polar representation is limited to star-shaped objects e.g

non-convex contours like donuts are not possible. Similarly, split masks are not possi-

ble with this approach, since we are predicting ray lengths from only one center point.

A slightly different approach is to represent masks using parametric functions. Mask

information could be encoded inside the parameters of a model/function and decoded

to generate masks whenever needed. ESE-Seg (Xu et al. (2019)) employed Chebyshev

polynomials to explicitly decode the shape information of the objects (figure 1.5). The

advantage of a parametric function is that it is independent of the output resolution be-

cause it is continuous. Furthermore, such functions have the capability to be compressed

according to the limitations of the application.

1.3 Aim and contribution

In this work, we aim to achieve object representations that are compact, fast, and in-

terpretable. As discussed previously, it is critical in autonomous driving scenarios to

Figure 1.5: Parameteric representation ESE-Seg (Xu et al. (2019))
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Chapter 1 Introduction

operate the perception systems at real-time speeds. At the same time, it is equally impor-

tant that the models are memory efficient and computationally inexpensive. We aim to

tackle this in our work through architecture search, non-complex models, and compact

representations.

One of the main concerns about deep learning models is that they are a ’black box’

and the predictions are not backed up by reasonable interpretations. In our work, we aim

for interpretable representations for object detection tasks. Finally, we aim to achieve

higher resolution and more accurate mask representations for instance segmentation.

Following is the summary of our contribution to the object and mask representations:

1. We show that humans can be represented by heatmaps in thermal camera images

using the technique class activation mapping (CAM) in a weakly supervised set-

ting. These heatmap representations from CAMs can be used to localize humans

in the image.

2. We show that these human detection models can be optimized for hardware con-

straints and can be efficiently deployed to safety critical systems to make them

more robust.

3. We show that a mask can be encoded inside the parameters of a Fourier series,

which achieves a compact and meaningful representation.

4. We propose a differentiable shape decoder, which is able to learn the coefficients

of a Fourier series and achieve automatic weight adjustment.

5. We show that implicit representations can be applied to the task of instance seg-

mentation.

6. As implicit functions are continuous in the domain of input coordinates, we show

that we can sub-sample the pixel coordinates to generate higher-resolution masks

during inference.

7. We verify and illustrate that the rendering strategy from PointRend (Kirillov et al.

(2020a)) brings significant qualitative gains for FourierMask. Our renderer MLP

FourierRend significantly improves the mask boundary of FourierMask.

1.4 Structure of the thesis

The second chapter describes the foundations and theoretical background necessary to

understand the rest of the work. It explains the neural network architectures used in this

thesis. It also covers the details needed to understand the object detection framework.

Furthermore, it briefly describes the datasets used in this thesis and the evaluation metrics

used for analyzing the results. We also explain current work on implicit representations.
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1.4 Structure of the thesis

The third chapter describes the work done for people detection in thermal camera

images in skiing resorts. The aim of this work was to improve the safety of skiers by

detecting humans close to an operating snow groomer. We applied a weakly supervised

strategy, in which we trained the models only on class labels, but predicted bounding

boxes during inference. By using Class activation mapping (CAM), we could identify

the regions in the image where people were present and consequently localize them using

bounding boxes. We also performed an architecture search to optimize the models to run

in real-time on limited hardware. Finally, the models were deployed on the real system

and tested on the skiing resorts successfully.

The fourth chapter discusses the FourierNet (Riaz et al. (2021)), which is a network

that uses a Fourier representation to represent masks for instance segmentation. This

representation is compact since only a few parameters can generate reasonable masks

compared to other methods using a similar number of parameters. Furthermore, we

show that this representation is meaningful, since low-frequency components hold the

overall shape of the object and high-frequency components are responsible for the edges

and corners. Finally, we also conclude that FourierNet is a differentiable shape decoder,

which is able to learn the coefficients of a Fourier series and achieve automatic weight

adjustment. Since the Fourier series is differentiable, we apply the loss on the final

contours, without the need to manually weigh each frequency component of the Fourier

series in the loss function.

In the fifth chapter, we discuss how implicit representations and Fourier series are con-

nected. We experiment with implicit neural representations on the task of image regres-

sion. We show that our integer mapping strategy enforces the periodicity of the network

output. We also show that the progressive training strategy helps in generalization.

The sixth chapter uses the findings from the fifth chapter to apply them to the task of

instance segmentation using our model FourierMask (Riaz et al. (2022)). We show that

since the implicit representations are continuous in the input domain, we can sub-sample

the input pixel location to generate higher resolution output, which is smoother and more

accurate. We show that a rendering strategy from PointRend (Kirillov et al. (2020b))

can be applied to FourierMask and significant qualitative and quantitative gains can be

achieved. The last chapter summarizes and concludes the contributions of this thesis.
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Chapter 2

Foundations

This chapter focuses on the foundations and theoretical background of the thesis. It cov-

ers the topics which are common among all the chapters. Moreover, it contains concepts

that need a deeper explanation to understand the later chapters. This chapter includes the

necessary literature which is related to the work in this dissertation.

2.1 Backbones

This section describes the common neural network backbone architectures employed in

this work for object detection. Typically, object detection and instance segmentation

models have a backbone network which extracts meaningful features. These features are

passed on to heads, which perform specific functions like classification, bounding box

and mask predictions, etc. In this section, we will describe common backbones used in

this thesis.

One of the first and most widely used backbones was VGG-16 (Simonyan and Zisser-

man (2014)). The architecture of VGG-16 is shown in figure 2.1. Briefly, it uses 3×3

convolutional kernels with a stride of 1. It applies max pooling operations to reduce the

feature map size, while at the same time increasing the number of filters. This squeezes

the spatial dimension and extracts more global features from the image. For the classi-

fication task, it employs fully connected layers at the end to predict meaningful output

from global features. VGG was one of the standard baselines for a variety of computer

vision tasks because of its intuitive architecture. However, the major disadvantage of this

model was the size of its parameters and high memory and computational needs. VGG-

16 has more than 130 million parameters, for which fully connected layers are mostly to

blame.

ResNet (He et al. (2016a)) provided an alternative to train deeper networks by intro-

ducing residual learning blocks. In figure 2.2a, it is illustrated that each residual layer

has an identity skip connection from input x to the output y, which enforces the network

to learn the residual mapping F(x,Wi). The output can be calculated as:

y =F(x,Wi)+x. (2.1)
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Figure 2.1: The VGG-16 architecture (Simonyan and Zisserman (2014))

ResNet also added a global average pooling layer before the fully connected layers,

which significantly reduced the number of parameters compared to VGG. This allowed

ResNet to train very deep networks (152 layers) while still managing to keep the memory

footprint low.

ResNeXt (Xie et al. (2016)) introduced a multi-branch architecture, which aggregated

a set of transformations with the same topology. This architecture is shown in figure

2.2b. This ”cardinality” proved to be more significant in improving the performance

than increasing the width or depth of the network.

Feature Pyramid Networks (FPN) (Lin et al. (2017a)) have proved to be a really im-

portant feature for multi-scale object detection. Semantic features for large and small

objects need to be extracted at different scales in the backbone to have a decent detec-

tion performance. (Lin et al. (2017a)) used feature pyramids with marginal extra cost

compared to previous architectures. Figure 2.3 shows a feature pyramid, which predicts

objects at all feature levels and thus proves better for both large and smaller objects.

(a) Residual learning block

(He et al. (2016a)) (b) Left: ResNet block, Right: ResNeXt (Xie et al. (2016))

Figure 2.2: ResNet variants
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Figure 2.3: Feature Pyramid Network (Lin et al. (2017a))

2.2 Object detection framework

Object detection frameworks can be broadly classified into single-stage and two-stage

methods. In two-stage methods, the networks first propose regions with a high probabil-

ity of objects in them. Then, they predict classes, bounding boxes and masks based on

these regions. These methods generally show better performance in terms of accuracy,

but they are slow and complicated. On the contrary, single-stage methods detect the ob-

jects in a single shot without the need for intermediate proposals. These methods are

generally fast and straightforward but they lack the high accuracy of two-stage methods.

2.2.1 Single-stage methods

Single-stage methods generally divide the spatial dimensions of the image in a grid. For

each grid cell, they predict whether an object is present, its class and the bounding box

coordinates. FCOS (Tian et al. (2019)) is an example of single stage detector, which

predicts the bounding boxes at each grid cell of the feature map with a height H and

width W as shown in figure 2.4. It also predicts the centerness, which refers to the

probability of that feature map location being the center of an object.

Another example of a single-stage instance segmentation method is PolarMask (Xie

et al. (2020)). Rather than predicting the bounding box, polarmask predicts the ray

distances to the boundary of the object from the center point.

2.2.2 Two-stage methods

Two-stage instance segmentation splits the task into two sub-tasks, object detection

and then detection/segmentation. The most prominent object detection method is Faster

R-CNN (Ren et al. (2015)), which employs a region proposal network (RPN) to first
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Figure 2.4: FCOS architecture (Tian et al. (2019))

propose candidate regions. Then it uses region of interest (ROI) pooling to generate

fixed-sized feature maps for heads. Figure 2.5a shows the idea of the network.

Mask R-CNN (He et al. (2017)), which is constructed on top of Faster R-CNN (Ren

et al. (2015)) by adding a mask branch parallel to the bounding box and the classification

branches. further, they used RoI-Align instead of RoI-Pooling. Figure 2.5b shows the

architecture of the Mask R-CNN head.

Region proposal networks

Region proposal networks (RPN) were introduced in Faster R-CNN (Ren et al. (2015)) to

generate candidate regions for objects in a fully convolutional manner. Figure 2.7 shows

the working of RPN. They use a n×n sliding window on the last convolutional feature

map of the backbone network. This sliding window is mapped to a lower dimensional

feature and then fed into two sibling fully connected layers —a box-regression layer (reg)

(a) Faster R-CNN (Ren et al.

(2015)) (b) Mask R-CNN (He et al. (2017))

Figure 2.5: R-CNN architectures
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(a) Region proposal Network (b) ROI align

Figure 2.6: Object detection components

and a box-classification layer (cls). Since it’s a sliding window, it shares the weights at

all spatial locations in the feature map.

ROI Align

Region of interest (ROI) pooling is an important component of two-stage object detec-

tors because they generate fixed-sized feature maps which are essential for the network

design. Especially in heads that have fully connected layers and are not fully convolu-

tional, it is necessary to know the number of features during the design process. Faster

R-CNN used a ROI pooling layer to achieve this. They divide the proposed regions into

a fixed-sized grid and choose the maximum value from the feature map region which

corresponds to that grid cell. Since there is quantization in ROI pooling, a lot of in-

formation is lost in the max pooling operation. Therefore, Mask R-CNN introduced

ROIAlign, which is shown in figure 2.6b. In ROIAlign, the values are calculated using

bi-linear interpolation instead of max pooling. This allows information to be passed on

from multiple feature locations and improves the performance of the pooling operation.

2.3 Microsoft COCO Dataset

The Microsoft COCO (Common Objects in Context) (Lin et al. (2014)) is an object

detection, segmentation and captioning dataset. The dataset contains images of common

objects in natural contexts in everyday scenes. The objects in the images are labeled

with bounding boxes and instance segmentation annotations. The original COCO 2014

dataset contained 91 object categories, which could be recognized easily by children. It

has a total of 328,000 images, in which a total of 2.5 million instances are present.

Compared to other object detection datasets, MS COCO was state-of-art at its time.

Figure 2.8 shows a comparison between MS COCO and various classification and de-
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(a) Image (b) Instance segmentation label

Figure 2.7: Example from MS COCO dataset (Lin et al. (2014))

Figure 2.8: Comparison of different object detection datasets (Lin et al. (2014)).

tection datasets. From the figure, it can be seen that COCO has the most instances per

category for datasets having multiple classes. MS COCO has more categories and in-

stances per category than Pascal VOC (Everingham et al. (2012)), which is the most

similar in type and distribution to MS COCO.

2.4 Evaluation Metrics

To analyze and compare the performance of object detection and instance segmentation

models, it is necessary to evaluate them on criteria that focus on the localization capabil-

ity of the models. For classification tasks, metrics such as accuracy (Top-1/Top-5) could

be used. One could also evaluate precision, recall and F1 score to get further insights

into the performance of the networks from different aspects. However, in the case of

object detection and segmentation tasks, one can only consider a prediction accurate if

the predicted location or pixels are close to the target regions. Therefore, the first step is
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Figure 2.9: Intersection over Union

to formulate a metric that calculates the overlap of predictions and targets.

2.4.1 Intersection over Union

Intersection over Union (IOU) is the ratio of the area of intersection and the area of union

between two regions. In the case of bounding boxes, IOU can be calculated as shown in

figure 2.9. In case the predicted bounding box completely overlaps the target, the IOU

has a value of 1 (maximum) because the intersection and union areas are equal. In case

there is no overlap, the intersection is 0 (minimum) and consequently, IOU is also zero.

In the case of instance segmentation, we calculate the ratio of overlapping pixels by the

total pixels covering the prediction and targets.

2.4.2 Mean Average Precision (mAP)

IOU provides a measure of the localization ability of a detector. However, we need a

metric that calculates the precision of a detector for all datasets. For this, we first need

to calculate the precision and recall. Precision and Recall are defined as:

Precision =
T P

T P+FP
, (2.2)

Recall =
T P

T P+FN
, (2.3)

where True Positives (TP) are those predictions that have IOU greater than a threshold

(typically 0.5). There are multiple possibilities for False Positives (FP):

• The examples which have an IOU less than the threshold

• There is a mismatch in the predicted and target class.

15



Chapter 2 Foundations

Figure 2.10: Precision-Recall curve

• There is more than one prediction for a single target. Then the highest confidence

prediction is considered TP and the rest are categorized as FP.

False Negatives (FN) are the instances where there was no prediction while a ground truth

label was present. A high precision suggests that most of the predictions are correct. On

the other hand, a high recall suggests that most of the ground truth targets were predicted

by the detector.

The average precision (AP) is defined as the area under the precision-recall curve. Fig-

ure 2.10 shows one of the examples. This curve is generated by calculating the precision

and recall at each confidence threshold of the prediction. For example, at a high confi-

dence threshold, the precision is really high because there are few predictions and most

of them are correct (few FP). However, the recall is very low because of the large number

of FN. On the contrary at a low confidence threshold, a lot of objects are detected. which

results in low FN and high FP. This results in a high recall but low precision. For COCO,

precision and recall are calculated at 10 different confidence thresholds and plotted on

a precision-recall (PR) curve. The PR curve follows a kind of zig-zag pattern as recall

increases absolutely, while precision decreases overall with sporadic rises. At each recall

level, we use the maximum precision value to the right of that recall level, as shown in

figure 2.10. Finally, the area under this smoothed out curve is calculated which gives us

the Average Precision (AP). The mean average precision (mAP) is the AP averaged over

all classes in the predictions. COCO does not differentiate between AP and mAP.

Typically, the IOU threshold is set to 0.5 in object detection metrics. However, MS

COCO uses 10 evenly spaced IOU thresholds between 0.5 and 0.95 and takes the average

over all the IOU thresholds. They claim that averaging IOUs rewards detectors with

better localization performance.

2.4.3 Boundary IOU

IOU rewards the pixels/area inside an object equally. However, for instance segmentation

tasks, it is important to focus on the boundary of the object. Especially for larger objects,
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Figure 2.11: Boundary IOU

misclassifications around the boundary of the objects become insignificant because most

of the pixels are inside the objects. Therefore, metrics like mean average precision fail

to highlight the difference between objects with poor boundary predictions. Boundary

IOU (Cheng et al. (2021)), explicitly focuses on the boundary pixels of the objects and

therefore portrays the actual difference between good and bad mask quality. Figure 2.11

illustrates the way boundary IOU is calculated. First, it finds the intersecting pixels

near and inside the boundary of the ground truth mask and the predicted mask. Then, it

calculates the union of the same boundary pixels of ground truth and prediction. Finally,

it takes the ratio of intersection and union similar to the normal IOU. Boundary IOU

gives a better estimate of the mask quality of the model. Just by replacing IOU with

boundary IOU, one can calculate boundary mean average precision or mAPbound

2.5 Training and loss functions

Deep learning models must be trained on a large amount of data. In this work, we employ

neural networks only and therefore we limit our scope to common methods of training

such networks. Neural networks are typically trained using backpropagation. Backprop-

agation is a method that calculates the gradient of the loss function with respect to the

weights of the neural network. This allows gradient-based optimization methods such as

gradient descent to train these networks. For large datasets, a variant of gradient descent

’Stochastic Gradient Descent (SGD)’ is typically used. SGD is an iterative method for

optimizing the loss function, which uses a randomly selected subset of data to estimate

the gradient in each iteration. However, in this work, the primary focus is on object

detection and segmentation. Therefore, we do not delve deep into optimization meth-

ods and backpropagation and rather focus on loss functions employed in this work for

detection and segmentation.
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2.5.1 Binary cross entropy

Loss functions allow an evaluation of the network prediction compared to the targets.

Especially for calculating the gradients for backpropagation, error or loss functions are

needed. The most common loss function for classification tasks is binary cross-entropy,

which is defined as:

Hp(q) = −
1

N

N

∑
i=0

yi log(p(yi))+(1−yi) log(1− p(yi)), (2.4)

where N are the total number of examples, yi is the target and p(yi) is the predicted proba-

bility for that example. The first term yi log(p(yi)) in the sum refers to the log-likelihood

of that class and the second term (1− yi) log(1− p(yi)) refers to the log-likelihood of

other classes based on this prediction. In many cases the target classes are mutually ex-

clusive, for example, the result of a coin toss could either be heads or tails but not both.

In such cases, the second term is always zero because yi is always 1. Therefore, for mu-

tually exclusive classes with one-hot encoding, we can rewrite the above equation in the

following way

Hp(q) = −
1

N

N

∑
i=0

yi log(p(yi)). (2.5)

Natural images generally contain multiple objects such as people, vehicles and animals

etc. Therefore, a classification of an image containing multiple objects of different cate-

gories is not mutually exclusive. One could extend equation 2.4 to be applied to multiple

classes by taking the sum for all classes in a particular dataset.

