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Abstract

By definition, single reference genomes cannot reflect genetic diversity. The representa-

tion of the genetic potential of a whole species as a single linear string of characters and

all analyses based on them are inherently biased. This reference bias has been acknowl-

edged for a long time, but only recently have we been able to address it. The advent

of long-read sequencing and many additional genome assemblies for the same species

has allowed us to obtain a better understanding of variation in genome content within a

species. In addition, the availability of these new data types have made the implementa-

tion of a long standing concept feasible: the genome graph. This data structure combines

multiple reference genomes into a single representation that is able to reflect more of the

sequence space than a linear reference genome.

In this thesis I present six highly contiguous de-novo assembled genomes of Arabidop-

sis thaliana that are annotated using the new pan-genome aware auto-ant annotation

pipeline. These assemblies are used to construct a complex, whole-genome alignment

derived genome graph. I will show that building such a graph is not only theoretically

possible, but also practically feasible, representing the full pan-genome of the input gen-

ome assemblies. I can access this graph-based pan-genome using the novel reference

free variant detection algorithm panSV. I can also show that short-read alignments to the

genome graph are possible and suffer from a reduced reference bias, due to the expanded

reference structure. Variant calls based on the graph have a reduced heterozygosity noise

that will aid future discoveries.

The use of genome graphs greatly increases our understanding of a species pan-genome

and allows us to combine the power of multiple assembled genomes. Although the

method is in need of further development and improvements, I have made a first case

for the use of highly complex graphs in plant species.
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Kurzfassung

Per Definition können einzelne Referenzgenome keine genetische Varianz darstellen. Die

Darstellung des genetischen Potenzials einer ganzen Spezies als eine einzige lineare Ket-

te von Merkmalen und alle darauf basierenden Analysen sind von Natur aus verzerrt.

Diese Verzerrung durch lineare Referenzgenome ist seit langem bekannt, aber erst seit

kurzem sind wir in der Lage, etwas dagegen zu unternehmen. Das Aufkommen der Long-

Read-Sequenzierung und vieler zusätzlicher Genome für ein und dieselbe Spezies hat es

uns ermöglicht, ein besseres Verständnis für das wahre genetische Potenzial einer Spe-

zies zu gewinnen. Darüber hinaus hat die Verfügbarkeit dieser Genome die Umsetzung

eines seit langem bestehenden Konzepts möglich gemacht: den Genomgraphen. Diese

Datenstruktur kombiniert mehrere Referenzgenome zu einer gemeinsamen Darstellung,

die mehr vom Sequenzraum abdecken kann als ein einzelnes lineares Referenzgenom.

In dieser Arbeit stelle ich sechs de-novo assemblierte Genome von Arabidopsis thaliana

vor, die mit einer neuen annotations Pipeline, auto-ant, annotiert wurden. Diese Genome

werden verwendet, um einen komplexen, auf einem whole-genome Alignment basieren-

den Graphen zu generieren. Ich werde zeigen, dass die Erstellung eines solchen Graphen

nicht nur theoretisch möglich, sondern auch praktisch durchführbar ist, und er in der La-

ge ist, das Pangenom der genutzten Genome zu repräsentieren. Auf die variablen Regio-

nen dieses Pan-Genoms kann ich mit dem neuartigen referenzfreien Algorithmus panSV

zugreifen. Ich kann auch zeigen, dass short-read Alignments gegen den Genomgraphen

möglich sind und diese aufgrund der erweiterten Referenzstruktur eine geringere Hetero-

zygotenrate aufweisen.

Die Verwendung von Genomgraphen kann unser Verständnis der genetischen Diversität

einer Spezies erheblich verbessern. Obwohl diese Methode noch weiterentwickelt und

verbessert werden muss, habe ich ein erstes Beispiel für die Verwendung hochkomple-

xer Graphen bei einer Pflanzenart geliefert.
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Chapter 1

Introduction

In the “Hitchhiker’s Guide to the Galaxy” by Douglas Adams (Adams, 1995) a giant

super computer called Deep Thought calculates the answer to “the Ultimate Question

of Life, the Universe, and Everything” - and comes with a simple result: 42. When the

characters tasked with obtaining the answer from the computer vent their frustration at its

lack of usefulness, the computer points out that the question was hardly well formulated.

A colleague recently compared Deep Thought to genome graphs, the central element of

this thesis - a near-mythical construct capable of answering almost all important ques-

tions of population genetics. In other words, an incredibly powerful tool if only we can

formulate the right questions to ask. In this thesis, I will explore methods to construct

genome graphs and describe their usability in the model organism Arabidopsis thaliana.

I will present methods to describe the pan-genome stored in a graph built from six de-

novo assembled accessions, and access it to describe the variation in the larger population

of accessions in the 1001 Genomes Projects, for which short-reads were available (1001

Genomes Consortium, 2016).

The genome of an individual is a mosaic of genetic information inherited from its an-

cestors and it contains the instructions not only for building the cells and organs of the

individual, but also how it functions in response to the environment. Importantly, genetic

information is not static, and spontaneous mutations continuously fuel genome diver-

sification, on which in turn selection acts to favor those variants that are particularly

advantageous. The extent of genetic variation in species such as ours cannot be overesti-

mated. The challenge has been to capture and describe genetic diversity. A good starting

point are the so-called reference genomes. Reference genomes are near-complete repre-

sentations of the genetic material of a species as strings of the four nucleotides G, A, T,

and C. They are the coordinate system to locate genetic features such as genes, or mi-

croRNAs, and the frame that sequence variation is compared to. Reference genomes are

obtained by sequencing the DNA of either a single individual or a mix of individuals and

assembling the sequencing fragments into a linear string of bases using computational

methods. Typically, even though many organisms are diploid, the reference genome is

haploid. By its nature, a linear reference genome is unable to represent the genetic diver-

sity of a species that consists of multiple individuals, and thus any analysis it is used for

will be intrinsically biased towards the variant combination represented in the reference
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Chapter 1 Introduction

genome. Advances in sequencing technologies and computing power are giving rise to

a better option: Multiple reference genomes can be combined into one single reference

structure, where the shared sequence is compressed, but the diverged sequence remains

represented and therefore available for interrogation. This structure is known as a gen-

ome graph and enables us to better represent the genetic potential of a population. We

can now have access to a variety of different alleles in order to better describe the true

cause of phenotypic differences.

1.1 Reference genomes

Even though genetic diversity is obvious and has long been appreciated, the first pub-

lished genomes were all advertised as “the genome of species XYZ” (Venter et al.,

2001). Already when the project to sequence a human genome was conceived, Bruce

Walsh and Jon Marks wrote a letter to Nature stating their concerns (Walsh and Marks,

1986), that a linear reference genome can never truly represent the genetic sequence of

a diploid organism, let alone of a population. Despite its shortcomings, single reference

genomes have been used successfully to describe the genetic diversity of populations

(Dujon, 1996; 1000 Genomes Project Consortium et al., 2010; 1001 Genomes Consor-

tium, 2016). Reference genomes have been used to predict, define and anchor functional

elements, such as genes. More importantly, they establish a framework for comparison

with other individuals. By resequencing parts of an individual’s genome or the full gen-

ome and comparing the sequencing reads to this established framework, the reference

can be interrogated for genetic differences between the two individuals. While rese-

quencing projects have been successful in describing much of the small-scale variation

of a population, they also highlighted one of the major problems of single, linear ref-

erence genomes. It is easy to represent and detect sequences that are absent from the

query genome, but challenging to describe novel sequences. This introduces a reference

bias (Degner et al., 2009), which will be discussed in more detail in subsection 1.1.3.

Although this is common knowledge, at the time that I started the dissertation work, rel-

atively little progress had been made in solving this problem.

Since the construction and publication of the first reference genomes, the quality and

quantity of available references has seen an exponential increase. Genomic resources

for popular model species are no longer based on a single individual, but try to include

diverse sequences from multiple donors (Shukla et al., 2019; Dewey et al., 2011), while

still maintaining a linear structure. The latest release of the human genome even includes

multiple versions of highly diverged regions (Schneider et al., 2016), which can be uti-

lized for read mappings by the common read mapper bwa (Li, 2013). A drop in sequenc-

ing cost has also made it possible to assemble more and more reference genomes for

uncommon species (Al-Mssallem et al., 2013; Stevens et al., 2016; Nowoshilow et al.,

2018), and with the advent of cheap long-read sequencing, multiple genome assemblies

of similar quality are available for a single species (Zapata et al., 2016; Jiao and Schnee-
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1.1 Reference genomes

berger, 2020). This has extended our knowledge of structural variation, enabling us

to detect more and larger variants, something that had previously been limited by read

length and assembly quality. Thus, a new field in genomics emerged: pan-genomics,

where scientists try to describe as much of the shared and variable sequence of a species

as possible.

1.1.1 History of reference genomes

The assembly of nucleotide sequence fragments into longer sequences goes back many

decades (Sanger and Thompson, 1953; Min Jou et al., 1972), but the first complete gen-

ome sequenced was that of the 3,569 bp long RNA sequence of the bacteriophage MS2

(Fiers et al., 1976), followed by genomes of other viruses and of bacteria (Baer et al.,

1984; Sodeik et al., 1993; Blattner et al., 1997). The first eukaryote, a strain of baker’s

yeast, Saccharomyces cerevisiae, with a combined assembly size of 12 Mb, saw its gen-

ome sequence completed in 1996 in an combined effort of 94 laboratories (Goffeau et al.,

1996), followed by genomes of the first multicellular organism, Caenorhabditis elegans

(97 Mb), in 1998 (C. elegans Sequencing Consortium, 1998). Thereafter more and more

complex genomes were assembled in close succession. In March 2000 the first genome

for Drosophila melanogaster (120 Mb) (Adams et al., 2000), and in December of the

same year the first genome for A. thaliana (115 Mb) (Arabidopsis Genome Initiative,

2000) were released. The first complete human genome was published in February 2001

(Venter et al., 2001). Since then assembled genomes from many more organisms have

been added, and even more individuals or strains have been resequenced.

Sequencing a genome is rarely a straightforward endeavor. In an ideal case one would be

able to read the entire molecule of each chromosome with high accuracy. In reality we

are rarely able to even isolate a full chromosome for end-to-end sequencing, but have to

painstakingly reconstruct the genome from overlapping sequence fragments. The length

and accuracy of these fragments defines the ability to resolve complex regions in the gen-

ome. For example, repeats that are longer than the fragment length will not be resolved to

their precise copy number, and duplicated sequences can create ambiguity in the assem-

bly. An additional factor that complicates genome assemblies is the genome size. Larger

genomes not only contain more genes, but also more repeats and other regions that are

challenging to assemble. As a result, assemblies often consist of continuous fragments,

or contigs, that have been built from uniquely overlapping sequence fragments. These

contigs can then be ordered and oriented using additional information, such as optical

maps, or chromatin contact maps. While complete sequences for the relatively small

circular genomes of bacteria, which has also few repeats, have been available for years,

the first telomere-to-telomere assemblies of multicellular eukaryotes have only recently

begun to emerge (Wang et al., 2021; Gonzalez de la Rosa et al., 2021; Giguere et al.,

2021; Brázda et al., 2022; Chen et al., 2023) and most genome assemblies currently in

use contain gaps that could not be bridged by sequencing technologies. Since the in-

vention of sequencing methods, the length of obtainable sequence reads has gradually
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Chapter 1 Introduction

increased. Increased read length often came with an increase in cost and loss of accu-

racy. Therefore the choice of sequencing technology, and assembly method is always a

trade off between cost, accuracy, and speed to obtain the best result for the question at

hand. While prices for new sequencing technologies were increasing initially, cost for

traditional technologies decreased. An example for the drastic drop in the cost of genome

assemblies comes from D. melanogaster. While the first genome assembly, published in

2000, was a complex endeavor, technically and financially, the cost of sequencing a D.

melanogaster genome had dropped from an estimated 1.8 billion dollar (Kris A. Wetter-

strand, 2019) to 1,000 dollar in 2018 (Solares et al., 2018), and was reported to be 350

$ per genome in 2020 (Kim et al., 2020). In addition to dropping costs the assembly of

longer and more complex genomes became possible, such as that of sugar cane, at 31

Gb (Stevens et al., 2016), or the mexican walking fish, better known as axolotl, with an

assembly of 32 Gb (Nowoshilow et al., 2018). In contrast, the current reference assem-

bly of A. thaliana (Berardini et al., 2015), with a size of 119 Mb, is among the shorter

genomes. Nevertheless the use of improved long read sequencing methods has led to

gains in the known sequence space of the reference accession. The latest adding another

14.6 Mb to the known sequence (Wang et al., 2021).

1.1.2 Utilization of reference genomes

While, in the first place, reference genomes provide a mere framework to anchor features

and genetic differences, they have become an invaluable tool in genetics. If we are

to make sense of the long string of bases (A,G,C and T), we need to annotate it, or

compare it to another string. Different types of functional elements in a genome, such as

genes, transposable elements (TEs), or repetitive regions, can be detected and annotated

based on the reference sequence itself. Other features can only be detected and anchored

with the help of additional, external, knowledge, such as epigenetic modifications, or by

comparison with another sequence, such as sequence variation. These annotations help

us to better understand the genetic potential, as well as the evolutionary forces that shape

genomes. In the following subsections we will dive deeper into genome annotation and

the detection of sequence variation from reference genomes.

Genome annotation

The detection of structural differences between two genomes holds little value on its

own. Only in the light of functional annotations do they hold true power. Therefore one

of the uses of an assembly is to serve as a template for the annotation of functional ele-

ments like genes and TEs. Over time, different annotation methods have been developed

and refined. The two main approaches for sequence annotation are either ab-initio or

evidence based predictions. Ab-initio predictions rely on statistical models to detect sim-

ilarities to known motifs in the sequence. Algorithms like SNAP (genes) (Korf, 2004),

repeatMasker (repetitive regions) (Smit, AFA, Hubley, R & Green, P., 2013), or EDTA
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1.1 Reference genomes

(TEs) (Ou et al., 2019) scour the genome for predetermined sequence motifs. Machine

learning has also found its way into the field of genome annotation and is for example

used by DeepAnnotator (Amin et al., 2018). Such motifs, or models are based on previ-

ously identified high confidence features and as such these methods are unable to identify

features that have not been observed before, but come with a lower price tag as no ad-

ditional data generation is required. In contrast, evidence based annotation approaches

utilize external sequence information, such as transcription data, or gene sequences that

are aligned to the reference sequence. A very straightforward approach is applied by

tools like exonerate (Slater and Birney, 2005), or LiftOff (Shumate and Salzberg, 2020),

where an existing annotation is lifted to the new assembly based on sequence alignments.

Despite its simplicity it suffers from the very same bias that our reference genomes suffer

from. It is only possible to annotate features that are already known. In contrast Cufflinks

(Trapnell et al., 2010) relies on RNA sequencing data and assembles the RNA evidence

into transcripts. While in theory this method has the best biological evidence supporting

their results, it relies on the expression of the given genes, which is not alway the case

and can vary based on the tissue of origin and time of collection. To improve the results,

and overcome their individual weaknesses, methods that combine these approaches have

been developed, such as augustus (Stanke et al., 2008). Despite being classified as an

ab-initio annotation tool, it can utilize and combine layers of extrinsic evidence to either

support the prediction or revoke it.

Genetic variation

Genetic variation shapes inter- and intra-specific phenotypic diversity and can have ma-

jor implications for the organism. This variation occurs on different scales, ranging

from single base point mutations to alterations of entire chromosome arms. Variation

also takes different forms. A sequence can be substituted, moved to a different position,

copied, lost, or gained. The underlying mechanisms are diverse and in some cases remain

unknown. Scientists distinguish between two groups of variation: small variation, such

as single nucleotide polymorphisms (SNPs) and small insertion-deletion events (InDels),

and large structural variation (SV) with a size greater than 50 bp, that can alter the struc-

ture of the entire genome. Due to constraints in sequencing technology only a fraction

of this variation could be studied with sufficient confidence as the size and type of de-

tectable variation has been severely limited (1001 Genomes Consortium, 2016; Caicedo

et al., 2007; Sudmant et al., 2015; Durvasula et al., 2017; Fulgione et al., 2018). Espe-

cially the identification of structural variation has been impeded by technological bound-

aries. Such structural variations appear in many forms, and due to their larger size, can

contain additional nested variation, which makes their identification, categorization, and

description even more challenging. The easiest form of structural variation is the binary

presence or absence of sequence from one of the genomes. The commonly used names,

insertions and deletions imply a polarity, based on the reference genome. This polarity is

not biologically backed, therefore the phrase presence absence variation (PAV) is becom-
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ing more popular. While other structural variants can also seem like PAV-type variation

at first glance they are changes in copy number or sequence localisation. In case of copy

number changes additional copies of a sequence, e.g. a TE, are gained or lost in one

of the individuals and can then evolve independently, resulting in nested, smaller vari-

ants that can help to distinguish multiple copies of the same sequence. Rearrangements,

without copy number changes can also happen, resulting in local presence-absence type

events. A more obscure and not that obvious structural variant is a change in ploidy.

This does not leave directly detectable traces in the genome but in the smaller variants

due to an independent evolution. Only recently have studies begun to unravel the impact

of structural variation on a larger scale (Jiao and Schneeberger, 2020).

While the impact of point mutations has been described extensively over the last decades,

their impact is limited by their size. A simple base pair change can result in a change

of a single amino acid, a shift in reading frame, or a premature stop codon, that affect

only a single gene. In contrast, due to the sheer number of bases affected, large structural

variants regularly cover whole gene clusters and have been reported to have a profound

impact on the individual, such as disease traits (Beyter et al., 2020). As such the selec-

tive pressure on large SVs is stronger than on small variants, and thus only a fraction of

SVs become fixed in a population. This means that SVs, fixed in the population, tend to

have a functional role. The analysis of such rare SVs can shed light into the underlying

mutational processes (Abel et al., 2020). They have been shown to be a driving factor

in agricultural plant breeding (Walkowiak et al., 2020; Jayakodi et al., 2020). The role

of inversions in particular has been studied extensively in plant breeding and adaptation.

Inversions have been shown to play a role in adaptation to salt (Lowry and Willis, 2010)

and changes in flowering time (Fransz et al., 2016; Göktay et al., 2020). One inversion

in barley is suspected to be the causal variant for its adaptation to the climate of the west-

ern hemisphere (Jayakodi et al., 2020). They have also been linked to changes in grain

size of basmati rice (Choi et al., 2020), grape color (Zhou et al., 2019) and the domes-

tication of tomato (Alonge et al., 2020; Soyk et al., 2019). Another major contributor is

the mobilome, which in plants is largely composed of TEs. TEs arise with a frequency

comparable to SNPs, but have a bigger impact, due to their size (Baduel et al., 2021).

Such insertions can easily have a functional impact and become fixed in populations

(Walkowiak et al., 2020; Hufford et al., 2021). They have been shown to impact gene

expression in A. thaliana and maize (Hollister et al., 2011; Noshay et al., 2020), to con-

tribute to the domestication of maize (Studer et al., 2011), and the sub-genome speciation

of rice (Ma et al., 2020). Such rapid changes in the genome can become advantageous

for rapid adaptation to new environments (Xu et al., 2009; Van de Weyer et al., 2019).

Even copy number variation in tandem repeats have been shown to have phenotypic im-

pact. As these types of variant have been hard to unroll in linear, incomplete references

their impact on body height, hair morphology and human health biomarkers has only

recently been discovered (Mukamel et al., 2021). The duplication of whole genes leaves

one copy open for mutational processes, letting them accumulate additional mutations.

This affects mainly species specific and non-essential genes (Zmienko et al., 2020).
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1.1 Reference genomes

The detection of such differences between the reference and a second individual depends

on our ability to represent the variation with the data at hand and to interpret the re-

sult. In the past two general approaches, with different advantages and disadvantages,

have been used to detect and classify the genetic changes between the reference genome

and another individual. Either, relatively inexpensive, but fragmented, whole genome

shotgun sequencing, or a, more expensive and time consuming, whole genome assembly

was constructed. In both cases the resulting sequences were then aligned and compared

to the existing reference genome and differences were described in the context of the

reference genome. In the most common case of fragmented short-read alignments, this

process is heavily biased by the length of the fragments and the quality of the reference

genome. Each fragment needs to be uniquely placed in order to describe the sequence

differences. For variants shorter than the average fragment length this difference is easy

to interpret. Here the bases that do not align are recorded. In general such methods rely

on reads being aligned and a clear signal from multiple fragments covering the same po-

sition. Tools, like FreeBayes (Garrison and Marth, 2012), or GATK (Poplin et al., 2018),

have become more and more elaborate, in order to reduce the uncertainty of such calls

by identifying sequencing artifacts, and performing local realignments to reduce noise.

This method introduces a bias towards the detection of SNPs and sequence missing in the

query, over novel sequence and complex structural variants (Sudmant et al., 2015); and

while the newly emerged long read sequencing allows the detection of large SVs from

continuous reads, they are generally unsuited for SNP detection as their higher error rate

and problems with homopolymer resolution make calls less reliable. Recent advances

in technology, like circular consensus reads, have mitigated this problem by again trad-

ing read length for accuracy. Longer variants are less obvious to detect as they do not

necessarily leave clear traces in the alignment. They are identified more indirectly by

observing changes in the coverage (e.g. deletions, repeat expansions), distance between

paired reads (e.g. translocations), changes in orientation (e.g. inversions), or loose, un-

aligned ends of reads (e.g. insertions). Therefore most of these events require specialized

tools to be detected, and even then the accuracy can vary. Well known tools in this cate-

gory are pindel (Ye et al., 2009), DELLY (Rausch et al., 2012), BreakDancer (Fan et al.,

2014), and GRIDSS (Cameron et al., 2021) that each focus on the detection of alignment

breakpoints to localize the start and end positions of variable regions. Increased read

length allows for the detection of longer variants, as they are more likely to bridge com-

plete variants. Complete genome assemblies can be seen as ultra long reads that bridge

most variants and, as such, circumvent some of these problems. The challenge here is

rooted in the previously described incompleteness of the assembly, that itself might be

based on short-reads and have incorrectly resolved regions. Some of these problems are

mitigated by the use of long read sequencing technologies for the generation of the as-

sembly. Assemblytics (Nattestad and Schatz, 2016) is one of the earlier tools to compare

genome assemblies, while SyRI (Goel et al., 2019) is a more recent development that

puts more effort on the categorization of variants. Despite recent developments one of

the main underlying problems persists. As the mechanisms that give rise to the forma-
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tion of SVs are not well understood, the problem itself is not well defined. This means

that tools that are looking to detect structural variants are biased towards a computational

solution that does not necessarily reflect the underlying biology (Morrison, 2018).

The predefined vcf file format is most commonly used to store variants detected from

pairwise sequence comparisons (Danecek et al., 2011). It is a reference based format

that represents variation in the context and coordinate system of a single reference gen-

ome. Variation is stored as reference and non-reference alleles and are attributed to the

samples they were detected in. Thus it is a lossy format that is unable to represent the

coordinate of a variant in multiple samples, in addition by its reference based nature it

is unable to represent nested variation. Nested variation is a type of variant that is found

within another larger variant. It mostly occurs when multiple pairwise comparisons are

combined in a single vcf file. In the context of a vcf file such a variant would be rep-

resented as two large non-reference alleles that are almost identical except for the few

bases of the nested variant. This by itself is a hindrance in the work on structural variants

in large populations and pan-genomics that needs to be addressed in the near future.

1.1.3 Reference bias

As previously mentioned, traditional references only represent a single individual of the

species studied - in fact just a single haplotype - as a linear string of bases. It will there-

fore never be able to fully integrate the genetic variety of a population or species and

any analysis performed on this reference genome will always be biased towards this hap-

lotype. When sequencing data from an individual containing an additional sequence is

compared to a reference lacking this sequence, the reads will be aligned with the next

best region of the genome, or remain unaligned. Unaligned sequences are mostly lost

for deeper analysis, whereas misplacement of reads can alter the results of later analysis

by obscuring actual signals. We can distinguish between two main effects of reference

bias. The first being missing variant calls due to large chunks of missing sequence. For

example the reference and annotation of the maize genome only contains an estimated

63% - 74% of the total gene number (Hirsch et al., 2014; Lu et al., 2015; Hirsch et al.,

2016; Jin et al., 2016). This results in a large part of the coding sequence of this species

being inaccessible for analysis and skews every result towards the fraction being present.

In wheat one of the most commonly used reference genomes is based on the Chinese

spring ecotype, that has been collected around 1900 and is thus missing a lot of inter-

esting agronomic traits (Bayer et al., 2022). The second effect is an overestimation of

heterozygosity. When copies of a repetitive region are absent from the reference, the se-

quencing reads originating from this position will be aligned to the copies present in the

reference genome and result in heterozygous variant calls. In A. thaliana, a species with

a mostly homozygous genome, due to selfing as the preferred mode of reproduction, 44%

of the variant calls are registered as heterozygous (Jaegle et al., 2021). This is a direct

result of the incomplete sequence representation in the reference genome. The severity

of a reference bias correlates with the available read length. Longer sequence fragments
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are more likely to span the full SV and find unique anchors on both sides, while shorter

reads have a higher chance to result in spurious alignments. In general this skews the

detectable variants towards SNPs, short variants, and events of absent sequence, as they

are easier to detect (De Coster and Van Broeckhoven, 2019; Ho et al., 2020). Even the

interpretation of variant calls can be biased by an incomplete reference, as such calls do

not necessarily represent the underlying evolutionary context that gave rise to this variant

(Alonge et al., 2020).

Different ideas and approaches have been implemented to mitigate the problems of lin-

ear reference genomes. One is to use multiple references in parallel and try to always

choose the most appropriate allele based on the available references, as implemented

in reference flow (Chen et al., 2021). This approach is especially powerful if artificial

references are used to represent sub-populations, but it suffers from the absence of a uni-

fying coordinate space. A different approach is to offer either unplaced bait sequences to

draw away spurious mappings from interesting regions, or the introduction of additional

major-alleles that have been anchored to the existing reference. By collecting them from

different donors this can mitigate the effects of the reference bias (Dewey et al., 2011;

Pritt et al., 2018; Shukla et al., 2019; Grytten et al., 2020). These methods are a first

step towards reducing the reference bias. As a result of previous studies, we now have a

better understanding of the modularity and variability that genomes exhibit, apart from

simple presence, absence variation, tackled by these methods. A linear reference can not

hope to capture this degree of complexity, but graphs are an obvious data structure to do

so. Large rearrangements or the presence and absence of sequences can be represented

naturally, as well as fine grain-resolved base pair variation (Novak et al., 2017; Ameur,

2019; Ballouz et al., 2019).

1.2 Genome graphs

Genome graphs are a way to include and represent variation in an accessible and natural

data structure. In mathematics graphs are used to describe relationships between objects.

In genome graphs these objects are sequence fragments that are stored in nodes. The

relationship between those nodes, represented in the graph, are their order and orienta-

tion, and are represented by edges connecting the nodes. We can then introduce coloured

paths that traverse the connections made by edges to represent longer sequences that

are made up of multiple consecutive nodes, such as contigs, or full chromosomes in the

graph (Figure 1.1).

Although the concept of graphs in genomics is not new, it has been hindered by computa-

tional restraints and availability of data. Constructing genome graphs and mapping reads

to them requires enormous computational resources that have only become available in

recent years. First, simple but usable, concepts of genome graphs for read mappings

were around as early as 2009, but remained underused (Schneeberger et al., 2009). Nev-

ertheless, graph structures have been used in several other areas of genomics, including
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genome assemblies. Assembly graphs are able to represent ambiguous results of the as-

sembly process. Such an assembly graph is later cut and collapsed into a linear reference

sequence, removing all ambiguity (Pevzner et al., 2001; Myers, 2005; Bankevich et al.,

2021). Another application is the representation of gene model splice forms. The dif-

ferent splicing options of RNA transcripts within a single individual can be represented

in a graph structure. Here the nodes represent full exons that are connected to represent

different isoforms in a splice graph (Rogers et al., 2012; LeGault and Dewey, 2013).

Such a graph can then be used as a reference to map RNA sequencing reads to (Denti

et al., 2018; Kim et al., 2019). This enables researchers explore the frequency of differ-

ent splice variants and even discover new ones. Due to their limited size and complexity,

splice graphs pose a far smaller computational challenge than full genome graphs. The

graphs currently in use that are closest to real genome graphs are the haplotype graphs

employed by GATK HaplotypeCaller (Poplin et al., 2018) to calculate the haplotype like-

lihood of a given set of sequencing reads against the background of detected variation.

ATA

C

TGC A

C

GTA
G

G

T

Figure 1.1: Genome graph - Example of a genome graph with three paths (blue, orange and green).

Each path traverses multiple sequence-containing nodes. Some nodes are traversed by multiple paths, thus

compressing the sequence space. This small graph contains multiple bubbles. One between the nodes ATA

and TGC, and the second between the nodes A and GTA. In addition it contains a superbubble with nested

variation, between TGC and GTA.

1.2.1 Types of graphs

Depending on their intended application, different types of graphs have been utilized

in genomics, each with their own set of properties. A simple and widely used type of

such graphs are k-mer based de-Bruijn graphs. In these graph structures, each node

represents a single k-mer that is connected to all observed, overlapping k-1 mers in the

set (Jackson et al., 2010; Bankevich et al., 2021). Compressed de-Bruijn graphs remove

the overlapping redundancy of adjacent nodes and thus are shaped like classical genome

graphs, with the only difference being that they are not built using an alignment. Due

to their k-mer based construction de-Bruijn graphs disregard synteny information and

are more compressed, and therefore more complex than alignment based graphs. A
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completely different approach are cactus graphs that, by definition, enforce a linearity

in their graph structure (Paten et al., 2011). A cactus graph is always a directed, acyclic

graph (DAG). Graphs are defined as directed, if their edges have directions, a feature that

all genome graphs share. This is necessary in order to order and orientate the connected

nodes. For simplicity some graphs are also acyclic, which means that a walk through

such a graph can never return to a node it has visited before. Obviously this prevents the

graph from compressing repetitive sequences and representing copy number variations

and repeat expansions. Graphs that are able to represent the full spectrum of variation

are based on whole genome alignments and can be very complex. Those graphs can be

called ’connected graphs’ due to their high number of connective edges. Although they

come closest to a real representation of synteny and divergences of the real genomes, in

some cases it will be necessary to simplify the graph structure to make it usable.

