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2 VICTORIA SCHLEIS

Abstract. In this thesis we investigate problems in linear and enumerative tropical geome-
try.

In the realm of linear tropical geometry, we introduce two notions of linear maps, and
compare them to two preexisting notions of linear maps in valuated matroid theory. We
further establish and prove many new properties of and connections between all four notions.
We show that the category of valuated matroids with affine morphisms of valuated matroids
has similar properties to the category of matroids with strong maps.

We use the uncovered relations to establish a new research program in tropical geometry,
tropical quiver theory. This research program aims to bridge the gap between representa-
tion theory and linear tropical geometry by connecting the two areas of research through
the study of matroidal quiver representations and their parameter spaces. We establish two
tropical analogues of quiver representations and quiver Grassmannians — matroidal quiver
representations and valuated matroidal quiver representations, as well as tropicalized quiver
Grassmannians and quiver Dressians. We show their correspondence to classical quiver rep-
resentations and quiver Grassmannians. We then study when the two tropical analogues of
quiver Grassmannians coincide. We apply the new theory explicitly to study linear degener-
ations of tropical flag varieties, which aids in the pursuit of computing tropical flag varieties.
Finally, we start on the quest of finding a polyhedral analogue of this theory, and give a
conjecture of the structure of polytopes associated to matroidal quiver representations.

In the realm of enumerative tropical geometry, we tackle a curve counting problem on ruled
surfaces. We expand the existing theory by developing tools that allow us to count curves
in non-orientable surfaces. For two of these surfaces, we establish a tropical curve count and
prove its correspondence to the algebraic-geometric Gromov-Witten invariant. Further, we
prove regularity results: we show that the functions returning the Gromov-Witten invariants
depending on the tangency conditions are quasi-polynomial, and that the generating series
in the vertical part of the bidegree is quasi-modular.
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Deutsche Zusammenfassung. In dieser Dissertation beschäftigen wir uns mit verschiede-
nen Problemen in der linearen und enumerativen tropischen Geometrie.

In der linearen tropischen Geometrie betrachten wir zuerst linearen Abbildungen. Wir
führen zwei neue Alternativen für lineare Abbildungen ein und vergleichen diese mit zwei
bekannten Definitionen. Wir folgern neue Eigenschaften aller vier alternativen Definitionen.
Insbesondere zeigen wir, dass die Kategorie der bewerteten Matroide mit affinen Morphismen
bewerteter Matroide sehr ähnlich zur Kategorie der Matroide mit starken Abbildungen ist.

Anschließend verwenden wir die neuen Definitionen und Eigenschaften um ein neues
Forschungsprogramm aufzubauen, die tropische Köchertheorie. Das Ziel dieses Programms
ist es, Ergebnisse aus der Darstellungstheorie und der lineare tropischen Geometrie durch
die Forschung an tropischen Köcherdarstellungen und tropischen Köchergrassmannschen zu
vereinen, um neue Einsichten in beiden Forschungsgebieten zu erhalten. Wir etablieren je-
weils zwei analoge tropische Objekte für Köcherdarstellungen und Köchergrassmannsche —
matroidale und bewertete matroidale Köcherdarstellungen, sowie tropikalisierte Köchergrass-
mannsche und Köcherdresssche, und untersuchen die Korrespondenz verschiedener Charak-
terisierungen. Wir vergleichen die Konzepte und bestimmen, wann sich die tropikalisierte
Köchergrassmannsche und die Köcherdresssche unterscheiden. Wir verwenden unsere Re-
sultate zur Konstruktion und Analyse von linear degenerierten tropischen Fahnenvarietäten.
Weiterhin beginnen wir mit der Einführung einer analogen polyedrischen Theorie.

In der enumerativen tropischen Geometrie untersuchen wir ein Zählproblem von Kur-
ven auf Regelflächen mithilfe von tropischer Geometrie. Wir konstruieren neue kombina-
torische Werkzeuge, die es uns erlauben die existierende Theorie zu erweitern um Kur-
ven auf nichtorientierbaren Flächen zu zählen. Wir wenden unsere neuen Methoden auf
zwei solcher Flächen an und beweisen einen Korrespondenzsatz, der besagt dass die tropis-
che Zählung mit der algebraisch-geometrischen Zählung übereinstimmt. Weiterhin zeigen
wir Regularitätsaussagen: die Funktion, die Tangentenbedingungen ihre korrespondierende
Gromov-Witten-Invariante zuweist, ist quasipolynomiell, und die Erzeugendenfunktion im
der vertikalen Komponente des Bigrades ist quasimodular.
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13. Tropical Möbius strips 143
13.1. Tropical structures on Möbius strips 144
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1. Introduction

1.1. Tropical geometry.
Tropical geometry is a flavor of combinatorial algebraic geometry. At its core, it is a field

that studies objects and properties in algebraic geometry using combinatorics, mainly using
methods from polyhedral geometry, matroid theory and graph theory. The translation be-
tween an algebraic object and a combinatorial one happens via tropicalization. This process
assigns to an algebraic variety a polyhedral complex which carries many properties of the
variety.

The draw behind the approach is that it is often significantly easier to understand the
tropicalization of a variety than it is to understand the algebraic variety itself. Naturally,
there is an information loss when passing to the tropicalization of a variety, but often, the
tropical data turns out to be enough to solve problems previously unsolvable in algebraic
geometry.

There are multiple different approaches to study tropical geometry. Originally, tropical-
izations arise when performing logarithmic degeneration on an algebraic variety. Applying
the logarithm to the absolute value of points in the variety, we obtain amoebas [66, 104, 105],
which already have many of the features of tropical varieties, though they are not yet com-
binatorial. Their limit obtained by varying the base of the logarithm is the tropical variety.

The more common approach to modern tropical geometry is to instead consider it as
algebraic geometry over the tropical semifield T = R ∪ {∞}, where we replace addition
by taking the minimum and multiplication by standard addition. The operations on this
field mimic the behavior of exponents under applying the logarithm and hence get preserved
under logarithmic degeneration. This allows for a more axiomatic approach.

Sometimes, for more sophisticated algebraic spaces, tropicalization is not defined. How-
ever, it is often possible to instead find a tropical analogue which mimics enough properties
of a tropicalization so that tropical methods can be adapted to it.

Historically, tropical geometry has been particularly useful in enumerative geometry.
Through Mikhalkin’s correspondence theorem [106] (and variations of it), many enumerative
questions in algebraic geometry can be solved by just counting tropical curves satisfying the
same properties with appropriate multiplicities. We elaborate more on this in Section 1.4
and in Part 3.

On the other hand, sometimes tropical geometry allows us to understand combinatorial
objects better by understanding the algebraic varieties they model. A particularly interesting
example of this is linear tropical geometry. Instead of studying the tropicalization of the
Grassmannian, which parametrizes tropicalizations of linear subspaces, we can choose a
different tropical analogue. The Dressian, arising as the tropical prevariety of the Plücker
equations, parametrizes valuated matroids. Further, valuated matroids can be interpreted as
polyhedral complexes, called tropical linear spaces. These are not necessarily tropicalizations
of linear spaces, but carry many similar properties.

In this thesis, we establish results in both of these areas. We introduce different notions
of linear maps between tropical linear spaces and study their properties (see Part 1). After-
wards, we introduce tropical prevarieties that serve as parameter spaces for arrangements of
tropical linear spaces that can be described by linear maps (see Part 2). Finally, we extend
tropical enumerative methods to allow for the counting of curves in non-orientable surfaces
(see Part 3).
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1.2. Maps of matroids. Matroids are foundational objects in combinatorics, generalizing
the concept of independence in various different contexts, such as linear algebra, lattice
theory and graph theory. Further, matroids have analogues in polyhedral geometry.

These combinatorial objects have a rich history, ranging from Whitney’s original definition
[140] in the 1930s, via Tutte’s work on chromatic polynomials [121] and relations to graph
theory [134] in the fifties and sixties to today.

Matroid theory is a vibrant subfield of combinatorics as of today. Recently, it has gained
prominence through the proof of Rota’s conjecture in matroid theory via algebraic geometry
in the work of Adiprasito-Katz-Huh [3, 4], a contribution for which June Huh was awarded
his recent Fields medal.

The applications of matroids are numerous and span many different areas of science and
mathematics. For instance, matroids can be used in economics to model logistics processes
and optimize them through Greedy algorithms, which terminate optimally on matroids. Fur-
ther, matroids can be used in particle physics. Matroids whose strata in the Grassmannian
intersect the totally nonnegative Grassmannian nontrivially, can be used to describe the
combinatorics of soliton solutions to special wave equations [93]. Subclasses of matroids and
otherwise enriched analogues can be used to model many further processes.

One of these enrichments, which we will focus on in this thesis, is that of a valuation
function on matroids. These combinatorial objects coincide with tropical linear spaces in
tropical geometry. They are foundational objects which are of intrinsic importance for the
area of tropical geometry [131, 132]. Here, they appear as the building blocks for tropical
manifolds and tropical ideals [100], and parametrize hyperplane arrangements. Further, they
have applications in computational biology as the parameter spaces of phylogenetic trees,
[50, 101], and in mathematical physics, describing different combinatorial types of scattering
amplitudes [9, 10].

While linear maps between linear spaces are covered in first-year linear algebra classes
and are subsequently of great importance to many areas of mathematics, their matroidal
counterparts are significantly harder to study. There are different notions of linear maps
between matroids, bimatroids, strong maps, and weak maps, mainly going back to work of
Kung [95, 96, 97] in the seventies and eighties. However, they have not nearly been as well-
studied as their linear algebra counterparts. Nevertheless, there exist some works on their
structure, especially focused on the structure of strong maps [79]. In particular, all of Kung’s
constructions have advantages and drawbacks, as none of them capture all the properties
linear maps in linear algebra satisfy.

In this thesis, we focus on an extension of Kung’s theory into linear tropical geometry.
We study four different notions of maps between tropical linear spaces, two of which we also
introduce. Further, we study the relations these maps between tropical linear spaces induce
on their associated valuated matroids. In particular, we study

◦ morphisms of valuated matroids (Section 4.1),
◦ affine morphisms of valuated matroids (Section 4.2),
◦ naive tropical matrix multiplication (Section 5), and
◦ valuated bimatroids (Section 6).

Morphisms of valuated matroids and their affine extensions are the most faithful adap-
tation of Kung’s strong maps of matroids [96], whereas valuated bimatroids are a valuated
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version of Kung’s bimatroids [95]. Naive tropical matrix multiplication is inspired by the
linear algebra interpretation of linear maps as matrices.

This thesis shows major new properties for all discussed concepts, and establishes new
connections between them. The particular contributions to each of the different notions are
listed below.

(Affine) morphisms of valuated matroids. While Brandt-Eur-Zhang [30] mention the
possibility of defining morphisms of valuated matroids in a similar fashion to our definition
(see Definition 4.3), we were the first to prove that this construction is well-defined (see
Proposition 4.1).

We observe that morphisms of valuated matroids can not describe all possible linear maps,
as they cannot describe translations of tropical linear spaces. We enrich the definition to
that of affine morphisms of valuated matroids (see Definition 4.7). We prove that this notion
is well-defined and that it is compatible with strong maps of the underlying matroids: Any
(affine) morphism of valuated matroids induces a strong map of the underlying matroids (see
Lemma 4.4 and 4.10).

Further, we show that (affine) morphisms of valuated matroids are “as good as” their
unvaluated counterparts — the category of valuated matroids with morphisms given by
(affine) morphisms of valuated matroids has similar properties to the category of matroids
with morphisms given by strong maps, as studied by Heunen-Patta [79]:

Theorem A. The category VMatra of valuated matroids with affine morphisms of valuated
matroids has similar properties to the category Matro of matroids with strong maps. These
are the following:

◦ The category VMatra has coproducts (see Proposition 4.13);
◦ The category VMatra does not have products (see Proposition 4.14);
◦ Direct sum and deletion of valuated matroids are functorial operations in VMatra
(see Proposition 4.17);

◦ Taking the dual of a valuated matroid is not a functorial operation in VMatra (see
Proposition 4.18); and

◦ The category VMatra has a zero object (see Proposition 4.19).

Naive tropical matrix multiplication is the most encompassing of all the notions of maps
between linear spaces. However, the naive product of a tropical linear space with a tropical
matrix is not necessarily a tropical linear space anymore. Thus, this operation is not well-
defined on the level of valuated matroids. Nevertheless, the resulting sets have some structure
which can help in understanding matrix multiplication as a tropical linear map. For instance,
we show that they are tropically convex sets (see Proposition 5.3). Attempts to fix the
resulting structure have recently been made by Mundinger [109], using work on modifications
of tropical linear spaces by Shaw [129]. In our discussion, naive tropical matrix multiplication
mainly comes in as a reference point for comparison of other notions of morphisms. In
particular, we establish a connection to (affine) maps of valuated matroids, by proving the
following theorem:

Theorem B (Proposition 5.18). Let µ be a valuated matroid on [m] and f a map of sets
into [m]. The induced matroid f−1(µ) of µ under f can be expressed via tropical matrix
multiplication:

trop
(
f−1(µ)

)
= val(Af )⊙ trop(µ).
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This is an extension of my joint work with Giulia Iezzi [82], where we prove the same
result for the case m = n, i.e., for square matrices.

Valuated bimatroids. Finally, the idea behind bimatroids [95] is to use the interpretation
of linear maps of linear spaces as linear spaces themselves. Bimatroids are matroids on a
larger ground set. Ordinary matroids only take into account the independence relations be-
tween columns of a matrix. Instead, bimatroids capture the independence relations between
both rows and columns after normalization of the matrix. On the tropical side, valuated bi-
matroids have been introduced by Murota [110] (see Definition 6.2). We construct a different
equivalent characterization of valuated bimatroids.

Bimatroids are equivalent to linking systems defined by Schrijver [128], which are the more
natural interpretation when trying to describe discrete optimization problems. Valuated
linking systems have been studied by Frenk [60]. Just like bimatroids and linking systems
are equivalent, his notion is equivalent to ours.

We express Stiefel tropical linear spaces [58] as valuated bimatroids (see Example 6.7).
Further, we prove some of their basic properties, in particular, we define products of valuated
bimatroids as a tropical analogue of the Cauchy-Binet formula. These products are again
valuated bimatroids due to Frenk ([60]). Further, we define a partial ordering on valuated
bimatroids of the same size. We then establish some properties of the product and the
ordering:

Theorem C. ◦ Square valuated bimatroids form a monoid (see Proposition 6.15).
◦ The realizable bimatroid obtained from the matrix product of two matrices is greater
than or equal to the bimatroid product of the bimatroids obtained from the matrices
(see Proposition 6.17).

◦ The rank of the product A · B can be expressed in terms of the ranks of A and B (see
Proposition 6.18).

We conclude by conjecturing the compatibility of valuated bimatroids and morphisms of
valuated matroids, and point out a potential avenue towards a proof of that compatibility.

To be able to do computational experiments, we provide implementations for morphisms
of matroids and strong maps (see Appendix B). Our code checks whether a given map of sets
is a morphism of matroids (or a strong map), and automatically generates all morphisms of
matroids between two matroids.

Subsets of this part of the thesis are based on joint work with Alessio Borz̀ı [27], in partic-
ular, the definition of morphisms of valuated matroids and their well-definedness. Further,
the basic definition of affine morphisms of valuated matroids and their connections to matrix
multiplication is contained in joint work with Giulia Iezzi [82]. All work related to valuated
bimatroids is part of ongoing work-in-progress with Jeffrey Giansiracusa, Felipe Rincón and
Martin Ulirsch. All categorical statements and proofs, as well as the connections to strong
maps of the underlying matroids and the computational implementations of these, are my
own independent work.

1.3. Quivers in tropical geometry. Now that we understand different notions of linear
maps between tropical linear spaces, we want to apply this new knowledge to algebraic
geometry. It turns out that many interesting spaces, in fact all projective varieties, can
be described as the parameter spaces of linear spaces contained inside of each other after
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application of a linear map [122]. To study these spaces tropically, we now want to study
parameter spaces of tropical linear spaces contained inside of each other after applying a
tropical linear map in the sense of the previous section. From a more combinatorial point
of view, this new theory also allows us to parametrize different interesting arrangements of
tropical linear spaces.

The algebraic framework we use to describe such parameter spaces is that of quiver rep-
resentation theory. A priori, a quiver is just a finite directed graph Q, with vertices V and
arrows A. We may endow it with algebraic data by defining a Q-representation R, which is
an assignment of vector spaces Vi to the vertices i ∈ V .

Quiver representations have been an object of study in representation theory, as they allow
for combinatorial models used for understanding the representation theory of Lie groups. In
this thesis, we will focus on the parameter spaces of the arrangements of linear spaces that
quiver representations can be used to describe.

Formally, we can describe the arrangements of linear spaces associated to a quiver repre-
sentation as follows. Each arrow α is assigned a linear map fα and each vertex i is assigned
a vector subspace Ui ⊆ Vi of fixed dimension. Such an assignment of vector spaces is called
a quiver subrepresentation if fα(Ui) ⊆ Uj for all α with source Ui and target Uj.

Quiver Grassmannians are projective varieties parametrizing such subrepresentations.
They first appeared in [48, 127] and have since been extensively studied. They have been
employed in cluster algebra theory [35] as well as for studying linear degenerations of the
flag variety [41, 42, 56, 57]. Notably, every projective variety is isomorphic to a quiver
Grassmannian [122, 124], and every quiver Grassmannian can be embedded in a product of
Grassmannians.

As a set, quiver Grassmannians can be described as the zero set of modified Plücker
relations, given in [98]. As is the case for ordinary Grassmannians [132] and flag varieties
[30, 76, Theorem A and Theorem 1 respectively], there are two reasonable tropical analogues
of quiver Grassmannians. Since they are projective varieties, one can simply tropicalize them.
We show that the resulting tropical variety, called the tropicalized quiver Grassmannian (see
Definition 9.1) parametrizes tropicalizations of quiver subrepresentations, and is compatible
with valuated matroidal quiver representations:

Theorem D (Theorem 9.3). Let µ = (µ1, . . . , µk) be realizable valuated matroids and R be
a quiver representation. The following statements are equivalent:

(a) µ is a point in the tropicalized quiver Grassmannian of R
(b) µ is the valuation of a Plücker vector of a quiver subrepresentation.

If further, all maps of the quiver are sufficiently simple, this is equivalent to

(c) µ is a valuated matroidal quiver subrepresentation where all morphisms are simulta-
neously realizable.

On the other hand, we can simply tropicalize the Plücker relations generating the variety
and take the intersections of their hypersurfaces. This way we obtain a tropical prevariety
called the quiver Dressian (see Definition 9.5). A priori, it is unclear that this construction
yields a reasonable result. However, we show that this polyhedral complex parametrizes
tropical linear spaces contained inside of each other after naive tropical matrix multiplication.
Combined with the results from the previous section, this allows us to characterize some
quiver Dressians in purely matroidal terms, using morphisms of valuated matroids:
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Theorem E (Theorem 9.6). Let µ = (µ1, . . . , µk) be valuated matroids, Q be a finite quiver,
and R be a quiver representation.

(a) µ is a point in the quiver Dressian of R
(b) val(A) ⊙ trop(µi) ⊆ trop(µj) for each matrix A associated to an arrow between µi

and µj.

If further, all maps associated to arrows are sufficiently simple, the above are equivalent to

(c) µ is a valuated matroidal quiver subrepresentation.

Since we have two different tropical analogues, we wish to understand when they coincide.
While tropical Grassmannians and Dressians coincide up to ambient dimension 7 and tropical
flag varieties coincide with flag Dressians up to ambient dimension 5 [30, Theorem 5.2.1],
quiver Dressians behave less well. Even in ambient dimension 2 we can find a quiver whose
tropicalized quiver Grassmannian and quiver Dressian differ:

Theorem F (Theorem 9.8). There exists a quiver Q with representations R for every di-
mension n ≥ 2 such that the tropicalized quiver Grassmannian and the quiver Dressian
differ.

Aiming to find a more satisfying answer to this question, we give a conjectural relation
between the structure of the quiver and the potential for the associated tropical analogues
to be equal:

Conjecture G (Conjecture 9.1). Let Q be a finite quiver and let n ≥ 2. If the quiver
Dressian and the quiver Grassmannian coincide for all Q-representations R, then the under-
lying quiver Q has a special structure: it has finite isomorphism classes, i.e., each connected
component is a Dynkin quiver of type A,D or E (see Example 7.7).

The flag variety is a particularly important quiver Grassmannian, and has thus been
studied extensively using both classical methods [28, 40, 43], and tropical methods [14, 30].
It can be realized as the quiver Grassmannian of an A-type quiver, see below, where all maps
on the arrows are chosen to be identity maps.

Kn Kn . . . Kn Knid id id id

On the tropical side, however, tropical flag varieties and flag Dressians get extremely com-
putationally expensive very quickly. Due to the fact that the tropical flag variety and the
flag Dressian coincide for complete flags until ambient dimension 5, the case of ambient
dimension 6 would be a particularly interesting example to compute. However, most com-
puters are incapable of completing such a task within a reasonable amount of time. Further,
while there are some partial computational results for ambient dimension 6 [14], there are no
further results for higher ambient dimension (nor are they expected, due to the complexity
of the dimension 6 case).

Thus, we try to understand tropical flag varieties and flag Dressians for higher ambient
dimension using the quiver structure of the flag variety. Instead of assigning identity maps
to the arrows, we assign projection maps. On the algebraic side, this process yields a linear
degeneration of the flag variety, which has been studied for instance in [28, 40, 41]. On the
tropical side, this leads to a less complicated tropical structure that nevertheless captures
partial information of the tropical flag variety and flag Dressian (see Section 10). We obtain
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first results for the structure of the associated quiver Dressians and study the observed
connections in more detail for some explicit examples.

Many matroidal concepts have an equivalent characterization in terms of specific polytopes
and their properties. For instance, every matroid can be equivalently characterized as a
matroid polytope, and every valuated matroid can be characterized as a subdivision of the
matroid polytope of the underlying matroid. Naturally, we aim to characterize quivers in
terms of associated polyhedral constructions. While we are not there yet, we provide a
conjectural polyhedral structure:

Conjecture H (Conjecture 11.1). Let Q = (V,A, s, t) be a finite quiver without directed
cycles, and let R be a matroidal Q-representation. A point configuration P is the quiver
point configuration of a matroidal Q-subrepresentation (c.f. Definition 11.5) if and only if
the convex hull of P is a generalized permutohedron and any point p ∈ P is in the orbit of
integer vectors determined by the structure of the quiver.

We obtain this conjecture by computationally analyzing multiflag quivers. Further, we
analyze the behavior that occurs for quivers containing cycles by studying the loop quiver.

The structural results for linear degenerate flag varieties and quiver Dressians were ob-
tained in joint works with Alessio Borz̀ı [27] and Giulia Iezzi [82] respectively. The work
on quiver polytopes is my own, albeit inspired by various conversations with both of my
coauthors.

1.4. Enumerations of curves in ruled surfaces. Counting objects satisfying different
constraints is a classical problem in mathematics. In algebraic geometry, the main object of
interest one aims to count is curves in different surfaces. Here, one of the major developments
of the last century were discoveries by Witten [141], relating intersection numbers on the
moduli space of curves (corresponding to curve counts) to the KdV-equation in mathematical
physics. Five years later, Kontsevich proved Witten’s conjecture [94], leading to a purely
combinatorial count of curves in P2.

One of the first major successes of tropical geometry was its utility for systematically and
combinatorially counting curves in P2, and to extend approaches by Kontsevich to more
complicated surfaces on which one wishes to count curves. The idea here is to count tropical
curves, arising as degenerations of algebraic curves, and use the combinatorial curve counting
results on the tropical side to infer counts of algebraic curves. The main ingredient for the
translation of tropical curve counts to algebraic ones is Mikhalkin’s correspondence theorem
[106], which shows that counting tropical curves with certain multiplicity is equivalent to
counting algebraic curves.

Shortly afterwards, Gathmann-Markwig adapted the lattice path algorithm introduced by
Mikhalkin to count tropical curves of arbitrary genus [64] passing through 3d+ g− 1 points
in general position and showed a tropical version of Kontsevich’s formula for the number
of rational curves of degree d passing through n points [65]. Through the translation by
Mikhalkin’s correspondence theorem, this allowed for a combinatorially driven curve count.

Since then, tropical methods have been employed in enumerative geometry with great
success. One reason for that is that tropical geometry is independent of the characteristic
of the field K, where the curve one wants to tropicalize is defined over. Thus, counting
curves tropically allows giving a combinatorial baseline for a curve count for fields over
many different characteristics.
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However, it is not as simple as literally translating the curve counts: tropical curves
have to be counted with multiplicity, and this multiplicity heavily depends on the field
the curve originates from. Nevertheless, tropical geometry has been utilized successfully
to compute plenty of curve counts over the real numbers: for instance in [11]. Refined
invariants, interpolating between real and complex Gromov-Witten invariants, have been
counted tropically since their inception [16, 108]. Recently, a theory of tropical A1-curve
counts has been established, building on the results for complex and real tropical curve
counts and extending them beyond those two fields [117, 118, 119].

Apart from the lattice path counts used in early tropical enumerative geometry, differ-
ent additional combinatorial tools have been introduced to simplify the counting process.
Floor diagrams, introduced by Brugallé-Mikhalkin [33], are another combinatorial gadget,
modeling tropical curves passing through horizontally stretched point configurations. This
gadget is particularly useful when trying to compute refined invariants [16, 17, 130], and
when trying to count curves in other types of surfaces [18, 19, 20, 21].

Another way tropical geometry has been used in enumerative geometry is by allowing to
change the requirement that curves pass through a fixed number of points to other types
of conditions, and providing a combinatorially easy way to deal with the new conditions.
For instance, one can replace a point condition by sufficiently many tangency ([64]), line or
cross-ratio ([68, 69]) conditions. This means that instead of requiring the tropical curve to
pass through 3d+ g− 1 points, one instead requires the curve to pass through fewer points,
but instead have tangency at the boundary divisors of a specific order, or require the curve
to pass through a line instead, or require four points to have a fixed cross ratio. All these
a priori algebraic conditions translate to tropical conditions, hence can be counted using
tropical geometry, by developing the right combinatorial tools and proving a variation of
Mikhalkin’s correspondence theorem for the new problem.

Furthermore, tropical geometry streamlines the counting of curves in different toric sur-
faces. Tropical curve counts in P2 correspond to the counting of specific subdivisons of
lattice triangles. Other toric surfaces correspond to different lattice polygons. Thus, tropical
methods allow for a relatively straightforward generalization — instead of counting subdivi-
sions of lattice triangles, one can count subdivisions of other lattice polygons — rectangles
(corresponding to tropical curves in P1 × P1, see [47]), or subdivisions of specific trapezes
(corresponding to tropical curves in the Hirzebruch surfaces Fn [59]), or arbitrary smooth
polytopes (corresponding to smooth projective toric surfaces [107]).

Further, one can extend the curve-counting procedures to ruled surfaces. For instance,
one can enumerate curves in a cylinder, i.e., curves inside the projectivization of a line
bundle over an elliptic curve [21, 24]. In [21], the author establishes floor diagram counting
techniques for these line bundles, whereas in [24], the authors relate the resulting tropical
curves to Feynman diagrams.

Until now, results for tropical curve counting have been achieved for orientable surfaces.
In this thesis, we extend the theory to two surfaces with non-orientable lattice structures.
The two surfaces we study, CM0 and CM1 (see Sections 12.5.2 and 12.5.3), are ruled surfaces
over an elliptic curve. We call them the complex Möbius strips as their tropical analogues
TM0 and TM1 have the familiar Möbius strip structure — they can be given as a real strip
R×[0, l] whose two sides R×{0} and R×{l} are glued in reverse orientation (see Proposition
13.1).



14 VICTORIA SCHLEIS

In our setting, the surfaces CM0 and CM1 are no longer toric. Instead, they are only
locally toric — every neighborhood looks like (C∗)2. This requires us to prove a different
version of the correspondence theorem, suitable to our case. To this end, we use that we
can construct a logarithmic degeneration of tropical Möbius strips into toric varieties glued
along their toric boundaries. This enables us to use the Abramovich-Chen-Gross-Siebert
decomposition formula [2], which in turn allows us to compute the tropical invariants on the
toric components and translates our result into an algebraic statement.

Theorem I (Theorem 15.2). The tropical Gromov-Witten invariant and the logarithmic
Gromov-Witten invariant of the Möbius strips agree.

On the tropical side (see Proposition 13.1), this requires an adaptation of the previously
discussed methods: We need to track which ends of tropical curves are allowed to be glued
to which other ends. This turns out to be a bit more complicated than the cylinder case,
as there are two types of cycles appearing in each tropical curve (and indeed each classical
curve on the classical Möbius strips we discuss in Section 12.5): there are orienting and
disorienting cycles, since the Möbius strip is a non-orientable surface (for examples, see
Figures 20 and 21). Roughly, orienting cycles get treated similarly to their counterparts in
the cylinder case, while disorienting cycles require special treatment and carry an additional
multiplicity factor of 2.

These two tropical surfaces have a structure not previously considered in tropical geometry
— they contain disorienting cycles. We adapt our tool set to deal with this, introducing
different types of floors to the classical floor diagrams (see Definition 14.9). These new
adjustments require separate treatment when trying to compute multiplicities.

After defining tropical curves in tropical Möbius strips and describing their multiplicities,
we proceed with showing that the curve counts are invariant for a compatible choice of
tropically general point constraints (see Theorem 13.24). We then introduce an adaptation
of floor diagrams (see Definition 14.9), which describe the setting we find ourselves in, and
which can handle disorienting cycles. These correspond to a newly introduced floor type
called ground floors. Further, we introduce joints, which correspond to elevators passing
through the center (or soul) of the Möbius strip. We define multiplicities for the new version
of floor diagrams and show that their count coincides with the tropical count (see Proposition
14.24).

We conclude by analyzing the regularity properties of the enumerative invariants, using the
combinatorics of floor diagrams to our advantage. In particular, our new methods allow us to
analyze generating series of Gromov-Witten invariants with respect to different parameters.

The first set of functions we consider is a function in the tangency constraints for each
possible horizontal degree b, fixing the vertical degree a. We show the following regularity
property:

Theorem J (Theorem 15.5). The function assigning the corresponding Gromov-Witten in-
variant to a set of varying tangency conditions is quasi-polynomial.

If instead, we consider the generating series where we fix the genus, tangency profiles and
horizontal degree b, but vary the vertical degree a, we obtain a different kind of regularity:

Theorem K (Theorem 15.12). The generating series in a are quasi-modular forms for a
finite index subgroup of SL2(Z).
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All work on the tropical enumeration of curves in ruled surfaces is based on joint work
with Thomas Blomme [22].

1.5. Structure. The thesis begins with a general section reviewing basic concepts in tropical
geometry. Afterwards, the thesis is separated into three main parts, covering different aspects
of my projects. Each part begins with a more specialized literature review, after which we
introduce new theory. In Part 1, we cover maps between tropical linear spaces and valuated
matroids. In Part 2, we lay the groundwork for a quiver representation theory in tropical
geometry. Finally, in Part 3, we provide (tropical) combinatorial tools to count curves in
ruled surfaces. In detail, the sections cover the following:

In Section 2, we review notions from tropical geometry. In particular, we introduce
the tropicalization of (affine) varieties. We discuss notions of tropical projective spaces and
tropicalizations of varieties contained inside of them. Our focus will be on tropicalizations
of linear spaces and curves, as these two topics will be relevant for the remaining parts of
the thesis.

In Part 1, we develop a theory of morphisms for valuated matroids and tropical linear
spaces. We contrast different possibilities for morphisms and show some of their properties.

Section 3 starts with a review of basic notions in matroid theory. Further, we recall
the existing notions of maps between matroids. We cover matroid quotients, morphisms of
matroids and strong maps, and bimatroids and bond matroids. We conclude the prelimi-
naries (for now) by a subsection discussing tropical analogues of matroid theory, starting
from valuated matroids and building up to tropical linear spaces and their parametrization
spaces, the tropical Grassmannian and the Dressian.

We start our original contributions in Section 4. Here, we introduce morphisms of valu-
ated matroids. We continue by enriching them with additional valuative structure, suitable
to capture translations of tropical linear spaces. We prove that the category of valuated
matroids with affine morphisms of valuated matroids possesses many of the properties the
category of matroids with strong maps possesses. In this section, you find Theorem A. The
definitions of morphisms and affine morphisms were obtained in joint work with Alessio Borz̀ı
[27] and Giulia Iezzi [82] respectively. Most proofs (and a substantial amount of the state-
ments) in this section expand upon the joint works and have not been published elsewhere.

We continue our study of maps between matroids in Section 5, where we study inter-
actions of the above introduced definitions with tropical matrix multiplication and prove
their compatibility. In particular, we prove Theorem B. This section is again an extension of
joint work with Giulia Iezzi [82] and contains the proofs to some core results underpinning
tropical quiver theory in Part 2. The main generalization this thesis provides to [82] is the
extension of all statements and proofs to non-square matrices.

We wrap up our study of maps between matroids in Section 6 by investigating valuative
structures on bimatroids and show some of their basic properties. We further conjecture
relations to the other notions of tropical linear maps given in this thesis. The main results
of this section are summarized in Theorem C This section is part of a joint work in progress
with Jeffrey Giansiracusa, Felipe Rincón and Martin Ulirsch.

This concludes Part 1. We continue with Part 2, in which we establish a new theory
of tropical quiver representations, connecting the classical representation theory of quivers
with tropical geometry.
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In Section 7, we review some classical quiver representation theory, covering quiver Grass-
mannians, some historical facts, and the relation to representation theory of Lie groups.

We resume our original work in Section 8. Here, we introduce (valuated) matroidal quiver
representations as a matroidal analogue of the classical objects introduced in the previous
section. This section is my own, though it is mainly a reformulation of previous work with
Giulia Iezzi [82] in more classical terms.

In Section 9, we establish the main results of this part of the thesis. We use the classical
theory and our notions of morphisms of valuated matroids to introduce two moduli spaces
for tropical quiver representations: the tropicalized quiver Grassmannian and the quiver
Dressian. We prove different characterizations of these spaces, summarized in Theorems D
and E. Further, we investigate under which conditions the two tropical analogues coincide:
we prove Theorem F and discuss Conjecture G. This section is based on joint work with
Giulia Iezzi [82].

We apply tropical quiver theory to another tropical concept in Section 10. We describe
linear degenerate flag varieties and their cover relations (joint with Alessio Borz̀ı [27]).

We conclude the study of tropical quiver representations in Section 11 by constructing
a polyhedral analogue of some particularly nice matroidal quiver representations. In the
process, we recap some background on Coxeter matroid polytopes. We summarize our
observations in Conjecture H, and identify challenges for establishing a polyhedral theory
for quivers containing loops.

In Part 3 we shift gears to enumerative geometry. We study curve counts on tropical ruled
surfaces, focusing on two new ones, the two tropical Möbius strips, which we also define. All
results in this part were obtained in joint work with Thomas Blomme [22].

We start this part by reviewing the basic notions of tropical enumerative geometry in
Section 12, including the basics of tropical curve counting, floor diagrams and classical,
logarithmic, refined and tropical Gromov-Witten invariants. Further, we review the classifi-
cation of ruled surfaces and existing literature on counting tropical curves in them.

We continue in Section 13 by defining our object of study: the two tropical Möbius
strips. We define curves and divisors on them. We study their structure and their relations
to the classical ruled surfaces discussed in the previous section, and define relative tropical
Gromov-Witten invariants on them.

To compute the number of curves in tropical Möbius strips, we introduce floor diagrams
for their curves, and study their properties in Section 14. In particular, we prove that the
weighted tropical curve count with the multiplicities introduced in the previous section is
equal to a weighted count of the associated floor diagrams.

Finally, in Section 15, we prove the main theorems of this part: that the tropical curve
counts on Möbius strips correspond to the logarithmic Gromov-Witten invariant on the
classical counterpart (Theorem I), and that the generating series of the invariants are quasi-
polynomial (Theorem J) and quasi-modular (Theorem K).

There are two appendices — Appendix A contains a table of all notation used in this
thesis for quick reference, and Appendix B contains all code for computations carried out
in this thesis.
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2. Preliminaries: Tropical geometry

In this section, we review the basic notions of tropical geometry. We start out by fixing
some standard notation. For a full table of notation, we refer to Appendix A.

Notation. Throughout the thesis, we write [n] for the set {1, . . . n}. In general, we write
tuples or vectors in bold font: x = (x1, . . . , xn). For a set S ⊆ [n], we define the indicator
vector eS by

(eS)i =

®
1 i ∈ S

0 otherwise.

Further, to keep consistent with the standard notation in the literature, we write 1 for the
vector e[n] of appropriate length.

The set
(
[n]
k

)
denotes all subsets of [n] of size k. For readability purposes, for S =

{s1, s2, . . . , sk} ∈
(
[n]
k

)
, we sometimes write S = s1s2 . . . sk, omitting the commas and the set

brackets. For the complement of a subset I ⊆ [n], we write Ic = [n] \ I if the set [n] is clear
from context.

Throughout, K is a non-Archimedean field with valuation.

Structure. In Section 2.1, we review the notions of tropicalization in very affine vari-
eties, i.e., subvarieties of (K∗)n. We focus on the examples of tropicalizations of curves, as
these will be the main objects of study in Part 3.

For Parts 1 and 2, the tropicalization process needs to be extended to subvarieties of
multiprojective space. In Section 2.2, we cover this extension of the classical tropical
theory. Here, our main examples are tropicalizations of linear spaces, which will be prime
examples of the objects studied in Parts 1 and 2.

2.1. Tropicalization. We refer to [101] for more details and proofs of the claims made, in
particular to Chapter 3. Throughout the thesis, we use the min-convention for all tropical,
matroidal and polyhedral operations.

2.1.1. Tropical varieties. Tropical geometry studies combinatorial objects that arise from
degenerations of algebraic varieties. This degeneration process is called tropicalization and
was historically defined as taking the logarithmic limit of an algebraic variety, [34, 104, 105].

Systematically, the behavior of coefficients under logarithmic degeneration can be de-
scribed by applying a non-Archimedean valuation. This way, we can consider tropical ge-
ometry as algebraic geometry over the tropical semifield.

Definition 2.1. Set T = R ∪ {∞} and define a⊕ b = min{a, b} and a⊙ b = a+ b for every
a, b ∈ T. Then (T,⊕,⊙) is a semifield, called the tropical semifield. To translate algebraic
geometry concepts to tropical geometry, we need to be able to consider polynomials. A
tropical polynomial is an element of the semiring T[x1, . . . , xn] in the variables x1, . . . , xn
with coefficients in T.

We can pass from an element of the field K to an element of the tropical semiring by
applying a non-Archimedean valuation map.

Definition 2.2. A (non-Archimedean) valuation is a map val : K → T satisfying

(1) val(ab) = val(a) + val(b) for all a, b ∈ K;
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(2) val(a+ b) ≥ min{val(a), val(b)} for all a, b ∈ K; and
(3) val(a) = ∞ if and only if a = 0.

The following are the two main examples of valuations we will use throughout the thesis.

Example 2.3. For any field K we can define a valuation val : K → T by setting val(a) = 0 if
a ̸= 0 and val(0) = ∞. This valuation is called the trivial valuation on K.

Example 2.4. A more sophisticated example is the t-adic valuation on the field of Puiseux
series C{{t}}. The elements of C{{t}} are formal power series f =

∑
α∈Q cαt

α satisfying that

◦ there exists a lowest exponent αf in f , and
◦ all α have a common denominator.

The t-adic valuation on C{{t}} is defined as val : C{{t}} → T with val(f) = αf . That is, every
f is mapped to its lowest exponent. The field of Puiseux series is algebraically closed (see
[101, Theorem 2.1.5]) and of characteristic 0. The following are some examples of Puiseux
series and their valuations:

f 3t2 7 1 + t2 + t5 0

val(f) 2 0 0 ∞ .

The t-adic valuation on the Puiseux series can be considered as modeling the behavior of
an element f ∈ C{{t}} under taking its logarithmic limit. This ties back to the original
construction of tropical curves using amoebas.

We can pass from the algebraic world into the tropical world by applying a process called
tropicalization. Studying tropicalizations of polynomials over the field of Puiseux series allows
us to describe the logarithmic limit set of the family of curves defined by such a polynomial.

Definition 2.5. Let K be a field with valuation val : K → T. The tropicalization of a
polynomial f =

∑
u∈Nn aux

u ∈ K[x±1
1 , . . . , x±1

n ] is the tropical polynomial

trop(f) =
⊕
u∈Nn

val(au)⊙ xu ∈ T[x1, . . . , xn].

Further, the tropicalization trop(I) of an ideal I ⊆ K[x±1
1 , . . . , x±1

n ] is the set of tropical
polynomials generated by the tropicalizations of all polynomials in I:

trop(I) =
{
trop(f) : f ∈ I

}
⊆ T[x1, . . . , xn].

Example 2.6. First, let us consider two polynomials in C[x, y, z], using the trivial valuation.

f x+ y + z x2 + xy + xz + yz + y2

trop(f) x⊕ y ⊕ z x2 ⊕ xy ⊕ xz ⊕ yz ⊕ y2

min(x, y, z) min(2x, x+ y, x+ z, y + z, 2y)

Since the trivial valuation sends every element of C∗ to 0, to obtain nontrivial coeffi-
cients in the tropicalization of the polynomial, we have to work over a different field. Over
C{{t}}[x, y, z] with the Puiseux valuation, we obtain more complicated coefficients:

f t2x+ ty + z 3tx2 + 7xy + (1 + t2 + t5)xz + (7 + t4)yz + 3t2y2

trop(f) (2⊙ x)⊕ (1⊙ y)⊕ z (1⊙ x2)⊕ x⊙ y ⊕ x⊙ z ⊕ y ⊙ z ⊕ (2⊙ y2)

min(x+ 2, y + 1, z) min(2x+ 1, x+ y, x+ z, y + z, 2y + 2)
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Definition 2.7. The tropical hypersurface of a tropical polynomial F =
⊕

u∈Nn cu ⊙ xu ∈
T[x1, . . . , xn] is

V (F ) =

{
x ∈ Rn/R1 : min

u∈Nn

{
cu +

n∑
i=1

ui · xi
}
is achieved at least twice

}
.

Example 2.8. Let us continue Example 2.6 and draw the tropical hypersurfaces of the tropical
polynomials given there:

(0, 0) (−2,−1)

V (x⊕ y ⊕ z) V
(
(2⊙ x)⊕ (1⊙ y)⊕ z

)

(0, 0)
(0,−2)

(0, 0)(−1, 0)

V (x2 ⊕ xy ⊕ xz ⊕ yz ⊕ y2) V
(
(1⊙ x2)⊕ x⊙ y ⊕ x⊙ z ⊕ y ⊙ z ⊕ (2⊙ y2)

)
All tropical hypersurfaces above are examples of tropical curves. We will study these in more
detail in Section 12.2. Further, they will be the main object of study in Part 3. In addition,
the curves in the top row are examples of tropicalized linear spaces, which are prime examples
of the objects we study in Parts 1 and 2.

Note that the tropical hypersurfaces obtained by using the trivial valuation on the left
above are polyhedral fans. This is not a coincidence — tropical hypersurfaces (and, in fact,
tropical varieties) obtained via tropicalization over a field with trivial valuation are always
polyhedral fans.

Definition 2.9. Let S ⊆ T[x1, . . . , xn] be a set of tropical polynomials. The tropical preva-
riety V (S) is defined by

V (S) =
⋂
F∈S

V (F ) ⊆ Rn/R1.

If S is an ideal, V (S) has additional polyhedral structure and is called a tropical variety.

Over algebraically closed fields with nontrivial valuation, there are alternative character-
izations of tropical varieties, which are shown to be equivalent in the fundamental theorem
of tropical geometry.
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Theorem 2.10 ([101, Theorem 3.2.3]). Let K be an algebraically closed field with nontrivial
valuation, let I be an ideal in K[x±1

1 , . . . , x±1
n ] and let X = V (I) be its algebraic variety in

(K∗)n. Then,

V (trop(I)) =
⋂
F∈I

V (F ) =
{
(val(x1), . . . , val(xn)) | x ∈ X

}
=: val(X) ⊆ Rn/R1,

where the closure is with respect to the Euclidean topology induced on Rn/R1.

The above theorem implies that tropical varieties can be obtained in two equivalent ways:
we can first tropicalize the ideal, and then take its tropical variety V (trop(I)), or we can
consider the variety V (I) and take the valuation of its points to obtain trop(V (I)).

2.1.2. Polyhedral structure of tropical varieties. We begin by introducing the basic polyhe-
dral notions we need to describe tropical (pre)varieties as polyhedral objects. For a thorough
introduction to polyhedral theory, we refer to [142].

Definition 2.11. A polyhedron P is the intersection of finitely many closed half-spaces in
an ambient space Rn. Polytopes are bounded polyhedra and can be alternatively given as
the convex hull of points in Rn. The face of P in direction w ∈ Rn is the set

facew(P ) = {x ∈ P | w · x ≤ w · y for all y ∈ P}.

Intuitively, facew(P ) is the closest side of P observed when standing outside the polytope
in direction −w and looking back at the polytope in direction w. Facets are faces maximal
with respect to containment.

Definition 2.12. Let P,Q ⊂ Rn be two polyhedra. Their Minkowski sum is the polyhedron

P +Q = {p+ q | p ∈ P and q ∈ Q} ⊆ Rn.

Tropical (pre)varieties are particularly nice gluings of multiple polyhedra.

Definition 2.13. A polyhedral complex Σ is a collection of polyhedra satisfying that

(a) if P ∈ Σ, then any face of P is in Σ, and
(b) if both P and Q are in Σ, then their intersection P ∩Q is either empty or a face of

both P and Q.

A fan is a polyhedral complex whose only finite polyhedron is a vertex at the origin.
The dimension of a polyhedral complex is the maximal dimension of a polytope contained

in it. We say that Σ is pure if all maximal polytopes in Σ are of the same dimension. The
support of a polyhedral complex Σ is its set of points

supp(Σ) = {x ∈ Rn | x ∈ P for some P ∈ Σ}.

The star of a cell σ in Σ is the fan starΣ(σ) with cones

τ = {λ(x− y) | λ > 0,x ∈ σ,y ∈ τ}
for all τ in Σ that contain σ as a face.

While tropical prevarieties are polyhedral complexes, tropical varieties have additional
properties. We can assign them integer weights in a balanced way.
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Definition 2.14 ([101, Definition 3.3.1]). Let Σ ⊆ Rn be a one-dimensional rational fan.
To each ray σ ∈ Σ we assign a positive integer weight m(σ) and denote the first lattice point
on the ray σ by vσ. We say that Σ is balanced if∑

σ∈Σ

m(σ)vσ = 0.

For a (pure) d-dimensional rational fan Σ, we extend this by quotienting out by (d − 1)-
dimensional subspaces, as follows. Let τ be a (d − 1)-dimensional cone and let L be the
linear space parallel to τ . We define N(τ) = Zn/(L∩Zn). Then, for each σ ∈ Σ with τ ⊊ σ,
the quotient (σ + L)/L is a one-dimensional cone in N(τ) ⊗Z R. We write vσ for the first
lattice point on this ray. Now, we say that the fan Σ is balanced at τ if this one-dimensional
fan is balanced, i.e., if ∑

τ⊊σ

m(σ)vσ = 0.

Finally, Σ is balanced if it is balanced at all (d− 1)-dimensional rays.

Now, we can use the definition of the star of cells (c.f. Definition 2.13) to extend the
balancing of fans to a balancing of polyhedral complexes. We say that a polyhedral complex
Σ is balanced if the fan starΣ(τ) is balanced for all τ ∈ Σ of dimension d− 1.

Theorem 2.15. [101, Theorem 3.3.5] Let X = V (I) be an irreducible subvariety of (K∗)n of
dimension d. Then, the tropical variety trop(V (I)) is the support of a pure d-dimensional,
rational, weighted balanced polyhedral complex that is connected through codimension one.

2.1.3. Newton subdivisions and tropical hypersurfaces. Determining the weights that make
the tropicalization of an algebraic variety balanced can be a challenging endeavor. For
hypersurfaces, however, the problem can be translated into polyhedral geometry and solved
there. Hypersurfaces are of particular interest to us, as all curves in two-dimensional spaces
are hypersurfaces. Thus, understanding hypersurfaces in two-dimensional spaces will be
important for our study of enumerative problems in surfaces.

Definition 2.16. Let f ∈ K[x±1
1 , . . . , x±1

n ] be a Laurent polynomial. The Newton polytope
of f is the convex hull of the exponent vectors of the monomials of f , i.e.,

Nf = conv{e ∈ Zn | xe is a monomial of f}.
The valuation of the coefficients of the monomials now induce a subdivision on Nf as follows.
Consider the polytope

Pf = conv{(e, val(ce)) ∈ Rn+1 | xe is a monomial of f},
where ce is the coefficient of the monomial xe in f . Now, the subdivision ∆f of Nf induced
by the valuation of coefficients, called Newton subdivision, is the collection of the projections
of lower faces of Pf onto the first n coordinates. Here, lower faces are faces whose inner
normal vector has positive last coordinate.

An example of a Newton subdivision and its dual tropical curve can be seen in Figure 1.

Proposition 2.17 ([101, Proposition 3.1.6 and Proposition 3.3.2]). Let f ∈ K[x±1
1 , . . . , x±1

n ]
be a Laurent polynomial. The tropical hypersurface V (trop(f)) is the support of a polyhedral
complex Σf which is dual to the Newton subdivision. In this thesis, as a convention, we
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2

2

Figure 1. A tropical curve and its dual Newton subdivision. The tropical
curve is balanced with respect to the weights assigned to the edges, where we
omit all weights that are equal to 1. The weighting corresponds to the lattice
length of edges in the subdivision, as discussed in Proposition 2.17. Note that
the cyan edge has lattice length 1.

use the intersection of the normal fan of the extended Newton polytope Pf with the plane
xn+1 = 1.

Let F be a facet of V (trop(f)). Then, there exists an edge eF in the Newton subdivision
dual to F . Now, we assign to each facet F the edge-length of its dual edge in the subdivision,
length(eF ). The polyhedral complex Σf is balanced with respect to these weights.

2.2. Tropicalization in multiprojective space. A thorough discussion of tropical pro-
jective spaces can be found in [129]. Since then, much of the theory of tropicalization has
been extended to subvarieties of multiprojective space. For the general theory, we refer to
[101, Chapter 6] and [89, 116]. For the case of linear subspaces, we also refer to [30, 129].

2.2.1. (Multi-)projective tropical varieties and compactification.

Definition 2.18. The tropical projective space is P(Tn) =
(
Tn \ {(∞, . . . ,∞)}

)
/R1 =

(Tn \ {(∞, . . . ,∞)})/ ∼. Here, ∼ is the equivalence relation u ∼ v if u = v + c1 for some
c ∈ R. The tropical multiprojective space P(Tn1) × · · · × P(Tnk) is a product of tropical
projective spaces. That is,

P(Tn1)× · · · × P(Tnk) = (Tn1 \ {(∞, . . . ,∞)} × · · · × Tnk \ {(∞, . . . ,∞)})/ ∼,
where ∼ is the equivalence relation u ∼ v if u = v + (c1 · e[n1] + · · ·+ ck · e[∑k

i=1 ni]\[
∑k−1

i=1 ni]
)

for c1, . . . , ck ∈ R.

Considering varieties in tropical (multi)-projective space necessitates the treatment of
coordinate entries that are infinite. We thus extend the notion of tropical varieties by
allowing for infinite entries as follows:

Definition 2.19. Let n = n1 + · · ·+ nk be a sum of integers. The (multiprojective) tropical
hypersurface of a tropical polynomial F =

⊕
u∈Nn cu ⊙ xu ∈ T[x1, . . . , xn] is

V (F ) =

{
x ∈ P(Tn1)× · · · × P(Tnk) : min

u∈Nn

{
cu +

n∑
i=1

ui · xi
}
is achieved at least twice

}
,
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where whenever minu∈Nn{cu +
∑n

i=1 ui · xi} = ∞, by convention, the minimum is achieved
at least twice, even if the expression is a tropical monomial. The (multiprojective) tropical
prevariety of a set of multihomogeneous tropical polynomials J ⊆ T[x1, . . . , xn] is defined by

V (J) =
⋂
F∈J

V (F ) ⊆ P(Tn1)× · · · × P(Tnk).

Again, if J is the tropicalization of an ideal, this polyhedral complex has a special structure
we say that V (J) is a (multiprojective) tropical variety.

Example 2.20. In Example 2.8, we had seen the tropicalization of the tropical line x+ y+ z
inside R3/R1. Now, we will compute the tropicalization of the tropical line in the tropical
projective space P(T3).

(0, 0)

In the interior of P(T3), the tropical line does not change under this change of ambient
space. Instead, we are introducing three boundary points. In particular, the tropical line
contained inside tropical projective space is compact.

We can again give a tropicalization in terms of the valuations of points of the variety.

Definition 2.21. Over an algebraically closed base field K with a non-trivial valuation, the
tropicalization trop(X) of a subvariety X ⊆ Pn1−1 × · · · × Pnk−1 is defined by

trop(X) =

ß(
(val(x10), . . . , val(x

k
nk
)
)
∈ P(Tn1)× · · · × P(Tnk)

where
(
(x10 : · · · : x1n1

), . . . , (xk0 : · · · : xknk
)
)
∈ X

™
where the closure is with respect to the Euclidean topology induced on P(Tn1)×· · ·×P(Tnk)
from the Euclidean topology on Rn1 × · · · × Rnk .

Tropical varieties in tropical multiprojective space have many of the properties of their
very affine counterparts. In particular, the Fundamental Theorem extends to this setting
(and the more general setting of smooth toric varieties)!

Theorem 2.22 ([101, Corollary 6.2.16]). Let Y be a subvariety of Pn1 × · · · × Pnk and let
I be its (multihomogeneous) ideal in K[x1, . . . , xn1+···+nk

]. Then, the following subsets of
P(Tn1)× · · · × P(Tnk) coincide:⋂

f∈I

trop(V (f)) = trop(Y ) =
⋃
σ∈Σ

trop(Y ∩ Oσ)
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where Σ is the fan of the toric variety Pn1 × · · · × Pnk , and Oσ is the orbit corresponding to
the cone σ ∈ Σ.

The second description in the theorem allows us to do for arbitrary varieties exactly what
we had seen in Example 2.20: We can first compute the classical tropicalization, correspond-
ing to the origin in the fan of multiprojective space, and then add in the components of the
tropical variety corresponding to the intersections with the boundary components, which
correspond to the orbits of the cones in Σ that are not the origin.

Tropical varieties of this form have been studied in the literature, as they are a common
way of compactifying a given (affine) tropical variety.

2.2.2. Tropicalized linear spaces. Many examples we will see in Part 1 of the thesis are
tropicalizations of linear spaces (or are arrangements of tropicalizations of linear spaces).
We give a few examples in this section, demonstrating the techniques we discussed above.

Example 2.23. In P(T3), up to translation of the center vertex, there is only one tropical-
ization of a generic linear space, corresponding to V (a ⊙ x ⊕ b ⊙ y ⊕ c ⊙ z). It consists of
three rays in the three coordinate directions and one vertex at (c − a, c − b). Under trivial
valuation, there exists only one tropical line — the one with vertex (0, 0).

(c− a, c− b)

Example 2.24. Now, let us consider tropicalizations of lines (i.e., 1-dimensional tropicalized
linear spaces or tropical lines) in P(T4). A generic tropical line in P(T4) is a one dimensional,
balanced polyhedral complex with one bounded edge and four unbounded edges, two adjacent
to each vertex of the bounded edge. The four distinct directions of the unbounded edges of
Lp are given by the images of ei in P(T4) for i ∈ [4]. Since Lp is balanced, the directions of
the unbounded edges are completely determined by the direction of the bounded edge, which
is of the form ei+ej for i, j ∈ [4] distinct. As ea+eb = −(ec+ed) in P(T4) for all a, b, c, d ∈ [4]
distinct, there are three such choices. We depict them all in Figure 2. There also exists a
degenerate tropical line in P(T4): The tropicalization of x1 + x2 + x3 + x4 consists only of
four rays in all four coordinate directions. It does not have a bounded edge. It corresponds
to the dotted lines in Figure 2.

Example 2.25. Finally, let us consider planes (i.e., 2-dimensional projective linear spaces) in
P(T4). Up to change of the center point, all planes have the same combinatorial type. They
are pure two-dimensional fans whose top-dimensional cones are spanned by pairs of vectors
in coordinate direction. We depict an example of a tropical plane in P(T4) in Figure 3.
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Figure 2. The three different combinatorial types of general lines in P(T4).
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Figure 3. A tropical plane in P(T4).

Part 1. Morphisms of valuated matroids

In linear algebra, linear maps between linear spaces take a central role. In this part, we
introduce different notions of analogues of linear maps for valuated matroids. We compare
and contrast them, discuss their properties, advantages, and disadvantages.

We begin by discussing the necessary background in Section 3. We cover basics of ma-
troid theory, including their different cryptomorphic definitions via bases, independent sets,
rank functions, circuits, cocircuits and lattices of flats. Further, we discuss matroid repre-
sentability. Then, we cover morphisms of matroids to lay the foundation for the valuative
analogues we aim to construct later on. Next, we discuss valuated matroids and tropical
linear spaces. We review their characterizations via basis valuation functions, independent
set axioms, and circuit, cocircuit, and vector elimination axioms. We conclude this section
by discussing parameter spaces for valuated matroids and valuated flag matroids, namely
tropical Grassmannians, Dressians, tropicalized flag varieties and flag Dressians.

In Section 4, we then introduce our first notion of linear maps for valuated matroids —
morphisms of valuated matroids and their affine extensions, and establish some of their prop-
erties. In particular, we show that they are compatible with strong maps of the underlying
matroids. Further, we prove that the category of valuated matroids where affine morphisms
of valuated matroids shares many of the properties which are known for the category of
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matroids with strong maps as morphisms. Some of this section is based on joint work with
Alessio Borz̀ı [27] and with Giulia Iezzi [82], and some of it is new work done by myself.

We continue by contrasting (affine) morphisms of valuated matroids with naive pointwise
tropical matrix multiplication of the corresponding tropical linear space in Section 5. For
nice enough matrices, we show that the two notions are equivalent. All results in this section
are extensions of joint work with Alessio Borz̀ı [27] and with Giulia Iezzi [82].

Finally, in Section 6, we study a different notion — valuated bimatroids. These provide
an alternative approach to generalize matrices in matroid theory and linear tropical geometry.
We prove a tropical Cauchy-Binet formula and conjecture a relation to affine morphisms of
valuated matroids and naive tropical matrix multiplication. This section is based on current
work-in-progress, joint with Jeffrey Giansiracusa, Felipe Rincón, and Martin Ulirsch.

3. Preliminaries: Linear tropical geometry

In this section, we cover all preliminaries necessary to study linear tropical geometry
in the next two parts. We begin in Section 3.1 by giving an overview over the many
different cryptomorphic axiom systems for matroids we will encounter in this thesis: bases,
independent sets, rank functions, circuits, cocircuits and lattices of flats. We discuss how
the different axiom systems are related, and observe a first connection to tropical geometry
via Bergman fans.

Next, in Section 3.2, we study maps between matroids: we cover matroid quotients, mor-
phisms and strong maps of matroids. Further, we discuss some known category-theoretical
properties for the category of matroids with strong maps, and discuss some properties specific
to projection maps.

In Section 3.3 we then proceed by studying valuated matroids. Again, we cover different
characterizations — we discuss valuation maps defined on bases and their extensions to
independent sets, and discuss valuated circuits, cocircuits and vectors. Then, we use the
latter characterizations to construct equivalent tropical linear spaces.

We finish the introduction to linear tropical geometry in Section 3.4 by discussing differ-
ent tropical analogues for the Grassmannian, the tropicalized Grassmannian and the Dres-
sian, which provide parameter spaces for tropicalizations of linear spaces and tropical linear
spaces respectively. We conclude by providing the same analysis for the tropical analogues
of the flag variety, the tropicalized flag variety and the flag Dressian.

3.1. Matroids. Matroids are foundational objects in combinatorics. They were introduced
by Whitney in 1935 [140] to unify notions of independence in linear algebra and graph
theory, and have applications all over mathematics, for instance in algebraic geometry and
optimization. All topics discussed in this section are standard definitions and results in
matroid theory, covered for instance in [115, 138, 139].

As matroids generalize many notions, there are multiple different cryptomorphic axiom
systems defining them. We will now give an overview over some of these systems, which are
foundational components of the results we will introduce in Parts 1 and 2 of the thesis.

We start in Section 3.1.1 with the notions generalizing concepts in linear algebra: bases,
independent sets and rank functions. Next, in Section 3.1.2, we cover the notions generalizing
independence in graph theory: circuits and cocircuits. Matroids can be constructed from
other matroids. In Section 3.1.3, we cover two such constructions — deletion and contraction.
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Then, we discuss lattices of flats and their associated Bergman fans as a first appearance of
a tropical object in matroid theory in Section 3.1.4. We finish our coverage of matroids in
Section 3.1.5 by discussing basic notions of representability, i.e., when matroids correspond
to actual linear spaces, and when they merely are combinatorial objects.