2.5.2 Polar IOU loss

Calculating the IOU between the ground truth and predicted masks is computationally

expensive. (Xie et al. (2020)) introduced Polar IOU, which provided a more suitable

evaluation metric for polar representations. Figure 2.12 illustrates the process of calcu-

lating polar IOU. Polar IOU is the ratio of the minimum ray distances to the maximum

ray distances between two contours. If there are infinite rays, this effectively becomes

equivalent to the ratio of intersecting and the union area. For discrete cases, Polar IOU

can be defined as:

PolarIOU =
3N

i=1 dmin

3N
i=1 dmax

, (2.6)

where N is the total number of rays, and dmin and dmax are the ray distances explained

above. Polar IOU loss is simply the binary cross entropy of Polar IOU, which can be

written as

PolarIOU Loss = log
3N

i=1 dmax

3N
i=1 dmin

. (2.7)
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Figure 2.12: Polar IOU (Xie et al. (2020))

Polar IOU loss provides a reasonable estimate of the quality of the mask prediction,

which can be easily replaced with typical loss functions for mask IOU calculations.

2.6 Fourier Series

Fourier series is a way by which any periodic signal can be represented by a sum of sine

and cosine terms. If enough of these terms are present, theoretically any periodic signal

can be represented by the Fourier series. Each sine and cosine term has a harmonic

frequency (integer multiple of the fundamental frequency of the periodic function). In

sine-cosine form, the Fourier series is defined as:

sN(x) =
a0

2
+

N

∑
n=1

(an cos(
2π

P
nx)+bn sin(

2π

P
nx)), (2.8)

where N is the total number of harmonics, a0 is the 0th harmonic or the constant term, an

and bn are the coefficients of the nth harmonic cosine and sine terms respectively, P is the

period of the function. To represent a periodic signal as Fourier series, the coefficients

a0, an and bn can be calculated as follows.

a0 =
2

P
+

P

0
sN(x)dx (2.9)

an =
2

P
+

P

0
sN(x)cos(

2π

P
nx)dx (2.10)

bn =
2

P
+

P

0
sN(x)sin(

2π

P
nx)dx (2.11)
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Fourier series can also be formulated in exponential form. It is defined as

sN(x) =
N

∑
n=−N

(cn expι2πnx/P), (2.12)

where cn are the complex Fourier coefficients. This is the typical form to represent a

function as a complex-valued function.

Fourier series can only represent functions that are periodic. For non-periodic func-

tions, the Fourier series can be extended to a Fourier transform. The Fourier transform

assumes non-periodic functions as periodic functions with infinite periods. Using the

Fourier transform, a frequency domain representation can be generated of non-periodic

functions and consequently advantages of Fourier approximation can be exploited for

many applications. For signals which are finite sequences of equally-spaced samples

(for example images), the Discrete Fourier Transform (DFT) is a natural choice. A DFT

generates a complex-valued function of frequency that has the same length as the origi-

nal signal. A DFT can be considered a frequency domain representation of the original

signal. A DFT of a complex number sequence of length N xn ∶= x0,x1, ...,xN−1 is another

complex number sequence Xk ∶= X0,X1, ...,XN−1, which is defined by

Xk =

N−1

∑
n=0

xne
−ι2π

N
kn (2.13)

This is the discrete form of the formula for the coefficients of the Fourier series. There-

fore, the inverse discrete Fourier transform (IDFT) is equivalent to a Fourier series. It is

defined as

xn =
1

N

N−1

∑
k=0

Xke
ι2π

N
kn (2.14)

This relationship is really useful in our application. We could represent our signal, for

example, objects, masks or contours as xn in the above equation. If our networks could

learn to predict the Fourier coefficients Xk in the frequency domain, an IDFT can be

applied to retrieve the original representation. This could potentially have a variety of

Figure 2.13: Fourier series flowchart for Instance segmentation
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advantages such as compression and better interpretability.

Figure 2.13 shows that a convolutional neural network feature extractor can predict

the Fourier coefficients of a particular object. An IDFT (Fourier series) can be applied

using these Fourier coefficients to decode a mask, contour or shape of the object. Since

the Fourier series is a linear operation, gradients can flow through the function when

networks are trained using backpropagation. Therefore, the models can be trained in an

end-to-end manner and typical loss functions on masks or contours can be employed and

the Fourier coefficients are learned automatically.

Alternatively, it is also possible to apply a DFT on the mask or contour and retrieve the

Fourier coefficients analytically. Then, a loss for regression such as L2 can be applied

to the Fourier coefficients directly. However, in this case, it is necessary to weigh each

coefficient independently according to its effect on the actual shape of the object. This

makes training more complicated and introduces unwanted hyper-parameters.

2.7 Implicit Neural Representations

Implicit neural representations (INRs) learn a continuous differentiable signal in the pa-

rameters of a neural network. Typically, signal representations are discrete, for example,

images are discrete pixels, and 3D signals can be represented as point clouds or dis-

crete voxels. Implicit representations represent these signals as continuous in the input

domain. For example, an image’s input coordinates are mapped to the RGB value at

that location. Figure 2.14 shows an example of an image being represented by an Im-

plicit neural network. The word implicit refers to the fact that these representations are

not tractable and it’s not possible to write an analytical formula for such signals. Since

these representations are continuous, they have a variety of benefits. They are not tied

to the spatial resolution of the signals and therefore the memory requirement is inde-

pendent of the resolution and depends on the complexity of the signal. Tasks such as

Figure 2.14: Implicit Neural Network (Skorokhodov et al. (2021))
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(a) Fourier Features (Tancik et al.

(2020)) (b) Sirens (Sitzmann et al. (2020a))

Figure 2.15: Recent works in Implicit neural networks

super-resolution are an ideal fit for such representations because INRs have an infinite

resolution theoretically. Also, the signals with higher dimensions such as 3D scenes

require very high memory and INRs are suitable for 3D tasks.

Recent work in implicit neural networks has shown that these representations are able

to capture high-frequency details in the signals. (Tancik et al. (2020)) illustrated that if a

Fourier mapping γ is applied to the input coordinates before passing it through the MLP,

the MLP learns high-frequency details better than without the Fourier mapping. This

is illustrated in figure 2.15a, where it can be seen that Fourier features generate sharper

images when applied to the image regression task.

Sirens (Sitzmann et al. (2020a)) showed that instead of using activation functions such

as ReLU, periodic activation functions are ideally suited for representing complex natural

signals and their derivatives. They demonstrate the effectiveness of sinusoidal activations

for the representation of images, wavefields, video, sound, and their derivatives. Figure

2.15b shows a comparison between ReLU and sine activations when used on image re-

gressions task.

2.8 Weakly supervised object detection

One of the major challenges in training well-generalizing models is the availability of

data. For large deep-learning models, it is imperative to have millions of annotated train-

ing examples. For image-level classification labels, it is fairly quick and straightforward

to annotate the images. Also, there is no need for expert skills in humans to label images.

However, for dense labeling tasks such as pixel-wise segmentation annotation, it requires
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Figure 2.16: Class activation mapping (Zhou et al. (2016))

time and patience from skilled annotators.

A decent amount of research has been done on developing tools and methods that can

label data without human input. Also, researchers have recently explored methods, which

do not require fully annotated data for their applications. Weakly supervised is such a

training technique by which models can perform tasks on which they haven’t been ex-

plicitly trained. The term weak refers to the fact that the labels used are incomplete or

contain insufficient information for training the model for that task and therefore they

cannot be termed fully supervised. An example of a weakly supervised model is a con-

volutional neural network trained on classification labels only but predicting bounding

boxes as well during inference.

Weakly supervised models exploit the information extracted from the structure of the

models. In weak supervision, we assume that while training for the higher level task, the

models inherently learn correlations and features which could lead us to further insights.

For example, it is possible to trace the pixels responsible for predicting a particular class

in an image. (Zhou et al. (2016)) showed that we can trace the activations in the con-

volutional feature maps by a technique called class activation mapping (CAM). Using

the inherent structure of global average pooling, (Zhou et al. (2016)) takes a linear com-

bination of activations in the feature maps, which generates a heatmap highlighting the

relevant pixels for that class. Figure 2.16 shows an example of class activation mapping

for various classes.

Weak supervision is even more valuable in the case of instance segmentation because

labeling pixels for segmentation takes manifolds more resources than bounding box la-

bels. (Zhou et al. (2018)) used only image-level labels to predict the segmentation masks

of objects. They used local maxima in the class response maps to find the instances in the

images. The peaks were then backpropagated to find the pixels contributing to that local

maximum. Figure 2.17 shows how the peaks are backpropagated to the image pixels for

instance segmentation.
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Figure 2.17: Class peak response (Zhou et al. (2018))
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Chapter 3

People detection using weak

supervision

3.1 Introduction

One of the foremost challenges in autonomous driving is perceiving the environment.

An accurate depiction of the environment becomes crucial when the safety of people is

at stake. Therefore, the task of object detection has been of major interest in computer

vision during the last decade. In urban scenarios, the recent object detection frame-

works have been able to robustly classify and localize objects in the environment. This

has led to vehicle manufacturers confidently adopting object detection models in their

autonomous driving systems.

Although technology is moving towards fully autonomous vehicles, there are certain

environments in which it’s still challenging to perceive the environment confidently. Ob-

jects, which are articulated or change orientation, are hard for machines to recognize.

Especially with traditional computer vision methods with hand-crafted features, it was

even more challenging. Furthermore, in scenarios where object features are indistin-

guishable from the background due to occlusions or color similarities, object detection

becomes more difficult.

With the recent success of deep learning methods, the aforementioned scenarios have

been tackled to some extent. However, deep learning training requires large amounts

of labeled datasets. The labeling process is tedious, and generally requires a sizeable

amount of manual labeling hours and computational resources. One of the ways to over-

come the manual labeling process is to adopt weakly supervised training. In weakly

supervised methods, the models are trained using partial/limited labels compared to the

task at hand. For example, a weakly supervised object detector could only be trained on

class labels, while it predicts both class labels and bounding boxes of objects during in-

ference. These methods are applicable for multiple tasks, for example, labeling, finding

patterns, and an elementary solution for simple problems.
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3.2 Task

In this chapter, we explain the work done on a similar scenario, where the objects had ar-

ticulation, changing orientation and similarity with the background. Formally, we wanted

to explore the task of detecting people in skiing resorts using thermal imaging cameras.

There is a constant requirement in skiing resorts to groom the snow to maintain a good

surface for skiers. Snow groomers (figure 3.1b) are employed for this task which level

and smooth the snow. The snow groomers are tracked vehicles and thus maintain strong

traction during operation. However, these heavy machines come with a cost of safety

hazards for skiers and employees working near the vehicle. There have been multiple

fatal accidents reported. Since the skiers often fall and get covered in snow, it is even

more challenging for the vehicle operators to identify people around. Furthermore, low

visibility during snowfall and fog is also a common occurrence in these resorts, which

increases the safety hazard. To overcome these challenges, vehicle manufacturers search

for an automated safety solution.

To develop an automated safety system, these vehicles are attached with four thermal

imaging cameras, one each at the corners of the passenger compartment facing outside.

These cameras are suitable for skiing resorts because most of the background is snow,

which does not emit any infrared signature and the objects of interest (people) are easily

distinguishable because of a comparably high temperature. This gives an advantage

over RGB cameras because the visibility and object appearance does not play a role

in detection. Therefore, people can still be better distinguished in stormy and foggy

conditions. Furthermore, people with white clothes or slightly covered in snow are better

visible. An example image is shown in the figure 3.8.

Along with the advantages of thermal images, there are also some drawbacks. Having

no color information means that the shape of objects becomes really critical in identifying

objects. For example, people far away could look similar to signposts. Backgrounds of

trees and rocks could also pose problems because they are at a higher temperature than

(a) Thermal camera example (b) Pistenbully

Figure 3.1: A dataset example and a snow groomer
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snow. Traditional computer vision methods, which extract hand-crafted features to detect

objects, fall short in these scenarios. Therefore, we wanted to test deep learning methods

for detecting people in thermal infrared images.

3.3 Dataset

Four thermal imaging cameras (FLIR (2022)) were attached at the corners of the passen-

ger compartment of the snow groomer (Pistenbully) shown in figure 3.1b. The Forward

Looking Infrared (FLIR) cameras detect passive infrared from the field of view and gen-

erate its heatmap. In our case, this heatmap was represented as a grayscale image of

resolution 382× 286 pixels. Since the cameras operated at 30 frames per second, for

each second of the video, 30 grayscale images were generated. We received the data

from all four cameras simultaneously. Data was collected from people skiing at two

different locations namely Kaunertal and Steibis glaciers. For data diversity, data was

collected at different times and conditions e.g different days, weather conditions, places

at the resort, etc. Since it was important to detect non-typical scenarios, particular at-

tention was given to examples of people who were huddled together (occlusions), fallen,

moving very close to the camera, and in bright backgrounds.

The table 3.1 shows the statistics of the data set. In positive images, there is at least

one person in the frame and in negative images, there is none. We can observe that the

percentage of positive images is less than 10%, which indicates a high imbalance in the

data set. During training, we adopt an under-sampling strategy to balance the positive

and negative samples. This makes sure our model is not biased towards always predicting

no person.

We split the data into training and test sets in the ratio 0.85 to 0.15 respectively. A

typical way to choose the test data is to take frames uniformly randomly from the whole

dataset. However, since it is a video sequence, this would make the test examples highly

similar and correlated to the training examples. We wanted to make the test set similar

to a practical test scenario. Therefore, we used the last set of video sequences of each

day/scenario for test data. This would match a natural test scenario because we test

Dataset All data Train Test Test Ratio

Total Images 2,809,041 2,382,372 426,669 15%

Positive Images 277,394 248,297 29,107 10%

Negative Images 2,531,647 2,134,075 397,562 15%

Positive Ratio 9.8% 11.6% 6.8% -

Table 3.1: The statistics of the dataset. The positive images contain at least one labeled

person. The table values highlight the imbalance in the dataset since only less than 10%

images have persons in them.
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Chapter 3 People detection using weak supervision

our systems on separate occasions after models are trained. Also, using our strategy,

the test examples would be independent of training examples but still be in a similar

environment. Note that the positive examples ratio in the test set (6.8%) does not match

the positive examples in the training set (11.6%) and this could potentially lower our test

accuracy. However, we did not force the ratios to be similar because then there would be

human interference involved in picking the examples and also disturb the natural way of

splitting described above.

In the dataset each person was labeled with three sub-classes: Standing, lying, and

blurred. However, most of the time people were standing, which is natural for humans

in skiing resorts. Therefore, there was a further imbalance of examples in the human

category. To avoid this, we did not use any sub-classes and relied on the higher-level

class of people only. It is worth mentioning that a CNN feature extractor could learn to

be invariant to human poses and orientation if enough examples with high variance are

provided.

3.4 Method

In this section, we will discuss the architecture of our deep-learning model and tech-

niques for localizing the objects in the image. As discussed before, we had the task of

classifying the images in the categories ’Person’ and ’No Person’ and predicting an en-

closing bounding box around the objects. We employed a weakly supervised model for

this work i.e we did not use the bounding box labels for training but predicted the labels

during inference.

3.4.1 Architecture

To achieve this, we employed a classification network derived from VGG-16 (Simonyan

and Zisserman (2014)). VGG-16 is a baseline architecture for many modern classifica-

tion and detection models. It was one of the earliest convolutional neural networks which

evaluated increasing depth using an architecture with very small (3x3) convolution fil-

ters. This gradually decreasing feature map size using max pooling also became the

baseline method while designing convolutional neural networks for image and vision-

related tasks.

One of our network architectures is shown in figure 3.2. This architecture is derived

from the VGG-16 model with the following modifications:

• Instead of having 13 convolutional layers, we experimented with 8 - 11 layers. The

architecture in figure 3.2 has 9 convolutional layers.

• We did not use any fully connected layers but rather applied a global average pool-

ing to the last feature map from convolutions.
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Figure 3.2: The architecture of our classification head.

• We only have 2 classes instead of 1000 categories needed for the ImageNet dataset

(Deng et al. (2009)).

Note that we used a VGG model, which was pre-trained on the ImageNet dataset.

Since we had only two classes, our task was much simpler than the ImageNet dataset

having 1000 categories. Therefore, we experimented with less number of layers. Fur-

thermore, we needed to deploy our model to an embedded device (NVIDIA Jetson se-

ries). We performed a comparison of accuracy vs. speed on various CNN model sizes,

which is discussed later in section 3.5.3.

3.4.2 Global Average Pooling

Fully connected (FC) layers hold most of the parameters in the original VGG-16 model

and they are prone to over-fitting. Therefore, we replaced the FC layers with Global Av-

erage Pooling (GAP) (Lin et al. (2013)). The GAP operation is illustrated in figure 3.3.

For a given feature volume, GAP takes the average of all values in each channel sepa-

rately. Therefore, the channels with overall high activations, generate a higher response

after a GAP operation. Since it is an average operation, it does not have any learnable

parameters. In figure 3.3, a fully connected layer of size m would have H ×W ×D×m

parameters compared to none in GAP. This is a major reduction in parameters and there-

fore the network avoids over-fitting. In our model, we apply GAP to the last feature map

of the convolutions and later apply a fully connected layer to predict the classes.

3.4.3 Class Activation Mapping

The main objective of object detection is to localize objects in the images. In our case,

our model should predict bounding boxes around the people. As mentioned before, we

apply a weakly supervised model i.e we train our model without bounding box labels but

predict the bounding boxes during training. To achieve this, we trained a classification
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Figure 3.3: The Global Average pooling operation

model and used Class activation mapping (CAM) from Zhou et al. (2016) to predict

the bounding boxes. Given the feature volume of the last convolutional layer V , the

activation map of a particular class can be generated by

CAMc =

N

∑
i=0

wciFi, (3.1)

where c is the class in question, N is the number of channels in the feature volume V ,

wci is the weight connecting the ith GAP feature and the output neuron of class c and Fi

is ith channel in V . The process of CAM is illustrated in figure 3.4.

