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zur Erlangung des Grades eines

Doktors der Naturwissenschaften

(Dr. rer. nat.)

vorgelegt von
M.Sc. Fabian Otto

aus Fürth
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Abstract
Deep reinforcement learning and especially policy gradient methods have achieved re-
markable success in various domains. However, challenges remain for policy gradient-
based methods, characterized by issues such as premature exploitation and the difficulty
of selecting appropriate step sizes. Mitigating these challenges requires nuanced ap-
proaches, and one effective strategy is to impose trust regions in the form of Kullback-
Leibler divergence constraints on policy updates. Well-known methods such as Trust Re-
gion Policy Optimization and Proximal Policy Optimization adopt this approach, but they
often rely on heuristic-based algorithms, exhibit implementation-dependent behavior, or
lack scalability. In response to these limitations, this thesis introduces a novel algorithm
based on differentiable trust region projection layers. This method offers a comprehen-
sive and mathematically principled approach, ensuring efficiency, stability, and consis-
tency for deep policy gradient methods. Importantly, the proposed algorithm delivers
comparable or superior results to existing methods while remaining agnostic to specific
implementation choices and enforcing the trust regions exactly per state. Moreover, it
facilitates stable learning in high-dimensional and complex action spaces, making it par-
ticularly suitable for learning in the trajectory space through movement primitives from
classical robotics. This integration combines the advantages of classical robotics, such as
generating smooth and energy-efficient trajectories as well as adapting to sparse and non-
Markovian rewards, with the scalability of deep reinforcement learning methods. Addi-
tionally, we extend this method from the on-policy setting to the off-policy setting and
also eliminate the need for an explicit state-action-value function while preserving learn-
ing stability. This innovation streamlines the learning process and enhances exploration
and exploitation efficiency for off-policy learning, especially in higher-dimensional ac-
tion spaces. All proposed algorithms are validated through extensive experiments on a
variety of simulated tasks, including locomotion and manipulation.
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Kurzfassung
Tiefe Reinforcement Learning- und insbesondere Policy Gradient-Methoden haben in
verschiedenen Bereichen bemerkenswerte Erfolge erzielt. Dennoch bleiben Herausfor-
derungen für Policy Gradient-basierte Methoden bestehen, die durch Probleme wie vor-
zeitige Exploitation und die Schwierigkeit, geeignete Schrittgrößen zu wählen, gekenn-
zeichnet sind. Eine effektive Strategie ist die Definition von Trust Regions in Form
von Kullback-Leibler Divergenzbeschränkungen für Policy Updates. Bekannte Verfah-
ren wie Trust Region Policy Optimization und Proximal Policy Optimization verfolgen
diesen Ansatz, sind aber oft auf heuristische Algorithmen angewiesen, zeigen implemen-
tierungsabhängiges Verhalten oder sind nicht skalierbar. Um diese Einschränkungen zu
überwinden, wird in dieser Arbeit ein neuartiger Algorithmus vorgestellt, der auf diffe-
renzierbaren Projektionsschichten für Trust Regions basiert. Diese Methode bietet einen
umfassenden und mathematisch prinzipiellen Ansatz, der Effizienz, Stabilität und Kon-
sistenz für tiefe Policy Gradient-Methoden gewährleistet. Wichtig ist, dass der vorge-
schlagene Algorithmus vergleichbare oder bessere Ergebnisse als existierende Metho-
den liefert, während er unabhängig von spezifischen Implementierungsentscheidungen
bleibt und die Trust Regions genau pro State durchsetzt. Darüber hinaus ermöglicht er
stabiles Lernen in hochdimensionalen und komplexen Aktionsräumen, was ihn beson-
ders geeignet macht für das Lernen im Trajektorienraum durch Bewegungsprimitive aus
der klassischen Robotik. Diese Integration kombiniert die Vorteile der klassischen Robo-
tik, wie die Erzeugung von flüssigen und energieeffizienten Trajektorien und die Anpas-
sung an begrenzte und nicht-markovsche Belohnungen, mit der Skalierbarkeit tiefer Re-
inforcement Learning-Methoden. Darüber hinaus erweitern wir diese Methode von der
On-Policy-Umgebung auf die Off-Policy-Umgebung und eliminieren die Notwendigkeit
einer expliziten State-Action-Value-Funktion unter Beibehaltung der Lernstabilität. Die-
se Neuerung vereinfacht den Lernprozess und verbessert die Effizienz des Exploration-
Exploitation Trade-offs beim Off-Policy Lernen, insbesondere in höherdimensionalen
Aktionsräumen. Alle vorgeschlagenen Algorithmen werden durch umfangreiche Expe-
rimente mit einer Vielzahl von simulierten Herausforderungen, einschließlich Fortbewe-
gung und Manipulation, validiert.
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Chapter 1

Introduction

1.1 Problem Setting
Deep reinforcement learning (RL) applications have achieved notable success in several
domains, including games (Mnih et al., 2015; Silver et al., 2017), robotics (Levine et al.,
2015), and control (Duan et al., 2016). In particular, in the area of policy search, pol-
icy gradient (PG) methods have undergone significant developments (Peters and Schaal,
2008). However, the use of vanilla PG methods presents many challenges, especially
in dealing with the exploration-exploitation tradeoff. Conceptually, PG methods aim to
shift the policy distribution towards areas of the problem that yield the most positive
feedback based on the given task. Nevertheless, a natural consequence is that the agent
tends to explore minimally and exploit a locally optimal solution, seeking a consistent
stream of almost equally well-performing samples (see Figure 1.1 left). This premature
exploitation often hinders the agent from reaching its full potential. Therefore, a cru-
cial aspect of achieving a well-performing agent lies in facilitating early exploration and
progressively enhancing exploitation over time.
Additionally, another related significant concern in PG methods can be demonstrated
when examining the PG of a simple Gaussian policy

∇θ logπθ (a) =
(a−θ)

σ2 for πθ (a) =N (a|θ ,σ2).

The magnitude of the gradient varies considerably, inversely proportional to the variance
of the Gaussian distribution. Consequently, selecting an appropriate step size becomes
challenging, as it must potentially be adapted throughout the training process. Excessive
step-sizes may lead the policy to leap into ”unexplored“ regions where performance can
be arbitrarily good or bad (see Figure 1.1 left), while overly small step-sizes increase the
required number of samples, potentially preventing the policy from finding a satisfactory
solution (see Figure 1.1 center).
To address these limitations, a common practice involves imposing constraints on the
allowable changes between successive policy distributions. This is frequently achieved
through a Kullback-Leibler (KL) divergence constraint between successive policies to
regulate the size of policy updates. This approach enables a dynamic adjustment of the
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Chapter 1 Introduction

Too greedy Too moderate About right

Figure 1.1: Controlling the exploration-exploitation behavior in vanilla PG methods can
be challenging. These methods inherently aim to reduce entropy and locally optimize
performance to generate similarly performing samples (left). However, this often leads
to premature convergence. Conversely, decreasing the step size may result in inadequate
learning speed, impacting sample efficiency (center). Furthermore, depending on the
policy parametrization, the scale of the gradient can be influenced by the current policy
distribution. Balancing exploration and selecting an optimal step size becomes a chal-
lenging task (right). Trust regions now offer a solution by constraining the extent to
which the policy distribution can change, thereby improving the optimization process.

constraint based on the policy distribution. While smaller changes in the early stages
of training are less critical and fall within the constraint limits, the same magnitude of
change becomes more significant later on when entropy or exploration is reduced. Two
prominently known methods in this realm are trust region policy optimization (TRPO)
(Schulman et al., 2015a) and proximal policy optimization (PPO) (Schulman et al., 2017).
Notably, PPO has been applied to challenging tasks, including competitive multiplayer
games in OpenAI Five (Berner et al., 2019), emergent tool use (Baker et al., 2020),
and locomotion (Heess et al., 2017). The success of PPO likely stems from its speed
and simplicity; however, other approaches, like TRPO, are more principled but struggle
to scale to the complexities of the aforementioned problems. Despite PPO’s success,
its algorithmic approach is heuristic-based and highly reliant on implementation details
(Engstrom et al., 2020). Moreover, even other principled approaches, such as TRPO,
often approximate the trust region and fail to impose constraints for individual states.
We can now further improve and refine these RL agents by selecting better-suited rep-
resentations or by incorporating modifications that directly support behavior generation
and exploration. This may involve narrowing down the search space of viable options,
thereby reducing complexity, or increasing robustness to ensure more reliable gradients.
Additionally, we can go one step further. Many prominent RL methods (Haarnoja et al.,
2018; Schulman et al., 2015a, 2017; Fujimoto et al., 2018; Abdolmaleki et al., 2018a)
learn policies that directly predict raw actions, which are subsequently executed in the
environment. However, depending on the specific control signal, this approach can yield
significantly different performances (Schneider et al., 2023). In classical robotics, it is
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more common to represent policies at the trajectory level, encompassing the entire mo-
tion (Schaal et al., 2005; Schaal, 2006; Ijspeert et al., 2013; Paraschos et al., 2013). This
allows these methods to optimize and explore the entire motion to accomplish a task,
rather than seeking a local best action for the current state of the system, as is com-
mon in deep RL. In this context, it becomes easier to consider additional aspects of the
movement, such as energy efficiency and overall smoothness, or even to work with envi-
ronments that provide minimal or less structured feedback. However, classical robotics
approaches lack the generalization and scalability inherent in modern deep RL methods.
While previous attempts (Bahl et al., 2020) aimed to combine the benefits of both deep
RL and classical trajectory-based methods, they only leveraged some of the capabilities.
In this thesis, our focus is on creating more principled and efficient trust region methods
to improve upon existing approaches, aiming for superior exploration, learning stabil-
ity, and overall performance. Additionally, we investigate how well-known classical
robotics approaches can be integrated into the domain of deep RL, aiming to synthesize
the strengths of both paradigms.

1.2 Overview and Contributions

This thesis consolidates the findings of four previously published papers and organizes
them in the chronological order of their publication, which is also their natural structure.
Each main chapter discusses a different major project. The first main chapter introduces a
novel trust region deep RL method based on a more rigorous mathematical framework. In
the second main chapter, we explore the integration of these improved trust regions with
more conventional robotics methods to combine the advantages of both fields. Finally,
in the last main chapter, we present a method for implementing the proposed trust-region
technique in an off-policy setting to improve sampling efficiency. The main contributions
of this research are outlined below:

• In Chapter 3 we propose a new algorithm - trust region projection layer (TRPL).
While trust region methods are a popular tool in RL as they yield robust policy up-
dates in continuous and discrete action spaces, enforcing such trust regions in deep
RL is difficult. Hence, many approaches, such as TRPO (Schulman et al., 2015a)
and PPO (Schulman et al., 2017), are based on approximations. Due to those ap-
proximations, they violate the constraints or fail to find the optimal solution within
the trust region. Moreover, they are difficult to implement, often lack sufficient
exploration, and have been shown to depend on seemingly unrelated implementa-
tion choices (Engstrom et al., 2020; Henderson et al., 2018; Andrychowicz et al.,
2020). Therefore, we propose differentiable neural network layers to enforce trust
regions for deep Gaussian policies via closed-form projections. Unlike existing
methods, those layers formalize trust regions for each state individually and can
complement existing reinforcement learning algorithms. We derive trust region

3
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projections based on the KL divergence, the Wasserstein L2-distance (W2), and the
Frobenius norm for Gaussian distributions. We empirically demonstrate that those
projection layers achieve similar or better results than existing methods while be-
ing almost agnostic to specific implementation choices. This has previously been
published in Otto et al. (2021).

• In Chapter 4, we use TRPL and combine it with advances from standard robotics,
the new method is called movement primitive-based planning policy (MP3). By
integrating movement primitives (MPs) into the deep RL framework, MP3 enables
the generation of smooth trajectories throughout the whole learning process while
effectively learning from sparse and non-Markovian rewards. Additionally, MP3
maintains the capability to adapt to changes in the environment during execution.
Although many early successes in robot RL have been achieved by combining
RL with MPs, these approaches are often limited to learning single stroke-based
motions, lacking the ability to adapt to task variations or adjust motions during
execution. Moreover, the high dimensionality of the MP parameters has so far
hampered the effective use of deep RL methods. We introduce an episode-based
RL method for the non-linear adaptation of MP parameters to different task vari-
ations and extend the approach to incorporate replanning strategies. This allows
adaptation of the MP parameters throughout motion execution, addressing the lack
of online motion adaptation in stochastic domains requiring feedback. We further
make use of TRPL and show that exact trust regions are key for successful RL in
high-dimensional action domains as for MPs. We compare our approach against
state-of-the-art deep RL and RL with MPs methods and investigate different re-
ward formulations - dense, sparse, and non-Markovian rewards. While step-based
algorithms only work well for dense rewards, our approach also performs favor-
ably on sparse and non-Markovian rewards. Additionally, the replanning strategies
improve performance in domains requiring replanning and lower sample complex-
ity. This work has previously been published in Otto et al. (2022) and has been
extended in Otto et al. (2023) together with Hongyi Zhou, who contributed the
replanning and task adaptation experiments for box pushing and table tennis tasks,
along with additional ablation studies.

• In Chapter 5, we investigate the need for an explicit state-action-value function
representation, which is typically used in existing off-policy RL algorithms and
becomes problematic in high-dimensional action spaces. Existing algorithms of-
ten encounter challenges where they struggle with the curse of dimensionality, as
maintaining a state-action-value function in such spaces becomes data-inefficient.
We propose a novel off-policy trust region optimization approach, called Vlearn,
that eliminates the requirement for an explicit state-action-value function. Instead,
we demonstrate how to efficiently leverage just a state-value function as the critic,
thus overcoming several limitations of existing methods. By doing so, Vlearn ad-

4
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dresses the computational challenges posed by high-dimensional action spaces.
Furthermore, Vlearn introduces an efficient approach to address the challenges
associated with pure state-value function learning in the off-policy setting. This
approach not only simplifies the implementation of off-policy PG algorithms but
also leads to consistent and robust performance across various benchmark tasks.
Specifically, by removing the need for a state-action-value function, Vlearn simpli-
fies the learning process and allows for more efficient exploration and exploitation
in complex environments. This has previously been published in Otto et al. (2024)
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Chapter 2

Background and Related Work
The concept of reinforcement learning (RL) consists of two main components – the agent
and the environment. The environment represents the task or world with which the agent
interacts – this can be a specific task, ranging from specific tasks like video games or
control problems to intricate systems such as power grids or data centers. The agent
aims to learn how to translate (partial) observations of the environment into actions in
order to maximize a reward signal. These actions affect not only the reward received but
also the subsequent observations. The reward signal can be interpreted as feedback about
the value of the current state of the world. This idea is illustrated in Figure 2.1.
The above setup distinguishes RL from supervised and unsupervised learning. Unlike in
supervised learning, it is often not feasible to acquire examples of desired agent behavior
that apply to all potential situations in which the agent is expected to operate. Especially
for unseen situations, the agent must learn from its own experience based on interactions
with the environment. Unsupervised learning is more closely related, but attempts to dis-
cover latent structure in the data. While discovering structure in the collected experience
can be useful for RL as well, it does not address the RL problem of maximizing a reward.
This chapter introduces the RL setting in more detail and takes a closer look at some of
the most popular RL algorithms, as well as a particular class of algorithms called trust
region methods.

2.1 Reinforcement Learning
This chapter is meant to give a small overview of the required background in RL and
is loosely based on the structure and content in Sutton and Barto (2018). Generally, in
RL we consider the problem of a policy search in an Markov Decision Process (MDP)
defined by the tuple (S,A,P,R,ρ0,γ).

State Space S The state s ∈ S received from the environment is the complete descrip-
tion of the world, i.e., there exists no latent information that is not part of the state.
Hence, this is also called the fully observed case. This includes, for example, the po-
sitions and velocities of a robot’s joints, as well as the locations, sizes, and weights of
objects with which the robot interacts. When the agent receives only partial information

7
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Agent

Environment

action
at

st+1

rt+1

state
st

reward
rt

Figure 2.1: The diagram illustrates the interactions between an agent and its environment
in a MDP. In an MDP, the agent in a given state takes actions that lead to a transition
to a new state based on a stochastic process. The associated reward is then received by
the agent. The key principle is the Markov property, where the future state and reward
depend only on the current state and action. These interactions form the basis of the
RL framework, guiding the agent’s decision-making process as it seeks to maximize
cumulative rewards over time. Adapted from Sutton and Barto (2018).

about the environment, this is typically referred to as observation o∈O. This is relevant,
for example, when learning from image-based observations, where velocity and direction
of motion are not directly observable from a single image. Formally, partially observed
Markov decision processs (POMDPs) capture this specific scenario where information
may have been omitted or transformed from the full state s. For the purposes of this
paper, however, we consider only the fully observed case, i.e. the MDP setting, and refer
the reader to Kaelbling et al. (1998) for an in-depth look at POMDPs.

Action Space A The action space A encompasses the entire collection of permissible
actions a available to the agent within a given environment. The action space is either
discrete, such as in most video games or chess, or continuous, such as in most robot
control problems. While deep RL uses neural networks as function approximators, this
tends to help mostly with generalization for different types of state spaces. Depending
on the type of action space, only some algorithms are directly applicable and most others
would require (significant) changes to work on the respective other action space. For
example, the popular method deep Q-network (DQN) (Mnih et al., 2015), which works
well for discrete action spaces, would require discretizing the action space for continuous
control problems and, thereby limiting the expressiveness the agent can achieve. For this
work, however, we will focus primarily on continuous action spaces, since our primary
application area is robotics, which almost always requires continuous control signals.

8



2.1 Reinforcement Learning

Policy π The policy is the strategy that selects actions based on the current state. For-
mally, it is a mapping π : S → A from states s ∈ S to the probabilities of selecting the
possible actions a ∈ A, hence it is often denoted as π(a|s). While RL algorithms often
use stochastic policies to facilitate exploration in the environment, the policy can also be
deterministic, such as in deterministic policy gradient (DPG) (Silver et al., 2014).
In its simplest form, a policy can be thought of as a lookup table, but in deep RL the
policy is most often represented by a neural network with a set of learnable parameters,
which we denote as θ . In the latter case, the policy is formally written as πθ (a|s) or
π(a|s;θ). The structure of the network, or more specifically the probability distribution
of the actions, depends on the action space. The two most common deep policy types
are categorical policies for discrete action spaces and (diagonal) Gaussian policies for
continuous action spaces. On a general note, the chosen distributions should offer a
straightforward and ideally differentiable approach to sampling actions and calculating
the log-likelihoods of actions, logπθ (a|s), as these characteristics are relevant for most
RL algorithms.
The central task of RL algorithms is now to determine how to update the policy to max-
imize the rewards received.

Trajectory τ We can now bring states, actions, and policies together. In RL, we typi-
cally try to optimize the behavior of some policy over trajectories τ = (s0,a0,s1,a1, ...).
Trajectories are a sequence of states and actions in the environment, where the first state
s0 is sampled from the start-state distribution ρ0 : S → [0,1]. For each MDP, there exist
transition probabilities P : S ×A×S → [0,1], which define the dynamics of the MDP
and can be either deterministic or stochastic. They describe the probability of transition-
ing to state s′ ∈ S given the current state s ∈ S and action, a ∈ A

p(s′|s,a) = Pr
{︁

st+1 = s′|st = s,at = a
}︁
, (2.1)

that means ∫︂

s′∈S
p(s′|s,a)ds′ = 1, ∀s ∈ S,∀a ∈ A. (2.2)

This equation reveals one important property of MDPs. The next state depends solely
on the previous state and action, i.e., the previous state must contain all prior informa-
tion about the agent-environment interaction that are relevant to future changes. This is
known as the Markov property.
By utilizing our environment dynamics and policy, we can now compute the probability
of following a specific trajectory τ

p(τ|π) = ρ0(s0)
T−1

∏
t=0

p(st+1|st ,at)π(at |st), (2.3)

where T is the length of the trajectory.
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RewardR As mentioned earlier, our main goal is to maximize a reward signal Rt ∈R.
Consequently, the reward returned by the environment is one of the most, if not the most,
important parts in RL. Given the current state and the action chosen by the agent, we can
evaluate the reward function r : S ×A→ R

r(s,a) = E [Rt |st = s,at = a] .

At times, the reward function is also expressed solely as a function of the current state

r(s) = E [Rt |st = s] ,

or it may depend on the current state, action, and the next state

r(s,a,s′) = E
[︁
Rt |st = s,at = a,st+1 = s′

]︁
.

Throughout this paper, however, we will mostly use r(s,a) or just rt .
The goal of the agent is now to maximize the cumulative reward over a trajectory, also
denoted as return Gt . One straightforward approach to achieving this is through the
finite-horizon undiscounted return

Gt =
T

∑
k=t

rk. (2.4)

In this setting, a terminal state occurs at time step T , indicating the end of the task,
whether it be due to success or failure. This allows for a natural division of the agent-
environment interaction into subsequences known as episodes. Tasks that follow this
episodic structure are referred to as episodic tasks, such as the task of grasping an object.
If there is no clear time boundary, there is no direct episode, and the task may potentially
continue indefinitely (T = ∞) and could result in an infinitely large reward. To address
this, we introduce the notion of discounting, accounting for the temporal distance at
which rewards are acquired. Distant rewards contribute significantly less than imme-
diate rewards. This leads to the formulation of the infinite-horizon discounted return,
characterized by a discount factor γ ∈ [0,1)

Gt =
∞

∑
k=t

γ
k−trk. (2.5)

Yet, in practice, it is common to impose an artificial time limit to allow for better com-
parison.

Value Estimates An important concept that is used by many RL algorithms is that of
state-value V (s) or state-action-value Q(s,a) functions. They allow us to estimate the
value of a state (and of performing a given action) by specifying the excepted future
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return. For the state-value function, we typically consider starting in state s ∈ S and then
following a policy π

V π(s) = Eπ [Gt |st = s] = Eπ

[︄
∞

∑
k=t

γ
k−tRk

⃓⃓
st = s

]︄
, ∀s ∈ S. (2.6)

Equivalently, the state-action-value function can be written as

Qπ(s,a) = Eπ [Gt |st = s,at = a] = Eπ

[︄
∞

∑
k=t

γ
k−tRk

⃓⃓
st = s,at = a

]︄
, ∀s ∈ S,∀a ∈ A.

(2.7)
The main difference to the state-value function is that we first take action a ∈ A in state
s and then follow the policy afterward. This action is not necessarily the one that would
be chosen by the policy but can be any action.

When learning state-value and state-action-value functions, it is often beneficial to use
their recursive formulations. For the state-action-value function, we have

Qπ(s,a) = Eπ [Gt |st = s,at = a]
= Eπ [Rt + γGt+1|st = s,at = a]

=
∫︂

s′
p(s′|s,a)

[︁
r(s,a)+ γEπ

[︁
Gt+1|st+1 = s′

]︁]︁
ds′

=
∫︂

s′
p(s′|s,a)

[︃
r(s,a)+ γ

∫︂

a′
π(a′|s′)Eπ

[︁
Gt+1|st+1 = s′,at+1 = a′

]︁
da′
]︃

ds′

=
∫︂

s′
p(s′|s,a)

[︁
r(s,a)+ γEπ

[︁
Qπ(s′,a′)|st+1 = s′

]︁]︁
ds′

= Es′∼P
[︁
r(s,a)+ γEπ

[︁
Qπ(s′,a′)|st+1 = s′

]︁
|st = s,at = a

]︁
. (2.8)

= Es′∼P
[︁
r(s,a)+ γV π(s′)|st = s,at = a

]︁
. (2.9)

The recursive formulations in Equations (2.8) and (2.9) are also known as Bellman equa-
tions (Bellman, 1957). Furthermore, in Equation (2.9) we can see an important connec-
tion between the state-value and state-action-value functions. It is often used to estimate
the state-action value while learning only an explicit model of the state-value function.
Similarly, we can formulate the Bellman equation for the state-value function

V π(s) = Eπ [Gt |st = s]

=
∫︂

a
π(a|s)

∫︂

s′
p(s′|s,a)

[︁
r(s,a)+ γEπ

[︁
Gt+1|st+1 = s′

]︁]︁
ds′ da

= Eπ

[︁
r(s,a)+ γV π(s′) | st = s

]︁
. (2.10)

Effectively, the Bellman equation illustrates the correlation between the value of a given
state (and action) and the values of its potential successor states, which can be thought
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st

at

st+1

rt

(a) State-value function V π(s) backup.

st ,at

st+1

at+1

rt

(b) State-action-value function Qπ(s,a) backup.

Figure 2.2: Each open circle in the diagrams represents a state, while each solid circle
corresponds to a state-action pair. Starting from the root node, the agent can select actions
based on its policy for a given state s for the state-value function or has to take the given
action a for the state-action-value function. Based on the environment dynamics, this
leads to various subsequent states st+1 accompanied by a corresponding reward r. The
Bellman equation (Equations (2.8) and (2.9)) now combines all possible paths, weighting
them according to their probability. Based on Sutton and Barto (2018).

of as looking ahead, as shown in Figure 2.2.
As mentioned in the policy section, our goal is to find a policy that maximizes the cu-
mulative reward. If this policy is better than or equal to all other policies, it is called the
optimal policy π∗. While there can be more than one such policy, they all share the same
optimal state-value and state-action-value function

V ∗(s) = max
π

Eπ [Gt |st = s] = max
π

V π(s)

Q∗(s,a) = max
π

Eπ [Gt |st = s,at = a] = max
π

Qπ(s,a).

Furthermore, this special case gives rise to the Bellman optimality equation based on
Equations (2.8) and (2.10)

V ∗(s) = max
a

Es′∼P
[︁
r(s,a)+ γV ∗(s′)

]︁
, (2.11)

Q∗(s,a) = Es′∼P

[︃
r(s,a)+ γ max

a′
Q∗(s′,a′)

]︃
. (2.12)

Note that we are not following a specified policy here, but rather choosing the best action.
This further means that any policy that acts greedily based on the optimal state-value
function qualifies as an optimal policy.
Lastly, for some RL methods, it is not necessary to provide a specific state-value esti-
mate, but much rather the relative advantage an action has over actions. This concept is
represented by the advantage function

Aπ(s,a) = Qπ(s,a)−V π(s). (2.13)
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Fit Value-function
Q(s,a)

Value-based

π(s) = argmaxa Q(s,a)

Policy defined implicitly

+ Model

Estimate return
J(π)

Policy Optimization

θ ∗ = argmaxθ J(π)

Optimize parameters

+ Model

Fit Value-function
Q(s,a)

Actor-Critic

θ ∗ = argmaxθ Eπθ
[Q(s,a)]

Optimize parameters
Use Value-function

+ Model
Model-based

Learn additional
transition model

Model-free

Fit model / estimate return

Improve policy

Figure 2.3: Taxonomy of the RL algorithm landscape. We generally classify RL algo-
rithms into two main categories: model-based and model-free methods. Model-based
methods utilize a world model during training, while model-free methods do not have
access to such a model. Furthermore, algorithms can be categorized based on how they
learn the policy. Value-based methods primarily learn a policy implicitly through a state-
action-value function, whereas policy-based methods aim to directly optimize the objec-
tive outlined in Equation (2.14). Actor-critic methods represent an intersection of both
approaches, incorporating elements of both value-based and policy-based methods.

It describes how much better or worse a particular action a is compared to the average
performance for that state s under the policy π . In practice, policy gradient (PG) methods
(Sutton et al., 1999a) are a class of algorithms that rely heavily on this concept.
Similar to the policy, in deep RL the state-value and the state-action-value functions are
typically represented by a neural network. Hence, we write Qπ

φ
(s,a) or V π

φ
(s), where φ

are the learnable parameters.

Objective J(π) The general RL objective of finding a policy that maximizes the ex-
pected return can now be formalized. This can be achieved by combining the probability
of a trajectory (Equation (2.3)) with its reward (Equations (2.4) and (2.5)) to obtain the
expected return

J(π) =
∫︂

τ

p(τ|π)G0 dτ = Eπ [G0] (2.14)

and the corresponding optimal policy

π
∗ = argmax

π
J(π).

2.1.1 Learning the Policy
The main goal of any RL algorithm is now to optimize the above objective and find the
optimal policy. As shown in Figure 2.3, we typically consider two major groups of RL al-
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gorithms – model-free and model-based. The main difference between the two is whether
the agent has access to or learns a model of the environment dynamics p(st+1|st ,at). By
using this model, the agent can plan and explore different action choices without inter-
acting with the real environment, which can be costly. One of the most straightforward
ways to achieve this is by leveraging dynamic programming (Bellman, 1966). However,
dynamic programming is typically avoided in the context of RL due to its high compu-
tational cost and the need for a (near) perfect dynamics model. Nevertheless, the basic
principles of dynamic programming often inspire the design of more practical methods
within RL that aim to reduce computational cost and dependence on precise models.
For instance, in board games, where the dynamics are known, model-based RL has been
highly successful (Silver et al., 2018, 2017), but in many other applications, the ground
truth dynamics are still difficult to obtain. In such cases, it is necessary to learn a model
from interactions with the environment, which may lead to overfitting the agent to this
specific learned model. Consequently, this can result in suboptimal performance when
applied to the actual target application. In contrast, model-free approaches eliminate the
need for a dynamics model and instead learn directly from interactions with the environ-
ment. Because of their independence from explicit models, we will focus on model-free
approaches in this work.

