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Abstract

Two fundamental theories serve as the pillars on which statically typed functional pro-
gramming languages are constructed: The lambda calculus and the theory of algebraic
data types. We recognize these pillars in the core grammar of lambda abstractions
and function applications, constructors and pattern matching that all functional pro-
gramming languages share. Functional programmers are skeptical of extending this core
grammar with concepts such as interfaces from object-oriented programming or excep-
tions from imperative programming languages. This is because these concepts seem to
lack a similar relation to logic and mathematics that the lambda calculus and algebraic
data types enjoy through the Curry-Howard isomorphism. Advancements in logic and
proof theory, however, challenge this skepticism. The analysis of logical connectives in
terms of polarity gives a logical interpretation to object-oriented interfaces in the type-
theoretic guise of codata types, and the improved understanding of classical logic shows
that control operators which are used to implement exception mechanisms correspond
to reasoning principles in classical logic.

This dissertation shows that functional programming languages can be made more
symmetric and functional by taking these advancements into account. Instead of basing
the language on the lambda calculus and algebraic data types we start with algebraic
data and codata types which subsume the lambda calculus as a special case. Instead of
designing these two complementary language fragments in an ad-hoc manner, we system-
atically use the program transformations defunctionalization and refunctionalization as
a methodology to derive the properties of both fragments. In fully symmetric languages
defunctionalization can transform any codata type into a data type, and refunctionaliza-
tion can transform any codata type into a data type. Since we also want to benefit from
the expressive power of control operators, we switch from term assignment systems for
natural deduction in the first part of this dissertation to a term assignment system for
the sequent calculus in the second part. We demonstrate why the sequent calculus is a
better setting than natural deduction for developing symmetric programming languages
which require a first-class treatment of control effects and exceptions. During their lifes-
pan, most programming languages turn into a pile of unrelated features; applying duality
to their design allows us to turn back the clock a little bit and bring at least some of
these accumulated features into a coherent framework governed by symmetry.
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Zusammenfassung

Statisch getypte funktionale Programmiersprachen sind auf zwei grundlegenden Theorien
aufgebaut: Auf dem Lambdakalkül und auf der Theorie algebraischer Datentypen. Wir
erkennen diese beiden Theorien in der Kerngrammatik von Lambdaabstraktionen, Funk-
tionsanwendungen, Konstruktoren und Pattern-Matching die allen funktionalen Pro-
grammiersprachen gemeinsam ist. Funktionale Programmierer begegnen dem Versuch
diese Kerngrammatik mit anderen Konstrukten wie Schnittstellen aus der objektori-
entierten oder Ausnahmen aus der imperativen Programmierung zu erweitern häufig
mit Skepsis. Dies ist der Fall da diesen Konzepten die enge Verbindung zur Logik
und Mathematik zu fehlen scheint welche dem Lambdakalkül und algebraischen Da-
tentypen vermittels des Curry-Howard Isomorphismus zueigen ist. Fortschritte in der
Logik und Beweistheorie fordern jedoch dazu heraus diese Skepsis zu überdenken. Die
Analyse von logischen Konnektiven in Begriffen der Polarität erlaubt es objektorien-
tierten Schnittstellen eine logische Interpretation als Kodatentypen zu geben, und das
verbesserte Verständnis der klassischen Logik zeigt dass Kontrolloperatoren welche zur
Implementierung von Ausnahmebehandlung verwendet werden Prinzipien der klassis-
chen Logik entsprechen.

Diese Dissertation zeigt dass funktionale Programmiersprachen symmetrischer und
funktionaler gemacht werden können wenn diesen Fortschritten Rechnung getragen wird.
Anstatt auf dem Lambdakalkül und algebraischen Datentypen aufzubauen beginnen
wir mit der Theorie von algebraischen Daten- und Kodatentypen, welche den Lamb-
dakalkül als Spezialfall einschließen. Anstatt diese zwei komplementären Sprachfrag-
mente unabhängig voneinander zu entwerfen verwenden wir auf systematische Weise die
Programmtransformationen Defunktionalisierung und Refunktionalisierung als Method-
ologie um die Eigenschaften beider Fragmente herzuleiten. In vollständig symmetrischen
Sprachen kann Defunktionalisierung jeden Kodatentyp in einen Datentypen transformieren,
und Refunktionalisierung jeden Datentyp in einen Kodatentypen. Da wir auch von
der Ausdrucksstärke von Kontrolloperatoren Gebrauch machen wollen wechseln wir
im zweiten Teil dieser Dissertation zu einem Termzuweisungssystem für den Sequen-
zenkalkül, nachdem wir im ersten Teil ein Termzuweisungssystem für das System des
natürlichen Schließens verwendet haben. Wir zeigen warum der Sequenzenkalkül ein
besseres System als das natürliche Schließen ist um symmetrische Programmiersprachen
zu entwickeln, welche eine Behandlung von Kontrolleffekten und Ausnahmen als Kon-
strukte erster Klasse erfordern. Im Laufe der Zeit entwickeln sich die meisten Program-
miersprachen zu einer Anhäufung unzusammenhängender Funktionalitäten; indem wir
das Prinzip der Dualität anwenden können wir die Uhr ein Stück weit zurückdrehen und
zumindest einige dieser angehäuften Features in ein von Symmetrie geprägtes kohärentes
System bringen.
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1. Introduction

The lambda calculus and algebraic data types are the two pillars on which the theory
of statically typed functional programming languages is built. The lambda calculus
was introduced by Church (1936), both as a foundational system for mathematics and
as a simple model for computable functions. Because it is designed as a minimalist
foundational system, the lambda calculus lacks support for important types like natu-
ral numbers. Natural numbers are necessary to show that all computable functions on
numbers can be represented, but since they are not provided directly they have to be ex-
pressed using so-called functional encodings. Examples of such functional encodings are
the Church, Scott and Parigot encodings of data types. However, these are not practical
when it comes to designing usable functional programming languages, since programmers
should not have to understand functional encodings in order to program with inductive
types like natural numbers, lists and trees. To model numbers and other inductive types
directly, language designers introduced the theory of algebraic data types. Algebraic
data types are a principled framework which lets users of functional programming lan-
guages extend the set of available types by providing data type declarations. They were
first introduced in the functional programming languages Hope and Epigramm in the
1960s and gained popularity through their inclusion in the report on StandardML (cf.
MacQueen, Harper, and Reppy (2020)).

The influence of these two foundational theories is still visible in the design of popular
functional programming languages like Haskell, OCaml, F#, Idris, Agda or Lean. While
these languages differ significantly in how they treat side effects, the order in which they
evaluate expressions, or whether they are compiled to a managed runtime or machine
code, they nevertheless share a common core by which one can identify them as members
of the same family. The family resemblance stems from a shared fundamental grammar
of expressions which are used to structure the data and control flow of programs. This
shared fundamental grammar can be expressed as the following syntax of expressions:

e, t := x | λx.e | e e | K(e1, . . . , en) | e.case {. . . ,K(x1, . . . , xn) ⇒ e, . . .}

We can see the influence of both the lambda calculus and of algebraic data types in
this grammar. The lambda calculus contributes lambda abstractions λx.e and function
applications e e, whereas constructors K(e1, . . . , en) and case expressions e.case {. . .}
come from the theory of algebraic data types1. These terms for functions and data types
can be further split into introduction and elimination forms: Lambda abstractions and

1We use the concrete syntax e.case {. . .} instead of the more familiar case e of {. . .} since the former
is more uniform with the elimination form e.d(e1, . . . , en) on codata types which we will introduce
later.
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1. Introduction

constructors are introduction forms, and function applications and case expressions are
elimination forms. The language defined by this grammar is of course still quite minimal,
but a lot of other expression forms found in functional programming languages are just
syntactic sugar for this simple core.

Functional programmers are often skeptical about extending this core grammar with
constructs from other programming paradigms such as classes and objects from object-
oriented programming or exceptions and exception handlers from imperative program-
ming. What is the reason for this skepticism? In contrast to the the lambda calculus and
algebraic datatypes which have a clear and well-known relation to logic and mathematics
through the Curry-Howard isomorphism, these other constructs are not perceived to be
similarly grounded in logic. If we want to extend functional programming languages with
such new features, then we have to demonstrate to functional programmers that these
features are useful in practice and that they are also related to logic and mathematics
through the Curry-Howard isomorphism.

To show that these features are useful we can rely on examples from the existing
programming practice in object-oriented and imperative languages, but in order to show
that the Curry-Howard isomorphism applies to them we have to rely on advances in
logic, proof theory and type theory. Two advancements in those fields are particularly
important: The analysis of logical connectives in terms of polarity and the improved
understanding of classical logic. These two developments make it possible to extend
the Curry-Howard isomorphism to areas that were previously thought to be out of its
reach. The study of polarity showed that there are two fundamentally different kinds of
types for which various different names are used in the literature. Sometimes they are
called positive and negative, synchronous and asynchronous, or inductive and coinductive
types, but we will consistently call them data and codata types. Codata types allow
us to extend the Curry-Howard isomorphism to object-oriented programs by giving a
logical interpretation to interfaces and the improved understanding of the proof theory of
classical logic allows us to give a logical account of control operators such as exceptions
and exception handlers since these correspond to classical reasoning principles.

No practical programming language has so far been designed which reflects this deep-
ened understanding of the Curry-Howard isomorphism. What should such a program-
ming language look like? It should reflect our understanding of polarity by providing
means for declaring both data and codata types instead of just providing means to
declare data types. It should also provide mechanisms for handling exceptions, continu-
ations and complex control flow which are based on our improved understanding of the
proof theory of classical logic. This thesis shows how the design of functional program-
ming languages can take these advancements in our understanding of the Curry-Howard
isomorphism into account. In the rest of the introduction I will give a high-level intro-
duction to these two big ideas: I will introduce codata types in section 1.1 and the proof
theory of classical logic in the sequent calculus in section 1.2. I will then describe the
contributions and structure of this dissertation in section 1.3.

2



1.1. Data and Codata Types

1.1. Data and Codata Types

There are many ways to motivate the introduction of codata types to programming
languages. Common to all of them is that the polarity of a type (i.e. whether it is a data
or a codata type) influences other properties which are directly relevant for programmers.
In the next subsections, I give three different examples of this phenomenon. I show in
section 1.1.1 how pairs can be defined as both data and codata types, and how the
difference can be observed in programming languages that use linear types to reason
about resources. In section 1.1.2 I show how data and codata types precisely capture
the dilemma at the core of the expression problem. Data types can easily be extended
with new consumers and codata types can easily be extended with new producers, but
the inverse is not the case. Finally, in section 1.1.3 I show that data and codata types
provide a principled answer to the question whether programming languages should be
strict or lazy: Instead of making one global decision, we should choose an evaluation
order depending on the type. Data types should be evaluated eagerly and codata types
should be evaluated on demand.

1.1.1. Two Ways to Define Pairs

In order to illustrate the difference between data and codata types we start with a type
that can be presented in both ways. The simplest example of such a type is the pair
type τ1 × τ2 for which one can find the following typing and conversion rules in many
articles and books:

Γ ⊢ e : τ1 Γ ⊢ t : τ2 ×-I
Γ ⊢ [e, t] : τ1 × τ2

Γ ⊢ e : τ1 × τ2 ×-E1Γ ⊢ e.π1 : τ1

Γ ⊢ e : τ1 × τ2 ×-E2Γ ⊢ e.π2 : τ2

[e, t].π1 ≡β e [e, t].π2 ≡β t e ≡η [e.π1, e.π2]

In this version of the rules the pair type τ1×τ2 is defined by the pairing constructor [ , ]
which is used in the introduction rule and the projections π1 and π2 which are used in
the elimination rules2. However, it is not clear if the introduction or the elimination
rules are more fundamental; the type is defined simultaneously by all of its rules. We
can take this unpolarized pair type and polarize it by choosing either the introduction
or elimination rules as the rules that define its meaning. These two different choices
result in two different types: If we pick the constructor [ , ] as fundamental we obtain
the data type τ1 ⊗ τ2 (pronounced “tensor”) and if we take the projections π1 and π2 as
fundamental we obtain the codata type τ1 & τ2 (pronounced “with”). Let us now look
at those two alternatives in more detail.

The rules for the data type τ1 ⊗ τ2 are more familiar to functional programmers. An
OCaml programmer, for example, might write the following type declaration and swap
function for pairs:

2Instead of the more familiar prefix syntax π1 e I use the postfix notation e.π1 since projections are a
special instance of destructors on codata types.

3



1. Introduction

type (’a, ’b) pair = MkPair of ’a * ’b;;

let swap_pair p = match p with MkPair (x,y) -> MkPair (y,x);;

A Haskell programmer expresses the same program with only slightly different syntax:

data Pair a b = MkPair a b

swap_pair p = case p of { MkPair x y -> MkPair y x }

In both of these examples, we can see that the introduction form is more fundamental
since it is introduced as part of the data type declaration. A proof theorist might express
the same idea by saying that this type is characterized by the fact that we have a notion
of canonical proof: a canonical proof of τ1 ⊗ τ2 consists of a proof of τ1 and a proof
of τ2. The elimination form, i.e. pattern matching, on the other hand, is derived or
justified based on all available canonical proofs. In this case, there is only one form of
canonical proof which corresponds to the fact that we only have to pattern match on
one constructor.

Instead of relying on the concrete syntax of OCaml or Haskell we can also present the
type τ1 ⊗ τ2 using formal typing rules. For the introduction rule, we use the constructor
[e, t] while we use a pattern match e.case {[x, y] ⇒ c} for the elimination rule.

Γ ⊢ e : τ1 ∆ ⊢ t : τ2 ⊗-I
Γ,∆ ⊢ [e, t] : τ1 ⊗ τ2

Γ ⊢ e : τ1 ⊗ τ2 Γ, x : τ1, y : τ2 ⊢ c : τ3 ⊗-E
Γ ⊢ e.case {[x, y] ⇒ e′} : τ3

[e, t].case {[x, y] ⇒ e′} ≡β e
′[e/x, t/y] e ≡η e.case {[x, y] ⇒ [x, y]}

What is less familiar to functional programmers is that we can also define pairs using
their elimination rules. This means that a pair is defined by the two observations or
methods first and second that we can invoke on it. One way to define types in this
way is through interfaces or similar mechanisms in object-oriented languages. In Java,
for example, we can define the following generic interface for pairs:

public interface Pair<A,B> {

public A first();

public B second();

}

Every object that implements this interface behaves as a pair since we can invoke both
projections as methods on that object. Object-oriented programming languages like
Java unfortunately add a lot of additional complexity to this simple idea by also allowing
mutation and inheritance for which we cannot easily give a Curry-Howard interpretation.
But we can nevertheless observe that types in object-oriented languages are characterized
by the methods that we can invoke on them. This means that types in object-oriented
languages are defined by their elimination rules. If we focus on this central idea and
formalize it we obtain the type-theoretic notion of codata types. The proof assistant
Agda, for example, supports codata types and allows to write the pair type in the
following way:
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record Pair (A B : Set) : Set where

coinductive

field

first : A

second : B

This codata type declaration directly tells us that we can invoke the first and second

observation on any pair. However, we also need a way to introduce terms of these codata
types. The introduction rule allows to introduce a term by specifying how it behaves
on each of the possible observations. This term-forming operation is called copattern
matching (Abel, Pientka, Thibodeau, and Setzer (2013)) since it is the dual of pattern-
matching: pattern matching specifies how to behave on each of the possible canonical
proofs of a data type and copattern matching specifies how to behave on each of the
possible canonical refutations. We use cocase {. . .} to write terms introduced using
copattern matching. An example of this can be seen in the following formal typing rules
for the codata type τ1 & τ2.

Γ ⊢ e : τ1 Γ ⊢ t : τ2
&-I

Γ ⊢ cocase {π1 ⇒ e, π2 ⇒ t} : τ1 & τ2
Γ ⊢ e : τ1 & τ2 &-E1Γ ⊢ e.π1 : τ1

Γ ⊢ e : τ1 & τ2 &-E2Γ ⊢ e.π2 : τ2

cocase {π1 ⇒ e1, π2 ⇒ e2}.π1 ≡β e1 cocase {π1 ⇒ e1, π2 ⇒ e2}.π2 ≡β e2

e ≡η cocase {π1 ⇒ e.π1, π2 ⇒ e.π2}

We have now seen two alternative ways to define pairs τ1 × τ2 as either a data type
τ1 ⊗ τ2 or a codata type τ1 & τ2. A natural question is whether a language should
provide both mechanisms to define pairs or if this redundancy is useless in practice.
The difference turns out to be important in substructural programming languages which
leverage the type system to track the use of resources in the typing rules since there is
an important difference between the types τ1 ⊗ τ2 and τ1 & τ2

3. In a substructural type
theory, we treat variables and terms as resources that cannot be arbitrarily duplicated
or discarded. This is useful, for example, if we want to write programs that manipulate
file handles since an open file handle should not be freely duplicated and shared between
different functions, but it also cannot be freely discarded since we have to close the file
handle once we have finished reading from it. And within such a theory that cares about
resource usage, we can distinguish the two pair types. When we eliminate the pair type
τ1 ⊗ τ2 by pattern matching we have access to both elements τ1 and τ2. For the pair
type τ1 & τ2, on the other hand, we can only invoke one projection to obtain either an
element of type τ1 or an element of τ2. This shows that we do want to have both pair
types available in the programming language if our underlying system is linear.

3In section 1.1.3 we will see another difference; the type τ1 ⊗ τ2 corresponds to strict pairs whose
elements are evaluated eagerly whereas the type τ1 & τ2 corresponds to lazy pairs whose elements are
evaluated upon the invocation of the first or second projection.
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I already mentioned several times that constructors encode canonical proofs and that
pattern matching corresponds to elimination rules which are justified based on canonical
proofs. I will now provide some context in order to make this relationship between
programming constructs such as constructors and pattern matching on the one hand,
and proof-theoretic concepts such as canonical and justified proofs on the other hand,
clearer. The distinction between canonical proofs and justified proofs can be traced
back to a remark by Gentzen in his foundational paper which introduced the natural
deduction calculus. In that calculus every logical connective is characterized by both
introduction and elimination rules. He observes that these introduction and elimination
rules observe some sort of internal coherence and writes:

The introductions represent, as it were, the “definitions” of the symbols
concerned, and the eliminations are no more, in the final analysis, than the
consequences of these definitions. This fact may be expressed as follows: In
eliminating a symbol, we may use the formula with whose terminal symbol we
are dealing only “in the sense afforded it by the introduction of that symbol”.
(Gentzen (1935a) and Gentzen (1935b), cited via Schroeder-Heister (2018))

This small remark was the beginning of an entire strand of research that tries to explain
the meaning of logical constants in terms of the valid inference rules that characterize
them. Examples of this development can be found by Prawitz (1985), Martin-Löf (1996)
and Dummett (1991), and a good overview of this field is presented by Schroeder-Heister
(2018). If we try to apply the remark by Gentzen to the theory of data and codata types
that we started to introduce above, then we can see that data types are types whose
meaning is defined by the canonical introduction forms which are mentioned in the data
type declaration, and that pattern matching is a form of justified elimination rule. This
relationship, and how it extends to codata types and copattern matching, was made
completely explicit by Zeilberger (2009).

How the meaning of logical constants can be explained in terms of the role they play
in inferences was also investigated by another influential philosopher: Karl Popper. He
developed an inferentialist theory of meaning where the meaning of a logical constant
is not defined in terms of denotational models but through the role it plays in logical
inferences. This is described in several of my articles on the historical development
of logic (Binder, Piecha, and Schroeder-Heister (2022), Binder and Piecha (2017), and
Binder and Piecha (2021)) which influenced the general outlook developed in this thesis
but did not become a part of its text.

1.1.2. Data Types, Codata Types and the Expression Problem

One way to present the essence of the expression problem (Wadler (1998)) is to show
how the extensibility properties of a type depend on its polarity, i.e. whether it is a
data or codata type. It is easy to extend a data type with new consumers but difficult
to extend it with new producers. Dually, it is easy to add new producers to a codata
type, but difficult to extend it with new consumers. This problem can be illustrated
with the canonical example of arithmetic expressions. Arithmetic expressions consist of
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either natural number literals or the addition of two arithmetic expressions. The only
observation we consider at first is evaluation, which allows us to compute the value of
an arithmetic expression. We can consider two possible extensions of this program: If
we extend arithmetic expressions with multiplication nodes then we have to add a new
producer, and if we also want to print arithmetic expressions then we have to extend
the program with a new consumer. Whether each of these extensions is easy or hard
depends on the representation that we have chosen. Let us look at the two different
representations in turn.

Arithmetic Expressions as a Data Type

In functional programming languages we usually model syntax trees as a data type and
implement the eval function by pattern matching on all available syntax nodes. For the
simple example of arithmetic expressions this looks as follows:

data AST {
Lit(Nat),
Add(AST ,AST)

}
def eval(x) = x.case {

Lit(n) => n,
Add(e1 ,e2) => eval(e1) + eval(e2)

}

It is easy to extend this program with a print function, where we use ++ for string
concatenation and print_nat as a primitive function for printing natural numbers.

def print(x) = x.case {
Lit(n) => print_nat(n),
Add(e1 ,e2) => "(" ++ print(e1) ++ "+" ++ print(e2) ++ ")"

}

If we want to extend the language with multiplication nodes, however, then we have to
add a clause to all the existing parts of the program which pattern match on ASTs.

data AST {
Lit(Nat),
Add(AST ,AST),
Mult(AST ,AST),

}
def eval(x) = x.case {

Lit(n) => n,
Add(e1 ,e2) => eval(e1) + eval(e2)
Mult(e1,e2) => eval(e1) * eval(e2)

}

In this example, there is only one such definition that we have to modify, but in a
larger project, there might be many more definitions that we have to revisit. There is
a similar situation in mathematics where it is very easy to add another lemma or proof
to the existing corpus of mathematical knowledge, but if we change a definition of a
mathematical concept then we have to revisit all existing proofs and check that they
are still correct. This vague analogy between data types and definitions of mathemat-
ical objects can be made precise for proof assistants which usually use data types to
model mathematical objects. I have studied the extension of the expression problem to
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proof assistants in more detail in a recent publication (Binder, Skupin, Süberkrüb, and
Ostermann (2024b)).

