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Abstract

Simulation-basedMachineLearning (ML) algorithmshaveproven successful in the realmofmi-
croscopy and enabled significant speedups inSingleMoleculeLocalizationMicroscopy (SMLM)
compared to conventional algorithms. These routines, however, did not work for all SMLM
modalities and were difficult to use for individuals without dedicated hardware and computa-
tional experience. This thesis addresses these challenges.

SMLM, an inverse problem, is a strong candidate for simulation-based ML. In SMLM, fluo-
rophores of one or more kinds are stochastically activated, resulting in sparse events (emitters)
imaged over tens to hundreds of thousands of frames. These emitters are localized and ren-
dered to compute the final superresolution image. SMLM is inherently slow due to its need
for sparse emitters. Recent ML approaches tackled this problem by enabling high-density imag-
ing. However, the field lacks a dedicated algorithm for high-density, multi-channeled SMLM
applications.

ML algorithms in microscopy are applied to various tasks including denoising images, im-
proving their resolution, segmenting biological sites, or detecting biological events. Yet, these
methods often rely on dedicated hard- and software setups and have not found their way into
daily scientific routines for that reason. The field lacks approaches for repetitive large-scale
workflows without complicated manual intervention.

We presentDECODE-Plex, a new framework for high-density multi-channeled localization
in SMLM, addressing multi-color and biplane imaging. DECODE-Plex is trained on-the-fly by
a simulated training procedure. We demonstrate DECODE-Plex’s performance across various
densities for simulated and experimental data.

Furthermore, we presentDECODE-OpenCloud, a cloud-backed solution forMLalgorithms
in microscopy. DECODE-OpenCloud abstracts away hardware and maintenance concerns
providing researchers and developers with a user-friendly yet production-ready API. It encour-
ages the integrationofunused local computingpower, benefiting fromcentralizedmaintenance
and computational power. DECODE-OpenCloud’s design allows for integration without sig-
nificant additional effort, and we present three algorithms for SMLM as reference implemen-
tations: Localization with DECODE, DECODE-Plex and drift correction with COMET.
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Kurzfassung

Simulationsbasierte auf maschinellem Lernen (ML) beruhende Algorithmen haben sich im
Bereich der Mikroskopie bewährt und deutlich schnellere Aufnahmen in der Einzelmolekül-
mikroskopie (SMLM) im Vergleich zu klassischen Algorithmen ermöglicht. Diese Algorith-
men unterstützen bisher jedoch nicht alle SMLM Modalitäten und sind schwer ohne dedizierte
Hardware- und Softwareerfahrung nutzbar. Die vorliegende Arbeit adressiert diese Probleme.

SMLM ist eine interessante Anwendung für simulationsbasiertes ML, da es um ein inverses
Problem handelt. Eine Probe wird hier derart präpariert, dass Fluorophore einer oder mehrerer
Farben stochastisch aktiviert werden was zu vereinzelten sogenannten Emittern führt, die auf
zehn- bis hunderttausenden Bildern aufgenommen werden. Jene Emitter werden lokalisiert
um das superaufgelöste Bild zu berechnen. SMLM ist langsam, da die Aufnahmezeit direkt
von der Dichte der Emitter abhängt. Kürzlich entwickelte ML Algorithmen erlauben höhere
Dichten, der Community fehlt jedoch ein entsprechender Algorithmus für Vielkanaldaten.

MLAlgorithmenwerden inderMikroskopie bei vielfältigenAnwendungenwie demEntrau-
schen, der Auflösungssteigerung, der Segmentierung von biologischen Proben oder der Detek-
tion von biologischen Ereignissen eingesetzt. Diese Methoden benötigen jedoch oft dedizier-
te Hard- und Softwaresetups sowie entsprechende Dateninfrastruktur und haben aus diesem
Grund oft noch keinen Einzug in die Laborroutine erhalten.

Wir stellenDECODE-Plex vor, einneuartigerAlgorithmus fürhochdichte vielkanal SMLM-
Daten und adressieren im besonderen Mehrfarben- und Multifokal-SMLM. DECODE-Plex
wird mit live simulierten Daten trainiert. Wir zeigen die robuste Performance von DECODE-
Plex auf simulierten und experimentellen Daten verschiedener Dichten.

Darüber hinaus stellen wir DECODE-OpenCloud vor, eine Cloud-basierte Lösung für ML
Algorithmen in der Mikroskopie. DECODE-OpenCloud abstrahiert Hardware und Wartung
von den Algorithmen und ermöglicht so deren einfache Benutzung via API. Ungenutzte Re-
chenleistung kann einfach integriert werden, um so von zentralisierter Wartung und geteilten
Resourcen zu profitieren. Weitere Algorithmen können ohne großen Aufwand integriert wer-
den; wir stellen dreiAlgorithmen alsReferenz vor: LokalisationmitDECODEundDECODE-
Plex und Driftkorrektur mit COMET.
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Chapter 1

Introduction

Vision is the core sense we utilize to capture the world that surrounds us. It has coined the
phrase seeing is believing. Microscopy extends the limits of human vision and allows us to study
otherwise invisible structures.

The history of microscopy is rich and led to many great scientific discoveries. Robert Hooke
studied plants and insects through what he named magnifying glasses and first used the term
cell in his work (Hooke, Robert 1665). Walther Flemming laid foundational work on observing
cell division and discovering chromosomes (Flemming 1880). Abbe and Rayleigh studied the
relationship between the wavelength of light and the point up to which structures can be dis-
tinguished. Their theories result in theAbbe limit and theRayleigh criterion, which, for visible
light, both conclude a minimally resolvable distance of around 250 nm (see Equation 2.4). The
core determining factor of the resolvable distance is its linear dependence on the wavelength.
For that reason, e.g. electron microscopy can achieve much higher resolutions than light mi-
croscopy, in an order of 0.1 nm because of the small wavelength of energetic electrons (Franken
et al. 2020). All microscopy techniques have strengths and weaknesses, and light and electron
microscopes are no exception. While microscopes with shorter wavelengths can, in principle,
achieve higher resolution, their use might be prohibitive, e.g. because thick specimens should
be imaged, due to phototoxicity in live-cell imaging, due to radiation exposure or the need for
specific sample preparation. In section 1.1, we introduce superresolution microscopy in more
detail, which is the focus of this study.

Asmicroscopy has advanced, so too have the methods for processing and analyzing such data.
Advancements in Machine Learning (ML) and in particular in Deep Learning (DL) have pro-
foundly impacted the field of biomedical sciences and in microscopy in particular. They have
since become an integral part of most imaging techniques, allowing for improved image qual-
ity or the automation of microscopes. In the following, we briefly outline important aspects
of ML in biomedical science in section 1.2 and elaborate on the challenges of integrating these
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Chapter 1 Introduction

compute-intensive algorithms into the daily scientific routine.

1.1 Superresolution Microscopy

Superresolution microscopy is a class of light microscopy techniques, with a resolution greater
than what is derived from diffraction theory (see section 2.1.1). None of these techniques con-
tradict the theories established by Abbe and Rayleigh, their working principle are such that
their achievable resolution is determinedby other factors than theminimumdistance twopoint
sources can be distinguished from one another.

Several of these techniques have been proposed over time, and we shall briefly introduce their
working principle in the following. The focus of this thesis is Single Molecule Localization Mi-
croscopy (SMLM),whichwe introduce inmore detail in section1.1.1 andoutline its theoretical
foundations in section 2.1.

Structured Illumination Microscopy (SIM)

The first superresolution technique was Structured Illumination Microscopy (SIM), which
uses a patterned Illumination with a moveable diffracting grating (Lukosz and Marchand 1963;
Gustafsson et al. 2008). The resultingMoire pattern, which stems from the interference of the
patterned illumination and the sample structure itself is then used to reconstruct the a super-
resolved microscopy image. Typically, SIM achieves a resolution gain of a factor of two both
laterally and axially (Gustafsson et al. 2008).

Stimulated Emission Depletion (STED)

Stimulated Emission Depletion (STED) is a superresolution technique that achieves higher res-
olutions than Structured Illumination Microscopy (SIM). At its core is the donut shaped beam
that allows for the Point Spread Function (PSF) to have smaller effective extent than the diffrac-
tion limit. The core idea is to use a superposition of excitation and a depletion laser, where the
latter is phase-modulated to form the characteristic donut shape (Hell and Wichmann 1994,
Klar and Hell 1999). The excitation laser is of a smaller wavelength (i.e., higher energy) than
the depletion laser. The purpose of the depletion laser is to stimulate red-shifted emission of
the fluorophores, which can be filtered out by common color filters. The effective emission of
the fluorophores is then confined to the inner part of the donut, which has less spatial extent
than the diffraction limit. The beam is scanned over the biological site. The resolution obtain-
able by STED is closely coupled to the effective depletion to suppress fluorescence in the outer
part of the donut. Here, high laser powers can lead to photobleaching, i.e., the destruction of
fluorophores.

14



1.1 SuperresolutionMicroscopy

Figure 1.1: The working principle of Single Molecule Localization Microscopy (SMLM). A stack of frames, each with a sparse
set of emitters, is acquired. The emitters are localized by a fitting algorithm, and the localizations are extracted. The
localization set is used to render the final superresolution image.

Minimal emission fluxes (MINFLUX)

MINFLUX is a recent instance of localization microscopy also influenced by aspects of STED.
It is a classical localizationmicroscopy technique in that its output is a list of localizations. How-
ever, its working principle is not by software-based fitting but instead by live localization of
emitters via a hardware-implemented feedback loop (Balzarotti et al. 2017). At its core is the
doughnut-shaped excitation that is used in STED for depletion. The position of the excitation
beam is then adjusted in specific patterns around the estimated position of the emitter by a feed-
back loop implemented on a FPGA device. The excitation beam is moved in dynamic patterns,
and the emitter’s position is then inferred from the respective photon counts at the various po-
sitions around the emitter. MINFLUX can observe 3D motor protein stepping in living cells
directly (Deguchi et al. 2023).

1.1.1 Single Molecule Localization Microscopy (SMLM)

Single Molecule Localization Microscopy (SMLM) is a class of super-resolution microscopy
techniques that output a set of localizations of individual fluorophores in a sample. The final
microscopy image is rendered based on this set of localizations (see Figure 1.1). The basic idea
of SMLM is to activate only a small subset of fluorophores in the sample at a time, then to un-
dergo a fitting procedure to estimate the position of the fluorophore. The key is that the fitting
procedure can estimate the position of the fluorophore with greater precision than the extent
of the microscope’s Point Spread Function (PSF). With its core principle of SMLM comes its
inherently slow imaging speed since many frames need to be acquired. Typical imaging times
of SMLM acquisitions are in an order of an hour.

It is a strength of SMLM to be able to colocalize different objects at the same biological site
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Chapter 1 Introduction

through multiple targets which is calledmulti-color SMLM. In practice, this is realized by label-
ing the sample with multiple, spectrally different, fluorophores (see section 2.1). In the state-
of-the-art ratiometric imaging, these different targets are imaged simultaneously in multiple
channels. The targets can be distinguished by the resulting ratio of their signal in all channels.
In biplane SMLM, a similar multi-channeled setup can be used to resolve the axial position of
emitters instead of distinguishing multiple targets from one another. Both are introduced in
section 2.1.

The density at which the sample is imaged is closely related to the imaging speed. The density
is influenced both by the sample preparation and can also be tuned during the sample acquisi-
tion by changing the laser power. When not dictated by the sample preparation or the need
for live-cell imaging, higher densities are favorable to achieve faster imaging, but this will come
at the cost of degraded imaging quality (Diekmann et al. 2020). High densities result in more
localizations per time however the task of fitting localizations get more difficult, as the emitters
will have neighbors in close proximity (see Figure 2.1b). For classical localization algorithms,
this results in two intertwined problems: First, it is unclear how many emitters are present in a
certain ROI, and second, the Maximum-Likelihood-Estimation (MLE) optimization task will
be influenced by that and harder to solve.

The working principle of SMLM is, computationally speaking, an inverse problem. We try
to infer the cause (i.e., the structure of the biological site) by looking at the observation (the
camera frames). This renders it to be an interesting application for a simulation-based Machine
Learning approach. Having an accurate simulator for our microscopic setup, we can easily com-
pute new samples and let a Deep Neural Network perform the inverse task of reconstructing
the structure that caused the observation. Several recent algorithms in SMLM applied this ap-
proach successfully (Nehme, Weiss, et al. 2018; Nehme, Freedman, et al. 2020; Speiser et al.
2021).

Simulation-based ML algorithms have been successfully applied at high-density SMLM data
(Nehme, Weiss, et al. 2018; Nehme, Freedman, et al. 2020; Speiser et al. 2021; Fu et al. 2023).
However, the field lacks an algorithm for multi-channeled high-density data to fill in the gap
for multi-color or biplane imaging.

1.2 Machine Learning in Biomedical Applications

In recent years, advancements in Machine Learning, particularly in Deep Learning, have led
to dramatic achievements in biomedical sciences. Common anaylsis tasks in the biomedical
realm are segmentation (Ronneberger, Fischer, and Brox 2015; Schmidt et al. 2018; Buchholz
et al. 2020; Weigert, Schmidt, Haase, et al. 2020; Isensee et al. 2020), object detection (Hung
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1.2 Machine Learning in Biomedical Applications

et al. 2020, Midtvedt et al. 2022) or image restauration techniques such as denoising (Krull,
Buchholz, and Jug 2019; Buchholz et al. 2020).

In the context of SMLM, ML algorithms have not only been proposed for the very localiza-
tion step (Nehme, Weiss, et al. 2018; Nehme, Freedman, et al. 2020; Speiser et al. 2021; Fu et al.
2023) but also operating on the super-resolved image directly (Ouyang, Aristov, et al. 2018a)
or for downstream structural analysis of the localizations (Wu et al. 2023).

Given the impact of ML in the biomedical field, it is vital to consider the translational aspects
of integrating such algorithms into routine scientific workflows and addressing the challenges
of productionizing andmaintaining these applications inhigh-throughput environments. This
particularly includes all aspects of running and maintaining high-performance compute clus-
ters. Training recent LLMs poses unprecedented requirements on computing infrastructure,
which is often out of reach for public institutions and only accessible to a small set of companies.
In large-scale production-oriented environments, however, aspects of high availability, robust-
ness, and monitoring are of utmost importance. We briefly introduce these aspects in section
1.2.2.

