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Abstract

This thesis is motivated by the shortcomings of contemporary AI models
compared to human cognitive abilities. Its central hypothesis is that
these limitations arise from the model’s inability to learn and maintain
structured object representations of the world. The overarching research
question is how to integrate such representations with today’s leading
AI models, specifically neural networks. This thesis is concerned with a
class of methods that attempt to solve this problem, called object-centric
representation learning. In particular, its contributions are twofold: (1)
enabling the unsupervised discovery of objects in complex, real-world
data, and (2) demonstrating the benefits of object-centric representations
for autonomous agent learning.

A significant limitation of object-centric representation learning was
that it only successfully discovered objects on simple, synthetic datasets.
The major contribution of this thesis is an approach that overcomes this
limitation and, for the first time, allows models to decompose natural
images and videos into object-centric representations. To achieve this,
the thesis introduces mechanisms that integrate semantic inductive
biases into object-centric models. These mechanisms work by training
the model to predict targets derived from pre-trained semantic features,
which can be obtained from self-supervised learning methods in a fully
unsupervised way. Specifically for video data, an alternative prediction
target encoding temporal correlations between pre-trained features is
proposed, introducing an additional inductive bias toward grouping
objects by consistent motion. The resulting models achieve state-of-the-
art results and scale to real-world datasets such as PASCAL VOC, COCO,
and YouTube-VIS.

As further contributions, this thesis presents two case studies that
illustrate the advantages of object-centric representations for applica-
tions, specifically in the domain of autonomous agent learning with
reinforcement learning (RL). In the first case study, an algorithm for
self-supervised RL is introduced; leveraging object-centric represen-
tations, the agent learns to compose simple sub-goals to accomplish
tasks in complex, multi-object environments. In the second case study,
a measure of causal influence between agent and objects is derived;
this measure can be integrated into RL algorithms in various ways to
significantly improve their sample efficiency. The results highlight the
potential of object-centric representations as an inductive bias for agent
systems in the physical world, demonstrating important properties such
as interpretability, generalization, and data efficiency.

Through these contributions, the thesis advances the field of object-
centric representation learning, demonstrating its potential and paving
the way for practical real-world applications.



Zusammenfassung

Diese Dissertation ist von den Unzulänglichkeiten zeitgenössischer KI-
Modelle im Vergleich zu den kognitiven Fähigkeiten des Menschen
motiviert. Ihre zentrale Hypothese ist, dass diese Einschränkungen aus
der Unfähigkeit der Modelle resultieren, strukturierte Objektrepräsenta-
tionen der Welt zu lernen und aufrechtzuerhalten. Die übergeordnete
Forschungsfrage ist, wie solche Repräsentationen in die heutigen führen-
den KI-Modelle, insbesondere neuronale Netzwerke, integriert werden
können. Diese Dissertation befasst sich mit einer Klasse von Methoden,
die versuchen, dieses Problem zu lösen, genannt objektzentrisches Reprä-
sentationslernen. Dabei liefert sie zwei Beiträge: (1) die unüberwachte
Entdeckung von Objekten in komplexen, realen Daten zu ermöglichen
und (2) die Vorteile objektzentrischer Repräsentationen für das Lernen
autonomer Agenten aufzuzeigen.

Eine bedeutende Einschränkung des objektzentrischen Repräsentati-
onslernens war, dass es Objekte nur in einfachen, synthetischen Daten-
sätzen erfolgreich entdeckte. Der Hauptbeitrag dieser Dissertation ist ein
Ansatz, der diese Einschränkung überwindet und es erstmals ermöglicht,
natürliche Bilder und Videos in objektzentrische Repräsentationen zu
zerlegen. Um dies zu erreichen, führt die Dissertation Mechanismen
ein, die semantische “inductive biases” in objektzentrische Modelle
integriert. Diese Mechanismen funktionieren, indem das Modell darauf
trainiert wird, Ziele vorherzusagen, die aus vortrainierten semantischen
Repräsentationen abgeleitet werden, welche durch selbstüberwachtes
Lernen gewonnen werden können. Speziell für Videodaten wird ein
alternatives Prädiktionsziel vorgeschlagen, das zeitliche Korrelationen
zwischen vortrainierten Repräsentationen enkodiert und einen zusätz-
lichen “inductive bias” hin zu einer Gruppierung von Objekten durch
konsistente Bewegung einführt. Die resultierenden Modelle erreichen
erstklassige Ergebnisse und skalieren auf reale Datensätze wie PASCAL
VOC, COCO und YouTube-VIS.

Als weitere Beiträge präsentiert diese Dissertation zwei Fallstudien,
die die Vorteile objektzentrischer Repräsentationen für Anwendungen
veranschaulichen, insbesondere im Bereich des Lernens autonomer
Agenten mit Reinforcement Learning (RL). In der ersten Fallstudie
wird ein Algorithmus für selbstüberwachtes RL vorgestellt; durch die
Nutzung objektzentrischer Repräsentationen lernt der Agent, einfache
Teilziele zu kombinieren, um Aufgaben in komplexen Umgebungen
mit mehreren Objekten zu erfüllen. In der zweiten Fallstudie wird ein
Maß für den kausalen Einfluss zwischen Agent und Objekten abgeleitet;
dieses Maß kann auf verschiedenste Weisen in RL-Algorithmen inte-
griert werden, um deren Dateneffizienz erheblich zu verbessern. Die
Ergebnisse heben das Potenzial objektzentrischer Repräsentationen als
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“inductive bias” für Agenten in der physischen Welt hervor und demons-
trieren wichtige Eigenschaften wie Interpretierbarkeit, Generalisierung
und Dateneffizienz.

Durch diese Beiträge treibt die Dissertation das Feld des objektzentri-
schen Repräsentationslernens voran, demonstriert dessen Potenzial und
ebnet den Weg für praktische Anwendungen in der realen Welt.
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1 In this thesis, I will mostly use
“we” in the inclusive sense to refer
to the reader and myself, but some-
times also in the exclusive sense,
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and myself. It should, hopefully,
always be clear from context.
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discuss it in detail in Chap. 2. For
now, let us think of objects in terms
of independent entities existing in
the physical world.

3 Also referred to as “good old-
fashioned AI” (Haugeland, 1985).

4 Today mostly known as deep
learning (Goodfellow et al., 2016).

Chapter 1
Introduction

The world around us is full of structure. From the microscopic — atoms,
molecules, cells — to the macroscopic — biosystems, weather patterns,
geologic formations — each level of observation is rich in structure. Most
important for us humans, the world we1 live in, sense, and interact with,
is highly structured in terms of objects2: animals, plants, vehicles, houses,
furniture, tools, etc. We are surrounded by objects, natural and artificial.

As a consequence, the sensory data we receive from the outside —
whether visual, auditory, or even tactile — is imbued with this structure.
Astonishingly, in our early years, our minds pick up on the structure
and mirror it in the mental models we are building of the world. We
learn to perceive the world in terms of objects, events, actions, and
relationships (Spelke and Kinzler, 2007). Beyond perception, this extends
to the higher functions of our cognition: language is structured (Chom-
sky, 2002), and thought is conjectured to have a structured, symbolic
basis as well (Fodor, 1975). All the acts of reasoning that humans do
effortlessly, such as simulating counterfactual scenarios in our mind,
forming analogies and abstractions, understanding new situations, are
believed to be grounded in mental structures that match the physical
reality (Johnson-Laird, 2010).

For artificial intelligence (AI) systems to perceive, reason about, and
act in our human world, it appears natural that they, too, should structure

their internal representations in terms of the external structures they represent.
This was the central idea behind the AI paradigm of symbolism3 (Newell
and Simon, 1976). However, it eventually became apparent that manually
creating a symbolic description of the world, with all its complexities,
nuances and inconsistencies, was too hard a task (Russell and Norvig,
2020). A particular problem is grounding the symbols in low-level
sensory inputs, which is required for AI systems to interact with the
physical world.

Instead, the dominant approach to AI today is based on statistical
machine learning (ML), in particular the paradigm of connectionism,4
which eschews symbols in favor of distributed representations learned from

data (Bengio et al., 2013). This proved to be especially advantageous
for learning directly from high-dimensional sensory data. But ma-
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Figure 1.1: The binding problem. How can neural models dynamically combine information from unstructured
inputs into a structured representation? Object-centric representation learning aims to address this question by
designing mechanisms and inductive biases that allow for (1) segregating high-dimensional sensory data into
meaningful entities; (2) representing information in a modular, symbol-like form; and (3) composing structures to
solve tasks of interest and enable systematic generalization. This thesis makes contributions to the first and last
aspect. Figure design adopted from Greff et al. (2020, Fig. 2), robot image created with DALL·E 3.

5 This is known as “shortcut learn-

ing” (Geirhos et al., 2020): the
model picks up on any useful sta-
tistical regularities in the training
data, whether they are “spurious”
or hold more generally. A common
critique is that the model thus only

learns a “surface-level understand-
ing”, but this formulation perhaps
underappreciates the capabilities
that can emerge from statistical
modeling at scale (Brown et al.,
2020).

6 For example: Eslami et al. (2016),
Greff et al. (2016, 2017), Steenkiste
et al. (2018), Burgess et al. (2019),
Greff et al. (2019), Engelcke, Ko-
siorek, et al. (2020), Z. Lin et al.
(2020), Locatello et al. (2020), Kipf
et al. (2022), and Singh, Deng, et al.
(2022).

chine learning may also have its limits: so far, human-level, systematic
generalization remains elusive. Ultimately, being based on statistical
learning, the model learns only to the level required to explain the data,
without necessarily capturing the underlying concepts.5 Any further
out-of-distribution generalization is inevitably based on inductive bi-

ases (Mitchell, 1980) — indicating that the inductive biases necessary to
achieve human-level generalization are still missing.

What, then, is the missing piece? One position is that it is the ability to
discover, represent, and process symbol-like structures in high-dimensional
data in an autonomous manner (Lake et al., 2017; Greff et al., 2020;
Schölkopf et al., 2021; Goyal and Bengio, 2022; Smolensky et al., 2022;
Hinton, 2023). This is consistent with the only known learning system
that exhibits systematic generalization, the human brain. But to avoid
repeating the failures of symbolic AI, rather than engineering such a
model from the ground-up, this ability should be directly integrated into
the most successful AI systems of today: neural networks. In other words,
the question is what kind of inductive biases empower neural models to
learn and process structured representations from unstructured data.
Greff et al. (2020) call this the “binding problem of artificial neural networks”,
and divide it into three aspects: (1) segregation, (2) representation, and
(3) composition (see Fig. 1.1).

In this thesis, I focus on a certain class of structured representations —
object-centric representations — capturing and isolating objects in visual
scenes into a symbol-like structure. In particular, I will investigate how
neural networks can learn such representations from data without human

supervision. This problem, usually referred to as object-centric representa-

tion learning, has been the subject of study in recent years, growing in
popularity.6 Besides their inherent interpretability, object-centric repre-
sentations have been shown to exhibit systematic generalization (Dittadi
et al., 2022; Wiedemer et al., 2024), robustness to distribution shifts (Dit-
tadi et al., 2022; Yoon et al., 2023), and data-efficient learning (Driess et al.,
2023; Jiaqi Xu et al., 2024). This makes object-centric representations a



3

promising basis for supporting the features of human cognition, without
losing the advantages of neural networks.

Let us discuss object-centric representation learning through the lens
of the binding problem and relate it to this thesis:

• Representation — the current standard is to model the data as a set of

latent vectors called “slots”: each slot should capture the “description”
of exactly one object. The work presented in this thesis similarly uses slots
as the core representational mechanism, and builds upon established
object-centric models (Jiang et al., 2020; Locatello et al., 2020; Kipf
et al., 2022) to extract them.

• Segregation — significant work has gone into deriving sophisticated
inference procedures and inductive biases that allow neural net-
works to discover objects from high-dimensional, unstructured visual
data (Yuan et al., 2023). However, despite all the efforts, previous meth-
ods have been limited to discover objects in simple, synthetic, or oth-
erwise constrained datasets of low complexity. This thesis (1) proposes
to overcome this restriction by introducing a semantic inductive bias;
(2) shows that such a bias can be derived fully unsupervised; and (3) ex-
perimentally demonstrates that this significantly extends the scope
of object-centric models to natural, real-world images and videos.

• Composition — object-centric representations have been shown to form
a robust basis for downstream tasks, as broad and diverse as visual
reasoning (Mondal et al., 2023; Webb et al., 2023), visual question
answering (D. Ding et al., 2021; Mamaghan et al., 2024; Jiaqi Xu et al.,
2024), image segmentation (Y. Zhou et al., 2021; Jiarui Xu et al., 2022),
retrieval (Weinzaepfel et al., 2022; Kim, Kim, and Kwak, 2023) and
generation (Singh, Deng, et al., 2022; Jiang et al., 2023; Jabri et al.,
2024), physics modeling (Kipf et al., 2020; Kossen et al., 2020; Wu,
Dvornik, et al., 2023), reinforcement learning (RL) (Veerapaneni et al.,
2019; Yoon et al., 2023), and robotics (Heravi et al., 2022; Driess et al.,
2023). This thesis further demonstrates the utility of object-centric
representations with two applications in autonomous agent learning.
Specifically, it introduces algorithms for composing such representa-
tions to (1) form complex goals from simpler ones; and (2) infer causal
relationships between agents and objects.

Summary of Contributions This thesis advances the field of object-
centric representation learning along the two dimensions of segregation
and composition.

For segregation, its major contribution is an approach that, for the first

time, allowed decomposing unconstrained real-world data into object-
centric representations. Based on the analysis that previous methods
failed on complex data due to a bias towards surface-level image statistics
such as color, this approach consists of injecting a semantic bias into the
model by predicting targets based on pre-trained features. Such features
can be obtained by modern self-supervised learning methods in a fully
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unsupervised way while exhibiting a strong level of internal semantic
consistency (Caron et al., 2021). The resulting models, Dinosaur (Seitzer
et al., 2023) and VideoSAUR (Zadaianchuk, Seitzer, et al., 2023), yield
state-of-the-art results and are demonstrated to scale to real-world image
datasets such as PASCAL VOC (Everingham et al., 2010) or COCO (T. Lin
et al., 2014), and video datasets such as DAVIS (Pont-Tuset, Perazzi, et al.,
2017) or Youtube-VIS (L. Yang et al., 2021).

For composition, the thesis presents two applications of object-centric
representations to autonomous agent learning. In the first, an algorithm
for self-supervised multi-goal RL from images is proposed; with the help
of object-centric representations, the agent learns to compose simple
sub-goals to achieve tasks in complex multi-object environments (Zada-
ianchuk et al., 2021). In the second, by interpreting structured object
representations as variables in a causal graph, a measure of the causal

influence of the agent on objects is derived. This measure can be used
to equip RL agents with structural knowledge about the environment,
greatly enhancing their sample efficiency (Seitzer et al., 2021).

Individually, these works also constitute independent contributions
to the field of reinforcement learning, specifically to the emerging areas
of self-supervised RL (Colas et al., 2020) and causal RL (Zeng et al., 2024).
Together, they serve as two case studies that exemplify the benefits of
object-centric representations for downstream applications: (1) how their
grounding and interpretability allow the design of informed algorithms;
(2) how their compositionality enables generalization to scenarios not
encountered during training; and (3) how the assumption of structure is
an excellent inductive bias that can greatly increase data efficiency.

Outline This thesis is organized into four parts, each examining a dif-
ferent aspect around structured object representations. Part I introduces
structured object representations: what they are, why they are interesting
(Chap. 2) and how neural networks can learn them (Chap. 3). Part II
centers around structured object representations for autonomous agent
learning, in particular for self-supervised discovery of complex goals
(Chap. 4) and enhancing sample efficiency (Chap. 5). Part III introduces
methods for the unsupervised discovery of objects in real-world images
(Chap. 6) and videos (Chap. 7). Part IV summarizes the research in this
thesis and discusses the potential of structured object representations in
context with the broader developments in the field of machine learning.



Part I

On Structured Object
Representations





Chapter 2
Structured Object

Representations:
An Introduction

In this first part of the thesis, I introduce its central topic, structured

object representations. The discussion is separated into two chapters. This
chapter gives a broad introduction to the idea of representing data in
terms of objects. The next chapter reviews the major framework for
implementing structured object representations with neural networks,
object-centric representation learning.

This chapter is organized as follows. First, Sec. 2.1 introduces what
structured object representations are, followed by Sec. 2.2 motivating
their relevance in today’s machine learning landscape. Then, Sec. 2.3
details the properties that give object representations their broad benefits.
Finally, Sec. 2.4 discusses how objects can be discovered from data.

2.1 Introduction

Let us start by dissecting the somewhat convoluted term “structured
object representation” word by word: starting at the end with the question
of “representation”, circling around to the role of “structure”, and finally
ending up with the centerpiece, the “object”.

2.1.1 The Question of Representation

A fundamental question in machine learning is that of representation,
that is, how a model “perceives” its input data — images, sounds, or
text, for example. A good representation supports the task that the
model is trying to solve, for example correctly classifying the object in
an image. But usually, we expect more from a representation: we want it
to generalize to new situations outside the data it was trained on. This
requires understanding how the new situation is different from before;
to support this, the representation needs to capture the abstract factors of

variation that can explain these differences (Bengio et al., 2013). Thus,
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1 While earlier approaches hand-
designed representations (called
feature engineering), the advent
of deep learning shifted the focus
towards automatically learned, hi-
erarchical representations. In fact,
much of the success of deep learn-
ing can be attributed to its abil-
ity to learn powerful abstract rep-
resentations of high-dimensional
data (Goodfellow et al., 2016).

2 In a distributed representation,
each element can be independently
varied, in contrast to symbolic one-
hot representations; this way, one
can represent an exponential num-
ber of configurations with a linear
number of parameters (Bengio et
al., 2013).

3 A classic example of a structured
model is a probabilistic graphical
model, which represents probabil-
ity distributions as graphs over ran-
dom variables (Koller and Fried-
man, 2009).

the process of finding a good representation can be viewed as the search

for abstractions.
Today, the most effective method to findgoodrepresentations is to learn

them from data — a process called representation learning — using deep
neural networks.1 Neural networks learn distributed representations:
high-dimensional, continuous vectors that can express a variety of
concepts at once.2 These representations have several advantages. First,
their large capacity allows for redundant encoding of concepts, leading to
a level of robustness to noise and missing information. For example, an
image representation might capture factors like “wheels”, “windows”,
“headlights”, together forming the concept “car”; this way, even if one of
the factors is missing (e.g. due to occlusion), the overall concept encoding
remains stable. Second, they can induce a space in which closeness
corresponds to semantic similarity. For example, the representation for
the concept “car” might be similar to the one for the concept “truck”
as they share most of the factors. Crucially, this similarity property
supports generalization through a form of implicit deductive reasoning:
upon learning “cars drive on roads”, this knowledge will be associated
with “trucks” as well.

However, the type of generalization that distributed representations
allow is limited. A model might still categorize a car as being able
to drive even if it is missing wheels; similarly, a model that has never
encountered boats might wrongly conclude “boats drive on roads”
because “boat” is represented similarly to “car” — the representation
does not reflect that wheels are necessary to drive on roads. So far, this
kind of systematic generalization is difficult for neural networks, as we will
discuss in Sec. 2.2.1. Distributed representations lack inherent structure,
which makes them susceptible to shortcut reasoning when training data
is missing (Geirhos et al., 2020).

2.1.2 The Role of Structure in Machine Learning

Most models have a form of structure that reflects some real-world
properties of the data.3 We can view the structure as a scaffolding that
guides the model’s learning and information processing. Just like we can
holdonto a scaffoldwhen othersupport is missing, the model can fall back
on the structure when data is missing, unclear, or different from before.
This is because a good structure has an actual meaning, it is grounded
in reality — it is trustworthy. On the other hand, structure is also
rigid; it can constrain the model into certain boundaries even if the data
speaks otherwise. Thus, a structure that is too naive or only superficially
represents the world harms the model’s ability to correctly fit the data.

Where does the structure come from? The answer is that it is us, as
model designers, who put in the structure — in machine learning often
called the inductive bias (Mitchell, 1980). Until recently, much of machine
learning research has been concerned with identifying appropriate in-
ductive biases for different types of data (Goodfellow et al., 2016). With
ever-growing compute capabilities and amounts of data, an underlying



2.1 INTRODUCTION 9

“An image of a cup
with a saucer on top.”

“An image showing 12 plain
tea cups from the same set,

all identical in style and design.”

“How many cups are in this image?”
Answer: “20 cups.”

Figure 2.1: Failures of foundation models. Left: The image generation model DALL·E 3 (Betker et al., 2023)
fails to follow the geometric relation “on top of”; this is likely because of a bias towards the training data, where
images with saucers covering cups are underrepresented. Center: DALL·E 3 exhibits problems with counting
and the concept of “sameness”. Right: The GPT-4 model (OpenAI, 2024) also fails to count correctly. While these
particular errors may be solved by future models or different prompting techniques, they still illustrate certain
failure modes around compositionality and reasoning; similar observations have been made elsewhere (Arkoudas,
2023; Kobayashi et al., 2024; Majumdar et al., 2024; Tong et al., 2024; Z. Xu et al., 2024).

4 A prime example is the Trans-
former model (Vaswani et al.,
2017), now universally applied
across all data modalities, mak-
ing less assumptions about the
data compared to e.g. convolu-
tional neural networks.

trend has been to weaken these biases more and more: finding broad,
flexible assumptions that apply across all kinds of data without overly
limiting the model’s capacity.4 This culminated in what Sutton (2019)
poignantly called the “bitter lesson”: the observation that scaling model
and data ultimately trumps any structural assumptions. Indeed, the
success of large-scale foundation models supports that view (Brown et al.,
2020; Bubeck et al., 2023). This might indicate that all research on struc-
ture is futile. But foundation models still fall short of human cognition
(see Fig. 2.1); doubt has been expressed that this hurdle can be overcome
by scaling alone (Greff et al., 2020; Schölkopf et al., 2021; LeCun, 2022).

In this thesis, I take the position that structure is an essential part of
general AI, but that models must largely learn to discover that structure
by themselves. The research challenge lies in defining structures that are
as general as possible, together with the mechanisms that enable models
to capture them from data.

2.1.3 Objects as Composable Modular Units

One such general structure is modularity. At its core, the world is com-
posed of independently existing elements that can combine and recon-
figure in various ways. Thus, it is sensible to organize the model’s infor-
mation processing following the principle of modularity. Central to this
concept is what I refer to as a structured object representation. In such a repre-
sentation, the main structural units are “objects”: recurring patterns that
are “self-contained and separate from one another such that they can be related

and assembled into structures without losing their integrity” (Greff et al., 2020).
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5 Heravi et al. (2022), Driess et al.
(2023), and Jiaqi Xu et al. (2024).

6 Santoro et al. (2018), Dittadi et al.
(2022), Stanić, Tang, et al. (2023),
and Wiedemer et al. (2024).

7 Romĳnders et al. (2021), Dittadi
et al. (2022), and Yoon et al. (2023).

This is, intentionally, quite a broad and abstract definition of objects.
While actual, physical objects fall under its umbrella, it also includes “non-

visual entities such as spoken words, imagined or remembered entities, and even

more abstract entities such as categories, concepts, behaviors, and goals” (Greff et
al., 2020). Nevertheless, the most prominent and accessible instantiation
of structured object representations is indeed about capturing objects
from visual data. It is also the one we will be concerned with in the
following — the term “object” can thus be understood in its literal sense
for the purposes of this thesis.

2.2 The Need for Structured Object Representations

2.2.1 The Benefits of Object Representations

Organizing models around structured object representations promises
intriguing advantages in several areas — in particular areas where
conventional models without such representations are known to struggle.
We now briefly discuss these areas, motivate how object structure could
help, and relate them to issues in current neural models.

Note that (1) empirical results regarding these benefits are somewhat
sparse, not least because research around object representations is still
burgeoning. Nevertheless, we list some encouraging supporting evidence
in the side margin; and (2) it is difficult to draw conclusions on the
weaknesses of deep learning models on the basis of any particular
result or benchmark, as scaling rapidly advances today’s state-of-the-art.
However, I believe that the mentioned issues are more fundamental and
require solutions outside the scaling paradigm.

• Data efficiency.5 With a modular structure, knowledge acquired once
can be re-used in different contexts and re-purposed for new skills.
For example, a robot that learned to grasp a cup may then also be able
to grasp a plate with no or minimal adaptations. In contrast, current
models are data hungry, in particular compared to humans (Tsividis
et al., 2017; Udandarao et al., 2024).

• Systematic generalization.6 The compositional nature of object represen-
tations allows recognizing and processing concepts in configurations
unseen or unrepresented in the training data. For example, the robot
should be able to handle a situation with a plate on a cup, even if the
training data only contained examples with plates under or beside cups;
similarly, it should keep working in situations with 20 cups, even if it
has never encountered that many cups at once before. In comparison,
current models struggle with such relational and compositional rea-
soning (e.g. Bahdanau et al., 2019; Hupkes et al., 2020; Yuksekgonul
et al., 2023; Kobayashi et al., 2024; Z. Xu et al., 2024, see also Fig. 2.1
for examples).

• Robustness to distribution shifts.7 Learning a representation grounded
in real-world structures rather than surface-level statistics should
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8 I will demonstrate several exam-
ples of such informed algorithms
in Part II of this thesis.

9 Heravi et al. (2022), Driess et al.
(2023), Kim, Kim, Lan, et al. (2023),
Mamaghan et al. (2024), Hamdan
and Guney (2024), Gu et al. (2024),
Jiaqi Xu et al. (2024), Z. Wu et al.
(2024)

10 I speculate that for some appli-
cations such as long-term video
modeling or building open-world
scene graphs, object representa-
tions (and similar abstractions)
may even be necessary to avoid in-
tractable computational costs.

11 Schölkopf et al. (2021) also
draw the connection between ob-
jects and causality: “Objects are con-

stituents of scenes that in principle

permit separate interventions. A dis-

entangled representation of a scene

containing objects should probably use

objects as some of the building blocks

of an overall causal factorization”.

12 The conditions under which the
correct causal model can be recov-
ered from observed data.

lead to models that are better equipped to handle nuisances or shifts
in the input. In contrast, current (vision) models are known to
learn shortcuts that do not generalize out-of-distribution (Geirhos
et al., 2020; Hendrycks et al., 2021), to be biased towards weak local
regularities (Brendel and Bethge, 2019), and to be sensitive to common
image corruptions (Hendrycks and Dietterich, 2019; S. Wang et al.,
2023), texture changes (Geirhos et al., 2019), or backgrounds (X. Li
et al., 2023).

• Interpretability. Symbol-like representations simplify introspecting
the model’s decision process. This improves general model under-
standing and aids verification for safety-critical applications; it also
allows the design of informed algorithms that rely on the properties
of such representations.8 On the other hand, conventional neural
representations are often inscrutable due to their distributed nature
and may require sophisticated techniques to understand (Olah et al.,
2020; Elhage et al., 2021).

• Objects as a modeling language for the physical world.9 For many applica-
tions dealing with the human world, objects are the natural level of
abstraction; this includes embodied agents such as household robots,
or self-driving cars, but also more generic tasks such as image genera-
tion, video understanding, or predictive world modeling. Besides the
fact that many tasks relevant to humans are inherently about objects,
objects simplify the modeling of dynamics and interactions, and they
can be grounded in natural language to offer an interface between
agent and user. While all such tasks have also been approached with
conventional neural models, object representations could provide a
particularly useful inductive bias, leading to improved performance
as well as better data and computational efficiency.10

2.2.2 Objects as Pragmatic Causal Representations

These advantages, in particular generalization and robustness, are consis-
tent with those motivating a causal approach to machine learning (Schölkopf,
2022). This is no coincidence. The principle of independent causal mech-

anisms states that the world “is composed of autonomous modules that do

not inform or influence each other” (Peters et al., 2017). This is close to our
definition of objects as independent, modular, and composable struc-
tures (cf. Sec. 2.1.3). Causal representation learning (Schölkopf et al.,
2021) aims to recover the causal mechanisms that generated the data
— in other words, learning structure from data. The high-level goals
behind learning structured object representations and learning causal
representations are thus similar.11

The majordifference is that a causal representation supports an explicit
notion of “intervention”, that is, an external action changing one or several
of the causal mechanisms (Pearl, 2009). As a consequence, causal learning
focuses on identifiability12 to maintain correctness guarantees about the
model’s behavior under interventions. In contrast, structured object
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13 There is no universally accepted
name for the topic of learning ob-
ject representations with neural
networks. Depending on the focus,
it has been referred to as symbol-
like representation learning (Greff
et al., 2017), multi-object represen-
tation learning (Greff et al., 2019),
(unsupervised) scene decomposi-
tion (Burgess et al., 2019), compo-
sitional scene representation learn-
ing (Yuan et al., 2023), object dis-
covery (Bao et al., 2023), or simply
object-centric learning (Locatello
et al., 2020). I adopt the term
object-centric representation learn-
ing, possibly first used in this con-
text by Engelcke, Kosiorek, et al.
(2020), as it emphasizes the aspect
of “representation”.

representations have no such guarantees; in exchange, this yields more
flexibility for developing models that learn representations with the
desired properties (e.g. independence, composability). This way, some
of the advantages of a causal representation could be retained in practice:
for instance, an object representation that is sufficiently modular could
allow interventions by replacing one of the objects with another; using
a representation modified in this manner is akin to a counterfactual

simulation.
I see object representations as “pragmatic causal representations” for

visual data, foregoing causal guarantees in return for a more tractable
and scalable approach. In Chap. 5, we will further discuss how structured
object representations can be embedded in a causal framework to derive
causal relationships between objects.

2.2.3 Learning Structured Object Representations

So far, we have not specified how a structured object representation can
be obtained, nor its particular format. In accordance with the discussion
in Sec. 2.1.1, we would like to leverage the advantages of deep learning-
based neural representations as much as possible. Consequently, this
thesis focuses on learning structured object representations with neural

networks. Methods aimed at achieving that goal are commonly grouped
under the term object-centric representation learning.13 In most approaches,
the representation is structured as a set of vectors, where each vector is the
distributed representation of an object. We will discuss these methods
in detail in Chap. 3.

Current neural models do not learn structured object representations
naturally — the whole raison d’être behind object-centric representation
learning. In particular, they are lacking the mechanisms to (1) discover
modular object structures in unstructured data; (2) dynamically extract
representations for such structures; and (3) utilize the representations in
a compositional manner. These are the aspects of segregation, represen-
tation, and composition, together constituting the binding problem of
neural networks (Greff et al., 2020, cf. also Fig. 1.1). The remainder of
this chapter discusses the aspects of representation and segregation.

2.3 Desiderata for Object Representations

In the last section, we discussed the extensive benefits of structured object
representations. We now define several properties that enable structured
object representations to be such effective parts of larger systems. It is
important to note that these properties may not be fully realizable in
practice; nevertheless, they can form the basis for robust, generalizing,
interpretable, and sample efficient models.

• Separation: individual objects representations are context-independent
without interference between them. Forexample, changing an object in
the input should lead to a change in a single object representation. Each
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14 Put another way, the goal is to
make the representation as invert-

ible as possible.

15 For example, correctly represent-
ing a polar bear as “white+bear”
having only seen examples of black
bears and white sheep.

16 This can be seen as a temporal
version of the completeness prop-
erty

representation is a modular building block, facilitating generalization
when composing them in novel combinations.

• Completeness: object representations capture all required information
about the objects. What is required depends on the task, and ranges
from just encoding the existence of the object (e.g. for a counting task)
to being able to faithfully reconstruct the full object (e.g. for image
editing). In the absence of prior task knowledge, a guiding principle
is to preserve as much information as practicable, starting with the
most significant factors of variation (Bengio et al., 2013).14

• Common format: object representations share a representational format,
resulting in a common interface that increases generalization and
sample efficiency. For example, if an object’s position is always
represented in the same fashion, an “A is close to B” operator learned
on a few data points directly generalizes to all possible combinations
of objects.

• Disentanglement: object representations internally isolate different ex-
planatory factors in their latent dimensions. For example, an object’s
position should be represented separately from its size, shape, or color.
Besides better interpretability, disentangled representations may sup-
port compositional generalization to previously unseen combinations
of factors15 (Higgins, Matthey, et al., 2017).

When modeling temporal data, two more properties can be desirable:

• Consistency: object representations are assigned the same object in-
stance across time and maintain a stable representation of that object.
This is helpful for tracking or re-identification of objects and is required
for aggregating information about objects over time.

• Predictability: it is possible to forecast the object’s future evolution from
its representation (to the extent possible without external interference).
This requires the representation to fulfill a Markov property, that is, to
“summarize” the past to the degree necessary to predict the future.16
For example, to predict an object’s future position, its representation
must contain its current velocity and acceleration.

2.4 Discovering Objects from Data

To extract representations of objects, a learning system must first be able
to recognize them. So far, we have omitted the question of how exactly
this takes place; within Greff et al.’s (2020) framework of the binding
problem, this is the aspect of segregation. Is it even feasible to discover
objects solely from data? In this section, I will first discuss the nature of
objects from an information-theoretic perspective, and relate them to
human perception (Sec. 2.4.1). Then I introduce several principles that
together result in a “toolbox of inductive biases” (Sec. 2.4.2) — indeed
enabling models to discover objects.
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17 Here, “view” refers to an obser-
vation of the object under a partic-
ular condition, e.g. an occlusion,
viewpoint, point in time, or light-
ing condition.

18 Also known as the minimum, or
the prägnanz principle.

19 Similarly, in the balloon exam-
ple, the existence of the fully-
masked balloon was actually made
slightly more likely by the presence
of the other balloons.

2.4.1 The Nature of Objects

What actually are objects? Avoiding metaphysical discussions, we will
focus on aspects tangible for machine learning. First, we can posit
two fundamental properties of objects: (1) they are largely independent

of their context; and (2) they exhibit strong internal predictive structure.
Intuitively, the former means that an object is difficult to predict from
its surrounding context (and vice versa the context from the object); the
latter means that different “views”17 of the object are highly predictive
of other views. Stated succinctly, objects have low external, and high
internal dependencies; both of these aspects are captured by the concept
of mutual information (Cover and Thomas, 2006), as we will see in the
next section.

It is worth pondering about how humans perceive objects — let us
discuss the example in Fig. 2.2, left. We can almost perfectly fill in the
partially masked balloon in our mind’s eye; the same with the occluded
parts of the background. This is because there is a shared underlying

structure that “explains” both the visible and the occluded parts. Our
experience allows us to mentally infer this explanation and complete
the missing parts from it. In contrast, we do not expect the presence of
the fully masked balloon just from the surrounding sky — without any
further hints, this balloon’s existence is unlikely.

These observations are consistent with theories of how human percep-
tion is organized. For instance, the likelihood principle states that our inter-
pretation of a (visual) stimulus tends to be its most likely one (Helmholtz,
1962). In the example, this matches the analysis that perception is guided
by experience and expectations. A competing theory is the simplicity

principle18: based on Gestalt psychology (Wertheimer, 2012), it states
that human perception tends to favor the simplest interpretation of a
stimulus, or equivalently, the one of minimum complexity (Pomerantz
and Kubovy, 1986). In the example, the simplicity principle suggests
that we can perceive the occluded balloon as a whole because we prefer
the underlying, simple explanation of a complete, intact balloon. While
there have been major debates about which theory is correct, they may
be “two sides of the same coin” — indeed, it is possible to reconcile them
from the perspective of information theory (Chater, 1996).

The simplicity principle suggests a further property of objects be-
sides context-independence and internal predictability: that objects
(should) have minimal information content, i.e. they can be efficiently
encoded. This idea is widely used as an inductive bias to learn object
representations with neural networks (Engelcke, Jones, et al., 2020).

Object Hierarchies Before moving on, we make the observation that
context-independence and internal predictability actually lie on a contin-
uum; they form a trade-off that suggests a hierarchy of objects. Consider
the example in Fig. 2.2 (right): from the wheel, we can predict the
existence of the car; from the tow truck, we can (weakly) predict the
car.19 While context-independence increases with the size of the group,
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Figure 2.2: The information structure of objects. Left: Objects are internally predictive and context-independent.
Occluded parts of objects (A) or the background (B) can be predicted from visible parts, whereas fully-occluded
objects cannot be predicted from the surrounding context (C). Example from Greff et al. (2020) under CC-BY 4.0
license. Right: The trade-off between predictiveness and independence induces a hierarchy of objects related by
their dependency structure. Groupings into parts (the wheel), wholes (the car), or composites (tow truck with
car) are all valid decompositions, characterized by how strongly related and context-independent they are. The
colored outlines show the “borders of predictability”. Image generated with DALL·E 3.

20 A strong form of compression
is the principle of typicality, i.e.
to assume that objects come from
prototypical sets of categories, ap-
pearances or shapes. This leads to
the idea of capsules (Hinton et al.,
2011), and has been used for seg-
mentation (Zadaianchuk, Klein-
dessner, et al., 2023) and object dis-
covery (Wen et al., 2022; Kori et al.,
2024).

internal predictability decreases, because we group parts together that
are only weakly related. Greff et al. (2020) suggest “that this trade-off

induces a Pareto front of valid decompositions”. Essentially, objects can be
grouped by segregating them following the “borders of predictability”
(colored outlines in Fig. 2.2 (right)). In the example, all three groupings
are valid — which grouping to select depends on its intended purpose.

2.4.2 Principles to Discover Objects in Data

We will now review several organizing principles that reveal objects
in data — each principle can be considered a characteristic “footprint”
that objects leave behind in the data. These principles can then be
transformed into optimization criteria or biases for object discovery;
most of these criteria have been employed in practice. We will keep
the discussion on a high-level here, and explore how some of these
principles can be implemented in neural networks in the next chapter.

We start with three generic principles for structuring information into
objects derived from the previous discussion about the nature of objects.
These principles are all applicable across modalities and could also serve
to organize information in more abstract spaces:

• Compression: objects have a simple description, i.e. they can be en-
coded with less information compared to competing hypotheses. This
suggests finding a separation of the input into objects that compresses

well under a low-dimensional representation bottleneck.20 Compres-
sion is probably the principle most used in practice. Two forms of
bottlenecks can be distinguished: explicit, corresponding to the di-
mensionality of the object representation, and implicit, corresponding
to the capacity of the used model. Both play a significant role for
object discovery (Engelcke, Jones, et al., 2020; Papa et al., 2022).

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


16 CHAPTER 2: STRUCTURED OBJECT REPRESENTATIONS: AN INTRODUCTION

21 Each element in the data space
affects and is affected by a single
object representation, which can be
seen as constraints on the encod-
ing and decoding functions respec-
tively (Brady et al., 2023; Wiedemer
et al., 2024).

22 Exceptions include limited ap-
proaches based on contrastive
learning (Kipf et al., 2020; Baldas-
sarre and Azizpour, 2022). How-
ever, this principle is widely used
for self-supervised representation
learning (Aaron van den Oord et
al., 2019; Shwartz Ziv and LeCun,
2024), and was applied for segmen-
tation (Isola et al., 2014; Ji et al.,
2019; Wen et al., 2022).

23 More or less, a temporal variant
of the predictiveness principle.

24 More or less, a temporal variant
of the independence principle.

• Independence: objects are independent of their surroundings; this sug-
gests enforcing statistical independence between the representations.
This can be turned into an optimization criterion by minimizing a
form of mutual information between object representations (Y. Yang
et al., 2020; Zoran et al., 2021). Another instantiation of this principle
is to select representations with mutually exclusive dependencies in
the functions that map from and to the data space.21 While seldom
explicitly enforced, most models contain an architectural bias towards
this form of independence.

• Predictiveness: different views of an object are dependent on each
other; this suggests maximizing the mutual information between the
representations of different object views. This principle has seen little
explicit application so far.22

Specifically for temporal data, the following two principles apply:

• Temporal consistency: most properties of an object are stable over
time (e.g. shape or appearance), or change slowly (e.g. position).
This suggests selecting objects such that it is possible to sparsely
update their representation over time,23 which can be implemented by
encouraging representations of consecutive time steps to be close (Bao
et al., 2022; Traub et al., 2023).

• Temporal sparseness of interactions: objects tend to interact sparsely in time,
which suggests selecting objects such that their temporal evolution can
be modeled with as little information from other objects as possible.24
This principle is so far little used for discovering objects, but could be
implemented using suitable architectural biases (Goyal et al., 2021).

The next two principles make use of human knowledge about objects:

• Describable: humans label meaningful objects with specific names (or
symbols); thus, if a particular pattern is repeatedly associated with the
same label, it should be captured as an object. As a criterion, this can
take the form of a grounding loss that aligns textual descriptions with
object representations (Jiarui Xu et al., 2022; Kim, Kim, Lan, et al.,
2023).

• Supervision: an explicit way to discover objects is to simply annotate

what constitutes an object in the data; such annotations typically take
the forms of segmentation masks that mark the pixels belonging to
the objects. Object representations can then be optimized or biased
towards capturing regions aligning with the annotations (Kipf et al.,
2022; Kim, Choi, et al., 2023).

The remaining principles use that objects physically exist in space & time:

• Spatial locality: in 3D space, objects occupy local connected regions;
for 2D projections of objects, this generally holds as well (except
for occlusions). Locality can be turned into a criterion by spatially
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25 One of the Gestalt laws of hu-
man perception, the common fate
principle states that elements that
move together tend to be perceived
as a group (Wertheimer, 2012).

26 More or less, a causal variant
of the independence principle; cf.
also the principle of independent
causal mechanisms (Sec. 2.2.2).

27 In Chap. 5, we will discuss how
the agent’s causal influence on ob-
jects in the environment can be
measured.

restricting or biasing object selection to local and/or connected regions
of space (Chakravarthy et al., 2023; Foo et al., 2023).

• Temporal locality: objects have a limited range of motion, i.e. they cannot
move arbitrarily far per time step, which can be seen as an extension of
spatial locality to 4D space-time. This can be implementedby requiring
that the spatial regions an object occupies in two consecutive time
steps are close (Jiang et al., 2020).

• Coherent motion: elements of an object generally move consistently to-
gether (the principle of “common fate”25), which can be seen as a man-
ifestation of the predictiveness principle for temporal data. This can be
turned into a criterion by grouping elements (e.g. pixels) with similar
motion into the same object (Kipf et al., 2022; Tangemann et al., 2023).

The final two principles concern the behavior of objects under actions.
These may be best suited for domains with an agent model, e.g. reinforce-
ment learning; however, I am not aware of any successful applications of
these principles for object discovery.