Arithmetic Expressions as a Codata Type

Using codata types we can model a syntax tree by specifying all the methods that every
syntax node has to implement. If we only consider evaluation, then we can write the
initial program as follows.

codata Ast {
eval : Nat

}
def Lit(n) = cocase {

eval => n
}
def Add(e1 ,e2) = cocase {

eval => eval(e1) + eval(e2)
}

It is easy to extend this program with a new syntax node for multiplication, because
we only have to add a new definition that implements the eval observation.

def Mult(e1 ,e2) = cocase {
eval => eval(e1) * eval(e2)

}

but it is hard to extend the codata type with a new print observation since we have
to modify all existing copattern matches:

codata Ast {
eval : Nat ,
print: String

}
def Lit(n) = cocase {

eval => n,
print => print_nat(n)

}
def Add(e1 ,e2) = cocase {

eval => eval(e1) + eval(e2),
print => "(" ++ print(e1) ++ "+" ++ print(e2) ++ ")"

}

The expression problem is considered a genuine problem since we can usually not
foresee whether we want to extend a program by new producers or consumers in the
future, and we usually want to extend programs by both. Many solutions of varying
complexity have been suggested over the years. Providing both data and codata types
in a language doesn’t solve the expression problem by itself, but it provides at least
a choice for each individual type. A much more thorough discussion of the expression
problem, and a partial solution involving the defunctionalization and refunctionalization
algorithms, is presented in chapter 3 and chapter 4 of this thesis.

1.1.3. Streams and Non-Strict Evaluation

The distinction between data and codata types is also essential for better understanding
the difference between producer-driven and demand-driven computation. Most programs
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are producer-driven, but Hughes (1989) showed that in many domains we can use lazi-
ness, which is one way to implement demand-driven computation, to write programs
more modularly as the composition of smaller functions. One such domain concerns the
computation on infinite streams, which we want to decompose into smaller functions that
take streams as arguments and return streams as results. It is obviously not possible
to represent all elements of an infinite stream in finite memory. We therefore have to
find a representation that allows us to only compute those elements of a stream which
are demanded by the surrounding program. One possible representation is to use a data
type with one “Cons” constructor in a lazy programming language like Haskell. We can
use this data type declaration to define a stream which consists of infinitely many ones:

data Stream { Cons(Nat , Stream) }

def ones = Cons(1, ones)

This definition crucially only works in a lazy programming language, since it would
create an infinite loop in a strict programming language. While this definition works in
a lazy programming language, it is still not an optimal representation, as we will discuss
below. Instead, it is much better to model streams as a codata type which makes the
demand-driven nature explicit. More concretely, we can use the following codata type
and definition:

codata Stream { head: Nat , tail: Stream }

def ones = cocase { head => 1, tail => ones }

One of the main reasons why it is preferable to formulate such demand-driven types
as codata types concerns the validity of η-laws. Let us take a look at the η-laws for a
stream e in its data and codata variant.

t[e/z] ≡η e.case {Cons(x, y) ⇒ t[Cons(x, y)/z]} (η-Data)

e ≡η cocase {head ⇒ e.head, tail ⇒ e.tail} (η-Codata)

The rule η-Data says that if e occurs in t then we can first pattern-match on e and
substitute the canonical form Cons(x, y) for the original occurrence of e in t. The rule
η-Codata, on the other hand, says that e can be replaced by a copattern match which
“forwards” all the observations to the term e; this form of the η-law is a straightforward
generalization of the familiar η-law for functions. These η-laws, however, are in general
not valid for every evaluation strategy. The rule η-Data is only valid for strict evaluation
strategies, and the rule η-Codata is only valid for non-strict evaluation strategies; let us
demonstrate why this is the case.

Let us first show that the rule η-Data is only valid for strict evaluation orders. From
now on we assume that Ω is some arbitrary non-terminating term. The following two
terms are η-equivalent, but they behave differently when we use a non-strict evaluation
order. In that case, the term on the left diverges, whereas the term on the right evaluates
to the value 5. Using a strict evaluation order, on the other hand, both terms diverge.

Ω.case {Cons(x, xs) ⇒ (λx.5)Cons(x, xs)} ≡η (λx.5)Ω
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Vice versa, the rule η-Codata is only valid for non-strict evaluation orders, as the
following example shows. Here the terms on either side of the equation evaluate to the
value 5 under a non-strict evaluation order, but only the term on the right evaluates to
5 under a strict evaluation order.

(λx.5)Ω ≡η (λx.5)(cocase {head ⇒ Ω.head, tail ⇒ Ω.tail})

The moral of this observation is that if we care about the validity of η-laws, then we
should use strict evaluation for data types and non-strict evaluation for codata types.
Programmers should care about the validity of η-laws since many common refactorings
are only valid if a corresponding η-law is valid. And since it follows directly that we
cannot use the data representation of streams any longer, this means that we do need
support for the codata representation of streams in a language. Chapter 4 is mainly
concerned with this interaction between the polarity (data or codata) and the evaluation
order (call-by-value or call-by-name) chosen for a type. In that chapter I present a system
with only one form of type declaration which is parameterized by both the polarity and
the evaluation order. Separate algorithms allow to change the polarity and the evaluation
order of a type independently from each other, without changing the meaning of the
program.

1.2. Formats of Reasoning

Many different calculi are used for proving propositions in various logical systems such
as propositional logic, predicate logic or modal logic. Among these different calculi,
we can identify families whose members resemble each other in the way that the rules
and axioms are organized. Examples of such families are axiomatic calculi, natural
deduction systems and sequent calculi. We call these families of calculi different formats
of reasoning . The central point of this section is to show that these different formats
of reasoning also correspond to different programming styles and that the programming
style that corresponds to the classical sequent calculus is still mostly unexplored. I focus
on the following three correspondences to illustrate the point4:

Reasoning Format Programming Language

Axiomatic Calculus Combinatory Logic
Natural Deduction Lambda Calculus

Classical Sequent Calculus λµµ̃-Calculus

How are properties of the logical calculus reflected in the corresponding programming
language? The central property of an axiomatic calculus, for example, is that it does not
allow to make temporary assumptions. Combinatory logic, the programming language

4The excellent book by Troelstra and Schwichtenberg (2000) contains a much more thorough introduc-
tion to the differences between axiomatic calculi, natural deduction and the sequent calculus.
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which corresponds to axiomatic calculi, correspondingly does not make use of variables.
The most important innovation in natural deduction is the use of temporary assumptions.
These temporary assumptions make reasoning in those systems more natural, and they
correspond to the use of variables in typed lambda calculi. What, then, is the property
of the sequent calculus which distinguishes it from natural deduction, and how does
this manifest itself when we look at its corresponding programming language? The
core difference is that in the classical sequent calculus, we can also make a temporary
assumption that a proposition is false, whereas in natural deduction we can only assume
that a proposition is true. Translated into the vocabulary of programming this means
that a language built on the sequent calculus has first-class support for continuations.
The following three subsections will explain these correspondences in more detail.

1.2.1. Axiomatic Calculi and Combinatory Logic

The early modern formalisms for writing proofs in a fully rigorous manner are almost
all axiomatic calculi. For example, when Frege (1879) wrote down the rules for the
propositional fragment of his Begriffsschrift he used a collection of logical axioms but
only one rule of inference: modus ponens. Later authors often followed this model.
Whitehead and Russell, for example, built upon Frege’s work and specified the rules
for Principia Mathematica as an axiomatic system. Many other textbooks on logic that
appeared in the first half of the twentieth century, such as the very influential “Grundzüge
der theoretischen Logik” by Hilbert and Ackermann, also followed this approach.

We can illustrate the general form of an axiomatic calculus by giving an example for
the implicational fragment of propositional logic. The formulas of this fragment consist
only of propositional variables and implications. First, we need a collection of axioms:

Definition 1.2.1 (Axioms of Implicational Logic). The following formulas are axioms
of the implicational fragment of propositional logic:

1. ϕ→ ϕ

2. ϕ→ ψ → ϕ

3. (ϕ→ ψ → χ) → (ϕ→ ψ) → ϕ→ χ

We then have to define what we mean by a valid proof. The following definition uses
the axioms and one inference rule: modus ponens.

Definition 1.2.2 (Proofs of Implicational Logic). A proof of a formula ϕ is a finite list
of formulas ending with ϕ, where every formula in the list satisfies one of the following
two conditions:

1. The formula is an instance of one of the axioms.

2. The formula is of the form ψ, and there is some ϕ such that the formulas ϕ → ψ
and ϕ occur earlier in the list.
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This definition already suffices to give a fully formal proof of the tautology ϕ→ ψ → ψ.

Example 1.2.3. The list [(ψ → ψ) → ϕ → ψ → ψ,ψ → ψ, ϕ → (ψ → ψ)] is a proof of
the proposition ϕ→ ψ → ψ according to definition 1.2.2. We can annotate each element
of the list with its corresponding justification:

(ψ → ψ) → ϕ→ ψ → ψ (1: by Axiom 2)

ψ → ψ (2: by Axiom 1)

ϕ→ (ψ → ψ) (3: By 1 and 2)

This simple proof calculus is sound and complete, but the proofs that we have to write
are quite unnatural. The reason why these proofs feel unnatural is that the calculus does
not allow us to make temporary assumptions; we have to proceed from one tautological
formula to the next. If we turn this simple proof system into a programming language
by assigning terms to derivations, then we obtain combinatory logic:

Definition 1.2.4 (Combinatory Logic). The terms of combinatory logic are constructed
according to the following grammar:

e ::= S | K | I | e e

Here is how combinatory logic arises as the term assignment system for the calculus
defined by the axioms and inference rules introduced above. For each of the three axioms
of definition 1.2.1 we have a term constructor S, K and I, and we use application e e
for the second clause of definition 1.2.2. The proof of example 1.2.3, for example, can
be represented by the combinatory logic term KI.

Writing functional programs without the use of variables and lambda abstractions
is known as “point-free programming”, and standard techniques from the theory of
combinatory logic5 can be used to translate any functional program into this point-
free style. Whether programs written in this style are readable, however, is a separate
question. Compiling to combinatory logic has also been used as an implementation
technique by some compilers for functional languages. An early example of this is Turner,
1979’s compiler for the programming language SASL.

1.2.2. Natural Deduction and the Lambda Calculus

In the previous section we observed that if we only proceed from one tautological formula
to the next without making temporary assumptions, then our logical calculus does not

5Hindley and Seldin (2008) and Barendregt (1981), for example, provide various translations from the
lambda calculus to combinatory logic.

12



1.2. Formats of Reasoning

properly reflect how people usually construct proofs. This was also observed by logi-
cians who then developed new calculi which capture the way mathematicians actually
construct proofs; these novel calculi were called “natural deduction calculi”. They were
independently discovered by Gentzen (1935a) and Gentzen (1935b) and by Jaśkowski
(1934)6.

The calculus of natural deduction has two characteristic properties. The first property
which distinguishes it from the earlier axiomatic calculi is the use of temporary assump-
tions which are discharged during the course of the proof. The second characteristic
property is that each rule only mentions one principal connective and that each rule can
be characterized as an introduction or an elimination rule, depending on whether the
principal connective appears in a premiss or the conclusion.

Definition 1.2.5 (Inference Rules of Natural Deduction). There are two rules for the
implicational fragment of natural deduction: One introduction rule and one elimination
rule.

[ϕ]1

D
ψ

→-Intro : 1
ϕ→ ψ

D1

ϕ→ ψ

D2

ϕ
→-Elim

ψ

Using these inference rules we can now construct proofs in a much more natural way,
which can be seen if we write down the proof of the example contained in the previous
section.

Example 1.2.6. The proof of the theorem from example 1.2.3 in natural deduction is:

[ψ]1
→-Intro : 1

ψ → ψ
→-Intro : 2

ϕ→ ψ → ψ

In this proof, we start with the temporary assumption ψ which we discharge in the first
inference step to obtain a closed proof of the proposition ψ → ψ. Note that we do
not discharge any assumptions in the second inference step; this is nevertheless a valid
instance of the introduction rule.

The calculus of natural deduction is especially important for programming language
designers due to its term assignment system: the lambda calculus. The lambda calcu-
lus was first invented in its untyped and typed form by Alonzo Church (Church, 1936;
Church, 1940). The relationship between natural deduction and the (typed) lambda cal-
culus, which is nowadays known as the Curry-Howard correspondence or “propositions-
as-types”(cp. Sørensen and Urzyczyn, 2006), was not known from the beginning. It was
first observed by Howard (1980) as a correspondence between typed combinatory logic
and the axioms of propositional logic, and only later extended to the lambda calculus.

6A superficial difference between these two calculi is that Gentzen used trees to write proofs whereas
Jaśkowski uses a tabular format.
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Definition 1.2.7 (Lambda Calculus). The terms of the lambda calculus are constructed
according to the following grammar:

eλ ::= x | λx.eλ | eλ eλ.

For example, we can annotate the proof from the example above and see that this
proof can be encoded by the lambda term λx.λy.y.

y : ψ ⊢ y : ψ
→-Intro⊢ λy.y : ψ → ψ

→-Intro⊢ λx.λy.y : ϕ→ ψ → ψ

Here we use a context Γ of temporary assumptions on the left of the turnstile to
record those assumptions that we have not discharged yet; this is sometimes called
natural deduction in sequent-calculus style.

1.2.3. Sequent Calculus and the λµµ̃-Calculus

We have seen that by making temporary assumptions we can write more natural proofs
in natural deduction than in axiomatic calculi, and that these temporary assumptions
correspond to the use of variables in the lambda calculus. In the sequent calculus we
can go one step further because we can not only assume that a proposition is true,
but also that a proposition is false. This new kind of assumption that a proposition is
false corresponds to covariables which are used in the λµµ̃-calculus, the term assignment
system for the sequent calculus that I will now introduce.

The classical sequent calculus operates on sequents Γ ⊢ ∆, where both Γ and ∆ are
ordered lists of formulas. The meaning of a sequent ϕ1, . . . , ϕn ⊢ ψ1, . . . , ψn is ordinarily
explained by saying that if all the propositions ϕ1 to ϕn are true, then at least one of
the propositions ψ1 to ψn has to be true as well. Equivalently, we can say that if all the
propositions ϕ1 to ϕn are true and all the propositions ψ1 to ψn are false then we have a
contradiction. Put differently, we assume the truth of all the ϕi and the falsity of all the
ψi. While these two explanations are logically equivalent, the latter of the two is more
appropriate to understand the term assignment system of the sequent calculus, which
uses variables to encode assumptions of truth and covariables to encode assumptions of
falsity.

Every inference rule of the sequent calculus has a finite set of sequents as premisses,
and exactly one sequent as its conclusion. There are two kinds of rules which are used
to construct proofs: structural rules and logical rules. Structural rules do not mention
any logical connectives and only govern the behavior of sequents which is independent
of the logical form of the propositions that occur in it7The logical rules, on the other
hand, determine the meaning of the logical constants.

7The natural deduction calculus does not use explicit structural rules; weakening and contraction are
instead implicitly handled through the convention that assumptions may be used arbitrarily often in
a derivation.
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Definition 1.2.8 (Structural Rules of the Sequent Calculus). The classical sequent
calculus is characterized by the following structural rules:

Axiom
ϕ ⊢ ϕ

Γ1 ⊢ ∆1, ϕ ϕ,Γ2 ⊢ ∆2
Cut

Γ1,Γ2 ⊢ ∆1,∆2

Γ ⊢ ∆ Weakening-L
Γ, ϕ ⊢ ∆

Γ ⊢ ∆ Weakening-R
Γ ⊢ ϕ,∆

Γ, ϕ, ϕ ⊢ ∆
Contraction-L

Γ, ϕ ⊢ ∆
Γ ⊢ ϕ, ϕ,∆

Contraction-R
Γ ⊢ ϕ,∆

Γ1, ϕ, ψ,Γ2 ⊢ ∆
Exchange-L

Γ1, ψ, ϕ,Γ2 ⊢ ∆
Γ ⊢ ∆1, ϕ, ψ,∆2 Exchange-R
Γ ⊢ ∆1, ψ, ϕ,∆2

In natural deduction, the rules for a logical connective came as introduction and
elimination rules. In the sequent calculus, by contrast, there are only introduction rules,
but every logical constant is governed by left-introduction and right-introduction rules.
We illustrate this with the example of the function type.

Definition 1.2.9 (Logical Rules of the Sequent Calculus). The implicational fragment of
the classical sequent calculus is characterized by the following right and left introduction
rule:

Γ, ϕ ⊢ ψ,∆
→-RI

Γ ⊢ ϕ→ ψ,∆

Γ1 ⊢ ϕ,∆1 Γ2, ψ ⊢ ∆2 →-LI
Γ1,Γ2, ϕ→ ψ ⊢ ∆1,∆2

The calculus that we obtain from definitions 1.2.8 and 1.2.9 is strictly more powerful
than the calculi introduced in sections 1.2.1 and 1.2.2, because we can prove propositions
that are not intuitionistically valid. An example of this is the following proof:

Example 1.2.10 (Peirce’s Law). Consider Peirce’s law ((ϕ→ ψ) → ϕ) → ϕ, for which
we can construct the following proof:

Axiom
ϕ ⊢ ϕ

Weakening-R
ϕ ⊢ ψ, ϕ

→-RI⊢ ϕ→ ψ, ϕ
Axiom

ϕ ⊢ ϕ
→-LI

(ϕ→ ψ) → ϕ ⊢ ϕ, ϕ
Contraction-R

(ϕ→ ψ) → ϕ ⊢ ϕ
→-RI⊢ ((ϕ→ ψ) → ϕ) → ϕ

That Peirce’s law is valid in classical logic can also easily be verified by constructing the
corresponding truth table.

That we can prove arbitrary classically valid propositions might be concerning from a
programming language perspective. The point of constructive logic, after all, is to ensure
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that all proofs have a computational meaning, and it is not obvious that a computa-
tional interpretation can be given to classical proofs. But, as Griffin (1989) discovered,
we can give a computational interpretation to classical proofs using control operators.
Examples of such control operators are Landin (1965)’s operator J, Scheme’s call/cc
or the operator C introduced by Felleisen, Friedman, Kohlbecker, and B. Duba (1987).
While the details are different, all these control operators have in common that they
allow the program to access the continuation from within an expression.

Griffin’s insight made it possible to then develop a well-behaved term assignment
system for the sequent calculus. One of the first steps was the λµ-calculus by Parigot
(1992a), which introduced the control operator µ. Curien and Herbelin (2000) completed
this control operator µ with the dual µ̃ construct to obtain the λµµ̃ calculus:

Definition 1.2.11 (The λµµ̃ Calculus (Syntax)). The terms of the λµµ̃-calculus are
constructed according to the following grammar:

p ::= x | µα.s | λ(x · α).s Producers
c ::= α | µ̃x.s | p · c Consumers
s ::= ⟨ p | c ⟩ Statements

In contrast to most term-assignment systems for natural deduction, like the lambda
calculus, which only have one syntactic category, the λµµ̃-calculus has three syntactic
categories: producers, consumers and statements. From the perspective of the Curry-
Howard isomorphism producers correspond to proofs that a proposition is true, con-
sumers correspond to refutations which show that a proposition is false, and statements
are used to prove a contradiction. This split is also reflected in the typing rules, which
use three different judgments. The judgment Γ ⊢ p : σ says that the producer has type
σ, the judgment Γ ⊢ c con

: σ says that the consumer c has type σ, and the judgment Γ ⊢ s
says that the statement s is well-typed. Type environments Γ contain both variable
assignments x : σ which correspond to an assumption that σ is true, and covariable
assignments α

con
: σ which correspond to the assumption that σ is false.

Definition 1.2.12 (The λµµ̃ Calculus (Typing Rules)). The typing rules of the λµµ̃-
calculus are

x : τ ∈ Γ
Var

Γ ⊢ x : τ
α

con
: τ ∈ Γ

Covar
Γ ⊢ α con

: τ

Γ, α
con
: τ ⊢ s

µ
Γ ⊢ µα.s : τ

Γ, x : τ ⊢ s
µ̃

Γ ⊢ µ̃x.s con
: τ

Γ1 ⊢ p : τ Γ2 ⊢ c : τ
Cut

Γ1,Γ2 ⊢ ⟨ p | c ⟩

Γ, x : τ1, α
con
: τ2 ⊢ s →-R

Γ ⊢ λ(x · α).s : τ1 → τ2

Γ1 ⊢ p : τ1 Γ2 ⊢ c : τ2 →-L
Γ1,Γ2 ⊢ p · c

con
: τ1 → τ2

Using these typing rules we can now assign a term to the proof of Peirce’s law that
we have given above.
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Example 1.2.13 (Peirce’s Law, Continued). The term that we can assign to the proof
of example 1.2.10 is λ(x · α).⟨x | (λ(y · β).⟨ y | α ⟩) · α ⟩. It can be observed that the
covariable α that is bound in the outer lambda abstraction is used twice, and that the
covariable β that is bound in the inner lambda abstraction is discarded. This non-linear
use of covariables is the characteristic property of terms that we assign to proofs of
propositions that are classically, but not intuitionistically, valid.

This strong relationship between classical reasoning principles and control opera-
tors makes the λµµ̃ a good basis for compiler intermediate languages. Such a sequent
calculus-based compiler intermediate language was already proposed by Downen, Mau-
rer, Zena M Ariola, and Peyton Jones (2016), and we make the same point in our article
Binder, Tzschentke, Müller, and Ostermann (2024). To develop the metatheory of the
λµµ̃-calculus is the second main thread of this thesis.

1.3. Structure and Contributions

This thesis is divided into two parts. Part I discusses the more familiar term systems
and languages based on natural deduction and the lambda calculus. Part II then goes
beyond languages based on natural deduction and is concerned with symmetric systems
based on the sequent calculus and the λµµ̃-calculus. The duality of data and codata
types is a central theme in both parts.

Part I is called “A Natural Deduction Calculus for Data and Codata” and is concerned
with systems whose term language is most similar to ordinary functional programming
languages. I introduce an untyped system ND in chapter 2, together with its conversion
and reduction theory, and present a full proof of the confluence of this system. I introduce
a number of normal forms such as the normal form NF, the weak normal form WNF,
the head normal form HNF, and the weak head normal form WHNF. These different
normal forms correspond to different evaluation and normalization strategies, and I
introduce the call-by-value evaluation strategy for weak normal forms and the call-by-
name strategy for weak head normal forms explicitly.

The following chapter 3 introduces a type assignment system for simple types and the
de- and refunctionalization algorithms which transpose between the data and codata
fragment. That chapter is based on a publication that was accepted at the conference
on the principles of programming languages (POPL); the core contribution of that pub-
lication and chapter 3 consists in proving, for the first time, that it is possible to define
total, inverse and semantics-preserving defunctionalization and refunctionalization algo-
rithms for languages which have local pattern and copattern matches. We only prove
this theorem for the type system described in that chapter, which only has simple types.
I solved the problem of extending the defunctionalization and refunctionalization algo-
rithms to dependent types in the paper Binder, Skupin, Süberkrüb, and Ostermann
(2024a), which, however, did not become a part of this thesis.

Part II is called “Sequent Calculi for Data and Codata”; the chapters included in that
part introduce and discuss various aspects of the symmetric λµµ̃-calculus. At the core of
the sequent calculus is a deep duality of proofs and refutations, producers and consumers,
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values and continuations that is hidden from view if we work in the framework of natural
deduction and the lambda calculus. In a recent paper (Binder, Tzschentke, Müller, and
Ostermann, 2024) I give a much more thorough introduction to the languages presented
in part II. That paper is directed at compiler writers in particular, since it introduces
the λµµ̃-calculus as a possible intermediate representation for programming languages
with control effects.