3.1.1. Bases, independent sets and rank functions. One of the original motivations for defin-
ing matroids was to provide an abstract framework which generalizes linear independence in
linear algebra.

Definition 3.1. A matroid M is a set [n] together with a set of bases B(M) ⊆ 2[n] satisfying

(B1) B(M) ̸= ∅, and
(B2) for all A,B ∈ B(M) and a ∈ A \B there exists b ∈ B \A such that both (A \ a) ∪ b

and (B \ b) ∪ a are bases, i.e., are contained in B(M). In the future, in cases where
the set A is clear, we will omit brackets and write A \ a ∪ b for (A \ a) ∪ b.

The latter axiom is sometimes called the symmetric exchange axiom.

Remark 3.2. A set of bases of a matroid can be obtained from a set of vectors generating
a linear space. Let v1, . . . , vn ∈ Km be vectors, and let L = span(v1, . . . , vn) be a linear
subspace of Km. Then, the set of maximal independent sets of vectors

B = {I | vI is a basis of L}
forms the set of bases of a matroid over [n], which we denote by M(L) (or M(v)).

In the following example, we carry out the above procedure for a concrete linear space.

Example 3.3. Consider the set of vectors

v1 =

ñ
1

1

ô
, v2 =

ñ
−1

0

ô
and v3 =

ñ
0

−1

ô
.(1)

Each pair of vectors is linearly independent, but v1 + v2 − v3 = 0, so the triple of vectors is
not. Thus, {v1, v2}, {v1, v3} and {v2, v3} are maximal sets of independent vectors. Over the
ground set [3], the sets made up of indices of the vectors above form a matroid: 12, 13 and
23 are the bases of the matroid U2,3.

Example 3.4. The matroid U2,3 discussed in the previous example is part of a special family
of matroids. It is a uniform matroid. In general, the uniform matroid Ur,n is the matroid

where the bases are all subsets of size r of the ground set [n], i.e., B(M) =
(
[n]
r

)
.

Definition 3.5. Just like bases of linear spaces, all bases of matroids have the same size.
This size is called the rank of the matroid and denoted by rk(M).

Instead of describing matroids in terms of bases, we can describe them in terms of inde-
pendent sets, again modeled after the notion from linear algebra.

Definition 3.6. A matroid M is a ground set [n] together with a collection of independent
sets Ind(M) ⊆ 2[n], satisfying

(I1) ∅ ∈ Ind(M),
(I2) if I ∈ Ind(M) and J ⊆ I, then J ∈ Ind(M), and
(I3) if I, J ∈ Ind(M), and |I| = |J |+ 1, there exists i ∈ I \ J such that J ∪ i ∈ Ind(M).



TROPICAL QUIVER THEORY AND TROPICAL ENUMERATION ON RULED SURFACES 29

Remark 3.7. Bases and independent sets can be stated in terms of each other. First, assume
M is defined by a set of bases B(M) as in Definition 3.1. Then, independent sets are all
subsets of bases, and we have

Ind(M) = {I ⊆ B | B ∈ B(M)}.
Analogously, if M is defined by its set of independent sets Ind(M), bases are exactly the

inclusion-maximal sets in Ind(M).

Example 3.8. We continue Example 3.3. Writing down all independent sets of vectors in
Equation (1), we obtain

Ind(U2,3) = {∅, 1, 2, 3, 12, 13, 23}.
Note that as claimed in Remark 3.7, these are exactly all subsets of bases in B(M). For a
general uniform matroid Ur,n, the independent sets are

Ind(Ur,n) = {I ⊆ [n] | |I| ≤ r}.
The final concept of this section (and actually Whitney’s original notion of a matroid in

[140]) is that of rank functions. Rank functions model dimension properties of subspaces
spanned by vectors.

Definition 3.9. A matroid M is a set [n] together with a rank function rk : 2[n] → Z≥0

satisfying for any set S, T ⊆ [n]

(R1) rkM(S) = 0 if S = ∅;
(R2) rkM(S ∪ i) = rkM(S) + k for any i /∈ S and k ∈ {0, 1}; and
(R3) rkM(S ∪ T ) + rkM(S ∩ T ) ≤ rkM(S) + rkM(T ).

The axiom (R2) implies that the rank function is monotonic, and (R3) is saying that it is
submodular.

We can state some additional properties for rank functions of matroids:

Lemma 3.10. Let M be a matroid on [n]. Then, the rank function satisfies

(1) if A ⊆ B ⊆ [n], then rkM(A) ≤ rkM(B); and
(2) for all A ⊆ [n], 0 ≤ rkM(A) ≤ |A|.
(3) the rank of the matroid as described in Definition 3.5 can be described as rk(M) =

maxS⊆[n] rkM(S).

Remark 3.11. Again, we can characterize independent sets of a matroid M on [n] in terms
of its rank function. Independent sets are precisely the sets where the second inequality
in Lemma 3.10(2) is an equality, i.e., A ⊆ [n] is an independent set of M if and only if
rkM(A) = |A|.
3.1.2. Circuits and Cocircuits. In the last section, we discussed how matroids generalize
notions in linear algebra. In this section, we approach the topic with the goal of generalizing
graph theory. Again, the notions in this section are due to Whitney’s original paper [140],
and have since been used extensively in matroid theory. For instance, they are the main
point of view Tutte [121, 134] uses in his works, and will be our main tool to define tropical
linear spaces in Section 3.3.2.

Definition 3.12. A matroid M is a set [n] together with a collection C(M) of circuits,
satisfying that
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(C1) if C,D ∈ C(M) and C ⊆ D, then C = D; and
(C2) for C,D ∈ C(M) and c ∈ C∩D, then there exists E ∈ C(M) such that E ⊆ (C∪D)\c.

The axiom (C2) is sometimes also referred to as the circuit elimination axiom.

Remark 3.13. Let G = (V,E) be an undirected graph with sets of vertices V and edges E.
We can construct a matroid M(G) on [|E|] as follows. We enumerate all edges. Then, the
circuits of M(G) are the (graph-theoretic) simple cycles of G.

In this setting, a dependent set is a set containing a cycle, whereas an independent set is
a forest. The bases of M(G) are the spanning forests of G.

Example 3.14. Let us explicitly construct a graphic matroid. We consider the graph below,
and draw in the circuits in colors.

1

2

3

4

5 6

7

8

We can verify the circuit elimination axiom: Consider the two circuits C = 12 and D = 13.
Then C ∩ D = 1 and (C ∪ D) \ 1 = 23, which is also a circuit. The analogue holds true
for any choice of C and D in {12, 13, 23}. Since the other two circuits 5 and 678 have no
nonempty intersections with each other or the other circuits, this concludes the verification.

From the graph above, it is clear that 4 needs to be contained in every basis, and that 5
can never be contained in a basis. The bases are the sets that contain one of 1, 2 and 3; 4;
and two of 6, 7 and 8. We list them all in Example 3.21. Below, we draw two examples of
bases, which correspond to the solid-color edges in the graphs.
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In the above example, we have seen that some matroids contain elements that are contained
in every basis, and elements that are contained in none.

Definition 3.15. Let M be a matroid on [n] and i ∈ [n]. If i is not contained in any basis,
i is called a loop. This corresponds to the graphical picture: If M is a matroid arising from
a graph, any loop of the matroid is a loop of the graph and vice versa. If i is contained in
every basis, i is called a coloop. Further, two non-loops i, j ∈ [n] are called parallel if {i, j}
is dependent in M . For matroids arising from a graph, this corresponds to the edges i and
j being parallel.

Example 3.16. The matroidM(G) we considered in Example 3.14, has one loop, the element
5 corresponding to the loop edge in the graph G, and one coloop, 4, corresponding to the
bridge edge in G. Furthermore, three elements are (pairwise) parallel, the elements 1, 2 and
3, which correspond to the respective parallel edges of G.
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Remark 3.17. Circuits and independent sets can be stated in terms of each other. Circuits
are minimal dependent sets, i.e., the set of circuits of a matroid M is the set

C(M) = {S ⊆ [n] | (S \ s) ∈ Ind(M) for all s ∈ S}.

Definition 3.18. Let M be a matroid on the ground set [n] with bases B(M). Its dual
matroid M∗ is a matroid on the same ground set [n]. It is defined by its set of bases

B(M∗) = {Bc | B ∈ B(M)},

i.e., the bases of M∗ are the complements of the bases of M . We call the set B(M∗) the
cobases of M . Here, Bc denotes the complement of the set B in [n].

Example 3.19. The dual of the uniform matroid U2,3 considered in Example 3.3 is the uniform
matroid U1,3. For a general uniform matroid Ur,n, its dual matroid is Un−r,n. We construct
the dual of the matroid in Example 3.14 below in Example 3.21.

Definition 3.20. Let M be a matroid. The set of cocircuits C∗(M) is the set of circuits of
the dual matroid M∗.

Example 3.21. We again consider the matroidM(G) arising from the graph in Example 3.14.
We give its bases and cobases below.

B(M) 1467 1468 1478 2467 2468 2478 3467 3468 3478

B(M∗) 2358 2357 2356 1358 1357 1356 1258 1257 1256

Using Remark 3.17, we can determine its cocircuits to be 123, 4, 67, 68 and 78, colored in on
the graph below. Observe that cocircuits are in general not the complements of circuits!
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3.1.3. Constructions on matroids. There are many different ways in which one can construct
one matroid from another. One such construction is that of the dual matroid we considered
in Definition 3.18. We continue with two different ways to remove an element of the base
set.

Definition 3.22. Let M be a matroid on [n] and let S ⊆ [n]. The set

I = {I ⊆ S | I ∈ Ind(M)}

is the set of independent sets of a matroid. We write M |S (or M \ Sc) for this matroid and
call it the restriction of M to S (or, alternatively, the deletion of Sc from M).

If M is a matroid arising from a graph, deletion on the level of matroids corresponds to
the deletion of edges of a graph, and then taking the matroid of the resulting graph. Another
way of getting rid of an edge in graph theory is by contracting it. This has an interpretation
in matroid theory, too:
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Definition 3.23. Let M be a matroid on [n] and T ⊆ [n]. The contraction of T in M is the
matroid

M/T = (M∗ \ T )∗.
Example 3.24. We continue with the matroid from Example 3.14. On the left, we depict
the graph obtained from deleting 8 and on the right, we depict the graph obtained from
contracting 8.
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We can compute the bases of the two matroids:

B(M \ 8) 1467 2467 3467

B(M/8) 146 147 246 247 346 347

Note that the two matroids are very different: M \ 8 has rank 4 whereas M/8 has rank 3 —
any basis of M \ 8 contains 67, whereas 67 is a dependent set in M/8.

We conclude by defining direct sums of matroids, which allow us to construct a matroid
on a larger ground set.

Definition 3.25. Let M and N be matroids over the ground sets [m] and [n] respectively.
Their direct sum is the matroid M ⊕ N on the disjoint union of the ground sets [m] ⊔ [n],
given by its bases

B(M ⊕N) =
{
B1 ⊔B2 | B1 ∈ B(M) and B2 ∈ B(N).

}
3.1.4. Flats and Bergman fans. Another concept we can use in linear algebra to characterize
independence is that of closed subspaces. For matroids, flats model this behavior.

Definition 3.26. Let M be a matroid over [n] and let rkM be its rank function. Then, the
set of flats LM consists of all sets that are closed under the rank function, i.e., F ⊆ [n] is a
flat if and only if rkM(F ) < rkM(F ∪ i) for any i ∈ F c.

The flats of a matroid have additional combinatorial structure. They form a geometric
lattice.

Definition 3.27. A lattice is a partially ordered set L = (L,≤) such that for any two points
x and y in L
(L1) the set {z ∈ L | z ≤ x and z ≤ y} has a unique maximal element, called the meet of

x and y, and
(L2) the set {z ∈ L | z ≥ x and z ≥ y} has a unique minimal element, called the join of

x and y.

We say that x covers y if x ̸= y, x ≥ y and if x ≥ z ≥ y, then z = x or z = y. If L has a
unique minimal element o, we call x an atom of L if x covers o. Intuitively, atoms are the
smallest nontrivial elements of the lattice.

A lattice L is geometric if it additionally satisfies the following properties:
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(L3) L is finite, i.e., |L| <∞;
(L4) L is semimodular, i.e., if x and y cover their meet, then their join covers both x and

y; and
(L5) every point of L that is not o is the join of atoms.

Geometric lattices give us yet another characterization of matroids:

Theorem 3.28 ([138, Theorem 3.1]). A lattice L is isomorphic to a lattice of flats of a
matroid if and only if it is geometric.

Remark 3.29. Let M be a matroid. We can make a few direct observations about its lattice
of flats LM :

(a) Maximal flags of flats (i.e., maximal chains of flats contained inside of each other)
have length rk(M) + 1.

(b) The lowest element o is the union of all loops of M .
(c) If A and B are parallel elements in M , then any flat F containing A also contains B.

Example 3.30. We construct two examples. We begin by reconsidering the matroid U2,3 from
Example 3.3. Its lattice of flats is the lattice below.

∅

1 2 3

123

In the above lattice, the atoms are 1, 2 and 3. Each atom can be written as the join of
the atom with itself (i.e., 1 is the join of 1 and 1), and 123 is the join of 1, 2 and 3. Hence,
(L5) is satisfied. For a more complicated example, we compute the lattice of flats of the
matroid M(G) from Example 3.14. We can either check them manually, or use the Oscar

[114] command flats(M) to obtain them computationally. Using either method, we obtain
the lattice below:

5

1235 45 56 57 58

12345 12356 12357 12358 456 457 458 5678

123456 123457 123458 1235678 45678

12345678
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In this lattice, let us consider the points 1235 and 458. Their join is the flat 123458 and
their meet is the smallest flat, which is 5. Their meet 5 is covered by 1235, but not by 458,
as there exist the two intermediate flats 45 and 58. Analogously, their join 123458 is a cover
of 458 but not a cover of 1235, as there exists the intermediate flats 12345 and 12358 in the
lattice. While 1235 is an atom itself, the flat 458 can be written as the join of the two atoms
45 and 58.

We can observe the properties discussed in Remark 3.29:

(a) In Example 3.14 we observed that the matroid M(G) has rank 4, and all maximal
flags of flats, depicted by paths from the minimal element of the lattice to the maximal
element of the lattice are of length 5.

(b) In Example 3.16 we computed that M(G) has one loop, the element 5. This corre-
sponds to the minimal element o of LM(G).

(c) Again, in Example 3.16, we remarked that M(G) has three parallel elements, the
elements 1, 2 and 3. In the above lattice, we can observe that each flat either contains
123 or does not contain any of these elements.

Bergman fans. Now, we give a construction that connects matroids to linear tropical
geometry. The Bergman fan is a polyhedral fan that can be constructed from the lattice
of flats of a matroid and its support coincides with the tropicalization of any realization
of the matroid as a linear subspace over a field with trivial valuation. It was originally
introduced by Bergman [15] and brought to the tropical world by Ardila-Klivans [8] and
Feichtner-Sturmfels [55].

Definition 3.31 (For the formulation used here, see [80]). LetM be a matroid with lattice of
flats LM . Its Bergman fan ΣM ⊆ Rn/R1 is the polyhedral fan spanned by flags of nonempty
flats. That is, for each flag of flats F = F1 ⊆ . . . , Fk in LM , the fan ΣM has a cone

uF = Cone(eF1 , . . . , eFk
),

where Cone(eF1 , . . . , eFk
) denotes the polyhedral cone spanned by the vectors eF1 , . . . , eFk

.

Example 3.32. We return to U2,3. There are three maximal chains in the lattice of flats we
computed in Example 3.30, F1 = {∅ ⊆ 1 ⊆ 123}, F2 = {∅ ⊆ 2 ⊆ 123} and F3 = {∅ ⊆ 3 ⊆
123}. Thus, the Bergman fan ΣU2,3 has the three cones depicted below.

F1

F2

F3

(0, 0)

3.1.5. Representability. In the previous sections, we have seen multiple different definitions
of matroids arising as generalizations of concepts in linear algebra and graph theory. We
will conclude our review of matroid theory by discussing the concept of representability.
Intuitively, we want to know whether a matroid can arise as the matroid of a linear space
or of a graph, or whether it is simply a purely combinatorial object. Later, we will study
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similar phenomena in tropical geometry: we will investigate polyhedral complexes and wish
to identify whether they arise as the tropicalization of an algebraic variety or not.

Definition 3.33. A matroid M is called representable (in characteristic k) if there exists a
linear space L (of characteristic k) such that M = M(L) (as constructed in Remark 3.2).
We call L a representation of M . Otherwise, we call M nonrepresentable.

If M is representable in any characteristic, we say that M is regular. Further, M is called
graphic if there exists a graph G such that M =M(G).

Lemma 3.34 ([120] and [138, Theorem 9.5.1]). Every graphic matroid is regular, i.e., rep-
resentable over any characteristic.

Now, we give some notable examples of nonrepresentable matroids.

Example 3.35. We begin by constructing the Fano matroid F7. It is a matroid used for
describing the incidence geometry of lines and points in a projective plane given in Figure
4(a). Here, each vertex describes a point in some projective space, and each line describes
the collinearity of points: Points that lie on a line are collinear. For instance, the points 1, 4
and 7 are collinear, whereas the points 1, 3 and 4 do not lie on the same line. Sometimes, a
matroid arising in this way is called a geometric matroid.

We can read off a matroid from the geometric representation in Figure 4(a) as follows.
Collinear points are linearly dependent, so independent sets are sets of vertices such that
there is no line between them, and bases are the maximal such sets. Then, the bases are all
subsets of size 3 except the sets corresponding to vertices lying on one of the six lines or the
circle, i.e.,

B(F7) =

Ç
[n]

3

å
\ {123, 147, 156, 246, 257, 345, 367}.

This geometric arrangement is representable over F2 using all possible vectors in F3
2 assigned

to the vertices of the diagram above as follows:

v1 =

10
0

 , v2 =
11
0

 , v3 =
01
0

 , v4 =
01
1

 , v5 =
00
1

 , v6 =
10
1

 and v7 =

11
1

 .
The arrangement is not representable in any other characteristic.
Now, let’s consider the non-Fano matroid F 7. The only difference to the Fano matroid

is that now, 2, 4 and 6 are not collinear. This changes representability drastically: the line
arrangement cannot be attained in a projective space of characteristic 2. Since there are
only seven distinct vectors in P3

F2
and they satisfy the geometric arrangement given by the

Fano matroid, the points associated to 2, 4 and 6 are collinear. Instead, F 7 is representable
in any other characteristic.

Finally, to obtain a matroid that is not representable over any characteristic, we take the
direct sum of the two matroids. A smaller (but less intuitive) example of a non-representable
matroid is the Vámos matroid, introduced by Vámos in [135] and described in [138, Theorem
11.3.7], and the non-Pappus matroid, shown to be nonrepresentable in [25, Example 1.1.3].
The non-Pappus matroid NP9 is the geometric matroid depicted in Figure 5. Intuitively, its
obstruction to representability is similar to the one for the Fano matroid: the collinearity
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5

3

1

42

6

7

5

3

1

42

6

7

Figure 4. The geometric representation of the Fano matroid on the left and
the non-Fano matroid on the right.

1

2

3

4

5

6

7 8 9

Figure 5. The geometric representation of the non-Pappus matroid.

conditions imposed on all points force the points 7, 8 and 9 to be collinear, but the diagram
forces them to be independent.

Representability of matroids and tropicalizations of linear spaces have many connections
we will see in more detail in Section 3.3. The simplest such connection is the correspondence
between Bergman fans of realizable matroids and the tropicalizations of linear spaces using
the trivial valuation.

Theorem 3.36 ([55]). Let L be a linear space over a field k and trop(L) its tropicalization
(as defined in 2.5) using the trivial valuation. Then, the support of trop(L) equals the
support of the Bergman fan ΣM(L) of the underlying matroid M(L) of L. Conversely, if
the Bergman fan Σ is obtainable as the tropicalization trop(L) of a linear space L using the
trivial valuation, then the matroid of Σ is representable.

We have already observed the behavior stated in the theorem: compare the fans we ob-
tained in Example 2.23 and Example 3.32.

3.2. Morphisms of matroids. In this section, we will study maps between matroids and
analyze their properties. We will mainly focus on strong maps, which we will extend to
morphisms of valuated matroids later. While most of the theory introduced in this section
is standard, some statements here have no easy direct references in the literature. Wherever
this is the case, we supply a proof for completeness’ sake.
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3.2.1. Matroid quotients. To start defining maps of matroids, we first need to define what it
means for two matroids to be “contained inside of each other”.

Definition 3.37. Let M and N be two matroids over the same ground set [n]. We say that
N is a matroid quotient of M and write N ↞M if any flat of N is a flat of M .

Lemma 3.38. [139, Proposition 8.1.6] Let M and N be two matroids on [n]. The following
are equivalent:

(a) N is a quotient of M .
(b) Any circuit of M is a union of circuits of N .
(c) M∗ is a matroid quotient of N∗.
(d) For any A ⊆ B ⊆ [n], rkN(B)− rkN(A) ≤ rkM(B)− rkM(A).
(e) There exists a set [n′] and a matroid M ′ on [n] ∪ [n′] such that N = M ′/[n′] and

M =M ′ \ [n′].

Matroid quotients model the linear algebra concept of two vector spaces being contained
inside each other. If L1 ⊆ L2 ⊆ Kn are two linear spaces, then their matroids form a
quotient, M(L1) ↞M(L2). We will see this explicitly in the next example.

Example 3.39. Consider the row spaces L1 and L2 of the two matrices

M1 =
î
1 −1 0

ó
and M2 =

ñ
1 −1 0

1 0 −1

ô
.(2)

Then L1 ⊆ L2. The flats of M1 are the loop 3 and the full set 123. We have seen in Example
3.30 that the flats of M2 are ∅, 1, 2, 3 and 123. Thus, the flats of M1 are also flats of M2 and
M1 ↞M2.

Definition 3.40. LetM1 andM2 be two matroids over [n] and letM1 be a matroid quotient
of M2. We say that the quotient M1 ↞M2 is representable if there exist representations L1

of M1 and L2 of M2 such that L1 ⊆ L2.

Representability for matroid quotients is more complicated than it is for matroids. We
give an example of two matroids that are individually representable and form a quotient,
but that are not representable as a quotient.

Example 3.41 (Extended version of [25, Example 1.7.7]). In Example 3.35, we had seen that
the non-Pappus matroid NP9 is not representable over any characteristic. Now, consider the
matroidM2 = NP9 \9 obtained by deleting 9 from the non-Pappus matroid and the matroid
M1 = NP9/9, obtained by contracting 9 in the non-Pappus matroid. The deletion M2 is a
representable matroid in characteristic ≥ 3, for instance represented as the matroid of the
linear space

L2 =

1 0 1 0 1 1 0 1

0 1 1 0 2 2 2 1

0 0 0 1 1 2 1 1

 .
Further, the contraction M1 is representable in characteristic ≥ 5, it can be represented by

L1 =

ñ
1 0 1 1 2 0 2 3

0 1 1 2 2 1 1 2

ô
.
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By Lemma 3.38(e), the two matroids form a quotient M1 ↞M2. The matroid M1 has rank
two, and only two subsets of size 2 are linearly dependent: 26 and 35. Assume there is
a subspace U1 of L2 realizing M1. We then perform row operations on L2 until U1 is the
submatrix corresponding to the first two rows of the resulting matrix. We call this resulting
matrix A. Since M1 contains no loops, U1 contains no zero columns, hence we may assume
that e3 is not a column of A.
We append e3 as a column to the matrix A and consider the 9 × 3 matrix (A|e3). Then,

the matroid of (A|e3) is the non-Pappus matroid NP9 we had depicted in Figure 5, with
e3 corresponding to the point 9. This can be seen as follows. First, as M2 is NP9 \ 9,
all independent sets of M2 (and hence A) coincide with the independent sets of NP9 not
containing 9. Thus, we only need to confirm that the newly added column e3 satisfies all the
independence properties of the element 9 in NP9.
By assumption, A has no column equal to e3. As U1 realizesM1, the columns 2 and 6, and

3 and 5 are pairwise dependent in U1. Then, in (A|e3), the sets {A2, A6, e3} and {A3, A5, e3}
are linearly dependent as well (here, Ai denotes the i-th column of A). As all other columns
in U1 are pairwise independent, so is {Ai, Aj, e3} for all other pairwise distinct i and j. Thus,
e3 satisfies all properties of the ground set element 9 in NP9. But then NP9 is represented
by the row space of the matrix (A|e3), contradicting its nonrepresentability we had discussed
in Example 3.35.

3.2.2. Morphisms and strong maps. In linear algebra, matrices and linear maps of linear
spaces are an important object of study. Generalizing linear maps of linear spaces to matroids
is harder, as all generalizations in literature are less well-behaved and only cover aspects of
the properties of linear maps in linear algebra. Thus, there are multiple different notions of
what a morphism of matroids should be. Among those, the most well-known are weak and
strong maps of matroids [97, 96]. In this thesis, we will focus on strong maps of matroids,
which we will generalize to valuated matroids later on. We begin by introducing morphisms
of matroids, which underlie the theory of strong maps. A morphism of matroids is defined as
a map of ground sets that satisfies compatibility conditions with the corresponding matroids.

Definition 3.42. Let M and N be matroids over the ground sets [m] and [n] respectively.
A morphism f :M → N is a function of sets from [m] to [n] satisfying

rkN(f(T2))− rkN(f(T1)) ≤ rkM(T2)− rkM(T1) for all T1 ⊆ T2 ⊆ [m].

Example 3.43. We have secretly already seen our first example of morphisms of matroids:
matroid quotients can be naturally interpreted as morphisms of matroids where f is the
identity map. This follows directly from Lemma 3.38(d).

We give two explicit examples of morphisms of matroids in Example 3.47. Before we do
so, we give different equivalent characterizations of morphisms of matroids, which will allow
us to check the morphism properties more easily. To this end, we define the induced matroid,
which will take the place of a classical preimage. For completeness’ sake, we include a proof
of the well-known fact that this is a matroid.

Proposition-Definition 3.44. Let N be a matroid over the ground set [n] and let m ∈ N.
Let f : [m] → [n] be a function of sets. Then, we can define a matroid f−1(N) on [m], called
the induced matroid, defined by the rank function

rkf−1(N)(T ) = rkN(f(T )) for T ⊆ [n].
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Proof. We show that rkf−1(N) is a rank function. First, we note that since N is a matroid,
rkf−1(N)(T ) = rkN(f(T )) ∈ Z≥0. The other criteria laid out in Definition 3.9 can be seen as
follows.

(R1) We have rkf−1(N)(∅) = rkN(f(∅)) = rkN(∅) = 0.
(R2) Since f is a function, f(T ) ⊆ f(T ∪x) for all x ∈ [m]. Thus, by rkN being monotonic,

rkf−1(N)(T ) = rkN(f(T )) ≤ rkN(f(T ∪x)) = rkf−1(N)(T ∪x). Finally, since f(T ∪x) =
f(T ) ∪ f(x), rkf−1(N)(T ∪ x) ≤ rkf−1(N)(T ) + 1.

(R3) Let T1, T2 ⊆ [n]. We show submodularity as follows.

rkf−1(N)(T1 ∪ T2) + rkf−1(N)(T1 ∩ T2) = rkN(f(T1 ∪ T2)) + rkN(f(T1 ∩ T2))
≤ rkN(f(T1) ∪ f(T2)) + rkN(f(T1) ∩ f(T2))
≤ rkN(f(T1)) + rkN(f(T2))

= rkf−1(N)(T1) + rkf−1(N)(T2),

where the first inequality follows from f being a function of sets and rkN being
monotonic and the second inequality follows from the submodularity of rkN (see
Definition 3.9(R3)). □

Lemma 3.45 ([53, Definition 2.1, Lemma 2.4]). Let M and N be matroids over the ground
sets [m] and [n] respectively, and let f : [m] → [n] be a function of sets. The following are
equivalent:

(a) f is a morphism of matroids;
(b) The induced matroid f−1(N) is a quotient of M , i.e., f−1(N) ↞M .
(c) If T ⊆ [n] is a cocircuit of N , then f−1(T ) is a union of cocircuits of M ;
(d) If T ⊆ [n] is a flat of N , then f−1(T ) is a flat of M ;
(e) If T ⊆ [n] is a circuit of M , then T is a union of circuits of f−1(N), i.e., f(T ) is a

union of circuits of N .

Proof. The characterizations not explicitly laid out in [53, Lemma 2.4] are a direct conse-
quence of the equivalent characterizations of matroid quotients, see Lemma 3.38. □

Remark 3.46. If we are mainly interested in graphical matroids, this is the correct gen-
eralization of a homomorphism. Any homomorphism of graphs induces a morphism of the
underlying matroids (see, for instance, [53, Remark 1.5]). We describe this below in Example
3.47.

Example 3.47. Recall that a homomorphism of two graphs G1 = (V1, E1) and G2 = (V2, E2)
is a map of vertices V1 → V2 that preserves incidences: Adjacent vertices are mapped to
adjacent vertices. The two pictures below can be understood as follows. On the right, we
have the graphical representation of U2,3 which we introduced in Example 3.3 and studied
in various examples in Section 3.1. On the left, we have two graphs representing matroids.
The color of a vertex indicates which vertex it gets mapped to. The bottom graph on the
left is [53, Example 1.5].
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While checking that these maps are morphisms is possible using the first definition we
gave, it is much more convenient to use Lemma 3.45: Note that any simple cycle in the
graphs on the left has at least one vertex each that is red, yellow, and blue. Thus, any
circuit maps onto the sole circuit on the right, and Lemma 3.45(e) now ensures the map
is a morphism. We will discuss a more systematic approach to verifying whether a map of
ground sets is a morphism of matroids in Example 3.51.

We can verify that f : M → N is an isomorphism of matroids in the “categorical sense”
(i.e., if there exists a morphism g :M → N such that f ◦ g = idN and g ◦ f = idM), then the
two matroids M and N are isomorphic, i.e., their bases coincide up to consistent relabeling
of the ground set.

Lemma 3.48 (Isomorphisms). Let M and N be matroids over the ground sets [m] and [n]
respectively. Let f : M → N be a morphism of matroids. Then, f satisfies the following
properties:

(a) Let T ⊆ [m]. Then rkN(f(T )) ≤ rkM(T ).
(b) Assume further that f−1 : N → M is well-defined and a morphism. Then, M∼=N ,

i.e., f is a bijection that preserves independent sets (see [138, Definition 1.2]).

Proof. (a). We have ∅ ⊆ T . Further, rk(∅) = 0 for all matroids. Thus,

rkN(f(T ))− rkN(f(∅)) ≤ rkM(T )− rkM(∅) ⇔ rkN(f(T ))− 0 ≤ rkM(T )− 0.

(b). By f−1 being a well-defined map, f : [m] → [n] is a bijection of sets, and, in particular,
[m] = [n]. Further, for all T1 ⊆ T2 ⊆ [m]:

rkN
(
f(T2)

)
− rkN

(
f(T1)

)
≤ rkM(T2)− rkM(T1) = rkM

(
f−1(f(T2))

)
− rkM

(
f−1(f(T1))

)
≤ rkN

(
f(T2)

)
− rkN

(
f(T1)

)
,

where the first inequality follows by f being a morphism, the equality by f−1(f(T )) = T
and the last inequality is due to f−1 being a morphism. Thus, f preserves flats:

Let U be a flat of M . Then, for all i ∈ [m] \ U , 1 = rkM(U ∪ i) − rkM(U) = rkN
(
f(U ∪

i)
)
− rkN

(
f(U)

)
= rkN

(
f(U) ∪ f(i)

)
− rkN

(
f(U)

)
. Now, since f is a bijection of sets,

f([m] \ U) = f([m]) \ f(U) = [n] \ f(U), so U is a flat of N . Analogously, any flat of N is a
flat of M , so f preserves flats and hence independent sets. □
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One of the main obstructions of viewing morphisms of matroids as the appropriate gener-
alization of linear maps of linear spaces is the fact that morphisms of matroids cannot encode
coordinate projections: there is no a priori concept of a “zero vector” in matroid theory that
vectors could get mapped to. This can be dealt with by adding a loop o to each matroid to
encode a zero vector.

Definition 3.49. LetM be a matroid over the ground set [n]. Its associated pointed matroid
Mo is a matroid over the ground set [n]∪{o} with the same bases asM , i.e., B(Mo) = B(M).
Alternatively, we can describe Mo as M ⊕ U0,1.

A strong map f : M → N of matroids is a morphism f : Mo → No of matroids (in the
sense of Definition 3.42) satisfying that f(o) = o.

Remark 3.50. Let M and N be matroids over the ground sets [m] and [n] respectively.

(a) By [79, Lemma 3.2] any morphism of matroids f : M → N can be extended to a
strong map fo : Mo → No by setting fo(i) = f(i) for all i ∈ [m] and fo(o) = o. In
Example 3.51 we will see that the converse of this is not true, and that there exist
pairs of matroids that have strong maps between them but not morphisms.

(b) Using strong maps instead of morphisms is not a serious issue for the interpretation
we gave in Example 3.47 for graphic matroids — if f : G1 → G2 is a homomorphism
of graphs, then any loop on G1 gets mapped to a loop on G2 incident to the correct
vertex by the definition of graph homomorphisms. It is just a less natural construction
in this setting.

Example 3.51. We give an example of two matroids that have a strong map between them,
but no morphisms. We consider the matroid M = U0,1 of rank 0 on [1] whose basis is the
empty set, and the uniform matroid N = U2,4. Then, there exist no morphisms of matroids
between M and N , but there exists a strong map — the map sending both loops of Mo to
the unique loop o in No.

For computations checking whether a given map of sets is a morphism of matroids or a
strong map and for generating all morphisms, resp. strong maps between two matroids M
and N , we have written Oscar [114] code. The code is supplied in Appendix B.1 and can be
found in executable form at https://victoriaschleis.github.io/thesis/. Below, you
can see the computational check that the above map is a morphism of matroids. Computa-
tionally, we construct the map as a dictionary, which records the image of elements of the
ground set under the map f . For instance, below we consider a map from the ground set [1]
to [4] (resp, [4] ∪ {o}, where 5 denotes o). The map sends the sole element 1 to 4, resp. 5.

julia> M = matroid_from_bases([[]],1);

julia> N = uniform_matroid(2,4);

julia> f = Dict(1=>4);

julia> is_morphism_of_matroids(M, N, f)

false

julia> f2 = Dict(1=>5);

https://victoriaschleis.github.io/thesis/
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julia> is_strong_map(M, N, f2)

true

Using the function find all morphisms and find all strong maps from Appendix B.1
on the two matroids discussed above yields the assertion made above:

julia> find_all_morphisms(M, N)

Dict{Int64, Int64}[]

julia> find_all_strong_maps(M, N)

1-element Vector{Dict{Int64, Int64}}:

Dict(2 => 5, 1 => 5)

Just as every linear space has an associated matroid, every linear map of linear spaces has
an associated strong map of matroids.

Lemma 3.52. [53, 79] Let V and W be two linear spaces, and let f : V → W be a map.
Then, f induces a strong map of the underlying matroids, fM :M(V ) →M(W ).

3.2.3. Projections. We now consider an important subclass of examples: projections. These
are interesting for many reasons: for instance, as we had seen in Lemma 4.10, all realizable
strong maps of matroids are equivalent to projection maps. Further, projection maps will be
one of the important special types of maps in the valuated setting in Section 5.1, and their
parameter spaces will be our main object of study in Section 10.

Definition 3.53. Let M and N be matroids over a common ground set [n]. Let S ⊆ [n].
Then, we define the projection map prS :Mo → No as the map of sets

prS : [n]o → [n]o

prS(i) =

®
i if i /∈ S,

o if i ∈ S.

We call a projection map that is additionally a strong map a projection morphism.

Not all naive projection maps defined in this way are projection morphisms:

Example 3.54. We consider the map pr3 : U2,3o → U2,3o . Here, pr3 is not a morphism: we
consider the sets 13 ⊆ 123. Then

1 = rk(12)− rk(1) = rk(pr3(123))− rk(pr3(13)) > rk(123)− rk(13) = 0,

so pr3 is not a morphism. This should not surprise us: Consider the representation of U2,3o

given in matrix form on the left side below, where U2,3o is the row space of the matrix and
the columns of the matrix are the elements of the matroid. Then, there exists no linear map
representing the naive projection of the third column to zero, i.e., no matrix A satisfying

A ·
ñ
1 −1 0 0

1 0 −1 0

ô
=

ñ
1 −1 0 0

1 0 0 0

ô
.

Further, not all morphisms of matroids can be represented as projection morphisms:

Example 3.55. We consider f : U3,3o → U3,3o given by f(o) = o, f(1) = 1, f(2) = 2 and
f(3) = 2.

First, we note that this is a morphism of matroids since every map of sets g : [3]o → [3]o
from U3,3o to itself that sends o to itself is a morphism of matroids as every flat of g−1(N)



TROPICAL QUIVER THEORY AND TROPICAL ENUMERATION ON RULED SURFACES 43

contains o by construction and the flats of U3,3o are all sets that contain o. Now f−1(U3,3)
is a matroid of rank 2 with only loop o. Assume f is represented as a projection morphism
prS. Then, S ̸= ∅ as rk(f−1(U3,3)) = 2 whereas rk(U3,3) = 3. So, assume i ∈ S. Then i is a
loop in f−1(U3,3), contradiction.

We can characterize bases of induced matroids under projection maps in the following
way.

Lemma 3.56. Let prS : M → N be a projection morphism in the sense of Definition 3.53.
Let I be a basis of pr−1

S (N). Then, I satisfies the following properties:

(a) I is an independent set of both M and N , and I ∩ S = ∅;
(b) Any basis B ⊃ I of N is of the form B = I ∪ (B ∩ S).

Proof. (a) Since I is a basis of pr−1
S (N),

|I| = rkpr−1
S (N)(I) = rkN(prS(I)) ≤ rkM(I) ≤ |I|,

where the first inequality follows by Lemma 3.48(a). Thus, |I| = rkM(I), so I is an
independent set of M. Further, since |I| = rkN(prS(I)) ≤ | prS(I)|, |I| = | prS(I)|, so
I ∩S = ∅. Now, this implies that |I| = rkN(prS(I)) = rkN(I), so I is an independent
set of N.

(b) Assume not. Let B be a basis of N that contains j ∈ B where j /∈ I and j /∈ S.
We consider I ∪ j. By construction, rkN(I ∪ j) = rkN(I) + 1. Since M and N are
matroids over the same ground field and prS is the identity outside S, j and hence
I ∪ j can also be interpreted over M.

First, assume I ∪ j is independent over M. Then,

|I|+ 1 = |I ∪ j| = rkM(I ∪ j) = rkN(I ∪ j) = rkN
(
prS(I ∪ j)

)
,

as I ∪ j = prS(I ∪ j). But then I is not a basis of pr−1
S , contradiction.

So, assume I ∪ j is dependent over M. Since I is a basis of pr−1
S (N), thus by (a)

an independent set of M , rkM(I ∪ j) = rkM(I). Thus,

1 = rkN(I ∪ j)− rkN(I) = rkN(prS(I ∪ j))− rkN(prS(I)) > rkM(I ∪ j)− rkM(I) = 0,

contradiction to prS being a morphism. Thus, I ∪ j is dependent over N , hence
B ⊃ I ∪ j is not a basis.

□

3.2.4. Categorical Properties. We conclude this section by giving a brief review of the cat-
egorical properties of the category of matroids with morphisms of matroids Matr and the
category of matroids with strong maps Matro. Most of the properties reviewed here were
shown by Heunen-Patta in [79], though some properties go back to Kung [139, Chapter 8].
Many of the categorical properties are just restatements of properties we showed in Section
3.2, expressed in the language of category theory.

Proposition 3.57 ([79, Figure 1.1 and Propositions 3.2-3.7]). The categories Matr and
Matro have coproducts which are the direct sums of matroids we defined in Definition 3.25.
They do not in general have products, pullbacks, or pushouts. Further, addition and deletion
are functors from the categories to themselves, whereas dualization is not.
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The category Matro has slightly more structure than Matr: it has a zero object, the
matroid U0,1 we discussed in Example 3.51. The category Matr has no zero element: the
matroid U0,1 is still a terminal object, but it is not initial. This is exactly the difference we
observed in Example 3.51. Thus, the two categories are not equivalent.

Further, the category Matro is a reflexive subcategory of Matr, where the inclusion of
Matro into Matr has a left adjoint (·)o, given by the procedure described in Remark 3.50(a),
see [79, Lemma 3.2].

3.3. Valuated matroids and tropical linear spaces. In this section, we enrich the struc-
ture of matroids with an additional value assigned to each basis. The structure we obtain
was first defined by Dress-Wenzel [51]. Since then, many different cryptomorphic sets of
axioms have been developed, mainly by Murota [111, 112]. One of the motivating ideas
behind matroids is that for linear spaces, matroids encode the nonsingular minors of the
matrix defined by their generating sets. For valuated matroids, we retain more structure:
we do not just remember which minors are zero or non-zero, instead we remember the val-
uation of the minor. It turns out that this theory can be translated to tropical geometry:
valuated matroids are in one-to-one correspondence with tropical linear spaces [132], which
are a generalization of the tropicalized linear spaces we have encountered in Section 2.2.2.

3.3.1. Bases and independent sets. We begin by defining valuated matroids as a function on
bases. This is the original definition, due to Dress-Wenzel [51].

Definition 3.58. A valuated matroid of rank r on the ground set [n] is a function µ :
(
[n]
r

)
→

T such that µ(B) ̸= ∞ for some B ∈
(
[n]
r

)
and, for all I, J ∈

(
[n]
r

)
and i ∈ I \ J , there exists

j ∈ J \ I satisfying

µ(I) + µ(J) ≥ µ(I \ i ∪ j) + µ(J \ j ∪ i).
We say that two valuated matroids µ and ν on a common ground set [n] are equivalent if

there exists a ∈ R such that µ(B) = ν(B) + a for every B ∈
(
[n]
r

)
. In other words, every

equivalence class of a valuated matroid ν :
(
[n]
r

)
→ T can be seen as a point in P

(
T(

n
r)
)
.

Throughout, we only consider valuated matroids up to equivalence.

As in the case of matroids, every linear space over a field with valuation has an associated
matroid. It can be constructed as follows.

Remark 3.59. Consider a field K with valuation val : K → T and an r-dimensional vector
subspace L of Kn given as the minimal row span of a matrix A. We denote by (pI)I the

Plücker coordinates of A, where pI is the minor of A indexed by I ∈
(
[n]
r

)
. Then, the function

µ(A) :
(
[n]
r

)
→ T defined by I 7→ val(pI) is a valuated matroid.

Example 3.60. We return to the matroid U2,3 we considered extensively in Section 3.1. This
time, we choose a different set of vectors to define the matroid — the column vectors of the
following matrix defined over the field of Puiseux series C{{t}} we discussed in Definition 2.4:

L =

ñ
tb −ta 0

1 0 −ta
ô
.

Computing the minors of the above matrix, we obtain the valuated matroid µ(L) :
(
[3]
2

)
→

T with individual values µ(12) = val(ta) = a, µ(13) = val(ta+b) = a + b and µ(23) =
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val(t2a) = 2a. This valuated matroid is equivalent to the matroid µ̃ obtained by subtracting
a from all values of µ(L). For this matroid, the values are µ̃(12) = 0, µ̃(13) = b and
µ̃(23) = a. In the following, we will identify the matroids µ̃ and µ(L).

Definition 3.61. Given a valuated matroid ν :
(
[n]
r

)
→ T, the set {B ∈

(
[n]
r

)
: ν(B) ̸= ∞}

forms the bases of a matroid N , which we call the underlying matroid of ν.

Remark 3.62. Recall from Section 2.1 that every field has a valuation using the trivial
valuation. The information of a valuated matroid obtained from a linear space over a field
with trivial valuation is precisely that of a matroid — it only recalls whether a set is a basis
or is not.

As for matroids, there are again a multitude of different ways to define valuated matroids.
One way that will be helpful to study morphisms of valuated matroids is via independent
sets. This theory was developed by Murota in [111].

Definition 3.63. A function µ : 2[n] → T is called a valuated matroid if for all G,H ⊆ [n],
the following are satisfied:

(VI1) If G ⊆ H, then µ(G) ≤ µ(H)
(VI2) For G ∈ Ind(M) \ B(M), there exists v ∈ [n] \G such that µ(G) = µ(G ∪ v).
(VI3) If |G| = |H|, for all g ∈ G \ H there exists h ∈ H \ G such that µ(G) + µ(H) ≥

µ(G \ g ∪ h) + µ(H \ h ∪ g).
(VI4) If |G| = |H|−1, there exists h ∈ H \G such that µ(G)+µ(H) ≥ µ(G∪h)+µ(H \h).
Sometimes, we call axiom (VI2) the extension axiom, axiom (VI3) the independent set ex-
change axiom, and axiom (VI4) the augmentation axiom.

Remark 3.64 ([111, Construction 3.1, Theorem 3.2]). We can connect valuations on inde-
pendent sets again with valuations on bases. Assume we have a valuated matroid µ defined
on bases. Then, we can define a valuation µ(·) on independent sets G by setting

µ(G) := min
B∈B(M)
G⊆B

µ(B).

On dependent sets, the valuation is formally set to be ∞.

Example 3.65. In Example 3.60 we had seen the valuated matroid µ :
(
[3]
2

)
→ T with

individual values µ(12) = 0, µ(13) = b and µ(23) = a. Using our new notion of valuation,
we can extend µ to

µ : 2[n] → T

where the values are given as below:

S ∅ 1 2 3 12 13 23 123

µ(S) min{0, a, b} min{0, b} min{0, a} min{a, b} 0 b a ∞
3.3.2. Valuated circuits, cocircuits and tropical linear spaces. In linear tropical geometry,
definitions of valuated matroids via their circuits and cocircuits play an important role, as
this is the way one usually constructs tropical linear spaces. As the theory of valuations on
independent sets, valuations on circuits and cocircuits were first defined by Murota [112], and
have since been studied in various tropical contexts, for instance in [100]. In the projective
setting, they were first considered in [129], and have since been studied, for instance, in [30].
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Definition 3.66. Let µ be a valuated matroid of rank r on [n]. For each I ∈
(

[n]
r+1

)
define

an element Cµ(I) ∈ Tn by

Cµ(I)i =

®
µ(I \ i) i ∈ I,

∞ i /∈ I.

The set of valuated circuits C(µ) of µ is defined as the image of®
Cµ(I) : I ∈

Ç
[n]

r + 1

å´
\ {(∞, . . . ,∞)}.

in P(Tn).

Definition 3.67. Let µ be a valuated matroid on [n]. The tropical linear space of µ is the
tropical prevariety

trop(µ) =
⋂

C∈C(µ)

V

Ñ⊕
i∈[n]

Ci ⊙ xi

é
⊆ P(Tn),

which is the intersection of tropical hypersurfaces of the linear forms whose coefficients are
the circuit entries.

Remark 3.68. Since we allow for matroids with loops, our matroids will correspond to projec-
tive tropical linear spaces, i.e., tropical linear spaces are tropical prevarieties living in P(Tn).
For some tropical linear spaces, these will correspond to tropicalizations of linear spaces in
projective space as we had introduced in Section 2.2.

Example 3.69. Consider again the matroid U2,3 with the valuation we defined in Example
3.60. We will now compute its tropical linear space. To this end, we compute the valuation
of its sole circuit 123. We have

Cµ(123)1 = µ(123 \ 1) = µ(23) = a,

Cµ(123)2 = µ(123 \ 2) = µ(13) = b, and

Cµ(123)3 = µ(123 \ 3) = µ(12) = 0,

thus Cµ(123) = (a, b, 0). Now, its tropical linear space is V (a ⊙ x1 ⊕ b ⊙ x2 ⊕ 0 ⊙ x3). The
associated polyhedral complex is a translation of the classical tropical line, depicted in Figure
6.

Definition 3.70. Let µ be a valuated matroid of rank r over the ground set [n]. For each

I ∈
(

[n]
r−1

)
, we define C∗

µ(I) ∈ Tn by

C∗
µ(I)i =

®
µ(I ∪ i) i /∈ I

∞ i ∈ I

The valuated cocircuits of µ are defined as the image of

C∗(µ) =

®
C∗

µ(I) : I ∈
Ç

[n]

r − 1

å´
\ {(∞, . . . ,∞)}

‘ in P(Tn). The support of a cocircuit C∗ ∈ C∗(µ) is the set supp(C∗) = {i ∈ [n] : C∗
i ̸= ∞}.
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Proposition 3.71 (Originally [112, Theorem 3.4], for the formulation here, see [100, Section
2.1]). Let µ be a valuated matroid of rank r on [n]. The tropical linear space trop(µ) can be
equivalently defined in terms of the cocircuits of a matroid,

trop(µ) =

 ⊕
C∗∈C∗(µ)

λC∗ ⊙ C∗ : λC∗ ∈ R

 .

Example 3.72. We recompute the tropical linear space of U2,3 we had computed in Example
3.69, using valuated cocircuits this time. The valuated cocircuits can be computed as follows.

C∗
µ(1)1 = ∞ C∗

µ(2)1 = µ(12) = 0 C∗
µ(3)1 = µ(13) = b

C∗
µ(1)2 = µ(12) = 0 C∗

µ(2)2 = ∞ C∗
µ(3)2 = µ(23) = a

C∗
µ(1)3 = µ(13) = b C∗

µ(2)3 = µ(23) = a C∗
µ(3)3 = ∞.

Thus, the three valuated cocircuits are (∞, b, a), (b,∞, b) and (a, b,∞). We draw the
resulting tropical linear space in Figure 6.

As instead of considering linear spans for cocircuits, we can also define a valuated matroid
by giving a set of vectors corresponding to linear spans of the circuits. These are defined as
follows:

Definition 3.73. Let µ be a valuated matroid of rank r over [n]. A vector (or valuated
cycle) of µ is any element of P(Tn) tropically generated by the valuated circuits. We write
the family of vectors as

V(µ) =

 ⊕
C∈C(µ)

λC ⊙ C : λC ∈ T, λC ̸= ∞

 .

The tropical span of cocircuits of a valuated matroid equivalently defines trop(µ), see [30,
Theorem B].

Vectors satisfy the following axiom system.

Proposition 3.74 (Vector elimination, originally [112], for the formulation here, see [100]).
A subset V ⊆ Tn is the set of vectors of a valuated matroid if and only if

(VE1) it is a subsemimodule of Tn, i.e., closed under tropical addition and tropical scalar
multiplication; and

(VE2) for any g,h ∈ V and i ∈ [n] such that gi = hi ̸= ∞, there exists f ∈ V such that
fi = ∞, fj ≥ gj ⊕ hj for all j ∈ ([n] \ i) and fj = gj ⊕ hj for all j ∈ ([n] \ i) where
gj ̸= hj.

The notion of representability carries over from classical matroid theory to valuated ma-
troids and tropical linear spaces. Here, it coincides with the realizability of the tropical
prevariety as a tropical variety.

Definition 3.75. Let µ be a valuated matroid over [n]. We say that µ called representable
(over K) if there exists a linear space L ⊆ Kn such that µ = µ(L) as in Remark 3.59.
A tropical linear space trop(µ) is called realizable (over K) if it is realizable as a tropical

prevariety, i.e., if there exists a linear space L ⊆ Kn such that trop(L) = trop(µ).

Proposition 3.76 ([131]). Let µ be a valuated matroid over [n] and L a linear subspace of
Kn. The following are equivalent:
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(−a,−b)

Figure 6. The tropical linear space of U2,3 with the valuation given in Ex-
ample 3.60, under the assumption 0 < a, b.

(a) The valuated matroid µ is representable by L, i.e., µ(L) = µ.
(b) The tropical and the tropicalized linear space coincide, i.e., trop(L) = trop(µ).

3.3.3. Constructions on valuated matroids. We can extend all the constructions we had con-
sidered for matroids to the valuated setting. We start by giving a valuation function for the
dual matroid:

Definition 3.77 ([51, Proposition 1.4]). Let µ be a valuated matroid of rank r on [n]. We
define the dual valuated matroid µ∗ of rank n− r on [n] by setting

µ∗ :

Ç
[n]

n− r

å
→ T

S 7→ µ(Sc).

Now, we consider deletions and contractions.

Definition 3.78 ([51, Proposition 1.2]). Let µ be a matroid of rank r on [n] with underlying
matroid M , and let S ⊆ [n]. Let k be the rank of the deletion M \S. Choose I ∈

(
S

r−k

)
such

that (Sc) ∪ I has rank r in M . Then, the map µ \ S :
(
Sc

k

)
→ T defined by

(µ \ S)(B) = µ(B ∪ I)
is a valuated matroid, with underlying matroid M \ S. Further, µ \ S is compatible with
equivalence, and different choices of I give rise to equivalent valuated matroids. The valuated
matroid µ \ S is called the deletion of µ by S ⊆ [n].

This construction can be equivalently stated in terms of the valuated circuits of the ma-
troid:

Definition 3.79. Let µ be a valuated matroid on [n] and S ⊆ [n]. The valuated circuits of
the deletion µ \ S are

C(µ \ S) =
{
C|Sc : C ∈ C(µ), supp(C) ⊆ Sc

}
.(3)

This is a direct consequence of [112, Theorem 3.1]. For the formulation used here, see [30,
Theorem 3.1.6].

Definition 3.80. Let µ be a valuated matroid on [n] and let S ⊆ [n]. We define the
contraction of µ by S as µ/S = (µ∗ \ S)∗.
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Finally, just as in the case of matroids, we can define the direct sum of two valuated
matroids.

Definition 3.81 ([81, Definition 2.6]). Let µ and ν be two valuated matroids over the ground
sets [n] and [n′]. Their direct sum can be given as

µ⊕ ν :

Ç
[n] ⊔ [n′]

rk(µ) + rk(ν)

å
→ T

µ⊕ ν(X) = µ(X ∩ [n]) + ν(X ∩ [n′]).

3.4. Parameter spaces. In algebraic geometry, one often considers parameter spaces, i.e.,
spaces whose points correspond to all objects satisfying a specific property. In this thesis, pa-
rameter spaces will be some of the most important objects of study: Later, we will introduce
quiver Dressians as parameter spaces for more complicated arrangements of linear spaces
(see Part 2), and in Part 3 we will study different moduli spaces of algebraic, logarithmic
and tropical curves. In this section, we will discuss parameter spaces for linear spaces (see
Section 3.4.1) and for flags of linear spaces (see Section 3.4.2).

3.4.1. The tropical Grassmannian and the Dressian. In algebraic geometry, the parameter
space of r-dimensional subspaces of n-space is the Grassmannian. It can be characterized
as follows.

Definition 3.82. Let r ≤ n be a nonnegative integer. The Grassmann-Plücker relations
are polynomials in the variables {pI : I ∈

(
[n]
r

)
} with coefficients in K,

Pr;n =

∑
j∈J\I

sign(j; I, J)pI∪jpJ\j : I ∈
Ç

[n]

r − 1

å
, J ∈

Ç
[n]

r + 1

å ,

where sign(j; I, J) = (−1)|{j
′∈J :j<j′}|+|{i∈I:i>j}|. These relations define the image of the Grass-

mannian Gr(r;n) in the projective space P(
n
r)−1 via the Plücker embedding,

Gr(r;n) = V
(
⟨Pr;n⟩

)
.

Example 3.83. The Grassmannian Gr(2; 4) is cut out by a single Plücker relation

f = p12p34 − p13p24 + p14p23.

After tropicalizing f as defined in Section 2.1 and quotienting out by the lineality space, the
tropical hypersurface V (trop(f)) is a tropical line which we have already seen in Example
2.23. Its three rays correspond to the three different combinatorial types of tropical lines we
covered in Example 2.24 and depicted in Figure 2.

The Grassmannian Gr(2; 5) is more complicated, it is cut out by the Plücker relations

p12p34 − p13p24 + p14p23 p12p35 − p13p25 + p15p23 p12p45 − p14p25 + p15p24

p13p45 − p14p35 + p15p34 p23p45 − p24p35 + p25p34.

Its tropicalization after quotienting by the lineality space and cutting with the sphere with
radius 1 is the Petersen graph, depicted below. Just like the tropical line, the Petersen graph
is a picture that will reoccur in all parts of this thesis.
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1

4

13

14

24

12

34

3

23

2

In tropical geometry, there exist two tropical analogues of the Grassmannian: the Tropical
Grassmannian and the Dressian.

Definition 3.84. Let r ≤ n be a nonnegative integer. The first tropical analogue of the
Grassmannian, the tropical Grassmannian trop(Gr(r;n)) is the tropicalization of the Grass-
mannian Gr(r;n), i.e.,

trop(Gr(r;n)) =
⋂

f∈⟨Pr;n⟩

V (trop(f)) ⊆ P(T(
n
r)).

Lemma 3.85 ([131, Theorem 3.8]). Let K be an algebraically closed field with nontrivial
valuation and let 0 < r ≤ n be natural numbers. The tropical Grassmannian trop(Gr(r;n))
is the parameter space of all tropicalizations of rank r linear subspaces of Kn.

The Dressian parametrizes more: its points correspond to tropical linear spaces (i.e.,
tropical linear spaces).

Definition 3.86. Let r ≤ n be a nonnegative integer. The Dressian Dr(r;n) is the tropical
prevariety cut out by the Plücker relations. It is

Dr(r;n) =
⋂

f∈Pr;n

V (trop(f)) ⊆ P(T(
n
r)).

Lemma 3.87. [132] Let 0 < r ≤ n be natural numbers. Then, the Dressian Dr(r;n) is the
parameter space of all tropical linear spaces of rank r over [n].

Remark 3.88 ([78, Theorem 3.1.3]). Additionally, for a matroidM one can define its Dressian
Dr(M) as the parameter space of all tropical linear spaces with underlying matroidM under
the Plücker embedding. With this notation, we have

Dr(r;n) =
⋃

M is a matroid
of rank r on [n]

Dr(M).

3.4.2. Valuated flag matroids and tropical flag varieties. In this section, we will describe val-
uated flag matroids and their associated tropicalized flag varieties and flag Dressians. The
main references for this section are [30, 76]. Haque originally introduced the concept of the
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flag Dressian, and Brandt-Eur-Zhang provided realizability statements and polyhedral char-
acterizations. Even though Haque already tried to introduce polyhedral characterizations,
his turn out to be incorrect.

Definition 3.89. Let µ and ν be two valuated matroids on same the ground set [n] of rank
r ≤ s respectively. We say that µ is a valuated matroid quotient of ν, denoted µ ↞ ν, if for
every I ∈

(
[n]
r

)
, J ∈

(
[n]
s

)
and i ∈ I \ J , there exists j ∈ J \ I such that

µ(I) + ν(J) ≥ µ(I ∪ j \ i) + ν(J ∪ i \ j).
Valuated matroid quotients induce quotients on the underlying matroids: If µ ↞ ν is a

valuated matroid quotient, andM and N are the underlying matroids of µ and ν respectively,
then M ↞ N .

Definition 3.90. A sequence of valuated matroids µ = (µ1, . . . , µk) on a common ground
set [n], is a (valuated) flag matroid if µi ↞ µj for every 1 ≤ i ≤ j ≤ k. Analogously, a
sequence of matroids M = (M1, . . . ,Mk) on [n] is a flag matroid if Mi ↞ Mj for every
1 ≤ i ≤ j ≤ n.

Remark 3.91. As in the case of valuated matroids and matroid quotients, there is a notion
of realizable flag matroids. If L1 ⊆ L2 are two linear subspaces of Kn, then we have µ(L1) ↞
µ(L2), see [30, Example 4.1.2].

Definition 3.92. Let r ≤ s ≤ n be nonnegative integers. The incidence Plücker relations
are the polynomials in the variables {pI : I ∈

(
[n]
r

)
} ∪ {pJ : J ∈

(
[n]
s

)
} with coefficients in K:

Pr,s;n =

∑
j∈J\I

sign(j; I, J)pI∪jpJ\j : I ∈
Ç

[n]

r − 1

å
, J ∈

Ç
[n]

s+ 1

å ,

where sign(j; I, J) = (−1)#{j′∈J :j<j′}+#{i∈I:i>j}. The tropicalizations of the incidence Plücker
relations are denoted by Ptrop

r,s;n. If r = s, we recover the Grassmann-Plücker relations.

The incidence-Plücker relations, combined with the Grassmann-Plücker relations, are the
equations cutting out flag varieties in multiprojective space.

Definition 3.93. Let r1 ≤ · · · ≤ rk ≤ n be nonnegative integers. The flag variety of rank
r1, . . . , rk is the multiprojective variety

Fl(r1, . . . , rk;n) =
⋂

0<i≤j∈[k]

Ñ ⋂
f∈⟨Pri,rj ;n⟩

V (f)

é
⊆ P(

[n]
r1
) × · · · × P(

[n]
rk
)

cut out by the Grassmann-Plücker and the incidence Plücker relations.
Points in the flag variety Fl(r1, . . . , rk;n) parametrize flags of linear spaces L1 ⊆ · · · ⊆ Lk

in Kn where dimLi = ri.

As was the case for the Grassmannian, the flag variety has two different tropical analogues.