Utilizing scientific algorithms in a routined, large-scale workflow is often somewhere in be-
tween low-entry barrier graphical solutions, which often lack robustness automation capabil-
ities, and production-ready environments, which require substantial infrastructure overhead
and maintenance (see sections 1.2.1 and 1.2.2).

With this study, we present DECODE-OpenCloud aiming at that very spot for the routined
scientific usage of ML algorithms in the realm of microscopy (sections 3.1.2 and A.2).

1.2.1 Translational Aspects of Machine Learning in Science

With the increased computational complexity of biomedical algorithms, these posed a signifi-
cant burden on all downstream aspects of ML applications, i.e., concerning software engineer-
ing, computational resources, data management among others. To this day, many techniques
have not found their way into the daily routine of researchers, because of the additional require-
ments these DL methods pose. Often, they need frequent retraining, which introduces latency
as compared to classical, online methods, or require manual intervention, e.g., upon training
failure. Compared to classical algorithms, these frequent semi-manual interactions make it dif-
ficult to completely encapsulate these algorithms and utilize them as-is over a long time span.

Software frameworks like ilastik (Berg et al. 2019), ImJoy (Ouyang, Mueller, et al. 2019) or
CellProfiler (McQuin et al. 2018) embed various, complex and sophisticated ML algorithms in
an easy to use, fully-fledged software solution for researchers.

Low entry barrier solutions like Jupyter Notebooks (Kluyver et al. 2016) gained significant
popularity and underwent active development in the Python developer community. It has be-
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Chapter 1 Introduction

come a mean of presenting scripted code with visual output to a broad audience even with-
out prior computational experience. Oftentimes, institutions or enterprise environments host
these Notebooks on JupyterHubs.1 Google Colaboratory2 (often referred to as simply Google
Colab or Colab) is a publicly available platform where Jupyter-like notebooks are hosted and
compute resources are provided by Google. It gained popularity in the scientific community as
ameans tohost easy-access notebooks even including accelerated compute resources (i.e., GPU).
However, these instances come with their own limitations as they offer limited support for pro-
ductionized requirements, which include but are not limited to pinning software packages and
environments, specifying minimum requirements for computing hardware and more.

1.2.2 Machine Learning in Large Scale Environments

In high-throughput, large-scale environments, productionized setups are needed to accommo-
date the needs for low manual interaction, robustness, and reliability. Typically, these work-
flows need to accomodate the following aspects:

Data Management Data management comprises all aspects from low-level storage and ver-
sioning to preprocessing, quality checking, logging, and rights management due to ethical or
legal concerns. Typically, cloud-based bucketized storage or shared file systems are used for
storing data. Data pipelines are often established with tools like Apache Airflow3, MLFlow4,
or similar tools. These tools help automate and manage complex data workflows, ensure data
integrity, and maintain accurate records of data transformations and processing steps.

ModelDevelopment Model development involves creating, training, andvalidatingmachine
learning models. This phase is crucial for ensuring the models perform well on unseen data and
meet the desired accuracy and performance metrics. Validation techniques are applied to assess
the model’s effectiveness and to tune hyperparameters for optimal performance.

Compute Resources Compute resources are essential for training and deploying machine
learning models. These resources can include hypervisors, AWS, or other cloud-based solutions
that provide the necessary computational power. The choice of compute resources depends on
the specific requirements of the task, such as the amount of data, the complexity of the models,
and the need for scalability.

1https://jupyter.org/hub
2https://colab.research.google.com
3https://airflow.apache.org/
4https://mlflow.org/
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1.3 Thesis Outline

Deployment The deployment type is likely the greatest difference between machine learn-
ing in production and in an experimental, single-researcher scenario. Deployment needs to
accommodate aspects of accessibility and interconnectivity of productionized services. Typi-
cally, models are wrapped and hidden behind a Representational State Transfer Application
Programming Interface (REST-API), which serves the inference task. This allows for seamless
integration with other services and applications, providing a robust and scalable solution for
delivering ML capabilities to end users.

Monitoring and Maintenance Monitoring and maintenance are critical for ensuring de-
ployed machine learning models’ long-term success and reliability. Tools like TensorBoard and
MLFlow are commonly used to track model performance, log important metrics, and iden-
tify potential issues. Continuous monitoring allows for timely updates and adjustments to the
models, ensuring they remain effective and accurate over time. typically, a mixture of managed
and custom services are used from a Hypervisor likeAWS5,Google Cloud6 or StackIT 7 among
others.

1.3 Thesis Outline

This chapter set the context of this thesis. The two main contributions of this thesis are:

DECODE‐Plex A multiplexed, multi-channel high density fitting algorithm for SMLM, in par-
ticular for multi-color and biplane applications (see section A.1)

DECODE‐OpenCloud A hybrid-cloud environment where researchers can share compute re-
sources and algorithms in the realm of microscopy (see section A.2)

Chapter 2 provides more scientific background on the physical aspects of Single Molecule
Localization Microscopy (SMLM) outlining the relevant aspects of the microscopic setup, its
Point SpreadFunction (PSF) (section2.2), the cameramodels and the characteristics of emitters
(i.e., the photophysical model). In chapter 3 the manuscripts and publications are summarized
and the author contributions are named. The manuscripts themselves can be found in sections
A.1, A.2. Chapter 4 puts the thesis in a broader context, reflects and outlooks future directions.

5https://aws.amazon.com
6https://cloud.google.com
7https://www.stackit.de
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Chapter 2

Scientific Background

In the following, we provide background on the most important aspects of multi-channeled
Single Molecule Localization Microscopy (SMLM), in particular those which are relevant to
DECODE-Plex due to its simulated training approach.

We outline the theoretical background of diffraction theory (section 2.1.1) and the resolu-
tion limit of SMLM and then introduce experimental realizations of a typical SMLM setup.
This chapter particularly sheds light on the aspects that are important to the simulated train-
ing approach of DECODE-Plex. For this reason, we discuss the other two core components
of our simulated training approach, the Point Spread Function (section 2.2) and the camera
characteristics (section 2.3).

2.1 Single Molecule Localization Microscopy

2.1.1 Diffraction Limit of Light

The basic resolution limit of classical light microscopy comes from the fact that an optical sys-
tem with light at a wavelength λ has a lower bound on the size of its optical response even for
infinitely small objects. The PSF of an optical setup is the system’s response to a point source.
The image I of an object O is then described by the convolution of an object O with the PSF

I(r) = O(r)! PSF(r) (2.1)

An ideal, abberation-free system has a PSF that is described by the Airy disk, which is deduced
from the Fourier transform of the aperture function.

I(θ) = I0
[

2J1(k a sin θ)
k a sin θ

]2
(2.2)
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Chapter 2 Scientific Background

Figure 2.1: Emitters in close proximity. (a) Twopoint sources at Rayleigh distance and their observed signal. The two sources be‐
come increasingly indistinguishable as the emitters come closer together, in particular in conjunction with inevitable
shot‐noise due to the quantum mechanical nature of the photons and the effects of pixelation. (b) Localiation in
the presence of close emitters. Illustrative optimization failure in the presence of close emitters for SMLM. The iso‐
lated emitter is detected and localized correctly, while the optimization algorithm converges to a suboptimal local
minimum for emitters in close proximity. Scalebar 1µm.

with I(θ) being the intensity of the light at an angle θ relative to the optical axis, I0 is the
intensity at the center of the Airy disk, J1 is the Bessel function of the first kind of order 1, k is
the wavenumber of the light, and a is the radius of the aperture.

Figure 2.1a shows to point sources in close proximity. From here, it is apparent, that there
must be a fundamental limit on the minimum spatial frequency of structures that can be dis-
tinguished under the assumption of the already idealized PSF. If the point sources are closer
together than a critical distance, their optical response will not be distinguishable from a single
point source. This particularly holds true under the influence of inevitable noise sources (see
section 2.3). While deriving it from different ends, both the Rayleigh criterion and the Abbe
criterion arrive at similar minimally resolvable distances

dRayleigh =
0.61λ
NA

(2.3)

dAbbe =
λ

2NA
(2.4)

with NA being the numerical aperture of the optical system; NA = n sin(θ) with n being
the refractive index of the medium and θ being the opening angle of the lens (Lord Rayleigh
F.R.S. 1879; Abbe 1873).
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2.1 SingleMolecule LocalizationMicroscopy

(a)Minimal 2D SMLM setup. (b) 3D High‐throughput, dual‐channel SMLM setup. M mirror, dM dichroical mirror,
F filter, FW automated filter wheel, L (generic) lens, CL automated cylindrical lens,
TBL tube lens, P prism, Obj objective, Cam camera.

Figure 2.2: Simplified SMLM setup. (a) 2D and (b) dual‐channel 3D setup (2.2b). The dual‐channel microscopy setup shows a
single‐camera dual‐channel setup; other variants feature multiple cameras. The figures have been made and used
with permission by Dr. Joran Deschamps. They are reprinted from his PhD thesis Deschamps, Mund, and Ries 2017.

2.1.2 Resolution

A rough approximation of the resolution limit in SMLM is

σ =
σPSF√
N

(2.5)

where σPSF is the standard deviation of the PSF andN is the photon count (Lelek et al. 2021).
Here, the effects of pixelation, noise, and non-Gaussian noise are not considered. Following
Mortensen et al. 2010 leads to a more accurate estimate of the localization precision

σloc ≥

√√√√√
(
σ2
PSF + s2px/12

N

)⎛

⎝16
9

+
8π

(
σ2
PSF + s2px/12

)
bg2

Ns2px

⎞

⎠ (2.6)

where spx is the pixel size and bg the background intensity; see also Cramer-Rao Lower Bound
(CRLB) in section 2.2.

2.1.3 Experimental Realization

To experimentally distribute the signal of the biological site over many frames, mostly the effect
of photoswitching is used inwhich a fluorophore switches between the on and off state. Switch-
ing between the states is a stochastic event; however, the overall switching probabilities can
often be influenced by experimental modification, i.e., varying laser powers or labeling strate-
gies. The fluorophores can also enter an irreversible off state in which they are bleached. Single
Molecule Localization Microscopy is the common denominator term for different experimen-
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tal realizations of imaging blinking fluorophores, which in turn have individual names.
In Photo-activated Localization Microscopy (PALM), fluorescent proteins activated under

UV light were used (Betzig et al. 2006, Hess, Girirajan, and Mason 2006, Biteen et al. 2008).
Stochastic optical Reconstruction Microscopy (STORM) used dyes as synthetic fluorophores
that can achievephotoswitching (Rust, Bates, andZhuang2006,Heilemannet al. 2008, Fölling
et al. 2008).

Self-blinking dyes are another approach to SMLM. They intrinsically blink by switching be-
tween the fluorescent and non-fluorescent states without external activation.

The working principle of PAINT (Sharonov and Hochstrasser 2006) and DNA-PAINT
(Schnitzbauer et al. 2017) is slightly different. Here, fluorophores donotphotoswitch to achieve
the necessary blinking, instead, they repeatedly bind and unbind to the target strain. Unbound
fluorophores freely diffuse and lead to unspecific non-localized background.

Modelling Fluorophore photophysics For thepurpose of a localization algorithm, themech-
anism that leads to the blinking is of less concern than the explicit statistical properties of the
emitters. Most importantly, the photon distribution, lifetime, and background characteristics
are defined by the experimental realization and biological site are relevant to the localization
algorithm. Following Annibale et al. 2011 and Sage et al. 2019, we can model the blinking dy-
namics of an individual emitter by the four-state model. Here, emitters turn from the initial
off-state to a blinking state with a stochastic lifetime following an exponential distribution, af-
terward, they re-enter the off-state. In principle, these emitters could re-appear at a later point
in the experiment however these long-ranged dynamics are usually not considered by localiza-
tion algorithms, rendering the model an effective three-state model. In contrast, the high short-
term temporal correlation due to the lifetime is utilized by many localization algorithm as a
post-processing step, the grouping. Here, the localizations on neighboring frames are matched
and then undergo weighted averaging (Chao, Ward, and Ober 2010, Li, Mund, et al. 2018).
InDECODE (andDECODE-Plex) the high temporal correlation is explicitly used as temporal
context; here, the input to the network is a window of three frames (Speiser et al. 2021).

2.1.4 3D Single Molecule Localization Microscopy

Any microscopy technique is at the advantage of being able to resolve complex biological struc-
tures (e.g., Nuclear Pore Complex (NPC)) in all three geometric dimensions. For SMLM, sev-
eral approaches have been proposed which break the symmetry along the z-axis for out of focus
emitters by altering the PSF in varios ways (PSF engineering) or multi-plane imaging. The most
prominent variant of PSF engineered variants of SMLM for 3D imaging is the astigmatic ap-
proach following B. Huang et al. 2008. Here, a cylindrical lens is simply placed into the beam
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off on

dark

bleached

∼ U

1/Tbleach

1/Ton

1/Tdark

Figure 2.3: Four state emitter model following Sage et al. 2019. The emitter switches from the off to the on state following a
uniform distribution. The emitter can then change either to the (reversible) dark or (irreversible) bleached state with
the respective lifetimes.

Figure 2.4: Astigmatic PSF. (a‐c) xy slices below‐, in‐, and above the focal plane. The elongation axis of the PSF depends on
the sign of z and breaks the symmetry as compared to 2D setups without a tube lens. Scalebar: 1µm. (d) xz slice.

path, which elongates the PSF horizontally or vertically depending on the z position (see Fig-
ure 2.2 and 2.4). Other variants alter the PSF by introducing a phase mask or even using more
complex optoelectronic devices (Pavani et al. 2009, Shechtman et al. 2014). Biplane 3D SMLM
captures the PSF at different focal planes and can infer the axial position by the joint informa-
tion of both channels or cameras (Juette et al. 2008).

2.1.5 Multi-color SMLM

Multi-color microscopy and multi-color SMLM in particular are common techniques to study
the relations of different proteins at the same structure. In SMLM this can be achieved either
by spectrally distinct fluorophores (Dempsey et al. 2011) and direct color assignment, or by the
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Figure 2.5: Multi‐Color Photon Emission. (a) Photon Emission spectra for Alexa Fluor 647 (AF647), Cyanine‐based Fluorescent
660 (CF660) and dichroic beamsplitter transmission (DM) characteristic. (b) Experimental photon ratios for a dual‐
color experiment with AF647, CF660. The scatterplot was color‐coded by the color assignment.

ratiometric approach (Bossi et al. 2008, Lehmann et al. 2016, Y. Zhang et al. 2020).