Chapter 4 solves two problems that were left open at the end of chapter 3: The
first problem is that in the natural deduction setting we have to specify two similar,
but separate, defunctionalization and refunctionalization algorithms. In the symmetric
setting of the λµµ̃-calculus this is no longer the case, and we can instead define one
algorithm which subsumes both transformations. The second problem concerns the
interaction of defunctionalization and refunctionalization with evaluation order. The
system presented in chapter 3 assumes the call-by-value evaluation order for all types.
As we have already seen, this is disadventageous if we are interested in a rich equational
theory, since only the eta-laws for data types are valid under call-by-value. Chapter 4
solves this problem by introducing a nominal evaluation strategy: We can define for
each type individually whether it should be evaluated strictly or on demand. It is then
possible to define a defunctionalization and refunctionalization algorithm which changes
both the polarity (i.e. data or codata) and the evaluation order of the type. In fact, this
algorithm can be decomposed into two individual algorithms: one algorithm changes the
polarity and the other algorithm changes the evaluation order by introducing shifts in
the program.

Chapter 5 discusses the relationship between the format of reasoning and the corre-
sponding programming style that we have already started to introduce in section 1.2.
That chapter is based on the article Ostermann, Binder, Skupin, Süberkrüb, and Dow-
nen (2022a), which was published at the international conference on functional program-
ming (ICFP). We start with the observation that there are four different kinds of rules in
derivation systems based on sequents: left-introduction rules, right-introduction rules,
left-elimination rules and right-elimination rules. The difference between left and right
rules can be seen by the location of the prinicpal connective: if the connective appears
on the left side of the sequent we have a left rule, and vice versa for right rules. The
difference between introduction and elimination rules can be explained in the same way.
In introduction rules the principal connective appears in the conclusion of the rule, while
in elimination rules the principal connective appears in one of the premisses. We present
all kinds of rules for each connective, but various subsets of the rules are functionally
complete. We call these functionally complete subsets the introduction, elimination, left
and right calculus, respectively. In that chapter we show how these different calculi
correspond to different ways to write and structure programs, and that it can therefore
be beneficial to support all these possible rules in a programming language.

Chapter 6 is of a very technical nature since it compares two different but related
program transformations: the ANF transformation for the lambda calculus and the fo-
cusing transformation for the λµµ̃-calculus. People familiar with both transformations
are aware that they are roughly similar, but there has been no formal proof yet which
makes this correspondence precise. Making the relationship between the ANF transfor-
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mation and focusing completely precise is the central contribution of chapter 6. In order
to prove the correspondence we have to split the ANF transformation into two different
stages which can be composed to obtain the original transformation. The first stage uses
let-bindings to lift subcomputations into a position where they can be evaluated, and the
second stage linearizes these resulting let-bindings. The first stage corresponds exactly
to the focusing transformation for the λµµ̃-calculus, and the second stage corresponds
to simple µ-reductions. These correspondences are then proved and all the details are
spelled out.

Some of the chapters of this thesis are based on previous publications; a note at the
beginning of each such chapter mentions this separately. I shall also shortly mention two
other articles that were written during the time of my PhD and inspired by many of the
themes I develop here. In the article Binder, Skupin, Läwen, and Ostermann (2022),
accepted and published at the workshop for type driven development (TyDe), I developed
a system of structural refinement types. The type system is based on the algebraic
subtyping approach that was introduced by Dolan and Mycroft (2017) and Dolan (2017)
and later simplified by Parreaux (2020). Structural refinement types combine properties
of nominal data types and polymorphic variants, and allow to express and infer subtypes
which are refinements of a given data type declaration. For example, we can infer the
type of non-empty lists, which is a refinement of the type of lists. The article Bhanuka,
Parreaux, Binder, and Brachthäuser (2023), accepted at OOPSLA’23, is also based on
algebraic subtyping. In that article we show that the often inscrutable error messages
that arise from constraint-based type inference can be significantly improved by using
insights from the theory of algebraic subtyping. If we read any subtyping constraint
that is generated during type inference as a statement about data that flows through
the program, then we can explain errors that arise during typechecking by using the flow
of data through the program as an explanatory device, a concept the programmer and
user is likely familiar with.
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2. The Untyped Calculus ND

In this chapter, I am going to introduce the untyped calculus ND for data and codata
types. In section 2.1 I introduce terms and the basic syntactic machinery needed to work
with them. In section 2.2 I show how to faithfully embed the untyped lambda calculus
into the calculus ND. Section 2.3 introduces the symmetric conversion relation e1 ≡ e2
between terms, which is then specialized to the directed reduction relation e1 ▷ e2 in
section 2.4. In section 2.5 I show that reduction satisfies the Church-Rosser property,
and that conversion is, therefore, a consistent relation (i.e. not all terms of the language
are convertible). Section 2.6 defines four different normal forms: normal forms, head
normal forms, weak normal forms and weak head normal forms. In section 2.7 the
calculus is extended with let bindings and a control operator, the resulting calculus is no
longer confluent. Finally, in section 2.8 I introduce two deterministic evaluation orders,
call-by-value evaluation cbv and call-by-name evaluation cbn.

2.1. Syntax of Terms

The syntax of terms is given in definition 2.1.1 and consists of variables x, constructors
applied to arguments K(e), the application of a destructor d with arguments e on a term
e, which is written as e.d(e), and two constructs for pattern and copattern matching. A
pattern match e.case {K(x) ⇒ e} analyses a term e and tests it against a list of clauses.
Each clause consists of a pattern made from a constructor applied to variables and
an expression on the right-hand side. A copattern match cocase {d(x) ⇒ e} consists
of a list of clauses, each of which consists of a destructor applied to variables and an
expression on the right-hand side.

We use the notation X to represent a (possibly empty) sequence X1, . . . , Xi, . . . , Xn

and follow the Featherweight Java (Igarashi, Benjamin C Pierce, and Wadler, 2001)
conventions for this notation. In this convention, multiple occurrences of such sequences
should be read as being indexed simultaneously, e.g. the judgement “Γ,Π ⊢ c” should
be read as a list of judgements “Γ,Πi ⊢ ci”. We also sometimes omit the last element
in a sequence and write X1, . . . instead of X1, . . . , Xn in situations where there is no
ambiguity and writing out the complete sequence would make the examples excessively
verbose. This is particularily the case in section 2.5.

Definition 2.1.1 (Terms of the Calculus ND). The terms of the untyped natural de-
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2. The Untyped Calculus ND

duction system are:

e ::= x Variables
| K(e) Constructor
| e.d(e) Destructor

| e.case {K(x) ⇒ e} Pattern match

| cocase {d(x) ⇒ e} Copattern match

In pattern and copattern matches every constructor or destructor must occur at most
once in the list of clauses.

Let us consider some examples which illustrate the use of constructors and pattern
matches. The boolean values True and False are constructors which are applied to
an empty list of arguments. A list which contains the two boolean truth values can
similarly be represented using only constructors: Cons(True, Cons(False, Nil)). An if-
then-else expression “if e1 then e2 else e3” can be represented using pattern matching
as e1.case {True ⇒ e2, False ⇒ e3}, and an expression which tests whether a given list
e is empty can be written as e.case {Nil ⇒ True, Cons(x, xs) ⇒ False}.

Destructors and copattern matching are less familiar, but we have already seen some
examples in the introduction: A lazy pair which consists of the two expressions e1 and e2
is written cocase {π1 ⇒ e1, π2 ⇒ e2}. This pair waits for an observation of the form e.π1
or e.π2 which will force its evaluation and yield one of the expressions e1 or e2. Another
example we have seen in the introduction is the stream type: a stream is defined by the
two destructors head and tail. Given the stream e = cocase {head ⇒ e1, tail ⇒ e2}
we can either observe the first element e1 of the stream with e.head or request the
remainder e2 of the stream with e.tail. Another important example that uses the
possibility for destructors to take arguments will be introduced in section 2.2: lambda
abstractions and function applications.

2.1.1. Free Variables, Substitutions, Contexts

Before we come to the interesting conversion and reduction theory of the untyped calcu-
lus, we first have to put some basic bureaucracy into place. This bureaucracy concerns
the treatment of free and bound variables, the concept of substitutions and the formal
definition of subterm occurrences. We start with the most simple concept: the set of
free variables of a term.

Definition 2.1.2 (Free Variables). The set of free variables of a term e is written FV(e),
and a term is called closed if this set is empty. The set FV(e) is defined recursively on
the structure of terms:

FV(x) := {x}
FV(K(e1, . . . , en)) := FV(e1) ∪ . . . ∪ FV(en)

FV(e.d(e1, . . . , en)) := FV(e) ∪ FV(e1) ∪ . . . ∪ FV(en)

FV(e.case {K(x) ⇒ e}) := FV(e) ∪ (FV(e1) \ x) ∪ . . . ∪ (FV(en) \ x)

FV(cocase {d(x) ⇒ e}) := (FV(e1) \ x) ∪ . . . ∪ (FV(en) \ x)
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The meaning of a closed term is independent of its context while the meaning of a term
that contains free variables depends on some assignment of terms or values for the free
variables it contains. In order to make this assignment explicit, we need to introduce
the concept of substitutions. In the lambda calculus we usually only substitute one
expression for one variable at a time. For the calculus ND, however, we frequently
have to use a simultaneous substitution which substitutes many expressions for many
variables1. When we reduce the expression Cons(2, Nil).case {Cons(x, xs) ⇒ e1, Nil ⇒
e2}, for example, we substitute 2 for the variable x and Nil for the variable xs in the
expression e1. We write e1[2, Nil/x, xs] for this simultaneous substitution.

We will now define substitutions σ and the action of a substitution on a term, which is
written e σ, separately. When we define the action of a substitution on a term, we have
to take care to avoid the unintended capture of free variables in the terms we substitute.

Definition 2.1.3 (Substitution). A simultaneous substitution σ of the terms e1, . . . , en
for the variables x1, . . . , xn is defined by the following grammar. We also require that
all the xi are distinct.

σ ::= [e1, . . . , en/x1, . . . , xn]

Every substitution has both a domain and a range. The domain is the set of variables
for which the substitution is defined whereas the range is the set of free variables of the
expressions that appear in the substitution.

Definition 2.1.4 (Domain and Range of a Substitution). We define the domain and
the range of a substitution as the following sets of variables:

dom([e1, . . . , en/x1, . . . , xn]) := {x1, . . . , xn}
rng([e1, . . . , en/x1, . . . , xn]) := FV(e1) ∪ . . . ∪ FV(en)

These definitions just show what a substitution is but we are usually more interested
in what a substitution does, i.e. what happens when we apply it to an expression. This
is called the action of the substitution on a term.

Definition 2.1.5 (Action of a Substitution). The action of a substitution σ on a term
e is written eσ and defined by the following clauses:

x[e1, . . . , en/x1, . . . , xn] := ei (if x = xi)

yσ := y (if y ̸∈ dom(σ))

(K(e1, . . . , en))σ := K(e1σ, . . . , enσ)

(e.d(e1, . . . , en))σ := (eσ).d(e1σ, . . . , enσ)

(e.case {K(x) ⇒ e})σ := (eσ).case {K(y) ⇒ (eσ′)σ}
(cocase {d(x) ⇒ e})σ := cocase {d(y) ⇒ (eσ′)σ}

1As Stoughton (1988) showed, simultaneous substitutions also allow us to make the definition struc-
turally recursive in the case where we have to rename bound variables.
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In the last two clauses, we have to perform a renaming of bound variables with the help
of the substitution σ′. This substitution σ′ has the form [y1, . . . , yn/x1, . . . , xn], where
the yi are fresh for both the domain and the range of σ.

When we have two substitutions σ1 and σ2 then we can either apply one after the other,
or we can compute the composition of the two substitutions and apply the resulting
substitution σ2 ◦ σ1 instead.

Definition 2.1.6 (Composition of Substitutions). Given the two substitutions

σ1 := [e1, . . . , en/x1, . . . , xn] σ2 := [t1, . . . , tm/y1, . . . , ym]

we define their composition as

σ2 ◦ σ1 := [e1σ2, . . . , enσ2, tj , . . . , tk/x1, . . . , xn, yj , . . . , yk]

where j, . . . , k is the greatest sub-range of indices 1, . . . ,m such that none of the variables
yj to yk is in the domain of σ1.

An important lemma that we need later states how to permute one substitution over
another:

Lemma 2.1.7 (Permutation of Substitutions). For any terms e, e1, . . . , t1, . . . we have:

e[e1, . . . /x1, . . .][t1, . . . /y1, . . .] = e[t1, . . . /y1, . . .][e1[t1, . . . /x1, . . .], . . . /x1, . . .]

if all the variables x1, . . . are distinct from all the variables y1, . . ..

Proof. By induction on the structure of e.

We often have to decompose a term into a subexpression and its surrounding context .
This is often done informally by underlining the subexpression that we want to highlight.
For example, when we want to talk about the second element in a list we can mark it in
the following way:

Cons(1, Cons(2, Cons(3, Nil)))

The subexpression 2 is just an ordinary term, but the surrounding context has to be
specified using its own grammar. In this example, the context is written as follows, where
we use the symbol □ to mark the place where we have to insert the subexpression.

Cons(1, Cons(□, Cons(3, Nil)))

We are only interested in contexts with one hole, which can be defined by the following
grammar.

Definition 2.1.8 (Contexts). Contexts with one hole are defined by the following gram-
mar:

C ::= □ | K(e, C, e) | C.d(e) | e.d(e, C, e) | C.case {K(x) ⇒ e}
| e.case {K(x) ⇒ e,K(x) ⇒ C,K(x) ⇒ e}
| cocase {d(x) ⇒ e, d(x) ⇒ C, d(x) ⇒ e}
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Since contexts have a hole there is a corresponding operation to plug an expression e
into the hole □ of a context C. This plugging operation is written C[e] and is different
from the substitution of a term for a variable, since plugging a term into a hole can
capture free variables of that term. For example, plugging the variable x into the hole
of the context e.case {Tup(x, y) ⇒ □} results in the expression e.case {Tup(x, y) ⇒ x},
where the variable x is now bound.

2.2. Embedding Lambda Calculus

In the examples we have seen so far we have not used functions, which are usually
one of the first constructs which are introduced into a term language. In particular,
the calculus ND does not contain lambda abstractions λx.e and function applications
e e. This is not because we have forgotten to add them, but because the destructors
and copattern matches that are available in ND subsume the lambda abstractions and
function applications that are found in the lambda calculus. We show this by embedding
the lambda calculus defined in definition 2.2.1 into our calculus.

Definition 2.2.1 (Terms of the Lambda Calculus). There are three kinds of lambda
terms Λ:

eλ ::= x | λx.eλ | eλ eλ.

That is, we have variables x, lambda abstractions λx.eλ and function applications eλ eλ.

For the embedding, we assume that there is a destructor Ap(−) that we can use to
encode lambda abstractions and function applications.

Definition 2.2.2 (Embedding of Lambda Terms). We define an embedding of lambda
terms J−K : Λ → ND by the following clauses:

JxK := x

Jλx.eK := cocase {Ap(x) ⇒ JeK}
Je1 e2K := Je1K.Ap(Je2K)

For example, the embedding of the term (λx.x)(λy.z) is the term

(cocase {Ap(x) ⇒ x}).Ap(cocase {Ap(y) ⇒ z}).

Lambda terms are both familiar and syntactically more compact than the result of
embedding them in ND. For this reason, we will use the syntax of lambda terms and
function applications in the remainder of this thesis, especially in examples, but whenever
we write λx.e or e e we implicitly intend those terms to denote their embedding according
to definition 2.2.2.
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2.3. Conversion

So far, we have only used the syntactic equality of terms which we have written e1 = e2.
Syntactic equality, however, is usually not what we are interested in when we investigate
the metatheory of an untyped term language; we want an equivalence relation that
equates more terms. This equivalence relation is called conversion, written e1 ≡ e2,
and combines three ways in which terms from ND can be equated. Alpha renaming
allows to identify terms that only differ in the choice of names for bound variables,
beta conversion allows to perform computation, and eta conversion allows to identify
extensionally equivalent terms. We will now introduce them in turn.

Let us first consider alpha renaming. The name of bound variables should not influence
the meaning we assign to terms, that is, we do consider the two terms λx.x and λy.y
to be the same. We can make this intuition explicit by allowing bound variables to be
renamed, and we equate any two terms that can be made equal by such alpha-renamings.

Definition 2.3.1 (Alpha-Renaming). A single step of alpha-renaming, written e1 ≡1
α e2,

is specified by the following two equations, where we assume that the yi do not occur
free in e.

e.case {. . . ,K(x) ⇒ e, . . .} ≡1
α e.case {. . . ,K(y) ⇒ e[y/x], . . .} (α-Data)

cocase {. . . , d(x) ⇒ e, . . .} ≡1
α cocase {. . . , d(y) ⇒ e[y/x], . . .} (α-Codata)

Next, we also want to equate two terms if one of the terms can be obtained from the
other by a series of computation steps. These computation steps happen when we apply
a destructor on a comatch which contains a clause for it, or when we pattern match on
a constructor.

Definition 2.3.2 (Beta-Conversion). A single step of beta-conversion, written e1 ≡1
β e2,

is specified by the following two equations:

K(e).case {. . . ,K(x) ⇒ e} ≡1
β e[e/x] (β-Data)

cocase {. . . , d(x) ⇒ e, . . .}.d(e) ≡1
β e[e/x] (β-Codata)

These rules require that the constructor and destructor is applied to the same number
of expressions and variables, respectively.

Example 2.3.3. The following two examples illustrate beta conversion for data and
codata types:

cocase {π1 ⇒ e1, π2 ⇒ e2}.π1 ≡1
β e1

[1, 2].case {[x, y] ⇒ [y, x]} ≡1
β [2, 1]
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Let us also consider some edge cases of beta conversion. In definition 2.1.1 we required
that every constructor or destructor appears at most once in the list of clauses. This
requirement rules out degenerate cases such as cocase {π1 ⇒ e1, π1 ⇒ e2}.π1 where the
copattern match contains two clauses for the destructor π1. Excluding these kinds of
degenerate cases is necessary to ensure that the calculus is confluent. What we cannot
do in the untyped system, however, is to exclude terms such as cocase {π1 ⇒ e1}.π2
where the copattern match does not contain a clause for the destructor that is invoked
on it. Such expressions are called stuck, and it is the task of the type system to exclude
the possibility of stuck terms.

The last component that we have to discuss is eta conversion which equates expressions
with their corresponding canonical form. Applied to functions, it says that an expression
e can be equated with its canonical form λx.e x. Applied to booleans, it says that every
expression e which contains a free variable x which stands for a boolean can be specialized
to the two cases where x is either true or false: x.case {True ⇒ e[True/x], False ⇒
e[False/x]}. Definition 2.3.4 formally defines eta conversion for data and codata types,
but we have specialized the η rule for data types.

Definition 2.3.4 (Eta-Conversion). A single step of eta-conversion, written e1 ≡1
η e2,

is specified by the following two equations:

e.case {K(x) ⇒ K(x)} ≡1
η e (η-Data)

cocase {d(x) ⇒ e.d(x)} ≡1
η e (if x ̸∈ FV(e)) (η-Codata)

Our definitions of alpha renaming and beta and eta conversion correspond exactly to
the respective notions for the lambda calculus:

Remark 2.3.5 (Conversion in Lambda Calculus).

λx.e ≡1
α λy.e[y/x] (if y ̸∈ FV(e)) (α-λ)

(λx.e1)e2 ≡1
β e1[e2/x] (β-λ)

(λx.e x) ≡1
η e (if x ̸∈ FV(e)) (η-λ)

So far, we have only defined how to perform a single step of alpha renaming, beta
conversion and eta conversion. In order to obtain a sensible equivalence relation from
these individual steps we have to compute their transitive, symmetric, reflexive closure.
We also have to ensure that conversion is a congruence, i.e. that we are allowed to replace
equivalent terms in arbitrary positions in a term. We obtain the closure by adding the
rules Refl, Sym and Trans, and we ensure that the relation is a congruence by allowing
to perform the individual steps inside of an arbitrary context C in the rules α, β and η.
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2. The Untyped Calculus ND

Definition 2.3.6 (Conversion). Two terms e1 and e2 are convertible, written e1 ≡ e2,
if we can derive it using the following rules:

e1 ≡1
α e2 α

C[e1] ≡ C[e2]

e1 ≡1
β e2

β
C[e1] ≡ C[e2]

e1 ≡1
η e2 η

C[e1] ≡ C[e2]

Refle ≡ e
e1 ≡ e2

Syme2 ≡ e1
e1 ≡ e2 e2 ≡ e3

Transe1 ≡ e3

Whenever we write e1 ≡ e2, we mean the unrestricted use of the alpha, beta and eta
rules. If we want to restrict ourselves only to a subset of the rules, then we indicate this
in the subscripts by writing ≡β or ≡α etc.

Conversion relations can be ordered by how many terms they equate. In that respect,
syntactic equality equates the least amount of terms, since any term is only equated
to itself and to no other term. If we include alpha renamings and beta conversion we
obviously equate more terms, and if we also include eta-equivalence we are equating
even more. What we have to guard against, however, is that we equate too many terms.
Consistency is a minimal requirement that ensures that the conversion relation has not
become trivial:

Definition 2.3.7 (Consistency). A conversion relation ≡ is consistent if there exist
terms e1 and e2 such that e1 ̸≡ e2.

Luckily, we can prove that β-conversion is consistent and that the theory induced by
alpha renamings and computation steps is therefore not trivial.

Theorem 2.3.8 (Beta-Conversion is Consistent). The relation ≡αβ defined in defini-
tion 2.3.6 is consistent.

Proof. This is a corollary of the Church-Rosser theorem that we will prove in section 2.5.

The same does not hold for ≡η, however, which is inconsistent.

Theorem 2.3.9 (Eta-Conversion is Inconsistent). The relation ≡η defined in defini-
tion 2.3.6 is not consistent, i.e. for any two terms e1 and e2 we have e1 ≡η e2.

Proof. Consider the following derivation:

e1 ≡1
η cocase {} ≡1

η e2

The situation is different in the lambda calculus, where the addition of η-equality does
not make conversion inconsistent. Let us first analyze why the situation is different, and
then how eta-equality can be handled consistently in a calculus with data and codata
types. Every term of the lambda calculus stands for a function. This justifies to read
the η-equality λx.e x ≡η e from right to left and expand any term e to the term λx.e x,
which is the canonical form of a function. In a calculus with data and codata types the
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assumption that every term stands for a function (or any other concrete data or codata
type for that matter) no longer holds. But in the proof of theorem 2.3.9 we implicitly
used an assumption that every term stands for the negative unit type, i.e. a codata
type with no destructors, and can hence be equated to its η-normal form cocase {}.
The solution to this problem is simple: We only consider typed η-equivalence which
requires that we check the type of a term before η-expanding it in order to see which
η-equivalences are valid.