Value-based Methods Another dimension in classifying RL methods is based on how
they learn the policy (refer to Figure 2.3). Value-based methods do not make use of
an explicit policy parametrization πθ , but instead just learn a state-action-value function
Q(s,a). This way, the current best policy is implicitly defined as π(s) = argmaxa Q(s,a).
For exploration, a common strategy in value-based methods is ε-greedy. This strategy se-
lects a random action with probability ε and otherwise chooses the best action according
to the state-action-value function

πgreedy(a|s) =
{︄

ε/|A|+1− ε if a = argmaxa′Q(s,a′)
ε/|A| otherwise

, (2.15)

where |A| is the number of possible actions in the environment. This is also the method
of choice in one of the most commonly used value-based methods – Q-learning (Watkins
and Dayan, 1992).
Training the state-action value function usually involves temporal difference learning
(Sutton, 1988; Watkins and Dayan, 1992), with updates grounded in the Bellman equa-
tion (see Equation (2.8))

Q(st ,at)← Q(st ,at)+α

[︂
rt + γ max

at+1
Q(st+1,at+1)−Q(st ,at)

]︂
, (2.16)

where α is the learning rate. This directly approximates the optimal state-action-value
function Q∗(s,a) from Equation (2.12) and can guarantee convergence in the tabular case.
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This learning approach, known as temporal-difference (TD)-learning (Sutton, 1988), can
be applied to state-value or state-action-value functions, with Q-learning representing a
specific variant focused on the latter. TD-learning involves taking a one-step estimate of
the value function rt + γV (st+1) and computing the resulting TD error

δt = rt + γV (st+1)−V (st). (2.17)

This error quantifies the disparity between the current value estimate and a one-step es-
timate of the returns, and it can be further extended to n-step or λ -returns (Sutton and
Barto, 2018). This is the same principle as in the Q-learning update step above. Un-
like dynamic programming, Equation (2.16) directly shows that Q-learning is inherently
model-free, as it does not necessitate knowledge of the environment dynamics. Simul-
taneously, improving the Q-function estimate directly results in maximizing the general
RL objective from Equation (2.14).
Furthermore, Q-learning is classified as an off-policy algorithm, as it improves a policy
distinct from the one employed to generate the data. The latter is referred to as the be-
havior policy. In standard Q-learning, the ε-greedy policy serves as the behavior policy,
exploring and generating data for the update. The policy targeted for improvement is
defined by the Q-function Q(s,a) where the action at+1 for state st+1 is chosen based on
the highest Q-value, as shown in Equation (2.16),
Alternatively, we can select the action for state st+1 based on the same policy, we use for
exploration

Q(st ,at)← Q(st ,at)+α

[︂(︁
rt + γQ(st+1,πgreedy(at+1|st+1)

)︁
−Q(st ,at)

]︂
. (2.18)

This method is known as SARSA (Rummery and Niranjan, 1994) and is considered to
be an on-policy approach since it uses the same policy for the exploration and the up-
date. However, Q-learning-based approaches are typically favored due to their enhanced
sample efficiency, achieved through mechanisms like replay buffers (Lin, 1992). For on-
policy learning, policy optimization methods, which we discuss next, are a more common
choice.

Policy Optimization Unlike value-based methods, policy optimization methods rep-
resent a policy πθ directly with parameters θ and optimize these parameters. This elim-
inates the need for an explicit representation of a value function in the action selection
process. While we will see later that a value function can still aid in learning the pol-
icy parameters, it is not mandatory. For this reason, policy optimization is considered a
more direct approach for solving RL problems compared to value-based methods. This
is especially beneficial when learning a policy is simpler than learning the corresponding
value function for a given task. Another strength of policy optimization methods lies
in their ability to learn optimal stochastic policies, a feature crucial, e.g., for imperfect
information games. Additionally, they exhibit better theoretical properties, as the action
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probabilities change smoothly based on the parameters. In contrast, small changes in
state-action values for value-based methods can suddenly favor a different action, lead-
ing to significant shifts in the behavior of the ε-greedy policy.

To optimize the policy, gradient ascent is typically employed on the objective J(πθ ) from
Equation (2.14), hence why these methods are also known as PG methods

θt+1 = θt +α∇θ J(πθ ).

This requires the assumption that the policy is differentiable with respect to its parame-
ters. Moreover, while Monte Carlo estimates can be used to approximate the expectation
of J(πθ ), this is not directly feasible for its gradients. However, the likelihood-ratio trick
∇θ p(τ|π) = p(τ|π)∇θ log p(τ|π) enables the rewriting of the gradient as an expectation

∇θ J(πθ ) = ∇θEπ [G0]

=
∫︂

τ

∇θ p(τ|π)G0 dτ

=
∫︂

τ

p(τ|π)∇θ log p(τ|π)G0 dτ

= Eπ [∇θ log p(τ|π)G0] .

This expectation can now be approximated by computing a Monte Carlo estimate of
the gradient of the trajectory probabilities p(τ|π) and the returns. Yet, Equation (2.3)
reveals that this requires knowledge of the prior state distribution and the environment
dynamics, which is not accessible in the model-free setting. Nonetheless, the gradient
can be simplified by extending the trajectory probability

∇θ J(πθ ) = Eπ

[︄(︄
∇θ logρ0(s0)+

∞

∑
t=0

∇θ logπθ (at |st)+
∞

∑
t=0

∇θ log p(st+1|st ,at)

)︄
G0

]︄

= Eπ

[︄
∞

∑
t=0

∇θ logπθ (at |st)Gt

]︄

= Eπ

[︄
∞

∑
t=0

∇θ logπθ (at |st)Qπ(st ,at)

]︄

In the second step, we eliminate the dependency on the prior state distribution and the
environment dynamics since they do not rely on the policy parameters and consequently,
their gradient is always 0. Moreover, we can replace the full trajectory returns G0 starting
at the beginning of the episode t = 0 with the returns of the current time step Gt . This
simply follows from the idea that past rewards cannot be altered by selecting a different
action in the future. Alternatively, in the last step, we can replace the rewards-to-come
Gt with an estimate of the state-action-value function Q(st ,at), which is equivalent. This
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simplification now allows the gradient to be approximated using real trajectory samples
to estimate the returns Gt . The general approach we showed here is also known as
REINFORCE (Williams, 1992).
From a practical standpoint, direct use of REINFORCE is typically undesirable due to
its high variance. To mitigate this, subtracting a baseline b(st) from the returns or state-
action-value function can be used to reduce the variance

∇θ J(πθ ) = Eπ

[︄
∞

∑
t=0

∇θ logπθ (at |st)(Gt−b(st))

]︄
.

The baseline can take various forms, such as a function, constant, or even a random
variable, but it must be independent of the action a to avoid introducing bias. Ensuring
the baseline’s independence from the chosen action maintains the unbiased nature of the
estimate since we just subtract zero

Eπ [∇θ logπθ (at |st)b(st)] = b(st)∇θEπ [logπθ (at |st)] = b(st)∇θ 1 = 0

Besides the average or expected reward, a straightforward choice for this baseline is the
expected return, i.e., the state-value function V π(st) from Equation (2.10). Following the
definition in Equation (2.13), we can further replace the Q-function and V-function with
the advantage function

∇θ J(πθ ) = Eπ

[︄
∞

∑
t=0

∇θ logπθ (at |st)(Qπ(st ,at)−V π(st))

]︄

= Eπ

[︄
∞

∑
t=0

∇θ logπθ (at |st)Aπ(st ,at)

]︄
(2.19)

Since REINFORCE is a Monte Carlo method, computing an estimate of the advantage
function can also be done using Monte Carlo, for instance, with n-step returns

Âπ(st ,at) =
t+n−1

∑
k=t

γ
k−trk + γ

nV π(st+n)−V π(st).

Here, choosing an optimal value for n can be challenging, as a small n yields lower
variance but potentially high bias, whereas a large n has higher variance but lower bias.
To avoid committing to a specific n, an average of all n-step returns can be computed,
allowing for a direct trade-off between bias and variance. This commonly used approach
to estimate the advantage function is known as generalized advantage estimation (GAE)
(Schulman et al., 2015b):

Âπ
GAE(st ,at) =

∞

∑
k=t

(γλ )k−t(︁rk + γV π(sk+1)−V π(sk)
)︁
,
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where λ ∈ [0,1] is a hyperparameter. Setting λ = 0 corresponds to one-step advantages
(similar to the standard advantage), and for λ → 1, GAE includes more steps in the
computation, introducing bias but potentially reducing variance.

A major drawback associated with on-policy methods is their inability to effectively
use past trajectories, resulting in significant sampling inefficiency. To overcome this
limitation and exploit the value of past trajectories, a common approach is to incorporate
importance sampling

∇θ J(πθ ) = Eπ

[︄
∞

∑
t=0

∇θ logπθ (at |st)Aπ(st ,at)

]︄

= Eπold

[︄
∞

∑
t=0

πθ (at |st)

πθold(at |st)
∇θ logπθ (at |st)Aπ(st ,at)

]︄
, (2.20)

where πold represents a potentially distinct data-generating behavior policy, akin to sce-
narios encountered in off-policy or value-based methods. This integration of importance
sampling enables a more nuanced and efficient exploration of the learning space by in-
corporating information from prior trajectories. This mitigates the sample inefficiency
associated with on-policy methods, improving the overall learning process.

Actor-Critic Actor-critic methods serve as a hybrid approach, combining aspects of
both value-based and policy optimization methodologies. In this paradigm, the actor
guides action selection and thus directs exploration, while the critic provides valuable
feedback to enhance the learning process. In contrast to relying on a baseline esti-
mate and Monte Carlo samples, we consider actor-critic methods to directly learn a
parametrized state-action value function Qπ(s,a) alongside the policy. This circumvents
introducing variance but introduces potential bias due to a potentially imperfect critic
estimate. Furthermore, the differentiable Q-function facilitates direct policy updates,
especially in the deep learning setting, which we will show in the next section. Addition-
ally, actor-critic methods commonly operate in off-policy scenarios, incorporating expe-
rience replay or other replay buffer mechanisms (Lin, 1992). This enables algorithms
to learn from past trajectories, improving their sample efficiency. However, it should be
noted, that the distinction between actor-critic methods and direct policy optimization
is not universally agreed upon. For instance, REINFORCE with a state-value function
baseline can be considered part of the actor-critic framework, often termed ”advantage
actor-critic” (see Equation (2.19)). This holds especially true for more modern RL ap-
proaches, which will be discussed in the subsequent section. In this work, our focus
lies predominantly on actor-critic algorithms that adhere to the aforementioned proper-
ties, often referred to as ”Q-actor-critic” approaches. These methods directly learn a
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Q-function (here without a baseline) and update the policy as

∇θ J(πθ ) = Eπ

[︄
∞

∑
t=0

∇θ logπθ (at |st)Qπ
φ (st ,at)

]︄
(2.21)

or TD actor-critic approaches, which approximate the advantage with the 1-step TD error
(see Equation (2.17))

∇θ J(πθ ) = Eπ

[︄
∞

∑
t=0

∇θ logπθ (at |st)
(︂

rt + γV π
φ (st+1)−V π

φ (st)
)︂]︄

,

where φ are the learnable critic parameters. In summary, actor-critic methods offer a
flexible and powerful framework for RL by harnessing the strengths of both value-based
and policy optimization approaches.

2.1.2 Deep Reinforcement Learning Algorithm Landscape
Conventional RL methods demonstrate effectiveness in specific scenarios, yet their short-
comings become evident in environments characterized by complex state spaces, intri-
cate dynamics, or the need for abstract feature extraction. In response to these challenges,
deep RL emerges as a solution, leveraging the representational power of neural networks
to capture intricate patterns and nuances within the environment. With the foundation
of RL methods established in the previous section, we delve into a more detailed explo-
ration of contemporary RL approaches, particularly in the field of deep RL.
First, we revisit standard Q-learning (see Equation (2.16)), for which DQN (Mnih et al.,
2013) directly transfers its idea to the deep learning setting. The optimization objective
becomes

J(Qφ ) = E(st ,at ,rt ,st+1)∼D

[︄(︃
rt + γ max

at+1
Qφ̄ (st+1,at+1)−Qφ (s,a)

)︃2
]︄
. (2.22)

The transition from the tabular case in standard Q-learning (see Equation (2.16)) to DQN
introduces new challenges, such as the adoption of mean squared error instead of direct
Q-function updates. Moreover, the nonlinear function approximation adds complexity,
with the above equation involving two significant changes.
To increase the sample efficiency in RL, modern off-policy algorithms, including DQN,
leverage a replay buffer (Lin, 1992). Past transitions (st ,at ,rt ,st+1), generated by the
exploration or behavior policy, are stored in the replay memory D and are subsequently
sampled for each Q-function update. While uniform sampling from the replay buffer
is the most common approach, more advanced techniques, such as prioritized experi-
ence replay (Schaul et al., 2016), have also been proposed. Random sampling from the
replay buffer helps reduce variance by mitigating the auto-correlation present in the orig-
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inal online learning setting, where consecutive samples are used. Additionally, in online
learning, where the current Q-function parameters determine the next samples, experi-
ence replay helps average the behavior distribution over multiple previous states. This
leads to smoother learning and prevents oscillations or divergence in the parameters. The
second major improvement is the use of target networks. Instead of optimizing towards
the one-step estimate using the current Q-function with parameters φ , DQN employs a
second (target) network with parameters φ̄ to estimate the Q-value of the next state, as
shown in Equation (2.22). This target network is either periodically updated by copy-
ing the current Q-function parameters or through polyak averaging φ̄ ← τφ +(1− τ)φ̄ .
This strategy prevents substantial changes in the optimization target, i.e. the one-step es-
timate, thereby averting short-term oscillations and contributing to the overall stability
of the training process. Both of these changes align the problem more closely with a
supervised learning problem.

While the original DQN achieved considerable success and attention, subsequent itera-
tions aimed to address several of its shortcomings. Some focused on mitigating over-
estimation bias (Van Hasselt et al., 2016), while others explored the separation of state
values and state-dependent action advantages (Wang et al., 2016). Leveraging distribu-
tional critics (Bellemare et al., 2017) and combining multiple previous improvements
(Hessel et al., 2018) further refined the landscape. Yet, while it is possible to directly
transfer Q-learning to continuous action spaces (Kalashnikov et al., 2018), it is compu-
tationally expensive as each action selection requires solving an optimization problem.
Although discretization is an option (Seyde et al., 2022), it is inherently limiting when
no appropriate discretization is available. For continuous problems, modern off-policy
actor-critic methods have established themselves as a superior option. They optimize a
policy network that generates continuous action values based on the Q-function estimator
(Degris et al., 2012; Zhang et al., 2019). This approach accommodates both determin-
istic (Lillicrap et al., 2015; Fujimoto et al., 2018) and probabilistic policy distributions
(Haarnoja et al., 2018; Abdolmaleki et al., 2018b).

In particular, soft actor critic (SAC) (Haarnoja et al., 2018) stands out among these meth-
ods, aiming to optimize its policy with the objective

J(πθ ) = Est∼D,at∼πθ

[︁
α logπθ (at |st)−Qφ (st ,at)

]︁
, (2.23)

where α is either a fixed hyperparameter or automatically adjusted during training. In
general, this objective is very much related to the one used for the PG of standard actor-
critic methods (see Equation (2.21)), however, it additionally adds a weighted entropy
term Est∼D,at∼πθ

[α logπθ (at |st)]. While this objective can be optimized using the like-
lihood ratio gradient (Williams, 1992), this does not fully leverage all available infor-
mation. For SAC and related methods, instead of effectively using the Q-function as a
weight for the gradient, we can directly exploit the differentiability of the Q-function
resulting in a lower variance. To do this, we need to apply the reparametrization trick
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(Kingma and Welling, 2014) to Equation (2.23), which yields

J(πθ ) = Est∼D,εt∼N
[︁
α logπθ ( fθ (εt ;st)|st)−Qφ (st , fθ (εt ;st)|st))

]︁
,

where the policy is implicitly defined by the transformation at = fθ (εt ;st) with the noise
vector εt , which is typically sampled from a spherical Gaussian. This approach can be
seen as an extension of methods used for deterministic policies (Lillicrap et al., 2015;
Fujimoto et al., 2018) to tractable stochastic policies. Building upon Equation (2.22),
the entropy is incorporated into the Q-function network objective, yielding the training
formulation

J(Qφ ) = E(st ,at)∼D

[︃
1
2

(︂
Qφ (s,a)−

(︂
r(st ,at)+ γEst+1∼p

[︂
Vφ̄ (st+1)

]︂)︂)︂2
]︃
,

where
Vφ̄ (st+1) = Ea∼πθ

[︂
Qφ̄ (st+1,at+1)−α logπθ (at+1|st+1)

]︂
.

Unlike DQN, which relies on an indirect policy via the Q-function, SAC features a pa-
rameterized policy and therefore selects its actions at+1 based on that policy.
Nevertheless, similar to the challenges encountered in training a state-action-value func-
tion estimator in DQN, the continuous setting presents similar difficulties. Here, some
strategies directly transfer from the discrete to the continuous settings (Fujimoto et al.,
2018). Additionally, common techniques like ensembles can be employed to address
some of these challenges and improve overall performance (Chen et al., 2021).

2.2 Trust Region Methods

In the on-policy setting, trust region methods (Schulman et al., 2017, 2015a; Akrour
et al., 2019) have proven effective in stabilizing the PG. These methods constrain the
magnitude of policy updates, reducing the probability of extreme behavioral shifts. While
Kakade and Langford (2002) initially explored mixing policies, today’s approaches pre-
dominantly use Kullback-Leibler (KL) trust regions to bound the updates (Schulman
et al., 2015a, 2017; Akrour et al., 2019). This concept of KL trust regions originates in
natural PG approaches (Peters et al., 2005; Kakade, 2001; Bagnell and Schneider, 2003),
which may even provide analytical solutions to the problem. In contrast to earlier works,
Peters et al. (2010) introduces a maximal step size constraint instead of a small fixed step
size for the trust region. They provide a solution based on the dual of the now constraint
optimization problem, which has also been transferred to the model-based setting (Ab-
dolmaleki et al., 2015). Still, these approaches are not straightforward to extend to highly
nonlinear policies, such as neural networks. In an attempt to transfer those ideas to deep
learning, trust region policy optimization (TRPO) (Schulman et al., 2015a) approximates
the KL constraint, along with a backtracking line search to enforce a hard KL constraint.

21



Chapter 2 Background and Related Work

TRPO starts from formulating a constraint objective based on the KL divergence between
the probability distributions of the policy, namely the trust region, which was also used
by Peters et al. (2010). This KL divergence constraint is incorporated into the standard
PG objective from Equation (2.20) as follows

J(πθ ) = Eπold

[︄
∞

∑
t=0

πθ (at |st)

πθold(at |st)
Aπ(st ,at)

]︄
s.t. Eπold

[︁
DKL(πθold(·|st)),πθ (·|st))

]︁
≤ ε,

where ε is a hyperparameter dictating the size of the trust region. While the ideal scenario
involves enforcing the constraint for every possible state, i.e. constraining the maximum
change of the KL, practically achieving this across the entire state space proves chal-
lenging due to its size. As a consequence, TRPO adopts the expected KL divergence as a
heuristic approximation. As previously mentioned, natural PG can theoretically solve the
above trust region problem in closed form, which is however expensive to compute ex-
actly. Therefore, it is common to simplify the objective by using Taylor approximations,
which is also what TRPO does

θk+1 = argmax
θ

gT (θ −θk) s.t.
1
2
(θ −θk)

T H(θ −θk)≤ ε,

where g is the PG, H is the Hessian or Fisher Information Matrix, and θk = θold. This
approximation can then be analytically solved using Lagrangians

θk+1 = θk +α
j

√︄
2δ

gT H−1g
H−1g,

where α ∈ (0,1) is the backtracking coefficient. Theoretically, α = 1 allows us to update
the policy according to the natural PG (Kakade, 2001), however, this is only the solution
to an approximation. Consequently, a backtracking line search, i.e. verifying the con-
straint satisfaction for decreasing values of α , can correct the update size accordingly to
avoid violating the trust region. Lastly, since computing and storing the inverse Hessian
H−1 is expensive and ultimately only the vector product H−1g is required to compute
the gradient step, TRPO employs conjugate gradients to solve Hx = g for x = H−1g to
approximate this product.

While the original TRPO paper provides proof for the method’s convergence guarantees,
these assurances do not extend to scenarios involving non-linear function approximation.
Furthermore, the final algorithm faces scalability issues with larger networks, primarily
due to its reliance on second-order optimization methods. To address these concerns,
Schulman et al. (2017) introduced proximal policy optimization (PPO), which adopts a
different approach by avoiding directly enforcing the KL trust region. Instead, PPO clips
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the probability ratio in the importance sampling objective

J(πθ ) = Eπθk

[︃
min

(︃
πθ (a|s)
πθk(a|s)

Aπθk (s,a), clip
(︃

πθ (a|s)
πθk(a|s)

,1− ε,1+ ε

)︃
Aπθk (s,a)

)︃]︃
.

This modification enables the utilization of efficient first-order optimization methods
while ensuring robust training. Intuitively, PPO restrains the impact of actions that be-
come significantly more or less likely, lowering the benefit to the new policy of deviating
excessively from the old policy. In this context, the parameter ε in PPO serves a role
similar to the trust region constraint in TRPO. However, recent studies (Engstrom et al.,
2020; Andrychowicz et al., 2020) showed that implementation choices are essential for
achieving state-of-the-art results with PPO. Notably, Code-level optimizations, such as
reward scaling, as well as value function, observation, reward, and gradient clipping,
have been shown to compensate for the removal of core components of the algorithm,
such as the clipping of the probability ratio. Additionally, it is important to acknowledge
that PPO heavily relies on its exploration behavior and may encounter challenges getting
trapped in local optima (Wang et al., 2019).
Besides, these widely known methods, various approaches to this constraint optimization
problem have emerged in the literature. Tangkaratt et al. (2018) proposed an alternative
by employing a closed-form solution based on the method of Lagrangian multipliers.
However, there are potential limitations to the representational power of this method be-
cause it requires a quadratic parametrization of the Q-function. Another avenue explored
by Pajarinen et al. (2019) extends earlier approaches that utilized compatible value func-
tion approximations (Kakade, 2001; Peters et al., 2003, 2005) to neural networks to en-
force trust regions. In the reinforcement learning as inference paradigm (Levine, 2018),
Abdolmaleki et al. (2018a) introduced maximum aposteriori policy optimization (MPO),
which exhibits a close connection to KL trust region approaches and has been further ex-
tended to an on-policy version using similar optimization schemes and constraints Song
et al. (2020). Unlike previous approaches, projected approximate policy iteration (PAPI)
(Akrour et al., 2019) proposes a projection-based solution to implement KL trust regions.
Instead of directly solving the constraint problem, PAPI projects an intermediate policy
that already satisfies the trust region constraint onto the constraint bounds, thereby max-
imizing the size of the update step. However, it is worth noting that PAPI relies on other
trust region methods, such as TRPO and PPO, to generate this intermediary policy and
cannot operate as a standalone solution. Additionally, the projection is performed after
the policy optimization, potentially leading to suboptimal policies during training. Con-
sidering the computational complexity, both TRPO and PAPI simplify the constraint by
using the expected KL divergence, while a constraint per state would be more desirable.
In the off-policy setting, trust region methods have also received some attention. Past
efforts have focused on training the value function with off-policy data (Gu et al., 2016)
or extended TRPO (Schulman et al., 2015a) to the off-policy setting (Nachum et al.,
2018; Meng et al., 2022). Wang et al. (2017) employ a more standard approach by com-
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bining off-policy trust regions with additional advancements, such as Retrace (Munos
et al., 2016) and truncated importance sampling. Peng et al. (2019) take it one step fur-
ther and propose a novel perspective by segregating policy and value-function learning
into distinct supervised learning steps. Yet, in most cases, standard off-policy trust re-
gion methods lag behind modern actor-critic approaches (Haarnoja et al., 2018; Fujimoto
et al., 2018) and cannot achieve competitive performance. Notably, MPO (Abdolmaleki
et al., 2018b) stands out as an off-policy trust region method, albeit in a non-classical
sense. Its formulation, based on the expectation maximization (EM) algorithm, provides
more flexibility, with trust regions resembling the optimization of a parametric E-step
without an explicit M-step.

While in the on-policy setting trust region methods often simplify the learning process
by estimating the less complex state-value function, in the off-policy settings, the ma-
jority of methods still rely on estimating state-action-value functions to efficiently learn
from replay buffer data. Approaches that exclusively utilize state-value functions must
resort to importance sampling to address the distributional discrepancy between target
and behavior policies. This typically involves reweighting and truncating the importance
of the Bellman targets in n-step returns (Espeholt et al., 2018; Luo et al., 2020), a tech-
nique that has also proven beneficial for learning state-action-value functions (Munos
et al., 2016). Nevertheless, this form of off-policy correction is computationally expen-
sive as it necessitates storing and processing full or partial trajectories. Moreover, the
truncation technique in importance weight calculations is known to introduce significant
bias. Consequently, implementing trajectory-based target estimators could exacerbate
the already pronounced issue of bias propagation. On the other hand, prior work has
demonstrated that using importance sampling on the targets is suboptimal, favoring the
importance weighting of the entire Bellman error, similar to the PG approach (Mahmood
et al., 2014; Dann et al., 2014).

In addition to the KL divergence as a trust region measure, Pacchiano et al. (2020) em-
ploy the Wasserstein distance to constrain the agent behavior. For bandits, Richemond
and Maginnis (2017) also propose an algorithm with Wasserstein-based trust regions,
while Song and Zhao (2020) focus on solving the trust region problem for distributional
policies, employing both KL and Wasserstein-based trust regions for discrete action
spaces.

Lastly, instead of solely controlling the step size using the trust region, Abdolmaleki
et al. (2015) introduced the idea of explicitly managing the decrease in entropy during
the optimization process. This concept was later extended to deep RL by Pajarinen et al.
(2019) and Akrour et al. (2019). They employ either an exponential or linear decay of the
minimum entropy bound during policy optimization to control the exploration process
and escape local optima.
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2.3 Policy Parameterization

Until now, the discussed concepts and methods could be classified as step-based RL
(SRL), where the policy interacts directly with the environment through raw actions
based on the current state. These predicted actions typically translate into specific po-
sitions, velocities, or torques. They represent, for example, the specific control signals
that will be applied to the robot’s actuators, influencing its movements and behavior.
For learning such policies, PG methods (Sutton et al., 1999b; Schulman et al., 2015a,
2017) are often employed due to their ease of implementation and capability to yield
high-quality policies. Typically combined with some form of trust region to stabilize
the on-policy update due to the large variance of the gradients. In particular, PPO has
shown robust and efficient performance even on large-scale problems such as OpenAI
Five (Berner et al., 2019) and GPT-4 (Achiam et al., 2023), but as mentioned above,
it depends heavily on implementation details (Engstrom et al., 2020) and uses ad hoc
heuristics that might not work well for complex exploration problems. In contrast, off-
policy actor-critic methods like SAC (Haarnoja et al., 2018) and twin-delayed deep de-
terministic policy gradient (TD3) (Fujimoto et al., 2018) offer higher sample efficiency
at the cost of increased computational complexity. Additionally, they may introduce a
higher bias in the policy update due to their reliance on the critic network to evaluate the
actions.
Instead of this step-based view, we can also consider RL from a trajectory perspective,
where the primary goal is to directly optimize complete trajectory behaviors rather than
individual actions per state in isolation. Within the framework of contextual episode-
based policy search (Deisenroth et al., 2013; Daniel et al., 2012), RL is treated as a
black-box optimization problem. The goal is to maximize the expected return R(www,ccc)
by optimizing a contextual search distribution π(www|ccc) over the controller parameters www.
Here, the context vector ccc characterizes the given task, such as the specified goal or
object locations. The controller is typically represented by a movement primitive (MP)
(Paraschos et al., 2013; Schaal, 2006; Ijspeert et al., 2013; Li et al., 2022) or other tra-
jectory generators. Similar to SRL from above, we can formulate the objective as

argmax
π(www|ccc)

Ep(ccc)
[︁
Eπ(www|ccc)[R(www,ccc)]

]︁
,

where p(ccc) denotes the context distribution associated with the task. The return function
R(www,ccc) imposes no structural assumptions and can be any non-Markovian function of
the resulting trajectory, given the black-box nature of the problem.
Now, the policy does not parameterize raw actions for the environment; instead, it pa-
rametrizes a controller or a MP, which is a widely used tool for motion representation
and generation in robotics. MPs are used as building blocks for movements, allowing
for the modulation of motion behavior and the creation of more complex movements
through combination or concatenation. With their concise parameterization and flex-
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ibility, MPs have become a popular choice in imitation learning (Maeda et al., 2014;
Gomez-Gonzalez et al., 2016; Pahič et al., 2020; Li et al., 2022; Rozo and Dave, 2022)
and RL (Celik et al., 2022; Li et al., 2017). In this work, our focus is on trajectory-based
movement representations, following the trajectory-oriented approach in previous RL lit-
erature (Schaal, 2006; Ijspeert et al., 2013; Paraschos et al., 2013; Li et al., 2022). These
representations, given a parameter vector, generate desired trajectories for the agent to
follow. The goal of this type of policy parametrization is to optimize the weight vector
or its distribution to improve the resulting movements. While there are several different
variations of MPs, we will provide an overview of the three that we consider the most
important and will use in this work.

Probabilistic Movement Primitives Utilizing a linear basis function model, proba-
bilistic movement primitives (ProMPs) (Paraschos et al., 2013) generate a trajectory λλλ

as
y(t) = ΦΦΦ

⊺(t)www, λλλ = [yt ]t=0:T = ΦΦΦ
⊺
0:T www,

where www is the time-independent weight vector provided by the policy, y(t) represents the
trajectory position at time step t and ΦΦΦ encompasses pre-defined time-dependent basis
functions, such as normalized radial basis functionss (RBFs). Due to the simplicity of
the linear basis function representation, ProMPs allow for fast trajectory computation and
enable modeling the trajectory’s statistics from the weight vector’s distribution. These
statistics often include temporal correlations within trajectories and motion correlations
across different degree of freedom (DoF). However, a notable limitation of ProMPs lies
in their lack of smoothness during trajectory replanning and concatenation. This implies
that when selecting a new weight vector www during execution, there is no guarantee that the
trajectory will initiate from the desired initial conditions at the current time step. This
absence of smoothness and the inability to adapt the trajectory’s starting state present
practical challenges in applying ProMPs, especially in scenarios where the weight vector
requires dynamic updates throughout motion execution due to unforeseen changes in the
environment.