A genome graph represents alternative sequences and structural rearrangements in its

topology. One of the most simple topology feature is a bubble. A bubble is defined by

two anchoring nodes and consists of at least two different traversals to connect the two

anchors. In any case a bubble is a closed structure that has no other way in, or out, except

through its two anchors (Figure 1.1). The simplest biological example of a bubble is a

SNP, where the sequence up- and downstream of it form the two anchors and the different

bases are the traversals. A traversal in a graph describes a path through the graph that

traverses edges and nodes in an order and orientation defined by the graph in order to

represent a specific sequence. A traversal must consist of at least one node. This simple

concept of a bubble can be nested in a way that a second, larger bubble contains a smaller

bubble. These bubbles are called superbubbles (Onodera et al., 2013; Dabbaghie et al.,

2021). This concept of classification holds true for cacti and DAGs, but falls short of

representing the true structure of genomes. In order to do this we need to introduce the

concept of snarls, that in contrast to bubbles do not require to be closed, but can have

traversals touching just one anchor and leave the structure without touching the second

anchor (Paten et al., 2018).

1.2.2 Graph construction

Constructing a genome graph is not a trivial task and poses its own set of challenges.

In order to build a graph we need to distinguish between shared and diverged sequences

and combine them into a usable format. Shared sequence will be compressed into single

nodes, whereas diverged regions open bifurcations in the graph structure. Depending

on the question that is supposed to be answered with the graph multiple different ap-

proaches and input data types can be selected. Graphs can be built from pre-existing

variation stored in vcf files, or alignments of whole genome assemblies and any type of

sequencing data.

In principle a complete genome graph could be as simple as 5 nodes (A, G, C, T, N), each

connected to the other ones and itself by edges. This graph can accurately represent an

infinite amount of genomes. But its use would be very limited, because the detection of
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subgraphs would be impossible and the coordinate system, imposed by syntenic regions

would be completely lost. This problem illustrates the challenges that graph construc-

tion is facing: making sense of the complex genetic landscape, while keeping the graph

usable and interpretable. One of the earliest approaches to graph construction have been

de-Bruijn graphs. Their simple mathematical approach makes their construction very

easy, but completely disregards the underlying forces that have shaped the genome. De-

Bruijn graphs are build from overlapping k-mers. Depending on the k-mer size they

contain a large number of nodes, and can be very complex and connected. In order to

reduce the complexity of such graphs, while maintaining the simplicity of the graph con-

struction the software REVEAL was developed (Linthorst et al., 2015). It uses a k-mer

chaining approach that identifies maximal unique matches (MUMs) from multiple input

genomes and chains them. The approach is iteratively run in each local bubble of the

chain. This results in a DAG as only MUMs are considered and no interaction between

the sequence in different bubbles is possible. Similar graphs can be constructed by en-

riching a linear reference genome with variation imported from a vcf file. These are

even more simple as they can not represent nested variation and due to the fact that it is

being built from a vcf file means that the only coordinate system present is the one of

the reference genome and the genetic context of the variants imported into the graph are

lost. The graph software package vg (Garrison et al., 2018) uses this method extensively

and most of their tools are tailored around such graphs (Garrison et al., 2018). While the

graphs constructed using minigraph are similar to vcf infused graphs, they are built from

alignments to a reference (Li et al., 2020). Whole genomes, or long reads are aligned to

a reference and regions that are different that surpass a defined distance threshold. They

are added as nodes to the graph. This process can progressively be repeated to add varia-

tion from multiple individuals. As the added variation is defined by a genetic distance to

the sequence that already exists in the graph, a large set of variants are omitted and infor-

mation is lost. Furthermore the order of genomes in the progressive construction process

influence the resulting graph. Similar to vcf based graphs, only the path of the reference

genome persists and all other accessions are lost. Despite their simplicity such graphs

are unable to capture the complex landscape of real genomes. This complexity can only

be approached by fully aligning multiple sequences and retaining the paths defined by

the input sequences. An intermediate approach is implemented in progressiveCactus

(Armstrong et al., 2020). The internal data structure is represented as a DAG, but it is

able to retain all paths and make it available as a genome graph. The last method pre-

sented here is the most complex one and has only recently progressed to a usable form.

It creates connected graphs and is based on a multiple whole genome alignment that is

used to identify syntenic regions between the input genomes. Afterwards the alignment

is converted into a graph structure and refined in multiple realignment steps in an effort

to smooth the graph to retain synteny, but also represent the structural differences as

accurately as possible. This approach has been implemented in the graph construction

pipeline pggb (Garrison et al., 2023). One of the main challenges of this approach is the

creation of a multiple whole genome alignment. Although several tools for such align-
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ments have been implemented, the underlying problem still remains unsolved (Li, 2018;

Song et al., 2022). Once a graph has been created additional variation can be added to it

by aligning additional sequences to them. Variations stored in these alignments can then

be augmented into the graph, adding more sequence and complexity. As new variation

is added the graph topology and the number of nodes, and edges changes. This has mas-

sive implications for analysis that has been performed before and features that have been

anchored to the graph. This makes updating existing graphs a tedious task.

As we are going to discuss next, graphs can not be indefinitely complex and still usable.

For some analysis even simple DAGs can reduce the reference bias, while for others this

will not suffice. This means the application of a genome graph needs to be well defined

in order to choose the right construction method that balances the amount of sequence

information needed with the complexity of the graph.

1.2.3 Alignments to graphs

Although the graph itself already holds valuable information, its true potential lies in its

use as an alternative reference structure. The most basic of them being the target for

sequence alignments. In the process of establishing genome graphs as alternative refer-

ence structures this is the first step to unlock its full potential. Thus far multiple graph

alignment methods have been implemented. The earliest methods to map sequencing

reads to graph structures were implemented in an attempt to augment variation into lin-

ear references to improve the accuracy and mapping score while maintaining the original

reference system (Schneeberger et al., 2009; Kim et al., 2019). These graphs bear lit-

tle resemblance with modern genome graphs in complexity and variant resolution. In

contrast to the simple sequence space of linear references, or the reduced complexity of

earlier attempts, the complex nature of genome graphs pose a real challenge for align-

ment algorithms. The most common sequence alignment approaches use seeds as a

starting point to narrow down the search space for each sequence fragment. The seeds

are a fast and easily accessible representation of the available sequence space and are

stored in pre-constructed indices. Such indices are often k-mer based. (Xin et al., 2016),

and the construction of k-mers from linear sequences is a trivial task as there is only one

possible k-mer starting at each base-pair. This drastically changes in a graph context

where variation gives rise to multiple k-mrs starting at the same position. Depending

on the length of k and variation frequency the number of possible k-mers can make the

construction of full k-mer indices infeasible, if not computationally impossible. In order

to create a k-mer index from a graph this complexity needs to be reduced. This can either

be done by choosing a less complex graph construction method, by removing variation

from the graph in the indexing phase (pruning), or by considering only the linear path

in the graph. Graph pruning removes nodes and edges from highly connected regions of

the graph in an effort to reduce complexity. This removes information from the graph

and can even cut the graph into unconnected components that are removed if they are too

small. As such it can make complex regions completely inaccessible for seeding, and
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therefore read mapping. This introduces a new type of reference bias. One example of

such an index is the GCSA2 index employed by vg map. This index is based on repre-

senting the genome graph as a de-Bruijn graph (Sirén, 2016). An alternative approach

that does not alter the graph structure but limits the available variation by linearizing the

sequence space and reducing it to the input path stored in the graph. An example of

this index is implemented in vgs GBWT (graph positional Burrows-Wheeler transform)

index. Both indices reduce the usable sequence space. While the GCSA2 index alters the

graph and can result in inaccessible highly variable regions, the GBWT index reduces the

possible choices in the graph to those that are represented by path. Both of these index

construction methods are part of the vg toolkit (Garrison et al., 2018), which is heavily

biased towards vcf-derived graphs. Therefore they struggle with highly connected, cyclic

graphs. This problem is reduced in long read alignment, as the seeds do not need to cover

the whole genome, but can anchor the reads to seedable regions and have them expand

into the complex parts in a local realignment step (Rautiainen and Marschall, 2019; Ma

et al., 2022). As a result very large, and complex graphs still pose a severe challenge for

graph alignment algorithms. This can be bypassed by using traditional alignment algo-

rithms to align the sequences to the linear genomes that have been used to construct the

graph and injecting the alignments into the graph paths based on their positions in the

linear sequence. Similar to the GBWT index based approaches this also limits the allele

combinations to those represented in the input genomes.

Even with the current shortcomings graph based alignment methods have been shown

to improve the results, or simplify workflows, compared to traditional linear reference

based methods. Alignments to graphs have enabled the genotyping of large structural

variants on a population scale (Sirén et al., 2020), and have been shown to improve the

variant detection accuracy (Crysnanto and Pausch, 2019). It has also greatly improved

the accuracy and downstream analysis of ancient DNA fragments (Martiniano et al.,

2020).

1.2.4 Usability of graphs

As in linear reference based analysis workflows, aligning reads to the graph is just the

beginning. In addition to improving the established analysis workflows, graphs offer the

opportunity to go even further and explore previously inaccessible territory. Using an

alignment based genome graph it is possible to describe variation that is stored in the

graph and even easily access nested variation. The approach that is closest to traditional

variant detection is implemented as part of the vg toolkit (Garrison et al., 2018). Here

the snarls in the graph are resolved in the context of the selected paths in the graph.

This results in a representation that is reference based and usable by existing analysis

pipelines. Variants can also be described in a reference free way, for example by Bub-

bleGun (Dabbaghie et al., 2021). In this case a novel data format had to be created that

limits its usability. Graph topology patterns have already been used to describe substruc-

tures in cancer genome graphs (Hadi et al., 2020). The better availability and resolution
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of variants presented in a graph also enables improved genotyping and dedicated tools

have been developed to harness this strength (Ebler et al., 2020; Grytten et al., 2021).

These tools use vcf based representations of the variable regions and a k-mer approach

to overlap reads with the graph they build internally. Methods to directly genotype, ref-

erence independent, from complex aligned graphs are still missing. Another mainstay

method that is currently being transferred to graph genomes are genome wide associ-

ation studies (GWAS). This analysis is used to link variation to phenotypic traits by

detecting associations between the traits and variable positions in a population of in-

dividuals. Here genome graphs have the power to massively increase the accuracy as

variation can be represented more truthfully and read mapping becomes more accurate.

This reduces noise in variant calls and allows the detection of clearer association signals

(Gupta, 2021). Using alignments to the graph, novel variant detection is possible as well.

The algorithm currently implemented as a module in the vg toolkit (Garrison et al., 2018)

is based on the freebayes algorithm (Garrison and Marth, 2012). The individual coverage

for each position is calculated and used in conjunction with information on snarls in the

graph to linearize the variation in respect to predefined paths in the graph, thus result-

ing in reference based variant calls in the vcf format. As mentioned in subsection 1.1.2,

the impact of structural variants can only be fully understood in the light of functional

annotations. While no graph based gene annotation algorithm has been implemented,

yet, it is possible to project existing features into the graph using their known position

on a path. One of the last big steps to make graphs usable by average scientists is the

visualization of its structure. In contrast to conventional reference genomes, graphs lack

linearity. This makes it much harder to visualize them and grasp the result. Of course

there are methods to visualize the raw graph without any alterations. They work very

well on small subgraphs, but become very hard to interpret on larger, more connected

sections of the graph (Wick et al., 2015; Beyer et al., 2019). As a consequence methods

like panache try to enforce a linearity in the graph by defining subgraphs as blocks with-

out PAVs (Durant et al., 2021). Other methods reduce the complexity of the structure by

removing information from the graph space (Gonnella et al., 2019).

1.3 Pan-genomics

The increasing availability of whole genome assemblies and accurate long read sequenc-

ing data has given rise to the field of pan-genomics. This field strives to describe a species

genetic potential in a more unbiased manner. The term pan-genome describes the genetic

material of a set of individuals. It can in general be split into three sub groups. The core

genome, which is shared between the majority, or all of the involved individuals, the

private genome, that is either completely private or rare, and the shell genome, which

covers all the rest and is for example shared by members of a certain sub-population,

but not by others. A sub class of pan-genomes are are pan-proteomes, that focus on the

coding gene space, or pan-transcriptomes, limited to the transcribed part of the genome.
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Multiple pan-genomes have been analyzed and, especially in highly complex crop plants,

have led to the discovery of important, unknown, alleles (Lu et al., 2015; Jin et al., 2016;

Gao et al., 2019; Guo et al., 2019; Li et al., 2022), as well as insights into the wider

genome structure of a population (Jordan et al., 2021). Some of those projects already

utilized genome graphs to store and describe the pan-genome itself (Nguyen et al., 2015;

Serhat Tetikol et al., 2021; Long et al., 2021; He et al., 2023). Even in clinically relevant

regions in human genetics, pan-genomes have aided a better understanding of the under-

lying genetic causes , for example for male-infertility (Chin et al., 2023). Recently the

first super-pan-genome has been analyzed. This pan-genome does not only consist of in-

dividuals of a single species, but contains multiple species of the genus poplar and helped

to identify genes that drive the divergence between the different species (Shi et al., 2023).

Overall the use of pan-genomes has started to take hold in the scientific community

and the advantages of expanded reference structures are recognized. In this thesis I aim

to build a graph based pan-genome of A. thaliana to better represent the variation of this

species. This genome graph will be used to explore the previously hidden sequences

of A. thaliana. To accomplish this, I will show how the standard operations, like read

mapping, variant calling and variant genotyping, used on linear reference genomes can

be performed on a complex genome graph. While genome graphs have been used be-

fore to represent pan-genomes, previous studies either shied away from whole-genome

alignment derived graphs and resorted to vcf based graphs (Sirén et al., 2020; Groza

et al., 2021; Serhat Tetikol et al., 2021; Bayer et al., 2022), avoided read alignments

to whole genome alignment derived graphs (Nguyen et al., 2015), or used shorter, less

complex species in their analysis (Hickey et al., 2020). I aim to overcome this and es-

tablish a whole genome derived graph in the plant species A. thaliana. In addition, I will

present the novel tool panSV, which utilizes the unique properties of a genome graph

to extract variation from it without relying on a reference genome. This enables me to

describe nested variation, which has been near impossible to detect before. The six de-

novo genome assemblies used in this project will be annotated, described and compared

to the reference genome. The genome annotation will be performed by auto-ant, a new

annotation pipeline that I designed. It combines established annotation methods in a

flexible framework to annotate TEs and genes in multiple genome assemblies. Finally,

I will use the constructed genome graph as a template to describe the pan-genome, and

pan-proteome of the six de-novo assembled genomes in a larger set of 840 resequenced

accessions, originating from the 1001 Genomes Project (1001 Genomes Consortium,

2016). I will also use the aligned short-read sequences to call variation from the graph in

an effort to use the additional power of the genome graph.
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Methods

2.1 Computational tools

The availability of multiple high quality, assembled genomes of a single species and the

prospect of genome graphs pose previously unknown challenges to existing tools and

approaches. Therefore I had to adapt and develop novel tools to support my research.

Here I present the auto-ant annotation pipeline, and panSV, a novel sequence variation

detection software, that were developed by me.

2.1.1 auto-ant

I developed an automatic and scalable pipeline to annotate genome assemblies using

different types of evidence. It combines pre-existing tools to mitigate the weakness of

individual approaches. This pipeline is able to annotate TEs and genes in one single run

and can be used with and without supporting RNA sequencing reads. It has been de-

signed as a modular and easy solution that on one hand allows for a hands-off annotation

by just providing the fasta sequences and a reference genome, but also allows the user

to customize different input files based on their specific needs. While it can be run with

and without supporting RNA sequencing evidence, it always requires a reference gen-

ome and reference annotation. Depending on the provided input data the appropriate sub

modules are executed and their results combined based on a weight matrix that reflects

their individual trustworthiness. In a last step orthogroups, based on the transcripts of the

annotated genes, the reference genome, and potential outgroups are detected to descripe

the pan-proteome of the annotated genomes. auto-ant is written as a Snakemake pipeline

(Köster and Rahmann, 2012). This means that it is able to detect alternative intermediate

files provided by the user and skip the rules to generate them. Thus for example a dif-

ferent alignment tool can be used, or an external TE annotation can be provided by the

user. The integration of Anaconda.org (anaconda, 2020), as a package manager, ensures

the consistent versioning of all required tools, as they are installed by the pipeline upon

its first execution.
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Figure 2.1: auto-ant rule graph - Layout of rules executed by auto-ant, coloured by functional groups:

Data preparation (red), annotation hint and evidence generation (green), gene annotation (blue), and or-

thogroup assignment (yellow).
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auto-ant can be divided into four major subsections (Figure 2.1). The first section is

preparing the pipeline and input data. It installs all dependencies and prepares the as-

sembled sequences, maps available RNA reads and produces a TE annotation of each

genome. The second step is the annotation hint and evidence generation. In this step

all annotation hints that are needed to run the annotations are prepared. This is mostly

relevant for the multiple runs of the annotation prediction tool augustus (Stanke et al.,

2008). The next and largest step is the annotation itself. Here the different annotation

tools are run. In order to minimize the bias of a single run and configuration indepen-

dent runs of multiple tools are performed. The de-novo gene prediction tool SNAP (Korf,

2004) is run as an independent genome annotation tool, but the main annotation software

used is augustus. Here up to three different runs are performed using different settings

and input data. One is using improved training based on an updated gene model created

for each input genome using BUSCO (Seppey et al., 2019). The second run utilizes hints

from an annotation lift over from a reference annotation onto the new assembly, using

ListOff (Shumate and Salzberg, 2020). The last run is only executed if RNA sequencing

data is available. This run of augustus utilizes hints created from RNA sequencing reads,

mapped to the genome. In addition the mapped RNA sequencing data is assembled us-

ing cufflinks (Trapnell et al., 2010) and provided as an independent annotation track. All

independent gene predictions are weighted and combined into one coherent, final anno-

tation using evidenceModeler (Haas et al., 2008). The last step of the pipeline is the

orthogroup assignment that calculates an ortholog based transmap using OrthoFinder

(Emms and Kelly, 2015, 2019). Additional scripts to obtain basic statistics on the an-

notation and orthogroups are provided, but not part of the pipeline itself. As auto-ant

produces multiple annotations in parallel, it is mandatory that the fasta entries of every

assembly have unique identifiers and carry the name of their assembly in the fasta header

in the format of >assemblyID contigID. The pipeline is controlled using a config file

that is used to specify all input data and settings.

Preparation step

In addition to an increase in the quality of annotations, one main objective of this pipeline

is to decrease the run time. Therefore the most important preparation step is to chunk

the input fasta files. As augustus (Stanke et al., 2008) is deterministic, I can run it on

individual components of the assembly and later combine them into a single annotation.

The user can set a number of chunks (n < number of contigs) and the pipeline will split

the input fasta into n separate fasta files, where n-1 files contain the n-1 largest contigs

and the nth file the remaining sequences. A second major step in the preparation is the

TE annotation. Here EDTA (Ou et al., 2019) is run to annotate TEs in each individual

genome. This annotation will later be used to soft-mask parts of the genome in the

augustus annotation runs. Doing so increases the accuracy of the annotation as TEs can

introduce noise in the gene prediction and can result in wrong gene annotations. If RNA

sequencing data is available it will be mapped to its respective genome. The fastq files
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are attributed to the correct genome based on a shared file name prefix. The read mapping

is performed using STAR (Dobin et al., 2013). The maximum intron size can be set by

the user. A reasonable default value for A. thaliana has been provided in the config file.

If possible four threads are used per run and non canonical intron motifs are removed.

Multiple mappings are not allowed and the two pass mode has been set to basic. The

mappings are stored as bam files and merged into a single file for every accession if

multiple replicates and tissues have been provided. As a last step the resulting bam files

are sorted for easier access in the hint generation using samtools sort (Danecek et al.,

2021) with 12 threads.

Hint generation step

The main tool of this pipeline, augustus, uses hints to support, or correct, its ab-initio

prediction. These hints are generated by a collection of rules that are attributed to this

step of the pipeline. As a first step the EDTA TE annotation is transformed into the hints

format using a custom script that marks them as regions to soft-mask in the annotation.

This set of hints will be used in every run of augustus, independent of the other hints.

Augustus comes with a multitude of ready to use prediction models for different species.

These models are always tailored towards the species existing reference genome and

thus contain a bias of their own. Therefore one run of augustus is performed with an

alternative training model that is created based on the specific genome. This retraining is

performed by BUSCO (Seppey et al., 2019) for each individual genome assembly. Each

retraining set is then softlinked into the species directory of augustus, that was installed

by anaconda. The hints for the second run of augustus are created from a lift-over of a

pre-existing reference annotation onto the new assembly. The lift-over is performed by

LiftOff. Using a minimap2 (Li, 2018) alignment of the new assembly with the reference

genome, this tool utilizes the established alignment anchors to project the existing gene

annotation onto the new assembly. LiftOff is run on default settings. The only exception

is that partial hits are discarded and the reporting of multiple gene copies was activated.

The resulting lift over gff file was then converted into the augustus hint format. If RNA

sequencing data has been provided, two independent types of hints are generated using

scripts provided by augustus. In case the RNAseq was marked as being stranded by the

user the hints are generated independently for each strand and merged afterwards into

one coherent hint file. The first type of hints are based on the wiggle track format that

was introduced for the human genome project (Kent et al., 2002). The sorted bam files

are converted to wig files using the bam2wig script that is supplied by augustus. These

files are then converted to hints using wig2hints. In most cases the default settings were

used, except the minimum threshold was set to 2 and the minimum score to 4. Boundary

areas with a coverage <0.1 (–prune) were removed and the radius of each hint was set to

4.5. The second type are expressed sequence tags (EST). They are calculated using the

bam2hints script. The hints for each independent run of augustus are merged with the

TE hint file.
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Annotation step

The main part of the pipeline is the annotation step. Here the individual gene prediction

tools are run and their results are merged into one combined annotation using evidence-

Modeler. An individual augustus annotation is run on each chunk created in the prepa-

ration step. The RNA evidence, and lift-over based augustus annotations are run using

the pre-trained species model selected by the user. The additional BUSCO retrained

model is used in a third, independent, run. augustus requires an extrinsic evidence ma-

trix to weight the individual evidence tracks, based on their trustworthiness. This file

can be altered by the user in order to reflect his specific needs. A file with reasonable

default values for A. thaliana is supplied with the pipeline. Each annotation run cre-

ates an individual output file. The files for the individual chunks of an assembly are

collected and merged. Next the gff3 annotations are converted into a format that can

be used by evidenceModeler using the augustus GFF3 to EVM GFF3.pl script that is

provided by evidenceModeler. In order to distinguish them in the weighting process,

each of the individual augustus annotations are marked with a unique string based on

the type of evidence used. In an effort to reduce the intrinsic bias that three individ-

ual runs of the same annotation algorithm introduces, the de-novo annotation tool SNAP

is run. The user has to select a species from the set of pretrained models that SNAP

provides. Apart from this the tool is run using default settings. Again, the results of

the annotation are converted by a script provided by evidenceModeler (evidenceModel-

ers SNAP to GFF3.pl). If RNA sequencing reads have been provided cufflinks is run

to add an additional layer of evidence. Based on split alignment produced by STAR

individual transcripts are assembled, and converted into a format readable by evidence-

Modeler. Cufflinks is run using default settings. The conversion is performed using the

cufflinks gtf to alignment gff2.pl script that is provided by evidenceModeler. In addition

to the data type conversions evidenceModeler requires the input data to be chunked into

1 Mb bins with 1 kb overlap. This binning is performed by another script provided by

evidenceModeler (partition EVM input.pl). Next the commands to combine the annota-

tion of each bin are generated using the write EVM commands.pl script. In addition to

the bins this script requires the individual annotation gff files, the assembly fasta, and a

weight matrix. The weight matrix can be adjusted by the user, but auto-ant comes with

two tested options. One that has been validated to be used with the RNA sequencing

based annotations and one that works without. The weights for each input annotation

were chosen based on their ability to recreate the known araport11 reference annotation

of A. thaliana (Cheng et al., 2017). The created commands are then executed and the

individual annotations are weighted based on the provided matrix to create a combined

annotation in the gff3 format.
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Orthogroup assignment step

The last step of the auto-ant pipeline detects orthologs in the de-novo annotations, the

reference annotation, and outgroups provided by the user to link gene copies between

them. The reference annotation is included to provide a framework for later comparisons

and functional analysis. Orthofinder (Emms and Kelly, 2015, 2019) detects ortholo-

gous genes based on amino acid similarity, it therefore requires amino acid sequences.

The single longest transcript of each gene is generated using gffread (Pertea and Pertea,

2020). The transcripts are then compared to the other annotations in a pairwise all vs

all diamond (Buchfink et al., 2021) search. A species tree of all input genomes is con-

structed based on the results and genes are assigned into orthogroups. The results of

Orthofinder are post-processed to be in a tabular format that allows easier readability

and also includes single genes that do not have an ortholog. In a very last step the or-

thogroup ID of each gene is added to the gene feature section in the annotation gff3 files

for easier cross reference. If the orthogroup of a gene contains at least one gene from

the reference annotation their reference gene IDs are also added to the individual gene

entries.

Auxiliary scripts

auto-ant comes with a set of auxiliary scripts that are not part of the pipeline itself but

can be used to gain insights into the annotations accuracy, its basic statistics and the pan-

transcriptome. The TransMapStats.py script reads the final transmap and creates basic

plottable statistics on the annotated genes, their orthogroup assignment and relationship

with the reference annotation. The TransMapRefDiff.py script compares the exon count

and the transcript length of a predicted gene with the median of its reference orthologs

to estimate the accuracy of the annotation. A saturation and pan-transcriptome analysis

can be performed using the saturationAnalysis.py script. It first calculates the core, shell,

and private transcriptome based on the number of annotations that contribute genes to an

orthogroup. If all annotations contribute at least one gene the orthogroup is considered

as core. If an orthogroup only contains genes from a single annotation, it is considered

private. All other orthogroups are attributed to the shell class. For each assembly the ex-

pansion or contraction of an orthogroup is calculated by comparing the number of genes

this annotation contributes to the median number of genes contributed by all annotations.

If the number of genes an annotation has in an orthogroup equals the median it is con-

sidered as conserved. A reference ID can be supplied using -r parameter. In this case

the core and shell classification is based on the presence of the reference annotation and

the copy number changes are calculated in comparison to the copy number of reference

genes in this orthogroup. This script also calculates a Z-Score matrix based on the copy

number changes in unconserved orthogroups. The user can either set a fixed value for

missing data points, or have them be calculated as a Z-Score. Setting a dedicated value

has the advantage that orthogroups with missing annotations are clearly visible in the
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final matrix. The last step of this script is a bootstrapped saturation analysis. It calculates

the core, shell, and private orthogroups in incremental steps for a user-defined number of

random combinations. The last auxiliary script (nonStandardOG.py) allows the user to

detect non-standard orthogroups. Those orthogroups are either unconserved orthogroups

as described above, or orthgroups that have mobile genes that do not occur on the same

chromosomes in every accession.

Pipeline validation

The auto-ant pipeline was validated using the A. thaliana TAIR10 reference genome

(Berardini et al., 2015) and it’s araport11 reference annotation (Cheng et al., 2017). The

performance of each individual tool was measured by its ability to re-annotate the ref-

erence genome and re-create the reference annotation. The settings used in the auto-ant

pipeline were tuned to achieve the best result for each individual tool. The performances

were then compared to each other and weighted based on the reliability of the input as

well as the output. This data was used to set the weights of the evidenceModeler algo-

rithm. To represent RNA sequencing reads, real data originating from the A. thaliana

accession AT6909 were used, as the reference genome is based on this accession. The

reads were mapped to the TAIR10 reference genome using STAR and the same settings

as in the auto-ant pipeline. The value for the maximum intron size was estimated using

the araport11 annotation and was set to 6,000 bp. The tools were run individually us-

ing their default settings. The resulting de-novo predicted features were intersected with

the araport11 annotation using bedtools intersect (Quinlan and Hall, 2010). Only 100%

coverage of the features were considered as correct. For each feature type in the ara-

port11 annotation the sensitivity, as a fraction of re-annotated features fully contained in

known features, as well as the specificity, as the fraction of correctly matched reference

predictions, was calculated. The calculated sensitivity and specificity values of gene,

CDS, and exon features were used to set the weights of the evidenceModeler weight ma-

trix. The final auto-ant pipeline was then run to re-annotate TAIR10 once again and the

results were checked against the performances of the individual tools.

2.1.2 panSV

In order to overcome the established, reference focused, analysis, certain tasks need to

be adapted. As variant detection is a task that is heavily influenced and biased by the

reference genome I decided to develop the reference agnostic variant description tool

panSV to use it in the analysis of the A. thaliana graph based pan-genome.

panSV works under the assumption that a species’ pan-genome consists of a library of

sequences that are either present in or absent from each individual genome. It leverages

the fact that this library is already stored in the genome graph and describes such variable

regions in the graph. Each variable region is described in the context of every genome

that contributes to it, and thus eliminates the need for a reference genome as sole coor-
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dinate space. Therefore panSV requires paths to be present in the graph. It is built to

detect variation of any size, from SNPs to chromosome arm size alterations including

their nested variation and describe them in a hierarchical format. The hierarchical for-

mat enforces a strict parent-child relationship of nested variation that is reflected in the

naming scheme of the reported variable regions. With the idea of a library of variable

sequences in mind panSV is based on the concept of core levels. The core level of a se-

quence in the graph is defined as the number of genomes that contain this sequence. With

the help of this concept panSV can identify, and describe, regions of the graph where the

core level varies. This concept results in regions with properties that can differ from that

of a classic bubble structure in that it does not need to be a closed subgraph. panSV

describes the de- and increasing core levels of the graph, independent of the paths that

are the cause for that change in core level. This means that multiple regions can share a

subset of nodes, without being direct parent, and children. These variable regions then

form a sibling relationship. The output of panSV is an easily comprehensible BED file

alongside additional statistics files that represent the nested structure and explain basic

statistics of bubbles and traversals.

Currently two versions of this algorithm exist. The early version, implemented by me in

python, will be used in this thesis. A second version, that massively increased perfor-

mance has been implemented by Sebastian Vorbrugg in Rust, will remain under active

development.

panSV algorithm

panSV uses the gfautils library (Kubica, 2021), which I created to read, store, and access

a graph in GFA format. After reading and processing the graph, a core level is calculated

for each node in the graph. The core level is the sum of genomes that traverse a node,

where each genome can have multiple paths, but only contributes once to the core level

of a node. Differences in the core level are used to detect variable regions in the graph.

They are defined by two anchoring nodes with a higher core level than the nodes that

are located between the anchors. The paths that go through such a variable region form

traversals that can be used by multiple paths.