Definition 3.94. Its tropicalization is the tropical flag variety, parametrizing realizable flags
of tropical linear spaces, that is, sequences trop(L1) ⊆ · · · ⊆ trop(Lk) where Li is a linear
subspace of Kn satisfying dimLi = ri.

If we only consider the tropical prevariety cut out by the Plücker relations instead of
tropicalizing the whole flag variety, we obtain the other tropical analogue.
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Definition 3.95. The flag Dressian of rank (r1, . . . , rk) on the ground set [n] is the tropical
prevariety of the corresponding incidence-Plücker and Grassmann-Plücker relations,

FlDr(r1, . . . , rk;n) =
⋂

0<i≤j∈[k]

Ñ ⋂
f∈Pri,rj ;n

V (trop(f))

é
⊆ P
Å
T(

[n]
r1
)
ã
× · · · × P

Å
T(

[n]
rk
)
ã
.

As in the case of the Dressian, the points in the flag Dressian can be characterized tropically
and combinatorially.

Theorem 3.96 ([30, Theorem A], [76, Theorem 1], [109, Lemma 2.6]). Let µ = (µ1, . . . , µk)
be a sequence of valuated matroids on a common ground set [n] of ranks r = (r1, . . . , rk)
respectively. The following are equivalent:

(a) µ is a point in FlDr(r;n) =
⋂

1≤i≤k V (Ptrop
ri;n

) ∩⋂1≤i<j≤k V (Ptrop
ri,rj ;n

),

(b) µ is a valuated flag matroid,
(c) trop(µ1) ⊆ · · · ⊆ trop(µk).

Example 3.97. In this example, we describe the tropicalization of the flag variety Fl(1, 2; 4),
parametrizing flags of points in lines in P3, with respect to the trivial valuation. By def-
inition, Fl(1, 2; 4) = V (P2;4 ∪ P1,2;4), since P1;4 contains just the zero polynomial. The
tropicalizations of the equations defining the ideal, given below, form a tropical basis, thus
FlDr(1, 2; 4) = trop(Fl(1, 2; 4)) (see [30, Theorem 5.2.1]).

Ptrop
2;4 = {p1,4p2,3 ⊕ p1,3p2,4 ⊕ p1,2p3,4} ,

Ptrop
1,2;4 =


p1p2,3 ⊕ p2p1,3 ⊕ p3p1,2,

p4p1,2 ⊕ p2p1,4 ⊕ p1p2,4,

p4p1,3 ⊕ p1p3,4 ⊕ p3p1,4,

p4p2,3 ⊕ p2p3,4 ⊕ p3p2,4.


The tropicalization trop

(
Fl(1, 2; 4)

)
is a 9-dimensional simplicial fan in P(T4) × P(T6) ×

P(T4). It can be computed in Macaulay2 [71] using code obtained in joint work with Alessio
Borz̀ı, which can be found in Appendix B.3 and is available online in [26]. We compute the
variety and determine some of its properties below using our code:

i1 : n = 4;

i2 : G = flatten for i from 1 to n-1 list(sort subsets(n, i));

i3 : R = QQ[ for I in G list p_I ];

i4 : L = {{1,4}, {2,4}, {1,2,4}};

i5 : I = pluckerRelations L;

i6 : Fl4 = tropicalVariety(I);

i7 : ambDim Fl4

o7 = 14

i8 : dim Fl4

o8 = 11

i9 : rank linealitySpace Fl4

o9 = 9

i10 : fVector Fl4

o10 = {0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 10, 15}



TROPICAL QUIVER THEORY AND TROPICAL ENUMERATION ON RULED SURFACES 53

The tropical variety modulo lineality space and after cutting with the sphere with radius
1 is a Petersen graph (see Figure 7). A point p in a top-dimensional cone (corresponding to
an edge of the Petersen graph) parametrizes a point vp contained in a generic tropical line
Lp in the three-dimensional tropical projective space P(T4). In Example 2.24 we had seen
that there are three combinatorial types of generic tropical lines in P(T4), each having five
edges, four of which are unbounded. The position of the point vp on the line Lp can be freely
chosen, and there are 5 choices, one for each edge of Lp. This amounts to 3×5 = 15 possible
choices, corresponding to the maximal cones.

In the Petersen graph found in Figure 7, these cones are indexed as follows. The three
(blue) edges connecting the vertices (ab) to (cd), for a, b, c, d ∈ [4] distinct, correspond to
the three cases where the point lies on the bounded edge in direction ea+ eb, for an example
see the red flag in Figure 7. The remaining twelve (black) edges, connecting (a) to (ab) for
a, b ∈ [4] distinct, correspond to the cases where the point lies on an unbounded edge in
direction ea, and the bounded edge is in direction ea + eb. For an example, see the cyan flag
in Figure 7.

The length of the bounded edge of Lp and the position of the point vp in Lp can be
freely chosen, amounting to two degrees of freedom. These are the two degrees of freedom
remaining after taking the quotient with the lineality space. The choice of the point vp in
P(T4) corresponds to three further degrees of freedom. In total, this generates a cone of
(projective) dimension five.

1

3

4

2

1

4

13

14

24

12

34

3

23

2

Figure 7. On the left, two tropical flags in trop(Fl(1, 2; 4)) ⊆ P(T4). On the
right, a Petersen graph representing the tropical flag variety trop(Fl(1, 2; 4))
after quotienting by its lineality space and cutting with the radius 1 sphere.
The red point corresponds to the red flag on the left, the cyan point is the
cyan flag.

4. Affine morphisms of valuated matroids

In this section, we will introduce morphisms of valuated matroids and their affine exten-
sions. Section 4.1 is an extended version of joint work with Alessio Borz̀ı [27], introducing
morphisms of valuated matroids, focusing on projections as a main application of the theory.
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In Section 4.2, we extend this definition to generalize affine linear maps. The results of
this section are extensions of joint work with Giulia Iezzi [82].

Finally, in Section 4.3, we show that the resulting categoryVMatra of valuated matroids
with affine morphisms has many of the same properties as are known for the category Matro
we discussed in Section 3.2.4. The results of this section are solely my own.

The main upgrade this thesis provides in comparison with [27, 82] is that we define and
prove results for maps of matroids where source and target are over different ground sets.
Further, we provide a more explicit proof that the induced valuation is a valuation in the
sense of Definition 3.58, and prove that (affine) morphisms of valuated matroids induce
strong maps of the underlying matroids. Finally, we prove that every affine linear map of
linear spaces induces a realizable morphism of the associated valuated matroids.

4.1. Morphisms of valuated matroids. In Section 3.2 we have seen that if we have a
map f : [n] → [m] and two matroids N on [n] and M on [m], f is a morphism of matroids
if and only if f−1(M) ↞ N is a matroid quotient. As there already exists a notion of a
valuated matroid quotient (see Definition 3.89), we use this characterization by constructing
an induced valuation on the induced matroid f−1(N). The idea to do this was first mentioned
in [30, Remark 4.4.3], and a less in-depth proof of the below result was obtained in joint
work with Alessio Borz̀ı [27].

Proposition-Definition 4.1. Let µ be a valuated matroid over [m] and let M be its un-
derlying matroid. Let f : [n] → [m] be a function of sets. Then, µ induces a valu-
ation f−1(µ) on the induced matroid f−1(M) (see Definition-Proposition 3.44), given as
f−1(µ)(B) = µ(f(B)). Here, µ denotes the valuation on independent sets (see Definition
3.63).

Proof. By Proposition 3.44, f−1(M) is a matroid. Let B be a basis of f−1(M). While f(B)
is not necessarily a basis of M , it is an independent set:

B is a basis of f−1(M) =⇒ rkf−1(M)(B) = |B| =⇒ rkM(f(B)) = |B|.

Since M is a matroid, rkM(f(B)) ≤ |f(B)| and since f is a function, i.e., assigns each
element of [n] only one element in [m], we have that |f(B)| ≤ |B|. Thus, |B| = rkM(f(B)) ≤
|f(B)| ≤ |B|, i.e., f(B) is an independent set of M . Further, by f−1(M) being a matroid
and equicardinality of bases as remarked in Definition 3.5, we note that all images of bases
are independent sets of the same size. Finally, we note that f |B is a bijection.

This construction defines a valuation on f−1(M): Let A,B be two bases of f−1(N). Then

f−1(µ)(A) + f−1(µ)(B) = µ(f(A)) + µ(f(B)).

Let a ∈ A \B, and consider f(a). There are two cases.

Case 1: f(a) ∈ f(A) \ f(B). Then, by Definition 3.63(VI3), for all a′ ∈ f(A) \ f(B) there
exists b′ ∈ f(B) \ f(A) such that

µ(f(A)) + µ(f(B)) ≥ µ(f(A) \ a′ ∪ b′) + µ(f(B) \ b′ ∪ a′).
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Since f is a bijection from B to f(B) by the above analysis, there exists a unique a ∈ A
such that f(a) = a′ and a unique b ∈ B satisfying f(b) = b′, so

µ(f(A) \ a′ ∪ b′) + µ(f(B) \ b′ ∪ a′) = µ(f(A) \ f(a) ∪ f(b)) + µ(f(B) \ f(b) ∪ f(a))
= µ(f(A \ a ∪ b)) + µ(f(B \ b ∪ a))
= f−1(µ)(A \ a ∪ b) + f−1(µ)(B \ b ∪ a).

Case 2: f(a) /∈ f(A) \ f(B). Then, f(a) ∈ f(B), i.e., there exists b ∈ B such that
f(b) = f(a). Then, µ(f(A \ a ∪ b)) = µ(f(A) \ f(a) ∪ f(b)) = µ(f(A)), and an analogous
statement holds for B. Thus,

f−1(µ)(A) + f−1(µ)(B) = f−1(µ)(A \ a ∪ b) + f−1(µ)(B \ b ∪ a). □

Analogously to the unvaluated case, we again want to model the properties of linear maps
of linear spaces. Thus, we aim to construct an analogue of strong maps, which will enable
us to study projections. To this end, we extend our definition of pointed matroids to the
valuated setting.

Definition 4.2. Let µ be a valuated matroid over [n]. The pointed valuated matroid µo over
[n]∪{o} is the valuated matroid µ⊕U0,1, obtained by adding a loop o to the matroid µ. By
a slight abuse of notation, we set trop(µo) := trop(µo)|[n] = trop(µ), since the tropical linear
spaces only differ by removing the ∞-entry in the o-coordinate.

In the above definition, note that U0,1 has exactly one valuation up to equivalence — the
valuation assigning ∅ 7→ 0, as all other assignments are equivalent by Definition 3.58. Thus,
the above construction is well-defined.

Definition 4.3. Let µ and ν be valuated matroids over the ground sets [m] and [n]. Let
f : [n]∪ {o} → [m]∪ {o} be a map of sets. We say that f : ν → µ is a morphism of valuated
matroids if f−1(µ)o ↞ νo is a quotient of valuated matroids, i.e., for all I ∈ B(f−1(M)o),
J ∈ B(No) and i ∈ I \ J , there exists j ∈ J \ I such that

f−1(µo)(I) + νo(J) ≥ f−1(µo)(I ∪ j \ i) + νo(J ∪ i \ j).

By definition, the above is equivalent to requiring that for all I ∈ B(f−1(M)o), J ∈ B(No)
and i ∈ I \ J , there exists j ∈ J \ I such that

µo(f(I)) + νo(J) ≥ µo(f(I ∪ j \ i)) + νo(J ∪ i \ j).

In the above definition, note that both f−1(µ)o and ν are valuated matroids over [n], so
the valuated matroid quotient is well-defined.

Lemma 4.4. Let ν and µ be valuated matroids over [n] and [m] respectively with underlying
matroids N and M . Let f : ν → µ be a morphism of valuated matroids. Then, f : N → M
is a strong map of matroids.

Proof. By Proposition 4.1, f−1(µ) is a valuated matroid with underlying matroid f−1(M),
and we have f−1(µ) ↞ µ. By [30, Remark 4.2.5], thus f−1(M) ↞ N , so by Lemma 3.45, f
is a morphism of matroids. □
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To study morphisms of valuated matroids, we often consider valuated matroid quotients.
Sometimes it can be helpful to have a cryptomorphic definition of valuated matroid quotients
on independent sets. The following equivalent characterization is in the spirit of Murota’s
cryptomorphic description of valuated matroids via independent sets.

Lemma 4.5. Let µ and ν be valuated matroids over the ground set [n] of rank r and s
respectively with r < s. Let S ⊆ [n]. Then, the following are equivalent:

(a) For all I ∈
(
[n]
r

)
, J ∈

(
[n]
s

)
and i ∈ I \ (J ∪ S) there exists j ∈ J \ (I ∪ S) such that

µ(I) + ν(J) ≥ µ(I ∪ j \ i) + ν(J ∪ i \ j)

(b) For all G ∈ Ind(µ), J ∈
(
[n]
s

)
and g ∈ G \ (J ∪ S) there exists h ∈ J \ (G ∪ S) such

that

µ(G) + ν(J) ≥ µ(G ∪ j \ g) + ν(J ∪ g \ j)
Proof. (b) ⇒ (a), as µ(I) ̸= ∞ if and only if I is a basis, all bases are independent sets of
equal size and for all bases I, µ(I) = µ(I).

(a) ⇒ (b): If µ(G) = ∞, then G is not contained in a basis, and thus not an independent
set. Thus, we may assume µ(G) < ∞. Now, if |G| = r, then G is a basis and satisfies the
inequality directly by application of (a). Thus, we can assume |G| < r.

By Definition 3.63(VI2), there exists G′ ⊆ [n]\G, |G′| = r−|G| such that µ(G∪G′) = µ(G)

and G ∪G′ ∈
(
[n]
r

)
. Further, G ∪G′ is a basis, as µ(G ∪G′) = µ(G) <∞.

We now apply the exchange property (a) for all g ∈ G \ (J ∪ S) ⊆ (G∪G′) \ (J ∪ S), i.e.,
there exists j ∈ J \ (G ∪G′ ∪ S) ⊆ J \ (G ∪ S) such that

µ(G) + ν(J) = µ(G ∪G′) + ν(J) ≥ µ(G ∪G′ ∪ j \ g) + ν(J ∪ g \ j)
≥ µ(G ∪ j \ g) + ν(J ∪ g \ j).

where the second inequality follows from Definition 3.63(VI1). □

Example 4.6. In the following, we give some examples of maps and morphisms of matroids.
Let µ be a valuated matroid over [n]. Then, the identity map id : µ → µ given as the

identity map on the ground set is always a morphism of matroids. This is because in this
case, the inequalities in Definition 4.3 are precisely the inequalities in the Definition 3.58,
describing valuated matroids.

There are various matroidal operations we can describe in terms of maps of matroids.

◦ Permutation. The permutation of elements in the matroid can be described by a
map of matroids. An example of such a permutation is the following map:

f : [3] ∪ {o} → [3] ∪ {o}; 1 7→ 2, 2 7→ 3, 3 7→ 1, o 7→ o

On the tropical side, this corresponds to a swapping of ray directions. Higher di-
mensional cones are shifted accordingly — under the permutation above, the cone
spanned by {e1, e2} gets mapped to a cone {e2, e3}.

◦ Projection/Deletion. The projection map prS we constructed in Definition 3.53 di-
rectly translates to the valuated setting. When defining the projection to a lower
cardinality set, this can correspond to matroid deletion, which we considered in Def-
inition 3.79. An example of such a projection is the following map:

f : [3] ∪ {o} → [2] ∪ {o}; 1 7→ 1, 2 7→ 2, 3 7→ o, o 7→ o
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◦ Contraction. While the projection map above can be used to describe matroid dele-
tion, we can analogously describe matroid contraction using maps. An example is
the following map:

f : [3] ∪ {o} → [2] ∪ {o}; 1 7→ 1, 2 7→ 2, 3 7→ 2, o 7→ o

However, some maps we like to consider in linear algebra can not be expressed in terms of
maps of matroids. Consider the valuated matroid µ arising from Example 3.8 by substituting
a = 0 and b = 0, and the valuated matroid ν obtained by instead substituting a = −3 and
b = −1. Then, µ(12) = µ(13) = µ(23) = 0, and ν(12) = 0, ν(13) = −1 and ν(23) =
−3. Plotting their associated tropical linear spaces, we observe that they are just an affine
translation of each other.

(0, 0)

(3, 1)

Nevertheless, there exists no rank-preserving morphism of valuated matroids between the
two valuated matroids: The identity map is not a morphism, as

−3 = µ(12) + ν(13) < µ(13) + ν(12) = 0.

The analogous contradiction occurs for all bijections.

4.2. Affine morphisms of valuated matroids. In this section, we will extend the notion
of the previous section, keeping track of additional scaling factors. These are necessary to be
able to describe translations of tropical linear spaces, for instance. For an example of this,
we refer to Example 5.6.

Definition 4.7. Let µ be a valuated matroid on the ground set [m]. We consider a map f
defined as

(f1, f2) : [n] ∪ {o} → [m] ∪ {o} × T.

We restrict to maps satisfying f2(i) = ∞ if and only if f1(i) = o, and define the affine
induced valuated matroid as

f−1(µ)(B) = µ|f1([n]∪{o})
(
f1(B)

)
+
∑
i∈B

f2(i),

where µ|f1([n]∪{o}) denotes the restriction of µo to the set f1([n] ∪ {o}). The affine induced
valuated matroid is a pointed valuated matroid as in Definition 4.2, hence its tropical linear
space is defined as trop

(
f−1(µ)

)
:= trop

(
f−1(µ)

)
|[n].

Lemma 4.8. Let µ be a valuated matroid on the ground set [m] and f : [n] ∪ {o} →
[m]∪ {o}×T. Then, the affine induced valuated matroid is a valuated matroid as defined in
Definition 3.58.

Proof. By Proposition 4.1, the map of sets f1 induces a valuated matroid f−1
1 (µ)(B) =

µ|f1([n]∪{o})
(
f1(B)

)
with underlying matroid f−1

1 (M). Since f−1
1 (µ) is a valuated matroid on
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[n], for all I, J ∈
(
[n]
r

)
and i ∈ I \ J there exists j ∈ J \ I satisfying

µ|f1([n]∪{o})
(
f1(I)

)
+ µ|f1([n]∪{o})

(
f1(J)

)
≥ µ|f1([n]∪{o})

(
f1(I \ i ∪ j)

)
+ µ|f1([n]∪{o})

(
f1(J \ j ∪ i)

)
.

Now ∑
i′∈I

f2(i
′) +

∑
j′∈J

f2(j
′) =

∑
i′∈((I\i)∪j)

f2(i
′) +

∑
j′∈((J\j)∪i)

f2(j
′),

thus

µ|f1([n]∪{o})
(
f1(I)

)
+
∑
i′∈I

f2(i
′) + µ|f1([n]∪{o})(f1(J)) +

∑
j′∈J

f2(j
′)

≥ µ|f1([n]∪{o})(f1((I \ i) ∪ j)) +
∑

i′∈((I\i)∪j)

f2(i
′)

+ µ|f1([n]∪{o})(f1((J \ j) ∪ i)) +
∑

j′∈((J\j)∪i)

f2(j
′),

and f−1(µ) defines a valuation by Definition 3.58. □

Definition 4.9. Let µ and ν be valuated matroids over [m] and [n] respectively, and let

f : [n] ∪ {o} → [m] ∪ {o} × T

be a map. By abuse of notation, we say that f : ν → µ is an affine morphism of valuated
matroids if f−1(µ) ↞ ν as in Definition 4.7 is a quotient of valuated matroids.

If additionally both µ and ν are realizable, we say that f is a realizable affine morphism
of valuated matroids if both µ and the quotient f−1(µ) ↞ ν are realizable.

Lemma 4.10. Let µ and ν be valuated matroids over [m] and [n] respectively, and let f :
ν → µ be an affine morphism of valuated matroids. Then, there exists an underlying strong
map of underlying matroids f1 : N →M .

Proof. Since f is an affine morphism of valuated matroids, by definition f−1(µ) ↞ ν is a
valuated matroid quotient. Thus, by [30, Remark 4.2.5], the underlying matroids of ν and
f−1(µ) form a matroid quotient. It remains to be shown that the underlying matroid of
f−1(µ) is f−1

1 (M).

By definition, if f1(B) is a basis of the underlying matroid of the (non-affine) induced
matroid f−1

1 (µ) if and only if

f−1
1 (µ)(B) = µ|f1([n]∪{o})

(
f1(B)

)
̸= ∞.

Since f−1
1 (µ)(B) ̸= ∞ implies that o /∈ B, by definition of the affine map we have∑

i∈B

f2(i) ̸= ∞.

Thus, f−1
1 (µ)(B) ̸= ∞ if and only if f−1(µ)(B) ̸= ∞. Hence, both f−1

1 (µ) and f−1(µ) have
the same underlying matroid.

As a result, the underlying matroid of the affine induced valuated matroid is the induced
matroid f−1

1 (M) as introduced in Definition 4.7. Thus, f−1
1 (M) ↞ N , which implies that

f1 : N →M is a strong map of matroids. □
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Lemma 4.11. Let µ and ν be valuated matroids on [m] and [n] respectively. Every morphism
of valuated matroids f : ν → µ can be extended to an affine morphism of valuated matroids
using the trivial map

triv : [n] ∪ {o} → T

i 7→
®
0 i ̸= o

∞ i = o.

as the second component.

Proof. Let I ∈ B(f−1(M)o), J ∈ B(No) and i ∈ I \ J . As I is a basis of f−1(M)o, o /∈ f1(I),
so o /∈ I. Thus,

∑
i′∈I triv(i

′) = 0. This implies that

µ|f([n]∪{o})
(
f(I)

)
+
∑
i′∈I

triv(i′) + ν(J) = µ|f([n]∪{o})
(
f(I)

)
+ ν(J).

Now, since f is a morphism of valuated matroids, there exists j ∈ J \ I such that

µ|f([n]∪{o})(f(I)) + ν(J) ≥ µ(f(I ∪ j \ i)) + ν(J ∪ i \ j).
If I ∪ j \ i is not a basis of B(f−1(M)o), we have that µ(f(I ∪ j \ i)) = ∞, contradicting the
inequality. So, I ∪ j \ i is again a basis of B(f−1(M)o), so as above, o /∈ I ∪ j \ i. Then, we
again have that

∑
i′∈I∪j\i triv(i

′) = 0, so

µ|f([n]∪{o})
(
f(I)

)
+ ν(J) = µ|f([n]∪{o})

(
f(I)

)
+

∑
i′∈I∪j\i

triv(i′) + ν(J).

Combining the three equations, we obtain that (f, triv) is an affine morphism of valuated
matroids. □

4.3. Categorical properties. We conclude this discussion by showing some properties of
morphisms of valuated matroids and analyzing the category of valuated matroids with mor-
phisms given by affine morphisms of valuated matroids. This is in the spirit of work by
Jarra-Lorscheid-Vital [86], but developed independently. All proofs and statements are my
own independent work, except for Proposition 4.15 which is substantially similar to [27,
Proposition 3.14] and was developed in joint work with Alessio Borz̀ı.

Definition 4.12. We denote by VMatr the category where the objects are valuated ma-
troids and the morphisms are morphisms of valuated matroids as introduced in Definition
4.3. Additionally, we write VMatra for the category whose objects are again valuated ma-
troids, but whose morphisms are affine morphisms of valuated matroids as introduced in
Definition 4.7.

In the following, we will show that the category VMatra satisfies the properties of the
category Matro we had discussed in Section 3.2.4.

Proposition 4.13. The category VMatra has a coproduct, given by the direct sum of val-
uated matroids.

Proof. Let µ and ν be two valuated matroids over the ground sets [m] and [n] respectively.
Then, the direct sum µ⊕ν over [m]⊔ [n] is the categoretical coproduct, where the maps into
the coproduct, iµ and iν are given as follows. For iµ : µ ↪→ µ⊕ ν, (iµ)1 is the identity on [m]
and (iµ)2 is the trivial map from Lemma 4.11. For iν : ν ↪→ µ ⊕ ν, (iν)1 is the identity on
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[n] and (iν)2 is again the trivial map from Lemma 4.11. By the definition of the direct sum
of valuated matroids, Definition 3.81, the two maps are morphisms of valuated matroids.

Now, let ω be another valuated matroid, and let f : µ → ω and g : ν → ω be two affine
morphisms of valuated matroids. We then define

f + g : µ⊕ ν → ω

S 7→ f(S ∩ [m]) + g(S ∩ [n]).

We now show that the above map is an affine morphism of valuated matroids, i.e., that
(f + g)−1(ω) ↞ µ⊕ ν. Let S, S ′ ∈

(
[m]⊔[n]

rk(µ)+rk(ν)

)
. Then,

(f + g)−1(ω)(S) = ω|(f+g)1(([m]⊔[n])∪{o})
(
(f + g)1(S)

)
+
∑
i∈S

(f + g)2(i)

= ω|(f1([m]∪{o})∪g1([n]∪{o})
(
f1(S ∩ [m]) + g1(S ∩ [n])

)
+

∑
i∈S∩[m]

f2(i) +
∑

i∈S∩[n]

g2(i)

= ω|(f1([m]∪{o})
(
f1(S ∩ [m])

)
+

∑
i∈S∩[m]

f2(i)

ω|(g1([n]∪{o})
(
g1(S ∩ [n])

)
+
∑

i∈S∩[n]

g2(i)

= f−1(ω)(S ∩ [m]) + g−1(ω)(S ∩ [n]).

Now, let s ∈ S \ S ′. Without limitation of generality, assume s ∈ [m]. As f is an affine
morphism of valuated matroids, there exists s′ ∈ S ′ ∩ [m] ⊆ S ′ such that

(f + g)−1(ω)(S) + µ⊕ ν(S ′) = f−1(ω)(S ∩ [m]) + g−1(ω)(S ∩ [n])

+ µ(S ′ ∩ [m]) + ν(S ′ ∩ [n])

≥ f−1(ω)((S \ s ∪ s′) ∩ [m]) + g−1(ω)(S ∩ [n])

+ µ((S ′ \ s′ ∪ s) ∩ [m]) + ν(S ∩ [n])

= f−1(ω)((S \ s ∪ s′) ∩ [m]) + g−1(ω)((S \ s ∪ s′) ∩ [n])

+ µ((S ′ \ s′ ∪ s) ∩ [m]) + ν((S ′ \ s′ ∪ s) ∩ [n]).

Thus, f + g is an affine morphism of valuated matroids. □

Proposition 4.14. The category VMatra does not have products.

Proof. Assume VMatra had products. Let µ and ν be two valuated matroids with underly-
ing matroids M and N . In Lemma 4.10, we had seen that any affine morphism of valuated
matroids induces a unique strong map on the underlying matroids. Thus, the underlying
matroid M × N would be a product in the category Matro. This contradicts the nonexis-
tence of a product in the category of matroids, [79, Proposition 3.5]. The same argument
works for the category VMatr. □

To show functoriality of valuated matroid deletion we had discussed in Definition 3, we
first characterize valuated matroid deletion via the associated tropical linear spaces. The
following statement and proof are an adaptation of [27, Proposition 3.14].
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Proposition 4.15. Let µ be a valuated matroid on the ground set [n] and let S ⊆ [n]. Then

trop (µ \ S) = trop(µ)|P(T[n]\S).

Proof. First, we note that we can restrict to the case S = {s} and obtain the result for
arbitrary S by inductively re-applying the one-element case.

Let v ∈ trop(µ). Then the minimum in {Ci + vi}i∈[n] is achieved at least twice for every
C ∈ C(µ). In particular, the minimum in {Ci + vi}i∈[n]\s is achieved at least twice for every
C ∈ C(µ) where supp(C) ⊆ [n]\s. By Definition 3.79, this implies that v|P(T[n]\S) ∈ trop(µ\s).
This proves the first inclusion.

For the reverse inclusion, let v ∈ trop(µ \ s) ⊆ P(T[n]\s). Then, the minimum in {Ci +
vi}i∈[n]\s is achieved at least twice for every C ∈ C(µ \ s). By Definition 3.79, this means
it is achieved at least twice for every C ∈ C(µ) with supp(C) ⊆ [n] \ s. Now we want to
find some t ∈ T such that the vector ṽ = (v1, . . . , vs−1, t, vs+1, . . . , vn) ∈ P(Tn) is in trop(µ).
Then v = ṽ|P(T[n]\S) ∈ trop(µ)|P(T[n]\S).

If for every C ∈ C(µ) the minimum in {Ci + vi}i∈[n]\s is achieved at least twice, we can
set t = ∞ and we are done. Therefore, we assume that there exists a circuit C ∈ C(µ)
such that the minimum in {Ci + vi}i∈[n]\s is achieved only once. Choose t ∈ R such that
t+Cs = mini∈[n]\s{Ci+vi}. Then, the minimum in {Ci+ ṽi}i∈[n] is achieved twice. We claim
that ṽ ∈ trop(µ).

We proceed by contradiction. Let C ′ ∈ C(µ) and assume that the minimum in {C ′
i+ṽi}i∈[n]

is achieved only once at the index j ∈ [n]. Up to tropical scalar multiplication, we can
assume that C ′

s = Cs ̸= ∞. Suppose first that j ̸= s. By construction, vi + Ci ≥ t + Cs =
t + C ′

s > vj + C ′
j for every i ∈ [n], in particular Cj ̸= C ′

j. On the other hand, we have
vi+C

′
i > vj +C

′
j for every i ̸= j, therefore vi+min(Ci, C

′
i) > vj +C

′
j for every i ̸= j. By the

vector elimination axiom, Proposition 3.74, there exists a vector C ′′ of µ such that C ′′
s = ∞,

C ′′
i ≥ min{Ci, C

′
i} for all i ∈ [n] with equality whenever Ci ̸= C ′

i, in particular C ′′
j = C ′

j.
But now supp(C ′′) ⊆ [n] \ s], so the minimum in {C ′′

i + vi}i∈[n]\s has to be achieved at least
twice, contradicting vi + C ′′

i ≥ vi +min(Ci, C
′
i) > vj + C ′

j for every i ̸= j.

Now suppose that j = s. Let k ∈ [n] be the index at which the minimum in {vi+Ci}i∈[n]\s
is achieved. Then we have vk +Ck = t+Cs = t+C ′

s < vi +C ′
i for every i ̸= s, in particular

Ck < C ′
k. Now, applying vector elimination (i.e., Proposition 3.74) again, we obtain a vector

C ′′ such that C ′′
s = ∞, C ′′

i ≥ min{Ci, C
′
i} for all i ∈ [n] with equality whenever Ci ̸= C ′

i, in
particular C ′′

k = Ck. Then, vk+C
′′
k = vk+Ck < vi+C

′
i and further vk+C

′′
k = vk+Ck < vi+Ci

for every i ̸= s, k. This contradicts the fact that the minimum in {vi+C ′′
i }i∈[n]\s] is achieved

at least twice. □

Using the correspondence between tropical linear spaces and valuated matroids, this now
allows us to prove a purely matroidal statement on quotients of deletions.

Lemma 4.16. Let µ and ν be valuated matroids over the ground set [n] of rank r and s
respectively with r < s. Then, the following are equivalent:

(a) µ is a matroid quotient of ν, and
(b) µ \ S is a matroid quotient of ν \ S for all S ∈ 2[n].

Proof. (b) ⇒ (a) follows by using (b) on the set S = ∅.
To show (a) ⇒ (b), we use the characterization we just proved in Proposition 4.15. By

Theorem 3.96, µ is a matroid quotient of ν if and only if trop(µ) ⊆ trop(ν).



62 VICTORIA SCHLEIS

Let S ⊆ [n]. Now, if trop(µ) ⊆ trop(ν), then trop(µ)|P(T[n]\S) ⊆ trop(ν)|P(T[n]\S). By

Proposition 4.15, this is equivalent to trop(µ \ S) ⊆ trop(ν \ S). We can again use the
equivalent characterization in Theorem 3.96, and obtain that this is equivalent to µ\S being
a quotient of ν \ S. □

Proposition 4.17. Direct sum and deletion are functorial operations in VMatra.

Proof. Let ν, µ, and ω be valuated matroids over the sets [n1], [n2], and [n3] respectively, and
let f : ν → µ be an affine morphism of valuated matroids.

Direct sum. We consider the direct sum of both µ and ν with ω respectively. Then, f
extends to a map

f + id : ν ⊕ ω → µ⊕ ω

B 7→ f(B ∩ [n1]) + id(B ∩ [n3]),

where the sum is taken component-wise. We observe that f + id is an affine morphism of
valuated matroids analogous to the proof of Proposition 4.13, as f is assumed to be an affine
morphism and the identity map from a valuated matroid into itself extended via the trivial
map is always an affine morphism of valuated matroids, see Example 4.6.

Deletion. Now, we consider µ \ S and ν \ S. Then, f restricts to a map

f |Sc : ν \ S → µ \ S
B 7→ (f1(B)|Sc , f2(i)).

We now show that f |Sc is an affine morphism of valuated matroids. We first show that
f |−1

Sc (µ \ S) = f−1(µ) \ S.
LetM be the underlying matroid of µ, let T ⊆ S be a set such that rkf−1(M)([n]\S∪T ) =

rk(f−1(M)) and let B ∈ B(f−1(M) \ S). By Definition 3.78,

(f−1(µ) \ S)(B) = f−1(µ)(B ∪ T )
= µ|f1([n]∪{o})(f1(B ∪ T )) +

∑
i∈B∪T

f2(i)

= µ|f1([n]∪{o})(f1(B) ∪ f1(T )) +
∑
i∈B

f2(i) +
∑
i∈T

f2(i).

By the above discussion, we know that rkM([m]\S∪f1(T )) = rk(M), thus, we can rewrite
f−1|Sc(µ \ S)(B) as follows.

f−1|Sc(µ \ S)(B) = (µ \ S)|f1|Sc (Sc∪{o})
(
f1(B)

)
+
∑
i∈B

f2(i)

= µ|f1([n]∪{o})
(
f1(B) ∪ f1(T )

)
+
∑
i∈B

f2(i).

Then, the two matroids f−1(µ \ S) and f−1(µ) \ S only differ by the constant
∑

i∈T f2(i)
on all bases, thus, the two matroids are equivalent.

Now, we use Lemma 4.16: Since f : ν → µ is an affine morphism of valuated matroids,
f−1(µ) ↞ ν. Thus, by Lemma 4.16 and the above discussion, for any S ⊆ [m], f |−1

Sc (µ\S) =
f−1(µ) \ S ↞ ν \ S. This is precisely saying that f |Sc satisfies the definition of affine
morphisms of valuated matroids. □
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Proposition 4.18. Taking the dual of a matroid is not a functorial operation in VMatra.

Proof. The proof follows as the proof of Proposition 4.14: Affine morphisms of valuated
matroids induce strong maps of the underlying matroids, and taking the dual is not functorial
in that category, [79, Proposition 3.6]. □

Proposition 4.19. The category VMatra has a zero object, the valuated matroid

ω :

Ç
[1]

0

å
→ T, ∅ 7→ 0.

Proof. Let µ be a matroid of rank r over a set [n]. We first show that ω is initial, i.e.,
that there exists a unique affine morphism of valuated matroids f : ω → µ. The map
f : o 7→ (o,∞) is trivially an affine morphism of valuated matroids. Let S ⊆ [1]. Then,
f−1(µ) = µ(f1(S))+∞ = ∞, so the only basis of f−1(µ) is the empty set. We have to check

that f−1(µ) ↞ ω. For I = ∅ and J ∈
(
[1]
0

)
, there exists no i ∈ I \ J = ∅ \ J , so f−1(µ) ↞ ω

is trivially satisfied.

Now we show that ω is terminal, i.e., that there exists a unique affine morphism of valuated
matroids f : µ→ ω. There is only one way to construct such a map: f : µ→ ω, i 7→ (o,∞).
Since every set S ⊆ [n] has valuation f−1(ω)(S) = µ(o) +∞ = ∞, the matroid f−1(ω) has
rank 0, so again the only basis is ∅. Thus, there is no i ∈ ∅ \ I for any set I ⊆ [n], and again
there are no exchange conditions to check, so f−1(ω) ↞ µ is trivially satisfied.

Thus, ω is both initial and terminal, and hence a zero object. □

5. Morphisms and naive matrix multiplication

In this section, we discuss the relationship of naive tropical matrix multiplication with a
tropical linear space with the affine morphisms of valuated matroids we defined and studied
in Section 4. Most of this section is a generalization of joint work with Giulia Iezzi [82].
In Section 5.1, we discuss properties of the images of tropical linear spaces under matrix

multiplication. In particular, we prove that while these sets are not necessarily tropical
linear spaces themselves, they still are tropically convex sets. In Section 5.2, we restrict to
tropical matrix multiplication with weakly monomial matrices. In this case, we show that
the image under matrix multiplication is again a tropical linear space, and construct an
associated affine map of the corresponding valuated matroid.

5.1. Images of linear spaces under matrix multiplication. In linear algebra, after
fixing bases, linear spaces can be represented as matrices, and applying a linear map is
equivalent to matrix multiplication with an appropriate matrix. Hence, it is natural to
consider a tropical analogue of this in our aim to construct tropical and matroidal analogues
for linear maps.

To this end, we study the behavior of tropical linear spaces under matrix multiplication.
For a matrix A ∈ Kn×m, we write val(A) :=

(
val(Aij)

)
ij

∈ Tn×m for the matrix with

valuation applied to all entries. We call val(A) the valuation of A. If µ is a valuated matroid
on [m], we write val(A)⊙trop(µ) ⊆ Rn for the pointwise naive tropical matrix multiplication
of val(A) with trop(µ).

The first property we want to show for the image of a tropical linear space trop(µ) under
matrix multiplication is tropical convexity. This allows us to infer properties of the whole
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set by just showing them on the images of the valuated cocircuits of trop(µ), as they are
a spanning set for the image of the tropical linear space. Tropical convexity is a classical
concept in tropical geometry and has been used for similar purposes multiple times, for
instance in [50].

Definition 5.1 ([50, Introduction]). Let S ⊆ P(Tm) be a set of vectors. We say that S is
tropically convex if for all ṽ, w̃ ∈ S and λ, ρ ∈ R, the linear combination λ ⊙ ṽ ⊕ ρ ⊙ w̃ is
also contained in S.

To establish that images of tropical linear spaces are tropically convex, we first need to
show that tropical linear spaces themselves are. In [75, Theorem 1.1], it is shown that tropical
linear spaces of loopless valuated matroids, considered as subsets of Rm/R1 are tropically
convex. We, however, consider valuated matroids with loops, and consider them as subsets
of P(Tm).1

Lemma 5.2. Let µ be a valuated matroid over [m]. Then, trop(µ) ⊆ P(Tm) is tropically
convex.

Proof. The proof for the extension of [75, Proposition 2.14], and hence [75, Theorem 1.1] to
subsets of P(Tm) follows line by line identical to the original proof, observing that Hampe’s
argument never uses the finiteness of non-minimal coordinate entries of circuits. □

Proposition 5.3. Let trop(µ) be a tropical linear space in P(Tm) and A ∈ Kn×m. Then
val(A)⊙ trop(µ) is tropically convex.

Proof. Let ṽ, w̃ ∈ val(A) ⊙ trop(µ) and λ, ρ ∈ R. We need to show that λ ⊙ ṽ ⊕ ρ ⊙ w̃ ∈
val(A)⊙ trop(µ). By definition of val(A)⊙ trop(µ), there exist v, w such that ṽ = val(A)⊙ v
and w̃ = val(A) ⊙ w. By Lemma 5.2, tropical linear spaces are tropically convex, thus
λ⊙ v ⊕ ρ⊙ w ∈ trop(µ). Since tropical matrix multiplication is distributive and commutes
with tropical scalar multiplication,

(λ⊙ ṽ)⊕ (ρ⊙ w̃) =
(
λ⊙

(
val(A)⊙ v

))
⊕
(
ρ⊙

(
val(A)⊙ w

))
= val(A)⊙ (λ⊙ v ⊕ ρ⊙ w) ∈ val(A)⊙ trop(µ). □

In general, images of tropical linear spaces under pointwise matrix multiplication are not
tropical linear spaces, as can be seen in the next example.

Example 5.4. We consider the trivially valued matroid with underlying matroid U2,3 intro-

duced in Example 3.3 given by the map µ :
(
[3]
2

)
→ R ∪ {∞}, I 7→ 0, and the matrices

A1 =

1 1 0

0 1 0

0 0 1

 , A2 =

1 1 0

0 1 1

0 0 1

 .
The tropical linear space trop(µ) and the polyhedral complexes val(A1) ⊙ trop(µ) and
val(A2)⊙ trop(µ) are depicted below. Both val(A1)⊙ trop(µ) and val(A2)⊙ trop(µ) are not
tropical linear spaces, as these polyhedral complexes cannot be assigned balanced weights.

1The author thanks Michael Joswig for pointing her to this gap in the original argument presented in [82].
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trop(µ) val(A1)⊙ trop(µ) val(A2)⊙ trop(µ)

5.2. Weakly monomial matrices and associated affine maps of matroids. As images
of tropical linear spaces under pointwise tropical matrix multiplication are not necessarily
tropical linear spaces, tropical matrix multiplication can not be fully compatible with (affine)
morphisms of valuated matroids. Intuitively, this boils down to tropicalization commuting
with monomial, but not linear maps. Nevertheless, we can identify a subclass of matrices
which can be expressed in terms of affine morphisms of valuated matroids.

Definition 5.5. Let A ∈ Kn×m. We call A weakly monomial if A has at most one non-zero
entry in each row.

Example 5.6. We consider the trivially valued matroid U2,3 from Example 5.4. Its tropical
linear space is the classical tropical line with vertex at (0, 0, 0) in R3/R1 depicted in red below,
which we had defined in Section 3.3 and computed explicitly in Examples 2.8. Multiplying
by the tropicalization of a weakly monomial matrix val(A) below yields a shifted tropical
linear space to the right, depicted in blue. The permutation further switches the rays in
directions y and z.

val(A) =

 3 ∞ ∞
∞ ∞ 1

∞ 0 ∞

 (0, 0)

(3, 1)

In the following, we will show several preliminary results with the ultimate goal of proving
Proposition 5.18, which asserts that maps f : [n] ∪ {o} → [m] ∪ {o} × T correspond to
tropical matrix multiplication of a tropical linear space trop(µ) ⊆ P(Tm) with the valuation
of a weakly monomial matrix A ∈ Kn×m. To this end, we characterize the tropical linear
space of the induced matroid f−1(µ) (see Definition 4.7) for any matroid µ on [m]. Note
that if m ̸= n, the two tropical linear spaces live in different ambient spaces: trop(µ) is a
subset of P(Tm), whereas trop

(
f−1(µ)

)
is a subset of P(Tn). We start out by describing the

cocircuits of f−1(µ).

Lemma 5.7. Let µ be a valuated matroid on [m] and f : [n] ∪ {o} → [m] ∪ {o} × T. Let

I ∈
(

[n]
rk(f−1(µ))−1

)
. Then, the coordinate entries of the valuated cocircuits of f−1(µ) are given

as follows:

C∗
f−1(µ)(I)i =

®
C∗

µ|f1([n]∪{o})

(
f1(I)

)
f1(i)

⊙⊙k∈I∪i f2(k) o /∈ f1(I ∪ i),
∞ o ∈ f1(I ∪ i).

Proof. Since o is a loop, every set containing o has valuation ∞. Now, assume o /∈ f1(I ∪ i).
If i ∈ I, then f1(i) ∈ f(I) and C∗

f−1(µ)(I)i = C∗
µ|f1([n]∪{o})

(
f1(I)

)
f1(i)

⊙⊙k∈I∪i f2(k) = ∞ by

Definition 3.71. Further, by Definition 3.71, if i /∈ I, C∗
f−1(µ)(I)i = f−1(µ)(I ∪ i). Now, by
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Definition 4.7,

f−1(µ)(I ∪ i) = µ|f1([n]∪{o})
(
f1(I ∪ i)

)
+
∑
k∈I∪i

f2(k)

= µ|f1([n]∪{o})
(
f1(I) ∪ f1(i))

)
+
∑
k∈I∪i

f2(k)

= C∗
µ|f1([n]∪{o})

(
f1(I)

)
f1(i)

⊙
⊙
k∈I∪i

f2(k). □

Definition 5.8. Let Af ∈ Kn×m be a weakly monomial matrix. We define an associated
map f : [n] ∪ {o} → [m] ∪ {o} × T by

i 7→
®
(o,∞) i = o or Aij = 0 for all columns j(
j, val(Aij)

)
Aij ̸= 0.

If f : [n]∪ {o} → [m]∪ {o}×T is a map of sets such that for all i ∈ [n]∪ {o}, f2(i) = val(k)
for some k ∈ K, we construct an associated matrix Af ∈ Kn×m by setting

Aij =

®
k if f1(i) = j and i, j ̸= o

0 otherwise.

Remark 5.9. In the above definition, the associated map of a weakly monomial matrix is
unique. The associated matrix Af ∈ Kn×m is not unique, but its valuation val(Af ) is. This
is due to the fact that there can be multiple k ̸= k′ ∈ K with valuation val(k) = val(k′).

Remark 5.10. We construct the associated map for some special matrices:

(a) If Af is a permutation matrix, then it is quadratic and the associated map f consists
of a permutation map f1 that fixes o, and f2(i) = 0 for i ∈ [n], and f2(o) = ∞.

(b) If Af is a projection matrix of rank s < n, then the associated map f is given as
f(i) = (i, 0) on [s] and f(i) = (o,∞) otherwise.

(c) If Af is a diagonal matrix, it is again quadratic and the associated map f is f(i) =
(i, val(Aii)) for i ∈ [n] and f(o) = (o,∞).

For the types of maps associated to matrices given above, we can again construct a (poten-
tially not unique) associated matrix, provided that for every i ∈ [n], there exists a k ∈ K
such that val(k) = f2(i).

(a′) If f1 is a permutation map fixing o and f2(i) = 0 for i ∈ [n] and f2(o) = ∞, then Af

can be chosen as the (square) permutation matrix associated to the permutation f1.
(b′) If prS is a projection map satisfying f(i) = (i, 0) for i ∈ Sc and f(i) = (o,∞) for

i ∈ S ∪ {o}, a matrix associated to prS is given as the projection matrix ASii
= 1 if

i /∈ S, and Aij = 0 otherwise.
(c′) If f1 is the identity map, an associated (square) matrix Af is a diagonal matrix with

entries Af,ii = ki for ki ∈ K with val(ki) = f2(i).

Example 5.11. We construct the associated matrices to the affine morphisms we constructed
in Example 4.6 below.
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Permutation Projection/Deletion Contraction0 0 1

1 0 0

0 1 0


1 0

0 1

0 0


1 0

0 1

0 1


We will now develop the correspondence between affine morphisms of valuated matroids

and matrix multiplication with weakly monomial matrices. For the proof, we will decompose
each weakly monomial matrix (and analogously, each map) into a product of matrices.

Lemma 5.12. Let g : [n1]∪{o} → [n2]∪{o}×T and h : [n2]∪{o} → [n3]∪{o}×T be maps
with g(o) = h(o) = (o,∞), and let Ag ∈ Kn1×n2 and Ah ∈ Kn2×n3 be their associated weakly
monomial matrices. Assume that for any tropical linear space trop(µ), val(Ag)⊙ trop(µ) =
trop(g−1(µ)) and val(Ah)⊙ trop(µ) = trop(h−1(µ)). Then, for h ◦ g(i) = (h1(g1(i)), g2(i) +
h2(g1(i))), we have val(Ag · Ah)⊙ trop(µ) = trop

(
(h ◦ g)−1(µ)) ⊆ P(Tn3).

Proof. By assumption,

val(Ag · Ah)⊙ trop(µ) = val(Ag)⊙ val(Ah)⊙ trop(µ)

= val(Ag)⊙ (trop(h−1(µ))) = trop(g−1(h−1(µ)))

Now, we show that g−1(h−1(µ)) = (h ◦ g)−1(µ). Let r = rk(µ), and I ∈
(
[n1]
r

)
. Then,

(h ◦ g)−1(µ)(I) = µ|(h◦g)1([n1]∪{o}))
(
(h ◦ g)1(I)

)
+
∑
i∈I

(h ◦ g)2(i)

= µ|(h1(g1([n1]∪{o})))
(
h1(g1(I)

)
+
∑
i∈I

(
g2(i) + h2(g1(i))

)
= µ|(h1(g1([n1]∪{o})))

(
h1(g1(I)

)
+
∑
i∈I

h2(g1(i)) +
∑
i∈I

g2(i)

= h−1(µ)
(
µ|g1([n1]∪{o})(g1(I))

)
+
∑
i∈I

g2(i) = g−1
(
h−1(µ)

)
(I).

Above, the last and the second to last equalities are obtained by explicitly writing out the
maps using Definition 4.7. Since the valuated matroids are equal for each basis, the associated
tropical linear spaces coincide. We remark that the reversal of order here is compatible with
the contravariant properties we describe for affine morphisms of valuated matroids in Section
4. □

To prepare for showing the general case, we consider permutation and projection matrices
and maps.

Lemma 5.13. Let µ be a valuated matroid over [n] and let f : [n] ∪ {o} → [n] ∪ {o} × R
be a permutation map on the first coordinate and the trivial map (see Lemma 4.11) on the
second coordinate, and let Af be its associated matrix as in Definition 5.8. Alternatively, let
Af be a permutation matrix and f its associated map. Then,

trop(f−1(µ)) = val(A)⊙ trop(µ).

Proof. By assumption, we either start with a permutation matrix A and its induced map
fA, or we start with a permutation map f and its associated matrix Af . Both situations
can be handled simultaneously: If we start with a permutation map f , by Remark 5.10(a′),
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the associated matrix Af is a permutation matrix. Hence, we may assume that we have a
permutation map f and an associated permutation matrix Af . Conversely, if we start with
a permutation matrix Af , by Remark 5.10(a), f1 is a permutation, and f2 is the trivial map
(see Lemma 4.11).

Since f2 is a permutation map and f2 is trivial, the map permutes entries of vectors of
the valuated matroid µ uniformly, without changing any valuation. Similarly, pointwise
multiplication by the permutation matrix Af permutes coordinate entries of points of the
associated tropical linear space trop(µ) in the same fashion. Since vectors of µ correspond
to points in trop(µ), we have trop(f−1(µ)) = val(A)⊙ trop(µ). □

Lemma 5.14. Let µ be a valuated matroid over [m], let prS : [n] ∪ {o} → [m] ∪ {o} × R be
a projection map, and let AprS be its associated matrix as in Definition 5.8. Alternatively,
let AprS be a projection matrix and prS be its associated map. Then,

trop(pr−1
S (µ)) = val(AprS)⊙ trop(µ).

Proof. We can directly see that the naive tropical matrix multiplication of trop(µ) with
val(AprS) (see Remark 5.10(b)) results in the set trop(µ)|P(T[n]\S) ×∞{([m]\[n])∪S}. Then, by
Proposition 4.15,

val(A)prS ⊙ trop(µ) = trop(µ)|P(T[n]\S) ×∞{([m]\[n])∪S}

= trop(µ \ S)×∞{([m]\[n])∪S}

= trop(µ \ S ⊕ U0,|S| ⊕ U0,[m]\[n]),

i.e., the valuated matroid arising as the deletion of S from µ, substituting all deleted elements
with loops and filling in loops for all elements in [m] that are not in [n]. Now, by the
construction of prS and Definition 4.9, trop

(
pr−1

S (µ)
)
= trop(µ \ S ⊕U0,|S| ⊕U0,[m]\[n]), thus

AprS ⊙ trop(µ) = trop
(
pr−1

S (µ)
)
. □

Remark 5.15 (Normal form for weakly monomial matrices). Let A ∈ Kn×m be a weakly
monomial matrix with entries in {0, 1}. Then, A has n rows and m columns. By definition,
A has at most one non-zero entry in each row. Thus, A has at most n non-zero columns,
and if m > n, after applying permutation maps, we obtain the normal form

A =


1k1 0k1 · · · 0k1

0k2 1k2 0k2

. . .
. . . . . .

0kl 0kl · · · 1kl

0

0 0

 ,
which has at least m−n zero columns. Analogously, if n ≤ m, we can transform the matrix
into the same normal form. Now, since rk(A) ≤ min{m,n}, we have at least n − m zero
columns.

We apply the results of the previous lemmas to obtain the result for all matrices with
entries in {0, 1}. These correspond to the morphisms of valuated matroids we studied in
Section 4.1, where we did not consider affine linear maps, and encompass permutations,
projections and contractions, as well as compositions of these maps.
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Lemma 5.16. Let µ be a valuated matroid over [n]. Let f : [n] ∪ {o} → [m] ∪ {o} × T be a
map where f2(i) = 0 if f1(i) ̸= o. Then, for any associated weakly monomial matrix Af (as
constructed in Definition 5.8),

trop
(
f−1(µ)

)
= val(Af )⊙ trop(µ).(4)

Conversely, if Af ∈ Kn×m is a weakly monomial matrix with entries in {0, 1}, the associated
map f satisfies trop

(
f−1(µ)

)
= val(Af )⊙ trop(µ).

Proof. Let Af be an arbitrary weakly monomial matrix with entries in {0, 1}. Then, by
Remark 5.15, after multiplication with a permutation matrix, Af can be assumed to be in
normal form

Af =


1k1 0k1 · · · 0k1

0k2 1k2 0k2

. . .
. . . . . .

0kl 0kl · · · 1kl

0

0 0

 ,

where 1k denotes the vector (1, . . . , 1) ∈ Rk, and by Lemma 5.12, it is sufficient to show it
for this form. Let Af ′ be the matrix obtained from Af by setting all except the first non-zero
entry in each column to 0. Up to permutation, this is a projection matrix, thus, by Lemma
5.14, trop

(
f ′−1(µ)

)
= val(Af ′)⊙ trop(µ).

Now, let w ∈ val(Af )⊙ trop(µ). Then, there exists v ∈ trop(µ) such that w = val(Af )⊙v.
Let w′ = val(Af ′)⊙ v ∈ trop

(
f ′−1(µ)

)
. Now, wi = (val(Af )⊙ v)i = w′

i if Af ′,i is a non-zero
row. Otherwise, w′

i = ∞ and

wi = (val(Af )⊙ v)i = (val(Af )⊙ v)j = (val(Af ′)⊙ v)j = w′
j

for a row j with unique non-zero entry in the same column as the row i.

The map f associated to Af is defined by f1(j) = i for each j ∈ {i, . . . , i+ kc} where i is

the first non-zero entry of Af for the column c, and by f2(j) = ∞ for j ∈ {∑l
p=1 kp, . . . , n}.

Consequently, by Lemma 5.7, each cocircuit C∗ = C∗
f−1(µ)(I) ∈ C∗(f−1

1 (µ)) has coordinates

C∗
j = C∗

f−1(µ)(I)j = µ|f1([n]∪{o})
(
f1(I) ∪ f1(j)

)
= µ|f1([n]∪{o})

(
f1(I) ∪ i

)
= µ|f1([n]∪{o})

(
f1(I) ∪ f1(i)

)
= C∗

i = C∗
f ′−1(µ)(I

′)i
(5)

for all j ∈ {i, . . . , i + kc}, where I ′ is the set containing the first non-zero entries of each
column that each element in I belongs to. As trop

(
f−1(µ)

)
and trop

(
f ′−1(µ)

)
are tropically

generated by their cocircuits by Proposition-Definition 3.71, we can write w′ as the tropical
sum of cocircuits, w′

i =
⊕

C∗∈C∗(f ′−1(µ)) λC∗ ⊙ C∗
i , thus

wj = w′
i =

⊕
C∗∈C∗(f ′−1(µ))

λC∗ ⊙ C∗
i

(5)
=

⊕
C∗∈C∗(f−1(µ))

λC∗ ⊙ C∗
j ,

where the last equality follows by using Equation 5, and that every cocircuit of f ′−1(µ)
is already a cocircuit of f−1(µ). Thus, w ∈ trop

(
f ′−1(µ)

)
. The reverse direction follows

analogously, thus (4) holds. □
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We commence with our last case of matrices in the decomposition: diagonal matrices with
entries that are different to 0 and 1, i.e., affine morphisms of valuated matroids with an
identity map as the first coordinate map, and a nontrivial second coordinate map. In the
realizable case, these are the maps that correspond to translations.

Lemma 5.17. Let µ be a valuated matroid over [n]. Let f : [n] ∪ {o} → [n] ∪ {o} × T be a
map satisfying f1(i) = i. Further, assume that for all i ∈ [n] there exists k ∈ K such that
f2(i) = val(k). Then, for the associated weakly monomial matrix Af defined in Definition
5.8, trop

(
f−1(µ)

)
= val(Af ) ⊙ trop(µ). Conversely, if Af ∈ Kn×n is a full rank diagonal

matrix, the associated map f satisfies trop
(
f−1(µ)

)
= val(Af )⊙ trop(µ).

Proof. Assume Af is a full-rank diagonal matrix, then the map of sets f1 is the identity.
Then, for each valuated cocircuit C∗

f−1(µ)(J) of f
−1(µ), by Lemma 5.7 there exists a valuated

cocircuit C∗
µ(J) with equal support J such that

C∗
f−1(µ)(J)i = C∗

µ(J)i ⊙
⊙
k∈J∪i

f2(k),(6)

and vice versa. Let v ∈ trop
(
f−1(µ)

)
. By Proposition 3.71, the point v can be written as a

tropical linear combination of cocircuits of f−1(µ), thus

vi =
⊕

C∗∈C∗(f−1(µ))

λC∗ ⊙ Ci
(6)
=

⊕
C∗∈C∗(µ)

(
λC∗ ⊙ C∗

i ⊙
⊙

k∈supp(C∗)∪i

f2(k)
)

= f2(i)⊙
Å ⊕

C∗∈C∗(µ)

(
λC∗ ⊙ C∗

i ⊙
⊙

k∈supp(C∗)

f2(k)
)ã

= val(Af,ii)⊙
Å ⊕

C∗∈C∗(µ)

(
(λC∗ ⊙

⊙
k∈supp(C∗)

f2(k))⊙ C∗
i

)ã
.

We have λC∗ ⊙⊙k∈supp(C∗) f2(k) ∈ R, thus, by Proposition 3.71, the vector v′ with entries

v′i =
(
λC∗ ⊙⊙k∈supp(C∗) f2(k)

)
⊙C∗

i is in trop(µ). As v = val(Af )⊙v′, v ∈ val(Af )⊙ trop(µ).

Now, let w ∈ trop(µ). Then w =
⊕

C∗∈C∗(µ) λ̃C∗ ⊙ C∗ for some fixed λ̃C∗ ∈ R for each
cocircuit C∗, and we have

(val(Af )⊙ w)i = (val(Af )⊙
⊕

C∗∈C∗(µ)

λ̃C∗ ⊙ C∗)i
(∗)
=

⊕
C∗∈C∗(µ)

(
val(Af,ii)⊙ λ̃C∗ ⊙ C∗

i

)
(∗∗)
=

⊕
C∗∈C∗(µ)

(
λ̃C∗ ⊙ f2(i)⊙ C∗

i

)
=

⊕
C∗∈C∗(µ)

Å(
λ̃C∗ c

⊙
k∈supp(C∗)

f2(k)
)
⊙ C∗

i ⊙ f2(i)
⊙

k∈supp(C∗)

f2(k)

ã
(6)
=

⊕
C∗∈C∗(f−1(µ))

Å(
λ̃C∗ c

⊙
k∈supp(C∗)

f2(k)
)
⊙ C∗

i

ã
where (∗) follows by Af being diagonal and (∗∗) follows by the construction of f2. Thus,
val(Af )⊙w can be written as the tropical sum of scalar multiples of cocircuits of trop

(
f−1(µ)

)
,

hence val(Af )⊙ w ∈ trop
(
f−1(µ)

)
. □



TROPICAL QUIVER THEORY AND TROPICAL ENUMERATION ON RULED SURFACES 71

Proposition 5.18. Let µ be a valuated matroid over [m]. Let f : [n]∪ {o} → [m]∪ {o}×T
be a map such that for all i ∈ [n] there exists k ∈ K satisfying f2(i) = val(k). Then,
for the associated weakly monomial matrix Af defined in Definition 5.8, trop

(
f−1(µ)

)
=

val(Af ) ⊙ trop(µ). Conversely, if Af ∈ Kn×m is a weakly monomial matrix, the associated
map f satisfies trop

(
f−1(µ)

)
= val(Af )⊙ trop(µ).

Proof. By Lemma 5.16, the statement holds for a weakly monomial matrix with entries in
{0, 1}, and by Lemma 5.17 it holds for diagonal matrices of full rank. Since every weakly
monomial matrix can be written as the product of these two types, by Lemma 5.12, the
claim follows for all matrices. □

Corollary 5.19. Let µ be a valuated matroid over [m] and let A ∈ Kn×m be a weakly
monomial matrix with no zero rows. Then, val(A) ⊙ trop(µ) ⊆ P(Tn) is a tropical linear
space.