Dynamic Movement Primitives In contrast to ProMPs, dynamic movement primitives
(DMPs) (Schaal, 2006; Ijspeert et al., 2013) shape trajectories through the integration of
a dynamic system, offering smooth replanning for both position and velocity (Brandherm
et al., 2019; Ginesi et al., 2019; Lee et al., 2020). However, this enhanced smoothness
comes at a computational expense, as DMPs necessitate online numerical integration
to compute a trajectory. Incorporating DMPs into neural networks introduces coupling
between the forward and backward passes of the networks with this numerical integra-
tion process (Bahl et al., 2020; Pahič et al., 2018, 2020), resulting in complex and slow
models.
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Probabilistic Dynamic Movement Primitives In an effort to combine the strengths
and address the weaknesses of ProMPs and DMPs, Li et al. (2022) recently introduced
probabilistic dynamic movement primitives (ProDMPs). This innovation involves solv-
ing the underlying ordinary differential equation (ODE) of the DMP, effectively replac-
ing the computationally expensive online numerical integration with position and veloc-
ity basis functions. These basis functions can be computed offline and shared across all
trajectories, leading to a representation of trajectory position and velocity akin to that of
ProMPs, as expressed in the following

y(t) = c1y1(t)+ c2y2(t)+ΦΦΦ(t)⊺wwwg, ẏ(t) = c1ẏ1(t)+ c2ẏ2(t)+ Φ̇ΦΦ(t)⊺wwwg,

where y1 and y2 denote the two linearly independent complementary functions of the
governing ODE of the DMP, with corresponding derivatives with respect to time ẏ1 and
ẏ2. The coefficients c1 and c2, shared by both position and velocity representations, are
determined by solving an initial condition problem of the ODE. The position and velocity
basis functions, denoted by ΦΦΦ and Φ̇ΦΦ respectively, can be computed once offline and are
later used as constant functions. The vector wwwg in both equations concatenates the DMP’s
original weights www and goal attractor g into one vector. To simplify our notation, we will
refer to all learned parameters of MPs collectively as www from this point forward. A
concise derivation of these equations is presented in Appendix B.1. For a more in-depth
understanding, readers are directed to the original paper (Li et al., 2022).
Theoretically, both DMP and ProDMP can be used in domains requiring online replan-
ning. In this work, we specifically use the ProDMPs model as our trajectory generator
because it ensures smooth replanning with low computational cost.

Learning Movement Primitive Policies Most episode-based RL (ERL) algorithms
focus on the non-contextual setting and only learn a single weight www. They use different
optimization techniques, such as PGs (Sehnke et al., 2010), natural gradients (Wierstra
et al., 2014), stochastic search strategies (Hansen and Ostermeier, 2001; Mannor et al.,
2003; Abdolmaleki et al., 2019), or trust-region optimization techniques (Abdolmaleki
et al., 2015; Daniel et al., 2012; Tangkaratt et al., 2017). Early methods that incorporate
context adaptation (Tangkaratt et al., 2017; Abdolmaleki et al., 2019) only consider a
linear mapping from context to parameter space, imposing a major constraint on their
performance.
A related line of work comes from the domain of evolutionary strategies (Mania et al.,
2018; Salimans et al., 2017; Chrabaszcz et al., 2018). They propose full gradient-free
black-box approaches as an alternative to gradient- and step-based methods for finding
optimal neural network parameters. These approaches treat learning the neural network
policy parameters (several thousand parameters) as the black-box optimization prob-
lem as opposed to learning MP parameters (20-50 parameters). While these methods
demonstrate competitiveness for black-box optimization of neural networks, they typi-
cally overlook contextual setups requiring distinct parameters for different contexts. In
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contextual scenarios, where the performance of a rollout depends on both the parameter
vector and the context (e.g. the goal), these methods introduce additional noise during
evaluation, given their lack of context awareness. For example, a well-parametrized neu-
ral network may perform suboptimally when evaluated for a challenging context, while a
poorly-parametrized network may perform well for a simple context. Such approaches,
however, remain oblivious to context and are not competitive for complex contextual sce-
narios. In contrast, MP-based approaches do not optimize at the level of a global neural
network control policy, which would involve thousands of parameters. Instead, they fo-
cus on local control parameters of MPs or similar controllers, typically ranging from 10
to 50 dimensions. This localized optimization strategy proves advantageous, especially
in scenarios where context-specific adaptation is crucial.

Reinforcement Learning with Movement Primitives. While the majority of research
in RL with MPs (MPRL) concentrates on learning a single MP parameter vector tailored
to one specific task configuration (Abdolmaleki et al., 2015; Kober and Peters, 2008;
Stulp and Sigaud, 2012a,b), some methods permit linear adaptation of the MP’s param-
eter vector to the context (Daniel et al., 2012; Kupcsik et al., 2017; Celik et al., 2022).
Additionally, a few RL approaches integrate non-linear policies with predefined action
primitives, such as pushing or grasping motions (Dalal et al., 2021; Zenkri et al., 2022).
An example that directly incorporates MPs and deep networks within a SRL context
is the neural dynamic policies (NDP) (Bahl et al., 2020). NDP attempts to embed the
structure of DMPs into deep policies by reparameterizing action spaces through second-
order differential equations. This can be seen as an intersection between step-based and
episode-based methods by learning sub-trajectories via DMPs spanning multiple time
steps. While this approach facilitates effective replanning, the primary focus of explo-
ration occurs at the action level rather than at the trajectory level, similar to standard
step-based approaches. This neglects the main benefit of using MPs in an RL context.
Moreover, using DMPs necessitates several numerical integration steps that also need to
be differentiated, making it computationally expensive.
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Chapter 3

A Differentiable Trust Region
Projection Layer
This chapter serves as the cornerstone of the thesis, introducing a novel trust region
method, which was previously published in Otto et al. (2021). The method, character-
ized by its mathematical rigor and stability, surpasses existing approaches. It provides
better control over the exploration-exploitation trade-off inherent in policy gradient (PG)
methods, demonstrating particular efficacy in higher-dimensional action spaces. The
robustness and versatility of this novel method lay a solid foundation for subsequent
chapters, where its strengths will be further harnessed and leveraged to address complex
challenges in the field.

3.1 Introduction
Deep reinforcement learning (RL) has shown considerable advances in recent years
with prominent application areas such as games (Mnih et al., 2015; Silver et al., 2017),
robotics (Levine et al., 2015), and control (Duan et al., 2016). In policy search, PG meth-
ods have been highly successful and have gained, among others, great popularity (Peters
and Schaal, 2008). However, often it is difficult to tune learning rates for vanilla PG
methods because they tend to reduce the entropy of the policy too quickly. This results
in a lack of exploration and, as a consequence, in premature or slow convergence. A com-
mon practice to mitigate these limitations is to impose a constraint on the allowed change
between two successive policies. Kakade and Langford (2002) provided a theoretical jus-
tification for this in the approximate policy iteration setting. Two of the arguably most
favored policy search algorithms, trust region policy optimization (TRPO) (Schulman
et al., 2015a) and proximal policy optimization (PPO) (Schulman et al., 2017), follow
this idea using the Kullback-Leibler (KL) between successive policies as a constraint.
We propose closed-form projections for Gaussian policies, realized as differentiable neu-
ral network layers. These layers constrain the change in successive policies by projecting
the updated policy onto trust regions. First, this approach is more stable concerning what
Engstrom et al. (2020) refer to as code-level optimizations than other approaches. Sec-
ond, it comes with the benefit of imposing constraints for individual states, allowing for
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the possibility of state-dependent trust regions. This allows us to constrain the state-
wise maximum change of successive policies. In this, we differ from previous works,
which constrain only the expected change and thus cannot rely on exact guarantees of
monotonic improvement. Furthermore, we propose three different similarity measures,
the KL divergence, the Wasserstein L2 distance, and the Frobenius norm, to base our
trust region approach on. The last layer of the projected policy is now the trust region
layer, which relies on the old policy as input. This would result in an ever-growing stack
of policies, rendering this approach infeasible. To circumvent this issue, we introduce a
penalty term into the RL objective to ensure the input and output of the projection stay
close together. While this still results in an approximation of the trust region update, we
show that the trust regions are properly enforced. We also extend our approach to allow
for a controlled evolution of the entropy of the policy, which has been shown to increase
the performance in difficult exploration problems (Pajarinen et al., 2019; Akrour et al.,
2019).
We compare and discuss the effect of the different similarity measures as well as the
entropy control on the optimization process. Additionally, we benchmark our algorithm
against existing methods and demonstrate that we achieve similar or better performance.

3.2 Preliminaries and Problem Statement

We consider the general problem of a policy search in a Markov Decision Process (MDP)
as defined in Section 2.1. To find the optimal policy, we have seen that traditional PG
methods often make use of the likelihood ratio gradient and an importance sampling
estimator. Moreover, instead of directly optimizing the returns, it is more effective to
optimize the advantage function as this results in an unbiased estimator of the gradient
with less variance

max
θ

Ĵ(πθ ,πθold) = max
θ

E(s,a)∼πθold

[︃
πθ (a|s)

πθold(a|s)
Aπθold (s,a)

]︃
, (3.1)

where Aπ(s,a) = E [Rγ |s0 = s,a0 = a;π]−E [Rγ |s0 = s;π] describes the advantage func-
tion, and the expectation is w.r.t πθold , i.e. s′ ∼ p(·|s,a),a∼ πθold(·|s),s0 ∼ ρ(s0),s ∼
ρπθold

where ρπθold
is the stationary state distribution of policy πθold . The advantage

function is commonly estimated by generalized advantage estimation (GAE) (Schulman
et al., 2015b). Trust region methods use additional constraints for the given objective.
Using a constraint on the maximum KL over the states has been shown to guarantee
monotonic improvement of the policy (Schulman et al., 2015a). However, since all cur-
rent approaches do not use a maximum KL constraint but an expected KL constraint, the
guarantee of monotonic improvement does not hold exactly either. We are not aware of
such results for the Wasserstein L2-distance (W2) or the Frobenius norm.
For our projections we assume Gaussian policies πθold(at |st) = N (at |µold(st),Σold(st))

30



3.2 Preliminaries and Problem Statement

and πθ (at |st) = N (at |µ(st),Σ(st)) represent the old as well as the current policy, re-
spectively. We explore three trust regions on top of Equation (3.1) that employ different
similarity measures between old and new distributions, more specifically the frequently
used reverse KL divergence, the W2, and the Frobenius norm.

Reverse KL Divergence The KL divergence between two Gaussian distributions with
means µ1 and µ2 and covariances Σ1 and Σ2 can generally be written as

KL({µ1,Σ1} ∥ {µ2,Σ2}) =
1
2

[︃
(µ2−µ1)

T
Σ
−1
2 (µ2−µ1)+ log

|Σ2|
|Σ1|

+ tr{Σ−1
2 Σ1}−d

]︃
,

where d is the dimensionality of µ1,µ2. The KL uses the Mahalanobis distance to mea-
sure the similarity between the two mean vectors. The difference in the covariances is
measured by the difference in shape, i.e., the difference in scale, given by the log ratio
of the determinants, plus the difference in rotation, given by the trace term. Given the
KL is non-symmetric, it is not a distance, yet still a frequently used divergence between
distributions. We will use the more common reverse KL for our trust region, where the
first argument is the new policy and the second is the old policy.

Wasserstein Distance The Wasserstein distance is a distance measure based on an op-
timal transport formulation, for more details see Villani (2008). The W2 for two Gaus-
sian distributions can generally be written as

W2 ({µ1,Σ1} ,{µ2,Σ2}) = |µ1−µ2|2 + tr
(︃

Σ1 +Σ2−2
(︂

Σ
1/2
2 Σ1Σ

1/2
2

)︂1/2
)︃
.

A key difference to the KL divergence is that the Wasserstein distance is a symmetric
distance measure, i.e., W2(q, p) =W2(p,q). Our experiments also revealed that it is
beneficial to measure the W2 distance in a metric space defined by the covariance of the
old policy distribution, denoted here as Σ2, as the distance measure is then more sensitive
to the data-generating distribution. The W2 distance in this metric space reads

W2,Σ2 ({µ1,Σ1} ,{µ2,Σ2}) =(µ2−µ1)
T

Σ
−1
2 (µ2−µ1)

+ tr
(︃

Σ
−1
2 Σ1 + I−2Σ

−1
2

(︂
Σ

1/2
2 Σ1Σ

1/2
2

)︂1/2
)︃
.

Frobenius Norm The Frobenius norm is a matrix norm and can directly be applied
to the difference of the covariance matrices of the Gaussian distributions. To measure
the distance of the mean vectors, we will, similar to the KL divergence, employ the
Mahalanobis distance as this empirically leads to improved performance in comparison
to just taking the squared distance. Hence, we will denote the following metric as the
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State
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πθ(a|s)

µ

Σ
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Trust Region Projection Layer

arg min
µ̃s

dmean (µ̃s, µ(s)) s.t. dmean (µ̃s, µold(s)) ≤ εµ ∀s ∈ S

arg min
Σ̃s

dcov

(
Σ̃s,Σ(s)

)
s.t. dcov

(
Σ̃s,Σold(s)

)
≤ εΣ ∀s ∈ S
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∂Σ̃

∂Σ
· · ·

Figure 3.1: Overview of the proposed TRPL. A Gaussian policy πθ is predicting one set
of parameters of the distribution µ and Σ per state. The parameters for each state are then
projected individually to satisfy the trust region in case the bounds are violated for any
of the states with respect to the reference policy πold. This is achieved by solving the two
optimization problems per state, which can be done in (partially) closed form and fully
differentiable. The resulting projected parameters µ̃ and Σ̃ can then be used for further
computations, such as sampling or loss calculation. Since everything is differentiable,
the gradient can then be backpropagated to the neural network policy. As a similarity
measure for the trust region, we use the reverse KL divergence, the W2, and the Frobe-
nius norm.

Frobenius norm between two Gaussian distributions

F({µ1,Σ1} ,{µ2,Σ2}) = (µ2−µ1)
T

Σ
−1
2 (µ2−µ1)+ tr

(︁
(Σ2−Σ1)

T (Σ2−Σ1)
)︁
.

The Frobenius norm also constitutes a symmetric distance measure.

3.3 Differentiable Trust-Region Layers for Gaussian
Policies

We present projections based on the three similarity measures, i.e., Frobenius norm, W2,
and KL divergence. These projections realize state-wise trust regions and can be di-
rectly integrated into the optimization process as differentiable neural network layers,
hence we call our approach trust region projection layer (TRPL). Additionally, we ex-
tend TRPL to include an entropy constraint to gain control over the evolution of the
policy entropy during optimization. The trust regions are defined by a distance or di-
vergence d(π(·|s),πold(·|s)) between probability distributions. Complementing Equa-
tion (3.1) with the trust region constraint leads to

max
θ

Ĵ(πθ ,πθold) s.t. d(πθold(·|s)),πθ (·|s))≤ ε ∀s ∈ S. (3.2)

While, in principle, we want to enforce the constraint for every possible state, in practice,
we can only enforce them for states sampled from rollouts of the current policy.
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To solve the problem in Equation (3.2), a standard neural network will output the pa-
rameters µ,Σ of a Gaussian distribution πθ , ignoring the trust region bounds. These
parameters are provided to the trust region layers, together with the mean and covari-
ance of the old policy and a parameter specifying the size of the trust region ε . The new
policy is then given by the output of the trust region layer. Since the old policy distri-
bution is fixed, all distances or divergences used in this paper can be decomposed into a
mean and a covariance dependent part. This enables us to use separate trust regions as
well as bounds for mean and covariance, allowing for more flexibility in the algorithm.
The trust region layers aim to project πθ into the trust region by finding parameters µ̃

and Σ̃ that are closest to the original parameters µ and Σ while satisfying the trust re-
gion constraints. The projection is based on the same distance or divergence which was
used to define the respective trust region. Formally, this corresponds to the following
optimization problems for each s

argmin
µ̃s

dmean (µ̃s,µ(s)) , s.t. dmean (µ̃s,µold(s))≤ εµ , and (3.3)

argmin
Σ̃s

dcov
(︁
Σ̃s,Σ(s)

)︁
, s.t. dcov

(︁
Σ̃s,Σold(s)

)︁
≤ εΣ, (3.4)

where µ̃s and Σ̃s are the optimization variables for state s. Here, dmean is the mean
dependent part and dcov is the covariance dependent part of the employed distance or
divergence. For brevity of notation, we will neglect all dependencies on the state in the
following. We denote the projected policy as π̃(a|s) = N (a|µ̃, Σ̃). An overview of the
resulting approach can be found in Figure 3.1.

3.3.1 Projection of the Mean

For all three trust region objectives, we make use of the same distance measure for the
mean, the Mahalanobis distance. Thus, the optimization problem for the mean is

argmin
µ̃

(µ− µ̃)T
Σ
−1
old (µ− µ̃) s.t. (µold− µ̃)T

Σ
−1
old (µold− µ̃)≤ εµ . (3.5)

By making use of the method of Lagrangian multipliers (see Appendix A.2.2), we can
formulate the dual and solve it for the projected mean µ̃ as

µ̃ =
µ +ωµold

1+ω
with ω =

√︄
(µold−µ)T

Σ
−1
old (µold−µ)

εµ

−1. (3.6)

This equation can directly be used as mean for the Gaussian policy, while it easily allows
computing gradients. Note, that for the mean part of the KL we would need to use the
Σ−1 instead of Σ

−1
old in the objective of Equation (3.5). Yet, this objective still results in a

valid trust region problem which is much easier to optimize.
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3.3.2 Projection of the Covariance

Frobenius Projection. The Frobenius projection formalizes the trust region for the
covariance with the squared Frobenius norm of the matrix difference, which yields

argmin
Σ̃

tr
(︁
(Σ− Σ̃)T (Σ− Σ̃)

)︁
, s.t. tr

(︁
(Σold− Σ̃)T (Σold− Σ̃)

)︁
≤ εΣ.

We again use the method of Lagrangian multipliers (see Appendix A.2.3) and get the
covariance Σ̃ as

Σ̃ =
Σ+ηΣold

1+η
with η =

√︄
tr((Σold−Σ)T (Σold−Σ))

εΣ

−1, (3.7)

where η is the corresponding Lagrangian multiplier.

Wasserstein Projection. Deriving the Wasserstein projection follows the same proce-
dure. We obtain the following optimization problem

argmin
Σ̃

tr
(︃

Σ
−1
oldΣ+Σ

−1
oldΣ̃−2Σ

−1
old

(︂
Σ

1/2
Σ̃Σ

1/2
)︂1/2
)︃
,

s.t. tr
(︃
I+Σ

−1
oldΣ̃−2Σ

−1
old

(︂
Σ

1/2
oldΣ̃Σ

1/2
old

)︂1/2
)︃
≤ εΣ,

(3.8)

where I is the identity matrix. A closed form solution to this optimization problem can
be found by using the methods outlined in Takatsu (2011). However, we found the result-
ing solution for the projected covariance matrices to be numerically unstable. Therefore,
we made the simplifying assumption that both the current Σ and the old covariance Σold
commute with Σ̃. Under the common premise of diagonal covariances, this commutativ-
ity assumption always holds. For the more general case of arbitrary covariance matrices,
we would need to ensure the matrices are sufficiently close together, which is effectively
ensured by Equation (3.8). Again, we introduce Lagrange multipliers and solve the dual
problem to obtain the optimal primal and dual variables (see Appendix A.2.4). Note,
however, that here we chose the square root of the covariance matrix1 as primal variable.
The corresponding projection for the square root covariance Σ̃

1/2 is then

Σ̃
1/2 =

Σ
1/2 +ηΣ

1/2
old

1+η
with η =

⌜⃓
⎷⃓ tr

(︂
I+Σ

−1
oldΣ−2Σ

−1/2
old Σ

1/2
)︂

εΣ

−1, (3.9)

1We assume the true matrix square root Σ = Σ
1/2Σ

1/2 and not a Cholesky factor Σ = LLT since it naturally
appears in the expressions for the projected covariance from the original Wasserstein formulation.
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where η is the corresponding Lagrangian multiplier. We see the same pattern emerging
as for the Frobenius projection. The chosen similarity measure reappears in the expres-
sion for the Lagrangian multiplier and the primal variables are weighted averages of the
corresponding parameters of the old and the predicted Gaussian.

KL Projection. Identically to the previous two projections, we reformulate Equa-
tion (3.4) as

argmin
Σ̃

tr
(︁
Σ
−1

Σ̃
)︁
+ log

|Σ|
|Σ̃| , s.t. tr

(︁
Σ
−1
oldΣ̃

)︁
−d + log

|Σold|
|Σ̃| ≤ εΣ, (3.10)

where d is the dimensionality of the action space. It is impossible to acquire a fully
closed form solution for this problem. However, following Abdolmaleki et al. (2015),
we can obtain the projected precision Λ̃ = Σ̃−1 by interpolation between the precision
matrices of the old policy πold and the current policy π

Λ̃ =
η∗Λold +Λ

η∗+1
, η

∗ = argmin
η

g(η), s.t. η ≥ 0, (3.11)

where η is the corresponding Lagrangian multiplier and g(η) the dual function. While
this dual cannot be solved in closed form, an efficient solution exists using a standard
numerical optimizer, such as BFGS, since it is a 1-D convex optimization. Regardless,
we want a differentiable projection and thus also need to backpropagate the gradients
through numerical optimization. To this end, we follow Amos and Kolter (2017) and
compute those gradients by taking the differentials of the KKT conditions of the dual.
We refer to Appendix A.2.5 for more details and derivations.

Entropy Control. Previous works (Akrour et al., 2019; Abdolmaleki et al., 2015) have
shown the benefits of introducing an entropy constraint H(πθ ) ≥ β in addition to the
trust region constraints. Such a constraint allows for more control over the exploration
behavior of the policy. In order to endow our algorithm with this improved exploration
behavior, we make use of the results from Akrour et al. (2019) and scale the standard
deviation of the Gaussian distribution with a scalar factor exp{(β −H(πθ ))/d}, which
can also be individually computed per state.

3.3.3 Analysis of the Projections
It is instructive to compare the three projections. The covariance update is an interpo-
lation for all three projections, but the quantities that are interpolated differ. For the
Frobenius projection we directly interpolate between the old and current covariances
(Equation (3.7)), for the W2 projection between their respective matrix square roots
(Equation (3.9)), and for the KL projection between their inverses (Equation (3.11)).
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Figure 3.2: (a), (b), and (c): Interpolated covariances for the different projections for
various values of η . For Frobenius and Wasserstein the intermediate distributions have
a larger entropy, while for the KL projection, the intermediate entropy is smaller. (d):
Entropy of the interpolated distributions. In this example π and πold have the same
entropy. It can be seen that the entropy increases for the Frobenius and Wasserstein
projections when transitioning between the distributions, while it decreases for the KL.
A more general statement regarding this can be found in Theorem 1.

In other words, each projection suggests which parametrization to use for the covariance
matrix. The different interpolations also have an interesting effect on the entropy of the
resulting covariances, which can be observed in Figure 3.2. Further, we can prove the
following theorem about the entropy of the projected distributions

Theorem 1 Let πθ and πθold be Gaussian and η ≥ 0, then for the entropy of the projected
distribution H(π̃) it holds that H(π̃) ≥ minimum(H(πθ ),H(πθold)) for the Frobenius
(Equation (3.7)) and the Wasserstein projection (Equation (3.9)), as well as, H(π̃) ≤
maximum(H(πθ ),H(πθold)) for the KL projection (Equation (3.11)).

The proof is based on the multiplicative version of the Brunn-Minkowski inequality and
can be found in Appendix A.2.1. Intuitively, this means that the Frobenius and Wasser-
stein projections act more aggressively, i.e., they tend to yield a higher entropy, while
the KL projection acts more conservatively, i.e., it tends to yield a lower entropy. This
could also explain why many KL based trust region methods lose entropy too quickly
and converge prematurely. By introducing an explicit entropy control, those effects can
be mitigated.

3.3.4 Successive Policy Updates
The above projections can directly be implemented for training the current policy. Note,
however, that at each epoch i the policy πi predicted by the network before the projection
layer does not respect the constraints and thus relies on calling this layer. The policy of
the projection layer π̃i not only depends on the parameters of πi but also on the old policy
network πi,old = π̃i−1. This would result in an ever-growing stack of policy networks
becoming increasingly costly to evaluate. In other words, π̃i is computed using all stored
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networks of πi,πi−1, . . . ,π0. We now discuss the parametrization of π̃ via amortized
optimization.
We need to encode the information of the projection layer into the parameters θ of the
next policy, i.e. π̃(a|s;θ) = p ◦ πθ (a|s) is a composition function in which p denotes
the projection layer. The output of πθ is (µ,Σ), and p computes (µ̃, Σ̃) according to
Equations (3.6), (3.7), (3.9) and (3.11). Formally, we aim to find a set of parameters
θ ∗ = argminθ Esss∼ρπold

[d (π̃(·|sss),πθ (·|sss))], where ρπold is the stationary state distribution
of the old policy and d is the similarity measure used for the projection, such that we
minimize the expected distance or divergence between the projection and the current
policy prediction.
The most intuitive way to solve this problem is to use the existing samples for additional
regression steps after the policy optimization. Still, this adds a computational overhead.
Therefore, we propose to concurrently optimize both objectives during training by pe-
nalizing the main objective, i.e.,

argmin
θ

E(s,a)∼πθold

[︃
π̃(a|s;θ)

πθold(a|s)
Aπold(s,a)

]︃
−αEsss∼pπold

[d (π̃(·|sss;θ),πθ (·|sss))] . (3.12)

Note that the importance sampling ratio is computed based on a Gaussian distribution
generated by the trust region layer and not directly from the network output. Further-
more, the gradient for the regression penalty does not flow through the projection, it is
solely acting as a supervised learning signal. As appropriate similarity measures d for
the penalty, we resort to the measures used in each projection. For a detailed algorithmic
view see Appendix A.1.
Several authors (Dalal et al., 2018; Chow et al., 2019; Yang et al., 2020) used projections
as network layers to enforce limitations in the action or state space given environmental
restrictions, such as robotic joint limits.

3.4 Experiments

Mujoco Benchmarks We evaluate the performance of TRPL regarding sample com-
plexity and final reward in comparison to projected approximate policy iteration (PAPI)
(Akrour et al., 2019) and PPO (Schulman et al., 2017) on the OpenAI gym benchmark
suite (Brockman et al., 2016). We explicitly did not include TRPO in the evaluation, as
Engstrom et al. (2020) showed that it can achieve similar performance to PPO. For our
experiments, the PAPI projection and its conservative PPO version are executed in the
setting sent to us by the authors. The hyperparameters for all three projections and PPO
have been selected with Optuna (Akiba et al., 2019). See Appendix A.4 for a full listing
of all hyperparameters. We use a shared set of hyperparameters for all environments
except for the Humanoid, which we optimized separately. Next to the standard PPO im-
plementation with all code-level optimizations, we further evaluate PPO-M, which only
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Table 3.1: Mean return with 95% confidence interval of 20 epochs after completing 20%
of the total training and for the last 20 epochs. We trained 40 different seeds for each
experiment and computed five evaluation rollouts per epoch. The projections with (-E)
and without entropy control are considered separately, therefore, each column may have
up to two best runs (bold).

Hopper-v2 Walker2d-v2 Halfcheetah-v2 Ant-v2 Humanoid-v2
20% final 20% final 20% final 20% final 20% final

FROB 1646±19 222555777888±±±111777 2142±23 3443±19 2525±11 3552±14 1265±11 3035±26 2176±65 5202±23
W2 1586±31 2490±19 2284±20 3390±17 222555888666±±±999 3692±15 1362±12 3086±28 2502±87 5057±25
KL 1584±20 2476±10 2071±36 333555888333±±±111444 2369±9 444222555555±±±111777 1460±26 333333333555±±±222111 222999222333±±±555333 555555111000±±±222777

PAPI 1378±20 222555444999±±±111222 1663±21 3232±20 1875±5 2380±6 645±5 3198±17 1824±74 5367±22
PPO-M 1030±23 2321±19 1994±18 2771±40 1922±15 3272±18 1494±9 2783±32 604±10 5172±23
PPO 111888888111±±±333000 2515±15 222444999000±±±333333 333444444777±±±111777 2048±8 2880±8 111666555777±±±111000 2852±25 1723±67 4969±18

FROB-E 1587±30 2478±11 2037±21 3370±27 222777666222±±±111000 4568±14 730±9 333444777555±±±222666 3662±44 5807±18
W2-E 1518±36 2437±13 2174±19 3303±25 2266±8 4213±13 855±27 3361±30 3658±56 555888444444±±±888
KL-E 1502±18 2497±16 2215±31 3171±28 2611±12 444555888444±±±111888 955±16 3437±21 333888000111±±±444222 5430±16

leverages the core PPO algorithm. TRPL and PPO-M solely use the observation normal-
ization, network architecture, and initialization from the original PPO implementation.
All algorithms parametrize the covariance as a non-contextual diagonal matrix. We re-
fer to the Frobenius projection as FROB, the Wasserstein projection as W2, and the KL
projection as KL.
Table 3.1 gives an overview of the final performance and convergence speed on the Mu-
joco benchmarks, Figure A.2 in the appendix displays the full learning curves. After each
epoch, we evaluate five episodes without applying exploration noise to obtain the return
values. Note that we initially do not include the entropy projection to provide a fair com-
parison to PPO. The results show that TRPL is able to perform similarly or better than
PPO and PAPI across all tasks. While the performance on the Hopper-v2 is comparable,
the projections significantly outperform all baselines on the HalfCheetah-v2. The KL
projection even demonstrates the best performance on the remaining three environments.
Besides that, the experiments present a relatively balanced performance between projec-
tions, PPO, and PAPI. The differences are more apparent when comparing the projections
to PPO-M, which uses the same implementation details as our projections. The asymp-
totic performance of PPO-M is on par for the Humanoid-v2, but it convergences much
slower and is noticeably weaker on the remaining tasks. Consequently, the approximate
trust region of PPO alone is not sufficient for good performance, only paired with certain
implementation choices. Still, the original PPO cannot fully replace a mathematically
sound trust region as ours, although it does not exhibit a strong performance difference.
For this, Figure 3.3 visualizes the mean KL divergence at the end of each epoch for all
methods. Although neither W2 nor Frobenius projection use the KL, we leverage it here
as a standardizing measure to compare the change in the policy distributions. All projec-
tions are characterized by an almost constant change, whereas for PPO-M the changes
are highly inconsistent. The code-level optimizations of PPO can mitigate this to some
extent but cannot properly enforce the desired constant change in the policy distribution.
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Figure 3.3: (Left): Mean KL divergence for Ant-v2 as a standardizing measure to com-
pare the policy changes among all methods. (Center): Mahalanobis distance between the
mean values of the unprojected and old policy when using different α in comparison to a
full regression. The mean bound for the W2 projection is set to 0.03 (dotted black line).
(Right): Mean cumulative reward with 95% confidence interval based on 40 seeds for
the semi-sparse 5-link Reacher task. For each method, besides PAPI, we train policies
with (dashed) and without (solid) contextual covariances.