Ratiometric Multi-Color SMLM Here, two or more colors are imaged in typically two
channels/cameras with a dichroic mirror in the beam path (see Figure 2.2b). The color of the
fluorophore is inferred by comparing the photon count ratio in both channels, which requires
registration post-localization or simultaneous fitting of of all channels (Li, Shi, et al. 2022; see
2.1.7).

For the ratiometric approach, the photon count between two channels is transformed de-
pending on the wavelength of the emitters and the characteristics of the dichroic mirror (see
Figures 2.2b, 2.5a). Figure 2.5b shows an exemplary photon count distribution in a two-color
experiment. Typically, the color-assignment is a downstream task in which the color is assigned
by segmenting the experimental photon ratios into as many populations as there are colors.
Moreover, if the true photon ratio for each color is known and the fitting algorithm outputs
uncertainty estimates for the photon counts, a probabilistic color assignment can be performed,
which is useful to filter out fuzzy localization (see methods of the DECODE-Plex manuscript).
In biplane imaging, the photon ratio between the two channels will be constant and can be fully
represented by channel-wise PSF normalization.
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2.1 SingleMolecule LocalizationMicroscopy

2.1.6 Spatial Transformation in Multi-Channel SMLM

For a typical multi-channeled SMLM setup like in Figure 2.2b, the spatial transform between
a pair of channels can be described by a simple affine or projective transformation.

T =

⎛

⎜⎜⎜⎜⎜⎝

t11 t12 t13

t21 t22 t23

0 0 1

⎞

⎟⎟⎟⎟⎟⎠
(2.7)

!r2 = T!r1 (2.8)

where !r2, !r1 are the first and second channel positions respectively. In case more than two
channels are present, pairs of transformations between a shared reference, and the individual
channels are computed.

In contrast to the PSF, the spatial transformation is not only implicitly presented to the Neu-
ral Network (NN) through sample generation, but made explicit as an additional input. We
compute a transformation indicator, which simply comprises the offset between the first and
second channels for all pixels and pass them along with the input frames.

2.1.7 High-Density, High-throughput SMLM

SMLM is an intrinsically slow technique as the distribution of the signal of a sample over time
is at its core principle. Naturally, the acquisition time is directly linked to the density of emit-
ters at which a sample is captured. The density of emitters can sometimes be predetermined by
experimental factors (e.g., due to ultra-high labeling) or tuned during the acquisition by tun-
ing the laser power so that the desired density is achieved. Notably, high-density acquisitions
complicate the localization task. Classical MLE based fitting algorithms perform a peakfinding
step before optimization. However, when emitters are in close proximity to one another, these
problems are intertwined. An incorrect number of emitters in a Region of Interest (ROI) will
lead to subpar optimization and even when the amount of emitters is correctly guessed, the
optimization is non-convex and includes suboptimal minima. Interestingly, prior to DL based
approaches, the best performing fitting algorithms for high-density datasets were in fact low
densityfitting algorithms (Sage et al. 2019). Recent simulation-based, deep learning approaches
perform detection and localization simultaneously (Nehme, Weiss, et al. 2018; Nehme, Freed-
man, et al. 2020; Speiser et al. 2021).

In a laboratory environment, as far as high-throughput acquisitions are concerned, several
other factors than the sole duration of a single acquisition must be considered. Besides increas-
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ing the density of localizations, several othermeasures canbeundertaken tomaximize the utility
of a SMLM setup. For example, automated (over-night) acquisitions can be of great utility even
when the imaging time per sample is unchanged (Yan et al. 2018, Mund et al. 2018).

Besides changes to the experimental or labeling protocol, recent DL techniques that directly
operate on the renderedmicroscopy image candramatically speedupacquisition times (Ouyang,
Aristov, et al. 2018a, Weigert, Schmidt, Boothe, et al. 2018).

Localization Algorithm

Key to SMLM is the precise localization of the emitters in each frame. Many algorithms have
been proposed, making it difficult for users to choose among them. The Super-resolution fight
club (Sage et al. 2019), often referred to as the SMLMChallenge, provides an extensive overview
over 2D and 3D localization algorithms and evaluates them both on simulated as well as exper-
imental data. Classical localization algorithm typically features a two-step detection and subse-
quent localization approach, where the detection is performed by a peakfinder and localization
by Maximum-Likelihood-Estimation (MLE). Prominent members areThunderstorm (Ovesný
et al. 2014) as it is readily available as a FiJi-plugin (Schindelin et al. 2012). Other common algo-
rithms, in particular for three-dimensional localization, include cspline (Babcock and Zhuang
2017) or the spline-based fitter integrated in the SMAP software (Li, Mund, et al. 2018, Ries
2020). Recent, DL based techniques perform detection and localization simultaneously as they
extract the set of localizations in a post-processing step from a carefully crafted image- or voxel-
based output representation (Nehme, Weiss, et al. 2018; Nehme, Freedman, et al. 2020; Speiser
et al. 2021).

Rendering

The final step in SMLM is filtering localizations to throw out spurious or bad localized emitters
and subsequent rendering to convert the set of localizations back to a super-resolvedmicroscopy
image. Typically, the localizations are plotted on a fine grid (around 10 nm) and plotted as
2D histograms (van Oijen et al. 1998, Hess, Girirajan, and Mason 2006) or are rendered using
Gaussian kernels. Here, the width is proportional to a localization precision estimate (should
the localization algorithm provide that) and intensity scaled with the photon count. Baddeley,
Cannell, and Soeller 2010 show that the choice of the rendering algorithm has significant influ-
ence on the interpretability and achievable resolution and propose alternative techniques based
on quad-trees and delaunay triangulation kernels.
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2.2 Point Spread Function

2.2 Point Spread Function

As introduced in section 2.1.1, the PSF of an optical system is the system’s response to a point
source. In the context of such systems, the PSF and the resulting resolution of the image are
tightly coupled. Modeling the PSF is vital to localization microscopy, as it is the basis for the
very localization of the emitters. Any deviation between the unobservable true PSF and the
modeled PSF will lead to biases in the localization and/or to increased localization errors (Liu
et al. 2024). In experimental setups, the PSF will vary (1) over time due to temperature drifts
or other environmental factors, (2) over the field of view due to optical aberrations and (3) over
the depth of the sample due to refractive index mismatches.

Cramer-RaoLowerBound (CRLB) TheCramer-RaoLowerBound (CRLB) is often taken
as a measure of localization precision in the field of SMLM. The background is that the CRLB
describes the lower bound on the variance of an unbiased estimator and is computed by the
inverse of the Fisher Information matrix I

covθ(T(X)) ≥ I−1(θ) (2.9)

where θ is the parameter to be estimated and T(X) is the (unbiased) estimator. The CRLB
on the parameters θ are the diagonal elements of the inverse of the Fisher Information matrix.
Importantly, that means that an efficient estimator, i.e. a good localization algorithm, should
reach equality of Equation 2.9 under the knowledge of the true PSF and noise model. It should
be stressed that any reported CRLB is under the assumption of the PSF model for which it is
being calculated and is, therefore, not necessarily the true lower bound on the localization error
since the true PSF is unknown. Moreover, the CRLB often can not be reliably computed in
multi-emitter scenarios because the Fisher information matrix can be singular and inversion
ill-defined in this case (Schoen 2014, Chao, Sally Ward, and Ober 2016).

If we neglect the Gaussian readout-noise (i.e., shot noise only; see section 2.3), we can write
out the likelihood function L for the observed data x and our pixelated PSF model with mean
values μk(x, y) with parameters θ as

L(μ | x) =
∏

k

μxkk
xk!

e−μk (2.10)
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with k being the pixel index. The Fisher information matrix I reduces to

Ii,j = E
x

[
∑

k

(
xk
μk

∂μk
∂θi

−
∂μk
∂θi

)(
xk
μk

∂μk
∂θj

−
∂μk
∂θj

)]
(2.11)

= E
x

[
∑

k

(
xk − μk

μk

)2 ∂μk
∂θi

∂μk
∂θj

]
(2.12)

=
∑

k

1
μk

∂μk
∂θi

∂μk
∂θj

(2.13)

following Schoen 2014.

2.2.1 Point Spread Function Models

We introduce the most common PSF models to Single Molecule Localization Microscopy in
the following.

Gaussian PSF For 2D SMLM, commonly, a 2D Gaussian PSF is used for localization, which
is a reasonable approximation of the idealized Airy disk PSF. With the scalar version of the well-
known Gaussian with mean value μ at r and parameters for θ :

(
θx, θy, θphot , θσ

)

μ(r; θ) =
θphot

2πθ2
σ
e
−(x−θx)2−(y−θy)2

2θ2σ (2.14)

Neglecting pixelation effects and background, the CRLB can then be easily estimated from
the diagonal Fisher information matrix I following Equation 2.13

I = diag
(θphot

θ2
σ

,
θphot

θ2
σ

,
1

θphot
,
4θphot

θ2
σ

)
(2.15)

The CRLB is then

covθ ≥ diag
(

θ2
σ

θphot
,

θ2
σ

θphot
, θphot,

θ2
σ

4θphot

)
(2.16)

which for θx, θy scales as expected with the inverse of the photon count, i.e., the localization pre-
cision scales with the inverse square root of the number of photons in accordance with Equa-
tion 2.5.

Spline-based PSF In recent years, spline-based PSF models have been proposed due to their
generality and flexibility to adapt to arbitrary PSF without detailing any physical priors (Bab-
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cock and Zhuang 2017, Li, Mund, et al. 2018). A spline is simply a piecewise polynomial func-
tion with smooth transitions between the pieces. In the three-dimensional form, a cubic spline-
based model can be written as

μi,j,k(x, y, z) = θphot
3∑

m=0

3∑

n=0

3∑

p=0
ai,j,k,m,n,p

(
x− xi

Δx

)m(
y− yj
Δy

)n(z− zk
Δz

)p
(2.17)

where ai,j,k,m,n,p are the spline coefficients, xi, yj, zk are the spline centers, and Δx,Δy,Δz are
the respective voxel sizes. The Fisher information and hence the CRLB can be easily computed,
as it reduces to sums of simple polynomial derivatives. One drawback of the spline-based PSF
model is the great number of parameters, which amount to 64 coefficients per voxel, e.g. for
a common calibration with ROI-size of 25x25 pixels in x, y, ±1 µm range in z with step size
10 nm leading to 8 · 106 parameters.

Zernike-based PSF If the PSF is computed in the Fourier domain, i.e., by the pupil function
with complex amplitudes, The PSF can be expressed elegantly based on Zernike polynomials.
The Zernike polynomials form an orthogonal basis and are often used to describe optical aber-
rations. Compared to the spline-based PSF model, much fewer parameters are needed, and the
model has a direct physical interpretation of the aberrations of the optical system. For example,
the second order Zernike polynomials Z2

2,Z
−2
2 describe Astigmatism, the third order Z1

3,Z
−1
3

Coma.

The Zernike polynomials can be written as

Zm
n (ρ, ϕ) = Rm

n (ρ) cos(mϕ) (2.18)

Z−m
n (ρ, ϕ) = Rm

n (ρ) sin(mϕ) (2.19)

Rm
n (ρ) =

n−m
2∑

k=0

(−1)k
(
n− k
k

)(
n− 2k
n−m

2 − k

)
ρn−2k (2.20)

with ρ the radial coordinate and ϕ the azimuthal angle,m even and−m odd polynomials, n the
polynomial order, n ≥ m ≥ 0. The PSF μ for an emitter at position xi, yi, zi is then

μ (x− xi, y− yi, zi) = θphot
[
F−1

(
h
(
kx, ky

)
ei2πkzzi ei2π(kxxi+kyyi)

)]2
(2.21)

where h is the pupil function expressed by the Zernike base,!k is the wave vector, following
Liu et al. 2024.
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2.2.2 Point Spread Function Retrieval

For 3D SMLM, the PSF model is often retrieved experimentally by measuring bright, immobi-
lized calibration beads (Babcock and Zhuang 2017; Li, Mund, et al. 2018). We outline the re-
trieval procedureobtaining a spline-basedPSFand projective transformation for thedual-channeled
case following Li, Shi, et al. 2022.

Beads are acquired at different fields of view to ensure a reasonably robust PSF model. In
the calibration procedure, for each channel, the beads are coarsely localized by peak finding
and the ROI are registered and interpolated using 3D cross-correlation and cubic interpolation.
Subsequently, the cubic spline model’s parameters are extracted, and the bead raw data itself is
fitted for validation. In the dual-channel case, the beads are linked across two channels, and the
parameters of the projective transformation matrix are extracted. The beads are then aligned
and interpolated, and the dual-channel PSF model is calculated.

In addition, recent methods have proposed to retrieve the PSF directly from in-situ data itself
(Xu et al. 2020, Liu et al. 2024). When successful, this method is preferable over a calibration
procedure not only because of reduced effort but also because sample the sample itself can alter
the PSF slightly, which would be unnoticed in bead calibration procedure.

2.3 Camera Models

For SMLM,mostly EMCCDand sCMOScameras are used. The resulting noise characteristics
depend on which of the two camera types is used. Following F. Huang et al. 2013 the noise
model is comprised of Shot noise, noise due to amplification gain (EMCCD only), and readout
noise.

Shot noise For an expected photon count λ0,k in pixel k, quantum efficiency qe and spurious
charge cs, the observed signal follows the probability distribution p(sk) as

λ = λ0 · qe+ cs (2.22)

pshot (sk) =
λske−λ

sk!
. (2.23)

EMCCD Amplification gain EMCCD cameras amplify the signal by a multiplication elec-
tronic with variable gain factor θ = EMgain. The observed analog signal x is approximately a
Gamma distribution

ρgain (x | k, θ) =
1

Γ(k)θk
xk−1e−

x
θ (2.24)

whith shape parameter k = ne−,0 being the photoelectrons.
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Read noise The read noise commonly follows a Gaussian distribution with μ as the expected
value in analog units after amplification (for EM-CCD) and variance σ2

pread (x | μ, σ) =
1√
2πσ

e−
(x−μ)2

2σ2 (2.25)

For scientific Complementary Metal–Oxide–Semiconductor (sCMOS) cameras, the read
noise should not assumed to be pixel/position independent as this can lead to biases in the
localizations (F. Huang et al. 2013, Mandracchia et al. 2020). Equation 2.25 then changes to
vectorial form.