Example 5.20. In Example 5.6, we saw that matrix multiplication with a weakly monomial
matrix induced a permutation and translation of the tropical linear space. Its matrix can be
decomposed into a permutation matrix and a full rank diagonal matrix,

val(A) =

 3 ∞ ∞
∞ ∞ 1

∞ 0 ∞

 =

 3 ∞ ∞
∞ 1 ∞
∞ ∞ 0

⊙

 0 ∞ ∞
∞ ∞ 0

∞ 0 ∞

 .
The associated map of matroids is

f : [3] ∪ {o} → [3] ∪ {o} × T;
1 7→ (1, 3)

2 7→ (3, 1)

3 7→ (2, 0)

o 7→ (o,∞).

The map f is the composition of a permutation map g and a map h composed of an identity
map h1 with non-infinite values in h2,

g : [3] ∪ {o} → [3] ∪ {o} × T
1 7→ (1, 0)

2 7→ (3, 0)

3 7→ (2, 0)

o 7→ (o,∞),

h : [3] ∪ {o} → [3] ∪ {o} × T
1 7→ (1, 3)

2 7→ (2, 1)

3 7→ (3, 0)

o 7→ (o,∞),

and f = h ◦ g as defined above. Hence, the valuations of sets in f−1(µ) are f−1(µ)(12) =
0 + 3 + 1 = 4, f−1(µ)(13) = 0 + 3 + 0 = 3, f−1(µ)(23) = 0 + 0 + 1 = 1, and f−1(µ)(I) = ∞
if o ∈ I. The following table gives the cocircuits of f−1(µ) and the vectors val(A)⊙ C∗

µ(I).

I C∗
f−1(µ)(I) val(A)⊙ C∗

µ(I)

1 (∞, 4, 3) (∞, 1, 0)

2 (4,∞, 1) (3, 1,∞)

3 (3, 1,∞) (3,∞, 0)
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Note that C∗
f−1(µ)(1) = val(A)⊙ C∗

µ(1)⊙ 3 = val(A)⊙ C∗
µ(1)⊙ f2(1), and that analogously,

C∗
f−1(µ)(2) = val(A)⊙C∗

µ(3)⊙ 1 = val(A)⊙C∗
µ(1)⊙ f2(2) and C

∗
f−1(µ)(2) = val(A)⊙C∗

µ(2) =

val(A)⊙ C∗
µ(1)⊙ f2(3), as in the proof of Lemma 5.17.

6. Valuated bimatroids and tropicalization of matrices

We finish our study of maps between matroids by considering an alternative approach to
matrices in matroid theory and tropical geometry. This alternative approach is via the use
of valuated bimatroids, which model some properties of matrices more faithfully than taking
the valuations of entries does.

In Section 6.1, we discuss Murota’s notion of a valuated bimatroid, introduce two alter-
native characterizations, and discuss some of their properties. In Section 6.2, we are mainly
concerned with studying the product of two bimatroids: we define the product as a tropical
version of the Cauchy-Binet formula, give bounds on the ranks of the resulting bimatroids,
and show that they form a monoid. We conclude this section by providing an outlook on
how to connect the approaches in this section with (affine) morphisms of valuated matroids.

This section is part of joint work in progress with Jeffrey Giansiracusa, Felipe Rincón and
Martin Ulirsch.

Remark 6.1. There exist different characterizations of bimatroids in the literature. The
unvaluated concept goes back to Kung [95], and has an equivalent alternative characterization
as linking systems due to Schrijver [128].

On the valuated side, Murota introduces valuations on bimatroids in [110]. His notion
is equivalent to ours, which we show below. In addition, Frenk introduces an equivalent
concept, valuated linking systems, in his thesis [60]. In particular, he shows that products of
linking systems are again linking systems in [60, Proposition 4.2.21].

6.1. Valuated bimatroids.

Definition 6.2. A valuated bimatroid A on the rows [n] and columns [m] is a valuated
matroid µ̂ of rank n on the ground set [n]⊔ [m] such that µ̂([n]) = 0. We call µ̂ the extended
valuated matroid associated to A.

This definition is motivated by the non-valuated definition of bimatroids due to Kung in
[139, Chapter 8]. In the following, we will denote by

(
[n]
∗

)
×
(
[m]
∗

)
the set of pairs (I, J) of

subsets I ⊆ [n] and J ⊆ [m] of arbitrary but equal cardinality.

For a pair (I, J) ∈
(
[n]
∗

)
×
(
[m]
∗

)
we write

µA(I, J) := µ̂
(
([n] \ I) ⊔ J

)
.

We call this function µA :
(
[n]
∗

)
×
(
[m]
∗

)
→ T the minor valuation function of A. We say that

(I, J) is a regular minor of A if µA(I, J) ̸= ∞.

We can characterize a valuated bimatroid in terms of its minor valuation function. This
is Murota’s original notion of a valuated bimatroid, [110, Section 2]. We show that the two
notions are equivalent:

Proposition 6.3. A function µA :
(
[n]
∗

)
×
(
[m]
∗

)
→ T is the minor valuation function of a

bimatroid if and only if it satisfies the following axioms:

(BM0) µA(∅, ∅) = 0.
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(BME) For all (I, J), (I ′, J ′) ∈
(
[n]
∗

)
×
(
[m]
∗

)
we have:

(i) For every i′ ∈ I ′ \ I at least one of the following two statements holds:
◦ there exists i ∈ I \ I ′ such that

µA(I, J) + µA(I
′, J ′) ≥ µA(I \ i ∪ i′, J) + µA(I

′ \ i′ ∪ i, J ′),

◦ there exists j′ ∈ J ′ \ J such that

µA(I, J) + µA(I
′, J ′) ≥ µA(I ∪ i′, J ∪ j′) + µA(I

′ \ i′, J ′ \ j′).
(ii) For every j ∈ J \ J ′ then at least one of the following two statements holds:

◦ there exists i ∈ I \ I ′ such that

µA(I, J) + µA(I
′, J ′) ≥ µA(I \ i, J \ j) + µA(I

′ ∪ i, J ′ ∪ j),
◦ there exists j′ ∈ J ′ \ J such that

µA(I, J) + µA(I
′, J ′) ≥ µA(I, J \ j ∪ j′) + µA(I

′, J ′ \ j′ ∪ j).

Proof. We first show that µA satisfies (BM0) and (BME) if A is a bimatroid, i.e., if µ̂ is a
valuated matroid of rank n such that µ̂([n]) = 0.

Property (BM0) is expressing the fact that µA([n]) = 0. Property (BME) follows directly

from the fact that µ̂ is a valuated matroid (see Definition 3.58): Let (I, J), (I ′, J ′) ∈
(
[n]
∗

)
×(

[m]
∗

)
. Let i′ ∈ I ′ \ I. Then, i′ ∈ (([n] \ I) ⊔ J) \ (([n] \ I ′) ⊔ J ′), so by µ̂ being a valuated

matroid, there exists k ∈ (([n] \ I ′) ⊔ J ′) \ (([n] \ I) ⊔ J) such that

µA(I, J) + µA(I
′, J ′) = µ̂

(
([n] \ I) ⊔ J

)
+ µ̂
(
([n] \ I ′) ⊔ J ′)

≥ µ̂
(
(([n] \ I) ⊔ J) \ i′ ∪ k

)
+ µ̂
(
(([n] \ I ′) ⊔ J ′) \ k ∪ i′

)
.

There are two cases: Either, k ∈ ([n] \ I ′) \ ([n] \ I) = I \ I ′, or k ∈ J ′ \ J .
Case 1: If k ∈ ([n] \ I ′) \ ([n] \ I) = I \ I ′,

µ̂
(
(([n] \ I) ⊔ J) \ i′ ∪ k

)
+ µ̂
(
(([n] \ I ′) ⊔ J ′) \ k ∪ i′

)
= µ̂

(
([n] \ (I \ i′ ∪ k)) ⊔ J

)
+ µ̂
(
([n] \ (I ′ \ k ∪ i′)) ⊔ J ′)

= µA(I \ k ∪ i′, J) + µA(I
′ \ i′ ∪ k, J ′).

This corresponds to the first option in axiom (BME)(i) above.
Case 2: If k ∈ J ′ \ J , then

µ̂
(
(([n] \ I) ⊔ J) \ i′ ∪ k

)
+ µ̂
(
(([n] \ I ′) ⊔ J ′) \ k ∪ i′

)
= µ̂

(
(([n] \ I) \ i′) ⊔ (J ∪ k)

)
+ µ̂
(
(([n] \ I ′) ∪ i′) ⊔ (J ′ \ k)

)
= µA(I ∪ i′, J ∪ k) + µA(I

′ \ i′, J ′ \ k).
Property (BME)(ii) follows analogously for j ∈ J \ J ′.

It remains to be shown that if µA satisfies (BM0) and (BME), then µ̂ is a valuated matroid.
Let B,B′ ⊆ [n] ⊔ [m] be sets of size n. We can decompose

B = (B ∩ [n]) ⊔ (B ∩ [m]) = ([n] \ ([n] \ (B ∩ [n]))) ⊔ (B ∩ [m])

and denote I = [n] \ (B ∩ [n]) and J = B ∩ [m]. Analogously, we decompose B′ and denote
I ′ = [n] \ (B′ ∩ [n]) and J ′ = B′ ∩ [m]. Then,
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µ̂(B) + µ̂(B′) = µ̂([n] \ I ⊔ J) + µ̂([n] \ I ′ ⊔ J ′) = µA(I, J) + µA(I
′, J ′).

Consider b ∈ B \ B′. Then, either b ∈ [n] or b ∈ [m]. We assume b ∈ [m]. Then, we have
b ∈ J \ J ′. By (BME)(ii), there are again two cases. Assume the first option of (BME)(ii)
holds. Then, there exists i ∈ I \ I ′ ⊆ B′ \B such that

µA(I, J) + µA(I
′, J ′) ≥ µA(I \ i, J \ b) + µA(I

′ ∪ i, J ′ ∪ b)
= µ̂

(
([n] \ (I \ i)) ⊔ (J \ b)

)
+ µ̂
(
([n] \ (I ′ ∪ i)) ⊔ (J ′ ∪ b)

)
= µ̂

(
([n] \ ([n] \ (B ∩ [n]) \ i)) ⊔ (B ∩ [m] \ b)

)
+ µ̂
(
([n] \ ([n] \ (B′ ∩ [n]) ∪ i)) ⊔ ((B′ ∩ [m]) ∪ b)

)
= µ̂(B \ b ∪ i) + µ̂(B′ \ i ∪ b).

Now, the other cases follow analogously. □

Definition 6.4. We denote by BMatn×m the set of all valuated bimatroids on the ground
set [n] ⊔ [m].

Example 6.5 (Realizable bimatroids). Let A ∈ Kn×m be an n×m matrix over a valued field
K. Then the function

µA(I, J) = val
(
det[A]I,J

)
for I × J ∈

(
[n]
∗

)
×
(
[m]
∗

)
naturally defines a valuated bimatroid Atrop on the ground set

[n] ⊔ [m].

In order to see this, we consider the matrixî
In A

ó
=

 1
. . . A

1

 ∈ Kn×n+m

that is extended by the n× n identity matrix In and note that

det[In|A][n],Ic⊔J = det[A]I,J .

The valuations of the maximal minors in [In|A] form a valuated matroid such that µ(In) = 0.
Hence, the valuations of all minors of A form a valuated bimatroid.

We refer to Atrop as the tropicalization of A and say that a valuated bimatroid arising in
this fashion is realizable by the matrix A over the field K. Note that the tropicalization Atrop

is different from the valuation val(A), which we studied in the previous section.

Definition 6.6. Given a square matrix

A = [aij]1≤i,j≤n ∈ Tn×n

for n ≥ 0, the tropical determinant is defined by

detA = min
σ∈Sn

{
a1σ(1) + · · ·+ anσ(n)

}
.

We note that, unlike for the classical determinant of a square matrix over a field K, the
tropical determinant is invariant under both row and column exchanges.
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Example 6.7 (Valuated bimatroids of Stiefel type). Given a matrix A ∈ Rn×m, the map

µA :
(
[n]
∗

)
×
(
[m]
∗

)
→ T given by

µA(I, J) = det[A]I,J

for (I, J) ∈
(
[n]
∗

)
×
(
[m]
∗

)
defines a valuated bimatroid St(A) on the ground set [n]⊔ [m], whose

rank is the maximal 1 ≤ r ≤ min{|[n]|, |[m]|} such that there exists (I, J) ∈
(
[n]
r

)
×
(
[m]
r

)
with

det[A]I,J ̸= ∞.

The argument that this is a valuated bimatroid follows as in [58]: We choose a sufficiently
generic lift of A to a matrix over some non-Archimedean field and apply the reasoning in
Example 6.5. Valuated bimatroids of the form St(A) for a matrix A ∈ Tn×m are realizable
and are said to be of Stiefel type.

Generalizing the corresponding notions for matrices, we can define the rank and the nullity
of a valuated bimatroid.

Definition 6.8. We define the rank of a bimatroid A ∈ BMatn×m (written as rk(A)) to be
the maximal number r for which there exist I ⊆ [n] and J ⊆ [m] with |I| = |J | = r such that
I × J is a non-singular minor of A. The nullity of a bimatroid is defined by nul(A) = n− l,
where l is the minimal number for which none of the I×J with |I| = |J | = l are non-singular
minors.

Both the rank and the nullity are set up such that the rank-nullity formula

rk(A) + nul(A) = n

automatically holds.

Example 6.9. There is exactly one bimatroid 0n×m on a ground set [n] ⊔ [m] of rank = 0,

µ0n×m(I, J) =

®
0 if I = J = ∅
∞ else.

The valuated bimatroid 0n×m is called the zero bimatroid and is the analogue of the matroid
U0,1 discussed in Example 3.51. When [n] = [m] = ∅, we abbreviate the zero valuated
bimatroid 0∅×∅ on the ground set ∅ × ∅ simply by 0.

Many properties of matrices directly carry over to valuated bimatroids. For instance, we
can define the transpose of a bimatroid as follows.

Definition 6.10. The transpose AT of a bimatroid A ∈ BMatn×m(A) is defined by the minor

valuation function µT :
(
[m]
∗

)
×
(
[n]
∗

)
→ T given by

µAT (J, I) = µA(I, J)

for J × I ∈
(
[m]
∗

)
×
(
[n]
∗

)
.

It is an immediate consequence of this definition that rk(AT ) = rk(A) as well as (AT )T = A
for a valuated bimatroid A ∈ BMatn×m. These facts allow us to deduce the following
bimatroidal analogue of the Laplace expansion formula for determinants.

Proposition 6.11. Let A be a valuated bimatroid on the ground set [n]⊔ [m] and let I×J ∈(
[n]
∗

)
×
(
[m]
∗

)
.
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(i) For every i ∈ I we have

µ(I, J)A ≥ min
j∈J

(
µA(i, j) + µA

(
I − i, J − j

))
and

(ii) for every j ∈ J we have

µ(I, J)A ≥ min
i∈I

(
µA(i, j) + µA

(
I − i, J − j

))
.

Proof. Part (i) is a consequence of Axiom (BME)T and Part (ii) a consequence of Axiom
(BME), applied with I ′ × J ′ = ∅ × ∅. □

The columns and rows of a valuated bimatroid naturally define valuated matroids.

Proposition 6.12. Let A be a non-trivial valuated bimatroid of rank r on the ground set
[n] ⊔ [m].

(i) The map µRow(A) :
(
[n]
r

)
→ T given by

µRow(A)(I) = min
J∈([m]

r )
µA(I × J)

defines a valuated matroid µrow(A) of rank r on the ground set [n].

(ii) The map µµcol(A) :
(
[m]
r

)
→ T given by

µCol(A)(J) = min
I∈([n]

r )
µA(I × J)

defines a valuated matroid Col(A) of rank r on the ground set [m].

The valuated matroids Col(A) and Row(A) are called the column matroid and the row
matroid of A, respectively.

Proof of Proposition 6.12. For Part (i) we consider I, I ′ ∈
(
[n]
r

)
. There are J, J ′ ∈

(
[m]
r

)
such

that

µrow(A)(I) = µA(I, J) and µrow(A)(I
′) = µA(I

′, J ′) .

Now let i ∈ I \ I ′. Apply Axiom (BME)T (noting that |I| = rk(A)) to find i′ ∈ I ′ \ I such
that

µA(I, J) + µA(I
′, J ′) ≥ µA(I \ i ∪ i′, J) + µA(I

′ \ i′ ∪ i, J ′) .

This immediately implies

µrow(A)(I) + µrow((A)(I
′) = µA(I, J) + µA(I

′, J ′)

≥ µA(I \ i ∪ i′, J) + µA(I
′ \ i′ ∪ i, J ′)

≥ µrow(A)(I \ i ∪ i′) + µrow(A)(I
′ \ i′ ∪ i) ,

which means that µrow(A) defines a valuated matroid of rank r. Part (ii) follows with
an analogous argument, switching rows and columns, and using Axiom (BME) instead of
(BME)T . □
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6.2. The tropical Cauchy-Binet formula. A central feature of (valuated) bimatroids is
that, just like matrices, but unlike (valuated) matroids, they admit a product. In this section,
we introduce this product for valuated bimatroids. We refer the reader to [95, Section 6] for
the non-valuated case, and to [60] for the equivalent notion of a product of valuated linking
systems.

In order to motivate the product, we recall the (generalized) Cauchy-Binet formula from
linear algebra. Given two matrices A ∈ Kn1×n2 and B ∈ Kn2×n3 , it tells us that

det
(
[AB]I,K

)
=

∑
J∈([n2]

d )

± det
(
[A]I,J

)
· det

(
[B]J,K

)
for I ×K ∈

(
[n1]
d

)
×
(
[n3]
d

)
. The product of two valuated bimatroids is defined by the tropical

analogue of this formula.

Definition 6.13. Let A ∈ BMatn1×n2 and B ∈ BMatn2×n3 be two valuated bimatroids with
minor valuation functions µA and µB respectively. We define the product A · B ∈ BMatn1×n3

to be the valuated bimatroid, whose minor valuation function is given by

µA·B(I,K) = min
J∈([n2]

d )

{
µA(I, J) + µB(J,K)

}
for I ×K ∈

(
[n1]
d

)
×
(
[n3]
d

)
.

For this definition to be reasonable, we need to verify that the product of two valuated
bimatroids is again a valuated bimatroid. This result is proven, formulated slightly differently
by Frenk in [60]:

Proposition 6.14 ([60, Proposition 4.2.21]). Given two valuated bimatroids A ∈ BMatn1×n2

and B ∈ BMatn2×n3, the product A · B is also a valuated bimatroid, on the ground set
[n1] ⊔ [n3].

Proposition 6.15. The set of (square) valuated bimatroids over [n] ⊔ [n] with the product
outlined in Definition 6.13 forms a monoid. Further, multiplication of compatible bimatroids
is associative, and has left and right identity elements. In other words:

(i) There are unique valuated bimatroids I[n1] ∈ BMatn1×n1 and I[n2] ∈ BMatn2×n2 such
that

I[n1] · A = A and A · I[n2] = A

for all A ∈ BMatn1×n2.
(ii) The bimatroid product is associative: Given three valuated bimatroids A ∈ BMatn1×n2,

B ∈ BMatn2×n3, and C ∈ BMat[n3]×[n4], we have

(A · B) · C = A · (B · C) .

Proof. (i) We define the identity I[n1] by setting

µI[n1]
(I, J) =

®
0 if I = J

∞ if I ̸= J.

for I × J ∈
(
[n1]
∗

)
×
(
[n1]
∗

)
. Then we automatically have I[n1] · A = A for all A ∈

BMatn1×n2 . The same construction provides us with I[n2] ∈ BMatn2×n2 such that
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A · I[n2] = A for all A ∈ BMatn1×n2 . In order to show the uniqueness of I[n1] we consider
another I′[n1]

with the same property and note that then I′[n1]
= I′[n1]

· I[n1] = I[n1].

(ii) To show associativity, we observe that for I × L ∈
(
[n1]
d

)
×
(
[n4]
d

)
we have:

µ(A·B)·C(I, L) = min
K∈([n3]

d )

{
µA·B(I,K) + µC(K,L)

}
= min

K∈([n3]
d )

{
min

J∈([n2]
d )

{
µA(I, J) + µB(J,K)

}
+ µC(K,L)

}
= min

J∈([n2]
d )

{
µA(I, J) + min

K∈([n3]
d )

{
µB(J,K) + µC(K,L)

}}
= min

J∈([n3]
d )

{
µA(I, J) + µB·C(J, L)

}
= µA·(B·C)(I, L) .

□

Products of valuated bimatroids are compatible with taking transposes.

Proposition 6.16. We have

IT[n1]
= I[n1] as well as (A · B)T = BT · AT

for valuated bimatroids A ∈ BMatn1×n2 and B ∈ BMatn2×n3.

Proof. The equality IT[n1]
= I[n1] is an immediate consequence of

µIT
[n1]

(I, I) = µI[n1]
(I, I) and µIT

[n1]
(I, J) = µI[n1]

(J, I) = ∞

for I, J ∈
(
[n1]
∗

)
with I ̸= J . The second equality follows by observing that for K × I ∈(

[n3]
d

)
×
(
[n1]
d

)
we have:

µBT ·AT (K, I) = min
J∈([n2]

d )

{
µBT (K, J) + µAT (J, I)

}
= min

J∈([n2]
d )

{
µA(I, J) + µB(J,K)

}
= µ(A·B)T (K, I) .

□

For two valuated bimatroids A,B ∈ BMatn1×n2 we write A ≤ B if the inequality

µA(I, J) ≤ µB(I, J)

holds for all I × J ∈
(
[n1]
∗

)
×
(
[n2]
∗

)
. The relation ≤ defines a partial order on the set

BMatn1×n2 , whose unique maximal element is the trivial bimatroid 0n1×n2 . The Stiefel
bimatroids discussed in Example 6.7 are minimal with respect to this partial order.

Proposition 6.17. We have

(I[n1])
trop = I[n1] as well as (AB)trop ≥ Atrop ·Btrop

for matrices A ∈ Kn1×n2 and B ∈ Kn2×n3.
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Proof. The equality Itrop[n1]
= I[n1] is trivial, since a minor [I[n1]]I×J of the identity matrix has

determinant = 1 if and only if I = J and = 0 otherwise. To show that (AB)trop ≥ Atrop ·Btrop

for matrices A ∈ Kn1×n2 and B ∈ Kn2×n3 , we use the (generalized) Cauchy-Binet formula,
which tells us that

det
(
[AB]I,K

)
=

∑
J∈([n2]

d )

det
(
[A]I,J

)
· det

(
[B]J,K

)
(7)

for I × K ∈
(
[n1]
d

)
×
(
[n3]
d

)
. This formula is a consequence of the well-known fact that for

linear maps f : V1 → V2 and g : V2 → V3 between finite-dimensional vector spaces Vi (for
i = 1, 2, 3), the induced linear maps on the exterior powers fulfil

∧
(g ◦ f) = ∧(g) ◦∧(f).

If we apply the valuation on K to both sides of (7), we find

val
(
det
(
[AB]I,K

))
≥ min

J∈([n2]
d )

ß
val
(
det
(
[A]I,J

))
+ val

(
det
(
[B]J,K

))™
for all I ×K ∈

(
[n1]
∗

)
×
(
[n3]
∗

)
. This is equivalent to (AB)trop ≥ Atrop ·Btrop. □

The rank of a product of two valuated bimatroids obeys the following rule.

Proposition 6.18. Let A ∈ BMatn1×n2 and B ∈ BMatn2×n3 be two valuated bimatroids.
Then we have

rk(A · B) = min
S⊆[n2]

{
rkµcol(A)(S) + rkµrow(B)([n2] \ S)

}
.

In particular, setting S = ∅ and S = [n2], we always have

rk(A · B) ≤ min
{
rk(A), rk(B)

}
.

Proof of Proposition 6.18. Write Ind
(
µcol(A)

)
and Ind

(
µrow(B)

)
for the set of independent

subsets of µcol(A) and µrow(B) respectively. It is now an immediate consequence of the
definitions that the rank of A · B is the cardinality of a maximal set in Ind

(
µcol(A)

)
∩

Ind
(
µrow(B)

)
. The equality then follows from the matroid intersection theorem. □

We conjecture that it is possible to describe every affine morphism of valuated matroids
as a valuated bimatroid in the following way.

Conjecture 6.1 (Correspondence between valuated bimatroids and affine morphisms). Let
A ∈ BMatn1×n2 be a valuated bimatroid on [n1] ⊔ [n2] with column matroid µ = col(A), and
let and B ∈ BMatn2×n3 be another valuated bimatroid. Then, if M = col(A ·B) is the column
matroid of the product, we have a natural affine morphism of valuated matroids ν → µ.
Further, every affine morphism of valuated matroids can be represented in this way.

We justify the conjecture as follows. In [95, Theorem 4], Kung establishes the analogous
result for the unvaluated case, leading to our conjecture. On examples, the conjecture works
out. Kung’s proof of Theorem 4, however, uses the Higgs factorization theorem. This
theorem asserts that every matroid quotient can be written as an extension followed by a
contraction and is characterization (e) in Lemma 3.38). To our knowledge, at this point in
time there exists no valuated analogue of this theorem. Thus, to prove Conjecture 6.1, one
would likely have to come up with a valuated analogue of Higgs factorization first.
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Part 2. Quivers in tropical geometry

In this part of the thesis, we will use the theory of linear maps in tropical geometry we
developed in Part 1 to build a new theory in tropical geometry: that of tropical quiver
representations.

Quiver representation theory is a subfield of representation theory that started around
1980. A main appeal is that quiver representations allow for a more combinatorial approach
to the study of representations of Lie algebras. In 1992, Schofield introduced quiver Grass-
mannians [127] in an effort to study general representations of quivers. Since then, quiver
Grassmannians have become an interesting object of study in their own right — they are
geometrically interesting spaces with rich combinatorial structure and connect to many areas
of math, for instance algebraic geometry and the theory of cluster algebra [35].

Every projective variety can be represented as a quiver Grassmannian [122]. When a
variety is the quiver Grassmannian of a particularly well-behaved quiver, one can use the
quiver representation to control and construct degenerations of the variety. A particularly
nice example of this is the flag variety, whose linear degenerations were studied for instance
in [40, 41, 54].

The main goal of this part is to lay a foundation for a tropical analogue of quiver repre-
sentation theory. We have dealt with one of the main obstacles in establishing such a theory
already in Part 1, where we introduced, studied and compared different notions of linear
maps of tropical linear spaces and their associated valuated matroids.

In this part, we introduce all other notions necessary for such a tropical analogue: we
introduce (valuated) matroidal quiver representations as an analogue of the classical concept,
and construct two different tropical analogues of the quiver Grassmannian: the tropicalized
quiver Grassmannian and the quiver Dressian.

We then prove the main results of this part. We show that quiver Dressians are the pa-
rameter spaces of tropical linear spaces contained under naive tropical matrix multiplication,
and, requiring that the quiver representations can be described by matrices that are weakly
monomial, of valuated matroidal quiver representations, see Theorem E. Analogously, we de-
rive that the tropicalized quiver Grassmannian parametrizes tropicalizations of linear spaces
contained under naive tropical matrix multiplication, and, with the same restriction of re-
quiring the representation matrices to be weakly monomial, of realizable valuated matroidal
quiver representations, see Theorem D. We compare the two tropical analogues and discuss
when they can coincide, see Theorem F and Conjecture G.

Further, we discuss applications of the theory for constructions of linear degenerations of
tropical flag varieties, and start with establishing a polyhedral analogue of matroidal quiver
representations.

This part is structured as follows. We give an overview of quiver representation theory
and all definitions necessary for our purposes in Section 7.

We resume our original content in Section 8, where we introduce matroidal quiver repre-
sentations and their valuated analogues. In essence, this section is based on joint work with
Giulia Iezzi [82]. However, this section includes new definitions, in an expository effort to
tie tropical quiver Grassmannians more closely to the classical theory.

In Section 9, we introduce two tropical analogues of quiver Grassmannians, one for
realizable quiver subrepresentations, and one for arbitrary tropical quiver subrepresentations.
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We show that the analogues are compatible with the notions of morphisms of matroids and
maps of tropical linear spaces we introduced in Part 1, and study their relationship with each
other. We prove the main theorems of this part of the thesis, Theorems E, D and 9.8. This
section is based on joint work with Giulia Iezzi [82], with some supplementary examples.
Some examples were computed with the aid of gfan [88], Oscar [114] and Macaulay2 [71].
The code used to generate these examples can be found in Appendix B.3 and B.5.

In Section 10, we use the main theory developed in the previous section to study a
problem in tropical geometry. We investigate the linear degenerations of flag varieties via
quivers from a tropical point of view, and establish first results on their cover relations. This
will aid in computing flag varieties more efficiently. The section is based on joint work with
Alessio Borz̀ı [27].

Finally, in Section 11, we begin the study of polyhedral analogues of quiver Dressians. We
discuss how morphisms of matroids behave on the associated matroid polytopes, show some
subcases and establish a general conjecture, which we verify computationally for examples.

7. Preliminaries: Representation theory of quivers

In this section, we review some basics of quiver representation theory. We focus on quiver
Grassmannians as the parameter spaces of more complicated arrangements of linear spaces,
which we will generalize to tropical geometry later in this part. Further, we give a glimpse
into the representation-theoretic background, aimed at providing some insight as to why
this area of research is interesting. Standard references for quiver representation theory are
[31, 49, 125]. In this section, we mainly follow [31].

Definition 7.1. A finite quiver Q = (V,A, s, t) is a directed graph given by a finite set of
vertices V , a finite set of arrows A and two maps

s, t : A→ V

assigning to each arrow its source, resp. target.

Example 7.2. For example, consider the quiver given below.

v1

v2

v3

v4

α1

α2

α3

α4

It has four vertices V = {v1, v2, v3, v4} and four arrows A = {α1, α2, α3, α4}. The source
map assigns s(α1) = s(α2) = v1, s(α3) = v2 and s(α4) = v3, whereas the target map assigns
t(α1) = v2, t(α2) = v3 and t(α3) = t(α4) = v4.

Now, we assign linear data to the a priori combinatorial objects.

Definition 7.3. Given a quiver Q, we define a finite-dimensional Q-representation R over
a field K as the ordered pair

(
(Ri)i∈V , (R

α)α∈A), where Ri is a finite-dimensional K-vector
space attached to a vertex i ∈ V and Rα : Rs(α) → Rt(α) is a K-linear map for any α ∈ A.

The dimension vector of R is dim(R) := (dimK(Ri))i∈V ∈ ZV
≥0.
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Example 7.4. We continue with the quiver we considered in Example 7.2, and assign a repre-
sentation. We fix a basis B = {b1, b2, b3, b4} of C4 and consider the following representation
R =

(
(C4)i∈[4], (id)j∈[4]):

R :

C4

•

C4

• C4

•

C4

•

[
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

][
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

]

[
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

] [
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

]
.

The linear maps and vertices assigned above now allow us to describe more sophisticated
arrangements of linear spaces.

Definition 7.5. Let Q = (V,A, s, t) be a quiver and let M =
(
(Mi)i∈V , (R

α)α∈A) and

N =
(
(Ni)i∈V , (R̃)α∈A) be two different representations of Q. A morphism of representations

u : M → N is a family of linear maps of vector spaces (ui : Mi → Ni)i∈V such that the
diagram

Ms(α)•
Mt(α)•

Ns(α)•
Nt(α)•

u(s(α))

Rα

u(t(α))

R̃α

commutes for all α ∈ A. For any two morphisms, their composition is a morphism. Thus,
quiver representations with morphisms of representations form a category. Further, compo-
sition is associative and the map (idv)v∈V , which is the identity map on all vertices, is the
identity morphism. Thus, the category is abelian.

A common problem in quiver representation theory is the classification of isomorphism
classes of (finite-dimensional) quiver representations after fixing the dimensions of the vector
spaces assigned to vertices. In other words, we fix a dimension vector d and set dim(Nv) = dv
for all v ∈ V , and consider all possible maps we can assign to arrows α, determining their
isomorphism classes.

Example 7.6. In the following, we will consider three quivers, one with finitely many isomor-
phism classes of representations, and two with infinitely many such classes.

First, we consider the equioriented quiver corresponding to the Dynkin diagram of type
An:

v1• v2• · · · vn• .α1 α2 αn−1

It has finitely many isomorphism classes. After change of bases, every linear map can be
represented as a coordinate projection. Successively changing bases allows us to represent
each of the arrows above by a projection of the correct rank. We assume that all vertices
correspond to a vector space Km of the same dimension m.
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Now, each isomorphism class is an assignment of arrows (α1, . . . , αn−1) which corresponds
to a set of rank vectors r = (rij)1<j≤i≤n−1 by setting rank(αj−1 ◦ · · · ◦αi) = rij. There is only
a finite number of rank vectors r, hence there is only a finite number of isomorphism classes
for a fixed dimension of the vector spaces assigned to vertices.

We consider the quiver given by a loop:

Kn

• α

The isomorphism classes of representations are given by n× n matrices A. Changing bases
amounts to conjugation by an invertible matrix B ∈ Kn×n, thus, we have [B−1AB] ∼= [A].
All conjugacy classes of n×n matrices can be characterized uniquely by their Jordan normal
form. Over an infinite field, there are infinitely many possible Jordan normal forms, hence
there are infinitely many isomorphism classes of representations.

Next, we consider the Kronecker quiver, which is a tame quiver, but nevertheless a patho-
logical counter-example in quiver representation theory:

Kn

• Km

•
α2

α1

The isomorphism classes of representations consist of tuples of n×m matrices, up to simul-
taneous multiplication by the same invertible n×n matrix on the left and m×m matrix on
the right. The classification here is much more involved and due to Kronecker. However, we
can see that there are infinitely many isomorphism classes, in the following way:

We assume the dimension of both vector spaces to be equal, i.e., m = n, and consider
the subset of isomorphism classes of representations where Rα1 is invertible. Up to choice of
bases, we can then assume that Rα1 is the identity matrix. However, this fixes the matrix
Rα2 . Hence, there are infinitely many isomorphism classes of representations, corresponding
to the infinitely many choices of the matrix Rα2 .

Example 7.7. In quiver representation theory, Dynkin quivers play a special role. These are
quivers whose underlying (undirected) graph is a Dynkin diagram. The Dynkin diagrams of
importance for this thesis are diagrams listed below:

A: • • · · · • • E6:
• • • • •

•

C: • • · · · • • E7:
• • • • • •

•

D:
• • · · · • •

•
E8:

• • • • • • •

•
Here, the number of vertices of a Dynkin diagram of type A is arbitrary, whereas Dynkin
diagrams of type C are required to have at least 3 and Dynkin diagrams of type D are
required to have at least 4 vertices.

Theorem 7.8 (Gabriel’s theorem, [62]). A quiver has a finite number of isomorphism classes
of quiver representations if and only if each connected component of its underlying undirected
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graph is a simply-laced Dynkin diagram, i.e., a quiver associated to a Dynkin diagram of types
A,D or E listed in Example 7.7.

Definition 7.9. A subrepresentation of R is aQ-representationN =
(
(Ni)i∈V , (R

α|Ns(α)
)α∈A

)
such that Ni ⊆ Ri for all i ∈ V and Rα(Ns(α)) ⊆ Nt(α) for all α ∈ A.

Example 7.10. We return to the setting in Example 7.2. Recall that we had fixed a basis
B = {b1, b2, b3, b4} such that we could describe all arrows as the identity matrices. For the
quiver representation R, we consider

N =
(
(⟨b1⟩, ⟨b1, b2⟩, ⟨b1, b4⟩, ⟨b1, b2, b4⟩), ([ 10 ], [ 10 ],

î
1 0
0 1
0 0

ó
,
î
1 0
0 0
0 1

ó
)).

It is an R-subrepresentation with dimension vector dim(N) = (1, 2, 2, 3). The matrices
representing the linear maps appearing in N are the restrictions of the identity maps to the
chosen subspaces.

In this way, the quiver we have discussed in the examples in this section describes the
arrangement of different linear spaces: It describes the containment of a point inside of two
independent lines, which are contained in a common plane.

A sequence of subspaces that cannot belong to any subrepresentation of R is, for instance,
(⟨b1⟩, ⟨b1, b2⟩, ⟨b1, b4⟩, ⟨b1, b2, b3⟩), where the bi are arbitrary choices of bases for C4, because
id(⟨b1, b4⟩) ⊈ ⟨b1, b2, b3⟩.
Definition 7.11 (Quiver Grassmannians). Consider a quiver Q, a Q-representation R and
a dimension vector d ∈ ZV

≥0 such that di ≤ ni for all i ∈ V . The quiver Grassman-
nian in dimension n = (ni)i∈V , denoted by QGr(R,d;n), is defined as the collection of all
subrepresentations N of R with dimNi = di for all i ∈ V .

Example 7.12 (The flag variety). In [42, Proposition 2.7], the authors realize the (linear
degenerate) flag variety as the quiver Grassmannian associated to representations of the
equioriented quiver of type An. In particular, the complete flag variety can be realized as
follows.

Consider the quiver with n vertices, ordered from 1 to n, and n − 1 arrows of the form
i → i + 1. We fix the dimension vector d = (1, 2, . . . , n) and the representation R with
Ri = Cn+1 for i = 1, . . . , n and Rα = id for all α ∈ A:

Cn+1

• Cn+1

• . . .
Cn+1

• .id id id

The quiver Grassmannian QGr(R,d; (n + 1, . . . , n + 1))) consists precisely of the subrepre-
sentations N of R with dim(Ni) = i and Ni ⊆ Ni+1, i.e., flags of vector subspaces.

Analogously to Grassmannians and flag varieties, quiver Grassmannians can be realized
pointwise as subvarieties of products of projective spaces, via the closed embedding

ι : QGr(R,d;n) →
∏
i∈V

Gr(di, K) ⊆ P
(n1
d1
)

K × P
(n2
d2
)

K × · · · × P
(n|V |
d|V |

)
K

which sends a subrepresentation N of R to the collection of di-dimensional subspaces Ni of
Ri.

In this thesis, we will consider quiver Grassmannians as the zero locus of quiver Plücker
relations (see Definition 7.13), since they coincide pointwise and their scheme-theoretic struc-
ture as (possibly not reduced) projective varieties is not relevant for our purposes.
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Definition 7.13 (Quiver Plücker relations, [98]). Let Q = (V,A, s, t) be a quiver and R
a Q-representation. After fixing bases for all vertices, let Mα ∈ Kn×m be the matrix of
the map of α ∈ A. Let r = dim(s(α)) and s = dim(t(α)). For each arrow α, the quiver

Plücker relations are the polynomials in the variables {pI : I ∈
(
[m]
r

)
} ∪ {pJ : J ∈

(
[n]
s

)
} with

coefficients in K:

Pα;(n,m) =

 ∑
j∈[n]\I,i∈J

sign(j; I, J)(Mα)i,jpI∪jpJ\i : I ∈
Ç

[m]

r − 1

å
, J ∈

Ç
[n]

s+ 1

å
where sign(j; I, J) = (−1)#{j′∈J :j<j′}+#{i∈I:i>j}. Their tropicalization will be denoted by
Ptrop

α;(n,m)). The Plücker relations corresponding to the vertices are the standard Grassmann-

Plücker relations of the associated vector spaces. In [98], it is shown that the vanishing set
of the quiver Plücker relations coincides with the associated quiver Grassmannian.

Pointwise, the definition of the quiver Grassmannian as the parameter space of quiver
subrepresentations coincides with the zero locus of the quiver Plücker relations. However,
their scheme-theoretic structure can differ. In particular, the scheme associated to the quiver
Plücker relations might not be reduced.

8. Matroidal quiver representations

In this section, we use the previously established theory of affine morphisms of valuated
matroids to construct a matroidal analogue of quiver (sub)representations. This section is
independent work, but is mainly a re-framing and an expansion of joint work with Giulia
Iezzi [82] in the context of quiver representations.

Definition 8.1. Let Q = (V,A, s, t) be a quiver. We define a matroidal Q-representation R
as the ordered pair

(
([ni])i∈V , (f

α)α∈A), where ni is a positive integer attached to a vertex
i ∈ V and fα : [ns(α)] ∪ {o} → [nt(α)] ∪ {o} is a map of sets fixing o for any α ∈ A.

To define the analogue for valuated matroids, in keeping with the definition of affine
morphisms of valuated matroids (see Definition 4.9) we attach different maps to the arrows.

Definition 8.2. Let Q = (V,A, s, t) be a quiver. A valuated matroidal Q-representation R
is an ordered pair

(
([ni])i∈V , (f

α)α∈A), where ni is a positive integer attached to a vertex
i ∈ V and fα : [ns(α)] ∪ {o} → [nt(α)] ∪ {o} × T is a map satisfying fα(o) = (o,∞) for any
α ∈ A.

Remark 8.3. As we had previously noticed when studying (affine) morphisms of valuated
matroids, maps of matroids are contravariant to their classical analogues arising via matroid
multiplication. Thus, for examples we will usually consider the contravariant quiver, where
we reverse all arrows.

Example 8.4. We construct some corresponding matroidal Q-representations for the quivers
discussed in the classical case in Examples 7.2 and 7.6:

(a) Let us first consider the diamond shaped quiver we discussed in Example 7.2. We
obtain its matroidal analogue by substituting every vector space C4 by the set of
size dim(C4) = 4, and the matrices by their associated affine maps of sets we had
constructed in Definition 5.8. This yields the identity map of sets id : [4] ∪ {o} →
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[4] ∪ {o} for all arrows. Finally, we reverse all arrows. We end up with the following
quiver with associated matroidal quiver representation:

R :

[4]•

[4]• [4]•

[4]•

id id

idid

.

(b) Now, we consider the A3-Dynkin quiver we had encountered in Example 7.6. We will
consider two different valuated matroidal quiver representations. First, we investigate
the representation below, where each arrow is assigned the identity map on [4]∪ {o}
in the first coordinate and the trivial map we discussed in Lemma 4.11 in the second
coordinate. We will see later that the parameter space associated to this valuated
matroidal quiver representation is the flag Dressian we have already seen in Definition
3.93.

[4]• [4]• [4]• .
(id,triv) (id,triv)

Now, we give a different valuated matroidal quiver representation associated to the
same quiver, which assigns projection maps to each arrow. Coordinate-wise, in the
first coordinate, the map is given as the projection map we had discussed in Definition
3.53. In the second coordinate, it is the map

f4 : i 7→
®
0 i ∈ {1, 2, 3}
∞ i ∈ {4, o}.

[4]• [4]• [4]• .
(pr4,f4) (pr4,f4)

(c) Next, we construct a matroidal quiver representation of the loop quiver,

[5]• pr5 .

The map on the arrow is the projection map pr5 we discussed in Definition 3.53.
(d) Finally, we will consider a valuated matroidal quiver representation of the Kronecker

quiver, where the maps are given coordinate-wise as the identity on [2]∪{o} and the
trivial map defined in Lemma 4.11.

(id, triv)

(id, triv)

[2] [2]
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The choice why we assign twice the same map will remain a mystery for a while. We
will see the reason for this construction much later, when we discuss realizability in
Example 9.10

Analogously to the classical case, we are mainly interested in (valuated) matroidal quiver
subrepresentations and their ambient spaces.

Definition 8.5. Let Q be a quiver and R a matroidal Q-representation. Let M = (Mi)i∈V
be a collection of matroids, such thatMi is a matroid over the ground set [ni] for each i ∈ V .
We say that M is a matroidal quiver subrepresentation if fα is a strong map of matroids for
every α ∈ A.

Analogously, if R is a valuated matroidal Q-representation and ν = (νi)i∈V a collection of
valuated matroids over the ground sets [ni] for each i ∈ V respectively, we say that ν is a
valuated matroidal quiver subrepresentation if fα is an affine morphism of valuated matroids
for every α ∈ A.

The rank vector of a (valuated) matroidal Q-subrepresentation M (or ν) is rk(M) :=
(rk(Mi))i∈V .

Remark 8.6. By Lemma 4.10, we know that every morphism of valuated matroids induces
a strong map of the underlying matroids, which is given by the first coordinate map of the
affine map. This means that if we have a valuated matroidal quiver subrepresentation ν,
we can obtain an underlying matroidal quiver subrepresentation N by taking the underlying
matroids for each valuated matroid, and restricting the map to its first coordinate map.

Example 8.7. In Example 8.4, we had constructed some (valuated) matroidal quiver rep-
resentations. Now, we will give some examples of the subrepresentations of the (valuated)
matroidal quiver representations constructed in Example 8.4(b) and (c).

◦ We aim to find all matroidal quiver subrepresentations of rank 2 of the matroidal
loop quiver representation we constructed in Example 8.4(c). This means that we
need to construct all matroids M of rank 2 over [5] for which the projection map pr5
is a morphism of M into itself. By Definition 3.42 and Proposition 5.14, this means
we need to identify all matroids M of rank 2 over 5 such that

M \ 5⊕ U0,5 ↞M.

If 5 is a loop of M , then M \ 5⊕ U0,5 = M , so M is a matroidal subrepresentation.
Further, all matroids that have 5 as a coloop, and where all other elements of [4]
can be decomposed into a set of loops l and a set of parallel elements p. To see that
these matroids are matroidal quiver subrepresentations, we use Definition 3.37 and
construct the associated lattices of flats.

LM\5⊕U0,5 LM

l ∪ 5

12345

l

l ∪ p = 1234 l ∪ 5

12345

We directly observe that each flat on the left is also a flat on the right, so by Definition
3.37, M \ 5⊕ U0,5 ↞M , thus M is a quiver subrepresentation.
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We want to show that no other matroid of rank 2 on [5] is a subrepresentation.
We assume that 5 is not a loop. Let l denote the set of loops of M . Then, l ∪ 5 is
the set of loops of M \ 5⊕ U0,{5}, and hence a flat in LM\5⊕U0,{5} . Thus, by M being
a matroidal quiver subrepresentation of the loop quiver, l ∪ 5 is also a flat of M .

Since rk(M) = 2, by Remark 3.29, all maximal flags of flats are of length 3. Now,
l, l ∪ 5 and [5] form a maximal chain of flats, as 5 /∈ l by assumption. This directly
implies that no other flats of M can contain 5: Every flat contains l, and if F is a
flat that additionally contains 5, by l ⊊ l ∪ 5 ⊊ [5] being a maximal chain of flats, F
is either l ∪ 5 or [5].

Observe that

rkM\5⊕U0,{5}(S) = rkM(S \ 5)
by definition. Now, if F is a flat of M that does not contain 5, then F ∪ 5 is a flat of
M \ 5⊕U0,{5}. By M being a matroidal quiver subrepresentation of the loop quiver,
this implies that F ∪ 5 is also a flat of M , hence F = l or F = 1234. Now, this is
exactly the description of the lattice of flats we obtained for our examples.

◦ Now, we construct the valuated matroidal quiver subrepresentation of the matroidal
analogue of the quiver representation generating the flag variety, which is the first
valuated matroidal quiver representation in Example 8.4(b). Unlike the previous
example, we will not construct all subrepresentations, as there are usually infinitely
many of them.

We can directly observe that the row spaces of the matrices below are contained
inside of each other.

rowsp
î
tb −ta 0 1

ó
⊂ rowsp

ñ
tb −ta 0 1

1 0 −ta 1

ô
⊂ rowsp

tb −ta 0 1

1 0 −ta 1

0 1 1 0

 .
Assume that 0 > a > b. Then, the matroids correspond to the following Plücker

vector, recording the valuation of bases in lexicographical ordering:

µ1 = (b, a,∞, 0)

µ2 = (a, a+ b, b, 2a, a, a)

µ3 = (a+ b, b, b, 2a).

Since their associated linear spaces are contained inside of each other, the three
valuated matroids form a flag, which means that they are a valuated matroidal quiver
representation. Further, as we observed in Remark 8.6, their underlying matroids
U1,3 ⊕ U0,1, U2,4 and U3,4 are a matroidal quiver representation for the same quiver
with the maps restricted to their first coordinate.

Using the connection between tropical matrix multiplication and affine morphisms of valu-
ated matroids, we can establish a direct connection between matroidal quiver representations
and quiver Dressians.

Proposition 8.8. LetMf ∈ Kn×m be a weakly monomial matrix, and let µ and ν be matroids
of ranks r and s over [n]. Then, val(Mf ) ⊙ trop(µ) ⊆ trop(ν) if and only if f : ν → µ × R
as constructed in Proposition 5.18 is an affine morphism of valuated matroids.
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C4

•
[2]

C4

•
[1]

C4

•
[3]

C4

•
[2]

idid

id id

1

3

4

2

12

34

14

23

13

24

Figure 8. The numbers below the vertices of the quiver represent the fixed
dimensions of the corresponding subspaces. Any subrepresentation consisting
of such subspaces describes the containment of a point in two lines, which are
both contained in a common plane. On the right, a collection of tropical linear
spaces satisfying these conditions.

Further, val(Mf ) ⊙ trop(µ) ⊆ trop(ν) is realizable if and only if f : ν → µ × R is a
realizable affine morphism of valuated matroids.

Proof. By Proposition 5.18, there exists a map f : [n] ∪ {o} → [m] ∪ {o} × T such that
val(Mf )⊙ trop(µ) = trop

(
f−1(µ)

)
. By [30, Theorem A],

trop
(
f−1(µ)

)
= val(Mf )⊙ trop(µ) ⊆ trop(ν)

implies that f−1(µ)|f1([n]) ↞ ν, i.e., by Definition 4.9, that f−1 is an affine morphism of
valuated matroids. The realizability statement follows from Definition 4.9. □

9. Tropical quiver Grassmannians

In this section, we construct the two tropical analogues of quiver Grassmannians. We
obtain the tropicalized quiver Grassmannian as the tropicalization of the quiver Grassman-
nian and show that it is the parameter space of tropicalizations of quiver subrepresentations.
Further, we construct the quiver Dressian as the tropical prevariety of the quiver Plücker
relations, and show that it is the parameter space of tropical linear spaces contained inside of
each other after naive tropical matrix multiplication. For appropriate quiver representations,
we then connect these constructions to the valuated matroidal quiver subrepresentations dis-
cussed in the previous section. These correspondence results are two of the three main results
of this part of the thesis, Theorem E for the characterization of quiver Dressians, and D for
the characterization of tropicalized quiver Grassmannians. We conclude by studying when
the two analogues coincide, and prove the third main result of this part of the thesis, Theorem
F.

9.1. Tropicalized quiver Grassmannians.
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Definition 9.1. Let Q be a quiver and let M be a Q-representation with quiver Grassman-
nian QGr(M,d;n). The tropicalized quiver Grassmannian

trop
(
QGr(M,d;n)

)
⊆ P

(
T(

n1
d1
))× · · · × P

(
T
(n|V |
d|V |

))
is the (multihomogeneous) tropicalization of QGr(M,d;n).

Example 9.2. Let us come back to the loop quiver we discussed in Example 8.7. Analogously
to the construction in Lemma 4.11, we can attach the trivial map as the second coordinate.
This allows us to construct a valuated matroidal quiver representation out of a matroidal
one, and to investigate its subrepresentations. We compute the quiver Plücker relations
using our code in Appendix B.4.

julia> n,m,r,s = (5,5,2,2);

julia> B = [1 0 0 0 0; 0 1 0 0 0; 0 0 1 0 0; 0 0 0 1 0; 0 0 0 0 0];

julia> p1 = quiver_pluecker_relations(r,s,M)

The output is a 50 element vector of Plücker relations. Because the loop quiver has the
same matroid as the source and the target vertex for its lone arrow, we need to identify the
Plücker variables assigned to source and target with each other. We can do this as follows.

julia> Iset = subsets(collect(1:m),r-1);

julia> Jset = subsets(collect(1:n),s+1);

julia> m_c_r =subsets(collect(1:m),r);

julia> n_c_s =subsets(collect(1:n),s);

julia> R,x,y = polynomial_ring(QQ, "x"=>m_c_r, "y"=>n_c_s)

(Multivariate polynomial ring in 20 variables over QQ, QQMPolyRingElem[x[[1,

5]], x[[2, 5]], x[[3, 5]], x[[4, 5]], x[[1, 4]], x[[2, 4]], x[[3, 4]],

x[[1, 3]], x[[2, 3]], x[[1, 2]]], QQMPolyRingElem[y[[1, 5]], y[[2, 5]],

y[[3, 5]], y[[4, 5]], y[[1, 4]], y[[2, 4]], y[[3, 4]], y[[1, 3]], y[[2,

3]], y[[1, 2]]])

↪→

↪→

↪→

↪→

julia> p1 = [evaluate(i,vcat(x,x)) for i in p1]

We note that we can still simplify the relations — there are some relations that got eliminated
by the identification, and some relations that are equal up to sign. We can eliminate them
as below, and compute the dimension of their ideal and its primary decomposition.

julia> p1 = remove_redundant_polys(p1);

julia> I = ideal(p1)

julia> dim(I)

15
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julia> decI = primary_decomposition(I)

(Ideal with 5 generators, Ideal with 5 generators)

(Ideal (x[[1, 2]], x[[2, 3]], x[[1, 3]], x[[3, 4]], x[[2, 4]], x[[1, 4]]),

Ideal (x[[1, 2]], x[[2, 3]], x[[1, 3]], x[[3, 4]], x[[2, 4]], x[[1,

4]]))

↪→

↪→

The second component is just the irrelevant ideal, which is due to the fact that we are
working with homogeneous ideals. The first component is more interesting.

julia> decI[1][1]

Ideal generated by

x[[1, 4]]*x[[2, 3]] - x[[2, 4]]*x[[1, 3]] + x[[3, 4]]*x[[1, 2]]

x[[4, 5]]

x[[3, 5]]

x[[2, 5]]

x[[1, 5]]

First, we know that this set of generators is a tropical basis (i.e., the tropical prevariety cut
out by the generators given above is again a tropical variety). The four monomials tell us
that the tropical variety lives on the boundary component where

p15 = p25 = p35 = p45 = ∞.

The other relation tells us that the variety is something we have already seen before — the
tropicalized Grassmannian Gr(2, 4), which we have seen in Example 3.83.
Now, we investigate what happens if we instead consider a contraction map, given by the

matrix

Aα =


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 1 0

 .

Again, we compute the quiver Plücker relations using our code in Appendix B.4 and simplify
as before. After getting rid of relations producing redundant information, the following quiver
Plücker relations remain for the sole connected component:

p14p23 − p24p13 + p34p12 p45

p35 + p34 p25 + p24 p15 + p14

This tells us that as before, the tropicalized quiver Grassmannian lives on the boundary,
though this time, it only has to satisfy that p45 = ∞. Further, the binomial relations tell us
that for any point p in the tropicalized quiver Grassmannian,

val(p34) = val(p35), val(p24) = val(p25), and val(p14) = val(p15).

We now aim to prove Theorem D, which can be more explicitly stated in the terms below.
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Theorem 9.3. Let µ = (µ1, . . . , µk) be realizable valuated matroids and Q be a finite quiver.
Let each arrow α ∈ AQ of Q be represented by a matrix Aα, and let s(α) denote its source
and t(α) its target vertex. The following statements are equivalent:

(a) µ ∈ trop(QGr(R,d;n));
(b) val(Aα)⊙ trop(µs(α)) ⊆ trop(µt(α)) for all α ∈ AQ and there is a quiver subrepresen-

tation (Ni)i∈V of Q such that trop(µi) = trop(Ni).

If further, all realizations Aα are weakly monomial matrices, the above are equivalent to:

(c) Each arrow α ∈ AQ with s(α) = Vi and t(α) = Vj has an associated contravariant
realizable affine morphism of valuated matroids ϕα (c.f. Definition 4.9) with s(ϕα) =
µj and t(ϕα) = µi. That is, µ is a valuated matroidal quiver subrepresentation where
all valuated matroids on vertices and all affine morphisms of matroids on arrows are
realizable.

The equivalence (b) ⇔ (c) was already established in Proposition 8.8. We now show
(a) ⇔ (b) for the above theorem, i.e., that the tropicalized quiver Grassmannian parametrizes
containment of tropicalized linear spaces under tropical matrix multiplication.

Proposition 9.4. Let K be an algebraically closed field with nontrivial valuation, and let M
be a quiver representation of a quiver Q with quiver Grassmannian QGr(M,d;n), for some
dimension vector d. Then, p ∈ trop

(
QGr(M,d;n)

)
if and only if there exists a tropical

linear space trop(µi) for each vertex i ∈ V such that val(Mf )⊙ trop(µs(f)) ⊆ trop(µt(f)) for

each arrow f , and there exists a quiver subrepresentation N =
(
(Ni)i∈V , (M

α|Ns(α)
)α∈A

)
over

K such that trop(µi) = trop(Ni) for all i ∈ V .

Proof. For ease of notation, we restrict to the case where Q is a graph with two vertices and
one arrow f , and we write QGr(Mf ,d;n) for the corresponding quiver Grassmannian. All
other cases follow similarly. If µ×ν ∈ trop(QGr(Mf ,d;n)), from the Fundamental Theorem
of Tropical Geometry [101, Theorem 6.2.15], there exist realizations U of µ and V of ν such
that the Plücker coordinates of U and V are a point of QGr(Mf ,d;n). By the main theorem
in [98], points in QGr(Mf ,d;n) satisfy Mf · U ⊆ V , thus val(Mf )⊙ trop(U) ⊆ trop(V ).

Now conversely assume that val(Mf )⊙trop(U) ⊆ trop(V ), and that there exist realizations
U and V such that Mf · U ⊆ V . Then, U × V ∈ QGr(Mf ,d;n), hence ptrop(U) × ptrop(V ) ∈
trop(QGr(Mf ,d;n))) by the Fundamental Theorem 2.22. □

9.2. Quiver Dressians. Instead of parametrizing tropicalized linear spaces and their con-
tainment relations, we now consider parameter spaces of tropical linear spaces contained
under naive tropical matrix multiplication.

Definition 9.5. Let Q = (V,A, s, t) be a quiver. The quiver Dressian

QDr(R,d;n) ⊆ P
(
T(

n1
d1
))× · · · × P

(
T
(n|V |
d|V |

))
is the tropical prevariety cut out by the tropical Plücker relations and the tropical quiver
Plücker relations, {Ptrop

di;n
}i∈V ∪ {Ptrop

α;n }α∈A (see Definition 7.13).

Now, our goal will be to establish the correspondences in Theorem E, which is the analogue
of Theorem 9.3/D we just discussed, but for the case of Dressians. In more explicit terms,
we aim to prove:
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Theorem 9.6. Let µ = (µ1, . . . , µk) be valuated matroids and Q be a finite quiver. Let each
arrow α ∈ AQ of Q be represented by a matrix Aα, and let s(α) denote its source and t(α)
its target vertex. The following statements are equivalent:

(a) µ ∈ QDr(R,d;n);
(b) val(Aα)⊙ trop(µs(α)) ⊆ trop(µt(α)) for all α ∈ AQ.

If further, all matrices Aα are weakly monomial matrices, the above are equivalent to:

(c) Each arrow α ∈ AQ with s(α) = Vi and t(α) = Vj has an associated contravariant
affine morphism of valuated matroids ϕα (c.f. Definition 4.9) with s(ϕα) = µj and
t(ϕα) = µi. That is, µ is a valuated matroidal quiver subrepresentation.

Again, we have already seen a proof of (b) ⇔ (c) in Proposition 8.8. Now we show
(a) ⇔ (b), i.e., that the quiver Dressian parametrizes containment of tropical linear spaces
under matrix multiplication.

Theorem 9.7. Let µ and ν be valuated matroids over the ground sets [m] and [n] and of
rank r and s respectively, and let Q be a quiver consisting of two vertices connected by one
arrow f . Let M denote a Q-representation assigning the matrix Mf ∈ Kn×m to f . Then,

µ× ν ∈ QDr(M, (r, s); (m,n)) ⇔ val(Mf )⊙ trop(µ) ⊆ trop(ν).

Proof. The standard Grassmann-Plücker relations associated to the vertices vanish if and
only if µ and ν are valuated matroids. Thus, we only focus on the quiver Plücker relations.
By definition, µ × ν ∈ QDr(M, (r, s); (m,n)) if and only if for all I ∈

(
[m]
r−1

)
and J ∈

(
[n]
s+1

)
,

the minimum in ⊕
j∈[n]\I,i∈J

Å
val
(
(Mf )i,j)⊙ pI∪j ⊙ pJ\i

ã
is attained at least twice. Equivalently, for all I and J as above, the minimum in

⊕
j∈[n]\I,

i∈J

Å
val
(
(Mf )i,j)⊙ µ(I ∪ j)⊙ ν(J \ i)

ã
=

⊕
j∈[n]\I,

i∈J

Å
val
(
(Mf )i,j)⊙ C∗

µ(I)j ⊙ Cν(J)i

ã(8)

is attained at least twice. We write val(Mf )⊙ C∗
µ(I) for the vector with coordinate entries(

val(Mf )⊙ C∗
µ(I)

)
j
:=

(
val(mf,1,j)⊙ C∗

µ(I)j
)
⊕ · · · ⊕

(
val(mf,n,j)⊙ C∗

µ(I)j
)
.

By distribution, the minimum in (8) is attained twice if and only if

val(Mf )⊙ C∗
µ(I) ∈ V

(⊕
i∈[n]

Cν(J)i ⊙ xi
)

= trop(ν).

Finally, by Proposition 5.3, val(Mf ) ⊙ trop(µ) is tropically convex. Using Proposition-
Definition 3.71, the above is thus equivalent to{ ⊕

C∗
µ(I)∈C∗(µ)

λC∗
µ(I) ⊙ val(Mf )⊙ C∗

µ(I) : λC∗
µ(I) ∈ R

}
= val(Mf )⊙ trop(µ) ⊆ trop(ν).