• Interventions: objects can be independently intervened on, that is, an agent
can change the state of an object without influencing otherobjects.26 An
instantiation of this principle would select for object representations
that change sparsely under an agent’s actions; the difficulty lies in
determining whether the agent has had impact on its environment.27

• Affordances: objects can be characterized in terms of the actions that
can be performed on them. More generally, objects take part in
temporally abstract “events”, which can be seen as an agent causing
a state-change in an object (Gärdenfors, 2014). It is not obvious how
to instantiate this principle; one idea is to select objects such that
their state-action trajectories can be grouped into distinct clusters
representing the affordances.

There are certainly more principles forguiding object discovery that could
be added here. Particularly the field of computer vision has developed a
rich set of ideas that could be utilized to discover objects. For instance, one
could integrate prior knowledge on object shapes, e.g. convexity (Royer
et al., 2016) or learned shape models (Elich et al., 2022), or utilize the fact
that objects are often symmetric with repeating parts (Bagon et al., 2008).

However, I argue that structural assumptions should be kept as general
as possible, i.e. to use a few generic principles to organize information,
for three reasons. First, many assumptions are redundant and can be
subsumed by more generic principles. For example, assumptions like
symmetry or convexity can be captured by the predictability or compres-
sion principles. Second, hand-designed assumptions are likely to be too
brittle and thus harm generalization. Third, assumptions tend to reduce
model scalability, i.e. the model’s ability to keep absorbing the training
data with increased sizes of model and data. For these reasons, it is nec-
essary to employ generic principles that guide the model to (1) discover
generalizing structures; and (2) learn better structures when scaled.
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Figure 3.1: Slot model based on
autoencoding.

1 Such soft masks can be inter-
preted as probability distributions
over which slots occupy which pix-
els; most object-centric methods
are able to provide such masks.

Chapter 3
Building Object-Centric Neural

Networks

This chapter provides a comprehensive overview of all aspects involved
in constructing neural networks that learn object-centric representations:
model design, training, and evaluation. In Sec. 3.1, we will begin by
sorting the object-centric landscape along several different categories.
Then, in Sec. 3.2, we review the training process of object-centric neural
networks. To exemplify the discussed ideas, Sec. 3.3 presents three
case studies of object-centric models — Slot Attention (Locatello et al.,
2020), SAVi (Kipf et al., 2022), and Scalor (Jiang et al., 2020) — which
also form the basis for the work presented in Parts II and III of this
thesis. Finally, in Sec. 3.4, we discuss the important topic of evaluating
object-centric representations.

For the remainder of this thesis, we will limit our discussion to
models that learn slot-based object-centric representations. Slot-based
representations structure the input into a set of vectors. There is no inherent
order to the object vectors; to emphasize their interchangeability, the
vectors are called “slots”. Slot-based representations are learned by
neural models trained end-to-end with gradient-based optimization. We
would like to highlight that alternative neural object representations
exist (see Greff et al., 2020, Section 3.3); in particular, implicit object
representations based on complex-valued networks have recently gained
some traction (Löwe et al., 2022, 2023; Stanić, Gopalakrishnan, et al.,
2023).

Preliminaries Slot-based models represent an image x ∈ RH×W×3 with
a set of K slot vectors z = {zk ∈ RDslots}K

k=1. Typically, they consist of an
encoder fϕ : RH×W×3 ↦→ RK×Dslots that maps from image to slot space
and a decoder gθ : RK×Dslots ↦→ RH×W×3 that maps from slot to image
space, where ϕ and θ are learnable parameter vectors. Associated with
the slots is a set of (soft) segmentation masks1 m = {mk ∈ [0, 1]H×W}K

k=1
that signifies the location and shape of each slot in the image; these
are additionally produced by the decoder and/or encoder. Training, in
most cases, amounts to optimizing a reconstruction criterion, e.g. the
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Table 3.1: Comparison of slot-based models. We compare selected slot-based models along four major
characteristics: employing scene-based slots or spatial slots (Sec. 3.1.1), inferring slots in parallel or sequentially
(Sec. 3.1.2), extracting slots from pixels or from features (Sec. 3.1.3), and image or video inputs (Sec. 3.1.4). We refer
to the main text for details.

Model Reference
Parallel

–or–
Sequential

Scene
–or–

Spatial

Pixels
–or–

Features
Predecessor

Im
ag

e-
ba

se
d

AIR Eslami et al. (2016) Sequential Spatial Hybrid
N-EM Greff et al. (2017) Parallel Scene Pixels

MONet Burgess et al. (2019) Sequential Scene Pixels AIR
IODINE Greff et al. (2019) Parallel Scene Pixels N-EM

SPAIR Crawford and Pineau (2020b) Sequential Spatial Hybrid AIR
SPACE Z. Lin et al. (2020) Hybrid Hybrid Hybrid SPAIR

GENESIS Engelcke, Kosiorek, et al. (2020) Hybrid Scene Pixels MONet
Slot Attention Locatello et al. (2020) Parallel Scene Feats. IODINE

GENESISv2 Engelcke et al. (2021) Sequential Scene Feats. GENESIS
SLATE Singh, Deng, et al. (2022) Parallel Scene Feats. Slot Attention

Dinosaur Seitzer et al. (2023) Parallel Scene Feats. Slot Attention

V
id

eo
-b

as
ed

SQAIR Kosiorek et al. (2018) Sequential Spatial Hybrid AIR
OP3 Veerapaneni et al. (2019) Parallel Scene Pixels IODINE

Scalor Jiang et al. (2020) Parallel Spatial Hybrid SQAIR
ViMON Weis et al. (2021) Sequential Scene Pixels MONet

SAVi Kipf et al. (2022) Parallel Scene Feats. Slot Attention
STEVE Singh, Wu, et al. (2022) Parallel Scene Feats. SLATE

Loci Traub et al. (2023) Parallel Spatial Pixels
VideoSAUR Zadaianchuk, Seitzer, et al. (2023) Parallel Scene Feats. Dinosaur

2 Yuan et al. (2023) enumerate 48
different methods; the author of
this thesis is aware of a comparable
number of works more.

mean squared error loss (see Sec. 3.2). We can consider this to be a
typical autoencoder setup, with the slots forming a lower-dimensional
bottleneck representation of the data (cf. Fig. 3.1). However, the structure
of encoder, slot representations, and decoder — as well as the inductive
biases that enable object discovery — can differ considerably between
approaches, as we will see in the following. A commonality is the
heavy use of weight sharing; to ensure that the slots share a common

representational format, many of the modules that produce and process
the slots are shared across them.

3.1 Characteristics of Slot-Based Neural Networks

There is, by now, a myriad of approaches2 to learn slot representations.
A comprehensive discussion of all these methods is beyond the scope of
this thesis — for an extensive review, we refer the reader to Yuan et al.
(2023). Instead, this section will focus on a few major characteristics that
differentiate the existing methods: scene-based or spatial slot representa-
tions, parallel or sequential slot inference, pixel or feature space extraction
of slots, and image or video inputs. In Table 3.1, we present a selection of
methods classified according to our scheme.
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3 In most cases, objects form a con-
nected region in 2D space (cf. the
Gestalt principle; Koffka, 2013), al-
though there are exceptions, e.g.
occlusions.

4 Other forms such as spheres are
also possible (Biza et al., 2023;
Traub et al., 2023).

5 We adopt commonly used nota-
tion (Eslami et al., 2016; Kosiorek
et al., 2018; Jiang et al., 2020).

6 Spatial transformers (Jaderberg
et al., 2015) offer a fully differen-
tiable way to apply geometric op-
erations such as translation, scal-
ing, or rotation to feature maps.
Not to be confused with Transform-
ers (Vaswani et al., 2017).

3.1.1 Scene-based or Spatial Slots

On the representational level, we can differentiate between scene-based

or spatial slots. Scene-based slots model arbitrary segments of an image,
with location and scale implicitly encoded within the slot representation.
The underlying assumption is that of a scene-mixture model, i.e. that the
image can be represented by a mixture of a finite number of component
images; each slot encodes one such component image. As inference for
scene-based slots is implemented by predicting a form of segmentation
mask, complex object morphologies can be modeled. A disadvantage of
this flexibility is that the model carries no inherent locality bias, which
e.g. means that spatially disjoint image segments can be grouped into
the same slot.3 Furthermore, the model does not distinguish between
foreground and background; the background will also be decomposed
into one or more slots.

In contrast, spatial slots are tied to an image location, with location
and scale explicitly represented, usually as the bounding box4 containing
the modeled object (Eslami et al., 2016; Crawford and Pineau, 2020b;
Jiang et al., 2020). In this case, each slot zk is further structured as
the triplet zk =

(︁
zwhere
k

, zwhat
k

, zpres
k

)︁
,5 where zwhere

k
contains the location

information as the bounding box’s center position z
pos
k

and size zscale
k

,
zwhat
k

models appearance and pose of the object, and the binary z
pres
k

indicates the presence of the object. In some models, zwhere
k

contains a
further component zdepth

k
modeling the depth position of the object to

deal with occlusions. Furthermore, in most approaches, there is also an
explicit background representation zbg.

To facilitate the additional structure in the representation, spatial
slots are typically paired with suitable encoder and decoder designs. For
example, after inferring zwhere

k
, a corresponding “glimpse” of the input

image is extracted using a spatial transformer network,6 and processed by an
appearance encoder to yield zwhat

k
. For decoding, each object is separately

decoded into “canonical RGB space” from zwhat
k

, and stitched together
into a composite image, again applying a spatial transformer with
zwhere
k

. This design has the advantage that it encodes certain invariances;
modeling an object’s appearance is decoupled from modeling its position
and scale.

Spatial slots encode useful biases for object discovery such as the
locality of objects (cf. Sec. 2.4.2). For visually simplistic scenes, this
enables them to scale to dozens of objects (Jiang et al., 2020). Furthermore,
the additional structure spatial slots provide, in terms of disentangling
position and appearance, can be advantageous for certain downstream
applications; we will discuss one such application in Chap. 4. On the
other hand, methods using spatial slots usually make strong assumptions
about the size of objects to facilitate object discovery, which limits
scaling to more heterogeneous scenes. Similarly, the assumptions of
locality and of a single object per bounding box may be violated in more
complex scenes with frequent (partial) occlusions. Finally, for natural
scenes, modeling the background as a single latent component may not
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z1 z2 z3 z4

Parallel Inference

z1 z2 z3

Sequential Inference

Figure 3.2: Different types of slot inference. Parallel inference binds objects to slots in an identical and independent
process, often over several iterations. Sequential inference binds slots one at a time, creating dependencies between
slots but allowing for dynamic capacity. Figure adapted from Greff et al. (2020, Fig. 6).

7 Further contributing factors may
be the complexity of implement-
ing spatial slot methods, as well
as the number of hyperparameters
that need to be set; scene-based
slot methods are often consider-
ably simpler.

8 However, spatial slots with par-
allel inference are still biased to
certain spatial properties.

9 Additional symmetry breaking
is introduced by stochasticity, e.g.
random slot initialization (Lo-
catello et al., 2020) or sampling
latent distributions (Greff et al.,
2019).

scale effectively. For all these reasons, spatial slots have fallen out of
favor compared to the more general scene-based slots.7 However, these
limitations may stem from specific architectural choices; recent work
has successfully integrated principles of spatial slots (e.g. invariances,
locality) into scene-based slots (Biza et al., 2023; Traub et al., 2023, 2024).

3.1.2 Parallel or Sequential Slot Inference

The task of the encoder is to extract object slots from the image, for which
two main paradigms have emerged: parallel or sequential inference. See
Fig. 3.2 for an illustration.

In parallel inference, each slot is derived by an identical and mostly
independent process, which thus can be executed in parallel over slots.
As a consequence, slots have no inherent ordering and preferences for
the modeled content8; this makes them very general (Greff et al., 2020).
However, this generality introduces a routing problem: because slots are
indistinguishable, separating information from the input image requires
a form of symmetry breaking. In parallel inference, this is often achieved by
updating the slot representation over several iterations9 — depending on
the specific instantiation, the resulting process structurally resembles the
EM algorithm (Greff et al., 2017), amortized variational inference (Greff
et al., 2019), iterative clustering (Locatello et al., 2020), or a fixed point
procedure (Chang et al., 2022).

In sequential inference, the slots are derived step-by-step, each de-
pending on the previously extracted slots. This has the advantage that
the amount of computation is not fixed, and that a dynamic number
of slots can be modelled in principle. However, the sequential process
imposes an ordering on the slots, which may make slot separation more
difficult (Greff et al., 2020). Furthermore, sequential inference is inher-
ently less computationally efficient than parallel inference, as the latter
can run slot inference concurrently. There also exist hybrid models
that parallelize parts of the inference to increase efficiency (Engelcke,
Kosiorek, et al., 2020; Z. Lin et al., 2020).
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Figure 3.3: Slot model for video.

Slots are recurrently connected
through time, creating temporal
consistency.

3.1.3 Pixel or Feature Space Extraction

A further distinction we can make is between pixel space or feature space

extraction of slots, i.e. the level at which the separation into objects is

modelled. Most earlier approaches with scene-based slots process the full
image once or several times for each slot, masking already modelled
parts of the image (Greff et al., 2017; Burgess et al., 2019), or conditioning
on some side information (Greff et al., 2019). From a perspective of
computational efficiency, this approach appears wasteful — most of
the processing is redundant. Consequently, later approaches instead
inferred slots from features shared between slots (Locatello et al., 2020;
Engelcke et al., 2021); this way, most of the computation can be shared
between slots.

Similarly, methods utilizing spatial slots extract “glimpses” at the
pixel level to model object appearance. The computational burden is less
severe than for scene-based slot methods since each glimpse is already
lower dimensional. Because spatial slot methods model object positions
on the level of features, we categorize them as “hybrid” methods in this
context (cf. Table 3.1).

3.1.4 Extensions to Video

For almost all combinations of the previously discussed characteristics,
a video-based method has been developed. With few exceptions (e.g.
Kabra et al., 2021), these methods process the video {xt}T

t=1 sequentially
and extract the current set of slots zt from the previous set of slots
zt−1, and the current frame xt. For scene-based slot methods, this is
typically as simple as connecting the slots recurrently (see Fig. 3.3),
potentially with a simple transition function to model slot movements
and interactions (Greff et al., 2019; Weis et al., 2021; Kipf et al., 2022).
In the Sec. 3.3.2, we will discuss this by the example of turning the
image-based Slot Attention (Locatello et al., 2020) into the video-based
SAVi (Kipf et al., 2022) method.

The recurrent connections naturally encourage temporal consistency

among individual slots (cf. Sec. 2.3), thus providing some level of object
tracking “almost for free” (Greff et al., 2019). The underlying assumption
is that the set of objects is stable throughout the video, which is often
not the case. To model appearing and disappearing objects, some spatial
slot-based methods have sophisticated mechanisms to propagate slots,
discover new objects and solve the re-identification problem (Kosiorek
et al., 2018; Crawford and Pineau, 2020a; Jiang et al., 2020).

Some methods also support dynamics modeling, i.e. predicting the
evolution of slots forward in time, which can be useful for some appli-
cations such as reinforcement learning (Veerapaneni et al., 2019; Jiang
et al., 2020). For others, generic dynamics prediction modules have been
developed that can be applied top of learned slot representations (Wu,
Dvornik, et al., 2023).
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10 The famous evidence lower
bound (ELBO).

Figure 3.4: Multistability is a
phenomenon in human percep-
tion where the same input is inter-
preted in several mutually exclu-
sive ways (Attneave, 1971). Image
from Greff et al. (2020) under CC-
BY 4.0 license.

3.2 Training Object-Centric Neural Networks

As discussed before, slot-based models are usually autoencoders, that
is, they are trained end-to-end by learning to reconstruct the input data.
We can differentiate between generative and non-generative approaches.

Generative Approaches In generative approaches, the scene x is mod-
eled as a composition of multiple individual latent components z. The
(now probabilistic) decoder parametrizes the conditional distribution
pθ(x | z), with the slots constituting the latent variables z, and the
(probabilistic) encoder forms a variational approximation to the poste-
rior qϕ(z | x) — we can view such models as structured extensions of
variational autoencoders (Kingma and Welling, 2014). Consequently,
they are trained with amortized variational inference by maximizing a
lower bound to the data log likelihood logp(x)10:

ℒELBO(θ,ϕ, x) = E
qϕ(z|x)

[logpθ(x | z)]−DKL(qϕ(z | x) ∥ pθ(z)), (3.1)

where pθ(z) is the prior distribution over the latents. An interesting fea-
ture of probabilistic generative approaches is the modeling of (potentially
multi-modal) distributions over the slots, which allows the expression of
uncertainty and of different interpretations of ambiguous or multistable
inputs (Greff et al. (2020); see also Fig. 3.4). Furthermore, such models
can also compositionally sample new scenes, which has promising appli-
cations in controllable generation and scene editing (Jiang et al., 2023;
Yanbo Wang et al., 2023; Wu, Hu, et al., 2023).

Non-Generative Approaches In contrast, non-generative approaches
do not assume any particular model that generated the data. Instead,
they can be trained using a reconstruction criterion such as the mean
squared error (MSE) loss:

ℒrec(θ,ϕ, x) = ∥x − gθ(fϕ(x))∥2. (3.2)

It is noteworthy that non-generative approaches can also be made
stochastic by injecting noise (e.g. Locatello et al., 2020), bringing them
closer to probabilistic generative approaches but not optimizing any
principledobjective. Compared to generative approaches, non-generative
approaches are generally simpler to formulate, implement, and extend
with alternative or auxiliary objectives, e.g. to inject certain biases. We
will see examples for this below.

Regularization One type of auxiliary objectives are regularization losses

on the slots. They promote certain slot properties, such as sparsity (Fan
et al., 2024), locality (Chakravarthy et al., 2023), suppression of similar
slots (Nanbo and Fisher, 2021), bias towards human object annota-
tions (Kim, Choi, et al., 2023) or moving objects (Bao et al., 2022), or cycle
consistency between features and slots (Didolkar, Goyal, et al., 2024).

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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(a) (b)

(c) (d)

Figure 3.5: Different views on a
scene: (a) RGB, (b) optical flow, (c)
depth, (d) ground truth segmenta-
tion. Images from Greff et al. (2022)
under CC-BY 4.0 license.

11 As these targets maintain the
spatial layout of the image, the
same decoders used for image re-
construction can be applied.

12 SAVi =∧ Slot Attention for Video.

13 Scalor =∧ SCALable Object-
oriented Representations.

Another form of regularization enhances the model’s compositional
generalization by enforcing consistent encoding and decoding when
combining slots from different samples, either in image space (Jung et al.,
2024), or in slot space (Wiedemer et al., 2024).

Alternative Targets Another type of objective that has emerged in
recent years is to predict alternative targets instead of reconstructing the
input image. Examples for such targets include optical flow (Kipf et al.,
2022), depth maps (Elsayed et al., 2022), and discrete tokens (Singh, Deng,
et al., 2022). These targets can be considered as being related to the image
through a (usually unknown) transformation, and so predicting them can
be viewed as modeling that transformation.11 The transformed targets
offer a different view on the input data that may be substantially easier
to predict from the slots compared to the original image. Furthermore,
in this view, objects “stand out” more (cf. Fig. 3.5), biasing the discovery

process towards them. Finally, specific targets embody certain principles of

object discovery (see Sec. 2.4.2): for instance, optical flow encodes coherent

motion; depth maps encode spatial locality. In this way, these targets have
allowed object-centric models to handle more complex data. Indeed, in
Part III of this thesis, we will discuss how using powerful self-supervised
features as targets enables scaling to unconstrained real-world data.

Beyond Autoencoding Besides autoencoding (and related paradigms
such as predicting alternative targets), there are few other approaches
to training. Notable exceptions include using the EM algorithm for
training (Greff et al., 2017; Steenkiste et al., 2018), or various forms of
self-supervision, such as contrastive losses (Kipf et al., 2020; Baldassarre
and Azizpour, 2022), student-teacher prediction (R. Qian et al., 2023),
cycle consistency (Ziyu Wang et al., 2023), or maximizing inter-slot
variance while minimizing intra-slot correlations (Foo et al., 2023). For
the self-supervised approaches, an interesting aspect is that they do
not require a decoder, which reduces computational costs and frees
them from modeling the (potentially complex) data domain. However,
compared to the autoencoding framework, self-supervised methods are
less explored and so their future potential is unclear.

3.3 Case Studies

In this section, we will conduct three case studies about object-centric
models intended to make some of the principles discussed in the last
section more concrete. They also serve as background material for Parts II
and III of this thesis, in which we will use and build upon the models
discussed here. In particular, we will discuss the Slot Attention model
from Locatello et al. (2020) (used in Chap. 6), its extension to video,
SAVi,12 from Kipf et al. (2022) (used in Chap. 7), and the probabilistic
Scalor 13 model from Jiang et al. (2020) (used in Chap. 4).

https://creativecommons.org/licenses/by/4.0/
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14 It is thus a non-generative
method, though a generative
variant has also been devel-
oped (Yanbo Wang et al., 2023).

15 Subscripts denote matrix in-
dices.

3.3.1 Slot Attention

At the time of writing, Slot Attention (Locatello et al., 2020) is the most
popular model for learning object-centric representations. Its popularity
stems from its ease of use, flexibility and performance, which has allowed
integration with a range of different tasks (e.g. Jiarui Xu et al., 2022;
Reddy et al., 2023; Deng et al., 2024; Jiaqi Xu et al., 2024). In terms of
our characterizations, Slot Attention performs parallel inference of scene-

based slots in feature space. These choices make Slot Attention relatively
efficient compared to other models. Slot Attention forms the basis of our
Dinosaur model, which we will present in Chap. 6.

We need to distinguish between the Slot Attention model for object

discovery, and the Slot Attention module, which were both proposed in
Locatello et al. (2020). The Slot Attention model is an architecture for
unsupervised discovery of object representations; in line with what was
discussed in the previous section, it is based on autoencoding and trained
through reconstruction with the MSE loss (Eq. (3.2)).14 Its core component
is the actual Slot Attention module, intended to be a generic, learnable,
differentiable interface between perceptual features and symbol-like
entities. As such, it is designed to be flexibly combinable with different
neural components and loss functions.

Slot Attention Module Concretely, the Slot Attention module performs
M iterations of attention between the set of slots zi ∈ RK×Dslots at iteration
i ∈ {1, . . . ,M}, and a set of input features h ∈ RL×Dfeats . The input
features are produced by an arbitrary upstream module that processes
the input image, e.g. a convolutional neural network (CNN). If the
features have spatial extent, as is the case for a CNN feature map, the
feature map is flattened into a set after adding a positional encoding to
retain information about the spatial positions of the individual feature
vectors. The core of the module is an inverted attention mechanism that
uses the slots as queries and the features as keys and values:

InvAtt(z,h) ..= WMean
L

(A)hWv, (3.3)

where A ∈ [0, 1]K×L is the matrix of attention weights,

A = softmax
K

(︃
1√

Dslots
zWq(hWk)T

)︃
, (3.4)

Wq ∈ RDslots×Dslots , Wk ∈ RDfeats×Dslots , Wv ∈ RDfeats×Dslots are learnable
query, key, and value transforms, and WMean (weighted mean) and
softmax are defined as15

WMean
L

(A)ij =
Aij∑︁L
l=1 Ail

, softmax
K

(X)ij =
exp(Xij)∑︁K
k=1 exp(Xkj)

. (3.5)

Crucially, the softmax operation is computed over the queries instead of
the keys as in standard attention (Vaswani et al., 2017); we will discuss
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16 This is supported by empiri-
cal observations that the itera-
tions converge to a fixed point,
i.e. zT ≈ SlotAttθ(h, zT ) for suffi-
ciently large T (Chang et al., 2022).

17 A (potentially undesirable) con-
sequence is that Slot Attention is
setup to utilize all available slots,
and does not naturally create empty

slots.

18 I hypothesize that in the broad-
cast decoder, the parallel decod-
ing of spatial positions with weight
sharing causes a bias towards low-
frequency outputs, which trans-
lates to a locality bias when model-
ing objects. Some evidence for this
is the stronger preference of the
broadcast decoder towards model-
ing instances compared to other
decoders, as we will discuss in
Chap. 6.

the implications of this inverted attention below. A single iteration of slot
attention is then succinctly described by

zi+1 = zi + MLP(GRU(zi, InvAtt(z̄i, h̄))), (3.6)

where MLP is a multi-layer perceptron with a single hidden layer, GRU
is a Gated Recurrent Unit (Cho et al., 2014), and we let a bar denote
the application of LayerNorm (Ba et al., 2016). The initial slots z0 are
either learnable parameters, or sampled from a normal distribution with
learnable mean and variance; the latter has the advantage that the number

of slots can be varied at test time. The complete Slot Attention module is
described by:

SlotAttθ(h, z0) : RL×Dfeats × RK×Dslots ↦→ RK×Dslots ..= zM. (3.7)

Abstractly, we can view this operation as a mapping between sets of

different cardinalities that is permutation invariant with respect to the input,
and permutation equivariant with respect to the initial slots (Locatello
et al., 2020).

Discussion Intuitively, Slot Attention softly partitions the input features
between the slots. This is because the inverted attention creates competi-

tion between the slots to explain the inputs, which, over the iterations,
leads to each input being approximately assigned to one slot — akin to
a crystallization process.16 Structurally, Slot Attention resembles a soft
version of the k-means algorithm; it can thus be viewed as a learned,
differentiable clustering algorithm. An important role for optimization
stability is played by the weighted mean operation; its effect is that all
slots receive an equally large update regardless of their success in the
competition, and are neither “starved”, nor “overloaded”.17 Indeed, re-
cent work has shown that the two key ingredients necessary for object
discovery with Slot Attention are the inverted attention and weighted
mean operations (Y.-F. Wu et al., 2023).

Slot Attention Model The Slot Attention model employs a structured

decoder that produces an independent image reconstruction per-slot, then
combines the individual reconstructions via alpha compositing (Porter
and Duff, 1984). In particular, letting (x̂k, α̂k) = gslot

θ
(zk) denote recon-

struction and logits of the alpha masks, the final reconstruction x̂ = gθ(z)
is given by a weighted sum over the per-slot reconstructions x̂k:

x̂ = gθ(z) =
K∑︂

k=1
αk ⊙ x̂k, αk = softmax

K
(α̂)k, (3.8)

where ⊙ denotes the Hadamard product, and the alpha masks α are
computed by a softmax over the slots. The slot-wise decoding function
gslot
θ

is implemented by a spatial broadcast decoder (Watters et al., 2019):
each slot is first broadcast to a 2D grid, embedded with a positional
encoding, then upsampled to the resolution of the image with several
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19 Recent theoretical works have
even shown that independent de-
coding facilitates provably (1) iden-
tifying the ground truth repre-
sentation (Brady et al., 2023),
and (2) compositional generaliza-
tion (Wiedemer et al., 2024).

deconvolutional layer.18 Importantly, decoding is independent (except
for the softmax), which limits the amount of information sharing that
can happen between slots, and provides an inductive bias for slot
separation (cf. the principle of independence, Sec. 2.4.2).19 Furthermore,
alpha compositing can be viewed as the slots competing for pixels to
render to; in this sense, the composition at the end of decoding is the
structural analogue to the decomposition at the end of encoding (within
Slot Attention).

Finally, for purposes of introspection and evaluation, each slot repre-
sentation zk has two associated masks: the attention masks A

i
k

(one set
per iteration), and the decoding alpha masks αk. Whereas the attention
masks may be more helpful to interpret what content is encoded into
the slots, the alpha masks are typically of higher quality (e.g. fit more
closely to objects), and thus are used for evaluation purposes.

3.3.2 SAVi: Slot Attention for Video

SAVi (Kipf et al., 2022) is the extension of the Slot Attention model for
sequential data, and thus also performs parallel inference of scene-based

slots in feature space in terms of our characterizations. It is able to provide
temporally consistent slot representations {zt}T

t=1 for videos {xt}T
t=1.

In accordance with what was discussed in Sec. 3.1, this is achieved by
recurrently connecting slots over time, which I will now describe in more
detail. SAVi also forms the basis of the VideoSAUR model, which I
will present in Chap. 7.

In particular, Slot Attention is applied to an encoding ht of the current
frame xt and the slots from the previous time step zt−1 to yield the slots
for the current step zt:

zt = zt,M = SlotAttθ(ht, zt, 0), zt,0 = zt−1 (3.9)

where the initial slots z0 for the first frame can be randomly initialized
(as in Slot Attention). This process consists of two update loops: an
outer loop over time (T steps), and an inner loop within Slot Attention
(M steps); by mentally flattening the loops, we can interpret this as a
single application of Slot Attention for T · M iterations with varying
inputsht. Thus, the previous slots zt−1 generally already provide a good
estimate for the current slots zt, and the number of iterations within
Slot Attention can be reduced to M = 1. The recurrent initialization
also facilitates temporal consistency of the slots, as it strongly biases Slot
Attention to re-identify the object a slot previously belonged to in the
current frame.

To model temporal dynamics, Kipf et al. (2022) propose to employ a
learnable transition module t : RK×Dslots ↦→ RK×Dslots that takes in the slots
of the previous time step and produces Slot Attention’s initialization
for the current step, i.e. zt, 0 = t(zt−1). Kipf et al. (2022) instantiate the
transition module with a Transformer encoder (Vaswani et al., 2017); its
self-attention mechanism is able to model interactions between objects
(e.g. collisions). Note that the transition module is generally not able
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20 Unless necessary, we omit the
parametrization θ,ϕ from pθ,qϕ
for notational clarity.

to predict the future evolution of the slots, as there is no explicit loss
training it to do so. Functionally, the role of the transition module is only
to produce a good initialization for Slot Attention, which may or may not
coincide with the true slot dynamics.

3.3.3 SCALOR

Scalor (Jiang et al., 2020) is a probabilistic generative model for learning
slot representations of videos. In terms of our characterizations, Scalor
performs parallel inference of spatial slots both in pixel and feature space; it
was designed to scale to many objects and demonstrated to handle up
to 100 objects in simple scenarios. We will demonstrate how the struc-
tured representations Scalor infers can be utilized for self-supervised
reinforcement learning in Chap. 4.

As discussed in Sec. 3.1.1, spatial slot methods add further structure
to the slots. In Scalor’s case, it is assumed that the slots zt that generate
the video frame xt factorize into a background latent variable zbg, t and
the foreground object slots zfg,t = {zt

k
}k∈𝒳t , where 𝒳t is the set of object

indices for time t. Each foreground slot is then further structured as zt
k
=(︂

zwhere,t
k

, zwhat,t
k

, zpres,t
k

)︂
, encoding respectively location, appearance,

and existence of an object, where the location is given by zwhere,t
k

=(︂
z

pos,t
k

, zscale,t
k

, zdepth,t
k

)︂
, i.e. the center position, scale, and relative depth

to the camera.

Generative Process In the Scalor model, the joint distribution p(x1:T ,
z1:T ) temporally factorizes as follows20:

p(x1:T , z1:T ) =
T∏︂
t=1

p(xt, zt | z<t), (3.10)

where the per-frame conditional is given by p(xt, zt | z<t)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

p(x1 | z1)⏞ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ⏞
rendering

p(zbg,1)⏞ˉ̄⏟⏟ˉ̄⏞
background prior

p(z𝒟, 1)⏞ˉ̄⏟⏟ˉ̄⏞
discovery prior

for t = 1,

p(xt | zt)⏞ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ⏞
rendering

p(zbg,t | zbg,<t, zfg,t)⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
background transition

p(z𝒟, t | z𝒫, t)⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
discovery

p(z𝒫, t | z<t)⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
propagation

for t > 1.

(3.11)
Here, z𝒟, t is the set of slots for objects newly discovered in the current
frame, and z𝒫, t is the set of slots propagated from the previous frame
(with 𝒟 ∪𝒫 = 𝒳 , i.e. zfg,t = z𝒟, t ∪ z𝒫, t). Thus, the generative process
decomposes into prior, propagation, discovery, background transition,
and rendering modules, which in turn can be further decomposed; for
more information, we refer to Jiang et al. (2020). Here, we only provide
some high-level comments: what differentiates Scalor from previous
slot-based models for video (e.g. Kosiorek et al., 2018) is its parallelization
of the discovery process, resulting in efficient processing and enabling
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scalability to many objects. In addition, it contains a propagation-discovery

model, in which new objects are proposed and subsequently rejected
if they spatially overlap with propagated objects. For proposing new
objects, the image is divided into latent grid cells, each containing a
potential object proposal.

Inference We now discuss the encoding direction, i.e. how slots are
inferred for a video. As the true posterior distribution p(z1:T | x1:T ) is
intractable, Scalor makes a variational approximation to the posterior,
which decomposes similarly to the generative model:

q(z1:T | x1:T ) =
T∏︂
t=1

q(zt | z<t, x⩽t) (3.12)

=

T∏︂
t=1

q(zbg,t | zfg,t, xt)⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
background

q(z𝒟, t | z𝒫, t, x⩽t)⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
discovery

q(z𝒫, t | z<t, x⩽t)⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
propagation

. (3.13)

The posterior uses an analogue propagation-discovery process to the
generative direction. Furthermore, within the posterior propagation
and discovery modules, spatial transformer networks (Jaderberg et
al., 2015) are used to attend to rectangular regions of the feature map
and the image, both to identify object locations zwhere,t and to encode
appearances zwhat,t. Training proceeds by maximizing the following
evidence lower bound (an instantiation of the general ELBO in Eq. (3.1)):

ℒELBO(θ,ϕ, x1:T ) =
T∑︂
t=1

E
qϕ(z<t|x<t)

[︂
E

qϕ(zt|z<t,x⩽t)

[︁
logpθ(xt | zt)

]︁
− DKL

[︁
qϕ(zt | z<t, x⩽t)

∥︁∥︁ pθ(zt | z<t)
]︁ ]︂

.
(3.14)

Discussion Scalor has a sophisticated model of the generative pro-
cess, in principle capable of capturing events such as the appearance,
disappearance and occlusion of objects. However, the model’s complex-
ity makes inference challenging: Jiang et al. (2020) report a phenomenon
they call propagation collapse, wherein the model re-discovers the objects
each frame rather than propagating them. While the authors introduce
measures to mitigate this issue, in our own project (Chap. 4), we found
Scalor’s tracking of objects to be unreliable. Furthermore, the numer-
ous modules involve many hyperparameters that must be correctly set;
while this allows Scalor to be fine-tuned to specific datasets, it also
makes the model brittle and labor-intensive to get to work. Finally, un-
derlying the model are many simplifying assumptions (e.g. objects have
a certain scale; objects can only move a certain distance per step); while
these assumptions encode useful inductive biases that enable successful
learning of object representations on simpler scenes, they often fail in
more complex scenes. These factors may explain why Scalor has not
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21 E.g. for object-centric models
trained with reconstruction, the
loss was shown to not correlate
well with the metrics of inter-
est (Dittadi et al., 2022).

22 𝒮k = {j ∈ {1, . . . ,HW} | k =

arg maximi,j}.

yet been scaled to more real-world scenarios and has fallen out of favor
compared to simpler approaches that make less assumptions.

3.4 Evaluating Object-Centric Representations

For all representation learning methods, the question of evaluation is
important but challenging. It is important, because although represen-
tations are often learned in isolation, they cannot be considered in a
vacuum — instead, representations are supposed to support a narrow
or broad set of downstream tasks. To develop better representations, we
thus need a way to measure progress towards these tasks of interest.
It is challenging, because as a consequence of being unsupervised, a
natural evaluation metric is missing. Specifically, the value of the training
objective is often not predictive of the downstream performance.21 Thus,
the crux of evaluation is finding metrics that measure what we actually
care about.

In this section, we are going to introduce different ways of evaluating
object-centric models. First, we review the currently most popular
approach to evaluation, namely how well the models discover objects

(Sec. 3.4.1). Then, we consider approaches to measure representational

content (Sec. 3.4.2). After discussing model robustness and generalization

(Sec. 3.4.3), we also consider the direct evaluation of representations on
downstream tasks (Sec. 3.4.4).

3.4.1 Object Discovery

The primary approach to how slot representations have been evaluated is
in terms of object discovery, that is, how well the learned representations
capture the objects within the input image or video. To do so, annotations
marking the objects in the target dataset are required; typically, human-
labeled segmentation masks are used for this purpose. By comparing
the object masks associated with the slots with these ground truth
annotations, we aim to measure (1) how accurately individual slots fit
the position and shape of individual objects; and (2) how well the slots
split the different objects. Both qualities assess how well the discovered
objects align with the human-defined notion of objects on the data, but
serve different purposes: while (1) measures the quality of mask fit, (2)
evaluates how well the objects are segregated from each other within the
representation. The two qualities are correlated with each other, making
it challenging to measure them in isolation; nevertheless, different
metrics balance the two aspects differently. For the projects discussed in
this thesis, we mainly relied on two metrics: to measure quality (1), the
mean best overlap, and to measure quality (2), the adjusted rand index.

Recall that m = {mk ∈ [0, 1]H×W}K
k=1 is the set of soft segmentation

masks associated with the slots. We define 𝒮 = {𝒮k}Kk=1 as the set of
pixels for which mk has the highest probability22 and 𝒯 = {𝒯t}Tt=1 to
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23 If the number of predicted
masks is less than the number of
true masks for an image, mBO
may be overly optimistic, whereas
mIoU penalizes the unassigned
true masks (false negatives).

24 The following exposition is
based on Vinh et al. (2010).

be the set of ground truth segmentation masks, where 𝒯t ∈ {0, 1}H×W

contains the set of pixels marked in mask t.

Mean Best Overlap The mean best overlap (mBO) (Uĳlings et al., 2013;
Pont-Tuset, Arbeláez, et al., 2017) is a metric that measures how much
the predicted and ground truth object segmentation masks overlap. It
is based on the well-known intersection-over-union (IoU) metric, also
known as the Jaccard index. The IoU between two sets 𝒜 and ℬ is
defined as

IoU(𝒜,ℬ) ..=
|𝒜 ∩ ℬ|
|𝒜 ∪ ℬ| ∈ [0, 1]. (3.15)

Notably, the IoU is scale invariant and thus it can be meaningfully
averaged when comparing both small and large objects within an image.

The predicted masks lack a specific order, making a direct one-to-one
comparison with the ground truth masks impossible; thus, a way of
matching is necessary. Specifically, mBO assigns each predicted mask to
the ground truth object mask with the highest overlap, and normalizes
by the number of ground truth masks:

mBO(𝒮, 𝒯 ) ..=
1

|𝒯 |
∑︂
𝒯t∈𝒯

max
𝒮k∈𝒮

IoU(𝒮k, 𝒯t) ∈ [0, 1]. (3.16)

The mBO has also been referred to as mean segmentation cover-
ing (Arbeláez et al., 2011; Engelcke, Kosiorek, et al., 2020; Dittadi et al.,
2022). An alternative to maximum mask matching is to solve a bipar-
tite matching problem, e.g. using the Hungarian method (Kuhn, 1955),
which is referred to as mIoU in the object-centric literature (e.g. Karazĳa
et al., 2021). The two matching variants mostly23 exhibit similar behavior,
with mBO upper-bounding mIoU: mBO(𝒮, 𝒯 ) ⩾ mIoU(𝒮, 𝒯 ).

Adjusted Rand Index The adjusted rand index (ARI) (Hubert and
Arabie, 1985) is a measure of cluster similarity. Note that segmenting an
image can be interpreted as partitioning its pixels into clusters; if 𝒫 =

{1, . . . ,HW} is the set of image pixels, we can interpret𝒮 = {𝒮1, . . . ,𝒮K}
and 𝒱 = {𝒯1, . . . , 𝒯T} as two clusterings (partitions) of 𝒫 . Thus, the ARI
can be used to compare the two clusterings 𝒮 and 𝒯 .

ARI24 is based on counting of pairs of items of 𝒮 that are assigned to
the same or different clusters within 𝒮 or 𝒯 . In particular, let N11 be the
number of pairs that are in the same cluster in both 𝒮 and 𝒯 and N00
the number of pairs that are in different clusters in both 𝒮 and 𝒯 . With
this, the rand index (Rand, 1971) is defined as

RI(𝒮, 𝒯 ) ..=
N00 +N11(︁

HW
2
)︁ ∈ [0, 1], (3.17)

that is, the fraction of all pairs of items for which𝒮 and 𝒯 are in agreement.
An RI of 1 indicates that 𝒮 and 𝒯 are identical up to permutation of the
clusters.
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25 For example, for an image con-
taining a single object, predicting
a single mask that covers the full
image yields an FG-ARI of 1, while
predicting even a single pixel of
the mask wrongly yields a value
of 0.

Figure 3.6: Instance vs. semantic

slot grouping. The two modes
can be distinguished by comparing
semantic mBO with instance mBO.
From Seitzer et al. (2023).

As the rand index’s baseline value shifts strongly depending on the
number of clusters and their items (Fowlkes and Mallows, 1983), the
adjusted rand index normalizes the rand index such that a random
clustering yields an expected value of zero. Let denote N01 the number
of pairs in the same cluster in 𝒮 but in different clusters in 𝒯 , and N10
the number of pairs in different clusters in 𝒮 but the same cluster in 𝒯 .
Then the adjusted rand index is defined as

ARI(𝒮, 𝒯 ) ..=
2(N00N11 −N01N10)

(N00N01)(N01N11) + (N00N10)(N10N11)
⩽ 1, (3.18)

with a value of 0 for a random clustering in expectation, and a value
of 1 for identical clustering up to permutation; negative values are also
possible.

In the context of object-centric learning, the foreground adjusted rand

index (FG-ARI) is mostly used: this variant only takes the ground truth
masks of foreground objects into account. Thus, pixels lying in the
background are fully ignored by the metric, which focuses the metric
on correct separation of objects, but does not take the into account how
tight the predicted masks fit the objects. Because this creates certain
pathological cases,25 several works have questioned the use of FG-ARI
and expressed a preference for IoU-based metrics (Engelcke, Kosiorek,
et al., 2020; Karazĳa et al., 2021; Wu, Hu, et al., 2023).

Other Considerations To evaluate object discovery with video data,
an average of the image-based metrics applied frame-by-frame can be
computed. However, for sequential data, it is typically of interest how
temporally consistent the object representations are; this can be achieved
by joining the per-frame masks into “temporal tubes” for each object, and
then applying the image-based metrics (Kipf et al., 2022). If slots switch
their associated objects in the video, i.e. fail to track them, this would
result in an inconsistent tube mask and be penalized in the metrics.