2.4. Reduction

The conversion relation ≡ that we introduced in the previous section is symmetric, but
the underlying one-step beta and eta-conversion have a natural direction. In this section,
we introduce the reduction relation ▷ to capture this directionality. The rules for beta
reduction are:

Definition 2.4.1 (Beta-Reduction). A single step of beta-reduction, written e1 ▷
1
β e2, is

specified by the following two rules:

K(e).case {. . . ,K(x) ⇒ e} ▷1β e[e/x] (β-Data)

cocase {. . . , d(x) ⇒ e, . . .}.d(e) ▷1β e[e/x] (β-Codata)

And similarly, we can specify the rules for eta reduction as follows:

Definition 2.4.2 (Eta-Reduction). A single step of eta-reduction, written e1 ▷
1
η e2, is

specified by the following two rules:

e.case {K(x) ⇒ K(x)} ▷1η e (η-Data)

cocase {d(x) ⇒ e.d(x)} ▷1η e (if x ̸∈ FV(e)) (η-Codata)

In order to obtain the reduction relation e1 ▷e2 we form the reflexive transitive closure
and ensure that the relation is a congruence, i.e. closed under contexts. Reduction is
directed, so we do not include symmetry in those rules.

Definition 2.4.3 (Reduction). The term e1 reduces to e2, written e1 ▷ e2, if we can
derive it using the following rules:

e1 ▷
1
β e2

β
C[e1] ▷ C[e2]

e1 ▷
1
η e2 η

C[e1] ▷ C[e2]
Refle ▷ e

e1 ▷ e2 e2 ▷ e3
Transe1 ▷ e3
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Similarly to conversion, we write ▷ whenever we mean both beta-reduction and eta-
reduction and will use ▷β and ▷η whenever we only mean beta-reduction or eta-reduction.

Lemma 2.4.4. For all e1 and e2, if e1 ▷ e2, then e1 ≡ e2.

Proof. By simple inspection of the rules.

The Church-Rosser theorem, proved in the next section, gives a tool to go in the other
direction: Whenever two terms e1 and e2 are convertible, then there exists a term e3
such that both e1 and e2 reduce to it.

2.5. The Church-Rosser Theorem

The Church-Rosser theorem says that if a term e1 reduces to the two terms e2 and e3,
then we will always find a term e4 such that both e2 and e3 reduce to it. This is usually
depicted as the following diagram.

e1 e2

e3 e4

▷

▷ ▷

▷

In this subsection I am going to prove the Church-Rosser theorem for β-reduction,
following the proof strategy of Barendregt (1981) for the lambda-calculus. That proof
strategy relies on the following important lemma: It is sufficient to prove the confluence
of some relation whose transitive closure is the desired relation in order to prove that
the relation is confluent.

Lemma 2.5.1. The transitive closure of a confluent relation is confluent.

Proof. We can prove this lemma pictorially by observing that we can paste together
small confluent squares to obtain a larger confluent square.

e1 · · e2

· · · ·

· · · ·

e3 · · e4

More formally, we prove the theorem by induction on the number of steps taken in each
direction.
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2.5. The Church-Rosser Theorem

There is no obvious direct way to show that the relation ▷β is confluent. But lemma 2.5.1
presents us with a blueprint for how we can proceed: We first have to find some other
relation that is confluent, and whose transitive closure is exactly ▷β. The first candi-
date that comes to mind is the relation ▷1β which does only one step of beta-reduction.
This relation, however, is not confluent, as the following example shows. (We use the
translation from definition 2.2.2 and the defined term I = λx.x to keep the example
readable.)

(λx.x x)(I I) (λx.x x)I

(I I)(I I) ?

▷1β

▷1β ▷1β
▷1β

There is no term to which both (I I)(I I) and (λx.x x)I reduce in one step, so the
relation ▷1β cannot be confluent. What we have to do instead is to define a notion of

parallel reduction2 which is confluent and whose transitive closure is precisely the relation
▷β.

Definition 2.5.2 (Parallel Reduction). We write e1 ▶ e2 for the parallel reduction of
redexes in e1. This relation is defined by the following derivation rules:

Refle ▶ e

e1 ▶ e′1 . . . Cong1
K(e1, . . .) ▶ K(e′1, . . .)

e ▶ e′ e1 ▶ e′1 . . . Cong2
e.d(e1, . . .) ▶ e′.d(e′1, . . .)

e1 ▶ e′1 . . . Cong3
cocase {d1(x, . . .) ⇒ e1, . . .} ▶ cocase {d1(x, . . .) ⇒ e′1, . . .}

e ▶ e′ e1 ▶ e′1 . . . Cong4
e.case {K1(x, . . .) ⇒ e1, . . .} ▶ e′.case {K1(x, . . .) ⇒ e′1, . . .}

e ▶ e′ e1 ▶ e′1 . . . β-Codata
cocase {d(x1, . . .) ⇒ e, . . .}.d(e1, . . .) ▶ e′[e′1, . . . /x1, . . .]

e ▶ e′ e1 ▶ e′1 . . . β-Data
K(e1, . . .).case {K(x1, . . .) ⇒ e, . . .} ▶ e′[e′1, . . . /x1, . . .]

In order to keep this definition and the following proofs readable and compact we use
some syntactic abbreviations. Instead of always specifying both ends of a list of argu-
ments (i.e. e1, . . . , en) we often omit the right end and simply write e1, . . .. And instead
of specifying all the premisses e1 ▶ e′1 to en ▶ e′n we simply write e1 ▶ e′1 . . .

2 Parallel reductions were introduced by Takahashi (1995) to give an inductively defined relation that
is confluent. Previous versions of the confluence proof by Tait and Martin-Löf relied on a notion of
residuals that was not defined inductively on the structure of terms.
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The intuition behind this relation is that it allows to reduce all redexes in a term
in parallel. In the example above the term (λx.x x)(I I) contains the (overlapping)
redexes (λx.x x)(I I) and I I. We can reduce them in parallel to obtain the result
(λx.x x)(I I) ▶ I I. Parallel reduction is strictly weaker than beta reduction ▷β since
it does not allow to reduce redexes that are not contained in the original term. For
example, the relation (λx.x x)(I I) ▶ I does not hold, since the term xx is not initially
a redex. Parallel reduction is not a deterministic relation, since the rule Refl allows
not to reduce a redex.

The first lemma states that terms in head-normal form3 keep their outer shape, i.e.
outermost constructors or copattern matches are not changed under parallel reduction.

Lemma 2.5.3 (Properties of Parallel Reduction). The following statements hold:

1. If K(e1, . . .) ▶ e then e has the form K(e′1, . . .) and e1 ▶ e′1, . . . .

2. If cocase {d1(x, . . .) ⇒ e1, . . .} ▶ e then e has the form cocase {d1(x, . . .) ⇒
e′1, . . .} and e1 ▶ e′1, . . . .

Proof. In the first case only the rules Refl and Cong1 apply, and in the second case
only the rules Refl and Cong3 apply.

The next lemma that we have to prove is that parallel reduction is compatible with
substitution. This means that for a substitution e[e1, . . . /x1, . . .] we can always reduce
the terms e and ei before substituting them, since the resulting term can also be obtained
using parallel reductions.

Lemma 2.5.4 (Parallel Reduction is Compatible with Substitution). If e ▶ e′ and
e1 ▶ e′1. . . , then e[e1, . . . /x1, . . .] ▶ e′[e′1, . . . /x1, . . .].

Proof. The proof proceeds by induction on the size of e and a case analysis of the possible
derivations of e ▶ e′. We have to distinguish the following cases:

• Case Refl: We have to prove that e[e1, . . . /x1, . . .] ▶ e[e′1, . . . /x1, . . .]. We do this
by induction on the structure of e.

• Case Cong: We show this for Cong1, since the other congruence cases are similar.
In this case, e has the form K(t1, . . .) and e′ has the form K(t′1, . . .). We therefore
have to show that K(t1, . . .)[e1, . . . /x1, . . .] = K(t1[e1, . . . /x1, . . .], . . .) reduces to
K(t′1, . . .)[e

′
1, . . . /x1, . . .] = K(t′1[e

′
1, . . . /x1, . . .], . . .). This follows from an applica-

tion of the rule Cong1 and the induction hypothesis applied to the smaller terms
ti.

• Case β-Codata: In this case e has the form cocase {d(y1, . . .), . . .⇒ er}.d(t1, . . .)
and e′ has the form e′r[t

′
1, . . . /y1, . . .], where er ▶ e′r and t1 ▶ t′1,. . . . We assume

without loss of generality that the variables x1, . . . and y1, . . . are distinct, and that

3Head normal forms are formally defined in section 2.6.
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we don’t have to perform alpha renamings when we substitute in the copattern
match. In that case, the term

cocase {d(y1, . . .), . . .⇒ er}.d(t1, . . .)[e1, . . . /x1, . . .]

is the same as

cocase {d(y1, . . .) ⇒ er[e1, . . . /x1, . . .]}.d(t1[e1, . . . /x1, . . .], . . .).

We have to show that this reduces to e′r[t
′
1, . . . /y1, . . .][e

′
1, . . . /x1, . . .]. By

lemma 2.1.7 and our variable assumption above this term is the same as

e′r[e
′
1, . . . /x1, . . .][t

′
1[e

′
r, . . . /x1, . . .], . . . /y1, . . .].

We can finish the proof by using the rule β-Codata and the induction hypothesis
applied to the smaller formulas er and ti.

• Case β-Data: This case is similar to the case β-Codata.

Lemma 2.5.5 (Parallel Reduction is Confluent). For any e1, e2, e3, if e1 ▶ e2 and
e1 ▶ e3, then there exists an e4 such that e2 ▶ e4 and e3 ▶ e4:

e1 e2

e3 e4

▶

▶ ▶

▶

Proof. We prove this lemma by induction on the derivation of e1 ▶ e2. The cases for
Refl, Cong1 and Cong3 are simple:

• Case Refl: Since e1 is equal to e2 we can choose e4 to be e3. The following
diagram can then easily be seen to commute:

e1 e1

e3 e3

▶

▶ ▶
▶

• Case Cong1: We know that e1 has the form K(t1, . . .) and that it reduces to
K(t′1, . . .) with t1 ▶ t′1 . . .. By lemma 2.5.3 we also know that e3 has the form
K(t′′1, . . .) with t1 ▶ t′′1 . . .. By the induction hypothesis, we know that there exists
an t′′′1 such that t′1 ▶ t′′′1 and t′′1 ▶ t′′′1 . We can thus choose e4 to be K(t′′′1 , . . .):
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K(e1, . . .) K(e′1, . . .)

K(e′′1, . . .) K(e′′′1 , . . .)

▶

▶ ▶

▶

• Case Cong3: This case is similar to the case for Cong1.

The remaining cases are a bit more difficult. We will present the cases involving the
rules Cong2 and β-Codata, that is those cases where e1 is of the form e.d(t1, . . .). The
cases involving the rules Cong4 and β-Data where e1 has the form e.case {. . .} are
similar. We have to distinguish the following three cases:

• Case Cong2-Cong2: If e1 has been reduced to e2 and e3 by the rule Cong3, then
we know that e ▶ e′, e ▶ e′′, t1 ▶ t′1. . . and t1 ▶ t′′1. By the induction hypothesis,
we know that appropriate e′′′ and t′′′1 . . . exist, and we can choose e′′′.d(t′′′1 , . . .) for
e4.

e.d(t1, . . .) e′.d(t′1, . . .)

e′′.d(t′′1, . . .) e′′′.d(t′′′1 , . . .)

▶

▶ ▶

▶

• Case Cong2-β-Codata: In this case we know that e1 must have the outer form
cocase {d(x1, . . .) ⇒ e, . . .}.d(t1, . . .). Without loss of generality we assume that
e2 has the form cocase {d(x1, . . .) ⇒ e′, . . .}.d(t′1, . . .) where where e ▶ e′ and
t1 ▶ t′1, and that e3 has the form e′′[t′′1, . . . /x1, . . .] with e ▶ e′′ and t1 ▶ t′′1.
The induction hypothesis ensures that there exists a term e′′′ with e′ ▶ e′′′ and
e′′ ▶ e′′′, and a term t′′′1 with t′1 ▶ t′′′1 and t′′1 ▶ t′′′1 . We choose e4 to be the term
e′′′[t′′′1 , . . . /x1, . . .]; the reduction along the bottom of the resulting square holds
by lemma 2.5.4, and the reduction along the right side holds according to rule
β-Codata and lemma 2.5.4.

cocase {d(x1, . . .) ⇒ e, . . .}.d(t1, . . .) cocase {d(x1, . . .) ⇒ e′, . . .}.d(t′1, . . .)

e′′[t′′1, . . . /x1, . . .] e′′′[t′′′1 , . . . /x1, . . .]

▶

▶ ▶

▶

• Case β-Codata-β-Codata: In this case we know that e1 must have the form
cocase {d(x1, . . .) ⇒ e, . . .}.d(t1, . . .), and that this outer redex is reduced in both
cases. The term e2 must have the form e′[t′1, . . . /x1, . . .] where e ▶ e′ and t1 ▶ t′1.
Similarly, the term e3 must have the form e′′[t′′1, . . . /x1, . . .] where e ▶ e′′ and
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t1 ▶ t′′1. The induction hypothesis ensures that there exists a term e′′′ with e′ ▶ e′′′

and e′′ ▶ e′′′, and a term t′′′1 with t′1 ▶ t′′′1 and t′′1 ▶ t′′′1 . We choose e4 to be the
term e′′′[t′′′1 , . . . /x1, . . .]; the lower and rightmost reduction hold by lemma 2.5.4.

cocase {d(x1, . . .) ⇒ e, . . .}.d(t1, . . .) e′[t′1, . . . /x1, . . .]

e′′[t′′1, . . . /x1, . . .] e′′′[t′′′1 , . . . /x1, . . .]

▶

▶ ▶

▶

Lemma 2.5.6 (Transitive Closure of Parallel Reduction is Beta Reduction). The tran-
sitive closure of the relation ▶ is the relation ▷β.

Proof. To prove that the transitive closure of ▶ is contained in ▷β it is sufficient to verify
that ▷1β is contained in ▶. To prove that ▷β is contained in the transitive closure of ▶
it is sufficient to verify that one step of parallel reduction can be expressed by multiple
steps of ▷1β reduction. Both of these facts can easily be seen by inspecting the definition
of parallel reduction.

Theorem 2.5.7 (Confluence of Beta Reduction). For any e1, e2, e3, if e1 ▷β e2 and
e1 ▷β e3, then there exists an e4 such that e2 ▷β e4 and e3 ▷β e4.

e1 e2

e3 e4

▷β

▷β ▷β
▷β

Proof. This follows from lemmas 2.5.1, 2.5.5 and 2.5.6.

The Church-Rosser theorem has some important corollaries. The first corollary says
that we can use reduction to check for convertibility:

Corollary 2.5.8 (Conversion Implies Reduction). For all terms e1 and e2, if e1 ≡β e2,
then there exists a term e3 such that e1 ▷β e3 and e2 ▷β e3.

Proof. See Hindley and Seldin (2008, Theorem 1.41).

From this corollary we can deduce that beta-conversion is consistent:

Corollary 2.5.9 (Beta Conversion is Consistent). The conversion relation ≡β is con-
sistent, i.e. there exist terms e1 and e2 such that e1 ≡β e2 is not the case.

Proof. In order to prove this we just have to pick two different beta normal forms.
Assume that they are convertible; by corollary 2.5.8 there must be a third term such
that both normal forms reduce to it. This is absurd, since normal forms do not contain
redexes.
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2.6. Normal Forms

In the previous section we have already referred twice to the concept of a normal form;
in this section we make this concept formal. There are many different normal forms that
can be defined for terms. Here, we are only considering normal forms with respect to
the presence of β-redexes4.

The most important normal form is the β-normal form NF which does not contain
any β-redexes. But this restriction can be relaxed, and we can allow redexes to occur
at specific places. If we allow for the presence of redexes under binders, then we obtain
a weak normal form WNF. These weak normal forms are important for programming
languages, since it is often not possible to efficiently evaluate under a binder, such as
in the body of a local higher-order function. If we allow for the presence of redexes in
arguments to constructors and destructors, then we obtain a head normal form HNF.
If we combine both, i.e. if we allow for redexes both under binders and in arguments
of constructors and destructors, then we obtain a weak head normal form WHNF.
Weak head normal forms are especially important for lazy programming languages such
as Haskell. The following table, inspired by a similar presentation of Sestoft (2001),
summarizes the different normal forms.

Reduce arguments Don’t reduce arguments

Reduce under binder NF HNF
Don’t reduce under binder WNF WHNF

How can these various normal forms be specified syntactically? We can use the concept
of neutral terms n, which are terms that can not be reduced since they contain a variable
in a position which is scrutinized.

Definition 2.6.1 (Normal Form). The normal form NF is defined by:

n ::= x | n.d(v) | n.case {K(x) ⇒ v}
v ::= n | K(v) | cocase {d(x) ⇒ v}

Definition 2.6.2 (Weak Normal Form). The weak normal form WNF is defined by:

n ::= x | n.d(v) | n.case {K(x) ⇒ e}
v ::= n | K(v) | cocase {d(x) ⇒ e}

Definition 2.6.3 (Head Normal Form). The head normal form HNF is defined by:

n ::= x | n.d(e) | n.case {K(x) ⇒ v}
v ::= n | K(e) | cocase {d(x) ⇒ v}

4In contrast to normal forms which also consider η-redexes, such as η-long or η-short normal forms.
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Definition 2.6.4 (Weak Head Normal Form). The weak head normal form WHNF is
defined by:

n ::= x | n.d(e) | n.case {K(x) ⇒ e}
v ::= n | K(e) | cocase {d(x) ⇒ e}

These different normal forms are important once we consider different evaluation
strategies in section 2.8. Call-by-value evaluation strategies reduce to weak normal
forms, whereas call-by-name evaluation strategies reduce to weak head normal forms.
Normal forms which require that redexes don’t occur under binders are less relevant for
programming languages, but essential for proof assistants, since they have to perform
complete normalization of terms during typechecking.

2.7. Let Bindings and Control Operators

In this section we extend the language with two new constructs: let bindings and control
operators. It might, at first sight, seem strange to group them in one subsection, but
there is an underlying reason why we present them together. That reason becomes
clear once we consider the symmetric calculus in part II, where let bindings and control
operators can be seen to be perfectly dual to each other. This deep duality, hidden
in natural deduction and the lambda calculus but completely obvious in the sequent
calculus and the λµµ̃-calculus, can be intuitively explained as follows: Let bindings
allow to name a proof and bind it to a variable, whereas control operators allow to name
a refutation or continuation and bind it to a covariable. We have discussed this duality
in more detail in our recent article Binder, Tzschentke, Müller, and Ostermann, 2024.

2.7.1. Let Bindings

Let bindings allow to name a term and bind it to a variable. This is usually written as
let x = e1 in e2, where we name the term e1 and bind it to the variable x in the term e2.
Most functional programming languages support some form of local let bindings, since
using let bindings usually makes code more readable. But there are also more theoretical
reasons why we should study let bindings explicitly:

Let bindings can be used to give a more fine-grained analysis of beta-reduction. In
those more fine-grained analyses we replace the usual rule of beta reduction (λx.e1) e2 ▷β
e1[e2/x] with the rule (λx.e1) e2 ▷β let x = e1 in e2. This technique is used, for example,
by Zena M. Ariola, Maraist, Odersky, Felleisen, and Wadler (1995, Section 5.1) to give
an equational presentation of the call-by-need lambda calculus.

Another important use of let bindings is in compiler intermediate languages. Some
compilers use the ANF transformation introduced by Sabry and Felleisen (1992) to
make the evaluation order explicit. The nested arithmetic expression (2 + 4) ∗ (3 + 7),
for example, would be translated into the form let x = 2 + 4 in (let y = 3 + 7 in x ∗ y).
I will discuss the ANF transformation in much more detail in chapter 6.
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Definition 2.7.1 (Let Bindings). We extend the syntax of expressions (Definition 2.1.1)
and contexts (Definition 2.1.8) as follows:

e ::= . . . | let x = e in e

C ::= . . . | let x = C in e | let x = e in C

We also extend the definition of free variables and the action of a substitution in the
obvious way.

We can define alpha renaming, beta-conversion and eta-conversion for let bindings,
similar to how we defined them for data and codata types.

Definition 2.7.2 (Conversion for Let-Bindings).

let x = e1 in e2 ≡1
α let y = e1 in e2[y/x] (if y ̸∈ FV(e2)) (α-Let)

let x = e1 in e2 ≡1
β e2[e1/x] (β-Let)

let x = e in x ≡1
η e (η-Let)

The rule of eta conversion is interesting, since it seems that we can also express its
content through beta-conversion, but there are two important caveats. First, once we
consider evaluation order the rule of beta conversion is restricted to values and has the
form let x = v in e ≡1

β e[v/x], but the eta-rule is still valid in its unrestricted form.
And second, the corresponding rule in the sequent calculus states that µ̃x.⟨x | c ⟩ ≡η c,
which cannot be expressed using beta-conversion alone.

The reduction rules for let bindings are just the directed variants of the rules of
conversion in definition 2.7.2.

Definition 2.7.3 (Reduction for Let-Bindings).

let x = e1 in e2 ▷
1
β e2[e1/x] (β-Let)

let x = e in x ▷1η e (η-Let)

The addition of let expressions to a language is mostly harmless, but the addition of
control operators presented in the next subsection is more challenging.
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2.7.2. Control Operators

There are many reasons to introduce control operators to programming languages. One
of those reasons is performance; the following example from our recent article Binder,
Tzschentke, Müller, and Ostermann (2024) illustrates this point. Consider this small
program which multiplies all the numbers contained in a list5:

def mul(xs) := xs.case {Nil ⇒ 0; Cons(x, xs) ⇒ x ∗ mul(xs)}

This function works correctly, but it is inefficient if the list contains a zero. In that case
it would be better to abort the computation which always traverses the entire list and
directly return with zero as a final result. Control operators allow us to implement this
behaviour in the following way:

def mul(xs) := label α {mul’(xs;α)}
def mul’(xs;α) := xs.case {Nil ⇒ 1; Cons(y, ys) ⇒ ifz(y,goto(0;α), y ∗ mul’(xs;α))}

The control operators that are used in this example are label and goto, and they allow
to jump with the goto expression to a label α in a surrounding context. We use the
expression label α {mul’(xs;α)} in order to introduce a label α that we can jump to
in the recursive helper function mult’. In the helper function mult’ we check with the
function ifz if the element y is zero, and either jump to the outer label with goto(0;α) or
otherwise perform a normal recursive call y∗mul’(xs;α). This implementation shows the
desired behaviour: We do not traverse the tail of the list once we have encountered a zero.
We will see another example, the parsimonious filter function, where classical reasoning
principles allow to write the efficient variant of a function more easily in chapter 5.