In order to detect the variable regions, panSV traverses each path from start to end and

compares the core level of two consecutive nodes. If the core level decreases a new

variant traversal is being started and the previous node is saved as the left anchor, together

with the current position in the path. The current variant traversal is kept open until a

consecutive comparison shows an increase in core level to at least the level of the left

anchor. The current path position is considered the stop position of the traversal and

the node becomes the right anchor of the variable region. The two anchors are then

compared to a list of already known anchors. If a variable region with these anchors

already exists the current traversal will be added to it. The list of nodes from the current

traversal are compared to the nodes of previously observed traversals of this region. If

the same traversal has already been observed the current path is added to it. Otherwise

24



2.1 Computational tools

a new traversal is added to the region. If no region with the anchors exists a new one

is created and the current traversal stored as its first traversal. Next all recently closed

regions with a lower core level are compared to the node set of the current region. If they

are a 100% subset, they are saved as sub-regions, representing variation nested within

the closed traversal. In the next phase panSV detects PAV type bubble traversals by re-

walking each path and searching for instances where the two anchors of a known region

are directly adjacent in the path. They are treated as traversals of this region.

Algorithm 1 panSV pseudo-code example

1: for path in graph do

2: for node in path do

3: if node.coreLevel > nextNode.coreLevel then

4: add node to all open traversals

5: start new traversal

6: else if node.coreLevel < nextNode.coreLevel then

7: add node to all open traversals

8: close all traversals with coreLevel ≤ nextNode.coreLevel

9: if region with anchor nodes of the closed traversal exists then

10: add closed traversal to existing region

11: else

12: create new region with anchors of the closed traversal; add current

traversal

13: end if

14: else

15: add node to all open traversals

16: end if

17: end for

18: end for

end

The definition of variable regions implemented in panSV does not follow the strict defin-

tion of bubbles. Therefore multiple variable regions can share a subset of nodes. In order

to accommodate this panSV searches for sibling regions by overlapping the node sets of

variable regions. If two variable regions of the highest core level share a subset of nodes

they are marked as siblings in the output.

In the last step an ID is assigned to each variable region. The IDs are made from ‘.’-

separated numbers. The number of sparations depend on the number of core levels in

the graph and are used to show the parent-child relationship of parent and child regions.

Starting from the highest core level each variable region is assigned a consecutive nu-

merical ID, starting from 1. A child inherits the ID of its parent and its own numerical

ID is added to the corresponding core level of the ID. For example a parent ID of a core

level 5 graph would be 5.0.0.0. The first direct child would be assigned the ID 5.1.0.0,
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if it is a core level 4 region, or 5.0.1.0 if it is a core level 3 region. Using this naming

convention the nested relationships are encoded in the IDs and can be interpreted easily.

In addition each traversal of a variable region is also assigned a numerical ID.

panSV output

By default panSV creates three different output files. A BED file, detailing the positions

of each traversal in the individual genomes coordinate system, a traversal file that con-

tains information of the traversals and their paths, and a statistics file with basic statistics

on each variable region. In addition an optional sibling file can be obtained that contains

the sibling region IDs for each detected variable region.

The BED file contains the position of the variable regions in the coordinate system of

the individual paths of the graph. It is a combined file for all paths in the graph, but can

easily be split based on the path IDs. The first three columns are that of a standard BED

file. The fourth column holds the ID of the variable region that is separated by a ‘ ’ from

the ID of the traversal this path uses to traverse this region. The fifth, and last, column

contains the core level of this region.

Basic statistics for each variable region are stored in the statistics file. They are con-

nected to the region IDs. For each region this file contains the core level, the number of

subregions, the combined length of all nodes that are part of this variable region, as well

as the minimum, maximum and average traversal length. It states the number of traver-

sals through the region, as well as the number of paths that traverse them. This number

can be higher than the core level if paths from the same sample traverse a variable region

multiple times. Lastly, if the corresponding option was set, it contains the number of

siblings that this region has.

The traversal file stores information on each traversal. It contains the traversal ID, fol-

lowed by the region ID this traversal belongs to. It also contains the length of the traver-

sal, the number of paths that traverse it and the sum of all traversals through it. This

number can differ from the number of paths if a path traverses it multiple times. In addi-

tion it also contains a ‘;’ separated list of all path IDs that use the traversal.

The optional sibling file has two columns. The first contains the region ID, while the

second contains a ‘;’ separated list of all siblings detected for it.
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2.2 The sixRef project

Table 2.1: Admixture groups - Accession ID, name and admixture

group of the six accessions selected for de-novo assembly as recorded

in the 1001 genomes project.

Accession ID Accession Name Admixture Group

AT1741 KBS-Mac-74 germany

AT5784 Ty-1 admixed

AT6909 Col-0 central Europe

AT6911 Cvi-0 relict

AT7186 Kn-0 central Europe

AT7213 Ler-0 admixed

In order to step away from

a singular reference space

and move towards a pan-

genomic view of species and

genomes we need to enlarge

the sequence space. This

requires additional genome

assemblies to construct the

graph and analyze the pan-

genome represented by it.

For this purpose six acces-

sions of A. thaliana were

chosen to be sequenced and

de-novo assembled (Table 2.1). The accession which the current TAIR10 reference gen-

ome (Berardini et al., 2015) is based on, AT6909, was chosen, together with the widely

used mutant AT7213. Four additional accessions were chosen to complete the set based

on their sequence, and geological divergence (Figure B.1), which was estimated during

previous resequencing experiments with the TAIR10 reference genome. During the as-

sembly phase it was discovered that the accession AT7186 had initially been mislabeled

as AT7063. The assembled genomes were annotated for genes, TEs, and repeats. The

gene annotations were combined in an orthogroup assignment in order to describe the

pan-proteome. In addition the genomes were aligned to the TAIR10 reference genome

and variants were called in a reference based framework. In a last step a genome graph

was built that was used to describe the pan-genome stored in it and served as an align-

ment target for a large collection of short-reads from the 1001 Genome Project (1001

Genomes Consortium, 2016) to show the feasibility of such an approach, genotype the

pan-genome in the larger population, and call novel variants.

2.2.1 Assembly

The sequencing data generation and genome assembly was performed by Dr. Felix

Bemm. The seeds for the six accessions were taken from the internal seed stocks of

the Ecker and the Weigel labs. The plants were grown at 20°C in a growth room with

a 13h daylight phase. Leaves were harvested approximately three weeks after bolting.

DNA was extracted and prepared for sequencing. For each accession three types of ge-

nomic sequencing data was produced. PacBio long reads, 250 bp PCRfree paired-end

Illumina reads, and an optical map for scaffolding. The assembly of the PacBio long

reads was performed using canu (Koren et al., 2017). The expected genome size was

set to 140 Mb. Two separate error correction and polishing steps were performed on the

assembly. The first used the original long reads and quiver (Chin et al., 2013), while
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the second leveraged the lower error rate of the short-reads and was performed by pi-

lon (Walker et al., 2014). The contigs were scaffolded using optical maps and possibly

misassembled regions were identified by an previously established python based SV-

calling pipeline (O’Neil, 2016). Erroneous regions were corrected using the results. The

length cut-off for this step was set to 5kb, as the low resolution of optical maps can

result in false positive calls (Kawakatsu et al., 2016). During the scaffolding step the

gaps were filled with Ns, according to their size, estimated by the optical map align-

ment. Statistics on the assemblies were collected by me using the SeqFilter toolbox. The

scaffolded chromosomes of the individual assemblies were aligned with the TAIR10 ref-

erence genome (Berardini et al., 2015) using minimap2 (Li, 2018) with the asm5 preset.

In order to examine high level structural variants the resulting alignments were visual-

ized as dot plots with the help of minidot from the miniasm package (Li, 2016). Finally

I ran BUSCO (Seppey et al., 2019) to assess the completeness of the genome assembly.

The embryophyta odb10 data set was downloaded using the internal download method

of BUSCO and was used in the analysis.

2.2.2 SV calling & evaluation

In addition to conventional short-read variant calls, assembly based methods have be-

come a viable option to detect longer variants that have been hard to detect using short-

reads. While conventional pairwise alignments were the method of choice so far, graphs

are emerging as an option to represent multiple whole genome alignments and to be used

for variant detection. I called variants based on the new assemblies using a pairwise ap-

proach and a graph based approach. In addition I created a subset of the six accessions

from the full 1001 Genomes variant calls (1001 Genomes Consortium, 2016). The three

results of the three approaches were first analyzed individually and then intersected and

compared. After generating each set of results they were submitted to the same post-

processing pipeline.

Short-read based variant calls

For the comparison and validation of different variant calling approaches I extracted

the variants of the six assembled genomes from the set of variants called in the 1001

Genomes Project. These variants were called by mapping short-read sequencing data

to the TAIR10 reference genome (Berardini et al., 2015). I downloaded the dataset

(1001genomes snp-short-indel only ACGTN.vcf.gz) from the 1001 Genomes web page

(https://1001genomes.org/ ). I subsetted and recoded the file to only contain the variants

of each of the six accessions using vcftools (Danecek et al., 2011). Each individual vcf

was then submitted to the post-processing steps described below.
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Pairwise alignment based variant calls

Pairwise whole genome alignments can improve variant calls as they enable a better

resolution of large structural variation that is otherwise hard to detect using short-read

based methods. SyRI (Goel et al., 2019) is a tool that can call variants from such an

alignment. This software requires a one-to-one relationship between aligned scaffolds,

therefore I had to remove the unplaced contigs of each assembly. Only the chromosome

scaffolds were used in the alignment. I ran pairwise genome alignments for each genome

assembly against TAIR10 using minimap2. Due to the low sequence divergence between

the TAIR10 reference genome and the new genome assemblies the asm5 alignment preset

was used. In addition the -eqx parameter was used to include =/X CIGAR operators in the

sam output file. This file was then used by SyRI to detect the synteny structure as well as

small and large variation between the two genomes. SyRI was run on default settings and

all intermediate files were kept for later use. I split the output vcf file into two separate

files. A bed format file containing the large structural variants as marked by SyRI with

‘<..>’ variant identifiers. These variants were further classified as syntenic sequence,

rearranged reference sequence, or novel sequence, based on the class assigned by SyRI.

This file was merged with the set of unaligned sequences, using reference positions. The

remaining variants were kept in the vcf format. By using alignment coordinates pro-

vided by SyRI I also created bed files that hold the locations of structural variants in the

non-reference coordinate space. As structural variants can contain nested variation I in-

tersected them with the small variant vcf file using bedtools intersect, and calculated the

variant number per kilo base for each class of structural variant. The structural variants

reported by SyRI were visualized using plotsr (Goel and Schneeberger, 2022).

Graph based variant calls

In contrast to the reference biased variant calls of the 1001 Genomes Project and the

pairwise variant calls by SyRI, the genome graph that I constructed (subsection 2.2.4)

contained the complete sequence of all six assemblies and the reference. This enables

a more truthful representation of the genetic relationship of the accessions. I called

reference based variants from the graph using vg deconstruct. All paths of the TAIR10

reference genome were used as coordinate system. The output vcf file contained every

path in the graph as individual sample line. I used the accession IDs to combine samples

into a single sample column per accession. In addition to the joined file I created an

individual file per accession. All vcf files were then submitted to post-processing.

Variant post-processing

The vcf files of each variant detection approach were submitted to the same post-processing

steps. If necessary vcf files were merged using vcftools vcf-merge (Danecek et al., 2011).

Heterozygous calls were split using vcflib’s vcfbreakmulti (Garrison et al., 2021), sorted
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using vcftools vcf-sort, compressed using bgzip, and then indexed using tabix. I cate-

gorized the variation in each file into one of three different classes based on their size.

SNPs: if one base pair was replaced by another single base pair. Small variants: for

everything smaller than 50 base pairs and large variants for all variations bigger than 50

base pairs.

Variant intersection

In order to describe the differences in variation called by each approach I intersected

the variants detected by the different methods. Each variant class was intersected indi-

vidually using bcftools isec –nfiles +1 (Danecek et al., 2021) in order to get a presence-

absence matrix. This method only returned perfect matches. All small and large variants

that were not intersected were converted into bed files and a non-perfect intersection step

with the vcf files was performed in order to find overlaps with smaller variants using

bedtools intersect (Quinlan and Hall, 2010). I reported the number of small and large

variants that overlapped with at least one variant in the vcf file, as well as the number of

variants contained in each variant.

2.2.3 Annotation

An annotation of de-novo assembled genomes is a vital step towards a better under-

standing of the pan-genome and pan-proteome of A. thaliana. Therefore I ran the new

auto-ant annotation pipeline to predict TEs and genes in each assembly and created an

orthogroup based trans map. In addition I identified repeats in the sequence using Re-

peatMasker (Smit, AFA, Hubley, R & Green, P., 2013).

Gene annotation

I used the auto-ant pipeline described in subsection 2.1.1 to annotate genes and TEs in

the assemblies. In preparation for the annotation RNA sequencing evidence was pro-

duced by Felix Bemm. He performed an RNA sequencing experiment for four different

tissues, or developmental stages (flower, leaf, root, seedling) for each accession. The

RNA was extracted from fresh plant material using the RNeasy Plant Mini Kit in three

biological replicates per tissue. The libraries were prepared using the protocol described

by Kawakatsu (Kawakatsu et al., 2016). The completed libraries were sequenced as 150

bp single end reads on an Illumina HiSeq2500 instrument. The sequenced reads were

pre-processed by me. As the adapters used for the sequencing were unknown and could

not be recovered or removed by standard trimming tools a first pass of quality trimming

was performed using cutadapt (Martin, 2011). I trimmed Ns off the ends of each read

and reads shorter than 100 bp were discarded. As a next step the first 10 bases were

cut off each read using awk to get rid of the adapter. The processed reads were then

fed into the auto-ant pipeline to perform the annotation. I ran auto-ant in RNASeq and
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stranded mode. Based on the presence of six chromosomes and a set of unplaced con-

tigs in each assembly I set the chunk number for the contig splitting to 7. In the read

mapping step with STAR (Dobin et al., 2013) the maximal intron length was set to 6 kb.

TEs were detected using EDTA (Ou et al., 2019), independent of the pipeline. EDTA

was run on default parameters, except it was provided with the araport11 (Cheng et al.,

2017) coding sequence fasta file to mask those regions for the TE annotation. In ad-

dition the options to run RepeatModeler (Smit and Hubley, 2008) and to perform the

whole genome TE annotation were enabled. The annotation gff files were provided to

auto-ant for hint generation. The TAIR10 reference genome (Berardini et al., 2015) and

the araport11 annotation were provided for the liftover of known gene models onto the

de-novo assemblies and the later orthogroup assignment. BUSCO was run using the

embryophyta odb10 database. The training sets for A. thaliana were used in every ap-

propriate tool of the pipeline. In the orthogroup assignment step two additional coding

sequence files of were provided. For both annotations only the single longest transcript

of each gene was used. One annotation was the araport11 reference annotation to enable

me to place the de-novo annotated genes in the known reference framework and easily

assign potential functions. The other annotation was an Arabidopsis arenosa annota-

tion, used as an outgroup (Cristina Barragan et al., 2021). Using an outgroup improves

the performance of Orthofinder. The pan-transcriptome statistics of the annotation were

calculated by running the saturationAnalysis.py script from auto-ants auxiliary script

collection. Orthogroups in the final Transmap were filtered to identify non-standard or-

thogroups using the nonStandardOG.py script.

Repeat detection

Repetitive regions in the genomes were annotated using RepeatMasker (Smit, AFA, Hub-

ley, R & Green, P., 2013). The software was run in sensitive mode with the pre-trained

A. thaliana species model. The results were combined with the ‘repeat region’ entries in

the EDTA gff file to create a joined repeat database. Those lines were then removed from

the EDTA TE gff file. I then intersected the two files using bedtools intersect (Quinlan

and Hall, 2010) and removed all repeat entries that overlapped with TEs to create two

non-overlapping sets.

2.2.4 Graph construction & processing

The genome graph was constructed using the pggb pipeline (Garrison et al., 2023). This

pipeline runs a multi step process to convert fasta input sequences into an aligned gen-

ome graph. It first aligns the input sequences, then converts the alignments into a graph

format and finally topologically sorts, smoothes, and realigns the graph. In my graph

construction I aim for a connected graph that allows multiple copies of repeats and TEs

to be aligned. Meanwhile the graph should maintain the syntenic linearity of the input

sequences. I evaluate the alignment represented by the graph, by extracting and analyz-
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ing the regions of the graph that were not aligned to the known reference genome. In

addition I use the panSV software, developed here, to extract variable regions from the

graph and describe them using the annotations of the six de-novo assembled genomes.

The graph is induced based on an all-vs-all whole genome alignment performed by wf-

mash (Marco-Sola et al., 2021). wfmash was run with a segment length of 10 kb and a

block length of 30 kb. The mapping identity was set to 90% and based on the results

of the orthogroup assignment and TE annotation up to 40 secondary alignments were

allowed to align high copy number genes and TEs. All other settings remained in their

default state. The resulting paf-alignment file was then fed into seqwish (Garrison and

Guarracino, 2023) to be converted into a genome graph in gfa format. Here almost all

of the default settings were used, with the following exceptions. The minimum match

length was set to 19 bp and the transitive batch size was set to 10 Mb. As the first graph

construction can contain partially unaligned regions as well as overly connected sub-

graphs consisting of very small nodes the seqwish graph was submitted to a finishing

step using smoothxg (pangenome consortium, 2023). The minimum edit based identity

of blocks was increased to 0.7 and the alignment score parameters of the partial order

alignment were changed to be more conservative in an effort to prevent overalignment of

repetitive sequence motifs. The updated alignment score parameters were 1,19,39,3,81,1

(default: 1,4,6,2,26,1 [match,mismatch,gap1,ext1,gap2,ext2]). The final graph was then

converted into the vg format using vg convert -v and nodes longer than 1 kb were split

by vg mod -X 1000. Afterwards the resulting graph was converted back into gfa format

using vg view. The resulting gfa file as used in all downstream steps of this thesis.

Graph based pan-genome

The graph allows me to evaluate the pan-genome as described by the aligned accessions.

As part of this I performed a saturation analysis that classified the nodes in the graph

as core, if all accessions traversed the node, and shell, if only some traversed it. This

analysis was bootstrapped and in each step every possible combination was calculated.

In addition the sequence alignment rate was calculated for each accession in the graph.

This was done from a true pan-genomic standpoint, considering the core genome, as

well as from a reference based point of view. On the basis of the pan-genome alignment,

sequences could be classified into three categories: core sequence, across all seven as-

semblies in the graph; private sequence, sequence that cannot be aligned to any other

genome; and shell sequence for the remaining sequence. The sequence length as well as

its fraction in each genome were calculated for each category. For the reference based

alignment analysis the sequences were also divided into three categories: reference se-

quence, if the reference was aligned to this sequence, aligned sequence, if the sequence

was aligned to at least one other accession, but not reference, and private sequence, if the

sequence was unique to one accession. Again the sequence length and its fraction as part

of each assembly, and the full graph were calculated. I also collected statistics on every

node in the graph. For each node I recorded its length, the number of paths traversing it,
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its status in the reference and non-reference pan-genome and a binary identifier if it is a

‘repeated’ node. Here, ‘repeated’ means that at least one accession traverses this node

multiple times. As a last value all paths that traverse this node at least once are stored

in a “;” separated list. This data was then used to identify nodes of interest and further

investigate them.

Non-reference sequence

Table 2.2: Kraken2 species - Additional assemblies

added to the custom Kraken2 database.

Species BioProject

A. arenosa PRJEB42625

Arabidopsis lyrata in house

Capsella bursa-pastoris in house

Capsella rubella in house

Capsella orientalis in house

Solanum lycopersicuma PRJNA119

Beta vulgaris PRJNA413079

In order to assess the quality and com-

pactness of the graph I analyzed the parts

of the graph that were not aligned to

the TAIR10 reference genome (Berardini

et al., 2015). These non-reference se-

quences were compared to the reference

based variant calls by SyRI (Goel et al.,

2019). In addition I performed a taxon-

omy analysis to detect their potential an-

cestry using Kraken2 (Wood et al., 2019).

I altered the panSV algorithm to extract

non-reference sequences. It now traverses

each path, but unlike the original algo-

rithm it does not break at changes in the core level, but at locations where the path

deviates from a reference path. The detected traversals are reported in a bed format

that includes the traversed nodes and full sequence. For the analysis I removed all de-

tected non reference sequences smaller than 50 bp and all sequences that contained more

than 90% Ns. I first intersected the variants with the not-aligned sequences as called by

SyRI. The remaining variants were intersected with the remaining SyRI variants. The

intersections were performed using bedtools intersect (Quinlan and Hall, 2010). A 90%

overlap of the variants with the non-reference sequences from the graph was required.

The same analysis was repeated for the annotated features. The positions of the non-

reference sequences in each assembly were intersected with the previously annotated

features: genes, TEs and repetitive regions. Each had to be contained to at least 90% in

the non-reference region. The ancestry analysis was performed using Kraken2. I used the

pre-compiled Kraken2 plant database and augmented it with additional, more recent full

genome assemblies of other plants to obtain a better representation of the close relatives

of A. thaliana. I added assemblies of A. arenosa (Cristina Barragan et al., 2021), S. ly-

copersicum (Budiman et al., 2000; Wang et al., 2005), B. vulgaris (Mitchell , Mitch), as

well as unpublished genome assemblies of A. lyrata, C. bursa-pastoris, C. rubella, and

C. orientalis (Table 2.2). The taxonomy structure was downloaded using kraken2-build

–download-taxonomy and the sequence database using kraken2-build –download-library

plant. I used the process described in the Kraken2 documentation to add the additional

assemblies. The final taxonomy database was then constructed with kraken2-build –
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build. Kraken2 was run for each set of large non-reference sequences (≥ 50 bp) with the

new database. In addition to the standard output I requested the report file using –report.

The taxonomy was visualized with pavian (Breitwieser and Salzberg, 2020).

Pan-genome based variant detection

While conventional variation detection approaches link variation to coordinates in a lin-

ear reference, the graph has the unique property to also explain the nested variation and

population structure of the variants. In order to access this variation I developed the

panSV algorithm. This tool enables us to describe the variation stored in the graph in

an unbiased, reference free way. I used this software to extract the variants stored in the

genome graph of the six de-novo assemblies and the TAIR10 reference. I ran panSV on

the full gfa graph to obtain the variable regions. An individual bed file for each of the six

assemblies was created. These files were then intersected with the set of non-standard

orthogroups identified by auto-ant using bedtools intersect and required at least 90%

overlap of a gene with the variable region. I also classified the variable region detected

by panSV into SNPs, small variants, and large variants based on their minimum and

maximum traversal length. A variable region was identified as SNP, if all traversals had

a length of 1. It was called a small variant, if the largest traversal was no longer than 50

bp. Everything else was labeled as large variant.

2.2.5 Graph alignment evaluation

In order to describe and genotype the distribution of non-reference sequences in the

graph, I aligned short-read data to the graph. This required an evaluation of the per-

formance of the available graph alignment algorithms on different target graphs. I con-

structed a set of five different genome graphs, of increasing complexity, and used four

different alignment tools to align short-reads to them. I selected two alignment tools

from the vg toolkit (Garrison et al., 2018) (vg map and vg giraffe). While the vg team

had already tested the performance of their mapping algorithms on simulated data and

vcf based graphs, and applied them successfully on real life data (Sirén et al., 2020) I

want to map reads to complex graphs. It is known that the vg alignment tools can strug-

gle with high complexity graphs, therefore I decided to add two additional alignment

approaches to the analysis. The first is graphAligner (Rautiainen and Marschall, 2019),

an alignment tool initially designed for long read alignments. At the time of analysis no

other alignment software was publicly available, therefore I decided to try it on short-

read data. The last approach I decided to test is a very recent addition to the vg toolkit.

This approach injects mapped reads from a bam file into a graph structure based on their

alignment positions in a linear sequence. Here I mapped reads to a concatenated version

of all input genomes using bwa mem (Li, 2013) and injected them into the alignment

based graphs. This has the advantage that an established alignment algorithm can be

used, but limits the accessible allele combinations to those in each of the flat sequences.
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I selected 12 short-read sets to be mapped to the five different graphs. Six of them were

the 250 bp PCRfree reads used to polish the de-novo assemblies. The other six were

randomly selected from the 1001 Genomes Project (1001 Genomes Consortium, 2016)

short-read data and were required to have a N90 read length of over 100 bp and an esti-

mated genome coverage of at least 10x. The five different graphs were constructed with

increasing complexity using different approaches. Each graph was first converted into

a vg format using vg convert, nodes longer than 1000 bp were split into multiple nodes

using vg mod -X 1000. Afterwards the vg graphs were converted back to gfa format using

vg view. The different graphs are:

Flat graph: The flat graph was constructed from the TAIR10 reference genome (Berar-

dini et al., 2015) using vg construct without a vcf file. This graph was used as a baseline

to compare the individual mapping performances with bwa mem.

VCF graph: This graph was built by inserting variation from a pre-computed vcf file

into the TAIR10 reference genome (Berardini et al., 2015). I used vg construct with the

TAIR10 reference genome and a vcf file, obtained by running vg deconstruct on the com-

plex graph. I ran the variant calling with all TAIR10 paths as reference paths and grouped

all paths from an individual accession into a single sample column. As a result this graph

lacks all relationships between multiple copies of sequences and nested variation.

Chromosome graph: This graph was built by separating all chromosomes and aligning

them individually to their counterparts in the other accessions. The unplaced contigs

from the six new reference assemblies were aligned with the chloroplast and mitochon-

drial genome of the TAIR10 assembly (Berardini et al., 2015). The graph was constructed

using the pggb pipeline (Garrison et al., 2023) using settings that enforced strong linear-

ity in the graph. The segment length was set to 20,000 bp and the block length to 60,000

bp. The mapping identity was increased to 95% and the number of secondary matches

was set to 7. The individual chromosome-wise graphs were converted into vg graphs us-

ing the settings described above and then joined together using vg combine. This graph

is capable of representing repeat structures and translocated sequences in their genetic

context on each chromosome. In addition, interchromosomal connections are impossi-

ble.

Linear graph: The linear graph was constructed using the same settings as the chromo-

some graph, but instead of splitting the chromosomes, all sequences were aligned in one

run of the pggb pipeline. While still enforcing a strong linearity this graph is capable of

having interchromosomal connections.

Complex graph: The last graph was the sixRef full genome graph constructed for this

project. pggb was run with settings that are described in subsection 2.2.4. This graph

allows the collapse of a large amount of related sequences and compresses the input

genomes in the graph structure.
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In order to align reads to the individual graphs, indices had to be created. I ran bwa

index on the TAIR10 reference genome for the baseline mappings, as well as on a fasta

file that contained all genomes used in the graph construction processi This index will

be used for the alignment projections by vg inject. vg autoindex was used to construct

the indices required by vg giraffe for each individual graph. The xg index for the down-

stream analysis of the vg giraffe mappings was built from the giraffe.gbz graph. The

indices required for the vg map alignments were also constructed using vg autoindex for

the flat graph and the VCF graph. The pggb based graphs required pruning steps in order

to construct the gcsa index. I ran vg prune to reduce the graph complexity before index

construction. I first removed all nodes with a degree over 3 and all resulting subgraphs

shorter than 48 bp. I also reduced the k-mer length to 18, and removed all k-mers with

more than 3 edges. The gcsa indices were then constructed by vg index on the pruned

graph. The xg indices were constructed from the unpruned graphs and were also used in

the evaluation of the graphAligner and vg inject based alignments. Every alignment tool

was run with 12 threads and on default settings unless specified. The bwa mem mappings

to be used by vg inject were run with the -a option to output all valid alignments, and

-q to prevent the mapQ modification of supplementary alignments. The mappings were

converted to bam format on the fly and then projected onto the individual graphs using

vg inject. vg map and vg giraffe were run on default settings without any adjustments.

graphAligner was run using the vg preset (-x vg). The computational resources that each

alignment used were recorded with. /usr/bin/time -v. The system time, as well as the

maximum resident memory were reported for each run. The system time of bwa mem

and vg inject were combined and the maximum memory consumption kept. The number

of sequences aligned to each graph were collected using vg stats, or samtools stats. On

graphs the number of ‘total aligned’ reads was stored and on the flat references the num-

ber of ‘reads mapped’. I recorded the number of covered bases for each alignment using

vg pack -d, or samtools depth.

2.2.6 Graph genotyping

While we previously had to rely on the sequence present in the TAIR10 reference gen-

ome (Berardini et al., 2015) to anchor variation, I can now use the sequence stored in

the genome graph to improve read mappings and quantify the frequency of previously

inaccessible variation using the available short-read sequencing data. I employed the

combination of bwa mem and vg inject, as described in subsection 2.2.5 to map short-

read data sets from the 1001 Genomes Project (1001 Genomes Consortium, 2016) onto

my constructed genome graph. I described the alignment statistics, estimated the indi-

vidual genome sizes using coverage in the graph, and analyzed the remaining unmapped

reads. I then used the mapping coverage on the graph to describe the frequency of anno-

tated TEs and orthogroups to gain further insights into the pan-genome. In the last step I

called reference based variants and compared them to the original 1001 genome calls to

describe the differences and possible improvements of the graph method.
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Read mapping

For the graph alignment I used a subset of the A. thaliana 1001 Genomes short-reads

(1001 Genomes Consortium, 2016). I removed read sets with a N90 read length below

100 bp and an estimated reference coverage below 10x to ensure I had sufficient reads

as well as read length to anchor them reliably to the genome graph. The 1001 Genomes

Project short-reads had been pre-processed before submission to the archives and thus

I was able to omit this step. The reads were mapped to a concatenated version of all

genomes in fasta format using bwa mem -a -q. This allowed for multiple mappings of

individual reads in the shared regions of the genomes. The unmapped reads were ex-

tracted with samtools view -f 4 and converted to fasta format for further processing. The

mapped reads were then projected into the graph structure by vg inject. This step trans-

lates positional information of flat reference mappings into the graph space based on the

shared path in the graph. The resulting gam file was used to extract the per base and edge

coverage using vg pack. The covered edges were extracted with vg pack -D. Uncovered

edges were removed from the output to minimize the storage footprint. The per base

coverage (vg pack -d) was processed using a custom python script (sum coverage.py)

that returned the covered regions in a bed format and a matrix of covered and uncovered

nodes. For both outputs I calculated the median coverage and excluded the lower 5% of

the coverage distribution to remove spurious alignments. Nodes had to have at least 80%

of their bases covered, with a coverage above the 5% cutoff, in order to be considered as

covered in the matrix. I defined blocks of covered sequence by combining all adjacent

bases with a coverage above the lower boundary and calculated their median coverage.