Global average pooling (GAP) plays a critical role in achieving CAM. Each feature

after a GAP operation holds the average activation of a particular channel Fi of the feature

volume. Since these GAP features are fully connected to the output neurons, the weights

of the fully connected layer signify the effect each channel has on that class. Therefore,

by multiplying the fully connected weights wc by the feature maps F , we weigh each

feature map by its importance to that particular class. Eventually, a sum of these weighted

features generates a heatmap, which highlights highly relevant regions for predicting that

class.

3.4.4 Post Processing

To generate bounding boxes from CAM heatmaps, we apply some post-processing steps.

First, we resize the heatmap to the original size of the input image. Then, we apply binary

thresholding to the heatmap which generates a hard boundary of different objects in the

image. Finally, we find contours in the image which gives us the boundary points of each

contour in the thresholded image. By finding the minimum and maximum in the x and y
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Figure 3.4: The modified version class activation mapping from Zhou et al. (2016). Here

we use only 2 classes (Human/Not Human)

direction of the image, we find the boxes around the objects. The process is illustrated in

figure 3.5

Figure 3.5: The post-processing cycle for bounding box generation.

3.5 Experiments

This section explains the experiments we performed to accomplish the tasks. First, we

elaborate on the training methods we employed. Then, we focus on our best qualitative

and quantitative results. Finally, we illustrate the different architectures we trained to

achieve the best performance on limited hardware.
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Figure 3.6: Confusion matrices

3.5.1 Training details

We trained our models on the thermal imaging dataset explained in section 3.3. To

achieve better generalization, we applied data augmentation techniques during our train-

ing. The most intuitive and effective augmentation in our scenario was random bright-

ness and contrast variation. For each input image, we chose contrast variation, brightness

variation, or no change uniformly randomly.

Since we had a high imbalance in our classes (approx 90/10), we used undersampling

to avoid this problem. For each epoch, we picked N random samples using a uniform

distribution of the ’No person’ class, where N is the total number of images of the class

’Person’. Therefore, we had an equal number of both classes in each epoch. In every

epoch, we took a new sample to promote diversity in the images. Note that the data is a

video sequence and losing so many samples from undersampling does not significantly

influence our training because the images have low variance. Strictly speaking, an epoch

must contain all samples in the training dataset, but we use only a subset. However, we

still use the term epoch in our case to avoid confusion.

We trained our model using binary cross entropy loss with softmax on network output.

We used the ADAM optimizer (Kingma and Ba (2014)) as the gradient descent method.

We trained on a single GPU (NVIDIA GTX1080Ti) and our code was implemented on

the Tensorflow package of Python. We employed a pre-trained model of VGG-16 on

ImageNet and fine-tuned our dataset. Note that we only employed pre-trained weights

for the layers which were unmodified.

3.5.2 Results

We evaluated our models qualitatively and quantitatively. For quantitative comparison,

we used accuracy and confusion matrices as our metrics. Figure 3.6 shows the confusion
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(a) Class Activation Map (b) Class Activation Map (c) Class Activation Map

(d) Bounding Box (e) Bounding Box (f) Bounding Box

Figure 3.7: Some detections from our model

matrix and its normalized version when the network shown in figure 3.3 was used on our

test dataset. The overall accuracy of the model is 98.45%. Since there is an imbalance in

the classes, the confusion matrix gives a better estimate of where the errors lie. Among

the examples with ’No person’, the model predicts with high confidence of above 99%.

From the examples, where there are persons, the network predicts it correctly 93% times

and fails 7%. This indicates that our system will rarely produce false positives but may

miss-detect some people in certain scenarios. A system that is designed to save lives

must be conservative (cautious) in its operation and failing to detect people might not be

ideal for such as system. Figure 3.7 and 3.8 illustrate some examples of people being

detected using our model. It can be seen that upright and fallen people both can be

detected using our method. Also, in case of a blurry/hazy environment, the model can

detect people reasonably well. In the case of people clustered together, it combines some

instances together. This behavior is expected in our model since we do not follow a

(a) CAM (b) Bbox (c) CAM (d) Bbox

Figure 3.8: Examples of fallen people
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(a) 11 Convolutional Layers – 12.3M parameters

(b) 8 Convolutional Layers – 4.6M parameters

Figure 3.9: The structures variation for architecture search

two-stage strategy (find regions of interest, then detect) or divide the output in a spatial

grid of detections. We simply find the contours from global information and therefore an

overlapping class activation mapping of objects would be regarded as a single object.

3.5.3 Architecture Search

Since one of the tasks was to optimize the models according to the limited hardware

available in the snow groomers, we performed an architecture search on our models.

We restricted our search to VGG-16 model variants only. We only either removed or

modified the final layers of the network and kept the initial layers the same. This allowed

us to use the pre-trained feature extractors which is helpful for generalization. The list

below contains six of these networks, which were trained on a slightly smaller dataset,

and their structures are illustrated in figure 3.9 and 3.10:

1. 11 Convolutional Layers – 12.3M parameters

2. 8 Convolutional Layers – 4.6M parameters
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3. 8 Convolutional Layers – 2.9M parameters – Structural difference

4. 8 Convolutional Layers – 1.1M parameters – Reduced Filters (1/2 times)

5. 8 Convolutional Layers – 0.2M parameters – Reduced Filters (1/4 times)

6. 11 Convolutional Layers – 12.3M parameters – Input image size halved

.

(a) 8 Convolutional Layers – 2.9M parameters – Structural difference

(b) 8 Convolutional Layers – 1.1M parameters – Reduced Filters (1/2 times)

(c) 8 Convolutional Layers – 0.2M parameters – Reduced Filters (1/4 times)

Figure 3.10: The structures variation for architecture search

The table 3.2 below shows the results of these networks. The models are evaluated on
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Metric 1 2 3 4 5 6

Parameters 12.3M 4.6M 2.9M 1.1M 0.2M 12.3M

Test Accuracy (%) 99.47 98.84 98.09 92.05 89.58 99.27

True Positives 4427 4113 4198 3693 2819 4116

True Positive rate 0.80 0.77 0.79 0.69 0.53 0.77

False Positives 1056 2090 5221 25689 33548 1445

False Positive Rate 0.00 0.01 0.02 0.07 0.09 0.00

Mean IOU 0.39 0.26 0.21 0.00 0.00 0.01

FPS (GTX 1080Ti ) 91.0 126 135 238 357 205

FPS (Jetson TX2 ) 4.32 6.84 7.09 14.9 19.2 12.6

FPS (Jetson TK1 ) 0.82 1.24 1.26 3.68 10.8 2.84

Table 3.2: The performance of various networks on the test set.

different metrics to highlight the speed-accuracy trade-offs while optimizing networks.

We also calculate the mean intersection over union (IOU) of the models to show their

localization accuracy. Also, the frames per second are evaluated on various limited hard-

ware platforms.

As a general trend we see that the accuracy decreases as we decrease the number of

parameters of the network, which is expected. A similar trend can be observed in true

positives and false positives. In the case of mean IOU, it can be seen that the performance

drops sharply even with a slight decrease in a number of parameters. This happens, since

the networks are trained using only the classification loss (weakly supervised) and in

case, we have a limited capacity of the model, the localization suffers the most.

For comparing the speed of our models, we employed three different systems. The first

was an NVIDIA GTX1080Ti installed on a desktop PC and the other two were NVIDIA

Jetson TX2 and TK1 developmental boards. Jetson TK1 being the oldest proved to be

the slowest as expected. It also failed to achieve a reasonable speed (above 5 FPS) on

all except the 5th model. However, the accuracy of the 5th model is not acceptable,

especially for safety-critical systems.

For Jetson TX2, the 3rd, 4th, and 5th models seem to run at a reasonable speed

and therefore, these models were eventually tested on the real platform. Naturally, on

GTX1080Ti, the speed performance is really high compared to the embedded platforms.

However, this cannot be used inside the snow groomer vehicle and is presented here only

to show the difference between an embedded platform and a desktop PC.

3.6 Error Analysis

It’s important for safety critical systems to analyze the shortcomings of the system. This

gives some insights into how to tackle failure cases and further improve the system.
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Therefore, in this section, we illustrate the false positives and false negative predictions

from our best model and analyze the reasons for the behavior.

Figure 3.11 shows some of the false positive examples from the model. One can ob-

serve in figure 3.11a and 3.11b that when there are high-frequency background features

like rocks or trees, the model sometimes predicts them as a person. From figure 3.11c

and 3.11e, we can deduce that in case of similar features to humans, for example, poles

or vehicle parts, the network also may give false positives. One must consider that there

is no color information in our images and if an object is radiating thermal radiation and

looks similar to humans, it could be detected positively. In figure 3.11g, we can see that

small humans are detected, which is wrongly classified as a false positive because it was

wrongly labeled.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.11: Examples of False Positives

Figure 3.12 shows some of the false negatives predicted by our model. Figure 3.12a

highlights an instance in which a human is leaning against a wall. Since the relative

difference in thermal radiation between the person and the wall is too little, it cannot

recognize the person. This is a drawback of using thermal imaging cameras since an

RGB image could have easily distinguishable human features if the person is wearing

colored clothes.

Figure 3.12c and 3.12e show instances where the human is occluded. Occlusion is

a well-studied problem in the literature for object detection models. For both these ex-

amples, the class activation maps (figure 3.12d and 3.12f) show that it highlights the

human regions correctly, however, since all body parts are not visible, the model predicts

a lower confidence, which falls below the threshold and results in a false negative. In the

last figure 3.12g, a false negative occurs due to a very small human. This is opposite to

the behavior seen in figure 3.11g. In either case, since the human is far away in these

images, it’s not a safety concern for the actual vehicle.

37



Chapter 3 People detection using weak supervision

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.12: Examples of False Negatives
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Chapter 4

Single Stage Instance Segmentation

using Fourier Series

This chapter deals with the task of instance segmentation using a single-stage (single-

shot) object detection framework. Single-stage methods, as described in section 2.2.1,

are simple and fast compared to their counterparts. For bounding box detections, single-

stage methods typically predict the box coordinates at each spatial location. However,

mask prediction for instance segmentation using single-stage methods is a more com-

plicated problem. We need to predict the masks at all spatial locations in the image in

parallel during a single forward pass. Therefore, mask information is normally encoded

in a shape vector. This opens new avenues of research in the type of encoding, which

could represent the masks most optimally. This chapter focuses on a Fourier encod-

ing, which is a compact representation for segmentation masks, and we call our model

FourierNet.

4.1 Introduction

With the recent emergence of deep learning, combined with readily available data and

higher computational power, the use of autonomous machines has become a realistic

option in many decision-making processes. In applications such as autonomous driving

and robot manipulation, the first and foremost task is to perceive and understand the

scene before a decision is made.

Instance segmentation is one of the techniques used for scene understanding (Janai

et al. (2017)). It categorizes each pixel/region of an image by a specific class and, at the

same time, distinguishes different instance occurrences. Among the instance segmenta-

tion methods are two-stage methods that produce a bounding box and then classify the

pixels within that box as foreground or background (He et al. (2017); Liu et al. (2018);

Huang et al. (2019); Chen et al. (2019b); Lee and Park (2019); Kuo et al. (2019)). Al-

though these are still dominant in terms of prediction accuracy, they are computationally

intensive.

There is a growing trend to use more straightforward, faster single-stage instance

segmentation methods that do not require initial bounding box proposals (Bolya et al.
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Figure 4.1: FourierNet prediction by using 10 coefficients (20 parameters) of Fourier

series. Note that 90 contour points are used to generate this mask.

(2019); Xie et al. (2020); Xu et al. (2019); Ying et al. (2019); Zhou et al. (2019a); Yang

et al. (2019)). In one of the latest approaches, ESE-Seg (Xu et al. (2019)) have encoded

the objects’ contours using function approximations such as Chebychev polynomials and

Fourier series. They trained a network to predict a shape vector (a vector of coefficients),

in which a numerical transform converts it into contour points in the polar representa-

tion. The main advantage of this method is that it requires fewer parameters to represent

the mask as opposed to the binary grid or polygon representations (Liang et al. (2019)).

However, ESE-Seg (Xu et al. (2019)) regresses the shape vector directly. We argue that

the direct regression of the shape vector does not weigh each coefficient according to its

impact on the mask and prevents the model from learning the actual data distribution.

Therefore, we propose an alternative training method in which the network outputs are

passed through a differentiable shape decoder to obtain contour points that are used to

calculate the loss. In this case, the losses of other polygon representation methods, e.g.

PolarIOUloss (Xie et al. (2020)) and Chamfer loss (Fan et al. (2017)), can be used, and

the network is trained for its main task. The gradients of these losses are back-propagated

through the decoder and the weight balancing of the different shape vector’s coefficients

is done automatically.

The contribution of this chapter is summarized as follows:

1. We show that the mask information can be encoded in the coefficients of a Fourier

series optimally. This compressed representation can be a drop-in replacement for
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other single-stage methods.

2. We propose a differentiable shape decoder for training, which allows the segmen-

tation masks to be trained directly on the shape of the object instead of regressing

the coefficients. This achieves automatic weight balancing of the Fourier coeffi-

cients.

3. Finally, we show insights into the meaning of Fourier coefficients. We illustrate

that the lower frequency components hold the overall shape information and the

higher frequencies contain the fine details (like corners) of the object.

4.2 Related work

This section contains the specific work related to instance segmentation, which is relevant

to this chapter. First, we briefly discuss the recent scientific work in two-stage instance

segmentation. In the later section, we elaborate on single-stage instance segmentation

and the related work to this chapter.

4.2.1 Two stage instance segmentation

Two-stage instance segmentation splits the task into two subtasks, object detection and

then segmentation. The most prominent instance segmentation method is Mask R-CNN

(He et al. (2017)), which is constructed on top of Faster R-CNN (Ren et al. (2015))

by adding a mask branch parallel to the bounding box and the classification branches.

further, they used RoI-Align instead of RoI-Pooling.

Following on from Mask R-CNN, PANet (Liu et al. (2018)) improved the information

flow from the backbone to the heads using bottom-up paths in the feature pyramid and

adaptive feature pooling. In Mask Scoring R-CNN (Huang et al. (2019)), the network

estimates the IoU of the predicted mask and uses it to improve the prediction scores.

HTC (Chen et al. (2019b)) introduced the cascade of masks by merging detection and

segmentation features and achieved enhanced detections. ShapeMask (Kuo et al. (2019))

introduced class-dependent shape priors and used them as preliminary estimates to ob-

tain the final detection. Instead of building Faster R-CNN, CenterMask (Lee and Park

(2019)) built its work on FCOS (Tian et al. (2019)) and applied spatial attention for mask

generation. The above methods use the binary-grid representation of masks.

In contrast, PolyTransform (Liang et al. (2019)) uses a polygon representation and

requires a mask for the first stage. The initial mask is refined by a deforming network to

obtain the final prediction. These methods accomplish state-of-the-art accuracy, but they

are generally slower than one-stage methods.
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4.2.2 One stage instance segmentation

YOLACT (Bolya et al. (2019)) generated prototype masks and simultaneously pro-

duced bounding boxes and combination coefficients. They cropped the prototype masks

with the bounding boxes and made a weighted sum of the cropped prototype masks

using the combination coefficients to construct the final mask. Likewise, Embedmask

(Ying et al. (2019)) generated pixel embeddings that differentiate each instance in the

image and simultaneously produced bounding boxes and proposal embeddings. Here,

they formed the mask by comparing the proposal embedding with all pixel embeddings

in the produced bounding box area. In addition to the previous binary-grid representation

approaches, there are a few methods that employ polygon representation.

ExtremeNet (Zhou et al. (2019a)) used keypoint detection to obtain the extreme points

of an object. Then a rough mask was created by forming an octagon from the extreme

points. Polarmask (Xie et al. (2020)) performed a dense regression of the distances from

the mask center to points on the outer contour in polar coordinates. Additionally, since

FCOS (Tian et al. (2019)) showed that the detections near object boundaries were gen-

erally inaccurate, they likewise adopted the concept of centerness, which gave greater

importance to the detections near the center and enhanced the prediction quality. ESE-

Seg (Xu et al. (2019)) trained a network to predict a shape vector that is transformed into

contour points in the polar representation. Although their mask representation requires

fewer parameters than the other representations, their training method is not optimal,

as mentioned in section 4.1. Therefore, we propose employing differentiable shape de-

coders for training, which we explain in the next section.

4.3 Our method

FourierNet is an anchor-free, fully convolutional, single-shot network, and figure 4.2

illustrates its design. Following its backbone, it has a top-down feature pyramid network

(FPN) (Lin et al. (2017a)) with lateral connections, in which we connect five heads with

different spatial resolutions. These heads predict a set of classification scores, centerness,

and Fourier coefficients at each spatial location in the feature map. The classification

branch predicts scores for each class. Centerness is a term that measures the closeness

of a feature point to the mask’s center, and we explain it in section 4.3.2. Moreover, we

describe the Fourier coefficients in the following mask representation section.

4.3.1 Mask representation

FourierNet uses polygon representation to represent masks. The network generates

these polygons by a sequence of contour points, represented by either polar or Cartesian

coordinates. The following two sections describe polar and Cartesian representations,

respectively.
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Figure 4.2: The FourierNet architecture. The network head predicts Fourier coefficients,

which are transformed to contour points using an Inverse Fast Fourier Transform (IFFT).

We zero-pad the coefficients when the number of coefficients are less than the number of

contour points. (Note: The head shown in the figure is for polar representation only)

Polar representation

In polar mask representations, for each feature point i near the contour’s center, we ex-

tend N rays to the point of intersection with the object boundary, as shown in figure 4.3.

The angle between the rays ∆θ is constant and defined by 360○/N. The length of these

rays from the center point is described by Pi = {p0,i, p1,i, ..., pN−1,i}. If there is more than

one intersection point, the point with the longest distance is selected. Furthermore, a

constant ε = 10−6 is assigned to rays that do not have intersection points, which occurs

when the feature point i is outside or on the contour’s boundary. Note that the emerged

contour would only approximate the ground truth contour even with a high number of

rays; however, the IOU values can reach up to 0.95 (Xie et al. (2020)).