In particular, we have found that primarily the learning rate decay contributes to the rel-
atively good behavior of PPO. Albeit, PAPI provides a similar principled trust region
projection as we do, it still has some inconsistency by approaching the bound iteratively.

Entropy Control To demonstrate the effect of combining TRPL with entropy control,
as described in Section 3.3.2, we evaluate all Mujoco tasks again for this extended setting.
The target entropy in each iteration i is computed by exponentially decaying the initial
entropy H0 to κ with temperature τ as κ +(H0−κ)τ

10i
N , where N is the total number

of training steps. The bottom of Table 3.1 shows the results for our projections with
entropy control. Especially on the more complex tasks with more exploration, all three
projections significantly benefit from the entropy control. Their asymptotic performance
for the HalfCheetah-v2, Ant-v2, and Humanoid-v2 increases and yields a much faster
convergence in the latter. For the other Mujoco tasks the performance remains largely
constant since the complexity of these tasks is insufficient to benefit from an explicit
entropy control, as also noted by Pajarinen et al. (2019) and Abdolmaleki et al. (2015).

Contextual Covariances. To emphasize the advantage of state-wise trust regions, we
consider the case of policies with state-dependent covariances. Existing methods, such
as PPO and TRPO, are rarely used in this setting. In addition, PAPI cannot project the
covariance in the contextual case. Further, Andrychowicz et al. (2020) demonstrated
that for the standard Mujoco benchmarks, contextual covariances are not beneficial in an
on-policy setting. Therefore, we choose to evaluate a task motivated by optimal control
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which benefits from a contextual covariance. We extend the Mujoco Reacher-v2 to a 5-
link planar robot, the distance penalty to the target is only provided in the last time step,
t = 200, and the observation space also contains the current time step t. This semi-sparse
reward specification imposes a significantly harder exploration problem as the agent is
only provided with feedback at the last time step. We again tuned all hyperparameters
using Optuna (Akiba et al., 2019) and did not include the entropy projection. All feasible
approaches are compared with and without contextual covariances, the results therefore
are presented in Figure 3.3 (right). All three projections significantly outperform the
baseline methods with the non-contextual covariance. Additionally, both the W2 and KL
projections improve their results in the contextual case. In contrast, all baselines decrease
in performance and are not able to leverage the advantage of contextual information.
This poor performance mainly originates from incorrect exploitation. PPO reduces the
covariance too quickly, whereas PAPI reduces it too slowly, leading to suboptimal per-
formance for both. The Frobenius projection, however, does not benefit from contextual
covariances either, since numerical instabilities arise from too small covariance values
close to convergence. Those issues can be mitigated using a smaller covariance bound,
but they cannot be entirely avoided. The KL projection, while yielding the best results
throughout all experiments, relies on numerical optimization. Generally, this is computa-
tionally expensive, however, by leveraging an efficient C++ implementation this problem
can be negated (see Appendix A.2.5). As a bonus, the KL projection has all properties of
existing KL-based trust region methods that have monotonic improvement guarantees.
Nevertheless, for quick benchmarks, the W2 is preferred, given it is slightly less prone
to hyperparameter choices and does not require a dedicated custom implementation.

Trust Region Regression Loss. Lastly, we investigate the main approximation of our
approach, the trust region regression loss (Equation (3.12)). In the following ablation, we
evaluate how different choices of the regression weight α affect constraint satisfaction.
Figure 3.3 (center) shows the Mahalanobis distance between the unprojected and the
old policy means for different α values. In addition, for one run we choose α = 0 and
execute the trust region regression separately after each epoch for several iterations. One
key observation is that decreasing the penalty up to a certain threshold leads to larger
changes in the policy and pushes the mean closer to its maximum bound. Intuitively, this
can be explained by the construction of the bound. As the penalty is added only to the
loss when the bound is violated, larger changes in the policy are punished while smaller
steps do not directly affect the loss negatively. By selecting a larger α , this behavior is
reinforced. Furthermore, we can see that some smaller values of α yield a behavior that is
similar to the full regression setting. Consequently, it is justified to use a computationally
simpler penalty instead of performing a full regression after each epoch.
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3.5 Discussion and Future Work
In this work, we proposed differentiable projection layers to enforce trust region con-
straints for Gaussian policies in deep RL. While being more stable than existing methods,
they also offer the benefit of imposing the constraints on a state level. Unlike previous
approaches that only constrain the expected change between successive policies and for
whom monotonic improvement guarantees thus only hold approximately, TRPL can con-
strain the maximum change. Our results illustrate that trust regions are an effective tool
in policy search for a wide range of different similarity measures. Apart from the com-
monly used reverse KL, we also leverage the Wasserstein distance and Frobenius norm.
We demonstrated the subtle but important differences between those three different types
of trust regions and showed our benchmark performance is on par or better than existing
methods that use more code-level optimizations. For future work, we plan to continue
our research with more exploration-heavy environments, in particular with contextual
covariances. Additionally, more sophisticated heuristics or learning methods could be
used to adapt the trust region bounds for better performance. Lastly, we are interested in
using our trust region layers for other deep RL approaches, such as actor-critic methods.
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Chapter 4

MP3: Movement Primitive-Based
(Re-)Planning Policy
This chapter builds upon trust region projection layer (TRPL) from the previous chap-
ter, integrating it with insights from classical robotics. By doing so, we shift our focus
from the conventional action space to the trajectory space, which has significant advan-
tages. Learning a deep policy in trajectory space not only allows to view and explore the
problem from a more holistic view but also harnesses the scalability and generalization
capabilities of deep reinforcement learning (RL) as well as ensures smoothness, energy
efficiency, and compatibility with rewards beyond the typical dense rewards prevalent in
deep RL. The results of this work, initially published in Otto et al. (2022), were expanded
upon in Otto et al. (2023). The extension, conducted in collaboration with Hongyi Zhou,
introduces trajectory replanning, enabling more versatile and reactive behavior. Hongyi
Zhou’s contributions include the replanning and task adaptation experiments for box
pushing and table tennis, along with additional ablation studies.

4.1 Introduction
Movement primitives (MPs) are a powerful and versatile method for representing robot
trajectories with a concise set of parameters. This makes MPs an easy-to-use and efficient
tool for RL tasks. By directly exploring the space of desired trajectories, MPs simplify
the exploration process and produce smooth, “robot-friendly” motions. As a result, RL
with MPs (MPRL) has been responsible for many of the early successes in robot RL, with
notable applications in table tennis (Mülling et al., 2013; Gomez-Gonzalez et al., 2016),
ball in a cup (Kormushev et al., 2010), and pancake flipping (Kormushev et al., 2013).
However, these algorithms were previously limited to simple setups and could only learn
single stroke-based open-loop motions. Consequently, these motions were difficult to
adapt to task variations or during motion execution. With increasing computation power,
the field of deep RL rose. These methods can learn complex closed-loop sensorimotor
policies, which is the reason why this research field dominated recent years. In this
paper, we extend the work from Otto et al. (2021, 2022) to address the shortcomings of
previous RL with MPs approaches and propose a new method that integrates MPs into

43



Chapter 4 MP3: Movement Primitive-Based (Re-)Planning Policy

a deep RL pipeline. Our method allows for non-linear adaptation and replanning during
the execution of the MP, while still maintaining the beneficial exploration properties of
the MP framework in the context of RL.
Traditional deep RL methods use a step-based policy, where at each time step the policy
explores the atomic action space. During interaction with the environment, the agent
collects state, action, and reward data points at each time step, which are used to update
the policy. Although using every atomic action generates a vast amount of data points
for the policy update, it also complicates exploration due to the typical random walk
behavior and introduces a lot of noise in the policy evaluation process (see Figure 4.2).
Therefore, these methods often rely on informative reward signals throughout the inter-
action sequence, making them less effective in sparse or temporally sparse settings where
feedback from the environment is delayed. Moreover, step-based exploration can result
in slower convergence and jerky, potentially dangerous behavior for the agent.
In contrast, MPRL is typically based on episode-based RL (ERL) (Deisenroth et al.,
2013; Abdolmaleki et al., 2015; Daniel et al., 2012; Otto et al., 2022). ERL methods
learn to parameterize a desired trajectory used for a controller based on a task descrip-
tion known as the context, which remains fixed throughout the entire episode. For ex-
ample, in a table tennis scenario, the context is given by the target position where the
robot has to return the ball. These methods explore the trajectory space, meaning that
a parameter is sampled given the context only once at the beginning of the episode and
executed without resampling. This exploration strategy results in time-correlated explo-
ration, smooth behaviors, and improved performance in sparse or non-Markovian reward
settings (Otto et al., 2022). Yet, only one data point is generated per executed trajec-
tory, as these algorithms collect only one context-parameter pair per episode. This data
collection procedure limits sample efficiency. In our recent work (Otto et al., 2022), we
integrated ERL with MPs into a deep policy gradient (PG) algorithm that is based on
TRPL (Otto et al., 2021). While this algorithm can non-linearly adapt the parameters of
the MP to the given context and achieve high-quality policies for complex robotic tasks,
it is inherently constrained to generating open-loop trajectories that cannot be adapted or
adjusted during execution.
This work is an extension of Otto et al. (2022), where we also add learning non-linear
replanning policies instead of just the initial adaptation of the MP to the context, com-
bining the benefits of ERL with MPs and step-based RL (SRL) methods. We still explore
the trajectory space, yet, the agent is now able to change the desired trajectory during an
episode, enabling it to adapt its behavior to unpredictable changes in the environment.
In the original paper (Otto et al., 2022), probabilistic movement primitives (ProMPs)
(Paraschos et al., 2013) were used as the MP representation. However, ProMPs are un-
able to generate smooth trajectories if the MP parameters are changed during motion
execution. As a result, ProMPs are not suitable for learning replanning policies. In con-
trast, in this paper, we employ the recently introduced probabilistic dynamic movement
primitives (ProDMPs) (Li et al., 2022) to address the limitations of commonly used MPs
(Schaal et al., 2005; Schaal, 2006; Paraschos et al., 2013). ProDMP constitute a reformu-
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lation of the popular dynamic movement primitive (DMP) (Schaal, 2006; Ijspeert et al.,
2013) framework which is better suited to be integrated into a neural network architec-
ture as it does not require expensive numerical integration. Additionally, ProDMP can
use any initial state as the initial condition, allowing for the generation of smooth desired
trajectories even when applying replanning. Our policies are parameterized with neural
networks and efficiently trained using TRPL (Otto et al., 2022), which has demonstrated
significantly improved stability and quality of the learned policy in comparison to other
PG methods, such as proximal policy optimization (PPO) (Schulman et al., 2017). We
demonstrate the effectiveness of our method by presenting various complex simulated
robotic tasks, such as robot table tennis, beer-pong, a complex box-pushing task, and
large-scale manipulation tasks on Meta-World (Yu et al., 2019). We compare our ap-
proach to state-of-the-art SRL and ERL methods and illustrate improved performance in
sophisticated, sparse reward settings and settings that require replanning.

4.2 Deep Reinforcement Learning with Movement
Primitives

In this work, we present a framework to effectively combine MPs with deep RL methods.
This framework consists of three major components (see Figure 4.1):

• One RL policy which takes the environment observation as input and outputs an
MP weight vector that is used for multiple time steps.

• One MP model which uses the weight vector as input to generate a desired trajec-
tory.

• One low-level controller that converts the desired trajectory into raw actions and
interacts with the environment.

This approach is simple but highly versatile. Theoretically, any policy search algorithm
applicable to continuous action spaces can be used here. However, it is worth noting
that the dimensionality of the weight space of the MP is usually larger than the raw
action space. Therefore, the policy search algorithm used must be able to explore high-
dimensional spaces efficiently. Furthermore, MPs can be replaced by any parameterized
trajectory generator, as long as the desired trajectory can be uniquely determined by a
weight vector. We specifically chose MPs in this work because they are capable of gen-
erating smooth trajectories and allowing effective replanning. In addition, the planning
horizon (length of the generated trajectory before a new weight vector is chosen) can vary
from a single step to the entire episode. Two special cases correspond to two common
RL paradigms: (i) When the planning horizon is equal to one, our framework is similar
to an SRL algorithm (although with a higher dimensional action space). (ii) When it is
equal to the episode length, the framework corresponds to an ERL algorithm. We refer
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Figure 4.1: This figure provides an overview of the proposed framework that combines
deep RL with MPs. Instead of generating a raw action directly, the policy generates a
set of weights that parameterizes an MP. The MP predicts a desired trajectory given the
weights and initial conditions, which is then converted to raw actions using a tracking
controller.

to these cases as movement primitive-based planning policy (MP3) and MP3-Black Box
(MP3-BB), respectively.

4.2.1 Reinforcement Learning Objective with Movement Primitives

While traditional SRL methods rely on single raw actions aaat ∈ A per time step, we
train a policy to select a weights vector wwwt ∈ W in MP’s parameter space W . The
weights vector is then translated to a desired trajectory of the proprioceptive states λλλ

d =
(qqqd

t+1,qqq
d
t+2, . . . ,qqq

d
t+k), where qd

t = [yyyd
t , ẏyy

d
t ] consists of desired position yyyd

t and desired ve-
locity ẏyyd

t at time step t, and k denotes the planning horizon. Given the desired trajectory
and the measured proprioceptive state, a tracking controller f (qd

t ,qt) decides the action
at each step, resulting in a trajectory in the raw action space (aaat+1,aaat+2, . . . ,aaat+k)∈A. In
contrast to the step-wise sample (ssst ,aaat ,Rt) used in SRL, we use temporarily-abstracted
samples of the form (ssst ,wwwt ,Rk

t ). The reward Rk
t = Rt:t+k−1 of each trajectory segment is

defined as the cumulative reward over all the segment’s time steps t to t + k−1

Rk
t (ssst ,wwwt) =

k−1

∑
i=0

γ
ir(ssst+i,aaat+i), (4.1)
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where at and st are the executed actions and observed states following the desired tra-
jectory and tracked by the controller. While our approach supports different k for each
segment, we only consider planning segments with equal length in this work. We can
compute the episode return by taking the cumulative discounted sum of the segment
rewards. Using the notation from above, we can express this as

Gk
t =

⌈T/k−1⌉
∑
i=0

γ
ikRk

t+ki(wwwt+ki,ssst+ki), (4.2)

where γ ∈ (0,1] is the discount factor. It is worth noting that there are two special cases to
consider. In the black-box setting, in other words, when the MP parameters are chosen
only at the beginning of the episode, then k = T and the segment reward equals the
episode return

RT−1
0 =

T−1

∑
t=0

γ
tr(at ,st). (4.3)

The second special case is step-based RL. That is, we choose a new parameter vector at
every time step, i.e. k = 1. In this case, segment reward is equivalent to step reward

R1
t = r(at ,st). (4.4)

This gives the insight that we can alter between SRL and ERL by choosing different
planning horizons k.

4.2.2 Policy-gradients for MP weight-selection policies

With these rewards, we can now also define matching value and advantage functions

V π(sss) = E
[︂
Gk

t |ssst = sss;πθ

]︂
Aπ(sss,www) = E

[︂
Gk

t |ssst = sss,wwwt = www;πθ

]︂
−V π(sss). (4.5)

Following the step-based PG (Williams, 1992; Schulman et al., 2015a), we optimize
the advantage function using the likelihood ratio gradient and an importance sampling
estimator. The resulting objective

Ĵ(πθθθ ,πθθθ old) = E(sss,www)∼p(sss),πθθθold

[︃
πθθθ (www|sss)

πθθθ old(www|sss)
Aπθθθold (sss,www)

]︃
, (4.6)

is maximized with respect to θθθ , with πθθθ old being the old behavior policy used for sam-
pling. We can further make use of a learned state-value function Vφ (sss) ≈ V π(sss) for the
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advantage estimator, which is approximated by optimizing

argmin
φ

E(sss,www)∼p(sss),πθθθold

[︂(︁
Vφ (sss)−Gk

t
)︁2
]︂
. (4.7)

This formulation also enables the use of advantage estimation methods, such as general
advantage estimation (Schulman et al., 2016). During the update of the policy, neither
the MP ρ(www,qqq) nor the controller f (qqqd

t+1,qqqt) are needed, i.e., our approach would work
with any form of parametrizable controller.

4.2.3 Choice of the Deep Reinforcement Learning Algorithm

Most deep RL methods can theoretically be used to train policies in the weight space
of MPs. Yet, training in this space requires learning policies with a higher degree of
precision compared to the step-based case as the selected action is active for more time
steps with no opportunity for correction during the trajectory segment. To address this
issue, we chose TRPL as it has been shown to be more stable and accurate than other
RL methods (Otto et al., 2021). TRPL implements exact trust regions for policy up-
dates and enforces them per state, while most other deep RL methods (Schulman et al.,
2015a, 2017; Akrour et al., 2019) only provide approximate trust region updates that are
enforced for the average policy change across all states.

4.2.4 Choice of the Planning Horizon

Our method harnesses the merits of two common RL paradigms: step-based RL (SRL)
and episode-based RL (ERL). The agent’s behavior can seamlessly switch between the
two paradigms according to the planning horizon k. As discussed previously, there are
two special cases when selecting the planning horizon.

Black-Box Setting The first special case arises when the planning horizon is equal to
the episode length, that is, k = T . In this case, the agent generates only one desired
trajectory for the entire episode, similar to an open-loop motion planner. Since this set-
ting treats RL as a black-box optimization problem, we refer to it as MP3-BB in the
following discussion. MP3-BB does not assume the existence of a step reward, but in-
stead evaluates the performance of the entire trajectory as a whole. The black-box nature
facilitates dealing with sparse and non-Markovian rewards, leading to a more intuitive
reward design. Another advantage is state abstraction. The MP3-BB agent does not
need any intermediate state information about the task execution that varies during the
execution process (such as joints position/velocity, etc.), but focuses only on the critical
information that defines the essence of the tasks (for example goals, obstacles, etc.), this
is also referred to as context. However, MP3-BB presents some challenges. Although
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Figure 4.2: This figure presents a comparison between step-level exploration (red) and
the proposed trajectory-level exploration using MPs (blue). We generated rollouts in box-
pushing environments where the raw action space is joint torques. For the MP setting,
we used ProDMP and performed replanning every 25 steps. The trajectories of the third
joint are plotted. In the top row, we randomly sampled rollouts from untrained policies
to demonstrate the initial exploration. In the bottom row, we evaluated two policies
trained with PPO (red) and MP3 (blue) respectively, using 40M environment interactions.
The results show that MP3 enables smooth trajectory generation at both exploration and
evaluation processes.

the reduction of the observation dimension to the context space results in a modest im-
pact on sample efficiency, the high cost of a single sample makes it less sample-efficient.
Moreover, its black-box nature limits its applicability in dynamic environments, where
the agent must adapt to environmental changes during execution.

Step-Based Setting At the opposite end of the planning horizon spectrum is the case
where k = 1. Here, the agent only executes the desired trajectory for one step, after
which it generates a new plan, repeating this loop throughout the episode similar to the
SRL setting. However, using MPs as a trajectory generator instead of raw actions has
two essential differences. Firstly, the use of MPs guarantees second-order smoothness
(position and velocity), resulting in a more consistent and smooth behavior during ex-
ploration and evaluation (see Figure 4.2). Secondly, the number of MP basis functions
is a hyperparameter that allows for scaling the dimension of the action space from the
size of raw actions to arbitrary dimensions, enriching the model’s design choices but also
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increasing the complexity. Although increasing the dimensionality of the action space
may seem to increase exploration difficulty, it can still benefit from the smooth trajecto-
ries generated by MPs. Nonetheless, we did not observe significant improvements using
this setting over the standard SRL setting, and our discussion only aims to highlight the
flexibility of the proposed method.

Re-planning with MPs The more general case falls somewhere between the two ex-
tremes of SRL and ERL. In this approach, the agent generates a new desired trajectory
after executing the current trajectory for a predefined number of steps (1 < k < T ). This
method leverages the strengths of both SRL and ERL while addressing some of their
shortcomings:

1. In SRL, stochastic raw action selection often results in jerky random walk be-
havior that does not fully explore the trajectory space of the agent. In contrast,
our approach explores the weight space of MPs, leveraging the MP’s smoothness
guarantees for more consistent and effective exploration (see Figure 4.2).

2. Stochastic raw action selection in SRL also results in noisy returns (see Figure 4.2),
translating to high variance in the PG estimation. The smaller number of explo-
ration steps in the re-planning setting yields less variance in gradient estimation,
leading to a more stable policy update.

3. Trajectory-level exploration encapsulates the temporal abstraction within each tra-
jectory segment, reducing the number of decisions to make for each episode and
improving the agent’s ability to handle the sparsity in the reward function.

4. The policies trained by SRL often struggled to generate smooth trajectories (see
Figure 4.2) due to the lack of continuity between consecutive steps. In contrast,
policies trained with our approach can generate smooth trajectories in both the
exploration and evaluation processes.

5. The ERL agent only makes decisions at the beginning of each episode and treats
each episode as a black box, thus can deal with the temporal sparsity and non-
Markovian property in rewards. However, the black-box perspective also limits
their ability to address observation noises and dynamics in the environment, as a
result, ERL agents cannot adapt their plan according to the changes in the envi-
ronment during execution, which makes them less flexible and robust compared
to SRL. Our approach addresses this shortcoming by incorporating periodic re-
planning during online execution.

Many SRL algorithms use a similar design called frame-skipping, which can help with
the partial observability of some Atari games (Braylan et al., 2015). However, frame-
skipping just repeats the same action for the “skipped” frames, limiting the trajectory’s
expressive capacity. In contrast, planning with MP can “skip” more frames without
compromising expressiveness.
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4.2.5 Adapting to Different Reward Settings

The proposed algorithm offers a significant advantage in the flexibility to adapt to dif-
ferent reward signal designs. By considering the information available at each step, the
rewards can be classified into three distinct categories.

Dense Rewards Dense rewards provide task-related feedback signals at each time step.
For example, in a reacher task where the objective is to reach a desired point with the end-
effector, a common task-related feedback could be the distance between the end-effector
and the desired point. Well-shaped, dense rewards are crucial for the success of most
SRL algorithms. However, designing efficient dense rewards can already be challenging
for tasks where evaluating the quality of the action step-wise is difficult, such as in beer
pong and table tennis.

Sparse Rewards Sparse rewards provide task-related feedback only when specified
conditions are satisfied. These conditions can be either temporal-related (for instance,
providing reward only at episode end) or task-related metrics (for instance, providing
reward only when the end-effector is close enough to the desired point). Our approach
is less affected by the temporal sparse setting because we use highly temporal-abstracted
samples in policy updates. In contrast to dense reward signals, sparse rewards are usu-
ally more intuitive to design and more suitable for the task where task completion at a
specific time point (for instance, the episode end) is desired. Take the aforementioned
reacher task as an example, dense reward based on distance error at every step implicitly
encourages the agent to reach the desired point as fast as possible, leading to policies
with large acceleration and overshooting. This is undesirable if we only want to reach
the target at the end. Temporal sparse rewards address this issue by rewarding the agent
based on the final state.

Non-Markovian Rewards Rewards that provide task-related feedback without adher-
ing to the Markovian condition, i.e., the reward signal is not fully determined by the
current state-action pair but also incorporates the past states and actions, are called non-
Markovian rewards. The non-Markovian property exists widely in RL tasks. For in-
stance, in playing table tennis, once the ball is hit, the agent’s actions no longer influence
the trajectory of the ball. Therefore, the reward is not conditioned solely on the action at
that time step, but also on the actions preceding the hit. This setting is extremely chal-
lenging for SRL algorithms as their policy updates rely on the Markovian assumption.
Our approach with the black-box setting can leverage non-Markovian rewards effectively
by treating the entire episode trajectory as a single sample.
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4.3 Experiments
For our evaluation, we begin by demonstrating the effectiveness of our method in han-
dling sparse rewards, improving precision, and energy efficiency without replanning,
that is, in the black-box setting with k = T . We investigate challenging control prob-
lems that are typically difficult to solve in the standard step-based setting. Next, we
conduct a large-scale study on all 50 Meta-World tasks (Yu et al., 2019) to showcase
our competitive performance on various robot manipulation tasks that come with highly
shaped dense rewards with and without replanning. Finally, we evaluate our method
with replanning for several tasks with changing goals or high uncertainties and perform
a thorough ablation study. We compare our methods, which we call MP3 and MP3-
BB for the replanning and black-box cases respectively, against several other step-based
methods, including PPO (Schulman et al., 2017), TRPL (Otto et al., 2021), soft actor
critic (SAC) (Haarnoja et al., 2018), and neural dynamic policies (NDP) (Bahl et al.,
2020), as well as a deep evolution strategies (ES) (Salimans et al., 2017), the linear
adaption method contextual model-based relative entropy stochastic search (CMORE)
with ProMPs (Tangkaratt et al., 2017) as well as MP3-PPO and MP3-BB-PPO, which
are equivalent to MP3 and MP3-BB but trained with PPO instead of TRPL. For the ERL
methods (MP3-BB and MP3-BB-PPO), we leverage ProMPs for motion generation and
for the replanning versions (MP3 and MP3-PPO), we use ProDMPs.
It is worth noting that the authors of NDP report their performance in terms of the used
samples rather than environment interactions (the original work only uses every fifth
interaction). However, we believe that reporting the total number of environment inter-
actions leads to a fairer comparison and also helps to explain the relatively poor perfor-
mance of NDP in our experiments. For both MP3-BB and MP3-BB-PPO, we provide
only the context information ccc instead of leveraging the full state observation sss. The con-
text information ccc is a subset of the observation space that is randomly initialized after
each reset and includes the stochastic elements, such as the goal or object positions. Un-
less otherwise specified, we measure the trajectory segment performance Rt:t+k(www,sss) as
the cumulative trajectory return. We evaluate our method on 20 different seeds and com-
pute ten evaluation runs after each iteration. To report our results, we use the interquartile
mean (IQM) with a 95% stratified bootstrap confidence interval and performance profiles
where feasible (Agarwal et al., 2021). For a detailed description of the hyperparameters
used in the evaluation, please refer to Appendix B.4.

4.3.1 Black-Box Reinforcement Learning
Performance As a preliminary task, we extend the reacher from OpenAI gym (Brock-
man et al., 2016) by using five actuated joints and by restricting the context space, i.e.
the location of the goal, to y ≥ 0. This results in an increased control complexity but
slightly decreased task complexity. For a detailed environment description, please see
Appendix B.2.1. We investigate two types of rewards: a dense reward equivalent to the
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original reacher, and a sparse reward that provides only the distance to the goal in the
last episode time step. We study the sparse reward setting as it is better suited to gener-
ate energy-efficient motions. Yet, it is also more difficult to learn. While MP3-BB and
MP3-BB-PPO can solve the task for both rewards, NDP and ES fail in both cases (Fig-
ures 4.3a and 4.3b). PPO and TRPL achieve a slightly better asymptotic performance
than MP3-BB in the dense setting, but are unable to consistently reach the goal for the
sparse reward signal. Although SAC achieves a comparable performance to MP3-BB
in the dense setting, it cannot leverage the sparse reward (see Appendix B.3). CMORE
performs reasonably well, however, it is only able to cover part of context space due to
its linear adaption strategy.
To demonstrate the learning capabilities of all algorithms in handling sparse rewards
within a more complex scenario, we conduct evaluations on a box-pushing task. The
goal is to move a box to a given goal location and orientation using a simulated Franka
Emika Panda. The goal location and orientation are randomized at the beginning of each
episode. For a detailed environment description, please see Appendix B.2.2. Similar
to the reacher task, we consider a dense reward signal and a temporal sparse reward
signal. The dense reward is based on the position and orientation error for each time
step, while the temporal sparse reward depends only on the distance errors at the last
time step. We observed that the temporal sparse reward used in the original work leads
to policies that pass through the target location at episode end. To address this issue, we
increased the control cost penalty and introduced a joint velocity penalty at the episode
end. We re-tuned baselines that exhibited competitive performance in the original setting
to accommodate the new reward setup.
While MP3 and MP3-BB achieve the highest precision and sample efficiency in dense
reward setting (Figure 4.4a), all SRL algorithms, excluding SAC, yielded acceptable
performance at the end. The performance of SAC was adversely affected due to the
penalties associated with constraint violation and control cost. In the sparse reward set-
ting(Figure 4.4b), all the algorithms experience a certain degree of performance decline,
while SRL algorithms encounter substantial performance degradation, the MP-based al-
gorithms are capable of maintaining reasonable performance.
Although dense rewards may perform well in certain tasks (e.g. reacher and box-pushing),
there are two main reasons to consider sparse rewards. First, sparse rewards are usually
easier to design because we only need to consider the state at the last time step. Another
reason is that dense rewards force the agent to reach the goal as fast as possible, which
typically yields energy-inefficient motions. In contrast, sparse rewards penalize the goal
distance only in the final time step, while accounting for energy cost in each time step.

Energy Efficiency To illustrate the trade-off between precision and energy efficiency,
we analyzed the final behaviors of both reward setups with different action penalty fac-
tors in the reward function. For each of these factors, we computed the average preci-
sion and energy consumption. Our results, shown in Figures 4.3c and 4.4c, demonstrate
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Figure 4.3: The Figures 4.3a and 4.3b show the learning curve for the 5D reacher task
with dense and sparse reward signals. Although TRPL and PPO achieve the best perfor-
mance in the dense reward setting, both of them are struggling under the sparse reward
setting. In contrast, MP3-BB achieves the best performance in the sparse reward set-
ting. Figure 4.3c shows the trade-off between the energy efficiency (sum of the squared
control cost) and the task precision (distance to the goal at the last step). We average
over 100 evaluation runs and all seeds and choose action penalty factors in the intervals
(0,100]. MP3-BB with sparse reward achieves the highest precision with much lower
energy consumption compared to the PPO trained with the dense reward.

that decreasing the action penalty factor leads to higher task precision for all methods.
However, for the dense reward, a high task precision comes with the cost of high en-
ergy penalties, whereas the sparse reward generates behavior of similar precision with
one (box pushing) or even two (reacher) orders of magnitude less energy consumption.
When analyzing the final behaviors, agents trained with the dense reward quickly move
to the target and stay there, while the agents with the sparse reward reach the target only
slightly before the specified end of the episode, resulting in a much slower, smoother,
and more energy-efficient motion.