33





Chapter 3

Manuscripts and Publications

In the following, we summarize andoutline each of the (unpublished)manuscripts andpublica-
tions that are part of or connected to this thesis and name the respective author’s contributions.

3.1 Manuscripts

3.1.1 DECODE-Plex: high-density multi-channel single-molecule localization

This manuscript is in preparation.
The starting point of this project was the DECODE publication, which several groups have

adopted for usage and even extended to field-dependent PSFs (Fu et al. 2023). To this day, an
extension to multi-channeled data is missing but is necessary in biplane or multi-color imaging.
The naive approach to a multi-channeled SMLM setup would be to fit each channel indepen-
dently. However, linked prediction of all channels is to the advantage of improved localization
precision in multi-color setups (Li, Shi, et al. 2022) and essential for biplane imaging.

DECODE-Plex aims to fill in this gap. Multi-channeled SMLM data comes with additional
challenges not present to DECODE as we need to account for both the spatial and photon
transformation between the two channels and accurately simulate their behavior (see sections
2.1.6 and 2.1.5).

We designed the neural network to feature three U-Net-like backbones (Ronneberger, Fis-
cher, and Brox 2015). One per channel and one which combines both the channel dimension
and the temporal dimension similar to the network architecture (seeFigure 4 in themanuscript).

Since the image size at inference is potentially unknown or varying at training time, we train
the model with a fixed ROI size of 80x80 pixel and input a spatial transformation indicator rep-
resenting the spatially varying offsets between the channels in addition to the normal simulated
or experimental SMLM frames. We sample the ROI’s position across the extent of the camera
chip and feed the network with the respective transformation indicator as input. At inference

35



Chapter 3 Manuscripts and Publications

time, the ROI’s position of the experimental data is extracted, and the transformation indicator
is fed accordingly.

We extensively validated DECODE-Plex performance with simulated and experimental data.
Part of the simulated data was our submission to the SMLM challenge for biplane data where
DECODE-Plex outperformed all other algorithms by a substantial margin. Furthermore, we
simulated biplane and multi-color data across a wide range of densities and compared its perfor-
mance against the state-of-the-art algorithm GlobLoc, which, similar to DECODE, allows for
linked prediction of coordinates and other emitter attributes. GlobLoc, however, is based on a
classical two-step peak finding and maximum likelihood technique. In addition, we acquired
live-cell 3D biplane data; DECODE-Plex was able to resolve structures at unseen detail.

We took great care to develop DECODE-Plex in a robust and maintainable fashion. Upon
publication, wewillmake the source codewill bemade available, including demonstrationnote-
books, tutorials, and detailed documentation.

Author contributions Themanuscript is co-authoredwithNestorCastillo (second),Arthur
Jaques (third), Jakob Macke (shared corresponding author) and Jonas Ries (shared correspond-
ing author).

Jonas Ries and Jakob Macke initiated the project. The idea for the network input represen-
tation to model the spatial transformations came from Lucas-Raphael Müller, Jakob Macke
and Jonas Ries gave input to the validation of the multi-channel predictions and the design
of the neural network backbone; the contributions to the scientific ideas amount to Lucas-
Raphael Müller (60%), Jakob Macke (20%), Jonas Ries (20%). Nestor Castillo recorded the
multi-color and biplane live cell data; the biplane challenge data is publicly available Sage et al.
2019. The contributions to data generation amount to Nestor Castillo (100%). Arthur Jaques
helped implement the algorithm and software packaging. The contributions to the code base,
analysis, and interpretation amount to Lucas-Raphael Müller (70%), Jonas Ries (15%), Jakob
Macke (10%), Arthur Jaques (5%). Arthur Jaques prepared Figure 4. The contributions to
manuscript writing and revision amount to Jakob Macke (5%), Arthur Jaques (5%), Jonas Ries
(15%), Lucas-Raphael Müller (75%).

3.1.2 DECODE-OpenCloud: Sharing Computational Resources for
Microscopy Data Analysis

This manuscript is in preparation.
The project’s idea was to shed light on the provisioning and orchestration of computational

resources for algorithms, particularly in the realm of microscopy. Increasingly complex and
deep-learning heavy compute workflows pose significant requirements on computational se-
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tups and access to hardware for researchers who want to use said algorithms. With this work,
we focus on these aspects by outlining and providing infrastructure which makes it easier for
researchers to make use of GPU-accelerated algorithms and developers to integrate program-
matically with our proposed backend via an API. To showcase the applicability and general-
ity of our approach, we interfaced three algorithms, namely DECODE, DECODE-Plex and
COMET (Speiser et al. 2021; section 3.1.1; Reinkensmeier and Bates 2023).

Other approaches in the field focus on the provision of Jupyter or Colab notebooks, where
the latter provide both the simple access of a Jupyter Notebook-like interface as well as com-
putational resources at the discretion of Google. Another option is the use of Command-
Line interfaces (CLIs). DECODE-OpenCloud differs in that it covers productionized inter-
faces (APIs) and well-defined and tested computing infrastructure for reliable, productive us-
age. While Jupyter notebooks provide easy access to researchers and programmers with various
software engineering expertise, they often clutter over time, are not meant for programmatic
calls, and lack in-depth support for means of modern software development, i.e., Continuous
Integration and Continuous development tools. The Google Colab platform, in addition to
rendering notebooks similar to Jupyter notebooks, also provides compute resources at the dis-
cretion of Google. Currently, Google Colab does not support all common package managers
and compute environments change without further ado, rendering the platform unstable for
permanent use.

In summary, our work contributes: (1) We outline a computational infrastructure for large-
scale repetitive workflows where individuals and institutions can provide and consume com-
puting resources. (2) We integrate three reference algorithms in the field of SMLM and invite
researchers and developers to integrate more algorithms or make use of our API.

Author contributions Themanuscript is co-authoredwithArthur Jaques (sharedfirst), Jonas
Ries (shared corresponding) and Jakob Macke (shared corresponding). The conceptional idea
of productionizing the DECODE-Plex algorithm and the general extension of such a frame-
work came from me. Jakob Macke and Jonas Ries helped refine and apply them to the field.
The contributions to scientific ideas amount to Lucas-Raphael Müller (70%), Arthur Jaques
(20%), Jakob Macke (10%), and Jonas Ries (10%). There was no data generation applicable to
this manuscript. Arthur Jaques helped implement the infrastructure code and test the frame-
work. Analysis and interpretation amount to Lucas-Raphael Müller (60%), Arthur Jaques
(20%), Jonas Ries (10%), Jakob Macke (10%). Arthur Jaques prepared Figures 1 and 2. The
contributions to manuscript writing and revision amount to Jakob Macke (10%), Jonas Ries
(10%), Arthur Jaques (20%), Lucas-Raphael Müller (60%).
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3.1.3 Additional Contributions

The following publications are not a formal part of this thesis in that they partly overlap with
the author’s Master thesis (Deep learning enables fast and dense single-molecule localization [...],
Speiser et al. 2021) or were established during the author’s doctoral studies but are only loosely
connected to the methods and techniques developed this thesis focuses on (Robust hand track-
ing [...], Müller et al. 2022).

Deep learning enables fast and dense single-molecule localization with high accuracy

This paper was published in September 2021 in Nature Methods (Speiser et al. 2021); Artur
Speiser and I shared the first authorship.

The algorithm presented in this work,DECODE, laid the foundation of this study and tack-
led the issue of high-density SMLM fitting. In the past, most dedicated high-density algorithms
based on a two-step procedure of detection and localization showed subpar performance due to
the complexity and the coupling of both problems. With the rise of powerful Deep Learning
based methods, our initial conceptual idea was to feature a combination of a Deep Learning
fitting algorithm and a subsequent MLE based fitter. The motivation to introduce the latter
was to have direct access to the theoretically motivated optimization procedure since both the
model PSF model and the noise sources in SMLM are well understood (see chapter 2). They
both are the necessary core components of the MLE optimization derivation. Direct access to
the optimization ismore difficult for the trainingofNN, especially in our case, wherewepredict
a set of points represented in image space. On the other hand, DL based methods make incor-
porating auxiliary information easy if the information can be well represented. In the present
case, the auxiliary information is simply passed as an additional input into the model. In the
case of SMLM, this is particularly helpful since emitters across frames are highly correlated due
to their stochastic nature of on and off switching (see section 2.1.3). We chose to incorporate a
window of three frames to aid the prediction. While developing the DECODE algorithm for
this work, we found no additional benefit of a downstream iterative fitting step. We speculate
that this is due to two things: (A) the MLE fitting step does not have access to the temporal
window but only to a single frame, (B) the general ill-posed iterative optimization procedure in
multi-emitter configurations.

Besides incorporating temporal context, the representation of point sets in image space is a
challenging task. Initially, we used pre-computed target maps, where offset vectors were placed
in a 3x3 patch at the localization’s position. Later, we changed the loss and the representation
to the Gaussian model, which allowed for predictions, including uncertainties, which are par-
ticularly helpful for subsequent filtering. The backbone network consists of two U-Net blocks,
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where the first one is fed individual frames (i.e., shared weights), and the latter one was designed
to combine the temporal information, as it gets the concatenated output of the first network.
Our network was evaluated on both simulated and experimental 2D and 3D data. Concretely,
we showed its performance on high-density, ultra-high labeled data as well as on 2D live cell
data. DECODE was packaged neatly to make it available to a broad audience in the realm of
localization microscopy. Many groups have used and adapted DECODE since then.

Robust hand tracking for surgical telestration

This publicationwas authored andpublished inMay2022 in the Internal Journal ofComputer-
Assisted Radiology and Surgery as a proceeding of the International Conference on Informa-
tion Processing in Computer-Assisted Interventions 2022 (Müller et al. 2022).

The conceptional idea of the project was to aid surgical training in minimally invasive surg-
eries by means of surgical telestration. Compared to state-of-the-art, which was largely based
on traditional drawings, we extend the means of inter-surgeon communication by tracking
the hand of a demonstrator and overlying it in the laparoscopic surgery screen. The overlay
itself was formed by semantic segmentation. In addition to the semantic segmentation task,
we perform keypoint regression on all fingers and the central hand joint to path the way for
future downstream rendering of an artificial hand, providing more options in adaptive visual-
ization. The Machine Learning backbone of our algorithm is a combination of a bounding
box detection algorithm (a fine-tuned Yolov5s model; Ultralytics 2021), a keypoint regressor
(a fine-tuned EfficientNet-B3; Lin et al. 2017) and a segmentation model (a fine-tuned FPN-
EfficientNet 3 pre trained with noisy student; Tan and Le 2019; Xie et al. 2020). We performed
extensive quantitative validation in a prospective validation study and compared the tracking
performance to the well-establishedMediaPipe framework (F. Zhang et al. 2020). Our analysis
respected the hierarchical structure of the data. We found that taken as is, MediaPipe showed
significant performance penalties for dark-skinned individuals compared to light-skinned indi-
viduals. We found that MediaPipe performed worse on applications involving surgical gloves
of any color.
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Conclusions

This work addressed the issue of fitting multi-channeled, high-density data in SMLM and the
embedding of such an algorithm in translational work, i.e., to enable researchers to use the
software easily and other developers to build upon it. Fitting localizations in SMLM is an
inverse problem, as we are trying to find the positions of emitters that caused the observation
we record by the camera. Motivated by the successful application of DECODE, a simulation-
based DL algorithm, we hypothesized that a related approach could be a good starting point
for multi-channeled localization microscopy data. DECODE has proven useful in fitting high-
density single-channeled data andhas since grown a substantial user base. Wefindour proposed
algorithm, DECODE-Plex, to be successful in fitting multi-channeled localization microscopy
data. We embedded it in the DECODE-OpenCloud framework for robust, repetitive work-
loads and ease of use. We want to discuss issues, limitations, and future work in the following.

4.1 DECODE-Plex

DECODE-Plex outperformed the previous state-of-the-art algorithm GlobLoc by a large mar-
gin at fitting high-density data. We compared its performance on both simulated and exper-
imental data, which were comprised of high-density biplane and high-density multi-colored
data. We found DECODE-Plex to consistently show superior detection performance and lo-
calization precision. In addition to improved localization results, DECODE-Plex compute in-
tensity scales favorably with the input frame size, whereas classical fitting algorithms scale with
the number of emitters, unfortunate in a high-density setting. We now discuss the limitations
and future work specific to DECODE-Plex in more detail.
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4.1.1 Simulation-based training

DECODE-Plex simulated training approach is its core component. Its performance is directly
attributed to an accurate, well-designed simulation pipeline. We found that the simulation-
based training approach works well in training our DL backbone when subsequently applied
to experimental data. For a model trained by supervised learning, a simulation-based approach
is merely the only possibility due to the lack of ground-truth labels or the possibility of human
annotation. In our case, the most critical components of the simulation pipeline are emitter
sampling, the Point Spread Function, and the camera simulation. We want to discuss these
integral aspects:

Emitters Simulating the distribution of the emitters is the first core component of the simu-
lation pipeline, as it defines the distribution of the target parameters the localization algorithms
aim to predict. Their most important attributes are the position, photon count, and time of
appearance.

The emitter’s position is defined by a structure from which we sample. To avoid halluci-
nation biases in our predictions, we decided against sampling from biological structures (see
section 4.1.3). The photon count of an emitter is determined by the lifetime before switching
off and the photon flux distribution. Arguably, the precise value of the lifetime is not relevant
for our purposes as it is described by an exponential distribution, which will lead to a broad
distribution of emitters, greatly varying in their specific lifetime. In a multi-color scenario, dif-
ferent colors have different lifetimes; however, this is not reflected in our simulation pipeline
since we train the model with independent photon counts in each channel. In real SMLM ex-
periments, fluorophores can re-enter an on-state after a long off-period. We did not model this
behavior as our model is only presented to a temporal context of three consecutive frames and
should not learn longer-range temporal dynamics. In amulti-color experiment, the photonflux
will be a multi-modal distribution with different modes determined by the respective labeling.
For that reason, we simply chose a uniform photon flux distribution.