To determine Pi, we apply an Inverse Fast Fourier Transform (IFFT) to the coefficients

predicted by the network (figure 4.2). The inverse discrete Fourier transform is defined

by

pn,i =
1

N

N−1

∑
k=0

xk,ie
j2πkn

N
, (4.1)

where pn,i is the nth ray in Pi and xk,i is the kth coefficient of Xi, which is the Fourier trans-

form of Pi. In cases where we predict more rays than Fourier coefficients, the network

predicts a subset of the coefficients Si ⊂ Xi and then we replace the rest of the output ten-

sor (higher frequency components) with zeros. This is done to equalize the dimensions

before and after the IFFT. Note that the IFFT is differentiable and therefore the training

is done directly on rays (Pi) and thus justifies the name differentiable shape decoder.
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Figure 4.3: On the left object, 18 rays are extended by the lengths Pi from a feature

point i (a potential center point). The contour points are the endpoints of these rays. The

ground truth center point is the mean value of the contour points. Note that this figure

is simplified for illustration purposes. The actual mask generated in this image has 90

contour points

Cartesian representation

Polar representations generate star-shaped masks, since, for each angle, there is only

one possible ray length. To represent arbitrary masks, we can use Cartesian coordinates.

For Cartesian representations, we modified the FourierNet head to predict the x and y

(Cartesian) coordinates of each contour point of the mask rather than the ray lengths

(Polar). Figure 4.4 shows the modified structure of the FourierNet head for Cartesian

representations. Since x and y are independent entities, two separate branches of Fourier

coefficients are utilized instead of a single one. An IFFT is applied to each of these

branches separately. For the Cartesian case, the pn,i in equation 4.1 refers to the distance

of the nth contour point from the ith feature point, in either x or y directions. For cases

where contour points are more than Fourier coefficients, we pad the output tensor with

zeros as in polar representation.

4.3.2 Centerness

Centerness is a term that measures the closeness of a feature point to the center of a

mask. In many grid-based detection methods (Tian et al. (2019), Zhou et al. (2019b)),

a center point is predicted for each object. However, multiple center points can predict

high confidence for the same object due to close proximity. (Tian et al. (2019)) utilizes

centerness to filter out weak detections during inference. We utilize polar centerness

in the case of polar representation and Gaussian centerness in the case of Cartesian
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Figure 4.4: The FourierNet head for Cartesian representation. We predict separate coef-

ficients for both x and y coordinates.

representation. Both are detailed in the following sections, respectively.

Polar centerness

Polar Centerness (PC) (Xie et al. (2020)) is defined for the ith feature point as

PCi =

¿
ÁÁÀmin(p0,i, p1,i, ..., pN−1,i)

max(p0,i, p1,i, ..., pN−1,i)
, (4.2)

where pn,i are the ray lengths. During inference, we multiply this value with the

classification score to keep the locations which could produce the best detection.

We argue that this metric would be low if the object’s mask shape is not circular, and

since we multiply it by the classification score, it will lower the probability of predicting

such objects. PolarMask introduced a hyperparameter called Centerness Factor (CF) to

overcome this problem, which is added to the centerness to increase its value. To the best

of our knowledge, this offset defeats the purpose of centerness, since it artificially raises

confidence and sometimes even exceeds 1. Moreover, it does not explicitly solve the

problem of low centerness of non-circular objects. Therefore, we introduce Normalized

Centerness (NC) which is defined for a feature point i by

NCi =
PCi

PCmax
, (4.3)

where PCmax is the polar centerness of the center of mass of an instance. The maximum

value of the NCi is clamped to one when the center of mass does not have the highest

polar centerness value.
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Gaussian Centerness

In the case of centerness for Cartesian representation, we can not adopt equation 4.2

directly. Accordingly, we apply a Gaussian distribution to represent the probability of a

point being at the object’s center. For the ith feature point having the location (m,n) in

the feature map, Gaussian centerness (GC) is defined as

GC = e
−α(m−µx

σx
)2

e
−α(

n−µy
σy
)2
, (4.4)

where µx and µy are the means (center points), and σx and σy are the standard devi-

ations of a mask instance in x and y directions respectively and α is a hyperparameter

used for controlling the decaying rate. Note that we multiply the two Gaussians, which

enforces a probability of 1 only if both m and n are at the object’s center. On all the

other locations, the decaying functions’ product reduces the centerness depending upon

the standard deviation in both x and y directions of the mask instance. Notice that GC

solves the problem of low centerness for non-circular objects, and therefore the center-

ness factor can be completely avoided.

4.3.3 Loss Function

The overall loss function comprises four components, which are defined as:

Ltotal = Lcls+Lbox+Lcent +Lmask. (4.5)

We use focal loss (Lin et al. (2017b)) for the classification loss Lcls and IOU loss (Yu

et al. (2016)) for the bounding box loss Lbox. Note that the bounding box branch is an op-

tional branch and therefore not explicitly shown in figure 4.2. For centerness loss Lcent ,

we employ binary cross entropy for both Polar centerness and Gaussian Centerness. For

mask loss Lmask, we utilize two different loss functions for polar and Cartesian represen-

tations. For polar representations, we adopt Polar IOU loss from (Xie et al. (2020)).

For Cartesian representations, we employ both smooth L1 loss and chamfer distance loss

(Fan et al. (2017)). In the following section, chamfer distance loss has been explained.

Chamfer distance loss

To train the (x, y) contour points, chamfer distance loss (Fan et al. (2017)) is adopted. It

is defined as

CD = ∑
a∈S1

min
b∈S2

∥D(a,b) ∥2
2 +∑

b∈S2

min
a∈S1

∥D(a,b) ∥2
2, (4.6)

where S1 and S2 are the sets of predicted contour points and ground truth contour points

respectively, a and b are elements (individual contour points (x,y)) of the sets S1 and S2

respectively and D(a,b) is the euclidean distance between any two points a and b respec-

tively. Please note that the centroid of the object is taken as a reference for the contour
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points. We normalize the chamfer distance by dividing it by the average of height and

width of the ground truth bounding box. Without the normalization, chamfer distance

becomes exceptionally large, which leads to overflows and exploding gradients. More-

over, normalization avoids the problem of manually weighing classification, centerness,

and mask losses.

Chamfer losses employ the nearest neighbor approach to pick the associations between

predicted and ground truth contour points. A naive approach would be to associate pre-

dictions and targets index-wise. Since the indices of predictions do not always start from

the same angle (or relative physical location), there is a potential for a mismatch be-

tween predictions and target associations. Due to this offset, the model might ignore the

edges and learn the average mask (i.e., an ellipse). Since chamfer loss utilizes the nearest

neighbor for associations between prediction and target, it overcomes this problem.

The nearest-neighbor approach also poses a risk that only the closest points are trained.

For example, if we take the nearest neighbors of all the predicted points only, some sig-

nificant target points are overlooked while training, and therefore complicated contours

may never be predicted. Similarly, if we take the nearest neighbors of all the target points

only, then errors do not back-propagate through all prediction points and thus may gen-

erate an uneven distribution of predicted contour points. Therefore nearest neighbors of

both predictions and targets must be considered separately, as done in chamfer distance.

4.3.4 Weakly supervised training

One of the main challenges in segmentation is the effort in labeling masks or contours.

Especially, compared to image-level or bounding box labels, segmentation labels require

multi-folds of labeling hours and computing resources. For example, labeling an object

with 60 contour points may require 30 times as much time as a bounding box label (2

points only). Therefore, the scientific community is continuously looking for ways to

either generate labels with minimal effort or train machine learning models without true

labels.

Weakly supervised methods make use of inexact information to train a model. For

instance segmentation, either image-level classification labels or bounding box labels

are employed to train models, which predict segmentation masks for each object in the

image. This processes either utilizes the information a model learns inherently for a

trivial task to generate much more complex output (Zhou et al. (2018)), or they use

readily available algorithms to generate pseudo labels from weak labels and train the

networks on these pseudo labels.

GrabCut algorithm

In our work, we use the GrabCut algorithm (Rother et al. (2004)) to generate pseudo seg-

mentation labels using the bounding box labels in the MS COCO dataset. The GrabCut

algorithm works on the idea of graph cuts. Using a Gaussian Mixture Model (GMM),
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Figure 4.5: The process of generating pseudo mask labels for training our model. It uses

GranCut (Rother et al. (2004)) algorithm, which has been briefly explained in section

4.3.4

the GrabCut creates a color distribution in the bounding box of the object. It employs a

Morkov random field with an energy function that enforces connected regions to have the

same category. Figure 4.5 illustrates the process of generating pseudo mask for training

our model.

4.4 Experiments

We conducted the experiments on the COCO 2017 benchmark (Lin et al. (2014)) di-

vided into 118K training and 5K validation data splits. We based our work on PolarMask

(Xie et al. (2020)) implementation, which uses the mmdetection framework (Chen et al.

(2019a)). Unless otherwise stated, we did all the experiments using a pre-trained ResNet-

50 (He et al. (2015)) on the ImageNet (Deng et al. (2009)). We trained the networks for

12 epochs with an initial learning rate of 0.01 and a mini-batch of 4 images. The learn-

ing rate was reduced by a factor of 10 at epochs 8 and 11. We used Stochastic gradient

descent (SGD) with momentum (0.9) and weight decay (0.0001) for optimization. We

resized the input images to 1280×768 pixels.

4.4.1 Cartesian representation vs Polar representation

Table 4.1 shows a comparison between various networks trained on cartesian represen-

tations using smooth L1 loss and chamfer distance loss. The training setup and hyper-

parameters are the same as described above. The network with smooth L1 loss performs

worst as its index-wise associations make the masks ellipse-like (as discussed in section
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Coeff.
Loss
mask

Loss
centerness mAP

8 Smooth L1 Gaussian 13.6

36 Smooth L1 Gaussian 13.5

8 Chamfer Gaussian 22.9

36 Chamfer Gaussian 22.4

36 Polar IOU Polar 28.0

Table 4.1: Comparison of mAP for the cartesian and polar representations. Clearly, the

polar representation (with Polar IOU loss) performs significantly better than the Carte-

sian representation (Chamfer or Smooth L1 loss). Among the cartesian representations,

the chamfer loss performs better than the smooth L1 loss because of the nearest neighbor

approach in contour point associations.

4.3.3). Figures 4.7a and 4.7b show that the visual difference in masks when using 8 or

36 coefficients is also insignificant.

Figure 4.6: Evolution of performance of FourierNet with changing coefficients in carte-

sian representation (Chamfer loss). The maximum performance is seen at 8 coefficients

(22.9 mAP).

The network trained with the Chamfer distance loss was first pre-trained for one epoch

on smooth L1 loss as a warm-up. This provides a good initialization since chamfer loss

greatly benefits from elliptical predictions at the start. It shows the best performance with

22.9 mAP in the Cartesian domain but still falls short of polar representation (28.0 mAP).

In all the experiments, α = 10 is used, which provides a reasonable balance between a

high probability for a point at the center of the object and low values at the mask edges.

Figure 4.6 shows the evolution of mAP with respect to the number of coefficients

of the Fourier series. It can be seen that the maximum mAP is reached when using

8 coefficients only. Figure 4.7 illustrates the masks generated by the network using
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(a) 8 coefficients (Smooth L1) (b) 36 coefficients (Smooth L1)

(c) 8 coefficients (Chamfer distance) (d) 36 coefficients (Chamfer distance)

Figure 4.7: Examples of the network using cartesian coordinates. Sub-figure 4.7a and

4.7b are trained using smooth L1 loss. Sub-figure 4.7c and 4.7d are trained using chamfer

distance loss. The quality of results from chamfer distance loss is clearly better than the

smooth L1 loss.

cartesian representation. Counter-intuitively, the masks with 8 coefficients are smoother

and have a better IOU than the masks with 36 coefficients. As seen in figure 4.7d, when

using 36 coefficients, there are undesired oscillations that make the contour worse.

One possible reason could be that the gradients are very low for the higher frequency

coefficients during training because they affect the output very little. This eventually

leads to under-trained higher frequency coefficients which show erratic results when vi-

sualized. However, this hypothesis needs further investigation, which is not part of this

work. Since polar representation showed better performance, in the rest of the work,

polar representation has been employed.

4.4.2 Ablation study

All the experiments done in this ablation study section adopt polar representations for

masks. We employ a ResNet-50 backbone for our model and use the settings described

at the start of this section 4.4.
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Figure 4.8: The relation of mAP with a varying number of contour points. The maximum

performance (28.0 mAP) is achieved with 60 points. The FourierNet in this experiment

has 36 coefficients of Fourier series and a Resnet-50 backbone.

Number of contour points

We trained multiple FourierNets having 18, 36, 60, and 90 contour points and 36 complex

coefficients (72 parameters). Figure 4.8 shows that more contour points generally lead

to a higher mAP until it saturates, and then the performance deteriorates.

The FourierNet with 90 points has a lower mAP (27.6) than FourierNet with 60 points

(28.0). A possible reason could be that the added complexity (in terms of contour points)

makes the problem harder for the optimizer to learn. Furthermore, while more con-

tour points seem more appealing for large and complicated masks, for smaller objects,

it means adding unwanted complexity, which could lower APs if not learned correctly,

leading to an overall negative effect on performance.

Number of coefficients

From the results of the previous section 4.4.2, we choose a FourierNet with 60 contour

points for this study. Figure 4.9 illustrates the progression of the accuracy of the Fourier-

Net for a varying number of parameters. We generated the curve by testing the network

multiple times. Each point in the curve refers to a test where we use a subset of the

network output tensor with the lowest frequency coefficients. The rest of the higher fre-

quency coefficients were replaced with zeros to inhibit their effects (explained in section

4.3.1).

As the number of parameters increases, the mAP sharply increases until around 18

parameters, and after 36 parameters, it saturates. We also observed that the FourierNets

with 18, 36, and 90 points showed the same trend of this curve as FourierNet with 60

points, so we did not plot them. Furthermore, We visualize in figure 4.10 the network
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Figure 4.9: The FourierNet in this experiment has a Resnet-50 backbone and 60 contour

points. The number of parameters is the complex (real+imaginary) coefficients of the

Fourier series i.e 36 coefficients = 72 parameters. The Polarmask used in this experiment

has the same backbone as well.

outputs with a different number of suppressed higher frequencies. We obtain smooth

contours if we use a low number of coefficients, and when we utilize only two coeffi-

cients, all the predictions become ellipses. For 36 coefficients (figure 4.10f), we acquire

a reasonably good prediction, with some limitations in the non-convex regions of the

mask due to polar representation.

Note that the Fourier series achieve compression, since each frequency component

individually learns to fit the contour to the ground truth mask according to its capac-

ity. Therefore, users could choose the number of frequencies that fit their use case and

achieve a compromise between speed and performance.

Coefficients regression (CR) vs. Differentiable shape decoding (DSD)

The lower frequency coefficients of a Fourier series have a higher impact on the con-

tour, which can be inferred from the experiments in section 4.4.2. However, unweighted

direct coefficient regression focuses equally on all coefficients during training, which is

not optimal for shape decoders. On the contrary, when trained on contour points, the op-

timizer can inherently learn to prioritize the lower frequency coefficients of the Fourier

series and achieve automatic weight balancing. To verify this hypothesis, we trained a

network with 18 coefficients and regressed the coefficients directly using a smooth L1

loss. It attained an mAP of 5.3 (table 4.2), which is poor compared to a similar network

trained on contour points (26 mAP from figure 4.9) and it validates our initial intuition.

Moreover, the qualitative results of CR showed out-of-size masks which is a sign of
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(a) 2 coeff. (4 parameters.) (b) 3 coeff. (6 parameters.) (c) 4 coeff. (8 parameters.)

(d) 6 coeff. (12 parameters.) (e) 12 coeff. (24 parameters.) (f) 36 coeff. (72 parameters.)

Figure 4.10: Comparison between the predicted mask of using a varying number of

Fourier coefficients using polar representation. As the number of coefficients increases,

the mask fits more closely to the boundary of the persons. Note that polar representa-

tions can only predict star-shaped masks and we can observe this limitation in the right

player’s arm.

Method mAP AP50 AP75

Coefficient Regression 5.3 14.9 3.1

Differentiable Shape Decoding 26 46.6 25.8

Table 4.2: Coefficients regression (CR) vs. Differentiable shape decoding (DSD)

errors in low-frequency coefficients.

ESE-Seg (Xu et al. (2019)) also used CR and compared various function approxima-

tors. They reported the best performance on Chebyshev polynomials and argued that

they have the best numerical distribution. However, we argue that if they had used op-

timized weights for Fourier coefficients during training, they would have reached better

performance. This was verified with our results using DSD because it does automatic

weight balancing.

Method CF mAP AP50 AP75

Polar 0 26.3 42.8 27.7

Normalized 0 27.0 47.8 26.9

Polar 0.5 27.7 46.4 28.6

Normalized 0.5 27.0 47.9 26.9

Table 4.3: Polar centerness vs. Normalized polar centerness
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Polar centerness (PC) vs. Normalized centerness (NC)

Two networks with 90 contour points and 36 coefficients were trained on Normalized

Centerness (NC) and Polar Centerness (PC). From the results in table 4.3, it can be seen

that NC is better than PC when the CF is set to zero, which means that it is generally a

better centerness metric. Normalized centerness seems to be unaffected by changing CF

and therefore is a more stable method. However, to obtain the best performance (27.7

mAP), we still need to use the CF hyperparameter (CF=0.5) along with Polar Centerness.