Dealing with non-Markovian Rewards To assess the effectiveness of our method in
complex reward settings, we test it with non-Markovian rewards, which are particularly
useful for robot learning tasks that require the agent to use feedback from the full tra-
jectory history. We first use a modified version of the OpenAI Gym hopper (Brockman
et al., 2016), which aims to jump as high as possible and land at a target location (see
Appendix B.2.3). The non-Markovian reward measures the highest point of the jump and
the shortest distance to the target during the episode. We compare our approach with two
other methods, CMORE and ES, which also use the non-Markovian reward. In addition,
we train three different algorithms, PPO, SAC, and TRPL, using a Markovian version
that provides height and target distance at each time step. For this setting, we performed
extensive reward shaping to optimize for maximum height and minimum target distance.

54



4.3 Experiments

PPO TRPL SAC MP3-BB-PPO MP3-BB MP3

0 1 2 3 4

0

0.2

0.4

0.6

0.8

1

Number Environment Interactions (×107)

Su
cc

es
s

R
at

e

(a) Box Push - Dense
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(b) Box Push - Sparse
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(c) Box Push - Energy

Figure 4.4: Figure 4.4a shows the learning curve for the box-pushing task with a dense
reward signal, while Figure 4.4b with a sparse reward signal. For the dense reward all the
methods except SAC achieve remarkable performance, while MP3 and MP3-BB achieve
higher sample efficiency, this is due to the efficient exploration in parameters space. All
methods suffer performance decrease with sparse reward signal Figure 4.4b, MP3 and
MP3-BB are less influenced as they leverage highly temporal abstracted samples. MP3-
BB achieve similar sample efficiency with MP3 because it can take advantage of more
compact observations (context observation). Figure 4.4c shows the tradeoff between
energy efficiency(sum of squared action) and task precision (success rate). Similar to the
energy plot in the 5D reacher task (Figure 4.3c), MP3-BB shows better energy-efficient
behavior.

Overall, our results show that MP3-BB achieves higher jump heights with smaller target
distances compared to most other methods (Figures 4.5a and 4.5b). While MP3-BB-PPO
and CMORE can match the target distance, SAC can even exceed it, but none of them
can reliably learn a good jump height. This can also be seen in the agent’s behavior.
MP3-BB charges energy and then jumps only once, whereas the step-based methods try
to maximize height in each time step, resulting in multiple jumps in one episode. This
illustrates the need for non-Markovian rewards to describe certain behaviors.
To further strengthen the ability of MP3-BB in solving tasks with non-Markovian re-
wards, we conduct experiments in a Beer pong environment(Celik et al., 2022). In this
task, the goal is to throw a ball into a cup at various locations on a table. The return de-
pends on the entire trajectory of the ball, which can be calculated by using information
such as table contacts or the minimum distance to the cup (a detailed description of the
task can be found at Appendix B.2.4). However, directly training PPO on such a reward
as well as designing a Markovian version of the reward is both challenging in this case.
To address this issue and make PPO a stronger baseline, we simplified the task for PPO
by fixing the ball release time and considering the time between the ball release and the
end of the ball trajectory as the last time step, allowing PPO to compute the reward sim-
ilarly to the non-Markovian setting. This kind of simplification is unnecessary for ERL
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(a) Hopper - Max Height
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(b) Hopper - Goal Distance
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(c) Beer Pong
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(d) Table Tennis - Hit Rate
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(e) Table Tennis - Success Rate

Figure 4.5: The Figures 4.5a and 4.5b show the maximum jumping height of the hopper’s
center of mass and the target distance, respectively. With the non-Markovian reward, the
hopper can jump approximately 20cm higher with increased goal precision. Figure 4.5c
shows the beer pong task, where PPO struggles to throw the ball into the cup, even
with a fixed optimal release point, while MP3-BB can consistently succeed in the task
with dynamic release points. The success and hit rate of the table tennis task are shown
in Figures 4.5d and 4.5e, respectively. The episode is considered a success when the
agent hits the ball and successfully returns the ball near the goal position. The results
demonstrate that MP3-BB consistently hits the ball and returns it in most cases, and MP3
is even able to improve that performance further.

algorithms. We use MP3-BB and CMORE with the non-Markovian reward and learn the
ball release time as an additional controller parameter. See results at Figure 4.5c. We see
that both MP3-BB and MP3-BB-PPO are able to throw the ball into the cup, while PPO
struggles. Even CMORE can throw the ball reliably, but only for a subset of the context
space. Interestingly, we again observe that MP3-BB-PPO has a larger confidence interval
compared to MP3-BB, indicating that it is not always able to solve the task consistently.
This behavior is similar to the jumping task, where we also observed a larger confidence
interval for MP3-BB-PPO.
Finally, we trained agents in a simulated table tennis environment (Celik et al., 2022).
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The context is four-dimensional, given by features of the incoming ball trajectory and
the desired location for returning the ball (a detailed environment description is provided
at Appendix B.2.5). The episode return depends on several factors, such as the minimum
distance between the racket trajectory and ball trajectory, whether the racket hits the ball
and the distance error between the ball’s landing position and the target. It is worth
noting that the agent’s action cannot influence the return after hitting the ball. Thus, the
return after hitting is not conditioned on the action at the current step but on the previous
actions, which poses a significant challenge for SRL algorithms. For step-based methods,
we consider the time after hitting the ball as one time step, akin to the beer pong task. For
the MP3 and MP3-BB approaches, we also learn the start time of the trajectory and the
speed of the desired trajectory (which is a parameter of the MP). Both parameters help to
learn the precise timing required to play table tennis. The results (Figures 4.5d and 4.5e)
show that MP3-BB succeeds in hitting the ball and returning it within the vicinity of the
goal in more than 60% of the cases. MP3-BB-PPO and TRPL can hit the ball but fail to
return it accurately, PPO even fails to hit the ball consistently.
In summary, MP3-BB provides an effective solution for handling non-Markovian reward
structures, which are often more natural and easier to define than engineered dense re-
wards. By leveraging these reward structures, the method can facilitate the learning of
more sophisticated and efficient behaviors, leading to improved overall performance.

4.3.2 Large Scale Robot Manipulation
We also showcase our ability to learn high quality policies on the Meta-World benchmark
suite (Yu et al., 2019). To verify our algorithms can adapt to task variations and solve
tasks consistently, we use a more rigorous evaluation protocol compared to the one used
by Yu et al. (2019). In contrast to using a fixed context for each episode, we randomly
generate new contexts with each reset. Additionally, instead of considering any instance
of success during the episode as a task solved, we consider a task successfully solved
only if the last time step successfully solves the task. The last time step success metric
rules out cases where the task is only momentarily solved, but subsequently disrupted
by random agent motion. We train individual policies for each environment but use
the same hyperparameters. Our results (Figure 4.6a) show that PPO and TRPL achieve
the best sample complexity, but MP3-BB performs competitively in terms of asymptotic
performance and even outperforms PPO slightly in terms of asymptotic performance.
Although the gap between PPO and MP3-BB in the aggregated view is relatively small,
the corresponding performance profiles (Figure 4.6b) reveal that MP3-BB performs bet-
ter above the 80% threshold. This means that MP3-BB finds more consistent solutions
than PPO with higher precision and solves these tasks without failures. SAC performs
similar to PPO, whereas NDP, ES, and MP3-BB-PPO are not achieving a competitive
performance.
We conducted an additional ablation study in which we trained MP3-BB using sparse
rewards, meaning only the final step reward of each episode was used. We denote this
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(b) MetaWorld - Performance Profile

Figure 4.6: This plot shows the success rate (Figure 4.6a) for all 50 Meta-World tasks,
and the corresponding performance profile (Figure 4.6b), which is the fraction of runs
that perform above the threshold given by the x-axis. Despite having lower sample effi-
ciency, MP3-BB achieves a higher asymptotic policy quality than PPO. Finally, MP3 can
further improve the asymptotic performance while being slightly less sample efficient.
According to the performance profile (Figure 4.6b), MP3-BB can solve more tasks (fewer
runs with zero success rate) while MP3 can solve the tractable tasks more consistently
(higher fraction of runs with ≥ 80% success rate).

variant as MP3-BB sparse. While the interquartile mean (IQM) score is lower, it is still
able to complete 50% of the tasks with a 100% success rate. This is a better performance
than what we observed with PPO trained with dense rewards. Furthermore, the slope
of the performance profile is quite small, indicating that nearly all the tasks that can be
solved by the agent are solved with a high degree of accuracy.

4.3.3 Replanning with Movement Primitives

We evaluate our approach in the online replanning case by decreasing the planning hori-
zon, such that 1 ≤ k < T , positioning it between SRL (k = 1) and ERL (k = T ). This
approach, which we refer to as MP3, offers two significant benefits. Firstly, it leads to
a more precise policy due to the closed-loop nature of the method. Secondly, it enables
the handling of environmental dynamics through online replanning. However, there are
two reasons why it is advantageous to consider it as a complementary approach rather
than a complete replacement for MP3-BB. First, this design choice may limit the abil-
ity to address non-Markovian rewards, although we have also observed good results in
this setting. Second, using replanning necessitates incorporating the internal propriocep-
tive state into the observation space, whereas the black-box setting can leverage a more
concise observation space known as the context space.
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Quality of the Learned Policy We evaluated the performance of MP3 agents by con-
ducting experiments in three challenging environments: the Meta-World benchmark
suite (Yu et al., 2019) for large-scale robot manipulation, box-pushing with dense and
sparse rewards, as well as table tennis with non-Markovian reward.
We kept the same planning horizon (20% of the max episode length) in all 50 Meta-
World environments. While the step-based methods achieved the best sample efficiency
for Meta-World (Figure 4.7a), MP3 slightly outperforms the black-box approach and
reaches the best asymptotic IQM score. The performance profile (Figure 4.6b) further
indicates that although the number of unsolvable tasks remains constant, the quality of
the solved tasks improves.
In all the box-pushing experiments (Figure 4.7b), we kept the planning horizon to 25%
of the max episode length. MP3 achieved the same performance with MP3-BB regarding
success rate and sample efficiency in dense reward setting. In sparse reward setting, MP3
exhibited better precision and sample efficiency compared to MP3-BB. This is primarily
due to the use of different MPs representations (ProDMPs for MP3 and ProMPs for MP3-
BB). ProDMPs-based policies tend to generate trajectories with lower episode energy,
which helps the agent to focus on the main target (move the box to the target) instead of
regularized by the control penalty. We conducted an ablation in Figure 4.10d to verify
this assumption.
While non-Markovian rewards cannot be used as freely as in the MP3-BB case, it is
still possible to leverage them as long as the non-Markovian behavior is limited to one
trajectory segment. For table tennis, we choose planning horizon k such that we ensure
the last trajectory segment starts before the racket hits the ball. In this setting, MP3
learns table tennis skills with a better success rate and much fewer samples than MP3-
BB (Figure 4.7c).
In conclusion, we observed that the use of replanning yields better asymptotic perfor-
mance in all cases while it can harm slightly the sample efficiency (observed in Meta-
World experiments). We attribute this to the higher dimensional state space that must be
considered in the replanning case compared to the black-box case.

Dealing with Uncertainties in the Environments To demonstrate the robustness of
MP3 in handling unforeseen events in the environment, we modified the box pushing
and the table tennis tasks to include uncertainties that require incorporating feedback
throughout the execution of the episode.
In the box-pushing experiments, we randomly switch to a new target position and orien-
tation during execution after 20% of the max episode length. We compared the perfor-
mance of our method against step-based PPO and TRPL in the dense reward setting. The
results in Figure 4.8a show that MP3 achieved the best performance under this setting. To
investigate the reasons behind this performance gap, we conducted a qualitative analysis
of the trained policies with all three methods. We observed that the policies generated by
PPO and TRPL accelerate much faster and keep a high velocity from the beginning of
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(b) Box Pushing
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(c) Table Tennis

Figure 4.7: Figure 4.7a presents a comparison of the learning curves between MP3 and
MP3-BB across Meta-World’s 50 tasks. Due to its closed-loop nature, MP3 achieves
higher asymptotic performance with a marginal compromise in sample efficiency. This
is attributed to the advantage of MP3-BB in utilizing a more compact observation space.
Figure 4.7b shows the performance of both methods in the box-pushing task, considering
both dense (solid) and sparse (dashed) reward settings. While both methods achieve
similar sample efficiency and asymptotic performance in dense reward settings, MP3
reaches a higher success rate in the sparse reward setting. Figure 4.7c demonstrates the
hit rate (dashed) and success rate (solid) in the robot table tennis task. Both methods can
consistently hit the ball, but MP3 outperforms MP3-BB by returning the ball with higher
precision and requiring significantly fewer samples to converge.

the episode, which makes adapting to the new targets more difficult with the presence of
control cost penalty and limited episode length. On the other hand, the acceleration and
velocity of MP3 agents are regularized by the ProDMP’s representation, leading to uni-
form motion, thus yielding an amenable success rate in this challenging goal-switching
setting.
For the table tennis environment, we test two kinds of uncertainties. We compare MP3
only with the MP3-BB as the SRL algorithms have shown to be incapable of solving
the table tennis task even in a static environment. Firstly, we modify the desired landing
position of the ball, similar to the goal change for the box-pushing task. Specifically, we
initialize the desired landing position at a random location on the left side of the table.
After half of the maximum episode steps, there is a 50% chance that the target landing
position will change to a new random position on the right side of the table. Our results
in Figure 4.8b suggest that the MP3 agent is able to adapt its behavior and return the ball
to the new target point with high precision. In contrast, the MP3-BB agent, which only
receives the initial observation containing the initial target position, can only hit the ball
but cannot solve this task. While we would expect the MP3-BB agent to solve at least
those cases where the goal is not altered, we found that the conflicting reward feedback
hinders the agent from learning high-quality policies. Secondly, we add wind to the
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(a) Box Push - Switch
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(b) Table Tennis - Switch
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(c) Table Tennis - Wind

Figure 4.8: This figure displays the success rate of perturbed tasks with and without
replanning. The success rate of box pushing with goal switching is shown at Figure 4.8a,
as well as the success rate of table tennis with goal switching Figure 4.8b and with wind
Figure 4.8c. In the box pushing tasks Figure 4.8a, the solid lines represent learning
curves of dense reward, while the dashed lines are learning curves from temporal-sparse
reward. While step-based algorithms with dense reward already struggle in the easier
20% setting, MP3 trained with sparse reward can solve both settings with a remarkable
success rate. In table tennis tasks Figures 4.8b and 4.8c, the solid line represents the
success rate, and the dashed line the hit rate. MP3 can effectively handle changes in
tasks and environmental perturbations. In contrast, the MP3-BB fails in these cases, as
it only relies on a single observation at the beginning of the episode, which lacks critical
information about the environment and task dynamics.

environment by applying a random force to the ball, which is unknown to the agent and
constant for an entire episode. However, the agent can still infer the underlying applied
force according to the velocity of the ball, but only after observing the ball for a certain
number of time steps. Due to the wind, the MP3-BB agent is not able to hit the ball
consistently, while the MP3 agent slightly drops in performance but can still achieve
reasonably good results (Figure 4.8c).

4.3.4 Ablation Studies

We conduct ablation studies to evaluate each component’s influence on the proposed
method that aim to answer the following questions:

Q1 What is the impact of varying the number of bases and the length of the replanning
horizon on the performance of MP3?

Q2 How does the performance of the non dynamic-based ProMP with replanning com-
pare to MP3?
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Q3 Can the policy be effectively learned in the parameter space without incorporating
proper trust regions?

Q4 How does the performance of dynamic-based ProDMPs compare to non dynamic-
based ProMPs in MP3-BB setting?

Firstly, we study the correlations between the number of bases of MPs and the length of
the planning horizon (replanning steps) in Figure 4.9. We train agents in box-pushing
environments with both dense and sparse rewards, using different combinations of plan-
ning horizons k∈ {1,2,5,10,25,50,100} and the number of bases N ∈ {0,1,2,3,4,5,6}.
A value of 0 for the number of bases indicates that the agent only uses the goal basis of
the ProDMPs, leading to the same action space dimension as SRL algorithms. When
the planning horizon is equal to 1, the learning objective of replanning reduces to a SRL
objective. In this case, the only difference between replanning and SRL is that the agent
explores the parameters space of the MP, which usually has a higher dimensionality ((N
+ 1) × DoF) compared to the action space that a step-based agent explores. Another
special case is when the replanning horizon equals the episode length (k = 100 = T ),
which corresponds to the MP3-BB setting.
Q1 can be answered according to results in Figure 4.9. First, planning with a longer
horizon requires a greater number of bases to achieve optimal performance. A longer
planning horizon means less chance for the agent to adapt trajectories by adjusting the
weights, limiting the ability to generate complex trajectories. This limitation, in turn, re-
duces performance in tasks that require fine manipulation, such as box pushing. Second,
longer planning horizons contribute to improved performance in the (temporal) sparse
reward setting. This is attributed to the usage of high temporal abstracted samples in
the policy updates. However, it does not necessarily mean MP3-BB will always perform
better in the sparse reward setting, as the black-box setting lacks the ability to correct its
behavior due to the absence of the feedback signals from inter-execution observations.
For Q2, we compare replanning with dynamic-based (ProDMPs) and non dynamic-based
MPs (ProMPs) in Figures 4.10a and 4.10b. The results demonstrate that the policy with
dynamic-based MPs yields a policy with a higher success rate and lower control cost.
This is largely due to the fact that non-dynamic MPs can result in abrupt transitions
between different planning segments, leading to discontinuities in the motion.
To address Q3, we evaluate policy search algorithms without trust regions in the replan-
ning setting and present the results in Figure 4.10c. In both dense and sparse reward
settings of box pushing, MP3 outperforms MP3-PPO in terms of sample efficiency and
success rate. The need for a more stable optimization and the higher dimensional nature
of learning in parameter spaces could account for this observed improvement.
Finally, to answer Q4, we compare the performance between the black-box agent with
ProDMPs and with ProMPs. The results in Figure 4.10d show that in dense and sparse
reward settings, both algorithms’ sample efficiency and success rate are similar. In the
sparse reward setting, MP3-BB with ProMPs shows slightly higher asymptotic perfor-
mance. This difference is due to the different shapes of bases, and we believe the minor
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(a) Median Success Rate for Dense Reward
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(b) Median Success Rate for Sparse Reward

Figure 4.9: This figure shows the median success rate and standard deviation for different
configurations of box-pushing environments using dense (Figure 4.9a) and sparse reward
(Figure 4.9b), with varying numbers of bases N and replanning horizons k. When N = 0,
the weight bases are disabled, and only the goal basis of the ProDMP is used, with the
action space dimension equal to that of SRL. k = 1 and k = 100 = T correspond to SRL
with MPs and MP3-BB, respectively. We evaluate each combination using ten random
seeds and 20 contexts per seed. In general, the results suggest that (i) longer planning
horizons require more bases for optimal performance, (ii) long planning horizons can
help improve performance in sparse reward settings.

performance gap can be mitigated by selecting MP’s parameters that minimize the dif-
ferences in bases. The overall results suggest that the types of MP make no significant
difference in the black-box setting.

4.4 Conclusion and Limitations
Our work presents a new approach for combining SRL and ERL by integrating recent
advancements in trust-region-based policy search (Otto et al., 2021) and MPs (Li et al.,
2022). Unlike the commonly used step-based exploration in SRL, our method incor-
porates consistent and effective exploration at the trajectory level. This approach is
a promising way to handle tasks with sparse and non-Markovian rewards, enabling a
more intuitive reward design. Furthermore, our method showed competitive performance
against state-of-the-art SRL algorithms in large-scale robot manipulation tasks, as con-
firmed by thorough empirical evaluations.
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(a) MP3: Success
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(b) MP3: Control Cost
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(c) MP3: PPO vs TRPL
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(d) BB: ProMP vs ProDMP

Figure 4.10: This figure presents an ablation study for MP3 and MP3-BB with different
MPs and learning algorithms. The figures Figures 4.10a and 4.10b show the success rate
and episode control cost for the box-pushing task, respectively. Here, we compare MP3
with ProDMPs (solid) to MP3 with ProMPs (dashed) to show the need for ProDMPs
when replanning. Figure 4.10c demonstrates the need for using TRPL in MP3 (solid).
MP3-PPO with ProDMPs using replanning (dashed) on box pushing tasks is not able to
achieve the same performance. Lastly, the figure Figure 4.10d shows that MP3-BB with
ProDMPs (dashed) is performing similarly to the MP3-BB with ProMPs (solid) in dense
reward setting, and slightly better in the sparse reward setting.

Although our proposed method shows promise, there remain some limitations that re-
quire addressing in future work. Firstly, our current approach only considers fixed-length
planning horizons and relies solely on time-based replanning triggers. Yet, in real-world
applications, it may be necessary to incorporate event-based replanning triggers, such as
detecting unforeseen obstacles or changing targets. Therefore, we will investigate how
to integrate event-based triggers into our method in the future. Secondly, our method,
and ERL approaches in general, typically require more interaction time than SRL in
dense reward settings. This is mainly due to the encapsulation of temporal-correlated
information in highly abstracted samples. To address this issue, we will leverage the in-
formation within each planning segment to improve efficiency. Lastly, our evaluation of
the Meta-World benchmark suite identified that most failure cases occur in tasks requir-
ing sub-goal achievement and skill sequencing. Therefore, we will investigate how to
achieve long-horizon planning by incorporating sub-goals into our framework in future
work.
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Chapter 5

Vlearn: Off-Policy Learning with
Efficient State-Value Function
Estimation
This chapter extends the applicability of the trust region projection layer (TRPL) beyond
the on-policy framework to the off-policy setting, enhancing sample efficiency. Addi-
tionally, it introduces a novel approach to leverage purely V-function critics, particularly
advantageous in higher-dimensional action spaces, as it circumvents the complexities as-
sociated with learning the Q-function. The key innovation of Vlearn lies in eliminating
the necessity for a Q-function, streamlining the learning process, and facilitating more
efficient exploration and exploitation in intricate environments. These findings were dis-
seminated in a prior publication, as detailed in Otto et al. (2024).

5.1 Introduction
Reinforcement learning (RL) has emerged as a powerful paradigm for training intelligent
agents through interaction with their environment (Mnih et al., 2013; Silver et al., 2016).
Within RL, there exist two primary approaches for model-free learning: on-policy and
off-policy methods. On-policy methods rely on newly generated (quasi-)online samples
in each iteration (Schulman et al., 2017; Otto et al., 2021), whereas off-policy meth-
ods leverage a replay buffer populated by a behavior policy (Abdolmaleki et al., 2018b;
Haarnoja et al., 2018; Fujimoto et al., 2018). Although on-policy methods can compen-
sate for stale/off-policy data to some extent via importance sampling (Espeholt et al.,
2018), they are still not able to fully exploit it.
To harness the full potential of off-policy data, off-policy methods traditionally focus on
learning state-action-value functions (Q-functions) as critics (Degris et al., 2012). The
Q-function’s dependency on the state as well as the action enables it to update only
those actions that have been observed in the transitions generated by the behavior pol-
icy. However, the complexity associated with learning Q-functions, especially in high-
dimensional action spaces, is often undesirable, and alternatives similar to the on-policy
setting based on state-value functions (V-functions), would be preferable.
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In this work, we introduce Vlearn, a novel approach to off-policy policy gradient (PG)
learning that exclusively leverages V-functions. While existing methods, such as V-trace
(Espeholt et al., 2018), have tried to increase the amount of stale data on-policy methods
can exploit, we found them to struggle in a full off-policy setting. In particular, they
only aim to reweigh the Bellman targets. Yet, previous work (Mahmood et al., 2014) has
already shown that importance sampling for the full Bellman error is preferable to such
reweighing of the Bellman targets. Our method optimizes an upper bound of the original
Bellman error, which can be derived using Jensen’s inequality. This bound effectively
shifts the importance weights from the Bellman targets to the optimization objective
itself, which simplifies V-function updates and increases the stability of learning a V-
function from off-policy data, a hallmark of previous approaches. In addition to this
advancement, we further enhance the stability of policy learning by combining it with
the trust region update introduced by Otto et al. (2021), forming an efficient off-policy
trust region method. In our experiments, we demonstrate the benefits of this approach,
especially in environments with high-dimensional action spaces, such as the notoriously
difficult dog locomotion tasks of DeepMind control (DMC), which currently cannot be
solved by most standard off-policy actor-critic methods.

5.2 Efficient State-Value Function Learning from
Off-Policy Data

Most popular off-policy actor-critic methods (Haarnoja et al., 2018; Fujimoto et al.,
2018; Abdolmaleki et al., 2018b) now aim to find a policy that maximizes the cu-
mulative discounted reward by making use of a learnable state-action value estimate
Qπ

θ
(s,a) = Eπ [Gt |st = s,at = a]. To train this estimator, they rely on a dataset D =

{(st ,at ,rt ,st+1)t=1...N} and a behavioral policy πb(·|s) responsible for generating this
dataset. Typically, D takes the form of a replay buffer (Lin, 1992), with the correspond-
ing behavior policy πb being a mixture of the historical policies used to populate the
buffer. Training the state-action value function then usually involves temporal differ-
ence learning (Sutton, 1988; Watkins and Dayan, 1992), with updates grounded in the
Bellman equation (Bellman, 1957). The objective commonly optimized is

LQ(θ) = E(st ,at)∼D
[︂(︁

Qπ
θ (st ,at)−

(︁
r(st ,at)+ γEst+1∼D,at+1∼π(·|st+1)Qθ̄

(st+1,at+1)
)︁)︁2
]︂
,

(5.1)
where Q

θ̄
(s,a) is a frozen target network. Furthermore, to mitigate overestimation bias,

most methods employ two state-action value functions (Fujimoto et al., 2018). To main-
tain the stability of this approach, the target network’s weights are updated at each time
step as θ̄ ← τθ +(1− τ)θ̄ .
Instead of using the state-action function Qπ

θ
(st ,at), an alternative approach is to work

solely with the state-value function V π
θ
(st). This estimator can be trained by minimizing
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the following loss function using importance sampling

Lbase(θ) = Est∼D

[︄(︃
V π

θ (st)−E(at ,st+1)∼D

[︃
π(at |st)

πb(at |st)

(︁
r(st ,at)+ γV

θ̄
(st+1)

)︁]︃)︃2
]︄
.

(5.2)
Directly optimizing this can be difficult as approximating the inner expectation with just
one Monte Carlo sample yields a high variance. Achieving a more reliable estimate
necessitates multiple samples, implying either multiple action executions per state or
occurrences of the same state in the replay buffer, an unrealistic assumption for most RL
problems. An essential distinction from the Q-function based objective in Equation (5.1)
lies in the introduction of the importance weight π(at, j|st)/πb(at, j|st), which accounts
for the difference between the behavior distribution πb(·|s) and the current policy π(·|s).
Unlike the Q-function, which updates its estimate solely for the chosen action, the V-
function lacks a dependency on the action and implicitly updates its estimate for all
actions. As a result, we need to consider the difference between the current policy and
the policy that collected the data.

The objective in Equation (5.2) bears similarity to the 1-step V-trace estimate (Espeholt
et al., 2018). It can be seen as a naive version of V-trace because a large difference
between the target and behavior policies may result in importance weights approach-
ing either zero or infinity, consequently impacting the Bellman optimization target for
the state-value function V π

θ
(st). While truncated importance weights can prevent ex-

cessively large values for the Bellman target, the importance ratios and target may still
approach values close to zero. V-trace reformulates this objective and effectively inter-
polates between the Bellman target and the current (target) value function in the one-step
case n = 1

LV-trace(θ) = Est∼D

[︄(︂
V π

θ (st)−
(︂
(1−ρt)Vθ̄

(st)+ρt
(︁
rt + γV

θ̄
(st+1)

)︁)︂)︂2
]︄
, (5.3)

where ρt = min(π(at |st)/πb(at |st),ερ) are the truncated importance weights with a user-
specified upper bound (typically ερ = 1). This objective can then also be extended for
off-policy corrections of n-step returns (Espeholt et al., 2018). Yet, this formulation has
two main drawbacks. Since it is impractical or even impossible to implement multiple ac-
tions for the same state, V-trace approximates the inner expectation with only one action
sample, resulting in potentially undesirable high variance estimates. Moreover, while the
V-trace reformulation avoids optimizing the value estimate toward zero for small impor-
tance ratios, the interpolation now optimizes it increasingly toward the current (target)
value function. This interpolation also leads to a shift of the optimum, which means for
samples with small importance ratios the value function is barely making any learning
progress and maintains its current estimate. It is important to note that only the opti-
mum changes; the scale of the loss function, and thus the scale of the gradient, remains
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the same for all importance ratios. In the original work, this issue is less pronounced,
as V-trace provides off-policy corrections for asynchronous distributed workers. In this
setup, the policy distributions are expected to stay relatively close, mitigating the impact
of any potential divergence. However, in a full off-policy setting, the samples in the
replay buffer and the current policy diverge significantly faster and more widely. The
size of the replay buffer, learning speed, or entropy of different policies can all affect the
importance ratio. This behavior for various importance ratios is illustrated in Figure 5.1.

5.2.1 VLearn: Off-Policy State-Value Function Learning
A significant challenge with V-trace lies in its use of importance sampling exclusively for
the target computations, which can additionally become increasingly costly to compute
with larger n-step returns. Moreover, it has already been shown for the linear case that
applying the importance weights to just the Bellman targets is inferior to applying them
to the full loss (Mahmood et al., 2014; Dann et al., 2014). However, contradicting these
previous findings, the former approach remains the main method in the deep learning
setting (Munos et al., 2016; Espeholt et al., 2018). To address the above-mentioned
issues, we propose a more effective approach to training the value function by following
Mahmood et al. (2014); Dann et al. (2014) and shifting the importance ratio to the full
loss function by extending their results to the general function approximation case.

Theorem 2 Consider the following loss, minimized with respect to the V-function’s pa-
rameters θ

LVlearn(θ) = E(st ,at ,st+1)∼D

[︃
π(at |st)

πb(at |st)

(︂
V π

θ (st)− (rt + γV
θ̄
(st+1))

)︂2
]︃
. (5.4)

This objective serves as an upper bound to the importance-weighted Bellman loss (Equa-
tion (5.2)). Furthermore, this upper bound is consistent; that is, a value function mini-
mizing Equation (5.4) also minimizes Equation (5.2).