On real-world datasets, the ground truth segmentation masks typi-
cally have an associated class label. By joining all object (instance) masks
with the same class label, a semantic segmentation mask can be obtained.
In Seitzer et al. (2023) (see Chap. 6), we proposed to compute a semantic

mBO using semantic segmentation masks. Comparing the semantic mBO
with the mBO computed with instance masks allowed us to evaluate
whether models are biased towards semantic segmentation (cf. Fig. 3.6).

3.4.2 Representation Content

Another approach to evaluating slot representations is to measure their
information content. Optimally, each slot should completely “describe” the
object it is assigned to, and be independent of all other objects in the
image (the properties of completeness and separation, see Sec. 2.3). What
exactly the description of an object should include is dependent on
the data domain as well as the task the representation is intended for.
Typically evaluated properties include the position, size, shape, color,
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26 E.g. using the COCO Attributes
dataset (Patterson and Hays, 2016):
male/female, young/old, etc.

27 As the slots have no particular
order, training and evaluation is
phrased as the prediction of a set of

properties for the target image, using
Hungarian matching to assign pre-
dicted to true properties (Dittadi
et al., 2022).

28 Intuitively, eachproperty should
be assigned an individual dimen-
sion in the representation’s vector
space.

29 Separation can be seen as inter-

slot disentanglement.

type, or class of the object (Dittadi et al., 2022). More fine-grained object
properties26 are also conceivable, but have so far not been studied in the
object-centric literature.

Completeness Each slot should encode all properties of the object it
captures. Checking for completeness amounts to training a classifier or
regressor per target property, predicting that property from the slot.27
The average accuracy of the predictors can be taken as a measure of
completeness. Furthermore, predictors of different complexity can be
employed (e.g. linear, or a shallow MLP), which can give an estimate of
how easily accessible the object properties are within the slots.

Note that as the same predictors are shared between slots, their accu-
racy is also affected by whether the slots share a common representational

format. For example, if an object’s location is encoded in different ways for
different object types, a shared predictor will not be able to consistently
“read-out” that property. The author of this thesis is not aware of any
metrics measuring the degree of “representation sharing”. However,
as linear predictors will be particularly affected by a lack of shared
representational format (as they can not compensate for it internally),
their performance could be used as an indicator for it.

Disentanglement In addition to measuring whether a slot encodes
certain object properties, it may be desirable to evaluate how well the
individual properties are isolated in the representation.28 This is referred
to as disentanglement, and a variety of metrics have been proposed to
measure it (e.g. Higgins, Matthey, et al., 2017; R. T. Q. Chen et al.,
2018; Eastwood and Williams, 2018). Note that it has been shown that
unsupervised disentanglement is impossible in general; there also is
conflicting evidence about its practical benefits (Locatello et al., 2018;
Dittadi et al., 2021).

Separation A further consideration is the separation, i.e. the indepen-
dence, of the slots from each other.29 The author of this thesis is not aware
of any works attempting to measure slot independence. Measuring sep-
aration involves testing that information that is encoded in one slot is not

encoded in any of the other slots. For this purpose, Dang-Nhu (2022) pro-
pose a metric derived from the disentanglement metric DCI (Eastwood
and Williams, 2018). However, separation is rarely evaluated in practice.

3.4.3 Robustness and Generalization

For any ML model, it is important to understand how the model responds
to unforeseen inputs, i.e. inputs that lie outside the training distribution.
A central argument for object-centric models is that they are more robust
and generalize better than models with less structure; several studies
have tried to validate this claim (Karazĳa et al., 2021; Dittadi et al., 2022;
Yoon et al., 2023). This involves evaluating object discovery and represen-
tation content on test data that has undergone certain distribution shifts
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30 This can be viewed as evaluating
the ability to perform causal, coun-
terfactual modeling (cf. Sec. 2.2.2).

31 Another consideration besides
performance is sample efficiency,
i.e. the number of data points
needed to obtain a certain level
of performance.

32 Exceptions include Veerapaneni
et al. (2019) and Yoon et al. (2023)
for RL-based evaluation.

compared to the training data. For simulated datasets, controlled changes
to the data distribution are possible; examples of such modifications
include varying the number of objects, introducing new object types,
new object colors or textures, or backgrounds. With such data, it is also
possible to systematically evaluate compositional generalization (Wiedemer
et al., 2024). A specific form of compositional generation is compositional

generation, which can be evaluated by modifying one or multiple slots
(e.g. combining slots from different images), and then testing whether
the modified slots are decoded into a meaningful composite image (Jiang
et al., 2023; Yanbo Wang et al., 2023; Wu, Hu, et al., 2023).30

A more top-down approach to test for generalization is to train the
model on one dataset, and evaluate its performance on a target dataset
from a different data distribution. If the model performs well on a
sufficiently broad range of target datasets, this is evidence that the model
also generalizes “in-the-wild” — such zero-shot generalization is a hallmark
of so-called foundation models. In a recent study, we demonstrated that
object-centric models based on the work presented in Part III of this thesis
indeed exhibit some zero-shot capabilities (Didolkar, Zadaianchuk, et al.,
2024, see also Sec. 8.2.3 for a longer discussion).

3.4.4 Downstream Tasks

Eventually, slot representations are supposed to be part of a larger
system serving a particular purpose. Downstream evaluations judge
the quality of the representation by how well it supports that purpose.31
For example, slots may be used to encode images in a model for visual
question answering (VQA); in that case, the quality of the answers can
be used to compare different slot models (Mamaghan et al., 2024). This
treats the slot representation as a black box, disregarding the properties
of individual slots.

This style of evaluation represents a pragmatic approach, where the
ultimate focus is on the outcome. One of its advantages is that the slot
representations can be fairly compared to other means of constructing
the overall system (e.g. using human supervision). Furthermore, it is also
applicable when the target dataset lacks human labels that would allow a
more fine-grained evaluation of the slots. However, it may also overlook
certain benefits of object-centric representations (e.g. out-of-distribution
generalization) if the downstream evaluation is not designed to cover
those aspects.

Evaluation through downstream tasks has historically received less
attention than the mask-based evaluation of object discovery.32 This may
be due to a lack of suitable downstream tasks, as well as the complexities
of implementing end-to-end training and evaluation pipelines. Focusing
on a direct evaluation of the representation instead allows researchers to
compartmentalize the representation learning problem. From the point
of view of engineering ML systems, this also offers practical advantages
such as modularizing models into manageable parts, and achieving
faster turnaround times. However, it carries the risk of losing sight of
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33 An adage typically stated as
“when a measure becomes a target, it

ceases to be a good measure.”

the greater purpose for learning representations in the first place, which
is, for the most part, solving problems in the real world (cf. Goodhart’s
law33). In Chap. 8, we will discuss two real-world applications for
object-centric representations, VQA and robotics, and how the research
in this thesis may enable them.
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Chapter 4
Self-Supervised Visual

Reinforcement Learning with
Object-Centric Representations

In the last part of this thesis, I introduced structured object represen-
tations: what they are, the purpose they are serving, and models for
learning them. Part II of this thesis now places structured object rep-
resentations in the context of a larger learning system.1 As the area of
application, I will focus on autonomous agent learning. Given that object
representations are particularly suited to describe physical environments,
I will discuss embodied agents that interact with such environments:
robots.2 In doing so, I will highlight the practical benefits and potential of
these representations when integrated into a larger learning system.

In this chapter, I introduce a reinforcement learning (RL) method,
Smorl,3 that is capable of tackling a challenging class of problems
through the use of structured representations. In particular, Smorl is
designed for visual RL environments with a combinatorial goal structure:
by decomposing the goal space with the help of object-centric repre-
sentations, complex composite tasks are turned into a series of simpler,
manageable sub-goals.

This work highlights three interesting aspects enabled by object-centric
representations: the ability to understand environment observations in
terms of their latent compositional structure, allowing agents to operate on
an abstraction level that matches the underlying structure; the ability to
design informed algorithms that leverage that structure effectively; and
the ability to generalize to scenarios not encountered during training.
Within the context of this thesis, this chapter contains the first of two
case studies illustrating the benefits of structured object representations
through the lens of autonomous agent learning.

A short disclaimer is in order. The next two chapters will assume high-
level familiarity with terms and concepts from the field of RL. I opted to
omit background material on RL to focus the thesis on structured object
representations. Instead, I refer the interested reader to Sutton and Barto
(2018) for an extensive introduction to RL.
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Illustration of the scenario of inter-
est, generated with DALL·E 3.

4.1 Motivation

Imagine the following scenario. A robot is placed in front of a table
with multiple objects on it. The only means the robot has for sensing its
environment is a fixed camera looking onto the table. When prompted
with a “goal image” of the table, the robot should arrange the objects on
the table accordingly. The robot should use reinforcement learning to
learn this task fully unsupervised; crucially, it is never told whether it
succeeded or not by an external observer.

This scenario describes an instance of self-supervised multi-goal compo-

sitional visual reinforcement learning. At the time this work was conducted,
even basic versions of this class of tasks were considered unsolved. Let
us pick apart the different aspects to understand why this scenario is so
difficult.

(I) “Self-supervised”: the environment does not provide a reward signal
to the agent. This also means that the tasks the agent should solve
are not revealed to the agent a priori. Thus, the agent needs to create
its own supervision to prepare for any potential task.

(II) “Multi-goal”: at test time, the agent’s tasks are sampled from a
distribution of tasks. The agent cannot specialize to a single goal.

(III) “Compositional”: the environment exhibits a compositional structure,
e.g. it consists of multiple objects. This means that the agent needs
to deal with a combinatorial explosion of possible states and goals.

(IV) “Visual”: the agent only receives high-dimensional image observa-
tions from the environment, withoutany proprioceptive information
about the agent’s state. On top of the reinforcement learning prob-
lem, the agent needs to solve the representation learning problem:
organizing its perception in order to act.

Combinations of these aspects are even more challenging. For ex-
ample, while there exist algorithms for multi-goal RL from states (e.g.
Andrychowicz et al., 2017), multi-goal RL from images is challenging
because in image space, the set of possible goals is too large to explore; an
appropriate goal space must be learned (A. Nair et al., 2018). Furthermore,
for multi-goal RL with a compositional state space, the set of possible goals
grows exponentially with the number of elements of the state space.
Finally, a compositional state space with image observations complicates
the representation learning problem, because the elements of the state
space have to be separated into distinct representational units (i.e. the
binding problem (Greff et al., 2020)).

As such, prior work before this project had only tackled subsets of this
challenges. Laversanne-Finot et al. (2018), A. Nair et al. (2018), Ghosh
et al. (2019), A. Nair et al. (2019), Warde-Farley et al. (2019), and Pong et
al. (2020) attempted self-supervised multi-goal RL from images, but they
all assumed a monolithic state space that can be encoded into a single
vector representation. In their environments, at most a single target
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Figure 4.1: The Smorl agent. The current observation xt is encoded into a set of slot vectors zt and processed by
the goal-conditioned policy π(at | zt, zg). During training, sub-goals zg are sampled from a learned goal space
conditional on the first environment observation z1 (not depicted). At test time (dashed lines), the externally
provided goal image xg is encoded into a set of potential sub-goals, which are then sequentially attempted to be
solved by the agent. Figure adapted from Zadaianchuk et al. (2021).

4 Smorl =∧ Self-supervised Multi-
Object RL.

5 Collected by a random policy.

6 Scalor was introduced in
Sec. 3.3.3

object is present. Several of these works rely on variational autoencoders
(VAEs) (Kingma and Welling, 2014) to learn a representation of the
state, which is then also used for goal setting and reward shaping. A
motivation for this work was that such VAE-based representations are
not suitable for multi-object environments, exactly because they fail to
solve the binding problem (Greff et al., 2020). Instead, the Smorl agent
employs object-centric representations to obtain a more tractable goal
and state representation.

4.2 The SMORL Agent

The Smorl 4 agent consists of two main components — an object-centric

encoder and a goal-conditioned attention policy — trained separately in two
stages. In the first stage, the encoder is trained offline on a dataset of
observation sequences from the environment.5 In the second stage, the
policy is trained online in the environment with reinforcement learning
using the Smorl algorithm. At test time, the trained agent is able to
solve unseen goals by decomposing them into a sequence of sub-goals. I
will first describe the encoder and policy components before detailing
the Smorl algorithm. See Fig. 4.1 for an overview.

4.2.1 Architectural Components

Object-Centric Encoder The task of this component is to learn an
object-centric representation of the environment’s observation space. In
this work, we used the Scalor model6 (Jiang et al., 2020); in principle,
Smorl is flexible in terms of the representation, and thus other models
could be used instead of Scalor. The only requirements are that (1) the
representation is structured as a set of slot vectors z; (2) each slot vector
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7 Note that object-centric models
with scene-based slots (e.g. Slot At-
tention, see Sec. 3.1.1) do not qual-
ify because of requirement (2).

8 This is what is typically de-
scribed as a “world model” (Ha
and Schmidhuber, 2018).

9 We also explored other forms of
permutation-invariant neural net-
works (e.g. Deep Sets (Zaheer et al.,
2017)), but found that the attention-
based design worked best.

10 At the time, Transformers were
not as common in RL, and so this
choice was not as obvious as it
might seem in retrospect.

11 A similar design is used for the
value function inside the RL algo-
rithm used to train the policy.

zk is additionally structured in terms of position zwhere
k

and appearance

zwhat
k

of the object7; (3) the appearance vectors “uniquely identify” objects
throughout an episode.

Let us briefly discuss Scalor’s training in the context of Smorl.
Recall that Scalor is a generative sequence model, that is, it is trained
to model a distribution of sequences. In our case, the sequences to
be modeled are episodes of environment observations. Thus, we first
executed a random policy that collects a dataset of episodes from the
environment and then fitted Scalor to this dataset using variational
inference (see Sec. 3.3.3). Note that in our case, the modeled sequences
come from an active setting, i.e. the agent’s actions influence the future
observations in the sequence. To accommodate this, we extended
Scalor to include actions in its transition model.8

Goal-Conditioned Attention Policy The object-centric encoder pro-
duces a set of slot vectors per time step. How should that set be processed
to select the agent’s action, i.e. what is a suitable design for the pol-
icy? Typically, the policy networks used in RL are MLPs that take a
vector as input and map it to an action; these are unsuitable to process
sets of vectors. Instead, we designed a neural network based on the
multi-head attention mechanism9 popularized by Transformers (Vaswani
et al., 2017).10 In particular, the set of slot vectors is used as keys and

values; the goal object is used as a query. The (fixed-length) output of the
attention mechanism is then used as input to an MLP that outputs the
agent’s action.11 Intuitively, attention implements a filtering mechanism
for retrieving the part of the state that is relevant under the current goal.
Note how the use of object-centric representations enables the policy
to directly operate on meaningful, task-relevant units of information,
alleviating the policy from having to discover this information from the
sparse RL training signal.

4.2.2 SMORL Algorithm: Training Phase

With the architectural components in place, we can now turn ourattention
to the Smorl training algorithm. For any self-supervised multi-goal RL
agent, (at least) the following three questions need to be answered:

(I) Goal space: what aspects of the environment are used as goals, and
how are goals represented to the agent?

(II) Goal sampling: how are goals selected during training?

(III) Reward function: how are the current goal and observation trans-
formed into a reward?

One particular contribution of Smorl is answering these questions
specifically for compositional multi-object environments.

Goal Space Assuming that the environment has a compositional struc-
ture that can be inferred with object-centric representations, a natural
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12 An invalid goal, for example,
could be an entity in the environ-
ment observation that is effectively
uncontrollable for the agent, e.g. a
tree in the background.

13 This distribution is fit to
Scalor’s representation on the ini-
tially collected dataset.

idea is to use the same structure for the goal space. Through this
compositional structure, the goal space can then be decomposed into
simpler “sub-goals”, where each sub-goal corresponds to the intended
target state of one particular entity. More complex goals can then be
achieved by “chaining” sub-goals together (see Sec. 4.2.3). This way, a
complex goal is broken into more manageable parts, simplifying the
learning process for the agent. The assumptions behind this are that
each entity in the environment (1) constitutes a valid goal,12 and; (2) can
be controlled independently of the other entities. A consequence of the
latter assumption is that the overall goal can be achieved by achieving
any sequence of sub-goals. Of course, this assumption is usually too
naive; we discuss possible resolutions for when it is violated in Sec. 4.4.

Concretely, Smorl uses the representation space of object vectors
from the object-centric encoder as the goal space. Thus, the policy is
conditioned on exactly one object vector at time, specifying the object
to be manipulated. This assumes two properties of the object-centric
representations: (1) the object vectors are interchangeable, that is, all
different types of objects share a common representational format; and
(2) the goal object can be re-identified within any environment observation,
that is, the object vector uniquely describes the goal object such that the
current state of that object in the environment can be retrieved from the
full set of objects. While property (1) is usually fulfilled due to the way
object-centric models are trained, property (2) may be violated if distinct
objects “overlap” in representation space. In this case, the policy may
confuse which goal object should be manipulated. For the environments
used in this work, we verified that in Scalor’s appearance space, objects
are indeed distinguishable (see Zadaianchuk et al., 2021, App. A.1).

Goal Sampling Having established the goal space, I now describe how
the Smorl agent picks goals from that space during training. At the
start of each training episode, the initial environment observation is
encoded into a set of object vectors. Each of those objects constitutes a
potential sub-goal; the Smorl agent simply selects a random object to
be manipulated in this episode. To turn the corresponding object vector
into a meaningful goal, the positional component of the representation
(recall that Scalor’s representation is structured in terms of position
and appearance) is replaced with a new position sampled from a learned
distribution over valid environment positions.13 By using the initial
observation to pick goals, we ensure that each sub-goal is feasible in the
current episode. This process can be viewed as the agent “imagining”
one of the objects in its initial observation at another location and then
realizing that imagination by trying to reach that state.

Reward Function What is missing is how the agent is guided toward
its self-selected goals, i.e. the reward specification. Previous work (A.
Nair et al., 2018; Pong et al., 2020) showed that the distance in latent

space between the current state and the goal state can be a good reward
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14 The actual usefulness of such a
“latent distance reward” depends
on the specific properties of the
latent space. For example, A. Nair
et al. (2018) found that the more
disentangled latent space learned
by a β-VAE (Higgins, Matthey, et
al., 2017) works better than that of
a regular autoencoder.

15 Any recorded environment tran-
sition can be replayed with coun-

terfactual goals for training; we uti-
lize actually occurring future states

(known as hindsight experience re-
play (Andrychowicz et al., 2017))
and “imagined goals” (A. Nair et
al., 2018) (chosen according to
the goal sampling procedure de-
scribed above) for this purpose

16 For examples of tasks with
dependencies between sub-goals,
consider stacking a tower out of
blocks, or using a rod to catch a
fish.

Figure 4.3: VisualRearrange

environment from the top (left)
and agent observation (right).
From Zadaianchuk et al. (2021).

17 We also tested Smorl on a sim-
pler environment named Visual-
Push, which we do not discuss
here.

signal.14 However, for Smorl, latent state space (a set of vectors) and
goal space (a single vector) are not directly compatible to compute a
distance. Instead, the goal object first has to be re-identified among the
set of currently observed objects. To do so, the object closest to the goal in
the appearance component of the representation is selected, assuming that
two occurrences of the same object are close in this space. The reward is
then defined as the distance between the selected object and the goal
object solely in terms of the positional component of the representation,
ensuring a meaningful reward signal.

Training With the goal space, goal sampling and reward function
defined, Smorl can be optimized with any multi-goal, model-free RL
algorithm. In particular, we chose goal-conditioned soft actor-critic
(SAC) (Haarnoja et al., 2018) as a state-of-the-art (at the time) algorithm
for continuous action spaces. During off-policy training, we also rely on
goal relabeling techniques (Andrychowicz et al., 2017) to improve sample
efficiency.15

4.2.3 SMORL Algorithm: Test Phase

At test time, the trained agent is given goal images showing the state of
the environment to achieve. The Smorl agent then operates as follows:

(I) Decompose goal image into set of object vectors using Scalor.
(II) Pick random unsolved sub-goal from set of goal vectors.

(III) Try to solve sub-goal using trained Smorl policy for some steps.
(IV) Go to (II), repeat until all sub-goals are solved or a timeout is reached.

As discussed above, this simple algorithm relies on the assumption that
all sub-goals are actually independently achievable, i.e. that there are
no dependencies between sub-goals.16 Furthermore, while solving a
sub-goal, the agent is ignorant to previously made progress — it may
inadvertently destroy sub-goals solved beforehand.

4.3 Results

At the time this project was conducted, no suitable benchmark envi-
ronments for multi-goal, multi-object visual RL existed. Thus, to test
the Smorl agent, we created the VisualRearrange environment17
based on the MuJoCo simulator (Todorov et al., 2012), implementing a
continuous control task: the agent has to control a 7 degrees-of-freedom
robotic arm to move one or several “puck”-like objects to certain target
locations on a table. The agent is only provided with a low-resolution
RGB camera image of the scene (see Fig. 4.3).

The experiments tried to answer three questions:

(I) How does the Smorl algorithm work in isolation (i.e. given perfect,
object-factorized state information)?
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(a) Results with perfect state information.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Timesteps ×105

0.050

0.075

0.100

0.125

0.150

0.175

0.200

A
vg

.o
bj

ec
td

is
t.

1 object

0 1 2 3 4

Timesteps ×105

0.08

0.10

0.12

0.14

0.16

0.18

0.20

2 objects

SMORL RIG Skew-Fit SAC+GT Passive policy

(b) Results with image observations.

Figure 4.2: Selected results on the VisualRearrange environment. (a): with perfect state information, Smorl
successfully rearranges up to 4 objects, with the non-compositional SAC agent not exceeding a “passive policy”.
(b): with image observations, Smorl performs better than the image-based methods RIG and Skew-Fit, but does
not reach the performance of its state-based counterpart. We show the average distance of objects to their goal
position as mean and standard deviation over 5 random seeds. Figure from Zadaianchuk et al. (2021).

(II) How does the Smorl agent compare to previous multi-goal visual
RL agents (i.e. given image observations)?

(III) Does the Smorl agent generalize to out-of-distribution settings?

Smorl with Perfect State Information The goal of this experiment
was to show how an object-centric representation can benefit the training
of an RL agent, compared to a standard flat vector-based representation.
To isolate the contribution of the object-centric representation itself
from the imperfections of learning it, we trained a Smorl agent that
receives a set with the ground truth state of the objects as input. We
compared it with a SAC agent that receives the full state as a single vector.
When testing on the VisualRearrange environment with 2, 3, and 4
objects, we found that Smorl scales well with the number of objects,
successfully rearranging up to 4 objects (see Fig. 4.2a). The SAC agent,
in comparison, worked well with 2 objects, but struggled with 3 objects;
with 4 objects, it did not exceed the performance of a passive policy that
performs no movements. This shows that with the help of object-centric
representations and algorithms utilizing compositionality, even complex
multi-object environments become manageable.



46 CHAPTER 4: SELF-SUPERVISED VISUAL RL WITH OBJECT-CENTRIC REPRESENTATIONS

Smorl with Image Observations Next, we combined the Smorl
algorithm with Scalor representations learned from images, and
compared it with two image-based multi-goal RL methods, RIG (A. Nair
et al., 2018) and SkewFit (Pong et al., 2020), as well as with the state-based
SAC agent. We found that Smorl performed at least as well as the image-
based baselines, and was significantly better on the VisualRearrange
environments (see Fig. 4.2b) — with 2 objects, the baselines did not
perform better than the passive policy, whereas Smorl successfully
solved the task. However, there was still a gap to the state-based SAC
baseline, and no method was able to manage environments with more
than 2 objects; this indicated significant challenges in learning a good
representation for visual control.

OOD Generalization We also tested the generalization capabilities
of the Smorl agent. In particular, we ran the agent trained on the 2
objects VisualRearrange environment in the 1 object environment.
We found that the agent performed as well as a Smorl agent trained
with 1 object from the start. While the change from 2 to 1 object may
seem like a small change, it was found that the transfer abilities of visual
RL agents at the time were susceptible even to minor perturbations in
the environment (Higgins, Pal, et al., 2017).

4.4 Discussion

This work provided, to the best of my knowledge, the first successful
demonstration of solving multi-object environments from images in the
realm of self-supervised multi-goal RL. Previous work in this setting
was limited to single-object environments, and, as was shown, does
not scale to multiple objects — which I attribute to using unstructured
representation & goal spaces. In contrast, the Smorl agent utilizes a
structured object-centric representation, allowing it to break down com-
positional environments into independent entities to facilitate relational
reasoning, goal decomposition and efficient exploration. Furthermore,
Smorl shows how the access to structured representations enables the
design of more effective and efficient algorithms, for instance in the goal
sampling procedure or the reward function.

4.4.1 Limitations

Naturally, this work only constituted a first step towards general self-
supervised RL agents that can learn to achieve goals in complex envi-
ronments. Out of the limiting factors that I encountered while working
on this project, two stand out in particular: (1) the assumption of
independence of goals; and (2) flawed representation learning.

In all but the simplest environments, the assumption of independence
of (sub-)goals is clearly not fulfilled: goals are directly dependent on
each other when one goal depends on achieving another first (e.g. for a
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18 Curriculum learning is the con-
cept of structuring and ordering
the tasks of a learning system from
simple to challenging to improve
its performance.

block stacking task), but also indirectly, because the overall goal depends
on achieving all sub-goals jointly. For Smorl, the violation of this as-
sumption manifested in the agent destroying previously achieved goals,
as it was ignorant of their existence. A resolution to this problem was
proposed in an extension to the Smorl algorithm named SRICS (Zada-
ianchuk et al., 2022): by estimating dependency graphs between goals,
the agent attempts goals in the correct order; moreover, the agent is
incentivized to keep previously solved goals intact by an additional
reward signal.

The results showed a discrepancy between using perfect state informa-
tion and the learned Scalor representation. Indeed, in the experiments,
we found that Scalor’s representation exhibited several problems, such
as failing to detect objects, failing to track objects through occlusions,
and noisy representations, leading to incorrect matching in the reward
function. In particular, not handling occlusions makes the environment
partially observable from the agent’s point of view; this could be dealt
with by utilizing recurrent policies. More broadly, I expect Smorl to
benefit from general advances in object-centric representation learning to
close the gap to perfect state information. Indeed, Haramati et al. (2024)
recently showed that combining a Smorl-like architecture a more pow-
erful object-centric representation scales goal-conditioned multi-object
RL to up to 10 objects.

4.4.2 Perspective

From today’s point of view, the environments and tasks used in this work
were simplistic. What would be required to scale Smorl to more complex,
real-world environments? For the purpose of this discussion, let us only
consider the realm of tabula rasa-style reinforcement learning, that is, an
agent is dropped into an unknown environment and has to learn from

scratch. Here, two ingredients have shown promise: curriculum learning,
and improved neural network architectures.

For self-supervised agents in compositional environments, the idea
of learning by curriculum18 appears natural: first learning to control the
agent itself, then manipulating individual objects and finally achieving
composite goals involving multiple objects. This form of structured explo-

ration is more efficient than the uniform exploration strategy that Smorl
applies, because the agents avoids learning tasks that either are already
mastered or are currently too difficult. Hand-designed curricula have
helped multi-goal RL agents to solve difficult multi-object manipulation
tasks (R. Li et al., 2019). A curriculum can also be automatically derived,
for example by monitoring learning progress (Blaes et al., 2019), maxi-
mizing novelty (Sancaktar et al., 2022), or asymmetric self-play (OpenAI
et al., 2021). Notably, OpenAI et al. (2021) show how an automatic
curriculum can lead to mastering the manipulation of a large number
and diverse set of objects. However, all of these works assume access
to the ground truth state; how to integrate these methods with image
observations or object-centric representations is an open question.
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19 Integrating additional loss func-
tions, e.g. based on future pre-
diction (Schwarzer et al., 2021)
or policy distillation (Bauer et al.,
2023), could resolve instabilities;
such auxiliary objectives have been
shown to enable scaling of RL train-
ing (Schwarzer et al., 2023), but
also to bootstrap large Transformer-
based policies (Bauer et al., 2023).

Architecturally, from today’s point of view, it appears natural to aim
for a more unified design of the policy, using standard self-attention
based Transformer blocks instead of Smorl’s one layer of cross-attention
between goal and objects. The motivation is two-fold. First, Transformers
are a more expressive architecture, e.g. allowing the policy to take
object interactions into account. Integrating relational reasoning at the
policy level has been shown to enable goal-conditioned RL methods
to generalize better (Mambelli et al., 2022; A. Zhou et al., 2022), e.g. to
different numbers and combinations of objects than seen during training.
Second, Transformers are (in principle) highly scalable and as such
provide a basis for tackling complex, large-scale environments. However,
it is unclear whether a Transformer-based policy can be optimized with
the noisy training signal from the RL objective,19 especially given the
known optimization difficulties of Transformers (Huang et al., 2020).

Taking a step back, the RL tabula rasa setting I assumed in this
chapter has unfortunately shown little promise for real-world robot
learning so far. Instead, a currently more successful approach is to utilize
(large) pre-trained models — primarily vision models providing robust
representations (S. Nair et al., 2022; Xiao et al., 2022), but also language
models (Ahn et al., 2022; Driess et al., 2023) — and combine them with
imitation learning. To apply object-centric representations in the same
manner would require methods that robustly work in the real world. In
Part III of this thesis, I will introduce models that take a step towards that
goal; in Sec. 8.2.4, we will then continue the discussion of the application
of object-centric models to robotics.



This chapter summarizes

Maximilian Seitzer, Bernhard
Schölkopf, and Georg Martius
(2021). “Causal Influence De-
tection for Improving Efficiency
in Reinforcement Learning”. In:
Conference on Neural Information

Processing Systems (NeurIPS)

The full publication can be found

in Appendix B.

Chapter 5
Causal Influence Detection for

Improving Efficiency in
Reinforcement Learning

This chapter continues the discussion of how the assumption of structure
leads to better and more efficient agent learning algorithms. Whereas
the previous chapter was concerned with how to learn a structured
object representation and to integrate it effectively into self-supervised
RL agents to achieve goals, this chapter focuses on a different structural
aspect, namely the relationships between entities. In particular, I present
a method for discovering the causal influence of an agent on objects in the

environment. By interpreting the object structure as causal variables in a
causal graph, we can formalize the notion of an agent’s causal influence,
derive a measure to quantify it, and develop a practical approach to
learn to estimate it from data. We then discuss how this measure can be
integrated into RL algorithms to inform exploration and learning, leading
to strong improvements in data efficiency on robotic manipulation tasks.

Departing from the other chapters, in this chapter, we assume a
structured object representation of the environment is given, and do
not attempt to learn it from data. This lets us focus on the problem of
learning causal relations. However, the presented method is agnostic
to the underlying representation, and thus I expect it to be combinable
with object-centric learning techniques, for example when only image
observations are available.

In the context of this thesis, this chapter serves as a second case study
to demonstrate the advantages of structured object representations.
Fundamentally, structure is a prerequisite for causality; only by starting
from structure does it become meaningful to talk about causal relations
at all. As in the previous chapter, we use structure to design better RL
algorithms: in this case, by informing the agent about its causal influence,
we guide the agent’s learning in a structured way, freeing it from the
need of discovering the environment fully on its own. In essence, the
structure acts as a useful inductive bias that encodes knowledge of the
world into the agent.
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1 Here, “entities” can be broadly in-
terpreted as “physical processes”,
including actively acting agents.

2 We (ab)use the notation X ∈ 𝒳
to mean that the random variable
X has support set 𝒳 , i.e. the set
of values with non-zero probabil-
ity — even though some mathe-
maticians regard this notation as
“sloppy, [...] nonsensical, or [...] just

plain wrong” (Huber, 2015).

5.1 Motivation

Let us revisit the example given in Sec. 4.1: a robot in front of a table
with several objects, supposed to bring the objects into a particular
arrangement. To simplify the problem, let us assume that the perception
problem is solved, that is, the robot has perfect information about its
own state, the state of the objects, and the intended goal. In all other
respects, the agent starts with a blank slate, meaning it has to explore the
environment and learn when and how its actions impact the objects. The
difficulty of this problem stems from the fact that interactions between
agent and objects are (initially) rare.

From a causal perspective, this observation can be explained by the fact
that the agent’s causal influence over the environment is sparse. This is a conse-
quence of two basic assumptions about the causal structure of the world:

(I) The principle of independent causal mechanisms (Schölkopf, 2022):
the world’s generative process consists of autonomous modules, or
independent entities.

(II) Entities1 have “limited interventional range” (Seitzer et al., 2021):
their potential influence over other entities is localized in space and
occurs sparsely in time.

Causality is thus a useful framework to understand the interactions of
agents with environments. In particular, it allows us to explain and
formalize the situation-dependent nature of control (see Sec. 5.3) — the
robot can only influence the object when both are close — the core
motivation behind this work.

From a RL perspective, the situations where the robot can control the
object are crucial: (1) initial control is rare, rendering training inefficient;
(2) physical contacts are challenging to model, thus requiring greater
effort to learn; and (3) states of control constitute “bottlenecks”, states
that must be traversed to achieve further goals. Consequently, agents
should be made aware of such situations, both during learning and
data collection. In Sec. 5.4, we will see three intuitive modifications to
the RL algorithm that address this issue: exploring towards states of
influence, selecting actions with causal influence, and prioritizing these
states during training.

5.2 Background

In this section, we will connect structured object representations with
causal modeling and Markov decision processes (MDPs), the basic
framework underlying reinforcement learning. The main new aspects
are the notions of action (from RL), and intervention (from causality),
providing a fresh perspective on object-centric representations as well.

A Markov decision process is described by a tuple ⟨𝒮,𝒜,P, ρ0, r,γ⟩,
where 𝒮 is the state space, 𝒜 is the action space, P(S′ | S,A) is the
transition distribution over the next state S′ ∈ 𝒮 2 given the current
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3 Here, a fully-observed setting is
assumed, i.e. the CGM only con-
tains endogenous variables.

4 The aim of traditional causal dis-
covery is to detect the edges of the
(global) causal graph (Pearl, 2009).
My work departs from this static
setting by viewing the causal re-
lations as dynamic, which appears
more appropriate for physical en-
vironments.

state S ∈ 𝒮 and a selected action A ∈ 𝒜; ρ0, r, and γ are initial state
distribution, reward function, and discount factor, which we will not
be concerned with here — we refer to Sutton and Barto (2018) for a
comprehensive overview. In our case, we assume the state space is
structured, that is, it factorizes into N subspaces: 𝒮 = 𝒮1 ×𝒮2 × · · · × 𝒮N.
Intuitively, we can regard the different subspaces 𝒮j as describing
different entities in the environment. Thus, the 𝒮j directly map onto our
formalization of slot-based object representations (see Chap. 3).

We can then define a causal graphical model (CGM) (Peters et al., 2017,
Def. 6.32) for a single transition step in this MDP, thus containing the set of
random variables 𝒱 = {S1, . . . ,SN,A,S′

1, . . . ,S′
N}.3 Formally, the CGM

consists of a (directed) causal graph G with nodes 𝒱 and a conditional
distribution P(Vj | Pa(Vj)) for each node Vj ∈ 𝒱 , where Pa(Vj) is the
set of parents of Vj in the causal graph. The joint distribution P𝒱 over
all random variables 𝒱 is then given by a density that causally factorizes

as

p(v1, . . . , v|𝒱 |) =
|𝒱 |∏︂
j=1

p(vj | Pa(vj)). (5.1)

Intuitively, a CGM is compositional: it suffices to describe each variable
locally in terms of its direct dependencies. Beyond a purely observational
description, we can also express an intervention on the system, simply
by replacing one of the factors with a new probability distribution and
leaving the rest of the distributions unchanged. For example, the agent’s
interactions with the environment can be modeled as interventions
on the action variable with the policy π(A | S). In this way, CGMs
instantiate the principle of independent causal mechanisms, positing that
the world is “composed of autonomous modules that do not inform or influence

each other” (Peters et al., 2017). Note how this matches with our intuitive
view of objects as being modular and context-independent — this gives
some justification to interpreting structured object representations as a
coarse-grained causal representation (see also Sec. 2.2.2).

5.3 The Causal Influence of an Agent

The causal graph G is depicted in Fig. 5.1a; it encodes the assumption
that there are no edges between nodes within a single time step (no
instantaneous effects). However, between successive time steps, all nodes
are connected. This is because, when viewed in aggregate, all entities
could potentially influence each other at some point in time, making it
necessary to include edges between those entities in the causal graph.
Clearly, this global graph is not very useful when we are interested in
the agent’s influence on its environment.4

Instead, we now adopt a local perspective: typically, there are no

interactions between entities, allowing us to sparsify the graph (by
removing edges) when focusing on a particular situation. In particular,
recalling the earlier discussion in Sec. 5.1 about the sparsity of influence,
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Figure 5.1: Causal graphical model for transitioning from state S to S′
by action A. We assume the state factorizes

into components 𝒮1,𝒮2, . . . ,𝒮N, representing different entities in the environment. (a): Viewed globally over all
time steps, all entities and the agent’s action can potentially influence the state of entities at the next time step. (b):
Given a concrete situation S = s, some influences may vanish in the local causal graph GS=s. (c): We posit that the
important states for an agent are those in which it has causal influence on the environment through its action
(orange arrows). The proposed causal action influence Cj (Eq. (5.2)) measures the “strength” of those arrows. Figure
adapted from Seitzer et al. (2021).

5 The underlying notion of causal-
ity is “sine qua non” causation, cap-
tured by the “but-for” test: “A is

a cause of B if, but for A, B would

not have happened.” (Halpern, 2016,
p. 3). This can be different from
the way humans determine cause
and effect, which relies on notions
of normality: A is a cause of B if A

happens and B would not normally
have happened anyway (Kahneman
and Miller, 1986; Halpern, 2016).
Both variants invoke counterfac-
tual reasoning, but the second is
more difficult to compute, as it re-
quires access to a “normal” version
of the world without the agent’s in-
terference.

we observe that the agent’s “sphere of influence” (visualized as blue areas
in Figs. 5.1b and 5.1c) is limited: the agent’s action only occasionally
affects other entities (Fig. 5.1c), but most of the time, its control is confined
to itself (Fig. 5.1b). Thus, for this work, we are interested in detecting
the influence of the agent’s action in any particular state configuration
S = s, i.e. the existence of the orange arrows in Fig. 5.1.

What does it mean for the agent to have causal influence on an entity through

its action? Intuitively, this is the case if the action causes the subsequent
state of the entity to happen, or in other words, knowing the action
is required to determine the outcome for the entity.5 Note that this
definition leads to counterintuitive assessments. The paper gives the
example of a robot moving away from an object with its action; this action
is still considered a cause for the subsequent position of the object, as a
different action would have led to touching and changing the position
of the object. This means that under this definition of causal influence,
we cannot differentiate between influence of different actions, but only
whether the agent has influence in a particular situation. In the following,
we will formalize these ideas and derive an algorithm for measuring the
agent’s state-dependent causal influence on the environment.

5.3.1 Summary of Formal Results

Local Causal Graphical Model (Seitzer et al., 2021, Def. 1) We first
clarify how CGMs behave locally after observing a particular situtation.
To this end, we define the local causal graphical model, a CGM that is
conditional on observing the variables 𝒳 ⊂ 𝒱 taking specific values x.
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6 Inspired by information-
theoretic interpretations of control
theory (Touchette and Lloyd,
2004).

7 Policies with full support, i.e.
π(A = a | S = s) > 0 ∀a ∈ 𝒜.

8 In practice, we use a uniform pol-
icy over the action space: π(A |
S) ..= 𝒰(𝒜).

In particular, some of the edges in the associated local causal graph G𝒳=x

may vanish (reflecting the lack of causal influence along that edge).

Control of an Agent Next, we characterize the agent having state-
dependent causal influence as the agent being in control in that state.6
Formally, we define the agent to be in control of some entity S′

j in state
S = s when there is an edge A → S′

j in the local causal graph GS=s

under all “sufficiently broad”7 policy interventions (Seitzer et al., 2021,
Sec. 4). Furthermore, this edge exists under some policy intervention if
and only ifS′

j ⊥̸⊥ A | S = s, that is, S′
j andA are conditionally dependent

upon observing S = s (Seitzer et al., 2021, Prop. 1).

Detecting Control from Interventions (Seitzer et al., 2021, Prop. 2)

Finally, we derive conditions under which conclusions resulting from a
particular policy intervention allow us to detect control in general. In
particular, if we can find any policy intervention under which S′

j ⊥̸⊥ A |
S = s, the agent is in control ofS′

j inS = s. Furthermore, if we can find any
“sufficiently broad” policy intervention under which S′

j ⊥⊥ A | S = s,
the agent is not in control of S′

j in S = s.

5.3.2 Causal Action Influence

Equipped with these results, we now turn to the question of how to
detect the control of an agent in practice. As we have seen, control is
linked to the conditional dependence S′

j ⊥̸⊥ A | S = s. A well-known
measure for the degree of dependence between two random variables
given another is the conditional mutual information (CMI) (Cover and
Thomas, 2006). Thus, to measure the agent’s amount of control, we
define the causal action influence (cai) Cj : 𝒮 ↦→ R+

0 of the agent on entity
S′
j in state S = s as

Cj(s) ..= I(S′
j;A | S = s) = E

a∼π

[︁
DKL(P(S′

j | s,a) ∥ P(S′
j | s))

]︁
, (5.2)

where I denotes the CMI, andDKL is the Kullback-Leibler (KL) divergence.
cai is computed with an expectation over a policy π; the previous results
tell us that to detect control, it is sufficient to evaluate a single policy
with full support.8 In this case, cai is zero exactly if the agent is not in
control; thus we can threshold Cj to detect control.

The right-hand side of Eq. (5.2) provides some intuition about cai.
We can see that cai measures the average difference (in terms of KL diver-
gence) between the outcome P(S′

j | s,a) for a particular action a sampled
from the policy π, and the transition marginal P(S′

j | s), i.e. the average
distributional outcome over all actions. If all actions result in the same
outcome, and this outcome is exactly the transition marginal, the diver-
gence between them is zero, and S′

j and A are independent (in S = s).

Practical Implementation The CMI is intractable in general, and we
need suitable simplifications to obtain a more practical estimator. We
first make two Monte-Carlo approximations.
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9 This is nothing other than train-
ing a forward, or dynamics model
of the environment.

10 For example, x,y, z-coordinates
of a position-controlled robot.

(I) The outer expectationEa∼π is approximated via sampling ofK actions:

E
a∼π

[︁
. . .