4.4.3 Comparison to other state-of-the-art methods

A FourierNet-640 was trained with an image resolution of 640 x 360 to compare with

a ESE-Seg-416 (Xu et al. (2019)). With a comparable backbone and the same number

Method B.Bone Rep. Param. mAP AP50 AP75 FPS GPU

Mask RCNN RX-101 BG 784 37.1 60.0 38.4 5.6 1080Ti

He et al. (2017)

PANet RX-101 BG 784 42.0 65.1 45.7 - -

Liu et al. (2018)

HTC RX-101 BG 784 41.2 63.9 44.7 2.1 TitanXp

Chen et al. (2019b)

ESE-Seg-416 DN-53 SE 20 21.6 48.7 22.4 38.5 1080Ti

Xu et al. (2019)

FourierNet-640 R-50 SE 20 24.3 42.9 24.4 26.6 2080Ti

ExtremeNet HG-104 P 8 18.9 44.5 13.7 3.1 -

Zhou et al. (2019a)

FourierNet RX-101 SE 8 23.3 46.7 21.1 6.9 2080Ti

EmbedMask R-101 BG † 37.7 59.1 40.3 13.7 V100

Ying et al. (2019)

YOLACT-700 R-101 BG † 31.2 50.6 32.8 23.4 TitanXp

Bolya et al. (2019)

PolarMask RX-101 P 36 32.9 55.4 33.8 7.1* 2080Ti

Xie et al. (2020)

FourierNet RX-101 SE 36 30.6 50.8 31.8 6.9 2080Ti

Table 4.4: Comparison with state-of-the-art for instance segmentation on COCO test-

dev. The methods above the double line are two stage methods and the methods below

are faster one stage methods. † The number of parameters is dependent on the size of the

bounding box cropping the pixel embedding or mask prototype. * speed tested on our

machines. BG: Binary Grid. SE: Shape Encoding. P: Polygon.

of parameters, our result is 2.7 mAP higher and it runs in real-time. To compare to state-
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of-the-art methods, a FourierNet with a ResNeXt101 backbone (Xie et al. (2017)), 90

contour points, and 36 coefficients was trained. The quantitative results are shown in

table 4.4 and an example of a prediction is shown in figure 4.10.

Compared to ExtremeNet (Zhou et al. (2019a)), using 8 parameters, our results are

better, especially with AP75, with an increase of 7.4. This means that our mask quality is

superior when using a few parameters. It can be seen that FourierNet is comparable to

PolarMask when using the same number of parameters, with a small loss in speed due

to the IFFT. However, the qualitative results are visually better with smoother contours.

In general, our method is comparable to polygon methods but falls short in performance

compared to binary grid methods.

4.4.4 Weakly supervised instance segmentation

As described in section 4.3.4, we used the Grabcut (Rother et al. (2004)) algorithm to

generate pseudo labels and train our network on these labels. We used a ResNet-50

backbone with 36 Fourier coefficients in our model. All other settings were the same

as the experiments above. We reached a mean average precision of 18.8 on the COCO

validation dataset. The qualitative results are shown in figure 4.11.

(a) Fully Supervised (b) Weakly Supervised

(c) Fully Supervised (d) Weakly Supervised

Figure 4.11

We can see in the figures that weakly supervised results are slightly worse than the

fully supervised results, which is expected due to noisy ground truth labels. A weakly
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supervised network does not predict high-frequency details in the masks. It must be

noted that in occluded scenarios and in cases where two objects overlap, GrabCut fails to

generate a reasonable segmentation mask. This happens because it considers all objects

inside a bounding box as foreground. Therefore, with noisy pseudo labels, such a result

is expected.

4.5 Conclusion

FourierNet is a single-stage anchor-free method for instance segmentation. It uses a

novel training technique with IFFT as a differentiable shape decoder. Moreover, since

lower frequencies impact the mask the most, we obtained a compact representation of

masks using only those low frequencies. Therefore, FourierNet outperformed all meth-

ods which use less than 20 parameters quantitatively and qualitatively. Figure 4.12 shows

an example of qualitative comparison between our method and ESE-Seg (Xu et al.

(2019)). Even compared to object detectors, FourierNet can yield better approxima-

Figure 4.12: Qualitative comparison between masks prediction. Left: FourierNet, Right:

ESE-Seg (Xu et al. (2019)).

tions of objects using slightly more parameters. Our FourierNet-640 achieves a real-time

speed of 26.6 FPS (NVIDIA RTX2080Ti GPU). We hope this method can inspire the use

of differentiable decoders in other applications. Figure 4.13 shows some examples from

FourierNet.
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Figure 4.13: Examples of qualitative results from FourierNet (ResNeXT-101 backbone)
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Chapter 5

Fourier series in coordinate-based

multi-layer perceptrons

This chapter focuses on some insights into the idea of employing the Fourier series in

coordinate-based multi-layer perceptrons (MLPs). We describe how our Fourier mapping

of the input could help coordinate-based MLPs, in learning high-frequency details in the

signal better. We show this on the task of image regression in this chapter. Note that

this chapter forms the basis for our work on instance segmentation in the next chapter.

Also, we use the term Implicit Neural representation (INR) and coordinate-based MLP

interchangeably, depending on the context of the discussion.

5.1 Introduction

Implicit neural representations (INRs) are a novel field of research in which the tradi-

tional discrete signal representation (e.g., images as discrete grids of pixels, 3D shapes

as voxel grids or meshes) are replaced with continuous functions that map the input do-

main of the signal (e.g., coordinates of a specific pixel in the image) to a representation of

color, occupancy or density at the input location. However, these functions typically are

not analytically tractable; INRs approximate those functions with fully connected neural

networks (also called multi-layer perceptrons (MLPs)).

INRs are not coupled to the spatial resolution (e.g., voxel size in a 3D scene) and theo-

retically have infinite resolution. Therefore, these representations are naturally suited to

applications with high-dimensional signals and heavy memory consumption. Also, since

they are differentiable, they are suitable for gradient-based optimization and machine

learning. In addition, the application of INRs for images (Henzler et al. (2020); Stan-

ley (2007)), volume density (Mildenhall et al. (2020)), and occupancy (Mescheder et al.

(2019)) enhanced the performance on various tasks such as shape representation (Chen

and Zhang (2019); Deng et al. (2020); Genova et al. (2019, 2020); Jiang et al. (2020);

Michalkiewicz et al. (2019); Park et al. (2019)), texture synthesis (Henzler et al. (2020);

Oechsle et al. (2019a)), and shape inference from images (Liu et al. (2020, 2019)).

However, early architectures lacked accuracy in high-frequency details. Sitzmann
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Figure 5.1: Visualization of Gauss ReLU (Tancik et al. (2020)) and our method (Fourier).

The top row is the first period and the bottom row is the second period, which shows our

method of enforcing periodicity.

et al. (2020b) proposed SIRENs, which could represent high frequencies. They argued

that sinusoidal activations work better than ReLU networks because ReLU networks are

piecewise linear, and their second derivative is zero. As a result, they are incapable of

modeling data contained in higher-order derivatives of signals. However, a concurrent

work (Mildenhall et al. (2020)) proposed positional encoding, which also enabled the

networks to learn high-frequency information. The positional encoding uses a heuristic

sinusoidal mapping to input coordinates before passing them through a ReLU network.

They did follow-up work (Tancik et al. (2020)) exploring the general Fourier mapping

and explaining why it worked using a Neural Tangent Kernel (NTK) framework (Ja-

cot et al. (2018)). They found out that the Fourier mapping transforms the NTK into a

shift-invariant kernel. And modifying the mapping parameters enables tuning the NTK’s

spectrum, therefore controlling the range of frequencies the network can learn. They

also showed that a random Fourier mapping with low standard deviation learns only low

frequencies of the signal. On the contrary, a high standard deviation lets the network
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learn high frequencies only, which leads to over-fitting. They recommended a linear

search to find the optimal value of the standard deviation for the corresponding task.

They also showed that increasing the number of parameters in the mapping improves the

performance constantly.

The recent works in implicit neural representations generate further questions, which

need deeper investigation. For example, the connection between SIRENs and Fourier

mapping has not been researched yet. Also, the effect of the number of mapping pa-

rameters and type of Fourier mapping (random) has not been fully studied. Moreover,

techniques for better generalization and avoiding over-fitting need more attention.

To investigate these questions, we explored the mathematical connection between

Fourier mappings and SIRENs and showed that a Fourier-mapped perceptron is struc-

turally like one hidden layer SIREN. However, in the SIREN case, the mapping is train-

able, and it is represented in the amplitude-phase form instead of the sine-cosine form in

the case of Fourier mappings.

Also, we looked at the functions we want to learn, and we observed that they have

a limited input domain (e.g., the height and width of an image), and their values are

defined on a finite set. Hence, we can assume that they are continuous and periodic over

their input bound, which satisfies all the requirements to represent them with a Fourier

series. Furthermore, we determined the d-dimensional Fourier series’s trigonometric

form and showed that it is precisely a single perceptron with an integer lattice mapping

applied to its inputs. The weights of that perceptron are the Fourier series coefficients.

As the Fourier series can theoretically represent any periodic signal, this perceptron can

represent any periodic signal if it has an infinite number of frequencies in its mapping.

However, in practice, the Fourier series coefficients are finite, and we can get them by

sampling the signal at the Nyquist rate (twice the bandwidth) and applying a fast Fourier

transform (FFT) to the signal. Thus, the number of Fourier coefficients is the theoretical

upper bound of the number of parameters needed in the mapping.

Moreover, we modified the coarse-to-fine (CTF) training strategy of (Lin et al. (2021)),

where we train the lower frequencies in the initial training phase and gradually add the

higher frequency components as the training progresses. As a result, we show that our

coarse-to-fine training strategy avoids the problem of over-fitting. Finally, we tested

our proposed Integer Lattice mapping in the image regression and novel view synthesis

tasks. We found out that the main contributor to the mapping performance is the number

of parameters and the standard deviation, as was shown in (Tancik et al. (2020)).

In this chapter, first, we introduce an integer Fourier mapping and prove that a percep-

tron with this mapping is equivalent to a Fourier series. We also explore the mathemati-

cal connection between Fourier mappings and SIRENs and show that a Fourier-mapped

perceptron is structurally like one hidden layer of SIREN. Also, we show that the inte-

ger mapping forces the periodicity of the network output. Furthermore, we modify the

coarse-to-fine training strategy of (Lin et al. (2021)) and show that it improves the gen-

eralization of the interpolation task. We compare the different mappings on the image

regression and novel view synthesis tasks and verify the previous findings of (Tancik
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et al. (2020)) that the main contributor to the mapping performance is the number of

elements and standard deviation.

5.2 Related work

Inspired by INRs’ recent success, by outperforming grid-, point- and mesh-based repre-

sentations (Park et al. (2019); Mescheder et al. (2019); Chen (2019)), many works based

on INRs achieved state-of-the-art results in 3D computer vision (Atzmon and Lipman

(2020); Gropp et al. (2020); Jiang et al. (2020); Peng et al. (2020); Chabra et al. (2020);

Sitzmann et al. (2020b)). Moreover, impressive results are obtained across different in-

put domains, e.g., from 2D supervision (Sitzmann et al. (2019); Niemeyer et al. (2020);

Mildenhall et al. (2020)), 3D supervision (Saito et al. (2019); Oechsle et al. (2019b)), to

dynamic scenes (Niemeyer et al. (2019)) which can be represented by space-time INR.

In early architectures, there was a lack of accuracy in the fine details of signals.

Mildenhall et al. (2020) proposed positional encodings to tackle this problem, then Tan-

cik et al. (2020) further explored positional encodings in an NTK framework, showing

that mapping input coordinates to a representation close to the actual Fourier representa-

tion before passing them to the MLP lead to a good representation of the high-frequency

details. Furthermore, they showed that random Fourier mappings achieved superior re-

sults than if one takes the simple positional encoding. Sitzmann et al. (2020b) also at-

tempted to solve the problem of getting high-frequency details. They proposed SIRENs

and demonstrated that SIRENs are suited for representing complex signals and their

derivatives. In both solutions, they used a variant of Fourier neural networks (FNN)

for the first layer of the MLP. FNN are neural networks that use either sine or cosine

activations to get their features (Liu (2013)).

The first attempt to build an FNN was by (Gallant and White (1988)). They proposed

a one-layer hidden neural network with a cosine squasher activation function and showed

if they hand-wire certain weights, it will represent a Fourier series. Silvescu (1999) pro-

posed a network that did not resemble a standard feedforward neural network. However,

they used a cosine activation function to get the features. Liu (2013) introduced the gen-

eral form for Fourier neural networks in a feedforward manner. They also proposed a

strategy to initialize the frequencies of the embedding, which helped with convergence.

Our work will show another way to initialize the embedding, which results in a neural

network that is precisely a Fourier series.

5.3 Method

This section introduces the Fourier mapping we employed in our work. The connection

between SIREN and Fourier mapping is also discussed. The training strategies are also

discussed in this section.
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5.3.1 Fourier mapping

This section explains how a perceptron with an integer lattice Fourier mapping applied to

its inputs is equivalent to a Fourier series. First, we present the Fourier-mapped percep-

tron equation and then link it to the Fourier series’s general equation. The fundamental

building block of any neural network is the perceptron, and it is defined as

y(x,W′,b) = g(W′ ⋅x+b). (5.1)

Here y ∈ Rdout is the perceptron’s output, g(⋅) is the activation function (usually non-

linear), x ∈Rdin is the input, W′ ∈Rdout×din is the weight matrix, and b ∈Rdout is the bias

vector. Now, if we let g(⋅) to be the identity function and apply a Fourier mapping γ(x)to
the input we get

y(x,W) =W ⋅γ(x)+b, (5.2)

where γ(x) is the Fourier mapping defined as

γ(x) = ( cos(2πB ⋅x)
sin(2πB ⋅x) ) . (5.3)

W ∈ Rdout×2m, B ∈ Rm×din is the Fourier mapping matrix, and m is the number of fre-

quencies. Equation 5.2 is the general equation of a Fourier-mapped perceptron, and we

will relate it to the Fourier series’s general equation.

A Fourier series is a weighted sum of sines and cosines with incrementally increasing

frequencies that can reconstruct any periodic function when its number of terms goes

to infinity. In applications that use coordinate-based MLPs, the functions we want to

learn are not periodic. However, their inputs are naturally bounded (e.g., the height and

width of an image). Accordingly, it doesn’t harm if we assume that the input is periodic

over its input’s bounds to represent it as a Fourier series. We will explain later why this

assumption has many advantages. A function f ∶ Rdin → Rdout is periodic with a period

p ∈Rdin if

f (x+n○p) = f (x) ∀n ∈Zd
, (5.4)

where ○ is the Hadamard product. As it is plausible to normalize the inputs to their

bounds, we assume that each variable’s period is 1. The Fourier series expansion of

function (5.4) with p = 1d is defined by (Osgood (2019)):

f (x) = ∑
n∈Zd

cne2πin⋅x
, (5.5)
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where cn are the Fourier series coefficients, and they are calculated by:

cn =+
[0,1]d

f (x)e−2πinxdx. (5.6)

For real-valued functions, it holds that cn = c∗-n where c∗n is the conjugate of cn. Using

Euler’s formula and mathematical induction we showed that equation (5.5) can be written

as (see section 5.6.1):

f (x) = ∑
n∈N0×Z

d−1

an cos(2πn ⋅x)+bn sin(2πn ⋅x) (5.7)

a0 = c0,

an =

⎧⎪⎪⎨⎪⎪⎩
0 # j ∈ {2, . . . ,d} ∶ n1 = ⋅ ⋅ ⋅ = n j−1 = 0'n j < 0

2Re(cn) otherwise,

bn =

⎧⎪⎪⎨⎪⎪⎩
0 # j ∈ {2, . . . ,d} ∶ n1 = ⋅ ⋅ ⋅ = n j−1 = 0'n j < 0

−2Im(cn) otherwise.

(5.8)

And if we write equation (5.7) in vector form, we get

f (x) = (aB,bB) ⋅( cos(2πB ⋅x)
sin(2πB ⋅x) ) , (5.9)

where aB = (an)n∈B, and bB = (bn)n∈B. Now, if we compare 5.2 and 5.9, we find sim-

ilarities. We see that (aB,bB) is equivalent to W, b is zero and B = N0 ×Z
d−1

, is the

concatenation of all possible permutations of n. For practicality we limit B to

B = {0, . . . ,N}×{−N, . . . ,N}d−1
8H, (5.10)

where N will be called the frequency of the mapping, H = {n ∈N0×Z
d−1∣# j ∈ {2, . . . ,d} ∶

n1 = ⋅ ⋅ ⋅ = n j−1 = 0'n j < 0}, then the perceptron represents a Fourier series. Hence, we

calculate the dimension m of all possible permutations (see section 5.6.2)

m = (N +1)(2N +1)d−1
−

d−2

∑
l=0

N(2N +1)l. (5.11)

In practice, we can find the Fourier series coefficients by sampling the function uniformly

with a frequency higher than the Nyquist frequency and applying a Fast Fourier Trans-

form (FFT) on the sampled signal. The resulting FFT coefficients are the Fourier series

coefficients multiplied by the number of sampled points. And in theory, if we initial-

ize the weights with the Fourier series coefficients, our network should give the training
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target at iteration 0.

5.3.2 Fourier mapped perceptron as a SIREN

In this section, we want to show that a Fourier-mapped perceptron is structurally like a

SIREN with one hidden layer. If we evaluate W ⋅ γ(x) in equation (5.2), using (5.3) and

combine the sine and cosine terms, we get:

y(x,W) =W ⋅ sin(2πC ⋅x+φ)+b, (5.12)

where φ ∶= (π/2, . . . ,π/2,0, . . . ,0)T ∈R2m and C ∶= (B,B)T . Here we see that C is acting

as the weight matrix applied to the input, φ is like the first bias vector, and sin(⋅) is

the activation function. Hence, the initial Fourier mapping can be represented by an

extra initial SIREN layer, with the difference that B and φ are trainable in the SIREN

case. This finding closes the bridge between Fourier frequency mappings and sinusoidal

activation functions which have recently attracted a lot of attention.

5.3.3 Coarse-to-fine optimization

Lin et al. (2021) introduced a training strategy for coarse-to-fine registration for Neural

Radiance Fields (NeRFs) (Mildenhall et al. (2020)) which they called BARF. Their idea

is to mask out the positional encoding’s high-frequency activations at the start of training

and gradually allow them during training. Their work showed how to use this strategy

on positional encodings only to improve camera registration. In our work, we will show

how to run this strategy on an arbitrary Fourier mapping and show that it improves the

generalization of the interpolation task. We weigh the frequencies of γ as follows:

γα(x) ∶= ( wα
B

wα
B

)○γ(x) (5.13)

where wα
B

is the element wise application of the function wα(z) on the vector of norms

of B on the input dimension:

wα
B ∶=wα

⎛⎜⎝
∣∣B1∣∣2
⋮∣∣Bm∣∣2
⎞⎟⎠ . (5.14)

where wα(z) is defined as:

wα(z) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if α − z < 0
1−cos((α−z)π)

2 if 0 ≤ α − z ≤ 1

1 if α − z > 1

(5.15)
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Here, α ∈ [0,max((∣∣Bi∣∣din
)i∈{1,...,m})] is a parameter which is linearly increased during

training. This strategy forces the network to train the low frequencies at the start of train-

ing, ensuring that the network will produce smooth outputs. Later, when high-frequency

activations are allowed, the low-frequency components are trained, and the network can

focus on the left details. This strategy should reduce the effect of overfitting, which was

introduced by Tancik et al. (2020) when using mappings with large standard deviations.