Two independent, adjacent coverage blocks were combined into one if they were closer

together than 10 bp. In such a case the calculated median coverage included the coverage

of the gap bases. I estimated the repetitiveness of a coverage block by describing it as

a multiple of the median coverage. The coverage blocks were reported in a bed style

format using the node IDs as sequence IDs.

Genome size estimation

The coverage of each read set in the graph was estimated based on the node coverage

matrix. I summed up the size of all covered nodes. The graph coverage was correlated

with the admixture group as well as the laboratory that sequenced this read set. In order

to estimate the full genome size I created a 19-mer index of the unmapped reads with

jellyfish. I excluded k-mers with a count below the 5% coverage cut off, defined in the

coverage analysis, and summed the count of all other k-mers. The sum of the k-mers was

divided by the median coverage to estimate the amount of sequence not represented in

the graph. In addition I checked the taxonomy of unmapped reads by running Kraken2

with its default database (Wood et al., 2019).
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Graph pan-genome

The individual node coverage matrices were combined into a single matrix by concate-

nating them. This matrix was used in the mapping-based pan-genome analysis. First I

calculated the core, shell and private genome. Due to the large number of accessions

the requirements for core and private sequences were relaxed. Nodes that were covered

by at least 90% of the lines were considered as core, while nodes that were covered by

fewer than 10% of the lines were considered as private (mappingSaturation.py). In order

to estimate the power of the graph to predict the pan-genome distribution I compared

the number of assembled graph accessions that traverse each node with the number of

accessions that cover that node in the graph. This value was normalized by the amount

of total nodes in the graph. The outliers were extracted and the nodes were intersected

with the annotated features to categorize them.

In addition to the overall mapping based pan-genome I zoomed in to describe annotated

features of the genomes. To do so I projected the annotations into the graph space and in-

tersected the positions with covered nodes from each accession. In the first step I created

a bed file that translated nodes into the flat sequence space of each assembly (gfa2bed.py).

This enabled me to calculate exact positions for all features in the annotations. For TEs

I intersected every feature in every accession with the node space and merged all in-

tersecting intervals independent of their TE type and origin (projectBed2graph.sh). I

then intersected this joined TE library with the coverage bed files obtained from the read

mappings (intersectTE.sh). Each intersection was required to cover at least 80% of the

projected feature. I calculated the change in coverage for each mapping set, compared

to the median coverage of the TE nodes, as well as the total amount of TE sequence

covered by each mapped accession. Genes that were projected into the graph space were

not merged over all accessions, but were kept as independent bed entries with assigned

gene ID and orthogroup ID to enable me to detect individual genes in the downstream

analysis (projectGFF2graph.sh). The combined gene library was intersected with the

coverage intervals (intersectTE.sh). A gene required 80% of its sequence to be cov-

ered. I calculated the coverage for each gene and used this information to check how

many representatives of an orthogroup were covered by each short-read set. In addition

I calculated the mean coverage change for each orthogroup. I used the threshold de-

fined above to categorize the genes into core, shell, and private genes for each short-read

accession. Using the calculated coverage change compared to the accessions median

coverage I calculated a z-Score for each orthogroup and accession to discover changes

in the copy number of genes in specific accessions.

Variant calls

I called sequence variants from the graph based on the existing TAIR10 reference gen-

ome framework (Berardini et al., 2015). The gam mapping files were transformed using

vg pack. Afterwards variants were called using vg call. I removed all calls without
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the PASS quality flag. The number of homozygous and heterozygous calls was calcu-

lated for each accession. Next I subsetted the original 1001 Genomes Project short-read

calls and extracted the calls of the short-read sets used in this analysis. The number

of exactly matching calls for each accession was calculated by intersecting them using

the intersectVCFs.sh script. The remaining calls were subjected to a positional over-

lap to accommodate fuzzy alignment borders and different variant resolutions of the

two sets (getOverlaps.sh). The remaining non-intersecting and non-overlapping variants

were checked for their coverage by projecting the reference positions into the positional

framework of the graph and overlapping them with the coverage bed file of the specific

accession, using bedtools intersect.

The individual call sets were merged into a joined set using vcf-merge -c any. The vari-

ant length, and allele frequencies were calculated using vcftools –freq and –hist-indel-len.

The full set was then post-processed and two additional sets were created. The first con-

tained only SNPs (vcftools –remove-indels), the second had all multiallelic variants split

using bcftools norm -m-any. The variant allele sizes were categorized as described in

subsection 2.2.2. I intersected the SNPs with the highly diverged regions, detected in the

SyRI analysis, as well as the features in the araport11 reference annotation (Cheng et al.,

2017) using bedtools intersect.

In order to compare the level of heterozygosity of the calls made from the graph with a

study performed on the linear reference genome (Jaegle et al., 2021), I post-processed

them in a similar way. I first subsetted the SNPs to those that intersect with genes from

the araport11 reference annotation and then removed all SNPs with a frequency below

5% of the population (vcftools –bed araport.genes.bed –max-missing-count 42).
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Results

3.1 Generation & annotation of new genome assemblies

Six reference genomes were assembled using long-read sequencing technologies, which

had finally matured at the onset of my work. Additional methods were used to increase

the continuity of the assemblies and their resolution.

3.1.1 Genome assemblies

The assembly of six diverse A. thaliana accessions aims at adding additional sequence

to the known sequence space. The accessions were chosen to better represent the genetic

diversity of the species. As I did not produce the assemblies myself, I will focus on the

description on the final chromosome scale assembly and omit the intermediate assembly

steps.

Table 3.1: Assembly statistics - Assembly statistics of the six A. thaliana accessions. The statistics are

presented for the complete assembly, including unplaced contigs, and the scaffolded chromosomes only.

Complete assembly Scaffolded chromosomes

ID Contigs Size [Mb] N50 [Mb] % of Ns Size [Mb] % scaffolded N50 [Mb] % of Ns

AT1741 52 121.5 23.3 0.82 118.9 97.96 23.3 0.84

AT5784 66 123.6 23.8 0.92 119.8 96.94 23.8 0.87

AT6909 45 122 23.4 1.08 119.8 98.15 23.4 1.1

AT6911 64 121.6 23.6 0.85 118.6 97.59 23.6 0.87

AT7186 93 125 23.9 2.31 120.7 96.56 23.9 2.39

AT7213 70 122.3 22.8 0.58 117.8 96.36 22.8 0.6

Each scaffolded assembly consisted of 5 long contigs, which represent full scale chro-

mosome sequences with a gap at the core centromeres, with an additional set of un-

placed contigs, mostly repetitive sequences from rDNA arrays and centromeres as well

as contigs from organellar genomes. The number of unplaced contigs ranged from 40

in AT6909 to 88 in AT7186. The mean number of unplaced contigs was 60. On aver-

age 97.3% of the initially assembled contigs had been scaffolded. The accession with

the highest contig placement rate was AT6909 (98.2%), while AT7213 had the lowest
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fraction of scaffolded sequence with 96.4%. The chromosome assemblies contained an

average of 1.1% Ns. These had been inserted in gaps in the assembly, based on gap

size, estimated using optical maps. This number was largely driven by AT7186, which

contained 2.4% of Ns. The accession with the lowest amount of Ns was AT7213 (0.6%).

Most Ns were located in consecutive stretches in pericentromeric regions. While not

being complete telomere-to-telomere (“T2T”) assemblies, a subset of the chromosomes

had full-length chromosome arms assembled (Figure 3.4 (B) ). The sequence size of each

assembly including the unplaced contigs exceeded the size of the current reference gen-

ome. The reference had a size of 119.7 Mb, the smallest assembly a size of 121.5 Mb

(AT1741), while the largest had a size of 125 Mb (AT7186). This does not persist when

focusing on the 5 chromosomes only. Here the reference had a size of 119.2 Mb. While

the mean chromosome assembly size of the six accessions was slightly higher than that

(119.3 Mb) three of the assemblies had a shorter chromosome assembly size (AT1741,

AT6911, AT7213). The largest was again AT7186 with a size of 120.7 Mb (Table 3.1).

The dot plots showed that the de-novo assemblies were highly syntenic with the TAIR10

reference genome. Breaks in the synteny were observed in the pericentromeric regions,

where additional, or diverse sequences broke the alignment. This was very obvious in

chromosomes 1, and 3. In addition a number of large inversions were observed, some

of which had been described in previous studies. An inversion on chromosome 4 was

present in four out of six genomes, and an inversion on chromosome 5 in all, except for

AT6909. No large translocations could be observed in this analysis (Figure B.2).

Table 3.2: Assembly BUSCO results - BUSCO completeness of the six de-novo assembled genomes and

the TAIR10 reference genome. BUSCO was run using the embryophyta odb10 database.

BUSCOs AT1741 AT5784 AT6909 AT6911 AT7186 AT7213 TAIR10

Complete 99.2 99.3 99.4 99.4 99.3 99.4 99.3

- single-copy 98.5 98.4 98.6 98.5 98.5 98.5 98.6

- duplicated 0.7 0.9 0.8 0.9 0.8 0.9 0.7

Fragmented 0.2 0.2 0.2 0.2 0.2 0.2 0.2

Missing 0.6 0.5 0.4 0.4 0.5 0.4 0.5

I ran BUSCO with the embryophyta odb10 database to assess the completeness of the as-

semblies. The database contained 1614 BUSCO genes. On average 99.3% of them were

present as complete copies in the assemblies. Of them 98.5% as single copies. Between

10 genes (AT1741) and 7 genes (AT6909 & AT6911) were missing from the assemblies.

This result was very similar to the completeness of the TAIR10 reference genome (Be-

rardini et al., 2015). The only noticeable deviation from the mean of the six de-novo

assemblies was the percentage of duplicated BUSCOs, which was slightly lower in the

reference assembly (Table 3.2).
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3.1.2 SV calling and comparison to the TAIR10 reference genome

Comparing novel genome assemblies to an established reference genome is an effec-

tive means of detecting structural variants and novel sequences. Here I compare the six

de-novo assembled A. thaliana accessions with the existing TAIR10 reference genome

(Berardini et al., 2015) and report the observed structural variants and novel sequences.

I used two different reference based methods to call variants. The first one being the

pairwise whole genome alignment based software SyRI (Goel et al., 2019). The second

one is vg deconstruct Garrison et al. (2018), a tool to translate variants from a genome

graph into a reference space (As described in section 3.2). In addition I subsetted the

1001 Genomes Project short-read calls (1001 Genomes Consortium, 2016) to the six

assembled accessions for comparison. I split the detected sequence variation into three

different groups, based on their size. Variants where a single base pair was replaced

by another single base pair were classified as SNPs. In case one allele was equal to or

larger than 50 bp the variant was classified as a large variant. Everything in between was

classified as a small variant. Here I describe the results of each method, as well as their

overlap and differences.

Short-read based variant calls

The 1001 Genomes Project was a conventional re-sequencing project that aligned short-

reads against a linear reference genome (1001 Genomes Consortium, 2016). Thus the

length of the called variation was limited and it has been mostly oblivious of structural

variation. For the six accessions examined the 1001 Genomes Project had discovered a

total of 1,570,148 variants. The majority of them being SNPs (92%). Large variants had

not been called by the 1001 Genome Project. The variants affect a total of 1.7 Mb of

the reference genome sequence (Table B.1). 94% of the small variants were classified as

PAV events. When interpreted in the coordinate system of the reference, 54,876 events

were deletion events, affecting 86 kb of the reference sequence. Slightly more variants

were classified as insertion events (63,826), adding an additional 96 kb to the sequence.

Table 3.3: Short-read based variant calls - Reference based variant calls of the sixRef accessions made

by the 1001 Genomes Project. Variants were classified as SNP: if both alleles had a size of 1 bp, as small

variants: if the largest allele was smaller than 50 bp, or as large variants: in any other case.

AT1741 AT5784 AT6909 AT6911 AT7186 AT7213

SNPs 453765 357267 523 670840 501009 519305

small variants 29825 19264 562 58413 30667 34367

large variants - - - - - -

total number 483590 376531 1085 729253 531676 553672
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On average 445,968 variants were called in each accession. The reference accession

AT6909 contained only 1,085 variants compared to the reference genome and defied

the trend of containing mostly SNPs. Here the variants were almost equally distributed

between SNPs (523 variants) and small variants (562 variants), with slightly more small

variants being called. The highest number of variants was discovered in the accession

AT6911 (729,523 variants) (Table 3.3).

Pairwise alignment based variant calls

SyRI (Goel et al., 2019) calls variants from pairwise whole chromosome alignments. As

it uses pairwise chromosome allocations it can only call variants within the same chro-

mosome. Variants detected by SyRI were divided into two groups. Structural variants,

such as inversions, translocations, duplications, unaligned sequence, or synteny blocks,

and sequence variation, that are contained in larger structural variants. The structural

variants were split into two subgroups, rearranged reference sequence and novel se-

quence. In addition to the description of large structural variants, this section will also

zoom in and describe the differences in sequence variation frequency between syntenic

and non-syntenic regions of the genomes.

Structural variants:

The largest sub-group of structural variants were syntenic regions. On average 9% of

the chromosome sequences were marked as being syntenic. 92 Mb of syntenic sequence

was shared between all pairwise genome comparisons, covering 77.2% of the TAIR10

reference genome (Berardini et al., 2015). As it was closest to the reference acces-

sion, AT6909 had the highest amount of syntenic sequence (98.9%) and AT7213 the least

amount (91.4%). The second largest set was composed of unaligned reference sequences

that account for 4.1%. The least unaligned reference sequence was found in the compari-

son with AT6909 (0.7%), while again the most reference sequence remained unaligned in

the comparison with AT7213 (5.4%). While in the other five accessions inversions (1.8%)

accounted for the third largest set of sequences, followed by translocations (0.7%) and

duplications (0.3%), in AT6909 this order was different. Here translocations were the

third largest group (0.218%), closely followed by duplications (0.217%) and inversions

(0.17%) (Figure 3.1 (A)). In addition to structural variants anchored to the reference se-

quence, SyRI also reported additional, unaligned, sequences in the query genome. These

were split into unaligned novel sequences and unaligned duplication-gains. In four out of

six genome comparisons the query genome contained less novel than the reference had

unaligned sequence. Only AT5784 and AT6909 contained more unaligned sequences.

The amount of novel sequence varied from 1.1% in AT6909 to 4.5% in AT5784, with

an average of 3.6% of the assembled chromosome length. The amount of additional du-

plicated sequence covered on average 0.8% of the assembled chromosomes and varied

between 0.6% in AT6909 and 0.9% in AT7186 (Figure 3.1 (B)). Most of the variable

sequence was located around the centromere, while the syntenic parts covered most of
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the chromosome arms. The five non-reference accessions contained a large inversion

near the centromere of chromosome 5 and four of the accessions an additional large in-

version on chromosome 4 (AT5784, AT6911, AT7186, AT7213) (Figure B.3). Whether

the idiosyncratic aspects of some of the assemblies were due to biology or more likely a

technical artifacts is not known.

Sequence variation:

The accessions contained between 14,682 (AT6909) and 926,496 (AT1741) sequence

variants, with an average of 711,362. The vast majority of them were SNPs, followed

by small variants and a small fraction of large variants (Table 3.4) (Figure 3.1 (A)). In

addition to the classification by size they were also classified by variant type. Here the

larger variants were classified by SyRI as PAVs (formerly known as InDels), Copy gain

/ Copy loss, and Highly divergent regions (HDR). On average each genome comparison

with the reference produced 461,909 SNPs. AT6909 contained the fewest SNPs (9,841)

and AT1741 the most (788,570). The second most common sequence category was an-

notated as highly divergent regions and covered on average 4.9 Mb, in 4,364 events, per

comparison. Again AT6909 contained the least amount of HDR sequence (0.4 Mb kb

in 51 events). AT5784 contained the most HDR sequence, covering a total of 6.0 Mb,

distributed over 5,223 events. PAVs accounted for the next largest class, covering for an

average of 4 Mb in 151,536 events. From a reference centric view they can be split into

insertion and deletion events. While they each cover a similar amount of sequence (In-

sertion: 1.9 Mb; Deletion: 1.8 Mb), there were twice as many insertion events (101,831),

than deletion events (49,704). This trend was identical in four of the genome compar-

isons. In AT6909 SyRI not only called the lowest number of variants, but the relative

difference between the covered sequence was also the largest. 58 kb were annotated

as deleted sequence (relative to TAIR10), while 175 kb were annotated as inserted. In

contrast to all other accessions AT6911 contained slightly more deleted than inserted se-

quence (2.48 Mb vs 2.37 Mb). All comparisons showed more copy losses of the query

sequence than copy gains, compared to the reference genome. In each accession between

248 kb, in 9 events, (AT6909) and 660 kb, in 105 events, were annotated as copy loss

(avg. 476 kb in 87 events). The sequence variation was not equally distributed in the gen-

Table 3.4: Pairwise alignment based variant calls - Variant calls performed by SyRI on pairwise align-

ments of the TAIR10 reference genome and the individual genome assemblies. Variants were classified as

SNP: if both alleles had a size of 1 bp, as small variants: if the largest allele was smaller than 50 bp, or as

large variants: in any other case.

AT1741 AT5784 AT6909 AT6911 AT7186 AT7213

SNPs 789297 639545 9821 740918 589490 584798

small variants 133497 228310 4676 175997 162234 188754

large variants 3702 4196 185 4753 4089 3910

total number 926496 872051 14682 921668 755813 777462
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ome. I observed a difference between syntenic and non-syntenic regions of the reference.

Syntenic regions contained less sequence variation than non-syntenic regions. Over all

types of sequence variation, syntenic regions contained on average 63.9 base pairs of

variable sequence per kilo base. This more than doubled in non-syntenic sequence, to

158.4 bp/kb. Syntenic regions contained on average 4.8 SNPs per kilo base of sequence,

while non-syntenic regions contained 7 SNPs. The amount of PAVs increased from 15.2

bp/kb to 18.2 bp/kb in non-syntenic regions. Highly divergent regions accounted for the

most variable sequence. Due to the reference centric view copy gain events accounted

for just 0.4 bp/kb in syntenic and 1.2 bp/kb in non syntenic regions. Copy loss variants

saw the largest increase in non-syntenic regions. They rise from 4 to 27 bp/kb. This in-

crease in the average base pair count was largely driven by AT6909. While all accessions

exhibited the same pattern of variant distribution, AT6909, again, contained by far the

least variation in syntenic regions (5 bp/kb), and the most in non-syntenic regions (176.2

bp/kb). The amount of SNPs and PAVs in non-syntenic regions of AT6909 were below

average, while the amount of copy gains and losses were increased compared to the other

accessions (Figure 3.1 (C)).

Graph-based variant calls

vg deconstruct (Garrison et al., 2018) explains variation stored in a genome graph based

on a set of reference paths. I used the graph constructed from all six de-novo assemblies

and the TAIR10 reference genome (Berardini et al., 2015), as detailed in section 3.2.

The resulting variants were split into the previously described three sub groups, based on

their size.

Table 3.5: Graph based variant calls - Reference based variant calls extracted from the genome graph

by vg deconstruct. Variants were classified as SNP: if both alleles had a size of 1 bp, as small variants: if

the largest allele was smaller than 50 bp, or as large variants: in any other case.

AT1741 AT5784 AT6909 AT6911 AT7186 AT7213

SNPs 425345 499470 9587 603624 466209 455672

small variants 160308 181507 25251 211694 171779 169244

large variants 13127 14282 1288 16215 14023 13794

total number 598780 695259 36126 831533 652011 638710

I called a total of 1,869,605 joined variants from the graph. Of these, 1,272,633 were

categorized as SNPs. The remaining variants were separated into 539,644 small vari-

ants and 57,328 large variants. The small variants had an average size of 4 bp, while

the large variants were considerably bigger with an average size of 1.5 kb. (Table B.1).

281,558 (47.2%) of the small and large variants were identified as PAVs. Using the po-

larity introduced by the reference genome I classified 139,568 of them as insertion type

events, adding a total of 12 Mb potentially new sequences to the reference. 141,990 were
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classified as deletion type events. They affected a total of 5 Mb of the reference genome.

The stark difference in affected bases was, most likely, an artifact of the nested variation

and representation in a linear reference based format, and will be discussed later.

The number of detected variants ranged from 36,126 in AT6909 to 831,533 in AT6911.

On average I detected 575,403 variable sites per accession using the graph based variant

detection approach. SNPs were the most common type of variant in all accessions, except

AT6909, again underlining its special status as an reassembly of the reference accession.

In AT6909 small variants were more common than SNPs and large variants combined.

In the remaining five accessions small variants were the second most prevalent variant

category with on average 153,297 variants per accession. The least amount of variants

were classified as large variants (avg. 12,121) (Table 3.5).
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Figure 3.1: SyRI variation - Structural variants detected by SyRI. Split into Sequence that occurs in the

(A) reference space and (B) novel sequence. (C) The frequency of categorized sequence variation in non-

syntenic and syntenic parts of the assemblies.

3.1.3 SV set comparison

Genetic variation can be detected by different methods. Here I compare the variant calls

of the three previously described reference based methods. The most established method

is short-read based variant detection based on the differences of a read pileup to a linear

reference genome, represented by the variant set detected by the 1001 Genomes consor-

tium (1001 Genomes Consortium, 2016). The second method, SyRI (Goel et al., 2019),

calls variants by comparing two full scale assemblies. This allows the detection of longer

variants. The third method uses vg deconstruct (Garrison et al., 2018) to describe the
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variants present in a genome graph derived from a multiple whole genome alignment.

In a first comparison of the number of variants, and their type, called by each of the meth-

ods, in each of the accessions I observed a general trend in all accessions, except AT6909.

The most variants were found in the pairwise whole genome alignments, followed by the

graph. The least amount were present in the short-read based sets. In AT6909 the graph

based variant calling method detected more variants than the chromosome based whole

genome alignment of SyRI. Overall it was the pronounced outlier in the data set. By far

the least amount of variation was detected by any of the three methods in this accession.

Even the distribution of variant sizes was very different from the other five accessions.

While the overall trend in the 5 other accessions was identical, the markedness of it var-

ied. For AT6911, AT7186, and AT7213 the difference between the individual call sets

was very similar. In contrast AT5784 contained very little short-read based variants and

AT1741 an overabundance of WGA based variant calls. In all accessions and all call sets,

except AT6909, SNPs were the most abundant variant type (¿75% of the calls), followed

by small variants, smaller than 50 bp. None of the short-read call sets contained large

variants (≥ 50 bp). In the two assembly based sets they were the least common type,

being slightly more abundant in the graph based variant calls. In the accession AT6909

the whole genome alignment based variant calls behaved similar to all other sets and

accessions, while the graph based method detected more small variants than SNPs (Fig-

ure 3.2 (A)).

For the further analysis I combined the individual calls of each method into non-overlapping

call sets. The combined set of the short-read based variant calls contained 1,570,148

unique variants, 92% of them were classified as SNPs. The rest were small variants.

No large variants were called from short-reads. The pairwise whole genome alignment

calls, by SyRI, contained the most unique calls (2,315,844 variants). 78.9% of them were

SNPs and 28.9% small variants. Compared to the other two call sets, this was the high-

est number and fraction of SNPs and small variants. The remaining 0.3% were large

variants. The combined graph based variant calls summed up to 1,869,605. 68% of

them were classified as SNPs. This was the lowest number and fraction of SNPs in the

three sets. 28.9% were small variants and 3.1% were large variants, the highest num-

ber of all three combined call sets (Figure 3.2 (B)). While the whole genome alignment

derived variant set contained more overall variation, the amount of affected bases was

lower than that of the graph based variants. Here the large variants affected a total of

85.2 Mb (Figure 3.2 (C)). The larger size of graph derived variation was also visible in

the distribution of variant sizes. Here the graph-derived variation was consistently more

prevalent in larger variants (Figure 3.2 (D).

Merged together, the three variant sets contained 3,377,162 unique variants. 28% of them

were shared between all three sets, 22.5% are shared between two of the methods, and

the remaining 49.5% of the variants are private to one of the methods. The highest frac-

tion of intersecting variants were found in the short-read based calls (60.2%), followed

by the graph based variants with 50.6%. Only 36.5% of the whole genome alignment

based SyRI calls were shared with the other two methods. The variants detected by SyRI
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Figure 3.2: Variant comparison - (A) Number and type of variants in comparison to the TAIR10 reference

genome, detected by the three methods from six de-novo assembled accessions of A. thaliana. (B) Number

of combined variants detected by each of the methods over all accessions. (C) Amount of sequence space

found to be affected by variation. (D) Distribution of variant sizes in the three sets. Variants larger than

500bp have been combined into one category.

were private in 37.1% of the cases, the highest fraction and count. The fraction of private

graph based variants was 31%, and the short-read derived variants were private in 8.3%

of the cases (Figure 3.3 (A)).

In the individual size categories, the pattern was similar, but overall SNPs were shared

more often than small variants or large variants. 70.6% of all SNPs detected in the

graph were shared with the other two methods, in the short-read based SNP set 62.3%

were shared. Only 45.8% of the SNPs called from the pairwise whole genome alignments

were shared with the other two methods. SyRI called the lowest number of shared SNPs

and the highest number of private ones (26.7%). Just 10% of the SNPs detected in the

graph were private, and the short-read based calls contained only 7.2% of private SNPs

((Figure 3.3 (B)). Small and large variants were shared less frequently. 36.9% of the

small variants detected in the short-read data were shared with the other two call sets,

while 21.1% were private. The largest fraction, 37.7%, were shared with SyRI. Only

7% of the small variants called by SyRI were shared with both of the other methods.

69.9% of the small variants detected by SyRi were private. While the short-read variant

49



Chapter 3 Results

78629

short-reads

Graph

WGA

BA

C D

Combined Variants

short-reads

Graph

WGA

short-reads

Graph

WGA

Graph

WGA

961644

579034

130490

415423

266336

945606

524231

127425
103714

367617

173138

73193

898877

53307

11477

4021

425936

398302

26776

89177

47806

5436

46729

60000

40000

20000

00

1e+05

2e+05

3e+05

4e+05

1000000

750000

500000

250000

0

1000000

750000

500000

250000

0

In
te

rs
e

c
ti
o

n
 S

iz
e

In
te

rs
e

c
ti
o

n
 S

iz
e

In
te

rs
e

c
ti
o

n
 S

iz
e

In
te

rs
e

c
ti
o

n
 S

iz
e

Set Size Set Size

Set SizeSet Size

6e+05 4e+05 2e+05 0

2e+06 1e+06 0 2e+06 1e+06 0

60000 40000 20000 0

SNPscombined Variants

large variantssmall variants

Figure 3.3: Variant intersection - Intersection of variants detected by the three different methods. The

variants were intersected as the full set of (A) all combined variants, (B) SNPs, (C) small variants, and (D)

large variants.

calls had the largest intersection with SyRI, this intersection accounted for only 7.8% of

the small variants detected by SyRI. The largest pairwise intersection of small variants,

detected by SyRI, was with the graph (14.6%). For the graph based calls 8.7% of the

small variants were shared with the other two methods, and 73.8% were private. Again,

the largest pairwise intersection was observed with the pairwise alignment derived vari-

ants (16.5%) ((Figure 3.3 (C)). No large variants were detected by the short-read based

method, this leaves just the variants detected by SyRI from pairwise alignments and vari-

ants called from the graph to compare. As SyRI overall called fewer variants, a larger

fraction was shared with the graph calls (25.9%). Just 7% of the large variants detected

from the graph were shared with those called by SyRI. The remaining variants were pri-

vate to their method ((Figure 3.3 (D)). The reason for the overabundance of large variants

called from the graph will be discussed later.

The small and large variants that were not shared among all variant sets were subjected

to a positional overlap with SNPs, small variants, and large variants, to detect fuzzy

alignment borders or variants that were resolved to different levels of precision. Despite
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the higher number of variants called from the pairwise alignments, only 12.3% of the

small variants detected from the short-read alignments overlapped with the calls made

by SyRI. In contrast, 55.4% of the small variants were overlapping with the calls made

from the graph. On average 1.4 variants detected by SyRI were contained in a short-read

alignment derived small variant, whereas 2.7 variants detected in the graph were over-

lapped with a small variant from the short-read call set. Only 4.8% of the small variants

detected by SyRI overlapped with variants called from short-reads, with an average of

1.3 short-read variants per small SyRI derived variant. Again the graph yielded a larger

fraction of overlapping small variants. Here 19.7% of the small variants overlapped

with an average of 3.1 graph variants contained in a SyRI variant. The difference in the

overlap of graph based small variants was less pronounced. 16% of the small variants

overlapped with an average of 1.3 short-read based variants, and 22.8% were overlapped

with variants called by SyRI. Here a graph derived small variant contained an average of

1.5 SyRI variants.

As large variants covered a larger amount of sequence the average number of inter-

secting variants increased. 31.3% of the large variants called by SyRI overlapped with

variants from the short-read based variant set. Here each variant contained an average of

9.6 smaller variants. The fraction of large variants that intersected with variants detected

from the graph was bigger (44.5%), but those contained fewer variants (6.2). Fewer large

variants called from the graph were overlapping with variants from the other two meth-

ods. 20% of them overlapped with variants detected by the short-read based method,

while 20.6% were overlapping with SyRI derived variants. While the fractions were

lower than those of SyRI, the large variants detected in the graph contained a higher num-

ber of smaller variants. On average 24.5 short-read derived variants were contained in a

large graph variant. For the pairwise alignment derived variants this number increased to

44.5 shorter variants per large variant from the graph (Table B.2).

3.1.4 Genome annotation

Auto-ant annotation pipeline validation

The auto-ant annotation pipeline was designed to improve the annotation quality by com-

bining multiple tools into one framework and merging the annotations in a weighted

form. In order to choose the correct weights for each annotation I had to validate their

performance. This was done by re-annotation of the existing TAIR10 reference genome

(Berardini et al., 2015) and comparing the results with the araport11 reference annota-

tion (Cheng et al., 2017). This reference annotation has, in parts, been curated manually

and is therefore closer to a truth set, than a purely computational annotation.

The individual annotation tools showed different accuracies for different features of the

reference annotation. The numbers differed from tool to tool, and some of the features

were not discovered at all by some tools. Features that were annotated in the araport11

annotation, but were not found in any intersection with the new annotations are: long
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non-coding RNAs (lncRNAs), microRNAs (miRNAs), transfer RNAs (tRNAs), and ri-

bosomal RNAs (rRNAs). In the evaluation I mainly focused on the annotation of protein

coding sequence (CDS), exons (CDS plus untranslated regions [UTRs]) and full genes.