]︁
≈ 1

K

K∑︂
i=1

[︁
. . .

]︁
, {a(1), . . . ,a(K)} iid∼ π.

(II) The transition marginal is approximated with a (finite) mixture
distribution:

p(s′j | s) =
∫

p(s′j | s,a)π(a | s) da ≈ 1
K

K∑︂
k=1

p(s′j | s,a(k)).

We then introduce parametric assumptions on the transition distribution
P(S′

j | s,a) in order to be able to compute the KL divergence:

(III) We assume the next state is Gaussian-distributed with a diagonal
covariance matrix:

S′
j | s,a ∼ 𝒩

(︁
µ(s,a),σ2(s,a)

)︁
.

(IV) The Gaussian distribution is parametrized by a neural network fθ
trained to predict the next entity stateS′

j by maximizing the log likeli-
hood on a dataset ofN environment transitions {(s(i),a(i), s′(i))}N

i=1 9:

θ∗ = arg max
θ

N∑︂
i=1

logp
(︁
s
′(i)
j

; µ(s(i),a(i)), Iσ2(s(i),a(i))
)︁
,

where (µ,σ2) = fθ(s,a) and p(s′; µ, Iσ2) is the multivariate normal
density.

(V) The resulting KL divergence between a Gaussian and a mixture-of-
Gaussians is estimated with a closed-form approximation (see Seitzer
et al., 2021, App. A.4).

Together, (I–V) result in the cai estimator (Seitzer et al., 2021, Eq. 4):

Ĉ j(s) = 1
K

K∑︂
i=1⏞⏟⏟⏞

(I)

[︁
DKL⏞⏟⏟⏞
(V)

(

(III, IV)⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟
p(s′j | s,a(i)) ∥ 1

K

K∑︂
k=1

(III, IV)⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟
p(s′j | s,a(k))⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞

(II)

)
]︁
, (5.3)

with {a(1), . . . ,a(K)} iid∼ π. The estimator Ĉ j can be shown to be a lower
bound of the true CMI becoming tighter with increasing sample size
K (Poole et al., 2019), albeit only for the true density p(s′

j
| s,a). The

accuracy also depends on the complexity of the action space; in our
experiments, sampling a moderate number of actions (e.g. K = 64) for
environments with 3-dimensional action spaces10 was sufficient.

5.3.3 Results

In Fig. 5.2, we illustrate how cai evolves on the FetchPickAndPlace
robotic manipulation environment (Plappert et al., 2018). In Fig. 5.2a,
it can be seen that influence peaks when the robot is close to the object
and is close to zero when the robot cannot impact the object. In Fig. 5.2b,
maximum influence is reached when the robot has lifted the object
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(a) Robot briefly touching the object.
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(b) Robot picking and lifting object.

Figure 5.2: Causal action in-

fluence visualized. We plot
the cai Ĉ j(st), the causal in-
fluence of the agent’s action
on the object, in the Fetch-
PickAndPlace environment.
cai spikes when interactions
between robot and object occur,
but is otherwise close to zero
(a); it is maximized when the
robot holds the object in the
air (b). Figure adapted from
Seitzer et al. (2021).

into the air. This matches our intuition: the highest degree of control
is achieved in a state where the robot’s action fully determines what
happens to the object. In the paper, we also evaluated the estimator
quantitatively by using it as a score for binary classification of control (see
Seitzer et al., 2021, Sec. 5), and found cai to perform effectively.

5.4 Faster Reinforcement Learning with Causal
Influence

In Sec. 5.1, we examined several reasons why states of influence are
important for an agent exploring and learning to interact with an envi-
ronment. In Sec. 5.3, we saw that the causal action influence provides
a theoretically founded and practical approach to classify such states.
In this section, we will discuss three ways how cai can be integrated
into RL algorithms in order to inform an RL agent about its influence on
the environment, and see how this can lead to dramatically increased
sample efficiency.

5.4.1 Integration into RL Algorithms

Exploration Bonus The simplest way to steer an RL agent is through
its reward signal. If we believe that states of influence are helpful for
the agent, we can lead the agent to them, simply by using cai as a
reward signal, rcai(s) ..= Ĉ j(s). This reward can be directly maximized
by the agent as a form of intrinsic motivation (Schmidhuber, 1991, 2010),
or in conjunction with an external task-specific reward, with rcai acting
as an exploration bonus. In the former case, the agent is incentivized
to attain control over its environment; in the latter case, seeking out
states of influence provides stepping stones towards mastering the task,
especially when the task reward is sparse.
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11 A replay memory stores past en-
vironment interactions from ear-
lier versions of the agent that can
be reused for updating the current
agent (Mnih et al., 2013).

12 Our scheme can be seen as an
informed variant of prioritized ex-
perience replay (Schaul et al., 2016):
by making structural assumptions
about the environment, we can use
causal influence instead of the gen-
eral, but less informative TD error

to sample states.

13 DDPG =∧ deep deterministic
policy gradient.

14 The concept of maximizing con-
trol to prepare for the future is also
known as empowerment (Salge et
al., 2014) — cai can be seen as a
tractable lower bound to one-step
empowerment.

Active Action Selection The exploration bonus operates retroactively,
i.e. states of influence have to be visited once before they can be reinforced.
An alternative is proactive exploration, where the agent actively plans

ahead to take promising actions. For example, we can pick actions
expected to have a large causal impact on the environment; this can be
implemented by selecting the action with the highest contribution to the
sum in the cai estimator (Eq. (5.3)):

aexp = arg max
a∈{a(1),...,a(K)}

DKL(p(s′j | s,a) ∥ 1
K

K∑︂
k=1

p(s′j | s,a(k))), (5.4)

with {a(1), . . . ,a(K)} iid∼ π. Intuitively, aexp is the action leading to the
highest deviation from the average expected outcome under the model.
From a causal viewpoint, this can be interpreted as the agent conducting

experiments that verify its beliefs about the environment by planning suitable
interventions. Should the observed outcome differ from the expected
outcome, the resulting data can be used to correct the underlying model
in further training iterations.

Prioritized Learning Finally, we can use cai to prioritize states of
influence in the training loop of the agent — this integration is specific to
off-policy RL algorithms making use of a replay memory.11 In particular,
when sampling states for training policy and value function from the
memory, we assign each episode a sampling probability based on the
total influence

∑︁
t Cj(st) the agent had in this episode.12 Intuitively,

we expect such episodes to contain salient information for learning to
interact with the environment; prioritizing them lets the agent bootstrap
faster, especially in the early training phase where interactions are sparse.

5.4.2 Results

We evaluated the proposed influence-aware agents in multi-goal RL envi-
ronments for robotic manipulation. All modifications were implemented
on top of the DDPG13 algorithm (Lillicrap et al., 2016) with hindsight
experience replay (Andrychowicz et al., 2017) achieving state-of-the-art
results in this setting at the time. Selected results are shown in Fig. 5.3.

First, we discuss using cai as intrinsic motivation to explore the
environment (Fig. 5.3a). It can be seen that the agent quickly learns to
manipulate the object, moving it around 80% of the time after just 2 000
episodes of training, and reliably grasping, lifting and holding it in the air
after 4 000 episodes (cf. Fig. 5.2b). This behavior is a natural consequence
of maximizing control over the environment, and is well-suited to prepare
an agent for further tasks it may encounter in the future.14

Second, we discuss integrating cai with task rewards (Fig. 5.3b).
All proposed schemes demonstrate significant increases in sample ef-
ficiency over the baseline (2× for cai-bonus and cai-act, 4× for
cai-p). Furthermore, the improvements combine synergistically, with
all schemes together (cai-all) achieving a success rate of 95% in just
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(a) cai as intrinsic motivation.
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Figure 5.3: Integrating causal action influence into RL agents. cai can be used as a reward as a form of
intrinsic motivation (a), or in conjunction with task rewards (b). In (a), maximizing cai leads to the agent quickly
learning to move (green line) and lift the object into the air (blue line). In (b), using cai as an exploration bonus
(cai-bonus), for active action selection (cai-act), or for prioritized learning (cai-p) all result in strong gains
in sample efficiency over the baseline (No cai), with all improvements combined (cai-all) leading to a 10×
speed-up. Both experiments are on the FetchPickAndPlace environment (Plappert et al., 2018), with the results
showing mean and standard deviation over 10 random seeds. Figure adapted from Seitzer et al. (2021).

15 It takes around 30 000 episodes
for DDPG+HER to solve this envi-
ronment up to 95% success rate.

3 000 episodes, a gain in sample efficiency over the baseline of a factor of
10.15 In the paper, we also benchmarked the improvements against other
forms of exploration bonuses (maximizing information gain (Houthooft
et al., 2016), reducing model uncertainty (Pathak et al., 2019)), explorative

action selection (ϵ-greedy (Sutton and Barto, 2018, Sec. 5.4)), and prioritized

learning (prioritized experience replay (Schaul et al., 2016), energy-based
prioritization (Zhao and Tresp, 2018)), and found that our proposed
approaches compare favorably on all tested environments.

5.5 Discussion

This chapter continued our exploration of the benefits of structure for
autonomous agents. Specifically, we focused on a different structural
property: the causal relationships between entities. Starting from a struc-
tured object representation, we reinterpreted the agent-environment
framework of reinforcement learning as a causal model. A particularly
intriguing aspect of that model is the agent’s causal influence on entities
in the environment, which we formalized and transformed into a prac-
tical measure, the causal action influence. We then discussed various
approaches to equip RL agents with this measure to inform learning
and exploration, and saw that this can lead to drastic improvements
in sample efficiency. This illustrates how a structured representation
mirroring certain properties of the world — the existence of entities, the
sparsity of agentic influence — serves as a valuable inductive bias to

learn to act.
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16 See Vowels et al. (2022) for an
overview of modern causal discov-
ery methods.

17 Consider that the transition dis-
tribution P(S′

j
| s,a) underlying

cai can in principle completely
change for each pair (s,a). Further-
more, strictly speaking, each data
point (s,a) is only observedonce in
continuous spaces. The problem of
finding local dependencies is thus
intractable in general, requiring as-
sumptions of smoothness of the
modeled distributions.

18 In causal discovery, this ap-
proach is known as (Bayesian) ex-
perimental design (Lindley, 1956;
Agrawal et al., 2019; Tigas et al.,
2022).

5.5.1 Related & Follow-Up Work

Identifying the edges of a causal graph is the problem of causal discov-
ery (Pearl, 2009), traditionally understood as inferring the global causal
dependencies of a system from a static dataset.16 In Sec. 5.3, we have
discussed how, in the context of RL, it is more fruitful to model local,
situation-dependent causal relationships. As such, various studies have
begun to focus on this area (Pitis et al., 2020, 2022; Hwang et al., 2024),
some closely inspired by our work (Zizhao Wang et al., 2023; Tung et al.,
2024; Urpí et al., 2024). This setting can be seen both as simpler and
harder than general causal discovery: it is simpler because the direction
of causality is known (progressing forward in time), resolving certain
issues with identifiability (Eichler, 2012); it is harder because the local
nature of the problem implies that an exponential number of data points
could be required in the worst case.17

To infer local causal influence, several other approaches have been
proposed. Pitis et al. (2020) train a Transformer model to predict the
factorized next state s′ and use the total attention on the factorized inputs
(s,a) to determine the existence of the edges Si → S′

j and A → S′
j

in the causal graph. We demonstrated that this heuristic approach
is ineffective for detecting action influence, a finding later confirmed
by Urpí et al. (2024). In a similar manner, the Jacobian matrix of a trained
forward model can be used; specifically, by considering the model’s local
partial derivatives as a measure of influence (Pitis et al., 2020; Zizhao
Wang et al., 2023). Yet another method involves predicting the local causal

graph from (s,a) by training a forward model with inputs appropriately
masked by the predicted graph. This can be performed at the sample
level (Hwang et al., 2023) (as in the attention and Jacobian approaches),
or at a coarser level, assuming the state-action space can be partitioned
into several regions with the same local causal graph (Hwang et al.,
2024). Note that if one is interested in the global rather than local causal
graph, general causal discovery methods are applicable; specifically in
the time series setting, it is even feasible to simultaneously infer a latent
causal representation and graph when assuming sparsity (Lachapelle
et al., 2022), or data with targeted interventions (Lippe et al., 2022, 2023).

Since this work, causal influence has been incorporated into RL in
various ways. To enhance exploration, in concurrent work, R. Zhao et al.
(2021) suggested maximizing the mutual information between the agent’s
state and the surrounding environment state; similar to our formulation,
this encourages control of the agent over the environment. Instead of
maximizing control, Zizhao Wang et al. (2023) propose to explore by
reducing the uncertainty about the local causal graph — this can be
interpreted as learning to experiment to maximize information gain
about the causal relationships.18 Another notable application of causal
influence is data augmentation: new counterfactual experiences to train the
agent can be generated by combining components estimated to be locally
independent (Pitis et al., 2020, 2022; Urpí et al., 2024). Finally, the concept
of causal influence can also be applied to learn robust and generalizing
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19 How to assign “credit” for suc-
cess among the many actions that
may have been involved in produc-
ing it (Minsky, 1961; Sutton and
Barto, 2018) — in other words, find-
ing the actions that caused an out-
come.

20 Indeed, in the RL experiments
in this work, the model was also
updated while the agent gathered
new data; however, the agent did
not actively gather data to improve
the model.

21 Except those supporting
causal representation learning:
Lachapelle et al. (2022) and Lippe
et al. (2022, 2023).

factorized dynamics models (e.g. for model-based RL), e.g. by training on
counterfactually augmented data (W. Ding et al., 2023), independence
testing (W. Ding et al., 2022), estimating mutual information (Zizhao
Wang et al., 2022), or end-to-end with sparsity regularization (Hwang
et al., 2023, 2024).

5.5.2 Limitations & Outlook

In this work, we assumed a fully-observed causal setting. An open
question is whether unobserved factors could introduce confounding,
that is, misattributing an entity’s influence to the agent or vice versa.
Although this issue was not addressed in this work, I believe that cai
is robust to such confounding because unobserved effects would be
accounted for as aleatoric uncertainty, which is integrated out by the
KL divergence in Eq. (5.3). Additionally, relaxing the assumption of no
instantaneous effects could be beneficial; to this end, approaches such as
the one proposed by Lippe et al. (2023) may be relevant.

Rather than estimating the entire causal graph, the work’s focus was
on the agent’s influence on the environment through its actions, as we
considered it to be the most relevant for policy learning. Furthermore, it
is more tractable since the action distribution is directly controlled by
the agent. An interesting extension would be to adapt the cai estimator
to detect influence between entities, similar to Pitis et al. (2020) and
Zizhao Wang et al. (2023). This could enable the agent to discover
interactions involving complex dependencies, such as using tools to
achieve goals. Entity-entity interactions are also crucial for estimating
multi-step influences, beyond the one-step influence examined in this
work. This extension would allow tracing the effect of an agent’s action
through time, potentially leading to a principled approach for solving
the credit assignment problem.19

The primary limitation of the cai influence estimator is its reliance
on an accurate model. Essentially, the problem of detecting influence is
shifted onto the model — if the model fails to correctly detect causality,
erroneously attributing (or not attributing) influence to the agent, we
end up with a “circular dependency”. A potential solution could involve
iterative improvement of both the model and the influence estimator,
possibly making use of active data gathering (Zizhao Wang et al., 2023)
to correct model errors.20

Finally, we return to the central theme of this thesis: structured ob-

ject representations. In this work, we assumed a known factorization of
the state space into entities; in fact, this assumption is common to all
aforementioned methods working with causal influence.21 While this
simplification allowed us to focus on the problem of detecting causal
influence, it is clearly an unrealistic assumption for agents intended to
be deployed in the real world. In such cases, the agent would have a
perceptual component providing a latent representation of the world.
Fortunately, the cai framework is compatible with such representations,
provided they meet the requisite assumptions, such as the independence
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of entities. A natural candidate for such a representation is one that
conceptualizes the world in terms of objects — a structured object repre-
sentation. Thus, in the next part of this thesis, we will explore methods
for learning real-world structured object representations, enabling the
significant benefits for autonomous agents that became evident in Part II
of this thesis.



Part III

On the Real-World Discovery of
Structured Object
Representations





This chapter summarizes

Maximilian Seitzer, Max Horn,
Andrii Zadaianchuk, Dominik
Zietlow, Tianjun Xiao, Carl-
Johann Simon-Gabriel, Tong
He, Zheng Zhang, Bern-
hard Schölkopf, Thomas Brox,
and Francesco Locatello (2023).
“Bridging the Gap to Real-
World Object-Centric Learn-
ing”. In: International Confer-

ence on Learning Representations

(ICLR)

The full publication can be found

in Appendix C.

1 Dinosaur =∧ DINO and Slot
Attention Using Real-world data.

Chapter 6
Bridging the Gap to Real-World

Object-Centric Learning

In the last part of this thesis, we discussed how access to structured object
representation brings large benefits for autonomous agents. However,
when surveying methods for object-centric representations at the time,
it became clear that they were limited to synthetic scenes with simplistic
structure. This motivated me to study how we can discover structured
object representations on real-world scenes. This is the topic of Part III
of this thesis.

In this chapter, we introduce a method, Dinosaur,1 that is able to
learn object-centric representations from complex, natural images. By
combining Slot Attention (Locatello et al., 2020) with pre-trained features
from modern self-supervised learning methods such as DINO (Caron et
al., 2021) or MAE (He et al., 2022), Dinosaur circumvents the scalability
issues of prior methods. Dinosaur is the first object-centric model
that scales to unconstrained real-world image datasets such as PASCAL
VOC (Everingham et al., 2010) or COCO (T. Lin et al., 2014).

6.1 Motivation

Fields like computer vision and self-supervised representation learn-
ing (Balestriero et al., 2023) have long established real-world data as
their playing field. In contrast, object-centric representation learning
has lagged behind in that regard, mostly being confined to simplistic
synthetic datasets. This is unfortunate, as the advantages object-centric
representations promise — compositionality, generalization, robustness,
interpretability — are significant. However, at some point, these qualities
also must be demonstrated in real applications for the field to achieve
wider significance. Thus, the motivation behind this work was to “bridge

the gap to the real world”, in order to (1) demonstrate that object-centric
learning methods are real-world capable; (2) encourage the object-centric
learning community to move beyond synthetic datasets; and (3) prepare
the ground for real-world applications of object-centric representations.
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2 With the exception of
GroupViT (Jiarui Xu et al.,
2022), which used strong textual
supervision to scale to broader
datasets such as PASCAL VOC.

3 Although there is no objection to
the use of supervision if it is avail-
able in the target domain, main-
taining a strictly unsupervised ap-
proach is still desirable: it broadens
the applicability of a method by en-
abling training or fine-tuning on
arbitrary data. Furthermore, be-
ing unsupervised enables scaling
to large-scale unlabeled datasets,
a principle that underpins mod-
ern foundation models in lan-
guage (Brown et al., 2020) and vi-
sion (Oquab et al., 2023).

Figure 6.1: Slot Attention with
a ResNet encoder fails to discover
objects on COCO images (left); the
learned slots (right) separate the
image into regular patterns. From
Seitzer et al. (2023).

To better understand the context behind this work, we briefly sum-
marize the state of the object-centric learning field at the time this
project was conceived of (early 2022). While there was interest in scaling
object-centric representation learning methods to more complex data,
real-world data was generally out of reach. Even on complex synthetic
datasets such as the MOVi datasets (Greff et al., 2022), we demonstrated
that state-of-the-art methods (Locatello et al., 2020; Singh, Deng, et al.,
2022) struggled to discover objects. A trend at the time was to forego
unsupervised learning by integrating auxiliary sources of information

such as optical flow (Kipf et al., 2022), motion masks (Bao et al., 2022;
Tangemann et al., 2023), depth maps (Elsayed et al., 2022), conditioning
with object locations & shape (e.g. bounding boxes; Kipf et al., 2022),
or textual scene descriptions (Jiarui Xu et al., 2022). But even including
this kind of weak supervision, the datasets these methods were able to
model were restricted to domains with limited variety (e.g. autonomous
driving).2 In contrast, this work showed that it is not only possible to
scale object-centric learning to unconstrained real-world datasets, it is
possible to do so fully unsupervised — going against the general trend
toward integrating supervision.3

6.2 Real-World Object-Centric Representations with
DINOSAUR

6.2.1 What Prevented Scaling to the Real-World?

A Lack of Model Scale? In line with the teachings of deep learning,
a natural hypothesis is that the used models lacked sufficient scale
to capture the complexity and diversity of natural data. Indeed, the
employed neural networks are small by today’s standards (roughly in
the 1–5 million parameter range). In contrast, the weakly-supervised
methods SAVi (Kipf et al., 2022) and SAVi++ (Elsayed et al., 2022) reported
some success using larger residual networks (He et al., 2015) for the
encoder. However, in our experiments with the (unsupervised) Slot
Attention model, we found that replacing the encoder with residual
networks or vision transformers (Dosovitskiy et al., 2021) did not result
in successful object discovery on the COCO dataset (see Fig. 6.1). While
from this, we could not rule out that lack of scale is part of the problem,
purely increasing the model size was not sufficient.

Image Reconstruction as the Culprit An alternative hypothesis is that
the objective of image reconstruction is to blame for failing to discover
objects on real-world data. To understand why this could be the case,
we need to understand the learning process towards discovering objects.
To learn to group image features to objects, the features need to identify
objects; to identify objects, the features need to be updated in a way
that increases intra-object similarity and decreases inter-object similarity.
The learning process is trying to increase the usefulness of the learned
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4 The SLATE model (Singh, Deng,
et al., 2022) provides support for
this idea: by learning to predict dis-
crete VQ-VAE tokens (Aäron van
den Oord et al., 2017) describing
image patches, it manages to han-
dle more complex data than Slot
Attention. However, SLATE still
fails to scale to real-world data.

slots for the task (i.e. image reconstruction). If the task does not benefit
from “object slots”, there is no signal towards learning them, and an
alternative grouping strategy will emerge.

The usefulness of the slots is determined by several factors, including
the bottleneck capacity, the biases of the decoder, and the targets. On
image datasets with a few simple, mono-colored, geometric objects, a
local grouping by color is often enough to segment objects. When using
such images as targets, only a few bits of information need to be captured
in the slot for it to be useful; moreover, drawing a simple shape of uniform
color at some position is easily learned by the decoder. The “chain” to
learn a useful object slot is short. We can contrast this with trying to
reconstruct natural images with a large variability of object types, shapes,
and appearances. Learning a low-dimensional slot representation (and
decoder) that allows for accurate reconstruction of such objects is difficult;
it is simpler to learn slots that capture only the surface statistics of pixels.

We can find some evidence for this theory in models that use alternative

targets to RGB images (discussed also in Sec. 3.2). When predicting targets
that reveal objects in some form, for example optical flow or depth maps,
object discovery often succeeds on more complex data (Elsayed et al.,
2022; Kipf et al., 2022; Bao et al., 2023; Traub et al., 2024). For example,
in the SAVi model, when switching from optical flow to RGB targets
(keeping the input the same), performance drops catastrophically on
the MOVi++ dataset; on the simpler MOVi dataset, this intervention has
almost no effect (Kipf et al., 2022, Figure 3a).

To summarize, our hypothesis as to why previous object-centric
methods failed to scale to real-world data is that pixel-level image
reconstruction provides insufficient learning signal towards discovering
objects. In particular, this task can be optimized by focusing solely on
surface-level image statistics — if these statistics also happen to identify
the objects, object discovery succeeds. This perspective suggests that
previous methods relying on image reconstruction only succeeded because

the used datasets were simple.

6.2.2 Self-Supervised Representations as Targets

If image reconstruction is the culprit for failing to scale to real-world
data, it appears sensible to optimize an alternative task. In particular, if the
issue is that image targets can be predicted by learning low-level image
statistics, we should instead use targets that require learning high-level
semantic information to predict them.4 We would like such targets to
be (1) available without supervision; (2) dense, i.e. each sub-region of
the image has a corresponding sub-target; and (3) semantic, i.e. each
sub-target is a high-level descriptor of the image at that position.

Candidates fulfilling all those criteria are the representations learned
by modern self-supervised learning methods (Balestriero et al., 2023). Based
on principles such as contrastive learning (He et al., 2019; T. Chen et al.,
2020; X. Chen et al., 2021), self-distillation (Grill et al., 2020; Caron
et al., 2021), clustering (Caron et al., 2020, 2021; Assran et al., 2022),
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Figure 6.2: The Dinosaur model. Figure adapted from Seitzer et al. (2023).

or masked reconstruction (Assran et al., 2022; He et al., 2022), these
methods learn flexible, powerful image representations that have been
used for a variety of vision tasks such as classification, object detection,
image retrieval and more. When paired with vision transformers, it has
also been observed for multiple of these methods that the attention maps
focus on objects (Caron et al., 2021). Thus, in the Dinosaur model, we
propose to use self-supervised representations as the prediction targets
instead of images.

6.2.3 The DINOSAUR Model

The Dinosaur model is depicted in Fig. 6.2. At a high level, Dinosaur
adapts the Slot Attention model (see Sec. 3.3.1) by substituting image
reconstruction with feature prediction. Thus, the model follows the usual
encoder-decoder structure: first, image features from an encoder are
grouped into slots z by the Slot Attention module. Second, a decoder
produces a combined prediction from the slots, in this case a dense feature
map y consisting of a vector for each patch of the image. In a separate
step, the targets are computed from the image, namely the patch features
h of a pre-trained ViT (e.g. with the eponymous DINO method (Caron
et al., 2021)). The model is trained with a mean-squared-error loss,
ℒmse

= ∥h − ĥ∥2. I refer the reader to the full publication (Appendix C)
for more details about the different modules; some particular design
choices are discussed in the next section.

6.3 Results

Comparison to Object-Centric Methods We evaluated Dinosaur in
terms of object discovery on challenging synthetic (MOVi-C, MOVi-E)
and real-world datasets (PASCAL VOC, COCO), with Dinosaur setting
the new state-of-the-art at the time on all of them (see Fig. 6.3 for a
representative subset of the results). We compared the model with two
previous image-based object-centric models, Slot Attention (Locatello
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Figure 6.3: Evaluating unsupervised object discovery. On both synthetic (MOVi-E, left) and real-world (COCO,
right) data, Dinosaur performs significantly better than the previous object-centric models Slot Attention and
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5 In this work, we were not able to
train a ViT encoder from scratch
because of optimization difficul-
ties; in subsequent work (Di-
dolkar, Zadaianchuk, et al., 2024),
we found improved optimization
strategies alleviating this issue.

et al., 2020) and SLATE (Singh, Deng, et al., 2022). Whereas Slot Attention
and SLATE struggle even on the synthetic datasets, performing no better
than the naive “block masks” baseline, Dinosaur works well on both.
On real-world data, Slot Attention fails completely, and SLATE is only
better than the naive baseline. In contrast, Dinosaur successfully
discovers objects of various types and appearances (see Fig. 6.4).

Comparison to Computer Vision Methods We also compared Di-
nosaur on related tasks popular in the computer vision community,
namely unsupervised object localization (marking objects with bounding
boxes) and unsupervised semantic segmentation (assigning a class label
to each pixel in the image). This allowed us to compare to various
strong baselines from the computer vision literature (e.g. Hamilton et al.,
2022; Yangtao Wang et al., 2022; Zadaianchuk, Kleindessner, et al., 2023).
Overall, Dinosaur performed competitively, despite being considerably
simpler than the baselines often consisting of intricate pipelines with
several stages of training.

Analysis of Components Finally, let us discuss some design choices
for the different components:

• Encoder: randomly initialized residual network, or pre-trained, fixed
ViT.5 Both work similarly, but using the pre-trained ViT trains faster;
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keeping it fixed has the computational advantage of reusing the
network producing the targets.

• Decoder: MLP or Transformer. The MLP decoder is a variation of a
spatial broadcast decoder (Watters et al., 2019) and predicts the target
feature independently for each slot and position; the Transformer
decoder (Singh, Deng, et al., 2022) auto-regressively predicts the target
feature map while attending to the set of slots. We found that the Trans-
former decoder is biased toward semantic segmentation; the MLP
decoder separates instances better but produces less accurate masks.

• Target Representations: we evaluated
– self-supervised representations from DINO (Caron et al., 2021), MoCo-

v3 (X. Chen et al., 2021), MSN (Assran et al., 2022), and MAE (He
et al., 2022). Interestingly, all produce results of similar quality.

– supervised representations resulting from classification on ImageNet,
performing clearly worse than self-supervised representations.

– different network architectures, residual networks or ViTs, with the
features from the latter clearly performing better. This could be
because ViTs localize information better than residual networks,
which have large receptive fields.

6.4 Discussion

Dinosaur was the first object-centric representation learning method
that successfully discovered objects in unconstrained real-world datasets
such as PASCAL VOC and COCO. By utilizing strong pre-trained self-
supervised representations, it demonstrated that object-centric methods
can scale to real-world data. Importantly, this was achieved in a fully
unsupervised manner, which allows training the model on large image
collections as well as a straightforward integration with other tasks
and modalities. A further strength of the method is its conceptual
simplicity — the proposed loss function is compatible with any object-
centric method that models images and can thus be combined with
future methodological advances on the modeling side.

6.4.1 Impact

Dinosaur introduced the principle of using pre-trained self-supervised
representations for object-centric learning. Various subsequent works
successfully adopted this idea, firmly establishing it as a general approach
for scaling to complex data. On the modeling side, Chakravarthy et
al. (2023) integrate a locality prior into Dinosaur; Y.-F. Wu et al.
(2023) demonstrate that inverted transformer layers are an alternative
to Slot Attention in Dinosaur; Fan et al. (2024) propose a method for
dynamically adapting the number of slots per image; Kakogeorgiou et al.
(2024) improve the transformer decoder in Dinosaur, and Didolkar,
Goyal, et al. (2024) propose a cycle-consistency objective to align features
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6 Identifying parts of an image
matching a textual expression.

7 Identifying the matching pair
of vision and text representations
among a contrast set.

8 Vicuna-7B (Chiang et al., 2023),
i.e. with 7 billion parameters.

with slots. In our own follow-up work, VideoSAUR (Zadaianchuk,
Seitzer, et al., 2023), we extended Dinosaur to real-world videos; this
method will be discussed in the next chapter. Other adoptions to video
data are proposed by Aydemir et al. (2023) and Fan et al. (2023). In all
these works, the prediction of pre-trained features is used as the basis for
real-world scaling, showing the robustness of the proposed mechanism
to work with different kinds of models.

While our main proposal was to use self-supervised representations as
targets, Dinosaur also utilizes them as inputs to Slot Attention. This has
sometimes produced confusion over what the main factor for scaling to
real-world data is. In the paper, we show that pre-trained representations
on the target side are sufficient, and that they are not necessary on the input
side; conversely, combining pre-trained inputs with image reconstruction
fails to scale (Seitzer et al., 2023, Sec. 4.3). Interestingly, follow-up work
has found that pre-trained inputs can also be sufficient when coupled
with a suitable objective function or architecture. For example, Jiang et al.
(2023) and Wu, Hu, et al. (2023) show that diffusion decoding conditioned
on slots grouped from DINO features scales well to more complex data.
Other options are training with a cycle-consistency objective to match
slots with clusters of features (Ziyu Wang et al., 2023) or utilizing rotating
features instead of Slot Attention for binding the pre-trained features to
objects (Löwe et al., 2023). However, for all these methods, it is unclear
how instance-based the learned decomposition is; results seem to indicate
a semantic grouping instead.

Dinosaur has also been successfully used in several downstream

applications. For tracking objects in real-world videos, Z. Zhao et al.
(2023) integrate the slots learned by Dinosaur with a memory module.
For the task of referring image segmentation,6 Kim, Kim, Lan, et al.
(2023) augment Dinosaur with a CLIP-style contrastive loss7 (Radford
et al., 2021) to infuse the learned slots with textual information; the
resulting model can match slots with queries like “man standing against

the counter on the right”. Relatedly, Fan et al. (2023) align slots with pre-
trained CLIP representations to obtain semantic video segmentations.
Mamaghan et al. (2024) conduct a large comparison study of different
types of representations for visual question answering (VQA) and find
that for real-world data, the slots from Dinosaur perform best, even
outperforming representations from DINOv2 (Oquab et al., 2023). For
video-VQA, Jiaqi Xu et al. (2024) propose SlotVLM: in this work,
Dinosaur’s slots form a compact video representation used as inputs to an
LLM8; the slots are then fine-tuned end-to-end to be useful for question
answering.

6.4.2 Limitations

The complexity and ambiguities inherent in real-world data have revealed
several shortcomings of slot-based methods. These limitations, mostly
obscured in previous work due to their focus on synthetic data, are not
unique to Dinosaur but general to slot-based methods. For instance,



70 CHAPTER 6: BRIDGING THE GAP TO REAL-WORLD OBJECT-CENTRIC LEARNING

9 Predicting pre-trained features
instead of images likely exacer-
bates this issue; using more pow-
erful decoders or a form of slot
complexity regularization could al-
leviate it.

10 Besides object property predic-
tion on COCO, see Seitzer et al.
(2023), App. B.3.

in synthetic datasets, the maximum number of objects is known and
can be used to set the “number-of-slots” parameter. Conversely, in
real-world data, the number of objects per image can be arbitrarily high;
simply using a large number of slots would result in significant over-
segmentation. Additionally, previous models demonstrated the ability
to “disable” unneeded slots (Locatello et al., 2020); however, on real
data, the full set of slots is typically utilized as the model operates in an
underfitting regime due to the slot bottleneck.9 Finally, real-world data
usually admits several valid decompositions, e.g. on different levels of
hierarchy. Aside from the number of slots, current object-centric models
offer no means of controlling the decomposition. This also poses an
evaluation challenge as the ground truth labels objects in a particular
manner; if the model chooses a different, yet equally valid set of objects,
it is (erroneously) penalized.

A limitation specific to the Dinosaur model is the use of pre-trained
representations as targets, which biases the object decomposition in
some manner. In contrast, image reconstruction is unbiased as it forces
the model to consider all information from the original image. It remains
unclear how much the target bias limits the discovery of objects. Another
limitation for certain applications could be the low resolution of the
object masks; this stems from the coarse-grained patch resolution of
the ViT backbone (e.g. 16 × 16 patches for images with 224 × 224 pixels).
In subsequent work, we demonstrated that this issue can be alleviated
with a brief fine-tuning phase on higher-resolution images (Didolkar,
Zadaianchuk, et al., 2024). Last, for evaluation, we concentrated on
mask-based evaluations, and did not investigate the content of the slot
representations in detail10; nor did we evaluate downstream applications
of the learned representation. For a comprehensive understanding of the
method, these aspects should be explored in future work — though the
afore mentioned successful applications of Dinosaur partially address
this already.

6.4.3 Outlook

Dinosaur constituted a significant step forward in terms of the data
complexity object-centric models can manage. By providing an “existence
proof” of real-world object-centric representation learning, we hoped to
encourage the community to study this challenging but exciting setting
more. While we have seen rising interest in this area, we believe
many natural applications of object-centric representations are still
underexplored, for example in real-world robotics. Moreover, on the
modeling side, there are still substantial open challenges due to the
complexities of natural data, some of which we have discussed above.
We will further analyze the implications of real-world object-centric
representation learning in Sec. 8.2.
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Attention Using temporal feature
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2 SAVi =∧ Slot Attention for Video.

Chapter 7
Object-Centric Learning for

Real-World Videos by Predicting
Temporal Feature Similarities

This chapter introduces a method capable of learning object-centric
representations from real-world videos. This method, VideoSAUR,1
combines the SAVi 2 architecture (Kipf et al., 2022) with the Dinosaur
model introduced in Chap. 6. Like Dinosaur, VideoSAUR utilizes
pre-trained self-supervised features to scale to more complex data.
Specifically, we proposed a novel feature similarity loss that encodes
temporal and semantic correlations between video frames. This loss
elegantly exploits the temporal information available in videos and
biases the model toward discovering moving objects. We demonstrated
that the model learns, fully unsupervised, to discover and track multiple
objects in videos from the YouTube-VIS dataset (L. Yang et al., 2021).

7.1 Motivation

What makes videos interesting for object-centric learning? One reason is the
immense amount of videos available as a resource for learning. However,
this alone is not sufficient motivation; after all, a video can just as well
be treated as a set of independent images. What makes videos much
richer than static images is the contained temporal structure, providing
the opportunity to learn about dynamics, cause and effect, and even
3D structure by inferring depth from observer motion through motion
parallax. Specifically interesting for object discovery, consistent patterns
of motion tend to reveal objects (the principle of coherent motion, see
Sec. 2.4.2). Furthermore, in many contexts in which we would like
to deploy object-centric models (e.g. robotics), integrating temporal
consistency and motion properties (e.g. velocity) into the representation
is crucial. All in all, this makes object-centric video models an important
topic to study.
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At the time this work was done, object-centric video models could
not be applied to unconstrained real-world data. This resembled the
situation of image-based models before Dinosaur (discussed in Sec. 6.1).
However, for video models, some real world demonstrations existed
by integrating supervision through motion (Bao et al., 2022) or depth
maps (Elsayed et al., 2022). Nevertheless, these models were only
successfully applied to datasets of a single domain with limited com-
plexity, namely autonomous driving. As such, there was a need to scale
object-centric models to real-world videos.

The prevalent approach to modeling videos with object-centric rep-
resentations is to treat them as a sequential process, with the object
representations dynamically evolving through time (Kosiorek et al., 2018;
Jiang et al., 2020; Weis et al., 2021; Kipf et al., 2022; Traub et al., 2023, see
also Sec. 3.1.4). In Slot Attention-based architectures, this is commonly
implemented by initializing slot discovery for the current frame with
the slots of the previous frame (Bao et al., 2022; Elsayed et al., 2022; Kipf
et al., 2022; Singh, Wu, et al., 2022). While this recurrence creates a bias
towards slot consistency, i.e. maintaining a stable object identity per
slot, it does not add a preference towards coherent motion patterns. In
fact, there is nothing in the model’s task — image reconstruction — that
requires temporal information; the task can be solved using the current
frame alone. This observation led us to propose a temporal similarity loss

that forces the model to learn from temporal information, and in this
way incentivizes the object grouping to follow coherent motion.

7.2 Method

7.2.1 The VideoSAUR Model

VideoSAUR follows the basic framework for modeling videos pop-
ularized by the SAVi model (Kipf et al., 2022, see Sec. 3.3.2 for an
introduction): put succinctly, it is a recurrent auto-encoder with a slot
bottleneck implemented by Slot Attention. In more detail, each frame
xt is processed by an encoder into patch feature maps ht, which Slot
Attention then groups into slot representations zt. Critically, Slot At-
tention is recurrently initialized from the slots of the previous time
step, zt−1, with the initialization for the first time step drawn from a
normal distribution with learnable mean and variance, z0 ∼ 𝒩(µ,σ2). A
decoder then predicts the model’s outputs from the slots, independently
for each frame.

In line with our findings from the Dinosaur model (Chap. 6), we
utilized a pre-trained, fixed, self-supervised DINO ViT as the encoder. As
the decoder, we utilized the SlotMixer (Sajjadi et al., 2022): this decoder
assigns slots to spatial positions before decoding using a Transformer.
This design is more efficient than the common spatial broadcast decoder,
as it requires only a single decoding pass instead of a pass per slot. In
the context of video models, we found this improved efficiency to be
especially critical.
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3 Here, an underlying assumption
is that these similarities reveal both
the semantic and the spatial close-
ness of patches; we experimentally
verified that this indeed holds for
DINO features.

4 In practice, the affinity matrix is
thresholded at zero such that only
patches with positive similarities
are considered.

7.2.2 Object Discovery by Predicting Temporal Similarities

We now discuss a novel loss function, called the temporal similarity loss,
that uses the motion cues available in videos to enhance object discovery.
Intuitively, parts of a video that consistently move together can be
considered to belong to the same object. We instantiate this principle
of common fate (Wertheimer, 2012; Tangemann et al., 2023) by letting
the model predict the motion of image patches. On a high level, the idea is
that patches that exhibit similar motion patterns are likely to belong to
the same object; predicting the motion thus incentivizes grouping all
those patches together into one object. An overview is given in Figure 1
of Appendix D.

Concretely, we first compute an affinity matrix A
t,t+k, containing the

pairwise cosine similarities3 between the L patch features of the current
frame ht and some future frame ht+k, where the features are given by
the pre-trained ViT encoder:

A
t,t+k =

ht

∥ht∥
·
(︃

ht+k

∥ht+k∥

)︃⊤
, A

t,t+k ∈ [−1, 1]L×L. (7.1)

Then, we transform the affinity matrix A
t,t+k into a matrix of probabilities

P
t,t+k ∈ [0, 1]L×L by applying a row-wise softmax operation4:

Pt,t+k
ij

=
exp(At,t+k

ij
)/τ)∑︁L

m=1 exp(At,t+k
im /τ)

, (7.2)

where τ is the softmax’s temperature. We can interpret entry Pt,t+k
ij

as
the probability of patch i having moved to patch j after k frames. Finally,
we use the resulting probability distributions as targets for the model
to predict, defining the temporal similarity loss as the cross-entropy H
between P

t,t+k and the model’s output P̂

t,t+k:

ℒsim =

L∑︂
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l

)︂
=
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j=1

−Pt,t+k
lj

log P̂t,t+k
lj . (7.3)

It is instructive to compare the temporal similarity loss with prior
work utilizing optical flow targets, where the model is required to predict
the movements of individual pixels (e.g. SAVi, Kipf et al., 2022). In
both scenarios, the task of predicting motion introduces a bias towards
grouping parts with similar movements together. However, unlike
optical flow prediction, the feature-based approximation of motion also
takes semantic aspects into account; this yields a useful signal towards
object grouping even for static parts of the video, as the model needs to
predict which patches are semantically similar. Furthermore, whereas
optical flow prediction requires the model to output a single precise
motion estimate (i.e. regression), the similarity loss is framed in terms of
modeling a probability distribution over possible movements; we opted for this
formulation as we expect it to be more robust in the face of inaccurate or
ambiguous targets. Indeed, the SAVi model was found to degrade when
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Table 7.1: Evaluating unsupervised video object discovery. On both synthetic (MOVi-C, left) and real-world
(YouTube-VIS, right) data, VideoSAUR performs significantly better than the previous object-centric models
SAVi and STEVE. The table shows mean ± standard dev. over 5 seeds for the FG-ARI and mBO metrics (higher is
better; see Sec. 3.4.1 for an explanation). Metrics are computed over the full video, and thus also measure tracking
consistency. Adapted from Zadaianchuk, Seitzer, et al. (2023).