5.3.4 Frequency selection

The standard way of using equation (6.2) is by defining a value N and taking the whole

set BN . High-dimensional tasks lead to high memory consumption, and it is not clear

whether this subset of Zd brings the best performance. We, therefore, propose a way

to select a more appropriate subset through data pruning. A pruning pr(N,M) is done

as follows: Assume we have N,M ∈ N with M >> N and ∣BN ∣ = n, ∣BM ∣ = m. We train

a perceptron with an integer mapping given by BM. After training we define D such

that D contains only those elements of BM where the respective weights are greater than

a margin, that is chosen to yield ∣D∣ = n. While BN and D now have the same size,

we believe that D will yield better performance because it contains the most relevant

frequencies of the signal we want to reconstruct.

5.3.5 Fourier Mapping in MLPs

Although we showed in section 5.3.1 that we can represent any bounded input function

with only one Fourier-mapped perceptron, in practice, these networks can become very

wide to give high performance. As a result, the number of calculations will increase. To

compromise between performance and speed, one can add depth and reduce the width of

the network.

First, it is natural that using MLPs rather than perceptrons increases performance.

However, it remains unclear why our proposed integer mapping should perform better

than competing mappings for multilayer networks.

One could argue that if a mapping gives the perceptron a high representation power, it

will also provide a high representation power to the MLP and vice versa. First, however,

we should verify this claim with experiments. In addition, we remind the reader that a

periodic function has integer frequencies. And because our assumption that the signal we

want to reconstruct is periodic, it will have only integer frequencies. Also, the activation

functions we are using only introduce integer frequencies when applied to a periodic

function, as shown for the 1D case in the supplementary material. With this, we reduce

the search space for frequencies from R to Z, which could make the optimization easier

as the search space is more compact and approachable.
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(a) CTF=F, WI=F (b) CTF=F, WI=T

(c) CTF=T, WI=F (d) CTF=T, WI=T (e) Ground Truth

Figure 5.2: A visualization of the outputs of Fourier mapped perceptrons of N = 128.

CTF stands for coarse-to-fine training and WI stands for weight initialization. T/F stands

for True/False, respectively.

5.4 Experiments

5.4.1 Weight initialization and coarse-to-fine training

In this section, we want to confirm our mathematical claims through experiments. First,

we will show that the derivation of the integer mapping indeed represents the Fourier

series. Secondly, we want to check whether coarse-to-fine training helps with general-

ization.

We conducted our experiments on the image regression task. This task aims to make

a neural network memorize an image by predicting the color at each pixel location. We

use ten images with a resolution of 512×512, which can be found in the supplementary

material, and report the mean peak signal-to-noise ratio (PSNR). We divide the image

into train and test sets, where we use every second pixel for training and take the com-

plete image for testing. We utilize 3 Fourier-mapped perceptrons with N = 128 (Nyquist

frequency), one for each image channel. We normalize the input (x) to have an interval

between [0,1] in both width (x) and height (y) dimensions.
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In this experiment, we made an ablation: With and without weight initialization using

the normalized FFT coefficients of the image’s training pixels, with and without the

coarse-to-fine training scheme explained in section 5.3.3. For coarse-to-fine training, α

was linearly increased from 0 to its maximum value at 75% of training iterations. In

training, we only make an update step after we accumulate the gradients of the whole

image. We did not study learning schedules in this work, and the reader is encouraged

to try different schedules. Figure 5.2 shows a visualization of one of the images, and

figure 5.3 shows the training progress, where the solid line is the mean PSNR and the

shaded area shows the standard deviation. As can be deducted from figure 5.3, one can

0 100 200 300 400 500
Training Iteration

10

15

20

25

PS
NR

Figure 5.3: The training progress of Fourier mapped perceptrons with N = 128. The

left and right figures report the train and test PSNR, respectively. Weight initialization

without CTF yields a PSNR of 160 which one can consider as the ground truth proving

that the perceptron is a Fourier series. Note: The y-axis limits are different in both plots.

see that the train PSNR starts at an optimum at the start of training when we use weight

initialization (WI), and we don’t use coarse-to-fine training (CTF). This fact underlines

our claim that a perceptron with an integer lattice mapping is indeed a Fourier series.

Note that in case both WI and CTF are used, the train PSNR is not optimal at the start

because the CTF masks out high-frequency activations.

We can also see from figure 5.3 that whenever we use coarse-to-fine training, it always

shows a higher test PSNR, which confirms that coarse-to-fine training helps with gen-

eralization. Lastly, when we did not employ both CTF and WI, the perceptron overfits

to the training pixels, and this can be seen quantitatively with a very low test PSNR (red

line in figure 5.3) and qualitatively with grid-like artifacts (in figure 5.2a)).

5.4.2 Perceptron experiments

In this experiment, we want to compare the representation power of the different map-

pings in the single perceptron case. We conducted our experiments in the same setting
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as in section 5.4.1, where we used coarse-to-fine training and did not use weight initial-

ization.

In the integer mapping, we increased N’s value from 4 until half the training image

dimension (Nyquist frequency) and calculated all possible permutations BN , as discussed

in section 5.3.1. For the Gaussian mapping, we sample m = ∣BN ∣ parameters from a

Gaussian distribution with a standard deviation of 10 (which was the best value for this

task in our experiments). Also, we test a one-layer SIREN with one hidden layer having

the same size m. Finally, we adopt the positional encoding (PE) scheme from (Mildenhall

et al. (2020)) and limit its values to N. Figure 5.4 shows our experiments’ results on the

train and test pixels, respectively. Figure 5.5 shows the networks’ outputs trained on one

of the images.
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Figure 5.4: Perceptron experiments with different values for the mapping frequency N.

We report the train PSNR on the left and the test PSNR on the right. For high values of

N our integer mapping outperforms all competing mappings.

At low N values, we see that the Gaussian mapped perceptrons do not work because

the number of sampled frequencies is low, so there is a low chance that samples will

be near the image’s critical frequencies. On the other hand, the integer-mapped percep-

trons have slightly lower performance because they can only learn low frequencies. The

SIREN performs relatively well in this case, and we think this is because SIRENs nat-

urally inherit a learnable Fourier mapping that is not restricted to the initial sampling,

as described in section 5.3.2. PE can only produce horizontal and vertical lines because

it has diagonal frequencies (only one non-zero frequency is allowed), and this effect is

persistent at any value of N.

As N increases, SIREN, Gauss, and integer mapping performance increase giving sim-

ilar performance around N =16. For high values of N, we see that in figure 5.5, the integer

lattice mapping of the Fourier coefficients outperforms the competing mappings, clearly

displaying more details in the reconstruction. On the other hand, the PSNR of the SIREN

and the Gaussian mapped perceptrons saturates. We think this is because both mappings

rely on sampling the frequencies. Although we can get many of the critical frequencies
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Figure 5.5: The visualization of the Fourier mapped perceptrons and the one layer SIREN

with N = 128.

of the image with sampling, it is improbable to get all of them simultaneously. Even the

trainability of the SIREN mapping did not help in this case.

5.4.3 MLP experiments

Our theory for integer mapping assumes an underlying function that is periodic. How-

ever, it is not clear that we will end up with a periodic function if we go the other way,

using an integer mapping. In this experiment, we want to check if applying an integer

mapping forces periodicity. Secondly, we want to validate our claim (in section 5.3.5)

that if a mapping gives the perceptron a high representation power, it will also give a

high representation power to the MLP and vice versa. We compared ReLU networks

with integer, Gaussian, PE, and pruned integer mapping (section 5.3.4). We also com-

pared SIRENS with no mapping (extra layer), integer, or pruned mapping. We made a

grid search of the parameters N=[8, 16, 32], depth=[0, 2, 4, 6] (depth=0 represents a

perceptron), and fixed the width to 32. For the pruned mapping, we used a pr(N,128).
And for the Gaussian mapping, we had two settings. The first one had a standard de-

viation of 10 (σ10), which had the best performance in the perceptron experiments. In

the second one, we set the standard deviation the same as the pruned integer mapping’s

standard deviation (σpr) to check its effect. Tables 5.1 and 5.2 show the mean train and
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Activ. Map.
N=8 m=113 N=16 m=481

d=0 d=2 d=4 d=6 d=0 d=2 d=4 d=6

Sine

No 16.65 22.15 23.26 24.07 17.07 22.09 23.84 19.76

Int. 15.68 22.31 22.41 20.94 17.33 27.66 27.06 27.33

Pr. 15.28 21.03 22.40 23.00 16.76 28.17 27.68 24.66

Relu

P.E. 11.78 16.61 17.37 17.77 11.78 16.87 17.79 17.95

Gs. σ10 11.93 21.90 21.68 21.69 17.01 24.53 24.26 25.13

Gs. σpr 14.06 20.23 20.78 20.88 12.69 26.02 26.40 26.72

Int. 15.68 20.51 20.65 20.62 17.33 24.42 24.09 24.49

Pr. 15.28 20.35 20.92 20.96 16.76 25.87 26.23 26.33

Activ. Map.
N=32 m=1985

d=0 d=2 d=4 d=6

Sine

No 17.22 14.90 14.67 13.63

Int. 19.84 33.78 26.98 23.60

Pr. 18.48 37.34 30.41 19.74

Relu

P.E. 11.78 17.05 18.15 18.15

Gs. σ10 18.48 26.10 26.30 27.48

Gs. σpr 13.01 37.69 37.90 37.74

Int. 19.84 31.57 32.14 32.79

Pr. 18.48 37.70 36.81 37.48

Table 5.1: The mean train PSNR results of network type comparison experiment with

varying network depth (d), number of frequencies (N). We use the following abbrevia-

tions: Activ. = Activation function, Map. = Mapping type, Int. = Integer, Pr.= Pruned

Integer, P.E. = Positional Encoding, Gs. = Gaussian. Here, m is the mapping size and σ

is the standard deviation.

test PSNRs, respectively.

Figure 5.1 shows a visualization of the network’s outputs at N = 128 and width = 32

for the first period and next period in the height and width directions ( f ([x+1,y+1])).
We see that the integer mapping forces the network’s underlying function to be periodic

unlike ReLU network with Gauss mapping, which proves our first hypothesis.

From the table 5.1 we see that if a mapping at d = 0 gives the highest PSNR, this does

not mean that it will give the highest PSNR for d > 0 and vice versa. One clear example

at N = 32 is the Gauss σpr, where it has a PSNR of 13.01 dB at d = 0, which is lower than

integer mapping (19.84 dB), but has the highest PSNR at d = [4,6]. This result disproves

our initial assumption that if a mapping gives the perceptron a high representation power,

it will also give a high representation power to the MLP. We see also that the pruned

integer mapping has comparable results with the Gauss σpr, and this shows that the main

contributor to the performance is the mappings’ standard deviation.

From the tables, we can also observe some trends. First, networks with sine activations
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Activ. Map.
N=8 m=113 N=16 m=481

d=0 d=2 d=4 d=6 d=0 d=2 d=4 d=6

Sine

No 16.65 21.63 21.85 21.99 17.06 21.28 22.03 18.50

Int. 15.68 21.75 21.53 20.06 17.31 23.48 22.67 22.28

Pr. 15.28 20.49 21.22 21.45 16.75 22.00 21.39 22.17

Relu

P.E. 11.78 16.60 17.33 17.70 11.78 16.85 17.73 17.87

Gs. σ10 11.93 20.67 21.06 20.90 17.00 22.96 22.78 23.04

Gs. σpr 14.06 19.89 20.22 20.21 12.69 22.46 22.48 22.16

Int. 15.68 20.27 20.35 20.23 17.31 22.93 22.65 22.50

Pr. 15.28 19.98 20.33 20.21 16.75 22.31 22.26 22.09

Activ. Map.
N=32 m=1985

d=0 d=2 d=4 d=6

Sine

No 17.22 13.57 13.29 12.37

Int. 19.70 16.85 17.89 16.36

Pr. 18.39 20.49 15.15 13.13

Relu

P.E. 11.79 17.02 18.06 18.02

Gs. σ10 18.45 23.66 23.61 23.73

Gs. σpr 12.99 23.12 23.48 23.33

Int. 19.70 24.36 24.02 23.73

Pr. 18.39 23.24 23.18 23.30

Table 5.2: The mean test PSNR results of network type comparison experiment. For

abbreviations see table 5.1.

and large mappings collapse during performance worse than Relu networks. Second, the

integer mapping usually gives the best test PSNR, demonstrating its effectiveness in the

MLP case. Third, the pruned integer mapping shows consistently better train PSNR than

the normal integer mapping at d > 0. We believe this is because pruned mapping has

a higher standard deviation. Finally, the PE is worse in every case because we cannot

easily control the standard deviation, and it has very few parameters.

5.4.4 2D to 3D experiments

This section wants to see if our findings in the image regression task transfer to the novel

view synthesis (NVS) task. In NVS, we are given a set of 2D images of a scene, and we

try to find its 3D representation. With this representation, one can render images from

new viewpoints. In contrast to the 2D experiments, the inputs are (x,y,z) coordinates

that are mapped to a 4-dimensional output, the RGB values, and a volume density. For

this experiment, a simplified version of the official NeRF (Mildenhall et al. (2020)) is

used, where the view dependency and hierarchical sampling are removed. Here, we

experiment with the input mappings used in section 5.4.3. Unless otherwise stated, we
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adopt the settings from the image regression task. We set the network width to be 64.

As the mapping size increases exponentially, we do our experiments with lower fre-

quencies than in the 2D case. Specifically, we used integer mapping on four frequencies.

The frequencies of our mapping were limited to the maximum network size which we

could fit on a NVIDIA GTX-2080Ti. The pruning is given by pr(4,8). We conduct our

experiments on the bulldozer scene, which is commonly used for NeRF experiments. For

training, we used a batch size of 128, 50.000 epochs and a learning rate of 5×10−4.

As seen in Table 5.3, in the perceptron case (d = 0), SIREN provides the best perfor-

mance, which aligns with our image regression results at low values of N. We observe

that the pruned mapping increases the performance compared to normal mapping for

both Relu and sinusoidal activation. This increase in performance is because pruned

mapping has a higher standard deviation than normal mapping. Gauss gives comparable

results to pruned integer mapping because they have the same standard deviation. These

findings align with our conclusions from image regression experiments. However, due

to memory limitations, we could not test a perceptron with frequencies higher than 8,

which was superior in image regression.

Act. Map.
N = 4 N=8

d=0 d=2 d=4 d=6 d=0

Sine

No 20.37 23.08 23.55 23.35 OM

Int. 18.42 22.22 22.95 22.97 19.31

Pr. 19.15 23.12 23.58 23.36 -

Relu

P.E. 16.30 21.48 22.64 23.51 16.40

Gs. 18.93 22.81 23.64 23.82 19.29

Int. 18.42 21.81 22.68 23.28 19.31

Pr. 19.15 22.78 23.61 23.89 -

Table 5.3: Validation PSNR scores of NERF experiments using a mapping of frequency

4. OM stands for out of memory. For other abbreviations see table 5.1.

5.5 Conclusion

In this work, we identified a relationship between the Fourier mapping and the general

d-dimensional Fourier series, which led to the integer lattice mapping. We also showed

that this mapping forces the periodicity of the neural network underlying function. From

experiments, we showed that one perceptron with frequencies equal to the Nyquist rate

of the signal is enough to reconstruct it. Furthermore, we showed that the coarse-to-

fine training strategy improves the generalization of the interpolation task. Lastly, we

confirmed the previous findings that the main contributor to the mapping performance is

its size and the standard deviation of its elements.
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5.6 Proofs

5.6.1 Equation (5.7)

We will prove the validity of equation (5.7) in the general case of dimension d ∈N. We

use the concept of mathematical induction for this task. Therefore we show, that the

equation is true for d = 1 and additionally prove, that if the equation holds for dimension

d−1 it is also valid for dimension d.

d = 1:

f (x) = ∑
n∈Z1

cne2πin⋅x

=∑
n∈N

cne2πin⋅x
+∑

n∈N

c−ne−2πin⋅x
+c0

c∗n=c−n
==∑

n∈N

(Re(cn)+ iIm(cn))(cos(2πnx)+ isin(2πnx))
+∑

n∈N

(Re(cn)− iIm(cn))(cos(2πnx)− isin(2πnx))
+c0

=∑
n∈N

2Re(cn)cos(2πnx)−2Im(cn)sin(2πnx)
+c0

= ∑
n∈N0

an cos(2πnx)+bn sin(2πnx),

(5.16)

where

a0 = c0, an = 2Re(cn), bn = −2Im(cn). (5.17)

Assumption of the induction:

We will assume that the equation holds for d−1, where d ≥ 2.

s

Induction step: d−1→ d:

As the Fourier series of any periodic and continuous function is absolutely convergent,
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we are allowed to rearrange the sum in (∗) and receive

= ∑
n=(n1,...,nd)∈Zd

cne2πin⋅x

(∗)
= ∑

n1∈N

∑
(n2,...,nd)∈Zd−1

cne2πin⋅x

+ ∑
n1∈N

∑
(n2,...,nd)∈Zd−1

c−ne−2πin⋅x

+

0

∑
n1=0

∑
(n2,...,nd)∈Zd−1

cne2πin⋅x

c∗n=c−n
== ∑

n∈N×Zd−1

2Re(cn)cos(2πn ⋅x)−2Im(cn)sin(2πn ⋅x)
+ ∑

n∈{0}×Zd−1

cne2πin⋅x

Ind. asm.
== ∑

n∈N×Zd−1

2Re(cn)cos(2πn ⋅x)−2Im(cn)sin(2πn ⋅x)
+ ∑
n∈{0}×N0×Z

d−2

a′n cos(2πn ⋅x)+b′n sin(2πn ⋅x),

(5.18)

where

a′0 = c0,

a′n =

⎧⎪⎪⎨⎪⎪⎩
0 # j ∈ {3, . . . ,d} ∶ n2 = ⋅ ⋅ ⋅ = n j−1 = 0'n j < 0

2Re(cn) otherwise,

b′n =

⎧⎪⎪⎨⎪⎪⎩
0 # j ∈ {3, . . . ,d} ∶ n2 = ⋅ ⋅ ⋅ = n j−1 = 0'n j < 0

−2Im(cn) otherwise.