Transcripts assembled by cufflinks (Trapnell et al., 2010), from AT6909 RNA sequencing

data covered 61.1% of the CDS entries in the araport11 annotation, but none of the calls

had the same boundaries as the reference calls. SNAP (Korf, 2004) detected 72.3% of

the reference CDS entries, but again none of the predicted features had the same bound-

aries. In the RNA supported augustus (Stanke et al., 2008) annotation 87.6% of the

reference CDS entries were covered by 89.42% of predicted CDS entries. The value

slightly dropped for the features predicted with the BUSCO (Seppey et al., 2019) retrain-

ing. Here 70.5% of the reference CDS entries are covered by 83.2% of the annotated

entries. Using the hints produced by LiftOff (Shumate and Salzberg, 2020) I was able

to detect 88% of the CDS features also present in the reference, corresponding to 87.9%

of the features annotated in the new prediction. On the level of individual exons, the

cufflinks transcript assembly had a sensitivity of 43.9%, detecting 64.8% of the reference

features. SNAP overlapped with 39.1% of the reference exons, with a specificity of 80%.

In the augustus predictions the RNA sequence supported annotation detected 62.7% of

the reference exon features. The correct features accounted for 49.2% of all features

detected. The BUSCO retrained annotation intersected with 39% of the reference exons,

but the exact exon borders were often imprecise. The LiftOff supported annotation had

an exon detection sensitivity of 52.3% and a specificity of 67.7%. The imprecise exon

borders massively influenced the accuracy of the annotated gene features. For full-length

gene entries cufflinks performed poorly. Almost no gene features in the reference anno-

tation were fully covered. This was a result of the different definition of the gene feature

in the reference annotation that also contains three, and five prime UTRs. For SNAP

the sensitivity was the highest among the individual gene predictions (1.8%). The sec-

ond RNA supported prediction, using augustus, intersected with 0.9% of the full length

reference genes, with a specificity of 0.1%. The BUSCO retrained run of augustus had

a specificity of 1.4%, and the by far best sensitivity of 55.9%. The lift over supported

augustus prediction had a perfect match sensitivity of 1.3% and a specificity of 0.4%

(Table 3.6).
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Table 3.6: auto-ant validation - Sensitivity and specificity of the annotation methods, and the combined

annotation result. The sensitivity and specificity were calculated by intersecting the annotated features with

the araport11 annotation. Sensitivity is the fraction of de-novo annotated features being fully contained in

features of the reference annotation. Specificity is the fraction of correctly annotated reference features.

Augustus runs

Annotation

feature

BUSCO

retraining

LiftOff

evidence

RNA-Seq

evidence
SNAP

cufflinks

assemblies

EvidenceModeler

results

Sensitivity CDS 70.5 88 87.6 72.3 61.1 86.7

Specificity CDS 83.2 87.9 89.4 0 0 91.7

Sensitivity exon 39 52.3 49.3 39.1 43.9 46.1

Specificity exon 0 67.6 62.7 80 64.8 91.7

Sensitivity gene 1.4 1.3 0.9 1.8 0.01 2

Specificity gene 55.9 0.4 0.1 0 0 78.3

Table 3.7: evidenceModeler weights - Weights used in the evidence-

Modeler processing of the individual annotations. The weights were

assigned based on the trustworthiness of the individual annotations.

Annotations with RNA support were rated higher. In addition the

weights were chosen to balance the bias of the three augustus runs.

The ab-initio weights were assigned based on the same analysis.

Evidence weights

RNA supported

annotation

full ab-initio

annotation

augustus - BUSCO retraining 2 2

augustus - LiftOff evidence 3 3

augustus - RNA-Seq evidence 3 -

SNAP 4 2

cufflinks assembies 5 -

The combination of the

five different annotation meth-

ods into a joint annota-

tion with evidenceModeler

(Haas et al., 2008) required

a weight matrix that rates

the trustworthiness of the in-

put data. I created this

matrix based on the re-

annotation performance of

the tools and gave extra

weight to the RNA-evidence

based methods compared to

the purely similarity-based

ab-initio predictions. In addition the weights were set in a way that if two non-augustus

annotations disagreed with augustus, they could overrule the three augustus based anno-

tations. This was done to minimize the bias introduced by the three independent augustus

runs.

This resulted in a weight matrix where cufflinks results were given the highest weight, 5,

followed by SNAP with a weight of 4. The RNA-based, and the LiftOff based augustus

runs were both assigned a weight of 3. The run of augustus that used a retrained pre-

diction model from BUSCO was rated lowest with a weight of 2. In addition I created a

weight matrix that could be used without supporting RNA reads. Here the weights were

set in a way that two out of the three remaining tools were able to overrule the remaining

tool. The highest weight of 3 was attributed to the LiftOff based augustus annotation.

The weight of the remaining two tools was set to 2 each (Table 3.7).

The weight matrix was used for evidenceModeler with the gene predictions described

above. It was able to detect 86.7% of the reference CDS features, which was slightly less

than the individual annotations of the RNA, or LiftOff supported augustus annotations,
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but the specificity increased to 91.7%. The same was true for the exon features. Here

the sensitivity droped slightly below the highest individual annotations (46.1%), but the

specificity greatly increased to 91.7%. While the specificity for full gene features was

very low, at 2.0%, it was already higher than the individual annotations. The specificity

of the combined and weighted calls was at 78.3%, much higher than the individual as-

semblies. The sensitivity of full gene features remained low at 4.9%. The specificity,

however, increased to 75.6% (Table 3.6). The performance of the combined annotation

on some features that were not used in the creation of the weight matrix was also notable.

Only very few pseudogenes present in the reference annotation were found to intersect

with the de-novo predictions. The same was true for TEs (Table B.3).

Six new reference genomes

The comparison of sequence features between multiple genomes allows for a better un-

derstanding of their evolutionary history and enables us to discover footprints of past

genetic events in the genome. Therefore I annotated different types of features in the six

de-novo assembled A. thaliana genomes, including repeats and TEs as well as genes.

TE and repeat annotation

TEs and repeats were detected independently using EDTA (Ou et al., 2019) and repeat-

Masker (Smit, AFA, Hubley, R & Green, P., 2013). On average 12% of the assemblies

were classified as TEs that do not intersect with annotated genes. The number of detected

TEs ranged from 24,183 in AT6909 to 27,612 in AT1741 (mean: 25,659). Almost half

of the annotated TEs were classified as Helitrons (mean: 43.82%). AT6911 contained

the highest number (12,571), while AT6909 contained the fewest helitrons (10,572). The

second largest category were Gypsy LTR retrotransposons. On average they accounted

for 20.85% of the annotated features. This time AT6911 contained the least of them

(4,882) and AT1741 contained the most (6,390). All other categories contributed less

than 10% each. The smallest group, Polintons, were not found in every assembly. Only

AT1741 (70), AT6909 (65), and AT7213 (64) contained any. On average, 7% of the as-

sembled sequence was classified as repeats by the merged results of repeatMasker and

EDTA. AT7186 contained the highest fraction of repeat sequence (7.7%) and AT1741 the

lowest fraction (6.6%) (Figure 3.4 (C)).

Gene annotation

Gene annotations provide an insight into the metabolic and adaptational arsenal avail-

able to an individual accession. In this section I describe the gene annotations of the six

de-novo assembled A. thaliana genomes, and compare them with the existing araport11

reference annotation (Cheng et al., 2017), the annotation of the outgroup, A. arenosa,

and with each other. I also describe the observed changes in order and orientation of
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Figure 3.4: Genome annotation - (A) Fraction of the assembled sequence covered by different features.

(B) Circos plots of the six de-novo assemblies to show the distribution of features along the chromosomes.

Description of tracks from the outside inwards: Repeats (blue); TEs (red); Copia (pink) and gypsy TEs

(black); genes (green); GC content (pink). A stark depression in this track is a result of assembly break-

points. (C) Amount of sequence covered by the different types of TEs and repeats in each of the six

assemblies.

orthologous genes along the genomes. Finally the six assembled genomes enable me to

attempt to describe parts of the A. thaliana proteome from a reference perspective as well

as from an unbiased pan-proteome perspective. By doing so I explore the expanding and

contracting orthogroups as well as the conserved core proteome.

Genes in the de-novo assembled genomes were annotated and assigned to orthogroups

using the auto-ant pipeline subsection 2.1.1. Genes were classified into three groups

based on the orthogroup assignment. They were classified as aralogs if the gene was

orthologous to at least one reference gene, as orthogroup genes (OGgenes) if an ortholog

of the gene was found in at least one other annotation aside from the reference genome,

and as unassigned, private genes if no orthologous gene was found in any other anno-

tation of the de-novo assembled genomes. In addition, orthogroups were classified as

standard and non-standard, based on changes in their copy numbers, or localization in
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the synteny. The RNA sequencing reads were mapped using STAR (Dobin et al., 2013)

and originated from four different tissues. The number of overall reads and per-tissue

reads greatly differed between accession. After quality trimming on average 90% of

the reads remained. The amount of mappable reads was very low. Only between 39%

and 63% of the reads were mapped to the corresponding genome assembly (Table B.4).

Using auto-ant between 25,644 genes, in AT1741, and 26,032 genes, in AT6909, were

annotated in each genome (mean: 25,827 genes). On average 78.8% of the annotated

genes were supported by RNA evidence. The annotated genes were distributed in a pat-

tern that was the reverse of the distribution of the TEs. Genes were less common in the

pericentromeric region and more common on the chromosome arms (Figure 3.4 (B)).

In the orthogroup assignment over 95% of the annotated genes were categorized as ar-

alogs. AT6909 carried the highest number of aralogs, and AT6911 the lowest. Only a

minority of the genes could not be assigned into orthogroups with araport11 genes. Each

of the six de-novo annotations contained a set of roughly 1,300 genes that were classified

as OGgenes. Less than 140 genes in each of the de-novo assemblies were classified as

private. In addition 1,781 genes from the araport11 reference annotation were not allo-

cated to an orthogroup and were classified as private (Figure 3.5 (A)).

Including araport11 reference and the A. arenosa outgroup, a total of 25,911 orthogroups

were constructed. 2,002 orthogroups did not have members from the six de-novo annota-

tions. Of these, 53 contained genes from reference and outgroup, 635 only from the out-

group, and 1,314 only from the reference. The remaining 23,909 orthogroups contained

at least one de-novo annotated transcript. These were classified into 17,166 orthogroups

that contained transcripts from both the reference annotation and the outgroup, 4,793

just from the reference, 351 just from the outgroup. 1,599 orthogroups only consisted of

transcripts from the newly annotated genes (Figure 3.5 (D)).

The number of accessions contributing to each orthogroup had a U-shaped distribution,

typical for pan-genomic datasets. The largest group represented orthogroups with mem-

bers from all six accessions. Of them 16,488 (84%) also contained members from the

outgroup and reference. Only 333 of the orthogroups consisted solely of OGgenes.

I also discovered 148 orthogroups that contained at least one ortholog from the six de-

novo annotated genomes and from the outgroup, but none from the araport11 reference.

The majority of these non-reference orthogroups consisted of one-to-one orthologs, with

only 53 of them having one or more accessions contributing multiple members. The total

set consisted of 1,632 transcripts of de-novo annotated genes from the six assemblies. Of

these transcripts, 30.3% were supported by RNA evidence. 62.9% were located inside

of variable regions detected by panSV in the genome graph (subsection 3.2.3).

On the left side of the pan-transcriptome distribution 872 orthogroups contained tran-

scripts that were only annotated in one of the six de-novo annotations. Despite only

containing genes from one of the six de-novo annotations, 284 of them had at least one

ortholog from the reference annotation or the outgroup annotation (Figure 3.5 (B)). The

distribution that could be observed for the number of accessions per orthogroup was also

observed when comparing the number of genes per orthogroup. Here the U-shaped dis-
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3.1 Generation & annotation of new genome assemblies

tribution was repeated at multiples of eight, the number of annotations (6 de-novo, 1

reference, 1 outgroup) that had been used in the orthogroup assignment. With the first

block being the largest, most of the orthogroups only contained a single copy from each

contributing accession. The next blocks showed a similar U-shaped pattern. The major-

ity of orthogroups, beginning from eight genes per group, were complete orthogroups.

This means they contained genes from all eight annotations (Figure 3.5 (C)). To ensure

the consistency with the curated reference annotation the single longest transcript of each

gene was compared to its reference orthologs. The majority of genes had the same, or a

very similar length. Genes with different lengths than their reference counterpart tended

to be longer (Figure 3.5 (E)).

A subset of the orthogroups were classified as non-standard orthogroups as they had

variable gene copy numbers, or contained translocated gene copies. This group con-

sisted of just 6,724 orthogroups, with a total of 40,266 genes. 4,775 of these orthogroups

contained at least one reference gene. In total 7.291 reference genes were found to be part

of non-standard orthogroups. A GO-term analysis of the reference genes revealed that

pathways that were involved in apoptosis, defense mechanisms and cell-to-cell signaling

were enriched in this set. The set of non-standard orthogroup genes will be intersected

with structural variation events in subsection 3.2.3 in an effort to describe them further

in the pan-genome sequence context.

Considering the different annotations and the fraction of Ns in the assemblies, on average

36.2% of the sequence remained unclassified. This varied between 35.4% in AT7186 and

36.7% in AT7213. The majority of the remaining sequence was annotated as a coding

sequence. It ranged from 42.3% in AT7186 to 43.0% in AT1741 (mean: 42.9%). Over all

six assemblies, 12.6% of the assembled sequence was annotated as TEs. Here AT6909

contained the least (11.8%) and AT1741 the most (13.2%). Apart from the fraction of Ns,

annotated repeats covered the least sequence in the genome. On average 7.3% of the se-

quence space was annotated as repetitive. AT1741 contained the least repetitive sequence

(6.6%) while AT7186 contained the most (7.7%) (Figure 3.4 (A)). The annotated features

were distributed along the chromosomes as expected: TEs were enriched around the cen-

tromeric regions, fading out along the chromosome arms, with a similar distribution for

other types of repeats. Notably copia LTR TEs were more common along the chromo-

some arms, while gypsy LTR TEs had their highest peak in the centromeric regions. The

distribution of genes was inverted compared to those of repeats and TEs. The GC content

of the sequence was similar throughout the genome, with obvious drops at the locations

where contigs were merged, and separated by Ns in the assemblies (Figure 3.4 (B)).

Pan-proteome exploration

I explored the pan-genome from different angles. First by applying a reference-centric

approach of categorizing expansion or collapse of orthogroups based on the copy num-

ber of reference genes. Then in a true pan-genome sense by excluding the reference and

categorizing orthogroups of the core and shell genome based on the median copy num-
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ber in the orthogroup. As a last step I look at the positional conservation of orthogroups

and define a set of interesting non-standard orthogroups for intersection with structural

variation calls.
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Figure 3.5: Orthogroups - (A) Allocation of genes into the three orthogroup types. Aralog: if a tran-

script from the araport11 reference annotation is part of the orthogroup. OGgene: if at least one other

accession is contributing to this orthogroup. Private: if no other accession is contributing transcripts to the

orthogroup (can be single-transcript orthogroups) (B) Number of the accessions present in an orthogroup.

Colored based on the presence of outgroup, and/or araport11 reference annotation in the orthogroup. (C)

Number of genes per orthogroup. An orthogroup is considered to be complete if transcripts from all six

de-novo assemblies are present. (D) Distribution of reference, outgroup, and de-novo transcripts in or-

thogroups. (E) Changes in transcript length compared to the length of araport11 transcripts in the same

orthogroup.
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In each accession over 90% of the calculated orthogroups had the same copy number as

the reference annotation. The expanded orthogroups made up between 0.8%, for AT6909,

and 1.4%, for AT6911, of all orthogroups. For each accession between 2.7% and 3.1% of

the orthogroups were contracted. Again AT6909 had the fewest of these orthogroups and

AT6911 the most. The rest of the orthogroups either did not contain reference transcripts,

or were private to this accession (Figure 3.6 (A)). In the true pan-genome analysis the

23,909 orthogroups that contained transcripts from the de-novo assemblies were first

classified into core orthogroups that contained at least one transcript from each of the six

accessions, or shell orthogroups that lacked transcripts from at least one of the assem-

blies. In total 20,150 (84.3%) orthogroups were classified as core, 12.1% as shell, and

872 orthogroups (3.6%) contained only transcripts from a single accession (Figure 3.6

(B)).

In each accession the majority of core orthogroups were also classified as conserved.

This means they had the same number of transcript copies as all other contributors. For

those orthogroups that were not considered as conserved, more were expanded, than

contracted (Figure 3.6 (D)). The number of shell orthogroups varied between 2,107 and

1,866 per accession. Again the majority of them were conserved orthogroups. On aver-

age, 142 orthogroups only contained genes from a single accession and thus were private,

an average of 88 of such orthogroups were expanded and an average of 51 were found to

be contracted (Figure 3.6 (E)).

A combined analysis of all variable shell and core orthogroups showed that orthogroups

that were part of the shell pan-proteome were more variable in their copy numbers than

orthogroups that were part of the core pan-proteome. Orthogroups from the core pan-

proteome had many instances where only a single accession had a different copy number.

In most cases this was an increased copy number (Figure 3.6 (G)). A bootstrapped satu-

ration analysis of the pan-proteome exhibited signs of a beginning saturation (Figure 3.6

(C)). The genomic location based analysis revealed a high degree of conservation along

the chromosomes for core single-copy orthogroups. The vast majority of them were

conserved in the same order and orientation in as in the reference. Only a minority of

them were inverted or translocated to a different location in at least one of the accessions

(Figure 3.6 (D)).
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3.2 Graph genome

The graph genome that I have constructed has unique properties and requires novel meth-

ods for analysis. In this section I am first going to describe the graph in its different

phases of construction and will analyze and validate the portion of the graph that re-

mained unaligned to the TAIR10 reference genome (Berardini et al., 2015) in an effort to

estimate the graph alignment quality. I will then explore the graph based pan-genome.

Next I am going to show the performance and results of my novel pan-genome graph

based variant detection tool panSV, compare and benchmark different algorithms for

short-read alignment to a genome graph and genotype the 1001 Genomes short-read data

(1001 Genomes Consortium, 2016) using the graph as the alignment reference.

3.2.1 Graph construction

The graph was constructed using the pggb pipeline, which combined different tools

(Garrison et al., 2023). The initial all-versus-all alignment resulted in 9,627 individ-

ual alignment blocks that were converted into 5,021,366 nodes in the first seqwish graph,

7,150,481 edges connected the nodes in the graph resulting in an average node degree of

1.42. The sequences in the first graph summed up to 173 Mb. This was a compression to

20.2% of the input sequence lengh. The average node length was 34 bp (median = 13 bp).

In the next step the graph was submitted to a sorting and local realignment to resolve pre-

vious misalignments and gaps. This resulted in the final graph that was used in all other

downstream analysis. In the final graph the number of nodes increased to 6,660,734,

connected by 9,113,038 edges. This resulted in a slight drop in node degree (1.37).

Table 3.8: Graph construction - Basic statistics on the indi-

vidual graph construction steps.

Node Sizes

# Nodes # Edge Mb Mean Median

seqwish graph 5,021,366 7,150,481 173 34 13

Final graph 6,660,734 9,113,038 169 25 1

Due to the realignment the graph

length was reduced to 19.7% of

the input sequences with a total

sequence length of 169 Mb. The

realignment reduced the mean

node length to 25 bp (median =

1 bp). The majority of the nodes

in the graph were traversed only

once by each path. 218,670 nodes (3.4%) were considered as repetitive nodes as at least

one path traversed them multiple times. With a mean length of 8 bp (median = 1 bp)

those nodes were shorter than the non-repetitive ones (mean length = 26 bp; median = 1

bp) (Table 3.8). Each input genomes has been compressed in the graph construction pro-

cess. On average the length of nodes touched by each accession were 2.9% shorter than

the assembly size. AT7186 had the highest compression (3.6%), while the TAIR10 ref-

erence (Berardini et al., 2015) had the least amount of compressed sequence (2%). The

2D layout of the graph showed a strongly connected center, where almost all subgraphs

aligned, with long tendrils and loops stretching out from it (Figure 3.7).
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Figure 3.7: 2D Graph Layout - Two-dimensional layout of the graph constructed from the six de-novo

assembled A. thaliana accessions, and the TAIR10 reference genome. Including all chromosomes and

contigs. The pericentromeric regions are drawn together in the center of the layout, while the chromosome

arms extend out from there.

3.2.2 Graph pan-genome

The basic statistics of the graph can already tell us something about the relatedness of the

accessions within the graph and their relationship with the reference genome. We can fur-

ther extract information about previously unobserved sequence from the new accessions.

Table 3.9: Graph pan-genome - Pan-genome de-

scribed by the graph. The fraction always references

the value of the full graph of this category.

Node Sizes

Nodes Percent Mb Percent Mean Median

Full graph 6694806 - 168.8 - 25.2 1

Core graph 1767213 26.4 92.7 54.9 52.4 18

Shell graph 3525563 52.7 37.3 22.1 10.6 1

Private graph 1402030 20.9 38.8 23 27.6 1

The distribution of accessions per node in

the final graph showed a U-shaped distri-

bution, similar to the distribution of the

pan-proteome (Figure 3.8 (A)). 52.7% of

all nodes belonged to the shell genome,

which was made up from sequences that

were traversed by two to seven genomes.

The core genome was made up of 26.4%
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of the nodes. 20.9% of the nodes were private. The values drastically changed when

considering the sequence content of the nodes. While only a quarter of the nodes were

part of the core genome, they contained 55% of the sequence in the graph and were con-

siderably longer than the other pan-genome categories (mean: 52 bp; median: 18 bp).

Private and shell sequence each accounted for 22.5% of the graph’s total sequence con-

tent (Figure 3.8 (B)). The private nodes (mean: 28 bp; median: 1 bp) were on average

longer than the shell nodes (mean: 11 bp; median: 1 bp) (Table 3.9) (Figure 3.8 (C)).

On a per-genome level, 78.1% of each genome sequence was part of the core genome,

ranging from 79% for the TAIR10 reference genome (Berardini et al., 2015) to 76.9%

in AT7186. The shell genome covered on average 17.3% of the genomes, ranging from

20% in TAIR10 to 13.6% in AT6911. The two extremes were reversed for the fraction

of private sequences. Here AT6911 contained the highest amount (8.1%) and TAIR10

the lowest amount (0.9%). The average was 4.7% of private sequence per genome. As

the TAIR10 and AT6909 sequences were highly identical, the 0.9% private sequence was

not a true representation of their private subgenomes. The smallest amount of private

sequence, outside the two highly similar genomes was found in AT7213, with 4.4% (Fig-

ure 3.8 (F)). On average 2.9% of each genome was collapsed in the graph representation

due to repetitive sequence content. (Table 3.10) In the saturation analysis neither the core

nor the shell genome saturated (Figure 3.8 (D)).

Table 3.10: Path core levels - Per accession graph and pan-genome statistics. ’Comp. Seq.’ describes the

fraction of the assembled sequence that has been compressed in the graph representation. Repeated nodes

are counted just once. The pan-genome percentage is the percentage of sequence in the graph that are

traversed by this accession. Path percentage describes the fraction of sequence in nodes of this category in

the context of the sequence occupied by the accession in the graph.

Core Shell Private

Comp.

Seq.

Percent

nodes

Percent

pan-genome

Percent

path
Mb

Percent

path
Mb

Percent

path

AT1741 2.8 61.3 69.9 78.6 19.7 16.7 5.6 4.8

AT5784 3 61.7 71 77.3 19.8 16.5 7.5 6.2

AT6909 3 61.3 70.2 78.3 23.8 20.1 1.9 1.6

AT6911 2.6 60 70.1 78.3 16.1 13.6 9.6 8.1

AT7186 3.6 61.2 71.4 76.9 20 16.6 7.8 6.5

AT7213 3.1 61.4 70.2 78.3 20.5 17.3 5.2 4.4

TAIR10 2 60.9 69.5 79 23.5 20 1.1 0.9

The previously described pan-genome distribution was also described from a reference

centric point of view. Here the core genome was, by definition, always traversed by the

reference genome. From there onwards the amount of sequence that was also traversed

by the TAIR10 reference decreases with the number of accessions (Figure 3.8 (A)). The

reference centric analysis of the graph showed that 60.9% of all nodes were traversed by
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Figure 3.8: Graph Pan-Genome - Basic pan-genome statistics based on the genome graph. (A) Dis-

tribution of nodes and sequence (Mb) in the refernece based pan-genome. The colors are based on the

presence of the reference genome in those nodes. Reference: The reference genome contains this se-

quence. Aligned: The sequence is present in at least two of the genomes, but not the reference genome.

Private: The sequence is private to one of the de-novo assembled genomes. (B) Distribution of sequence

in the pan-genome. Core: Sequence that is present in all genomes. Shell: Sequence that is present in at

least two genomes, but not all. Private: Sequence that is only present in one genome. (C) Density plot

showing the sizes of nodes that are part of the three pan-genome categories. (D) Saturation analysis based

on the sequence in the graph. (E) Distribution of sequence in the pan-genome based on its occurrence

in the reference genome. (F) Pan-genome classification of sequence in each of the assemblies and the

reference genome.
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the reference genome. 43.3% of them were core nodes in the pan-genome. The nodes

that were not traversed by the reference genome could be divided into private (53.4%)

and shell (46.7%) nodes. Despite the very similar fraction of nodes, the amount of se-

quence contained within these nodes differed drastically. 73.1% of the non-reference

sequence remained private to one accession, while only 26.9% was part of the shell

genome (Figure 3.8 (E)).

3.2.3 Graph SV calling

While small variation is easy to detect using conventional short-read based methods,

complete assemblies enable us to detect large and more complex sequence variation.

Here I focus on variable sequences larger than 50 bp. I first defined the sequence space

that remained unaligned to the current TAIR10 reference genome (Berardini et al., 2015)

and then intersected it with the variation called using SyRI (Goel et al., 2019), as well

as described its potential ancestry using a taxonomy analysis. I then used panSV (sub-

section 2.1.2) to detect variable regions from a pan-genomic point of view and describe

them using the annotations I produced.

Non-reference sequence

Table 3.11: Non-reference variants - Size and count of traver-

sals in the graph that were not used by one of the TAIR10 refer-

ence genome paths. The subset of variants that had a length≥50

bp were considered as large variants. Joined traversals are the

number of unique traversals without a reference path in the

graph.

All Variants Large Variants

Number Mb Number Mb

AT1741 657,133 12.7 6,846 11.8

AT5784 769,435 15.6 7,799 14.5

AT6909 16,411 2.4 683 2.4

AT6911 895,625 16.5 9,386 15.2

AT7186 720,511 16.2 7,585 15.2

AT7213 706,517 15 7,475 14

Joined 2,030,275 74.7 32,742 71.7

Using the modified panSV ap-

proach, I detected 2,030,275

non-reference traversals. They

summed up to a total of 74.7

Mb (mean size: 6.6 bp; me-

dian size 1 bp) of assembled se-

quence that had not been aligned

to the reference genome. While

almost 50% (838,655 traversals)

of them were traversed by more

than one genome, they only ac-

counted for 3 Mb (mean: 2.7 bp;

median: 1 bp) of the sequence

space. Only 32,742 (1.6%) non-

reference traversals were classi-

fied as large variants (≥50 bp).

Nevertheless, they summed up to

a total of 72 Mb (mean: 2.2 kb, median: 0.3 kb) of sequence, and thus accounted for

the majority of affected sequence. 4,230 of these variants were traversed by multiple

accessions. The number of traversing accessions decreased with increasing sequence

length. The individual accessions contained an average of 627,605 non-reference traver-

sals. AT6909 had the lowest number of non-reference elements (16,411) and AT6911 the
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highest (895,625). The average fraction of large variants was 1.6%. As AT6909 had by

far the highest fraction of large non-reference elements (4.2%), removing it reduced the

mean fraction to 1%. The accession with the lowest amount of non-reference sequences

was AT5784 with 1%. (Table 3.11) Of these, on average 4.1% intersected with sequences

that were classified as not-aligned by SyRI. A slightly higher fraction contained SVs over

50 bp detected by SyRI (5.2%). For general SVs the AT6909 assembly contained the

least amount (3.1%), while for non-aligned sequences it contained the most (4.4%) (Ta-

ble B.5). The intersection of annotations with the non-reference regions revealed that on

average 9.8% of the non-reference sequences contained genes. This value was the lowest

in AT6909 (7.8%) and the highest in AT7186 (10.6%). The fraction of variants with TEs

was higher. Here, on average, 21.9% of the non-reference regions contained at least one

TE. Again, AT6909 had the least TE containing non-reference sequences (11%). The

most TE containing sequence was found in AT6911, with 24.4%. Almost all of the non-

reference regions contained sequences that was annotated as repetitive (99.4%). Once

again AT6909 contained the least (96.9%), while the most was found in AT1741 (99.9%)

(Table 3.12).

Table 3.12: Non-reference annotation - Annotated features localized inside non-reference sequence

stretches. The intersection was performed using bedtools intersect with an required overlap of at least

90% of the annotated feature. The percentage relates to the number of large non-reference variants of the

accession.

Genes TEs Repeats

Accession Count Percent Count Percent Count Percent

AT1741 703 10.3 1,659 24.2 6,839 99.9

AT5784 797 10.2 1,895 24.3 7,789 98.7

AT6909 53 7.8 75 11 662 96.9

AT6911 926 9.9 2,286 24.4 9,369 99.8

AT7186 803 10.6 1,795 23.7 7,564 99.7

AT7213 772 10.3 1,799 24.1 7,464 99.9

In order to assess the source of non-reference sequence in my graph, I performed a tax-

onomy analysis on the large variants using Kraken2 (Wood et al., 2019). I was able to

classify 66.8% of the large non-reference regions. The classified regions accounted for

97.5% of the sequence contained in the large non-reference regions (Figure 3.9 (A)). The

majority of the non-reference traversals were originating from the Arabidopsis genus.

79.4% of them were assigned to A. thaliana itself, followed by A. arenosa (6.4%), and

A. lyrata (5.5%). Other closely related genera, such as Camelina (1.4%), Capsella

(0.9%), and Brassica (0.4%) were also represented (Figure 3.9 (B)).
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Figure 3.9: Non-reference sequences - Kraken2 based taxonomy analysis of large (≥ 50 bp) non-

reference sequences from the graph based pan-genome. (A) Amount of sequence that was classified by

Kraken2 in each of the assemblies. (B) Sankey taxonomy representation of the most prevalent categories

of the Kraken2 results. The figure shows the number of sequences. For readability only the most common

hits are shown in this representation.