MOVi-C YouTube-VIS

FG-ARI mBO FG-ARI mBO

SAVi 22.2 ± 2.1 13.6 ± 1.6 11.1 ± 5.6 12.7 ± 2.3
STEVE 36.1 ± 2.3 26.5 ± 1.1 20.0 ± 1.5 20.9 ± 0.5

VideoSAUR 64.8 ± 1.2 38.9 ± 0.6 39.5 ± 0.6 29.1 ± 0.4

camera motion is introduced (Greff et al., 2022), whereas VideoSAUR
was resilient to this change. A final significant difference is that the
temporal similarity loss is fully unsupervised, and thus can be readily
applied to any video — although optical flow can be estimated from
videos (e.g. Stone et al., 2021), doing so robustly from in-the-wild videos
is challenging.

Let us now discuss the role of the two hyperparameters of the loss,
the time shift into the future k and the softmax temperature τ. They can
be seen as complementary in the sense that the former has a temporal
effect and the latter a spatial. Both affect the difficulty of the prediction
task, and thus the model’s learning signal. The time shift k should be
chosen such that significant movements occur, but are not unpredictable;
this depends on properties of the video such as the sampling rate. The
effect of the softmax temperature τ is more intricate. To a first degree, it
controls how concentrated the target distribution is around its maximum.
Effectively, this trades off between two tasks: accurately predicting patch
motion (low τ), or predicting full patch-to-patch similarities (high τ).
Whereas the latter mode might be important to maintain a meaningful
prediction task for almost static scenes, the former mode attenuates
semantic similarity and enhances spatial similarity, which I conjecture
plays an important role for separating objects of the same class.

7.3 Results

Let us briefly discuss the experimental results. We tested VideoSAUR
on four video datasets, the synthetic datasets MOVi-C and MOVi-E
(Greff et al., 2022), and the real-world datasets YouTube-VIS (L. Yang
et al., 2021) and DAVIS (Pont-Tuset, Perazzi, et al., 2017), and compared
it against two recent (at the time) video models, SAVi (Kipf et al., 2022)
and STEVE (Singh, Wu, et al., 2022). See Table 7.1 for a representative
subset of the results. In terms of unsupervised video object discovery,
VideoSAUR model set a new state-of-the-art, improving performance
over prior work by a significant margin. Both SAVi and STEVE struggle
on the synthetic datasets, and fail to discover objects on real-world
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Figure 7.1: Object discov-

ery and tracking on a video

from the YouTube-VIS dataset.

Adapted from Zadaianchuk,
Seitzer, et al. (2023).

videos. These results demonstrate the importance of (1) using pre-trained
features; and (2) exploiting temporal information to scale object discovery
on videos.

Analysis VideoSAUR can be trained using the temporal similarity
loss, Dinosaur’s feature reconstruction loss, or both in conjunction.
While we observed the model to achieve state-of-the-art results even
solely with feature reconstruction, the temporal similarity loss provides
further significant improvements. Interestingly, the two losses interact
differently depending on the dataset: on the synthetic MOVi datasets,
predicting temporal similarities brings drastic improvements over feature
reconstruction (e.g. +20 FG-ARI on MOVi-C), and adding the latter does
not yield additional benefits. In contrast, on the real-world YouTube-
VIS dataset, we found feature reconstruction to be necessary for good
performance; adding temporal similarity then also brings some further
improvements. I conjecture this is because feature reconstruction intro-
duces an additional semantic bias that is necessary for object discovery
on real-world data. Furthermore, motion might be sparser and harder to
predict for real videos, reducing the usefulness of the temporal similarity
loss for object discovery.

7.4 Discussion

VideoSAUR was the first unsupervised object-centric learning method
for unconstrained, YouTube-like videos (together with concurrent work,
discussed below), and also achieved state-of-the-art results for unsuper-
vised video object discovery on the challenging MOVi datasets. The main
technical contribution was the novel temporal similarity loss, exploiting
the temporal information available in videos for object discovery. By
utilizing pre-trained self-supervised representations to construct motion
targets, the loss incorporates both temporal and spatio-semantic correla-
tions in a fully unsupervised manner. Thereby, the semantic nature of
the underlying representations acts as a “fallback”, and allows the loss
to scale gracefully to scenes with little or no movements. Through its
probabilistic formulation, the loss also naturally handles ambiguous or
inaccurate targets.

As VideoSAUR is a direct follow-up to Dinosaur, the two models
share obvious similarities: for instance, the focus on real-world data,
or employing strong pre-trained supervised representations to scale
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to more complex data. Regarding the latter, VideoSAUR’s temporal
similarity loss introduces another way of utilizing these representations,
demonstrating their versatility for object discovery. Beyond that, in both
works, a key idea is to bias the model through prediction, adding a
semantic bias by predicting features, or a motion bias by predicting
temporal similarities. I believe this concept — infusing the model with

biases for object discovery through appropriate prediction targets — to be an
important emerging design principle for building object-centric models.
Note that even though the two losses are constructed with the same
underlying representations, they act complementarily: the losses provide
different views on the underlying object structure, reducing uncertainty
about the true decomposition by filtering out incompatible hypotheses.

7.4.1 Concurrent Work

Concurrently with VideoSAUR, two other works focused on scaling
object-centric representations to real-world video: SOLV (Aydemir et al.,
2023) and SMTC (R. Qian et al., 2023), both also utilizing pre-trained
self-supervised features. SOLV, similar to VideoSAUR, employs a Di-
nosaur-style feature reconstruction loss but has a non-recurrent archi-
tecture: SOLV predicts intermediate frames from past and future frames
— making it unsuitable for scenarios where frames need to processed in
a streaming fashion, such as in RL or robotics. SMTC is a decoder-free
architecture that employs student-teacher self-distillation (e.g. Grill et al.,
2020) to learn to extract time-consistent masks and object representations.
Interestingly, SMTC also computes inter-frame feature similarities (cf.
Eq. (7.1)), but uses them to augment the inputs to Slot Attention instead
of the targets. Both SOLV and SMTC are able to discover objects on
real-world videos; in terms of performance, they are overall similar to
VideoSAUR (Zadaianchuk, Seitzer, et al., 2023, App. A.2). The success
of these three — quite different — methods demonstrates that there are
many ways to exploit the temporal information in videos, but that the
underlying self-supervised representations are essential for real-world
scalability.

7.4.2 Limitations

Even though VideoSAUR is able to model relatively complex scenes
from the YouTube-VIS dataset, this dataset is still curated (e.g. limited
number of semantic classes, limited number of objects per video), and
does not capture the full variety present in a true open-world setting.
Another restriction concerns the short- and long-term consistency of
slots, i.e. maintaining a stable object identity through time. In particular,
VideoSAUR is limited in tracking objects through short-term occlusions;
the model also cannot re-identify objects after their long-term absence
because it is missing a memory module. A related problem is handling
appearing and disappearing objects: SAVi-style recurrent architectures
assume that all objects present in the first frame will stay present through-
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5 The author contributed first steps
in this direction in a non-object-
centric framework, see Seitzer et al.
(2024).

out the video, and that no new objects will be introduced. When this
assumption is violated, identity switches of slots necessarily need to
happen, violating the goal of consistency. Thus, a proper mechanism to
model this situation, e.g. by appropriately adding or removing slots, is
required.

7.4.3 Outlook

In this project, we only evaluated the discovery and tracking of ob-
jects through videos. An important next step is to use VideoSAUR’s
representations in downstream applications such as RL or robotics. I
anticipate that such a “field test” will reveal more shortcomings of the
model, some of which we discussed earlier.

There are many interesting directions for extending VideoSAUR: de-
signing new loss functions or architectural inductive biases for enhancing
consistency, integrating memory modules to allow long-term tracking, or
adding mechanisms to handle (dis-)appearing objects. Another possibil-
ity is to derive a variational Bayesian formulation of VideoSAUR, similar
to probabilistic recurrent state-space models (Karl et al., 2017; Doerr et al.,
2018). The notion of uncertainty that comes with such a formulation
would be helpful for learning dynamics models, i.e. forecasting how slots
evolve and interact with each other through time. In turn, predicting the
future would likely lead to more physics-aware representations, and help
to address consistency problems. A further step would then be to learn
structured world models (Ha and Schmidhuber, 2018; Kipf et al., 2020),
that is, models that can predict the future following hypothetical actions.
Such a model can be used to plan action sequences or as a simulation to
train RL agents (Sutton, 1991). Modeling actions, or interventions, could
also lead to interesting new biases for object discovery — entities that can
be independently influenced should be considered objects (cf. Sec. 2.4.2).

Another direction is to model the observer as an explicit entity in
addition to the objects, requiring disentangling the camera from object
motion.5 Doing so could be a first step towards exciting new capabilities,
e.g. inferring an object’s 3D properties purely from RGB video, or for
simultaneous localization and mapping (SLAM) of agent and objects.
Such a model could form the basis for an integrated, end-to-end approach
to robotic perception, manipulation, and navigation.

Finally, a long-term vision for object-centric representation learning
is to build general and flexible structured foundation models that can be
applied in a zero-shot fashion in any kind of environment (see also
discussion in Sec. 8.2.3). One essential ingredient to do so will be to
train on large-scale video collections. VideoSAUR, with its focus on
real-world data and its use of pre-trained self-supervised representations,
is a first step in this direction.
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Chapter 8
Discussion

I conclude this thesis by presenting my perspective on the future of
structured object representations, and my research’s role in it. First,
Sec. 8.1 summarizes the contributions of this thesis. Then, Sec. 8.2
discusses the implications of the key result of this thesis: real-world object-
centric representations. Finally, Sec. 8.3 provides a critical discussion
and speculates on the long-term prospects of structure in AI.

8.1 Summary of Contributions

This thesis is motivated by the shortcomings that contemporary AI
systems exhibit compared to human cognition. My core hypothesis is
that these limitations stem from their inability to learn and maintain
structured object representations of the world, where I view objects as
composable, modular units of information (Chap. 2). The overarching
research question is how such representations can be integrated with
neural networks in a way that preserves the advantages of both. This is
known as the binding problem of neural networks (Greff et al., 2020), and
the field that attempts to solve it is known as object-centric representation
learning (Chap. 3). The research contributions of this thesis can be
organized in terms of two aspects of the binding problem: segregation
and composition.

8.1.1 Composing Object Representations for Autonomous Agents

In Part II, I investigated the aspect of composition. Broadly, the research
question I aimed to answer was how structured object representations
can allow agents to (1) learn autonomously and (2) learn efficiently.
Regarding (1), I introduced the Smorl agent (Chap. 4), a self-supervised
visual RL algorithm solving environments with a complex goal structure.
By representing the environment in terms of objects, Smorl is able
to perform relational reasoning, explore efficiently, and decompose
complex goals into simpler sub-goals, all without being provided with
explicit reward information. Regarding (2), I developed cai (Chap. 5), a
measure of an agent’s causal influence on objects in the environment.
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Kim, Kim, Lan, et al. (2023), Stanić,
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By integrating this measure into RL algorithms as a structural inductive
bias that guides learning and exploration, sample efficiency is drastically
improved.

Both works constitute contributions to the field of reinforcement
learning, specifically Smorl to the area of self-supervised RL (Colas et al.,
2020) and cai to the area of causal RL (Zeng et al., 2024). Smorl solved a
challenging setting for the first time, namely multi-goal RL with multiple
objects, purely from images and unsupervised. The key insight behind
cai was that the sparsity of agent-environment interaction is a significant
source of inefficiency; cai showed the effectiveness of a causal perspective

to remedy this problem. Both projects also sparked several follow-up
works, e.g. Zadaianchuk et al. (2022) and Haramati et al. (2024) for
Smorl, and Zizhao Wang et al. (2023) and Urpí et al. (2024) for cai.

From the point of view of object-centric representation learning, the
contribution is twofold.

(I) The technical contribution is showing how object representations can
be effectively composed for agent learning and discovering causal in-
fluence. Specifically, for Smorl, I designed an architecture enabling
decomposed, goal-based exploration and relational reasoning be-
tween objects. Then, for cai, I demonstrated how higher-order
structures, namely the causal relationship between objects, can be
learned in a model-based manner from object representations.

(II) The experimental contribution is verifying the presumed benefits of
structured object representations in the practical setting of robot
learning (cf. Sec. 2.2.1). In particular, I found evidence that such
representations (1) constitute a useful inductive bias for downstream
tasks; (2) lead to improved data efficiency; (3) enable a degree
of out-of-distribution generalization; and (4) allow the design of
informed algorithms through their interpretability. This adds to
the growing body of work demonstrating the benefits of structured
object representation in various settings.1

8.1.2 Real-World Object-Centric Representation Learning

In Part III, I investigated the aspect of segregation, that is, the discovery of
object representations in visual data. Specifically, the research question
I posed was whether and how object-centric representations can be
learned on real-world data in an unsupervised manner. From my
personal perspective, this was motivated by the results obtained in
Part II, which were encouraging but limited by the scope of data that
object-centric methods could be applied to. From the perspective of the
research field, this question was timely as well: object-centric learning
was still restricted to simplistic, synthetic datasets, and there was a clear
gap to the real world settings that other research communities had long
contended with.

This gap was bridged by the Dinosaur model (Chap. 6), which is
perhaps the most important contribution of this thesis. Based on the
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demir et al. (2023).
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4 Didolkar, Zadaianchuk, et al.
(2024). ““Zero-Shot Object-Centric
Representation Learning””. Under
review.

analysis that previous methods failed on complex data due to a bias
towards surface-level image statistics, I proposed to add a semantic bias

into object-centric models. Furthermore, I demonstrated that this kind
of bias can be injected by predicting pre-trained semantic features, for
example the representations learned by modern self-supervised learning
methods such as DINO. The resulting Dinosaur model constituted a
major step forward in the complexity of data that object-centric methods,
both unsupervised and (weakly) supervised, could handle. Not only
did it significantly improve the state-of-the-art on existing benchmark
datasets; it was also the first model that successfully learned object-centric
representations on unconstrained real-world datasets such as PASCAL
VOC and COCO.

In Chap. 7, I continued this line of research by introducing the
VideoSAUR model. This model can be seen as an extension of Di-
nosaur to real-world videos — it similarly relied on self-supervised
pre-trained features. Additionally, VideoSAUR exploits the temporal
signal in videos to integrate a bias towards grouping parts with consis-
tent motion together. This was implemented by a novel temporal similarity

loss based on predicting feature motion. In this way, VideoSAUR was
the first model2 that successfully learned object-centric representations
on videos of YouTube-style complexity.

Together, these works started what I call “real-world object-centric

representation learning”: a growing set of methods and applications
targeting the “outside the lab” setting.3 In contrast to previous work, this
means leaving the confines of simulated, synthetic datasets — exchanging
them for a natural, open-world, in-the-wild setting. Naturally, this raises
a set of challenges that are not present in controlled environments;
but it also affords several opportunities, as it connects object-centric
representation learning to the wider machine learning landscape. I will
analyze the wider implications of this in Sec. 8.2. To conclude, the final
contribution of this thesis is thus opening up the real-world setting for the

field of object-centric representation learning.

8.1.3 Limitations, Extensions, and Perspectives

As with any research, the work presented in this thesis has limitations.
I already discussed the specific constraints of each proposed method
in their respective chapters. In the remainder, I broaden the focus
to analyze the future prospects of structured object representations.
Starting with the short term, the next section discusses the real-world
setting enabled by the contributions of this thesis, highlighting both the
arising challenges and opportunities. I will also outline our follow-up
work4 that complements and extends my research presented before.
In the last section, I first adopt a critical perspective on object-centric
representation learning and examine some fundamental issues that may
hinder its progress in the medium term, and then speculate on the role
structured object representations might play in the longer-term evolution
of AI.
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Figure 8.1: Ambiguities of

real-world object discovery.

Object decomposition of scenes
with low, medium, and high
complexity using Dinosaur.
Natural scenes admit several
valid groupings; the model’s
grouping depends on the num-
ber of slots, and the complexity
of the scene. Figure adapted
from Seitzer et al. (2023).

5 Methods derived from Slot At-
tention, such as Dinosaur and
VideoSAUR, inherit these limita-
tions.

6 The number of slots also cannot
be arbitrarily increased, as this
would clash with the compression

principle driving object discovery
(see Sec. 2.4.2).

7 Complex objects tend to be split
into multiple slots; several simple
objects tend to be grouped into one
slot.

8.2 New Frontiers for Object-Centric Learning

By becoming real-world viable, object-centric representation learning
has reached a new stage of maturity. This progress introduces several
challenges, such as the inherent ambiguities present in real-world data
(Sec. 8.2.1), and the question of how to scale these methods effectively
(Sec. 8.2.2). But addressing these challenges also presents exciting
new opportunities, such as the development of “object-centric foundation

models” that can be applied in a zero-shot manner across various settings
(Sec. 8.2.3). Additionally, it opens the door for practical applications in
areas like visual question answering or robotics, for which object-centric
representations must also integrate with new domains such as natural
language, or 3D data (Sec. 8.2.4). Finally, it challenges the research field to
benchmark itself with alternative approaches, providing an opportunity
to demonstrate the potential of object-centric representations (Sec. 8.2.5).

8.2.1 Dealing with Variations & Ambiguities

Natural images present several challenges that arise from the large
variations and ambiguities encountered in the real world, including (1) a
varying number of objects per scene; (2) a varying complexity per object;
and (3) ambiguities from multiple plausible groupings. Synthetic data
is constructed in a way that these challenges mostly do not occur; as
such, prior methods developed with such data are ill-equipped to handle
them.

Let us discuss the Slot Attention model as an example.5 First, Slot
Attention uses a fixed number of slots during training, unsuitable for
modeling a varying number of objects.6 However, even if the number of
slots would match the number of objects, there remains a second issue:
all slots have equal capacity, which is suboptimal for modeling scenes with
objects of different complexities.7 Consequently, the suitability of the
discovered grouping strongly depends on the complexity of the scene
and the number of slots (see Fig. 8.1, also Zimmermann et al., 2023).
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Figure 8.2: Data scaling on COCO.

Dinosaur is trained on differ-
ent numbers of samples and eval-
uated in-distribution (solid line)
and various OOD datasets (dashed
lines). Performance plateaus
rapidly. Adapted from Didolkar,
Zadaianchuk, et al. (2024).

11 It is common deep learning wis-
dom that bottlenecks contradict
scalability.

12 I found Dinosaur to mostly
operate in an underfitting regime.
This could be due to limited model
capacity, but also due to optimiza-
tion difficulties stemming from the
bottleneck.

Finally, for natural scenes, multiple groupings are often plausible, e.g. at
different levels of the object hierarchy (cf. Sec. 2.4.1). The grouping to
select depends on the intended task, and can even change dynamically8;
however, Slot Attention lacks control over which grouping to select.

Two strategies could help address these issues: regularization and
conditioning. Regularization involves penalizing the capacity of the slots
so that the model can dynamically adapt to the complexity of the scene9;
this could partially mitigate the issues related to a fixed number of
slots and slot capacity. Conditioning involves inputting a parameter of
interest into the model (e.g. number of slots, or the position of a slot), and
sampling that parameter during training instead of fixing it. This way,
the model learns to interpret scenes in multiple ways, and its grouping
can be controlled at test time.10

8.2.2 Unlocking the Benefits of Scale

Being able to model real-world data unlocks vast quantities of data for
training, with open datasets containing up to 5 billion images (Schuh-
mann et al., 2022). In contrast, synthetic datasets for object-centric
learning typically contain 10k–100k data points; tiny by modern stan-
dards. The major advantage of unsupervised learning is that it is in
principle possible to train on such large data collections — an opportu-
nity to scale both data and models, following the playbook of today’s
foundation models.

However, initial experiments (Didolkar, Zadaianchuk, et al., 2024)
indicated that the data scaling behavior of Dinosaur is suboptimal
(see Fig. 8.2). The performance in terms of object discovery saturates
quickly when increasing the size of the training dataset (already around
10k samples). This negative result raises the question of what prevents
current object-centric models from scaling. One hypothesis is that the
model scale is insufficient; however, while we found that increasing the
model size had a moderately positive impact, it did not fundamentally
change the observed trend. Another hypothesis is that the representational

bottleneck of current architectures restricts the models’ ability to fit the
data.11,

12 If true, this problem is not easily addressed, as current object-
centric models fundamentally rely on compression to discover objects
(cf. Sec. 2.4.2).

Taking a step back, we must also examine the evaluated task, namely
object discovery. First, it is possible that object discovery is close to
saturation regarding the enhancements achievable through scaling. The
main bottleneck to further improve on this task might instead lie in the
limitations of object-centric models in handling variations and ambigui-
ties, as discussed in Sec. 8.2.1. Second, it is conceivable that scaling does
indeed improve the representations, but that this improvement may not be
evident when evaluating object discovery. To reveal the benefits of scaling,
object-centric models may need to be tested more comprehensively, for
instance in terms of representational content, downstream applications,
and generalization (see also the discussion of evaluation in Sec. 3.4).
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13 Particularities of the Dinosaur
model, e.g. the fixed pre-trained
targets, might also play a role.

14 A closed-world dataset is con-
structed such that the data falls
into known categories.

15 Consisting of 7 datasets previ-
ously used for object-centric learn-
ing and the open-world EntitySeg
dataset (Qi et al., 2023).

16 FT-Dinosaur =∧ Finetuned Di-
nosaur

Figure 8.3: Zero-shot discovery.

FT-Dinosaur (Didolkar, Zada-
ianchuk, et al., 2024) segregates “A

visual scene composed of various un-

familiar objects.” (Greff et al., 2020).
Image licensed under CC-BY 4.0.

17 There are also more emerging
applications, e.g. compositional
generation (Jabri et al., 2024; Z. Wu
et al., 2024) orworld modeling (Wu,
Dvornik, et al., 2023), which we are
not going to cover here.

It is likely that all of these factors contribute to the observed inability
to scale.13 Thus, to overcome the obstacles preventing scaling, it is
essential to investigate these aspects further. I believe a key goal of real-
world object-centric representation learning is to train large-scale models
on large-scale datasets — realizing the full potential of unsupervised
learning. One aspirational outcome of such a research program is to
develop an “object-centric foundation model”, as we will discuss next.

8.2.3 Zero-Shot Object-Centric Representations

In my discussion of Dinosaur (Chap. 6), I claimed that it was the first
model for unconstrained real-world datasets. This is true in the sense that
Dinosaur works on considerably less constrained data than previous
methods; but ultimately, the datasets on which it was evaluated are
still closed-world14 and limited in scope (e.g. COCO). More important
for future applications is the open-world setting, where the test data can
differ from the training data in any way — a more realistic simulation
of deployment conditions. To support open-world conditions, a model
must be capable of transferring its knowledge in a zero-shot manner to
novel situations.

Object-centric models, with their presumed generalization abilities,
seem particularly suited for this task. However, so far, object-centric
models have not been evaluated in such a zero-shot setting. To alleviate
this, we recently proposed a zero-shot benchmark15 and evaluated several
Dinosaur-based methods on it (Didolkar, Zadaianchuk, et al., 2024).
Interestingly, we found that all tested object-centric models exhibit
considerable zero-shot transfer to unobserved domains. Our proposed
model, FT-Dinosaur,16 reaches zero-shot performance comparable to
training directly on the test distribution, and is able to discover objects fully
outside the training distribution (see Fig. 8.3).

These results suggest the exciting possibility of an “object-centric
foundation model”, a model that produces object representations across a
variety of domains, facilitating a variety of tasks. A further insight is that
the zero-shot robustness required for such a model could be attainable by
integrating object-centric components with existing foundation models.
For instance, in the case of FT-Dinosaur, pre-trained features from
DINOv2 (Oquab et al., 2023) were fine-tuned for the task of object
discovery within the Dinosaur model. Despite the remaining challenges
(Secs. 8.2.1 and 8.2.2), I speculate that object-centric “backbones” capable
of supporting real-world applications are thus within reach.

8.2.4 New Applications, New Domains

Object-centric representation learning has always suffered from a lack
of realistic applications. With the advent of real-world capable object-
centric models, this situation could now change. In the following, I
outline two areas where object-centric modeling could have an impact in
the future: visual question answering (VQA) and robotics.17 These two areas

https://creativecommons.org/licenses/by/4.0/
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18 For lack of a better name; this
involves comparing vision rep-
resentations to a set of embed-
dings of textual queries, with the
best match considered as the an-
swer (Radford et al., 2021).

also benefit from integrating new domains into object-centric approaches,
respectively language, and 3D.

Visual Question Answering In the VQA task, the model is provided
with an image or video and a textual question, and needs to either
select from a set of pre-defined answer (closed world, e.g. Mamaghan
et al., 2024) or respond in free-form language (open world, e.g. Driess
et al., 2023; Jiaqi Xu et al., 2024). To perform well on this task, object
comprehension and relational reasoning are crucial. Thus, object-centric
representations appear naturally suited — their modular nature could
provide a significant advantage over other kinds of representations (Mon-
dal et al., 2023; Webb et al., 2023). Furthermore, the combinatorial nature
of object relationships results in a vast number of possible questions; to
manage this complexity, the compositional generalization that object
representations could provide might be significant. Finally, specifically
for video VQA, object representations could also offer a computationally
manageable yet expressive abstraction (Jiaqi Xu et al., 2024).

From the point of view of object-centric representation learning, it
would be particularly interesting to target the zero-shot, open-world
setting, where the data is not restricted to pre-defined categories. This
is because this setting encompasses many other tasks such as image
classification, attribute prediction, object localization, object counting,
or character recognition. Thus, the scope of object-centric models could
be significantly increased by integrating them into such a VQA pipeline.
As a less flexible but perhaps simpler alternative to open-world VQA,
an open-vocabulary CLIP-style evaluation18 could be considered as
well (Jiarui Xu et al., 2022; Fan et al., 2023).

Language Grounding Both the VQA task and CLIP-style evaluation
require an integration of the object representations with natural language.
Depending on the setting, different implementations have been proposed;
they all involve training to align the object representations with pre-
trained language models:

• Closed-world VQA: object and text representations can be jointly
processed by a “reasoning head” trained from scratch (D. Ding et al.,
2021; Mamaghan et al., 2024).

• Open-world VQA: object representations can be learned to be mapped
into the textual representation space of the language model, and then
jointly processed with the query (Driess et al., 2023; Jiaqi Xu et al.,
2024).

• CLIP-style: object representations can be aligned with pre-trained
textual representations through contrastive learning (Jiarui Xu et al.,
2022; Fan et al., 2023; Kim, Kim, Lan, et al., 2023).

For all settings, a dataset of images and textual descriptions is re-
quired; the quality of the language grounding depends on whether the
descriptions capture the occurring objects. An idea yet unrealized is
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19 Although object-centric explo-
ration strategies like cai (Chap. 5)
and others (Blaes et al., 2019; San-
caktar et al., 2022, 2023) could alle-
viate this to some degree.

the dynamic integration of language into the object representation, for
instance by prompting the model with textual descriptions of the objects
to be captured — similar to SAM (Kirillov et al., 2023). Finally, it is
interesting to note that this form of textual supervision can also be used
to improve the quality of the object-centric representations themselves
(cf. Sec. 2.4.2).

Robotics Object-centric representations are particularly well-suited
for robotics for several reasons. First, many robotics tasks require
fine-grained object understanding, which includes basic properties like
position and shape, but also a comprehension of object affordances,
dynamics, and inter-object relations. Second, robotics can benefit from
the systematic generalization abilities that object-centric representations
could offer. Finally, despite ongoing efforts to gather large-scale robotics
datasets (Open X-Embodiment Collaboration et al., 2023), there is still
a need for data effiency; data collection for both online learning and
learning from demonstrations is labor-intensive and costly.

To integrate object representations into robotics, let us first consider a
tabula-rasa approach where the robot learns from scratch on each envi-
ronment with RL (similar to Part II of this thesis). In principle, algorithms
like Smorl (Chap. 4) could be scaled-up using modern object-centric
representations obtained from models like Dinosaur or VideoSAUR.
While such an approach could achieve some success (Heravi et al., 2022;
Haramati et al., 2024), it would likely be limited in scope and inefficient
due to learning control from scratch.19

A strategy that has shown promise recently is to use demonstration
data with imitation learning to train a policy instead of RL. Such demon-
strations are typically sparse; thus, to be as robust as possible, approaches
extensively use pre-trained representations, often trained on large-scale,
out-of-domain datasets (S. Nair et al., 2022; Radosavovic et al., 2022;
Xiao et al., 2022; Ma et al., 2023). For example, R3M (S. Nair et al., 2022)
trains a vision encoder on the Ego4D dataset, which contains 3 670 hours
of video footage depicting human daily life activities (Grauman et al.,
2022). In these setups, the representations can be easily substituted with
object-centric ones. Recent research has begun to explore this direction,
with promising results (Ferraro et al., 2023; J. Qian et al., 2024; Shi et al.,
2024). However, their object representations have been manually con-
structed by chaining foundation models. For example, Shi et al. (2024)
combine SAM (Kirillov et al., 2023) for localization with LIV (Ma et al.,
2023) for representation. It would be intriguing to investigate the use
of representations from an end-to-end model like VideoSAUR in this
context; an advantage of employing end-to-end representations could
be the potential for task- and domain-specific fine-tuning.

3D-Aware Representations How can object-centric representations be
further enhanced for robotics applications? Most pre-trained representa-
tions for robotics are image-based; hence, video-based representations
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20 E.g. Xinlong Wang et al. (2022)
and Xudong Wang et al. (2023,
2024).

21 We already compared to such
methods with both Dinosaur and
VideoSAUR, with competitive re-
sults.

22 E.g. Caron et al. (2021), He et al.
(2022), and Oquab et al. (2023).

23 E.g. LLMs (OpenAI, 2024),
VLMs (Radford et al., 2021), or
pure vision models (Kirillov et al.,
2023; Oquab et al., 2023).

24 In Didolkar, Zadaianchuk, et
al. (2024), we started to compare
object-centric models to the super-
vised large-scale SAM model (Kir-
illov et al., 2023).

could already offer improvements in terms of handling consistency and
dynamics. An additional critical advantage could be derived from inte-

grating 3D information into the representations. There is a line of research
focused on such 3D-aware object-centric representations (Stelzner et al.,
2021; Sajjadi et al., 2022; Yu et al., 2022), which are trained on multi-view
data via novel view synthesis. It has been shown that such representations
are indeed beneficial for robotic manipulation (Driess et al., 2023). How-
ever, 3D object-centric modeling has not yet been scaled to real-world
data — integrating Dinosaur with such approaches is a promising
direction for future work. Another interesting direction could involve
modeling the camera as an explicit entity (Seitzer et al., 2024), thereby
disentangling observer motion from object motion.

8.2.5 From Niche to Mainstream?

I have discussed a multitude of avenues for future research that have
emerged with the transition to the real world. Importantly, this shift
also puts object-centric representation learning in context with the
broader machine learning landscape. As a result, for the first time,
it becomes possible to directly compare object-centric approaches to
more mainstream methodologies using established benchmarks. For
the task of object discovery, this includes computer vision methods
for unsupervised instance segmentation,20 which have recently seen
enormous progress.21 In terms of representations, this includes well-
established self-supervised learning methods.22

Ultimately, object-centric representation learning aspires to support
all kinds of applications and tasks. To showcase its relevance, it will
eventually become necessary to compare with the top-performing ap-
proaches in each particular setting, whether supervised or unsupervised.
This also includes comparisons with foundation models at the largest
scales.23,

24

Competing with such methods is a daunting prospect. However,
real-world object-centric representation learning is largely uncharted
territory, and its practical advantages have only recently begun to emerge.
To further advance the field, it will be important to develop testbeds
where the beneficial properties of object representations can be fully
demonstrated. These could include applications involving the physical
world, or those requiring systematic generalization, robustness, or effi-
cient resource utilization, both in terms of data and compute. Robotics

appears to be a natural candidate where many of those aspects converge.
In conclusion, I believe that the full potential of object-centric repre-
sentations has not yet been realized — realizing this potential requires
overcoming the aforementioned challenges, but would let the field move
beyond its current niche status.
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8.3 Structured Object Representations: An Outlook

This thesis was about structured object representations. In the last chapter,
we discussed the great potential of its current instantiation, object-centric
representation learning. But we also saw obstacles arising, which
raises the question of whether object-centric representation learning has
fundamental problems that simply cannot be overcome — requiring a
new set of solutions to integrate structure into contemporary AI.

The Limits of the Slot Paradigm In Sec. 8.2.1, we examined the
difficulties of object-centric models face in dealing with variations and
ambiguities. Although some of these issues may be addressable, it could
be that the slot paradigm — representing the scene as a flat set of fixed
size vectors — is ultimately too limiting to model the real world. For
instance, it does not allow for modeling hierarchical structures at different
leves of granularity. Additionally, the assumptions behind slots — a fixed
description length and common representational format for each object
— may be overly simplistic. Finally, the static nature of these models
forces them to always infer a singular, complete interpretation of the
scene. This is caused by the reconstruction objective in conjunction with
the compression principle, which drives the full scene to be represented
in the bottleneck. In contrast, Greff et al.’s (2020) vision to approach the
binding problem suggests that object grouping should be dynamic and
driven by task-specific context. This aspect is fully missing from current
object-centric models. All in all, this suggests an eventual paradigm shift
away from slot-based models.

The Bitter Lesson: Redux An even more fundamental limitation may
arise from what we discussed in Sec. 8.2.2: the fact that current object-
centric models face challenges when scaling to larger models and datasets.
Reflecting on this, these challenges may suggest that we have once again
fallen prey to the bitter lesson. In particular, by (over-)optimizing for the
task of object discovery, that is, segmenting objects exactly as prescribed
by human annotations, we engineered numerous biases into the models.
But these biases ultimately prevent scaling, which is what matters most
in the long run. Richard Sutton describes this pitfall clearly (emphasis
mine):

[We] should stop trying to find simple ways [ . . . ] to think about
space, objects, multiple agents, or symmetries. [ . . . ] They are not
what should be built in, as their complexity is endless; instead we
should build in only the meta-methods that can find and capture
this arbitrary complexity. [ . . . ] the search for them should be
by our methods, not by us. We want AI agents that can discover

like we can, not which contain what we have discovered. Building in
our discoveries only makes it harder to see how the discovering
process can be done. Sutton (2019), The Bitter Lesson

Applied to our context, it could be said that it was not the models that
discovered objects, but rather us, forcing the models to discover objects.
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25 That is, the set of tokens they
operate on.

26 Indeed, maximizing mutual in-
formation already plays a key role
in self-supervised representation
learning (Aaron van den Oord et
al., 2019; Wang and Isola, 2022).

27 Such representations can there-
fore no longer be called “object-
centric”. The resulting models may
not resemble today’s object-centric
learning models much, but ulti-
mately carry on the flag of struc-
tured object representations.

Is Scale All We Need? Following Sutton’s argument, we can ask
whether the current scaling paradigm already comprises “AI agents that

can discover like we can”. For example, can a Transformer already discover
all needed structure if it is just scaled-up enough? The conjecture behind
this is that structural properties like compositionality or modularity
could emerge at certain scales; essentially, if a structure is useful for the
task the model is trying to solve (e.g. next token prediction), the model
will learn to discover and utilize it. If this were true, we would not need
to explicitly encode structure into the model, but simply combine scaling
with hard-enough tasks that necessitate the discovery of structure.

On the one hand, there is evidence of such emerging structure in
Transformers, e.g. the tracking of objects, even if they are not explicitly
trained for this purpose (Caron et al., 2021; Sun et al., 2023; Kowal et al.,
2024). There are also more basic results that show that neural networks
can, in principle, learn modular structures from data (Lepori et al., 2023).
On the other hand, there is clear evidence that current large models have
problems with compositionality (Yuksekgonul et al., 2023; Kobayashi
et al., 2024), especially for difficult tasks (Dziri et al., 2023; Z. Xu et al.,
2024). These problems arise even though Transformers do already possess

a structured representation25 — conceivably giving it the computational
substrate to learn to perform modular operations.

Scalable Modular Representations Do large-scale models require
more structure? While there is no conclusive evidence in either direc-
tion at this point, we can still speculate how the principles underlying
structured object representations could be applied to large models. We
previously discussed how using bottlenecks to discover structure may
contradict scalability. Essentially, bottlenecks constrain learning too
much; instead, we should use soft mechanisms that encourage the for-
mation of structure without enforcing it. Central to this endeavor are
mechanisms that learn better structures as more data and compute becomes

available. The mutual information-based principles of independence and
predictiveness (see Sec. 2.4.2) might be well-suited for the design of such
mechanisms; their success hinges on whether the estimation of mutual
information can be transformed into productive learning principles.26
As the outcome, I envision “scalable modular representations” — represen-
tations that capture modular structure implicitly, exchanging explicit
grounding for the ability to scale.27

Conclusion I have discussed my perspective on the future of structured

object representations. To summarize: in the short term, the field of object-
centric representation learning is full of potential. In the medium term,
however, its more fundamental limitations may require a change of
paradigm. In the long term, I see three possible futures unfolding, de-
finedby theiruse of explicit, implicit, or emergent structuredobject represen-
tations; in any case, I believe the principles of structure will play a crucial
role. Hopefully, this thesis can contribute a minor step in this direction.
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ABSTRACT

Autonomous agents need large repertoires of skills to act reasonably on new tasks
that they have not seen before. However, acquiring these skills using only a
stream of high-dimensional, unstructured, and unlabeled observations is a tricky
challenge for any autonomous agent. Previous methods have used variational
autoencoders to encode a scene into a low-dimensional vector that can be used as
a goal for an agent to discover new skills. Nevertheless, in compositional/multi-
object environments it is difficult to disentangle all the factors of variation into such
a fixed-length representation of the whole scene. We propose to use object-centric
representations as a modular and structured observation space, which is learned
with a compositional generative world model. We show that the structure in the
representations in combination with goal-conditioned attention policies helps the
autonomous agent to discover and learn useful skills. These skills can be further
combined to address compositional tasks like the manipulation of several different
objects.
https://martius-lab.github.io/SMORL

1 INTRODUCTION

Reinforcement learning (RL) includes a promising class of algorithms that have shown capability to
solve challenging tasks when those tasks are well specified by suitable reward functions. However, in
the real world, people are rarely given a well-defined reward function. Indeed, humans are excellent
at setting their own abstract goals and achieving them. Agents that exist persistently in the world
should likewise prepare themselves to solve diverse tasks by first constructing plausible goal spaces,
setting their own goals within these spaces, and then trying to achieve them. In this way, they can
learn about the world around them.

In principle, the goal space for an autonomous agent could be any arbitrary function of the state
space. However, when the state space is high-dimensional and unstructured, such as only images, it
is desirable to have goal spaces which allow efficient exploration and learning, where the factors of
variation in the environment are well disentangled. Recently, unsupervised representation learning
has been proposed to learn such goal spaces (Nair et al., 2018; 2019; Pong et al., 2020). All
existing methods in this context use variational autoencoders (VAEs) to map observations into a
low-dimensional latent space that can later be used for sampling goals and reward shaping.

However, for complex compositional scenes consisting of multiple objects, the inductive bias of
VAEs could be harmful. In contrast, representing perceptual observations in terms of entities has
been shown to improve data efficiency and transfer performance on a wide range of tasks (Burgess
et al., 2019). Recent research has proposed a range of methods for unsupervised scene and video
decomposition (Greff et al., 2017; Kosiorek et al., 2018; Burgess et al., 2019; Greff et al., 2019; Jiang
et al., 2019; Weis et al., 2020; Locatello et al., 2020). These methods learn object representations and
scene decomposition jointly. The majority of them are in part motivated by the fact that the learned
representations are useful for downstream tasks such as image classification, object detection, or
semantic segmentation. In this work, we show that such learned representations are also beneficial
for autonomous control and reinforcement learning.

∗equal contribution
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Figure 1: Our proposed SMORL architecture. Representations zt are obtained from observations
ot through the object-centric SCALOR encoder qφ, and processed by the goal-conditional attention
policy πθ(at|zt, zg). During training, representations of goals are sampled conditionally on the
representations of the first observation z1. At test time, the agent is provided with an external goal
image og that is processed with the same SCALOR encoder to a set of potential goals {zn}Nn=1.
After this, the goal zg is sequentially chosen from this set. This way, the agent attempts to solve all
the discovered sub-tasks one-by-one, not simultaneously.

We propose to combine these object-centric unsupervised representation methods that represent
the scene as a set of potentially structured vectors with goal-conditional visual RL. In our method
(illustrated in Figure 1), dubbed SMORL (for self-supervised multi-object RL), a representation
of raw sensory inputs is learned by a compositional latent variable model based on the SCALOR
architecture (Jiang et al., 2019). We show that using object-centric representations simplifies the
goal space learning. Autonomous agents can use those representations to learn how to achieve
different goals with a reward function that utilizes the structure of the learned goal space. Our main
contributions are as follows:

• We show that structured object-centric representations learned with generative world models
can significantly improve the performance of the self-supervised visual RL agent.

• We develop SMORL, an algorithm that uses learned representations to autonomously
discover and learn useful skills in compositional environments with several objects using
only images as inputs.

• We show that even with fully disentangled ground-truth representation there is a large benefit
from using SMORL in environments with complex compositional tasks such as rearranging
many objects.

2 RELATED WORK

Our work lies in the intersection of several actively evolving topics: visual reinforcement learning for
control and robotics, and self-supervised learning. Vision-based RL for robotics is able to efficiently
learn a variety of behaviors such as grasping, pushing and navigation (Levine et al., 2016; Pathak
et al., 2018; Levine et al., 2018; Kalashnikov et al., 2018) using only images and rewards as input
signals. Self-supervised learning is a form of unsupervised learning where the data provides the
supervision. It was successfully used to learn powerful representations for downstream tasks in
natural language processing (Devlin et al., 2018; Radford et al., 2019) and computer vision (He et al.,
2019; Chen et al., 2020). In the context of RL, self-supervision refers to the agent constructing its
own reward signal and using it to solve self-proposed goals (Baranes & Oudeyer, 2013; Nair et al.,
2018; Péré et al., 2018; Hausman et al., 2018; Lynch et al., 2019). This is especially relevant for
visual RL, where a reward signal is usually not naturally available. These methods can potentially
acquire a diverse repertoire of general-purpose robotic skills that can be reused and combined during
test time. Such self-supervised approaches are crucial for scaling learning from narrow single-task
learning to more general agents that explore the environment on their own to prepare for solving
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many different tasks in the future. Next, we will cover the two most related lines of research in more
detail.