The first statement’s proof relies on Jensen’s Inequality, while the proof of the second
statement is an extension of the work from Neumann and Peters (2008). The complete
proofs are provided in Appendices C.1.1 and C.1.2, respectively.
This upper bound closely resembles the standard state-action-value loss functions used in
other off-policy methods but is based on the action-independent state-value function. It
introduces importance weights to account for the mismatch between behavior and policy
distribution. Importantly, evaluating Equation (5.4) becomes straightforward using the
provided replay buffer D. When we use samples from the joint state-action distribution,
dealing with only one action per state becomes more manageable. This helps to reduce
variance compared to the original and V-trace objectives. Additionally, another issue
with using importance sampling is that its estimator can have a large variance when the
target and behavior policies are very different from each other. Evaluating the variance
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of the importance sampling estimator is generally intractable (Munos et al., 2016; Koller
and Friedman, 2009). Therefore, we consider the stateless Markov Decision Process
(MDP), the multi-armed bandit problem, as a simplified scenario. The critic’s empirical
losses for the base, Vlearn, and V-trace objective (Equations (5.2) to (5.4)) can then be
simplified as

Lbase =

(︄
V − 1

N ∑
a∼πb

ρar(a)

)︄2

LV-trace =
1
N ∑

a∼πb

(︂
V −

(︁
(1−ρa)V +ρar(a)

)︁)︂2

LVlearn =
1
N ∑

a∼πb

ρa

(︂
V − r(a)

)︂2
,

where we denote weights ρa = π(a)/πb(a). Taking the derivatives of the above losses
with respect to the estimator V and solving the derivative of zero for V yields the follow-
ing three estimators

V̂base =
∑a∼πb

ρar(a)
N

V̂V-trace =
∑a∼πb

ρ2
a r(a)

∑a∼πb
ρ2

a
V̂Vlearn =

∑a∼πb
ρar(a)

∑a∼πb
ρa

.

Through this simplified scenario, we show an intuition that the proposed weighted loss of
Vlearn yields the self-normalized importance weighting estimator, while V-trace results
in a squared self-normalized estimator and the base objective yields a standard impor-
tance weighting estimator. For the self-normalized estimator, it is well known that it
can be more robust in case of extreme importance weights, and often lower than the
standard importance weighting estimator in general machine learning (Koller and Fried-
man, 2009) and in RL settings (Swaminathan and Joachims, 2015; Futoma et al., 2020).
However, the squared estimator from V-trace is expected to result in larger variances.
Furthermore, unlike V-trace, each sample optimizes towards the Bellman target but has
an impact on the total loss per step depending on its importance weight, as shown in
Figure 5.1. The smaller importance weights mainly scale the gradient without causing
a shift in optimizing to a different optimum, such as the current (target) value function.
This approach makes learning the state-value function in an off-policy setting more stable
and efficient.
An essential consideration is defining the behavior policy πb in an off-policy setting,
where πb is a mixture of all past policies that contributed to the replay buffer. Computa-
tionally, storing and evaluating this mixture policy would be expensive. However, since
we rely on importance sampling, which only requires access to the (log-)probabilities of
each action, we can easily extend the replay buffer with this single entry at minimal ad-
ditional cost. In addition, this (log-)probability can then be used directly for importance
sampling in the policy update step.
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Figure 5.1: To provide intuition on the differences between Vlearn and V-trace we con-
sider the following example for different importance ratios ρ . Assume that for a state st ,
the Bellman target is r(s,a)+ γV

θ̄
(st+1) = 4, the target critic predicts V

θ̄
(st) = −6 and

we plot the loss for potential values of Vθ (s) for Vlearn and V-trace. For on-policy sam-
ples (ρ = 1.0) both losses are the same. However, for samples that are more and more
off-policy (ρ→ 0) we see how V-trace increasingly relies on the target critic, shifting the
optimal value towards it. Vlearn on the other hand simply reduces the scale of the loss
and thus the importance of the sample. This makes Vlearn more robust to errors in the
target critic.

5.2.2 Off-Policy Policy Learning with VLearn
To find the optimal policy, conventional PG techniques frequently use the gradient of
the likelihood ratio and importance sampling estimator to optimize an estimate of the Q-
function. In particular, a more effective approach then involves optimizing the advantage
function, denoted as Aπ(s,a) = Qπ(s,a)−V π(s). Adding the V-function as a baseline
yields an unbiased gradient estimator with reduced variance. The optimization can then
be formulated as follows

max
φ

Ĵ(πφ ,πb) = max
φ

E(s,a)∼D

[︃
πφ (a|s)
πb(a|s)

Aπ(s,a)
]︃
. (5.5)

In the on-policy case, the advantage values are typically estimated via Monte Carlo ap-
proaches, such as general advantage estimation (Schulman et al., 2016). Yet, in our set-
ting, we cannot compute a good Monte Carlo estimate and cannot rely on the Q-function
estimate (Degris et al., 2012). Further, the direct use of the V-function to improve the
policy is not feasible. However, in conjunction with the replay buffer, a strategy akin to
the standard PG becomes viable. This approach allows us to employ an off-policy esti-
mate of the V-function, offering a substantial boost in sample efficiency. The advantage
estimate is computed using the one-step return of our off-policy evaluated value function
Aπ(st ,at) = rt + γV π

θ
(st+1)−V π

θ
(st). The above objective can then be optimized by any

PG algorithm, e.g., by proximal policy optimization (PPO) (Schulman et al., 2017) or via
the TRPL (Otto et al., 2021).
In this work, we use TRPL (Otto et al., 2021) as it has been shown to stabilize learning
even for complex and high-dimensional action spaces (Otto et al., 2022, 2023). Unlike
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Algorithm 1
1: Initialize policy φ , critics θ1,θ2, target critics θ̄1, θ̄2
2: Initialize replay buffer D, truncation level ερ , trust region bounds εµ , εΣ

3: Initialize πold← πφ

4: for i = 0,1, . . . ,N do ▷ epoch
5: for j = 0,1, . . . ,M do
6: Collect sample (s,a,r,s′,πφ (a|s)) and add to D
7: Sample batch B = {(s,a,r,s′,πb(a|s))}t=1...K from D
8: Get current policy πφ (a|s) for all s in B
9: Compute projected policy π̃φ = TRPL(πφ ,πold, εµ , εΣ) for all s in B

10: Update all critic networks with gradient

∇θi

1
K ∑

B
min

(︃
π̃φ (a|s)
πb(a|s)

,ερ

)︃(︂
V π

θi
(s)−

(︁
r+ γV

θ̄i
(s′)
)︁)︂2

for i ∈ {1,2}

11: if update policy then
12: Compute advantage estimates Â = r+ γ mini=1,2V π

θi
(s′)−mini=1,2V π

θi
(s)

13: Update policy with trust region loss

∇φ

[︄
1
K ∑

B

[︃
min

(︃
π̃φ (a|s)
πb(a|s)

,ερ

)︃
Â
]︃
−αd(πφ , π̃)

]︄

14: θ̄i← τθi +(1− τ)θ̄i for i ∈ {1,2}
15: πold← πφ

PPO, it provides a mathematically sound and scalable approach to enforce trust regions
exactly per state. Moreover, TRPL allows us to use the constraint policy also during
the value function update, which now requires importance sampling. PPO has only the
clipped objective for the policy update, and using a clipped value function has been
shown to potentially degrade performance (Engstrom et al., 2020).
TRPL efficiently enforces a trust region for each input state of the policy using differ-
entiable convex optimization layers (Agrawal et al., 2019), providing more stability and
control during training and at the same time reducing the dependency on implementation
choices (Engstrom et al., 2020). Intuitively, the layer ensures the predicted Gaussian dis-
tribution from the policy network always satisfies the trust region constraint. This way,
the objective from Equation (5.5) can directly be optimized as the trust region always
holds. The layer receives the network’s initial prediction for the mean µµµ and covariance
ΣΣΣ of a Gaussian distribution, and projects them into the trust region when either exceeds
their respective bounds. This is done individually for each state provided to the network.
The resulting Gaussian policy distribution, characterized by the projected parameters µ̃µµ
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Figure 5.2: Shown are the mean over 10 seeds and 95% bootstrapped confidence inter-
vals for the Gymnasium tasks. While soft actor critic (SAC) performs well on the lower
dimensional tasks, Vlearn achieves better asymptotic performance for the higher dimen-
sional problems - Ant-v4 and Humanoid-v4. In comparison to V-trace, our method learns
significantly more stable while also achieving an overall better performance. The figure
in the bottom center shows an ablation study that compares the effect the replay buffer
size has on the policy’s performance. For smaller replay buffers, learning becomes un-
stable or does not converge, while larger sizes tend to lead to similar final performances.
The figure in the bottom right shows an ablation study for variations of Vlearn.

and Σ̃ΣΣ, is then used for subsequent computations, e.g. sampling and loss computation.
Formally, as part of the forward pass, the layer solves the following two optimization
problems for each state sss

argmin
µ̃µµs

dmean (µ̃µµs,µµµ(s)) ,s.t.dmean (µ̃µµs,µµµold(s))≤ εµµµ

argmin
Σ̃ΣΣs

dcov
(︁
Σ̃ΣΣs,ΣΣΣ(sss)

)︁
,s.t.dcov

(︁
Σ̃ΣΣs,ΣΣΣold(sss)

)︁
≤ εΣ,

where µ̃µµs and Σ̃ΣΣs are the optimization variables for input state sss. The trust region bounds
εµ , εΣ are for the mean and covariance of the Gaussian distribution, respectively. For
the dissimilarities between means dmean and covariances dcov, we use the decomposed
KL-divergence. How to receive the gradients for the backward pass via implicit differ-
entiation is described in Appendix A.2.5.
As the original V-trace algorithm is primarily used for off-policy corrections in dis-
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5.3 Experiments

tributed on-policy learning methods, it typically does not incorporate a target network. In
contrast, it is common practice for off-policy methods (Haarnoja et al., 2018; Fujimoto
et al., 2018; Abdolmaleki et al., 2018b) to incorporate a target network. This practice is
also followed by V-trace’s predecessor, Retrace (Munos et al., 2016), and we include it
for VLearn as well.

5.2.3 Behavior Policy vs Old Policy
For Vlearn, we keep track of three different policies: The current policy πφ , which is
optimized, the old policy πold, which is used as a reference for the trust region, and
the behavioral policy πb, which is needed for off-policy correction using importance
sampling. Similar to most on-policy trust region methods, we maintain πold as a copy
of the main policy network from the previous iteration. Choosing the behavioral policy
for the trust region would be detrimental to performance because it would slow down the
policy network update or, in the worst case, force the policy back to a much older and
worse policy distribution. Conversely, we cannot use the copied old policy as a behavior
policy because the actual behavior policy πb can be arbitrarily far away, especially for
older samples. Generally, the behavior policy is a mixture of all past policies that have
been used to populate the replay buffer. However, storing and/or evaluating this would
be expensive, so we assume that each sample belongs to only one mixture component,
specifically the policy that originally created the action. Since we rely on importance
sampling for the off-policy correction, we can simply store the (log-)probability for each
action as part of the replay buffer to represent πb during training.
To stabilize our method further, we make use of improvements of other actor-critic and
PG methods, including twin critics and delayed policy updates (Fujimoto et al., 2018),
tanh squashing (Haarnoja et al., 2018), as well as advantage normalization (Schulman
et al., 2017; Otto et al., 2021). While the overestimation bias is not directly a problem
when using just state-value functions, we found them to be beneficial in practice. We
assume the twin network can be seen as a small ensemble that provides a form of reg-
ularization. Given there is no significant drawback and the widespread adoption of the
twin network approach in other baseline methods, we have chosen to maintain its use in
our case as well. Additionally, similar to prior works (Munos et al., 2016; Espeholt et al.,
2018) we aim to reduce the variance by replacing the standard importance sampling ratio
with truncated importance sampling min(π(at |st)/πb(at |st),ερ). An overview of our full
approach is shown in Algorithm 1.

5.3 Experiments
For our experiments, we evaluate Vlearn on a variety of different continuous control
tasks from Gymnasium (Towers et al., 2023) and DMC (Tunyasuvunakool et al., 2020).
As baselines, we trained the standard off-policy methods SAC (Haarnoja et al., 2018) and
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maximum aposteriori policy optimization (MPO) (Abdolmaleki et al., 2018b) as well as
PPO (Schulman et al., 2017) and the on-policy version of TRPL (Otto et al., 2021). In
addition, we compare our method to 1-step V-trace (Espeholt et al., 2018) by replacing
our lower bound objective from Equation (5.4) with the objective in Equation (5.3). This
comparison aims to highlight the difference in the placement of the importance ratios. To
ensure a fair assessment, we want to eliminate any external factors that could influence
the results and thus do not use n-step returns. While the n-step V-trace can be computed
recursively, our approach could leverage the product of the n-step importance weights,
preserving consistency with V-trace. All other components of the method remain the
same as in Vlearn.
The evaluation protocol follows the approach described in Agarwal et al. (2021). All
methods are evaluated for 10 different seeds each, and their performance is aggregated
using mean values and 95% bootstrapped confidence intervals for individual tasks. We
maintain uniformity in the architecture of the policy and critic networks for all methods,
incorporating layer normalization (Ba et al., 2016) before the first hidden layer. Hyper-
parameters are kept constant and only adjusted as appropriate for the higher dimensional
dog tasks. Detailed hyperparameter information for all methods can be found in Ap-
pendix C.2.

5.3.1 Gymnasium
The results for the Gymnasium tasks are shown in Figure 5.2. Vlearn shows good per-
formance on lower dimensional tasks, achieving asymptotic performance comparable to
SAC, except for HalfCheetah-v4. While Vlearn generally outperforms on-policy meth-
ods on the HalfCheetah-v4, it exhibits a slower convergence rate compared to SAC and
seems to reach a lower local optimum, similar to the on-policy methods. In general,
HalfCheetah-v4 appears to be an outlier, challenging the learning capabilities of all trust-
region methods. Even MPO, employing a related KL regularization concept, does not
match the performance of SAC. Moreover, the environment itself has shown extreme be-
havior in the past (Zhang et al., 2021). However, for the other lower dimensional tasks
Vlearn and MPO perform comparably to the other baseline methods.
For the two higher dimensional tasks, Ant-v4 and Humanoid-v4, Vlearn outperforms
all other baselines. Across both environments, Vlearn demonstrates better convergence
speed and superior asymptotic performance. Of particular note is the remarkable per-
formance increase for Humanoid-v4, where Vlearn achieves a 25% increase over SAC.
While the improvement is more subtle in the case of Ant-v4 with its 8-dimensional ac-
tion space, the advantage of Vlearn becomes apparent in the much larger 17-dimensional
action space of Humanoid-v4. In this scenario, focusing solely on learning a state-value
function proves to be a less complex and more effective approach than attempting to learn
the full state-action value function. Neither for the Ant-v4 nor for the Humanoid-v4 can
MPO achieve competitive performance.
In direct comparisons between Vlearn and its V-trace counterpart, Vlearn consistently
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Figure 5.3: Performance on the 38-dimensional DMC dog tasks. Shown are the mean
over 10 seeds and 95% bootstrapped confidence intervals. While SAC and MPO struggle
to learn a consistent policy, Vlearn excels across all three tasks. On-policy methods show
modest improvements and V-trace even struggles to make any meaningful progress.

outperforms V-trace across all tasks. In particular, the V-trace version hardly learns any-
thing within a fixed number of environment interactions. Our investigations revealed
that while V-trace is eventually able to learn, it experiences a significant drop in per-
formance after an extended training period. Since the only difference between the two
experiments lies in the V-trace objective, this is most likely the source of this problem.
The key distinction between our objective and V-trace lies in how they handle situations
where the importance ratio approaches zero and the position of the expectations. In our
objective, we assign these samples a weight close to zero, minimizing their influence
on the gradient. Conversely, V-trace attempts to bring these samples closer to the target
network, potentially leading to performance degradation. Additionally, estimating the
joint expectation over states and actions is typically more stable. This observation aligns
with findings in Mahmood et al. (2014); Dann et al. (2014), where it was demonstrated
that importance sampling exclusively for the Bellman targets can lead to inferior perfor-
mance. While they evaluated this only for the linear case, we found similar results for
general nonlinear function approximation.

5.3.2 DeepMind Control Suite

In addition to the Gymnasium tasks, we conducted experiments using the DMC dog en-
vironments. The dog tasks pose the most challenging problems in our evaluation, with a
38-dimensional action space modeling a realistic pharaoh dog. Consistent with the Gym-
nasium setting, Vlearn exhibits superior performance on these high-dimensional dog lo-
comotion tasks. Although we found that SAC benefits from layer normalization for these
tasks, it struggles to learn well-performing policies for all three movement types. While
SAC improves for “easier” motions, its convergence remains highly unstable, and its fi-
nal performance often falls below that of on-policy methods. MPO has similar problems

75



Chapter 5 Vlearn: Off-Policy Learning with Efficient State-Value Function Estimation

as with the higher dimensional Gymnasium tasks and is unable to solve the tasks. In
contrast, Vlearn learns reliably for all three distinct dog movement types.

Comparing our V-function learning approach to the V-trace estimator, the disparities are
even more pronounced for the DMC dog tasks. For these high-dimensional problems,
the V-trace estimator fails to learn and is among the worst baselines, even falling behind
on-policy methods. Generally, we observe a performance decline across the board, even
in the case of lower-dimensional problems.

5.3.3 Ablation Studies

In our ablation study, we investigate the effect of replay buffer size as well as the individ-
ual components of our method on the learning process. With varying replay buffer sizes
of {2e3,1e4,5e4,1e5,2.5e5,5e5,1e6}, for 10 seeds each, we trained multiple agents on
the Gymnasium Humanoid-v4. Note that while the original V-trace (Espeholt et al.,
2018) relies on a relatively large replay buffer, the massively parallel computation used
there implies that policy distribution differences are not as pronounced as in standard
off-policy methods like SAC. As shown in Figure 5.2 (bottom right), significant im-
provement occurs when transitioning from updating the policy and critical setting near
an on-policy setting, using the smallest replay buffer size, to using a medium buffer. In
particular, moving from a small buffer to a medium buffer yields significant benefits,
while there is little difference between buffer sizes at the upper end of the range. In our
experiments, we found that a replay buffer size of 5e5 consistently produced optimal
performance across all tasks (see Figures 5.2 and 5.3).

For the second ablation study, we trained multiple variations of Vlearn for Humanoid-v4
to investigate the effects of the individual components (Figure 5.2). First, as a naive base-
line, we removed the importance sampling (No IS) and assumed all samples in the replay
buffer were from the current policy. As expected, not having the correction from impor-
tance sampling does not allow the agent to learn at all. When replacing the TRPL policy
loss with the clipped PPO loss (PPO loss), our results suggest that the heuristic trust
region provided by PPO is insufficient for the off-policy case where stabilizing learning
is even more important. While PPO can achieve a decent performance on the task, its
asymptotic performance lags behind the agent using TRPL. For the importance weight
truncation, we followed previous works (Espeholt et al., 2018; Munos et al., 2016) by
selecting ερ = 1 to reduce variance and potentially avoid exploding gradients. Similar
to the PPO loss, we see that for a larger truncation level (ερ = 20) learning becomes
unstable. Lastly, we trained an agent without the twin critic networks (No Twin), which
performs significantly worse. We assume the twin network can be seen as a small en-
semble that provides a form of regularization.
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5.4 Conclusion and Limitations
In this work, we have demonstrated an efficient methodology for learning a V-function
from off-policy data, leveraging an upper bound objective to subsequently update the
policy network. Our approach not only ensures computational efficiency but also show-
cases enhanced stability and performance compared to existing methods. Integrating this
idea with the trust regions from TRPL yields an effective off-policy method, especially
well-suited for scenarios involving high-dimensional action spaces.
Although our method excels in handling high-dimensional action spaces, it may still
require a substantial amount of data to achieve optimal performance. Hence, sample
efficiency still remains a challenge that needs to be addressed further. Additionally, in
specific environments, such as HalfCheetah-v4, Vlearn did not achieve a competitive
performance compared to existing approaches. Improving the method’s reliability, par-
ticularly in lower-dimensional scenarios, represents an ongoing challenge. For future
work, we are looking to combine this work with other advances in RL, such as distribu-
tional critics (Bellemare et al., 2017) or ensembles (Chen et al., 2021). Furthermore, we
are looking to extend our approach to the realm of offline RL, which offers the oppor-
tunity to leverage pre-collected data efficiently, opening doors to real-world applications
and minimizing the need for extensive data collection.
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Discussion and Future Work

In this work, we have presented improvements to trust region methods and incorpo-
rated insights from classical robotics, resulting in the development of more adept agents.
Our work addresses critical challenges in deep RL through three primary contributions.
First, the introduced TRPL algorithm introduces differentiable neural network layers to
enforce trust regions for deep Gaussian policies, presenting a robust alternative to estab-
lished methods like TRPO and PPO. These layers, designed to formalize trust regions
for individual states, exhibit comparable or superior results while being implementation-
agnostic. Second, MP3 incorporates MPs into deep RL, thereby enabling trajectory-
based exploration and optimization. This integration not only fosters the generation of
smooth and energy efficient behavior but also facilitates adaptation to task variations
during execution. Leveraging TRPL, MP3 surpasses existing methods in both deep RL
and RL with MPs across diverse reward formulations, addressing challenges in various
domains. Lastly, Vlearn eliminates the explicit need for a state-action-value function
in off-policy RL, overcoming data inefficiency in high-dimensional action spaces. This
approach streamlines the learning process, enhances exploration and exploitation effi-
ciency, and consistently performs well in diverse benchmark tasks. Collectively, these
contributions advance trust region methods by offering robust and effective solutions to
critical problems and showcasing their applicability across domains.
Nevertheless, despite the precision of methods like TRPL and TRPO in providing exact
trust regions, and the natural scalability of KL-based trust regions with the policy entropy,
all methods struggle with the adaptability of the trust region itself. Notably, in simpler or
flat regions of the problem space, the trust region may inadvertently hinder performance,
as larger steps beyond the predefined trust region could be safely taken in these areas.
This prompts the question of whether it is feasible to leverage or learn a schedule or
model that can dynamically adjust the trust region boundary based on the context or
state of the problem at hand. Enabling the policy to make more substantial progress in
specific areas could significantly enhance sample complexity, a concept already explored
in trust region methods within standard policy search (Arenz et al., 2020; Hüttenrauch
and Neumann, 2022), but still relatively unexplored for deep RL.
Furthermore, the application of RL to physical systems remains challenging (Dulac-
Arnold et al., 2020). While direct training on robotic hardware is feasible (Haarnoja
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et al., 2018), obtaining a sufficient number of samples at scale for more intricate problems
remains difficult. Simulation provides an alternative, where sample complexity is less
relevant, and agents trained in simulation can be transferred to the real world (Zhao
et al., 2020). However, this approach introduces new challenges due to the disparity
between simulation and real-world hardware. In addition to sample complexity, safety
is another critical consideration when learning for physical systems. Extending trust
regions to incorporate safety considerations, coupled with the idea of adaptive bounds,
could be beneficial. Decreasing bounds in areas where safety violations are unlikely or
impossible and increasing them in high-risk states of the system could enhance overall
safety. Notably, MP3 already offers a mechanism for safety assessment, given that the
(partial) trajectory is known before execution begins; extending this to generate only
safe trajectories is a possible future enhancement. Furthermore, trust region layers could
be directly employed in conjunction with guidance policies that encode safety, prior
knowledge, or (human) preferences to constrain the search space.
Lastly, in their current form, all the proposed methods in this work are tailored for con-
tinuous control, a highly relevant area in RL research with numerous applications in real-
world tasks, particularly in robotics. In the past, discrete action spaces were more often
seen for video games (Bellemare et al., 2013) or board games (Silver et al., 2018). How-
ever, discrete action spaces have gained increased relevance, especially with the recent
prominence of large language models and human preference alignment using RL from
human feedback (Christiano et al., 2017). While PPO is currently widely used (Achiam
et al., 2023; Touvron et al., 2023), it has several issues as highlighted earlier. Transferring
more principled approaches like TRPL or Vlearn to RL from human feedback could offer
improvements in robustness and control over the alignment process. Despite the possi-
bility of also achieving alignment through direct preference optimization (Rafailov et al.,
2023), there is currently no clear consensus on the preferred method. Consequently, there
is a clear need for more specifically tailored and principled approaches in the area of RL
from human feedback for (multimodal) large language models.
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Pahič, R., Gams, A., Ude, A., and Morimoto, J. (2018). Deep encoder-decoder networks
for mapping raw images to dynamic movement primitives. In 2018 IEEE International
Conference on Robotics and Automation.
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Appendix A

A Differentiable Trust Region
Projection Layer

A.1 Algorithm
Here we provide the algorithmic view of the proposed TRPL in Algorithm 2. The trust
region projections themselves do not require approximations, the old policy update in the
last step is the only point where we introduce an approximation. This update would nor-
mally require additional supervised regression steps that minimize the distance between
the network output and the projection. However, by leveraging the regression penalty
during policy optimization this optimization step can be omitted. Both approaches yield
a policy, which is independent of the old policy distribution, i.e. it can act without the
projection while maintaining the trust region. However, the penalty does not require ad-
ditional computation and the policy can directly generate new trajectories, equivalently
to other trust region methods, such as PPO.
The layer itself in Algorithm 3 acts as the final layer after predicting a Gaussian distri-
bution. It projects this predicted Gaussian onto the trust region in case it is violating the
specified bounds. As output, it generates a projected mean and covariance that satisfy
the respective trust region bound. The entropy control in the last step can be disabled.
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Algorithm 2
1: Initialize policy θ0,0
2: for i = 0,1, . . . ,N do ▷ epoch
3: Collect set of trajectories Di = {τk} with π(θi,0)
4: Compute advantage estimates Ât with GAE
5: for j = 0,1, . . . ,M do
6: Use π(θi, j) to predict Gaussian action distributions N (µi, j,Σi, j) for Di
7: π̃ = TRUSTREGIONLAYER(µi, j,Σi, j,µi,0,Σi,0)
8: Update policy with Adam using the following policy gradient:

θi, j+1← Adam

(︄
∇θ

[︄
Eπ(θi,0)

[︃
π̃(a|s;θ)

π(a|s;θi,0)
Ât

]︃

−αEsss∼π(θi,0) [d (π̃(·|sss;θ),π(·|sss;θ))]

]︄⃓⃓
⃓
θ=θi, j

)︄

9: Successive policy update: θi+1,0← θi,M

Algorithm 3
Initialize bounds εµ ,εΣ, temperature τ as well as target κ and initial entropyH0.

1: procedure TRUSTREGIONLAYER(µ,Σ,µold,Σold)
2: if dmean(µ,µold)> εµ then
3: Compute µ̃ with Equation (3.6)
4: else
5: µ̃ = µ

6: if dcov(Σ,Σold)> εΣ then
7: Compute Σ̃ with Equations (3.7), (3.9) and (3.11)
8: else
9: Σ̃ = Σ

10: β = κ +(H0−κ)τ
10i
N ▷ (Optional) entropy control as described in Section 3.3.2

11: ifH(Σ)< β then
12: c = exp{(β −H(Σ))/dim(a)}
13: Σ̃ = cΣ̃

14: return µ̃, Σ̃
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A.2 Derivations

A.2.1 Proof of Theorem 1

This section provides a proof for Theorem 1. We mainly used the multiplicative version
of the Brunn-Minkowski inequality

log(α|Σ1|+β |Σ2|)≥ log(|Σ1|)α log(|Σ2|)β

where Σ1,Σ2 are p.s.d, α,β are positive, and α +β = 1.

Frobenius Projection

H(π̃) = 0.5log |2πeΣ̃|

= 0.5log
⃓⃓
⃓⃓2πe

(︃
1

η +1
Σ+

η

η +1
Σold

)︃⃓⃓
⃓⃓

≥ 0.5log
⃓⃓
⃓(2πeΣ)

1
η+1 det(2πeΣold)

η

η+1

⃓⃓
⃓

=
1

η +1
0.5log |2πeΣ|+ η

η +1
0.5log |2πeΣold|

=
1

η +1
H(πθ )+

η

η +1
H(πθold)≥minimum

(︁
H(πθ ),H(πθold)

)︁

Wasserstein Projection Let k denote the dimensionality of the distributions under con-
sideration.

H(π̃) = 0.5log(2πe)k|Σ̃|

= 0.5log(2πe)k
⃓⃓
⃓⃓
(︃

1
η +1

Σ
0.5 +

η

η +1
Σ

0.5
old

)︃⃓⃓
⃓⃓
2

= 0.5log(2πe)k + log
⃓⃓
⃓⃓ 1
η +1

Σ
0.5 +

η

η +1
Σ

0.5
old

⃓⃓
⃓⃓+ log

⃓⃓
⃓⃓ 1
η +1

Σ
0.5 +

η

η +1
Σ

0.5
old

⃓⃓
⃓⃓

≥ 0.5log(2πe)k + log
⃓⃓
⃓Σ0.5

⃓⃓
⃓

1
η+1
⃓⃓
⃓Σ0.5

old

⃓⃓
⃓

η

η+1
+ log

⃓⃓
⃓Σ0.5

⃓⃓
⃓

1
η+1
⃓⃓
⃓Σ0.5

old

⃓⃓
⃓

η

η+1

= 0.5log(2πe)k + log |Σ|
1

η+1 |Σold|
η

η+1

= 0.5log
(︂
|(2πeΣ|

1
η+1 |2πeΣold|

η

η+1

)︂

=
1

η +1
0.5log |2πeΣ|+ η

η +1
0.5log |2πeΣold|

=
1

η +1
H(πθ )+

η

η +1
H(πθold)≥minimum(H(π),H(πold))
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KL Projection

H(π̃) = 0.5log |2πeΣ̃|

= 0.5log
⃓⃓
⃓⃓ 1
η +1

(2πeΣ)−1 +
η

η +1
(2πeΣold)

−1
⃓⃓
⃓⃓
−1

=−0.5log
⃓⃓
⃓⃓ 1
η +1

(2πeΣ)−1 +
η

η +1
(2πeΣold)

−1
⃓⃓
⃓⃓

≤−0.5log
(︃⃓⃓

(2πeΣ)−1⃓⃓ 1
η+1
⃓⃓
(2πeΣold)

−1⃓⃓ η

η+1

)︃

= 0.5log
(︂
|2πeΣ|

1
η+1 |2πeΣold|

η

η+1

)︂
(use the fact that: det(A−1) = 1/det(A))

=
1

η +1
0.5log |2πeΣ|+ η

η +1
0.5log |2πeΣold|

=
1

η +1
H(πθ )+

η

η +1
H(πθold)≤maximum(H(πθ ),H(πold))

A.2.2 Mean Projection

First, we consider only the mean objective

min
µ̃

(µ− µ̃)T
Σ
−1
old (µ− µ̃)

s.t. (µold− µ̃)T
Σ
−1
old (µold− µ̃)≤ εµ ,

which give us the following dual

L(µ̃,ω) = (µ− µ̃)T
Σ
−1
old (µ− µ̃)+ω

(︂
(µold− µ̃)T

Σ
−1
old (µold− µ̃)− εµ

)︂
. (A.1)

Differentiating w.r.t. µ̃ yields

∂L(µ̃,ω)

∂ µ̃
= 2Σ

−1
old (µ̃−µ)−2ωΣ

−1
old (µ̃−µold) .