Point Spread Function The PSF is the core component of the simulation that describes the
optical setup and the response of the microscope to a point emitter. A mismatch between the
true PSF and the PSF used to train DECODE-Plex can lead to artifacts or unnecessarily in-
creased variance (see section 4.1.2, Figure 9 in the DECODE-Plex manuscript). Varying PSFs
are also one of the contributors to why DECODE-Plex at this time does not generalize among
multiple microscopes or can even be used pre trained (see section 4.1.3).
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Spatial Transformation The precise knowledge of the spatial transformation between the
channels and a recent PSF calibration is vital. Indeed, we found false positive localizations when
an incorrect transformation was presented to the network. In that case, DECODE-Plex tends
to output one localization per channel instead of combining them. The resulting rendered
superresolution image would then show bad channel separation and ghost structures.

Latency The wait time between an experimental acquisition and fitted data is a major con-
tributing factor to the user who chooses among different localization software. One of the ma-
jor limitations of DECODE-Plex is its latency induced by the retraining of the model to ensure
the closeness of our simulated distribution to the experimental data. The two main factors
necessitating a fresh retraining are a different emitter distribution (i.e., photon/background
count) and/or a different PSF. This is in contrast to MLE based fitting algorithm where the
user simply specifies a calibration file with no additional upfront delay. Particularly in a high-
throughput setting, users rather expect real-time results, which can currently, only be provided
by classical MLE based fitting algorithm. We propose several future strategies to mitigate the
delay in section 4.1.3.

4.1.2 Gridding Artefact

In certain experimental data, we identified the presence of a gridding artifact. We found this
artifact in particularly adverse conditions, most prominently for out-of-focus localizations and
regions of high local density, for rather dim localizations or combinations of all aforementioned
cases. Under common conditions, i.e., for a sufficiently large biological structure, there should
not be a strong non-uniformity in the localizations offsets with respect to the pixel center since
the pixel grid and any biological structure will almost never share a common frame of reference.
Thus, the gridding artifact can be easily quantified by histogramization of the subpixel position.
Under these assumptions, any non-uniformity in the histogram indicates biased localizations
caused by uneven recall or biased localization. The artifact is problematic because it could be
confused with a biological structure. This particularly holds true for structures of a similar
spatial frequency, for example, when actin-spectrin structures are imaged, which are spaced at
190 nm. Their scale is not too far from the gridding artifact, spaced in pixel size (often in the
order of 100 nm). When the rendering algorithm takes the uncertainty estimate of the localiza-
tions into account, the visual presence of the gridding artifact reduces. As a mitigation step, we
introduced a debiasing algorithm to actively shift the localizations to form uniform histograms.
Comparing pre- and post debiased localizations, we found that not all localizations were shifted
by much less than their predicted uncertainty. This indicates that the model underreports its
error in these cases and points to a more fundamental problem of the output representation or
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simulation procedure.

Possible Sources In principle, this gridding artifact could be due to either a reduced number
of localizations at the pixel borders, and/or a biased localization towards the pixel centers. To
assess this, we purposefully trained a DECODE-Plex network with a wrong PSF and assessed
the output localizations. (Figure 9 of the DECODE-Plex manuscript). This is the first indica-
tion that, in fact, gridding is largely caused by positionally biased localizations. Still, it should
be noted that experimental data is intrinsically more complicated and lacks access to ground
truth. Additional factors for experimental data are not limited to but include non-uniform
background distributions, PSF mismatch because of field-dependent aberrations or refractive
index mismatch. Lelek et al. 2021 show that these artifacts appear even for MLE based fitting al-
gorithm. However, we found far less pronounced artifacts when comparing DECODE-Plex to
the GlobLoc algorithm which merely showed increased variance or rejected localizations under
these conditions. We speculate that the said artifacts are an implicit consequence of our chosen
data representation.

4.1.3 Future Work

We want to outline future ideas to mitigate the aforementioned limitations of our work or to
increase the applicability and useability of our software. We identify the generalization aspects
as the most important future directions, which, when solved, would drastically reduce the num-
ber of retraining necessary. Such a generalizing model would enable zero-latency application of
it to new experimental data. We want to elaborate on the dimensions of generalization in the
present case and other applicational and workflow aspects.

Emitter Distribution As outlined, we train DECODE-Plex from the ground up for every
acquisition in an almost 1:1 training to inference setting with the rationale to achieve optimal
predictions for each dataset. This is a somewhat unusual setting in the field, with ever larger
models even prohibitive in areas like Natural Language Processing (NLP) (OpenAI et al. 2024).
Furthermore, it induces the latency for the user to wait for the finished training. Since the PSF
varies on a larger time scale than the emitter’s distribution in photon counts and background,
future work should be conducted on models trained with a broader emitter distribution first.
Such a model could potentially be informed about the statistics of the data present, similar to
the spatial transformation indicator we introduced.

PSF Generalization Future work should be conducted on training the DECODE-Plex net-
work on a multitude of PSF and informing the model at inference time about the present PSF
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in the experimental data. This procedure will depend on an appropriate sampling at training
time and away to inform themodel about thePSFpresent in experimental data. Both, the intro-
duction of the transformation indicator as well as a variant of DECODE with field-dependent
PSFs (Fu et al. 2023) are steps in a similar direction. Arguably a physics-inspired representa-
tion like the zernike-based PSF (see section 2.2.1) with few necessary parameters is likely better
suited than a voxelated or spline-based PSF with millions of parameters, both for the sampling
procedure and to inform the model.

Data Representation The data representation of point clouds without finite support is a
challengewhencombinedwith conventional two- or three-dimensional convolutional networks
that are otherwise more commonly used for pixel-wise predictions. We got the first indication
that our chosen representation is a contributing factor to the presence of the observed grid-
ding artifact. Future work should elaborate on different representations of point sets without
finite support that are better targeted for the problem at hand. They should support, in princi-
ple, arbitrary localization precision (i.e., not limited by the pixel size of typically 100 nm), and
not lead to similar biases. In related work, Boyd et al. 2018 chose a representation that maps
convolutional features in image space to a fully connected output, effectively enforcing a list
representation with fixed in and output capacity in which it is the network’s responsibility to
learn an image to list translation. Lee et al. 2019 and Biloš and Günnemann 2021 introduce
more generalized, improved representations of permutation invariant densities, which could
be well suited for localization microscopy data.

Structured Sampling Strategy Instead of sampling the emitter’s position from an uninfor-
mative, 3D uniform distribution, incorporating prior structural information would be interest-
ing. Ouyang, Aristov, et al. 2018b show that with the incorporation of structural priors, fewer
localizations are needed to achieve similarly resolved superresolution images as compared to lo-
calization algorithms without such priors. We argue that the challenge here is the acceptance of
users towards such algorithms incorporating biologically inspired structural priors since hallu-
cination or other structured artifacts can significantly undermine trust in these algorithms. An
alternative possibility would be a semi-supervised or self-supervised variant of our algorithm in
which DECODE-Plex would be fed with a representation of its previous localizations.

Integration and Workflow The use of our algorithm will depend on its demonstrated sci-
entific success and, to a large extent, on the ease of usage. To this day, the Thunderstorm algo-
rithm (Ovesný et al. 2014) is one of the most widely used algorithms in the community because
of its easy integration into the Fiji software, even though it shows subpar performance when
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compared to other algorithms (Sage et al. 2019). Further thought should be spent on integrat-
ing DECODE-Plex nicely into a daily lab routine. With DECODE-OpenCloud, major steps
towards large-scale repetitive workflows have been undertaken; see section 4.2. In the future,
DECODE-Plex could be deeply integrated into scientific software widely used in the field, like
SMAP (Ries 2020), Napari (Sofroniew et al. 2024) or Fiji (Schindelin et al. 2012).

4.2 DECODE-OpenCloud

We designed DECODE-OpenCloud to integrate scientific software into routine, large-scale
workflows. Our hybrid solution, combining cloud-based orchestration with local and cloud
compute runners, ensures high availability and efficient use of local compute power. We re-
lease DECODE-OpenCloud to (1) invite researchers to use the software already integrated, (2)
developers to integrate more scientific software related to the field, and (3) to take DECODE-
OpenCloud infrastructure as inspiration. In the following, we want to discuss particular limi-
tations of DECODE-OpenCloud and potential future aspects.

4.2.1 Limitations

Large data Handling large data is generally challenging but particularly when multiple com-
puting locations are involved. This holds true for DECODE-OpenCloud as well. Our hybrid
model, i.e., the combination of local and cloud-backed compute resources, faces this challenge
in particular. The necessity for transferring large data varies depending on the algorithm. The
presently implemented DECODE and DECODE-Plex algorithms do not necessitate any large
data transfer during the training procedure since the training is simulation-based. We argue that
models can be applied to local computing hardware as the inference step poses much fewer re-
quirements on the available GPU memory and processing power. Other algorithms, however,
will need a significant amount of data for training and/or inference, which would be difficult
to realize in a hybrid cloud setting due to the transfer limits and costs (see section 4.2.2).

Monitoring Live monitoring and debugging are more challenging for a remote system like
DECODE-OpenCloud as compared to interactive approaches like Google Colab. Here, users
can directly with the graphical interface, which makes debugging easier. In recent years, ML
monitoring tools likeweights and biasesBiewald 2020 allow sophisticatedMLexperiment track-
ing and even remote cancellation. Integrating such a tool into the algorithms, rather than into
DECODE-OpenCloud is more apropriate since DECODE-OpenCloud provides a job orches-
tration and compute platform, it does notintend to modify the algorithms themselves. We im-
plemented basic job monitoring in DECODE-OpenCloud to inform users about failed jobs,
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but we do not support interactive compute sessions.

4.2.2 Future Work

We plan to integrate more algorithms into DECODE-OpenCloud and invite contributions
from other developers. We also encourage developers of integrated microscopy software suites
to use DECODE-OpenCloud programmatically via its API.

Further investigation is needed for optimized data handling in multi-location compute set-
tings. As DECODE-OpenCloud gains popularity, additional measures to distribute compute
resources fairly will become important.

4.3 Common Conclusion

In this study, we presented DECODE-Plex, an algorithm for high-density multi-channel Single
Molecule Localization Microscopy validated on simulated and experimental data. DECODE-
Plex outperformed the previous state-of-the-art MLE based fitting algorithm GlobLoc (Li, Shi,
et al. 2022). DECODE-Plex’s main challenge is its output representation, partly leading to
structural artifacts that require postprocessing and its limited generalization capability across
varied experimental conditions and for different microscopes on which future work should be
conducted.

We identify the translational aspects in setting up ML and DL algorithms in microscopy as
vital for their applicability and accessibility to a broad range of users. To address this, we intro-
duced DECODE-OpenCloud, a framework developed to enhance the accessibility and scalabil-
ity of ML algorithms in microscopy, with DECODE-Plex integrated into it. With DECODE-
OpenCloud, we presented an orchestrator for compute jobs that allows researchers to use the
implemented algorithms via a website or programmatically via its API. It follows a hybrid ap-
proach, distributing compute jobs to unused local compute or cloud-backed compute runners
to ensure high availability and efficient use of resources. DECODE-OpenCloud allows for easy
integration of further algorithms that do not rely on heavy data transfer.

We hope the community adopts DECODE-Plex and DECODE-OpenCloud for challeng-
ing localization microscopy data, enabling new sample regimes, improved imaging speed, and
increased throughput.
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Glossary

DECODE A3Dhighdensityfitting algorithmfor SMLM, inparticular for astigmatic anddouble-
helix PSFs (Speiser et al. 2021).

DECODE‐OpenCloud Ahybrid-cloud environmentwhere researchers can share compute resources
and algorithms in the realm of microscopy (see section A.2).

DECODE‐Plex A multiplexed, multi-channel high density fitting algorithm for SMLM, in par-
ticular for multi-color and biplane applications (see section A.1).

GlobLoc A MLE based algorithm for multi-channeled SMLM data (Li, Shi, et al. 2022).

SMAP Software framework for SMLM which integrated many algorithms (Ries 2020).

SMLM challenge An ongoing challenge meausring the performance of localization algorithm
for SMLM against simulated and experimental data (Sage et al. 2019).
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Acronyms

AF647 Alexa Fluor 647.

CF660 Cyanine-based Fluorescent 660.

CRLB Cramer-Rao Lower Bound.

DL Deep Learning.

DNA‐PAINT DNA points accumulation for imaging in nanoscale topography.

DNN Deep Neural Network.

LLM Large-Language Model.

MINFLUX Minimal emission fluxes.

ML Machine Learning.

MLE Maximum-Likelihood-Estimation.

NLP Natural Language Processing.

NN Neural Network.

NPC Nuclear Pore Complex.

PAINT Point Accumulation for Imaging in Nanoscale Topography.

PALM Photo-activated Localization Microscopy.

PSF Point Spread Function.

REST‐API Representational State Transfer Application Programming Interface.
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Acronyms

ROI Region of Interest.

sCMOS scientific Complementary Metal–Oxide–Semiconductor.

SIM Structured Illumination Microscopy.

SMLM Single Molecule Localization Microscopy.

STED Stimulated Emission Depletion.

STORM Stochastic optical Reconstruction Microscopy.
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6Tübingen AI Center, University of Tübingen, Tübingen, Germany.
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Abstract

Single-molecule localization microscopy (SMLM) excels in imaging and di!eren-

tiating cellular structures of di!erent kinds at nanometer resolution, but the need

for sparse emitters in standard analysis slows down imaging and limits labeling

density. We have created DECODE-Plex, a deep-learning-based framework to

localize dense single molecules with overlapping point spread functions simulta-

neously in multiple channels. It precisely models the photophysical and optical

factors of multi-channel systems. We validated DECODE-Plex on experimental

live-cell bi-plane and ultra-high density dual-color data. Packaged for ease of use

and installation and made available as open source, DECODE-Plex will enable

many groups to improve the imaging speed and quality of multi-channel SMLM.

Keywords: SMLM, Multi-Channel, Multi-Color, Bi-Plane, Deep Learning,
Simulation, GPU
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1 Introduction

Single-molecule localization microscopy (SMLM) is a super-resolution method that
can resolve cellular structures at nanometer resolution[1–3]. The basis of SMLM is to
label structures of interest with switchable fluorophores and to acquire many (tens
of thousands) camera frames in which only a small fraction of the fluorophores is
activated to avoid overlapping emitters. The position of these sparse emitters is then
localized using, e.g., maximum-likelihood fitting [4–6]. The need for sparsity and, con-
sequently, many camera frames leads to poor temporal resolution and low throughput.
This major limitation of SMLM was recently diminished by using deep learning algo-
rithms like DeepSTORM[7], DeepSTORM3D[8] and DECODE [9], which allow for
fitting fluorophores at high densities with overlapping point-spread functions (PSFs),
outperforming even dedicated multi-emitter fitting algorithms[10].