Pan-genome based variant detection

A graph is a representation of the underlying alignment. Therefore it stores the variation

of the aligned genomes and is able to describe their structure and nestedness better than

reference based methods. Here I used the panSV (subsection 2.1.2), to access and de-

scribe the variable regions of the graph. In addition I intersected them with TEs, repeats,

and genes that belong to non-standard orthogroups.

panSV detected a total of 2,561,981 variable regions from the graph. 1,792,643 of them

belonged to the highest core level, which describes the number of genomes that are part

Table 3.13: panSV regions - Statistics of variable regions detected by

panSV. Parent describes the percentage of regions that contain nested

variants. Repeated describes the pervcentage of regions that are tra-

versed multiple times by the same paths.

Level Regions Mean bp % Parents % Repeated

7 1792643 36 5.8 0.01

6 266389 84 8.2 0.01

5 173060 78 7.4 0.01

4 131502 82 5.9 0.02

3 113117 77 3.8 0.02

2 85271 89 0.01 0.04

of this region. The re-

maining regions detected

by panSV were children

of those bubbles and were

nested within them (Fig-

ure B.4). 94.6% of all de-

tected regions contained

no nested children. The

fraction of regions with-

out children dropped to

91.8% when considering

only regions with a core

level of 6. The median

size of regions, overall,
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and for the individual core levels was 1 bp. The mean size was strongly influenced

by large regions. For core level 7 it was 36 bp. The other core levels averaged at 85 bp,

ranging from 77 bp in core level 3 to 89 bp in core level 2. In rare cases, regions can have

more traversals than its core level. This was the case for collapsed repeats and occurred

in 0.01% of the variable regions. In regions with a low core level this behavior was a bit

more common and increased to 0.04% in regions of core level 2 (Table 3.13). Using the

length of traversals through a region I was able classify them as SNPs, small variants,

or large variants, based on the criteria described previously. 76.9% of the regions were

classified as SNPs, 13% as small variants, and 10.1% as large variants. These numbers

differ from the results of vg deconstruct on the same graph (Table 3.5). Overall vg decon-

struct detected fewer variants, and their fraction in the set differs. 11.6% of the variants

detected by vg deconstruct were not overlapped with variants detected by panSV. The

number of variable regions in each of the assemblies was very similar and ranged from

2,064,089 in AT6911 to 2,113,235 in AT5784. On average 43.9 Mb of sequence was af-

fected in each of the genomes. This amounts to over one third of the assembled genome

sizes in each of the assemblies. The number of variable regions that did not belong to

the highest core level was also comparable for each of the assemblies and ranged from

271,446 in AT6911 to 320.592 in AT5784 (Table 3.14).

Table 3.14: panSV paths - Number and size of variable regions per accession. The total number of

regions, as well as the number of regions with a core level below 7 are shown.

Accession # Regions
# Regions

(CL <7)
Affected Mb

AT1741 2,110,064 317,421 42.3

AT5784 2,113,235 320,592 45.4

AT6909 2,103,188 310,545 44.1

AT6911 2,064,089 271,446 42.3

AT7186 2,102,357 309,714 45.7

AT7213 2,108,442 315,799 43.4

The intersection of TEs with the variable regions revealed that on average 0.2% of the re-

gions contained at least one TE. Overall 51.8% of TEs per accession were located inside

variable regions of the graph. When looking at genes only 0.1% of the variable region

per accession contained at least one gene and on average just 6.1% of the genes annotated

per accession were located inside these regions. On average 86.4% of the genes that were

located in variable regions of the graph were also part of a non-standard orthogroup. Out

of this set 24.8% of member genes per accession were located inside variable regions.

In the total set of variable regions I identified 325 regions where the left and right an-

chor were the same node. These bubbles were labeled as repeat anchor regions. 240

of these regions overlapped with at least one TE (73.9%). In addition 133 of the repeat

anchor regions contained a non-standard orthogroup gene (40.9%). 87.2% of those re-

gions also contained at least one annotated TE. While only 0.01% of all variable regions
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were repeat anchor regions, 1.7% of the regions that contained at least one TE had repeat

anchors. For non-standard orthogroup gene-containing regions this fraction rose to 3.7%.

Table 3.15: Non-standard

orthogroup - Copy numbers

of members of orthogroup

OG0005825.

Accession Copies

TAIR10 1

AT1741 1

AT5784 3

AT6909 1

A. arenosa 1

The reference gene AT1G20400 was member of such a

non-standard orthogroup. It encodes a hypothetical protein,

that was annotated in the araport11 reference annotation.

This orthogroup contained seven genes that, in addition,

were annotated in three of the de-novo assemblies and the A.

arenosa outgroup annotation. No orthologs were found in

AT6911, AT7186, and AT7213, but three copies were present

in AT5784. All orthologs were located on chromosome one

(Table 3.15). The variable region in the TAIR10 reference

genome (Berardini et al., 2015) contained two annotated TE

fragments alongside the annotated gene (Figure 3.10 (B),

and at the insert site of one of the additional ortholog copies

the left and right anchors were the same nodes, representing

a repetitive anchor (Figure 3.10 (C)).

A

B

C

Figure 3.10: Non-standard orthogroups - Example of a non-standard orthogroup intersecting with a

variable region in the graph. (A) Overview of the insertion sites of the orthologs. For simplicity only two

of the sites in AT5784 are shown. (B) Representation of the region in the TAIR10 reference assembly.

Showing the annotated features in araport11, and the variable regions with core level 7. (C) Layout of the

graph at one of the insertion sites in AT5784 (blue path).
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3.2.4 Graph alignment evaluation

In order to access the full potential of a genome graph we need to be able to map reads

to it. At the moment multiple mapping concepts and algorithms are available. I eval-

uated which one is the most suitable algorithm for the intended genotyping of nodes

using short-read sequencing. To do so I compared four different mapping algorithms on

a flat reference graph and a set of four graphs of increasing complexity. I mapped reads

originating from the six assembled genomes as well as short-reads from six accessions

randomly chosen from the 1001 Genomes Project (1001 Genomes Consortium, 2016)

to the graphs (Table 3.16). I recorded the computational requirements and the mapping

performance to compare the different graphs and mapping algorithms.

Table 3.16: Graph mapping test reads - Informa-

tion on N90 read length, estimated coverage of the

TAIR10 reference genome, and the source of the

reads used in the graph mapping evaluation.

Accession

ID
N90

Estimated

coverage
Source

AT1741 246 63.4 sixRef

AT1852 101 37 1001G

AT5784 248 69.2 sixRef

AT6680 101 18.2 1001G

AT6909 250 51.8 sixRef

AT6911 242 49.4 sixRef

AT7109 101 15.5 1001G

AT7186 235 151.7 sixRef

AT7213 248 73.5 sixRef

AT7384 101 17.4 1001G

AT7521 101 74.3 1001G

AT7568 101 81 1001G

The N90 read length of the six acces-

sions with complete genomes were close

to 250 bp, while the reads from the 1001

Genomes Project had an N90 length of

101 bp. The estimated coverage for the six

accessions with complete genomes ranged

from 49x to 152x, while for the 1001

Genomes reads it ranged from 15x to 81x.

The creation of the target graphs is de-

scribed in subsection 2.2.5. The flat graph

contained the full length of the TAIR10

reference genome (Berardini et al., 2015)

and no variation. It had a compres-

sion rate of 0 and a node degree of al-

most 1. The VCF graph had a com-

pression ratio of 25.8% and a node de-

gree of 1.5. The chromosome graph fur-

ther compressed the sequence to 23.1% of

the seven input genomes. The node de-

gree decreased to 1.4. In the linear graph

the compression decreased the input se-

quences to 22.9% of their original length, while the node degree remained stable at 1.4.

The complex graph compressed the input sequences to 19.7% of their original size. The

node degree dropped slightly to 1.37 (Table B.6).

The baseline for the comparisons was an alignment to the linear TAIR10 reference gen-

ome using bwa mem. Here the memory consumption and run time scaled with the num-

ber of reads in each set. Using the conventional method, on average 96.2% of the reads

were aligned to the reference genome, covering 95.4% (114.2 Mb) of the available se-

quence space. The first mapping algorithm, vg map, aligned on average 96% of the reads

to the flat graph, covering an average of 95.4% (114.2 Mb) of the available sequence.
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Figure 3.11: Graph mapping test - Statistics on the mapping performance of 12 short-read data sets to a

flat reference and four graphs of increasing complexity. (A) Maximum resident memory requirement [kb]

(B) System runtime of the alignments [seconds] (C) Fraction of reads aligned to the graph (D) Bases cov-

ered in the graph [Mb] - the line indicates the size of the TAIR10 reference genome (119.2 Mb) (Berardini

et al., 2015).

The second algorithm, vg giraffe, aligned 96.1% of the available reads to 94.9% (113.6

Mb) of the genome. In contrast graphAligner was only able to place 56.8% of the reads,

but covered 97.1% (116.9 Mb) of the available sequence space with it. On the flat graph,

the mapping using vg inject is identical to the results of bwa mem. The vcf graph was

mapped to by vg map, vg giraffe, and graphAligner. As no paths, except the reference

paths are present in this graph, the performance of the vg inject based method would

have been identical to the performance on the flat graph. The fraction of alignable reads

increased by 0.5% for vg map, and 1.4% for vg giraffe. The fraction of aligned reads de-

creased by 12.4% for graphAligner. With the additional sequence added to the reference

the amount of covered sequence in the graph increased for vg map and vg giraffe. vg

map covered 136.6 Mb of the available sequence space, while vg giraffe mapped reads

to 136.7 Mb. The amount of sequence covered by alignments from graphAligner was

considerably higher (177.2 Mb). The first of the whole genome alignment derived graph

(Chrom graph) saw a decrease of reads aligned by vg map. Only 56.2% of the avail-

able reads were mapped. The covered sequence decreased to 60.2 Mb. The amount of
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reads aligned by vg giraffe increased by another 0.2%. The amount of covered sequence

slightly decreases to 134.9 Mb. For graphAligner the fraction of aligned reads decreased

further (43.1%), along with the covered sequence space (153.9 Mb). On the next graph

(linear graph) vg map was unable to complete its run and failed. The linear graph was

the first graph where the vg inject method could be used to project alignments into the

graph. 97.1% of the reads were mapped by this approach and covered 72.4% of the graph

sequence (141.5 Mb). The performance of vg giraffe did not change much with the slight

increase in graph complexity. 97.7% of the reads were aligned, covering 134 Mb of se-

quence in the graph. The same was true for graphAligner. The fraction of mapped reads

decreased by 0.04% and in total 152.6 Mb were covered. In the most complex graph the

performance of vg giraffe dropped massively. Only 73.4% of the reads could be aligned

by the algorithm, covering just 71.3 Mb of sequence in the graph. The performance of

graphAligner kept decreasing. 41% of the available reads were aligned to cover 138.1

Mb of graph sequence. Meanwhile the fraction of reads injected into the graph using

bwa mem and vg inject stayed almost identical at 97.1%. The amount of covered graph

sequence decreased to 127.3 Mb (Figure 3.11) (Table B.7). A comparison of the compu-

tational resources required showed that on real graphs graphAligner always required the

most memory. The consumption was independent of the graph complexity, the same was

true for vg giraffe. Except for the complex graph, the memory consumption was almost

identical over all graphs. vg map failed to map to the linear, and complex graph due to

a massively inflated memory footprint. The memory consumption of the injection based

method was among the higher ones in the comparison and constantly showed a wider

range. In the runtime comparison, vg inject was among the fastest tools, while the other

ones became slower with increasing complexity. Based on this analysis I decided to use

the injection based method of bwa mem and vg inject to align reads to my genome graph

(Figure 3.11).

3.2.5 Graph genotyping

The completeness of a graph-based pan-genome strongly depends on the selection of

genomes used in the construction. By using it as a target for short-read alignments,

the additional sequences in the graph extend the available sequence beyond that of the

reference genome. The additional sequence can also be genotyped to expand the knowl-

edge of variant frequencies. Furthermore the completeness of the graph structure can

be estimated based on the amount of unmapped sequence, and variants can be called in

an effort to increase their accuracy. In order to do so, I mapped a subset of the 1001

Genomes Project (1001 Genomes Consortium, 2016) short-reads to the six reference

genomes graph and describe the expanded pan-genome of A. thaliana as well as the com-

pleteness of the constructed genome graph. I also describe the expanded pan-genome and

called variants from alignments to the graph.
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Read mapping

The quality filtering of the original 1001 Genomes Project short-reads (1001 Genomes

Consortium, 2016) resulted in the removal of 295 accessions with reads that were too

short or had insufficient coverage. The remaining 840 read sets belonged to ten different

sub-populations, called admixture groups, which were identified based on the variants

detected in the 1001 Genomes Project (Table B.8). The short-reads in this subset were

produced by four different laboratories (Figure 3.12 (A)). They were mapped to a com-

bined fasta sequence of the six de-novo assemblies and the TAIR10 reference genome

(Berardini et al., 2015) with varying completeness. The median percentage of mapped

reads was 98.8% (mean: 96.8%). 696 accessions had a higher percentage of mapped

reads, than the mean. 350 accessions had more than 99% of their reads mapped. The

lower end of the distribution was much broader. The lowest accession only mapped

43.1% of its reads. Only 17.1% of the sets mapped less than the mean fraction of mapped

reads. These accessions contained 34.7% of all read sets sequenced at the Salk Institute

(Figure 3.12 (B)). On average 1.2% more reads were mapped to the graph compared to

the TAIR10 reference genome.

The reads that remained unmapped to the graph were subjected to a Kraken2 taxon-

omy analysis. Here between 6% and 99.2% (mean: 80.8%; median: 88.4%) of the

reads remained unclassified. The remaining reads were identified as viridiplantae in
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on average 1.4% of the cases (median: 1.2%), or as non-viridiplantae in 17.9% of

the cases (median: 10%). The fraction of reads assigned to viridiplantae ranged from

0.05% to 22.05% (Figure 3.12 (C)). This distribution shifted in the set of accessions that

aligned a lower percentage of reads than the mean. In these accessions fewer reads re-

mained unclassified (mean: 71.4%; median: 85%), and fewer reads were calssified as

viridiplantae (mean: 0.4%; median: 0.3%). In contrast, more reads were classified as

non-viridiplantae (mean: 28.1%; median: 14%).

Genome size estimation

Table 3.17: SixRef short-read mappings to the Graph - Statistics on the

sequence covered by short-reads from the three accessions that are part of

the genome graph, and the mapping population. The additional fraction is

in comparison to their representation in the graph.

Accession Graph [Mb] Covered [Mb] Additional [%]

AT5784 119.9 122.8 2.4

AT6909 118.4 120.3 1.6

AT6911 118.4 129.8 8.8

Using the node cover-

age information I was

able to estimate the col-

lapsed genome size of

each short-read acces-

sion. The least graph

sequence was covered

by the Western euro-

pean accession AT9862

(106.4 Mb), while the

most sequence was cov-

ered by AT6933 (136.7 Mb), a Spanish accession. The mean covered graph sequence

was 121.2 Mb (median: 121.1 Mb). In total 614 accessions covered more sequence in

the graph, than the length of the current TAIR10 reference genome (119.2 Mb) (Berardini

et al., 2015) and 706 more than the collapsed reference sequence as it is represented in

the graph (117.3 Mb) (Figure 3.13 (A)). Three out of six accessions used to build the

graph were also represented in the set of short-reads mapped to the graph. All three

short-read sets aligned to additional sequence beyond the nodes that represented this ac-

cession in the graph. The lowest amount of additional sequence was found in AT6909.

Here, just 1.6% of additional sequence were covered by alignments to the graph. AT5784

aligned to 2.4% of additional sequence and AT6911 to 8.8% (Table 3.17).

In addition to considering the sequence covered by reads mapped to the graph, I also

estimated the sequence that had not been represented in the graph using the unmapped

reads. The median amount of estimated additional sequence is 324 kb (mean: 318 kb).

The set of genomes that showed an abnormal amount of unmapped reads also had the

highest amount of estimated additional sequence (mean: 1.42 Mb; median: 1.13 Mb).

For the majority of accessions the amount of estimated additional sequence did not cor-

relate with the fraction of unmapped reads.

I categorized the mapped accessions by admixture group. Admixture groups are sub-

populations of A. thaliana that were defined based on their genetic similarity in the 1001

Genomes Project (1001 Genomes Consortium, 2016). The individual groups showed

different median estimated genome sizes. Both Swedish groups covered the most graph
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sequence. The median of accessions classified as Southern Swedish was 125.4 Mb, and

the median of Northern Swedish accessions was 125.2 Mb. The lowest median amount of

covered sequence was found in the Asian admixture group (120 Mb). Together with the
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German admixture group, of which AT6909 is a member, the Asian admixture group had

an estimated genome size closest to that of the TAIR10 reference genome (Figure 3.13

(B)) (Table B.9). A one-way ANOVA correlation analysis showed that the amount of

covered sequence in the graph correlated with the assigned admixture group (p=1.77e-

13). A even higher correlation could be observed between the covered sequence in the

graph and the lab that sequenced the accession (p=1.16e-16) (Figure 3.13 (C)).

Alignment based pan-genome

By combining the coverage information obtained from all accessions, I could explore

the pan-genome of the sequenced population. The graph sequence based pan-genome

showed a U-shaped distribution (Figure 3.14 (A)). Based on the threshold of other pan-

genome studies, I classified sequence as private if it attracted mappings from fewer than

10% of all accessions (< 84). Using this definition, 10% of the graph sequence was

classified as private. 29.8% were considered as shell genome, being mapped to by 85 to

755 individual genomes. 55.2% of the sequence stored in the graph were classified as

core. 5% of the sequence in the graph was not covered by any reads (Figure 3.14 (B)).

Table 3.18: Mapping based pan-genome - Pan-genome distribution

of the accessions mapped to the graph. The core category contains

nodes that are mapped to by at least 90% of the sequences. Nodes that

are mapped to by 10% or fewer accessions are classified as private.

# Nodes Mb Mean bp Median bp

Core 2,255,312 93.3 41.35 9

Shell 3,488,995 50.3 14.41 1

Private 933,257 16.8 18.05 1

unmapped 17,242 8.4 486.68 79

For private and shell nodes

the median and mean node

sizes were very similar. The

mean node size for private

nodes was 18 bp (median 1

bp), the mean size of shell

nodes was 14 bp (median 1

bp). For core nodes the mean

size increased to 41 bp (me-

dian: 9 bp). Nodes that

remained unmapped had the

largest mean (487 bp) and median (79 bp) (Table 3.18). The sequence in the set of nodes

that remained uncovered consisted almost entirely of Ns (97.62%).

In addition to the description of the mapping based pan-genome I explored the predictive

power of the graph itself. I compared the pan-genome categories of nodes in the graph

with their category in the mapping population. 48.4% of the nodes that were categorized

as core in the graph were also categorized as core in the mapped population. The remain-

ing nodes were attributed to shell (40.7%), private (10.8%), and uncovered nodes (0.1%).

Nodes that had been categorized as shell in the graph were also categorized as shell by

the mapped population in 67.8% of the cases. 22.5% were categorized as core based

on the mapping population, despite belonging to the shell genome in the aligned popu-

lation. 10.8% were assigned as private in the graph, and 0.09% as uncovered. For the

private nodes of the graph the picture changed and the private mapping population did

not form the largest intersecting group (27.8%). Most of the private nodes in the graph
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assigned to each pan-proteome level.
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were attributed to the shell genome of the mapping population (47.4%). The core map-

ping population intersected with 23.9% of the private graph nodes, and 0.9% remained

uncovered. When considering the number of bases, instead of the number of nodes the

picture changes. 82.7% of the core sequence in the graph were also identified as core

in the mapping population. In the shell genome only 45.4% were also part of the shell

genome of the mapping population, while 47.9% were part of the core genome. 14.9%

of the private graph pan-genome bases remained uncovered in the mapping population.

36.5% of the bases were part of the shell pan-genome of the mapping population, 25.5%

of the core, and only 23.1% were private in both sets (Figure 3.14 (C)). The comparison

of the pan-genome level of each node in the graph and the mapping population showed a

diagonal line that indicates a correlation between the two (Figure 3.14 (D)) (Table B.10).

Alignment based pan-proteome

In addition to the raw node space I was also able to describe the distribution of the fea-

tures annotated in the genomes that were used for the graph construction. Here I describe

the distribution of TEs and genes in the mapping population. As an orthogroup-like as-

signment of TEs is not trivial, I resorted to projecting the TEs onto the graph and simply

annotated regions of the graph as containing a TE in at least one accession. In total, I

annotated 19.2 Mb of the graph as TEs. This was 2.3 kb more than the average amount

of TEs in the de-novo accessions. None of the accessions from the mapping population

came close to covering all TEs in the graph. The accession with the most covered TE

sequence was AT6933 (14.4 Mb). The accession that covered the least TE sequence was

AT7068 (9.4 Mb). The mean, and median, TE sequence covered by accessions mapped

to the graph was 11.8 Mb (Figure 3.14 (E)). Only 55,710 nodes that contain TEs were

covered by reads from more than 90% of the mapped accessions. This sums up to a total

of 657 kb of TE sequences. The absolute majority of these nodes (53,728) were covered

at more than 1.5 x median coverage. In contrast, 209,227 nodes (4.9 Mb) from the set of

TE nodes were covered by less than 10% of the mapped accessions. When only consid-

ering nodes that were annotated as TEs and larger than 500 bp, a clear pattern of covered

and uncovered nodes could be observed that is conserved for most of the accessions.

Notable in this distribution were nodes that had a consistently higher coverage, up to 50

fold of the median coverage of the accession (Figure B.5).

In contrast to TEs, I was able to utilize the orthogroup assignment in the graph to collapse

nodes that contained genes that were part of the same orthogroup. Based on the coverage

of genes and respectively their orthogroup I was able to describe their distribution in the

wider population. In total 25,271 orthogroups were constructed based on the assembled,

and annotated genomes and at least one member of an orthogroup in the graph had to

be covered to at least 80% of its sequence length in order for this orthogroup to be con-

sidered as present in the mapped accession. 1,557 orthogroups were present in every

accession, based on this analysis. Using the 10% core threshold, established for the node

based analysis, the core category contained an additional 8,827 to 20,215 orthogroups
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per accession (mean: 19,729 OGs; median: 20,055 OGs). Private orthogroups were

rare. No orthogroup was present in only a single accession. Overall a mean, and median

of 4 orthogroups per accession were considered as private in the mapping population

The numbers ranged from 0 orthogroups, in 90 of the mapped accessions, to a maximum

of 37 private orthogroups in AT6911, one of the genomes that was part of the graph. The

other two accessions from the sixRef set, that were present in the mapping population

contained 25 private orthogroups (AT5784), and 19 private orthogroups (AT6909), plac-

ing them in the top 10 mapped accessions with the most private genes. The number of

shell orthogroups was also comparatively small. Here the number of orthogroups ranges

from 583 to 1,661 orthogroups, with a mean of 1,355 orthogroups (median: 1,381) (Fig-

ure 3.14 (F)). The z-Score analysis of the orthogroup copy number did not reveal a clear

pattern (Figure B.6).

The pan-proteome occurrence of the 23,909 orthogroups, detected in the sixRef genomes,

in the mapping population exhibited a similar distribution as the node occurrence. The

absolute majority of the orthogroups belonged to the core pan-proteome (91.1%). Only

8.3% were assigned as shell orthogroups and a total of just 102 orthogroups (0.4%) were

private in the pan-proteome, that means covered by alignments of less than 10% of the

accessions in the mapping population. 56 orthogroups (0.2%) were not covered by any

of the accessions of the mapping population (Figure 3.14) (G) & (H)). 53 of them were

private to one of the sixRef genomes, two orthogroups were shared among two sixRef

genomes and a single orthogroups was present in five out of six of the sixRef annotations.

In the pan-proteome analysis of the sixRef de-novo annotations I identified 148 core or-

thogroups that had no contributing transcript from the araport11 reference annotation,

but a transcript from the A. arenosa outgroup annotation. 136 of them were also core

orthogroups in the mapping population and the remaining 12 were shell orthogroups.

The frequency of the shell orthogroups ranged from 371 to 750 accessions (mean: 605.6

; median: 630.5).

Variant calls

With the variant-enriched genome graph as a new reference structure, I could call vari-

ants and investigate the impact of the additional sequences on their quality. I called

variants from each of the 840 accessions in the mapping population. They were each in-

tersected and compared with the original variants called from the 1001 Genome Project

(1001 Genomes Consortium, 2016). In total, I called 1,844,756 variable positions that

contain 3,222,637 different alleles. Each position is variable in, on average, 241.8 ac-

cessions of the mapping population (median: 161), and has 1.8 different alleles (me-

dian: 1). The majority of the alleles were categorized as SNPs (43.2%), in addition

16.6% of small variants, and 40.2% of large variants were called. The median vari-

ant size was 1 bp (mean: 79.5 bp) (Figure 3.15) (A)).The SNPs are distributed along

the whole chromosome, while the small, and large variants are clustering around the

pericentromeric region (Figure 3.15 (D)). On average 134.9 accessions contributed to an
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Figure 3.15: Short-read variant calls from the graph - (A) Distribution of sizes in the combined variants

that were called from the short-read mappings to the graph. (B) Frequency of called SNPs per kb in

different regions of the TAIR10 reference annotation. (C) Comparison of the number of variants called

from the graph with the number of variants in the 1001 Genomes Project data for each accession. In

addition the relation between the two sets for each accession as the fraction of the number of calls in the

1001 Genomes Project is shown. (D) Circos plot of the relation between variants and the genomic features

for the complete mapping population. The tracks, from the outside in show: frequency of SNP calls (light

green), frequency of small variants (light blue), frequency of large variants (light red), density of highly

diverged regions (HDR) (purple), gene density (green), TE density (red). (E) Circos plot of the density

of heterozygous variants called from the reference accession (AT6909), in comparison with features of

the TAIR10 reference genome. The tracks, from the outside in show: frequency of heterozygous variants

(orange), density of highly diverged regions (HDR) (purple), gene density (green), TE density (red).
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allele (median: 16). The number of accessions greatly differed between the variant size

categories. While SNPs (mean: 209.5; median: 121) and small variants (mean: 208.1;

median: 131) contained a similar number of accessions per site, large variants were

shared between very few accessions (mean: 7; median: 1). On average 2.3 accessions

per large variant were heterozygous (median: 1). In SNPs the heterozygosity was at

32.1 accessions per variant (median: 12), and at 62.2 in small variants (median: 26). In

total 81.3% of the sites were heterozygous for at least one accession from the mapping

population. Again SNPs (91.7%) and small variants (97.6%) had a very similar fraction

of heterozygous variants. Large variants were heterozygous in at least one accession for

62.5% of the sites (Figure 3.16 (G)).

Variants were not distributed uniformly throughout the sequence. The full sequence of

the TAIR10 reference genome (Berardini et al., 2015) contained an average of 11.5 SNPs

per kb. This number increases to 15.2 SNPs per kb in the regions that were identified as

highly diverged (HDR) by SyRI in the analysis of the six de-novo assembled genomes.

The variant frequency also differed between features of the araport11 reference annota-

tion (Cheng et al., 2017). TEs had an increased number of 17.5 SNPs per kb, while it

was decreased for genes (10.2 SNPs/kb), the difference between introns (8.2 SNPs/kb)

and exons (9.6 SNPs/kb) being minimal (Figure 3.15 (B)).

An analysis based on the A. thaliana pseudo-heterozygosity study (Jaegle et al., 2021)

yielded 672,654 SNPs that were called inside genes of the araport11 reference annota-

tion. Of them 11,677 were heterozygous and called in more than 5% of the mapping

population. Each of the positions was present in on average 814.8 samples (median:

814). In the filtered SNPs, on average 4.6% of the lines were heterozygous at a site.

The individual accessions contained between 58,805 (AT6909) and 994,236 (AT6911)

variable positions (mean: 530,959; median: 529,204). On average 75.6% of the called

variants were SNPs (median: 75.5%) followed by 22.6% of small variants (median:

22.7%), and 1.8% of large variants (median: 1.8%) (Figure 3.16 (F)). The individual

number of called variants is comparable to the number detected in the original 1001

Genomes Project call set (mean: 1.1x 1001G calls; median: 0.98x 1001G calls) (Fig-

ure 3.15 (C)). The accession AT9887 contained the 0.78x of the 1001 Genomes project

calls, while the reference accession AT6909 contained 54.2 times the amount of variants

compared to the 1001 Genomes Project call set. The next highest comparison was in

AT7461 with 3.4x. On average 70.1% of the variants from the original 1001 Genomes

Project calls were re-called from the graph. 58.3% of them were exact matches (median:

57.1%). The remaining 11.8% were overlapping variants that were no exact matches

(median: 11.3%). 29.9% of the variants from the original 1001 Genomes Project could

not be re-called from the graph (median: 31.5%). The accession with the lowest recall

rate was the relict accession AT9905. 46.9% of the called variants could not be recov-

ered. In the accession AT5784, which is also part of the graph, only 9.2% of the variants

could not be re-called (Figure 3.16 (I)). I checked the coverage of the positions in the

graph that could not be recalled from the graph. The reference sequence was covered by

the alignments in on average 90.9% of the cases without a variant call (median: 91%).
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While the majority of the combined sites were heterozygous for at least one accession,

homozygous variant calls were the norm in each of the accessions (mean: 84.8%; me-

dian: 86.9%), I nevertheless called different types of heterozygous variable positions.

On average 14.2% (median: 12.1%) of the calls were heterozygous, and contained a ref-

erence allele. The remaining 1% of heterozygous variation contained two non-reference

alleles (Figure 3.16 (H)).

The reference accession AT6909 was the outlier in all of the analysis. It contained, by far

and as expected, the fewest variants (58,805), and the distribution of variant sizes also

differed. It contained the least SNPs (59.6%), and the most small variants (38.1%), and

large variants (2.3%). 68.4% of the variants from the 1001 Genomes Project were exact

re-calls in the graph, 10.9% were overlapping, and 20.7% could not be re-called. Only

5.6% of the variants were homozygous. 1.5% of the heterozygous variants contained

two novel alleles. The heterozygous variants were enriched in the HDR. The complete

genome contained 0.5 heterozygous variants per kb, while the HDR contained 6.1 het-

erozygous variants per kb (Figure 3.15 (E)).
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Figure 3.16: Short-read variant statistics - (A) Comparison of the fraction of variants attributed to the

three size categories in each of the accessions from the mapping population. (B) Relationship between the

number of homozygous and heterozygous variant calls for each accession, coloured by the different size

categories. (C) Distribution of heterozygous variants in each of the accessions of the mopping population.