Setting the derivative to 0 and solving for µ̃ gives

µ̃
∗ =

µ +ωµold

1+ω
.
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Inserting the optimal mean µ̃∗ in Equation (A.1) results in

L(ω) =

(︃
µ +ωµold

1+ω
−µ

)︃T

Σ
−1
old

(︃
µ +ωµold

1+ω
−µ

)︃
+

+ω

(︄(︃
µ +ωµold

1+ω
−µold

)︃T

Σ
−1
old

(︃
µ +ωµold

1+ω
−µold

)︃
− εµ

)︄

=
ω2 (µ−µold)

T
Σ
−1
old (µ−µold)

(1+ω)2 +
ω (µ−µold)

T
Σ
−1
old (µ−µold)

(1+ω)2 −ωεµ .

Thus, differentiating w.r.t ω yields

∂L(ω)

∂ω
=

(µ−µold)
T

Σ
−1
old (µ−µold)

(1+ω)2 − εµ .

Now solving ∂L(ω)
∂ω

!
= 0 for ω , we arrive at

ω
∗ =

√︄
(µ−µold)

T
Σ
−1
old (µ−µold)

εµ

−1.

A.2.3 Frobenius Covariance Projection

We consider the following objective for the covariance part

min
Σ̃

∥Σ̃−Σ∥2
F

s.t. ∥Σ̃−Σold∥2
F ≤ εΣ

with the corresponding Lagrangian

L(Σ̃,η) = ∥Σ̃−Σ∥2
F +η

(︁
∥Σ̃−Σold∥2

F − εΣ

)︁
. (A.2)

Differentiating w.r.t. Σ̃ yields

∂L(Σ̃,η)

∂ Σ̃
= 2

(︁(︁
Σ̃−Σ

)︁
+η (Σold−Σ)

)︁
.

We can again solve for Σ̃ by setting the derivative to 0, i.e.,

Σ̃
∗ =

Σ+ηΣold

1+η
.
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Inserting Σ̃∗ into Equation (A.2) yields the dual function

g(η) = ∥Σ+ηΣold

1+η
−Σ∥2

F +η

(︃
∥Σ+ηΣold

1+η
−Σold∥2

F − εΣ

)︃
.

Differentiating w.r.t. η results in

∂L(η)

∂η
=
∥Σ−Σold∥2

F
(1+η)2 − εΣ.

Hence, ∂L(η)
∂η

!
= 0 yields

η
∗ =
∥Σ−Σold∥F√

εΣ

−1.

A.2.4 Wasserstein Covariance Projection

As described in the main text, the Gaussian distributions to have been rescaled by Σ
−1
old

to measure the distance in the metric space that is defined by the variance of the data.
For notational simplicity, we show the derivation of the covariance projection only for
the unscaled scenario. The scaled version can be obtained by a simple redefinition of
the covariance matrices. For our covariance projection we are interested in solving the
following optimization problem

min
Σ̃

tr
(︃

Σ̃+Σ−2
(︂

Σ
1/2

Σ̃Σ
1/2
)︂1/2
)︃

s.t. tr
(︃

Σ̃+Σold−2
(︂

Σ
1/2
oldΣ̃Σ

1/2
old

)︂1/2
)︃
≤ εΣ,

which leads to the following Lagrangian function

L(Σ̃,η) = tr
(︃

Σ̃+Σ−2
(︂

Σ
1/2

Σ̃Σ
1/2
)︂1/2
)︃

+η

(︃
tr
(︃

Σ̃+Σold−2
(︂

Σ
1/2
oldΣ̃Σ

1/2
old

)︂1/2
)︃
− εΣ

)︃
. (A.3)

Assuming that Σ̃ commutes with Σ as well as Σold, Equation (A.3) simplifies to

L(Σ̃,η) = tr
(︂

Σ̃+Σ−2Σ̃
1/2

Σ
1/2
)︂
+η

(︂
tr
(︂

Σ̃+Σold−2Σ̃
1/2

Σ
1/2
old

)︂
− ε

)︂

= tr
(︂

S2 +Σ−2SΣ
1/2
)︂
+η

(︂
tr
(︂

S2 +Σold−2SΣ
1/2
old

)︂
− ε

)︂
, (A.4)
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where S is the unique positive semi-definite root of the positive semi-definite matrix Σ̃,
i.e. S = Σ̃

1/2. Instead of optimizing the objective w.r.t Σ̃, we optimize w.r.t S in order,
which greatly simplifies the calculation. That is, we solve

∂L(S,η)

∂S
= (1+η)2S−2

(︂
Σ

1/2 +ηΣ
1/2
old

)︂
!
= 0

for S, which leads us to

S∗ =
Σ

1/2 +ηΣ
1/2
old

1+η
, Σ̃∗ =

Σ+η2Σold +2ηΣ
1/2Σ

1/2
old

(1+η)2 .

Inserting this into Equation (A.4) yields the dual function

g(η) =
η

(︂
tr
(︂

Σ+Σold−2Σ
1/2Σ

1/2
old

)︂)︂

1+η
−ηεΣ

The derivative of the dual w.r.t. η is given by

∂L(η)

∂η
=

tr
(︂

Σ̃+Σold−2Σ̃
1/2Σ

1/2
old

)︂

(1+λ )2 − εΣ.

Now solving ∂L(η)
∂η

!
= 0 for η , we arrive at

η
∗ =

⌜⃓
⎷⃓ tr

(︂
Σ̃+Σold−2Σ̃

1/2Σ
1/2
old

)︂

εΣ

−1

A.2.5 KL-Divergence Projection

We derive the KL-Divergence projection in its general form, i.e., simultaneous projection
of mean and covariance under an additional entropy constraint

π̃
∗ = argmin

π̃

KL(π̃||πθ ) s.t. KL
(︁
π̃||πθold

)︁
≤ ε, H(π̃)≥ β .

Instead of working with this minimization problem, we consider the equivalent maxi-
mization problem

π̃
∗ = argmax

π̃

−KL(π̃||πθ ) s.t. KL
(︁
π̃||πθold

)︁
≤ ε, H(π̃)≥ β , (A.5)

which is similar to the one considered in Model Based Relative Entropy Stochastic Search
(MORE) (Abdolmaleki et al., 2015), with a few distinctions. To see those distinctions
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let η and ω denote the Lagrangian multipliers corresponding to the KL and entropy
constraint respectively and consider the Lagrangian corresponding to the optimization
problem in Equation (A.5)

L=−KL(π̃||πθ )+η
(︁
ε−KL(π̃||πθold)

)︁
+ω (H(π̃)−β )

= Eπ̃ [logπθ ]+η
(︁
ε−KL(π̃||πθold)

)︁
+(ω +1)H(π̃)−ωβ .

Opposed to Abdolmaleki et al. (2015) we are not working with an unknown reward but
using the log density of the target distribution π instead. Thus we do not need to fit a
surrogate and can directly read off the parameters of the squared reward. They are given
by the natural parameters of π , i.e, Λ = Σ−1 and q = Σ−1µ . Additionally, we need to
add a constant 1 to ω to account for the additional entropy term in the original objective,
similar to (Arenz et al., 2018).

Following the derivations from Abdolmaleki et al. (2015) and Arenz et al. (2018) we
can obtain a closed form solution for the natural parameters of π̃ , given the Lagrangian
multipliers η and ω

Λ̃ =
ηΛold +Λ

η +1+ω
and q̃ =

ηqold +q
η +1+ω

. (A.6)

To obtain the optimal Lagrangian multipliers we can solve the following convex dual

µ

Σ

q = Σ−1µ

Λ = Σ−1

η∗

ω∗

q̃∗ =
η∗qold +q

η∗+ω∗+1

Λ̃∗ =
η∗Λold +Λ

η∗+ω∗+1

µ̃∗ =
(︁
Λ̃∗
)︁−1 q̃∗

Σ̃∗ =
(︁
Λ̃∗
)︁−1

Numerical Optimization
Analytical Computation

Figure A.1: Compute graph of the KL projection layer. The layer first computes the
natural parameters of π from the mean and covariance. Then it numerically optimizes
the dual to obtain the optimal Lagrangian multipliers which are used to get the optimal
natural parameters. Ultimately, the optimal mean and covariance are computed from the
optimal natural parameters. We omit the dependency on constants, i.e., the bound ε and
β as well as the parameters of πold for clarity of the visualization.
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function using gradient descent

g(η ,ω) =ηε−ωβ +η

(︃
−1

2
qT

oldΛ
−1
oldqold +

1
2

logdet(Λ)− k
2

log(2π)

)︃

+(η +1+ω)

(︃
1
2

q̃T
Λ̃
−1q− 1

2
logdet

(︁
Λ̃
)︁
+

k
2

log(2π)

)︃
+ const,

∂g(η ,ω)

∂η
= ε−KL(π̃||πθold) and

∂g(η ,ω)

∂ω
= H(π̃)−β .

Given the optimal Lagrangian multipliers, η∗ and ω∗ we obtain the parameters of the
optimal distribution π̃∗ using Equation (A.6).

Forward Pass For the forward pass we compute the natural parameters of π , solve the
optimization problem and compute mean and covariance of π̃∗ from the optimal natural
parameters. The corresponding compute graph is given in Figure A.1.

Backward Pass Given the computational graph in Figure A.1 gradients can be prop-
agated back through the layer using standard back-propagation. All gradients for the
analytical computations (black arrows in Figure A.1) are straight forward and can be
found in (Petersen and Pedersen, 2012). For the gradients of the numerical optimization
of the dual (red arrows in Figure A.1) we follow Amos and Kolter (2017) and differenti-
ate the KKT conditions around the optimal Lagrangian multipliers computed during the
forward pass. The KKT Conditions of the dual are given by

∇g(η∗,ω∗)+mT
∇

(︃
−η∗

−ω∗

)︃
=

(︃
ε−KL

(︁
π̃∗||πθold

)︁
−m1

H(π̃∗)−β −m2

)︃
= 0, (Stationarity)

m1(−η
∗) = 0 and m2(−ω

∗) = 0 (Complementary Slackness)

here m= (m1,m2)
T denotes the Lagrangian multipliers for the box constraints of the dual

(η and ω need to be non-negative). Taking the differentials of those conditions yields
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the equation system
⎛
⎜⎜⎜⎜⎜⎜⎝

−∂KL
(︁
π̃∗||πθold

)︁

∂η∗
−∂KL

(︁
π̃∗||πθold

)︁

∂ω∗
−1 0

∂H(π̃∗)
∂η∗

∂H(π̃∗)
∂ω∗

0 −1

−m1 0 −η∗ 0
0 −m2 0 −ω∗

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

dη

dω

dm1
dm2

⎞
⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

∂KL
(︁
π̃∗||πθold

)︁

∂q
dq+

∂KL
(︁
π̃∗||πθold

)︁

∂Λ
dΛ

−∂H(π̃∗)
∂q

dq− ∂H(π̃∗)
∂Λ

dΛ

0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

which is (analytically) solved to obtain the desired partial derivatives

∂η

∂q
,
∂η

∂Λ
,
∂ω

∂q
, and

∂ω

∂Λ
.

Implementation We implemented the entire layer using C++, Armadillo, and OpenMP
for parallelization. The implementation stores all necessary quantities for the backward
pass, so numerical optimization is only necessary during the forward pass. Before we do
numerical optimization, we verify whether it is necessary. If the target distribution π̃ is
within the trust region, we can immediately set π̃∗ = πθ , i.e., the forward and backward
passes become the identity mapping. This check yield significant speed-ups, especially in
early iterations, if the target is still close to the old distribution. If the projection is neces-
sary we use the L-BFGS to optimize the 2D convex dual, which is still fast. For example,
for a 17-dimensional action space and a batch size of 512, such as in the Humanoid-v2
experiments, the layer takes roughly 170ms for the forward pass and 3.5ms for the back-
ward pass if the all 512 Gaussians are actually projected1. If none of the Gaussians needs
to be projected its less than 1ms for forward and backward pass.

Simplifications If only diagonal covariances are considered the implementation sim-
plifies significantly, as computationally heavy operations (matrix inversions and cholesky
decompositions) simplify to pointwise operations (divisions and square roots). If only
the covariance part of the KL is projected, we set µold = µ = µ̃∗ and dµ = 0 which is
again a simplification for both the derivations and implementation. If an entropy equal-
ity constraint, instead of an inequality constraint, it is sufficient to remove the ω > 0
constraint in the dual optimization.

1On a 8 Core Intel Core i7-9700K CPU @ 3.60GHz
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A.3 Additional Results
Figure A.2 shows the training curves for all Mujoco environments with a 95% confidence
interval. Besides the projections we also show the performance for PAPI and PPO. In
Figure A.3 the projections also leverage the Entropy control based on the results from
from Akrour et al. (2019).
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Figure A.2: Training curves for the projection layer as well as PPO and PAPI on the test
environment. We trained 40 agents with different seeds for each environment using five
evaluation episodes for every data point. The plot shows the total mean reward with 95%
confidence interval.
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Figure A.3: Training curves for the projection layer with entropy control (-E) as well as
PPO and PAPI on the test environment. We trained 40 agents with different seeds for
each environment using five evaluation episodes for every data point. The plot shows the
total mean reward with 95% confidence interval.

A.4 Hyperparameters
Tables A.1 and A.2 show the hyperparameters used for the experiments in Table 3.1.
Target entropy, temperature, and entropy equality are only required when the entropy
projection is included in the layer, otherwise those values are ignored.
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Table A.1: Hyperparameters for all three projections as well as PAPI, PPO. and PPO-M
on the Mujoco benchmarks from Table 3.1

Frobenius W2 KL PAPI PPO PPO-M

rollouts 2048
GAE λ 0.95
discount factor 0.99

εµ /ε 0.03 0.015 n.a.
εΣ 0.001 n.a.
target entropy 0 n.a.
temperature 0.5 n.a.
entropy equality False False n.a.

optimizer adam
epochs vf 10
epochs 20 10
lr 5e-5 3e-4
lr vf 4.5e-4 2.5e-4
minibatch size 32 64
trust region loss weight α 8.0 n.a.
entropy loss penalty 0

normalized observations True
normalized rewards False True False
observation clip n.a. 10 n.a.
reward clip n.a. 10 n.a.
vf clip n.a. 0.2 n.a.
importance ratio clip n.a. 0.2

contextual std False
hidden layers [64, 64]
hidden layers vf [64, 64]
hidden activation tanh
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Table A.2: Hyperparameters for all three projection as well as PAPI and PPO on the
Humanoid-v2 from Table 3.1.

Frobenius W2 KL PAPI PPO PPO-M

rollouts 16384
GAE λ 0.95
discount factor 0.99

εµ /ε 0.05 0.015 n.a.
εΣ 1e-4 0.01 1e-4 n.a.
target entropy 0 n.a.
temperature 0.2 n.a.
entropy equality True False n.a.

optimizer adam
epochs vf 10
epochs 10
lr 1e-4 1e-4
lr vf 4.5e-4 1e-4
minibatch size 256 512
entropy loss penalty 0
trust region loss weight α 8.0 n.a.

normalized observations True
normalized rewards False True False
observation clip n.a. 10 n.a.
reward clip n.a. 10 n.a.
vf clip n.a. 0.2 n.a.
importance ratio clip n.a. 0.2

contextual std False
hidden layers [64, 64]
hidden layers vf [64, 64]
hidden activation tanh
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Table A.3: Hyperparameters for all three projection as well as PAPI and PPO on our
ReacherSparse-v0 task from Figure 3.3. The second value for εΣ of the KL projection is
the bound when using a contextual covariance.

Frobenius W2 KL PAPI PPO PPO-M

rollouts 16384
GAE λ 0.95
discount factor 0.99

εµ /ε 0.03 0.03 n.a.
εΣ 5e-5 1e-3 5e-5/1e-3 n.a.
target entropy n.a. n.a.
temperature n.a. n.a.
entropy equality n.a. False n.a.

optimizer adam
epochs vf 10
epochs 20
lr 3e-4 1e-4
lr vf 4.5e-4 1e-4
minibatch size 256 512
entropy loss penalty 0
trust region penalty α 8.0 n.a.

normalized observations True
normalized rewards False True False
observation clip n.a. 10 n.a.
reward clip n.a. 10 n.a.
vf clip n.a. 0.2 n.a.
importance ratio clip n.a. 0.2

contextual std False
hidden layers [64, 64]
hidden layers vf [64, 64]
hidden activation tanh
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Appendix B

MP3: Movement Primitive-Based
(Re-)Planning Policy

B.1 Derivations of Probabilistic Dynamic Movement
Primitives

In this section, we will briefly present the main derivations of ProDMPs. We start with
the fundamental aspects of DMPs and then derive ProDMPs from the analytical solution
of the DMPs’ ODE. Finally, we present the solution to a initial value problem of the
ODE, which allows us to perform smooth replanning during trajectory execution in a
computationally efficient manner. For the sake of simplicity, we introduce the approach
by means of a 1-DoF dynamical system. For higher DoF systems, we refer to the original
paper by Li et al. (2022).

Dynamic Movement Primitives Schaal (2006); Ijspeert et al. (2013) model a single
movement execution as a trajectory λλλ = [yt ]t=0:T using a second-order linear dynamical
system with a non-linear forcing function f ,

τ
2ÿ = α(β (g− y)− τ ẏ)+ f (x), f (x) = x

∑ϕi(x)wi

∑ϕi(x)
= xϕϕϕ

⊺
x www, (B.1)

where y = y(t), ẏ = dy/dt, ÿ = d2y/dt2 represent the position, velocity, and acceleration
of the system at time step t, respectively. α and β are spring-damper constants, g is a
goal attractor, and τ is a time constant that can be used to adjust the execution speed of
the resulting trajectory. To achieve goal convergence, DMPs define the forcing function
based on an exponentially decaying phase variable x(t) = exp(−αx/τ t), where ϕi(x)
represents the (unnormalized) basis functions. The shape of the trajectory as it converges
to the goal is controlled by the weights wi ∈ www, i = 1...N. The trajectory of the motion
λλλ is obtained by integrating the system numerically from the starting time to the target
time point. However, this process is often computationally expensive.
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Solving the Dynamic Movement Primitives’ Underlying ODE. Li et al. recognize
that the governing equation of DMPs, given in Equation (B.1), has an analytical solution,
as it is a second-order linear non-homogeneous ODE with constant coefficients. To better
convey this method, the ODE and its homogeneous counterpart can be rewritten in a
standard form as:

Non-homo. ODE: ÿ+
α

τ
ẏ+

αβ

τ2 y =
f (x)
τ2 +

αβ

τ2 g≡ F(x,g), (B.2)

Homo. ODE: ÿ+
α

τ
ẏ+

αβ

τ2 y = 0. (B.3)

With appropriate configuration of the spring-damper coefficients, i.e., β = α/4 (Schaal
(2006); Ijspeert et al. (2013)), the system is critically damped and the motion generated
by the DMPs will settle to the target position smoothly and efficiently. The analytical
solution of Equation (B.2) in this case takes the form

y = c1y1 + c2y2− y1

∫︂ y2F
Y

dt + y2

∫︂ y1F
Y

dt, Y = y1ẏ2− ẏ1y2, (B.4)

y1 = y1(t) = exp
(︂
− α

2τ
t
)︂
, y2 = y2(t) = t exp

(︂
− α

2τ
t
)︂
, (B.5)

where y1 and y2 are the complementary functions of the homogeneous function in Equa-
tion (B.3) and ẏ1, ẏ2 their corresponding derivatives w.r.t. time. By utilizing the funda-
mental of calculus, which states that

∫︁
h(t)dt =

∫︁ t
0 h(t ′)dt ′+c, where c ∈R is a constant,

the two indefinite integrals in Equation (B.4) can be transformed into two definite inte-
grals. During this transformation, the learnable parameters www and g which control the
shape of the trajectory, can be extracted from the resulting definite integrals. Finally, the
trajectory position and velocity can be expressed in a compact matrix form as

y = c1y1 + c2y2 +
[︁
y2 ppp222− y1 ppp111 y2q2− y1q1

]︁[︃www
g

]︃
(B.6)

ẏ = c1ẏ1 + c2ẏ2 +
[︁
ẏ2 ppp222− ẏ1 ppp111 ẏ2q2− ẏ1q1

]︁[︃www
g

]︃
, (B.7)

where ppp1, ppp1, q1, q2 represent the elements used to formulate the definite integrals in the
matrix form, as

ppp1(t) =
1
τ2

∫︂ t

0
t ′ exp

(︂
α

2τ
t ′
)︂

x(t ′)ϕϕϕ⊺
x dt ′, ppp2(t) =

1
τ2

∫︂ t

0
exp
(︂

α

2τ
t ′
)︂

x(t ′)ϕϕϕ⊺
x dt ′, (B.8)

q1(t) =
(︂

α

2τ
t−1

)︂
exp
(︂

α

2τ
t
)︂
+1, q2(t) =

α

2τ

[︃
exp
(︂

α

2τ
t
)︂
−1
]︃
. (B.9)

It is worth noting that, despite the closed form solution for q1 and q2, ppp1 and ppp2 can-
not be obtained analytically because of the complex nature of the ϕϕϕx. As a result, they
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must be computed numerically. However, the extraction of the learnable parameters www
and g from the integrals in Equations (B.6) and (B.7)) enables the sharing of the remain-
ing integrals among all trajectories to be generated. In other words, these integrals can
be pre-computed offline and used as constant functions during online trajectory com-
putation, which significantly simplifies the trajectory generation procedure and speeds
it up. These remaining integrals are referred to as the position basis ΦΦΦ(t) and velocity
basis Φ̇ΦΦ(t), and the ProDMPs represent the position and velocity in a similar manner of
ProMPs as:

y(t) = c1y1(t)+ c2y2(t)+ΦΦΦ(t)⊺wwwg, ẏ(t) = c1ẏ1(t)+ c2ẏ2(t)+ Φ̇ΦΦ(t)⊺wwwg, (B.10)

where wwwg is a concatenation vector containing www and g.

Solve the initial value problem. To compute the coefficients c1 and c2, a solution
to the initial value problem represented by Equation (B.10) must be found. Li et al.
suggest using the current robot state, which consists of the robot’s position and velocity
(yb, ẏb) at the replanning time step tb, as the natural condition for ensuring a smooth
transition between the previous and newly generated trajectory. We denote the values
of the complementary functions and their derivatives at time tb as y1b,y2b, ẏ1b ẏ2b , and
the values of the position and velocity basis functions as ΦΦΦb,Φ̇ΦΦb. By substituting these
values into Equation (B.10), c1 and c2 can be calculated as:

[︃
c1
c2

]︃
=

⎡
⎢⎣

ẏ2byb−y2b ẏb
y1b ẏ2b−y2b ẏ1b

+
y2bΦ̇ΦΦ

⊺
b−ẏ2bΦΦΦ

⊺
b

y1b ẏ2b−y2b ẏ1b
wwwg

y1b ẏb−ẏ1byb
y1b ẏ2b−y2b ẏ1b

+
ẏ1bΦΦΦ

⊺
b−y1bΦ̇ΦΦ

⊺
b

y1b ẏ2b−y2b ẏ1b
wwwg

⎤
⎥⎦ . (B.11)
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Figure B.1: Visualization of the four control tasks box pushing, hopper jumping, beer
pong, and table tennis.

B.2 Environment Details

B.2.1 Reacher5d
For the Reacher task we modify the original OpenAI gym Reacher-v2 by adding three
additional joints, resulting in a total of five joints. The task goal is still to minimize
the distance between the goal point pgoal and the end-effector p. We, however, only
sample the goal point for y ≥ 0, i.e. in the first two quadrants, to slightly reduce task
complexity while maintaining the increased control complexity. The observation space
remains unchanged, unless for the sparse reward where we additionally add the current
step value to make learning possible for step-based methods. The context space only
contains the coordinates of the goal position. The action space is the 5d equivalent to the
original version.
For the reward the original setting leverages the goal distance

Rgoal = ∥p−pgoal∥2

and the action cost

τt =
K

∑
i
(ai

t)
2,

Dense Reward. The dense reward in the 5d setting, hence, stays the same and the agent
receives in each time step t

Rtot =−τt−Rgoal

Sparse Reward. The sparse reward only returns the task reward in the last time step T
and additionally adds a velocity penalty Rvel = ∑

K
i (q̇

i
T )

2, where q̇ are the joint velocities,
to avoid overshooting

Rtot =

{︄
−τt t < T,
−τt−200Rgoal−10Rvel t = T.
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B.2.2 Box Pushing

The goal of the box-pushing task is to move a box to a specified goal location and orien-
tation using the seven DoF Franka Emika Panda. Hence, the context space for this task
is the goal position x ∈ [0.3,0.6], y ∈ [−0.45,0.45] and the goal orientation θ ∈ [0,2π].
In addition to the contexts, the observation space for the step-based algorithms contains
the positions and velocities of the joint angles, as well as position and orientation quater-
nions for the actual box and the target. For the action space we use the torques per joint
and additionally add gravity compensation in each time step, that does not have to be
learned. The task is considered successfully solved if the position distance ≤ 0.05m and
the orientation error ≤ 0.5rad. For the total reward we consider different sub-rewards.
First, the distance to the goal

Rgoal = ∥p−pgoal∥,
where p is the box position and pgoal the goal position itself. Second, the rotation distance

Rrotation =
1
π

arccos |r · rgoal|,

where r and rgoal are the box orientation and goal orientation in quaternion, respectively.
Third, an incentive to keep the rod within the box

Rrod = clip(||p−hpos||,0.05,10)

where hpos is the position of the rod tip. Fourth, a similar incentive that encourages to
maintain the rod in a desired rotation

Rrod rotation = clip(
2
π

arccos |hrot ·h0|,0.25,2),

where hrot and h0 = (0.0,1.0,0.0,0.0) are the current and desired rod orientation in
quaternion, respectively. And lastly, we utilize the following error

err(q, q̇) = ∑
i∈{i||qi|>|qb

i |}
(|qi|− |qb

i |)+ ∑
j∈{ j||q̇ j|>|q̇b

j |}
(|q̇ j|− |q̇b

j |).

Here, q, q̇, qb, and q̇b are the robot joint’s position and velocity as well as their respective
bounds. Additionally, we consider an action cost in each time step t

τt =
K

∑
i
(ai

t)
2,

where K = 7 is the number of DoF. Similar to the aforementioned reacher task, we
consider both dense and sparse reward setups.
Dense Reward. The dense reward provides information about the goal and rotation
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distance in each time step t on top of the utility rewards

Rtot =−Rrod−Rrod rotation−5e−4
τt− err(qqq, q̇qq)−3.5Rgoal−2Rrotation.

Temporal Sparse Reward. The time-dependent sparse reward is similar to the dense
reward, but only returns the goal and rotation distance in the last time step T

Rtot =

{︄
−Rrod−Rrod rotation−0.02τt− err(q, q̇), t < T,
−Rrod−Rrod rotation−0.02τt− err(q, q̇)−350Rgoal−200Rrotation, t = T.

Goal Switching. To demonstrate the ability of our algorithm to handle the changing goal.
We randomly switch to a new target at 20% of the max episode length. To ensure that
the new target is solvable within the given episode length, we sample its position near to
the old target position. The new target position, denoted as [xnew,ynew], is computed as
follows:

[xnew,ynew] = [xold,yold]+ [∆x,∆y],

where ∆x,∆y are randomly sampled within the range [−0.25,0.2]. Additionally, the new
target orientation is determined by uniformly sampling a value from the range of [0,2π].

B.2.3 Hopper Jump

In the Hopper jump task the agent has to learn to jump as high as possible and land
on a certain goal position at the same time. We consider five basis functions per joint
resulting in an 15 dimensional weight space. The context is four-dimensional consisting
of the initial joint angles θ ∈ [−0.5,0], γ ∈ [−0.2,0], φ ∈ [0,0.785] and the goal landing
position x∈ [0.3,1.35]. The full observation space extends the original observation space
from the OpenAI gym Hopper by adding the x-value of the goal position and the x-y-z
difference between the goal point and the reference point at the Hopper’s foot. The action
space is the same as for the original Hopper task. We consider a non-Markovian reward
function for the episode-based algorithms and a step-based reward for PPO, which we
have extensively designed to obtain the highest possible jump.

Non-Markovian Reward. In each time-step t we provide an action cost

τt = 10−3
K

∑
i
(ai

t)
2,

where K = 3 is the number of DoF. In the last time-step T of the episode we provide a
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reward which contains information about the whole episode as

Rheight = 10hmax,

Rgdist = ||p f oot,T − pgoal||2,
Rcdist = ||p f oot,contact− pgoal||2,

Rhealthy =

{︃
2 if zT ∈ [0.5,∞]and θ ,γ,φ ∈ [−∞,∞]
0 else ,

where hmax is the maximum jump height in z-direction of the center of mass reached
during the whole episode, p f oot,t is the x-y-z position of the foot’s heel at time step t,
p f oot,contact is the foot’s heel position when having a contact with the ground after the first
jump, pgoal is the goal landing position of the heel. Rhealthy is a slightly modified reward
of the healthy reward defined in the original hopper task. The hopper is considered
as ’healthy’ if the z position of the center of mass is within the range [0.5m,∞]. This
encourages the hopper to stand at the end of the episode. Note that all states need to be
within the range [−100,100] for Rhealthy. Since this is defined in the hopper task from
OpenAI already, we haven’t mentioned it here. The total reward at the end of an episode
is given as

Rtot =−
T

∑
t=0

τt +Rheight +Rgdist +Rcdist +Rhealthy.