Self-supervised visual RL (Nair et al., 2018; 2019; Pong et al., 2020; Ghosh et al., 2019; Warde-
Farley et al., 2019; Laversanne-Finot et al., 2018) tackles multi-task RL problems from images without
any external reward signal. However, all previous methods assume that the environment observation
can be encoded into a single vector, e.g. using VAE representations. With multiple objects being
present, this assumption may result in object encodings overlapping in the representation, which is
known as the binding problem (Greff et al., 2016; 2020). In addition, as the reward is also constructed
based on this vector, the agent is incentivized to solve tasks that are incompatible, for instance
simultaneously moving all objects to goal positions. In contrast, we suggest to learn object-centric
representations and use them for reward shaping. This way, the agent can learn to solve tasks
independently and then combine these skills during evaluation.

Learning object-centric representations in RL (Watters et al., 2019; van Steenkiste et al., 2019;
Veerapaneni et al., 2020; Kipf et al., 2020) has been suggested to approach tasks with combinatorial
and compositional elements such as the manipulation of multiple objects. However, the previous
work has assumed a fixed, single task and a given reward signal, whereas we are using the learned
object-representations to construct a reward signal that helps to learn useful skills that can be used to
solve multiple tasks. In addition, these methods use scene-mixture models such as MONET (Burgess
et al., 2019) and IODINE (Greff et al., 2019), which do not explicitly contain features like position
and scale. These features can be used by the agent for more efficient sampling from the goal space and
thus the explicit modeling of these features helps to create additional biases useful for manipulation
tasks. However, we expect that other object-centric representations could also be successfully applied
as suitable representations for RL tasks.

3 BACKGROUND

Our method combines goal-conditional RL with unsupervised object-oriented representation learning
for multi-object environments. Before we describe each technique in detail, we briefly state some RL
preliminaries. We consider a Markov decision process defined by (S, A, p, r), where S and A are
the continuous state and action spaces, p : S × S × A 7→ [0, ∞) is an unknown probability density
representing the probability of transitioning to state st+1 ∈ S from state st ∈ S given action at ∈ A,
and r : S 7→ R is a function computing the reward for reaching state st+1. The agent’s objective is to
maximize the expected return R =

∑T
t=1 Est∼ρπ,at∼π,st+1∼p [r(st+1)] over the horizon T , where

ρπ(st) is the state marginal distribution induced by the agent’s policy π(at|st).

3.1 GOAL-CONDITIONAL REINFORCEMENT LEARNING

In the standard RL setting described before, the agent only learns to solve a single task, specified
by the reward function. If we are interested in an agent that can solve multiple tasks (each with a
different reward function) in an environment, we can train the agent on those tasks by telling the
agent which distinct task to solve at each time step. But how can we describe a task to the agent? A
simple, yet not too restrictive way is to let each task correspond to an environment state the agent has
to reach, denoted as the goal state g. The task is then given to the agent by conditioning its policy
π(at | st, g) on the goal g, and the agent’s objective turns to maximize the expected goal-conditional
return:

Eg∼G

[
T∑

t=1

Est∼ρπ,at∼π,st+1∼p [rg(st+1)]

]
(1)

where G is some distribution over the space of goals G ⊆ S the agent receives for training. The reward
function can, for example, be the negative distance of the current state to the goal: rg(s) = −‖s−g‖.
Often, we are only interested in reaching a partial state configuration, e.g. moving an object to a
target position, and want to avoid using the full environment state as the goal. In this case, we have
to provide a mapping m : S 7→ G of states to the desired goal space; the mapping is then used to
compute the reward function, i.e. rg(s) = −‖m(s) − g‖.
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As the reward is computed within the goal space, it is clear that the choice of goal space plays a
crucial role in determining the difficulty of the learning task. If the goal space is low-dimensional
and structured, e.g. in terms of ground truth positions of objects, rewards provide a meaningful
signal towards reaching goals. However, if we only have access to high-dimensional, unstructured
observations, e.g. camera images, and we naively choose this space as the goal space, optimization
becomes hard as there is little correspondence between the reward and the distance of the underlying
world states (Nair et al., 2018).

One option to deal with such difficult observation spaces is to learn a goal space in which the RL task
becomes easier. For instance, we can try to find a low-dimensional latent space Z and use it both as
the input space to our policy and the space in which we specify goals. If the environment is composed
of independent parts that we intend to control separately, intuitively, learning to control is easiest if
the latent space is also structured in terms of those independent components. Previous research (Nair
et al., 2018; Pong et al., 2020) relied on the disentangling properties of representation learning models
such as the β-VAE (Higgins et al., 2017) for this purpose. However, these models become insufficient
when faced with multi-object scenarios due to the increasing combinatorial complexity of the scene,
as we show in Sec. 5.2 and in App. A.2. Instead, we use a model explicitly geared towards inferring
object-structured representations, which we introduce in the next section.

3.2 STRUCTURED REPRESENTATION LEARNING WITH SCALOR

SCALOR (Jiang et al., 2019) is a probabilistic generative world model for learning object-oriented
representations of a video or stream of high-dimensional environment observations. SCALOR
assumes that the environment observation ot at step t is generated by the background latent variable
zbg
t and the foreground latent variable zfg

t . The foreground is further factorized into a set of object
representations zfg

t = {zt,n}n∈Ot , where Ot is the set of recognised object indices. To combine the
information from previous time steps, a propagation-discovery model is used (Kosiorek et al., 2018).
In SCALOR, an object is represented by zt,n =

(
zpres
t,n , zwhere

t,n , zwhat
t,n

)
. The scalar zpres

t,n defines if the
object is present in the scene, whereas the vector zwhat

t,n encodes object appearance. The component
zwhere
t,n is further decomposed into the object’s center position zpos

t,n, scale zscale
t,n , and depth zdepth

t,n . With
this, the generative process of SCALOR can be written as:

p(o1:T , z1:T ) = p(zD1 )p(z
bg
1 )

T∏

t=2

p(ot | zt)︸ ︷︷ ︸
rendering

p(zbg
t | zbg

<t, z
fg
t )︸ ︷︷ ︸

background transition

p(zDt | zPt )︸ ︷︷ ︸
discovery

p(zPt | z<t)︸ ︷︷ ︸
propagation

, (2)

where zt = (zbg
t , zfg

t ), z
D
t contains latent variables of objects discovered in the present step, and zPt

contains latent variables of objects propagated from the previous step. Due to the intractability of
the true posterior distribution p(z1:T |o1:T ), SCALOR is trained using variational inference with the
following posterior approximation:

q(z1:T | o1:T ) =

T∏

t=1

q(zt | z<t,o≤t) =

T∏

t=1

q(zbg
t | zfg

t ,ot) q(zDt | zPt ,o≤t) q(zPt | z<t,o≤t), (3)

by maximizing the following evidence lower bound L(θ, φ) =
T∑

t=1

Eqφ(z<t|o<t)

[
Eqφ(zt|z<t,o≤t)

[
log pθ(ot | zt)

]
− DKL

[
qφ(zt | z<t,o≤t) ‖ pθ(zt | z<t)

]]
, (4)

where DKL denotes the Kullback-Leibler divergence. As we are using SCALOR in an active setting,
we additionally condition the next step posterior predictions on the actions at taken by the agent. For
more details and hyperparameters used to train SCALOR, we refer to App. D.3. In the next section,
we describe how the structured representations learned by SCALOR can be used in downstream RL
tasks such as goal-conditional visual RL.
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4 SELF-SUPERVISED MULTI-OBJECT REINFORCEMENT LEARNING

Learning from flexible representations obtained from unsupervised scene decomposition methods
such as SCALOR creates several challenges for RL agents. In particular, these representations consist
of sets of vectors, whereas standard policy architectures assume fixed-length state vectors as input.
We propose to use a goal-conditioned attention policy that can handle sets as inputs and flexibly
learns to attend to those parts of the representation needed to achieve the goal at hand.

In the setting we consider, the agent is not given any reward signal or goals from the environment
at the training stage. Thus, to discover useful skills that can be used during evaluation tasks, the
agent needs to rely on self-supervision in the form of an internally constructed reward signal and
self-proposed goals. Previous VAE-based methods used latent distances to the goal state as the reward
signal. However, for compositional goals, this means that the agent needs to master the simultaneous
manipulation of all objects. In our experiments in Sec. 5.1, we show that even with fully disentangled,
ground-truth representations of the scene, this is a challenging setting for state-of-the-art model-free
RL agents. Instead, we propose to use the discovered structure of the learned goal and state spaces
twofold: the structure within each representation, namely object position and appearance, to construct
a reward signal, and the set-based structure between representations to construct sub-goals that
correspond to manipulating individual objects.

4.1 POLICY WITH GOAL-CONDITIONED ATTENTION

We use the multi-head attention mechanism (Vaswani et al., 2017) as the first stage of our policy πθ

to deal with the challenge of set-based input representations. As the policy needs to flexibly vary its
behavior based on the goal at hand, it appears sensible to steer the attention using a goal-dependent
query Q(zg) = zgW

q . Each object is allowed to match with the query via an object-dependent key
K(zt) = ztW

k and contribute to the attention’s output through the value V (zt) = ztW
v , which is

weighted by the similarity between Q(zg) and K(zt). As inputs, we concatenate the representations
for object n to vectors zt,n = [zwhat

t,n ; zwhere
t,n ; zdepth

t,n ], and similarly the goal representation to zg =

[zwhat
g ; zwhere

g ; zdepth
g ]. The attention head Ak is computed as

Ak = softmax
(
zgW

q(ZtW
k)T√

de

)
ZtW

v, (5)

where Zt is a packed matrix of all zt,n’s, W q , W k, W v constitute learned linear transformations and
de is the common key, value and query dimensionality. The final attention output A is a concatenation
of all the attention heads A = [A1; . . . ;AK ]. In general, we expect it to be beneficial for the policy
to not only attend to entities conditional on the goal; we thus let some heads attend based on a set of
input independent, learned queries, which are not conditioned on the goal. We go into more details
about the attention mechanism in App. D.1 and ablate the impact of different choices in App. B.

The second stage of our policy is a fully-connected neural network f that takes as inputs A and the
goal representation zg and outputs an action at. The full policy πθ can thus be described by

πθ ({zt,n}n∈Ot , zg) = f(A, zg). (6)

4.2 SELF-SUPERVISED TRAINING

In principle, our policy can be trained with any goal-conditional model-free RL algorithm. For our
experiments, we picked soft-actor critic (SAC) (Haarnoja et al., 2018b) as a state-of-the-art method
for continuous action spaces, using hindsight experience replay (HER) (Andrychowicz et al., 2017)
as a standard way to improve sample-efficiency in the goal-conditional setting.

The training algorithm is summarized in Alg. 1. We first train SCALOR on data collected from a
random policy and fit a distribution p(zwhere) to representations zwhere of collected data. Each rollout,
we generate a new goal for the agent by picking a random zwhat from the initial observation z1 and
sampling a new zwhere from the fitted distribution p(zwhere). The policy is then rolled out using this
goal. During off-policy training, we are relabeling goals with HER, and, similar to RIG (Nair et al.,
2018), also with “imagined goals” produced in the same way as the rollout goals.
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Algorithm 1 SMORL: Self-Supervised Multi-Object RL (Training)
Require: SCALOR encoder qφ, goal-conditional policy πθ , goal-conditional SAC trainer, number of training

episodes K.
1: Train SCALOR on sequences uniformly sampled from D using loss described in Eq. 4.
2: Fit prior p(zwhere | zwhat) to the latent encodings of observations.
3: for n = 1, ...,K episodes do
4: Sample goal zg =

(
ẑwhere
g , zwhat

g

)
.

5: Collect episode data with policy πθ(at | zt, zg) and SCALOR representations of observations qφ(zt |
z<t,o≤t).

6: Store transitions (zt,at, zt+1, zg) into replay buffer R.
7: Sample transitions from replay buffer (z,a, z′, zg) ∼ R.
8: Relabel zwhere

g goal components to a combination of future states and p(zwhere | zwhat).
9: Compute matching reward signal R = r(z′, zg).

10: Update policy πθ(at | zt, zg) using R with SAC trainer.
11: end for
We also refer to Alg. 2 in App. D.2 for a more detailed description of the algorithm.

A challenge with compositional representations is how to measure the progress of the agent towards
achieving the chosen goal. As the goal always corresponds to a single object, we have to extract the
state of this object in the current observation in order to compute a reward. One way is to rely on the
tracking of objects, as was shown possible e.g. by SCALOR (Jiang et al., 2019). However, as the
agent learns, we noticed that it would discover some flaws of the tracking and exploit them to get a
maximal reward that is not connected with environment changes, but rather with internal vision and
tracking flaws (details in App. E).

We follow an alternative approach, namely to use the zwhat component of discovered objects and
match them with the current goal representation zwhat

g . As the zwhat space encodes the appearance of
objects, two detections corresponding to the same object should be close in this space (we verify that
this hypothesis holds in App. A.1). Thus, it is easy to find the object corresponding to the current goal
object using the distance mink ||zwhat

k − zwhat
g ||. In case of failure to discover a close representation,

i.e. when all zwhat
k have a distance larger than some threshold α to the goal representation zwhat

g , we
use a fixed negative reward rno_goal to incentivise the agent to avoid this situation.

Our reward signal is thus

r(z, zg) =

{
−||zwhere

k̂
− zwhere

g || if mink ||zwhat
k − zwhat

g || < α,

rno_goal otherwise,
(7)

where k̂ = argmink ||zwhat
k − zwhat

g ||.

4.3 COMPOSING INDEPENDENT SUB-GOALS DURING EVALUATION

At evaluation time, the agent receives a goal image from the environment showing the state to achieve.
The goal image is processed by SCALOR to yield a set of goal vectors. For our experiments, we
assume that these sub-goals are independent of each other and that the agent can thus sequentially
achieve them by cycling through them until all of them are solved. The evaluation algorithm is
summarized in Alg. 3, with more details added in App. D.2.
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5 EXPERIMENTS

(a) View from top (b) Agent observation

Figure 2: Multi-Object Visual Push and Rearrange envi-
ronments with 2 objects and a Sawyer robotic arm.

We have done computational experiments
to address the following questions:

• How well does our method scale to
challenging tasks with a large number
of objects in case when ground-truth
representations are provided?

• How does our method perform com-
pared to prior visual goal-conditioned
RL methods on image-based, multi-
object continuous control tasks?

• How suitable are the representations
learned by the compositional genera-
tive world model for discovering and
solving RL tasks?

To answer these questions, we constructed the Multi-Object Visual Push and Multi-Object Visual
Rearrange environments. Both environments are based on MuJoCo (Todorov et al., 2012) and the
Multiworld package for image-based continuous control tasks introduced by Nair et al. (2018), and
contain a 7-dof Sawyer arm where the agent needs to be controlled to manipulate a variable number
of small picks on a table. In the first environment, the objects are located on fixed positions in front
of the robot arm that the arm must push to random target positions. We included this environment
as it largely corresponds to the Visual Pusher environments of Nair et al. (2018). In the second
environment, the task is to rearrange the objects from random starting positions to random target
positions. This task is more challenging for RL algorithms due to the randomness of initial object
positions. For both environments, we measure the performance of the algorithms as the average
distance of all pucks to their goal positions on the last step of the episode. Our code, as well as the
multi-objects environments will be made public after the paper publication.

5.1 SMORL WITH GROUND-TRUTH (GT) STATE REPRESENTATION

We first compared SMORL with ground-truth representation with Soft Actor-Critic (SAC) (Haarnoja
et al., 2018a) with Hindsight Experience Replay (HER) relabeling (Andrychowicz et al., 2017) that
takes an unstructured vector of all objects coordinates as input. We are using a one-hot encoding for
object identities zwhat and object and arm coordinates as zwhere components. With such a representa-
tion, the matching task becomes trivial, so our main focus in this experiment is on the benefits of
the goal-conditioned attention policy and the sequential solving of independent sub-tasks. We show
the results in Fig. 3. While for 2 objects, SAC+HER is performing similarly, for 3 and 4 objects,
SAC+HER fails to rearrange any of the objects. In contrast, SMORL equipped with ground-truth
representation is still able to rearrange 3 and 4 objects, and it can solve the more simple sub-tasks of
moving each object independently. This shows that provided with good representations, SMORL can
use them for constructing useful sub-tasks and learn how to solve them.

5.2 VISUAL RL METHODS COMPARISON

We compare the performance of our algorithm with two other self-supervised, multi-task visual
RL algorithms on our two environments, with one and two objects. The first one, RIG (Nair et al.,
2019), uses the VAE latent space to sample goals and to estimate the reward signal. The second
one, Skew-Fit (Pong et al., 2020), also uses the VAE latent space, however, is additionally biased
on rare observations that were not modeled well by the VAE on previously collected data. In terms
of computational complexity, both our method and RIG need to train a generative model before
RL training. We note that training SCALOR is more costly than training RIG’s VAE due to the
sequence processing utilized by SCALOR. However, once trained, SCALOR only adds little overhead
compared to RIG’s VAE during RL training, and compared to Skew-Fit, our method is still faster to
train as Skew-Fit needs to continuously retrain its VAE.
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Figure 3: Average distance of objects to goal positions, comparing SMORL using ground truth
representations to SAC with ground truth representations in the Rearrange environment with different
number of objects. SAC struggles to improve performance when the combinatorial complexity of the
scene rises. The dotted line indicates the performance of a passive policy that performs no movements.
Results averaged over 5 random seeds, shaded regions indicate one standard deviation.
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Figure 4: Average distance of objects to goal positions, comparing SMORL to Visual RL Baselines.
In addition to the baselines, we show SAC’s performance with ground truth representations. Results
averaged over 5 random seeds, shaded regions indicate one standard deviation.

We show the results in Fig. 4. For the simpler Multi-Object Visual Push environment, the performance
of SMORL is comparable to the best performing baseline, while for the more challenging Multi-
Object Visual Rearrange environment, SMORL is significantly better then both RIG and Skew-Fit.
This shows that learning of object-oriented representations brings benefits for goal sampling and
self-supervised learning of useful skills. However, our method is still significantly worse than
SAC with ground-truth representations. We hypothesize that one reason for this could be that
SCALOR right now does not properly deal with occluded objects, which makes the environment
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partially observable from the point of view of the agent. On top of this, we suspect noise in the
representations, misdetections and an imperfect matching signal to slow down training and ultimately
hurt performance. Thus, we expect that adding recurrence to the policy or improving SCALOR itself
could help close the gap to an agent with perfect information.

5.3 OUT-OF-DISTRIBUTION GENERALIZATION FOR DIFFERENT NUMBER OF OBJECTS
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Figure 5: Out-of-distribution generalization
of SMORL agent training on Visual Rear-
range with two objects and being tested with
one object. Green line shows final perfor-
mance when training with one object.

One important advantage of structured policies is that
they could potentially still be applicable for observa-
tions that are from different, but related distributions.
Standard visual RL algorithms were shown to be
sensitive to small changes unrelated to the current
task (Higgins et al., 2018). To see how our algorithm
can generalize to a changing environment, we tested
our SMORL agent trained on observations of the
Rearrange environment with 2 objects on the environ-
ment with 1 object. As can be seen from Fig. 5, the
performance of such an agent increases during train-
ing up to a performance comparable to a SMORL
agent that was trained on the 1 object environment.

6 CONCLUSION AND FUTURE WORK

In this work, we have shown that discovering structure in the observations of the environment with a
compositional generative world models and using it for controlling different parts of the environment
is crucial for solving tasks in compositional environments. Learning to manipulate different parts of
object-centric representations is a powerful way to acquire useful skills such as object manipulation.
Our SMORL agent learns how to control different entities in the environment and can then combine
the learned skills to achieve more complex compositional goals such as rearranging several objects
using only the final image of the arrangement.

Given the results presented so far, there are a number of interesting directions to take this work.
First, one can combine learned sub-tasks with a planning algorithm to achieve a particular goal.
Currently, the agent is simply sequentially cycling through all discovered sub-tasks, so we expect
that a more complex planning algorithm as e.g. described by Nasiriany et al. (2019) could allow
solving more challenging tasks and improve the overall performance of the policy. To this end,
considering interactions between objects in the manner of Fetaya et al. (2018) or Kipf et al. (2020)
could help to lift the assumption of independence of sub-tasks. Second, prioritizing certain sub-tasks
during learning, similar to Blaes et al. (2019), could accelerate the training of the agent. Finally, an
active training of SCALOR to combine the object-oriented bias of SCALOR with a bias towards
independently controllable objects (Thomas et al., 2018) is an interesting direction for future research.
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Abstract

Many reinforcement learning (RL) environments consist of independent entities
that interact sparsely. In such environments, RL agents have only limited influence
over other entities in any particular situation. Our idea in this work is that learning
can be efficiently guided by knowing when and what the agent can influence with
its actions. To achieve this, we introduce a measure of situation-dependent causal
influence based on conditional mutual information and show that it can reliably
detect states of influence. We then propose several ways to integrate this measure
into RL algorithms to improve exploration and off-policy learning. All modified
algorithms show strong increases in data efficiency on robotic manipulation tasks.

1 Introduction

Reinforcement learning (RL) is a promising route towards versatile and dexterous artificial agents.
Learning from interactions can lead to robust control strategies that can cope with all the intricacies
of the real world that are hard to engineer correctly. Still, many relevant tasks such as object
manipulation pose significant challenges for RL. Although impressive results have been achieved
using simulation-to-real transfer [1] or heavy physical parallelization [2], training requires countless
hours of interaction. Improving sample efficiency is thus a key concern in RL. In this paper, we
approach this issue from a causal inference perspective.

When is an agent in control of its environment? An agent can only influence the environment by its
actions. This seemingly trivial observation has the underappreciated aspect that the causal influence
of actions is situation dependent. Consider the simple scenario of a robotic arm in front of an object
on a table. Clearly, the object can only be moved when contact between the robot and object is made.
Generally, there are situations where immediate causal influence is possible, while in others, none is.
In this work, we formalize this situation-dependent nature of control and show how it can be exploited
to improve the sample efficiency of RL agents. To this end, we derive a measure that captures the
causal influence of actions on the environment and devise a practical method to compute it.

Knowing when the agent has control over an object of interest is important both from a learning and
an exploration perspective. The learning algorithm should pay particular attention to these situations
because (i) the robot is initially rarely in control of the object of interest, making training inefficient,
(ii) physical contacts are hard to model, thus require more effort to learn and (iii) these states are
enabling manipulation towards further goals. But for learning to take place, the algorithm first needs
data that contains these relevant states. Thus, the agent has to take its causal influence into account
already during exploration.

We propose several ways in which our measure of causal influence can be integrated into RL
algorithms to address both the exploration, and the learning side. For exploration, agents can be
rewarded with a bonus for visiting states of causal influence. We show that such a bonus leads the
agent to quickly discover useful behavior even in the absence of task-specific rewards. Moreover,
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our approach allows to explicitly guide the exploration to favor actions with higher predicted causal
impact. This works well as an alternative to ε-greedy exploration, as we demonstrate. Finally, for
learning, we propose an off-policy prioritization scheme and show that it reliably improves data
efficiency. Each of our investigations is backed by empirical evaluations in robotic manipulation
environments and demonstrates a clear improvement of the state-of-the-art with the same generic
influence measure.

2 Related Work

The idea underlying our work is that an agent can only sometimes influence its surroundings. This
rests on two basic assumptions about the causal structure of the world. The first is that the world
consists of independent entities, in accordance with the principle of independent causal mechanisms
(ICM) [3], stating that the world’s generative process consists of autonomous modules. The second
assumption is that the potential influence that entities have over other entities is localized spatially and
occurs sparsely in time. We can see this as explaining the sparse mechanism shift hypothesis, which
states that naturally occurring distribution shifts will be due to local mechanism changes [4]. This is
usually traced back to the ICM principle, i.e. that interventions on one mechanism will not affect
other mechanisms [5]. But we argue that it is also due to the limited interventional range of agents (or,
more generally, physical processes), which restricts the breadth and frequency of mechanism-changes
in the real world. Previous work has used sparseness to learn disentangled representations [6, 7],
causal models [8], or modular architectures [9]. In the present work, we show that taking the localized
and sparse nature of influence into account can also strongly improve RL algorithms.

Detecting causal influence, informally, means deciding whether changing a causal variable would
have an impact on another variable. This involves causal discovery, that is, finding the existence
of arrows in the causal graph [10]. While the task of causal discovery is unidentifiable in general
[11], there are assumptions which permit discovery [12], in particular in the time series setting we
are concerned with [13]. Even if the existence of an arrow is established, the problem remains of
quantifying its causal impact, for which various measures such as transfer entropy or information
flow have been proposed [14–18]. We compare how our work relates to these measures in Sec. 4.1.

The intersection of RL and causality has been the subject of recent research [19–23]. Close to ours
is the work of Pitis et al. [24], who also use influence detection, albeit to create counterfactual data
that augments the training of RL agents. In Sec. 5, we find that our approach to action influence
detection performs better than their heuristic approach. Additionally, we demonstrate that influence
detection can also be used to help agents explore better. To this end, we use influence as a type of
intrinsic motivation. For exploration, various signals have been proposed, e.g. model surprise [25–
27], learning progress [27, 28], empowerment [29, 30], information gain [31–33], or predictive
information [34, 35]. Inspired by causality, Sontakke et al. [36] introduce an exploration signal that
leads agents to experiment with the environment to discover causal factors of variation. In concurrent
work, Zhao et al. [37] propose to use mutual information between the agent and the environment
state for exploration. As in our work, the agent is considered a separate entity from the environment.
However, their approach does not discriminate between individual situations the agent is in. Causal
influence is also related to the concept of contingency awareness from psychology [38], that is, the
knowledge that one’s actions can affect the environment. On Atari games, exploring through the lens
of contingency awareness has led to state-of-the-art results [39, 40].

3 Background

We are concerned with a Markov decision process 〈S, A, P, r, γ〉 consisting of state and action space,
transition distribution, reward function and discount factor.1 Most real world environments consist of
entities that behave mostly independently of each other. We model this by assuming a known state
space factorization S = S1 × . . . × SN , where each Si corresponds to the state of an entity.

1We use capital letters (e.g. X) to denote random variables, small letters to denote samples drawn from
particular distributions (e.g. x ∼ PX ), and caligraphy letters to denote graphs, sets and sample spaces (e.g.
x ∈ X ). We denote distributions with P and their densitites with p.
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Figure 1: Causal graphical model capturing the environment transition from state S to S′ by action
A, factorized into state components. (a): Viewed globally over all time steps, all components of the
state and the action can influence all state components at the next time step. (b, c): Given a situation
S = s, some influences may or may not not hold in the local causal graph GS=s. In this paper, our
aim is to detect which influence the action has on S′, i.e. the presence of the red arrows.

3.1 Causal Graphical Models

We can model the one-step transition dynamics at time step t using a causal graphical model
(CGM) [3, 10] over the set of random variables V = {S1, . . . , SN , A, S′

1, . . . , S
′
N}, consisting of a

directed graph G (see Fig. 1a) and a conditional distribution P (Vi | Pa(Vi)) for each node Vi ∈ V ,
where Pa(Vi) is the set of parents of Vi in the causal graph. We assume that the joint distribution PV
is Markovian with respect to the graph [3, Def. 6.21 (iii)], that is, its density exists and factorizes as

p
(
v1, . . . , v|V|

)
=

|V|∏

i=1

p(vi | Pa(Vi)). (1)

In a CGM, we can model a (stochastic) intervention do(Vi := q(vi | Pa(Vi))) on variable Vi by
replacing its conditional p(vi | Pa(Vi)) in Eq. 1 with the distribution q(vi | Pa(Vi)) [3]. Here, Vi

could e.g. be a state component Si, or the agent’s action A. Thus, whereas a probabilistic graphical
model represents a single distribution, a CGM represents a set of distributions [4].

The causal graph that we assume is shown in Fig. 1a. Within a time step, there are no edges, i.e.
no instantaneous effects, except for the action which is computed by the policy π(A | S). Between
time steps, the graph is fully connected. The reason is that whenever an interaction between two
components Si and Sj , however unlikely, is possible, it is necessary to include an arrow Si → S′

j (and
vice versa). Nevertheless, during most concrete time steps, there should be no interaction between
entities, reflecting the assumption that the state components represent independent entities in the
world. In particular, the agent’s “sphere of influence” (depicted in blue in Figs. 1b and 1c) is limited –
its action A can only sparsely affect other entities. Thus, in this paper, we are interested in inferring
the influence the action has in a specific state configuration S = s, that is, the local causal model in s.
Definition 1. Given a CGM with distribution PV and graph G, we define the local CGM induced by
observing X = x with X ⊂ V to be the CGM with joint distribution PV|X=x and the graph GX=x

resulting from removing edges from G until PV|X=x is causally minimal with respect to the graph.

Causal minimality tells us that each edge X → Y in the graph must be “active”, in the sense that Y
is conditionally dependent on X given all other parents of Y [3, Prop. 6.36].

3.2 The Cause of an Effect

When is an agent’s action A = a the cause of an outcome B = b? Answering this question precisely
is surprisingly non-trivial and is studied under the name of actual causation [10, 41]. Humans would
answer by contrasting the actual outcome to some normative world in which A = a did not happen,
i.e. they would ask the counterfactual question “What would have happened normally to B without
A = a?” [41]. Algorithmitizing this approach poses certain problems. First, it requires a “normal”
outcome which can be difficult to compute as it depends on the behavior of the different actors in

3
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the world. Second, it requires to actually observe the world’s state without the agents interference.
Such a “no influence” action may not be available for every agent. Instead, we are inspired by an
alternative approach, the so-called “but-for” test: “B = b would not have happened but for A = a.”
In other words, A = a was a necessary condition for B = b to occur, and under a different value
for A, B would have had a different value as well. This matches well with an algorithmic view on
causation: A is a cause of B if the value of A is required to determine the value of B [42].

The but-for test yields potentially counterintuitive assessments. Consider a robotic arm close to an
object but performing an action that moves it away from the object. Then this action is considered a
cause for the position of the object in this step, as an alternative action touching the object would
have led to a different outcome. Algorithmically, knowing the action is required to determine what
happens to the object – all actions are considered to be a cause in this situation. Importantly, this
implies that we cannot differentiate whether individual actions are causes or not, but can only identify
whether or not the agent has causal influence on other entities in the current state.

4 Causal Influence Detection

As the previous discussion showed, having causal influence is dependent on the situation the agent
is in, rather than the chosen actions. We characterize this as the agent being in control, analogous
to similar notions in control theory [43]. Formally, using the causal model introduced in Sec. 3, we
define the agent to be in control of S′

j in state S = s if there is an edge A → S′
j in the local causal

graph GS=s under all interventions do(A := π(a|s)) with π having full support. The following
proposition states when such an edge exists (proofs in Suppl. A.1).

Proposition 1. Let GS=s be the graph of the local CGM induced by S = s. There is an edge A → S′
j

in GS=s under the intervention do(A := π(a|s)) if and only if S′
j 6⊥⊥ A | S = s.

To detect when the agent is in control, we can intervene with a policy. The following proposition
gives conditions under which conclusions drawn from one policy generalize to many policies.

Proposition 2. If there is an intervention do(A := π(a|s)) under which S′
j 6⊥⊥ A | S = s, this depen-

dence holds under all interventions with full support, and the agent is in control of S′
j in s. If there

is an intervention do(A := π(a|s)) with π having full support under which S′
j ⊥⊥ A | S = s, this

independence holds under all possible interventions and the agent is not in control of S′
j in s.

4.1 Measuring Causal Action Influence

Our goal is to find a state-dependent quantity that measures whether the agent is in control of S′
j .

As Prop. 1 tells us, control (or its absence) is linked to the independence S′
j ⊥⊥ A | S = s. A

well-known measure of dependence is the conditional mutual information (CMI) [44] which is zero
for independence. We thus propose to use (pointwise) CMI as a measure of causal action influence
(CAI) that can be thresholded to get a classification of control (see Suppl. A.2 for a derivation):

Cj(s) := I(S′
j ;A | S = s) = Ea∼π

[
DKL

(
PS′

j |s,a
∥∥∥ PS′

j |s
)]

. (2)

We want this measure to be independent of the particular policy used in the joint distribution
P (S, A, S′). This is because we might not be able to sample from or evaluate this policy (e.g. in
off-policy RL, the data stems from a mixture of different policies). Fortunately, Prop. 2 shows that to
detect control, it is sufficient to demonstrate (in-)dependence for a single policy with full support.
Thus, we can choose a uniform distribution over the action space as the policy: π(A) := U(A).

Let us discuss how CAI relates to previously suggested measures of (causal) influence. Transfer
entropy [14] is a non-linear extension of Granger causality [45] quantifying causal influence in time
series under certain conditions. CAI is similar to a one-step, local transfer entropy [17] with the
difference that CAI conditions on the full state S. Janzing et al. [18] put forward a measure of
causal strength fulfilling several natural criteria that other measures, including transfer entropy, fail to
satisfy. In Suppl. A.3, we show that CAI is a pointwise version of Janzing et al.’s causal strength, for
policies not conditional on the state S (adding further justification for the choice of a uniform random
policy). Furthermore, we can relate CAI to notions of controllability [43]. Decomposing Cj(s) as
H(S′

j | s) − H(S′
j | A, s), where H denotes the conditional entropy [44], we can interpret CAI
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as quantifiying the degree to which S′
j can be controlled in s, accounting for the system’s intrinsic

uncertainty that cannot be reduced by the action.

In the context of RL, empowerment [29, 30, 46] is a well-known quantity used for intrinsically-
motivated exploration that leads agents to states of maximal influence over the environment. Em-
powerment, for a state s, is defined as the channel capacity between action and a future state, which
coincides with maxπ C(s) for one-step empowerment. CAI can thus be seen as a non-trivial lower
bound of empowerment that is easier to compute. However, CAI differs from empowerment in that it
does not treat the state space as monolithic and is specific to an entity. In Sec. 6.1, we demonstrate
that an RL agent maximizing CAI quickly achieves control over its environment.

4.2 Learning to Detect Control

Estimating CMI is a hard problem on many levels: it involves computing high dimensional integrals,
representing complicated distributions and having access to limited data; strictly speaking, each
conditioning point s is seen only once in continuous spaces. In practice, one thus has to resort
to an approximation. Non-parametric estimators based on nearest neighbors [47, 48] or kernels
methods [49] are known to not scale well to higher dimensions [50]. Instead, we approach the
problem by learning neural network models with suitable simplifying assumptions.

Expanding the KL divergence in Eq. 2, we can write CAI as

Cj(s) = I(S′
j ;A | S = s) = EA|sES′

j |s,a

[
log

p(s′j | s, a)∫
p(s′j | s, a)π(a)da

]
(3)

To compute this term, we estimate the transition distribution p(s′j | s, a) from data. We then
approximate the outer expectation and the transition marginal p(s′j | s) by sampling K actions from
the policy π. This gives us the estimator

Ĉj(s) =
1

K

K∑

i=1

[
DKL

(
p(s′j | s, a(i))

∥∥∥ 1

K

K∑

k=1

p(s′j | s, a(k))

)]
, (4)

with {a(1), . . . , a(K)} iid∼ π. Here, we replaced the infinite mixture p(s′j | s) with a finite mixture,
p(s′j | s) ≈ 1

K

∑K
i=1 p

(
s′j | s, a(i)

)
, and used Monte-Carlo to approximate the expectation. Poole

et al. [51] show that this estimator is a lower bound converging to the true mutual information
I(S′

j ;A | S = s) as K increases (assuming, however, the true density p(s′j | s, a)).

To compute the KL divergence itself, we make the simplifying assumption that the transition dis-
tribution p(s′j | s, a) is normally distributed given the action, which is reasonable in the robotics
environment we are targeting. This allows us to estimate the KL without expensive MC sampling
by using an approximation for mixtures of Gaussians from Durrieu et al. [52]. We detail the exact
formula we use in Suppl. A.4.

With the normality assumption, the density itself can be learned using a probabilistic neural
network and simple maximum likelihood estimation. That is, we parametrize p(s′j | s, a) as
N (s′j ;µθ(s, a), σ

2
θ(s, a)), where µθ, σ

2
θ are the outputs of a neural network fθ(s, a). We find the

parameters θ by minimizing the negative log-likelihood over samples D = {(s(i), a(i), s′(i))}Ni=1
collected by some policy (the univariate case shown here also extends to the multivariate case):

θ∗ = argmin
θ

1

N

N∑

i=1

(
s
′(i)
j − µθ

(
s(i), a(i)

))2

2σ2
θ

(
s(i), a(i)

) +
1

2
log σ2

θ

(
s(i), a(i)

)
. (5)

There are some intricacies regarding the policy that collects the data for model training and the
sampling policy π that is used to compute CAI. First of all, the two policies need to have overlapping
support to avoid evaluating the model under actions never seen during training. Furthermore, if
the data policy is different from the sampling policy π, the model is biased to some degree. This
suggests to use π for collecting the data; however, as we use a random policy, this will not result in
interesting data in most environments. The bias can be reduced by sampling actions from π during
data collection with some probability and only train on those. In practice, however, we find to obtain
better performing models by training on all data despite potentially being biased.

5
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Figure 2: Causal influence detection performance. (a, b) ROC curves on 1DSLIDE and FETCH-
PICKANDPLACE environments. (c) Average precision for FETCHPICKANDPLACE depending on
added state noise. Noise level is given as percentage of one standard deviation over the dataset.

Table 1: Results for evaluating causal influence detection on different environments. We measure
area under the ROC curve (AUC), average precision (AP), and the best achievable F-score (F1).

1DSLIDE FETCHPICKANDPLACE

AUC AP F1 AUC AP F1

CAI (ours) 1.00 ± 0.00 0.98 ± 0.00 0.95 ± 0.01 0.97 ± 0.01 0.96 ± 0.00 0.89 ± 0.00
Entropy 0.96 ± 0.00 0.47 ± 0.01 0.50 ± 0.01 0.84 ± 0.00 0.73 ± 0.00 0.78 ± 0.00

Attention [24] 0.42 ± 0.31 0.13 ± 0.14 0.18 ± 0.17 0.46 ± 0.06 0.44 ± 0.04 0.62 ± 0.00
Contacts 0.89 0.78 0.88 0.79 0.77 0.73

5 Empirical Evaluation of Causal Influence Detection

In this section, we evaluate the quality of our proposed causal influence detection approach in
relevant environments. As a simple test case, we designed an environment (1DSLIDE) in which
the agent must slide an object to a goal location by colliding with it. Furthermore, we test on the
FETCHPICKANDPLACE environment from OpenAI Gym [53], in its original setting and when adding
Gaussian noise to the observations to simulate more real-world conditions. In both environments, the
target variables of interest are the coordinates of the object. Note that we need the true causal graph at
each time step for the evaluation. For 1DSLIDE, we derive this information from the simulation. For
the pick and place environment with its non-trivial dynamics, we resort to a heuristic of the possible
movement range of the robotic arm in one step. Detailed information about the setup is provided in
Suppls. B and E.

For our method, we use CAI estimated according to Eq. 4 (with K = 64) as a classification score that
is thresholded to gain a binary decision. We compare with a recently proposed method [24] that uses
the attention weights of a Transformer model [54] to model influence. Moreover, we compare with
an Entropy baseline that uses H(S′

j | s) as a score and a Contact baseline based on binary contact
information from the simulator. We show the test results over 5 random seeds in Table 1 and Fig. 2.
We observe that CAI is able to reliably detect causal influence and no other baseline is able to do
so. When increasing the observation noise, the performance drops gracefully for CAI as shown in
Fig. 2c. Suppl. C contains more experimental results, including a visualization of CAI’s behavior.

6 Improving Efficiency in Reinforcement Learning

Having established the efficacy of our causal action influence (CAI) measure, we now develop several
approaches to use it to improve RL algorithms.We will empirically verify the following claims in
robotic manipulation environments: CAI improves sample efficiency and performance by (i) better
state exploration through an exploration bonus, (ii) causal action exploration, and (iii) prioritizing
experiences with causal influence during training.

We consider the environments FETCHPUSH, FETCHPICKANDPLACE from OpenAI Gym [55], and
FETCHROTTABLE which is our modification containing a rotating table (explained in Suppl. B.3).
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Figure 3: Intrinsically motivated learning on
FETCHPICKANDPLACE. The reward is only
rCAI measured on the object coordinates.
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mance in FETCHPICKANDPLACE. Sensitivity
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These environments are goal-conditioned RL tasks with sparse rewards, meaning that each episode,
a new goal is provided and the agent only receives a distinct reward upon reaching it. We use
DDPG [56] with hindsight experience replay (HER) [57] as the base RL algorithm, a combination
that achieves state-of-the-art results in these environment. The influence detection model is trained
online on the data collected from an RL agent learning to solve its task. Since our measure Cj

requires an entity of interest, we choose the coordinates of the object (as Sj). In all experiments, we
report the mean success rate with standard deviation over 10 random seeds. More information about
the experimental settings can be found in Suppl. F.

6.1 Intrinsic Motivation to Seek Influence

Causal Action Influence as Reward Bonus. We hypothesize that it is useful for an agent to be
intrinsically motivated to gain control over its environment. We test this hypothesis by letting the
agent maximize the causal influence it has over entities of interest. This can be achieved by using
our influence measure as a reward signal. The reward signal can be used on its own, as an intrinsic
motivation-type objective, or in conjunction with a task-specific reward as an exploration bonus. In
the former case, we expect the agent to discover useful behaviors that can help it master task-oriented
skills afterwards; in the latter case, we expect learning efficiency to improve, especially in sparse
extrinsic reward scenarios. Concretely, for a state s, we define the bonus as rCAI(s) = Cj(s), and
the total reward as r(s) = rtask(s) + λbonus rCAI(s), where rtask(s) is the task reward, and λbonus

is a hyperparameter.

Experiment on Intrinsically Motivated Learning. We first test the behavior of the agent in the
absence of any task-specific reward on the FETCHPICKANDPLACE environment. Interestingly, the
agent learned to grasp, lift, and hold the object in the air already after 2000 episodes, as shown in
Fig. 3. The results demonstrate that encouraging causal control over the environment is well suited to
prepare the agent for further tasks it might have to solve.