However, none of these deep-learning-based approaches are compatible with multi-
channel SMLM approaches, including multi-color, multi-plane, or 4Pi SMLM.

Multi-color SMLM allows for the visualization of the molecular organization of dif-
ferent target molecules relative to each other by spectrally distinct color separation[11]
or ratiometric post-hoc color-assignment, in which the photon count ratios in two
channels are compared [12–14]. 3D SMLM either uses engineered PSFs to break the
symmetry around the focus (e.g. astigmatic [15], double-helix [16] or tetrapod [17]),
or two or more focal positions imaged simultaneously in multiple channels (biplane
SMLM [18]). Algorithms that fit multi-channeled data individually per channel cannot
extract the full information and do not reach the best possible localization precision
described by the Cramér–Rao lower bound (CRLB) [6]. This limitation was overcome
with the GlobLoc approach ([6]) that uses maximum likelihood estimation on all chan-
nels simultaneously to maximize precision. However, it is not compatible with high
emitter densities beyond the single-molecule regime.

Here, we present DECODE-Plex, a new multi-channel high-density fitting algo-
rithm for multi-color and biplane SMLM. DECODE-Plex consistently achieves better
detection performance and localization precision in biplane and multi-color scenarios
compared to glocLoc. It performs detection, localization, and combination of all chan-
nel information simultaneously while allowing for flexible linking of the photon count
estimates depending on whether dual-channel multi-color or biplane data is present.
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Fig. 1: DECODE-PLEX for high-density single-molecule localization. (a)

DECODE-Plex architecture. The network uses information from multi-channel
input simultaneously; it maps its predictions onto frames representing a probability for
detection, the photon count in each channel, uncertainties related to these predictions,
and a background. For biplane SMLM the photon counts are linked, for multi-color
SMLM the photon counts in each channel are predicted and color assignment is per-
formed by likelihood estimation (see c). (b) Training sequence. DECODE-Plex is
trained with simulated data. Emitters are sampled randomly, in addition a position on
the camera is sampled to cover all possible positions at inference time. Synthetic images
are generated by the image formation model, which uses an auxiliary transforma-
tion indicator that represents the pixel-wise displacements between the channels. (c)
Details of multi-channel transformation logic for spatial and photon transfor-
mation. The Spatial Transformation is defined by a projective transformation matrix
that maps the localizations from channel N to channel 1. For each pixel and chan-
nel, the spatial displacement with respect to the reference channel is computed, and a
transformation indicator map is generated. The Multicolor Photon Transformation is
used to assign a color to a localization based on the ratio of estimated photon counts
in each channel. 3



2 Results

DECODE-Plex builds up on the architecture of DECODE [9] and introduces a new
representation for input and output. In contrast to DECODE, DECODE-Plex utilizes
information from multiple input channels simultaneously. Since the position of the
ROI on the camera can be unknown at training time, the channels are linked by a
spatial transformation indicator that is provided to the model as input (see Figure 1
(b)). It indicates the spatial o!set in each pixel between the target and the reference
channel and allows DECODE-Plex to fit experimental data of di!erent sizes flexibly.
As DECODE, DECODE-Plex also evaluates the temporal context, i.e., it considers
that the same fluorophore can be visible in several adjacent camera frames. For each
frame fed through the network, the network outputs a detection probability, positions
in x/y/z using o!set vectors with respect to the pixel center, and a photon count
prediction per channel (independent photon counts in each channel for multi-color
data) or a linked photon count for biplane data. For the latter biplane mode, we sample
and predict a single total photon count; the simulator distributes the photons to both
channels with respect to the normalization of the PSF determined during calibration.
A respective uncertainty estimate accompanies each output predictor. The uncertainty
estimates of the photon count, in combination with the expected ratio between the
dark and bright channels, allow for the probabilistic assignment of the emitters’ color.

We developed and evaluated DECODE-Plex both on multi-color and biplane data
(see Figures 2,3) and compared its performance to the state-of-the-art GlobLoc algo-
rithm [6], which allows linking of the fitted parameters across channels. To quantify
the performance on simulated data, we followed the metrics established by the SMLM
Challenge [10] which is an ongoing benchmark evaluation to aid users in the choice of
localization algorithm. We extended these metrics for multi-color data (see section 4.4)
and report the color assignment accuracy (eq. 4.4.1) and rejection rate (eq. 4.4.1), i.e.,
the fraction of correctly assigned colors and the fraction of rejected color assignments
due to fuzzy predictions.

On simulated low-density data, DECODE-Plex approaches the combined
Cramér–Rao Lower bound (CRLB) (Figure 7), i.e., the best theoretically possible pre-
cision and thus performs equally well as GlobLoc [6]. Furthermore, for the simulated
data, DECODE-Plex outperforms GlobLoc across all multicolor and biplane data den-
sity regimes in all metrics (Figure 2). DECODE-Plex inference time scales mainly with
the frame size, GlobLoc’s computation time scales with the number of emitters, lead-
ing to subpar computation times for high-density regimes. For the remaining biplane
modality of the SMLM Challenge, we see substantial improvement in the detection
and localization performance (see Figure 2e)

Next, we evaluated DECODE-Plex on experimental data and compared its per-
formance to GlobLoc. As a high-density dual-color sample, we imaged microtubules
(labeled with CF660C) and the endoplasmic reticulum (AF647) in a 3D astigmatic
dual-channel setup (Figure 3 (a-b)) at a density about one order of magnitude denser
than we usually use for single-emitter SMLM with GlobLoc [6]. We trained DECODE-
Plex using background and photon count parameters extracted from a pre-fit of a
small subset of the data using GlobLoc. We used a dual-channel spline-based PSF
calibrated with bead stacks.
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For these experimental high-density datasets, we consistently find better results
with DECODE-Plex than with GlobLoc; in particular, regions with high local density
were significantly better resolved with DECODE-Plex. Thus, DECODE-Plex enables
imaging of ultra-densely labeled samples, which, even without UV activation, exceed
the single-emitter regime (Figure 3). Compared to measurements at single-emitter
densities, DECODE-Plex reduces the imaging time by around one order of magnitude.

These high imaging speeds are critical for live-cell measurements, where the time
resolution has to match the biological process under investigation. We demonstrated
the performance of DECODE-Plex by imaging microtubules in living cells in 3D
with the bi-plane approach. The microtubules were labeled with the self-blinking
fluorophore HMSiR-tubulin at high concentrations ([19]). Indeed, we could observe
rearrangements of the microtubule cytoskeleton on the nanometer scale with 12.5s
temporal resolution. Compared to imaging in the single-emitter regime, DECODE-
Plex allowed us to increase the labeling density by one order of magnitude without
increasing the light dose. This is important, as even in our measurements, photo-
toxicity was the limiting factor, perturbing the microtubule organization after approx.
3 minutes of imaging.

3 Discussion

We presented DECODE-Plex, a simulation-trained deep learning algorithm for high-
density multi-channel SMLM applications. DECODE-Plex di!ers from previous
algorithms in that it can simultaneously process multi-channel information and tem-
poral context and perform detection and localization. DECODE-Plex outperformed
the state-of-the-art GlobLoc algorithm for the biplane and multi-color modality by
a large margin, underlining the e!ectiveness of simultaneous, end-to-end prediction
and utilization of temporal and multi-channel information. DECODE-Plex’s inference
speed scales with frame size and training times are in the order of 6 hours.

Machine Learning-based fitting algorithm [7–9] incorporate the PSF implicitly into
the neural network’s parameters during training by consistently using training sam-
ples generated with a specific PSF. To the best of our knowledge, there is no Machine
Learning based fitting algorithm yet, that allows for arbitrary experimental data with-
out retraining and adapting to an unseen PSF. In the case of DECODE-Plex, a new
model must be trained for a new PSF (compare Figure 9). Other important simulation
parameters comprise the photon and background distribution; however, we argue that
these can be trained broadly and refined for specific data. Arguably, a semi-automated
retraining procedure of DECODE-Plex upon microscope re-calibration is advised.

DECODE-Plex’s performance heavily relies on an accurate PSF model to achieve
precise localizations. Many algorithms in SMLM su!er from biased localizations when
the PSF model for the optimization step di!ers from the actual, unknown PSF
[20]. Similarly, Machine Learning based fitters [7–9] perform poorly when the PSF
used for training does not match the PSF during the fitting step. We observe a
similar artifact under hard conditions, particularly for dim, far out-of-focus local-
izations or localizations in dense regions. Part of the DECODE-Plex is an optional
post-processing histogram equalization procedure, in which the fitted localizations
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are de-biased according to their uncertainty to form a uniform histogram across the
subpixel position (see 4.2.2 and Figure 8).

DECODE-Plex will enable a large and growing community to perform high-density
localization microscopy, greatly increasing throughput, imaging speed, and new sample
regimes. We provide packaged and pre-compiled software that requires little prior
knowledge. DECODE-Plex is accompanied by a detailed set of documentation and
tutorials, allowing all users to benefit from our framework.

6



Fig. 2: Performance on simulated high-density data. (a) Performance on

multi-color data using an experimentally extracted transformation and the photon
ratios for AF647 and CF680 (ratios 0.21 and 0.02 dark to bright channel for our
microscope setup); RMSE lateral and axial, Accuracy of color prediction and the
fraction of rejected emitters due to a fuzzy color assignment (b) Dual-channel, dual-

color high-density frames (c) Predicted photon distribution of DECODE

and GlobLoc, ground truth photon count ratios marked as solid lines (AF647 and
CF680). (d) Performance on simulated biplane dataset using an experimentally
extracted transformation and calibrated PSF. Localization performance for simulated
bi-plane data. RMSE lateral and axially and Jaccard index. Example dual-channel
frames for two densities. (e) Biplane challenge results. DECODE-Plex and the
GlobLoc algorithm reconstructions on the high density, low signal bi-plane challenge
data (validation data). Overview on the left in xy-view and side-view for DECODE-
PLEX and GlobLoc, respectively. Scale bars, 1 um.



Fig. 3: Performance on experimental high-density data. (a) Reconstructions

of DECODE-PLEX and (b) GlobLoc on experimental high-density data

microtubules (CF660) and the endoplasmic reticulum (AF647). Overview, zoom and
side view. Scale bars 1 µm (1,2,3). Localizations were debiased (DECODE-Plex) and
drift-corrected (DECODE-Plex/GlobLoc) and filtered on localization precision below
30 nm (c) Fast live-cell SMLM, microtubule labelled with self-blinking fluorophore
HMSiR-tubulin.
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4 Methods

4.1 DECODE-PLEX network architecture

Our architecture builds upon a combination of modified 2D U-Net [21] models as the
neural network’s backbone (see Figure 4). In contrast to the original implementation,
we use an exponential linear unit activation function [22].

DECODE-Plex uses one U-Net-like model per imaging channel. The frames of the
temporal window share the same model and are fed in a sliding window approach. The
spatial transformation indicator is fed as additional input and is made available to all
models.1 The channel dimension is then stacked and fed through a shared U-Net that
combines both the multi-channel and the temporal information. The up-and-down
sampling stages consist of three steps with 64 initial features, doubling/halving the
features per stage.

Our network aims to predict (1) a probability map pk of having found an emit-
ter (following a Bernoulli distribution) in near proximity, (2) the photon count
per channel Nk,i, the three-dimensional displacements with respect to the center of
the pixel (”x,”y,”z), respective uncertainties for both photon and displacements
(ωx,k,ωy,k,ωz,k,ωN,k,i) and a background prediction for each channel. Notably, the
predicted positions are always with respect to one reference coordinate system for
which we conveniently, yet arbitrarily, choose the first channel’s position.

4.1.1 Loss function for multi-channeled detection, localization, and

uncertainty estimates

We build upon DECODE’s[9] loss function as a combination of count loss Lcount,
localization loss Lloc and background loss Lbg.

L = Lcount + Lloc + Lbg (1)

The photon count in the localization and background loss is extended to multiple
channels in case the photon count is multi-channeled (i.e. for multi-color). In biplane
mode, we link the photon count but still use a multi-channeled background prediction
and, therefore, multi-channeled background loss.

Lloc = → 1

E

E∑

e=1

log
K∑

k=1

pk∑
j pj

P
(
u
GT

e | µk,#k

)
(2)

4.1.2 Training details

Our model is trained purely on live simulated training data (see 4.3). We perform
training on 80x80 pixel-sized frames to give enough space for positional transformation
between the channels. We sample the position on the camera to accommodate for the
fact of varying positional transformations at di!erent positions of the multi-camera

1
In total, in a two-camera/channel setup, one input sample consists of 8 input channels (2ch·3win+2aux).
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setup (see 4.3.4). We use the AdamW optimizer [23] with a group learning parameter
of 1 ·10→4 to 4 ·10→4 depending on SNR and modality for the network parameters. We
decay the learning rate by a factor of 1/2 scheduled by the ReduceLRonPlateau2 to
dynamically accommodate for di!erences in the di$culty of the training. We exclude
dim emitters with less than 100 photons (summed over all channels) as training targets
yet still simulate them.

4.2 Localization extraction and Post-Processing

4.2.1 Localization Extraction

Localization candidates are extracted from the frame representation by thresholding
the probability output pk. Ideally, pk is sparse and well-separated into a bi-modal
distribution (0 and 1), and its sum corresponds to the true number of emitters.
Small probability clusters can emerge under hard conditions instead of single sparse
probability outputs. These local neighborhoods are integrated and form a cumula-
tive probability threshold for localization extraction. The localization o!sets and the
uncertainty predictors are extracted at the thresholded pixels, and the localization
position is computed as the pixel center positions plus the respective o!sets.

4.2.2 De-Biasing

Under hard conditions, the network tends to bias the localization position with respect
to the within-pixel position (see Figures 8, 9). The e!ect can be measured by com-
puting the subpixel position histogram across the x and y dimensions. We allow for
optional post-processing of these localizations to equalize the histogram. We observed
the biasing to be correlated with the z position and, therefore, performed histogram
equalization in steps. Typically, we choose steps of size 50 nm. In each z step, we his-
togramize the localizations according to their subpixel o!set and rescale their subpixel
o!sets weighted by the localizations’ lateral uncertainty estimate.