Step-Based Reward. We consider a step-based alternative reward such that PPO is
also able to learn a meaningful behavior on this task. We have tuned the reward such
that we can obtain the best performance. The observation space is the same as in the
original hopper task from OpenAI extended with the goal landing position and the current
distance of the foot’s heel and the goal landing postion. We again consider the action cost
in each time-step t

τt = 10−3
K

∑
i
(ai

t)
2,

and additionally consider the rewards

Rheight,t = 3ht

Rgdist,t = 3||p f oot,t− pgoal||2

Rhealthy,t =

{︃
1 if zt ∈ [0.5,∞]and θ ,γ,φ ∈ [−∞,∞]
0 else ,

where these rewards are now returned to the agent in each time-step t, resulting in the
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reward per time-step

rt(st ,at) =−τt +Rheight,t +Rgdist,t +Rhealthy,t .

B.2.4 Beer Pong

In the Beer Pong task the K = 7 DoF robot has to throw a ball into a cup on a big table.
The context is defined by the cup’s two dimensional position on the table which lies in the
range x ∈ [−1.42,1.42], y ∈ [−4.05,−1.25]. For the step-based algorithms we consider
cosine and sine of the robot’s joint angles, the angle velocities, the ball’s distance to
the bottom of the cup, the ball’s distance to the top of the cup, the cup position and the
current time step. The action space for the step-based algorithms is defined as the torques
for each joint, the parameter space for the episode-based methods is 15 dimensional
which consists of the two weights for the basis functions per joint and the duration of the
throwing trajectory, i.e. the ball release time.
We generally consider action penalties

τt =
1
K

K

∑
i
(ai

t)
2,

consisting of the sum of squared torques per joint. For t < T we consider the reward

rt(st ,at) =−αtτt ,

with αt = 10−2. For t = T we consider the non-Markovian reward

Rtask =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−4−min(||pc,top− pb,1:T ||22)−0.5||pc,bottom− pb,T ||22 · · ·
· · ·−2||pc,bottom− pb,k||22−αT τ, if cond. 1
−4−min(||pc,top− pb,1:T ||22)−0.5||pc,bottom− pb,T ||22−αT τ, if cond. 2
−2−min(||pc,top− pb,1:T ||22)−0.5||pc,bottom− pb,T ||22−αT τ, if cond. 3
−||pc,bottom− pb,T ||22−αT τ, if cond. 4

Rtask =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−4−min(||pc,top− pb,1:T ||22)−0.5||pc,bottom− pb,T ||22 · · ·
· · ·−2||pc,bottom− pb,k||22−αT τ, if cond. 1
−4−min(||pc,top− pb,1:T ||22)−0.5||pc,bottom− pb,T ||22−αT τ, if cond. 2
−2−min(||pc,top− pb,1:T ||22)−0.5||pc,bottom− pb,T ||22−αT τ, if cond. 3
−||pc,bottom− pb,T ||22−αT τ, if cond. 4

,

where pc,top is the position of the top edge of the cup, pc,bottom is the ground position of
the cup, pb,t is the position of the ball at time point t, and τ is the squared mean torque
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over all joints during one rollout and αT = 10−4. The different conditions are:

• cond. 1: The ball had a contact with the ground before having a contact with the
table.

• cond. 2: The ball is not in the cup and had no table contact

• cond. 3: The ball is not in the cup and had table contact

• cond. 4: The ball is in the cup.

Note that pb,k is the ball’s and the ground’s contact position and is only given, if the ball
had a contact with the ground first.
At time step t = T we also give information whether the agent’s chosen ball release time
B was reasonable

Rrelease =

{︃
−30−10(B−Bmin)

2, if B < Bmin
−30−10(B−Bmax)

2, if B < Bmax
,

where we define Bmin = 0.1s and Bmax = 1s, such that the agent is encouraged to throw
the ball within the time range [Bmin,Bmax].
The total return over the whole episode is therefore given as

Rtot =
T−1

∑
t=1

rt(st ,at)+Rtask +Rrelease

A throw is considered as successful if the ball is in the cup at the end of an episode.

B.2.5 Table Tennis
We consider table tennis for the entire table, i.e. incoming balls are anywhere on the side
of the robot and goal locations anywhere on the opponents side. The goal is to use the 7
DoFs robotic arm to hit the incoming ball based on its landing position and return it as
close as possible to the specified goal location. As context space we consider the initial
ball position x ∈ [−1,−0.2], y ∈ [−0.65,0.65] and the goal position x ∈ [−1.2,−0.2],
y ∈ [−0.6,0.6]. The full observation space again contains the positions and velocities
of the joints on top of the above context information. The torques of the joints make
up the action space. For this experiment, we do not use any gravity compensation and
allow in the episode-based setting to learn the start time t0 and the trajectory duration T .
The task is considered successful if the returned ball lands on the opponent’s side of the
table and within ≤ 0.2m to the goal location. The max episode length of the table tennis
environment is 350 steps. However, to accelerate the simulation, the episode will end
immediately if any of the following terminated conditions are met:

• terminated cond. 1: A contact between the ball and the floor is detected,
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• terminated cond. 2: The agent has hit the ball and then a contact between the ball
and the table is detected.

The reward signal in the table tennis environment is defined as

rtask =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, if cond. 1
0.2−0.2tanh(min ||pr−pb||2), if cond. 2
3−2tanh(min ||pr−pb||2)− tanh(||pl−pgoal||2), if cond. 3
6−2tanh(min ||pr−pb||2)−4tanh(||pl−pgoal||2), if cond. 4
7−2tanh(min ||pr−pb||2)−4tanh(||pl−pgoal||2), if cond. 5

where pr is the position of racket center, pb is the position of the ball, pl is the ball
landing position, pgoal is the target position. The different conditions are

• cond. 1: the end of episode is not reached,

• cond. 2: the end of episode is reached,

• cond. 3: cond.2 is satisfied and robot did hit the ball,

• cond. 4: cond.3 is satisfied and the returned ball landed on the table,

• cond. 5: cond.4 is satisfied and the landing position is at the opponent’s side.

The episode ends when any of the following conditions are met

• the maximum horizon length is reached

• ball did land on the floor without hitting

• ball did land on the floor or table after hitting

For MP3-BB-PPO and MP3-BB, the whole desired trajectory is obtained ahead of envi-
ronment interaction, making use of this property we can collect some samples without
physical simulation. The reward function based on this desired trajectory is defined as

rtra j =−∑
(i, j)
|τd

i j|− |qb
j |, (i, j) ∈ {(i, j) | |τd

i j|> |qb
j |}

where τd is the desired trajectory, i is the time index, j is the joint index, qb is the
joint position upperbound. The desired trajectory is considered as invalid if rtra j < 0, an
invalid trajectory will not be executed by robot. The overall reward for the black box
approaches is defined as

r =

{︄
rtra j, rtra j < 0
rtask, otherwise
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(a) Hopper Jump - Height Trajectory
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Figure B.2: a The improved performance on the Hopper Jump task is also demonstrated
on the jumping profile for a fixed context. While MP3-BB jumps once as high as possi-
ble, PPO constantly tries to maximize the height at each time step which leads to several
jumps throughout the episode and consequently to a lower maximum height. b Learning
curve of SAC for the sparse reward of the 5D Reacher task.

Goal Switching. To evaluate the capability of our approach in handling goal changes in
the presence of non-Markovian reward, we designed a goal-switching task based on the
table tennis environment. Given that the episode lengths are not fixed in this environment,
we fixed the target changing time at the 99-th step after the episode begins. To simplify
the task and make it easier to visualize, we restricted the range of the randomly sampled
initial target to the left half of the table, specifically y∈ [−0.65,0],x ∈ [−1.2,0.2]. At the
99-th step, there is 50% of chance that the goal is switched to another random position
from the right side of the table, namely y ∈ [0,0.65],x ∈ [−1.2,0.2].
Wind as External Perturbation. To further investigate the performance of our approach
in handling environmental perturbations, we introduced artificial wind to the environ-
ment. At the beginning of each episode, we randomly sample a value f ∈ [−0.1,0.1]
to represent the constant wind force. This force was then applied as an external force
to the ball at each simulation step. It’s important to note that, in this specific task, we
also augmented the observation space of the agent to include the velocity of the ball. By
incorporating this information, the agent was able to infer the underlying ”wind speed”
and adjust its behavior accordingly. Since this information is not directly observable at
the beginning of the episode, episode-based policies, struggled to solve the task.

B.3 Additional Evaluations
We provide some additional results for the height trajectory and the performance of the
sparse 5D Reacher in Figure B.2.
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B.4 Hyperparameters
For all methods, where applicable, we optimized the learning rate, sample size, batch
size, number of layers, and the number of epochs. For all MP based methods, we addi-
tionally optimized the number of basis functions. Moreover, we found that NDP requires
tuning of the scale of the predicted DMP weights, which was hard-coded to 100 in the
original code base. However, this value only worked for the Meta-World tasks, but not
for the other tasks, hence we adjusted it to allow for a fair comparison. The population
size of ES is always half the number of samples because two function evaluations are
used per parameter vector.
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Table B.1: Hyperparameters for the 5D Reacher experiments.

PPO NDP TRPL SAC CMORE ES MP3-BB-PPO MP3-BB

number samples 16000 16000 16000 1000 120 200 64 64
GAE λ 0.95 0.95 0.95 0.95 n.a. n.a. n.a. n.a.
discount factor 0.99 0.99 0.99 0.99 n.a. n.a. n.a. n.a.

εµ /ε n.a. n.a. 0.005 n.a. 0.1 n.a. n.a. 0.05
εΣ n.a. n.a. 0.0005 n.a. n.a. n.a. n.a. 0.0005

optimizer adam adam adam adam n.a. adam adam adam
epochs 10 10 20 1000 n.a. n.a. 100 100
learning rate 3e-4 3e-4 5e-5 3e-4 n.a. 1e-2 3e-4 3e-4
use critic True True True True False False False False
epochs critic 10 10 10 1000 n.a. n.a. n.a. n.a.
learning rate critic (and alpha) 3e-4 3e-4 3e-4 3e-4 n.a. n.a. n.a. n.a.
number minibatches 32 32 64 n.a. n.a. n.a. 1 1
batch size n.a. n.a. n.a. 256 n.a. n.a. n.a. n.a.
buffer size n.a. n.a. n.a. 1e6 n.a. n.a. n.a. n.a.
learning starts 0 0 0 10000 0 0 0 0
polyak weight n.a. n.a. n.a. 5e-3 n.a. n.a. n.a. n.a.
trust region loss weight n.a. n.a. 10 n.a. n.a. n.a. n.a. 10

normalized observations True True True False False False False False
normalized rewards True True False False False False False False
observation clip 10.0 10.0 n.a. n.a. n.a. n.a. n.a. n.a.
reward clip 10.0 10.0 n.a. n.a. n.a. n.a. n.a. n.a.
critic clip 0.2 0.2 n.a. n.a. n.a. n.a. 0.2 n.a.
importance ratio clip 0.2 0.2 n.a. n.a. n.a. n.a. 0.2 n.a.

hidden layers [32, 32] [32, 32] [32, 32] [128,128] n.a. [32, 32] [32, 32] [32, 32]
hidden layers critic [32, 32] [32, 32] [32, 32] [128,128] n.a. n.a. n.a. n.a.
hidden activation tanh tanh tanh relu n.a. tanh tanh tanh
initial std 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

number basis functions n.a. 5 n.a. n.a. 5 n.a. 5 5
number zero basis n.a. n.a. n.a. n.a. 1 n.a. 1 1
weight scale n.a. 20 n.a. n.a. n.a. n.a. n.a. n.a.
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Table B.2: Hyperparameters for the box pushing experiments.

PPO NDP TRPL SAC ES MP3 MP3-BB-PPO MP3-BB

number samples 16000 16000 16000 1000 250 160 160 40
GAE λ 0.95 0.95 0.95 0.95 n.a. n.a. n.a. n.a.
discount factor 1.0 0.99 1.0 0.99 n.a. 1.0 n.a. n.a.

εµ n.a. n.a. 0.005 n.a. n.a. 0.05 n.a. 0.05
εΣ n.a. n.a. 0.00005 n.a. n.a. 0.0005 n.a. 0.0005

optimizer adam adam adam adam adam adam adam adam
epochs 10 10 20 1000 n.a. 20 100 20
learning rate 1e-4 1e-4 5e-5 1e-4 1e-2 3e-4 1e-4 3e-4
use critic True True True True False True True True
epochs critic 10 10 10 1000 n.a. 10 100 10
learning rate critic (and alpha) 1e-4 1e-4 2e-4 1e-4 n.a. 3e-4 1e-4 3e-4
number minibatches 40 32 40 n.a. n.a. 1 1 1
batch size n.a. n.a. n.a. 256 n.a. n.a. n.a. n.a.
buffer size n.a. n.a. n.a. 1e6 n.a. n.a. n.a. n.a.
learning starts 0 0 0 10000 0 0 0 0
polyak weight n.a. n.a. n.a. 5e-3 n.a. n.a. n.a. n.a.
trust region loss weight n.a. n.a. 10 n.a. n.a. 10 n.a. 10

normalized observations True True True False False False False False
normalized rewards True True False False False False False False
observation clip 10.0 10.0 n.a. n.a. n.a. n.a. n.a. n.a.
reward clip 10.0 10.0 n.a. n.a. n.a. n.a. n.a. n.a.
critic clip 0.2 0.2 n.a. n.a. n.a. n.a. 0.2 n.a.
importance ratio clip 0.2 0.2 n.a. n.a. n.a. n.a. 0.2 n.a.

hidden layers [256, 256] [256, 256] [256, 256] [256, 256] [256, 256] [128, 128] [128, 128] [128, 128]
hidden layers critic [256, 256] [256, 256] [256, 256] [256, 256] n.a. [32, 32] [32, 32] [32, 32]
hidden activation tanh tanh tanh relu tanh relu tanh relu
initial std 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

MP type n.a. DMP n.a. n.a. n.a. ProDMP ProMP ProMP
number basis functions n.a. 5 n.a. n.a. n.a. 4 5 5
number zero basis n.a. n.a. n.a. n.a. n.a. 0 1 1
k n.a. 5 n.a. n.a. n.a. 25 100 100
weight scale n.a. 10 n.a. n.a. n.a. n.a. n.a. n.a.
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Table B.3: Hyperparameters for the Meta-World experiments.

PPO NDP TRPL SAC ES MP3 MP3-BB-PPO MP3-BB

number samples 16000 16000 16000 1000 200 64 16 16
GAE λ 0.95 0.95 0.95 0.95 n.a. 1 n.a. n.a.
discount factor 0.99 0.99 0.99 0.99 n.a. 1 n.a. n.a.

εµ n.a. n.a. 0.005 n.a. n.a. 0.075 n.a. 0.005
εΣ n.a. n.a. 0.0005 n.a. n.a. 0.0005 n.a. 0.0005

optimizer adam adam adam adam adam adam adam adam
epochs 10 10 20 1000 n.a. 10 100 100
learning rate 3e-4 3e-4 5e-5 3e-4 1e-2 5e-5 3e-4 3e-4
use critic True True True True False True False False
epochs critic 10 10 10 1000 n.a. 10 n.a. n.a.
learning rate critic (and alpha) 3e-4 3e-4 3e-4 3e-4 n.a. 3e-4 n.a. n.a.
number minibatches 32 32 64 n.a. n.a. 32 1 1
batch size n.a. n.a. n.a. 256 n.a. n.a. n.a. n.a.
buffer size n.a. n.a. n.a. 1e6 n.a. n.a. n.a. n.a.
learning starts 0 0 0 10000 0 0 0 0
polyak weight n.a. n.a. n.a. 5e-3 n.a. n.a. n.a. n.a.
trust region loss weight n.a. n.a. 10 n.a. n.a. 10 n.a. 10

normalized observations True True True False False True False False
normalized rewards True True False False False False False False
observation clip 10.0 10.0 n.a. n.a. n.a. n.a. n.a. n.a.
reward clip 10.0 10.0 n.a. n.a. n.a. n.a. n.a. n.a.
critic clip 0.2 0.2 n.a. n.a. n.a. n.a. 0.2 n.a.
importance ratio clip 0.2 0.2 n.a. n.a. n.a. n.a. 0.2 n.a.

hidden layers [128, 128] [128, 128] [128, 128] [256, 256] [128, 128] [256, 256] [32, 32] [32, 32]
hidden layers critic [128, 128] [128, 128] [128, 128] [256, 256] n.a. [256, 256] n.a. n.a.
hidden activation tanh tanh tanh relu tanh tanh tanh relu
initial std 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

MP type n.a. DMP n.a. n.a. n.a. ProDMP ProMP ProMP
number basis functions n.a. 5 n.a. n.a. n.a. 3 5 5
number zero basis n.a. n.a. n.a. n.a. n.a. n.a. 1 1
k n.a. n.a. n.a. n.a. n.a. 100 n.a. n.a.
weight scale n.a. 100 n.a. n.a. n.a. 10 10 10
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Table B.4: Hyperparameters for the Hopper Jump experiments.

PPO TRPL SAC CMORE ES MP3-BB-PPO MP3-BB

number samples 16384 16384 1000 60 200 64 64
GAE λ 0.95 0.95 0.95 n.a. n.a. n.a. n.a.
discount factor 0.99 0.99 0.99 n.a. n.a. n.a. n.a.

εµ /ε n.a. 0.005 n.a. 0.1 n.a. n.a. 0.005
εΣ n.a. 0.00005 n.a. n.a. n.a. n.a. 0.0005

optimizer adam adam adam n.a. adam adam adam
epochs 10 20 1000 n.a. n.a. 100 100
learning rate 3e-4 5e-5 1e-4 n.a. 0.01 1e-4 5e-5
use critic True True True False False False False
epochs critic 10 10 1000 n.a. n.a. n.a. n.a.
learning rate critic (and alpha) 3e-4 3e-4 1e-4 n.a. n.a. n.a. n.a.
number minibatches 32 64 n.a. n.a. n.a. 1 1
batch size n.a. n.a. 256 n.a. n.a. n.a. n.a.
buffer size n.a. n.a. 1e6 n.a. n.a. n.a. n.a.
learning starts 0 0 10000 0 0 0 0
polyak weight n.a. n.a. 5e-3 n.a. n.a. n.a. n.a.
trust region loss weight n.a. 10 n.a. n.a. n.a. n.a. 25

normalized observations True True False False False False False
normalized rewards True False False False False False False
observation clip 10.0 n.a. n.a. n.a. n.a. n.a. n.a.
reward clip 10.0 n.a. n.a. n.a. n.a. n.a. n.a.
critic clip 0.2 n.a. n.a. n.a. n.a. 0.2 n.a.
importance ratio clip 0.2 n.a. n.a. n.a. n.a. 0.2 n.a.

hidden layers [128, 128] [128, 128] [128, 128] n.a [128, 128] [32, 32] [32, 32]
hidden layers critic [128, 128] [128, 128] [128, 128] n.a n.a n.a n.a
hidden activation tanh tanh relu n.a. tanh tanh tanh
initial std 1.0 1.0 1.0 1.0 1.0 1.0 1.0

number basis functions n.a. n.a. n.a. 5 n.a. 5 5
number zero basis n.a. n.a. n.a. 1 n.a. 1 1
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Table B.5: Hyperparameters for the Beer Pong experiments.

PPO CMORE MP3-BB-PPO MP3-BB

number samples 16384 60 160 160
GAE λ 0.95 n.a. n.a. n.a.
discount factor 0.99 n.a. n.a. n.a.

εµ /ε n.a. 0.1 n.a. 0.005
εΣ n.a. n.a. n.a. 0.0005

optimizer adam n.a. adam adam
epochs 10 n.a. 100 100
learning rate 3e-4 n.a. 1e-4 5e-5
use critic True False False False
epochs critic 10 n.a. n.a. n.a.
learning rate critic (and alpha) 3e-4 n.a. n.a. n.a.
number minibatches 32 n.a. 1 1
trust region loss weight n.a. n.a. n.a. 25

normalized observations True False False False
normalized rewards True False False False
observation clip 10.0 n.a. n.a. n.a.
reward clip 10.0 n.a. n.a. n.a.
critic clip 0.2 n.a. 0.2 n.a.
importance ratio clip 0.2 n.a. 0.2 n.a.

hidden layers [128, 128] n.a. [32, 32] [32, 32]
hidden layers critic [128, 128] n.a. n.a. n.a.
hidden activation tanh n.a. tanh tanh
initial std 1.0 1.0 1.0 1.0

number basis functions n.a. 2 2 2
number zero basis n.a. 2 2 2
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Table B.6: Hyperparameters for the Table Tennis experiments.

PPO TRPL MP3 MP3-BB-PPO MP3-BB

number samples 16000 16000 360 200 200
GAE λ 0.95 0.95 n.a. n.a. n.a.
discount factor 0.99 0.99 1.0 n.a. n.a.

εµ n.a. 0.0005 0.005 n.a. 0.0005
εΣ n.a. 0.00005 0.0005 n.a. 0.00005

optimizer adam adam adam adam adam
epochs 10 20 20 100 100
learning rate 1e-4 5e-5 2e-4 1e-4 3e-4
use critic True True True True True
epochs critic 10 10 10 100 100
learning rate critic (and alpha) 1e-4 1e-4 2e-4 1e-4 3e-4
number minibatches 40 40 1 1 1
trust region loss weight n.a. 10.0 10 n.a. 25

normalized observations True True False False False
normalized rewards True False False False False
observation clip 10.0 n.a. n.a. n.a. n.a.
reward clip 10.0 n.a. n.a. n.a. n.a.
critic clip 0.2 n.a. n.a. 0.2 n.a.
importance ratio clip 0.2 n.a. n.a. 0.2 n.a.

hidden layers [256, 256] [256, 256] [256] [256] [256]
hidden layers critic [256, 256] [256, 256] [256] [256] [256]
hidden activation tanh tanh relu tanh relu
initial std 1.0 1.0 1.0 1.0 1.0

MP type n.a. n.a. ProDMP ProMP ProMP
number basis functions n.a. n.a. 3 3 3
number zero basis n.a. n.a. 0 1 1
k n.a. n.a. 50 n.a. n.a.
weight scale n.a. n.a. n.a. n.a. n.a.
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C.1 Derivations

We now show the proof of our new objective function. We start with a standard loss
function for learning a V-value function for policy π as defined in Equation (5.2). Then
we derive its upper bound shown in Equation (5.4).

C.1.1 Upper Bound Objective

L∗(θ) = Es∼dπ (s)

[︄
(︁
V π

θ (s)−Ea∼π(·|s)
(︁
r(s,a)+ γV

θ̄
(s′)
)︁)︁2

]︄

= Es∼dπ (s)

[︄(︃
V π

θ (s)−Ea∼πb(·|s)

[︃
π(a|s)
πb(a|s)

(︁
r(s,a)+ γV

θ̄
(s′)
)︁]︃)︃2

]︄

= Es∼dπ (s)

[︄(︃
Ea∼πb(·|s)

[︃
π(a|s)
πb(a|s)

V π
θ (s)

]︃

−Ea∼πb(·|s)

[︃
π(a|s)
πb(a|s)

(︁
r(s,a)+ γV

θ̄
(s′)
)︁]︃)︃2

]︄

(V π
θ does not depend on a)

= Es∼dπ (s)

[︄(︃
Ea∼πb(·|s)

[︃
π(a|s)
πb(a|s)

(︁
V π

θ (s)−
(︁
r(s,a)+ γV

θ̄
(s′)
)︁)︁]︃)︃2

]︄

= Es∼dπ (s)

⎡
⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎝

∫︂
πb(a|s)

π(a|s)
πb(a|s)⏞ ⏟⏟ ⏞

weight terms t

(︁
V π

θ (s)−
(︁
r(s,a)+ γV

θ̄
(s′)
)︁)︁

⏞ ⏟⏟ ⏞
x

da

⎞
⎟⎟⎟⎠

2
⎤
⎥⎥⎥⎥⎦

= Es∼dπ (s)

[︄
f
(︃∫︂

txda
)︃]︄

,

where we denote the convex function f (x) = x2. While the weight terms are in [0,1]
and normalized,

∫︁
tda =

∫︁
πb(a|s) π(a|s)

πb(a|s)da =
∫︁

π(a|s)da = 1, the Jensen’s inequality is
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applied as

Es∼dπ (s)

[︄
f
(︃∫︂

txda
)︃]︄
≤ Es∼dπ (s)

[︄∫︂
t f (x)da

]︄

= Es∼dπ (s)

[︄
Ea∼πb(·|s)

[︃
π(a|s)
πb(a|s)

(︁
V π

θ (s)−
(︁
r(s,a)+ γV

θ̄
(s′)
)︁)︁2
]︃]︄

(Jensen’s inequality)

= Es∼dπ (s),a∼πb(·|s)

[︄
π(a|s)
πb(a|s)

(︁
V π

θ (s)−
(︁
r(s,a)+ γV

θ̄
(s′)
)︁)︁2

]︄

= L(θ),

where dπ(s) is the stationary distribution induced by policy π . Therefore, one can esti-
mate L(θ) using Monte Carlo samples from the joint state-action distribution

L(θ) = ∑
t

∑
j

π(at, j|st)

πb(at, j|st)

(︂
V π

θ (st)−
(︁
rt, j + γV

θ̄
(st+1, j)

)︁)︂2
.

C.1.2 Consistency of Upper Bound Objective

We follow a similar derivation as in Neumann and Peters (2008) (for the case of state-
action value function Q(s,a)) to prove the consistency between L∗(θ) and L(θ), i.e. the
solution for minimizing L(θ) is the same for the original objective L∗(θ). For simplicity,
we denote V̄ = r(s,a)+ γV

θ̄
(s′).

L∗(θ) = Es∼dπ (s)

[︂(︁
V π

θ (s)−Ea∼π(·|s)[V̄ ]
)︁2
]︂

= Es∼dπ (s)
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V π

θ (s)2−2V π
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]︁
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(V π
θ (s)−V̄ )

2
]︃]︃
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π(a|s)
πb(a|s)

(︁
V π

θ (s)2−2V π
θ (s)V̄ +V̄ 2)︁

]︃]︃

= Es∼dπ (s)

[︃
V π

θ (s)2−2V π
θ (s)Ea∼πb(·|s)
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π(a|s)
πb(a|s)

V̄
]︃
+Ea∼πb(·|s)

[︃
π(a|s)
πb(a|s)

V̄ 2
]︃]︃

(V π
θ does not depend on a)

= Es∼dπ (s)
[︁
V π

θ (s)2−2V π
θ (s)Ea∼π(·|s) [V̄ ]+Ea∼π(·|s)

[︁
V̄ 2]︁]︁
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The above results show that L∗(θ) and L(θ) are identical except for a constant term
added, which remains independent of V π

θ
.

C.2 Hyperparameters
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Table C.1: Hyperparameters for the Gymnasium (Towers et al., 2023) experiments in Fig-
ure 5.2. The larger sample size for the the two on-policy methods is for the Humanoid-v4
experiments.

PPO TRPL Vlearn/V-trace SAC MPO

number samples 2048/16384 2048/16384 1 1 1
GAE λ 0.95 0.95 n.a. n.a. n.a.
discount factor 0.99 0.99 0.99 0.99 0.99

εµ n.a. 0.05 0.1 n.a. 1e-3
εΣ n.a. 0.0005 0.0005 n.a. 2e-6

optimizer adam adam adam adam adam
updates per epoch 10 20 1000 1000 1000
learning rate 3e-4 5e-5 5e-4 3e-4 3e-4
use critic True True True True True
epochs critic 10 10 n.a. n.a. n.a.
learning rate critic (and alpha) 3e-4 3e-4 5e-4 3e-4 3e-4
learning rate dual n.a. n.a. n.a. n.a. 1e-2
number minibatches 32 64 n.a. n.a. n.a.
batch size n.a. n.a. 64 256 256
buffer size n.a. n.a. 5e5 1e6 1e6
learning starts 0 0 0 10000 10000
policy update interval n.a. n.a. 2 1 1
polyak weight n.a. n.a. 5e-3 5e-3 5e-3
trust region loss weight n.a. 10 10 n.a. n.a.
num action samples n.a. n.a. n.a. 1 20

normalized observations True True True False False
normalized rewards True False False False False
observation clip 10.0 n.a. n.a. n.a. n.a.
reward clip 10.0 n.a. n.a. n.a. n.a.
critic clip 0.2 n.a. n.a. n.a. n.a.
importance ratio clip 0.2 n.a. n.a. n.a. n.a.

hidden layers [64, 64] [64, 64] [256, 256] [256,256] [256,256]
hidden layers critic [64, 64] [64, 64] [256, 256] [256,256] [256,256]
hidden activation tanh tanh relu relu relu
initial std 1.0 1.0 1.0 1.0 1.0
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Table C.2: Hyperparameters for the dog tasks from DeepMind Control (Tunyasuvu-
nakool et al., 2020) Figure 5.3.

PPO TRPL Vlearn/V-trace SAC MPO

number samples 16384 16384 1 1 1
GAE λ 0.95 0.95 n.a. n.a. n.a.
discount factor 0.99 0.99 0.99 0.99 0.99

εµ n.a. 0.05 0.1 n.a. 1e-3
εΣ n.a. 0.0005 0.0005 n.a. 1e-6

optimizer adam adam adam adam adam
updates per epoch 10 20 1000 1000 1000
learning rate 3e-4 5e-5 1e-4 3e-4 3e-4
use critic True True True True True
epochs critic 10 10 n.a. n.a. n.a.
learning rate critic (and alpha) 3e-4 3e-4 1e-4 3e-4 3e-4
number minibatches 32 64 n.a. n.a. 1e-2
batch size n.a. n.a. 64 256 n.a.
buffer size n.a. n.a. 5e5 1e6 256
learning starts 0 0 0 10000 1e6
policy update interval n.a. n.a. 2 1 10000
polyak weight n.a. n.a. 5e-3 5e-3 1
trust region loss weight n.a. 10 10 n.a. 5e-3

normalized observations True True True False False
normalized rewards True False False False False
observation clip 10.0 n.a. n.a. n.a. n.a.
reward clip 10.0 n.a. n.a. n.a. n.a.
critic clip 0.2 n.a. n.a. n.a. n.a.
importance ratio clip 0.2 n.a. n.a. n.a. n.a.

hidden layers [64, 64] [64, 64] [512, 512] [512,512] [512,512]
hidden layers critic [64, 64] [64, 64] [512, 512] [512,512] [512,512]
hidden activation tanh tanh relu relu relu
initial std 1.0 1.0 1.0 1.0 1.0
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