Definition 2.7.4 (Control Operator). We extend the syntax of expressions (Defini-
tion 2.1.1) and contexts (Definition 2.1.8) as follows:

e ::= . . . | label α {e} | goto(e;α)

C ::= . . . | label α {C} | goto(C;α)

We will not give a fully formal definition of the conversion and reduction rules for
label and goto, because it is much simpler to study the metatheory of control operators
in the λµµ̃-calculus, which is one of the main reasons to use the λµµ̃-calculus as a
basis for compiler intermediate languages. Instead, we can define the meaning of these
two control operators by translating them to the λµµ̃-calculus; this translation can be
found in Binder, Tzschentke, Müller, and Ostermann, 2024, Section 2.6. Here we will
only present some approximate rules which allow to get an intuitive understand of their
operational behaviour. This operational behaviour is specified by the following two
equations:

5We assume some primitives for number literals and arithmetic operations in this example.
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label α {. . .goto(e;α) . . .} ▷ e (2.1)

label α {e} ▷ e (2.2)

Equation (2.1) handles the case where we want to jump to the label α with the
expression e. The problem with making this rule fully formal is that we have to ensure
that the intermediate context between the label and the goto expression, here indicated
by an ellipsis, does not contain another label which brings the same covariable α into
scope. Equation (2.2) handles the case where the inner expression e does not contain a
goto expression, and where we can therefore drop the label that surrounds the expression
e. In order to make this formal we have to define a function which computes the free
covariables contained in an expression, and require that the expression e does not contain
the free covariable α.

We discuss the intricacies of the control operators label and goto, their translation
into the sequent calculus and how they compare to other control operators in more detail
in Binder, Tzschentke, Müller, and Ostermann (2024, Section 5.3).

2.7.3. Loss of confluence

In section 2.5 we showed that the system which only contains the expressions from
definition 2.1.1 is confluent. The system that we obtain by adding let bindings and
control operators is no longer confluent, as the following example shows:

label α {let x = goto(1;α) in 2}

If we reduce the inner let expression first then we obtain the expression label α {2}
which can be further reduced to the value 2 by eq. (2.2). On the other hand, we can
use eq. (2.1) to reduce the expression in one step to the value 1. These two values are
clearly unrelated, and there is no third term to which both reduce.

What are we to make of this situation? The solution to this problem can be found by
analyzing it in terms of different evaluation orders. Call-by-value evaluation orders only
allow to substitute values for variables, and the expression goto(1;α) is clearly not a
value; so under call-by-value we should obtain the final value 1. Using the call-by-name
evaluation order, on the other hand, requires us to substitute the expression goto(1;α)
for x in 2, so we end up with the end result 2.

2.8. Evaluation Orders

In section 2.7.3 we saw that the addition of control operators led to the loss of confluence.
The loss of confluence in effectful languages leads us to consider evaluation strategies or
evaluation orders. Evaluation orders solve the confluence problem by brute force; they
don’t allow any divergent computations, since there is always at most one redex that
can be evaluated. Let us first formally define what an evaluation strategy is.
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Definition 2.8.1 (Deterministic Relation). A binary relation R ⊆ P(A × B) is called
deterministic if for any a ∈ A and b1, b2 ∈ B, (a, b1) ∈ R and (a, b2) ∈ R imply b1 = b2.

Definition 2.8.2 (Evaluation Strategy). An evaluation strategy is a deterministic subset
of the reduction relation ▷β.

There are two evaluation orders which are widely used: the call-by-value evaluation
strategy ▷cbv and the call-by-name evaluation strategy ▷cbn. We will now introduce
them in turn for the language defined in definition 2.1.1.

2.8.1. Call-by-Value

The call-by-value evaluation strategy is at the core of strict programming languages such
as OCaml. The characteristic property of the call-by-value evaluation strategy is that
arguments to a function are evaluated to their weak normal form WNF (Definition 2.6.2)
before they are substituted for a variable in the function body. Similarly, the arguments
to constructors are fully evaluated before we pattern match on the constructor. These
two restrictions are modelled in the following definition, which specializes the general
reduction relation of definition 2.4.1.

Definition 2.8.3 (Call-by-value Reduction Step). A single step of call-by-value reduc-
tion is specified by the following two rules, where values v refer to the weak normal form
WNF of section 2.6.

K(v1, . . . , vn).case {K(x1, . . . , xn) ⇒ e, . . .} ▷1cbv e[v1, . . . , vn/x1, . . . , xn]

cocase {d(x1, . . . , xn) ⇒ e, . . .}.d(v1, . . . , vn) ▷1cbv e[v1, . . . , vn/x1, . . . , xn]

Restricting the rules of definition 2.4.1 so that only values are substituted for variables
is not enough to make call-by-value reduction deterministic. We also have to restrict
where we can apply these rewrites, and we can do this by restricting the contexts from
definition 2.1.8.

Definition 2.8.4 (Call-by-value Evaluation Context). The call-by-value evaluation con-
texts are defined by the following grammar, where values v refer to the weak normal
form WNF of section 2.6.

E ::= □ | K(v,E, e) | E.case {. . .} | E.d(e) | v.d(v,E, e)

There are some freedoms in how call-by-value evaluation contexts are defined. In this
case, for example, we choose to evaluate the arguments to constructors and destructors
from left to right, and in the application of a destructor to a scrutinee we choose to
evaluate the scrutinee first. Call-by-value reduction is then defined as the reflexive
transitive closure of the reduction steps from definition 2.8.3 in evaluation contexts from
definition 2.8.4.
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2.8.2. Call-by-Name

The call-by-name evaluation order6 is the foundation for non-strict programming lan-
guages such as Haskell. These languages are called non-strict because applying a function
to a diverging computation does not necessarily lead to a diverging computation. Un-
der the call-by-name evaluation order we only perform the computation steps that are
necessary in order to make progress towards a value in weak head normal form. For
example, when we have to evaluate a term of the form e.d(e1, . . . , en) we only evaluate
the term e to its weak head normal form WHNF (cp. definition 2.6.4) and don’t eval-
uate the arguments of the destructor d. Similarly, when we have to evaluate a term of
the form e.case {. . .} we evaluate the destructee e to its weak head normal form, which
for a well-typed expression is a constructor K applied to arbitrary expressions. These
two restrictions motivate the following definition of evaluation contexts for call-by-name
evaluation order:

Definition 2.8.5 (Call-by-name Evaluation Context). The call-by-name evaluation con-
texts are defined by the following grammar:

E ::= □ | E.d(e) | E.case {. . .}

This definition of of call-by-name evaluation contexts is already sufficient to specify
call-by-name evaluation. We don’t have to also restrict the beta reduction rules of
definition 2.4.1, like we had to do in definition 2.8.3 for the call-by-value evaluation
order. Reduction strategies which also reduce to head normal forms HNF or normal
forms NF can be found in the article by Sestoft (2001), but restricted to just the untyped
lambda calculus.

6As well as the call-by-need evaluation order (cp. Zena M. Ariola, Maraist, Odersky, Felleisen, and
Wadler (1995),Launchbury (1993)), which is an optimization of call-by-name reduction which ensures
that arguments are evaluated at most once.
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and Local Closures

The content of this chapter is based on the following peer-reviewed publication. The
notation and terminology has been changed to be consistent with the rest of this thesis.

David Binder, Julian Jabs, Ingo Skupin, and Klaus Ostermann (2019). “De-
composition Diversity with Symmetric Data and Codata”. In: Proc. ACM
Program. Lang. 4.POPL. doi: 10.1145/3371098. url: https://doi.org/

10.1145/3371098

This chapter further expands on a problem that I have already introduced in sec-
tion 1.1.2 of the introduction: the expression problem. In this chapter I now introduce
the defunctionalization and refunctionalization algorithms that are a partial solution to
the expression problem. These two algorithms allow to transform data types into codata
types and vice versa, but they only work as a whole-program transformation. In this
chapter I do not yet discuss how these algorithms interact with evaluation order, but I
will come back to this problem in chapter 4. This chapter also introduces typing rules
for the untyped calculus that I have introduced in chapter 2. The type system only
supports simple types, but I discuss the extension to more expressive type systems such
as dependent types at the end. The extension of defunctionalization and refunctional-
ization to dependent types poses significant challenges. These challenges, and how we
solved them, are described in a recent separate publication (Binder, Skupin, Süberkrüb,
and Ostermann, 2024a), but they are not discussed in this thesis.

The central contribution of the paper on which this chapter is based is that we provided
the first symmetric programming language with support for local (co)pattern matching,
which includes local anonymous function or object definitions, that allows an automatic
translation as described above. The paper also presented the first mechanical formaliza-
tion of such a language and proved i) that the type system is sound, that the translations
between data and codata types are ii) type-preserving, iii) behavior-preserving and iv)
inverses of each other.

3.1. The Expression Problem

The expression problem, which I started to describe in section 1.1.2, describes a fun-
damental trade-off in program design: Should a program’s primary decomposition be
determined by the way its domain objects are constructed (“functional” decomposition),
or by the way they are destructed (“object-oriented” decomposition)? In the introduc-
tion I already argued that a programming languages should not force one of these de-

45

https://doi.org/10.1145/3371098
https://doi.org/10.1145/3371098
https://doi.org/10.1145/3371098
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compositions on the programmer; rather, a programming language should support both
ways of decomposing a program.

In this chapter I show that a programmer’s decision between a functional and object-
oriented decomposition does not have to be final; there is an automatic translation
between these two decompositions. This bijective translation turns a data type into a
codata type (“refunctionalization”) or vice versa (“defunctionalization”).

Programmers are confronted with the expression problem in many situations. Should
you fold over the input or unfold over the output? Should a program be structured
according to how its input is constructed or how its output is destructed? Should one
use algebraic data types with pattern matching as available in functional languages or
classes and methods as available in object-oriented languages? Should a program be
extensible in its set of constructors or in its set of destructors?

In section 1.1.3 we have already seen that infinite streams can be represented as both
data and codata types. The standard map function on infinite streams can therefore be
written by pattern-matching on the constructors of the input (assuming that streams
are defined as a data type):

map(f,Cons(x,xs)) = Cons(f(x),map(f,xs))

or it can be written by copattern-matching (Abel, Pientka, Thibodeau, and Setzer, 2013)
on the destructors of the output (assuming that streams are defined as a codata type):

map(f,s).head = f(s.head)
map(f,s).tail = map(f,s.tail)

In the constructor-centric first version, it is easy to add new consumers (pattern-matching
functions) but hard to add new producers (constructors); in the destructor-centric ver-
sion it is the other way around. This trade-off has been discussed in many forms (John
C. Reynolds, 1975; Cook, 1990; Krishnamurthi, Felleisen, and Friedman, 1998) and is
today widely known as the expression problem (Wadler, 1998), which has resulted in a
long string of works on programming techniques and programming language design to
support extensibility of both constructors and destructors.

We want to analyze the problem on a more fundamental level. We want to understand
the exact relation between the two different decompositions described by the expression
problem. A promising first step in that direction is an analysis of two traditional global
program transformations, defunctionalization (John Charles Reynolds, 1972; Danvy and
Nielsen, 2001) and refunctionalization (Danvy and Millikin, 2009). These transforma-
tions change the modularity and extensibility of a program. For instance, defunction-
alization collects all function definitions in a program and arranges them into a single
pattern match. Defunctionalization also changes a destructor (function application) of
a codata type (functions) — into constructors of a data type. We now show how to
generalize both defunctionalization and refunctionalization. Furthermore, we use the
term transposition and the verb transpose to refer to either defunctionalization or re-
functionalization.

We also present a programming language that is symmetric in its support for these
decompositions in the sense that any program in constructor-centric form can be me-
chanically transformed into a unique destructor-centric program and vice versa, and
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that these transformations are total, type-preserving, behavior-preserving, and inverses
of each other. We consider the features of our language, particularly the transforma-
tions, to be generally useful in practice, but we are focusing on their use to enable us to
explore the relation between the different decompositions.

We believe that a programming language that is symmetric in this sense is relevant
for programmers, language designers, and language implementers:

• It is relevant for programmers because non-symmetric languages encourage or force
one of the decompositions. For instance, in Haskell 98 (without GADTs), construc-
tors of an algebraic data type data Exp a always return an expression of type Exp

a, but functions (=destructors) can have types like Int -> Exp Int for a type
constructor Exp, which has led programmers to use (typed) Church encodings of
data types instead of algebraic data types to profit from the more powerful type
system on the destructor (in this case: function) side (Carette, Kiselyov, and Shan,
2007). Object-oriented languages strongly encourage a destructor-based decompo-
sition into objects; a constructor-based decomposition requires awkward designs
such as the “visitor pattern” (Gamma, Helm, Johnson, and Vlissides, 1995). For
constructor-based designs implemented with pattern matching, various features
such as linear pattern matching or guards have been developed with no obvious
counterpart in destructor-based designs, and vice versa. Even in languages with
direct support for codata (Abel, Pientka, Thibodeau, and Setzer, 2013) (to be
discussed in detail later in the related work section), symmetry is destroyed by
intermingling codata types and function types. These asymmetries needlessly re-
strict the design choices of the programmer for purely technical reasons that have
nothing to do with the problem domain.

• It is relevant for language designers because the symmetry can be used to identify
language design “holes” (features that are available for one decomposition but
not the other). There is also a conceptual “two for the price of one” economy:
By identifying a feature for the constructor side to be the exact counterpart to
a feature on the destructor side, the design becomes simpler and meta-theoretic
properties for one side may by construction carry over to the other side. We also
believe that this work can clarify the relation between object-oriented languages
and functional data type-oriented languages (Cook, 2009).

• It is relevant for language implementers due to the possibility of using the transfor-
mations between the decompositions as a compilation technique and hence realizing
two corresponding features with just one shared implementation. The transfor-
mation itself may also be a guide on how to implement cross-compilers between
functional and object-oriented languages systematically.

Concretely, we make the following contributions:

• We present the first full symmetric programming language that allows invertible
defunctionalization and refunctionalization.
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• We have fully formalized the language in the Coq theorem prover and mechanically
verified that the language is type-sound. We have implemented the transposition
algorithms in Coq and have proven that they are total, preserve typing and be-
havior, and are inverses of each other. All “difficult” parts of the proofs have
been mechanically verified in Coq, with a few rather obvious but very laborious to
mechanize ‘plumbing’ proofs left as ordinary paper proofs.

Related work is discussed in detail in section 3.7, but we want to discuss two re-
lated previous lines of work here. Rendel, Trieflinger, and Ostermann (2015) presented
an extension of defunctionalization and refunctionalization to arbitrary codata types
(not just functions). In Rendel, Trieflinger, and Ostermann’s work, the transformations
only work on a language that allows only top-level definitions such that programs can
be arranged in a kind of matrix, which can then be transposed to flip the decomposi-
tion. Our transformation extends Rendel, Trieflinger, and Ostermann’s algorithm for a
“complete” programming language that allows block structure/nesting/local definitions.
Another line of work that bears a superficial similarity to this chapter is work on compil-
ing codata to data and vice versa (Downen, Sullivan, Zena M. Ariola, and Jones, 2019;
Laforgue and Régis-Gianas, 2017). We defer to the related work section for details, but
for now, we want to emphasize that these works aim for a compositional encoding of
codata in terms of data (or vice versa) that therefore does not change the modularity
or extensibility of the program, whereas we are interested in global transformations that
switch the modular structure in the sense of the expression problem.

The remainder of this chapter is structured as follows: In section 3.2, we present
background on de- and refunctionalization and describe the language design issues that
need to be addressed to turn these techniques into total transposition algorithms. In
section 3.3 we present an informal overview of the solution to the problems discussed
in section 3.2. Section 3.4 presents a case study to illustrate how the language works
in terms of a useful and realistic example. Section 3.5 contains the formalization of
the language on which we base our development. The presentation of the transposition
algorithms is contained in section 3.6. Section 3.8 discusses implications and future
work, and section 3.7 presents related work.

3.2. Problem Statement

We extend and generalize defunctionalization (John Charles Reynolds (1972) and Danvy
and Nielsen (2001)) and refunctionalization (Danvy and Millikin (2009)), respectively.
These traditional whole-program transformations turn programs with higher-order func-
tions (that is, with function application as destructors of functions) into first-order pro-
grams with constructors of algebraic data types and pattern matching (defunctionaliza-
tion) or back (refunctionalization) and as such are a useful step towards fully symmetric
defunctionalization and refunctionalization between data and codata types. In this sec-
tion, we revisit these transformations and describe the problems in turning them into
transpositions of a full-fledged programming language.
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To illustrate defunctionalization, consider this program in Haskell-like syntax which
maps two anonymous functions over a list.

map :: (Int -> Int) -> [Int] -> [Int]
map f xs = ... f (head xs) ...

let x=7
y=12

in map (\z.z+x) (map (\z.z*y) [1,2,3])

The traditional way to defunctionalize a function type is to first turn all local function
declarations of that type into top-level definitions by lambda lifting (Johnsson, 1985).
The values for the free variables in the function bodies are passed as parameters to these
functions. Top-level declarations need a name, hence we need to synthesize/invent two
new names in our example, plus and mult.

plus x = \z.z+x
mult y = \z.z*y

let x=7
y=12

in map (plus x) (map (mult y) [1,2,3])

The next step is to create an algebraic data type with one constructor for each top-
level function, whereby each constructor has a parameter for the free variable in the
original function body. A special apply function is created, which pattern-matches on
the synthesized algebraic data type to determine the correct function body for that call
and to get access to the values that would have otherwise been stored in the closure.
Function definitions are replaced by invocations of the matching synthesized constructor,
and function applications are replaced by invocations of the first-order apply function.

data Int2Int = Plus Int | Mult Int

apply :: Int2Int -> Int -> Int
apply (Plus x) z = z+x
apply (Mult x) z = z*y

map :: Int2Int -> [Int] -> [Int]
map f xs = ... apply f (head xs) ...

let x=7
y=12

in map (Plus x) (map (Mult y) [1,2,3])

Refunctionalization tries to turn first-order data types back into functions, i.e., reverse
the process of defunctionalization, but the attempt to make it a total function and the
inverse of defunctionalization fails for several reasons:

a) It is only a partial function in traditional functional languages because it is not
clear what to do if there is more than one pattern match on the argument type
of the function type to be refunctionalized (Danvy and Millikin, 2009). In our
example, imagine a second function pattern matching on Int2Int, such as

isPlus :: Int2Int -> Bool
isPlus (Plus _) = True
isPlus (Mult _) = False

This extended program can no longer be refunctionalized.
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b) Lambda-lifting requires the synthesis of new names not in the original program,
which then show up as constructor names in the refunctionalized program, and it is
not obvious how to make that process invertible. In our example, we had to invent
the names plus and mult. If we would refunctionalize and then defunctionalize, it
is not clear how to guarantee that we get the same names back.

c) It is not clear how to “undo” the lambda-lifting because the defunctionalized pro-
gram contains no information about which functions ought to be de-lambda-lifted.
In our example, it is not possible to reconstruct from the defunctionalized program
whether plus and mult were originally defined locally or as top-level functions.

d) If the apply function is changed such that the top-level operation is no longer a
pattern match on its first argument, it is not clear how to deal with the function
body when refunctionalizing the program.

e) Finally, if the arguments of the newly generated constructors are changed to be
not just variable names but general expressions, it is not clear how to preserve the
evaluation order when refunctionalizing the program. For instance, if we change
(Plus x) to Plus (x + 1) in the invocation of map above, a naive refunctionalization
would refunctionalize the first argument of the first map call to (\z.z+(x+1)), thereby
changing the order of evaluation by moving the addition inside a λ-abstraction.1

Previous work by Rendel, Trieflinger, and Ostermann (2015) has addressed problem
a) by generalizing function types to general codata types with copattern matching (Abel,
Pientka, Thibodeau, and Setzer, 2013). Function types are a special case of codata types
with a single apply destructor. The case of multiple pattern matches on algebraic data
types can be solved with codata types by synthesizing one destructor per pattern match;
something that was not possible with traditional functions due to the inherent limitation
of functions having only one destructor. However, Rendel, Trieflinger, and Ostermann
(2015) left open a solution to problems b)-e): their proposal assumed a language in
which all definitions and (co)pattern matches were on the level of top-level functions
only, that is, no local definitions are possible. In the next section, we review how Rendel,
Trieflinger, and Ostermann have addressed a) and describe our novel solutions for b)-e),
which together enable fully invertible transposition for a complete functional language
with local pattern matching and copattern matching (including λ-abstraction).

3.3. Overview

We now give an informal overview of how we addressed problems a) to e) as outlined in
the previous section. We address

a) by generalizing functions to codata

b) by adding names to matches and comatches

1We assume a call-by-value language in the remainder of this chapter.
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c) by distinguishing local and global constructor and destructor names

d) by adding definitions and codefinitions

e) by adding let-like functionality to matches and comatches

The next subsections describe these ideas in detail. Since all features we describe apply
dually to both the data and codata features of the language, we use the prefix x to
abstract over which side of the duality we refer to by replacing a concrete (possibly
empty) prefix by x. For instance, an x tor is a constructor or a destructor, xpattern
matching is pattern matching or copattern matching, and so forth.

We propose a language with symmetric data and codata types with (co)pattern match-
ing, together with first-order functions.

3.3.1. Generalizing Functions to Codata

While most functional languages support data types and function types, we support
data types and codata types, which are strictly more general than function types. This
means that even though we do not mention function types, lambda abstraction, and the
application of a lambda-defined function to an argument explicitly in the formalization
in section 3.5, these could be provided by desugarings into the more fundamental codata
type declarations, copattern matches and destructor applications, respectively.

Functions are the special case of codata with just one destructor (typically called apply

). In our example, we can define such a codata type for functions from Int to Int as
follows:

codata Int2Int { apply(Int): Int }

This works similarly to how function types are provided in Java, where lambda ab-
stractions are objects which implement the Function<T,R> interface, which provides the
R apply(T t) method.

Codata types are instantiated by copattern matching, and destructors can be called
on values of codata types using dot notation. The following example shows how to
apply the function f on its argument head xs by calling the destructor apply on f, and a
copattern match that mimics the λ-abstraction \z.z+x.

map :: Int2Int -> [Int] -> [Int]
map f xs = ... f.apply(head xs) ...
...
in map (cocase Int2Int { apply(z) => z+x }) ...