4.2.3 Color Assignment

We perform the color assignment as a post-processing step. The emission wavelengths
and beamsplitter characteristics determine the (true) photon count ratio between the
two channels. The ratio can be empirically measured or theoretically computed from
the specification of the labels and optical components.

Since DECODE-Plex outputs uncertainty measures for the photon counts, we can
assign the color probabilistically using maximum likelihood estimation given the true
photon ratios. The probability pk of assigning an emitter to color k is then

pk =
Lk∑C
j=1

Lj

(3)

where Lk are the likelihoods of the observed photon ratios pi/ptot with uncertainty
estimates pω,i given the true ratios rk for colors k and channels i.

2
https://pytorch.org/docs/2.1/generated/torch.optim.lr scheduler.ReduceLROnPlateau.html
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4.3 Training Data Simulation

We continuously simulate training data for DECODE-Plex and use each sample only
once to avoid overfitting the models’ backbone. The performance of DECODE-Plex
is, therefore, tightly linked to the closeness to the experimental data of interest to said
simulation and the accuracy of the image formation model.

4.3.1 Point-Spread-Function

The PSF describes the image formed by the characteristics of the microscope and the
object in the object plane (PSF(r) and O(r)). The resulting observed image is the
convolution of both:

I(r) = O(r)↭ PSF(r) (4)
We use Cubic-Spline PSFs as an accurate yet almost arbitrarily flexible model of

arbitrary PSFs. We follow [5] and [4] and use our custom, optimized CUDA-kernel,
which allows us to simulate 100 000 frames in less than 0.5s (on an RTX 4090). Since
the choice of the center of the PSF is arbitrary for a spline-modelled PSF, we estimate
the PSF and the multi-channel transformation jointly, as these are not independent
of one another.

4.3.2 Camera

DECODE-Plex does not di!erentiate between a multi-camera setup and a multi-ROI,
single-camera setup to model multiple channels. In all scenarios, we apply global,
pixel-value preserving transformations to maximize the spatial overlap of all channels.
This particularly includes de-mirroring and global shifts by multiples of pixels. The
procedure ensures that the positional di!erences between the images of the same
source emitter in the object plane are not too far apart for the Convolutional Neural
Network to combine all information. Note that the e!ective receptive field of the CNN
is typically far more narrow than the theoretical one [24].

4.3.3 Camera Noise

Following ref. [10], we model the camera noise model by its Poissonian shot noise due
to the stochastic nature of the photon interaction with the camera chip, EMCCD
amplification noise due to gain which follows an approximate Gamma distribution and
additive readout noise which a Gaussian distribution can reasonably approximate.

4.3.4 Multi-channel transformation

We assume the positional transformation in the multi-channel setting to follow an
a$ne or projective transformation T .

εr2 = T · εr1 (5)

T =




t11 t12 t13

t21 t22 t23

0 0 1



 (6)
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where εr2 are the coordinates in the second and εr1 the coordinates in the reference
channel.

T is estimated jointly with the multi-channeled PSF following the GlobLoc rou-
tine [6]. Both the PSFs and the transformation will typically extracted from a bead
calibration. However, performing a single-channel fit and refining the transformation
based on experimental data afterward is also possible.

At training time, we do not enforce any constraints on the relation between the
photon counts in the respective channels to avoid biasing the photon predictions.
Instead, we sample the photon count independently in multi-color mode. In biplane
mode, only a single photon count is sampled and distributed across the channels
according to the PSF’s normalization.

4.3.5 ROI Sampling

Since the frame size can vary between training and inference, we feed the transfor-
mation of the experimental data at inference time as an auxiliary frame for which we
compute the displacement between the reference and the respective channels in x and
y for each pixel.

We sample the simulated camera position at training time to vary the ROI and
displacement between the reference and respective channels (see 4.1.2).

4.3.6 Photophysics

We sample each fluorophore’s photon flux ϑ and initial appearance t0 from a Uni-
form distribution U . With a uniform distribution, we argue that there is less risk of
bias toward one of multiple colors in a multi-color experiment which typically peak at
di!erent photon flux counts and have di!erent lifetimes. In the case of a multi-color
experiment, where the photon counts are unlinked, we sample the photon flux per
channel independently. Furthermore, we draw its on-time from an exponential distri-
bution parametrized by ϖ. The emitters are then distributed and discretized over the
frames, which converts the photon flux by integration over time to a photon count.
We do not model long-term re-appearance.

4.3.7 Estimating simulation parameters

Commonly, only the background and photon distribution will vary significantly
between di!erent SMLM experiments on a daily timescale. Covering the entire back-
ground regime is vital such that the model does not confuse background fluorescence
with actual emitters. We found no penalty in training in a broad background regime.
We propose one of the two options for regular usage of our algorithm: (A) Either train
a broad distribution of photon and background and refine on data of particular inter-
est or (B) perform a pre-fit with GlobLoc [6] and use these parameters for training a
specific DECODE-Plex model directly. With larger changes to the PSF (e.g., due to
changes in the optical setup), new training is mandatory. We advise a semi-automated
procedure in which a new DECODE-Plex training is triggered when a new microscope
calibration is available.
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4.4 Evaluation

We validated the performance of DECODE-Plex on simulated data using metrics
established by the SMLM-Challenge [10] and extended these metrics to multi-color.
We compared the performance to GlobLoc [6], a state-of-the-art maximum likelihood
(MLE) multi-channel fitter.

The Detection Accuracy describes how many true emitters are found and how
many false localizations are reported and is measured here as the Jaccard Index (JI),
a relation between true positives (TP), false positives (FP), and false negatives (FN):
JI = TP/(TP + FN + FP ). True positives (TP) are determined by an assignment
algorithm, typically a cost-minimizing assignment algorithm like the Hungarian algo-
rithm [25]. Following the conventions established by the SMLM-Challenge, we use a
lateral threshold of 250 nm and an axial threshold of 500 nm.

To evaluate on simulated datasets, we follow the principles outlined in the SMLM
challenge [10]. Its two main components are detection performance and localization
precision. The detection performance is typically measured by the Jaccard index given
by

JI = TP/(FN + FP + TP ) (7)

Where TP, FP, FN are the true positive, false positive, and false negatives, respec-
tively. These sets of localizations are assigned by a matching algorithm closely
resembling the Hungarian assignment algorithm [25], again following the conventions
of the SMLM challenge. Localizations can be matched to a pair if their lateral distance
is less than 250 nm and their axial distance is less than 500 nm. The localization pre-
cision can be quantified for true-positive and matched positive pairs and is typically
reported as the r.m.s.e. laterally, axially, or volumetric:

r.m.s.e.d =

(
1

TP

TP∑

i=1

d∑

k=1

(
xi,k → x

GT

i,k

)2
/d

)1/2

(8)

where d is the dimensionality, xk and x
GT are the predicted and ground truth

coordinates along their respective axes, respectively.
For ranking and ease of comparison, the SMLM Challenge introduced the single-

valued metric e!ciency E, which is defined as

E = 1→
√

(1→ JI)2 + ϱ2d · r.m.s.e.2d (9)

following ref.[10]; where ϱ is a scaling factor set to ϱ = 1 · 10→2 nm→1 and ϱ =
0.5 ·10→2 nm→1 for 3D and 2D data respectively. E$ciency balances the detection and
localization performance.

4.4.1 Multi-Color Metrics

In addition to the metrics outlined above, the assignment of emitters to the correct
color is vital to multi-color SMLM. Here, we simply report the Accuracy Acc, which
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describes the fraction of correct color assignments, and the Rejection rate Rej, which
describes the fraction of unassigned emitters.

Acc =
TPcolor

TP
(10)

where TPcolor are the true positives with correct color assignment and TP are the
true positives.

Rej =
TPrej

TP
(11)

where TPrej are the true positives rejected due to fuzzy color assignment, and TP

are the true positives.

4.4.2 Validation datasets

Multicolor data

We simulated the multi-color dataset of Figure 5 with photon flux 5000/5000,
background count of 20/135, and lifetime averages of 3.0 and 1.0 for both colors,
respectively. We simulated a minimum of 10000 emitters for each density step.

Biplane data

We simulated the biplane dataset of Figure 6 with a photon flux of 5000, background
0, and a lifetime average of 1.0. We simulated a minimum of 50000 emitters for each
density step.

4.5 Sample preparation

Seeding of U-2 OS cells on glass coverslips

Glass coverslips were treated overnight with a solution of 18.5 % (v/v) Hydrochloric
acid in Methanol with constant stirring, then washed thoroughly with deionized water
and dried. Wild-type U-2 OS cells were appropriately seeded in the treated coverslips
to reach between 30-50% confluence after 1-2 days of incubation at 37°C and 5% CO2
in DMEM supplemented with MEM NEAA (1x), GlutaMax (1x), FBS (10%) and
ZellShield (1x).

Dual-color data

U-2 OS cells on glass coverslips were quickly rinsed with pre-warmed PEM bu!er
(80mM PIPES, 2mM MgCl2, 5mM EGTA, pH 6.8) and fixed with a solution of 4%
paraformaldehyde, 0.1% glutaraldehyde, and 4% sucrose in PEM bu!er for 10 min
at 37°C. Then cells were rinsed in phosphate bu!er (PB) (0.1 M sodium phosphate,
pH 7.3) before quenched for 7 min at room temperature with a solution of 10mg/mL
sodium borohydride in PB bu!er. Next, cells were permeabilized and blocked for 3
hours with immunocytochemistry bu!er (ICC bu!er: 0.2% bovine serum albumin,
0.1% Triton X-100 in PB bu!er), followed by 30 min incubation in a drop of Image-
iT FX Signal Enhancer. Permeabilized cells were incubated overnight at 4°C with
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solution of antibodies (anti ϱ-Tubulin 1:200, anti ς-Tubulin 1:200, anti- Nogo-B 1:500)
in ICC bu!er, followed by three washes, 5 min each, in ICC bu!er, and incubation with
secondary antibodies (AF647 anti-sheep IgG 1:500, CF660C anti-mouse IgG 1:500)
in ICC bu!er, and finally washed with ICC bu!er, three times, 5 min each, before
mounting the sample for image acquisition in blinking bu!er (10 mM NaCl, 35 mM
cysteamine, 10% glucose, 500 g/L catalase from bovine liver, 40 g/L glucose oxidase,
in 50 mM Tris/HCl pH 8.0).

Live-cell biplane data

The living cells in coverslips were incubated for 1 hour in the same medium, but with
HMSiR-Tubulin [19] added to a final concentration of 2 uM. Then, cells were briefly
washed two times with fresh medium to reduce the background of free dye, and a new
medium was finally added to the sample in the mounted chamber for imaging.
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Fig. 4: Neural network Architecture DECODE-Plex’s neural network backbone
consists of three stages: One per-channel stage, one union stage applied on the concate-
nated feature maps, and one output stage producing the predictions. The per-channel
stage is composed of a U-Net architecture (expanded at the bottom) and is applied
to the prediction and context frames separately. Each channel has its own U-Net: In
the figure, we show the case for a dual-channel scenario. The union stage is a U-Net
architecture applied to the concatenation of the resulting feature maps for the pre-
diction and context frames of all channels. The output stage is divided into di!erent
prediction heads, each composed of two convolutional layers. Three output heads pro-
duce probability, localization, and uncertainty estimates. An optional fourth output
head can produce a background prediction. All U-Nets have three up- and downsam-
pling stages and 64 filters in the first stage, with each stage consisting of three fully
convolutional layers with 3↑ 3 filters. The resolution is halved and the number of fil-
ters is doubled in each downsampling stage, and vice versa in the upsampling stage.
In the sketch, blue arrows show skip connections. To inform the network about the
channel transformation, auxiliary channels are concatenated to the input at both the
per-channel and union stages.
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Fig. 5: Comparison of performance metrics for dual-color data across den-

sities DECODE-Plex outperforms globLoc across all densities. The localizations of
both algorithms were filtered to their common usage: DECODE-Plex’s predictions
were filtered for a probability threshold p < 0.5, globLoc’s localizations were filtered
for a relative log-likehood LLrel > →1 and a photon count of phot ↓ 100.
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Fig. 6: Comparison of performance metrics for biplane data across densities

DECODE-Plex outperforms globLoc across all densities. The localizations of both
algorithms were filtered to their common usage: DECODE-Plex’s predictions were
filtered for a probability threshold p < 0.5, globLoc’s localizations were filtered for a
relative log-likehood LLrel > →1 and a photon count of phot ↓ 100.
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Fig. 7: Localization error and Cramer-Rao Lower-Bound (CRLB) for dual-

channel fitting. The empirical r.m.s.e. achieved by DECODE-Plex closely match
the CRLB across the z-range. DECODE-Plex uncertainty estimates closely resemble
the CRLB in both lateral dimensions, in the axial dimension, the uncertainty values
are slightly underreported. An experimental PSF and transformation were used for
simulation.
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Fig. 8: Pixelation artifacts on experimental data. (a) Microtubules and the

Endopslamatic Reticulum labeled with CF660 and AF647, respectively. Dense,
out-of-focus localizations show a gridding e!ect due to a bias towards the pixel center.
Color-coded by the z position. (b) Filtered and de-biased localizations. Default
filtering with a probability threshold of p > 0.5 and locprec > 40nm still contains
biased localizations. De-biasing, which actively shifts the localizations to equalize the
subpixel position histogram, reduces the pixelation artifact.
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Fig. 9: Incorrectly trained model. (a) Localizations for the challenge data when
an incorrect PSF model was used for training. DECODE-Plex outputs gridded local-
izations (compare [20]). (b) subpixel positions for ground-truth emitters and

matched DECODE-Plex localizations. DECODE-Plex localizations are non-
uniformly distributed across the subpixel position whereas the matched ground-truth
localizations are fairly uniformly distributed. DECODE-Plex localizations are biased
relative to the pixel center.
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Fig. 10: Training convergence as a function of the training time. Convergence
of DECODE-Plex performance for several metrics. Training times are measured on a
single Nvidia RTX 4090 GPU. The training data covers a common multi-color scenario
at high SNR.
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Tübingen, Germany.