□
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9.3. Realizability of points in quiver Dressians. In Section 3.4.1, we remarked the dif-
ference between intrinsically tropical and tropicalized objects, and distinguished the Dres-
sian, parametrizing tropical linear spaces, from the tropicalized Grassmannians, parametriz-
ing tropicalized linear spaces. We observe a similar distinction for quiver Dressians and
tropicalized quiver Grassmannians.

The first example of a nonrealizable tropical linear space, i.e., a tropical linear space that
is not the tropicalization of any linear space, occurs in ambient dimension 8. The first
nonrealizable flag of tropical linear spaces already occurs for ambient dimension 6 (see [30,
Example 5.2.4]). For arbitrary quivers, the ambient dimension of the first nonrealizable
quiver subrepresentation is even smaller.

9.3.1. Nonrealizable quiver Dressians over fields with nontrivial valuation. This subsection
will be devoted to the proof of Theorem F, which we give in more details below.

Theorem 9.8. Let Q be a finite quiver. For n where ni ≥ 2 for all i ∈ V ,

trop(QGr(R,d;n)) ⊆ QDr(R,d;n)

and there exist quiver representations R where the containment is strict. For n = 1,

trop(QGr(R,d;1)) = QDr(R,d;1)

for any quiver Q and any Q-representation R.

Remark 9.9. For ambient dimension 1, there are no classical Plücker relations, and the only
quiver Plücker relations are the monomial relations corresponding to the coordinates of the
only point in the quiver Grassmannian. On the algebraic side, QGr(R,d,1) is a point, hence
trop(QGr(R,d,1)) ⊆ P(T1)× · · · × P(T1) is a point. Since P(T1)× · · · × P(T1) is also just
a point, the containment is an equality, and therefore trop(QGr(R,d,1)) = QDr(R,d,1).

Example 9.10. We construct an example for trop(QGr(R,d;2)) ̸= QDr(R,d;2). The quiver
we consider is known as the Kronecker quiver; we define its representation R as shown in
Figure 9, with quiver Grassmannian QGr(R, (1, 1);2) (see for instance [83, Example 5]; in
this case, we replace C with C{{t}}, the field of Puiseux series). It is an example of a reduced
quiver Grassmannian of dimension 0 with two connected components (the two eigenspaces
of the map corresponding to the lower arrow).

Let v1 and v2 denote the Plücker variables of the space corresponding to the left vertex,
and let w1 and w2 denote the Plücker variables of the right vertex. Since Gr(1; 2) and Gr(2; 2)
have no Grassmann-Plücker relations, the only relations are the quiver Plücker relations (see
Definition 7.13), which are v1w2 + v2w1 and v1w2 + (1 + t)v2w1. We have

V (⟨v1w2 + v2w1, v1w2 + (1 + t)v2w1⟩) = {
(
(1 : 0), (1 : 0)),

(
(0 : 1), (0 : 1)) ⊆ P1 × P1}, and

trop(QGr(R, (1, 1), 2)) = {
(
(0 : ∞), (0 : ∞)),

(
(∞ : 0), (∞ : 0)) ⊆ P(T2)× P(T2)}.

Tropicalizing the generators, we have that V (trop(v1w2 + v2w1)) is the set

W = {((v1 : v2), (w1 : w2)) ∈ P(T2)× P(T2)

|min(v1 + w2, v2 + w1) is attained at least twice}.
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1 0

0 1

ô
ñ
1 0

0 1 + t

ôC{{t}}2 C{{t}}2

[1] [1]

Figure 9. A quiver Q with Q-representation R for n = (2, 2) where
trop(QGr(R, (1, 1); (2, 2))) ̸= QDr(R, (1, 1); (2, 2)).

Since val(1 + t) = val(1) = 0, we further have W = V (trop(v1w2 + (1 + t)v2w1)), thus
W = QDr(R, (1, 1), 2). Now, W can be rewritten as

W = {((v1 : v2), (w1 : w2)) ∈ P(T2)× P(T2) | v1 + w2 = v2 + w1},
which is a connected 1-dimensional space (that contains the two points above), whereas
trop(QGr(R, (1, 1), 2)) is not.

Example 9.10 relies on the nontrivial valuation of the base field. Similar constructions
can be given for higher ambient dimension, as described in Example 9.11. However, the
examples we construct afterwards for higher equal ambient dimension (n ≥ 4) already occur
for fields with trivial valuation, and for quivers without parallel edges.

Example 9.11. To obtain an analogous example for ambient dimension 3, we can consider the

same quiver as in Example 9.10. We assign C{{t}}3 to each vertex, the matrix
î
1 0 0
0 1 0
0 0 1

ó
to the

upper arrow and
[
1 0 0
0 1+t 0
0 0 1+t2

]
to the lower arrow. Again, Gr(1; 3) has no Grassmann-Plücker

relations, so the only Plücker relations are

v1w2 − v2w1, v1w3 + v3w1, v2w3 − v3w2

for the upper arrow, and

v1w2 − (1 + t)v2w1, v1w3 + (1 + t2)v3w1, (1 + t)v2w3 − (1 + t2)v3w2

for the lower arrow. The zero locus of the six equations is zero-dimensional and consists of
three points: ((1 : 0 : 0), (1 : 0 : 0)), ((0 : 1 : 0), (0 : 1 : 0)) and ((0 : 0 : 1), (0 : 0 : 1)),
so the tropicalization of the quiver Grassmannian does, too. Again, as the valuations of all
non-zero matrix entries is zero, the quiver Dressian is the set

{(v,w) ∈ P(T3)× P(T3) | v1 + w2 = v2 + w1, v1 + w3 = v3 + w1 and v2 + w3 = w2 + v3}.
This set is 1-dimensional, thus the tropicalized quiver Grassmannian and the quiver Dressian
differ. This example can similarly be extended to an example for higher ambient dimension
n. Here, we assign C{{t}}n to both vertices, consider the dimension vector (1, 1) and assign
the matrices to the two arrows as follows: one arrow is assigned the identity matrix, and the
other arrow gets the diagonal matrix with entries (1, 1 + t, 1 + t2, . . . , 1 + tn−1).
If we wish to assign different ambient dimensions n and m to the two vertices, we can

again construct an analogous example by appending zero rows (resp. zero columns) to both
matrices.
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An example for a quiver representation over a quiver with no parallel edges over a trivially
valued field can also be found, though it is significantly more complicated. We give such an
example in Section 9.3.2.

Now we give an example of a quiver representation R satisfying trop(QGr(R,d;4)) ̸=
QDr(R,d;4) over a field with trivial valuation, using a quiver without parallel edges. After-
wards, we will extend this to a family of such examples for n > 4.

Example 9.12. We return to the quiver given in Example 7.4.

Q,M :

C4

•

C4

• C4

•

C4

•

MidMid

Mid Mid

, Mid =

ï
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

ò
, d = (1, 2, 2, 3).

This quiver Grassmannian parametrizes the arrangement of four tropical objects: two
tropical lines that are contained in a common tropical plane, and a common point lying on
all of them. In Figure 8, we give an example of such an arrangement.

From Definition 7.13, we obtain the following equations for the quiver Grassmannian
QGr(M,d;4) inside the product of Grassmannians

∏
Gr(di;4):

p12p34 − p13p24 + p14p23 p′12p
′
34 − p′13p

′
24 + p′14p

′
23 p12p134 + p13p124 + p14p123

p12p234 + p23p124 + p24p123 p13p234 + p23p134 + p34p123 p14p234 + p24p134 + p34p124
p′12p134 + p′13p124 + p′14p123 p′12p234 + p′23p124 + p′24p123 p′13p234 + p′23p134 + p′34p123
p′14p234 + p′24p134 + p′34p124 p1p23 + p2p13 + p3p12 p1p24 + p2p14 + p4p12
p1p34 + p3p14 + p4p13 p2p34 + p3p24 + p4p23 p1p

′
23 + p2p

′
13 + p3p

′
12

p1p
′
24 + p2p

′
14 + p4p

′
12 p1p

′
34 + p3p

′
14 + p4p

′
13 p2p

′
34 + p3p

′
24 + p4p

′
23

where we denote by p′ij the Plücker coordinates corresponding to the two-dimensional sub-
space in the bottom row, denoted by Gr(d3; 4).

We use the code provided in the Appendix B to compute the quiver Dressian and the trop-
icalized quiver Grassmannian in gfan [88], and do some auxiliary computations in Oscar
[114].

The quiver Dressian has dimension 12 and f-Vector (1, 58, 466, 1156, 858, 3). The tropical-
ized quiver Grassmannian has dimension 10, as does the ideal generated by the polynomials.
Since the dimensions of the tropical (pre-)varieties differ, they cannot be equal, showing the
second part of Theorem 9.8 for n = 4.

As a polyhedral complex, the tropicalized quiver Grassmannian is the union of the tropi-
calization of the 46 primary components of the quiver Grassmannian. Of these components,
37 tropicalize to linear components of dimensions 8, 7, 6 and 5 in different coordinate direc-
tions. Each of the remaining nine components has, after quotienting out lineality, six rays
and ten facets, whose incidences are depicted in the graph in Figure 10.

Corollary 9.13. For n where ni ≥ 4 for all i ∈ V , there exists a quiver Q with a represen-
tation M ′ such that trop(QGr(M ′,d;n)) ⊊ QDr(M ′,d;n).
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Figure 10. The nonlinear irreducible components of Example 9.12 are linear
spaces of dimension 10 and 8 over the graph above.

Proof. Let n ≥ 4. We consider the quiver representation M of Example 9.12, and construct
a quiver representation M ′ by substituting each base set on the vertices by [ni]. For each
matrix, we append an appropriate amount of zero rows or columns. This way, QGr(M ′,d;n)
has the same Plücker relations as QGr(M,d;4). Since

dim(trop(QGr(M,d;4)) < dim(QDr(M,d;4)),

we obtain that

dim(trop(QGr(M ′,d;n))) < dim(QDr(M ′,d;n))

Hence,

trop(QGr(M ′,d;n)) ⊊ QDr(M ′,d;n).

□

This concludes the proof of Theorem 9.8 (and hence the proof of Theorem F).

9.3.2. An example with trivial valuation. We construct a quiver and quiver representation
such that the quiver Grassmannian is strictly contained in the quiver Dressian for n = 3
over a field with trivial valuation.

We obtain a nonrealizable quiver representation using the nonrealizable Q-representation
R for n = 4, from [82, Example 4.4], as follows. Inspired by the fact that a matroid over [4]
can be written as the matroid quotient of two matroids over [3], we replace each vertex Vi
of Q with a new quiver, as depicted in Figure 11, obtaining the quiver Q′.

Now, Q′ is given as four copies of the quiver (a) in Figure 11, which we call layers L1, . . . L4.
Each vertex in Li is connected with an arrow to the vertex in the same position in Li+1

(modulo 4).

We define the Q′-representation D as follows. We assign to each vertex of Q′ the vector
space C3, and to each arrow inside a layer (i.e., all the arrows in Figure 11(a)) the identity
map. To each arrow connecting two layers Li and Li+1 (i.e., the vertical arrows in Figure
11(b) and (c)), we assign a rank 2 projection such that the composition with the incoming
map connecting Li−1 and Li has rank 1. Denoting by Vi,j the red vertices in 11(b) and
by Wi,j the blue ones, we assign the same linear map to the arrows α : Vi,j → Vi,j+1 and
α : Wi,j → Wi,j+1 that correspond to moving up layers.

Finally, we consider a dimension vector d whose entries are in {1, 2}, corresponding to the
vertices depicted in Figure 11(a) — red and black vertices are assigned dimension 1, blue
vertices are assigned dimension 2.
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We now show that the quiver Grassmannian QGr(D,d;3) has the same Plücker relations
as the quiver Grassmannian in [82, Example 4.4].

Each arrow in a layer corresponds to a flag of dimension (1, 2) and thus produces exactly
one three-term Plücker relation, of the form pv,1pw,23 − pv,2pw,13 + pv,3pw,12. For each red or
black vertex (corresponding to a 1-dimensional subspace), the arrow connecting the layers
leaves two Plücker variables pi and pj unchanged, and replaces the third variable pk by a new
variable pl. For each blue vertex (corresponding to a 2-dimensional subspace), the arrow fixes
the Plücker variable pij and replaces the variables pik and pjk with pil and pjl respectively.

Moving up along the four layers, since the layers form a cycle, the only four variables
arising from subspaces of dimension 1 are exactly p1, p2, p3 and p4. For the rightmost vertex
in Figure 11 (a), as Gr(1, 4) ∼= Gr(3, 4), we can rename the four variables p123, p124, p134 and
p234.

The six variables arising from subspaces of dimension 2 corresponding to the blue vertices
are p12, p13, p14, p23, p24 and p34. Since the layer maps for the vertices Vi,j and Wi,j corre-
sponding to the red and blue vertices are equal, we can interpret the coordinates associated
to the red vertices exactly as the complementary ones associated to the blue vertices on the
same layer. For instance, consider the following subgraph of Figure 11(b), as depicted in (d).

{1, 2, 3}{1, 2, 3}

î
1 0 0
0 1 0
0 0 0

ó î
1 0 0
0 1 0
0 0 0

ó{1, 2, 4}{1, 2, 4} A

B

(d)

The identity map A induces the quiver Plücker relation p1p23 − p2p13 + p3p12. Now, we
rename the Plücker variables pi to pi4 for all i ∈ {1, 2, 3} and obtain the relation p14p23 −
p24p13 + p34p12. Analogously, for the identity map B we have the relation p1p24 − p2p14 +
p4p12, and we replace the variables pi by pi3 for all i ∈ {1, 2, 4}, yielding again the relation
p14p23 − p24p13 + p34p12, i.e., both maps A and B induce the same Plücker relation.

Now, by the construction of Q′, we obtain exactly the same Plücker relations as in [82,
Example 4.4]. Thus, the two quiver representations with the respective dimension vec-
tors produce the same tropicalized quiver Grassmannian and quiver Dressian, and hence
trop(QGr(D,d;3) ̸= QDr(D,d;3).

9.3.3. Realizability of valuated matroidal quiver subrepresentations. In this section, we dis-
cuss realizability of valuated matroidal quiver subrepresentations and work towards a more
general result on realizability. This is recent work-in-progress.

In Example 9.10, we observed that even for relatively simple quivers we can construct
quiver representations such that the tropicalizations of the associated quiver Grassmannians
do not coincide with their associated quiver Dressians. In light of this, we conjecture that
a guaranteed equality of the two tropical parameter spaces requires an even more specific
structure:

Conjecture 9.1. Let Q be a quiver, and let K be a field with non-trivial valuation. Assume
that QDr(R,d;n) = trop(QGr(R,d;n)) for all Q-representations R over K. Then, either
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[1]

[1]

[1]

[2]

[2]

[1]

(a) (b) (c)

Figure 11. Replacement of vertices. (a) depicts one layer of the resulting
quiver Q′, (b) depicts the quiver replacing the middle vertices in [82, Example
4.4], i.e., the vertices which were assigned subspaces of dimension 2, and (c)
depicts the replacement of the other vertices.

n only has entries ni ≤ 2 or Q is of finite orbit type, i.e., an equioriented Dynkin quiver of
type A,D or E we had listed in Example 7.7.

This can be understood as a tropical version of Gabriel’s theorem. We can verify that
there are quivers Q satisfying QDr(R,d;n) = trop(QGr(R,d;n)) for all Q-representations
R over K. For instance, in Section 10 we will study different quiver representations of the
A3-quiver over C4 and see that the equality holds for all of them.

Further, results by Rincón [123, Theorem 4.6] suggest that such an equality could be
true for Dynkin quivers of type D, whereas Balla-Olarte [12, Example A] show that for
the symplectic case, associated to Dynkin quivers of type C, this is likely impossible. The
Dynkin quivers of types C and D are depicted in Example 7.7.

Next, we discuss the topic of realizability with a view towards valuated matroidal quiver
subrepresentations, which we introduced in Section 8. For this, we need the following stan-
dard concept in tropical geometry.

Definition 9.14. Let A ∈ Tn×m be a matrix. Let K be a field with valuation. We say that
B ∈ Kn×m is a lifting of A if val(B) = A.

While each matrix over K has a unique valuation, a tropical matrix can potentially have
an arbitrary number of liftings over K, depending on the field K and its valuation. We
observe the impact of the choice of lifting on whether the tropicalized quiver Grassmannian
and the quiver Dressian coincide, as follows.

Remark 9.15. In Example 9.10 we had considered the associated quiver Dressian and an
associated tropicalized quiver Grassmannian of the valuated matroidal quiver representation
associated to the Kronecker quiver we had discussed in Example 8.4(d), depicted below.

(id, triv)

(id, triv)

[2] [2]



100 VICTORIA SCHLEIS

We observe that the quiver Dressian associated to this valuated matroidal quiver represen-
tation is unique after fixing the dimension vector and determined by the tropical matrix

val(I2) =

ñ
0 ∞
∞ 0

ô
∈ T2×2.

However, there are infinitely many different possible liftings of the matrix val(I2) to C{{t}}2×2,
i.e., there are infinitely many matrices A ∈ C{{t}}2×2 such that val(A) = val(I2).
In Example 9.10, the liftings [ 1 0

0 1 ] and [ 1 0
0 1+t ] yielded a tropicalized quiver Grassmannian

and a quiver Dressian which did not coincide. If we choose the liftings [ 1 0
0 1 ] for both arrows

instead, the associated tropicalized quiver Grassmannian and the quiver Dressian coincide.

Observation 9.16. From this example and the definition of the quiver Dressian (Definition
9.5), we observe that the tropicalized quiver Grassmannian is dependent on the specific
choice of matrices assigned to the arrows, whereas the quiver Dressian only depends on the
valuation of the matrix.

For valuated matroidal quiver representations, this means that there exists a unique as-
sociated quiver Dressian, but a priori many different associated tropicalizations of quiver
Grassmannians, varying by the chosen lifting of the associated matrix to the field K.

This motivates the following definition.

Definition 9.17. Let Q be a quiver and R a valuated matroidal quiver representation. We
say that R is realizable over K if there exist liftings (Aα

K)α∈A for all associated matrices to
arrows Aα

α∈A such that

QDr(((Kni)i∈V , (A
α
K)α∈A),d;n) = trop(QGr(((Kni)i∈V , (A

α
K)α∈A),d;n)).

Further, we say that R is fully realizable (over K), if the equality holds for every lifting.

Example 9.18. We have already seen examples for fully realizable, realizable, and non-
realizable valuated matroidal quiver representations:

◦ The valuated A3-quiver representation associated to the flag Dressian (Example
8.4(b)) is fully realizable over C, as is the valuated A3-quiver subrepresentation with
the projection map we discuss in the same example.

◦ The valuated Kronecker quiver representation introduced in Example 8.4 and dis-
cussed above is fully realizable over C, but not over C{{t}} by Example 9.10. However,
it is still realizable over C{{t}}.

◦ The valuated matroidal quiver representation associated to the diamond shaped
quiver discussed in Example 8.4 is not realizable over C by Example 9.12.

10. Applications of quiver Dressians

In this section, we will apply the main theory developed in the last sections to a series of
specific examples which are of particular importance in tropical geometry. We study linear
degenerate flag varieties, their potential for speeding up computations of flag varieties, and
their relations to the relative realizability problem.

Quiver Dressians allow us to construct degenerations of tropical varieties in a controlled
fashion. If we know the quiver representation of an algebraic variety, we can degenerate the
linear maps on the quiver to obtain smaller, more computable degenerations. One particular
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example of this is flag varieties and their linear degenerations. This subsection is based on
joint work with Alessio Borz̀ı, [27].

While we studied quiver representations with arbitrary dimensions of the vector spaces on
the vertices, we will now restrict to quiver representations where all vector spaces have the
same dimension n.

In Example 7.12, we had seen that the flag variety can be represented as a quiver Grass-
mannian in a natural way. In this section, we discuss how different quiver representations
associated to the same quiver (but with different maps on the arrows) behave. We focus
on the quiver Grassmannians we can obtain out of the flag variety. A linear degenerate flag
variety is a quiver Grassmannian associated to a quiver of type A:

Kn Kn . . . Kn Knf1 f2 fn−2 fn−1

We will give a proper definition using the appropriate Plücker relations in Definition 10.3

1

3

4

2

12

34

14

23

13

24

(a)
1

3

4

2

12

34

14

23

13

24

(b)

Figure 12. (a): A tropical flag in trop
(
Fl((1, 2, 3); 4)

)
. (b): A tropical linear

degenerate flag in trop
(
LFl

(
(1, 2, 3), ({1}, ∅); 4

))
. Both are made of a yellow

point, a red tropical line, and a blue tropical plane. The additional subdivision
given by the green dashed rays on the tropical plane is useful for describing
the (linear degenerate) tropical flag varieties, see Examples 10.8 and 10.9.

It is possible to check that any linear degenerate flag variety Fl(r;n)(V ) can be represented
by a fiber of a sequence of projections (see, for instance, [62, Lemma 2.6]). Therefore, in
order to study linear degenerate flag varieties, we can always restrict to the case where all
linear maps (f1, . . . , fn−1) are projections prS : V → V for some S ⊆ [n], where prS is the
linear map that sets the coordinates indexed by S ⊆ [n] to zero. Here, we use the term
linear degenerate flag to describe a sequence of K-vector spaces (U1, . . . , Un) together with
a sequence of projections (prS1

, . . . , prSn−1) such that prSi
(Ui) ⊆ Ui+1 for all 1 ≤ i ≤ n− 1,

that is, we consider A-type quivers decorated with projection maps.

The linear degenerate flag varieties are given by the linear degenerate Plücker relations.
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Definition 10.1 (Linear degenerate Plücker relations). Let r ≤ s ≤ n be nonnegative
integers and let S ⊆ [n]. The linear degenerate Plücker relations are the polynomials in the

variables {pI : I ∈
(
[n]
r

)
} ∪ {pJ : J ∈

(
[n]
s

)
} with coefficients in K:

Pr,s;S;n =

 ∑
j∈J\(I∪S)

sign(j; I, J)pI∪jpJ\j : I ∈
Ç

[n]

r − 1

å
, J ∈

Ç
[n]

s+ 1

å
where sign(j; I, J) = (−1)#{j′∈J :j<j′}+#{i∈I:i>j}. Their tropicalization will be denoted by
Ptrop

r,s;S;n.

While the linear degenerate Plücker relation can be derived from the quiver Plücker rela-
tions we investigated in Definition 7.13, we now give a proof that is based on linear algebra.

Proposition 10.2. Let U and V be vector subspaces of Kn of dimension r ≤ s respectively,
and let S ⊆ [n]. We have prS(U) ⊆ V if and only if the Plücker coordinates of U and V
satisfy the linear degenerate Plücker relations Pr,s;S;n.

Proof. Suppose that prS(U) ⊆ V . Let A ∈ Kr,n be a matrix whose rows are a basis of U , and
let A′ ∈ Kr,n be the matrix obtained from A by substituting the columns indexed by S with
columns of zeros. Note that the rows of A′ are a set of generators for prS(U). Let B ∈ Ks,n

be a matrix whose rows are a basis of V , obtained by extending a basis of prS(U) consisting

of rows of A′. Fix I = {i1 < · · · < ir−1} ∈
(

[n]
r−1

)
and J = {j1 < · · · < js+1} ∈

(
[n]
s+1

)
. The

column vectors Bj1 , . . . , Bjs+1 are linearly dependent, satisfying the dependency relation

s+1∑
k=1

(−1)k det(Bj1 , . . . , Bjk−1
, Bjk+1

, . . . , Bjs+1) ·Bjk = 0.

In particular, from the construction of A′ and B we also obtain

s+1∑
k=1

(−1)k det(Bj1 , . . . , Bjk−1
, Bjk+1

, . . . , Bjs+1) · A′
jk

= 0.

Substituting the above expression of the (r-dimensional) zero vector into the equation
det(0, Ai1 , . . . , Air−1) = 0 we obtain

det

Å s+1∑
k=1

(−1)k det(Bj1 , . . . , Bjk−1
, Bjk+1

, . . . , Bjs+1) · A′
jk
, Ai1 , . . . , Air−1

ã
=

s+1∑
k=1

(−1)k det(Bj1 , . . . , Bjk−1
, Bjk+1

, . . . , Bjs+1) · det(A′
jk
, Ai1 , . . . , Air−1) = 0.

Now by construction we have

A′
jk

=

®
Ajk if jk /∈ S,

0 if jk ∈ S.

Thus, by substituting the above in the previously displayed equation, and by reordering the
column vectors keeping track of sign changes, the above relations become the desired linear
degenerate Plücker relations, up to a possible (global) change of sign that depends on r and
s.
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Conversely, suppose that the Plücker coordinates of U and V satisfy the linear degenerate
Plücker relations. Let A and A′ be as above, and let B ∈ Ks,n be a matrix whose rows
are a basis of V . We need to show that the rows of A′ are spanned by the rows of B. Let
I = {i1 < · · · < ir−1} ∈

(
[n]
r−1

)
and J = {j1 < · · · < js+1} ∈

(
[n]
s+1

)
. Proceeding similarly as

above, from the incidence Plücker relations we can write

det

Å s+1∑
k=1

(−1)k det(Bj1 , . . . , Bjk−1
, Bjk+1

, . . . , Bjs+1) · A′
jk
, Ai1 , . . . , Air−1

ã
= 0.(9)

Since A has maximal rank, we can choose a subset I ′ ∈
(
[n]
r

)
such that the columns of A

indexed by I ′ form a basis. By choosing all possible cardinality r − 1 subsets I ⊆ I ′ in (9),
we have that the first vector in the argument of the determinant in (9) is in the span of the
spaces generated by the vectors indexed by all such sets I. This is possible only for the zero
vector. Therefore, we obtain

s+1∑
k=1

(−1)k det(Bj1 , . . . , Bjk−1
, Bjk+1

, . . . , Bjs+1) · A′
jk

= 0.

Let C be the matrix consisting of the rows of B plus an additional row of A′. By using
the Laplace expansion for computing the determinant of the square submatrix of C with
columns indexed by J with respect to the row of A′, the above dependencies imply that the
rank of C is equal to the rank of B, i.e., that the row of A′ in C is a linear combination of
the rows of B. □

Definition 10.3 (Linear degenerate flag variety). The linear degenerate flag variety of rank

r and degeneration type S is the subvariety of P(
n
r1
)−1 × · · · × P(

n
rk
)−1

cut out by the linear
degenerate Plücker equations,

LFl(r,S;n) = V
(
{Pri;n}1≤i≤k ∪ {Pri,rj ;Sij ;n}1≤i<j≤k

)
.

We call its tropicalization the linear degenerate tropical flag variety.

Example 10.4. In this example, we describe the tropicalization of the linear degenerate flag
variety LFl((1, 2), {1}; 4), parametrizing tuples (v, L) of points v and lines L in P3 such
that pr1(v) ⊆ L. By definition LFl((1, 2), {1}; 4) = V (P2;4 ∪ P1,2;{1};4), since P1;4 con-
tains just the zero polynomial. We verify computationally that the tropicalizations of
the linear degenerate Plücker relations given below form a tropical basis, i.e., generate
trop(LFl((1, 2), {1}; 4)).

Ptrop
2;4 = {p1,4p2,3 ⊕ p1,3p2,4 ⊕ p1,2p3,4} ,

Ptrop
1,2;{1};4 =


p3p1,2 ⊕ p2p1,3,

p4p1,2 ⊕ p2p1,4,

p4p1,3 ⊕ p3p1,4,

p4p2,3 ⊕ p3p2,4 ⊕ p2p3,4.


Note that the polynomials in Ptrop

1,2;{1};4 are obtained from those in Ptrop
1,2;4 by deleting all

monomials containing p1 (compare with Example 3.97). The tropicalization of the linear
degenerate flag variety trop

(
LFl((1, 2), {1}; 4)

)
can be computed in Macaulay2 [71] and is

a 5-dimensional simplicial fan in P(T4)× P(T6). Its lineality space has dimension 4 and the
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quotient of the variety by the lineality space has f-vector (1, 3). A point p in the tropical
linear degenerate flag variety trop

(
LFl((1, 2), {1}; 4)

)
corresponds to an arrangement of a

point vp = (v1 : v2 : v3 : v4) and a general tropical line Lp in P(T4) such that pre1(vp) ∈ Lp.
This last condition implies that Lp contains the point (∞ : v2 : v3 : v4). This occurs only if
Lp has an unbounded edge l1 in (projective) coordinate direction e1 at (x : v2 : v3 : v4) for
some x ∈ R. The direction of the unbounded edge adjacent to l1 can be chosen to be any of
(projective) coordinate directions e2, e3 and e4. The balancing condition fixes the directions
of the remaining unbounded edges, as in Example 3.97. The three choices for the direction
vector correspond to the three maximal cones.

Since linear degenerate flag varieties are a particular subtype of quiver Grassmannians,
we can analogously define the linear degenerate flag Dressian.

Definition 10.5 (Linear degenerate flag Dressian). The linear degenerate flag Dressian of

rank r and degeneration type S is the tropical prevariety in T(P(
n
r1
))×· · ·×T(P(

n
rk
)) cut out

by the tropicalizations of the linear degenerate Plücker equations,

LFlDr(r,S;n) = V
(
{trop(Pri;n)}1≤i≤k ∪ {trop(Pri,rj ;Sij ;n)}1≤i<j≤k

)
.

Further, the properties of quiver Dressians we had shown in Section 9.2 also hold for linear
degenerate flag varieties:

Corollary 10.6 ([27, Theorem A]). Let µ = (µ1, . . . , µk) be a sequence of valuated matroids.
The following statements are equivalent:

(a) µ ∈ LFlDr(r,S;n);
(b) prtropSi

(
trop(µi)

)
⊆ trop(µi+1) for all i ∈ {1, . . . , k − 1}; and

(c) every projection prSi
: µi+1 → µi is a morphism of valuated matroids (Definition 4.3).

Proof. The equivalence (b) ⇔ (c) is a direct consequence of Lemma 5.14 and Proposition
5.18. The equivalence (a) ⇔ (c) then follows from Theorem 9.7. □

Linear degenerate flag varieties can be arranged in a poset in a natural way as follows. Fix
k, n ∈ N and a sequence r = (r1, . . . , rk) of nonnegative integers such that r1 ≤ · · · ≤ rk ≤ n.
Now, we consider the following set of linear degenerate flag varieties:

L =

ß
LFl(r,S;n) : S = (S1, . . . , Sk−1) with Si ⊆ [n]

™
.

We can define an order relation ⪯ on L given by LFl(r,S;n) ⪯ LFl(r,S′;n) if and only if
Si ⊆ S ′

i for every i ∈ {1, . . . , k}, where S′ = (S ′
1, . . . , S

′
k−1). Note that (L,⪯) is a finite lattice

isomorphic to the product of lattices
∏k

i=1 2
[n], where 2[n] is the power set of [n] ordered by

set inclusion.

The maximum of L is the linear degenerate flag variety with Si = [n] for every i, in other
words at each step of the flag we are projecting all the coordinates, so the linear spaces of
the flag do not have any relation to each other, and the variety we obtain is just a product
of Grassmannians:

LFl(r, ([n], . . . , [n]);n) = G(r1;n)× · · · ×G(rk;n).

On the other hand, the minimum of L is the linear degenerate flag variety with Si = ∅ for
every i. Here, we are not degenerating the flag variety as at each step the projection is an
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identity map, thus all linear degenerate flags are flags:

LFl(r, (∅, . . . , ∅);n) = Fl(r;n).

Analogously, we can arrange linear degenerate tropical flag varieties, and linear degenerate
flag Dressians in lattices isomorphic to

∏k
i=1 2

[n].

Example 10.7. We give the partial lattice of Plücker relations for n = [4], r = 2 and s = 3,
degenerating only with respect to 0, 1 and 2.

P0,3P1,2 ⊕ P0,2P1,3 ⊕ P0,1P2,3

P0,3P0,1,2 ⊕ P0,2P0,1,3 ⊕ P0,1P0,2,3

P1,3P0,1,2 ⊕ P1,2P0,1,3 ⊕ P0,1P1,2,3

P2,3P0,1,2 ⊕ P1,2P0,2,3 ⊕ P0,2P1,2,3

P2,3P0,1,3 ⊕ P1,3P0,2,3 ⊕ P0,3P1,2,3

P0,3P1,2 ⊕ P0,2P1,3 ⊕ P0,1P2,3

P0,3P0,1,2 ⊕ P0,2P0,1,3 ⊕ P0,1P0,2,3

P1,3P0,1,2 ⊕ P1,2P0,1,3

P2,3P0,1,2 ⊕ P1,2P0,2,3

P2,3P0,1,3 ⊕ P1,3P0,2,3

P0,3P1,2 ⊕ P0,2P1,3 ⊕ P0,1P2,3

P0,3P0,1,2 ⊕ P0,2P0,1,3

P1,3P0,1,2 ⊕ P1,2P0,1,3 ⊕ P0,1P1,2,3

P2,3P0,1,2 ⊕ P0,2P1,2,3

P2,3P0,1,3 ⊕ P0,3P1,2,3

P0,3P1,2 ⊕ P0,2P1,3 ⊕ P0,1P2,3

P0,3P0,1,2 ⊕ P0,1P0,2,3

P1,3P0,1,2 ⊕ P0,1P1,2,3

P2,3P0,1,2 ⊕ P1,2P0,2,3 ⊕ P0,2P1,2,3

P1,3P0,2,3 ⊕ P0,3P1,2,3

P0,3P1,2 ⊕ P0,2P1,3 ⊕ P0,1P2,3

P0,3P0,1,2 ⊕ P0,2P0,1,3

P1,3P0,1,2 ⊕ P1,2P0,1,3

P2,3P0,1,2

P2,3P0,1,3

P0,3P1,2 ⊕ P0,2P1,3 ⊕ P0,1P2,3

P0,3P0,1,2 ⊕ P0,1P0,2,3

P1,3P0,1,2

P2,3P0,1,2 ⊕ P1,2P0,2,3

P1,3P0,2,3

P0,3P1,2 ⊕ P0,2P1,3 ⊕ P0,1P2,3

P0,3P0,1,2

P1,3P0,1,2 ⊕ P0,1P1,2,3

P2,3P0,1,2 ⊕ P0,2P1,2,3

P0,3P1,2,3

P0,3P1,2 ⊕ P0,2P1,3 ⊕ P0,1P2,3

P0,3P0,1,2

P1,3P0,1,2

P2,3P0,1,2

Linear degenerate tropical flag varieties with n = 4. Now, we want to take a closer look
at the lattice of linear degenerate tropical flag varieties for the case n = 4.

We used Macaulay2 [71] to compute the linear degenerate Plücker relations, using code
available in the GitHub repository [26]; and used the package Tropical.m2 [6] to compute
the respective linear degenerate tropical flag varieties. We did some additional computations
in gfan [88] and Oscar [114].

For the rest of this section, we will consider varieties of complete flags in C4. More precisely,
we fix r = (1, 2, 3), and omit r in our notation. For instance, we denote Fl(4) := Fl(r; 4) and
LFl

(
({1}, ∅); 4

)
:= LFl

(
r, ({1}, ∅); 4

)
. To simplify the notation, we will use LFl(S1, S2; 4) in

place of LFl((S1, S2); 4).

A point p in the tropicalization of (linear degenerate) flag varieties corresponds to an
arrangement of a point vp, a general tropical line Lp and a general tropical plane Pp in
P(T4). As in previous examples, Lp has two vertices connected by a bounded edge, and four
unbounded edges in the coordinate directions, two adjacent to each vertex. A general tropical
plane in P(T4) consists of a vertex, four adjacent rays in all four coordinate directions, and
all two-dimensional cones spanned by pairs of these rays (see Figure 12).

Example 10.8. We begin by analyzing the tropicalization trop(Fl(4)) of the complete flag
variety Fl(4). By [30, Theorem 5.2.1], trop(Fl(4)) = FlDr(4), i.e., the Plücker relations form
a tropical basis and all tropical flags of length 4 are realizable.
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The tropical variety trop(Fl(4)) is a six-dimensional simplicial fan with lineality dimension
three in P(T4)×P(T6)×P(T4). It has f-vector (1, 20, 79, 78) after quotienting by the lineality
space. This variety was computed in [28, Theorem 4] and a sketch of it was given in [87,
Figure 9], which we report here in Figure 13.

A point p in trop(Fl(4)) corresponds to a complete tropical flag, i.e., vp ⊆ Lp ⊆ Pp ⊆ P(T4).
An example of a complete flag was given in Figure 12(a).

After quotienting by the lineality space, trop(Fl(4)) can be seen as a “tropical line bundle”
over the Petersen graph (as explained in [87, Paragraph 3.3.3]). There are 15 combinatorially
distinct ways to arrange a generic tropical line inside a fixed generic tropical plane in P(T4),
corresponding to the edges of the Petersen graph in Figure 13. In fact, this is dual to a fixed
point inside a generic tropical line in P(T4), see Example 3.97.

The three blue edges in Figure 13(a), connecting (ab) to (cd) for distinct a, b, c, d ∈ [4]
correspond to the case when one vertex of the tropical line Lp lies on the ray of the tropical
plane Pp in direction ea + eb, and the other vertex of Lp lies on the ray of Pp in direction
ec + ed. This situation is depicted in Figure 12(a), where the dashed green rays are those
in direction ea + eb. Further, the twelve black edges of the Petersen graph in Figure 13(a)
connecting (a) to (ab) for distinct a, b ∈ [4], correspond to p where one vertex of Lp lies on
the ray of Pp in direction ea and the other vertex of Lp lies in the cone of Pp spanned by ea
and eb. Finally, the remaining degrees of freedom for the position of the point p in the line
bundle determine the position of the point vp on Lp.

Note that both of the cases discussed above correspond to maximal cells: in the first case,
both vertices of Lp vary in the one-dimensional space in direction ea + eb = −(ec + ed),
whereas in the second case, the vertex of Lp inside the span of ea and eb can be freely chosen,
but then fixes the choice of the other vertex on ea by the balancing condition. The polyhedral
structure of the tropical line bundle differs accordingly, see Figure 13(b) for blue edges and
Figure 13(b′) for black edges respectively.

1

4

13

14

24

12

34

3

23

2

(a)
23

14

(b)
12

1

(b′)

Figure 13. The tropical flag variety trop(Fl4) after quotienting by its lin-
eality space, interpreted as a “tropical line bundle” over the Petersen graph,
see also [87, Paragraph 3.3.3 and Figure 9].
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Example 10.9. We continue by considering the two linear degenerate tropical flag vari-
eties trop(LFl({1}, ∅; 4)) and trop(LFl(∅, {1}; 4)). The tropical variety trop(LFl({1}, ∅; 4))
parametrizes tropical flags such that pr1(vp) ⊆ Lp ⊆ Pp. An example of a point in
trop(LFl({1}, ∅; 4)) is depicted in Figure 12 (b).

The linear degenerate tropical flag variety trop(LFl({1}, ∅; 4)) is a six-dimensional simpli-
cial fan in P(T4)×P(T6)×P(T4) with lineality dimension four. It has a familiar combinatorial
structure: after quotienting by the lineality space, we obtain a fan over the Petersen graph.
Again, the fifteen cones over the Petersen graph correspond to the fifteen combinatorially
distinct ways of arranging a general line in a general plane (see Example 10.8). This time, the
position of the point vp imposes no additional combinatorial constraints, as by pr1(vp) ⊆ Lp,
vp is contained in the span of the e1-ray of Lp.

Comparing to Example 10.8, the situation is much easier: the fan is a “usual line bundle”
(as opposed to a “tropical line bundle” in Example 10.8) over the Petersen graph. In Figure
14, we depict this degeneration.

We can understand trop(LFl(∅, {1}; 4)) similarly. The two different types of linear degen-
erate flags described above are dual to each other, in fact LFl({1}, ∅; 4) ≃ LFl(∅, {1}; 4),
and trop(LFl({1}, ∅; 4)) and trop(LFl(∅, {1}; 4)) have the same polyhedral structure with
different lineality spaces.
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23

14

12

1

Figure 14. The linear degenerate tropical flag variety trop(LFl(∅, {1}); 4)
can be interpreted as a “line bundle” over the Petersen graph.

Example 10.10. To finish, we include an additional degeneration step and study the linear
degenerate tropical flag variety trop(LFl({1}, {1}; 4)). It is a six-dimensional simplicial fan
with lineality dimension five in P(T4) × P(T6) × P(T4) and f-vector (1, 3) after quotienting
out the lineality space, i.e., a six-dimensional “line bundle” over a tropical line. We depict
it in Figure 15. Here, maximal cells can be interpreted as follows. As before, the first linear
degeneration condition implies that vp lies on the span of the ray of Lp in direction e1. The
second degeneration implies that one vertex of the tropical line lies on the linear span of e1
(and thus that the other vertex lies on one of the 3 coordinate half-planes spanned by e1).
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Note that this does not imply that Lp is contained in Pp. Thus, there are three maximal
cells.

Figure 15. The linear degenerate tropical flag variety trop(LFl({1}, {1}); 4)
can be interpreted as a “line bundle” over the tropical line.

One possible application of the poset of linear degenerate tropical flag varieties would be
to reduce the problem of computing a tropical flag variety to the problem of computing (a
product of) tropical Grassmannians. Recall that the tropical flag variety is the minimum
of the poset L of linear degenerate tropical flag varieties, while its maximum is a product
of tropical Grassmannians. Therefore, one could try to start from the top of L, and, by
descending the poset L step by step, reconstruct the structure of the tropical flag variety. In
order to do that, it would be enough to understand what happens at the covers of the poset
L, that is, to (fully or partially) reconstruct the structure of trop(LFl(r,S;n)) from another
linear degenerate tropical flag variety trop(LFl(r,S′;n)) that covers it, i.e., S is obtained
from S′ by adding one element in one of the sets Si.

Question 10.11. Can we reconstruct the structure of trop(LFl(r,S;n)) from a cover?

The examples we have seen above already provide some insight into what the answer is for
complete flags with n = 4. A common behavior that we observe is that the lineality space
increases in dimension after each linear degeneration. In fact, this can be shown in more
generality. The next result shows that for an ideal I ⊆ k[x0, . . . , xn], the lineality space of a
tropical variety trop(V (I)) contains the homogeneity space of I, which is the linear subspace
of vectors v ∈ Rn+1 such that I is homogeneous with respect to the grading deg(xi) = vi.

Lemma 10.12. Let I ⊆ k[x0, . . . , xn] be an ideal, where k is a field with the trivial valuation.
Let v = (v0, . . . , vn) ∈ Rn+1. If I is homogeneous with respect to the grading deg(xi) = vi
then v is in the lineality space of trop(V (I)).

Proof. If I is homogeneous with respect to the grading deg(xi) = vi, then inv(f) = f for
every f ∈ I. This implies that inv+w(f) = inw(f), as for every monomial m of f , we
are adding the same weight to the scalar product of the exponent vector of m and w. In
particular, inw+v(I) = inw(I) for every w ∈ Rn+1. Hence, w ∈ trop(V (I)) if and only if
w + v ∈ trop(V (I)), that is, v is in the lineality space of trop(V (I)). □

Corollary 10.13. The lineality space of a linear degenerate tropical flag variety is contained
in the lineality space of every linear degenerate tropical flag variety in L that covers it.



TROPICAL QUIVER THEORY AND TROPICAL ENUMERATION ON RULED SURFACES 109

Proof. The claim follows from the structure of the linear degenerate Plücker relations. In fact,
for a fixed grading of the Plücker variables, if the polynomials in Pr,s;S;n are homogeneous
with respect to this grading, then polynomials in Pr,s;S′;n are also homogeneous with respect
to this grading for every S ′ ⊇ S, thus, by Lemma 10.12, the lineality space is contained. □

By looking at the previous examples, one might be tempted to conjecture that a cover
relation on the poset implies set inclusion on the tropical varieties. In general, this is false,
as the following example shows.

Example 10.14. In this example, we are going to show that

trop
(
LFl((1, 2), ∅; 4)

)
⊈ trop

(
LFl((1, 2), {1}; 4)

)
.

We already described the above tropical varieties in Example 3.97 and Example 10.4. Now,
assume that our base field K is the field of Laurent series K((t)), that is the quotient field of
the DVR K[[t]] of formal power series with coefficients in a field K in the variable t. Then,
K has valuation v : K → T where v(f(t)) is the minimum of the exponents appearing in f .

Now let a, b ∈ Q with b > a > 0, and consider the two matrices

A1 =
Ä
1 1 1 1

ä
, A2 =

Ç
1 1 1 1

ta 0 tb 1

å
.

Let L1, L2 ⊆ K4 be the two linear spaces generated by the rows of the matrices A1 and
A2 respectively. By construction, L1 ⊆ L2, but pr{1}(L1) ⊈ L2. We can see this through
the Plücker equations computed in Example 10.4 as follows. The valuations of the Plücker
coordinates of L1 and L2 are

(p1, p2, p3, p4) = (0, 0, 0, 0),

(p1,2, p1,3, p1,4, p2,3, p2,4, p3,4) = (a, a, 0, b, 0, 0).

In particular, the minima in all the tropical polynomials in Ptrop
2;4 and Ptrop

1,2;4 are achieved at

least twice, while the minimum in, for instance, the second tropical polynomial of Ptrop
1,2;{1};4

listed in Example 10.4, p4p1,2 ⊕ p2p1,4 is not achieved twice:

p4p1,2 = 0⊙ a = a > 0 = 0⊙ 0 = p2p1,4.

While we do not obtain containment on tropical flag varieties or Dressians in the poset of
linear degenerations, from the definition of the linear degenerate Plücker relations, we obtain
the following containment on some boundary components.

Corollary 10.15. Let LFlDr(r, r′, S ∪ {s}, n) ≺ LFlDr(r, r′, S, n) be a cover in the poset of
linear degenerate flag Dressians. Set

B =

®
(pI) ∈ T(

n
r) × T(

n
r′) : pI = ∞ for every I ∈

Ç
[n]

r

å
such that s ∈ I

´
.

Then we have

LFlDr(r, r′, S, n) ∩ B ⊆ LFlDr(r, r′, S ∪ {s}, n).
Another interesting application of the poset of linear degenerate flag varieties concerns

relative realizability. We say that two realizable tropical linear spaces T1 ⊆ T2 are relatively
realizable if there exist realizations L1 of T1 and L2 of T2 such that L1 ⊆ L2. Let L be the
poset of linear degenerate tropical flag varieties with flags of length 2 in P(Tn) and rank vector
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(r, s). Then, accurately describing the cover relations of L provides us a way to solve the
relative realizability problem: the maximal element of L is trop(Gr(r;n)) × trop(Gr(s;n))
in which we impose no conditions on either containment or relative realizability, whereas
the minimal element trop(Fl(r, s;n)) of L does. Thus, if we could explicitly reconstruct
trop(Fl(r, s;n)) from trop(Gr(r;n)) × trop(Gr(s;n)), we would have an explicit solution to
the relative realizability problem by tracking elements in the cover relations.

11. Quiver polytopes

We conclude this part of the thesis by providing an outlook for future research. Matroids
and their valuated analogues can be described in terms of polyhedral geometry, as matroid
polytopes and their subdivisions. In this section, we lay the foundation for an extension of
this theory to the much more general setting of quiver polytopes and point configurations.
This section is based on current (sole author) work-in-progress. Much of this section is based
on computational experiments, using the code provided in Appendix B.1 and B.2 on suitable
examples.

11.1. Preliminaries: Polytopes in matroid theory and tropical geometry. In Sec-
tion 3.1, we have seen many different characterizations of (valuated) matroids, in terms of
bases, independent sets, circuits, and more. In this section, we will add another characteri-
zation to this list — matroid polytopes.

Definition 11.1. Let M be a matroid over the ground set [n] with a set of bases B(M). We
define the matroid polytope P(M) = conv(eB | B ∈ B(M)).

We draw the base polytopes of U1,3 and U2,3 in Figure 16.

Matroid polytopes are Coxeter polytopes of type A, i.e., their edges are parallel to ei − ej
for i, j ∈ [n]. Further, by definition, their vertices only have entries in {0, 1}. In fact, every
polytope satisfying these properties is a matroid polytope:

Proposition 11.2. A polytope P ⊆ Rn is a matroid polytope if and only if

(P1) all vertices of P have entries in {0, 1} and
(P2) all edges of P are copies of ei − ej for distinct i and j in [n].

An analogous polyhedral characterization exist for flag matroids, see, for instance, [25].

Proposition-Definition 11.3. A sequence of matroids M = M1, . . . ,Mk over [n] of ranks
r = r1 < · · · < rk is a flag matroid M1 ↞M2 ↞ · · · ↞Mk if and only if

PM = PM1 + · · ·+ PMk

is a

◦ generalized permutahedron, such that
◦ all vertices of PM are in the Sn-orbit of

er = e[r1] + e[r2] + · · ·+ e[rk].

Example 11.4. Let us consider the uniform matroids U1,3 and U2,3. We depict their base
polytopes in Figure 16 and construct their Minkowski sum, which is depicted in the same
figure and is the polytope with vertices

(2, 1, 0), (2, 0, 1), (1, 2, 0), (0, 2, 1), (1, 0, 2) and (0, 1, 2).

Using Proposition 11.3 we can now easily observe that the two matroids form a quotient.
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PU1,3 PU2,3 P(U1,3,U2,3) = PU1,3 + PU2,3

Figure 16. The matroid polytopes of U1,3 and U2,3, and their Minkowski
sum, which is the flag matroid polytope of the flag matroid U1,3 ↞ U2,3.

There exists a characterization of valuated matroids via matroid polytopes, which is used
in linear tropical geometry, see, for instance, [30]. Valuated matroids correspond to matroid
subdivisions of matroid polytopes, and valuated flag matroids correspond to flag matroid
subdivisions. However, in this section we will restrict ourselves to the non-valuated case.

11.2. Case study: the multiflag quiver. To start our study of quiver polytopes, we
extend flags in the following way. We consider a “multiflag” quiver below, where all arrows
are still identity maps, but we have a more complicated underlying undirected graph, which
may contain undirected (but not directed) cycles. Here, the dotted arrows are arrows which
might or might not be required to be identity maps in the quiver. Our idea is that we wish
to distinguish the polyhedral structures associated to matroidal quiver subrepresentations
which satisfy additional morphism constraints from those who do not, and record our findings
below.

[4]• [4]•

[4]•

[4]• [4]•

id

id

id

id

Analogously to the flag matroid case, we define the associated quiver polytope as the sum
of the base polytopes of the matroids assigned to the vertices of the quiver.

Definition 11.5. Let Q be a quiver, R a Q-representation and (Mi)i∈V a matroidal quiver
subrepresentation of R. Its quiver point configuration is the point configuration given as

PM =
{∑

i∈V

wi | wi is a vertex of PMi

}
.

The convex hull of PM is the quiver polytope, and can be characterized as

conv
(
PM

)
=
∑
i∈V

PMi
.
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Matroidal quiver subrepresentation
Lattice boundary points

of quiver polytope

U2,4• U3,4•

U1,4•

U2,4• U3,4•

id

id

id

id

Vertices:
S4 orbit of (5, 4, 2, 0)

Other lattice points:
S4 orbit of (5, 4, 1, 1)
S4 orbit of (5, 3, 3, 0)
S4 orbit of (5, 3, 2, 1)
S4 orbit of (5, 2, 2, 2)
S4 orbit of (4, 4, 3, 0)

U2,4• U3,4•

U1,4•

U1,3⊕U1,{4}•
U2,3⊕U1,{4}•

id

id

id

id

Vertices:
S4 orbit of (5, 4, 2, 0)

S{1,2,3} orbit of (5, 3, 0, 3)
S{1,2,3} orbit of (5, 3, 1, 2)

Other lattice points:
S{1,2,3} orbit of (5, 1, 1, 4)
S{1,2,3} orbit of (4, 1, 1, 5)

remaining S4 orbit of (5, 3, 3, 0)
remaining S4 orbit of (5, 3, 2, 1)

S4 orbit of (5, 2, 2, 2)
S{1,2,3} orbit of (4, 4, 0, 3)
S{1,2,3} orbit of (4, 4, 0, 3)
S{1,2,3} orbit of (4, 3, 2, 2)
S{1,2,3} orbit of (4, 4, 1, 2)

U2,3⊕U0,{4}•
U3,3⊕U0,{4}•

U1,3⊕U0,{4}•

U2,4• U3,4•

id

id

id

id

Vertices:
S{1,2,3} orbit of (5, 4, 2, 0)
S{1,2,3} orbit of (5, 4, 1, 1)
S{1,2,3} orbit of (5, 3, 1, 2)

Other lattice points:
S{1,2,3} orbit of (5, 3, 3, 0)
S{1,2,3} orbit of (5, 2, 2, 2)
S{1,2,3} orbit of (5, 3, 2, 1)
S{1,2,3} orbit of (4, 4, 3, 0)
S{1,2,3} orbit of (4, 4, 1, 2)
S{1,2,3} orbit of (4, 3, 2, 2)

U2,3⊕U0,{4}•
U3,3⊕U0,{4}•

U1,3⊕U0,{4}•

U1,3⊕U1,{4}•
U2,3⊕U1,{4}•

id

id

id

id

Vertices:
S{1,2,3} orbit of (5, 3, 1, 2)

Other lattice points:
S{1,2,3} orbit of (5, 2, 2, 2)
S{1,2,3} orbit of (4, 4, 1, 2)
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The code used for generating this table is omitted for brevity as it is rather repetitive and
straightforward, but can be found at https://victoriaschleis.github.io/thesis.html.

Observation 11.6. There are a few observations we can make on these examples.

(i) Every vertex has a unique coordinate entry 5, the orbit of which is determined by
the symmetry group of the leftmost matroid.

(ii) The sum of the other vertex coordinates is always 6, and any 3-partition of 6 occurs,
except (2, 2, 2). However, all quiver polytopes above have a boundary point that is a
permutation of (5, 2, 2, 2).

(iii) There are boundary lattice points in which 5 is not a coordinate entry. These can
likely be disregarded for a polyhedral characterization of matroidal quiver represen-
tations as they do not correspond to a multiflag of bases of the assigned matroids,
i.e., a collection (Bi)i∈V of bases Bi ∈ B(Mi) such that Bt(α) ⊆ Bs(α).

(iv) The amount of different vertex orbits is bounded from above by the number of max-
imal paths in the quiver.

We summarize the observations of the examples considered above in the following charac-
terization.

Conjecture 11.1. Let Q = (V,A, s, t) be a finite quiver without directed cycles, let R be
a matroidal Q-representation, i.e., a Q-representation where all maps are given by weakly

monomial matrices, and d ∈ Z|V |
≥0 be a dimension vector.

A point configuration P is the quiver point configuration of a matroidal quiver subrep-
resentation of Q (c.f. Definition 11.5) if and only if the convex hull of P is a generalized
permutohedron and any point p ∈ P is in the orbit of an element of the set

{eα =
∑
αi∈α

fα,1(σ(e[ns(α)])) | α is a maximal path in Q}

under the action of a group GQ ≤ Smaxi∈V ([ni]), and σs(α) ∈ Sns(α)
. Here, fα again denotes

the map of valuated matroids induced by the matrix Aα.

11.3. Case study: the loop quiver. Now, we will consider what happens if a quiver
contains loops. To this end, we study the loop quiver, which is the easiest such quiver, and
allow for arbitrary maps. We observe that the situation is far more complicated than in the
multiflag case.

We consider the matroidal quiver representation we had already seen in 8.4(c),

Q =
[5]• α ,

and will consider different maps α throughout this section.
First, let us choose α to be a permutation map f : M → M . We observe that f is a

morphism of matroids if and only if f maps bases to bases. Since f is a bijection, this
means that Pf−1(M) = PM . In polyhedral terms, PM is a matroid polytope associated to a
matroidal quiver subrepresentation if and only if the coordinate permutation f corresponds
to an element of the symmetry group of the matroid polytope.

Now, let us instead consider as α the projection map f : pr5 : M → M . In Example 8.7
we have already computed all associated matroidal quiver subrepresentations, which were

https://victoriaschleis.github.io/thesis.html
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(a) matroids in which 5 is a loop, and
(b) matroids in which 5 is a coloop and all other non-loop elements are parallel.

On the level of matroid polytopes, the corresponding matroids are the following

(a) all matroid polytopes in R5 that are contained in R5|x5=0; and
(b) all matroid polytopes in R5 that are contained in R5|x5=1.

Observation 11.7. Observe that for both types of matroid polytopes, the combinatorial
structure is preserved under the coordinate projection pr5 on R5. From these two examples,
we might expect this to always be the case and conjecture that a map f :M →M is a strong
map if and only if the corresponding map on Rn preserves the combinatorial structure of the
matroid polytope, i.e., if the matroid polytope of the induced matroid f−1(M) is equal to
the matroid polytope of M . We will now see that this is not the case.

To this end, we wish to study arbitrary maps on the loop quiver computationally. For
computational expediency, we change matroidal quiver representations and consider the
analogous representation, where we assign [4] to the vertex instead of [5].

Example 11.8. We consider the matroid M = U2,3 ⊕U1,1, which has bases 14, 24 and 34. Its
associated matroid polytope is the polytope

PM = conv
(
(1, 0, 0, 1), (0, 1, 0, 1), (0, 0, 1, 1)

)
,

which is combinatorially equivalent to the triangle that is the base polytope of U1,3 which
we had seen on the left in Figure 16. We can construct it computationally, using standard
Oscar methods and the additional code we implemented in Appendix B.1, and determine
all strong maps of the matroid into itself.

julia> M = normalize_groundset(direct_sum(uniform_matroid(1,3),

uniform_matroid(1,1)))↪→

Matroid of rank 2 on 4 elements

julia> l = find_all_strong_maps(M, M)

julia> length(l)

145

Doing this, we observe that there are 145 distinct strong maps of matroids from M into
itself. The full list can easily be generated, using the code above.

We now compute the matroid polytopes of all 145 induced matroids f−1(M). While there
are 145 different strong maps, their induced matroids, and hence the associated matroid poly-
topes may coincide. In fact, there are only 5 different distinct associated matroid polytopes.
We give them by their vertices below. We then compute how often they occur.

julia> p = [matroid_polytope(induced_matroid(add_loop(M),i)) for i in l];

julia> polytope_list = [(sum(vertices(i)[1]),vertices(i)) for i in p];

julia> u = unique(polytope_list)

5-element Vector{Tuple{QQFieldElem,

SubObjectIterator{PointVector{QQFieldElem}}}}:↪→

(1, [[0, 0, 0, 0, 1], [0, 0, 1, 0, 0], [0, 0, 0, 1, 0], [0, 1, 0, 0, 0]])

(2, [[0, 1, 0, 0, 1], [0, 1, 1, 0, 0], [0, 1, 0, 1, 0]])

(1, [[0, 1, 0, 0, 0]])

(1, [[0, 0, 0, 0, 1], [0, 0, 1, 0, 0], [0, 0, 0, 1, 0]])

(0, [[0, 0, 0, 0, 0]])
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julia> occurrences = [length(findall(i->i==j,polytope_list)) for j in u]

5-element Vector{Int64}:

82

30

4

28

1

Next, we compute an example morphism with respect to each possible occurring induced
matroid polytope, where 5 denotes the loop o.

julia> ex_mo = [l[findfirst(i->i==j,polytope_list)] for j in u]

5-element Vector{Dict{Int64, Int64}}:

Dict(5 => 5, 4 => 1, 2 => 1, 3 => 1, 1 => 1)

Dict(5 => 5, 4 => 1, 2 => 4, 3 => 4, 1 => 4)

Dict(5 => 5, 4 => 1, 2 => 5, 3 => 5, 1 => 5)

Dict(5 => 5, 4 => 5, 2 => 1, 3 => 1, 1 => 1)

Dict(5 => 5, 4 => 5, 2 => 5, 3 => 5, 1 => 5)

We stick with the loop quiver and perform the same computations for the matroids U2,4

and U3,4, and obtain the two tables recording the same information we just computed for
the matroid U1,3 ⊕ U1,{4}. For the matroid U2,4, we obtain the following maps:

Induced matroid Induced matroid polytope
# of

morphisms
Morphisms

U2,4

(0, 1, 0, 1), (0, 0, 1, 1)
(1, 0, 0, 1), (0, 1, 1, 0)
(1, 1, 0, 0), (1, 0, 1, 0)

24
All permutations

in S4

U1,4
(1, 0, 0, 0), (0, 1, 0, 0),
(0, 0, 1, 0), (0, 0, 0, 1)

4
all elements mapped

to one element

U1,{1,2,3} ⊕ U0,{4}
(1, 0, 0, 0), (0, 1, 0, 0),

(0, 0, 1, 0)
4

pr4, all other
elements mapped
to one element

U1,{1,2,4} ⊕ U0,{3}
(1, 0, 0, 0), (0, 1, 0, 0),

(0, 0, 0, 1)
4

pr3, all other
elements mapped
to one element

U1,{1,3,4} ⊕ U0,{2}
(1, 0, 0, 0), (0, 0, 1, 0),

(0, 0, 0, 1)
4

pr2, all other
elements mapped
to one element

U1,{2,3,4} ⊕ U0,{1}
(0, 1, 0, 0), (0, 0, 1, 0),

(0, 0, 0, 1)
4

pr1, all other
elements mapped
to one element

U0,4 (0, 0, 0, 0) 1 pr[4]
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Analogous to the case of U2,4 where we had different symmetrical polytopes associated to
the matroid U1,{a,b,c} ⊕U0,{d} for {a, b, c, d} = [4], we observe symmetrical polytopes for U3,4.
We record them up to symmetry due to the amount of cases. We obtain the following table:

Induced matroid Induced matroid polytope
# of

morphisms
Morphisms

U3,4
(1, 1, 1, 0), (1, 1, 0, 1)
(1, 0, 1, 1), (0, 1, 1, 1)

24
All permutations

in S4

U1,{a,b} ⊕ U1,{c,d}
ea + ec, eb + ec,
ea + ed, eb + ed

4 · 12

a, c get mapped to
the same element i
b, d get mapped to
the same element j

i ̸= j

U1,4
(1, 0, 0, 0), (0, 1, 0, 0),
(0, 0, 1, 0), (0, 0, 0, 1)

4
all elements mapped

to one element

U1,{a,b,c} ⊕ U0,{d} ea, eb, ec 4 · 4 prd, a, b, c get mapped
to the same element

U1,{a,b} ⊕ U0,{c,d} ea, eb 6 · 4 prcd, a, b get mapped
to the same element

U0,4 (0, 0, 0, 0) 1 pr[4]

Observation 11.9 (label = ◦). In summary, we observe that the polytopes associated to
the induced matroids f−1(M) are not very well behaved. Nevertheless, there are a few
observations we can still make:

• Permutations preserve the matroid polytope if and only if they are morphisms.
• The matroid polytope of the induced matroid has less than or equal the amount of
vertices as the original matroid polytope.
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Part 3. Enumeration of curves in ruled surfaces

In the last part of this thesis, we concern ourselves with a classical problem in algebraic
geometry. Counting how many algebraic curves of fixed degree and genus pass through a fixed
number of general points in some variety is a complicated problem in algebraic geometry.
The most classical case is the count of rational curves passing through 3d− 1 points in the
complex projective plane P2. The solution to this problem was conjectured by Witten [141]
in 1991 to have deep connections to the KdV-equation in particle physics. In 1995, it was
proven by Kontsevich [94], including a recursive combinatorial formula to determine these
numbers. Since then, various generalizations of this problem have been achieved. Notably,
the case of counting plane curves with higher fixed genus g passing through 3d+g−1 points
was later studied by Caporaso-Harris, and they established another recursive combinatorial
determining these curve counts, see [36]. Generally, the count of curves of fixed degree d
and genus g on an algebraic surface S passing through a fixed number of points in general
position is called a Gromov-Witten invariant.