(D) Fraction of variants on each accession that either intersect, overlap, or are private in the comparison

of the 1001 Genomes Project call with the variant calls from short-reads aligned to the genome graph, in

each accession of the mapping population.

82



Chapter 4

Discussion

The aim of my dissertation was twofold: (1) to explore the power of additional full-

length genomes for a richer understanding of genome variation in this species, and (2)

to learn how additional genomes and genome graphs, as a novel reference structure, can

be leveraged to provide more value to existing short-read data sets, such as the one from

the 1001 Genomes Project (1001 Genomes Consortium, 2016). This required additional

genome assemblies to enlarge the available sequence space as well as new methods to

build genome graphs and use them. As we have discussed before, current reference based

analysis is strongly influenced by the available reference genome and its quality. Missing,

or misrepresented sequence causes a reference bias. This bias can be reduced by adding

additional alleles to the reference genome. In an effort to add missing sequence space

six de-novo assemblies of A. thaliana were created. The comparison of these highly

contiguous assemblies underlined not only the high synteny of the A. thaliana population,

but also the power of whole genome assemblies for a more unbiased structural variation

detection. A comparison of variants detected in the reference framework, using different

methods showed the high variability of those calls. I deployed a new, combinatorial

approach to annotate the assemblies. I created a pan-proteome based on this annotation,

that showed a similar synteny. I was able to describe the changes in orthogroup sizes and

discover a set of potentially ancestral genes that are missing from the current reference

annotation. Using the de-novo assemblies I then constructed a genome graph to represent

the previously unknown and unrepresented sequences. I was able to show that we can

already represent a large portion of the core genome of A. thaliana, while we are still

lacking representation of the shell genome. This was done by aligning a set of short-

reads from 840 accessions to the complex, whole-genome derived genome graph, using a

method I established. I highlighted the existing challenges of constructing a graph from

multiple whole genome alignments by describing the portion of the graph not aligned

to the reference. I used panSV, a novel graph based, reference free, variant detection

tool, developed for this thesis, to discover traces of the mobilome in the graph itself. In

addition to enlarging the pan-genome and pan-proteome I was able to show that using

a genome graph as an alignment target for reads can drastically reduce the reference

induced pseudo-heterozygosity seen in short-read analyses (Jaegle et al., 2021).
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4.1 The sixRef pan-genome

The de-novo assemblies of the six accessions are highly contiguous, to a degree where

multiple chromosome arms are assembled as one contig. The chosen approach of long

read sequencing, short-read polishing, with extra optical maps to ensure correct scaf-

folding gave me the opportunity to detect and place structural variants with a higher

reliability. Despite the fact that, based on the scaffolded sequence length, we only ex-

ceeded the reference genome size in three out of six assemblies, we can still conclude,

that we were able to assemble highly contiguous genomes du to the fact, that we were

able to scaffold full chromosome arms without major stretches of Ns. The centromeric

regions remain the problematic areas of the assemblies. Using a pairwise comparison

with the reference I was not only able to show the high conservation of the A. thaliana

genome structure, where 77.2% of the reference genome is syntenic with all six assem-

bled genomes, but also observe previously described structural variants in the assemblies

(Zapata et al., 2016; Rowan et al., 2019; Jiao and Schneeberger, 2020). PAVs detected

from the alignments are unbiased in size. While in short-read based analysis the results

were always biased towards the detection of deletions over insertions (Kosugi et al.,

2019; Ho et al., 2020), I can now observe 0.9 Mb more inserted sequence over deleted

variation. This is a direct result of the comparison of whole genome assemblies with

the reference genome, as those loci missing from the reference are now assembled in

the reference. In addition, the increased resolution of repeat structures easily adds to the

additional sequence space that can be detected as insertions. While the current surge in

telomere to telomere assemblies allows an even better representation of structural vari-

ants in genomes (Gonzalez de la Rosa et al., 2021; Giguere et al., 2021; Wang et al.,

2021), the slightly incomplete six de-novo assemblies already increase the power to de-

tect large SVs and represent them in their sequence context.

One of the accessions chosen for assembly was AT6909. The current TAIR10 reference

genome (Berardini et al., 2015) is based on the same accession and thus our assembly

has a considerably lower number of variants detected. Interestingly the distribution of

detected variant sizes shifts from a majority of SNPs, in all the other accessions, to larger

variants. This is the direct result of the changes that stem from the advances in genome

sequencing and assembly methods, as already described by (Wang et al., 2021). In ad-

dition to the shift in variant sizes I can also observe a shift in SV type, as copy number

changes are far more common in this comparison, than in all the other accessions. As the

assembly is highly similar to the reference, real structural rearrangements are rare and the

observed copy number changes reveal the sequence of the previously hard-to-assemble

parts taht were missing in the reference genome.

I had initially planned to intersect three different variant sets of the six accessions in

an effort to create a reliable set of variants for method validation. This effort failed as

the variations that were no SNPs were far too dissimilar. Nevertheless a valuable lesson

on the method-inherent biases was learned, as variants called by different methods were

hard to compare. Different approaches rely on fundamentally different concepts to de-
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tect variants. While short-read based methods are sufficient to describe small base pair

differences, changes in coverage distribution, and insert sizes, they suffer from the previ-

ously described reference bias. These methods are mostly blind to the syntenic concept

that can be employed by whole genome comparisons that are able to describe large-scale

variation. The assembly based methods are not entirely without their issues either, as

they suffer, for example, from the exclusion of contigs in the analysis, as in the SyRI

analysis, or struggle with the detection of inter-chromosomal rearrangements. In addi-

tion the classification of certain regions into HDRs leaves some regions under-resolved.

The graph allows repetitive regions to collapse, similar to the short-read alignments,

while maintaining the sequence context. The detection of variants can nevertheless be

hindered by the inability to project complex variants into the linear reference space, or

simply under-aligned regions during graph construction. The high identity of SNPs be-

tween the different call sets shows that small variation can be called reliably from every

type of input data, and are more trustworthy, whereas longer variation is more unreliable

in its recallability.

The remaining differences in short variation can easily be explained as a result of differ-

ent variant reporting. For example a short multi base pair variant called by an assembly

based method may be reported as multiple SNPs in the short-read calls. This explains

a large proportion of the SNPs that are not shared between all call sets and some of the

small variation. Another example is the direct result of the described reference bias. As

genome assemblies are contiguous sequences, resolved copy number changes result in

PAV events insted of heterozygous variant calls. As a result of this small variant calls

in the short-read based set can proxy for larger SVs. An advantage of assembly based

variant detection methods is their ability to detect larger and more complex variation

due to their longer continuity over short-reads. While the differences described above

are a result of the properties of the query sequence in the comparison, another critical

factor, in addition to the alignment method itself, comes from the available reference

sequence data. The sequenced short-read alignments contain in principle the full range

of sequence variation available but suffer from being mapped to a reference that does not

contain all the sequences present in the query genome and mapping therefore misplaces

short-reads, producing variant calls in inappropriate places, or lack the power to detect

them entirely. In contrast the pairwise whole genome alignments use largely resolved

chromosomal sequences to detect variation, but the assembly itself can lack sequence

that would be represented in the short-reads. Furthermore, the tool SyRI aligns chromo-

some scale scaffolds to reference chromosomes, and thus is unable to call any variation

that is present in unplaced contigs. The graph that has been used in this analysis also

contains the unplaced contigs and therefore is able to utilize more genomic sequence

than the pairwise alignment. Irrespective of the additional availability of sequence, the

variants detected from the graph strongly depend on the quality of the graph structure and

the ability of the algorithm to deal with highly complex regions. This results in either a

reduced number of variants, or a concatenation into larger, under aligned blocks.
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4.2 The sixRef proteome

The auto-ant annotation pipeline, which I developed for this thesis, could reliably an-

notate genomes. Especially the inclusion of evidenceModeler to combine multiple in-

dependent gene predictions improved the overall results. In the settings I opted for a

higher specificity over more annotated features. The augustus annotation software has

been a mainstay for ab-initio gene prediction and has been used in multiple other anno-

tation pipelines, such as BRAKER (Hoff et al., 2019). This novel pipeline increases the

annotation speed of augustus by chunking the assemblies and enables the tool to run an-

notations of multiple assemblies in parallel. The annotations of different assemblies are

then related to each other using an orthogroup assignment. The usefulness of the upfront

TE annotation and its masking is proven by the very low number of TEs annotated in the

final gene annotation, despite their presence in the genomes and the ability of augustus

to annotate these. This is especially useful to deal with retrotransposons that have an

RNA intermediate (Wicker et al., 2007) and would otherwise be annotated by the RNA

based annotation steps. The, in comparison, higher number of transcript related features

in the RNA based augustus annotation supports the decision to rate the trustworthiness of

this annotation higher than the other annotations. The high similarity of the six genome

annotations in raw numbers and the orthogroup assignments, despite the highly variable

mRNA evidence, further supports the robust performance of the auto-ant pipeline. Er-

rors in the annotation mostly occur in the form of gene fusions that create overly long

gene transcripts, but those events are rare. The gene annotations are coherent with the

reference annotation. Most of the genes are orthologous to genes in the araport11 anno-

tation and conserved in their order, orientation and copy number. This, again, highlights

the strong synteny of the assembled genomes and reference genome. The localization

analysis of genes showed the same structural variation pattern as discovered in the SyRI

analysis. The TE annotation using EDTA also showed the expected patterns of TE class

distribution. Gypsy LTR TEs are more prevalent in pericentromeric regions, while copia

LTR TEs more common in gene dense parts of the genome (Hufford et al., 2021).

The pan-proteome follows the expected U-shaped distribution of private, shell, and core

orthogroups that can be observed in all pan-genomic analysis. I can even observe the

reminiscence of ancient genome duplications in the duplication patten of orthogroup

copy numbers (Simillion et al., 2002; del Pozo and Ramirez-Parra, 2015). In the ref-

erence free analysis I observed that core orthogroups were expanded more often than

contracted. This behavior is an artifact of the core definition. In order to be considered

as a core orthogroup, this group has to contain at least one gene from each annotation.

As the majority of orthogroups are single copy orthogroups, the loss of a gene copy in a

single accession would remove this orthogroup from the core set. In contrast the refer-

ence based orthogroup description contains more contracted orthogroups. This is another

example of reference bias.

The araport11 reference annotation (Cheng et al., 2017) contains more genes than the

more conservative de-novo annotation produced by auto-ant. As a result of this, the
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additional genes in the manually curated reference annotation create the erroneous im-

pression that the orthogroups are contracted. Despite this, I have been able to discover

148 orthogroups that are shared among all assembled accessions, and the outgroup, A.

arenosa, but are not represented in the reference annotation. These genes are most likely

core genes that are not represented in the reference annotation. The fact that 62.9%

of them are located inside variable regions in the graph makes it very likely that their

genomic sequences are not present in the reference assembly, further adding to the po-

tential bias of the reference. While only 30.3% of them are supported by RNA tran-

scription evidence, which is considerably lower than the average support of annotated

genes (78.8%), at least these have a high confidence of being expressed genes that are

part of the pan-proteome of A. thaliana, but are not represented in the known reference

annotation. The remaining genes might be pseudogenes, or artifacts of the annotation

approach, that happen to intersect with annotation of the outgroup, that has also been

annotated using augustus. An in-depth analysis of these genes would be interesting, but

has not been performed yet.

4.3 Graph genome

The constructed genome graph is able to represent the pan-genome of the six A. thaliana

accessions and the TAIR10 reference genome (Berardini et al., 2015). The 79% graph

core sequence in the reference genome corresponds well with the 77.2% of syntenic se-

quence in the reference that is shared among all genomes. The difference can easily

be explained by the slightly different definitions. The syntenic sequence detected by

SyRI contains internal variation, while the graph collapses repetitive regions. The good

representation of sequence synteny in the graph is, in part, the result of the additional

smoothing step in the pggb pipeline. This step increased linearity and alignment rate in

the graph, as indicated by the decreased node degree. This drop is the result of the align-

ment of previously unaligned sequences of the graph and the splitting of over-connected

components in the graph. This can also be observed in the decreased node size. De-

spite the best effort to resolve the graph, overly connected nodes and misalignments still

prevail in the graph. This becomes very obvious in the Kraken2 (Wood et al., 2019)

analysis of the non-reference sequences. 79.4% of the classified sequence was attributed

to A. thaliana. This is a direct result of unaligned sequences that exist in the graph, but

are represented by the reference genome. Based on the annotation of these regions it

becomes obvious that a majority of them are either repetitive or belong to the mobilome.

As graph construction has to be a trade-off between compression and usability the limit

that I had to impose on repeat copies to collapse, as well as the synteny driven underlying

alignment will have had an impact on the presence of unaligned mobilome sequences.

In turn this has resulted in a more linear graph, where the pericentromeric regions are

highly connected among the chromosomes, but the chromosome arms are mostly linear.

The overall compression rate of sequence in the graph is comparable for all six de-novo
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assemblies. Only the TAIR10 reference genome exhibits a lower compression rate. This

is most likely a result of the under-resolved repeat space in the reference that is being

compressed in the de-novo assemblies.

The use of panSV enables a better resolution of the variation in the pan-genome over

traditional reference based methods. When using this method we have to keep in mind

that the representation of variation by panSV is very different compared to the traditional

vcf format. This is a result of the core level based variant definition that does not require

a variant to be anchored to a singular reference genome, but describes variation in the

context of pan-genome frequencies. This can explain the differences in the comparison

of variable regions detected by panSV and the results of the TAIR10 (Berardini et al.,

2015) based vg deconstruct (Garrison et al., 2018) results, that were both obtained from

the same genome graph. Most variation reported by panSV is present at the highest core

level, and intersects with the reference based variants. The strength of panSV becomes

evident in the complex and nested regions of the graph. While vg deconstruct is not able

to fully represent the nested variation, panSV resolves those complex regions and reports

a multitude of variants that are nested within, where vg deconstruct only reports a single

large variant. This is the reason for the higher fraction of SNPs called by panSV, and the

lower fraction of small variants. An additional driver for the difference in detected vari-

ation are repetitive regions, due to the way they are represented in the graph. As panSV

searches for regions with diverging core levels, it is unable to describe repeats that do

not result in a change in the core level. Nevertheless, this new approach will enable us

to access nested variation that has been hard to describe and might become an additional

method to describe the complex variation in a more conceivable form.

Despite the shortcomings in the graph resolution I was able to detect parts of the mo-

bilome in the variable regions of the graph using panSV. While the basic algorithm is

very simplistic in its description of the graph, the reference free approach helps to deal

with variation that tools like vg deconstruct struggle to represent. In highly repetitive

regions it can be challenging to project variation into a linear coordinate system. This

problem is entirely circumvented by my approach. Nevertheless it does not come with-

out its own set of challenges. One of which is the interpretation of the results. While the

concept of polarized, reference based variation is well understood and easy to grasp, the

complexity of traversals and their nestedness can be hard to understand and even harder

to visualize. This concept of pan-genomic variation will need time to be refined and get

used to. Nonetheless I was able to successfully use this approach to detect the traces

of insertion mechanisms of the mobilome and explain a subset of the non-standard or-

thogroups. TEs, genes and a combination of both is enriched in variable regions that are

anchored by identical, thus repeated, nodes on both ends. This is a result of the insertion

and breakpoint repair mechanism (Chatterjee and Walker, 2017). The high fraction of

those regions that contain both, TEs and non-standard orthogroup genes, indicates that

those genes might be dragged through the genome alongside TE.s A more in-depth anal-

ysis of the remaining bubbles could possibly reveal previously undescribed players of

the mobilome.
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4.4 Graph based short-read alignments

Alignments to graphs are one of the biggest challenges when working with genome

graphs. Only a limited number of genome graph alignment algorithms habve been im-

plemented at the moment, and most of them have been geared towards vcf-derived vg

graphs. For this project I evaluated the performance of different algorithms on complex

pggb graph (Garrison et al., 2023). Two of the alignment algorithms are part of the vg

toolkit (vg map, and vg giraffe) (Garrison et al., 2018). I also used graphAligner (Rauti-

ainen and Marschall, 2019), and a novel combination of bwa mem (Li, 2013) and vg

inject to project linear alignments into the graph space. While vg map, and vg giraffe

had a superior performance on linear, and vcf-derived graphs their memory consumption

increased, and alignability decreased on complex graphs. Here they struggle with the

highly complex regions of the graph that challenge their alignment algorithm and bloat

the calculations they need to perform to a degree where alignments become infeasible.

While graphAligner did not suffer from the same limitations, and was exceptionally fast,

its implementation for long-reads made it unsuitable for short-read alignments and re-

sulted in an inflated amount of covered sequence. A short-read implementation of the

algorithm is in development, but has not been released at this point. This left me with

the vg inject based approach, that by design had a constant performance on all suitable

graphs, but suffered from its own set of limitations. The underlying idea has a very sim-

plistic beauty in that it uses the well established alignment method to flat sequences and

the positional relationship between flat genomes and paths in the graph to then inject

the alignments into the graph. While the additional sequences present in the assembled

genomes allow more reads to be aligned, the fact that the initial alignment target contains

multiple copies of the same sequence unnecessarily slows down the alignment step. This

can become infeasible with more, and larger genomes. In addition this method can only

align reads to allele combinations represented in one of the genomes and crossovers are

not possible. Still it is the best option to date to align short-reads to highly complex

graphs.

In addition to the evaluation of alignment tools we can also observe the impact of further

graph compression onto the alignment statistics. While the fraction of reads aligned by

vg giraffe stays almost identical for the step from the chromosome graph to the linear

graph, the amount of covered sequence decreases by almost 2 Mb when aligning to the

complex graph. This is a result of the increased compression, especially in the pericen-

tromeric regions.

The alignment of short-read sets from 840 accessions from the 1001 Genomes Project

(1001 Genomes Consortium, 2016) demonstrates that the graph makes additional se-

quence available as additional mapping targets increase the number of alignable reads.

This is directly reflected in the ability to cover more sequence in the graph than the length

of the TAIR10 reference genome, and align more reads compared to alignments to the

TAIR10 reference genome. This is especially visible in re-mapping of the three acces-

sions that are part of the graph, and the 1001 Genomes Set. The amount of sequence cov-
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ered by these alignments exceeds the length of their repective genome assembly. This is

result of sequence that could not be assembled in their genome assembly, is reperesented

by one of the other assemblies and thus becomes availabel for mapping. This demon-

startes that multiple incomplete references in a graph can together represent more of their

individual sequences. The ability to cover more sequence in the graph than the length of

the reference genome is also a true biological signal of additional alleles from the novel

assemblies, as well as a better representation of extensive copy number variations present

in A. thaliana (Jaegle et al., 2021). Nevertheless, a varying fraction of reads remained

unaligned in each of the short-read sets. Only a small fraction of these reads could be

assigned to viridiplantae. Instead a larger fraction has been classified as belonging to a

non-viridiplantea clade and as such are most likely a result of samples not coming from

sterily grown plants, which are naturally colonized by microbes. As Kraken2 (Wood

et al., 2019) masks repetitive regions, the majority of unclassified reads most likely also

originate from those. This is in line with the observation that the amount of unaligned

genome sequence, by the k-mer based size estimation, is largely independent from the

amount of unaligned reads. Nevertheless the sequences in the contaminated sets slightly

bias genome size estimation analysis.

The analysis of the aligned, and estimated genome size reveals another important bias in

science. While there is a significant correlation between the genome size and the admix-

ture group, there is an even stronger correlation with the laboratory that sequenced the

data set. Especially the Swedish accessions, which show the highest amount of covered

sequence were mostly sequenced at a single sequencing center that sequenced few other

accessions in the 1001 Genomes Project. It is very likely that the size differences are a

bias that was introduced by different handling of the plants and material, or sequencing

protocols by different experimenters (Stoler and Nekrutenko, 2021).

I already described the pan-genome of the six de-novo genome assemblies. By using the

graph as a target for short-read alignment I can now use it to describe the pan-genome of

the mapping population. A shift towards the higher pan-genome levels can be observed

in the comparison of the two pan-genomes. Especially the shift from private sequence

to shell sequence is noticeable. This shift is a result of the glass roof imposed by the

graph, and another form of reference bias. As the sequence space in the graph is finite I

can only describe sequences that are present in the graph, and thus the identification of

novel sequences is impossible. This drives the shift away from private sequences in the

mapping population as previously private sequences are in fact underrepresented in the

assemblies. Another driver is the under alignment of the graph, that I described in the

non-reference analysis. As this sequence is in fact more common than it is perceived in

the graph based pan-genome it becomes a shell, or even a core sequence in the mapping

based pan-genome. Nevertheless the fact that 82.2% of the core sequence is identical in

both pan-genomes shows that we can already represent a large fraction of the A. thaliana

core genome with just seven, well chosen, assemblies.

In the pan-proteome the same behavior as in the pan-genome analysis can be observed.

Again the number of core orthogroups increases while the shell, and especially private
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categories shrink. The shift in shell, and private graph sequence to the next (higher)

category is a hint at underestimated alleles that appear to be rare in the graph, but in fact

are more common in the larger population. This theory is backed by the per-accession

analysis of the pan-proteome. The three accessions that are part of both, the assembled

genomes, and the mapping population, have higher numbers of private orthogroups in

the mapping population based analysis, compared to the other accessions in the mapping

population. Especially the high number of private orthogroups in short-read mapping

of the relict accession AT6911 shows that we are still missing rare alleles of the wider

population. Adding more diverse genomes to the graph structure will open up additional

alleles. The pan-proteome analysis revealed another way the current TAIR10 reference

genome imposes a bias onto analysis performed with it. The set of 148 core orthogroups

that contain a member form A. arenosa but have no member from the reference anno-

tation, are also present in the majority of the mapping population, further underlining

their status as common genes of A. thaliana. While this problem is not as severe as for

example in maize (Hirsch et al., 2014; Lu et al., 2015; Hirsch et al., 2016; Jin et al.,

2016), or in wheat (Bayer et al., 2022), researchers in A. thaliana have already begun

to choose alternative references to better represent the causal genetic components for

their research question (Wójtowicz and Gieczewska, 2021). Here, genome graphs and

pan-genomes can help us to better represent and understand the true genomic potential

of a species. While we are already capable of expanding the core genome of A. thaliana

with the addition of just six assemblies, it also means that we will need to add more

diverse accessions to be able to represent the rare alleles of the population. Never the

less the finite sequence space of a graph will never be able to represent the full library of

sequences.

Variant detection is the kind of reference-based analysis that suffers the most from refer-

ence bias. Therefore the analysis of the graph based calls can help us to better understand

how a genome graph changes, and reduces the reference bias in such analysis. Similar

to the analysis of the variation stored in the graph itself, the distribution of variant types

shifts from predominantly SNPs, and a few rare small variants, to an almost equal num-

ber of sites that are categorized as SNPs and large variants. The underrepresentation

of larger variants in previous analysis is a result of their inability to detect them. In a

graph these variants are represented and can be called. Such variants are either a rep-

resentation of large non-reference alleles, or of an incomplete graph resolution. This

is further supported by the localization of large variants in the genome. While SNPs

are distributed along the chromosome, small and large variants are mostly found in the

pericentromeric regions, where the de-novo assemblies were able to sequence more, and

deeper into complex regions of the genome. The main difference between SNPs and

large variants is their frequency within the mapping population. Sites that are classified

as SNPs are shared by more samples, while large variants are mostly private to a single

sample. Even though the sequence of the underlying PAV event might not be rare in the

population, nested variation within these regions result in a multitude of low frequency

variants that differ by only a few bases, and thus seem unique. This also artificially in-
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flates the heterozygosity rate in the population. The potential causes of this kind of new

reference bias will be discussed at the end of this section.

The comparison with the calls made by the 1001 Genomes Project (1001 Genomes Con-

sortium, 2016), using the same short-read data reveals a reduction and shift in reference

bias. While the number of variants detected by both methods are very similar, they only

intersect for 70.1% of the sites per accession. This can partly be attributed to the fact that

the graph allows to call larger variants, but also the difference in the post processing of

the variant calls. The graph calls were subjected to a very basic quality filtering that kept

most of the variants, while the 1001 Genomes Project calls have been extensively filtered

and heterozygous calls have mostly been removed. This means that in reality the graph

produced substantially fewer variant calls. This can also be seen in comparison with the

re-analysis of the reads in the heterozygosity study by Jaegle et. al. (Jaegle et al., 2021).

Their initial calls resulted in 3.3 million SNPs. Which is almost twice the amount of total

sites I called from the graph for all variant types, and three times the number of SNPs.

Even though the majority of variants, called by the 1001 Genomes Project, intersect, or

overlap with the variants called from the graph, not all variants could be recalled. Even

though no variants were called at these positions, 90.9% of them were covered by reads

in the graph. This means the reads aligned over the previously variable position matched

perfectly. As such the previous variant was probably a result of the inclomplete sequence

representation in the reference genome.

Multiple factors are responsible for the differences between the two call sets. They are

either true biological signals as a result of the reduced reference bias, or a new bias that

has been introduced by the graph and the way it has been constructed. First of all the

better representation of the pan-genome sequence in the graph reduces the number of

misplaced alignments that would otherwise result in variant calls caused by the incom-

plete representation of the reference genome. In addition small variants that have been

called in the 1001 Genomes Project may actually proxy for larger variants, which could

not be represented by the short-reads and the reference sequence, but are now resolved,

and represented by the de-novo assemblies. The covered variants that could not be re-

called probably belong to this category. In addition the graph itself also biases the variant

calls. This bias, and its result will be discussed at the end of this section.

Beyond the simple comparison of intersecting variants, the rate of heterozygosity also

tells an interesting story. As described before, the main contributors to heterozygosity in

A. thaliana are extensive gene duplications that are not represented in the linear reference

genome (Jaegle et al., 2021). The genome graph enables us to better represent this set of

variable sequences and therefore correctly place the corresponding reads. This results in

an overall reduction of SNPs and heterozygous calls. I call just 44.4% of the SNPs have

been called by Jaegle et.al. and only 4.6% of them were heteroygous per line, which is a

massive reduction. Some of this is due to the fact that I used 840 accessions, instead of

1,057, but the main contributor to this reduction is the better sequence representation in

the graph. Nevertheless the overall heterozygosity (14.2%) in the variants remains higher

than expected in a selfing plant. The cause for this can be twofold. As we can observe
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in the distribution of heterozygous calls in AT6909, most of them are located around the

pericentromeric regions that are expected to have a higher mutation rate and therefore

maintian more variants eben in selfing plants. Thus some of them are real heterozygous

calls, but a second group are them ares probably the result of a new type of reference

bias that is introduced by the graph representation of the sequence, which I will discuss

next.

While the graph resolves some problems surrounding the incomplete sequence repre-

sentation of the reference genome, it also introduces a new type of bias. In the graph,

sequences with variable copy numbers are either compressed into subgraphs where the

differences between copies are collapsed, or left unaligned as large PAVs in the graph.

As a result of this we can observe a higher number of small and large variants in the vari-

ant calls. They either represent the under aligned fraction of the graph, or genuine, new

sequences. In addition this also results in a inflation of heterozygous calls. While the dif-

fernt copies of a region are assembled and represented in the graph, collapsed sub graphs

can make the placement of novel variation dificult and result in heterozygous calls in

these sub graphs. In addition nested varition in larger variants also creates heterozygous

calls, as they can not be represented in the reference based vcf file. This problem is espe-

cially prevalent in the mobileome, and can be observed in the comparison of mappings of

the reference accession, AT6909 with the TAIR10 reference genome. It is clearly visible

that the heterozygous variants coincide with regions of high TE density. As the peri-

centromeric regions have not been fully resolved the diverging TE copies easily cause

heterozygous variant calls. The subset of heterozygous calls with two alternative alleles

in this accession highlights that we have not fully resolved it in the de-novo assemblies.

The exact degree by which this bias influences the variants calls needs to be determined,

and addressed in the future.
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Conclusion & Outlook

In my work I have shown that building highly complex genome graphs from whole gen-

ome assemblies of A. thaliana is feasible. The additional sequence represented in the six

de-novo assemblies is able to enrich the current reference genome. Even using the whole

genome assemblies for pairwise comparisons allows me to minimize the detection bias

of SNPs over structural variants. This bias has forced researchers to describe possibly

less impactful SNPs. By annotating the new assemblies with my novel auto-ant anno-

tation pipeline I was able to detect novel genes that are conserved in the six genomes,

and in the larger mapping population of 840 accessions, but have not been part of the

reference annotation. A functional analysis of these genes is required, but has not been

performed yet. While this is an interesting result it once again highlights the problem

of reference bias, which can be minimized by adding additional genome assemblies to

enlarge the sequence and proteome space. Nevertheless the reference bias is just reduced

and not eliminated. While the graph itself helps to place more reads than the linear

reference genome, there are still reads that remain unmapped and can be classified as

viridiplantae. Six additional genomes are not enough to represent the variation of the

larger population, but are just a step in the right direction.

Future studies, like the next iteration of the 1001 Genomes project, will need to inves-

tigate the impact of a higher number of assemblies onto the representation of the pan-

genome. While it is not an imminent problem yet, a useful cutoff for the inclusion of

additional accessions into the graph will need to be defined. Otherwise a genome graph

can become infinitely complex. A second problem will be a method to update graphs,

as currently a graph will need to be completely reconstructed everytime a new accession

is added. This re-construction will change the landscape of the graph and will have an

impact onto the analysis performed on the graph. The currently largest problem in the

field of genome graphs is the construction of those structures. Although I have been able

to show that genome graphs can be constructed from whole genome alignments of as-

semblies, the current construction tools still suffer from our poor understanding of large

scale variation and only recently started to evolve to tackle the unique problems of whole

genome and multiple whole genome alignments (Minkin and Medvedev, 2020; Garrison

et al., 2023). As a result of this my graph still remains under-aligned. But even while

my dissertation work was in progress, tools evolved from k-mer based approaches and
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at that point barely usable cactus alignments (Paten et al., 2011; Armstrong et al., 2020)

to the current pggb pipeline (Garrison et al., 2023) and is still evolving. Not included in

this work are recent developments in the alignment and smoothing step of the graph, that

further improve the results.