Impact of CAI Reward Bonus. Second, we are interested in the impact of adding an exploration
bonus. In Fig. 4, we present results on the FETCHPICKANDPLACE environment when varying the
reward scale λbonus. Naturally, the exploration bonus needs to be selected in the appropriate scale as a
value too high will make it dominate the task reward. If selected correctly, the sample efficiency is
improved drastically; for example, we find that the agent reaches a success rate of 60% four-times
faster than the baseline (DDPG+HER) without any bonus (λbonus = 0).

6.2 Actively Exploring Actions with Causal Influence

Following Actions with the Most Causal Influence. Exploration via bonus rewards favors the
re-visitation of already seen states. An alternative approach to exploration uses pro-active planning to
choose exploratory actions. In our case, we can make use of our learned influence estimator to pick
actions which we expect will have the largest causal effect on the agent’s surroundings. From a causal
viewpoint, the resulting agent can be seen as an experimenter that performs planned interventions in
the environment to verify its beliefs. Should the actual outcome differ from the expected outcome,
subsequent model updates can integrate the new data to self-correct the causal influence estimator.
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Concretely, given the agent being in state s, we choose the action that has the largest contribution to
the empirical mean in Eq. 4:

a∗ = argmax
a∈{a(1),...,a(K)}

DKL

(
p(s′j | s, a)

∥∥ 1

K

K∑

k=1

p(s′j | s, a(k))

)
, (6)

with {a(1), . . . , a(K)} iid∼ π. Intuitively, the selected action will be the one which results in maximal
deviation from the expected outcome under all actions. For states s where the the agent is not in
control, i.e. Cj(s) ≈ 0, the action selection is uniform at random.

Active Exploration in Practice. Can active exploration replace ε-greedy exploration? To gain
insights, we study the impact of the fraction of actively chosen exploration actions. For every
exploratory action (ε is 30% in our experiments), we choose an action according to Eq. 6 the specified
fraction of the time, and otherwise a random action. Figure 5 shows that any amount of active
exploration improves over simple random exploration. Active causal action exploration can improve
the sample efficiency roughly by a factor of two.

Combined CAI Exploration. We also present the combination of reward bonus and active ex-
ploration and compare our method with VIME, another exploration scheme based on information-
theoretic measures [33]. In contrast to our method, VIME maximizes the information gain about
the state transition dynamics. Further, we compare to ensemble disagreement [58], which in effect
minimizes epistemic uncertainty about the transition dynamics. We compare different variants of
VIME and ensemble disagreement in Suppl. D, and display only their best versions here. Figure 6
quantifies the superiority of all CAI variants (with ensemble disagreement as a viable alternative) and
shows that combining the two exploration strategies compounds to increase sample efficiency even
further. In the figure, CAI uses 100% active exploration and λbonus = 0.2 as the bonus reward scale.

6.3 Causal Influence-based Experience Replay

Prioritizing According to Causal Influence. We will now propose another method using CAI,
namely to inform the choice of samples replayed to the agent during off-policy training. Typically,
past states are sampled uniformly for learning. Intuitively, focusing on those states where the agent
has control over the object of interest (as measured by CAI) should improve the sample efficiency.
We can implement this idea using a prioritization scheme that samples past episodes in which the
agent had more influence more frequently. Concretely, we define the probability P (i) of sampling
any state from episode i (of M episodes) in the replay buffer as

P (i) =
p(i)

∑M
i=1 p(i)

· 1

T
, with p(i) =

(
M + 1 − rank

i

T∑

t=1

Cj
(
s(t)
))−1

. (7, 8)

where T is the episode length, and p(i) is the priority of episode i. The priority of an episode i is
based on the (inverse) rank of the episode (ranki) when sorting all M episodes according to their total
influence (i.e. sum of state influences). We call this causal action influence prioritization (CAI-P).
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Figure 7: Prioritizing experience replay in different manipulation environments. Comparison of
causal action influence prioritization (CAI-P) against baselines: the energy-based method (EBP) [60]
with privileged information, prioritized experience replay (PER) [59], and HER without prioritization.

This scheme is similar to Prioritized Experience Replay [59], with two differences: instead of
using the TD error for prioritization, we use the causal influence measure. Furthermore, instead of
prioritizing individual states, we prioritize episodes and sample states uniformly within episodes.
This is because the information about the return that can be achieved from an influence state still
needs to be propagated back to non-influenced states by TD updates, which requires sampling them.

Figure 8: FETCH
ROTTABLE. The
table rotates peri-
odically.

Influence-Based Prioritization in Manipulation Tasks. We compare our
influence-based prioritization (CAI-P) against no prioritization in hindsight
experience replay (HER) (a strong baseline for multi-goal RL), and two other
prioritization schemes: prioritized experience replay (PER) [59] and energy-
based prioritization (EBP) [60]. Especially EBP is a strong method for the
environments we are considering as it uses privileged knowledge of the underly-
ing physics to replay episodes based on the amount of energy that is transferred
from agent to the object to manipulate. All prioritization variants are equipped
with HER as well. The FETCHROTTABLE environment, shown in Fig. 8, is an
interesting test bed as the object can move through the table rotation without the
control of the agent. The results, shown in Fig. 7, reveal that causal influence
prioritization can speed up learning drastically. Our method is on par or better
than the energy-based (oracle) method EBP and improves over PER by a factor
of 1.5–2.5 in learning speed (at 60% success rate). Finally, in Suppl. D, we
combine all our proposed improvements and show that FETCHPICKANDPLACE
can be solved up to 95% success rate in just 3000 episodes.

7 Discussion

In this work, we show how situation-dependent causal influence detection can help improve rein-
forcement learning agents. To this end, we derive a measure of local causal action influence (CAI)
and introduce a data-driven approach based on neural network models to estimate it. We showcase
using CAI as an exploration bonus, as a way to perform active action exploration, and to prioritize in
experience replay. Each of our applications yields strong improvements in sample efficiency. We
expect that there are further ways to use our causal measure in RL, e.g. for credit assignment.

Our work has several limitations. First, we assume full observability of the state, which simplifies the
causal inference problem as there is no confounding between an agent’s action and its effect. Under
partial observability, our approach could still be applicable using latent variable models [61]. Second,
we require an available factorization of the state into causal variables. The problem of automatically
learning causal variables from high-dimensional data is open [4] and our method would likely benefit
from advances in this field. Third, the accurate estimation of our measure relies on a correct model.
We found that deep networks can struggle at times to pick up the causal relationship between actions
and entities. How to design models with appropriate inductive biases for cause-effect inference is an
open question [3, 4, 62].

An intriguing future direction is to extend our work to influence detection between entities, a
prerequisite for identifying multi-step influences of the agent on the environment. Being able to
model such indirect interventions would bring us closer to “artificial scientists” – agents that can
perform planned experiments to reveal the latent causal structure of the world.
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ABSTRACT

Humans naturally decompose their environment into entities at the appropriate
level of abstraction to act in the world. Allowing machine learning algorithms to
derive this decomposition in an unsupervised way has become an important line
of research. However, current methods are restricted to simulated data or require
additional information in the form of motion or depth in order to successfully
discover objects. In this work, we overcome this limitation by showing that recon-
structing features from models trained in a self-supervised manner is a sufficient
training signal for object-centric representations to arise in a fully unsupervised
way. Our approach, DINOSAUR, significantly out-performs existing image-based
object-centric learning models on simulated data and is the first unsupervised
object-centric model that scales to real-world datasets such as COCO and PASCAL
VOC. DINOSAUR is conceptually simple and shows competitive performance
compared to more involved pipelines from the computer vision literature.

1 INTRODUCTION

Object-centric representation learning has the potential to greatly improve generalization of computer
vision models, as it aligns with causal mechanisms that govern our physical world (Schölkopf
et al., 2021; Dittadi et al., 2022). Due to the compositional nature of scenes (Greff et al., 2020),
object-centric representations can be more robust towards out-of-distribution data (Dittadi et al.,
2022) and support more complex tasks like reasoning (Assouel et al., 2022; Yang et al., 2020) and
control (Zadaianchuk et al., 2020; Mambelli et al., 2022; Biza et al., 2022). They are in line with
studies on the characterization of human perception and reasoning (Kahneman et al., 1992; Spelke
& Kinzler, 2007). Inspired by the seemingly unlimited availability of unlabeled image data, this
work focuses on unsupervised object-centric representation learning.

Most unsupervised object-centric learning approaches rely on a reconstruction objective, which strug-
gles with the variation in real-world data. Existing approaches typically implement “slot”-structured
bottlenecks which transform the input into a set of object representations and a corresponding decod-
ing scheme which reconstructs the input data. The emergence of object representations is primed
by the set bottleneck of models like Slot Attention (Locatello et al., 2020) that groups together
independently repeating visual patterns across a fixed data set. While this approach was successful
on simple synthetic datasets, where low-level features like color help to indicate the assignment of
pixels to objects, those methods have failed to scale to complex synthetic or real-world data (Eslami
et al., 2016; Greff et al., 2019; Burgess et al., 2019; Locatello et al., 2020; Engelcke et al., 2021).

To overcome these limitations, previous work has used additional information sources, e.g. motion or
depth (Kipf et al., 2022; Elsayed et al., 2022). Like color, motion and depth act as grouping signals
when objects move or stand-out in 3D-space. Unfortunately, this precludes training on most real-world
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image datasets, which do not include depth annotations or motion cues. Following deep learning’s
mantra of scale, another appealing approach could be to increase the capacity of the Slot Attention
architecture. However, our experiments (Sec. 4.3) suggest that scale alone is not sufficient to close
the gap between synthetic and real-world datasets. We thus conjecture that the image reconstruction
objective on its own does not provide sufficient inductive bias to give rise to object groupings
when objects have complex appearance. But instead of relying on auxiliary external signals, we
introduce an additional inductive bias by reconstructing features that have a high level of homogeneity
within objects. Such features can easily be obtained via recent self-supervised learning techniques
like DINO (Caron et al., 2021). We show that combining such a feature reconstruction loss with
existing grouping modules such as Slot Attention leads to models that significantly out-perform other
image-based object-centric methods and bridge the gap to real-world object-centric representation
learning. The proposed architecture DINOSAUR (DINO and Slot Attention Using Real-world data)
is conceptually simple and highly competitive with existing unsupervised segmentation and object
discovery methods in computer vision.

2 RELATED WORK

Our research follows a body of work studying the emergence of object-centric representations in
neural networks trained end-to-end with certain architectural biases (Eslami et al., 2016; Burgess
et al., 2019; Greff et al., 2019; Lin et al., 2020; Engelcke et al., 2020; Locatello et al., 2020; Singh
et al., 2022a). These approaches implicitly define objects as repeating patterns across a closed-world
dataset that can be discovered e.g. via semantic discrete- or set-valued bottlenecks. As the grouping
of low-level features into object entities is often somewhat arbitrary (it depends for example on the
scale and level of detail considered), recent work has explored additional information sources such as
video (Kosiorek et al., 2018; Jiang et al., 2020; Weis et al., 2021; Singh et al., 2022b; Traub et al.,
2023), optical flow (Kipf et al., 2022; Elsayed et al., 2022; Bao et al., 2022), text descriptions of the
scene (Xu et al., 2022) or some form of object-location information (e.g. with bounding boxes) (Kipf
et al., 2022). In contrast, we completely avoid additional supervision by leveraging the implicit
inductive bias contained in the self-supervised features we reconstruct, which present a high level
of homogeneity within objects (Caron et al., 2021). This circumvents the scalability challenges
of previous works that rely on pixel similarity as opposed to perceptual similarity (Dosovitskiy &
Brox, 2016) and enables object discovery on real-world data without changing the existing grouping
modules. Our approach can be considered similar to SLATE (Singh et al., 2022a), but with the crucial
difference of reconstructing global features from a Vision Transformer (Dosovitskiy et al., 2021)
instead of local features from a VQ-VAE (van den Oord et al., 2017).

Challenging object-centric methods by scaling dataset complexity has been of recent interest: Karazija
et al. (2021) propose ClevrTex, a textured variant of the popular CLEVR dataset, and show that previ-
ous object-centric models perform mostly poorly on it. Greff et al. (2022) introduce the MOVi datasets
with rendered videos of highly realistic objects with complex shape and appearance. Arguably the
most advanced synthetic datasets to date, we find that current state-of-the-art models struggle with
them in the unsupervised setting. Finally, Yang & Yang (2022) show that existing image-based
object-centric methods catastrophically fail on real-world datasets such as COCO, likely because
they can not cope with the diversity of shapes and appearances presented by natural data. In contrast,
we demonstrate that our approach works well on both complex synthetic and real-world datasets.

In the computer vision literature, structuring natural scenes without any human annotations has also
enjoyed popularity, with tasks such as unsupervised semantic segmentation and object localization.
Those tasks are interesting for us because they constitute established real-world benchmarks related
to unsupervised object discovery, and we show that our method is also competitive on them. We refer
to App. A for a detailed discussion of prior research in these areas.

3 METHOD

Our approach essentially follows the usual autoencoder-like design of object-centric models and is
summarized in Figure 1: a first module extracts features from the input data (the encoder), a second
module groups them into a set of latent vectors called slots, and a final one (the decoder) tries to
reconstruct some target signal from the latents. However, our method crucially differs from other
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Figure 1: Overview of the proposed architecture DINOSAUR. The image is processed into a set of
patch features h by a frozen DINO ViT model (pre-trained using the self-supervised DINO method)
and encoded via either a ResNet or the DINO ViT. Slot attention groups the encoded features
into a set of slots. The model is trained by reconstructing the DINO features from the slots, either
independently per-slot (MLP decoder) or jointly via auto regression (Transformer decoder).

approaches in that instead of reconstructing the original inputs, the decoder is tasked to reconstruct
features from self-supervised pre-training. We start with the discussion of this training signal in
Sec. 3.1 and describe further architectural choices in Sec. 3.2.

3.1 FEATURE RECONSTRUCTION AS A TRAINING SIGNAL

Why are models based on image reconstruction like Slot Attention not successful beyond simpler
synthetic datasets? We hypothesize that reconstruction on the pixel level produces too weak of a
signal for object-centricness to emerge; the task focuses (at least initially) strongly on low-level
image features such as color statistics. This quickly decreases the reconstruction error, but the
resulting model does not discover objects beyond datasets where objects are mostly determined
by distinct object colors. Instead, if we had an (unsupervised) signal that required higher-level
semantic information to reconstruct, there would be pressure on the slots to efficiently encode this
information as well. Luckily, such signals can nowadays be easily obtained with self-supervised
learning algorithms, which have been successful in learning powerful representations for vision
tasks such as classification and object detection purely from images (Chen et al., 2020b; Grill et al.,
2020; He et al., 2022). Thus, given K slots z ∈ RK×Dslots , the model is trained to reconstruct
self-supervised features h ∈ RN×Dfeat , by minimizing the following loss:

Lrec = ∥y − h∥2, y = Decoder(z). (1)

This loss can be viewed as a form of student-teacher knowledge distillation (Hinton et al., 2015), where
the student has a particular form of bottleneck that condenses the high-dimensional, unstructured
information contained in the teacher features into a lower-dimensional, structured form. We can also
draw parallels between this loss and perceptual similarity losses for image generation (Dosovitskiy &
Brox, 2016), that is, the optimization takes place in a space more semantic than pixel space.

For pre-training, we utilize the ImageNet dataset (Deng et al., 2009). From the student-teacher
perspective, this means that the teacher additionally transports knowledge gained from a larger
image collection to the (smaller) datasets at hand. It is well-known that using large datasets for
pre-training can significantly improve performance, but to our knowledge, we are the first to exploit
such transfer learning for object-centric learning. In general, studying the role additional data can
play for object-centric learning is an interesting topic, but we leave that for future investigations.

Which self-supervised algorithm should we use? In our analysis (Sec. 4.3), we investigate several
recent ones (DINO (Caron et al., 2021), MoCo-v3 (Chen et al., 2021), MSN (Assran et al., 2022),
MAE (He et al., 2022)). Interestingly, we find that they all work reasonably well for the emergence of
real-world object grouping. In the following, we mainly apply the DINO method (Caron et al., 2021),
because of its good performance and accessibility in open source libraries (Wightman, 2019). We
experiment with features from ResNets (He et al., 2015) and Vision Transformers (ViTs) (Dosovitskiy
et al., 2021), and find that the latter yield significantly better results.
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3.2 AN ARCHITECTURE FOR REAL-WORLD OBJECT-CENTRIC LEARNING

Encoder Previous work has shown that powerful feature extractors help in scaling object-centric
methods to more complex data (Kipf et al., 2022). To this end, we experiment with two choices: a
ResNet-34 encoder with increased spatial resolution used by Kipf et al. (2022), and Vision Transform-
ers. Unfortunately, we were not able to optimize randomly initialized ViTs with our model, as training
collapsed. Instead, we found it sufficient to initialize the ViT using weights from self-supervised
pre-training, and keeping them fixed throughout training1. In terms of results, we find that the ResNet
and the pre-trained ViT encoder perform similarly. However, the model converges faster with the
pre-trained ViT, and it is also computationally more efficient: we can directly use the ViT outputs as
the target features h. Consequently, we mainly use the ViT encoder in the following.

Slot Attention Grouping The grouping stage of our model uses Slot Attention (Locatello et al.,
2020) to turn the set of encoder features into a set of K slot vectors z ∈ RK×Dslots . This follows an
iterative process where slots compete for input features using an attention mechanism, starting from
randomly sampled initial slots. We largely use the original Slot Attention formulation (including
GRU (Cho et al., 2014) and residual MLP modules), with one difference when using ViT features:
we do not add positional encodings on the ViT features before Slot Attention, as we found the ViT’s
initial position encodings to be sufficient to support spatial grouping of the features. Additionally, we
add a small one-hidden-layer MLP that transforms each encoder feature before Slot Attention.

Feature Decoding As we apply feature instead of image reconstruction as the training objective, we
need a decoder architecture suitable for this purpose. To this end, we consider two different designs:
a MLP decoder that is applied independently to each slot, and a Transformer decoder (Vaswani et al.,
2017) that autoregressively reconstructs the set of features. We describe both options in turn.

The MLP decoder follows a similar design as the commonly used spatial broadcast decoder (Watters
et al., 2019). Each slot is first broadcasted to the number of patches, resulting in a set of N tokens
for each slot. To make the spatial positions of the tokens identifiable, a learned positional encoding
is added to each token. The tokens for each slot are then processed token-wise by the same MLP,
producing the reconstruction ŷk for slot k, plus an alpha map αk that signifies where the slot is active.
The final reconstruction y ∈ RN×Dfeat is formed by taking a weighted sum across the slots:

y =

K∑

k=1

ŷk ⊙ mk, mk = softmax
k

αk (2)

The advantage of this simple design is its computational efficiency: as the MLP is shared across slots
and positions, decoding is heavily parallelizable.

The Transformer decoder (Vaswani et al., 2017) reconstructs features y jointly for all slots in an
autoregressive manner. In particular, the feature at position n is generated while conditioning on
the set of previously generated features y<n and the set of slots z: yn = Decoder(y<n; z). This
decoder design is more powerful than the MLP decoder as it can maintain global consistency across
the reconstruction, which might be needed on more complex data. However, we found several
drawbacks of the Transformer decoder: it does not work with training ResNet encoders from scratch,
higher resolution target features (see App. D.5), and requires more effort to tune (see App. D.4).
Thus, we recommend using the MLP decoder as the first choice when applying DINOSAUR to a new
dataset. We note that Transformer decoders have also been previously explored by SLATE (Singh
et al., 2022a) and STEVE (Singh et al., 2022b), but to reconstruct the discrete token map of a
VQ-VAE (van den Oord et al., 2017).

Evaluation Object-centric methods are commonly evaluated by inspecting masks associated with
each slots. Previous approaches reconstructing to image-level typically use the decoder’s alpha mask
for this purpose; for the MLP decoder, we also make use of this option. The Transformer decoder does
not produce an alpha mask. Instead, we have two options: the attention masks of Slot Attention (used
by SLATE), or the decoder’s attention mask over the slots. We found that the latter performed better
(see Sec. D.6), and we use it throughout. As the masks from feature reconstruction are of low res-
olution, we bilinearly resize them to image resolution before comparing them to ground truth masks.

1Another option would be further finetuning the pre-trained ViT, but we found that this leads to slots that do
not focus on objects. Combining ViT training with Slot Attention might require very careful training recipes.
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4 EXPERIMENTS

Broadly, we pursue two goals with our experiments: 1) demonstrating that our approach significantly
extends the capabilities of object-centric models towards real-world applicability (Sec. 4.1), and 2)
showing that our approach is competitive with more complex methods from the computer vision
literature (Sec. 4.2). Additionally, we ablate key model components to find what is driving the success
of our method (Sec. 4.3). The main task we consider in this work is object discovery, that is, finding
pixel masks for all object instances in an image.

Datasets We consider two synthetic and two real-world image datasets. As synthetic datasets,
we use the MOVi datasets (Greff et al., 2022), recently introduced as challenging testbeds for
object-centric methods. In particular, we use the variants MOVi-C and MOVi-E, which contain
around 1 000 realistic 3D-scanned objects on HD backgrounds. For our purposes, the main difference
is that MOVi-C contains 3–10, and MOVi-E 11–23 objects per scene. Note that we treat the
video-based MOVi datasets as image datasets by randomly sampling frames. As real-world datasets,
we use PASCAL VOC 2012 (Everingham et al., 2012) and MS COCO 2017 (Lin et al., 2014),
commonly used for object detection and segmentation. Whereas PASCAL VOC contains many
images with only a single large object, COCO consists of images with at least two and often dozens of
objects. Both datasets represent a significant step-up in complexity to what object-centric models have
been tested on so far. In App. B.2, we also report preliminary results on the KITTI driving dataset.

Training Details We train DINOSAUR using the Adam optimizer (Kingma & Ba, 2015) with a
learning rate of 4·10−4, linear learning rate warm-up of 10 000 optimization steps and an exponentially
decaying learning rate schedule. Further, we clip the gradient norm at 1 in order to stabilize training
and train for 500k steps for the MOVI and COCO datasets and 250k steps for PASCAL VOC. The
models were trained on 8 NVIDIA V100 GPUs with a local batch size of 8, with 16-bit mixed
precision. For the experiments on synthetic data, we use a ViT with patch size 8 and the MLP decoder.
For the experiments on real-world data, we use a ViT with patch size 16 and the Transformer decoder.
We analyze the impact of different decoders in Sec. 4.3. The main results are averaged over 5 random
seeds; other experiments use 3 seeds. Further implementation details can be found in App. E.1.

4.1 COMPARISON TO OBJECT-CENTRIC LEARNING METHODS

Our goal in this section is two-fold: 1) demonstrating that previous object-centric methods fail to
produce meaningful results on real-world datasets and struggle even on synthetic datasets, and 2)
showcase how our approach of incorporating strong pre-trained models results in a large step forward
for object-centric models on both kinds of datasets.

Tasks We evaluate on the task object-centric models are most frequently tested on: object
discovery (Burgess et al., 2019), that is, producing a set of masks that cover the independent
objects appearing on an image. We also present preliminary results testing the quality of the learned
representations on the COCO dataset in App. B.3, though this is not the main focus of our work.

Metrics As common in the object-centric literature, we evaluate this task using foreground adjusted
rand index (FG-ARI), a metric measuring cluster similarity. Additionally, we compute a metric based
on intersection-over-union (IoU), the mean best overlap (mBO) (Pont-Tuset et al., 2017). mBO is
computed by assigning each ground truth mask the predicted mask with the largest overlap, and
then averaging the IoUs of the assigned mask pairs. In contrast to ARI, mBO takes background
pixels into account, thus also measuring how close masks fit to objects. On datasets where objects
have a semantic label attached (e.g. on COCO), we can evaluate this metric with instance-level (i.e.
object) masks, and semantic-level (i.e. class) masks. This allows us to find model preferences towards
instance- or semantic-level groupings.

Baselines We compare our approach to a more powerful version of Slot Attention (Locatello et al.,
2020) based on a ResNet encoder that has been shown to scale to more complex data (Elsayed et al.,
2022). Further, we compare with SLATE (Singh et al., 2022a), a recent object-centric model that
trains a discrete VQ-VAE (van den Oord et al., 2017) as the feature extractor and a Transformer as
the decoder. We refer to App. E.2 for details about baseline configurations.

As it can be hard to gauge how well object-centric methods perform on new datasets solely from
metrics, we add one trivial baseline: dividing the image into a set of regular blocks. These block masks
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Figure 2: Example results on the synthetic MOVi-C and MOVi-E datasets (Greff et al., 2022).
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Figure 3: Object Discovery on synthetic datasets (mean ± standard dev., 5 seeds) with 11 (MOVi-C)
and 24 slots (MOVi-E). We report foreground adjusted rand index (FG-ARI) and mean best overlap
(mBO). DINOSAUR uses a ViT-B/8 encoder with the MLP decoder.

(see Fig. 18) thus show the performance of a method that only follows a geometric strategy to group
the data, completely ignoring the semantic aspects of the image. Familiar to practitioners, this is a
common failure mode of object-centric methods, particularly of Slot Attention. Last, we apply the K-
Means algorithm on the DINO features and use the resulting clustering to generate spatial masks. This
baseline shows to which extent objects are already trivially extractable from self-supervised features.

Results on Synthetic Datasets (Fig. 2 and Fig. 3) Both Slot Attention and SLATE struggle on the
challenging MOVi datasets, performing similar to the naive block masks and worse than the K-Means
baselines. Our model achieves good performance on both MOVI-C and MOVi-E. In App. B.1, we
also find that our method compares favorably to video methods that can use temporal information
and/or weak supervision (Elsayed et al., 2022; Singh et al., 2022b)

Results on Real-World Datasets (Fig. 4 and Fig. 5) As expected, Slot Attention can not handle the
increased complexity of real-world data and degrades to non-semantic grouping patterns. For SLATE,
semantic grouping begins to emerge (e.g. of backgrounds), but not consistently; it still performs worse
than the K-Means baseline. Note that it was necessary to early-stop SLATE’s training as performance
would degrade to Slot Attention’s level with more training. In contrast, DINOSAUR captures a variety
of objects of different size, appearance and shape. To the best of our knowledge, we are the first to
show a successful version of an object-centric model on unconstrained real-world images in the fully
unsupervised setting. Our result represents a significant step-up in complexity of what object-centric
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Figure 4: Example reults on COCO 2017, using 7 slots. Additional examples are provided in App. G.
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Figure 5: Object Discovery on real-world datasets (mean ± standard dev., 5 seeds) with 6 (PASCAL)
and 7 slots (COCO). We report foreground adjusted rand index (FG-ARI) and instance/class mean
best overlap (mBOi/mBOc). DINOSAUR uses a ViT-B/16 encoder with the Transformer decoder.

methods can handle. Note that the examples in Fig. 4 show mostly semantic rather than instance
grouping emerging: this is a by-product of using the Transformer decoder. In contrast, the MLP
decoder is biased towards instance grouping, an effect which we analyze in Sec. 4.3.

4.2 COMPARISON TO COMPUTER VISION METHODS

In this section, our goal is to show that our method fares well on two tasks closely related to object
discovery from the computer vision literature: unsupervised object localization and segmentation.
Being competitive on these benchmarks is difficult, as there has been a stream of methods with
quickly improving results recently (Wang et al., 2022; Hamilton et al., 2022; Zadaianchuk et al.,
2023). Due to space issues, we defer most of the discussion to App. C.

Tasks, Metrics and Baselines We briefly introduce the two tasks: in object localization2, the
goal is to find object location and size by predicting bounding boxes, and in unsupervised semantic
segmentation the goal is to separate the image into semantically consistent labeled regions. For the
latter, we consider two variations: object segmentation, where only foreground objects should get
segmented and labeled, and scene decomposition, where each pixel of the image has to be labeled
with a semantic class. We evaluate object localization in terms the fraction of images on which at least
one object was correctly localized (CorLoc) (Vo et al., 2020), and semantic segmentation in terms
of mean intersection-over-union over classes (mIoU). For semantic segmentation, we obtain class

2This task is often called “object discovery” in the literature as well, but we term it “object localization” in
this work in order to avoid confusion with the task evaluated in the object-centric literature.
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Table 1: Representative comparisons on three tasks from the computer vision literature. We refer
to App. C for a detailed discussion including more datasets, baselines, and metrics. Here, we
compare with (a) DeepSpectral (Melas-Kyriazi et al., 2022) and TokenCut (Wang et al., 2022),
(b) MaskContrast (Van Gansbeke et al., 2021) and COMUS (Zadaianchuk et al., 2023), and (c)
SlotCon (Wen et al., 2022) and STEGO (Hamilton et al., 2022). DINOSAUR uses a ViT-B/16
encoder with the Transformer decoder (mean ± standard dev., 5 seeds).

(a) Unsup. Object Localization.

COCO-20k (CorLoc)
DeepSpectral 52.2
TokenCut 58.8

DINOSAUR 67.2 ±1.5

(b) Unsup. Object Segmentation.

PASCAL VOC 2012 (mIoU)
MaskContrast 35.0
COMUS 50.0

DINOSAUR 37.2 ±1.8

(c) Unsup. Scene Decomposition.

COCO-Stuff 27 (mIoU)
SlotCon 18.3
STEGO 26.8

DINOSAUR 24.0 ±0.9

labels by running K-Means clustering on features associated with each slot after training the model,
then assigning clusters to ground truth classes by maximizing IoU using Hungarian matching, similar
to Van Gansbeke et al. (2021) (see App. C for details). On each task, we compare with the current
state-of-the-art (Wang et al., 2022; Hamilton et al., 2022; Zadaianchuk et al., 2023), and a recent,
but competitive method (Van Gansbeke et al., 2021; Melas-Kyriazi et al., 2022; Wen et al., 2022).

Results (Table 1) For object localization, our method reaches comparable results to what has
been previously reported. For object segmentation, our method falls behind the state-of-the-art,
though it is still competitive with other recent work. Note that the best methods on this task employ
additional steps of training segmentation networks which improves results and allows them to run at
the original image resolution. In contrast, the masks we evaluate are only of size 14 × 14; we leave it
to future work to improve the resolution of the produced masks. For the task of scene decomposition,
DINOSAUR comes close to the current state-of-the-art. All in all, our method is competitive with
often more involved methods on these benchmarks, demonstrating a further step towards real-world
usefulness of object-centric methods.

4.3 ANALYSIS

In this section, we analyze different aspects of our approach: the importance of feature reconstruction,
the impact of the method for self-supervised pre-training, and the role of the decoder. Additional
experiments are included in App. D.

Insufficiency of Image Reconstruction We first test the hypothesis if a scaled-up Slot Attention
model trained with image reconstruction could lead to real-world object grouping. Our experiments
from Sec. 4.1 already show that a ResNet encoder is not sufficient. We additionally test a ViT-B/16
encoder under different training modes: training from scratch, frozen, or finetuning DINO pre-trained
weights. We find that training from scratch results in divergence of the training process, and that both
the frozen and finetuning setting fail to yield meaningful objects, resulting in striped mask patterns
(see Fig. 12). Thus, even when starting from features that are highly semantic, image reconstruction
does not give enough signal towards semantic grouping.

ResNet and Pre-Trained ViT Encoders Perform Similar Second, we analyze whether
pre-training the encoder plays a crucial role for our method. To do so, we compare ResNet34
encoders trained from scratch with pre-trained ViT encoders, and find that the performance is overall
similar (see Table 12). This also suggests that the feature reconstruction signal is the key component
in our approach that allows object-centricness to emerge on real-world data. We expand in App. D.2.

Choice of Self-Supervised Targets (Table 2) We now analyze the role of the self-supervised
pre-training algorithm. To this end, we train DINOSAUR with a ResNet34 encoder (from scratch)
on COCO, but reconstruct targets obtained from ViTs pre-trained with different methods: DINO,
MoCo-v3, MSN, and MAE. Remarkably, all self-supervised schemes perform well for the task
of object discovery (examples in Fig. 24). This demonstrates that self-supervised pre-training on
ImageNet translates into a useful, general bias for discovering objects.

Choice of Decoder (Table 3) We compare the choice of MLP vs. Transformer decoder for object
discovery. Both options use a ViT-B/16 encoder. Generally, we find that the MLP decoder is better on
ARI whereas the Transformer decoder is better on mBO. For MOVi-C, visual inspection (see Fig. 19)
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Table 2: Comparing self-supervised reconstruc-
tion targets produced by a ViT-B/16 on COCO
object discovery, with a ResNet34 encoder and
the MLP decoder.

Algorithm FG-ARI mBOi mBOc

DINO 40.9 ±0.2 27.9 ±0.0 31.1 ±0.1
MoCo-v3 40.4 ±0.6 28.1 ±0.2 31.1 ±0.1
MSN 40.7 ±0.3 27.6 ±0.1 30.7 ±0.1
MAE 37.7 ±0.1 28.1 ±0.1 31.7 ±0.0

Table 3: Comparing different decoders on object
discovery, with a ViT-B/16 encoder. We also list
mean squared reconstruction error (MSE).

Dataset Decoder ARI mBO(i,c) MSE

MOVi-C MLP 66.0 35.0 0.24
Transformer 55.7 42.4 0.14

PASCAL MLP 24.6 39.5 40.9 0.33
Transformer 24.8 44.0 51.2 0.17

COCO MLP 40.5 27.7 30.9 0.31
Transformer 34.1 31.6 39.7 0.16

5 10 15 20
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Figure 6: Sensitivity to number of slots on
COCO object discovery (see also App. D.3).
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Figure 7: MLP and Transformer decoder have
different biases in how they group objects.

shows that the Transformer tends to produce tighter masks and a cleaner background separation,
but uses excess slots to split objects. For PASCAL and COCO, what’s striking is the Transformer
decoders’ improvement of 9–10 class mBO. This reveals that the Transformer decoder is biased
towards grouping semantically related instances into the same slot, which we suggest stems from its
global view on the image, but also from the generally increased expressiveness of the architecture
(cf. the lower reconstruction loss). In contrast, the MLP decoder is able to separate instances better
(see Fig. 7 and also Fig. 23), which is reflected in the higher ARI scores. Researching how different
decoder designs affect semantic vs. instance-level grouping is an interesting avenue for future work.
In App. D.4 and App. D.5, we further study different decoder properties.

5 CONCLUSION

We presented the first image-based fully unsupervised approach for object-centric learning that
scales to real-world data. Our experiments demonstrate significant improvements on both simulated
and real-world data compared to previously suggested approaches and even achieve competitive
performance with more involved pipeline methods from the computer vision literature.

This work only takes a first step towards the goal of representing the world in terms of objects. As
such, some problems remain open. One issue concerns semantic vs. instance-level grouping. As
evident from the presented examples, our approach covers a mix of both, with semantically related
objects sometimes being grouped into a single slot. While we found the type of decoder to influence
this behavior, more fine-grained control is needed. A related issue is the detail of the decomposition,
e.g. whether objects are split into parts or stay whole. We found this to be dependent on the number
of slots, with a fixed number often being inappropriate (see Fig. 6 and App. D.3). How models can
dynamically choose a suitable level of detail while staying unsupervised but controllable will be an
important challenge to fully master the ambiguities the real world inherently presents.

In this work, we mainly focused on object discovery. Future work could further examine the properties
of the learned slot representations, for instance robustness to distribution shifts, generalization and
usefulness for downstream tasks. Another interesting direction is how our approach can be combined
with image generation to build flexible and compositional generative models of natural data.

9

154 APPENDIX C: BRIDGING THE GAP TO REAL-WORLD OBJECT-CENTRIC LEARNING



Published as a conference paper at ICLR 2023

REPRODUCIBILITY STATEMENT

Appendix E.1 contains detailed information about the DINOSAUR architecture and all hyperparamers
used for all experiments. Appendix E.2 contains details about how baselines were trained. Appendix F
contains information about task evaluation and datasets. All datasets used in this work (MOVi,
PASCAL VOC 2012, COCO, KITTI) are public and can be obtained on their respective web
pages. Source code will be made available under https://github.com/amazon-science/
object-centric-learning-framework.
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Abstract

Unsupervised video-based object-centric learning is a promising avenue to learn
structured representations from large, unlabeled video collections, but previous
approaches have only managed to scale to real-world datasets in restricted domains.
Recently, it was shown that the reconstruction of pre-trained self-supervised fea-
tures leads to object-centric representations on unconstrained real-world image
datasets. Building on this approach, we propose a novel way to use such pre-
trained features in the form of a temporal feature similarity loss. This loss encodes
semantic and temporal correlations between image patches and is a natural way
to introduce a motion bias for object discovery. We demonstrate that this loss
leads to state-of-the-art performance on the challenging synthetic MOVi datasets.
When used in combination with the feature reconstruction loss, our model is the
first object-centric video model that scales to unconstrained video datasets such as
YouTube-VIS. https://martius-lab.github.io/videosaur/

1 Introduction

Autonomous systems should have the ability to understand the natural world in terms of independent
entities. Towards this goal, unsupervised object-centric learning methods [1–3] learn to structure
scenes into object representations solely from raw perceptual data. By leveraging large-scale datasets,
these methods have the potential to obtain a robust object-based understanding of the natural world.
Of particular interest in recent years have been video-based methods [4–7], not least because the
temporal information in video presents a useful bias for object discovery [8]. However, these
approaches are so far restricted to data of limited complexity, successfully discovering objects from
natural videos only on closed-world datasets in restricted domains.

In this paper, we present the method Video Slot Attention Using temporal feature similaRity,
VideoSAUR, that scales video object-centric learning to unconstrained real-world datasets cov-
ering diverse domains. To achieve this, we build upon recent advances in image-based object-centric
learning. In particular, Seitzer et al. [9] showed that reconstructing pre-trained features obtained from
self-supervised methods like DINO [10] or MAE [11] leads to state-of-the-art object discovery on
complex real-world images. We demonstrate that combining this feature reconstruction objective
with a video object-centric model [5] also leads to promising results on real-world YouTube videos.

We then identify a weakness in the training objective of current unsupervised video object-centric
architectures [4, 7]: the prevalent reconstruction loss does not exploit the temporal correlations
existing in video data for object grouping. To address this issue, we propose a novel self-supervised
loss based on feature similarities that explicitly incorporates temporal information (see Fig. 1). The
loss works by predicting distributions over similarities between features of the current and future

∗equal contribution
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Figure 1: We propose a self-supervised temporal similarity loss for training object-centric video
models. For each patch at time t, the model has to predict a distribution P̂t,t+k indicating where all
semantically-similar patches have moved to k steps into the future. The target distribution Pt,t+k is
computed with a softmax on the affinity matrix At,t+k containing the cosine distance between all
patch features ht, ht+k. The loss incentivizes the model to group areas with consistent motion and
semantics into slots.

frames. These distributions encode information about the motion of individual image patches. To
efficiently predict those motions through the slot bottleneck, the model is incentivized to group patches
with similar motion into the same slot, leading to better object groupings as patches belonging to an
object tend to move consistently. In our experiments, we find that such a temporal similarity loss leads
to state-of-the-art performance on challenging synthetic video datasets [12], and significantly boosts
performance on real-world videos when used in conjunction with the feature reconstruction loss.

In video processing, model efficiency is of particular importance. Thus, we design an efficient object-
centric video architecture by adapting the SlotMixer decoder [13] recently proposed for 3D object
modeling for video decoding. Compared to previous decoder designs [3], the SlotMixer decoder
scales gracefully with the number of slots, but has a weaker inductive bias for object grouping. We
show that this weaker bias manifests in optimization difficulties in conjunction with conventional
reconstruction losses, but trains robustly with our proposed temporal similarity loss. We attribute this
to the self-supervised nature of the similarity loss: compared to reconstruction, it requires predicting
information that is not directly contained in the input; the harder task seems to compensate for the
weaker bias of the SlotMixer decoder.

To summarize, our contributions are as follows: (1) we propose a novel self-supervised loss for object-
centric learning based on temporal feature similarities, (2) we combine this loss with an efficient video
architecture based on the SlotMixer decoder where it synergistically reduces optimization difficulties,
(3) we show that our model improves the state-of-the-art on the synthetic MOVi datasets by a large
margin, and (4) we demonstrate that our model is able to learn video object-centric representations
on the YouTube-VIS dataset [14], while staying fully unsupervised. This paper takes a large step
towards unconstrained real-world object-centric learning on videos.

2 Related Work

Video Object-Centric Learning There is a rich body of work on discovering objects from
video, with two broad categories of approaches: tracking bounding boxes [4, 15–17] or segmentation
masks [2, 5–7, 18–25]. Architecturally, most recent image-based models for object-centric learning [3,
9, 26] are based on an auto-encoder framework with a latent slot attention grouping module [3] that
extracts a set of slot representations. For processing video data, a common approach [5–7, 21, 24]
is then to connect slots recurrently over input frames; the slots from the previous frame act as
initialization for extracting the slots of the current frame. We also make use of this basic framework.

Scaling Object-Centric Learning Most recent work has attempted to increase the complexity of
datasets where objects can successfully be discovered, such as the synthetic ClevrTex [27] and MOVi
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datasets [12]. On natural data, object discovery has so far been limited to restricted domains with a lim-
ited variety of objects, such as YouTube-Aquarium and -Cars [7], or autonomous driving datasets like
WaymoOpen or KITTI [28]. On more open-ended datasets, previous approaches have struggled [29].

To achieve scaling, some works attempt to improve the grouping module, for example by introducing
equivariances to slot pose transformations [30], smoothing attention maps [31], formulating grouping
as graph cuts [32] or a stick-breaking process [33], or by overcoming optimization difficulties by
introducing implicit differentiation [34, 35]. In contrast, we do not change the grouping module, but
use the vanilla slot attention cell [3].

Another prominent approach is to introduce better training signals than the default choice of image
reconstruction. For example, one line of work instead models the image as a distribution of discrete
codes conditional on the slots, either autoregressively by a Transformer decoder [7, 26], or via
diffusion [36, 37]. While this strategy shows promising results on synthetic data, it so far has failed
to scale to unconstrained real-world data [9].

An alternative is to step away from fully-unsupervised representation learning by introducing weak
supervision. For instance, SAVi [5] predicts optical flow, and SAVi++ [6] additionally predicts depth
maps as a signal for object grouping. Other works add an auxiliary loss that regularizes slot attention’s
masks towards the masks of moving objects [8, 38]. Our model also has a loss that focuses on motion
information, but uses an unsupervised formulation. OSRT [13] shows promising results on synthetic
3D datasets, but is restricted by the availability of posed multi-camera imagery. While all those
approaches improve on the level of data complexity, it has not been demonstrated that they can scale
to unconstrained real-world data.