2Cell and Biophysics, European Molecular Biology Laboratory,
Heidelberg, Germany.

3Max Perutz Labs, Vienna Biocenter Campus, Vienna, Austria.
4Department of Structural and Computational Biology, University of

Vienna, Vienna, Austria.
5Faculty of Physics, University of Vienna, Vienna, Austria.
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Abstract

Fast-paced advancements in machine learning algorithms enable increasingly
complex workflows in microscopy but pose significant computational demands
and require access to performant hardware. Computational tools that e!-
ciently process repetitive or large-scale workflows have the potential to accelerate
scientific discovery. Here, we present DECODE-OpenCloud, a cloud-backed solu-
tion that enables researchers to easily run compute-intensive algorithms for
microscopy without caring where the job actually runs. DECODE Open-Cloud
distributes the jobs dynamically to unused local computational resources or
cloud-based services, allowing for high availability. With DECODE-OpenCloud’s
release, we include three algorithms for super-resolution microscopy: DECODE
and DECODE-Plex, which are deep-learning-based high-density localization
frameworks for single-molecule localization microscopy (SMLM) for fast 3D
super-resolution, and COMET, a performant drift-correction algorithm. We
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designed DECODE-OpenCloud to be flexible and easily expanded to other
algorithms for microscopy.

Keywords: Machine Learning, Cloud, Open Source, GPU

1 Introduction

With recent developments in machine learning, an increasing number of algorithms
pose significant requirements for computational hardware, maintenance, and organiza-
tion, as they heavily use accelerated computing and graphical processing units (GPUs).
Local hardware setups are frequently overspecified for a large portion of the time and
underspecified at rare peak loads. Moreover, running and maintaining such hardware
and software poses a burden for researchers with little time or computing budget who
want to use the software while not caring about any hardware constraints.

In addition to hardware constraints, developing and running algorithms reliably
on di!erent computational setups frequently remains challenging, as it requires the
algorithm developer to keep track of all hardware constraints and software libraries,
including versions used in development. The algorithm user, on the other hand, needs
to make sure to satisfy all requirements for the particular algorithm. More and more
e!orts are being made to make scientific software reproducible and maintainable.
However, a significant burden for scientific e!orts to be translatable to productized use
is open source code availability, reproducibility, and ease of productionized use. Recent
e!orts have been made to either centralize the usage of many algorithms in one library
or provide basic computing infrastructure. Examples of this are ZeroCostDL4Mic [1],
which provides a set of algorithms for Image-segmentation, Object Detection, and
Image denoising and restoration in one place in the form of Google Colab Notebooks
where Google provides free computing power. More broadly, frameworks like the sbi-
framework [2], and the Huggingface libraries [3] are all e!orts in the field to consolidate
the implementation of several algorithms into a single library, aiding developers for
simple usage without complicated compilation or installation steps.

However, integrating algorithms as code is only part of making recent algorithms
available for frequent, productionized usage. For example, the usage of Google Colab
instances is often insu”cient as it lacks control over details of the computer environ-
ment, which are frequently updated and lead to breakage of once-working algorithms.
Moreover, there is a limited possibility of interacting with Google Colab as a proper
software service via APIs.

With DECODE-OpenCloud, we aim to fill this gap by showcasing how such infras-
tructure can be implemented and providing ready-made implementations of three
algorithms for localization microscopy (i.e., localization algorithms DECODE [4], its
multi-channel extension DECODE-Plex, and COMET drift correction[? ]). Finally, we
release the source code of our infrastructure implementation.

The high-level idea and detailed implementation of DECODE-OpenCloud is
depicted in Figure 1. Any researcher can interact with our cloud service using the fron-
tend website, where they can upload and download load data, specify configuration,
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and submit compute jobs. DECODE-Cloud will then distribute the computation jobs
to the attached computing power or, depending on the configuration, pass on stale
computing jobs to cloud-backed runners. We note that we designed DECODE-Cloud
in this hybrid way to save on cloud computation costs and aim to distribute compu-
tational load among locally unused hardware. We specifically invite researchers with
idle hardware to attach their hardware in a give-and-take fashion.

2 Methods

Figure 1b outlines the core components and services involved in implementing
DECODE-OpenCloud, where applicable we name the concrete AWS component used
in our case. Figure 2 specifies a typical job’s request flow, which includes the user’s
interaction through the front end, data handling, and job distribution; we outline the
detailed flow below.

2.1 Job flow

A user interacts with the user-facing API through the front end website or program-
matically via API calls. Authentication is implemented by Tokens and backed by AWS
Cognito. The user then uploads configuration and data files to cloud storage backed
by an AWS S3 service. All job information is stored in a database where new jobs
are posted. The second part of our cloud infrastructure, the worker-facing API, is
called by locally attached compute power (see give-and-take idea above) or periodi-
cally checked by an AWS lambda function for stale, unfinished jobs, should there be
peak load and insu”cient local compute power. The worker-facing API’s backend then
selects a compute job that matches the capabilities of the compute instance (local or
cloud compute) and returns all necessary information for the job, i.e., which docker
image is used and pre-signed URLs to necessary files. Local or cloud runners then
download the necessary files and the docker image or use a cached version and start
the compute job. During execution of the job, a thin wrapper around the compute
job periodically sends status signals to the worker-facing API to allow for job status
tracking. Upon job completion, the worker uploads the specified files and logs, and the
user is notified via mail about the job’s success. Note that files are downloaded and
uploaded by both users and workers using pre-signed URLs to avoid the additional
load that would be caused by directly sending files through the APIs.

2.2 Algorithm definition

In Decode-OpenCloud, an algorithm is defined by a small set of parameters that need
to be provided for it. This makes sure that the overhead for adding additional software
is low. Figure 3 outlines a concrete definition of one of the algorithms made readily
available with DECODE-OpenCloud. In essence, the integration of an algorithm means
specifying its entry points in the docker container, the run command, necessary files
to download, and result files, which should be uploaded after the completion of the
job. Moreover, default minimum hardware specs are defined, which can be overridden
by specifying di!erent values during job submission.
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2.3 Algorithm interaction

While we provide a basic frontend website for a researcher’s interaction with
DECODE-OpenCloud, we note that the core implementation is simply a REST-API.
We invite algorithm developers who want to integrate their software with DECODE-
OpenCloud and already have a user interface to use the user-facing API for an optimal
user experience.

2.4 Job failure

Should exceptions occur during the computation, the worker will send the logs of its
failures to the worker-facing API to aid a debugging procedure. A silent job failure
(e.g. due to a local internet outage) is captured by the absence of status signals, in
which case another compute instance can take over the job’s computation.

2.5 Core Components and Cloud Provider

Implementing DECODE-OpenCloud necessitates a small set of infrastructure ele-
ments provisioned by the cloud platform or a local environment. We chose Amazon
Web Services (AWS) for the current cloud backing of DECODE-OpenCloud but note
that other cloud providers or local infrastructure could equally provide the necessary
compute components. DECODE-OpenCloud’s core components are:

1. Compute Instances — Host both the user-facing and worker-facing API (AWS
AppRunner/EC2).

2. File Storage — Handles file storage needs (AWS S3).
3. Relational Database System — Tracks jobs (AWS Relational Database System).
4. Docker Image Hub — Stores docker images (AWS Elastic Container Registry).
5. Identity Provider — Used for authentication (AWS Cognito).
6. Serverless Helper Functions — Check the worker-facing API for stale jobs (AWS

Lambda).

where the respective AWS services are noted in brackets. We set up the necessary
infrastructure as code, which is released along with DECODE-OpenCloud.

3 Results

3.1 DECODE-OpenCloud framework

With the release of the DECODE-OpenCloud framework, we showcase its use and
extensibility for the community with three algorithms, DECODE [4], its multi-channel
extension DECODE-Plex, and COMET[? ] for localization microscopy. We focused
on developing the framework and its components so that they can be easily extended
to other algorithms. Algorithm developers simply provide a basic Dockerfile that cap-
tures all package requirements. Typically, this will be a five-line Dockerfile based on a
Python or conda image, for which we provide a template and reference implementa-
tion. Notably, algorithm developers do not need to handle file uploads and downloads,
status pinging, or queue logic.
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Our framework orchestrates computational load, i.e., compute jobs, with relatively
low time and resource overhead. Jobs start in about 10-30 seconds when free com-
puting resources become available. The worker pulls the docker image corresponding
to the job once, automatically caches it, downloads the job-specific files, runs the
actual compute job, and uploads the outcoming files. If new software is added to
DECODE-OpenCloud, workers automatically pull corresponding docker images to
avoid unnecessary individual maintenance.

3.2 Reference Implementations

DECODE [4] and its multi-channel extension DECODE-Plex are two instances of
simulation-based inference algorithms for localization microscopy that need frequent
retraining due to the nature of the application. Commonly, with temporally vary-
ing PSF and varying experiments, the training of a new model is indicated. In
extreme cases, this corresponds to a 1:1 ratio of experimental acquisitions and trained
DECODE (-Plex) models, which induces a high load on computational resources and
manual orchestration. DECODE-OpenCloud helps in that it allows for automatic
training pipelines and, subsequently, the distribution of the trained models.

COMET[5] is a GPU-accelerated drift-correction algorithm for SMLM. Its input is
simply the set of localizations and a few configuration parameters, which we included
in DECODE-OpenCloud without requiring further software changes or assistance.

4 Discussion

Translating scientific software to its productive usage is vital in advancing scientific
knowledge to benefit the public and the scientific community. However, many algo-
rithms lack easy installation and induce high maintenance e!orts or computation costs
even if open-sourced. This work aims to fill the gap by outlining and provisioning a
framework and its concrete implementation and public accessibility.

With the initial release of DECODE-OpenCloud, we showcase its usage with three
algorithms for localization microscopy and invite other algorithm developers to inte-
grate with our framework, and any individual with powerful yet partially unused
hardware attach these resources to our framework.

DECODE-OpenCloud has three significant advantages over state-of-the-art
approaches.

1. Ease of use—Our framework allows any researcher to interact easily with
DECODE-OpenCloud either with the provided website or with directly integrated
software. In particular, researchers who do not have access to the required hard-
ware (e.g., GPUs) can utilize computing resources shared by institutions that do
not need their total capacity at that time. This lowers the entry barrier for using
compute-intensive algorithms to make research more accessible.

2. Ease of integration—Algorithm developers only need to wrap their algorithm in a
docker container and provide a small set of parameters.

3. Resource usage—The e!ective usage of computing resources is mandatory both
due to economic and environmental considerations. DECODE-OpenCloud satisfies
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both concerns as it lowers the necessity for overly scaled hardware requirements
in peak load times and makes more e”cient use of computation capability when
hardware is unused at its physical location. We avoid tight integration directly into
local infrastructure as this would be prohibited by data security and maintainability
considerations.

4.1 Limitations

The main limitation of DECODE-OpenCloud is transferring data between the user and
the compute instance. This necessity comes at a di!erent cost for di!erent algorithms.
While DECODE, DECODE-Plex, and COMET come readily implemented with the
release of DECODE-OpenCloud and do not need large amounts of data for training
or processing, other algorithms might need vast amounts of data (in the order of
terabytes) for successful training. In the future, we aim to investigate an option to
abstain from uploading data to the cloud and directly mount local paths. This may,
however, limit our work’s applicability and scale. If DECODE-OpenCloud is operated
with cloud fallback computation power, the provider of DECODE-OpenCloud incurs
AWS charges.

4.2 Future Work

We will investigate into bookkeeping consumed and provided computation time to
ensure a fair distribution of computational resources among users. We hope to have
outlined that integrating other algorithms into DECODE-OpenCloud does not require
substantial changes to the algorithms, and hope to integrate more algorithms in the
future.

4.3 Conclusion

In conclusion, we (1) release DECODE-OpenCloud to speed up the process of scientific
software to productionized usage with low additional burden and easy maintainability.
(2) As a first step, we integrated three algorithms for localization microscopy to invite
researchers to use our framework. (3) Lastly, we hope that more algorithms will inte-
grate with our framework or see similar approaches make use of the publicly available
source code of the implementation.
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Fig. 1: DECODE-OpenCloud Architecture. (a) High-level overview.
Researchers choose among the implemented software applications in the front-end
website, prepare data and configuration, and submit a compute job. They do not
need to care about anything in the backend, which automatically handles data flows
and the distribution of the computational load. Depending on the computational load
and priority, the backend will assign the job to local or cloud computing workers. (b)
Detailed implementation. Users interact only with a ”user-facing” endpoint that
accepts new jobs for training, inference, and monitoring. A separate ”worker-facing
API” connects computing resources with the jobs that researchers have submitted.
Both local computes as well as cloud instances query the “worker-facing” API for new
jobs. The cloud backend handles user authentication, management, orchestration, and
file storage.
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Fig. 2:Backend implementation HTTP flow for new jobs. A user specifies a job
and POST files and their respective configurations for the user-facing API. The user-
facing API POSTs the job to the worker-facing API, which handles the orchestration of
computational resources. Following a pull schema, workers ask for unfinished jobs via
GET and all necessary files. While the job is running, workers POST status updates
to the worker-facing API which in turn updates the status for the user-facing API.
Users can download the outputs and are notified upon success or failure.
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# complete definition of a new algorithm with a hand-ful parameters
comprising the entrypoint, files and necessary hardware

decode:

v0_10_1: # version
train: # endpoint

app:

cmd: # command-line arguments
- "/docker/entrypoint.sh"

- "--train"

- "--calib_path=$(find /files/data -name '*.mat' | head -n

1)"

- "--param_path=$(find /files/config -name '*.yaml' | head

-n 1)"

- "--model_path=/files/model"

- "--log_path=/files/log"

env: [] # environment variables
handler:

image_url: "public.ecr.aws/g0e9g3b1/decode:v0_10_1" # docker
image

files_down: # file to download prior to execution
config_id: config

data_ids: data

artifact_ids: artifact

files_up: # files to upload post execution
log: log

artifact: model

aws_resources: # default resources for running
hardware:

MEMORY: 8000

VCPU: 4

GPU: 1

timeout: 18000

Fig. 3: Specification for cloud-backed algorithms. Algorithms are defined with
a small set of parameters that the authors must provide to be included in DECODE-
OpenCloud. These include the entrypoint of their docker container, the public docker
image URL, minimum hardware requirements as well as relevant paths of input and
output files.
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