If we consider the example of the additional isPlus function from the previous section,
refunctionalization can now be restored by adding an additional destructor to the codata
type and corresponding destructor implementations in the copattern matches for that
codata type. The result of refunctionalizing Int2Int after adding the isPlus function to
the defunctionalized program from the introduction looks as follows:

codata Int2Int { apply(Int): Int , isPlus () : Bool }

let x=7, y=12 in
map (cocase Int2Int { apply(z) => z + x, isPlus () => true })
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(map (cocase Int2Int { apply(z) => z * y, isPlus () => false})
[1,2,3])

3.3.2. Adding Names to Cases and Cocases

We solve the problem of synthesizing names for new constructors/destructors by requir-
ing programmers to give a unique name to each (co)pattern match in the program. For
instance, here we give the name Plus to the first comatch. This name is then turned into
the constructor name Plus. In order to visually separate the name of the comatch from
the codata type on which we comatch, we use the keyword on.

... in map (cocase Plus on Int2Int { apply(z) => z+x }) ...

Strictly speaking, this step is not required when writing code, since these names are
only required when transposing the program. Instead, it would suffice to generate them
on the fly during the transformation process by either prompting the user or having
a generator for fresh names. However, names specified in the program text have the
distinct advantage that these names will be turned into constructor or destructor names,
respectively; autogenerated names decrease the readability of the generated program.

3.3.3. Local and Global Constructor and Destructor Names

When refunctionalizing a data type, it is not obvious whether a constructor invocation
should be turned into an inlined copattern match (which would lead to code duplication
if the same constructor is invoked multiple times) or whether it should be turned into
a function call of a function that does the copattern match (which would avoid code
duplication if the same constructor is invoked multiple times). Dually, the same problem
arises for defunctionalization and destructor invocations. To keep refunctionalization and
defunctionalization total and inverses of each other, we distinguish local names (denoted
by names that start with an underscore _) from global names (names that do not start
with an underscore). Names of generator and consumer functions (introduced in the next
subsection) will always be global, while names of matches and comatches will always be
local.

Local constructors and destructors can only be invoked in one place in the program;
transposing the corresponding data or codata type leads to an inlined match or comatch
of the opposite polarity. Conversely, global constructors and destructors can be invoked
in many places in the program; transposing the corresponding data or codata type yields
a top-level first-order function definition containing the xmatch, which is called in all
places that used to invoke the xtor. All xtors that result from local xpattern matches
are local, thereby guaranteeing that a transposition roundtrip will again yield the same
program.

In our running example, the Plus and Mult constructors are local constructors.

data Int2Int { _Plus(Int), _Mult(Int) }

Let us consider an extension of the data type with another constructor that is global
(in this case for the identity function):
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data Int2Int { _Plus(Int), _Mult(Int), Identity () }
...
apply (Identity ()) z = z

If we refunctionalize Int2Int, then the invocations of _Plus and _Mult are turned into the
copattern matches we started with. Since the Identity constructor is global, a top-level
function

Identity = cocase Identity on Int2Int { apply(z) => z }

is generated and this function is invoked in all places that invoked the Identity construc-
tor.

3.3.4. Definitions and Codefinitions

As we have seen in the previous subsection, global xtors are turned into top-level func-
tions containing an xpattern match. However, how can we know which top-level functions
must be turned back into a global xtor in the next round of transposition? And what do
we do about top-level functions that do not contain a top-level xpattern match in their
body?

We solve both problems by partitioning functions into three different kinds:

• Ordinary functions are not affected by transposition (except that their bodies are
transposed).

• Definitions are syntactically restricted to contain a top-level pattern match on their
first argument. Refunctionalization turns definitions into global destructors; the
cases of the pattern match are distributed to the corresponding copattern matches.

• Codefinitions are syntactically restricted to contain a top-level copattern match.
Defunctionalization turns codefinitions into global constructors; the cases of the
copattern match are distributed to the corresponding pattern matches.

All three kinds of functions are not first-class, i.e. they cannot be passed as an argument
or returned as a value. In our running example, apply is a global destructor of Int2Int,
hence defunctionalization turns apply into a consumer function (denoted by the keyword
def).

def Int2Int.apply(z : Int) : Int {
Plus(x) => z+x,
Mult(x) => z*x}

Transposing Int2Int once more turns the definition apply back into a global destructor,
as intended.

In a similar fashion, the additional Identity constructor from subsection 3.3.3 would
now be refunctionalized into a codefinition (denoted by the keyword codef).

codef Identity () : Int2Int { apply(z) => z }

Regarding ordinary functions without a top-level xpattern match, in our language,
we keep them as a separate construct because we consider it to be notationally and
conceptually convenient to distinguish them from definitions and codefinitions. However,
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for the sake of completeness we want to point out that they can be easily desugared using
a Unit data type (with a single no-argument constructor, as usual): An ordinary function
with body e becomes a definition of type Unit with e in the single pattern match case (a
similar desugaring to codefinitions would also be possible).

3.3.5. Let-like Functionality for Matches and Comatches

Let us now reconsider the example from the introduction, changing (Plus x) to Plus (x +

1) in the invocation of map. In our CBV language, x + 1 is evaluated when the constructor
call is evaluated. However, if we were to refunctionalize the constructor invocation to
cocase plus on Int2Int {apply(z)=> z+(x+1)}, then the x + 1 would be evaluated only when
the apply destructor is invoked.

We solve this problem by extending both the pattern match and the copattern match
construct with a name binding construct similar to an enclosing let binding. These
bindings are evaluated when the xpattern match itself is evaluated, which restores the
desired evaluation order.

In our example, we add a corresponding binding to the comatch:

... cocase Plus on Int2Int using x:=x+1 { apply(z) => z+x }

Adding these annotations to xmatches instead of simply using let-bindings around them
corresponds to the idea that xmatches are essentially a type of local gfun or cfun and
thus should be thought of as closures. Furthermore, since they need to be closed in
order to apply transpositions on them, this removes the need to search for all relevant
lets around them which are required for this precondition to hold.

3.4. Case Study

The symmetric design of our language gives programmers the possibility to view the do-
main they are modeling from different angles, depending on the decompositions that are
chosen for the domain objects occurring in the program. Being able to switch decompo-
sitions makes it more convenient to change or add functionality, and gives new insights
into the structure of the program. To illustrate this point, we present a case study which
is inspired by Danvy, Johannsen, and Zerny (2011), who inter-derive reduction-based
and reduction-free negational normalization functions. The original case study used de-
and refunctionalization at several places to change the perspective on the program, which
was done manually. By contrast, we can leverage the symmetric design of our language
to perform corresponding transposition mechanically. Thus, this case study focuses on
parts of the original case study by Danvy, Johannsen, and Zerny (2011) which hinged
on the use of de- and refunctionalization. The goal is to obtain a program which com-
putes the negation normal form of a boolean formula with conjunction, disjunction and
negation by repeatedly searching for a redex of the form ¬(ϕ ∧ ψ), ¬(ϕ ∨ ψ) or ¬¬ϕ
and replacing it by ¬ϕ ∨ ¬ψ, ¬ϕ ∧ ¬ψ and ϕ, respectively.2 We will semi-mechanically

2A simpler, “big-step” style implementation of this problem is of course possible and also described
by Danvy; here we focus on the “small-step” reduction-style solution because it is well-suited to
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derive this program iteratively after first manually writing a program that searches for
one such redex. The program requires only small modifications after the mechanical
defunctionalization to adapt this code into a reduction-based evaluator which evaluates
a boolean formula to its negation normal form. This approach highlights how the devel-
opment of the final solution was greatly simplified by switching our view on the program
by changing to a different decomposition, which was aided by the use of a mechanical
transformation.

The definitions of expressions, redexes, values, the embedding of values in expressions,
and the reduction of immediate redexes will not change during the subsequent steps, and
are given by the following definitions:

data Expr { EVar(Id), ENot(Expr), EAnd(Expr , Expr), EOr(Expr , Expr) }
data Redex { RedNot(Expr), RedAnd(Expr , Expr), RedOr(Expr , Expr) }
data Value { ValPosVar(Id),

ValNegVar(Id),
ValAnd(Value , Value),
ValOr(Value , Value) }

def Value.asExpr () : Expr {
ValPosVar(id) => EVar(id),
ValNegVar(id) => ENot(EVar(id)),
ValAnd(e1,e2) => EAnd(e1.asExpr (), e2.asExpr ()),
ValOr(e1 ,e2) => EOr(e1.asExpr (), e2.asExpr ()) }

def Redex.eval() : Expr {
RedNot(e) => e,
RedAnd(e1,e2) => EOr(ENot(e1), ENot(e2)),
RedOr(e1 ,e2) => EAnd(ENot(e1), ENot(e2)) }

As a first step, we write the functions search,3 searchPos and searchNeg, which search for
the leftmost outermost redex in an expression. The function search starts the search by
calling searchPos with the initial continuation; searchPos searches for the first negation,
recursively building up a continuation along the way and passes the computation to
searchNeg after the first negation has been encountered. The Found data type represents
the result of searching for a redex in an expression.

data Found { FoundValue(Value), FoundRedex(Redex) }

codata Value2Found { apply(Value) : Found }

/* Start the search with the trivial continuation */
fun search(e : Expr) : Found :=

e.searchPos(cocase BaseCnt on Value2Found {
apply(val) => FoundValue(val)})

/* Searching for a negation */
def Expr.searchPos(cnt : Value2Found) : Found {

EVar(id) => cnt.apply(ValPosVar(id)),
ENot(e) => e.searchNeg(cnt),
EAnd(e1 ,e2) => e1.searchPos(

cocase AndCnt1 on Value2Found using e2:=e2, cnt:=cnt {
apply(v1) => e2.searchPos(

illustrate the features of our language.
3The search function is actually the result of CPS-transforming and then simplifying a direct-style
function; the simplification amounts to only applying a continuation when a value is found.
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cocase AndCnt2 on Value2Found using v1:=v1, cnt:=cnt {
apply(v2) => cnt.apply(ValAnd(v1 , v2))})}),

EOr(e1 ,e2) => e1.searchPos(
cocase OrCnt1 on Value2Found using e2:=e2, cnt:=cnt {

apply(v1) => e2.searchPos(
cocase OrCnt2 on Value2Found using v1:=v1, cnt:=cnt {

apply(v2) => cnt.apply(ValOr(v1 , v2))})})}

/* Searching a redex under a negation */
def Expr.searchNeg(cnt : Value2Found) : Found {

EVar(id) => cnt.apply(ValNegVar(id)),
ENot(e) => FoundRedex(RedNot(e)),
EAnd(e1,e2) => FoundRedex(RedAnd(e1,e2)),
EOr(e1 ,e2) => FoundRedex(RedOr(e1 ,e2)) }

Following the approach of Danvy, Johannsen, and Zerny (2011), we defunctionalize
the codata type Value2Found, since it is known that applying defunctionalization results in
interesting semantic artifacts, bringing us closer to an abstract machine representation.
This results in the following transformed program:

data Value2Found { _BaseCnt (),
_AndCnt1(Expr , Value2Found),
_AndCnt2(Value , Value2Found),
_OrCnt1(Expr , Value2Found),
_OrCnt2(Value , Value2Found)}

def Value2Found.apply(v : Value) : Found {
_BaseCnt () => FoundValue(v),
_AndCnt1(e,cnt) => e.searchPos(_AndCnt2(v,cnt)),
_AndCnt2(v’,cnt) => cnt.apply(ValAnd(v’,v)),
_AndCnt2(v’,cnt) => cnt.apply(ValAnd(v’,v)),
_OrCnt1(e,cnt) => e.searchPos(_OrCnt2(v,cnt)),
_OrCnt2(v’, cnt) => cnt.apply(ValOr(v’,v))}

fun search(e : Expr) : Found := e.searchPos(_BaseCnt ())

def Expr.searchPos(cnt : Value2Found) : Found {
EVar(id) => cnt.apply(ValPosVar(id)),
ENot(e) => e.searchNeg(cnt),
EAnd(e1,e2) => e1.searchPos(_AndCnt1(e2,cnt)),
EOr(e1 ,e2) => e1.searchPos(_OrCnt2(e2 ,cnt))}

def Expr.searchNeg(cnt : Value2Found) : Found {
EVar(id) => cnt.apply(ValNegVar(id)),
ENot(e) => FoundRedex(RedNot(e)),
EAnd(e1,e2) => FoundRedex(RedAnd(e1,e2)),
EOr(e1 ,e2) => FoundRedex(RedOr(e1 ,e2))}

Under this decomposition, we realize that Context is an appropriate name for the new
data type. For example, the term _OrCnt1(e,_AndCnt2(v,_BaseCnt())) corresponds to the
evaluation context v ∧ (□ ∨ e), where v already is a value but e might contain further
redexes (note that Contexts compose from the inside outwards, similarly to a stack). We
therefore rename the data type Value2Found to Context and its constructors, which results
in the following program: The changed part of the code after renaming and apply to
findNext and modifying FoundRedex. The apply function takes a context, and returns the
next redex if a value is plugged into the hole, we therefore rename it to findNext. We also
extend the definition of the constructor FoundRedex to also return the enclosing context
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of the redex, and modify the searchNeg function accordingly.

data Context { _EmptyCtx (),
_AndCtx1(Expr , Context),
_AndCtx2(Value , Context),
_OrCtx1(Expr , Context),
_OrCtx2(Value , Context)}

data Found { FoundValue(Value), FoundRedex(Redex , Context) }

def Expr.searchNeg(ctx : Context) : Found {
EVar(id) => ctx.findNext(ValNegVar(id)),
ENot(e) => FoundRedex(RedNot(e), ctx),
EAnd(e1 ,e2) => FoundRedex(RedAnd(e1,e2), ctx),
EOr(e1 ,e2) => FoundRedex(RedOr(e1 ,e2), ctx)}

To evaluate an expression to normal form we need one additional function which
substitutes an expression (in our case, the result of reducing a redex) into an evaluation
context. Now it is easy to define the evaluation function:

def Context.substitute(e : Expr) : Expr {
_EmptyCtx () => e,
_AndCtx1(e’, ctx) => ctx.substitute(EAnd(e,e’)),
_AndCtx2(v, ctx) => ctx.substitute(EAnd(v.asExpr (), e)),
_OrCtx1(e’, ctx) => ctx.substitute(EOr(e, e’)),
_OrCtx2(v, ctx) => ctx.substitute(EOr(v.asExpr (), e))}

fun evaluate(e : Expr) : Value :=
(search(e)).case _ {

FoundValue(v) => v,
FoundRedex(r,ctx) => evaluate(ctx.substitute(r.eval()))}

Bringing the data type Context back into destructor form results in the following pro-
gram, which we might not have originally written, since it corresponds to the addition
of a destructor to an existing codata type. Adding an additional definition to the de-
functionalized version was easy.

codata Context { findNext(Value) : Found , substitute(Expr) : Expr }

def Expr.searchPos(ctx : Context) : Found {
EVar(id) => ctx.findNext(ValPosVar(id)),
ENot(e) => e.searchNeg(ctx),
EAnd(e1 ,e2) => e1.searchPos(

cocase AndCtx1 on Context using e2:=e2, ctx:=ctx {
findNext(v1) => e2.searchPos(

cocase AndCtx2 on Context using v1:=v1, ctx:=ctx {
findNext(v2) => ctx.findNext(ValAnd(v1, v2)),
substitute(ex) => ctx.substitute(EAnd(v1.asExpr (), ex))}),

substitute(ex) => ctx.substitute(EAnd(ex , e2))}),
EOr(e1 ,e2) => e1.searchPos(

cocase OrCtx1 on Context using e2:=e2, ctx:=ctx {
findNext(v1) => e2.searchPos(

cocase OrCtx2 on Context using v1:=v1, ctx:=ctx {
findNext(v2) => ctx.findNext(ValOr(v1, v2)),
substitute(ex) => ctx.substitute(EOr(v1.asExpr (), ex))}),

substitute(ex) => ctx.substitute(EOr(ex , e2))})}
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3.5. Formalization

In this section we present the syntax, typing rules and operational semantics of the
language on which defunctionalization and refunctionalization operate.

3.5.1. Syntax

The syntax of expressions is given in definition 3.5.1. We use the convention that type
names, constructor names, and generator function names start with uppercase letters,
whereas function names, destructor names, and consumer function names start with
lowercase letters. Names in C and d may be prepended with an underscore to denote
local names as described in section 3.3.3.

Definition 3.5.1 (Syntax of expressions).

T ∈ TyName K ∈ CtorName d ∈ DtorName
e ::= x Variable

| K(e) Constructor and gfun calls
| e.d(e) Destructor and cfun calls

| e.case d using x = e {K(x) ⇒ e} Pattern match

| cocase K on T using x = e {d(x) ⇒ e} Copattern match
| let x = e in e Let expression

The syntax of programs Θ is given in definition 3.5.2. A program consists of a list
of declarations δ, and each declaration can declare a data or a codata type, a toplevel
definition or a toplevel codefinition.

Definition 3.5.2 (Syntax of programs).

δ ::= data T {K(T )} Data type

| def T .d(T ) : T {K(x) ⇒ e} Definition

| codata T {d(T ) : T } Codata type

| codef K(T ) : T {d(x) ⇒ e} Codefinition
Θ ::= ∅ | δ,Θ Program

To avoid cluttering the definitions, we assume the program to be a global constant.
In the remaining definitions, we query the global program via the sets defined in defini-
tion 3.5.3.

Definition 3.5.3 (Program queries). Global sets to query a program Θ. Checking the
types of expressions depends only on the starred sets, that is, only on declarations.
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* Dt Data types defined in Θ
* CoDt Codata types defined in Θ
* ∀ T ∈ Dt : Ctor(T ) Constructors of type T
* ∀ T ∈ Dt : Def(T ) Definitions for type T
* ∀ T ∈ CoDt : Dtor(T ) Destructors of type T
* ∀ T ∈ CoDt : Codef(T ) Codefinitions for type T

∀ ( .d( ) : ) ∈ Def(−) : Cases(d) Body of definition d
∀ (K( ) : ) ∈ Codef(−) : Cocases(K) Body of codefinition K

The sets are mostly self-explanatory, hence we refer to the Coq code for a formal
definition and instead suggest to consider the example in examples 3.6.1 and 3.6.2, whose
representation in terms of these set functions can be seen in examples 3.6.3 and 3.6.4, as
illustration. The only noteworthy aspect of these sets is that Codef(T ) and Ctor(T )
have been set up in such a way that they have the same codomain, such that we can
form the set union Codef(T ) ∪Ctor(T ). The same holds for Def(T ) and Dtor(T ).

Together, the first seven items of the bottom half of definition 3.5.3 contain all the
static information of a program that is necessary to typecheck expressions.

3.5.2. Typing Rules

Typechecking of expressions is defined in definition 3.5.4. Expressions are typechecked
in the context of all function signatures, meaning that arbitrary recursion, including
non-termination, between functions is possible.4

Definition 3.5.4 (Expression typing). The typing of expressions Γ ⊢ e : T is defined
by the following rules:

lookup(x,Γ) = T
T-Var

Γ ⊢ x : T

Γ ⊢ e1 : T1 Γ, x : T1 ⊢ e2 : T2
T-Let

Γ ⊢ let x = e1 in e2 : T2

K(T ′) ∈ Ctor(T ) ∪Codef(T )

Γ ⊢ e : T ′
T-Ctor

Γ ⊢ K(e) : T

d(T ′) : T ′′ ∈ Dtor(T ) ∪Def(T )

Γ ⊢ e : T Γ ⊢ e′ : T ′
T-Dtor

Γ ⊢ e.d(e′) : T ′′

Γ ⊢ e : T ′′′ Γ ⊢ e′ : T T ∈ Dt

∀ (K(T ′) ∈ Ctor(T )). ∃i. C = Ci ∧ T ′′′, T ′ ⊢ e′′i : T ′′
T-Case

Γ ⊢ e′.case d using e {K ⇒ e′′} : T ′′

Γ ⊢ e : T T ′ ∈ CoDt

∀ (d(T ′′) : T ′ ∈ Dtor(T )). ∃i. d = di ∧ T , T ′′ ⊢ ei : T ′
T-Cocase

Γ ⊢ cocase K on T ′ using e {d⇒ e′} : T ′

4Inductive and coinductive types are often used in conjunction with termination/productivity checks
(e.g. Atkey and McBride (2013)), but these checks are an orthogonal concern for our purposes.
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While the rules for let bindings, xtors and the different kinds of function calls are
pretty standard, the rules for xmatches are slightly more involved. Firstly, the rule for
matches is set up to ensure that every constructor occurs in exactly one case of the
match. While it would be possible to allow non-exhaustive pattern matches, we have
restricted ourselves to exhaustive pattern matches for the sake of simplicity.5 Secondly,
it is important to note that the bodies inside the case clauses are typechecked using only
the variables bound by the binding lists and the variables provided by the respective
case, i.e. it ensures that matches are closed terms. These remarks apply equally to
comatches.

Typechecking a full program involves typechecking of function bodies in the context of
the types of the arguments, as usual. Typechecking consumer and generator functions is
a straightforward extension of typechecking local pattern (copattern) matches. Program
well-formedness furthermore involves entirely unsurprising checks that all type names
that are used are actually defined, that generator and consumer functions have a branch
for each xtor of the corresponding (co)data type (exhaustiveness), and that names in
local xpattern matches are globally unique, as explained in section 3.3.2. We have
omitted the formal definition of the rule Wf-Prog from the paper because it is not
very interesting; the full definition is of course part of our Coq formalization.

3.5.3. Reduction Rules

The following definitions 3.5.5 and 3.5.6 give the small-step operational semantics for-
mulated with evaluation contexts.

Definition 3.5.5 (Values and Evaluation Contexts).

v ::= K(v) | cocase K on T using v {d⇒ e}
E ::= □ | K(v,□, e) | □.d(e) | v.d(v,□, e) | let x = □ in e

| □.case d using e {K ⇒ e}
| v.case d using (v,□, e) {K ⇒ e}
| cocase K on T using (v,□, e) {d⇒ e}

Definition 3.5.6 (Small-step operational semantics). The small-step operational se-
mantics e→ e′ is defined by the following rules:

e1 → e2
E-Congr

E[e1] → E[e2]
E-Let

let x = v in e→ e[v]

K ⇒ e ∈ Cases(d)
E-Def

K(v).d(v′) → e[v][v′]

d⇒ e ∈ Cocases(K)
E-Codef

K(v).d(v′) → e[v][v′]

E-Case
K(v).case . . . using v′ {K ⇒ e, . . .} → e[v][v′]

5Refunctionalization, for example, would translate an exception arising from an incomplete pattern
match into the invocation of a destructor on a copattern match with a missing cocase. Semantic
preservation under transposition might therefore still be possible.
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E-Cocase
(cocase K on T using v { d⇒ e, . . . }).d(v′) → e[v][v′]

Our language uses call-by-value evaluation, so arguments to functions and terms bound
in let expressions and binding lists are evaluated first. Substitution is particularly simple
since it only needs to be defined for values, which are closed terms. Continuing the
example from above, if e is a value, then we write the evaluation of the let expression as
let x = v in (let y = e′ in f(1, 0)) → (let x = e′ in f(1, 0))[v] = let y = e′ in f(v, 0).
If the body of the function f is the expression e, then we use the suggestive notation
f(v) → e[v] to indicate the substitution of the arguments into the body of the function.