Despite the problems in the graph construction itself, I was able to mitigate the im-

pact of the reference bias using the graph. This reduction is not only true for sequence

alignments to the graph reference, but especially for representation of variation in the

graph. With the implementation of my panSV algorithm I could start to describe varia-

tion without the inherent reference bias and naturally describe nested variation. The easy

discovery of mobile elements, their insertion mechanism, as well as the explanation of

a set of mobile genes discovered from the six de-novo annotations is only the starting

point of a long journey to open the treasure trove this new angle on structural variant

detection might offer. Further work on this kind of data could easily reveal new classes

of mobile elements and offer a deeper understanding of evolutionary processes based on

nested variation. This method, only applicable to whole genome derived graphs, is a dis-

tinct advantage of those graphs over vcf-derived graphs, as I am able to easily describe

the context of a variant in every input genome.

The second, and most obvious area of reference bias reduction are read mappings and

the corresponding variant calls. Here the graph of six assemblies already reveals the ex-

tent of biased variant calls and heterozygosity induced by the old reference. New, graph

based applications, such as in GWAS, will be able to find much clearer associations as

the noise in the variant calls have been massively reduced (He et al., 2023; Ebler et al.,

2020). In order to further refine this process there is a need for reliable mapping algo-

rithms. The currently used algorithms provided by vg (Garrison et al., 2018) are tailored

towards simple vcf-derived graphs. Currently vg giraffe is able to cope with low com-

plexity alignment derived graphs. As the vg toolset is under constant development and

improvements to the alignment algorithms are released regularly this limitation of vg

giraffe might become obsolete at some point. The current state of the injection based

method I applied does not scale well with larger genomes and larger graphs. It is also

limited in its ability to resolve variation. In order to fix this, I propose two additional

computational steps that, while requiring the development of new methods, will make

this easy method more applicable. To tackle the problem of scaling with an increasing

number of input genomes, the genomes need to be compressed on a higher level than

the resolved graph and these compressed fragments need to be added as paths to the

graph. These paths then traverse through existing nodes in the graph and represent the

main alleles that are too large for reads to bridge them. In this step a low complexity,

consensus, version of paths in the graph will be created by omitting the smaller variants.

These consensus paths can then serve as a template to create an alternative haplotype file

to be used with the bwa mem toolkit (Li, 2013). This allows us to use the well validated

alignment method and make additional alleles available without having to use complex

graph alignment method, or large numbers of mostly identical genomes. The alignments

to the consensus references will then be injected into the full graph, as shown in this
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thesis. The second additional step will improve the alignments. It will locally realign

the injected reads in the more complex graph. As the reads were aligned to less complex

consensus paths this step is necessary to account for the variants that hav ebeen removed

in the consensus sequences. In addition this will solve the problem of allele combination

and is computationally less expensive than a full graph alignment. Sadly the implemen-

tation of this was outside of the scope of this work.

Even though the better representation of variable sequence in a genome graph reduces

the reference bias, and reduces the number of variants called from short-reads, it also

introduces a new bias. The shape of this bias depends on the degree of sequence com-

pression in the graph. Graphs that compress most copies of a sequence into a subgraph

will see a higher number of heterozygous SNPs, while graphs that reinforce synteny will

result in a higher number of larger, heterozygous, variant calls. Therefore the optimal

degree of compression will remain an option question, as well as the way to cope with

calls that are clearly a result of the way sequence is represented in the graph, and are

later projected into a linear reference space in the variant calling step?

While obvious challenges remain, the field of graph genomics is very active, with many

bright minds involved. There is good reason to believe that in the coming years further

significant improvements will be made.
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Appendix A

Abbreviations & Glossary

Bubble A structure in the graph topology that is being formed by variable

sequence. It is defined as a closed subgraph with an upstream and

downstream anchor node and a set of nodes in between them that

represent variable sequence (Figure 1.1). A looser formulation of

this concept are snarls (Paten et al., 2018).

Core Part of a pan-genome or pan-proteome that is shared by all, or a

large fraction of the accessions that are part of it

Core level A concept used by panSV to describe the sharedness of a node

in the pan-genome. The core level is defined as the number of

genomes that contain the sequence stored in this node and can dif-

fer from the number of paths that traverse through it, e.g. in the

case of a duplication event.

DAG Directed Acyclic Graph - A type of graph that prohibits loops in

its structure to go back to previous nodes.

Edge Connective feature of a genome graph that orders and connects the

nodes.

GFA Graphical Fragment Assembly - a file format to store graphs in a

human readable form (GFA, 2022).

HDR Highly Diverged Region - region in a genome that contains a mul-

titude of smaller variants, above the average of the surrounding

sequence. As defined by the pairwise variant detection tool SyRI

(Goel et al., 2019).

InDel Insertion-Deletion variation events in a reference framework that

induces the polarity of sequence being inserted, or deleted from it.

This term is slowly being replaced by PAV.

Mobilome Fraction of the genome that consists of mobile elements such as

TEs.

MUM Maximal Unique Match - largest possible unique alignment be-

tween sequences

Node Element of a genome graph that stores the sequence.

99



Appendix A Abbreviations & Glossary

OG Orthogroup - Group of orthologous genes.

Path Colored traversal through a set of consecutive nodes, and edges

of a graph. A path represents longer sequences in the graph, such

as the input genomes. By following it through the graph the full

sequence can be recovered.

Pan-genome Combined collection of genetic sequence of multiple individuals

to represent a larger population.

Pan-proteome Collection of genes, or transcripts from multiple individuals that

represent an enriched collection and the frequency of their occur-

rence in a larger population.

PAV Presence-Absence variation events. A type of genetic variation

where sequence has been gained or lost.

Private Part of a pan-genome or pan-proteome that is shared by no other,

or very few other individuals.

Shell Part of a pan-genome or pan-proteome that is niether core, nor

private.

Snarl A structure in the graph topology that represents variable sequence

in the graph. In contrast to a bubble this structure does not have

to be a closed subgraph with up- and downstream anchors, but

can have additional connections into it, or lack one of the anchors

(Paten et al., 2018).

SNP Single-Nucleotide-Polymorphism - Variation between two DNA

sequences where a single base is replaced by another single base.

Superbubble A large substructure of the graph. It follows the definition of a

bubble, but contains at least one smaller bubble inside.

SV Structural Variation - Large sequence variation that alters the struc-

ture of the genome, for example PAVs, duplications, or transloca-

tions.

TE Transposable Element - Mobile elements in the DNA sequence

that are able to replicate themselves and insert into the genome.

Traversal A collection of consecutive nodes, and edges in a graph that has a

defined start and end node.
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Supplementary

B.1 Supplementary Figures

Figure B.1: SixRef coordinates - Geographic locations of the six accessions chosen for assembly.
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AT1741 AT5784 AT6909

AT6911 AT7186 AT7213

A B C

D E F

Figure B.2: Assembly dot-plots - Synteny representation of the six de-novo assemblies, based on min-

imap2 alignments with the TAIR10 reference genome to show the high level of synteny and reveal large

scale inversions. Breakpoints are mostly located in the pericentromeric regions, together with a set of

inversions.
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Figure B.3: SyRI rearrangements - Large scale structural rearrangements detected by SyRI. The majority

of the chromosomes are highly collinear, and differences can mostly be observed in the pericentromeric

regions.
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Figure B.4: panSV bubbles - Distribution of core levels of variable regions detected by panSV. Most of

the regions have core level 7 and only a smaller fraction is nested within them.
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Figure B.5: TE node coverage - Heat map of the coverage of nodes (>50 bp) that are annotated as

containing a TE in at least one accession of the graph.

Figure B.6: Orthogroup Z-Score - Z-Score matrix of the estimated copy numbers of orthogroups, based

on the number coverage of the accessions mapped to the graph.
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B.2 Supplementary Tables

Table B.1: Reference based variant calls - Number and size of reference based variant calls, of the sixRef

accessions, in comparison to the TAIR10 reference genome, made with three different approaches. Short-

read based variant calls made as part of the 1001 Genomes Project, pairwise alignment based variants

called using SyRI from the de-novo chromosome scaffolds aligned to the TAIR10 reference genome, graph

based variants, extracted from the graph using vg deconstruct. The variants were classified as SNPs (one

base pair replaced by another base pair), small variants (<50bp), and large variants (≥ 50bp).

# Variants % Variants Size [Mb] avg. size median size

Short-read based variants

Total 1,570,148 100 1.7 1.1 1

SNP 1,443,401 91.9 1.4 1 1

small variant 126,747 8.1 0.2 1.8 3

large variant 0 0 0 0 0

Pairwise alignment based variants

Total 2,589,009 100 8.2 3.2 1

SNP 1,963,863 75.9 2 1 1

small variant 609,648 23.6 1.5 2.5 1

large variant 15,498 0.6 4.8 306.7 1

Graph based variants

Total 1,869,605 1 88.6 47.4 1

SNP 1,272,633 68.1 1.3 1 1

small variant 539,644 0.28.9 2.2 4 2

large variant 57,328 3.1 85.2 1486.5 154

Table B.2: Variant call overlap - Variants that did not intersect with all other sets were overlapped with

the remaining variants of the sets. Variants were classified as small (<50bp) and large (≥ 50bp). SNPs

were excluded.

small variants large variants

# variants %Intersection # variants % Intersection Intersecting Sets

1001G 9,873 12.3 - - SyRI

1001G 44,293 55.4 - - vg deconstruct

SyRi 27,290 4.9 4,849 31.3 short-reads

SyRi 110,919 19.7 6,904 44.6 vg deconstruct

graph 78,855 16 11,465 20 short-reads

graph 112,561 22.8 11,807 20.6 SyR
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Appendix B Supplementary

Table B.4: RNA-Seq reads - Raw count and fraction of RNA sequencing reads for each accession. The

fraction always refers to the total number of raw reads.

AT1741 AT5784 AT6909 AT6911 AT7186 AT7213

Count Raw Reads 301,393,206 503,865,660 312,783,846 384,735,390 284,003,720 244,454,716

Fraction Flower 22.5 11 46.6 47.8 24.7 18.4

Leaf 22.8 12.4 19.4 15.1 15.1 31.

Roo 27.4 61.9 19.4 28.2 25.8 32.2

Seedling 27.4 14.7 14.5 9 34.4 17.7

Trimmed 88.3 94.5 95.3 91.6 91.7 92.6

Mapped 45.3 37.8 64.2 36 51.5 58

Table B.5: Non-reference SyRI intersection - Intersection of non-reference sequences with calls made

by SyRI. Multiple events could be contained in one interval. I destinguished regions that were classified

as not-aligned by SyRI and all other variants ≥ 50 bp detected by SyRI. The fraction relates to the total

number of large non-reference sequences of the accession.

SyRI unaligned SyRI SVs

Accession
non-ref

Regions
SyRI events

% non-ref

Regions

non-ref

Regions
SyRI events

% non-ref

Regions

AT1741 268 525 3.9 354 668 5.2

AT5784 313 586 4 478 782 6.1

AT6909 30 36 4.4 21 62 3.1

AT6911 365 682 3.9 503 845 5.4

AT7186 310 537 4.1 438 698 5.8

AT7213 303 588 4.1 421 748 5.60

Table B.6: Graph mapping test graphs - Statistics of the graphs used in the graph mapping evaluation.

For each graph the sequence length, the sequence based multiple of the TAIR10 reference genome, the

level of compression compared to the combined input genomes are shown. In addition the Number of

nodes, and edges, as well as the edge number divided by node number.

Seq. Length [Mb] Ref Fraction Comp. Level # Nodes # Edges Node Degree

Flat graph 119.7 1 0 3,829,320 3,829,313 1

VCF graph 220.4 1.8 25.76 5,601,134 8,307,979 1.5

Chrom graph 197.5 1.7 23.08 6,247,306 8,491,456 1.4

Linear graph 195.5 1.6 22.86 6,282,045 8,540,670 1.4

Complex graph 168.80 1.4 19.73 6,694,806 9,147,110 1.4
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B.2 Supplementary Tables

Table B.7: Graph mapping statistics - Statistics of mappings to the different test graphs using the pre-

pared graphs with increasing complexity. Not all mapping algorithms could be used on all graphs. Either

due to the method (vg inject, bwa mem), or the excessive run time and resource consumption (vg map).

Mapped reads [%]
Covered graph

sequence [%]
Covered bases [Mb]

Flat graph bwa mem 96.16 95.42 114.2

vg map 96.01 95.4 114.2

vg giraffe 96.1 94.9 113.6

graphAligner 56.79 97.1 116.2

vg inject 96.16 95.42 114.2

VCF graph bwa mem - - -

vg map 96.51 61.98 136.6

vg giraffe 97.46 62.01 136.7

graphAligner 44.44 80.39 177.2

vg inject - - -

Chrom graph bwa mem - - -

vg map 56.24 30.49 60.2

vg giraffe 97.69 68.27 134.9

graphAligner 43.13 77.88 153.9

vg inject - - -

Linear graph bwa mem - - -

vg map - - -

vg giraffe 97.67 68.5 133.9

graphAligner 43.06 78.06 152.6

vg inject 97.11 72.36 141.5

Complex graph bwa mem - - -

vg map - - -

vg giraffe 73.37 42.27 71.3

graphAligner 41.01 81.81 138.1

vg inject 97.12 75.4 127.2
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Appendix B Supplementary

Table B.8: Mapping population - List of all accessions and their admixture group, that are part of the

mapping population.

ID admixture group ID admixture group ID admixture group ID admixture group ID admixture group ID admixture group ID admixture group ID admixture group ID admixture group

10022 admixed 9824 admixed 5907 central europe 9772 central europe 6909 germany 9646 italy balkan caucasus 6115 south sweden 9841 spain 88 western europe

1313 admixed 9830 admixed 5921 central europe 9774 central europe 6915 germany 9647 italy balkan caucasus 6118 south sweden 9843 spain 9298 western europe

1317 admixed 9831 admixed 5950 central europe 9775 central europe 6922 germany 9648 italy balkan caucasus 6119 south sweden 9844 spain 9312 western europe

2016 admixed 9835 admixed 5984 central europe 9776 central europe 6940 germany 9649 italy balkan caucasus 6122 south sweden 9845 spain 9314 western europe

2202 admixed 9838 admixed 5993 central europe 9777 central europe 6945 germany 9651 italy balkan caucasus 6123 south sweden 9846 spain 932 western europe

2276 admixed 9839 admixed 6008 central europe 9778 central europe 6982 germany 9653 italy balkan caucasus 6124 south sweden 9848 spain 9503 western europe

2317 admixed 9849 admixed 6296 central europe 9779 central europe 6997 germany 9655 italy balkan caucasus 6134 south sweden 9850 spain 9517 western europe

265 admixed 9858 admixed 6390 central europe 9780 central europe 7000 germany 9656 italy balkan caucasus 6141 south sweden 9852 spain 9569 western europe

5151 admixed 9877 admixed 6396 central europe 9781 central europe 7002 germany 9657 italy balkan caucasus 6149 south sweden 9855 spain 9571 western europe

5165 admixed 9881 admixed 6424 central europe 9782 central europe 7008 germany 9658 italy balkan caucasus 6191 south sweden 9856 spain 9578 western europe

5720 admixed 9890 admixed 6445 central europe 9784 central europe 7014 germany 9659 italy balkan caucasus 6192 south sweden 9857 spain 9585 western europe

5757 admixed 9892 admixed 6903 central europe 9785 central europe 7031 germany 9660 italy balkan caucasus 6203 south sweden 9859 spain 9590 western europe

5768 admixed 9894 admixed 6919 central europe 9786 central europe 7033 germany 9661 italy balkan caucasus 6413 south sweden 9860 spain 9599 western europe

5772 admixed 9897 admixed 6951 central europe 9787 central europe 7036 germany 9697 italy balkan caucasus 6974 south sweden 9861 spain 9809 western europe

5784 admixed 9906 admixed 6956 central europe 9788 central europe 7062 germany 9698 italy balkan caucasus 7013 south sweden 9864 spain 9823 western europe

5811 admixed 9924 admixed 6957 central europe 9789 central europe 7094 germany 9699 italy balkan caucasus 7164 south sweden 9866 spain 9826 western europe

5822 admixed 9932 admixed 6975 central europe 9790 central europe 7102 germany 9700 italy balkan caucasus 7343 south sweden 9867 spain 9827 western europe

6042 admixed 9933 admixed 6976 central europe 9791 central europe 7117 germany 9701 italy balkan caucasus 7346 south sweden 9868 spain 9828 western europe

6434 admixed 14312 asia 6979 central europe 9792 central europe 7119 germany 9703 italy balkan caucasus 7354 south sweden 9870 spain 9847 western europe

6830 admixed 14313 asia 6984 central europe 9793 central europe 7125 germany 9704 italy balkan caucasus 8234 south sweden 9873 spain 9851 western europe

6898 admixed 14314 asia 7025 central europe 9794 central europe 7133 germany 9705 italy balkan caucasus 8237 south sweden 9874 spain 9853 western europe

6907 admixed 14315 asia 7103 central europe 9795 central europe 7143 germany 9706 italy balkan caucasus 8307 south sweden 9876 spain 9854 western europe

6920 admixed 14318 asia 7106 central europe 9796 central europe 7160 germany 9707 italy balkan caucasus 8326 south sweden 9878 spain 9862 western europe

6932 admixed 14319 asia 7120 central europe 9797 central europe 7161 germany 9708 italy balkan caucasus 8426 south sweden 9880 spain 9875 western europe

6981 admixed 15560 asia 7158 central europe 9798 central europe 7162 germany 9709 italy balkan caucasus 8427 south sweden 9882 spain 9908 western europe

6987 admixed 18694 asia 7177 central europe 9799 central europe 7165 germany 9710 italy balkan caucasus 9339 south sweden 9883 spain 9909 western europe

6990 admixed 18696 asia 7203 central europe 9800 central europe 7192 germany 9711 italy balkan caucasus 9353 south sweden 9885 spain 9910 western europe

6992 admixed 1890 asia 7207 central europe 9801 central europe 7199 germany 9712 italy balkan caucasus 9369 south sweden 9886 spain 9911 western europe

7003 admixed 6929 asia 7223 central europe 9802 central europe 7202 germany 9713 italy balkan caucasus 9370 south sweden 9888 spain 9912 western europe

7028 admixed 6931 asia 7236 central europe 9803 central europe 7208 germany 9714 italy balkan caucasus 9380 south sweden 9891 spain 9917 western europe

7061 admixed 6938 asia 7296 central europe 9804 central europe 7231 germany 9716 italy balkan caucasus 9392 south sweden 9895 spain 9918 western europe

7072 admixed 6963 asia 7298 central europe 9805 central europe 7244 germany 9717 italy balkan caucasus 9413 south sweden 9898 spain 9921 western europe

7096 admixed 7183 asia 7333 central europe 9806 central europe 7248 germany 9718 italy balkan caucasus 9436 south sweden 9899 spain 9925 western europe

7126 admixed 7323 asia 7347 central europe 9807 central europe 7250 germany 9719 italy balkan caucasus 991 south sweden 9900 spain 9926 western europe

7127 admixed 763 asia 7349 central europe 9808 central europe 7255 germany 9720 italy balkan caucasus 6933 spain 9901 spain 9927 western europe

7138 admixed 765 asia 7350 central europe 9810 central europe 7258 germany 9721 italy balkan caucasus 6961 spain 9902 spain 9928 western europe

7147 admixed 766 asia 7372 central europe 9811 central europe 7276 germany 9722 italy balkan caucasus 6970 spain 9903 spain 9929 western europe

7163 admixed 768 asia 7411 central europe 9812 central europe 7280 germany 9723 italy balkan caucasus 6971 spain 9904 spain 9935 western europe

7169 admixed 772 asia 7424 central europe 9813 central europe 7282 germany 9725 italy balkan caucasus 7081 spain 108 western europe 9937 western europe

7181 admixed 8354 asia 7427 central europe 9814 central europe 7287 germany 9726 italy balkan caucasus 7327 spain 139 western europe 9938 western europe

7209 admixed 8424 asia 7460 central europe 9815 central europe 7337 germany 9749 italy balkan caucasus 8264 spain 159 western europe

7218 admixed 9125 asia 7520 central europe 9816 central europe 7356 germany 9755 italy balkan caucasus 8357 spain 350 western europe

7268 admixed 9128 asia 7521 central europe 9914 central europe 7358 germany 9757 italy balkan caucasus 9507 spain 351 western europe

7305 admixed 9130 asia 8235 central europe 9915 central europe 7359 germany 9759 italy balkan caucasus 9509 spain 4779 western europe

7314 admixed 9131 asia 8236 central europe 9930 central europe 7377 germany 1254 north sweden 9510 spain 4807 western europe

7316 admixed 9133 asia 8284 central europe 1612 germany 7416 germany 1257 north sweden 9511 spain 4826 western europe

7319 admixed 9134 asia 8285 central europe 1622 germany 7419 germany 1552 north sweden 9512 spain 4840 western europe

7342 admixed 9607 asia 8290 central europe 1651 germany 742 germany 5860 north sweden 9514 spain 4884 western europe

7344 admixed 9608 asia 8311 central europe 1652 germany 7461 germany 6010 north sweden 9515 spain 4900 western europe

7353 admixed 9609 asia 8365 central europe 1676 germany 7475 germany 6011 north sweden 9518 spain 4958 western europe

7378 admixed 9610 asia 8386 central europe 1684 germany 7515 germany 6153 north sweden 9519 spain 5023 western europe

7382 admixed 9611 asia 8419 central europe 1757 germany 7523 germany 6214 north sweden 9520 spain 5210 western europe

7384 admixed 9612 asia 9644 central europe 1793 germany 7525 germany 6221 north sweden 9521 spain 5236 western europe

7394 admixed 9615 asia 9645 central europe 1797 germany 7530 germany 6235 north sweden 9522 spain 5249 western europe

7404 admixed 9616 asia 9664 central europe 1819 germany 7566 germany 6237 north sweden 9524 spain 5253 western europe

7418 admixed 9617 asia 9665 central europe 1820 germany 7568 germany 6969 north sweden 9525 spain 5276 western europe

7430 admixed 9619 asia 9666 central europe 1829 germany 7717 germany 8227 north sweden 9526 spain 5349 western europe

7471 admixed 9620 asia 9667 central europe 1834 germany 7757 germany 8351 north sweden 9528 spain 5353 western europe

7477 admixed 9621 asia 9668 central europe 1851 germany 7767 germany 8376 north sweden 9531 spain 5577 western europe

7514 admixed 9624 asia 9669 central europe 1852 germany 7917 germany 9332 north sweden 9532 spain 5644 western europe

8343 admixed 9625 asia 9670 central europe 1853 germany 7947 germany 9363 north sweden 9534 spain 5717 western europe

8366 admixed 9626 asia 9671 central europe 1872 germany 801 germany 6911 relict 9535 spain 5726 western europe

9058 admixed 9627 asia 9672 central europe 1925 germany 8037 germany 9533 relict 9537 spain 5741 western europe

9336 admixed 9628 asia 9673 central europe 1954 germany 8057 germany 9542 relict 9539 spain 5779 western europe

9343 admixed 9629 asia 9676 central europe 2017 germany 8077 germany 9543 relict 9540 spain 630 western europe

9381 admixed 9630 asia 9677 central europe 2031 germany 8132 germany 9545 relict 9541 spain 6680 western europe

9383 admixed 9631 asia 9678 central europe 2053 germany 8171 germany 9549 relict 9544 spain 6897 western europe

9506 admixed 9632 asia 9679 central europe 2057 germany 8233 germany 9550 relict 9546 spain 6904 western europe

9508 admixed 9633 asia 9680 central europe 2081 germany 8238 germany 9554 relict 9547 spain 6908 western europe

9513 admixed 9634 asia 9681 central europe 2108 germany 8239 germany 9555 relict 9553 spain 6923 western europe

9523 admixed 9635 asia 9682 central europe 2171 germany 8246 germany 9574 relict 9556 spain 6924 western europe

9527 admixed 9636 asia 9683 central europe 2191 germany 8312 germany 9583 relict 9557 spain 6926 western europe

9529 admixed 9637 asia 9684 central europe 2212 germany 8420 germany 9598 relict 9560 spain 6943 western europe

9530 admixed 9638 asia 9685 central europe 2239 germany 8464 germany 9600 relict 9562 spain 6944 western europe

9536 admixed 9639 asia 9686 central europe 2240 germany 8483 germany 9606 relict 9564 spain 6958 western europe

9551 admixed 9640 asia 9687 central europe 2278 germany 854 germany 9832 relict 9567 spain 6959 western europe

9552 admixed 9641 asia 9689 central europe 2285 germany 867 germany 9837 relict 9568 spain 6960 western europe

9558 admixed 9642 asia 9690 central europe 2286 germany 868 germany 9869 relict 9573 spain 6966 western europe

9559 admixed 9643 asia 9692 central europe 484 germany 870 germany 9871 relict 9577 spain 6967 western europe

9561 admixed 9737 asia 9693 central europe 504 germany 9027 germany 9879 relict 9582 spain 6986 western europe

9565 admixed 9745 asia 9694 central europe 5104 germany 915 germany 9887 relict 9584 spain 6989 western europe

9576 admixed 9758 asia 9695 central europe 531 germany 9920 germany 9905 relict 9586 spain 7026 western europe

9579 admixed 9766 asia 9696 central europe 544 germany 7068 italy balkan caucasus 1006 south sweden 9587 spain 7064 western europe

9581 admixed 10020 central europe 9727 central europe 546 germany 7077 italy balkan caucasus 1061 south sweden 9588 spain 7071 western europe

9591 admixed 10027 central europe 9728 central europe 5486 germany 9067 italy balkan caucasus 1062 south sweden 9589 spain 7092 western europe

9592 admixed 15591 central europe 9729 central europe 5748 germany 9085 italy balkan caucasus 1063 south sweden 9593 spain 7107 western europe

9595 admixed 15592 central europe 9730 central europe 5800 germany 9091 italy balkan caucasus 1158 south sweden 9594 spain 7109 western europe

9596 admixed 15593 central europe 9731 central europe 6252 germany 9099 italy balkan caucasus 1166 south sweden 9597 spain 7130 western europe

9622 admixed 19949 central europe 9732 central europe 6739 germany 9100 italy balkan caucasus 5836 south sweden 9601 spain 7217 western europe

9663 admixed 19950 central europe 9733 central europe 6740 germany 9102 italy balkan caucasus 5865 south sweden 9602 spain 7306 western europe

9691 admixed 19951 central europe 9735 central europe 6744 germany 9103 italy balkan caucasus 6022 south sweden 9817 spain 7307 western europe

9736 admixed 403 central europe 9739 central europe 6749 germany 9104 italy balkan caucasus 6077 south sweden 9819 spain 7320 western europe

9738 admixed 410 central europe 9741 central europe 6750 germany 9105 italy balkan caucasus 6087 south sweden 9820 spain 7332 western europe

9743 admixed 424 central europe 9747 central europe 680 germany 9106 italy balkan caucasus 6091 south sweden 9821 spain 7383 western europe

9744 admixed 428 central europe 9756 central europe 6805 germany 9111 italy balkan caucasus 6094 south sweden 9822 spain 7387 western europe

9748 admixed 430 central europe 9761 central europe 6806 germany 9113 italy balkan caucasus 6095 south sweden 9825 spain 8214 western europe

9754 admixed 5837 central europe 9768 central europe 681 germany 9114 italy balkan caucasus 6096 south sweden 9833 spain 8243 western europe

9762 admixed 5874 central europe 9769 central europe 6814 germany 9115 italy balkan caucasus 6101 south sweden 9834 spain 8244 western europe

9764 admixed 5890 central europe 9770 central europe 685 germany 9121 italy balkan caucasus 6105 south sweden 9836 spain 8297 western europe

9783 admixed 5893 central europe 9771 central europe 687 germany 9613 italy balkan caucasus 6109 south sweden 9840 spain 8337 western europe
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Table B.9: Graph coverage - Amount of sequence covered by accessions mapped to the graph, separated

by their admixture group, or the producing lab. The sequence is represented as mega bases.

Mean Length Median Length
Shortest

Sequence

Longest

Sequence

Number of

Accessions

Admixture

Group

admixed 119.9 120.2 110.2 132.2 118

asia 120.5 120 111.1 135.3 65

central europe 121.6 121.3 112 133.4 162

germany 120.6 120.4 110.2 132.1 137

italy balkan caucasus 120 120.1 109.1 127.4 62

north sweden 124.9 125.2 118.7 129.4 17

relict 122.5 123.4 113.1 129.8 21

south sweden 124.7 125.4 112.3 129.6 52

spain 121.7 121.8 112.4 136.7 104

western europe 120.8 120.6 106.4 134.6 102

Producing

Lab

Monsanto 120.8 121.1 106.4 127.4 482

Salk 120.2 118.9 109.1 136.7 202

MPI 120.9 120.7 113.3 129.3 77

GMI 125.4 125.3 118.7 132.9 90

Table B.10: Pan-genome comparison -Comparison of the pan genomes of the six accessions in the graph

with the pan genome as represented by the 840 short read accessions mapped to the graph. The fractions of

the overlap have been calculated from both directions, and based on the number of nodes and the amount of

sequence they represent in the graph. The core category of the mappings entail all nodes that are mapped

to by at least 90% of the accessions, while the private category contains all nodes that are mapped to by

10% or fewer of the accessions.

Nodes in the Graph Sequence in the Graph [Mb]

core shell private unmapped core shell private unmapped

core 1,365,373 1,149,616 304,244 2,776 57.4 10 2.2 0.3

shell 555,212 1,674,585 238,854 2,116 22.8 21.6 2.8 0.4

private 334,727 664,794 390,159 12,350 13.1 18.8 11.9 7.7

As fraction of nodes covered in the mapping population

core 60.5 33 32.6 0.161 61.5 19.8 12.9 3.8

shell 24.6 48 25.6 0.1227 24.4 42.9 16.6 4.9

private 14.8 19.1 41.8 0.7163 14.1 37.3 70.5 91.2

As fraction node in the graph

core 48.4 40.7 10.8 0.1 82.2 14.3 3.1 0.5

shell 22.5 67.8 9.7 0.1 47.9 45.4 5.9 0.9

private 23.9 47.4 27.8 0.9 25.5 36.5 23.1 14.9
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and expression of the B95-8 Epstein-Barr virus genome. Nature, 310(5974), 207–211.

Ballouz, S., Dobin, A., and Gillis, J. A. (2019). Is it time to change the reference genome?

Genome Biol., 20(1), 159.

Bankevich, A., Bzikadze, A., Kolmogorov, M., Antipov, D., and Pevzner, P. A. (2021).

LJA: Assembling long and accurate reads using multiplex de bruijn graphs.
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