About ten years after the proofs by Kontsevich and Caporaso-Harris, Mikhalkin showed
that the algebraic counts correspond to analogous counts in tropical geometry [106, Theorem
1.1]. Further, Gathmann-Markwig proved combinatorial formulas for the Gromov-Witten
invariants using tropical geometry [64, 65].

Since then, these results have been substantially generalized. Through tropical curve
counting, many results in enumerative geometry can be extended to fields of different char-
acteristic or even the real numbers. Here, tropical geometry can be used to obtain recursive
combinatorial formulas for the real analogue of Gromov-Witten invariants, the so-called
Welschinger invariants [11, 136, 137].

Further, tropical curve counting can be successfully implemented and shown to be equal
to algebraic Gromov-Witten invariants over other algebraic surfaces. For instance, in the
past tropical geometry has been successfully used to count curves in Hirzebruch surfaces [59],
cylinders and particular ruled surfaces [18]; and tori [19]. In this part, we extend the latter
study to fill in all gaps in the tropical enumeration of ruled surfaces.

The structure is as follows. In Section 12 we recall the basics of algebraic, logarithmic,
and tropical enumerative geometry. In the process, we discuss the Abramovich-Chen-Gross-
Siebert decomposition formula as the main translation tool of logarithmic Gromov-Witten
invariants on more complicated surfaces to tropical Gromov-Witten invariants. Further,
we discuss refined Gromov-Witten invariants as an extension of complex counts to the real
numbers. We conclude by studying ruled surfaces: We recall the classification of (complex)
ruled surfaces, give and first results on tropical enumerative geometry on tropicalizations of
these surfaces.

We continue in Section 13 by defining our main objects of study, tropical Möbius strips.
We determine some of their algebraic features and describe embeddings of abstract tropical
curves into the strips. We then proceed by defining multiplicities of tropical curves embedded
into Möbius strips. We conclude by proving that the tropical Gromov-Witten invariant is
invariant for tropically general point configurations.

In Section 14 discuss floor diagrams in the plane and then extend them to work in our
setting. We define their multiplicities and show that counting floor diagrams with multiplicity
corresponds to counting curves with multiplicity.
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Finally, in Section 15 we prove the main theorems of this part: We show the correspon-
dence between the tropical and the logarithmic Gromov-Witten invariant, and we determine
the regularity properties of functions in the invariants and their generating series: we show
that the functions returning the Gromov-Witten invariants depending on the tangency condi-
tions are quasi-polynomial, and that the generating series in the vertical part of the bidegree
is quasi-modular.

12. Preliminaries: Complex and tropical enumerative geometry

In this section, we give an overview of algebraic, logarithmic, and tropical enumerative
geometry. Since modern developments in enumerative geometry have been significantly
intertwined with the development of tropical methods, we go back and forth between the
different points of view.

We begin by defining Gromov-Witten invariants for counts of curves in P2 in Section
12.1. We then introduce our first bit of tropical enumerative geometry in Section 12.2 —
abstract and parametrized tropical curves and their moduli spaces. The first two sections
lay the groundwork for the modern approach of logarithmic Gromov-Witten theory, which
we introduce in Section 12.3. In particular, in Section 12.3.4 we cover the Abramovich-
Chen-Gross-Siebert decomposition formula, which is the main ingredient for correspondence
theorems of curve counts on non-toric surfaces. Following that, in Section 12.4, we consider
refined Gromov-Witten invariants. These are Laurent polynomials that interpolate between
the real and the complex count of curves in P2.

Next, we lay the foundations of our extension of the theory to ruled surfaces in the later
sections of this part. We discuss a classification theorem for complex ruled surfaces in Section
12.5, and introduce the two main examples of ruled surfaces we will study in this thesis, CM0

and CM1. We finish in Section 12.6 by discussing first approaches of tropical analogues of
ruled surfaces: tropical cylinders and curve counts on them.

12.1. Gromov-Witten invariants: Algebraic. In this section, we will recall the general
setup of enumerative problems. We start by defining the objects we wish to count - curves of
genus g with n marked points. In the process, we define the moduli spaces Mg,n and Mg,n.
Next, we discuss parametrized curves and their parameter spaces Mg,n(P2, d) and introduce
Gromov-Witten invariants as a property of an evaluation map of the space. As a concrete
example, we consider the count of rational parametrized curves.

12.1.1. Curves and their moduli spaces. We begin our journey by introducing curves and
their moduli spaces. There are many good introductory texts to this topic. We base our
exposition mainly on [126, Section 3] and refer to [5] for a more in-depth discussion.

Definition 12.1. A curve C over C is a reduced separated scheme of finite type over Spec(C),
such that all irreducible components have dimension 1.

We will soon see that the full parameter space of curves is very complicated. To make our
lives easier, we restrict ourselves to counting curves with mild singularities and automorphism
groups.

Definition 12.2. We say that a curve C is smooth if every closed point p ∈ C is smooth.
A closed point p ∈ C is a node if there exists a neighborhood of p in C which is analytically
isomorphic to a neighborhood of the origin of the locus

{
(x, y) | x · y = 0

}
⊆ C2. We say
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that C is nodal if every closed point p ∈ C is either smooth or a node. A connected, nodal
curve C is called stable if its group of automorphisms is finite.

In general, there are infinitely many curves of a given degree and genus. To obtain a
well-posed counting problem, we thus need to impose conditions on which curves we want
to count. The easiest way to do that is to mark some special points on the curve, whose
positions we will later investigate further and impose restrictions on.

Definition 12.3. We say that (C, p1, . . . , pn) is an n-marked curve if all pi are distinct,
smooth points on C. The properties of curves discussed in the previous definition can be
directly adapted to n-marked curves: We say that an n-marked curve is nodal if its underlying
curve C is. We say that it is stable if the group of automorphisms of C fixing all pi is finite.

Finally, this allows us to “define” a moduli space of curves:

Definition 12.4. ◦ The parameter space of all smooth n-marked curves of genus g is
the (non-compact) moduli space Mg,n.

◦ The parameter space of all stable n-marked curves of genus g is the (compact) moduli
space Mg,n.

We will later see some intuition for the fact that Mg,n it is the compactification of the
moduli space Mg,n.

Remark 12.5. To be precise, we would have to define the above moduli spaces as moduli
functors, ([126, Definition 3.17]). For a thorough theory, we also need to consider the spaces
not as varieties or even schemes, but as Deligne-Mumford stacks. In the interest of time,
nerves and readability, we omit this theory and point to Alper [5] and Schmitt [126].

Remark 12.6. Why are these the correct curves to parametrize in our moduli space, especially
when we want to tackle enumerative problems? To summarize the intuition:

Nodes. The interior of the moduli space is going to consist of the smooth points. For
counting purposes, we will need a compact space. In the compactification process, we will
need to allow singularities for our curves. Nodes are just particularly mild singularities, and
they interact well with tropical geometry, too!

Stability. Automorphisms cause trouble in parameter spaces, because we want to consider
two automorphic curves with different input data as the same point. We will later see this
explicitly in the construction of the moduli space of the tropical analogue, the moduli space
of abstract tropical curves, where automorphisms change the shape of the cones in the
polyhedral complex. As with nodes, once we start considering curves with genus > 0, we
cannot escape automorphisms completely. But finite automorphism groups are easier to deal
with than infinite ones.

Remark 12.7. What if we don’t have stability? Infinite automorphism groups bring trouble.
But what if we still want to study parameter spaces of these curves? It turns out that the
parameter space Mg,n of nodal curves of genus g with n marked points is a far more general
stack — it is an Artin stack, and it is not separated. We will catch up with this train of
thought at the end of Section 12.3, once we have defined logarithmic structures.

12.1.2. Counting curves in the projective plane. In the previous section we discussed an
abstract notion of curves. Now, our goal will be to count curves in P2. Our exposition here
is standard, following the exposition in [39, Chapters 1 and 4].
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We can parametrize curves in the projective plane as the image of the abstract curves
defined in the previous section.

Definition 12.8. A parametrized curve of degree d (to P2) is a morphism

f : C → P2

of degree d where C is a smooth curve. Two parametrized curves are isomorphic if they can
be stated in terms of each other by a reparametrization of the source curve.

The parameter space of all isomorphism classes of parametrized curve of degree d, the
moduli space of parametrized curves Mg(P2, d), has expected dimension 3d + g − 1, see
[13, 92, Section 8.1.1 and Computation 2.3.5 respectively].

Heuristically, introducing a point condition (i.e., requiring a curve to pass through a fixed
point p) on the target of a parametrized curve f reduces the dimension of the parameter
space by 1. Since we are interested in a finite count of curves, we want the parameter space
of all parametrized curve with n fixed points to be zero-dimensional. This implies that we
should impose n = 3d+g−1 point conditions to get a generically finite, but non-zero number
of curves satisfying the conditions. We will continue by studying parametrized curves with
3d + g − 1 general fixed points, which arise as the parametrization of smooth curves with
3d+ g − 1 marked points.

Definition 12.9. The moduli space of parametrized curves of degree d with n marked points
Mg,n(P2, d) is the parameter space of all isomorphism classes of parametrized curves with n
marked points

f : (C, q1, . . . , qn) → P2,

of degree d. Two parametrized curves with n marked points are isomorphic if they can
be stated in terms of each other by a reparametrization of the source curve, such that the
marked points get reparametrized accordingly as well.

The number of rational curves in P2 passing through 3d + g − 1 points can be restated
as a property of the moduli space Mg,3d+g−1(P2, d). It is the degree of the evaluation map,
evaluating marked points of the curve at their image under the parametrization map.

The degree of this map is only well-defined after passing to a compactification of the space
(see [61]), and obtain a compact moduli space of rational parametrized curves, Mg,n(P2, d).
The compactification of the moduli space of rational parametrized curves now contains ad-
ditional types of curves - they are not necessarily smooth, but still stable and nodal, just as
for the moduli spaces Mg,n and Mg,n. Explicitly, we can now define the the evaluation map
as follows.

Definition 12.10. We define the evaluation map

ev : Mg,n(P2, d) → (P2)n,

which evaluates an element f at the n special points: ev
(
[f ]
)
=
(
f(q1), . . . , f(qn)

)
.

After showing that the evaluation map for n = 3d + g − 1 has generically finitely many
preimages, [92, Lemma 4.1.3], we can rephrase our original problem as follows:

Theorem 12.11 ([61, Theorem 2 and Section 1.3]). Let n = 3d + g − 1. On the compact
moduli space Mg,n(P2, d) of parametrized curves of degree d with n marked points, the degree
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of the evaluation map deg(ev) is well-defined. Consequently, the number of curves genus g
and degree d passing through n points coincides with the degree of the evaluation map:

Nd,g = deg(ev).

We can determine the degree of the evaluation map by computing intersection numbers
of the pullbacks of general points of the evaluation map.

Remark 12.12 (Virtual fundamental classes). Most (algebraic and later logarithmic) moduli
spaces we consider in this thesis are not varieties: they are proper Deligne-Mumford stacks,
which can be singular and consist of multiple irreducible components of potentially differing
dimension. This complicates the intersection theory involved in defining Gromov-Witten
invariants (see for instance Theorem 12.13).

In particular, pullbacks of points under the evaluation map are potentially not of the
expected dimension, thus do not form fundamental cycles where we would have a well-
defined intersection theory. To tackle this issue, one can introduce virtual fundamental
classes, whose intersection theory mimics that of fundamental cycles. For a cycle α in any of
the moduli spaces we discuss, we denote by [α]vir its virtual fundamental class. For details
on this construction, we refer to [13, Sections 7 and 8].

We can instead re-formulate the Gromov-Witten invariant as an intersection number of
virtual fundamental classes on a moduli space, as follows.

Theorem 12.13 ([92, Proposition 4.1.5]). The classical Gromov-Witten invariant Nd can
be expressed as intersection numbers of pullbacks of points under the evaluation map:

Nd,g =

∫
[Mn(P2,d)]vir

n∏
1

ev∗i (pt),

where pt is the cohomology class Poincaré dual to a point.

Here, evi denotes the i-th coordinate entry of the evaluation map, and the integral symbol
denotes the count of the points in the (0-dimensional) intersection in the virtual fundamental
class, while the product denotes the intersection product of cohomology classes.

12.2. Abstract tropical curves and their moduli spaces. In this section, we will focus
on tropicalizing the theory discussed in the previous section. We have already seen first
examples of tropical curves in Example 2.8 arising as the tropicalization of algebraic curves.
Now, we will additionally review a more abstract point of view on tropical curves in Section
12.2.1. Analogous to the algebraic case, we will first discuss abstract curves and their moduli
spaces. In Section 12.2.2, we will discuss parametrized tropical curves on R2 and their
moduli spaces as the tropical analogue to the parametrized curves discussed in the previous
section. This will allow us to set up tropical Gromov-Witten invariants. We conclude
with Section 12.2.3, where we introduce tangency conditions for tropical curves and tropical
relative Gromov-Witten invariants, which will serve as the backdrop for the discussion of
logarithmic Gromov-Witten invariants afterwards.

12.2.1. Abstract tropical curves. In this section, we discuss abstract tropical curves and their
moduli spaces. A main reference for this section is [45], with some additional motivation
and application as presented in [103].
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Figure 17. Some abstract tropical curves, omitting the length of edges. Ver-
tices without labels are by convention of genus 0.

Definition 12.14. An abstract tropical curve is a metric graph Γ = (V,E, ℓ, γ) consisting
of

◦ a collection of vertices V ,
◦ a set of edges E, which contains both finite edges and half-rays we call ends (or legs),
◦ a length function ℓ : E → R>0 ∪ {∞} on edges, where the length of ends is infinite,
and the only edges of infinite length are ends, and

◦ a genus function γ : V → Z≥0 on the vertices.

When specifying the set of vertices or edges of an abstract or later parametrized tropical
curve Γ, we write V (Γ) for the set of vertices and E(Γ) for the set of edges. Further, we
write Eb(Γ) for the set of bounded and Eub(Γ) for the set of unbounded edges of Γ.

In Figure 17, we give a few examples of abstract tropical curves.

Remark 12.15. Each tropical curve arising as the tropicalization of a tropical curve as dis-
cussed in Section 2.1 has an underlying abstract tropical curve, obtained by “forgetting the
embedding”, i.e., taking the underlying metric graph of a tropicalization. Here, the ends
correspond precisely to the rays going off to infinity. Note, however, that this underlying
tropical curve is not necessarily unique — we can insert as many vertices into edges as we
like. We will soon see that uniqueness can be attained by requiring a tropical version of
stability.

Remark 12.16. We say that two edges of Γ are parallel if they are parallel in the graph
theoretic sense, i.e., if they have the same adjacent vertices.

Definition 12.17. If Γ is connected, we say that the tropical curve is irreducible. Let Γ be
an irreducible tropical curve. The genus g(Γ) of an abstract tropical curve is its genus as a
graph together with the sum of the vertex genera, i.e.,

g(Γ) = |E| − |V |+ 1 +
∑
v∈V

γ(V ).

If Γ is not irreducible but consists of connected components Γ1, . . . ,Γk, the genus is

g(Γ) =
k∑

i=1

g(Γi)− k + 1.

If all the vertex genera are zero, the genus of the curve can equivalently be expressed in
terms of the Euler characteristic χ(Γ) of the underlying graph. We have g = 1− χ(Γ). We
say that Γ has n marked points if Γ has n distinct, labeled ends.
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Example 12.18. All curves in Figure 17 are of genus 2 — curve (a) through its inner vertex
with γ(v) = 2, curve (b) because it contains one vertex of genus 1 and one cycle as a graph,
and curve (c), because it has three edges and two vertices, i.e., g(Γ(c)) = 3− 2 + 1 = 2. The
curve (a) has six marked points, the curve (b) has two and the curve (c) has zero.

Definition 12.19. The combinatorial type CΓ of an abstract tropical curve Γ is its underlying
graph (V,E), forgetting all metric information, but remembering the markings on the ends
and the genus on vertices. We say that a tropical curve Γ is stable if for every vertex v ∈ V

valence(v) =


≥ 3 if γ(v) = 0

≥ 1 if γ(v) = 1

≥ 0 otherwise.

A loop at a vertex contributes two to the valence of the vertex.

Remark 12.20. We can stabilize many abstract tropical curves by removing superfluous
vertices. If a vertex v has valence 2, the two edges adjacent to v are distinct, and at least
one has finite length, we delete the vertex and join the two adjacent edges e1 and e2 into a
joint edge of length ℓ(e1) + ℓ(e2).

Definition 12.21. The tropical moduli space Mtrop
g,n is the parameter space of stable tropical

curves of genus g with n marked points. Each combinatorial type CΓ occurring for tropical
curves of genus g with n marked points has an associated cone

CΓ = Rk
>0/ ∼

where k is the number of edges of finite length in the combinatorial type, and the equivalence
is given by metric graph automorphisms of the representatives. For instance, if an abstract
tropical curve contains two parallel finite edges e1 of length l1 and e2 of length l2 (see Remark
12.16), this curve is equivalent to the curve with the same combinatorial type and the same
edge-lengths, except ℓ(e1) = l2 and ℓ(e2) = l1. Now, the tropical moduli space Mtrop

g,n is given
as

Mtrop
g,n =

∐
combinatorial types

CΓ

CΓ/ ∼,

where two points [Γ] ∈ CΓ and [Γ′] ∈ CΓ are identified if they are equal after contracting all
edges of length zero, and CΓ denotes the closure with respect to the Euclidean topology. It
is a cone complex whose cones correspond to the different possible combinatorial types of
tropical curves with the prescribed genus and number of marked points.

Remark 12.22. In the previous section we had defined stable algebraic curves as algebraic
curves with finite automorphism group. Here, we can see how this becomes relevant in the
construction of the tropical moduli space.

In general, taking equivalence classes with respect to a finite number of automorphisms
is a polyhedral operation, roughly corresponding to folding the cone onto itself. If we do
this an infinite number of times, the resulting equivalence class might not be a polyhedral
cone anymore, making its structure harder to analyze. We can see such an infinite process
resulting in a more complicated space in the case of the moduli space of principally polarized
abelian varieties, [44, Section 4].
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Example 12.23. In this example, we will construct two moduli spaces of rational tropical
curves explicitly. By definition, points in these moduli spaces correspond to stable metric
trees with n marked points.

We begin with the moduli space Mtrop
0,4 of stable, rational tropical curves. There are four

combinatorial types of stable tropical curves of genus 0 with four marked points, three of
which are maximal. The moduli space Mtrop

0,4 is a generic tropical line, depicted below,
indicating the combinatorial type associated to each cone.

1

2

3

4

3

1

4

2

3

1

4

2

31

42

We observe that abstract tropical curves with four ends are, up to a shift, tropical linear
spaces in P(T4), which we studied in Example 2.24. This means that, up to lineality, the
tropical moduli space Mtrop

0,4 coincides with the Dressian Dr(2, 4) we computed in Example
3.83.

Next, we will construct the tropical moduli space Mtrop
0,5 of stable tropical curves. It is the

cone over the Petersen graph. In the below picture, we annotate one of the maximal cells
and two of the codimension-one cells. Note that each of the 10 =

(
5
2

)
=
(
5
3

)
codimension-one

cells corresponds to a graph where one vertex v1 has three adjacent ends and one vertex v2
has two adjacent ends, and that each of the 15 =

(
5
2

)
+
(
5
1

)
maximal cells corresponds to a

graph with three vertices, where the two exterior vertices each have two adjacent ends and
the interior vertex has one. Each codimension-one cell is adjacent to the three maximal cells,
corresponding to fixing the vertex v2 and choosing one of the three ends of v1 to be the end
adjacent to the interior vertex. You can see one such concrete example in the below picture.



TROPICAL QUIVER THEORY AND TROPICAL ENUMERATION ON RULED SURFACES 125

31

4

2 5

31

4

2

5

31

42

5

Similar to the observation we just made for abstract tropical curves with four ends, we
observe that abstract tropical curves with five ends are, up to a shift, tropical linear spaces in
P(T5), and that, up to lineality, the tropical moduli space Mtrop

0,5 coincides with the Dressian
Dr(2, 5) we computed in Example 3.83.

Remark 12.24. When studying the two moduli spaces Mtrop
0,4 and Mtrop

0,5 in Example 12.23,
we observed that the moduli spaces have a very familiar structure: They look just like the
Dressians Dr(2; 4) and Dr(2; 5) we had computed in Example 3.83, after quotienting by
lineality! This is not a coincidence, but one instance of a much richer connection between
line Grassmannians Gr(2, n) and algebraic moduli spaces of stable n-pointed rational curves
M0,n — one can give equations for the moduli space M0,n using the Plücker embedding,
and M0,n = Gr(2;n)//Ch T

n−1 is the Chow quotient of the Grassmannian by a rescaling
action of an (n − 1)-dimensional torus (see Kapranov [90, Theorem 4.1.8]). On the open
part of the Grassmannian, Gibney-Maclagan show that this is a GIT-quotient, and that all
GIT-quotients of Gr(2;n) can be derived from M0,n (see [67, Theorem 6.3 and Theorem 7.1]
respectively).

12.2.2. Basics of tropical curve-counting. Now, let us set up the problem of counting curves
passing through 3d+ g− 1 points in tropical geometry. Explicitly, this is done similar to the
algebraic case by considering parametrized (tropical) curves, defining evaluation maps and
computing their degrees at general points. Most of this section is based on [39, Chapters 9,
10 and 11], with some additional input from [106] and [107].

We now construct parametrizations for abstract tropical curves. These correspond to the
parametrized curves we have already seen in the algebraic context in the previous section.

Definition 12.25. An n-marked parametrized tropical curve (also known as a stable tropical
map) h : Γ → R2 is a tuple (Γ, h), where

• Γ ∈ Mtrop
g,n+m is a stable abstract tropical curve with n +m ends such that n ∈ Z≥0

and m ∈ Z≥2, and
• h : Γ → R2 is a continuous, piecewise integral affine function which restricts to an
integral affine function on each edge of Γ. We then have h|e = met+ a for each edge
e ∈ E(Γ), where t ∈ [0, ℓ(e)] and me ∈ Z2.
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Figure 18. A parametrized tropical curve from the abstract tropical curve Γ
to R2. The ends 4 and 5 get mapped in direction −(e1 + e2), the ends 6 and 7
get mapped in direction e2 and the end 8 gets mapped in direction 2e1. This
corresponds to the edge having weight 2 in Proposition 2.17.

• every vertex v satisfies the balancing condition, i.e.,∑
e∋v

me = 0,

where me ∈ Z2 denotes the slope of an edge e under h as defined above.

Further, we require that the map h is constant on the first n ends (soon to be marked points),
and that it is not constant on the remaining m ends.

Remark 12.26. The image h(Γ) ⊆ R2 of a parametrized tropical curve h : Γ → R2 is dual to
a regular Newton subdivision in the sense of Definition 2.16.

The image is a balanced polyhedral complex in the sense of Definition 2.14, where the
weight of an edge e is determined by its slope: we · pe = me, i.e., we is the scalar when
expressing me as the multiple of a primitive vector.

Since the image is dual to a regular Newton subdivision, there exists a Nonarchimedean
field with valuation such that h(Γ) is a tropical hypersurface in the sense of Definition 2.7.
However, this lifting is not necessarily unique.

Note that we do not require the images of vertices of Γ to be vertices in the polyhedral
complex h(Γ) — they may lie on top of edges or coincide with other vertices.

A main advantage of this new point of view is that it will allow us to construct tropical
analogues of curves in other varieties, or using other lattice structures, more easily. The
drawback is that such a definition is only well-studied for curves, and not for arbitrary
varieties, contrary to Definition 2.7.

In Figure 18, you can see an example of such a parametrized tropical curve.
We now consider parametrizations of abstract tropical curves into P2 that correspond to

tropicalizations of curves. For such an algebraic counterpart to exist, there must be an
appropriate amount of ends in the correct directions.

Definition 12.27. We write Mtrop
g,n (R2,∆) for the moduli space of n-marked parametrized

tropical curves of degree ∆. This space parametrizes n-marked parametrized tropical curves
with d ends of the image curve of weight 1, which are pointing in the directions e1, e2 and
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−(e1 + e2) respectively. We say that the parametrized tropical curves in this moduli space
are of degree

∆ =
{
d · e1, d · e2, d · −(e1 + e2)

}
.

We say that the rational parametrized tropical curve h : Γ → R2 is simple if

◦ Γ is 3-valent at all vertices,
◦ h is an immersion,
◦ for any y ∈ R2, the inverse image h−1(y) consists of at most two points, and
◦ if a, b ∈ Γ such that h(a) = h(b) but a ̸= b, then neither a nor b are vertices of Γ.

Proposition 12.28 ([39, Proposition 4.4.2]). There exists a forgetful map

ft : Mtrop
g,n (R2,∆) → Mg,n+3d+g

(h : Γ → R2) 7→ Γ,

forgetting the embedding h but remembering the underlying stable rational abstract tropical
curve Γ.

The positions of the n ends that get contracted to points under the map h : Γ → R2 play
the same role as the n marked points in the algebraic setting (see Definition 12.9): We use
them to define evaluation maps.

Definition 12.29. We define the evaluation map

evtrop : Mtrop
g,n (R2,∆) → (R2)n; (h : Γ → R2) 7→

(
h(1), . . . , h(n)

)
where h(i) denotes the image of the ith contracted end.

Together, the evaluation map and the forgetful map allow us to see Mtrop
g,n (R2,∆) as a

cone complex — the product

ft× ev1 : Mtrop
g,n (R2,∆) → Mg,n+3d+g × R2

is a bijection, [37, Theorem 5.1], and Mg,n+3d+g ×R2 is a cone complex by the definition of
Mg,n+3d+g.

Again, to obtain a finite but non-zero count we want to count parametrized tropical curves
whose 3d− 1 points in general position.

Definition 12.30. A point configuration {p1, . . . , p3d+g−1} := P ⊆ R2 consisting of 3d+g−1
points is called tropically general if the preimage ev−1

trop(p1 × · · · × p3d+g−1) only consists of
simple tropical curves.

One can show that the set of tropically general point configurations is dense in (R2)3d+g−1.
For rational parametrized tropical curves and their moduli spaces, the evaluation maps above
are maps of fans embedded in a vector space, so one can compute their degree and show that
it is constant for a tropically general point configuration, see [63]. This allows us to define a
tropical analogue of the Gromov-Witten invariant:

Definition 12.31. Let P be a tropically general point configuration consisting of 3d − 1
points in R2, and let ∆ =

{
d ·e1, d ·e2, d ·−(e1+e2)

}
. We define the tropical Gromov-Witten

invariants as the degree of the evaluation map (see [63]),

N trop
0,∆ := deg(evtrop).
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For higher genus, the degree computation is possible, but more complicated. However,
computing the degree of rational tropical curves, we observe that the degree of the tropical
evaluation map can be computed as a count of parametrized tropical curves whose marked
ends evaluate to a tropically generic point configuration, when counted with appropriate
multiplicity. This definition now extends to curves of higher genus:

Definition 12.32. Let h : Γ → R2 be a simple parametrized tropical curve. Its multiplicity
is given by the product over the (normalized) area of triangles in the Newton subdivision
dual to the image h(Γ) (see Definition 2.16 for a definition of the Newton subdivision):

m(Γ, h) =
∏

v∈V (Γ)
trivalent

Area(∆v),

where ∆v denotes the cell in the Newton subdivision associated to the vertex v of the
tropical hypersurface h(Γ). Since we only sum over the trivalent vertices, the associated
cells are triangles.

This allows us to define tropical Gromov-Witten invariants for counting problems in higher
genus:

Definition 12.33. Let P be a tropically general point configuration consisting of 3d+g−1
points in R2, and let ∆ =

{
d ·e1, d ·e2, d ·−(e1+e2)

}
. We define the tropical Gromov-Witten

invariants as sum of multiplicities of parametrized tropical curves h : Γ → R2 of degree ∆
whose marked points evaluate to P,

N trop
g,∆ :=

∑
h:Γ→R2

m(Γ, h).

One of the foundational results of early tropical geometry is that the tropical Gromov-
Witten invariants can be used in (algebraic) enumerative geometry: Mikhalkin’s correspon-
dence theorem, shows that the tropical Gromov-Witten invariant defined in this way is equal
to the algebraic one.

Theorem 12.34 ([106, Theorem 1]). Let ∆ =
{
d · e1, d · e2, d · −(e1 + e2)

}
. Then,

N trop
g,∆ = Ng,d,

where Ng,d is the algebraic Gromov-Witten invariant we had discussed in Theorem 12.11.

12.2.3. Imposing tangency conditions. Instead of counting parametrized tropical curves with
images that have 3d outgoing ends of weight 1, we now wish to count tropical curves where the
ends are allowed to have arbitrary fixed weights. On the algebraic side, this will correspond to
imposing tangency conditions with the toric boundary of P2, which we will see in more detail
in the next section, and give rises to new counts, called relative Gromov-Witten invariants.

To keep track of the tangency conditions on the tropical side, we introduce the following
notation:

Notation 12.35. Let α be a sequence of non-negative integers. We define |α| =∑∞
i=0 αi.

Further, we write I for the sequence (1, 2, 3, . . . ), and write

Iα =
∞∑
i=1

(αi · i) and Iα =
∞∏
i=1

iαi .
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Since we will later only be required to consider tangency conditions in one direction, we
will restrict ourselves to this setting for notational ease. Tangency conditions in multiple
different directions can be considered analogously.

Definition 12.36. Let d and g ∈ Z≥0 and let α and β be sequences such that Iα+ Iβ = d,
where I denotes the sequence (1, 2, . . . ). Let h : Γ → R2 be a simple parametrized tropical
curve of genus g and degree{

(αi + βi) · (i · e1), d · e2, d · −(e1 + e2)
}
.

That is, h(Γ) has αi + βi ends of weight i to the right.

We write Mtrop
g,n (R2, d, α, β) for the moduli space of parametrized tropical curves of degree{

(αi + βi) · (i · e1), d · e2, d · −(e1 + e2)
}
of genus g with n marked points.

In the above definition, we split the tangency conditions into two sequences α and β. We
will use α to denote fixed tangency conditions, where we not only fix the multiplicity of
the end of the tropical curve, but also its position. We will use β to denote free tangency
conditions, where we only fix the multiplicity of the end but not its position.

As before, to set up a tropical counting problem for arbitrary genus, we need to adapt the
multiplicity of parametrized tropical curves to this new setting.

Definition 12.37. Let h : Γ → R2 be a simple parametrized tropical curve with tangency
conditions (α, β). Its multiplicity is given by the product over the (normalized) area of
triangles in the Newton subdivision dual to the image h(Γ) (see Definition 2.16 for a definition
of the Newton subdivision):

m(Γ, h) =
1

Iα

∏
v∈V (Γ)
trivalent

Area(∆v),

where ∆v denotes the cell in the Newton subdivision associated to the trivalent vertex v of
the tropical hypersurface h(Γ).

Now, we need to determine the dimension of the moduli space of parametrized tropical
curves with tangency conditions to determine how many marked points we need to fix to
obtain a generically finite count.

Remark 12.38. Let d and g ∈ Z≥0 and let α and β be sequences such that Iα+ Iβ = d. The
dimension of Mtrop

g,n (R2, d, α, β) can be computed to be 2d+ g + |β| − 1.

Definition 12.39. The refined tropical Gromov-Witten invariant can be defined as the sum
of multiplicities of parametrized tropical curves whose whose 2d + g + |β| − 1 marked ends
get contracted to a tropically general point configuration P,

N trop
g,∆ =

∑
h:Γ→R2

m(Γ, h).

12.3. Gromov-Witten invariants: Logarithmic. In the previous sections we have stud-
ied curves in algebraic and tropical geometry. Now, we discuss a field that can be seen as an
enrichment of algebraic geometry by tropical enumerative information — logarithmic enu-
merative geometry. This will allow us to discuss the algebraic analogue of tropical relative
Gromov-Witten invariants which we studied in the last section.
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To make things easier for us, we start by rewriting the case of counting curves in the
projective plane in our new language, and introduce tangency conditions in the algebraic
context (see Section 12.3.1). Then, we set up the same theory for arbitrary logarithmic
schemes, focusing on the case of toric varieties together with their toric boundaries (see
Section 12.3.2). We continue with the setup in the setting for toric varieties (see Section
12.3.3), and conclude with an important theorem which will later allow us to show the
correspondence theorem on ruled surfaces: the decomposition formula (see Section 12.3.4).

12.3.1. Rational logarithmic parametrized curves in the plane. Parametrized logarithmic
curves and logarithmic Gromov-Witten invariants were introduced in [1, 46, 73]. We will
later phrase our own enumerative problem in this language. Our exposition here is mostly
based on [39, Chapter 4 and 5].

Definition 12.40. We fix coordinates on P2 by fixing three hyperplanes H0, H1 and H2. A
non-degenerate rational parametrized logarithmic curves of degree d (with n marked points
s1, . . . , sn) is a map

f : (P1, p1, . . . , pd, q1, . . . , qd, r1, . . . , rd, s1, . . . , sn) → (P2, H0, H1, H2)

such that all tangency with the three hyperplanes H0, H1 and H2 is transverse and

f−1(H0) =
d∑

i=1

pi, f−1(H1) =
d∑

i=1

qi, and f−1(H2) =
d∑

i=1

ri.

Again, we say that two parametrized logarithmic curves are equivalent if they can be
stated in terms of each other by reparametrization of the source curve. The parameter
space of equivalence classes of rational parametrized logarithmic curves is the moduli space
Mlog

0,n(P2, d).

The moduli space of rational parametrized logarithmic curves has a forgetful map ft to
the moduli space of rational parametrized curves, forgetting the extra information, i.e., the
position of the 3d transverse boundary tangency points, but remembering the map and the
n marked points. This map has degree (d!)3 (see [39, Lemma 4.1.1]). It further allows us to
define an evaluation map on the moduli space of rational parametrized logarithmic curves:

ev : Mlog
0,n(P2, d) → (C∗)2 := evM0,n(P2,d) ◦ ft.

Its image is contained in (C∗)2n as all boundary points of the curve are marked and get
forgotten after applying the forgetful map.

12.3.2. Logarithmic schemes. The construction defined above is the first example of the ex-
tension we are aiming at. We now introduce the most general case we will need — logarithmic
schemes — before coming back to the more manageable curve counts of genus g curves in
P2 with some fixed tangency conditions, whose tropical analogue we have already seen in
Section 12.2.3.

Definition 12.41. Let Y be a scheme. A logarithmic structure on Y is a sheaf of monoids
MY (corresponding to the monomial functions on Y ) together with a map of monoids to the
sheaf of regular functions OY ,

α :MY → OY ,

such that α−1(O∗
Y ) is isomorphic to O∗

Y using α. A logarithmic scheme is a scheme with a
logarithmic structure, we write (Y,MY ).
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Example 12.42. Consider a smooth projective toric variety X and its boundary divisor D,
with irreducible components D1, . . . , Dr. Then, on an open set U , the sheaf MX is the
subsheaf of OX(U \D) consisting of invertible functions. That is, functions that are locally
expressed as monomials in the defining equations of the boundary.

More generally, the analogue is true for any smooth normal crossings pair (Y,E): the
sheaf MY consists of functions that are locally monomial in the defining equations of the
component of E.

Example 12.43. A more explicit example of this is the compactification of the moduli space of
stable genus g curves with n marked points, Mg,n. Here, the logarithmic structure is defined
as the divisors of singular curves. (One can see that this is a smooth normal crossings divisor
in the étale topology.)

Consider a small open neighborhood around a point (C, p1, . . . , pn) ∈ Mg,n. Recall that
any curve in Mg,n has at worst nodal singularities. Passing to an étale cover U, we can then
label the nodes of C as q1, . . . , qr. The curve C will be smooth at a generic point in U . But,
there are divisors Di in U where qi is still a node. The functions cutting out the Di are
the monomial functions in U and thus extend to the locally monomial functions on Mg,n.
Hence, this sheaf is a sheaf of monomial functions on Mg,n and endows it with a logarithmic
structure.

Definition 12.44. A morphism of logarithmic schemes f : (Y,MY ) → (Z,MZ) (or logarith-
mic morphism) is a morphism of schemes f : Y → Z together with a compatible morphism
of sheaves of monoids f ♭ : f ∗(MZ) →MY .

Example 12.45. We had already mentioned Mg,n as the Artin stack of not necessarily stable
curves of genus g with n marked points in Remark 12.7. It has a logarithmic structure similar
to the logarithmic structure we just discussed for Mg,n — the sheaf of monoids is defined
by the divisors of singular curves just as above, using the topology defined by smooth maps
instead of étale maps. Further, the universal curve C → Mg,n also has logarithmic structure,
and the morphism between the two is logarithmic.

Definition 12.46. Let (Y,MY ) be a logarithmic scheme. A logarithmic curve is a logarith-
mic morphism Y → Mg,n. Pulling back the universal curve C yields a family of curves over
Y which have logarithmic structures. We denote this family by Y/S.

We can now use this to define a parametrized logarithmic curves:

Definition 12.47 ([39, Definition 5.3.2]). Let (Y,MY ) be a logarithmic scheme. A pre-
parametrized logarithmic curve to Y over another logarithmic scheme S is a logarithmic
curve C/S together with a logarithmic map from the total space of curves to (Y,MY ). A
pre-parametrized logarithmic curve is a logarithmic curve if the underlying scheme theoretic
map C → Y is a parametrized curve in the sense of Section 12.1.

In most of our discussion later, we will choose S to be the logarithmic general point.

We will now restrict ourselves again to the case of curves in smooth projective varieties,
as this allows us to give a more descriptive definition in line with our previous approaches.

Definition 12.48. Let X be a smooth projective variety and D a simple normal crossings
(SNC) divisor on X, with irreducible components D1, . . . , Dr. A non-degenerate logarithmic
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map is a smooth curve with n+m marked points (C, p1, . . . , pn, q1, . . . , qm) together with a
map

F : (C, p1, . . . , pn, q1, . . . , qm) → (X,D),

where the preimage ofD is a union of points in p1, . . . , pn. Further, each boundary component
Dj has a fixed tangency order tij at each point pi, obtained by pulling back the defining
equation of Dj to pi and computing the order of vanishing.

We fix all discrete data given here, i.e., the genus g of the curve C, the number of tangency
points n and the number of marked points m, the homology class of the pushforward of the
curve F∗([C]) ∈ H2(X,Z) and all tangency profiles at all points and divisors and denote
it shorthand by β = (g, n, F∗([C]), T = (tij)ij). This allows us to define a moduli space

Mlog
β (X |D).

The boundary divisor of any smooth projective toric variety X is SNC. Further, let us get
more specific and re-write the original rational plane case in Definition 12.40 in terms of the
newly defined notation.

Example 12.49. We consider the smooth projective toric variety P2 with its three standard
boundary divisors H), H1 and H2. We set g = 0 and n = 3d. Further, we set the matrix T
to be the 3× 3d matrix 1 . . . 1 0 . . . 0 0 . . . 0

0 . . . 0 1 . . . 1 0 . . . 0

0 . . . 0 0 . . . 0 1 . . . 1

 .
12.3.3. Logarithmic Gromov-Witten invariants. Now that we have defined parametrized log-
arithmic curves, we can set up a counting problem of parametrized curves whose m marked
points get mapped to a fixed tropically generic point configuration under the evaluation map,
which we extend to account both for points on the variety X and for the positions of points
on the divisor D.

Definition 12.50. Let X be a smooth projective variety and D a simple normal crossings
divisor. Further, let β denote suitable discrete data as in Definition 12.48 and letMlog

β (X |D)
denote the moduli space of parametrized logarithmic curves.

For each of the m marked points, the moduli space is equipped with an evaluation map

evi : Mlog
β (X |D) −→ X \D

It maps a parametrized logarithmic curve to the image of the i-th marked point. Moreover,
for each of the n marked points mapped to the boundary divisor, we have an additional
evaluation map with values in the corresponding divisor:”evi : Mlog

β (X |D) −→ D.

Proposition-Definition 12.51. For a suitable set of discrete data β as in Definition 12.48,
we can define the logarithmic Gromov-Witten invariant Nβ as the number of points in the
(0-dimensional) intersection of pullbacks of points in the virtual fundamental class,

Nβ =

∫
[Mβ ]vir

n∏
1

ev∗i (pt)

|µ|∏
1

”evi∗(pt),
where pt is the cohomology class Poincaré dual to a point.
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Construction 12.52. Every logarithmic scheme Y we consider (i.e., logarithmic schemes
that are fine, saturated, and of finite type) has a tropicalization defined by taking the dual
cone over the monoid stalk at a logarithmically generic point η, MY,η, due to [73, Appendix
B] and [2, Section 2.5]. This notion of tropicalization is more general than ours, rela-
ting logarithmic schemes to colimits of diagrams in the category of cones with face maps
as morphisms. As in our case, this theory allows us to consider embeddings of abstract
tropical curves into these complexes, and allows us to define and characterize parametrized
logarithmic curves via this discrete data.

In many cases, we can extend Mikhalkin’s correspondence theorem from classical Gromov-
Witten invariants to logarithmic Gromov-Witten invariants. We will see one approach to
proving such correspondence theorems in the next section, and will do so later ourselves in
Theorem 15.2.

12.3.4. The decomposition formula. In this part of the thesis, our goal is to compute loga-
rithmic Gromov-Witten invariants of ruled surfaces. We will see later that we can decompose
the (non-toric) complex ruled surfaces associated to tropical Möbius strips into a collection
of toric surfaces, glued along their toric boundary divisors. We can use this information to
aid us.

Remark 12.53 (Computing logarithmic Gromov-Witten invariants by degeneration). As we
have discussed in the previous sections, counting tropical curves in toric surfaces and keeping
track of their boundary behaviors is doable. So, how do we approach surfaces that are not
toric? In this thesis, we will focus on two ruled surfaces which can be deformed into a union
of toric surfaces, glued along their toric boundaries. In this case, we can use the results of
the previous section, laid out as follows.

We construct a logarithmically smooth family of surfaces with a central fiber that is
just the union of the toric surfaces. Now, the main ingredient of our correspondence theo-
rem is the fact that logarithmic Gromov-Witten invariants are constant in logarithmically
smooth families, and the relation of the logarithmic Gromov-Witten invariants to tropical
enumerative invariants, which we will recall in this section. These results were proven by
Abramovich-Chen-Gross-Siebert [2].

Notation 12.54. As before, throughout this section we assume all logarithmic schemes to
be fine and saturated. Further, throughout this section we will denote the discrete data of a
logarithmic Gromov-Witten invariant as in Definition 12.48 by β.

We consider a logarithmically smooth and projective morphism X → B, where B is a
logarithmically smooth curve with a single closed point b0 ∈ B where the logarithmic struc-
ture is nontrivial. We denote by Mlog

β (X |B) the moduli space of parametrized logarithmic
curves defined in Definition 12.48

For any point b, we define jb : {b} ↪→ B. Now, we can consider a smooth family of
logarithmic stacks obtained by taking fibers over the points b. We write Xb for a fiber of the
deformation corresponding to b, and denote by X0 = Xb0 the central fiber.

Proposition 12.55 ([2, Theorem 1.1]). Logarithmic Gromov-Witten invariants are defor-
mation invariant. In particular, the logarithmic Gromov-Witten invariants of fibers of the
deformation agree, that is, Nβ(Xb) = Nβ(X0).
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We can now use this information and combine it with a correspondence theorem to obtain
an expression of the logarithmic Gromov-Witten invariant as a sum of logarithmic invariants
with discrete data determined by parametrized tropical curves.

Theorem 12.56 ([2, Theorem 5.4]). Assume Y is a smooth logarithmic stack. Let X0 → b0
be a logarithmically smooth morphism with a family X0/b0 of logarithmic curves discussed in
Definition 12.46. Then,

[Mlog
β (X0 | b0)]vir =

∑
h:Γ→trop(X)

[Mlog
β,h(X0)]

vir,

where [Mlog
β,h(X0)]

vir is the virtual fundamental class corresponding to the parametrized loga-
rithmic curves to the central fiber X0 whose combinatorial type is encoded by a parametrized
tropical curve h : Γ → trop(X).

In other words, the dual graph of the source curve is the abstract tropical curve Γ, and
the component corresponding to a vertex v is mapped to the irreducible component of X0

corresponding to h(v).

Corollary 12.57. Let X0 → b0 be a full degeneration into a family of toric surfaces glued
along their toric boundaries such that the associated tropical curves are all 3-valent without
vertex genus. The logarithmic Gromov-Witten invariant Nβ(X0 | b0) splits into a sum

Nβ(X0 | b0) =
∑

h:Γ→trop(X)

∫
[Mlog(XΓ,h)]vir

1.

12.4. Gromov-Witten invariants: Refined. When trying to compute curve counts for
curves in surfaces over different fields, our methods have to be adapted. Refined invariants
are a variation of Gromov-Witten invariants, related to string theory. They were introduced
in the algebraic context by Göttsche-Shende in [70] and soon after computed tropically by
Block-Göttsche in [16], and Mikhalkin-Itenberg [85]. Instead of numbers, they are Lau-
rent polynomials in one variable q, and can be used to interpolate between Gromov-Witten
invariants, counting complex curves (substituting 1 for q) and Welschinger invariants (see
[136]), counting real curves (substituting −1 for q), see [16, Theorem 3.10 and 3.11], when
considering the same general enumerative problem. In this section, we mainly follow the
exposition of the original three papers.

12.4.1. Gromov-Witten invariants with fixed numbers of nodes and refined invariants. In
the following, we consider curves with singularities. We have already restricted ourselves to
nodal curves, so the finer restriction here will be in the form of fixing the number of nodes.

Definition 12.58. We write N δ
d for the number of δ-nodal curves passing through (d+3)d

2
− δ

general points in P2. It is a Gromov-Witten invariant, i.e., independent of the specific choice
of general points.

Remark 12.59. The Gromov-Witten invariant N δ
d can also be expressed as the degree of

the Severi variety, which parametrizes plane curves with δ simple nodes. In fact, using this
definition, the invariance of the point condition can be observed.

We can naturally extend the nodal counts N δ
d to other projective algebraic surfaces:
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Definition 12.60. We write N δ
(S,L ) for the number of δ-nodal reduced curves in a toric

projective algebraic surface S and a line bundle L on S is which are in the complete linear
system |L | = P

(
H0(S,L )

)
and are passing through dim(L ) − δ general points on S not

containing a toric boundary divisor as a component. In other words, the number N δ
(S,L ) is a

logarithmic Gromov-Witten invariant (see Definition 12.51).

Dropping the restriction to toric surfaces (and hence, additionally, the restriction to curves
not containing a toric boundary component), we may again view this number as the degree
of the associated Severi variety.

The numbers N δ
(S,L ) can be put in relation to the Euler characteristic of the Severi variety

as follows. Let C be a smooth projective curve of genus g, and C [n] its relative Hilbert
scheme of n points. Then, from Macdonald [99] and the generating series for the Euler
characteristic, we obtain

∞∑
i=0

ti−g+1χ
(
C [i]
)

=

Å
t

(1− t)2

ã1−g

.

This sequence can be analogously formulated in the surface setting, i.e., with a projective
algebraic surface S and a line bundle L on S. Let uC : C → Pδ be the universal curve on a
general δ-dimensional subspace of the complete linear system |L |, i.e., the subscheme

C =
{
(p, C) | p ∈ [C]

}
⊆ S × Pδ,

where [C] denotes the point corresponding to C in Pδ. That is, the fiber of uC over [C] ∈ Pδ

is the curve C. Let (C/Pδ)[n] denote the relative Hilbert scheme of n points. Then, we
can rewrite the generating series involving the Euler characteristic in terms of enumerative
invariants:

∞∑
i=0

ti−g+1χ
(
(C/Pδ)[n]

)
=

∞∑
j=0

N j
(S,L ) ·

Å
t

(t− 1)2

ãj+1−g

(10)

Now, we refine the invariant by exchanging the Euler characteristic with a more sophis-
ticated “genus count” — the normalized χ−q-genus. It is defined similarly to the Euler
characteristic of a variety (interpreted as a scheme), replacing the usual dimension of the
i-th Z-cohomology group with Hodge numbers, and introducing a variable q.

Definition 12.61. The normalized χ−q-genus of a variety X is defined as

χ−q(X) =
∑
a,b,≥0

(−1)a+bqbha,b(X).

In the cases discussed above, the χ−q-genus is a polynomial in q, giving us a similar formula
as Equation (10):

Proposition 12.62 ([16, Proposition 2.2]). Assume (C/Pδ)[n] is nonsingular for all n. Then,
there exist polynomials n0(q), . . . , ng(L )(q) such that

∞∑
i=0

χ−q

(
(C/Pδ)[n]

)
tn =

g(L )∑
r=0

nr(q)t
r
(
(1− t)(1− tq)

)g(L )−r−1
.

Here, g(L ) = L (L+KS)
2

denotes the genus of a curve in |L | .
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Now, this allows us to define refined invariants.

Definition 12.63. The refined invariants BGδ
(S,L ) are the normalizations of the polynomials

nδ in Proposition 12.62. That is,

BGδ
(S,L ) =

nδ(q)

qδ
.

There exist versions of refined invariants where we drop the assumption of the nonsingu-
larity of the relative Hilbert schemes, and where we can even define the refined invariant for
δ > g(L) respectively, see [70, Proposition 47].

12.4.2. Tropical refined invariants. From their inception, refined invariants have been com-
puted using tropical enumerative geometry. To establish a similar tropical theory, we first
need to define what it means for a tropical curve to be nodal.

Definition 12.64. Let h : Γ → R2 be a simple parametrized tropical curve. We say that
(Γ, h) is nodal if its Newton subdivision only consists of triangles and parallelograms.

Counting refined invariants now boils down to a count of nodal tropical curves with dif-
ferent refined multiplicities — we simply replace the standard multiplicity discussed in Def-
inition 12.32 with its quantum number.

Definition 12.65. Let n ∈ Z. The quantum number [n]q is the Laurent polynomial

[n]q =
qn/2 − q−n/2

q1/2 − q−1/2
.

Let h : Γ → R2 be a parametrized tropical curve. The refined multiplicity of (Γ, h) is

mq(Γ, h) =
∏

v∈V (Γ)
trivalent

[Area(∆v)]q,

where ∆v is the triangle in the Newton subdivision dual to h(Γ) associated to the vertex v,
and [Area(∆v)]q is the quantum number of Area(∆v).

Counting tropical curves with δ nodes corresponds to a tropical enumerative invariant.

Definition 12.66 ([16, Definition 3.7]). Let ∆ be a lattice polygon, and δ ∈ Z≥0. The

tropical refined Gromov-Witten invariant BGδ,trop
∆ is defined as

BGδ,trop
∆ :=

∑
h:Γ→R2

mq(Γ, h),

where we sum over all simple parametrized tropical curves h : Γ → R2 with an appropriate
amount of marked points mapped to a tropically general point configuration in R2. For the

case of S = P2, this will be (d+3)d
2

− δ points. The tropical refined Gromov-Witten invariant
is an invariant and a Laurent polynomial in q.

There exists a correspondence between the refined and the tropical refined invariant.

Theorem 12.67 ([16, Theorem 1.1]). Let S = P2 and ∆ be its corresponding lattice triangle
of length d. Then,

BGδ,trop
∆ = BGδ

(P2,O(d)).
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Again, there exist analogues of this theorem for counting curves in more complicated
spaces.

Now we have introduced all types of Gromov-Witten invariants we will consider in the
remainder of Part 3. We now study the complex versions of the ruled surfaces on which we
want to count, and introduce tropical cylinders as tropical analogues for some ruled surfaces.

12.5. Complex ruled surfaces. In the following, we give some background on complex
ruled surfaces. These are going to be the classical counterpart of the theory we develop
in later chapters. We start by giving an overview of the theory of ruled surfaces. This
part of the preliminaries is based on [77, Chapter V.2], with some exposition of intersection
theory inspired by [52]. The main examples arising will be the complex counterparts to
the tropical theory we will develop in later sections, and were obtained in joint work with
Thomas Blomme [22].

12.5.1. A classification of ruled surfaces. Ruled surfaces are an important object of study in
algebraic geometry. While algebraic geometry on surfaces is hard in general, through their
construction, ruled surfaces inherit a lot of properties from the algebraic curves underlying
them. This allows us to study both them and the curves lying on them more easily. The
discussion here elaborates on the discussion in [77, Chapter V.2].

Definition 12.68. A ruled surface is a (nonsingular, projective) surface X together with
a surjective morphism π : X → C to a nonsingular curve C, such that each fiber Xy is
isomorphic to P1 for every point y ∈ C, and such that π admits a section.

Equivalently, a ruled surface X can be described as the projectivization of a locally free
sheaf E of rank 2 on C. We write X = P(E ) for this description.

Example 12.69. We give two examples of families of ruled surfaces:

◦ An easy (but important) example of ruled surfaces are the Hirzebruch surfaces Fd.
These are ruled surfaces over P1, arising as the projectivization of OP1 ⊕O(−d) for
some d ∈ Z≥0.

◦ For every nonsingular projective curve, we can construct a ruled surface by just taking
P1 × C and defining π to be the projection onto the second coordinate. There are
two examples of this construction that are particularly approachable:
− The multiprojective space P1×P1 (which is also the zeroth Hirzebruch surface),

and
− the cylinder P1 × E, where E is a nonsingular elliptic curve.

The surfaces we will be interested in later are ruled surfaces, too. We will analyze them in
detail after covering the general theory, see Sections 12.5.2 and 12.5.3.

Lemma 12.70 ([77, Proposition V.2.8]). If X is a ruled surface over C, it is possible to
write X as the projectivization of a locally free sheaf E on C such that H0(E ) ̸= 0 and
H0(E ⊗ L ) = 0 for all invertible sheaves L (i.e., line bundles) on C with deg(L ) < 0. Its
negative degree e = − deg(E ) is an invariant of X.

Remark 12.71. If we write X as the projectivization of a bundle E as above, we say that E
is normalized. Note that the description of X as the projectivization of a normalized bundle
is not necessarily unique — only the degree of the bundle is.

We can characterize all ruled surfaces in terms of the description as the projectivization
of the bundle over C.
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Theorem 12.72 (Characterization of ruled surfaces, [77, Theorem 2.12]). Let X be a ruled
surface over a curve C of genus g, and let X be given as the projectivization of a normalized
locally free sheaf E .

(a) If E is decomposable into a direct sum of two invertible sheaves, then E ∼= OC ⊕ L ,
where L is invertible and deg(L ) ≤ 0. Further, e ≥ 0, for e as defined in Lemma
12.70.

(b) If E is indecomposable, we have −2g ≤ e ≤ 2g − 2.

Example 12.73. The characterization allows us to give a full classification of ruled surfaces
over P1 and over elliptic curves.

◦ Since every locally free sheaf E of rank 2 over P1 is decomposable by Birkhoff-
Grothendieck [74, Theorem 2.1], every ruled surface over P1 is (isomorphic to) a
Hirzebruch surface.

◦ This is not true for ruled surfaces over nonsingular elliptic curves E. Here, both cases
exist:
− Cylinders and twisted cylinders, corresponding to decomposable plane bundles,
− Two additional ruled surfaces arising as the projectivization of an indecompos-

able plane bundle E ,
∗ One for e = 0, satisfying the non-split short exact sequence

0 → OE → E → OE → 0, and

∗ another for e = −1, satisfying the non-split short exact sequence

0 → OE → E → O(p) → 0,

for some point p ∈ C.

In the following two sections, we will study two examples of ruled surfaces in detail. The
surface CM0 is the projectivization of a decomposable plane bundle. The second surface CM1

is the surface corresponding to the indecomposable plane bundle characterized by e = −1.

We call these two ruled surfaces the classical Möbius strips, due to their constructions
as quotients of the trivial plane bundle under swapping endomorphisms. These quotients
correspond to the gluing along the vertical boundary with reverse orientation. We denote
them with C in the front, in order to notationally distinguish them from their tropical
analogues, TM0 and TM1, which will be the main focus of study in the sequel. If we want
to refer to both classical Möbius strips, we write CMδ.

12.5.2. The surface CM0. Let λ ∈ C∗. Consider the trivial plane bundle τ over C∗ and the
swapping endomorphism

Φ0 : (z, u0, u1) 7−→ (λz, u1, u0) ∈ C∗ × C2.

The quotient of τ by Φ0 descends to a plane bundle E0 over the elliptic curve E. As a
manifold, E can be expressed as a quotient E = C∗/⟨λ⟩, and we call λ its length. Its
projectivization P(E0) is the ruled surface CM0. It can be equivalently constructed as the
quotient of C∗ × P1

C by the action

φ0

(
z, [u0 : u1]

)
=
(
λz, [u1 : u0]

)
.
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We set w = u1/u0. The dense torus (C∗)2 ⊂ C∗ × P1
C is stable under the action which

restricts to

ϕ0 : (z, w) 7→
Å
λz,

1

w

ã
.

The ruled surface CM0 is thus a compactification of the quotient of (C∗)2 by the action of
ϕ0. We will later in Definition 13.1 see the tropical analogue of this construction when we
define the tropical Möbius strip TM0.

Taking the quotient by Φ2
0 instead (resp. φ2

0, ϕ
2
0), we obtain a plane (resp. P1

C, C∗) bundle

over the elliptic curve “E = C∗/⟨λ2⟩. Projectivization yields a ruled surface CC0 which is a
two-to-one cover of CM0. The surface CC0 is the total space of the trivial P1

C-bundle, and
the complex analogue of the tropical cylinder TC0 we will see later in Definition 12.79.

To finish, we need to identify CM0 in the classification of ruled surfaces over an elliptic
curve. The plane bundle E0 splits into a sum of two line bundles. Indeed, we can consider the
sections s± : z ∈ C∗ 7→ (1,±1) ∈ C2 of the trivial bundle. Both are non-vanishing. Hence,
each defines a line bundle inside the trivial plane bundle, and both of the intersections are
stable under the action of Φ0. Thus, both sections induce line bundles over E, yielding
two non-intersecting sections of CM0. Thus, the plane bundle E0 is split, and CM0 is the
projective completion of a line bundle over E.

By a change of coordinates w′ = w−1
w+1

, CM0 can also be written as the quotient of C∗×P1
C

by the action of

φ′
0 : (z, w

′) 7−→ (λz,−w′),(11)

which is the projective completion of a 2-torsion line bundle over CE.