The expressions in the cocases of a comatch do not have to be evaluated to values
for the comatch to be a value. This corresponds to not evaluating expressions under a
lambda abstraction when the function type is generalized to arbitrary codata.

3.5.4. Type Soundness

We have proven the type soundness of our language in Coq by the usual preservation
and progress theorems.

Theorem 3.5.7 (Preservation). For all expressions e, if Γ ⊢ e : T in some program Θ
with Θ OK and e→ e′, then Γ ⊢ e′ : T .

Theorem 3.5.8 (Progress). For all programs Θ with Θ OK and expressions e, if Γ ⊢
e : T , then either e→ e′, or e is a value.

Furthermore, we have implemented algorithmic functions implementing the typing and
evaluation relations and proven their correctness and completeness with respect to the
inductive relations given here. In particular, this shows that the typing and small-step
reduction relations are decidable.

3.6. Defunctionalization and Refunctionalization

We implemented defunctionalization and refunctionalization as a two-stage process. In
the first step we compute a new program skeleton which consists only of the type signa-
tures. This program skeleton is computed from the given program and the (co)data type
T chosen to be transposed. In the new program skeleton, the chosen data type becomes
a codata type, or vice versa, with its constructor or destructor signatures collected from
the original program, and there are certain changes to the function signatures. The
reason to have this stage separate is that it allows us to formulate the statement that
typechecking is preserved under transposition. In the second step, the new function
bodies are computed from the old program. For this, we use defunctionalization and
refunctionalization functions for expressions in a given program.

In subsection 3.6.1 we present the running example for the presentation of the al-
gorithm. In subsections 3.6.2 and 3.6.3 we present the first and second stages of the
algorithm, respectively.
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3.6.1. A Running Example

We will use the example of examples 3.6.1 and 3.6.2 to illustrate the transposition
algorithm. Its formal representation can be found in examples 3.6.3 and 3.6.4.

Example 3.6.1 (Light as a codata type). The following program defines Light as a
codata type:

data Color { Red(), Blue() }
codata Light { color () : Color , next() : Light }
codef Const(c : Color) : Light {

color() => c,
next() => Const(c) }

codef RedBlue () : Light {
color() => Red(),
next() =>

cocase _BlueRed on Light {
color() => Blue(),
next() => RedBlue ()}}

Defunctionalizing the codata type Light of the program example 3.6.1 yields the pro-
gram example 3.6.2. Inversely, refunctionalizing the data type Light of example 3.6.2
yields example 3.6.1.

Example 3.6.2 (Light as a data type). The following program defines Light as a codata
type:

data Color { Red(), Blue() }
data Light { Const(Color), RedBlue (), _BlueRed () }
def Light.color() : Color {

Const(c) => c,
RedBlue () => Red(),
_BlueRed () => Blue() }

def Light.next() : Light {
Const(c) => Const(c),
RedBlue () => _BlueRed (),
_BlueRed () => RedBlue () }

Example 3.6.3 (Light as a codata type (formal)).

Dt = {Color}
CoDt = {Light}

Ctor(Color) = {Red(), Blue()}
Dtor(Light) = {color() : Color, next() : Light}
Def(Light) = {Const(Color), RedBlue()}

Cocases(Const) = {color() => c, next() => Const(c)}
Cocases(RedBlue) = {color() => Red(),

next()=> cocase _BlueRed on Light {
color()=> Blue(),

next()=> RedBlue()}
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Example 3.6.4 (Light as a data type (formal)).

Dt′ = {Color, Light}
CoDt′ = ∅

Ctor′(Color) = {Red(), Blue()}
Ctor′(Light) = {Const(Color), RedBlue(), _BlueRed()}

Codef′(Light) = {color() : Color, next() : Light}
Cases′(color) = {Const(c)=> c, RedBlue()=> Red(), _BlueRed()=> Blue()}
Cases′(next) = {Const(c)=> Const(c), RedBlue()=> _BlueRed(), _BlueRed()=> RedBlue()}

3.6.2. Computing the New Program Signatures

The new program skeleton consists of data types, codata types, and the signatures of
definitions and codefinitions, which we obtain from the original program by the changes
described in definitions 3.6.5 and 3.6.6. The function localCases(T ) will return the
signatures of all local matches for type T in a program, i.e. their names, each together
with a list of the types in the bindings list and the return type. localCocases does
the same for local comatches.

This means that we remove Light from CoDt and add it to Dt and we set Dtor(Light) =
Gfun(Light) = ∅. Furthermore, with localCocases(Light) = {_BlueRed()}, we obtain

Dt′ =Dt ∪ {Light} = {Color, Light}
CoDt′ =CoDt \ {Light} = ∅

Ctor′(Light) =Gfun(Light) ∪ localCocases(Light)

={Const(Color), RedBlue()} ∪ {_BlueRed()}
Cfun′(Light) =Dtor(Light) = {color() : Color, next() : Light}.

Observe that the two transformations are entirely symmetric in this first stage; i.e.
one can exchange defunctionalization and refunctionalization, data type and codata type,
consumer and generator, as well as match and comatch, and the description remains the
same. In this and the following definitions, the isGlobal and isLocal predicates check
whether a name is global or local, respectively.

Definition 3.6.5 (Defunctionalization of Program Signatures). The algorithm for com-
puting the new typing information, i.e. the new skeleton, when defunctionalizing with
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type T .

Dt′ := Dt ∪ {T}
CoDt′ := CoDt \ {T}

Ctor(S)′ :=

{︄
Ctor(S) S ̸= T

localCocases(T ) ∪Gfun(T ) S = T

Dtor(S)′ :=

{︄
Dtor(S) S ̸= T

∅ S = T

Gfun(S)′ :=

{︄
Gfun(S) S ̸= T

∅ S = T

Cfun(S)′ :=

{︄
Cfun(S) S ̸= T{︁

(d(T ′) : T ′′) ∈ Dtor(T )
⃓⃓
isGlobal(d)

}︁
S = T

Definition 3.6.6 (Refunctionalization of Programs (Signatures)). The algorithm for
computing the new typing information, i.e. the new skeleton, when refunctionalizing
with type T .

Dt′ := Dt \ {T}
CoDt′ := CoDt ∪ {T}

Ctor(S)′ :=

{︄
Ctor(S) S ̸= T

∅ S = T

Dtor(S)′ :=

{︄
Dtor(S) S ̸= T

localCases(T ) ∪Cfun(T ) S = T

Gfun(S)′ :=

{︄
Gfun(S) S ̸= T{︁
C(T ′) ∈ Ctor(T )

⃓⃓
isGlobal(C)

}︁
S = T

Cfun(S)′ :=

{︄
Cfun(S) S ̸= T

∅ S = T

3.6.3. Computing the New Program Bodies

We obtain the new function bodies from the original bodies by the transformations
shown in definitions 3.6.9 and 3.6.10.

Definition 3.6.7 (Defunctionalization of Program Bodies). The algorithm for com-
puting the new function bodies when transposing with type T . Here Cfun(T ) (resp.
Gfun(T ) is the set of consumer functions (resp. generator functions) of the old program,
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while Cfun(T )′ (resp. Gfun(T )′) is the set of consumer functions (generator functions)
in the new program.

Cocases(f)′ :=

{︄
D[Cocases(f)] f /∈ Gfun(T )

∅ f ∈ Gfun(T )

Cases(f)′ :=

{︄
D[Cases(f)] f /∈ Cfun(T )′{︁
D[cocases(d)]

⃓⃓
(d(Tp) : Tr) ∈ Dtor(T ), isGlobal(d)

}︁
f ∈ Cfun(T )′

Definition 3.6.8 (Refunctionalization of Program Bodies). The algorithm for com-
puting the new function bodies when transposing with type T . Here Cfun(T ) (resp.
Gfun(T ) is the set of consumer functions (resp. generator functions) of the old program,
while Cfun(T )′ (resp. Gfun(T )′) is the set of consumer functions (generator functions)
in the new program.

Cocases(f)′ :=

{︄
R[Cocases(f)] f /∈ Gfun(T )′{︁
R[cases(C)]

⃓⃓
C(Tp) ∈ Ctor(T ), isGlobal(C)

}︁
f ∈ Gfun(T )′

Cases(f)′ :=

{︄
R[Cases(f)] f /∈ Cfun(T )

∅ f ∈ Cfun(T )

We refer to the result of defunctionalization of a program Θ as D[Θ], and to the re-
functionalization result as R[Θ]. We also use D and R for the defunctionalization and
refunctionalization of expressions, respectively, which we will define in the next para-
graph. We denote the collection of cocases for destructor d from all over the original
program (i.e. from all generator functions and all local comatches) as cocases(d), and
similarly the collection of cases for constructor c as cases(c). It is this collection step
that makes the transformation a whole-program transformation, as it requires searching
through the entire program for the relevant (co)case bodies. In our running defunction-
alization example, new consumer functions color and next are added. For instance, the
cases of color are the following collected cocases(color):

color() => c
color() => red()
color() => blue()

which stem from the codefinitions const, RedBlue and the local comatch _BlueRed, respec-
tively.

Defunctionalization and Refunctionalization of Expressions

Defunctionalization D of an expression in a given program and with respect to a type T
is shown in definition 3.6.9.

Definition 3.6.9 (Defunctionalization of expressions). Defunctionalization of expres-
sions in a given program w.r.t. a codata type T . The interesting cases are above the
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horizontal line and the congruence cases are below.

D[e.d(e)] := D[e].d(D[e]), if d ∈ Dtor(T ) and isGlobal(d)

D[e.d(e)] := D[e].case d using D[e] {D[cocases(d)]},
if d ∈ Dtor(T ) and isLocal(d)

D[K(e)] := K(D[e]), if K ∈ Codef(T )

D[cocase K on T using e : T {. . .}] := K(D[e])

D[x] := x

D[K(e)] := K(D[e])

D[e.d(e)] := D[e].d(D[e]), if d ̸∈ Dtor(T )

D[K(e)] := K(D[e]), if K ̸∈ Codef(T )

D[e.d(e)] := D[e].d(D[e])

D
[︁
e.case d using e {C ⇒ e}

]︁
:=

D[e].case d using D[e] {C ⇒ D[e]}
D
[︁
cocase C on S using e {d⇒ e}

]︁
:=

cocase C on S using D[e] {d⇒ D[e]}, for S ̸= T
D[let x = e1 in e2] := let x = D[e1] in D[e2]

For defunctionalization, the interesting cases are some of those expressions that are
related to the type T to be defunctionalized, specifically:

• Comatches generating T , which become local constructor calls.

• Generator function calls for codefinitions generating T , which become global con-
structor calls.

• Global destructor calls to destructors of T , which become consumer function calls.

But the most important case is that for local destructor calls e.d(e) (for a destructor of
T ). Such a local destructor call is translated to a local match. The cases for that match
are collected from the comatches and generator functions generating T , fetching all the
cocases cocases(d) for the destructor d under consideration. This is the same algorithm
as for the collection of the cases of the new consumer functions described above.

The cases for destructors e.d(e) and generator function calls C(e) of T look like con-
gruence cases; we list them above the horizontal line because the meaning of those
expressions changes: The destructor call e.d(. . .) is turned into a consumer function call
D[e].d(. . .), which happens to have the same syntax (because it allows a more economical
presentation of the language). Similarly, the generator function call C(. . .) is turned into
a constructor call C(. . .) that happens to have the same syntax.

The refunctionalization R of expressions, which is described in definition 3.6.10, works
analogously.

Definition 3.6.10 (Refunctionalization of expressions). Refunctionalization of expres-
sions in a given program w.r.t. a data type T . Interesting cases are above the horizontal
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line, congruence cases are below.

R[C(e)] := C(R[e]), if C ∈ Ctor(T ) and isGlobal(C)

R[C(e)] := cocase C on T using R[e] {d⇒ X},
if C ∈ Ctor(T ) and isLocal(C)

R[e.d(e)] := R[e].d(R[e]), if d ∈ Cfun(T )

R[e.case d using e {C ⇒ e}] := R[e].d(R[e]), if e : T

R[x] := x

R[C(e)] := C(R[e]), if C ̸∈ Ctor(T )

R[e.d(e)] := R[e].d(R[e])

R[C(e)] := C(R[e])

R[e.d(e)] := R[e].d(R[e]), if d ̸∈ Cfun(T )

R
[︁
e.case d using e {C ⇒ e}

]︁
:=

R[e].case d using R[e] {C ⇒ R[e]} if e : S and S ̸= T

R
[︁
cocase C on S using e {d⇒ e}

]︁
:=

cocase C on S using R[e] {d⇒ R[e]}
R[let x = e1 in e2] := let x = R[e1] in R[e2]

Matches are turned into local destructor calls, consumer function calls are turned into
global destructor calls, global constructor calls are turned into generator function calls,
and local constructor calls are turned into comatches with the cocases collected among
the matches and consumer functions. There is one slight technical complication in the
refunctionalization part: To check which case of the function definition applies to a case

expression, we need to know the type of the expression on which we match. We use
the notation e : T to refer to that type, which would in an actual implementation be
stored and remembered during typechecking. The alternative would have been to make
R type-directed instead of syntax-directed, but we considered this alternative to be more
readable.

Due to local destructor or local constructor calls where the algorithm needs to collect
the (co)cases from all over the original program, defunctionalization and refunctionaliza-
tion of expressions is a whole-program transformation itself. Especially, this means that
it must take as inputs not only the expression and the type to be transposed but also
the program with respect to which the transformation happens, i.e. the program that
contains the term. To simplify the development of our Coq implementation, we have
therefore split it into three parts: 1.) lifting of (co)matches to top-level functions, 2.)
actual program transposition, where we produce top-level generator/consumer functions
potentially marked as local (i.e., to be inlined), and 3.) inlining of these marked-as-local
functions as (co)matches. This way we have an improved separation of concerns and can
implement core defunctionalization and refunctionalization of expression functions that
do not require the full program as input and are simple folds over the given expression,
replacing local xtor calls by local function calls to be inlined later as (co)matches.
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3.6.4. Correctness of Defunctionalization and Refunctionalization

For the following, we fix a type T which is used for the transposition. We furthermore
assume that the inputs are suitable for the transformations, i.e. that T is a data type if
we perform refunctionalization and a codata type if we perform defunctionalization.

Theorem 3.6.11 (Transposition preserves typing). If e is any expression in the original
program Θ (with Θ OK) such that Γ ⊢ e : T holds (in Θ), then Γ ⊢ D[e] : T holds in
D[Θ]. Similarly, Γ ⊢ R[e] : T holds in R[Θ].

Theorem 3.6.12 (Transposition is total). If a program Θ is well-formed (Θ OK), then
transposition will result in a well-formed program Θ′ (Θ′ OK).

Theorem 3.6.13 (Transposition preserves reduction relation). If expression e which is
a part of a program Θ (with Θ OK) reduces to e′ (in Θ), then D[e] reduces to D[e′] in
D[Θ]. Likewise R[e] reduces to R[e′] in R[Θ].

Theorem 3.6.14 (Transpositions are mutual inverses). If Θ OK, then defunctional-
ization and refunctionalization are mutual inverses on all (co)data types defined in Θ
(up to the ordering of signatures, function definitions, or (co)cases).

Programs in our language can be naturally thought of as consisting of sets of these
signatures, definitions, and co(cases), thus their order does not matter for typechecking
or the reduction relation.6 We have to point out that the mutual inverses property
depends on our de Bruijn representation of variables; for a language with ordinary
variable names, the property holds only modulo α-equivalence.

3.7. Related Work

We mainly focus on related work not already discussed in the previous sections.

Defunctionalization Defunctionalization as a technique to eliminate higher-order func-
tions to make control flow (combined with CPS transformation) explicit goes back to
John Charles Reynolds’s classic essay (John Charles Reynolds (1972)). Danvy and col-
leagues have shown how it can be more widely applied Danvy and Nielsen, 2001, and
in particular how it can be usefully combined with CPS transformations to derive se-
mantic artifacts. They also introduced the partial inverse to defunctionalization, refunc-
tionalization (Danvy and Millikin (2009)), and showed a similar relation to direct-style
transformation. Our case study in section 3.4 is inspired by their showcase of all these
transformations (Danvy, Johannsen, and Zerny (2011)).

6All (co)pattern matches are exhaustive and non-overlapping, therefore such reordering cannot affect
any property relating to them.
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Coinduction, Codata, and Copatterns Coinduction and coinductive types are directly
supported in some languages such as Coq (Giménez (1996)). Coinductive types still
define a data type in terms of its constructors; the main difference to inductive data
types is that the semantics changes (greatest fixed point instead of least fixed points,
guarded corecursion instead of structural recursion). The modularity and extensibility
of the program is not affected by the use of coinductive types. Codata types were first
introduced by Hagino (1989) as an extension of ML. Since then, objects and classes have
been described coalgebraically (Jacobs (1995)) and codata has been described as the
essence of object-oriented programming (Cook, 2009). Abel, Pientka, Thibodeau, and
Setzer (2013) proposed a language with both data types/pattern matching and codata/-
copattern matching, which has inspired an implementation in Agda. Abel, Pientka,
Thibodeau, and Setzer’s language is not symmetric in the sense we analyzed in this
work because it mixes two forms of codata: codata defined in codata types, and first-
class functions. These two forms of codata crucially depend on each other (a destructor
with arguments is modeled as a no-argument destructor that resolves to a function that
expects the argument). Due to the interplay between functions and codata, it is not
obvious what refunctionalization and defunctionalization should mean in this language.

Expression Problem There is a long string of works on programming techniques and
language designs that allow simultaneous extensibility in the constructor and destructor
dimension (see related work section in Oliveira and Cook, 2012, for instance), usually
by enabling a kind of micro-modularity, where the implementation for each construc-
tor/destructor combination can be a separate module that can be freely composed with
other such modules. The aim of these works is different from this one. Their goal is to
enable extensibility and composability of both constructors and destructors. Our goal
is to provide a symmetric language where the extensibility dimension can be switched
with our transposition algorithms. There have also been some works that discuss the
relation between the data/codata duality and the expression problem. Lämmel and
Rypacek (2008) discusses a category-theoretic formulation of the duality between data
and codata in terms of the expression problem; however, that work is about semantic
methods and not programming language design. The most closely related work to ours
is the one by Rendel, Trieflinger, and Ostermann (2015), whose relation to this work has
been discussed in detail at the end of section 3.2.

Data/Codata Transformations Downen, Sullivan, Zena M. Ariola, and Jones (2019)
compile a language with data types into one with codata types and vice versa, but
their transformations are very different from ours. They map data to codata via the
visitor pattern, i.e., the result has a codata type with one destructor per constructor
in the original data type and an additional codata type for the visitor. To translate
codata to data, they use what they refer to as tabulation: the resulting data type
represents a table of potential answers to the destructor observations. Laforgue and
Régis-Gianas (2017) propose a macro to support codata in OCaml, in which codata
operations are reified as a data type and codata types are encoded as dispatch functions
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on reified codata operations. The essential difference between those works and ours is
that the transformations of Downen, Sullivan, Zena M. Ariola, and Jones and Laforgue
and Régis-Gianas are compositional and hence do not change the extensibility of the
program. Their aim is a compositional encoding, not a change in the decomposition of
the whole program.

Defunctionalization in Compilers Defunctionalization is used as a compiler technique
to achieve different goals. In many cases, they remain opaque to the programmer since
they do not add new functionality, but are rather used for low-level optimizations. Exam-
ples of these kinds of usage include Boquist and Johnsson (1996)’s work on optimizations
for lazy functional languages. Sometimes, they might also be employed to provide ad-
ditional functionality, mainly first-class functions, to a language. One such instance is
explored by Grust, Schweinsberg, and Ulrich (2013). Contrary to this, our approach in-
tends to make different decompositions of a program accessible to the programmer and
thus provide such transformations as a means to manipulate programs. Moreover, in this
work, the transpositions are mainly a means to an end, i.e. providing a multi-faceted
view of a program to programmers.

3.8. Outlook

Program Matrices and PL Design The matrix formalism approach to de/refunction-
alization was first explored by Rendel, Trieflinger, and Ostermann (2015) (based on the
relation to the expression problem drawn there, and thus also in the tradition of earlier
matrix representations (Cook, 1990)). Our work did not explicitly employ this kind of
formalism, but our mental image of the transformations is strongly influenced by the
matrix idea.7 We think it is possible to formalize our work in terms of matrices, but a key
difference to prior work is that not everything has global scope: The matrices would need
to be enhanced with additional constraints that represent the possible locality restric-
tions of constructors or destructors. The matrix formalism is close to how we envision
the symmetric programming environment. Further, as was hinted at in the introduc-
tion, we hope to exploit dualities for PL design, and such an explicit two-dimensional
representation of programs can potentially help us better understand the design space
of programming languages. We hope that this way one can avoid design mistakes, such
as the above-mentioned non-orthogonal design found in previous attempts at combining
the functional and object-oriented paradigms. To bring this idea to fruition it might
also be instructive to try to combine it with the more general language approach and/or
more powerful type systems as outlined in the next paragraphs.

A Deeper Symmetry Throughout this chapter, we emphasized the symmetry inherent
in our language and the transformations defined on it. However, if “two-for-the-price-
of-one economy” Wadler, 2003 is what one hopes to gain from such symmetries, one

7For instance, our Coq proof of the program transpositions being mutual inverses amounts to reducing
this problem to matrix transpose being involutive.
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could conceivably be far more economical. Observe how constructors take in a certain
sense the place of destructors, and vice versa, when switching between the data and the
codata sides. Now, compare the structure of constructor signatures con(T a

c ) : Tc and
of destructor signatures Td.des(T

a
d ) : To: On one side, we have the constructed type

Tc, and on the opposite side, the destructed type Td, which form a dual pair, and on
both sides we have lists of arguments (T a

c and T a
d , respectively). But the output type of

destructors To lacks a counterpart on its opposite (the constructor) side. It is this lack of
a better symmetry that at all forced us to give two accounts, one for defunctionalization
and one for refunctionalization, or one for the data and one for the codata fragment, at
least when explicitly formalizing them in Coq. Even if the sides only differ slightly, the
missing symmetry and consequent structural difference is still glaringly obvious. We will
solve this problem in chapter 4 by going from a language based on natural deduction to
the symmetric framework of the sequent calculus.