(5.19)

Combining these two summands we get

∑
n∈N0×Z

d−1

an cos(2πn ⋅x)+bn sin(2πn ⋅x),
(5.20)
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where

a0 = c0,

an =

⎧⎪⎪⎨⎪⎪⎩
0 # j ∈ {2, . . . ,d} ∶ n1 = ⋅ ⋅ ⋅ = n j−1 = 0'n j < 0

2Re(cn) otherwise,

bn =

⎧⎪⎪⎨⎪⎪⎩
0 # j ∈ {2, . . . ,d} ∶ n1 = ⋅ ⋅ ⋅ = n j−1 = 0'n j < 0

−2Im(cn) otherwise.

(5.21)

5.6.2 Equation (5.11)

In the following we use ∣ ⋅ ∣ to talk about the number of elements in a set. Furthermore, we

use the notation ⟦nè ∶= {0, . . . ,n} for n ∈N and ⟦m, lè ∶= {m, . . . , l} for m, l ∈ Z and m < l.

We have

B = {0, . . . ,N}×{−N, . . . ,N}d−1
8{n ∈N0×Z

d−1
∶ (5.22)

# j ∈ {2, . . . ,d} ∶ n1 = ⋅ ⋅ ⋅ = n j−1 = 0'n j < 0}. (5.23)

It is immediately clear, that

∣{0, . . . ,N}×{−N, . . . ,N}d−1∣ = (N +1)(2N +1)d−1
, (5.24)

therefore the only thing we need to show is, that

∣{n ∈ ⟦Nè×⟦−N,Nèd−1
∶ # j ∈ {2, . . . ,d} ∶ (5.25)

n1 = ⋅ ⋅ ⋅ = n j−1 = 0'n j < 0}∣ (5.26)

=

d−2

∑
l=0

N(2N +1)l. (5.27)

We will do this proof with mathematical induction. We start with d = 2:

∣{n ∈ ⟦Nè×⟦−N,Nè ∶ # j ∈ {2} ∶ n1 = 0'n j < 0}∣ (5.28)

= ∣{n ∈ {0}×⟦−N,−1è}∣ (5.29)

=N (5.30)

Assumption of the induction:

We will assume that the equation holds for some d, where d ≥ 2.

s
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Induction step: d→ d+1:

∣{n ∈ ⟦Nè×⟦−N,Nèd ∶ # j ∈ ⟦2,d+1è ∶ (5.31)

=n1 = ⋅ ⋅ ⋅ = n j−1 = 0'n j < 0}∣ (5.32)

= ∣{n ∈ ⟦Nè×⟦−N,Nèd ∶ # j ∈ ⟦3,d+1è ∶ (5.33)

=n1 = ⋅ ⋅ ⋅ = n j−1 = 0'n j < 0}∣ + (5.34)

=∣{n ∈ ⟦Nè×⟦−N,Nèd ∶ # j ∈ {2} ∶ (5.35)

=n1 = ⋅ ⋅ ⋅ = n j−1 = 0'n j < 0}∣ (5.36)

= ∣{n ∈ ⟦Nè×⟦−N,Nèd ∶ # j ∈ ⟦3,d+1è ∶ (5.37)

=n1 = ⋅ ⋅ ⋅ = n j−1 = 0'n j < 0}∣ + (5.38)

=∣{n ∈ {0}×⟦−N,−1è×⟦−N,Nèd−1}∣ (5.39)

= ∣{n ∈ ⟦Nè×⟦−N,Nèd−1
∶ # j ∈ ⟦2,dè ∶ (5.40)

=n1 = ⋅ ⋅ ⋅ = n j−1 = 0'n j < 0}∣ + (5.41)

=N(2N +1)d−1 (5.42)

Ind. asm.
= =

d−2

∑
l=0

N(2N +1)l +N(2N +1)d−1
=

d−1

∑
l=0

N(2N +1)l. (5.43)
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Chapter 6

Two-stage instance segmentation using

Fourier series

In this chapter, we focus on using a Fourier representation of instance segmentation

masks on a two-stage object detection framework. Two-stage models have the advantage

of accurately detecting objects in the image and then predicting their attributes, for ex-

ample class, bounding box, and segmentation masks. We employed Mask R-CNN (He

et al. (2017)) as our baseline two-stage model and developed a mask head, which we call

FourierMask.

6.1 Introduction

In the past decade, we have witnessed a shift from classical approaches toward deep

learning methods for a variety of real-world tasks. Due to an ample amount of real and

synthetic datasets and high computation power, it has been possible to reliably use these

’black box’ models on highly complex and critical use cases. In the field of autonomous

driving, perceiving and understanding the environment is crucial. Instance segmentation

is one of those tasks which allows autonomous systems to semantically separate different

regions in their percepts (images) and at the same time separate objects from each other.

In recent years, the majority of the methods have employed CNNs for the task of

instance segmentation. There are methods that generate instance segmentation masks

by classifying each pixel of a region of interest as either foreground or background e.g

Mask R-CNN (He et al. (2017)). These methods generally show the best performance but

suffer from high computation needs and slow speed. There are methods that predict the

contour points around the boundary of the object (Yang et al. (2019)) (Xie et al. (2020)).

Although faster, these methods fail to match the performance of pixel-wise classification

methods. Alternatively, there are methods that try to encode the mask contours in a

compressed representation (Xu et al. (2019)) (Riaz et al. (2021)).

These mask representations are compact and meaningful but lack the superior capa-

bilities of pixel-wise methods. Our approach employs a pixel-wise mask representation

and additionally we generate the mask using a compact Fourier representation. In the

case of segmentation masks, the Fourier series’ low-frequency components hold the gen-
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Chapter 6 Two-stage instance segmentation using Fourier series

(a) Mask R-CNN (b) PointRend (c) FourierMask

Figure 6.1: Comparison between Mask R-CNN (He et al. (2017)), PointRend (Kirillov

et al. (2020a)) and FourierMask.

eral shape and high-frequency components hold the edges of the mask. Therefore, our

representation is meaningful and can be compressed according to the use case.

FourierMask is an implicit neural representation. For the image regression task, im-

plicit representations learn to predict the RGB values of a particular image given a pixel

coordinate. Tancik et al. (2020) showed that using a Fourier Mapping of coordinates

instead of actual coordinates locations as inputs, allows the implicit networks to learn

high-frequency details in images and 3D scenes. Our work draws inspiration from this

work and applies their findings to the task of generating masks for instance segmentation.

These representations are inherently trained on a single image and have not yet been

adopted to a general task of instance segmentation on natural images. In our work, we

employ the implicit representations by applying a Fourier mapping γ(x) to the input

coordinates of the implicit network. Essentially, FourierMask predicts the weights W,

which are the coefficients of each term in the mapping γ(x). Since W is adapted to a

specific ROI, FourierMask learns to weigh the effect of each term in the Fourier series

for that particular object. The mapped features are passed through an implicit neural

network. The combination of Fourier mapping and the implicit neural representation lets

the model learn high-frequency details and produce crisp masks.

Implicit representations have the advantage of learning and reconstructing fine details,

which traditional representations cannot do as effectively in such compact models. As

implicit functions are continuous in the domain of input coordinates, we can sub-sample

the pixel coordinates to generate higher-resolution masks during inference. Our contri-

butions are as follows:

1. We developed FourierMask, which can replace any mask predictor that uses a re-

gion of interest (ROI) to predict a binary mask. It is fully differentiable and end-

to-end trainable.

2. We show that implicit representations can be applied to the task of instance seg-

mentation. We achieve this by learning the coefficients of the Fourier mapping of

a particular object.
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3. As implicit functions are continuous in the domain of input coordinates, we show

that we can sub-sample the pixel coordinates to generate higher-resolution masks

during inference. These higher-resolution masks are smoother and improve the

performance on MS COCO.

4. We verify and illustrate that the rendering strategy from PointRend (Kirillov et al.

(2020a)) brings significant qualitative gains for FourierMask. Our renderer MLP

FourierRend significantly improves the mask boundary of FourierMask.

6.2 Related work

In two-stage instance segmentation, the network first detects (proposes) the objects and

then predicts a segmentation mask from the detected region. The baseline method for

many two-stage methods is Mask R-CNN (He et al. (2017)). Mask R-CNN added a

mask branch to Faster R-CNN (Ren et al. (2015)), which generated a binary mask that

separated the foreground and background pixels in a region of interest. Mask Scoring

R-CNN (Huang et al. (2019)) had a network block to learn the quality of the predicted

instance masks and regressed the mask IoU. ShapeMask (Kuo et al. (2019)) estimated

the shape from bounding box detections using shape priors and refined it into a mask

by learning instance embeddings. CenterMask (Lee and Park (2020)) added a spatial

attention-guided mask on top of FCOS (Tian et al. (2019)) object detector, which helped

to focus on important pixels and diminished noise. PointRend (Kirillov et al. (2020a))

tackled instance segmentation as a rendering problem. By sampling unsure points from

the feature map and its fine-grained features from higher-resolution feature maps, it was

able to predict really crisp object boundaries using a fully connected MLP. Rather than

employing binary grid representation of masks, PolyTransform (Liang et al. (2020)) used

a polygon representation. These methods accomplish state-of-the-art accuracy, but they

are generally slower than one-stage methods.

One stage instance segmentation methods predict the instance masks in a single shot,

without using any proposed regions/bounding boxes as an intermediate step. YOLACT

(Bolya et al. (2019)) linearly combined prototype masks and mask coefficients for each

instance, to predict masks at real-time speeds. Likewise, Embedmask (Ying et al. (2019))

employed embedding modules for pixels and proposals. ExtremeNet (Zhou et al. (2019a))

predicted the contour (octagon) around an object using keypoints of the object. Similarly,

Polarmask (Xie et al. (2020)) used the polar representation to predict a contour from

a center point (centerness from FCOS (Tian et al. (2019))). Dense RepPoints (Yang

et al. (2019)) used a large set of points to represent the boundary of objects. FourierNet

(Riaz et al. (2021)) employed inverse fast Fourier transform (IFFT) to generate a contour

around an object represented by polar coordinates. The network learned the coefficients

of the Fourier series to predict those contours.

Implicit representations learn to encode a signal as a continuous function. Mescheder
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Figure 6.2: FourierMask head architecture for a ROI Align size of 14x14. The network

predicts Fourier coefficients W for each location in the feature map.

et al. (2019) proposed occupancy networks, which implicitly represented the 3D sur-

face as the continuous decision boundary of a deep neural network classifier. Milden-

hall et al. (2020) used implicit neural networks to learn 3D scenes and synthesize novel

views. Tancik et al. (2020) showed that mapping input coordinates using a Fourier fea-

ture mapping, allows MLPs to learn high-frequency functions in low-dimensional do-

mains. Sirens (Sitzmann et al. (2020a)) showed that using periodic activation functions

(such as sine) in implicit representations, lets the MLPs learn the information of natural

signals and their derivatives better than when using other activation functions such as

ReLU.

6.3 Method

6.3.1 FourierMask head architecture

This section explains the network architecture of FourierMask. We employ Mask R-CNN

(He et al. (2017)) as our baseline model. We use a ResNet (He et al. (2016b)) backbone

pre-trained on ImageNet dataset (Deng et al. (2009)), with a feature pyramid network

(FPN) (Lin et al. (2017a)) architecture. Following from Mask R-CNN, we use a small

region proposal network (RPN), which generates k proposal candidates from all feature

levels from FPN. To generate fixed-size feature maps from these proposal candidates, we

use a ROI Align (He et al. (2017)) operation. This produces a (k,d,m,m) sized feature

map for the mask head, where m is the fixed spatial size after the ROI Align operation

and d is the number of channels.

We apply four convolutions consecutively on these ROIs, each with a kernel size 3×3

and a stride of 1. Then we apply a deconvolution layer with 2c number of filters, which

generates a spatial volume of size 2c×2m×2m. We call this feature volume W, which

holds 2c Fourier coefficients for each spatial location. The structure of the head is shown

in figure 6.2.
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6.3.2 Fourier Mapping

In this section, we explain how we achieve the Fourier mapping from the coefficients W,

which is the core contribution of this paper. The Fourier mapping is given as

γ(x) = [cos(2πx ⋅B),sin(2πx ⋅B)]. (6.1)

Here x ∈Rp×2 are the pixel coordinates (i, j) normalized to a value in range [0,1] and p

are the total number of pixels in the image. Since sine and cosine have a period of 2π , by

normalizing the pixel coordinate x to a range [0,1], we ensure one complete image lies in

the period of 2π . Although images are not periodic signals, since they are bounded by an

image resolution, we can safely apply our method to predict 2D binary masks. B ∈ Z2×c

is the integer lattice matrix that holds the possible combinations of harmonic frequency

integers of Fourier series for both dimensions in the image. B contains the elements of

the set S, defined by

S = {0, . . . , f}×{− f , . . . , f}8{0}×{− f , . . . ,−1}, (6.2)

where f is the total number of frequencies. This way of defining B is motivated by the

2D Fourier representation. If we do not limit B by the total number of frequencies f ,

we would obtain the original ’sine plus cosine’ form of the Fourier series. This property

is shown in the next section (6.3.3). For the case of images (2D input), the possible

permutations c can be calculated by:

c = ( f +1)(2 f +1)− f (6.3)

For example, for images with f = 1, B is defined as:

B = [0 0 1 1 −1

0 1 0 1 1
] (6.4)

Fourier Features are generated as follows:

FF(x, W) = γ(x)○W, (6.5)

where ○ is the element-wise product, W ∈ Rp×2c is the weight matrix predicted by the

FourierMask. Note that we flatten the spatial dimension of the prediction beforehand

(p = 2m×2m). Let ff i be the ith column of FF; then the binary mask y is defined as

y(x,W) = φ( 2c

∑
i=1

ff i). (6.6)

Here φ is the sigmoid activation function, which we use to bind the output between 0

and 1. Note that y(x,W) can be interpreted as an implicit representation with a single
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perceptron because it is a linear combination of Fourier features followed by a nonlinear

activation function. This representation can be seen in figure 6.3a.

(a) Fourier perceptron (b) MLP with sine activation functions and FF input.

Figure 6.3

6.3.3 Proof of Fourier Mapping

The 2D Fourier series for a function with period (1,1) is:

f (x) = ∑
n∈Z2

cne2πin⋅x
,

here cn are the Fourier series coefficients, given by

cn =+
[0,1]2

f (x)e−2πinxdx.

In our case we are searching for the true underlying function, that predicts the binary

mask of an object in the image. As we normalized the input domain, we only defined

the function values on a finite subset of [0,1]2. Therefore, we can and we will assume

that the function is continuous and periodic over its input domain limits, resulting in a

function with period (1,1). As described above, we know that there exists a Fourier
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representation of this function. We will show that the following equation holds:

f (x) = ∑
n∈N0×Z

an cos(2πn ⋅x)+bn sin(2πn ⋅x). (6.7)

For the proof we will use Euler’s formula and the fact, that for real-valued functions,

cn = c-n where cn is the conjugate of cn. We are allowed to reorder the sum, therefore we

get:

∑
n∈Z2

cne2πin⋅x

= ∑
n1∈N

∑
n2∈Z

cne2πin⋅x
+ ∑

n1∈N

∑
n2∈Z

c−ne−2πin⋅x

+

0

∑
n1=0

∑
n2∈Z

cne2πin⋅x

cn=c−n
== ∑

n∈N×Z

2Re(cn)cos(2πn ⋅x)−2Im(cn)sin(2πn ⋅x)
+ ∑

n∈{0}×Z

cne2πin⋅x

= ∑
n∈N×Z

2Re(cn)cos(2πn ⋅x)−2Im(cn)sin(2πn ⋅x)
+ ∑

n∈{0}×N

2Re(cn)cos(2πn ⋅x)−2Im(cn)sin(2πn ⋅x)
+ ∑

n∈{0}×{0}

c0e2πin⋅x

= ∑
n∈N0×Z

an cos(2πn ⋅x)+bn sin(2πn ⋅x),
where

a0 = c0,

an =

⎧⎪⎪⎨⎪⎪⎩
0 if n1 = 0'n2 < 0

2Re(cn) otherwise,

bn =

⎧⎪⎪⎨⎪⎪⎩
0 if n1 = 0'n2 < 0

−2Im(cn) otherwise.
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For practicality we limit the sum by some upper value f , in the following way:

S = {0, . . . , f}×{− f , . . . , f}8{0}×{− f , . . . ,−1},
where B is the matrix with the elements of the set S. With this, we can rewrite equation

(6.7) to

f (x) = [cos(2πx ⋅B),sin(2πx ⋅B)](aB

bB
) ,

where aB = (an)n∈B and bB = (bn)n∈B. If we further define W ∶= (aB

bB
)

T

, then we can

rewrite the equation to

f (x) = ∑
y∈γ(x)○W

y.

In other words: We approximate the function by summing up the FF(x,W) in equation

(6.5) in the dimension of coefficients c.

This proof was done for a single input x, obviously, this generalizes to multiple input

data.

6.3.4 Fourier Features based MLP

As shown by (Sitzmann et al. (2020a); Tancik et al. (2020)), implicit representations can

learn to generate shapes, images, etc. from input coordinates very effectively. Following

the work from (Tancik et al. (2020)), we saw that Fourier mapping of input coordinates

lets the MLP learn higher frequencies and consequently generate images with finer de-

tail compared to MLPs without Fourier mapping. Furthermore, (Sitzmann et al. (2020a))

showed that using periodic activation functions works better compared to ReLU in im-

plicit neural networks. We employ an MLP with sine activation functions, in which

Fourier features (FF) are the input and mask y′ is the output. We have 3 hidden layers

(Siren layers), each with 256 neurons. The MLP has a single output neuron, on which

we apply a sigmoid function to bind it between 0 and 1 (see figure 6.3b for illustration

of architecture).