The most promising avenue so far in terms of scaling to the real-world is to reconstruct features from
modern self-supervised pre-training methods [10, 11, 39, 40]. Using this approach, DINOSAUR [9]
showed that by optimizing in this highly semantic space, it is possible to discover objects on complex
real-world image datasets like COCO or PASCAL VOC. In this work, we similarly use such self-
supervised features, but for learning on video instead of images. Moreover, we improve upon
reconstruction of features by introducing a novel loss based on similarities between features.

Concurrent Work Parallel to this work, two more slot attention-based methods were proposed
that learn object-centric representations on real-world videos: SMTC [41] and SOLV [42]. SMTC
learns to extracts objects from videos by enforcing semantic and instance consistency over time using
a student-teacher approach. SOLV extracts per-frame slots using invariant slot attention [30], applies
a temporal consistency module and merges slots using agglomerative clustering; the model is also
trained using DINOSAUR-style feature reconstruction, but on masked out intermediate frames.

3 Method

In this section, we describe the main new components of VideoSAUR — our proposed object-centric
video model — and its training: a pre-trained self-supervised ViT encoder extracting frame features
(Sec. 3.1), a temporal similarity loss that adds a motion bias to object discovery (Sec. 3.2), and the
SlotMixer decoder to achieve efficient video processing (Sec. 3.3). See Fig. 2 for an overview.

3.1 Slot Attention for Videos with Dense Self-Supervised Representations

VideoSAUR is based on the modular video object-centric architecture recently proposed by SAVi [5]
and also used by STEVE [7]. Our model has three primary components: (1) a pre-trained self-
supervised ViT feature encoder, (2) a recurrent grouping module for temporal slot updates, and (3)
the SlotMixer decoder (detailed below in Sec. 3.3).

We start by processing video frames xt, with time steps t ∈ {1, . . . T}, into patch features ht:

ht = fφ(xt), ht ∈ RL×D (1)

where fφ is a self-supervised Vision Transformer encoder (ViT) [43] with pre-trained parameters
φ, and xt is the input at time step t. The ViT encoder processes the image by splitting it to L non-
overlapping patches of fixed size (e.g. 16 × 16 pixels), adding positional encoding, and transforming
them into L feature vectors ht (see App. C.2 for more details on ViTs). Note that the i’th feature
retains an association to the i’th image patch; the features thus can be spatially arranged. Next,
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Figure 2: Overview of VideoSAUR. Object slots st are extracted from patch features ht of a self-
supervised ViT using time-recurrent slot attention, conditional on slots from the previous time step
t − 1. The model is trained by reconstructing the patch features ht of the current frame xt, and
by predicting the similarity distribution over patches of a future frame xt+k (see also Fig. 1). The
predictions yrec

t and ysim
t are decoded efficiently using SlotMixer decoder.

we transform the features from the encoder with a slot attention module [3] to obtain a latent set
st = {sit}Ki=1, sit ∈ RM with K slot representations:

st = SAθ(ht, st−1). (2)

Slot attention is recurrently initialized with the slots of the previous time step t − 1, with initial
slots s0 sampled independently from a Gaussian distribution with learned location and scale. Slot
attention works by grouping input features into slots by iterating competitive attention steps; we
refer to Locatello et al. [3] for more details. To train the model, we use a SlotMixer decoder gψ
(see Sec. 3.3) to transform the slots st to outputs yt = gψ(st). Those outputs are used as model
predictions for the reconstruction and similarity losses introduced next.

3.2 Self-Supervised Object Discovery by Predicting Temporal Similarities

We now motivate our novel loss function based on predicting temporal feature similarities. Video
affords the opportunity to discover objects from motion: pixels that consistently move together should
be considered as one object, sometimes called the “common fate” principle [44]. However, the widely
used reconstruction objective — whether of pixels [5], discrete codes [7] or features [9] — does not
exploit this bias, as to reconstruct the input frame, the changes between frames do not have to be
taken into account.

Taking inspiration from prior work using optical flow as a prediction target [5], we design a self-
supervised objective that requires predicting patch motion: for each patch, the model needs to predict
where all semantically-similar patches have moved to k steps into the future. By comparing self-
supervised features describing the patches, we integrate both semantic and motion information; this
is in contrast to optical flow prediction, which only relies on motion. Specifically, we construct an
affinity matrix At,t+k with the cosine similarities between all patch features from the present frame
ht and all features from some future frame ht+k:

At,t+k =
ht

∥ht∥
·
(

ht+k
∥ht+k∥

)⊤
, At,t+k ∈ [−1, 1]L×L. (3)

As self-supervised features are highly semantic, the obtained feature similarities are high for patches
that share the same semantic interpretation. Due to the ViT’s positional encoding, the similarities
also take spatial closeness of patches into account. Figure 3 shows several example affinity matrices.

Because there are ambiguities in our similarity-based derivation of feature movements, we frame
the prediction task as modeling a probability distribution over target patches — instead of forcing
the prediction of an exact target location, like with optical flow prediction. Thus, we define the
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Figure 3: Affinity matrix At,t+k and transition probabilities Pt,t+k values between patches (marked
by purple and green) of the frame xt and patches of the future frame xt+k in MOVi-C (left) and
YT-VIS (right). Red indicates maximum affinity/probability. Also see Fig. B.4 for more examples,
and our website for an interactive visualization of temporal feature similarities.

probability that patch i moves to patch j by normalizing the rows of the affinity matrix with the
softmax, while masking negative similarity values (superscripts refer to the elements of the matrix):

P ij =





exp(Aij/τ)∑
k∈{j|Aij≥0}

exp(Aik/τ)
if Aij ≥ 0,

0 if Aij < 0,

(4)

where τ is the softmax temperature. The resulting distribution can be interpreted as the transition
probabilities of a random walk along a graph with image patches as nodes [45]. Then, we define the
similarity loss as the cross entropy between decoder outputs and transition probabilities:

Lsim
θ,ψ =

L∑

l=1

CE(P l
t,t+k;y

l
t). (5)

Figure 1 illustrates the loss computation for an example pair of input frames.

Why is this Loss Useful for Object Discovery? Predicting which parts of the videos move
consistently is most efficient with an object decomposition that captures moving objects. This is
similar to previous losses predicting optical flow [5]. But in contrast, our loss (Eq. 5) also yields a
useful signal for grouping when parts of the frame are not moving: as feature similarities capture
semantic aspects, the task also requires predicting which patches are semantically similar, helping
the grouping into objects e.g. by distinguishing fore- and background (see Fig. 3). Optical flow for
grouping also has limits when camera motion is introduced; in our experiments, we find that our loss
is more robust in such situations. Methods based on optical flow or motion masks can also struggle
with inaccurate flow/motion mask labels — unlike our method, which does not require such labels.
This is of particular importance for in-the-wild video, where motion estimation is challenging.

Role of Hyperparameters. The loss has two hyperparameters: the time shift into the future
k and the softmax temperature τ . The optimal time shift depends on the expected time scales of
movements in the modeled videos and should be chosen accordingly. The temperature τ controls
the concentration of the distribution onto the maximum. Thus, it effectively modulates between
two different tasks: accurately estimating the patch motion (low τ ), and predicting the similarity
of each patch to all other patches (high τ ). In particular in scenes with little movement, the latter
may be important to maintain a meaningful prediction task. In our experiments, we find that the best
performance is obtained with a balance between the two, showing that both modes are important.

Final Loss. While the temporal similarity loss yields state-of-the-art performance on synthetic
datasets, as shown below, we found that on real-world data, performance can be further improved by
adding the feature reconstruction objective as introduced in Seitzer et al. [9]. We hypothesize this is
because the semantic nature of feature reconstruction adds another useful bias for object discovery.
Thus, the final loss is given by:

Lθ,ψ =

T−k∑

t=1

Lsim
θ,ψ(Pt,t+k,y

sim
t ) + αLrec

θ,ψ(ht,y
rec
t ), (6)
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Figure 4: Example predictions of VideoSAUR compared to recent video object-centric methods.

where yt = [ysim
t ∈ RL×L,yrec

t ∈ RL×D] is the output of the SlotMixer decoder gψ and α is a
weighting factor used to make the scales of the two losses similar (we use a fixed value of α = 0.1 for
all experiments on real-world datasets). Like in Seitzer et al. [9], we do not train the ViT encoder fφ.

3.3 Efficient Video Object-Centric Learning with the SlotMixer Decoder

In video models, resource efficiency is of particular concern: recurrent frame processing increases the
load on compute and memory. The standard mixture-based decoder design [3] decodes each output K-
times, where K is the number of slots, and thus scales linearly with K both in compute and memory.
This can become prohibitive even for a moderate number of slots. The recently introduced SlotMixer
decoder [13] for 3D object-centric learning instead has, for all practical purposes, constant overhead
in the number of slots, by only decoding once per output. Thus, we propose to use a SlotMixer
decoder gψ for predicting the probabilities Pt,t+k from the slots st. To adapt the decoder from 3D
to 2D outputs, we change the conditioning on 3D query rays to L learned positional embeddings,
corresponding to L patch outputs ylt. See App. C.1 for more details on the SlotMixer module.

As a consequence of the increased efficiency of SlotMixer, there also is increased flexibility of how
slots can be combined to form the outputs. Because of this, this decoder has a weaker inductive bias
towards object-based groupings compared to the standard mixture-based decoder. With the standard
reconstruction loss, we observed that this manifests in training runs in which no object groupings are
discovered. But in combination with our temporal similarity loss, these instabilities disappear (see
App. B.4). We attribute this to the self-supervised nature of the similarity loss2; having to predict
information that is not directly contained in the input increases the difficulty of the task, reducing the
viability of non-object based groupings.

4 Experiments

We have conducted a number of experiments to answer the following questions: (1) Can object-
centric representations be learned from a large number of diverse real-world videos? (2) How does
VideoSAUR perform in comparison to other methods on well-established realistic synthetic datasets?
(3) What are the effects of our proposed temporal feature similarity loss and its parameters? (4)
Can we transfer the learned object-grouping to unseen datasets? (5) How efficient is the SlotMixer
decoder in contrast to the mixture-based decoder?

4.1 Experimental Setup

Datasets To investigate the characteristics of our proposed method, we utilize three synthetic
datasets and three real-world datasets. For synthetic datasets, we selected the MOVi-C, MOVi-D

2Novel-view synthesis, the original task for which SlotMixer was proposed, is similarly a self-supervised
prediction task. This may have contributed to the success of SlotMixer in that setting.
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Table 1: Comparison with state-of-the-art methods on the MOVi-C, MOVi-E, and YT-VIS datasets.
We report foreground adjusted rand index (FG-ARI) and mean best overlap (mBO) over 5 random
seeds. Both metrics are computed for the whole video (24 frames for MOVi, 6 frames for YT-VIS).

MOVi-C MOVi-E YT-VIS

FG-ARI mBO FG-ARI mBO FG-ARI mBO

Block Pattern 24.2 11.1 36.0 16.5 24 14.9
SAVi [5] 22.2 ± 2.1 13.6 ± 1.6 42.8 ± 0.9 16.0 ± 0.3 11.1 ± 5.6 12.7 ± 2.3
STEVE [7] 36.1 ± 2.3 26.5 ± 1.1 50.6 ± 1.7 26.6 ± 0.9 20.0 ± 1.5 20.9 ± 0.5
VideoSAUR 64.8 ± 1.2 38.9 ± 0.6 73.9 ± 1.1 35.6 ± 0.5 39.5 ± 0.6 29.1 ± 0.4

and MOVi-E datasets [12] that consist of numerous moving objects on complex backgrounds.
Additionally, we evaluate the performance of our method on the challenging YouTube Video Instance
Segmentation (YT-VIS) 2021 dataset [14] as an unconstrained real-world dataset. Furthermore, we
examine how well our model performs when transferred from YT-VIS 2021 to YT-VIS 2019 [46] and
DAVIS [47]. Finally, we use the COCO dataset [48] to study our proposed similarity loss function
with image-based object-centric learning.

Metrics We evaluate our approach in terms of the quality of the discovered slot masks (output by
the decoder), using two metrics: video foreground ARI (FG-ARI) [2] and video mean best overlap
(mBO) [49]. FG-ARI is a video version of a widely used metric in the object-centric literature that
measures the similarity of the discovered objects masks to ground truth masks. This metric mainly
measures how well objects are split. mBO assesses the correspondence of the predicted and the
ground truth masks using the intersection-over-union (IoU) measure. In particular, each ground truth
mask is matched to the predicted mask with the highest IoU, and the average IoU is then computed
across all assigned pairs. Unlike FG-ARI, mBO also considers background pixels, and provides a
measure of how accurately the masks fit the objects. Both metrics also consider the consistency of
the assigned object masks over the whole video.

In addition, we also use image-based versions of those metrics (Image FG-ARI and Image mBO,
computed on individual frames) for comparing with image-based methods.

Baselines We compare our method with two recently proposed methods for unsupervised object-
centric learning for videos: SAVi [5] and STEVE [7]. SAVi uses a mixture-based decoder and
is trained with image reconstruction. We use the unconditional version of SAVi. STEVE uses a
transformer decoder and is trained by reconstructing discrete codes of a dVAE [50]. Similar to Seitzer
et al. [9], we also add a regular block pattern baseline, corresponding to splitting the video into regular
block masks of similar size that do not change over time. By showing the metric values for a trivial
decomposition of the video, this baseline is useful to contextualize the results of the other methods.
In addition to video-based methods, we compare our model to image-based methods, including
DINOSAUR [9], LSD [36] and Slot Diffusion [37], showing that our approach performs well in both
object separation and mask sharpness. Last, we also compare our model to two concurrent works
discovering objects from real-world video, SMTC [41] and SOLV [42].

4.2 Comparison with State-of-the-Art Object-Centric Learning Methods

When comparing VideoSAUR to STEVE and SAVi, it is evident that VideoSAUR outperforms the
baselines by a significant margin, both in terms of FG-ARI and mBO (see Table 1 and Fig. 4). On the
most challenging synthetic dataset (MOVi-E), VideoSAUR reaches 73.9 FG-ARI. Notably, for the
challenging YT-VIS 2021 dataset, both baselines perform comparable or worse than the block pattern
baseline in terms of FG-ARI, showing that previous methods struggle to decompose real-world videos
into consistent objects. We additionally compare VideoSAUR to image-based methods in App. A.1,
including strong recent methods (LSD, SlotDiffusion and DINOSAUR), and find that our approach
also outperforms the prior image-based SoTA. Finally, in App. A.2, we find that our method performs
competitively with concurrent work.

Next, we report how well our method performs in terms of zero-shot transfer to other datasets to show
that the learned object discovery does generalize to unseen data. In particular, we train VideoSAUR
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Figure 5: Zero-shot transfer of learned object-centric representations on YT-VIS 2021 to the YT-VIS
2019 and DAVIS datasets for different number of slots.

on the YT-VIS 2021 dataset and evaluate it on the YT-VIS 2019 and DAVIS datasets. YT-VIS 2019
has similar object categories, but a smaller number of objects per image. The DAVIS dataset consists
of videos from a fully different distribution than YT-VIS 2021. As the number of slots can be changed
during evaluation, we test VideoSAUR with different number of slots, revealing that the optimal
number of slots is indeed smaller for these datasets. We find that our method achieves a performance
of 41.3 ± 0.9 mBO on YT-VIS 2019 dataset and 34.0 ± 0.4 mBO on DAVIS dataset (see Fig. 5),
illustrating its capability to effectively transfer the learned representations to previously unseen data
with different object categories and numbers of objects.

Long-term Video Consistency In addition to studying how VideoSAUR performs on relatively
short 6-frame video segments from YT-VIS, we also evaluate our method on longer videos. In
App. B.1, we show the performance for 12-frame and full YT-VIS videos. While, as can be expected,
performance on longer video segments is smaller in terms of FG-ARI, we show that the gap between
VideoSAUR and the baselines is large, indicating that VideoSAUR can track the main objects in videos
over longer time intervals. Closing the gap between short-term and long-term consistency using mem-
ory modules [24, 51] is an interesting future direction that could be useful for video prediction [52]
as well as for object-centric goal-based [53, 54] and model-based [55] reinforcement learning.

4.3 Analysis

In this section, we analyze various aspects of our approach, including the importance of the similarity
loss, the impact of hyperparameters (time-shift k and softmax temperature τ ), and the effect of the
choice of self-supervised features and decoder.

Choice of Loss Function (Table 2 and Table 3) We conduct an ablation study to demonstrate the
importance of the proposed temporal similarity loss, comparing and combining it with the feature
reconstruction loss [9]. We also consider predicting the features of the next frame (see App. C.4 for
implementation details). For all datasets, feature reconstruction alone performs significantly worse
than the combination of feature reconstruction and temporal similarity loss. Predicting the features of
the next frame in addition to feature reconstruction also yields improved performance, but is worse
than the temporal similarity, suggesting that the success of our loss can be partially explained by the
integration of temporal information through future prediction. Interestingly, on MOVi-C, using the
temporal similarity loss alone significantly improves the performance over feature reconstruction
(+20 FG-ARI, +7 mBO). To provide insight into the qualitative differences between the losses, we
analyze the videos with the most significant differences in FG-ARI (see Fig. E.4): unlike feature
reconstruction, the temporal similarity loss does not fragment the background or large objects into
numerous slots, and it exhibits improved object-tracking capabilities even when object size changes.
To gain further insights, we also consider (ground truth) optical flow as a prediction target that only
captures motion, but no semantic information (see App. B.2 for a detailed discussion). We find that
only predicting optical flow is not enough for a successful scene decomposition, underscoring the
importance of integrating both motion and semantic information for real-world object discovery.

Robustness to Camera Motion (Table 4) Next, we investigate if VideoSAUR training with the
similarity loss is robust to camera motion, as such motion makes isolating the object motion more
difficult. As a controlled experiment, we compare between MOVi-D (without camera motion) and
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Table 2: Loss ablation on MOVi-C.
Loss Type Metric

Feat. Rec. Next Frame Temp. Sim. FG-ARI mBOFeat. Pred.

✓ 40.2 23.5
✓ ✓ 47.2 24.7

✓ 60.8 30.5
✓ ✓ 60.7 30.3

Table 3: Loss ablation on YT-VIS.
Loss Type Metric

Feat. Rec. Next Frame Temp. Sim. FG-ARI mBOFeat. Pred.

✓ 35.4 26.7
✓ ✓ 37.9 27.3

✓ 26.2 29.1
✓ ✓ 39.5 29.1

Table 4: Robustness to introducing camera
motion (MOVi-D → MOVi-E).

MOVi-D MOVi-E

SAVi (optical flow) [12] 19.4 2.7
VideoSAUR (temporal sim.) 55.7 62.5

Table 5: Decoder comparison on MOVi-C and YT-VIS.

MOVi-C YT-VIS Memory

FG-ARI mBO FG-ARI mBO GB @24 slots

Mixer 60.8 30.5 39.5 29.1 24
MLP 64.2 27.2 39.0 29.1 70

MOVi-E (with camera motion), and train VideoSAUR using only the temporal similarity loss. We
contrast with SAVi trained with optical flow prediction3, and find that VideoSAUR is more robust
to camera motion, performing better on the MOVi-E dataset than on the MOVi-D dataset (+6.8 vs
−16.7 FG-ARI for SAVi).

Choice of Decoder (Table 5) We analyze how our method performs with different decoders and
find that both the MLP broadcast decoder [9] and our proposed SlotMixer decoder can be used
for optimizing the temporal similarity loss. VideoSAUR with the MLP broadcast decoder achieves
similar performance on YT-VIS and MOVi datasets, but requires 2–3 times more GPU memory
(see App. C.1 for more details and Table B.3 for the detailed comparison of decoders on MOVI-E
dataset). Thus, we suggest to use the SlotMixer decoder for efficient video processing.

Softmax Temperature (Figure 6a) We train VideoSAUR with DINO S/16 features using different
softmax temperatures τ . We find that there is a sweet spot in terms of grouping performance at
τ = 0.075. Lower and higher temperatures lead to high variance across seeds, potentially because
there is not enough training signal with very peaked (low τ ) and diffuse (high τ ) target distributions.

Target Time-shift (Figure 6b) We train VideoSAUR with DINO S/16 features using different
time-shifts k to construct the affinity matrix At,t+k. On both synthetic and real-world datasets, k = 1
generally performs best. Interestingly, we find that for k = 0, performance drops, indicating that
predicting pure self-similarities is not a sufficient task for discovering objects on its own.

Choices for Self-Supervised Features (Figures 6c and 6d) We study two questions about the
usage of the ViT features: which ViT features (queries/keys/values/outputs) should be used for the
temporal similarity loss? Do different self-supervised representations result in different performance?
In Fig. 6c, we observe that using DINO “key” and “query” features leads to significantly larger mBO,
while for FG-ARI “query” is worse and the other features are similar. Potentially, this is because keys
are used in the ViT’s self-attention and thus could be particularly good to compare with the scalar
product similarity. Consequently, VideoSAUR uses “key” features in all other experiments. Moreover,
we study if the temporal similarity loss is compatible with different self-supervised representations. In
Fig. 6d, we show that VideoSAUR works well with 4 different types of representations, with MSN [39]
and DINO [10] performing slightly better than MAE [11] and MOCO-v3 [40]. We also demonstrate
that further fine-tuning the DINO features utilizing a self-supervised temporal-alignment clustering
approach named TimeTuning [56] on unlabeled videos enhances the mask quality of VideoSAUR.

Pre-training Dataset (Table 6) All self-supervised methods we utilize are trained on the ImageNet
dataset, which a) has a strong bias towards object-centricness as its images mostly contain single
objects, and b) introduces a large number of additional images external to the dataset we are training

3SAVi results with optical flow are from Greff et al. [12].
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Figure 6: Studying the effect of different parameters of the temporal similarity loss.

Table 6: Comparing VideoSAUR with features trained on MOVi-E (MAE+MOVi-E) to features
trained on ImageNet (MAE+ImageNet). For MAE+MOVi-E, we pre-train a ViT-B/16 using the
self-supervised MAE method on MOVi-E for 200 epochs. VideoSAUR is able to perform high-quality
object discovery even without access to any external data.

MOVi-C MOVi-E

FG-ARI mBO FG-ARI mBO

VideoSAUR w/ MAE+ImageNet features 58.0 30.4 72.8 27.1
VideoSAUR w/ MAE+MOVi-E features 59.8 27.5 70.6 23.3

VideoSAUR on. An interesting question is whether a) and b) are actually required for the success of
our method. To answer it, we train a ViT-B/16 encoder from scratch on the MOVi-E dataset using
the MAE method, and then train VideoSAUR using the obtained features. Interestingly, we find that
the features from MOVi-E yield similar results compared to ImageNet-trained features (although
with slight drops in mask quality), demonstrating that VideoSAUR is able to perform high-quality
object discovery even without access to external data. This result also has broader implications as
it potentially increases the applicability of feature reconstruction-based object-centric methods to
datasets fully out of the domain of ImageNet. It also raises a follow-up question: what properties of
the pre-training dataset (and method) are important to obtain good target features for object discovery?

5 Conclusion

This paper presents the first method for unsupervised video-based object-centric learning that scales to
diverse, unconstrained real-world datasets such as YouTube-VIS. By leveraging dense self-supervised
features and extracting motion information with temporal similarity loss, we demonstrate superior
performance on both synthetic and real-world video datasets. We hope our new loss function can
inspire the design of further self-supervised losses for object-centric learning, especially in the video
domain where natural self-supervision is available.

Still, our method does not come without limitations: in longer videos with occlusions, slots can get
reassigned to different objects or the background (see Fig. B.5 for visualizations of failure cases).
VideoSAUR also inherits a limitation of all slot attention-based method, namely that the the number
of slots is static and needs to be chosen a priori. Similar to DINOSAUR [9], the quality of the object
masks is restricted by the patch-based nature of the decoder. Finally, while the datasets we use in
this work are significantly less constrained compared to datasets used by prior work, they still do not
capture the full open-world setting that object-centric learning aspires to solve. Overcoming these
limitations is a great direction for future work.

10

171



Acknowledgements

We thank Martin Butz, Cansu Sancaktar and Manuel Traub for useful suggestions and discussions.
The authors thank the International Max Planck Research School for Intelligent Systems (IMPRS-
IS) for supporting Maximilian Seitzer. Andrii Zadaianchuk is supported by the Max Planck ETH
Center for Learning Systems. Georg Martius is a member of the Machine Learning Cluster of
Excellence, funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
under Germany’s Excellence Strategy – EXC number 2064/1 – Project number 390727645. We
acknowledge the support from the German Federal Ministry of Education and Research (BMBF)
through the Tübingen AI Center (FKZ: 01IS18039B).

References
[1] Christopher P. Burgess, Loic Matthey, Nicholas Watters, Rishabh Kabra, Irina Higgins, Matt

Botvinick, and Alexander Lerchner. MONet: Unsupervised Scene Decomposition and Repre-
sentation. arXiv:1901.11390, 2019. URL https://arxiv.org/abs/1901.11390.

[2] Klaus Greff, Raphaël Lopez Kaufman, Rishabh Kabra, Nick Watters, Christopher Burgess,
Daniel Zoran, Loic Matthey, Matthew Botvinick, and Alexander Lerchner. Multi-Object
Representation Learning with Iterative Variational Inference. In ICML, 2019. URL https:
//arxiv.org/abs/1903.00450.

[3] Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, Georg
Heigold, Jakob Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-Centric Learning
with Slot Attention. In NeurIPS, 2020. URL https://proceedings.neurips.cc/paper/
2020/file/8511df98c02ab60aea1b2356c013bc0f-Paper.pdf.

[4] Jindong Jiang, Sepehr Janghorbani, Gerard de Melo, and Sungjin Ahn. SCALOR: Gener-
ative World Models with Scalable Object Representations. In ICLR, 2020. URL https:
//openreview.net/pdf?id=SJxrKgStDH.

[5] Thomas Kipf, Gamaleldin Fathy Elsayed, Aravindh Mahendran, Austin Stone, Sara Sabour,
Georg Heigold, Rico Jonschkowski, Alexey Dosovitskiy, and Klaus Greff. Conditional Object-
centric Learning from Video. In ICLR, 2022. URL https://openreview.net/forum?id=
aD7uesX1GF_.

[6] Gamaleldin Fathy Elsayed, Aravindh Mahendran, Sjoerd van Steenkiste, Klaus Greff,
Michael Curtis Mozer, and Thomas Kipf. SAVi++: Towards End-to-End Object-Centric
Learning from Real-World Videos. In NeurIPS, 2022. URL https://openreview.net/
forum?id=fT9W53lLxNS.

[7] Gautam Singh, Yi-Fu Wu, and Sungjin Ahn. Simple Unsupervised Object-Centric Learning
for Complex and Naturalistic Videos. In NeurIPS, 2022. URL https://openreview.net/
forum?id=eYfIM88MTUE.

[8] Zhipeng Bao, Pavel Tokmakov, Allan Jabri, Yu-Xiong Wang, Adrien Gaidon, and Martial
Hebert. Discovering Objects that Can Move. CVPR, 2022. URL https://arxiv.org/abs/
2203.10159.

[9] Maximilian Seitzer, Max Horn, Andrii Zadaianchuk, Dominik Zietlow, Tianjun Xiao, Carl-
Johann Simon-Gabriel, Tong He, Zheng Zhang, Bernhard Schölkopf, Thomas Brox, and
Francesco Locatello. Bridging the gap to real-world object-centric learning. In ICLR, 2023.
URL https://openreview.net/forum?id=b9tUk-f_aG.

[10] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski,
and Armand Joulin. Emerging Properties in Self-Supervised Vision Transformers. ICCV, 2021.
URL https://arxiv.org/abs/2104.14294.

[11] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
Autoencoders are Scalable Vision Learners. In CVPR, 2022. URL https://arxiv.org/abs/
2111.06377.

11

172 APPENDIX D: OBJECT-CENTRIC LEARNING FOR REAL-WORLD VIDEOS



[12] Klaus Greff, Francois Belletti, Lucas Beyer, Carl Doersch, Yilun Du, Daniel Duckworth, David J.
Fleet, Dan Gnanapragasam, Florian Golemo, Charles Herrmann, Thomas Kipf, Abhijit Kundu,
Dmitry Lagun, Issam Laradji, Hsueh-Ti (Derek) Liu, Henning Meyer, Yishu Miao, Derek
Nowrouzezahrai, Cengiz Oztireli, Etienne Pot, Noha Radwan, Daniel Rebain, Sara Sabour,
Mehdi S. M. Sajjadi, Matan Sela, Vincent Sitzmann, Austin Stone, Deqing Sun, Suhani Vora,
Ziyu Wang, Tianhao Wu, Kwang Moo Yi, Fangcheng Zhong, and Andrea Tagliasacchi. Kubric:
A Scalable Dataset Generator. In CVPR, 2022. URL https://arxiv.org/abs/2203.03570.

[13] Mehdi SM Sajjadi, Daniel Duckworth, Aravindh Mahendran, Sjoerd van Steenkiste, Filip
Pavetic, Mario Lucic, Leonidas J Guibas, Klaus Greff, and Thomas Kipf. Object scene
representation transformer. In NeurIPS, 2022. URL https://arxiv.org/abs/2206.06922.

[14] Linjie Yang, Yuchen Fan, Yang Fu, and Ning Xu. The 3rd large-scale video object segmentation
challenge - video instance segmentation track, June 2021. URL https://youtube-vos.org/
dataset/vis.

[15] Adam Kosiorek, Hyunjik Kim, Yee Whye Teh, and Ingmar Posner. Sequen-
tial Attend, Infer, Repeat: Generative Modelling of Moving Objects. In
NeurIPS, 2018. URL https://proceedings.neurips.cc/paper/2018/hash/
7417744a2bac776fabe5a09b21c707a2-Abstract.html.

[16] Eric Crawford and Joelle Pineau. Spatially invariant unsupervised object detection with convo-
lutional neural networks. In AAAI, 2020. URL https://arxiv.org/abs/1911.09033.

[17] Zhixuan Lin, Yi-Wu Fu, Skand Vishwanath Peri, Weihao Sun, Gautam Singh, Fei Deng, Jindong
Jiang, and Sungjin Ahn. SPACE: Unsupervised Object-Oriented Scene Representation via
Spatial Attention and Decomposition. In ICLR, 2020. URL https://openreview.net/
forum?id=rkl03ySYDH.

[18] Klaus Greff, Sjoerd van Steenkiste, and Jürgen Schmidhuber. Neural expectation maximization.
In NeurIPS, 2017. URL https://arxiv.org/abs/1708.03498.

[19] Sjoerd van Steenkiste, Michael Chang, Klaus Greff, and Jürgen Schmidhuber. Relational neural
expectation maximization: Unsupervised discovery of objects and their interactions. In ICLR,
2018. URL https://openreview.net/forum?id=ryH20GbRW.

[20] Rishi Veerapaneni, John D. Co-Reyes, Michael Chang, Michael Janner, Chelsea Finn, Ji-
ajun Wu, Joshua Tenenbaum, and Sergey Levine. Entity Abstraction in Visual Model-
based Reinforcement Learning. In Conference on Robot Learning, 2019. URL https:
//arxiv.org/abs/1910.12827.

[21] Daniel Zoran, Rishabh Kabra, Alexander Lerchner, and Danilo J. Rezende. PARTS: Unsuper-
vised segmentation with slots, attention and independence maximization. In ICCV, 2021. URL
https://ieeexplore.ieee.org/document/9711314.

[22] Marissa A Weis, Kashyap Chitta, Yash Sharma, Wieland Brendel, Matthias Bethge, Andreas
Geiger, and Alexander S. Ecker. Benchmarking Unsupervised Object Representations for Video
Sequences. JMLR, 2021. URL https://jmlr.org/papers/v22/21-0199.html.

[23] Rishabh Kabra, Daniel Zoran, Goker Erdogan, Loic Matthey, Antonia Creswell, Matthew
Botvinick, Alexander Lerchner, and Christopher P. Burgess. SIMONe: View-invariant,
temporally-abstracted object representations via unsupervised video decomposition. In NeurIPS,
2021. URL https://openreview.net/forum?id=YSzTMntO1KY.

[24] Manuel Traub, Sebastian Otte, Tobias Menge, Matthias Karlbauer, Jannik Thuemmel, and Mar-
tin V. Butz. Learning What and Where: Disentangling Location and Identity Tracking Without
Supervision. In ICLR, 2023. URL https://openreview.net/forum?id=NeDc-Ak-H_.

[25] Sadra Safadoust and Fatma Güney. Multi-object discovery by low-dimensional object motion.
In ICCV, 2023. URL https://arxiv.org/abs/2307.08027.

[26] Gautam Singh, Fei Deng, and Sungjin Ahn. Illiterate DALL-E Learns to Compose. In ICLR,
2022. URL https://openreview.net/forum?id=h0OYV0We3oh.

12

173



[27] Laurynas Karazija, Iro Laina, and Christian Rupprecht. ClevrTex: A Texture-Rich Benchmark
for Unsupervised Multi-Object Segmentation. In NeurIPS Track on Datasets and Benchmarks,
2021. URL https://arxiv.org/abs/2111.10265.

[28] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets Robotics:
The KITTI Dataset. International Journal of Robotics Research, 2013. URL https://www.
cvlibs.net/publications/Geiger2013IJRR.pdf.

[29] Yafei Yang and Bo Yang. Promising or Elusive? Unsupervised Object Segmentation from
Real-world Single Images. In NeurIPS, 2022. URL https://openreview.net/forum?id=
DzPWTwfby5d.

[30] Ondrej Biza, Sjoerd van Steenkiste, Mehdi S. M. Sajjadi, Gamaleldin F. Elsayed, Aravindh
Mahendran, and Thomas Kipf. Invariant slot attention: Object discovery with slot-centric
reference frames. In ICML, 2023. URL https://arxiv.org/abs/2302.04973.

[31] Jinwoo Kim, Janghyuk Choi, Ho-Jin Choi, and Seon Joo Kim. Shepherding slots to objects:
Towards stable and robust object-centric learning. In CVPR, 2023. URL https://arxiv.
org/abs/2303.17842.

[32] Adeel Pervez, Phillip Lippe, and Efstratios Gavves. Differentiable mathematical programming
for object-centric representation learning. In ICLR, 2023. URL https://openreview.net/
forum?id=1J-ZTr7aypY.

[33] Martin Engelcke, Oiwi Parker Jones, and Ingmar Posner. GENESIS-V2: Inferring Unordered
Object Representations without Iterative Refinement. In NeurIPS, 2021. URL https://
openreview.net/forum?id=nRBZWEUhIhW.

[34] Michael Chang, Thomas L. Griffiths, and Sergey Levine. Object representations as fixed points:
Training iterative refinement algorithms with implicit differentiation. In NeurIPS, 2022. URL
https://arxiv.org/abs/2207.00787.

[35] Baoxiong Jia, Yu Liu, and Siyuan Huang. Improving object-centric learning with query
optimization. In ICLR, 2023. URL https://arxiv.org/abs/2210.08990.

[36] Jindong Jiang, Fei Deng, Gautam Singh, and Sungjin Ahn. Object-centric slot diffusion. In
NeurIPS, 2023. URL https://arxiv.org/abs/2303.10834.

[37] Ziyi Wu, Jingyu Hu, Wuyue Lu, Igor Gilitschenski, and Animesh Garg. Slotdiffusion: Object-
centric generative modeling with diffusion models. In NeurIPS, 2023. URL https://arxiv.
org/abs/2305.11281.

[38] Zhipeng Bao, Pavel Tokmakov, Yu-Xiong Wang, Adrien Gaidon, and Martial Hebert. Object
discovery from motion-guided tokens. In CVPR, 2023. URL https://arxiv.org/abs/
2303.15555.

[39] Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal
Vincent, Armand Joulin, Michael G. Rabbat, and Nicolas Ballas. Masked Siamese Networks
for Label-Efficient Learning. In ECCV, 2022. URL https://arxiv.org/abs/2204.07141.

[40] Xinlei Chen, Saining Xie, and Kaiming He. An Empirical Study of Training Self-Supervised
Vision Transformers. ICCV, 2021. URL https://arxiv.org/abs/2104.02057.

[41] Rui Qian, Shuangrui Ding, Xian Liu, and Dahua Lin. Semantics meets temporal correspondence:
Self-supervised object-centric learning in videos. In ICCV, 2023. URL https://arxiv.org/
abs/2308.09951.

[42] Görkay Aydemir, Weidi Xie, and Fatma Güney. Self-supervised object-centric learning for
videos. In NeurIPS, 2023. URL https://arxiv.org/abs/2310.06907.

[43] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An Image is Worth 16x16 Words: Transformers for
Image Recognition at Scale. In ICLR, 2021. URL https://openreview.net/forum?id=
YicbFdNTTy.

13

174 APPENDIX D: OBJECT-CENTRIC LEARNING FOR REAL-WORLD VIDEOS



[44] Matthias Tangemann, Steffen Schneider, Julius von Kügelgen, Francesco Locatello, Peter Gehler,
Thomas Brox, Matthias Kümmerer, Matthias Bethge, and Bernhard Schölkopf. Unsupervised
object learning via common fate. In CLeaR, 2023. URL https://arxiv.org/abs/2110.
06562.

[45] Allan Jabri, Andrew Owens, and Alexei Efros. Space-time correspondence as a contrastive
random walk. In NeurIPS, 2020. URL https://arxiv.org/abs/2006.14613.

[46] Linjie Yang, Yuchen Fan, and Ning Xu. Video instance segmentation. In ICCV, 2019. URL
https://arxiv.org/abs/1905.04804.

[47] Jordi Pont-Tuset, Federico Perazzi, Sergi Caelles, Pablo Arbeláez, Alexander Sorkine-Hornung,
and Luc Van Gool. The 2017 davis challenge on video object segmentation. arXiv:1704.00675,
2017. URL https://arxiv.org/abs/1704.00675.

[48] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro Perona, Deva Ramanan,
Piotr Dollár, and C. Lawrence Zitnick. Microsoft COCO: Common Objects in Context. In
ECCV, 2014. URL https://arxiv.org/abs/1405.0312.

[49] Jordi Pont-Tuset, Pablo Arbeláez, Jonathan T. Barron, Ferran Marques, and Jitendra Malik.
Multiscale Combinatorial Grouping for Image Segmentation and Object Proposal Generation.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(1), 2017. doi: 10.1109/
TPAMI.2016.2537320. URL https://ieeexplore.ieee.org/document/7423791.

[50] Jason Tyler Rolfe. Discrete variational autoencoders. In ICLR, 2017. URL https:
//openreview.net/forum?id=ryMxXPFex.

[51] Christian Gumbsch, Martin V Butz, and Georg Martius. Sparsely changing latent states for
prediction and planning in partially observable domains. In NeurIPS, 2021. URL https:
//arxiv.org/abs/2110.15949.

[52] Ziyi Wu, Nikita Dvornik, Klaus Greff, Thomas Kipf, and Animesh Garg. Slotformer: Un-
supervised visual dynamics simulation with object-centric models. In ICLR, 2023. URL
https://openreview.net/forum?id=TFbwV6I0VLg.

[53] Andrii Zadaianchuk, Maximilian Seitzer, and Georg Martius. Self-supervised Visual Re-
inforcement Learning with Object-centric Representations. In ICLR, 2020. URL https:
//openreview.net/forum?id=xppLmXCbOw1.

[54] Davide Mambelli, Frederik Träuble, Stefan Bauer, Bernhard Schölkopf, and Francesco Locatello.
Compositional Multi-object Reinforcement Learning with Linear Relation Networks. In ICLR
Workshop on the Elements of Reasoning: Objects, Structure and Causality, 2022. URL
https://openreview.net/forum?id=HFUxPr_I5ec.

[55] Fan Feng and Sara Magliacane. Learning dynamic attribute-factored world models for efficient
multi-object reinforcement learning. In NeurIPS, 2023. URL https://arxiv.org/abs/
2307.09205.

[56] Mohammadreza Salehi, Efstratios Gavves, Cees G.M. Snoek, and Yuki M. Asano. Time
does tell: Self-supervised time-tuning of dense image representations. In ICCV, 2023. URL
https://arxiv.org/abs/2308.11796.

[57] Junyu Xie, Weidi Xie, and Andrew Zisserman. Segmenting moving objects via an object-centric
layered representation. In NeurIPS, 2022. URL https://arxiv.org/abs/2207.02206.

[58] Maxime Oquab, Timothée Darcet, Theo Moutakanni, Huy V. Vo, Marc Szafraniec, Vasil
Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Russell
Howes, Po-Yao Huang, Hu Xu, Vasu Sharma, Shang-Wen Li, Wojciech Galuba, Mike Rabbat,
Mido Assran, Nicolas Ballas, Gabriel Synnaeve, Ishan Misra, Herve Jegou, Julien Mairal,
Patrick Labatut, Armand Joulin, and Piotr Bojanowski. DINOv2: Learning robust visual
features without supervision, 2023. URL https://arxiv.org/abs/2304.07193.

14

175


	Contents
	List of Figures
	Overview of Publications
	Abstract
	Introduction
	On Structured Object Representations
	Structured Object Representations: An Introduction
	Introduction
	The Need for Structured Object Representations
	Desiderata for Object Representations
	Discovering Objects from Data

	Building Object-Centric Neural Networks
	Characteristics of Slot-Based Neural Networks
	Training Object-Centric Neural Networks
	Case Studies
	Evaluating Object-Centric Representations


	On the Benefits of Structured Object Representations for Autonomous Agents
	Self-Supervised Visual RL with Object-Centric Representations
	Motivation
	The SMORL Agent
	Results
	Discussion

	Causal Influence Detection for RL
	Motivation
	Background
	The Causal Influence of an Agent
	Faster Reinforcement Learning with Causal Influence
	Discussion


	On the Real-World Discovery of Structured Object Representations
	Bridging the Gap to Real-World Object-Centric Learning
	Motivation
	DINOSAUR: Real-World Object-Centric Representations
	Results
	Discussion

	Object-Centric Learning for Real-World Videos
	Motivation
	Method
	Results
	Discussion


	On the Future of Structured Object Representations
	Discussion
	Summary of Contributions
	New Frontiers for Object-Centric Learning
	Structured Object Representations: An Outlook


	Bibliography
	Appendices
	Self-Supervised Visual RL with Object-Centric Representations
	Causal Influence Detection for RL
	Bridging the Gap to Real-World Object-centric Learning
	Object-Centric Learning for Real-World Videos