12.5.3. The surface CM1. We now construct the surface CM1 analogously, considering the
trivial plane bundle over C∗ with the twisted swapping action

Φ1 : (z, u0, u1) 7−→ (λz, zu1, u0) ∈ C∗ × C2,

where λ ∈ C∗. The quotient by the action yields a plane bundle E1 over E, where E =
C∗/⟨λ⟩ is the elliptic curve of length λ. Its projectivization P(E1) is the ruled surface CM1.
Projectivizing first, we also obtain CM1 as the quotient of C∗ × P1

C by the action

φ1

(
z, [u0 : u1]

)
=
(
λz, [zu1 : u0]

)
.

The action on the dense torus is given by

ϕ1 : (z, w) 7→
(
λz,

z

w

)
.(12)

We have ϕ2
1(z, w) = (λ2z, λw), and the quotient CC1 = C∗ × P1

C/⟨ϕ2
1⟩ is the complex coun-

terpart to the tropical cylinder TC1 we will see later in Definition 12.79. It is the total space

of a 2-torsion line bundle over “E = C∗/⟨λ2⟩.
The surface CM1 is a ruled surface if it has a section. Sections of CM1 → E are sections of

CC1 → “E invariant under the action induced by φ1. There are many sections of CC1 → “E,
but two among them are special: As CC1 is the projective completion of a 2-torsion line
bundle, we consider the 0 and ∞ section. Unfortunately, neither of them is invariant under
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the action induced by φ1: they are exchanged by the action and thus form a multisection of
CM1 → CE. To find sections invariant under the φ1-action, we have to investigate further.

Take the meromorphic function θ : C∗ → C given by θ(z) =
∑∞

−∞ λn
2
zn. It is the

θ-function (see [72]) on “E = C∗/⟨λ2⟩, and it satisfies

θ(λ2z) =
1

λz
θ(z) and θ

Å
1

z

ã
= θ(z).

It is the only meromorphic function satisfying the first equation up to multiplication by a
scalar. Using both equations, we can see that θ(−λ) = −θ(−λ), thus θ(−λ) = 0. Moreover,

−λ is the only zero of θ modulo multiplication by λ2. Any quotient f(z) = θ(αz)
θ(αλz)

gives a

section of CC1 since it satisfies

f(λ2z) =
λ · λαz
λ · αz

θ(αz)

θ(λαz)
= λf(z).

Moreover,

ϕ1

Å
z, µ

θ(αz)

θ(λαz)

ã
=

Å
λz,

z

µ

θ(αλz)

θ(αz)

ã
=

Å
λz,

z

µλαz

θ(α · λz)
θ(λα · λz)

ã
.

Thus, if µ2λα = 1, it gives a section of CM1 → E and CM1 is a ruled surface over E.

Sections of CM1 pull back to sections of CC1. These sections always intersect apart from
the 0 and ∞-sections of CC1, which form a multisection by the previous analysis. Thus, we
cannot find disjoint sections of CM1, which prevents E1 from being split. As the line bundle
Λ2E1 on E is of odd degree, the classification given by [77] ensures that CM1 is the unique
non-split ruled surface of degree 1, given as P(E ) where E is a non-split vector bundle of
rank 2 over an elliptic curve fitting in a short exact sequence

0 → O → E → O(p) → 0.

12.5.4. Curves and divisors. We conclude by investigating the divisors of ruled surfaces, and
curves in them.

The divisor groups of ruled surfaces are particularly simple: they just depend on the
surjection onto the underlying curve C.

Lemma 12.74 ([77, Proposition V.2.2]). Let X be a ruled surface with the surjective mor-
phism π : X → C, and let C0 ⊆ X be a section. Then,

Pic(X) ∼= Z⊕ π∗(Pic(C)),
where Z is generated by C0.

Example 12.75. The Picard group of the Hirzebruch surface Fd is Pic(Fd) = Za⊕Zb, where
a and b are two divisors with a2 = 0, a · b = 1 and b2 = d.

Example 12.76 (curves in CM0 and CM1). A basis of the second homology group is provided
by the class of a section and the class of a fiber F . We prefer to replace the class of a section
by the class of the boundary divisor E, which is a 2-section. As E ·F = 2, they do not form
a basis of the H2(CMδ,Z). Computing the intersection number of a section with E and F ,
we see that H2(CMδ,Z) is given as follows.

H2(CMδ,Z) =

ß
aE + bF | a, b ∈ 1

2
Z, 2b ≡ 2aδ mod 2

™
.
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Definition 12.77. Let Sg be a genus g Riemann surface. We say that a curve φ : Sg → CMδ

is of bidegree (a, b) on a Möbius strip CMδ if φ∗
(
[Sg]
)
= aE + bF ∈ H2(CMδ,Z).

Note that the boundary divisor is not anticanonical: due to the non-orientability of the
Möbius strip, the meromorphic 2-form dz

z
∧ dw

w
on (C∗)2 does not induce a 2-form on the

quotient CMδ. However, it is possible to construct such a 2-form using θ-functions, proving
the boundary divisor is numerically equivalent to the canonical class.

In the case of CM0 (CM1 is treated similarly), we have the meromorphic 2-form ΩCC0 =
dz
z
∧ dw

w
on C∗/⟨λ2⟩×P1

C, which satisfies φ∗
0ΩCC0 = −ΩCC0 . Now, let λ

1/2 be a square root of λ

and θ(z) =
∑

(λ1/2)n
2
zn be the associated θ-function on E, which satisfies θ(λz) = 1

λ1/2z
θ(z).

Thus, the function f(z) = θ(z)
θ(−z)

satisfies f(λz) = −f(z), and f(λ2z) = f(z) and descends to

a meromorphic function on “E. Thus, the 2-form f(z)ΩCC0 is φ0-invariant and descends to
a meromorphic 2-form on CM0. It has poles along the boundary divisor and along a fiber,
and zeros along one of the fibers. The poles and zeros along the fibers correspond to poles
and zeros of f .

12.6. Tropical cylinders. In this section, we will start on pursuing tropical counts on
tropical ruled surfaces. We introduce first tropical analogues of ruled surfaces, tropical
cylinders. Next, we discuss how one can construct tropical curves in the cylinder. Further, we
count them (and their algebro-geometric analogue) by adapting the evaluation map to this
new setting, and computing its degree. We will mainly focus on their structural properties,
as these are needed to study Möbius strips later. This is due to the fact that tropical Möbius
strips have a 2-to-1 cover by tropical cylinders. This section is mainly based on [21, Section
3 and 5].

Tropical cylinders correspond to line bundles over tropical elliptic curves .

Definition 12.78. A tropical elliptic curve TE is the quotient of R by a positive real multiple
of Z, i.e., TE = R/lZ, where l ∈ R>0 is called the length of TE.

Now, the tropical line bundle over TE corresponding to a tropical cylinder TC can be
constructed as a quotient of R2 by a diffeomorphism.

Definition 12.79. Let TE be a tropical elliptic curve of length l. We construct a tropical
cylinder over TE by considering Z-action on R2 induced by the diffeomorphism

φ : (x, y) 7→ (x+ l, y + δx− α),

where δ ∈ Z and α ∈ R.
Now, we say that the space R2/⟨φ⟩ is a tropical cylinder.

Example 12.80. No matter which α and δ we choose, the space R2/⟨φ⟩ is a topological
cylinder of infinite height. Further, the space R2/⟨φ⟩ has a lattice structure, induced by the
standard lattice structure on R2 and determined by its behavior under the map φ. Two of
these cases are of particular importance to us:

◦ The tropical cylinder TC0, generated as the quotient R2/⟨φ⟩ where α = δ = 0, i.e.,
where (0, y) ∼ (l, y), and a line crossing the boundary on the left enters the tropical
cylinder with the same slope on the right, and

◦ the tropical cylinder TC1, where α = 0 and δ = 1. Again, we have an identification
along the boundary, (0, y) ∼ (l, y), but this time the lattice structure changes. It has
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Figure 19. On the left, a curve on the cylinder TC0. On the right, a
superabundant loop with slope ℓ/2 on a cylinder TC0,ℓ/2.

monodromy

ñ
1 0

−1 1

ô
, that is a line with slope (a, b) passing through the boundary

on the right comes back from the left with slope (a, b− 1).

Tropical cylinders correspond to the tropicalization of cylinders in algebraic geometry,
which are the ruled surfaces corresponding to decomposable plane bundles, see Example
12.73.

We can define embeddings of abstract tropical curves in tropical cylinders.

Definition 12.81. Let TC be a tropical cylinder and let Γ be an abstract tropical curve.
Then, h : Γ → TC is a parametrized tropical curve on TC if it satisfies the same requirements
as Definition 12.25. Note that the tropical cylinder TC has a lattice structure different to
R2, which will make a difference in determining the slopes of edges!

We say that a parametrized tropical curve h : Γ → R2 is of bidegree (d1, d2) if it has
d2 unbounded horizontal edges in direction (0, 1) (i.e., to the top of the cylinder) and d1
intersection points (counted with intersection multiplicity) with a vertical line. We encode
the tangency profile in direction (0, 1) (i.e., in top horizontal direction) with |µ∞| and the
tangency profile in direction (0,−1) (i.e., in bottom horizontal direction) with |µ0|.

In Figure 19, we see an example of a tropical curve embedded in a tropical cylinder.

Example 12.82. One peculiarity we encounter when studying curves in ruled surfaces is the
existence of embedded, balanced curves without ends. In Figure 19, this is the curve on
the right. These curves are special cases when trying to count as they vary in a space with
strictly larger dimension than we would expect them to. We call them superabundant loops.

Remark 12.83. We can construct a parametrized tropical curve in the projective plane,

ĥ : Γ̂ → R2 on R2 from a parametrized tropical curve on a tropical cylinder, h : Γ → TC. To
do so, we remove a finite set of points Q from Γ such that h restricted to the complement of Q
can be lifted to R2, the universal cover of any tropical cylinder. Such a set is called admissible.
We then extend edges cut in the process to get ends. We refer to the corresponding sections
of [21] and [18] for more details.

For an example of such an admissible set, consider the points of the left curve in Figure
19 that are intersection points with the left and right side where the two sides are glued
together.
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This cutting procedure provides some additional structure on the tropical curves. Since the
resulting curves are tropical curves in R2, they fulfill the Menelaus relation [108, Proposition
39]. More precisely, let h(Γ) be the image of a parametrized tropical curve in R2. Then,
each end e has an associated moment, defined as the determinant of the outgoing slope of e
and any point p ∈ e. The Menelaus theorem asserts that the sum of moments is 0. This is
a consequence of the balancing condition on embedded tropical curves.

Definition 12.84. We write Mtrop
g,n

(
TCδ, (d1, d2), µ0, µ∞, ν0, ν∞

)
for the moduli space of

parametrized tropical curves in the tropical cylinder TCδ of bidegree (d1, d2) and genus g,
which have free tangency ν0 and ν∞ at the two boundaries E0 and E∞, and fixed tangency
µ0 and µ∞ at the two boundaries E0 and E∞ respectively.

To set up a curve counting problem on tropical cylinders, we need to adapt the multiplicity
of a parametrized tropical curve to our new setting. Since the image of the parametrized
tropical curve wraps around the cylinder, it do not have a dual Newton subdivision anymore.
However, we can mimic the area computation of triangles in the Newton subdivision by
defining the multiplicity of a vertex as follows:

Definition 12.85. Let h : Γ → TC be a simple parametrized tropical curve and v a vertex
of h(Γ). Then, the multiplicity mv = | det(av, bv)|, where av and bv are the slopes of two
out of the three different edges adjacent to v. In the planar case, this coincides with the
multiplicity we had discussed in Definition 12.32. Now, as before, the multiplicity of the
tropical curve is the product over the multiplicities of its vertices, m(Γ, h) =

∏
v∈V mV .

The moduli space Mtrop
g,n

(
TCδ, (d1, d2), µ0, µ∞, ν0, ν∞

)
of parametrized tropical curves on

TCδ, has dimension |µ0|+ |µ∞|+ g− 1 (see [21]). Thus, we can set up the tropical Gromov-
Witten invariant in a familiar way:

Definition 12.86. Let d1 and d2 be two positive integers, and let µ0, ν0, µ∞ and ν∞ be
four sets such that µ0 + ν0 and µ∞ + ν∞ are two partitions of d2. We obtain the tropical
Gromov-Witten invariant on TC as

NTC
g,(d1,d2)

(µ0, µ∞, ν0, ν∞) =
1

Iµ0Iµ∞

∑
h:Γ→TC

m(Γ, h),

where we sum over all parametrized tropical curves whose ends map to a tropically generic
point configuration P ⊆ TC, consisting of |ν0| + |ν∞| + g − 1 points in the interior, and
|(µ0)i| points on E0 and |(µ∞)i| points on E∞ for each i (see [21]).

As in the enumerative problems considered previously, the tropical count corresponds to
a classical count of curves in the corresponding ruled surfaces via a correspondence theorem
[21, Theorem 4.13].

13. Tropical Möbius strips

We begin by defining our main object of study in this part: tropical Möbius strips, which
are the tropical analogues of the two ruled surfaces CM0 and CM1 we studied in Sections
12.5.2 and 12.5.3. We continue by defining parametrized tropical curves in them and analyze
their multiplicities. Then, we compute the dimension of their moduli space and discuss the
positions of points on the curves. All results in this section were obtained in joint work with
Thomas Blomme [22].
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13.1. Tropical structures on Möbius strips. Similar to the treatment of tropical cylin-
ders in Section 12.6, tropical Möbius strips are obtained from a strip [0; l]×R by gluing the
two boundary components. However, this time we are reversing the orientation. The quo-
tient obtained in this way is a non-orientable surface. To endow it with a lattice structure,
we regard it as a quotient of R2 by the Z-action generated by a fixed-point free orientation-
reversing diffeomorphism. These correspond to the diffeomorphisms ϕ0 (11) and ϕ1 (12)
generating the surfaces CM0 and CM1 discussed in Sections 12.5.2 and 12.5.3.

Proposition 13.1. Let l ∈ R>0, and let TE = R/lZ be a tropical elliptic curve as in
Definition 12.78. There are two Möbius strips obtained as the quotient of R2 by a Z-action:

◦ the Möbius strip TM0, obtained as the quotient of R2 by the action of

φ0 : (x, y) 7−→ (x+ l,−y), and

◦ the Möbius strip TM1, obtained as the quotient of R2 by the action of

φ1 : (x, y) 7−→ (x+ l,−y + x).

Proof. To induce a lattice structure on the quotient using the natural lattice structure of
R2, we consider lattice preserving diffeomorphisms φ : R2 7→ R2, i.e., whose derivative lies
in GL2(Z). Up to a change of coordinates, this forces φ to be affine. As we additionally
require it to be fixed point free, it is of the form

φl,±,δ,α : (x, y) 7−→ (x+ l,±y + δx+ α)

for some l > 0, δ ∈ Z, choice of sign and α ∈ R. The choice of +y induces orientation
preserving diffeomorphisms and corresponds to the tropical cylinders discussed in Section
12.6. We are left with the choice of −y, giving the possible lattice structures on Möbius
strips.

The conjugation by an invertible affine map preserving the vertical direction givesÇ
1 0

a 1

åÇ
1 0

δ −1

åÇ
1 0

−a 1

å
=

Ç
1 0

δ + 2a −1

å
.

Thus, for non-orientable diffeomorphisms, only the value of δ mod 2 matters. Up to a change
of coordinates, given by the translation y = ỹ + α/2, α can then be assumed to be 0. Thus,
we have two families of tropical Möbius strips that only differ by a scaling factor inside each
family. □

Notation 13.2. In the following, we will use TMδ to mean one of the two Möbius strips
TM0 and TM1.

Concretely, both Möbius strips are obtained by gluing the two boundary components of
[0; l]×R via (0, y) ∼ (l,−y), i.e., orientation-reversing. The strip [0; l]×R is a fundamental
domain for the action of φδ on R2. However, the monodromy of the lattice structure under
the quotient differs: it is ( 1 0

0 −1 ) for TM0 and ( 1 0
1 −1 ) for TM1. For instance, a curve with

horizontal slope crossing the right boundary comes back from the left boundary with slope
0 for TM0 but with slope 1 for TM1, compare Figures 20 and 21.

The projection onto the first coordinate induces a fibration of the Möbius strips over
the tropical elliptic curve TE = R/lZ. Adding the points at top and bottom infinity, i.e.,
considering the action extended to R × [−∞; +∞], they can thus be seen as TP1-bundles
over a tropical elliptic curve, just as the cylinders in Definition 12.79. It is natural to expect
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that they arise as the tropicalization of P1
C-bundles over an elliptic curve. This is true —

we can see that the action φ0 is the tropical analogue of the action ϕ0 in (11), and that the
action φ1 is similarly the tropical analogue of the action ϕ1 in (12). Similarly, the space C2

tropicalizes to the space R2. Thus, we can see TM0 as the tropicalization of CM0 and TM1

as the tropicalization of CM1.

Both strips have two to one covers by tropical cylinders: TM0 is covered by TC0 = R2/⟨φ2
0⟩,

which is the total space of the trivial line bundle over T“E = R/2lZ (see Section 12.5.2); and

TM1 is covered by TC1, the total space of the unique 2-torsion tropical line bundle over T“E
(see Section 12.5.3).

13.2. Tropical curves in Möbius strips. In all that follows, we will only consider abstract
tropical curves without vertex genus. We adapt the definition of parametrized tropical curves
(see Definition 12.25) to our setting.

Definition 13.3. A parametrized tropical curve h : Γ → TMδ is a tuple (Γ, h) of an abstract
tropical curve Γ and a piecewise affine map h : Γ → TMδ satisfying the balancing condition
(see Definition 12.25) at each vertex.

The lattice structure on the tropical Möbius strip defined above induces a monodromy.
This induced symmetry preserves the direction of some vectors in R2, determined by the
eigenspaces of the matrices determining the diffeomorphism in Proposition 13.1. For both
TMδ, the vertical direction ( 0

1 ) is preserved. For TM0, the other eigenspace is the span of
( 1
0 ), and for TM1 it is the span of ( 2

1 ). Thus, considering the vertical direction for tropical
curves is well-defined, and by the horizontal direction, we mean the other eigenspace. Hence,
the horizontal direction for TM0 is ( 1

0 ), and for TM1 is ( 2
1 ).

Example 13.4. In Figure 20, we sketch six tropical curves in the Möbius strip TM0. We have
two natural choices of fundamental domain for TM0. First, we can choose the fundamental
domain to be [0; l]× R, depicted in (a), (b) and (c): the two sides of the strip are identified
by a reflection along the horizontal axis and a translation, and slopes change accordingly.

Alternatively, we can choose [0; 2l]×R≥0 as a fundamental domain. It is obtained from the
first fundamental domain by cutting along the dots in the first row of Figure 20, and gluing
it back along the right vertical side. We obtain a domain resembling that of the cylinders in
Section 12.6, but infinite only in one direction. This is depicted in (a′), (b′) and (c′). We call
the bottom finite side of the Möbius strip its soul. This fundamental domain comes from
the intuition that TM0 has a 2-to-1 cover by the tropical cylinder TC0 defined in Example
12.80.

Example 13.5. We proceed similarly for TM1. Taking [0; l]×R as a fundamental domain, the
gluing is the same as for TM0, but the monodromy of the lattice structure is different. We
give examples in the first row of Figure 21. Choosing the fundamental domain corresponding
to the cover by the cylinder, or, alternatively, the cut-up of the tropical Möbius strip along
its soul, we obtain the sets {0 ≤ x ≤ 2l, 2y ≥ x}, or {0 ≤ x ≤ 2l, y ≥ max(0, x − l)} as
fundamental domain. For this, we give examples in the second row of Figure 21.
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Figure 20. Examples of tropical curves inside the Möbius strip TM0. In the
first row we take the fundamental domain to be [0; l] × R, and in the second
row [0; 2l]× R≥0.

13.2.1. Degree of a tropical curve. The degree of a parametrized tropical curve is defined
as the class inside the tropical homology group H1,1(TMδ,Z) realized by the image of the
parametrized tropical curve. See [84] for a definition of the tropical homology groups. In
our case, this homology group is isomorphic to Z2. Moreover, this group has a well-defined
intersection form which is unimodular by tropical Poincaré duality. It is thus possible to
recover the degree of a tropical curve by intersecting it with cycles that form a basis of
H1,1(TMδ,Z).

Both homology groups contain the class F of a fiber (red in Figure 22), and the class E
(blue in Figure 22) of the boundary of the Möbius strip. These two classes satisfy E ·F = 2
since a fiber intersects the boundary of the Möbius strip twice. Thus, E and F span an index
2 sublattice of H1,1(TMδ,Z). They also form a basis of the group if we allow the coefficients
to be integer multiples of 1

2
. To describe H1,1(TMδ,Z) fully, we need to consider the cases

of TM0 and TM1 separately.

◦ For TM0, the Möbius strip contains the tropical elliptic curve that goes around the
strip once (in horizontal direction), contained in the soul of the Möbius strip. As this
curve intersects the fiber F only once and does not intersect the boundary, its class
can be expressed as 1

2
E. Thus, elements of H1,1(TM0,Z) can be written as

aE + bF, a ∈ 1

2
Z, b ∈ Z.

◦ For TM1, there exists a curve in the class C0 which has intersection 1 with both
E and F . Thus, C0 = E+F

2
. We depict a representative in Figure 21 (a). Hence,
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Figure 21. Examples of tropical curves inside the Möbius strip TM1.

elements in H1,1(TM1,Z) can be written as

aE + bF, a, b ∈ 1

2
Z, a+ b ∈ Z.

The description can be unified in the following way: the lattice is the set of aE + bF with
a, b ∈ 1

2
Z such that

2b ≡ 2δa mod 2.

In both cases, a curve in the class aE + bF has 2b weighted ends since its intersection with
E is equal to 2b, and its intersection with F is equal to 2a. Here, both intersection numbers
are taken with multiplicity.

Example 13.6. We consider the curves in Figure 20 on TM0. We compute their degree by
intersecting with E and F , obtaining respectively

(a) 1
2
E + F (a′) 1

2
E + F

(b) 1
2
E + F (b′) 2E + F

(c) E + 2F (c′) 3
2
E + 2F.

Notice that when considering the second fundamental domain, fibers have two ends going to
top infinity, both meeting the top cycle, as depicted in Figure 22.
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Figure 22. A curve in the class 3
2
E + 2F in TM0, along with a (red) fiber

of the projection to E = R/lZ and the boundary E∞ marked in blue.

Example 13.7. The classes of the curves in TM1 depicted in Figure 21 are as follows:

(a) C0 =
1
2
E + 1

2
F (a′) C0

(b) E + C0 =
3
2
E + 1

2
F (b′) C0

(c) E + 2F + C0 =
3
2
E + 5

2
F (c′) 2E + 2F.

Definition 13.8. A parametrized tropical curve in the class aE+bF is said to have tangency
profile µ ⊢ 2b (i.e., µ is a partition of 2b) if it has µi ends of weight i for each i. This is the
generalization of Definition 12.36 to our setting.

Example 13.9. The curves in Figure 20 (c) and (c′) have tangency profile µ = 2112, and the
curve in Figure 21 (c′) has tangency profile µ = 3111.

Remark 13.10. As in case of cylinders (see Remark 12.83) and abelian surfaces [18], we can

construct a parametrized tropical curve ĥ : Γ̂ → R2 on R2 from a parametrized tropical curve
h : Γ → TMδ. To do so, by removing a finite set of points Q from Γ such that h restricted
to the complement of P can be lifted to R2, just as we did in Remark 12.83.

In the toric setting as well as in the cylinder case, we have a Menelaus relation between
the positions of the ends of a tropical curve, see Remark 12.83. Since these relations come
from the existence of an area form, there is a priori no Menelaus relation in the Möbius strip
case.

Using the cutting procedure outlined as above and as discussed for cylinders in Remark
12.83, we can still use the information of the Menelaus relation. We use that the positions
of ends in vertical direction in R2 have Menelaus relations. This induces relations on the
ends, which we call the induced Menelaus relations on the Möbius strip.

13.3. Dimension of the moduli space of curves. We compute the dimension of the
moduli space of parametrized tropical curves in a Möbius strip TMδ. As before, we will only
consider simple tropical curves. The definition carries over from the case of tropical curves
over R2, see Definition 12.27:

Definition 13.11. A parametrized tropical curve h : Γ → TMδ is simple if it satisfies the
conditions of Definition 12.27 for parametrized tropical curves on R2.

In particular, a simple tropical curve has no contracted edges nor flat vertices, i.e., a vertex
where adjacent edges have the same slope.

As previously done for cylinders in Example 12.82, we can characterize curves without
ends.
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Proposition 13.12. Let h : Γ → TMδ be a simple tropical curve without ends. Then h(Γ)
has genus 1, a unique (bounded) edge of slope ( w

0 ) if on TM0, or slope ( 2w
w ) if on TM1.

Proof. Let TCδ → TMδ be the two-to-one cover of the Möbius strip by a tropical cylinder
TCδ. Up to taking a two-to-one cover of Γ, we can lift the tropical curve h : Γ → TMδ to

a tropical curve ĥ : Γ̂ → TCδ. The lift ĥ is an immersion and Γ̂ still has no end. We have
already characterized them as superabundant loops in Example 12.82. Concretely, for the
two cylinders TC0 and TC1 we consider, they are the following:

◦ For TC0, they are of the form t 7→ (w · t, c) ∈ TC0, where c ∈ R and n ∈ N. It is a
curve that goes around the cylinder direction k times with slope ( w

0 ).
◦ For TC1, they are of the form t 7→ (2w · t, w · t).

Both maps are periodic, and can be made compact by quotienting by a sublattice of the
periods. □

In particular, we get two types of genus 1 curves without ends: fixed curves meeting the
soul of the Möbius strip an odd number of times, and curves that meet the soul of the Möbius
strip an even number of times. The latter are obtained as the images of curves without ends
in the cover of TMδ by TCδ.

For what follows, let Mtrop
g,n (TMδ, (a, b), µ) be the moduli space of genus g parametrized

tropical curves in the class aE+bF with tangency profile µ ⊢ 2b and nmarked points in TMδ.
It is a tropical moduli space of parametrized curves, analogous to the one we considered in
Definition 12.25.

We will compute the dimension of Mtrop
g,n (TMδ, (a, b), µ) by considering deformations of

the source abstract tropical curve, and investigate how this deformation influences the image
curve h(Γ). In particular, the dimension in which we can deform while staying simple
coincides with the dimension of that component of the tropical moduli space.

Proposition 13.13. The dimension of the subspace of Mtrop
g,n (TMδ, (a, b), µ) parametrizing

simple tropical curves is |µ|+ g − 1 + n.

Proof. The proof is similar to the computation of the dimension in [21]. Let h : Γ → TMδ

be a simple tropical curve. Using the cutting procedure with an admissible set Q, we obtain

a parametrized tropical curve ĥ : Γ̂ → R2. It has new marked points, coming from the
points Q on the non-vertical ends that get identified through the quotient map. A small

deformation ofΓ is equivalent to a small deformation of Γ̂ where marked points keep their
identification under the quotient.

Let e and e′ be two ends identified by the quotient map, and let µe and µe′ be their
moments. Let λe ∈ Z be the class in π1(TMδ) realized by the loop obtained as the push-

down of a path between e and e′ in Γ̂ to TMδ. The condition for ends to keep being identified

throughout the deformation of Γ̂ can be written as µe + (−1)λeµe′ = 0.

We have an analogous constraint for each pair of ends. As there is at least one vertical end,
the above impose |Q| linearly independent relations. By the computation of the dimension in

the planar case (see [106]), (Γ̂, h) varies in a space of dimension (|µ|+2|Q|)+(g−|Q|)−1+n.
Subtracting |Q| yields the expected dimension. □

13.3.1. Enumerative problems. To set up the enumerative problems we want to consider, we
first give an adaptation of the tropical evaluation maps to our current setting. This will
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allow us to verify that we only need to consider simple parametrized tropical curves. The

moduli space M trop
g,n

(
TMδ, (a, b)

)
of parametrized tropical curves in TMδ has the evaluation

map

evtrop : Mtrop
g,n

(
TMδ, (a, b)

)
−→ TMn

δ ,

evaluating the position of images of marked points.
If we additionally take into account tangency conditions imposed by two partitions µ and

ν, we need to account for marked points indexed by µ: We obtain an exteded evaluation
map “evtrop : Mtrop

g,n

(
TMδ, (a, b), µ

)
−→ TMn

δ × TE|µ|,

evaluating the position of images of marked points and ends.
In each case, solving the problem will amount to finding the preimages of a general point

in the codomain of the evaluation map. We can now show that this number is finite:

Proposition 13.14. For a tropically general choice of constraints satisfying the conditions
above, there is a finite number of preimages of evtrop × “evtrop in Mtrop

g,n

(
TMδ, (a, b), µ

)
, all of

which are simple.

Proof. Let h : Γ → TMδ be a tropical curve. Up to a reparametrization by merging parallel
edges (in the sense of Remark 12.16), we can assume that h is an immersion. Merging parallel
edges of Γ replaces Γ by an abstract tropical curve that is either of smaller genus, has fewer
ends, or at least one non-trivalent vertex, but does not change the dimension of the image
under the evaluation map. Thus, the evaluation map is not surjective for these combinatorial
types and does not map the marked points to a tropically general point configuration. Hence,
only simple combinatorial types provide solutions.

For simple combinatorial types, as the codomain has the same dimension, the set of
preimages is discrete. Indeed, if the derivative of ev is not injective, it is not surjective
either, and a general choice of constraints would not be in the image.

The other combinatorial types where h is an immersion vary in a space of strictly smaller
dimension, thus cannot contribute any solution, hence the result. □

13.3.2. Position of the images of marked points on the solutions. Analogous to previous
enumerative problems, we want to characterize the position of images of marked points on
the image of a parametrized tropical curve. For the classical problem in R2 and the case
of cylinders, given a parametrized curve meeting the constraints above, the complement of
images of marked points on it has no cycle and each connected component contains a unique
end. This is due to the fact that both cycles and paths relating two distinct ends can deform
in a dimension one space, which is prohibited by finiteness of the number of solutions. Thus,
the complement of images of marked points is a forest of trees, each rooted at an end, whose
leaves are images of marked points.

To obtain a similar characterization for Möbius strips, we have to distinguish between two
types of cycles, orienting cycles and disorienting cycles.

Definition 13.15. A disorienting tropical cycle on a tropical Möbius strip TMδ is a tropical
cycle passing through the soul of TMδ. Conversely, an orienting cycle is a tropical cycle on
TMδ that does not meet the soul.
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We will see now that this influences the structure of the cells in the moduli space, as
disorienting cycles cannot be deformed without moving at least one of the adjacent edges.

Proposition 13.16. Let h : Γ → TMδ be a simple parametrized tropical curve of genus g in
the class aE + bF which maps marked points to a general configuration of 2b+ g − 1 points
P. Then, each component of the complement of images of marked points h(Γ) \P satisfies
either of the following conditions:

(i) It contains a unique end and no cycle, or
(ii) It contains a unique disorienting cycle and no end.

Proof. We obtain a space ΓP by disconnecting the curve at each image of a marked point p,
replacing the edge e it lies on by two closed half-edges ep and e

′
p. The connected components

of ΓP correspond exactly to the connected components of Γ\h−1(P). As there are 2b+g−1
points in P, and the Euler characteristic of Γ is 1− g − 2b, we have

χ(ΓP) = χ(Γ) + 2b+ g − 1 = 1− g − 2b+ 2b+ g − 1 = 0.

Let Γi be a connected component of ΓP . The Euler characteristic of Γi is 1− gi − xi, where
gi is the first Betti number of the component, and xi the number of ends that it contains.

If we have gi = xi = 0, the component is a tree with a point of P at each of its outgoing
edges since it contains no end. Here, two leaves ep and e′p incident to the image of a single
marked point p can belong to the same component. As the genus is 0, we can lift the
component to R2. There, we have the tropical Menelaus condition between the position of
ends, yielding a relation between the position of the images of marked points, see Remark
12.83 for details. Notice that if ep and e

′
p are leafs of the same component, their contributions

to the relation cancel. First, assume the relation is nonempty. Then, this corresponds to a
non-general choice of the constraints, contradicting genericity.

Now, assume the relation is empty. Then, if a leaf ep is in the component, the leaf e′p has
to be as well. Therefore, the component corresponds to a curve without ends. It is thus a
genus 1 curve that varies in a 1-dimensional space containing a unique point condition. This
concludes the proof if ΓP is connected.

Thus, we can assume that we always have 1− gi−xi ≤ 0. As the sum is 0, each summand
is 0 and we have two possibilities: either gi = 0 and xi = 1; or gi = 1 and xi = 0.

The first case corresponds to components without cycles and with a unique end. For the
second case, as it is always possible to deform an orienting cycle, the unique cycle has to be
disorienting. This concludes the proof. □

Remark 13.17. Proposition 13.16 essentially states that disorienting cycles behave like ends,
as they can be deformed to comply with the deformation of an adjacent edge.

Example 13.18. In Figure 23, we can see two tropical curves with a unique disorienting cycle.
Contrarily to orienting cycles, we see that it is not possible to deform the cycle while fixing
the adjacent edges. Instead, it is possible to deform the cycle while varying only one of the
adjacent edges: the right vertical edge for (a) (over TM0) and the only vertical edge for (b)
(over TM1).
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Figure 23. A disorienting cycle with a deformation moving only one adja-
cent edge. (a) is on TM0 and (b) is on TM1.

13.4. Multiplicities. In the preliminaries for this part, Section 12, we had seen that trop-
ical curve counting usually involves defining correct multiplicities for the curves we wish to
count. The case of curves in tropical Möbius strips is no different. Let h : Γ → TMδ be a
parametrized tropical curve of genus g, tangency profile µ+ν (where µ and ν are partitions)
with n = |ν| + g − 1 general fixed images of marked points P, where the ends indexed by
µ are fixed. By genericity, h is a simple tropical curve. For an edge e, let ue be its slope,
and ue = w(e)“ue, where “ue is the primitive lattice vector in direction ue. Using Proposi-
tion 13.16, we choose an orientation of the edges of Γ such the edges inside a component
of h(Γ) \ P point toward the disorienting cycle or the free end in the component. For the
edges of disorienting cycles, we choose an arbitrary orientation of the cycle.

Each Möbius strip is endowed with a lattice structure as given in Proposition 13.1. Thus,
given a vertex v of Γ, we obtain a rank 2 lattice Nv at the point h(v) ∈ TM . Moreover, given
a bounded edge e in Γ, the lattice structure can be trivialized on the interior of the edge, so
that we can define a rank 2 lattice Ne containing the slope ue. Moreover, for each flag v ∈ e
of Γ, we have a map Nv → Ne identifying both lattices. Thus, we have the following map of
lattices,

Θ :
⊕

v∈V (Γ)

Nv −→
⊕

e∈Eb(Γ)

Ne/⟨“ue⟩ ⊕ n⊕
1

Nvi ⊕
⊕
µ

Ne/⟨“ue⟩
(ϕv) 7−→

(
(ϕs(e) − ϕt(e)), (ϕvi), (ϕs(e))

) ,

where s(e) (resp. t(e) if e is bounded) is the source (resp. target) of an edge e, and vi is the
vertex corresponding to the i-th marked point. The domain is indexed by the vertices of the
tropical curve (including the images of marked points), and the codomain is indexed by the
bounded edges of the curve along with the images of marked points and ends whose position
is evaluated. The curve is simple, hence trivalent. Counting the number of pairs (v ∈ e) in
two ways and computing the Euler characteristic, we have two equations:

3|V (Γ)| = 2|Eb(Γ)|+ n+ |µ|+ |ν| and |V (Γ)| − |Eb(Γ)| = 1− g.

Thus, Γ has |V (Γ)| = |µ| + |ν| + 2g − 2 + n vertices, and |Eb(Γ)| = 3g − 3 + |µ| + |ν| + n
bounded edges. As n = |ν| + g − 1, both ranks are equal to 2|µ| + 4|ν| + 6g − 6. Thus, we
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can compute the lattice index of the image of Θ. Taking bases of the lattices, we can see Θ
as an integer matrix whose lattice index is equal to | detΘ|.
Definition 13.19. We define the multiplicity of a parametrized tropical curve to be

m(Γ, h) = | detΘ|
∏

e∈Eb(Γ)

w(e).

The following proposition gives a concrete expression for the multiplicity.

Proposition 13.20. Let h : Γ → TMδ be a simple parametrized tropical curve of genus g
in the class aE + bF of tangency profile µ + ν ⊢ 2b whose marked ends map to a general
configuration of |ν|+ g − 1 points P under the evaluation map, and which has the position
of the ends indexed by µ fixed. Let k be the number of disorienting cycles in the complement
of the images of marked points. Then, the multiplicity of h : Γ → TMδ is given by:

m(Γ, h) =
2k

Iµ

∏
v∈V (Γ)
trivalent

mv,

where mv is the usual vertex multiplicity, defined as mv = | det(av, bv)| if av and bv are
two out of the three outgoing slopes (see Definition 12.32), and Iµ =

∏
i i

µi as discussed in
Notation 12.35.

Proof. The statement follows by computing the determinant of the lattice map Θ. To write
the matrix of Θ, we choose a basis for each Nv. For each e, choosing an identification with
Z2, the linear form det(“ue,−) provides a coordinate (i.e., a bijection to Z) of the quotient
lattice Ne/⟨“ue⟩. The matrix of Θ is constructed as follows.

◦ For fixed ends, we have a 1× 2 block comprised of det(“ue,−) evaluating the position
of the unique adjacent vertex in the quotient.

◦ For bounded edges, we have two of these blocks, one for each adjacent vertex. Substi-
tuting the primitive slope “ue by the actual slope ue = w(e)“ue divides the determinant
by w(e). This cancels with the w(e) in the definition of m(Γ, h). Thus, we can
assume that the slopes are the true slopes ue. Hence, we obtain a map Θ′ with
m(Γ, h) = 1

Iµ
| detΘ′| where we divide by the product of weights of marked points

since they do not appear in the original product.
◦ Evaluating at each of the |ν| + g − 1 marked points, contributes ( 1 0

0 1 ). Apply-
ing Laplace expansion for the determinant with respect to these deletes one of the
det(ue,−) in each row corresponding to an adjacent bounded edge. We are left with
the matrix of the lattice map Θ for the tropical curve where each point has been
removed, and the bounded edge containing it is replaced by a pair of ends whose
positions we evaluate.

Thus, we may assume that there are no images of marked points. The rest of the computation
is done recursively in two steps.

The first step is needed to prove that the multiplicity in the sense of Nishinou-Siebert as
in [113] coincides with the one defined by Mikhalkin in [106]. We briefly recall it for the sake
of completeness. The second step is specific to our case, dealing with disorienting cycles.
Notice that the matrix of Θ splits into blocks for the different connected components of Γ,
of which there might be several after the last step above.
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Step 1. We prune the branches of the complement of the images of marked points. If v
is a vertex adjacent to two fixed ends with slopes u1 and u2, the column of v only has the
following blocks:

det(u1,−)

det(u2,−)

det(ue,−)

.

The first two rows correspond to the evaluation of the position of the adjacent ends, and
the last row to the position of the remaining adjacent edge e. This row does not appear
if e is an end. As the first two rows are the only non-zero elements, we expand mv =
det(u1, u2) · | detΘΓ\v| where ΘΓ\v is the lattice of the image of h|Γ\v, where e disappears if
it was unbounded or becomes an end whose position is evaluated.

If there are no cycles in the complement of the images of the marked points, this suffices
to compute the determinant.

Step 2. Else, by Proposition 13.16 Γ has a unique disorienting cycle, all of whose adjacent
edges are ends whose position is evaluated. Let v1, . . . , vp be the vertices on the cycle,
u1, . . . , up be the slopes of the edges of the cycle, and r1, . . . , rp the slope of the adjacent
ends, such that ri is adjacent to the edges of slopes ui, ri and ui+1, indices taken modulo p.
We have ui + ri = ui+1. The matrix has the following form:

det(u1,−) det(u1,−)

− det(u2,−) det(u2,−)

− det(u3,−)
. . .
. . . det(up−1,−)

− det(up,−) det(up,−)

det(r1,−)

det(r2,−)
. . .
. . . det(rp−1,−)

det(rp,−)

The columns correspond to the vertices v1, . . . , vp, the top rows to the edges of the disorienting
cycle, and the bottom rows to the evaluation of the fixed ends. As the cycle is disorienting, it
is not possible to trivialize the lattice along the cycle. Then, both entries in the last column
in the upper block are positive, and we have a non-zero determinant.

For the copy of Z2 corresponding to vi, we can take a basis of the form (ri, r
′
i) such that

the block det(ri,−) becomes (0 1). We then expand with respect to the bottom rows:

det(u1, r1) det(u1, rp)

− det(u2, r1) det(u2, r2)

− det(u3, r2)
. . .
. . . det(up−1, rp−1)

− det(up, rp−1) det(up, rp)
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For each column, as mvi = det(ui, ri) = det(ui+1, ri), we can factor the vertex multiplicity
mvi . Finally, we are left with computing the following determinant:

det

∣∣∣∣∣∣∣∣∣∣∣∣

1 1

−1 1

−1
. . .
. . . 1

−1 1

∣∣∣∣∣∣∣∣∣∣∣∣
= 2.

□

Remark 13.21. Note that the multiplicity of the curve depends on the position of the images
of the marked points and not just on its combinatorial type. This is similar to the multiplicity
of a tropical curve in a linear system on an abelian surface introduced in [19].

Using the above results, we can now finally define tropical Gromov-Witten invariants on
TMδ:

Definition 13.22. We define the tropical Gromov-Witten invariants on TMδ as

N δ
g,aE+bF (P) =

∑
h:Γ→TMδ

m(Γ, h),

where we sum over parametrized tropical curves of genus g in the class aE + bF in the
Möbius strip TMδ whose marked points evaluate to a tropically generic point configuration
P. Further, we can define tropical Gromov-Witten invariants on TMδ

N δ
g,aE+bF (µ, ν) =

∑
h:Γ→TMδ

m(Γ, h),

where curves additionally have the tangency behavior prescribed by µ and ν. Note that we
already included the division by the multiplicity of fixed ends in the definition of m(Γ, h),
so we do not have to divide again here.

Now, we wish to compute refined invariants. Analogous to the planar case we had dis-
cussed in Section 12.4, we can define refined multiplicities for curves in TMδ by substituting
multiplicities by the Laurent polynomial that is their quantum number.

Definition 13.23. Let h : Γ → TMδ be a parametrized tropical curve of genus g in the
class aE + bF , tangency profile µ+ ν ⊢ 2b meeting the constraints. We set

m(Γ, h)q =
1

Iµq
2k

∏
v∈V (Γ)
trivalent

[mv]q,

where k is the number of disorienting cycles in the complement of the images of the marked

points, [a]q = qa/2−q−a/2

q1/2−q−1/2 denotes the q-analog defined in Definition 12.65, and we set Iµq =∏
[i]µi

q .

We then consider the refined counts

BGδ
g,aE+bF (P) =

∑
(Γ,h)

m(Γ, h)q,

,
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where we sum over all parametrized tropical curves whose marked points get mapped to
the tropically generic point configuration P. Further, we consider the relative refined count
BGδ

g,aE+bF (µ, ν)(P).

13.5. Invariance. To show that the numbers we defined in the previous section are reason-
able objects to study, we need to show that they are invariants. As refined multiplicities
specialize on classical multiplicities when q goes to 1, we can show both invariance statements
at the same time.

Theorem 13.24. The counts BGδ
g,aE+bF (P) and BGδ

g,aE+bF (µ, ν)(P) do not depend on the
choice of the constraints as long as they are general.

Proof. We reduce to the planar case [85, Theorem 1], and proceed similarly to the proof of
analogous statements in [18, 19, 21]. Let (Pt)t∈[0;1] be a generic path between two general
choices of constraints P0 and P1 in TMδ. We assume that along the path (Pt)t∈[0;1], the
constraints move one at a time: either a unique point or the position of a fixed end moves.
Let h : Γ → TMδ be a simple solution. By Proposition 13.16, when removing all marked
points and fixed ends from h(Γ) except the moving constraint, we are in one of the following
situations:

◦ we have a unique orienting cycle,
◦ we have a path linking two non-fixed ends,
◦ we have a component with two disorienting cycles,
◦ we have a component with a disorienting cycle and an non-fixed end.

When slightly moving the constraint, the solutions slightly deform accordingly. As long
as no edge length goes to 0, both combinatorial type and multiplicity of the curves remain
the same, hence we have local invariance. It remains to check what happens when an edge
length goes to 0, i.e., Pt becomes non-general for some value of t. We call this crossing a
wall.

Assume Pt∗ is non-general. Hence, there is a solution with at least a quadrivalent vertex,
obtained by deformation of a simple solution. Moreover, for every t ∈]t∗ − ε; t∗ + ε[ with
t ̸= t∗, Pt is general again and the solutions are simple. Let h : Γ → TMδ be a simple
solution near the wall. To reduce to the planar setting, we use the cutting procedure from
Remark 13.10. As there is a minimal length for non-contractible cycles given by the length
l of the underlying tropical elliptic curve TE = R/lZ, we can choose an admissible set
Q ⊂ h(Γ) such that none of the cut edges has a length that vanishes under deformation.
Thus, we are left with deformation of tropical curves inside R2. The choice of Q ensures
that for t ∈]t∗ − ε; t∗ + ε[, Q deforms and keeps being admissible through the deformation.
According to [85, Lemmas 3.1 and 3.3], the following can occur during the deformation:

◦ a rectangular shaped cycle containing the image of a marked point gets contracted
to a pair of quadrivalent vertices linked by a pair of parallel edges,

◦ a quadrivalent vertex appears,
◦ the image of a marked point merges with a vertex.

The first two cases are treated as in [85, Lemmas 3.1 and 3.3]. In the first case, there
is one curve on each side of the wall with the same multiplicity, as the marked point just
jumps from one side of the cycle to the other (see [85, Lemma 3.1]). This is depicted in
Figure 24(a). For quadrivalent vertices, there are three adjacent combinatorial types, and
the invariance is already proved in [21, 85], and depicted in Figure 24(b) and (b’).
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× × ×

(a) (b) (b’)

Figure 24. In (a), a cycle gets contracted by moving the marked point.
Deforming further, the cycle opens again and the marked point has changed
sides. In (b) and (b’), the movement of the red line forces the solution to
pass through a quadrivalent vertex. If the red line passes into the upper right
quadrant, we have two tropical solutions depicted in (b) in black and blue. If
not, we have one tropical solution depicted in (b’).

We are left with the case where a marked point meets a vertex during the deformation.
In the classical case, there are only two adjacent combinatorial types that provide solutions
since the complement of marked points is a forest (a set of rooted trees). Here, due to the
different description of solutions given in Proposition 13.16, we have more cases, just as in
the case of curves in abelian surfaces, see [19].

Let v be the vertex and p the marked point that meet through the deformation. Let a,
b and c be the three edges adjacent to v and A ,B and C be the connected components of
Γ−

(
h−1(P\{p}) ∪ {v}

)
. Some of these components may coincide if v lies on a cycle.

By Proposition 13.16, A ∪ B ∪ C ∪ {v} contains exactly two free ends, two disorienting
cycles or one of each, and the marked point p separates the two (or lies on the orienting cycle
in case the two disorienting cycles have non-disjoint support).

(i) Assume that all three components are distinct. By the discussion above, exactly one
component is bounded, say A , while the other components contain either a free end
or a disorienting cycle. Then p must lie on either b or c. Thus, degeneration leads
to two different combinatorial types with the same multiplicity, depending on which
side of the line spanned by a the point p lies. This corresponds to Figure 25(b).

(ii) Now, assume that B = C . Then, B has at least one cycle γ passing through b and c.
If γ is orienting, p needs to lie on b or c and we conclude as in (i). If γ is disorienting,
there are three combinatorial types. The first corresponds to p ∈ a, and the other to
p ∈ b or c. If p lies on either b or c, the disorienting cycle γ is now cut by the image
of a marked point. Since B = C , both combinatorial types this contributes lie on
the other side of the wall, and the invariance of multiplicities follows by

2k−1
∏

mv + 2k−1
∏

mv = 2k
∏

mv.

This case is depicted on Figure 25(c).
(iii) Finally, assume A = B = C . For each pair of edges in a, b, c there exists a cycle γij

passing through both. We have γab = γac + γbc in H1(Γ,Z/2Z). Taking the image in
H1(TMδ,Z/2Z), we see that at least one cycle is orienting. By Proposition 13.16, at
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Figure 25. In (a) the three components cut by the removal of vertex v. In
(b), the wall where only two out of the three adjacent combinatorial types
are allowed. The marked point moves from one edge to the other, deforming
the curve. In (c), the wall where all three adjacent combinatorial types are
allowed. When the marked point crosses the wall, the black tropical curve
becomes the pair of curves given in blue and green. The black curve has an
additional disorienting cycle which gets cut on the other side of the wall.

most one cycle is orienting, thus exactly one, say γbc is orienting. Hence, p needs to
lie on γbc, i.e., in b or c, leading to two adjacent combinatorial types, and we conclude
as in (i).

□

Remark 13.25. It would be interesting to see if the factor 2k appearing in the complex
multiplicity can also be refined.

14. Floor diagrams on tropical Möbius strips

In this section we discuss floor diagrams as a counting tool for tropical curves. We begin
with a review of the literature in Section 14.1, and continue afterwards by adapting the
existing tool to work on tropical Möbius strips. We prove the analogue of Theorem 14.8,
that floor diagram counts with the suitable multiplicities coincide with the tropical curve
counts discussed in the previous section.

14.1. Preliminaries: Floor diagrams in the plane. Now that we have determined dif-
ferent objects we wish to count, we introduce techniques on how to count. We construct
and study floor diagrams, combinatorial tools used to count tropical, and, using Mikhalkin’s
correspondence theorem (Theorem 12.34), algebraic curves.

Floor diagrams are a useful combinatorial tool for counting tropical curves. They were
introduced by Brugallé-Mikhalkin in [32, 33] and have since been used countless times in
tropical enumerative geometry. Floor diagrams are combinatorially easier than tropical
curves, but can similarly be counted with multiplicity to recover the tropical (and hence the
algebraic) curve count. We mainly follow the exposition in [39, Chapter 11] and [37, Day 5].

Definition 14.1. We say that a point configuration P is in horizontally stretched position
if it is contained in a small horizontal strip and all points are very far apart.
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A parametrized tropical curve h : Γ → R2 where the image of the (in our current setting
2d+ g− 1+ |β|) contracted ends under the evaluation map is in horizontal position is called
floor decomposed. That is, the Newton subdivision associated to Γ contains all possible
vertical edges.

We give an example of a floor decomposed curve in Figure 26. We have already seen
multiple examples of non-floor decomposed curves, for instance in Figure 1.

Definition 14.2. Let h : Γ → R2 be a floor-decomposed parametrized tropical curve. We
call the horizontal edges of h(Γ) the elevators of h(Γ). They correspond to the vertical line
segments in the Newton subdivision dual to h(Γ).

A connected component of h(Γ) without its elevators is called a floor. In the image h(Γ) of
the left parametrized tropical curve in Figure 26, floors are the black connected components.

Lemma 14.3 ([39, Lemma 11.2.2]). Let h : Γ → R2 be a floor decomposed parametrized
tropical curve whose images of contracted ends (in our current setting, 2d+g−1+ |β|) form
a horizontally stretched point configuration P. Then, each floor and each elevator of h(Γ)
contains precisely one point in P.

This means that for the solution of our tropical counting problem it is only relevant which
elevators and floors the parametrization of a tropical curve possesses, their multiplicities,
and which point (i.e., contracted end) lies on which elevator. All of this information gets
encoded in a new combinatorial gadget: floor diagrams.

Definition 14.4. A floor diagram D of degree d, genus g and tangency profile (α, β) (where
Iα+ Iβ = d) is a bipartite weighted directed graph of genus g on an ordered vertex set such
that all vertices are colored either black (corresponding to elevators) or white (corresponding
to floors) and that

◦ there are d white and d+ g + |β| − 1 black vertices,
◦ there are αi + βi unbounded ends of weight i to the right,
◦ each white vertex is of divergence 1 (i.e., has one fewer (weighted) incoming edge
from the left than outgoing edges on the right), and

◦ each black vertex is of valence 2 and divergence 0 (i.e., has the same weighted number
of incoming and outgoing edges).

Construction 14.5. We can construct a floor diagram DΓ,h from the image of a parame-
trized tropical curve h : Γ → R2 of degree d and genus g as follows.

(1) Turn each image of a marked point of Γ on an elevator of h(Γ) into a black vertex.
(2) Contract each floor of h(Γ) into a white vertex.
(3) Weight edges in the floor diagram with the multiplicity of the corresponding elevator

in h(Γ).

The result is, in fact, a floor diagram of degree d and genus g: Since the image of every floor-
decomposed parametrized tropical curve has exactly d floors, each with one contracted end
on them, the diagram DΓ,h has d white vertices. The other 2d+g−1+ |β|−d = d+g−1+ |β|
images of marked points have to lie on the elevators, resulting in d+g−1+ |β| black vertices.
Since each image of a marked point on an elevator of the tropical curve has two adjacent edges
of the same weight, the divergence condition for black vertices is satisfied. The divergence
for white vertices follows by the fact that in the contraction of the floor, the only two ends
we contract are in direction (0, 1) and (−1,−1). Thus, by balancing, each floor needs an
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Figure 26. A floor decomposed curve of degree 5 and genus 0 with tangency
profile ((0, 0, . . . ), (1, 1, 2, 0, . . . ) passing through a horizontally stretched point
configuration. Elevators are drawn dotted, the floors are the remaining solid
connected components. Below, the associated floor diagram.

additional outgoing contribution in direction (1, 0), either contributing weight to an existing
elevator, or by creating a new one. Hence, the divergence assumption follows.

Conversely, it is possible to reconstruct a tropical curve from a floor diagram when given
a horizontally stretched point configuration though we omit the slightly more complicated
process here.

We give an example of a floor diagram associated to a tropical curve in Figure 26. As we
had done for parametrized tropical curves, we can define a multiplicity for floor diagrams.

Definition 14.6. We define Nfloor
(
d, g, (α, β)

)
as the number of floor diagrams of degree d,

genus g and tangency profile (α, β), counted with multiplicity

m(DΓ,h) =
1

Iα

∏
e∈Eb(DΓ,h)

w(e),

for each floor diagram DΓ,h, where Eb(DΓ,h) denotes the bounded edges of the diagram and
w(e) the weight of the edge e.

Example 14.7. In Figure 27, the upper floor diagram has a multiplicity of 64, contributing
to the count Nfloor

(
5, 0,

(
(0, 0, . . . ), (1, 2, 0, . . . )

))
.

The tropical curve count and the count of floor diagrams with multiplicity coincides:

Theorem 14.8. Let d and g be integers. Then,

Nfloor
(
d, g, (α, β)

)
= N trop

(
d, g, (α, β)

)
.

14.2. Floor diagrams on Möbius strips. We start with the extension of abstract floor
diagrams associated to curves in a Möbius strip TMδ. In the next subsection, we describe
their relationship to floor-decomposed tropical curves.
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Definition 14.9. A floor diagram in TMδ is an oriented graph with infinite outgoing edges
to the right and the following additional data:

(i) Vertices are separated into three disjoint sets: ground floors, étages2 and joints.
Floors encompass ground floors and étages.

(ii) An edge e, also called elevator, has an integer weight w(e) ∈ N.
(iii) An étage F has a degree aF ∈ N.
(iv) A ground floor G has a degree aG ∈ 1

2
N.

The additional data has to satisfy the following conditions:

(A) Ground floors have no incoming edges. Moreover, if G is a ground floor, we have the
balancing condition:∑

e∋G

w(e) ≡ δ2aG mod 2 =

®
0 for TM0

2aG for TM1.

(B) Étages have zero divergence: the sum of weights of incoming edges is equal to the
sum of weights of outgoing edges.

(C) Joints have exactly two outgoing edges of the same weight and no incoming edge.

Remark 14.10. The degrees of the ground floors are allowed to be half-integers analogous to
the coefficients of aE + bF in H1,1(TMδ,Z).

Note that unlike classical floor diagrams, vertices are monotonously linearly ordered but
all ground floors and joints have the same height. Hence, there is not a strict ordering on
vertices, only on étages.

Definition 14.11. Given a floor diagram D, we define the following:

◦ The genus of D is its genus as a graph plus its number of floors.
◦ The diagram D is said to be in the class aE+ bF if the sum of the weights of infinite
outgoing edges is 2b, and the sum of degrees of the floors (both ground floors and
étages) is equal to a.

◦ A diagram in the class aE+bF is of tangency profile µ ⊢ 2b if it has µi ends of weight
i for each i.

Remark 14.12. The newly defined floor diagrams differ from the ones we considered previ-
ously on the plane (in Section 14.1) in the following way:

◦ The vertices of the floor diagrams on Möbius strips only correspond to the white
vertices of planar floor diagrams. We will see the analogue of black vertices in this
setting in Definition 14.14.

◦ Analogous to floor diagrams on the cylinder (see [21]), and different to the planar
case, floors on the Möbius strip contribute to the genus of the floor diagram.

◦ Unique to the Möbius strip case is the separation of floors into ground floors and
étages. All floors in floor diagrams of curves in the tropical cylinder correspond to
étages in our new definition. The novelty is the occurrence of ground floors. These
correspond to the disorienting cycles on the Möbius strip, which cannot occur on
orienting surfaces.

2The English language apparently lacks a word for floors which are not ground floors.
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Figure 27. Some examples of floor diagrams in TM0 and TM1. In the top
row, we give examples in TM0 and in the bottom row, we give some in TM1.

◦ Further, unique to the Möbius strip floor diagrams is the existence of joints. We will
soon see that these correspond to elevators passing through the soul of the Möbius
strip.

Example 14.13. In Figure 27, we give several examples of floor diagrams in TM0 and TM1.
In all pictures in this section, we draw elevators in black, ground floors in blue, étages in red
and joints in orange. Unlabeled edges have weight one. Note that the main difference for
floor diagrams for TM0 and TM1 is the treatment of ground floors. The floor diagrams in
Figure 27 are of the following genus, class, and tangency profiles:

Genus Class Tangency Genus Class Tangency

(a) 3 3
2
E + F 12 (a)′ 2 E + F 12

(b) 4 3
2
E + 2F 1221 (b)′ 4 2E + 2F 3111

(c) 4 7
2
E + 2F 1221 (c)′ 4 7

2
E + 3

2
F 2111

Definition 14.14. Let D be a floor diagram of genus g and tangency profile µ. A marking m
of a floor diagram D is an increasing map m : [[1; |µ|+g−1]] → D (i.e., m(i) ≺ m(j) ⇒ i < j,
where ≺ is the order relation on the cycle-free oriented graph D), such that:

(a) No marking is mapped to a ground floor or a joint, and a unique marking is mapped
to each étage.

(b) At most one marking is mapped to an elevator.
(c) Each component of the complement of markings on elevators is of one of the following

types:
(i) It contains a unique ground floor and no cycles or free ends.
(ii) It contains a unique free end, and no cycles or ground floors.
(iii) It has a unique cycle containing an odd number of joints and no free ends or

ground floors.

Remark 14.15. Markings on the floor diagram correspond to the black vertices of floor dia-
grams in the planar case (see Definition 14.4).
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Figure 28. Markings on the floor diagrams (b), (c) and (b)′ from Figure 27.

(b), (c) and (c) are floor diagrams on TM0 and (b)′ is on TM1.

Example 14.16. We give some examples for markings on floor diagrams in Figure 28.

14.3. Floor diagrams from tropical curves. We now define a floor diagram for any
tropical curve, and show that for a stretched choice of constraints, the point conditions
induce a marking of the diagram satisfying the condition from Definition 14.14, analogous
to the cylinder case, [21]. Let l denote the length of the underlying tropical elliptic curve
TE.

Proposition 14.17. Let h : Γ → TMδ be a parametrized tropical curve in the class aE+bF .
Then the slope of its edges can only take a finite number of values, and the lengths of the
non-vertical edges are bounded by a constant M that only depends on a, b and l.

Proof. The proof is very similar to the proof of the analogous statements in [21, Lemmas 5.7
and 5.8]. We include it here for completeness’ sake anyways.

Let e ∈ Eb(Γ) be a bounded edge of Γ and let h(e) have slope (u, r). Assume u ̸= 0. The
intersection number |u| of u with a fiber F cannot exceed the intersection number of h(Γ)
and F , i.e., |u| ≤ h(Γ) · F = 2a. Similarly, assuming r ̸= 0, we can intersect with a section
E and obtain |r| ≤ h(Γ) · E = 2b. Since we assumed the slopes to be integers, there is thus
only a finite number of possibilities.

Now, assume ℓ(e) > l. Then, the edge goes around the Möbius strip multiple times. Thus,

it intersects the fiber in at least ⌊ ℓ(e)
l
⌋ points, each contributing |u| to the intersection number

h(Γ) · F . Thus, ℓ(e)
l

· |u| ≤ 2a. Since |u| ≥ 1 by assumption, we can thus set M = l(2a+ 1)

This shows that there is a uniform boundM on the length of non-vertical edges for curves
of a fixed class in TMδ . □

We now construct a floor diagram from a tropical curve.