The Fourier features (FF) are generated by the equation (6.5) and they are parameter-

ized by coefficients W learned by the network and therefore adapted for a specific input

ROI. Although coordinate-based MLPs encode the information of one particular image

or shape, by parameterizing them with learned Fourier coefficients W of each object, we

can generalize them to generate a binary mask of any object in general.
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Figure 6.4: Difference between point head from PointRend and FourierRend.

6.3.5 MLP as a renderer - FourierRend

Apart from an Implicit MLP which predicts all pixels of the image, we also employed a

renderer MLP (FourierRend) which specialized only on the uncertain regions of the mask

predicted by equation (6.6). Most of the wrong (or uncertain) predictions fall near the

boundary of objects, which hinders the capability of models to generate crisp masks. By

focusing on the contour of objects, one could generate boundary-aligned masks, which

has already been pointed out by PointRend (Kirillov et al. (2020a)). Moreover, such a

rendering strategy saves precious computation and memory resources during inference.

We adopted the rendering strategy (sub-division inference) from PointRend and made

the following modification in the PointHead (figure 6.4). Rather than sampling coarse

mask features in the mask head, we sample the Fourier features (FF) from equation (6.5)

at uncertain mask prediction coordinates (the locations where the predictions are near

0.5). We concatenate these Fourier features and fine-grained features (from the ’p2’ level

FPN feature map). We replace the mask predictions from equation (6.6) (coarse predic-

tions), with the fine-detailed predictions from FourierRend. Consequently, we replace

uncertain predictions at the boundary with more accurate predictions of the renderer,

resulting in crisp and boundary-aligned masks.

6.3.6 Training and loss function

We concatenate the output y from equation (6.6) and y′ from the MLP and train both

masks in parallel. By training the output y, we learn the coefficients W of a Fourier

series in their true sense. We need these coefficients because we assume that the input

for the MLP is Fourier features. We use IoU loss for training the binary masks defined

as:

IoU loss =
3N

i=0 min(ypi
,yti)

3N
j=0 max(yp j

,yt j
) (6.8)

ypi
is the predicted value of the pixel i, yti is the ground truth value of the pixel i and N is

the total number of pixels in the predicted mask.
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6.4 Experiments

For all our experiments we employ a Resnet 50 backbone with a feature pyramid network

pre-trained on ImageNet (Deng et al. (2009)) unless otherwise stated. We use the Mask

R-CNN default settings from detectron2 (Wu et al. (2019)). We train on the MS COCO

(Lin et al. (2014)) training set and show the results on its validation set. We predict

class agnostic masks, i.e. rather than predicting a mask for each class in MS COCO,

we predict only one mask per ROI. For the baseline, we trained a Mask R-CNN and

PointRend (Kirillov et al. (2020a)) with class agnostic masks.

6.4.1 Spectrum Analysis MS COCO

To validate that the Fourier Mapping (equation (6.6)) works for instance mask predic-

tion, we performed a spectrum analysis on the MS COCO training dataset. Along with

verifying our method, this analysis gave us insight into an optimal number of frequencies

for the dataset. We performed this experiment by applying a fast Fourier transform on

Figure 6.5: Spectrum test on COCO dataset.

all the target object masks in the COCO training dataset. This Fourier transform gave

us the coefficients of a Fourier series, which hold the same meaning as the coefficients

prediction W of FourierMask.

Firstly, we sampled only the lower frequency coefficients of the Fourier series and

reconstructed the object’s mask by applying equation (6.6). We did this for all the ob-

jects’ masks in the COCO training set and evaluated the IoU loss of the reconstruction

compared to the target. Then we incrementally added higher frequency coefficients and

repeated the above-mentioned procedure until we reached the maximum number of fre-

quencies.
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(a) Ground Truth (b) 2 frequencies (c) 3 frequencies

(d) 4 frequencies (e) 8 frequencies (f) 25 frequencies

Figure 6.6: The ground truth vs its reconstructions at various frequencies.

Figure 6.5 shows the mean IoU loss at various frequencies. It can be seen that the loss

decreases exponentially. We choose the maximum frequency as 12 since it has a low

enough reconstruction loss and fits comfortably in our GPU memory. Figure 6.6 illus-

trates a visual comparison between the ground truth and reconstructions using varying

numbers of frequencies.

Figure 6.7 shows the magnitude of the coefficients depicted as a heatmap. The seg-

mentation mask (the top image in figure 6.7) is from a diagonally placed thin object, for

example, a spoon on a table. The axis of the heatmap plot in the lower image represents

the frequencies in the width and height direction of the image (Note that we do not show

the negative frequencies here because of space constraints).

It can be seen that some of the diagonal frequencies have a higher magnitude (yellow

or dark blue), while many of the frequencies have zero magnitudes (green). Such plots

could be useful for those datasets which have a clear bias in their distribution towards

certain shapes. Near-zero magnitude frequencies could be pruned, which could make

models resource efficient and potentially faster. However, in this work, we conclude our

investigation at this point.

6.4.2 Number of frequencies

To validate our experiment from the previous section, we trained a FourierMask with

a similar configuration. Rather than predicting a set of coefficients for each pixel, we

modified the architecture to predict a single vector for the whole image (see figure 6.8).

We applied strided (stride=2) 3×3 convolutions 2 times (on the ROI) to reduce the fea-

ture size by 1/4th and then used a fully connected layer to predict the coefficients. The
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Figure 6.7

Figure 6.8: Modified FourierMask architecture with spatial size reduced to 1.

network architecture is shown in figure 6.8.

We applied the equation (6.5) and (6.6) for generating the mask. We copied the pre-

dicted Fourier coefficients p times to match the dimensions for matrix multiplication in

equation (6.5). We trained the network with 12 frequencies and an output resolution of

56×56 using IoU loss. In this experiment, we did not add an MLP branch and trained

only the equation (6.6).

We evaluated the mAP precision of the network on the COCO validation dataset when

using a subset of Fourier component frequencies. The network was trained on 12 fre-

quencies, but during inference, we incrementally added the higher frequency compo-

nents starting from the first component. Due to memory limitations, we could not train

our network with more than 12 frequencies. Figure 6.9 shows the result of this test. The

mAP shows a similar trend as seen in figure 6.5 and therefore validates the spectrum

analysis and the choice of 12 maximum frequencies. Figure 6.10 shows an example of

how the masks change when different frequencies are used.
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Figure 6.9: The mAP when using a

subset of trained frequencies.

(a) 1 (b) 4 (c) 12

Figure 6.10: Mask predictions us-

ing various frequencies

Table 6.1: Comparison of various FourierMask architectures with Mask R-CNN.

Model Backbone mAP

Mask R-CNN ResNet-50 34.86

FM ResNet-50 34.89

FM + MLP ResNet-50 34.97

FM + MLP ResNeXt-101 39.09

6.4.3 Fourier Features based MLP

To validate that the Fourier Feature-based MLP improves the performance of Fourier-

Mask, we trained 2 networks with the architecture shown in figure 6.2. In this archi-

tecture, the network predicts separate Fourier coefficients for each spatial location. The

first network was trained on the masks obtained using y in equation (6.6) and output y′

of MLP (FM + MLP). The second network was trained only using equation (6.6) (FM).

Both networks used 12 Fourier frequencies and had an output resolution of 28×28 pixels.

We used class agnostic masks and therefore predicted only one class for each region of

interest, rather than a mask for each class in the COCO dataset. We had two hidden layers

(both with sine activations and 256 neurons) and a single output neuron with sigmoid

activation. For the first network (FM + MLP), we took the mean of the masks predicted

by y (equation (6.6)) and an output y′ of MLP during inference.

The results are shown in the table 6.1. As can be seen in the table, the network with an

MLP shows the best performance among the models with the ResNet-50 backbone. We

also trained the same network with a larger ResNeXt-101 (Xie et al. (2017)) backbone.

The improvement of more than 4 mAP over the Resnet-50 model shows that our model

scales well to bigger backbones.
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(a) Step = 1 (b) Step = 1/2 (c) Step = 1/4 (d) Step = 1/8

Figure 6.11: Subsampling the pixels smoothes out the boundaries of the mask.

6.4.4 Higher resolution using pixel sub-sampling

One of the advantages of our method is that it can predict masks at sub-pixel resolution

because implicit representations are continuous in the input domain. We analyzed this by

evaluating both the trained networks in section 6.4.3 on the MS COCO validation set on

various pixel steps. For the input x in the equation (6.1), rather than using integer values

of pixels (pixel step of 1), we used a pixel step of 1/2s−1, where s ∈ Z+ is the scaling

factor. This effectively scaled both the height and width of the input x by a factor of s.

To match the size of input pixels x, we upsampled the coefficients W in equation (6.5) in

the spatial dimension using bilinear interpolation, by a scaling factor 2s−1.

Table 6.2 shows the evaluation using the two networks explained in section 6.4.3. We

can observe that using a lower pixel step improves the mAP.

Table 6.2: The effect of sub-sampling the pixels during inference. The speed is tested on

NVIDIA GTX 2080Ti GPU.

Model Pixel Step Resolution mAP Speed (ms)

Mask R-CNN 1 28×28 34.86 48.7

FM 1 28×28 34.89 50.3

FM 1/2 56×56 35.13 59.1

FM 1/4 112×112 35.18 68.3

FM + MLP 1 28×28 34.97 52.1

FM + MLP 1/2 56×56 35.18 67.0

Figure 6.11 shows how the mask boundary smoothes out when sub-sampling the pix-

els. Note that we trained the network on 28×28 output resolution, but we can generate

higher resolution output during inference, which is a considerable advantage over other

methods. (See the ablation study for analysis with a varying number of frequencies at

various pixel steps.)
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6.4.5 Higher resolution using FourierRend

To generate higher resolution masks, we used FourierRend (section 6.3.5) along with the

subdivision strategy from PointRend (Kirillov et al. (2020a)). Instead of using the coarse

predictions of PointRend, we replaced them with the predictions from equation (6.6).

This resulted in masks that were crisper and boundary aligned. For training FourierRend,

we employ the default settings of the point selection strategy along with the point loss

from PointRend. The results are shown in the table 6.3.

Here, we also evaluate the mask quality using the Boundary IOU (Cheng et al. (2021))

metric (mAPbound), which penalizes the boundary quality more than overall correct pix-

els. Compared to Mask R-CNN, we see a decent improvement of more than 0.7 mAPmask

and 1.6 mAPbound with comparable speeds. We can clearly see visual improvements es-

pecially in boundary quality (see figure 6.1). Compared to PointRend, we observe that

the masks are more complete (see figure 6.1) with a reasonably lower inference time.

Table 6.3: The effect of subdivision inference.

Model Sub. steps Resolution mAPmask mAPbound Speed (ms)

Mask R-CNN 0 28×28 34.86 21.2 48.7

FourierRend 0 28×28 35.01 21.0 48.7

FourierRend 1 56×56 35.63 22.8 52.4

FourierRend 2 112×112 35.64 22.8 55.7

FourierRend 3 224×224 35.64 22.9 59.4

PointRend 5 224×224 36.12 23.5 81.6

6.5 Ablation studies

6.5.1 Binary cross entropy vs IoU loss

We trained the network shown in figure 6.8 using binary cross entropy loss rather than

IoU loss. We reached a mean average precision of 32.1 which was clearly lower than the

IoU loss. Therefore, we used IoU loss for the rest of our experiments.

6.5.2 ReLU vs Sinusoidal activations

We needed to investigate if sinusoidal activations in MLP indeed perform better than

MLP with ReLU activations. Therefore, we trained a network with the same settings and

architecture as in the section 6.4.3, but replaced sine activations with ReLU. Table 6.4

clearly shows that ReLU activation showed poor performance compared to sine.
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Table 6.4: Comparison between Sine and ReLU.

Model Backbone mAP

FM + MLP (Sine) ResNet-50 34.97

FM + MLP (ReLU) ResNet-50 34.41

6.5.3 Sub-sampling and frequency analysis

Similar to the section 6.4.2 in the paper, we wanted to test the performance of our net-

works when using only a subset of frequencies. Previously, we performed the experiment

on the network shown in figure 6.8, which has one set of coefficients for all pixel loca-

tions. For the network in figure 6.2 (with a separate set of coefficients for each pixel

location), we performed the same experiment. Additionally, we repeated the experiment

with various pixel steps. Figure 6.12 shows the comparison of these networks. We can

Figure 6.12: The mAP on the COCO validation dataset when using a subset of trained

frequencies using different pixel steps.

see that the networks with a smaller pixel step always show better performance. More-

over, we observe that till 2-3 frequencies, performance improves for all the variants, and

afterward, the performance saturates and slightly decreases. The saturation could be at-

tributed to the fact that we are predicting a set of coefficients for each pixel location

and higher frequency coefficients are not needed in this case (may also add noise to the

output in some simple masks).
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Figure 6.13: Left image FourierRend, Right image Mask R-CNN

6.6 Conclusion

In this chapter, we showed how implicit representations combined with the Fourier series

can be applied to the task of instance segmentation to generate high-quality masks. We

illustrated that the masks generated using our Fourier mapping are compact and mean-

ingful. The lower Fourier frequencies hold the shape and higher frequencies hold the

sharp edges. Furthermore, by sub-sampling the pixel coordinates in our implicit MLP,

we can generate higher resolution masks during inference, which are visually smoother

and improve the mAP over our baseline Mask R-CNN with similar settings and model ca-

pacity. We also show that our renderer MLP FourierRend improves the boundary quality

of FourierMask significantly and consequently the quantitative performance is improved.

Figure 6.13 shows a qualitative comparison between FourierRend and Mask R-CNN.
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Conclusion

This work focused on various representations which play important roles in the quality

of object detection and instance segmentation. Particularly, we investigated how Fourier

representations could help in improving the efficiency of models and at the same time

provide a deeper understanding of deep learning frameworks employed in segmentation

tasks.

In chapter 3, we showed that weakly supervised models could be used for bounding

box detection in thermal camera images. Since labeling is a major bottleneck in training

machine learning models, weak supervision using only image-level labels provided a

more effective way to train our models. Also, we illustrated that the Class activation

maps (CAMs) representation provides a reasonable estimation for localizing humans

in thermal camera images. We also observed some limitations in the case of occluded

persons because CAMs represent all objects of the same class as a single contour.

In chapter 4, we used a Fourier series representation of segmentation masks in a single-

stage object detector framework. We showed that the mask information could be encoded

in Fourier coefficients efficiently and our FourierNet could thus be a replacement for

other single-stage segmentation heads. Our differentiable shape decoder allows the seg-

mentation masks to be trained directly on the shape of the object and achieve automatic

weight balancing of the Fourier coefficients. We illustrated that the low-frequency com-

ponents of the Fourier Series contain the overall shape information of the object and

higher frequencies hold the edges and corners. Therefore, our representation could be

adapted to the use case, where a smaller model with only low-frequency components

could be used for tasks with low requirements (e.g localizing) and larger models could

be employed for generating crisp masks. One of the limitations of the polar representa-

tion that we experienced was its inability to represent non-star-shaped objects. This was

tackled in our work later.

In chapter 5, we show the connection of the Fourier series to implicit neural repre-

sentations. We introduced an integer Fourier mapping and proved that a perceptron with

this mapping is equivalent to a Fourier series. We showed that a Fourier-mapped per-

ceptron is structurally like a SIREN with one hidden layer. Furthermore, we showed

that the integer mapping forces periodicity of the network output. We also proved that

the main contributor to the mapping performance are the number of elements and the
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standard deviation of the mapping frequencies. This chapter forms the basis of using

implicit neural networks for image-related tasks and thus makes a reasonable argument

to employ implicit representations for instance segmentation.

In chapter 6, we developed a mask head FourierMask for two-stage object detectors.

FourierMask predicts the coefficients of a Fourier series, which are then provided to an

implicit neural representation. We showed that implicit representations could be em-

ployed for the task of instance segmentation. We showed that we can sub-sample the

pixel coordinates to generate higher resolution masks during inference. We verified and

illustrated that the rendering strategy from PointRend Kirillov et al. (2020a) brings sig-

nificant qualitative gains for FourierMask. Our renderer MLP FourierRend improves the

mask boundary of FourierMask significantly.

This work provided some insights and investigated different representations for object

detection and instance segmentation. We hope that the experiments and findings prove

fruitful for further research in the related fields.
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Abbreviations

3D 3 Dimensional

AP Average Precision

ANN Artificial Neural Network

CAM Class Activation Maps

CF Centerness Factor

CNN Convolutional Neural Networks

COCO Common Objects in COntext

CR Coefficient Regression

CTF Coarse-to-fine training

DFT Discrete Fourier Transform

DSD differentiable shape decoder

FCOS Fully Convolutional One-Stage object detector

FFT Fast Fourier Transform

FC Fully connected

FF Fourier Features

FM Fourier Mapping

FN False Negative

FP False Positive

FPN Feature Pyramid Network

FPS Frames per second

GAP Global Average Pooling

GC Gaussian Centerness

GPU Graphics processing unit

HTC Hybrid Task Cascade

IDFT Inverse Discrete Fourier Transform

IFFT Inverse Fast Fourier Transform

ILSVRC ImageNet Large Scale Visual Recognition Challenge

INR Implicit neural representation

IoU Intersection-over-Union

mAP mean Average Precision

MLP Multi-Layer Perceptron

NC Normalized Centerness

NTK Neural Tangent Kernel

NVS Novel View Synthesis
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Abbreviations

PC Polar Centerness

PE Positional Encoding

PSNR Peak signal-to-noise ratio

ReLU Rectified Linear Unit

RGB Red Green Blue

RoI Region-of-Interest

RPN Region Proposal Network

SIREN SInusoidal REpresentation Networks

SGD Stochastic Gradient Descent

TP True Positive

WI Weight Initialization

YOLO You only look once
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