Construction 14.18. Let h : Γ → TMδ be a tropical curve in the class aE + bF with
tangency profile µ and genus g. We match the definitions of floor diagrams by calling an
edge with vertical slope an elevator, and a connected component of the complement of
elevators a floor. Floors containing a disorienting cycle correspond to ground floors, while
all other floors are étages. This differs from the planar case, where the elevators correspond
to the horizontal edges.

We can now form a floor diagram where

◦ vertices are the floors of the curve,
◦ two vertices are linked by an edge if both floors are linked by an elevator,
◦ joints are inserted in the middle of elevators that meet the soul of the Möbius strip,
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Figure 29. The transformation of (marked) tropical curves into (marked)
floor diagrams. In blue, we mark disorienting cycles, which correspond to
ground floors, in red we mark étages. In black, we mark elevators and in
orange we mark joints. On the left, we give an example for TM0: curve (c

′) in
Figure 20, whereas on the right, we show it on TM1, for curve (c′) in Figure
21.

◦ the weight of an elevator is its weight as an edge of h(Γ), and
◦ the degree of a floor is equal to half its intersection number with a fiber.

Moreover, assuming the curve passes through a collection of points P, indexed by [[1; |µ|+
g − 1]], we have a map [[1; |µ| + g − 1]] → D that maps the image of a marked point to the
part of D that contains it.

Example 14.19. In Figure 29 we show how to construct floor diagrams from tropical curves
in both Möbius strips for the tropical curves (c)′ from Figure 20 and Figure 21 respectively.
We color the edges corresponding to étages, ground floors and joints in their corresponding
colors. The resulting floor diagrams are the diagrams (b) and (b)′ in Figure 27. We note that
the class, genus, and tangency profile of the tropical curves computed in Examples 13.6 and
13.7 coincide with the ones of the corresponding floor diagrams computed in Example 14.13.

Definition 14.20. A point configuration P is vertically stretched if the difference between
the y-coordinates of the points is far bigger than the length of the Möbius strip l, and they
are far away from the soul of the Möbius strip.

When the point configuration P is stretched, the marked floor diagrams corresponding
to curves whose marked point evaluate to P satisfy the conditions in Definitions 14.9 and
14.14.

Proposition 14.21. Let P be a stretched point configuration and h : Γ → TMδ a tropical
curve whose marked points evaluate to P. Then, the induced marked diagram (D,m) satisfies
the following:



TROPICAL QUIVER THEORY AND TROPICAL ENUMERATION ON RULED SURFACES 165

(i) the degrees of floors satisfy
∑

F aF = a, and the sum of weights of the ends is equal
to 2b,

(ii) each floor satisfies the divergence assumptions in Definition 14.9A and B,
(iii) each étage contains exactly one image of a marked point, and no ground floor contains

such an image of a marked point,
(iv) each elevator contains at most one image of a marked point,
(v) an étage consists of a unique cycle with adjacent elevators, and a ground floor consists

of a unique disorienting cycle with adjacent elevators, and
(vi) each connected component of the complement of marked elevators is of one of the

following types:
◦ It contains a unique ground floor and no cycles or free ends;
◦ It contains a unique free end and no cycles or ground floors;
◦ It has a unique cycle containing an odd number of joints and no free ends or
ground floors.

In particular, D is a floor diagram and P induces a marking m of D.

Proof. (i) This follows from the definition of the degree of the floors and class of the
curve.

(ii) The statement for étages follows using the balancing condition in Definition 14.9B.
For ground floors, we pass to the two-to-one cover of the Möbius strip, which is TE×R
for TM0 and the total space of the 2-torsion line bundle on T“E = R/2lZ for TM1.
As the ground floor contains a disorienting cycle, the preimage of a neighborhood of
the ground floor by the two-to-one cover is connected. Each elevator adjacent to the

ground floor yields a pair of elevators in the cover, whose coordinates on T“E differ
by l and which are in opposite direction. Let xe ∈ R/2lZ denote the coordinate of

an adjacent elevator e. Using the tropical Menelaus relation for the cylinder T“E×R,
see Remark 12.83, we obtain∑

e

w(e) · xe − w(e) · (xe + l) ≡ l · δ · 2aG mod 2l.

This yields the desired relation for the divergence of grounds floors.
(iii) An étage has to contain at least one image of a marked point, otherwise it is possible

to translate it vertically, resulting in a 1-parameter family of solutions. It cannot
contain more than one point, as the point conditions are stretched whereas slope and
length of non-vertical edges are bounded. Further, as a disorienting cycle intersects
the soul of the Möbius strip and the points are chosen very far from it, a ground floor
cannot contain an image of a marked point.

(iv) As the point configuration is general, no points have the same projection onto E, and
an elevator cannot contain more than one image of a marked point.

(v) Any cycle contained in an étage is orienting. If an étage contained two cycles, one of
them would be without the image of any marked point, contradicting that Γ\h−1(P)
contains no orienting cycle (see Proposition 13.16). If a ground floor contained two
cycles, it would again contain an orienting cycle. By the balancing condition, a
disconnecting edge in the étage would have vertical slope, hence there are no discon-
necting edges, leading to the statement.
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(vi) The last statement is the direct translation of Proposition 13.16, following from the
observation that disorienting cycles lie either in a ground floor, or can use elevators,
as long as they intersect the soul of the Möbius strip an odd number of times in total.

□

14.4. Floor diagram multiplicities. Now, we recover the marked tropical curves that
are solutions of the enumerative problem from the floor diagrams. Definition 14.22 below
gives the (refined) multiplicity of a floor diagram so that it matches the sum of (refined)
multiplicities of the tropical curves it encodes (see Proposition 14.24). We set“σ1(a) =

∑
k|a

k odd

a

k
.

(13)

Definition 14.22. Let (D,m) be a marked floor diagram. If F is an étage and G is a ground
floor, we set

(14)

m(F) = avalF−1
F σ1(aF)

∏
e∋F

w(e), mq(F) =
∑
k|af

kvalF−1
∏
e∋F

ï
w(e)aF
k

ò
q

m(G) = 2 · (2aG)valG−1“σ1(2aG)∏
e∋G

w(e) mq(G) = 2
∑
k|2aG
k odd

kvalG−1
∏
e∋G

ï
w(e) · 2aG

k

ò
q

Further, we write N(D) for the number of cycles in the complement of marked elevators, and
AutD for the group of automorphisms of the diagram. We define the (refined) multiplicity
of a marked floor diagram to be

m(D,m) =
2N(D)

|AutD|
∏
F

m(F)
∏
G

m(G)
∏
Eum

w(e),

mq(D,m) =
2N(D)

|AutD|
∏
F

mq(F)
∏
G

mq(G)
∏
Eum

w(e).

Remark 14.23. The multiplicity of a tropical curve is a product over its vertices. In the
classical floor diagrams we discussed in Definition 14.6 as well as for refined floor diagrams,
introduced in [16] and mentioned in Section 12.4, the weight of the edges is enough to
determine the multiplicity, which is a product over the edges of the diagram. Here, as in
the cylinder case discussed in Section 12.6, we have to further account for the floors. In the
classical case, it is possible to factor out the weight of the edges from the floors, but not in
the refined case.

Proposition 14.24. The (refined) multiplicity of a marked floor diagram corresponds to the
(refined) count of tropical curves that it encodes, counted with (refined) multiplicity.

Proof. We recover tropical curves from floor diagrams, proceeding as follows. First, we
determine the shape of the floors.

◦ Given an étage F of degree aF , the situation is handled as for floors on cylinders
[21]. An étage consists of a unique cycle realizing an even homology class 2kF ∈
H1(TMδ) ≃ Z in the Möbius strip. The horizontal coordinate vF of the slope of the
edges in the cycle is well-defined. In particular, an elevator of weight w(e) that meets
the cycle does so at a vertex with multiplicity w(e)vF . Moreover, intersecting with a
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fiber yields 2kF intersection points each of multiplicity vF . As the intersection index
is by definition 2aF , we have aF = kFvF , hence kF |aF .

Given kF |aF , we can unfold the étage so that the cycles goes around the Möbius
strip only twice. This induces a floor if and only if the position of the adjacent
elevators satisfy the Menelaus relation [21] in R/2lkFZ: if xe is the position of the
elevator e, we require∑

e∋F

±w(e)xe ≡ δvF l ∈ R/2lkFZ.

◦ Given a ground floor G of degree aG, there also is a unique cycle that needs to
be disorienting, i.e., it realizes an odd homology class in the Möbius strip. Let
kG ∈ H1(TMδ) ≃ Z be this odd homology class. The horizontal coordinate vG of the
slope of the edges in the cycle is also well-defined. Intersecting with a fiber yields kG
intersection points each of multiplicity vG. By the definition of the degree, we obtain
kGvG = 2aG. Therefore, kG is an odd divisor of 2aG.

Thus, we can unfold the ground floor by the cover of degree kG, so that it goes
around the Möbius strip only once. Hence, we can assume that kG = 1 up to choosing
a lift of the elevators by this cover. Then, we can take the preimage by the two-to-one
cover of the Möbius strip by the cylinder. Each adjacent elevator gets two lifts with
opposite directions whose horizontal position differs by l. The Menelaus condition
on the cylinder is ∑

e∋G

w(e)(xe − (xe − l)) = δl ∈ R/2lZ.

This relation is automatically satisfied by the balancing condition, so that we have
a unique curve up to translation. If require the curve to be invariant by the deck
transformation of the cover, it is fully unique. In the end, we can draw a unique
curve for each choice of lift of the elevators.

Now, we recover the positions of the elevators for each floor and fixed kF as the lattice index
of the following map. For each elevator e, let e+ and e− be its extremities, which are floors,
joints, or points on the boundary of the strip. If e− is a joint, we set ke− = 1 and if e+ is a
boundary point, we set ke+ = 1. We consider the space of positions of the elevators in the
unfolded version ∏

e

R/2lke+Z× R/2lke−Z.

An element (xe+ , xe−)e can only correspond to a tropical curve if the following are satisfied:

◦ For each edge e, xe+ ≡ xe− in R/2lZ, so both extremities can linked by an elevator.
◦ For each joint, xe+ and xe− differ by l ∈ R/2lZ.
◦ For each étage and two adjacent elevators e and e′, (xe+ , xe−)e and (xe′+ , xe′−)e′ satisfy

the unfolded Menelaus relation in R/2lkFZ.
◦ Images of marked points and fixed ends fix the position of elevators.

Finally, we have the map of real tori

Φ :
∏
e

R/2lke+Z× R/2lke−Z −→
∏
e

R/2lZ×
∏
F

R/2lkFZ×
∏
J

R/2lZ×
∏

e marked

R/2lZ.

(xe+ , xe−) 7−→
Ä
(xe+ − xe−), (

∑
±w(e)xe±), (xe(J )− − xe′(J )−), (xe(i)+)

ä
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This is a group homomorphism of real tori of the same dimension. We now determine
the number of preimages of an element ((0), (δvF l), (l), (xi)) by computing the lattice index
of the map between the first homology groups of the tori. The lattice index of Φ∗ can be
computed similarly as the computation from the multiplicity in Proposition 13.20. We prune
the diagram using the Laplace expansion formula for determinants. In the end, we obtain

2N(D)
∏
F

kvalF−1
F

∏
e unmarked

w(e),

where N(D) denotes the number of cycles in the complement of the image of marked points
in D. To conclude, we multiply the lattice index of Φ∗ by the multiplicity of a curve encoded
by the diagram, and make the sum over the possible divisors kF |aF and kG|2aG, yielding the
result. □

Example 14.25. We conclude by applying the floor diagram algorithm in the genus one case.
In genus one, every diagram has a unique floor, either a ground floor or an étage.

In the case of a unique ground floor, every elevator is adjacent to it. The contribution is
(2a)2bσ̂1(2a) respectively.

In the case of a unique étage, every elevator is still adjacent to the étage, but might be
passing through a joint. By balancing, there are as many elevators directly adjacent to the
étage as elevators passing through a joint before going to the étage. Thus, b needs to be
even. We count the number of markings by considering the lift under the 2-to-1 cover of the
half-line to get a floor diagram in a cylinder, also with a unique floor. The (even) number of
ends 2b coincides with the number of marked points. There are 22b−1 lifts of the points in the
cylinder up to the deck transformation. In the lift there are precisely 2 markings, depending
on where the free end lies, as given in [21]. The multiplicity is thus 22b−1 · 2 · a2bσ1(a).

Summing over all contributions, we get

N δ
1,aE+bF = (2a)2b (σ̂1(2a) + [a, b ∈ Z]σ1(a)) ,

where [a, b ∈ Z] is 1 if both a and b are integers, and 0 else.

15. Correspondence and Regularity

In this section, we prove the three main results of this part of the thesis. We show that
the tropical curve count (and hence the floor diagram count) coincide with the logarithmic
Gromov-Witten invariant of curves in the complex ruled surfaces CM0 and CM1 we discussed
in Sections 12.5.2 and 12.5.3 respectively. We then proceed by proving quasi-polynomiality
and quasi-modularity of the generating series of the enumerative invariants.

15.1. Correspondence Theorem. We first show the correspondence theorem. To this
end, we briefly discuss the logarithmic Gromov-Witten invariants of the surfaces CMδ as the
complex counterpart to the tropical problem, similar to the way we proceeded in Section 12.3.
As before, we fix the surfaces to be the surfaces CMδ defined in Sections 12.5.2 and 12.5.3,
and discuss the discrete data necessary to have a meaningful invariant. Then, we proceed
by showing that we can apply the Abramovich-Chen-Gross-Siebert decomposition formula,
Theorem 12.56, to obtain a correspondence between the tropical and the logarithmic count.

We consider one of the surfaces CMδ and fix the following discrete data βa,µ,ν :

◦ positive integers g, n and a half-integer a,
◦ two partitions µ and ν. We set 2b = ∥µ∥+ ∥ν∥ and assume that 2b ≡ 2aδ mod 2.
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As discussed in Section 12.3, there is a moduli stack of parametrized logarithmic curves
with logarithmic structure

Mlog
βa,µ,ν

(CMδ |C“E),
parametrizing parametrized logarithmic curves from a source of genus g with n + |µ| + |ν|
marked points to CMδ. The partitions µ and ν impose the intersection profile with the
boundary divisor of CMδ, similar to the tangency matrix discussed in Definition 12.40.

As previously discussed for the toric case, for each of the n marked points, the moduli
stack is equipped with an evaluation map

evi : Mlog
βa,µ,ν

(CMδ |C“E) −→ CMδ.

It maps a parametrized logarithmic curve to the image of the i-th marked point. More-
over, for each of the marked points mapped to the boundary divisor, we have an additional
evaluation map with values in the corresponding divisor:”evi : Mlog

βa,µ,ν
(CMδ |C“E) −→ C“E.

The moduli stack Mlog
βa,µ,ν

(CMδ |C“E) is a proper Deligne-Mumford stack equipped with a

virtual fundamental class [M]vir in degree g − 1 + |µ| + |ν| + n. We define the logarithmic
Gromov-Witten invariants by intersecting the virtual fundamental class with classes provided
by the evaluation morphisms. For the dimension counts to agree, we take n = |ν|+ g − 1.

Definition 15.1. The logarithmic Gromov-Witten invariant of the Möbius strips is defined
by

N δ
g,aE+bF (µ, ν) =

∫
[M]vir

n∏
1

ev∗i (pt)

|µ|∏
1

”evi∗(pt),
where pt is the cohomology class Poincaré dual to a point.

We now relate the logarithmic Gromov-Witten invariants to the tropical counts, using the
Abramovich-Chen-Gross-Siebert decomposition formula, Theorem 12.56.

Theorem 15.2. The tropical invariant and the logarithmic Gromov-Witten invariant agree:

N δ
g,aE+bF (µ, ν) = N δ

g,aE+bF (µ, ν).

Proof. To apply the Abramovich-Chen-Gross-Siebert decomposition formula (see Theorem
12.56), we need to construct a family of surfaces obtained by a logarithmic smooth degen-
eration, such that CMδ is a fiber of the degeneration and that the central fiber over the
logarithmic general point is a union of toric surfaces, glued along their toric boundary di-
visors. We construct this family using the tropical curves solving the tropical enumerative
problem described in Section 13. Our approach is similar to the one used for the correspon-
dence theorem in [38].

Step 1: Constructing a subdivision. Consider one of the tropical Möbius strips TMδ,
along with a general configuration P of |ν| + g − 1 points and |µ| points on the boundary
divisor. We can assume that they have rational coordinates. As the configuration is general,
there is a finite number of tropical curves in the class aE + bF of tangency profile µ+ ν and
matching the point and tangency constraints. We then consider a polyhedral subdivision
Ξ of TMδ such that each tropical curve factors through the 1-skeleton of the subdivision.
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We can always take such a subdivision by taking the common refinement of subdivisions
corresponding to each tropical curve. Up to scaling, we can assume that the coordinates of
the vertices of the subdivision along with the length l of the tropical elliptic curve TE are
integers. Moreover, Ξ projects onto a subdivision Σ of TE.

We unfold the polyhedral subdivision Ξ of TMδ to get a polyhedral subdivision Ξ̂ of its
universal cover R2 by taking the preimage. We do the same for Σ to get a polyhedral

subdivision Σ̂ of R. By construction, Σ̂ is stable by translation by l and Ξ̂ is stable under
the action of φδ, which lifts the translation by l in R.

Step 2: Constructing the family. We consider the cone over the polyhedral subdivi-

sions Σ̂× {1} ⊂ R2 and Ξ̂× {1} ⊂ R3. This yields two (infinite) fans endowed with a map
to R≥0 provided by the projection on the last coordinate. Using the construction of toric

varieties for these (infinite) fans, we get two complex manifolds CÊ and C ”M with a map

C ”M → CÊ , and a map to C. The threefold C ”M is a partial compactification of (C∗)3 while

CÊ is a partial compactification of (C∗)2.

The translation action on Σ̂ lifts to the fan by (x, τ) 7→ (x + τ l, τ). It induces a map on

the complex surface CÊ that extends the map of the dense torus

(z, t) 7−→ (λtlz, t).

Similarly, the action of φδ lifts to the fan by (x, y, τ) 7→ (x + τ l, δz − w, τ), and there is an

extension to the threefold C ”M that extends the map of (C∗)3 to itself

(z, w, t) 7−→
Å
λtlz,

zδ

w
, t

ã
.

We can then consider the quotient by the above actions to get manifolds CE and CM , along
with a map CM → CE and maps to C.

The fiber CMt for t ̸= 0 is the ruled surface CMδ over the base elliptic curve CEt =
C∗/⟨λtl⟩. The central fiber of the family of elliptic curves CE0 is a chain of copies of P1

C
meeting along their toric divisors, i.e., their respective 0 and ∞. The central fiber CM0 is a
union of toric surfaces glued along their toric divisors. This construction is just a periodic
version of the construction of a family of toric surfaces as done in [113].

Step 3: Applying the decomposition formula. The tropical points in P and the
points on the boundary divisor give rise to sections of the family. By Proposition 12.55,
logarithmic Gromov-Witten invariants are constant in families. Thus, we can compute the
logarithmic Gromov-Witten invariant for the central fiber CM0. Using the decomposition
formula, Theorem 12.56, we can intersect the point constraints with the virtual fundamental
class [M]vir to get a virtual fundamental class [MP ]vir of degree 0, and the logarithmic
Gromov-Witten invariant is the degree of this 0-cycle. The virtual fundamental class [MP ]log

splits as a sum over the tropical curves solving the tropical enumerative problem:

[MP ]vir =
∑

h:Γ→TMδ

[Mh,P ]vir,

where [Mh,P ]vir is a virtual fundamental class corresponding to the parametrized logarithmic
curves to the central fiber CM0 whose combinatorial type is encoded by h : Γ → TMδ. In
other words, the dual graph to the source curve is Γ, and the component corresponding to
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a vertex V is mapped to the irreducible component of CM0 corresponding to h(V ). By
Corollary 12.57, the logarithmic Gromov-Witten invariant splits as a sum

N δ
g,aE+bF (µ, ν) =

∑
h:Γ→TMδ

∫
[Mh,P ]vir

1.

Step 4: Gluing formula. As in [38], we are left with the computation of the sum-
mands, i.e., the multiplicity

∫
[Mh,P ]

1 of each tropical curve. To do so, we use the gluing

formula from [29, Proposition 13], inspired by the proof of [91, Theorem 1.5,1.6]. We can
use the formula since we have a logarithmically smooth family degenerating to a union of
toric surfaces meeting along their toric divisors. More precisely, if v is a vertex, we have a
corresponding moduli stack Mv parametrizing the genus 0 curves in the toric surface CMh(v)

(the irreducible component of the central fiber associated to h(v)) that have tangency profile
with the toric boundary prescribed by the slopes of h on the edges adjacent to V in Γ. It
is endowed with a virtual fundamental class [Mv]

log and evaluation morphisms. We have a
cutting morphism

Mh,P →
∏
v

Mv,

that associates to each parametrized logarithmic curve the restriction to the component
associated to the vertex v. Moreover, it is mapped to the diagonal ∆ by the evaluation
morphism

ev :
∏

Mv →
∏
e

D2
e ,

where De is the divisor associated to the edge of the subdivision to which the edge e of
Γ is mapped. The image is called the set of pre-logarithmic curves. According to [29],
the covering morphism is a covering map of degree

∏
ew(e) where the product is over the

bounded edges of Γ. One thus needs to count the pre-logarithmic curves. Genus 0 curves to
a toric surface with three punctures are parametrized by (C∗)2. We thus have the map∏

v

(C∗)2 −→ (C∗)|Eb| × (C∗)2n × (C∗)|µ|,

which is exactly Θ ⊗ C∗. As in [102, Proposition 4.10], the set of pre-logarithmic curves
matching the point constraints is a kerΘ ⊗ C∗-torsor. Thus, its size is given by the lat-
tice index | detΘ| computed in Section 13.2. In the end, we obtain the expected tropical
multiplicity. □

Remark 15.3. The proof follows the same steps as the proofs in [29, 38]. The difference to
[38] is that we do not have ψ-constraints, which enables us to compute the lattice index in
the end. The difference to [29] is that we do not consider λ-classes insertions. In particular,
the above proof is a particular case of the proof of [29], to which we refer.

In [29], the decomposition formula is used to compute the logarithmic Gromov-Witten
invariants with the insertion of a λ-class, relating them to refined invariants [16]. This can
also be applied in our setting to prove an analogous result: with n = 2b+g0−1, substituting
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q = eiu, one hasÄ
(−i)(q1/2 − q−1/2)

ä2b+2g0−2
BGδ

g0,aE+bF =
∑
g≥g0

u2g−2+2b

∫
[Mg,n(CMδ,aE+bF )]vir

λg−g0

n∏
1

ev∗i (pt).

15.2. Quasi-polynomiality of relative invariants. In this section we study the regularity
of the relative invariants, fixing the number of intersection points but varying their tangency
orders. This was previously done in [7] for the relative invariants of Hirzebruch surfaces and
in [21] for the case of line bundles over an elliptic curve. Other results on polynomiality have
recently been obtained in [47].

We begin by recalling the standard definition of quasi-polynomiality.

Definition 15.4. An expression f(x) =
∑d

i=0 ai(x)x
i is a quasi-polynomial in x if all coeffi-

cients ai(x) are periodic functions with integer periods.

15.2.1. Setup. We study the function

Φδ
a : (µ1, . . . , µn, ν1, . . . , νm) 7−→ N δ

g,aE+bF (µ1, . . . , µn, ν1, . . . , νm),

defined for δ = 0, 1, and a ∈ 1
2
N. To get a non-zero result, we must have

∑
µj +

∑
νj = 2b.

Hence, b is chosen accordingly. In particular,∑
µj +

∑
νj ≡ 2δa mod 2.

Therefore, we consider the function Φδ
a to be defined only on tuples of integers satisfying the

above conditions. The study of regularity relies on the existence of floor diagrams, counting
each with a polynomial contribution. Different to [7] and [21], diagrams with ground floors
and joints often only have quasi-polynomial (but not polynomial) contributions.

Theorem 15.5. There exist piecewise quasi-polynomial functions P δ
a in n+m variables such

that Φδ
a(µ, ν) = P δ

a (µ, ν).

Proof. The proof relies on [133, Theorem 1]. We proceed as in [7]. The relative invariant
can be written as a sum over the floor diagrams. As the curves are of fixed genus and have
a fixed number of ends, up to the weighting of the elevators, there is a finite number of floor
diagrams.

Let D be a marked floor diagram. We label the ends of D by the coordinates (µ, ν).
As in [7], we account for the symmetry in the partition ν by dividing by the order of its
automorphism group. Our goal is to find the possible weightings of the internal edges of D.
To incorporate the parity conditions on the edges adjacent to ground floors, we modify D
to get a graph GD by adding a vertex ve adjacent to each end e and an unbounded edge eG
adjacent to each ground floor G.

Let E be the set of edges of GD and V its set of vertices. The graph GD inherits an
orientation from D. Now, a weighting of D is a vector in NE satisfying the balancing
condition at each floor and the equality of weights of edges adjacent to the same joint. Let
εG be 2δaG modulo 2. Assume that the balancing condition for ground floors is satisfied on
G. We obtain a compatible weight weG for the new edge eG by solving

2weG + εG =
∑

e∈G in D

w(e).



TROPICAL QUIVER THEORY AND TROPICAL ENUMERATION ON RULED SURFACES 173

1
2

1
2

1 1

µ1
w

µ2
1
2

1 1

µ1
w

µ2
1 1

µ1
w

µ2

(a) (b) (c)

Figure 30. Floor diagrams with a non-polynomial contribution.

Let A be the adjacency matrix of the oriented graph GD. The coefficient of A for eG ∈ G is
2 by balancing. Let d ∈ ZV be the integer vector whose coordinates are given by

dv =


0 if v is an étage,

εG if v is a ground floor,

µi or νi if v = ve for some end e.

The multiplicity of a floor diagram is a monomial in the coordinates of the weight vector w.
Thus, we count the weight vectors w ≥ 0 satisfying Aw = d with corresponding multiplicity.

If there are no ground floors and every cycle passes through an even number of joints,
we can lift the floor diagram to a floor diagram on the cylinder. This corresponds to lifting
the tropical curves encoded by the diagram to tropical curves in the two-to-one cylinder
cover of the Möbius strip. On the cylinder, the sum of top weights is equal to the sum of
bottom weights, thus we can find a weighting only if this balancing condition is satisfied,
and polynomiality is due to [21].

If there is at least one ground floor or a cycle passing through an odd number of joints,
the map is surjective over Q, i.e., the image of A is of full-dimension.

By [133, Theorem 1], the function is a piecewise quasi-polynomial on the chamber complex
of the matrix A. On each chamber, the function is polynomial on vectors with fixed residue
modulo all non-zero principal minors of A. Lemma 15.8 gives a more complete description
of the minors. □

Remark 15.6. The statement in [133] concerns the count without polynomial multiplicity.
The extended statement can be obtained by induction on the degree by considering the graph
where some edges have been doubled. For details, see the proof of Theorem 4.2 in [7].

Example 15.7. In the following, we give some examples of floor diagrams with a non-
polynomial contribution. Their graphs are depicted in Figure 30.

30(a) Here, for given µ1 and µ2, complete the diagram by choosing the weights of the
remaining edges. The choice of the interior edge w completely determines the weight
of the edges adjacent to the ground floors. However, we have a parity condition on
these weights: even (resp. odd) if the diagram encodes curves in TM0 (resp. TM1).
Thus, w needs to have the same (resp. opposite) parity as µ1. Recall that the parity
of µ1 + µ2 is fixed.

30(b) For the second diagram, we have a similar parity obstruction: since a joint is adjacent
to the first étage, we need to have w ≡ µ1 mod 2.

30(c) For the last diagram, we can uniquely solve for the weights of the edges.
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15.2.2. Description of the minors of the adjacency matrix. Given a marked floor diagram
D and an adjacency matrix A of GD, let A∆ be a principal minor of A corresponding to a
subset ∆ ⊆ E of edges and let G∆ be the subgraph of GD containing all the vertices and the
edges of ∆. The quotient ZV /⟨A∆⟩ is computed by the following lemma.

Lemma 15.8. In the above notation,

(i) If the determinant of the minor is non-zero, then G∆ is a disjoint union of connected
subgraphs which are either trees, containing a unique eG, or which contain a unique
cycle and no edge eG.

(ii) The group ZV /⟨A∆⟩ is a sum over the connected components of the subgraph G∆,
where the group associated to a component is Z/2Z if the component is a tree con-
taining some eG, or a cycle passing through an odd number of joints, and 0 else (i.e.,
a cycle passing through an even number of joints).

Proof. Choosing a principal minor amounts to choosing a subset ∆ ⊆ E of size |V |. If the
principal minor is non-zero, ∆ has a bijection to V that assigns each vertex one to of its
adjacent edges in ∆. The expansion of the determinant is now a signed weighted sum over
these bijections. As the number of vertices and edges in G∆ is the same, G∆ has Euler
characteristic 0, and the same holds true for each of its connected components. Thus, for
each connected component there are two possibilities: Either it is a tree rooted at some edge
corresponding to a ground floor, or it contains a unique cycle.

This proves (i). To show (ii), note that the minor A∆ splits as a block-diagonal matrix
corresponding to its connected components. We claim that the determinant of the block
corresponding to a connected component is either 1 or 2, so that the quotient is a sum
of copies of Z/2Z. We can compute each determinant by pruning the branches of the
components, which amounts to Laplace expansion with respect to the row corresponding to
the vertex we prune. The coefficient of the vertex being ±1, we end up with one of these
two cases:

◦ For a component without cycle and rooted at an end eG, the determinant is 2 since
the coefficient of the latter in A is 2.

◦ If the component has a unique cycle, pruning the branches, we are left with the cycle.
When expanding the determinant, we have exactly two terms according to the choice
of vertex-edge assignment. The value of this determinant is 0 if the cycle passes
through an even number of joints and 2 if this number is odd.

□

15.2.3. Piecewise polynomiality in some special circumstances. We now use this fact to prove
polynomiality in several special cases. First, we consider curves that have a unique tangency
point with maximal order on the boundary. Afterwards, we show the analogue for curves of
small genus.

Corollary 15.9. The relative invariants having a unique intersection point with the boundary
are piecewise polynomial.

Proof. There is a unique variable µ = 2b ∈ N. By Theorem 15.5, for each floor diagram, the
contribution is piecewise quasi-polynomial, and the quasi-polynomiality is determined by the
residue of the divergence vector dmodulo the principal minors of the adjacency matrix A. To
conclude, we only need to show that these residues are constant. Let us consider a principal
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1 1 1 1
2 1

(a) (b) (c)

Figure 31. All floor diagrams of genus 2 and tangency profile 12a. An
arbitrary degree 2a can be reached by attaching ends via joints as indicated
by the dotted part of the pictures. Floor diagrams (a) and (b) contribute for
both TM0 and TM1, the diagram in (c) contributes with the dashed end for
TM0 and without the dashed end for TM1.

minor A∆ corresponding to a subgraph G∆. According to Lemma 15.8, the cokernel is a sum
of copies of Z/2Z corresponding to the components with either a cycle with an odd number
of joints, or an end eG at a ground floor. Thus, only the residue mod 2 of the divergence
vector d matter. All of its coordinates are constant except µ, which is either 0 or εG. As
µ = 2b ≡ 2δa mod 2, its residue mod 2 is fixed. The function is thus a true polynomial. □

Corollary 15.10. The relative invariants of genus 1 and 2 are piecewise polynomials.

Proof. We proceed similarly to prove that all the residues are fixed. Assume the diagram is
of genus 1. It has at most one floor; As it needs to have at least one, the floor is unique.

Assume the unique floor is an étage. Every end is adjacent to it, possibly through some
joint. Note that this diagram only contributes if the balancing condition at the étage is
satisfied, which imposes a condition on the ends. Then the matrix is unimodular, which, by
[7], implies that the contribution is polynomial.

If the unique floor is a ground floor, every end is (directly) adjacent to it. There is a
unique minor and the quotient is Z/2Z. However, as we have

∑
µi = 2b ≡ 2δa mod 2, the

residue is constant, implying polynomiality.

In case of genus 2, the possibilities for the floor diagrams are given in Figure 31:

31(a) If the diagram has a unique floor, it needs to be an étage with a joint whose both
extremities are adjacent to it. Further, every end is adjacent to the étage, after
potentially passing through some joint. As there is a cycle passing through an odd
number of joints (i.e., 1), the determinant is 2. The residue is given by the sum of
the entries, which is fixed by a since 2b ≡ 2δa mod 2. Thus, we get polynomiality.

31(b) Assume the diagram has two floors, both of which are étages. The matrix is unimod-
ular, again implying polynomiality.

31(c) Assume the diagram has a ground floor and an étage. The ground floor is linked
to the étage by an unique edge. Thus, we have exactly one principal minor with
determinant 2, and the residue is given by the sum of the entries. Thus, it is also
fixed and we get polynomiality.

□

15.3. Quasi-modularity. Quasi-modularity statements for the generating series of invari-
ants of degree 0 line bundle over an elliptic curve have been proven in [21]. Quasi-modularity
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is a desirable property since it implies a strong control over the coefficients, bounding their
growth polynomially. We consider the generating series of N δ

g,aE+bF (µ, ν) in a. For TM0,
given b and partitions µ+ ν ⊢ 2b, we set

F 0
g,b(µ, ν)(y) =

∑
a∈ 1

2
N

N0
g,aE+bF (µ, ν)y

2a,

where g ≥ 1 and b ∈ N. We consider exponents 2a of the variable y since a is a half-integer.
Similarly, for TM1, as b can be an integer or a half-integer, we have two generating series:
we set

F 1
g,b(µ, ν)(y) =

∑
a∈N

N1
g,aE+bF (µ, ν)y

2a if b ∈ N,

F 1
g,b(µ, ν)(y) =

∞∑
a∈ 1

2
+N

N1
g,aE+bF (µ, ν)y

2a if b /∈ N.

In other words, we consider the generating series of relative invariants, fixing the intersection
profile with the boundary and varying the intersection number (aE + bF ) ·F = 2a, which is
the exponent of the series variable.

Before proving the regularity result on the above generating series, we introduce the fol-
lowing auxiliary functions:

◦ G2(y) =
∞∑
n=1

σ1(n)y
n, the usual Eisenstein series up to an affine transformation,

◦ H(y) =
∞∑
n=1

“σ1(n)yn, the generating series of “σ1(n) = ∑
k|n

k odd

n

k
,

◦ H0(y) =
∞∑
n=1

“σ1(2n)y2n, H1(y) =
∞∑
n=0

“σ1(2n+1)y2n+1, the odd and even parts of H(y).

Lemma 15.11. The functions H, H0 and H1 are quasi-modular forms for some finite index
subgroup of SL2(Z).
Proof. We start with the function H. We have:

H(y) =
∞∑
n=1

Ö∑
k|n

k odd

n

k

è
yn =

∞∑
n=1

Ñ∑
k|n

n

k

é
yn −

∞∑
n=1

Ö∑
k|n

k even

n

k

è
yn

(∗)
= G2(y)−

∞∑
n′=1

Ñ∑
k′|n′

2n′

2k′

é
y2n

′
= G2(y)−G2(y

2).

To see (∗), note that for even k and n we can write k = 2k′, n = 2n′, and k|n if and only if
k′|n′. Then, H0 and H1 are just the even and odd parts of H:

H0(y) = 1
2

(
H(y) +H(−y)

)
H1(y) = 1

2

(
H(y)−H(−y)

)
= 1

2

(
G2(y) +G2(−y)

)
−G2(y

2), = 1
2

(
G2(y)−G2(−y)

)
.

Using [20, Lemma 2.1], they are quasi-modular forms for finite index subgroups of SL2(Z).
□
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Theorem 15.12. The generating series F 0
g,b(µ, ν) and F 1

g,b(µ, ν) are quasi-modular forms
for some finite index subgroup of SL2(Z).

Proof. In the section on polynomiality 15.2, we consider the floor diagrams and forget the
elevators weights. Here, we instead forget the degrees of the floors. Given b and partitions
µ and ν such that µ + ν ⊢ 2b, there are only a finite number of genus g floor diagrams up
to the degree of the floors. Then, for a given a ∈ 1

2
N, we find the diagrams contributing to

N δ
g,aE+bF (µ, ν) by constructing partitions of a satisfying such that for each étage F , aF ∈ N,

for a ground floor G, aG ∈ 1
2
N and δ·2aG ≡∑e∋G w(e) mod 2, and such that

∑
aG+

∑
aF = a.

Let D be a marked floor diagram without floor degrees, and for a ground floor let
εG ≡ ∑

e∋G w(e). Given a family (aF , aG) of degrees for the floors, let D(aF , aG) be the
corresponding diagram. By Definition 14.22, its multiplicity is

m
(
D(aF , aG)

)
= W

∏
F

avalF−1
F σ1(aF)

∏
G

(2aG)
valG−1“σ1(2aG),

where W accounts for the contribution of the elevators weights and the 2k term. The sum
over all values of a factors as follows:∑

a

Ñ ∑
ΣaF+ΣaG=a

m
(
D(aF , aG)

)é
y2a

= W
∏
F

(
∞∑

aF=1

avalF−1
F σ1(aF)y

2aF

)∏
G

á
∞∑

aG∈ 1
2
N

δ2aG≡εG mod 2

(2aG)
valG−1“σ1(2aG)y2aGë .

The series in the product over the étages are quasi-modular forms, since they are equal to
(DkG2)(y

2) for a derivation of order k. The product over the ground floors depends on δ:

In TM0, there is no parity condition on the sum, thus we recover some derivative of the
generating function H(y) and obtain quasi-modularity. In TM1, depending on the value of
εG, we sum over the odd or even values, yielding HεG(y) in any case. This also results in the
quasi-modularity of the series. □

Remark 15.13. For TM0, µ = ∅ and ν = 12b, we recover the non-relative invariants of the
degree 0 cylinder, for which quasi-modularity has already been proven in [21] and [23].
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AlessioBorzi/Linear-Degenerate-Incidence-Plucker-relations-on-M2, 2023.
[27] Alessio Borz̀ı and Victoria Schleis. Linear degenerate tropical flag varieties, 2023. arxiv::2308.04193.
[28] Lara Bossinger, Sara Lamboglia, Kalina Mincheva, and Fatemeh Mohammadi. Computing toric de-

generations of flag varieties. In Combinatorial algebraic geometry, volume 80 of Fields Inst. Commun.,
pages 247–281. Fields Inst. Res. Math. Sci., Toronto, ON, 2017.

[29] Pierrick Bousseau. Tropical refined curve counting from higher genera and lambda classes. Inventiones
mathematicae, 215(1):1–79, 2019.

[30] Madeline Brandt, Christopher Eur, and Leon Zhang. Tropical flag varieties. Adv. Math., 384:Paper
No. 107695, 41, 2021.

[31] Michel Brion. Representations of quivers. Lecture notes, 01 2008.
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[70] Lothar Göttsche and Vivek Shende. Refined curve counting on complex surfaces. Geom. Topol.,
18(4):2245–2307, 2014.

[71] Daniel R. Grayson and Michael E. Stillman. Macaulay2, a software system for research in algebraic
geometry. Available at http://www.math.uiuc.edu/Macaulay2/.

[72] Phillip Griffiths and Joseph Harris. Principles of algebraic geometry. John Wiley & Sons, 2014.
[73] Mark Gross and Bernd Siebert. Logarithmic Gromov-Witten invariants. Journal of the American Math-

ematical Society, 26(2):451–510, 2013.
[74] Alexandre Grothendieck. Sur la classification des fibrés holomorphes sur la sphère de Riemann. Amer.

J. Math., 79:121–138, 1957.
[75] Simon Hampe. Tropical linear spaces and tropical convexity. Electron. J. Combin., 22(4):Paper 4.43,

20, 2015.
[76] Mohammad Moinul Haque. Tropical incidence relations, polytopes, and concordant matroids. arXiv

preprint 1211.2841, 2012.
[77] Robin Hartshorne. Algebraic geometry, volume 52. Springer Science & Business Media, 2013.
[78] Sven Herrmann, Anders Jensen, Michael Joswig, and Bernd Sturmfels. How to draw tropical planes.

the electronic journal of combinatorics, 16(2):R6, 2009.
[79] Chris Heunen and Vaia Patta. The category of matroids. Appl. Categ. Structures, 26(2):205–237, 2018.
[80] June Huh. Rota’s conjecture and positivity of algebraic cycles in permutohedral varieties. PhD thesis,

University of Michigan, 2014.

http://www.math.uiuc.edu/Macaulay2/


TROPICAL QUIVER THEORY AND TROPICAL ENUMERATION ON RULED SURFACES 181
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[85] Ilia Itenberg and Grigory Mikhalkin. On Block–Göttsche multiplicities for planar tropical curves. In-

ternational Mathematics Research Notices, 2013(23):5289–5320, 2013.
[86] Manoel Jarra, Oliver Lorscheid, and Eduardo Vital. Quiver matroids, 2023. in preparation.
[87] Philipp Jell, Hannah Markwig, Felipe Rincón, and Benjamin Schröter. Moduli spaces of codimension-
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Appendix A. Table of Notation

The following is a list of all notation used in this thesis, intended for a quick overview.
In the following, K is a valued field, d, g, k and n denote natural numbers, α and β denote
sequences of natural numbers,M and N denote matroids, µ and ν denote valuated matroids,
Q denotes a quiver and R denotes a Q-representation, and Γ denotes an abstract tropical
curve. The table is subdivided roughly by topics.

Symbol Meaning Reference

[n] {1, . . . , n}
1 (1, . . . , 1)

v (v1, . . . , vn)

eS Indicator vector of the set S

Sc Sc

I ∪ j \ i Shorthand for (I ∪ j) \ i
I \ i ∪ j Shorthand for (I \ i) ∪ j

I (1, 2, 3, . . . )

|α| ∑∞
i=0 αi

Iα
∑∞

i=0(αi · i)
Iα

∏∞
i=0 i

αi

val Valuation map on K 2.2

C{{t}} Field of Puiseux series 2.4

T Tropical semifield R ∪ {∞} 2.1

P(Tn) Tropical projective space 2.18

trop(f) Tropicalization of the polynomial f ∈ K[x±1
1 , . . . x±1

n ] 2.5

trop(V )
Tropicalization of the variety V ,

i.e., ∩f∈V trop(f) ⊂ Rn/R1 2.5

Nf Newton polytope of a polynomial f ∈ K[x±1
1 , . . . x±1

n ] 2.16

∆f Newton subdivision of a polynomial f ∈ K[x±1
1 , . . . x±1

n ] 2.16

trop(f) Tropicalization of the polynomial f ∈ K[x1, . . . xn] 2.19

trop(V ) (Multiprojective) tropicalization of the variety V 2.19

B(M) Bases of M 3.1

M(L) Column matroid of a linear space L 3.2

Ind(M) Independent sets of M 3.6

rkM Rank function on M 3.9

C(M) Circuits of M 3.12

M(G) Cycle matroid of a graph G 3.13

M∗ Dual matroid of M 3.18

C∗(M) Cocircuits of M 3.20
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M |S Restriction of M to a set S 3.22

M/S Contraction of M by a set S 3.23

LM Lattice of flats of M 3.27

ΣM Bergman fan of M 3.31

N ↞M N is a matroid quotient of M 3.38

f−1(M) Induced matroid of M under f 3.44

Mo Pointed matroid of M 4.2

prS Projection of sets 3.53

µ Extension of µ to independent sets 3.63

C(µ) Valuated circuits of µ 3.66

C∗(µ) Valuated cocircuits of µ 3.70

V(µ) Vectors of µ 3.71

trop(µ) Tropical linear space of µ 3.67

µ|S Restriction of µ to a set S 3.79

µ/S Contraction of µ by a set S 3.80

µ⊕ ν Direct sum of µ and ν 3.81

ν ↞ µ ν is a valuated matroid quotient of µ 3.89

Gr(k;n) Grassmannian 3.82

Dr(k;n) Dressian 3.86

Pr;n Grassmann-Plücker relations 3.82

Pr,s;n Incidence Plücker relations 3.92

Fl(d;n) Flag variety 3.93

FlDr(d;n) Flag Dressian 3.93

f−1(µ) (Affine) induced valuated matroid of µ under f 4.1, 4.7

QGr(R,d;n) Quiver Grassmannian of R 7.11

Pα;n Quiver Plücker relations 7.13

QDr(R,d;n) Quiver Dressian of R 9.5

LFl(S,d;n) Linear degenerate flag variety 10.3

LFlDr(S,d;n) Linear degenerate flag Dressian 10.5

P(M) Matroid polytope of M 11.1

PM Quiver point configuration of a quiver matroid M 11.5

Mg,n Moduli space of smooth n-marked curves of genus g 12.4

Mtrop
g,n

Moduli space of stable tropical n-marked
curves of genus g

12.23

Mg,n Moduli space of n-marked curves of genus g 12.7

Mn(P2, d)
Moduli space of rational n-marked
parametrized curves of degree d

12.27
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Mtrop
0,n (R2,∆)

Moduli space of tropical rational n-marked
parametrized curves of degree d

12.25

Mlog
β (X |D) Moduli space of parametrized logarithmic curves 12.48

[Mlog
β (X0)]

log virtual fundamental class of
parametrized logarithmic curves to X0

12.55

ev Evaluation map 12.10

evtrop Tropical evaluation map 12.29

ft Forgetful map 12.28

Nd Degree d Gromov-Witten invariant on P2 12.13

N trop
∆ Tropical degree d Gromov-Witten invariant on R2 12.33

Nβ Logarithmic Gromov-Witten invariant of β 12.51

N trop(d, g, (α, β))
Tropical relative degree d, genus g
Gromov-Witten invariant on R2 12.39

BGδ
S,L Refined δ-Gromov-Witten invariant 12.63

BGδ,trop
∆ Refined tropical δ-Gromov-Witten invariant 12.66

m(Γ, h) Multiplicity of Γ 12.32

[n]q Quantum number/q-analog of n 12.65

mq(Γ, h) Refined multiplicity of Γ 12.32

CMδ A complex Möbius strip
12.5.2,
12.5.3

TE A tropical elliptic curve 12.78

TC A tropical cylinder 12.79

TMδ A tropical Möbius strip 13.1
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Appendix B. Computations

Here, we give supplementary code from different chapters of the thesis. The source code
can be accessed in executable format at https://victoriaschleis.github.io/thesis.

html. All code in this section is my own, except for some code in Section B.5, which was
jointly written with Alessio Borz̀ı and Giulia Iezzi respectively for the articles [27] and [82].
All Oscar [114] code was written and tested in Version 1.0.0, which was the current version
on submission of this thesis.

B.1. Code for morphisms of matroids. In this section, we introduce Oscar [114] code,
dealing with morphisms of matroids.

We begin by defining a function which checks whether two matroids M and N form a
quotient M ↞ N , by checking whether the set of flats of M is a subset of the set of flats of
N , see Definition 3.37.

function is_flag_matroid(M::Matroid, N::Matroid)

return issubset(sort.(flats(M)), sort.(flats(N)))

end

Our next step in computationally verifying whether a map is a morphism of matroids is
to define the induced matroid f−1(M). In Oscar, this can be achieved as follows. First,
we compute the rank r of the image of the whole set [n] in M . Then, bases of f−1(M)
are all subsets of [n] of size r whose image under the map f has rank r. The map f here
is technically implemented as a Dictionary. Then, we create a new matroid consisting of
exactly the sets we computed.

function induced_matroid(M::Matroid, f::Dict)

new_groundset = keys(f)

im_groundset = unique!([get!(f, ele, 0) for ele in new_groundset])

new_rk = rank(M, im_groundset)

b_m = bases(uniform_matroid(new_rk, length(new_groundset)))

new_bases = Vector{Vector{Int64}}([])

for b in b_m

im_b = [get!(f, elem, 0) for elem in b]

if rank(M, im_b) == new_rk

push!(new_bases, b)

end

end

return matroid_from_bases(new_bases, new_groundset)

end

Combining both functions, we can then easily determine whether a given map f:M → N
is a morphism of matroids.

function is_morphism_of_matroids(M::Matroid, N::Matroid, f::Dict)

return is_flag_matroid(induced_matroid(N, f), M)

end

Alternatively, we might wish to check whether a given map is a strong map of matroids.
To this end, we use an auxiliary function that adds a loop to each matroid.

https://victoriaschleis.github.io/thesis.html
https://victoriaschleis.github.io/thesis.html
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function add_loop(M::Matroid)

return matroid_from_bases(bases(M), M.groundset[length(M.groundset)]+1)

end

Now, we use the function adding a loop and then extend the map f to account for the new
loops added to both matroids.

function is_strong_map(M::Matroid, N::Matroid, f::Dict)

loopmap = Dict((length(M.groundset)+1) => (length(N.groundset)+1))

pointed_f = merge(f, loopmap)

return is_flag_matroid(induced_matroid(add_loop(N), pointed_f),

add_loop(M))↪→

end

We can now use these methods to verify the examples in Section 3.2. Further, for small
enough matroids we can compute all possible morphisms between them matroids, and we
can determine the endo- and isomorphisms of a matroid into itself, with the latter being
possible for much larger ground set sizes. We give the code for these procedures below.

To this end, we need to first be able to generate all possible maps between two ground
sets, and all possible maps between two ground sets, mapping the distinguished loop o ofMo

to the distinguished loop o of No. The following function does both of these things through
careful iterator manipulation, enabling the second case when setting sm = true.

function all_maps_m_to_n(m::Int, n::Int, sm::Bool)

n+=sm

k = 1:n

for i in 2:m

k = Iterators.product(k, 1:n)

end

c = collect(k)

f = Iterators.flatten(c)

for i in 2:m

f = Iterators.flatten(f)

end

long_vec = collect(f)

l = Int(length(long_vec)/m)

mat_im = reshape(long_vec, m, l)

if sm

add_row = reshape(collect(Iterators.flatten([n for i in 1:l])), 1,

l)↪→

m+=sm

mat_im = vcat(mat_im, add_row)

end

images = cols(mat_im)

return [Dict(zip(collect(1:m), img)) for img in images]

end

Here, the function cols() is the following auxiliary function, extracting the columns of a
Matrix as a Vector{Vector{Int}}.
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function cols(c)

return collect(c[:, i] for i in 1:size(c)[2])

end

Using this function, we can easily compute all morphisms and strong maps f: M → N ,
using the two methods below, provided the ground sets [m] and [n] are small enough to be
computationally feasible.

function find_all_morphisms(M::Matroid, N::Matroid)

all_maps = all_maps_m_to_n(length(M.groundset), length(N.groundset),

false)↪→

return filter((f) -> is_morphism_of_matroids(M, N, f), all_maps)

end

function find_all_strong_maps(M::Matroid, N::Matroid)

all_maps = all_maps_m_to_n(length(M.groundset), length(N.groundset),

true)↪→

return filter((f) -> is_strong_map(M, N, f), all_maps)

end

B.2. Code for matroid and quiver polytopes. In the previous section, we had intro-
duced methods for dealing with morphisms of matroids in Oscar. In this section, we now
concern ourselves with Oscar code which helps us analyze matroid polytopes and quiver
polytopes, and experimenting with which lead to Conjecture 11.1.

First, we give two basic methods, to convert matroids into matroid polytopes, and vice
versa. The first method, matroid polytope allows us to compute a matroid polytope from
a matroid:

function matroid_polytope(M::Matroid)

b = bases(M)

v = Vector{Vector{Int64}}([])

for i in b

push!(v, Vector{Int64}(map(j->(j in i), M.groundset)))

end

return convex_hull(transpose(reshape(collect(Iterators.flatten(v)),

(length(v[1]), length(v)))))↪→

end

Now, we give a method allowing us to go in the other direction. It allows us to compute a
matroid from a matroid polytope.

function matroid_from_polytope(P::Polyhedron)

verts = Vector{Vector{QQFieldElem}}(collect(vertices(P)))

bases = Vector{Vector{Int64}}([])

for v in verts

v = Int.(v)

push!(bases, findall(i -> i == 1,v))

end

return matroid_from_bases(bases, ambient_dim(P))

end
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As a slight caution — the function matroid polytope(M) and many of the other functions
in this section and the last (in particular, induced matroid and functions using this) only
work if the ground set of M is an integer range. If it is not, we give the following auxiliary
function, which converts the ground set into the necessary integer range.

function normalize_groundset(M::Matroid)

nb = Vector{Vector{Int64}}([])

for b in bases(M)

push!(nb, [findfirst(i->i==j, M.groundset) for j in b])

end

return matroid_from_bases(nb, length(M.groundset))

end

Now that we can easily compute matroid polytopes from matroids, we can take the
Minkowski sum of two polytopes with the standard command +, enabling us to obtain can-
didates for quiver polytopes. Now, to test our conjectures, we need to determine different
polyhedral properties on the resulting polytopes. For instance, for the polytopes P of loop
quivers discussed in Section 11.3, we determine the symmetry group of the vertices, using
the Oscar commands describe(combinatorial symmetries(P)), and the group generated
by the linear symmetries of the vertices using describe(linear symmetries(P)). For small
enough polytopes, this gives us a complete description of the symmetry group of the vertices.

When working with quivers containing more than one vertex, we take sums of the matroid
polytopes associated to each vertex. Per Conjecture 11.1, we now need to not only take into
account the combinatorial symmetries of the vertices, but also that of special lattice points
on the inside of faces. We can extract these and determine their orbits under the action of
the symmetric group Sn from our sum of polytopes as follows:

function boundary_point_orbits(P::Polyhedron)

return

unique!(sort!.(Vector{Vector{Int64}}(boundary_lattice_points(P))))↪→

end

When working with projections of polytopes, as we did in Section 11 when discussing
the quiver polytopes corresponding to linear degenerate flag varieties, we sometimes want
to determine whether a given polytope is a generalized permutohedron. We implement a
function that does this, given as follows.

function is_generalized_permutohedron(P::Polyhedron)

f = collect(faces(P,1))

res = []

for i in f

j = collect(vertices(i))

dif_vert = j[1] - j[2]

dif_vert = div.(dif_vert, gcd(dif_vert))

push!(res, dif_vert)

end

return(res)

end

B.3. Code for the generation of linear degenerate Plücker relations. Below you
can find Macaulay2 [71] code developed jointly with Alessio Borz̀ı for [27]. It is primarily



TROPICAL QUIVER THEORY AND TROPICAL ENUMERATION ON RULED SURFACES 191

concerned with the generation of (linear degenerate) Plücker incidence relations as discussed
in Definitions 3.92 and 10.3 for the classical and the linear degenerate case respectively.

Below is the core of our code, which generates the (linear degenerate) Plücker incidence
relations. In this code, the sets I and J are the sets I and J in the Plücker relations. The
set S is the projection set necessary to compute linear degenerate Plücker relations.

pluckerRelations = method(TypicalValue => Ideal);

pluckerRelations(ZZ, ZZ, List, ZZ) := (r, s, S, n) -> (

P := for k from 1 to r list(

for J in subsets(n, s) list(

for I in subsets(n, r) list(

M := new List; --list of deg_S(X_Ialpha)

L := new List; --list of tuples (monomial, power of t)

M = M | {#((set I) * (set S))};

L = L | {( - p_I * p_J, #((set I) * (set S)))};

for alpha in subsets(s, k) do(

Jalpha := new MutableList from J;

for i from 0 to #alpha-1 do(Jalpha#(alpha_i) = I_i;);

Jalpha = toList Jalpha;

Ialpha := J_alpha | I_(toList(k..r-1));

condition := (#Ialpha == #(unique Ialpha)) and (#Jalpha ==

#(unique Jalpha));↪→

if condition then (

(signPermutations(Ialpha) * p_(sort Ialpha) *

signPermutations(Jalpha) * p_(sort Jalpha));↪→

L = L | {(signPermutations(Ialpha) * p_(sort Ialpha) *

signPermutations(Jalpha) * p_(sort Jalpha), #((set Ialpha) * (set S)))};↪→

M = M | {#((set Ialpha) * (set S))};

);

);

m = min M;

f = 0; --output polynomial

for l in L do( if (l_1 - m == 0) then(f = f + l_0); );

f

)

)

);

return ideal unique flatten flatten P;

);

pluckerRelations(ZZ, ZZ, ZZ) := (r, s, n) ->(return pluckerRelations(r, s,

{}, n););↪→

pluckerRelations(ZZ, ZZ) := (r, n) ->(return pluckerRelations(r, r, n););

pluckerRelations(List) := L -> (return sum for l in L list (

pluckerRelations toSequence l ););↪→
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We further implemented the below auxiliary method, which computes the sign of terms
in a Plücker relation.

signPermutations = method(TypicalValue => ZZ);

signPermutations(List) := (l) -> (

signCount := 0;

for i from 0 to #l-1 do(

for j from i to #l-1 do(

if l_i > l_j then( signCount = signCount +1; )

);

);

return (-1)^(signCount);

);

B.4. Code for the generation of quiver Plücker relations. For the quiver Plücker
relations we discussed in Definition 7.13, we have written the following Oscar [114] code.
It is a rather direct implementation of the definition. We remark that r and s denote the
dimensions in the dimension vector of the subrepresentation, that m c r and n c s denote
the sets

(
[m]
r

)
and

(
[n]
s

)
respectively, and that Icomp is the complement of I. Further, I c j

denotes the set I ∪ j and J m i denotes J \ i.
function quiver_pluecker_relations(r::Int, s::Int, A::Matrix{Int64})

n,m = size(A)

Iset = subsets(collect(1:m),r-1)

Jset = subsets(collect(1:n),s+1)

m_c_r =subsets(collect(1:m),r)

n_c_s =subsets(collect(1:n),s)

R,x,y = polynomial_ring(QQ, "x"=>m_c_r, "y"=>n_c_s)

pluecker_list = Vector{MPolyRingElem}([])

for I in Iset

Icomp = filter!(k->!(in(k,I)), collect(1:m))

for J in Jset

f = R(0)

for j in Icomp

sj = sign_qpl(j,I,J)

for i in J

I_c_j = sort([I;j]);

J_m_i = setdiff(J,[i]);

f = f + sj*A[i,j]*x[findfirst(k -> k == I_c_j,

m_c_r)]*y[findfirst(l -> l == J_m_i, n_c_s)]↪→

end

end

push!(pluecker_list,f)

end

end

return unique!(pluecker_list)

end



TROPICAL QUIVER THEORY AND TROPICAL ENUMERATION ON RULED SURFACES 193

We remark that in the above method, we are giving the implementation for integer matrices.
The analogous implementation also works for other fields, where we substitute all occurrences
of QQ with the respective field. We aim to improve this in an upcoming version.

Again, we compute the sign straightforwardly using the method below:

function sign_qpl(j::Int,I::Vector{Int},J::Vector{Int})

return (-1)^(length(findall(k -> k>j, J))+length(findall(i -> i>j, I)))

end

When processing the output of the previous computations, we might want to eliminate
polynomials from our list that are just multiples of each other. We can do this using the
following two functions, which normalize all polynomials in a list and omit redundant poly-
nomials after normalization.

function normalize_polynomial(f::MPolyRingElem)

coeffs_f = collect(coefficients(f))

f = f/gcd(coeffs_f)

if coeffs_f[findfirst(i->i != 0,coeffs_f)]<0

f = (-1)*f

end

return f

end

function remove_redundant_polys(p1::Vector{MPolyRingElem})

unique!(filter!(i->i != 0, p1))

return unique!([normalize_polynomial(i) for i in p1])

end

B.5. Code for examples of non-realizable points in quiver Dressians. For examples
corresponding to linear degenerate flag varieties we also refer to the Macaulay2 [71] code
presented in Appendix B.3. Since the computations in this section require heavy Gröbner
fan computations, we use gfan [88] and Macaulay2 [71].

Example 9.12. The equations used to generate Example 9.12 were given directly therein
and can alternatively be obtained using the code in the previous section. We can compute the
associated quiver Dressian using the input example n4 nonrealizable available at https:
//victoriaschleis.github.io/thesis/ using the gfan [88] command

gfan_tropicalintersection <example_n4_nonrealizable >out

The pre-packaging from our previous output is necessary due to the formatting require-
ments of input to gfan. The computation yields an output file out, which is available at the
same website. We record the most important contents of the output here:

AMBIENT_DIM

20

DIM

12

F_VECTOR

1 58 466 1156 858 3

https://victoriaschleis.github.io/thesis/
https://victoriaschleis.github.io/thesis/
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After inputting the same equations into Macaulay2 [71], we can compute the dimension
of the ideal they generate to be 10.

Using Theorem 2.15, this already implies that the Dressian and the Grassmannian differ.
Due to the fact that the quiver Grassmannian has many irreducible components which
are partially generated by monomials, associated tropical variety is partially generated by
monomials as well, and hence not directly computable using gfan or the implementation of
tropicalVariety in Macaulay2, due to the fact that the latter is based on the former.

Hence, to understand the structure, we need to compute a primary decomposition of the
quiver Plücker ideal, and then tropicalize the individual components, after removing the
monomials in the generating sets. The list of primary components and their tropicalizations
can be found at https://victoriaschleis.github.io/thesis/, or easily be computed
by plugging in the output of the primary decomposition computation into gfan, using the
following command:

gfan_tropicalbruteforce <n4_comp_i >out

where i is substituted by the number of the component we wish to investigate.

https://victoriaschleis.github.io/thesis/
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