To the Type Level and Beyond The data and codata languages, as well as the de-
functionalization and refunctionalization algorithms defined on them, have already been
extended by Ostermann and Jabs (2018) to cover parametric polymorphism. The exten-
sion to dependent types was an open problem (cp. also Huang and Yallop, 2023) that
we have recently solved. The concrete challenges that had to be overcome, and how we
solved them, are described in our article Binder, Skupin, Süberkrüb, and Ostermann
(2024a).
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Sequent Calculi for Data and Codata
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4. Defunctionalization, Refunctionalization
and Evaluation Order

The content of this chapter is based on the following, thorougly revised and updated,
article:

David Binder, Julian Jabs, Ingo Skupin, and Klaus Ostermann (2022). Data-
Codata Symmetry and its Interaction with Evaluation Order. doi: 10 .

48550/ARXIV.2211.13004. url: https://arxiv.org/abs/2211.13004

In that article and this chapter I solve a problem with the defunctionalization and
refunctionalization algorithm that I introduced in chapter 3. The language and algo-
rithm presented in chapter 3 presume a global call-by-value evaluation order. There is
one major problem with this approach, and we already hinted at that problem in the
introduction in section 1.1: in a language which uses the call-by-value evaluation strat-
egy for all types, the eta-laws are only valid for data types but not for codata types. In
this chapter we solve this problem in the following way: Every type that can be defined
by the user is specified with both a polarity and an evaluation order. The two possible
polarities are data types and codata types, and the two possible evaluation orders are
call-by-value and call-by-name. We then present two different whole-program transfor-
mations: Defunctionalization and refunctionalization change the polarity of a type by
using the matrix transposition algorithm presented in chapter 3. A separate algorithm
allows to change the evaluation order of a type by inserting so-called shift connectives in
the program. By composing these two transformations we obtain a defunctionalization
algorithm which allows to change the polarity of a type, without losing the validity of
any η-laws in the process. The content of this chapter can therefore be summarized by
the following diagram:

cbv data cbv codata

cbn data cbn codata

Ccodata

Tcbn

Cdata

Tcbn

Ccodata

Tcbv

Cdata

Tcbv

The defunctionalization and refunctionalization algorithms presented in this chapter
also remedy the asymmetry of the corresponding algorithms presented in chapter 3.
We argue that the failure of complete symmetry is due to the inherent asymmetry of
natural deduction as the logical foundation of the language design. Natural deduction
is asymmetric in that its focus is on producers (proofs) of types, whereas consumers
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(contexts, continuations, refutations) have a second-class status. The language presented
in this chapter is fully symmetric in that polarity (data type vs codata types) and
evaluation order (call-by-value vs call-by-name) are untangled and become independent
attributes of a single form of type declaration.

4.1. Introduction

Let us discuss the two problems, the lack of symmetry and the interaction of defunc-
tionalization and refunctionalization with evaluation order, that this chapter solves in
more detail.

First problem: Lack of Symmetry

The first problem with existing language designs for data and codata types is a lack of
symmetry. The aforementioned de/refunctionalization transformations can serve as a
tool to evaluate symmetry: A failure to define these transformations as total, semantics-
preserving and mutually inverse functions indicate an asymmetry. For example, Pottier
and Gauthier (2006) figured out that generalized algebraic data types (GADTs) are nec-
essary in order to correctly defunctionalize polymorphic functions. But Ostermann and
Jabs (2018) showed that the requirement for total and inverse de- and refunctionaliza-
tion makes it necessary to add the dual feature of generalized algebraic codata types
(GAcoDTs).

However, even when the design is symmetric in that sense, there is another glaring
asymmetry, already mentioned at the end of chapter 3, that has been the main motivation
for this chapter: The definitions of data and codata types as well as the transformations
between them look very similar, but not similar enough to have just one generic definition
of a type (with data and codata being just two modes of using them) and just one
transformation.

The underlying cause which we identified is the asymmetry between producers and
consumers. Programming languages whose design is based on natural deduction rules
only represent producers (expressions) of a type as a first class citizen. That is, there is
only one form of typing judgement Γ ⊢ t : T for typing (producer) terms. This bias in the
design of programming languages, which is reflected in their formalizations, manifests
itself in various ways:

• A constructor such as “Zero” can be typed on its own, whereas a destructor such
as “isZero” must be typed together with its application, e.g., “3.isZero”.

• Pattern matches have a separate “return type” in addition to the type of the
argument they pattern match on, while copattern matches lack such a separate
return type.

• Constructors of a data type and observations of a codata type have a different
shape, observations have an additional “return type” of the observation.
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Sequent calculus is a more symmetric alternative to natural deduction in which proofs/
producers and refutations/consumers are defined in a completely symmetric way. In-
spired by previous work on sequent-calculus-based languages (Zeilberger (2008b), Curien
and Herbelin (2000), Downen and Zena M. Ariola (2014), Downen and Zena M. Ariola
(2020), and Wadler (2003)) we have been able to achieve our:

First contribution: We present a language in which data and codata types are
fully symmetric and in fact just modes of one type definition construct. Defunc-
tionalization and refunctionalization are one algorithm.

Second problem: Evaluation Order

The second problem concerns the interaction between data and codata types, de/refunc-
tionalization, and evaluation order. In languages that support both data and codata
types, it is desirable to have fine-grained control over evaluation order instead of pre-
scribing a global fixed evaluation order:

• As we already described in section 1.1, programmers want to use laziness for easier
problem decomposition and composability of algorithms, and strictness for easier
reasoning about time and space complexity.

• Ad hoc solutions to a globally fixed evaluation order like the “seq” expression in
Haskell weaken the valid reasoning principles available to programmers (Johann
and Voigtländer (2004)).

• The validity of η-rules depends both on the evaluation order of the language and
the polarity of the type.

We have already mentioned this last point in the introduction, but since it is central to
our argument, we illustrate it again with two examples from the lambda calculus with
pairs (adapted from Downen and Zena M. Ariola (2020)).

The η rule for the function type (and for codata types more generally) is only valid un-
der call-by-name evaluation order. Consider, for example, the lambda term (λx.5)(λx.Ωx),
which can be reduced to 5 under both the call-by-value and call-by-name evaluation or-
der. If we replace λx.Ωx by its η-reduct Ω, on the other hand, the resulting term diverges
under call-by-value semantics, while it still reduces to 5 under call-by-name:

5 5
(λx.5)(λx.Ωx) (λx.5)Ω

5 diverges

cbn

cbv

η
cbn

cbv

The inverse situation holds for pairs (and data types more generally); their η-rules are
only valid under call-by-value evaluation order. The following two terms are η-equal.
But while the left term diverges under both call-by-value and call-by-name, the η-reduct
on the right reduces to 5 under call-by-name.
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diverges 5
case Ω of { ⟨x1, x2⟩ ⇒ (λx.5)⟨x1, x2⟩ } (λx.5)Ω

diverges diverges

cbn

cbv

η
cbn

cbv

These problems suggest that evaluation order should be based on types (cp. Downen and
Zena M. Ariola (2020)), together with so-called shifts (analogous to the shifts introduced
by Zeilberger (2008b)) to switch between different evaluation orders. When relating
data and codata types via de/refunctionalization, however, these different evaluation
orders and the shifts need to be taken into account to preserve the semantics of the
program. Previous work, such as the algorithm presented in chapter 3, has sidestepped
this problem by fixing one global evaluation order (either call-by-value or call-by-name).
This leads to our

Second contribution: We give the first presentation on the interaction between
data/codata types, type-based evaluation order, and de/refunctionalization. We
discuss, and solve, the problems which arise when we combine them.

Overview

The rest of the chapter is structured as follows:

• In section 4.2 we present our central contributions in an example-driven, informal
style.

• In section 4.3 we present the formalization of the CPS-fragment of the language.
Since all programs have to be written with explicit control flow, different evaluation
strategies cannot be observed.

• In section 4.4 we present the single algorithm which subsumes both defunctional-
ization and refunctionalization.

• In section 4.5 we remove the restriction to programs with explicit control flow by
introducing the µ and µ̃ constructs from λ̄µµ̃ calculus. We discuss different global
and type-based evaluation orders and their influence on the validity of η-equalities.

• In section 4.6 we discuss how to complement the transformations from section 4.4
with transformations which change the evaluation order of a given type.

• In section 4.7 we discuss related work, and we conclude in section 4.8.

The system presented in this chapter has been formalized and theorems 4.3.4, 4.3.5
and 4.4.2 to 4.4.4 have been proven in Coq. We restrict ourselves to a simply-typed
language, since this is sufficient to illustrate our central ideas. We think that the gener-
alization to a polymorphic variant of this calculus which supports generalized algebraic
data types (GADTs) and their dual, GAcoDTs, does not pose substantial difficulties
and expect this to be a straight-forward adaption of the approach of Ostermann and
Jabs (2018).
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4.2. Main Ideas

In this section we will use simple examples to present the types and terms of the language,
as well as the transformation algorithms.

4.2.1. Programming with Symmetric Data and Codata

Natural deduction, and the programming languages based on it, are biased towards
proof. A natural deduction derivation ending with a single formula at its root proves
that formula. Term assignment systems for natural deduction, such as the simply typed
lambda calculus, therefore only have one typing judgement. This typing judgement,
usually written Γ ⊢ t : T , types a term t as a proof of the type T .

Sequent calculus, on the other hand, is not biased towards proofs. For example, there
are not only sequent calculus derivations ending in ⊢ ϕ which prove a formula ϕ, but
also derivations ending in ϕ ⊢ which refute a formula ϕ. In the context of programming
languages, proofs and refutations correspond to producers and consumers of a type. For
example, the producers of the type N are numbers 1, 2, 3 . . ., whereas the consumers
are continuations expecting a natural number. The single typing judgement Γ ⊢ t : T
is replaced by two separate judgements Γ ⊢ p : T and Γ ⊢ c

con
: T , one which types

producers and one which types consumers.
There are exactly two kinds of types in our system, data types and codata types

(Downen, Sullivan, Zena M. Ariola, and Jones, 2019; Hagino, 1989), whose difference
can be expressed in terms of canonical producers and consumers. Data types have
canonical producers, which are called constructors. Canonical means that given an
arbitrary producer, we know that it must have been built by one among a finite list of
constructors. Having only a finite list of constructors justifies the use of pattern matching
to build consumers of a data type. Codata types, on the other hand, have canonical
consumers, called destructors; their producers are formed by copattern matching (Abel,
Pientka, Thibodeau, and Setzer, 2013) on all destructors.

First-class support for both producers and consumers is necessary to make data and
codata types completely symmetric. For data types, constructors can be typed as pro-
ducers and pattern matches as consumers. Dually, destructors of a codata type can be
typed as consumers, and copattern matches as producers. Without a first-class represen-
tation of consumers we would have to treat data and codata types asymmetrically: both
pattern matches and destructors need an additional return type. We will now illustrate
symmetric data and codata types with some simple examples.

The data type N is defined by two constructors Zero and Suc, the canonical producers
of N. Since we distinguish producers from consumers, we have to explicitly mark the
argument of the constructor Suc as a producer.

data type N { Zero ; Suc(x : N) }

Using this definition, we can now form the following producer and consumer of N:

Suc(Zero) : N
matchdata N { Zero ⇒ . . . ; Suc(x : N) ⇒ . . . } con

: N
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The definition of the consumer is still incomplete; we have not yet specified what should
be inserted in the place of the two holes. We do not have a “result type” which would
determine the type of terms to put in the holes; rather, the category of terms to insert
in these places are called commands, which we discuss next.

Commands, sometimes also called “statements”, are the syntactical category of re-
ducible expressions; a closed command corresponds to the state of an abstract machine.
We consider only two types of command. A logical command ⟨ p | c ⟩ combines a producer
p and consumer c of the same type. Logical commands are evaluated using standard
(co)pattern matching evaluation rules. The second type of command is Done which just
terminates the program. The addition of Done is necessary since the Curry-Howard in-
terpretation of a command is a contradiction (Zeilberger, 2008b). The only way to write
a closed command is therefore to write a looping program using unrestricted recursion,
or to postulate the existence of a closed command, which we have done here. We now
present the first simple example of a complete program which reduces to Done in a
single step before terminating.

⟨ Suc(Zero) | matchdata N { Zero ⇒ Done ; Suc(x) ⇒ Done} ⟩

We now consider some examples of codata types. The first example of a codata type, and
the only codata type in many functional programming languages, is the function type.
Codata types allow the function type to be user-defined instead of being hardwired into
the language. The type of functions from N to N is represented by a codata type with
one destructor Ap. This destructor corresponds to the only way a function can be used,
namely to apply it to an argument. In the symmetric setting Ap takes two arguments, the
producer argument x for the value passed to the function, and the consumer argument
k for the consumer to be used on the result of the evaluation of the function1.

codata type N�N { Ap(x : N, k con
: N) }

The identity function λx.x can be written as a comatch.

id := matchcodata N�N { Ap(x, k) ⇒ ⟨x | k ⟩} : N�N

Codata types also allow for easy and intuitive programming with infinite structures. For
example, the type of streams of natural numbers is defined by the two destructors which
give the head and the tail of a stream. Note that the Head destructor does not directly
return the first element; instead, a continuation for N has to be passed as an argument.

codata type N−Stream { Head(k
con
: N) ; Tail(k

con
: N−Stream) }

Codata also formalizes one essential aspect of object-oriented programming: program-
ming against an interface (Cook, 1990; Cook, 2009). We give a simple example of a

1Readers familiar with linear logic might recognize this as the following decomposition of the function
type: ϕ⊸ ψ = (ϕ⊗ ψ⊥)⊥.
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customer “interface” with name and address fields; an “object” that implements the
interface could again be constructed with a copattern match.

codata type Customer { Name(k
con
: String) ; Address(k

con
: Address) }

In the next section we will see how symmetric data and codata types can be transformed
back and forth other using the de/refunctionalization algorithms, and why we only need
a single algorithm in the symmetric setting.

4.2.2. Defunctionalization and Refunctionalization

Having symmetric data and codata types turns de/refunctionalization into one algo-
rithm, like we promised in the introduction. We illustrate this with a simple example
program manipulating natural numbers. At first, the type of natural numbers is repre-
sented as a data type:

Example 4.2.1 (Natural numbers as a data type).

data N { Zero, Suc(x : N) }

pred(k
con
: N) := matchdata N {Zero ⇒ ⟨ Zero | k ⟩, Suc(x) ⇒ ⟨x | k ⟩}

add(y : N, k con
: N) := matchdata N {Zero ⇒ ⟨ y | k ⟩, Suc(x) ⇒ ⟨x | add(Suc(y), k) ⟩}

The natural numbers are represented by the two canonical constructors Zero and Suc,
and the functions pred and add are defined by pattern matching. The same program,
but with natural numbers represented as a codata type, looks as follows:

Example 4.2.2 (Natural numbers as a codata type).

codata N { pred(k
con
: N), add(y : N, k con

: N)}
Zero := matchcodata N {pred(k) ⇒ ⟨ Zero | k ⟩, add(y, k) ⇒ ⟨ y | k ⟩}
Suc(x : N) := matchcodata N {pred(k) ⇒ ⟨x | k ⟩, add(y, k) ⇒ ⟨x | add(Suc(y), k) ⟩}

De/Refunctionalization is now just matrix transposition; the terms themselves remain
unchanged. The same program which was represented above both in data and codata
centric form can be presented as the following matrix.

Example 4.2.3 (Natural numbers in matrix form).

N Zero Suc(x : N)
pred(k

con
: N) ⟨ Zero | k ⟩ ⟨x | k ⟩

add(y : N, k con
: N) ⟨ y | k ⟩ ⟨x | add(Suc(y), k) ⟩

In the asymmetric setting of previous work (chapter 3, as well as Rendel, Trieflinger,
and Ostermann (2015) and Ostermann and Jabs (2018)), complications due to the asym-
metry prevented this easy formulation. For instance, asymmetric destructors are defunc-
tionalized to functions with a “special” argument (the this object, in OO terminology),
so different kinds of function declarations and function calls had to be distinguished
in the formalization. For the system presented so far, and for the constructs used in
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examples 4.2.1 and 4.2.2, it is clear after some reflection that de/refunctionalization is
semantics-preserving. This is essentially due to the fact that the program still contains
the same “rewrites” (cases of (co)pattern matches) - only the place where the rewrites
are defined changes -, and there is no notion of evaluation order; all control flow is com-
pletely explicit. In the next subsection we introduce additional control flow constructs
which introduce the need for evaluation strategies.

4.2.3. Evaluation Order

In order to speak about evaluation order, we need to add additional constructs which let
us form new commands for which the evaluator has to make a choice on what to evaluate
next. We do this by introducing the µ and µ̃ abstractions from the λ̄µµ̃ calculus of Curien
and Herbelin (2000). These two constructs introduce new ways to form producers and
consumers.

A µ-abstraction µ(x
con
: T ).c is a producer of T which abstracts over a consumer x of T

in the command c. Dually, a µ̃-abstraction µ(x : T ).c is a consumer of T which abstracts
over a producer x of T . Note that in distinction to Curien and Herbelin (2000) we use
different type annotations on the variable instead of the tilde to distinguish the two kind
of abstractions. This allows us to generalize over them syntactically in the formalization.

We illustrate their intuitive meaning using the data type of natural numbers and the
functions given in example 4.2.1. The only terms that can be typed as producers of N in
the system without µ abstractions are generated by the grammar v := Zero |Suc(v) |x.
In particular, there was no way to type an analogue of 2 + 2 as a producer of N
with is not yet fully evaluated. Using a µ-abstraction, we can now form the pro-
ducer µ(k

con
: N).(⟨ 2 | add(2, k) ⟩). The µ̃ abstraction for N, on the other hand, be-

haves more like a let-binding for producers in a command. For example, the command
⟨ 5 | µ(x : N).c ⟩ behaves like let x : N := 5 in c.

Once we have both µ and µ̃ abstractions in the language confluence is lost, as wit-
nessed by the following critical pair. In this example, Ω refers to some unspecified non-
terminating command. Depending on which abstraction we evaluate first, we obtain
either Ω or Done. This is clearly unsatisfactory.

Ω ⟨µ(x
con
: T ).Ω | µ(y : T ).Done ⟩ Done◁ ▷ (4.1)

We regain confluence by prescribing an evaluation strategy for the redex above; ei-
ther call-by-value or call-by-name. In call-by-value, only producers which belong to the
more restrictive grammar, not containing µ-abstractions, can be substituted for pro-
ducer variables. In particular, we cannot substitute the producer corresponding to 2 + 2
for a producer variable of type N. More generally: Under call-by-value we evaluate
µ-abstractions before µ̃ abstractions, and conversely for call-by-name.

This leads to the problem of which evaluation order to choose for the system. This
choice should strive to maximize the number of valid η-equalities. For example, the η
equality for the function type, assuming that x and k do not occur free in e, is:

matchcodata N�N { Ap(x, k) ⇒ ⟨ e | Ap(x, k) ⟩} =η e
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This rule makes the following two commands η-equivalent:

⟨matchcodata N�N {Ap(x, k) ⇒ ⟨µ(y
con
: N�N).Ω | Ap(x, k) ⟩} | µ(x : N�N).Done ⟩

⟨µ(y
con
: N�N).Ω | µ(x : N�N).Done ⟩

But under the call-by-value strategy they evaluate to different results. In summary, we
can thus observe that generally, η-rules are only valid for data types when evaluated
under call-by-value, while they are only valid for codata types when evaluated under
call-by-name. We can turn this observation into an evaluation strategy: Under the polar
evaluation order, all data types are evaluated using call-by-value and all codata types
using call-by-name.

4.2.4. De/Refunctionalization and evaluation order

What consequences does the introduction of evaluation order have for de/refunctionaliza-
tion? The central observation is that we can combine the simple de/refunctionalization
algorithm with global cbv or cbn, but we cannot combine this simple algorithm with
the polar evaluation order. In order to see this, consider the critical pair in eq. (4.1).
Whatever evaluation order we choose for this redex, we must use the same evaluation
order for it after defunctionalizing or refunctionalizing the type T . This is guaranteed
if we fix a global evaluation order, but it fails if the evaluation order is dependent on
whether T is a data or codata type.

The following table summarizes this situation. If we choose call-by-value we loose the
η-equalities for codata types, and if we choose call-by-name we loose the η-equalities for
data types. But in both cases we can use the simple de/refunctionalization algorithm
described above. If we choose the polar evaluation order, on the other hand, all η-
equalities are valid, but the de/refunctionalization algorithm is no longer semantics-
preserving.

Eval Order η for data η for codata De/Refunc.

Global cbv ✓ ✗ ✓

Global cbn ✗ ✓ ✓

Polar ✓ ✓ ✗

How do we combine de/refunctionalization with the polar evaluation order, which
validates all η-equalities? To solve this problem, we introduce a fourth evaluation order:
the “nominal” evaluation order, where each type explicitly declares whether it should be
evaluated by-value or by-name. This scheme allows the declaration of call-by-name data
types and call-by-value codata types. However, we consider these two new types to be
mere intermediate steps in the translation from call-by-value data types to call-by-name
codata types, and vice versa, since they are not well-behaved when we consider their
η-laws.
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4.2.5. Summary

The following diagram gives a concise summary of how the two algorithms presented in
this chapter interact.

cbv data cbv codata

cbn data cbn codata

Ccodata

Tcbn

Cdata

Tcbn

Ccodata

Tcbv

Cdata

Tcbv

We factor the full de/refunctionalization transformation Fp into two simpler transfor-
mations: core defunctionalization2 Cdata and core refunctionalization Ccodata exchange
data and codata, as well as evaluation order switch, Tcbn and Tcbv. The former will
perform the essential part of de/refunctionalization, i.e. exchanging data with codata
types and vice versa without any changes to the evaluation strategy. Correspondingly,
the latter will only change the evaluation strategy, while keeping the semantics of all
existing expressions intact. For this transformation we have to add appropriate shift
types ↑cbn T and ↑cbv T to the program for every type T . Shift types were originally
introduced by Girard (2001) in the context of ludics and polarized logic, where they
mediate between positive and negative types. Their use to control the evaluation order
has been described more accessibly by Zeilberger (2008b) and Downen and Zena M. Ar-
iola (2018b). These transformations make the diagram commute up to the insertion of
some double-shifts, which can be removed in the special case of a mere round-trip. This
results in the full defunctionalization Fdata = Tcbv ◦ Cdata and full refunctionalization
Fcodata = Tcbn ◦ Ccodata.

Let us look at an example of a program which is transformed along the path top left →
top right → bottom right in the above diagram. Note that all main commands evaluate
to Done, which is a good indication that the transformations are semantics preserving.
We start with the following program in the top left corner:

Example 4.2.4 (Original program).

cbv data type N { Zero ; Suc(x : N) }

pred(k
con
: N) := matchdata N {Zero ⇒ ⟨ Zero | k ⟩, Suc(n) ⇒ ⟨n | k ⟩}

main := ⟨µ(k con
: N).Done | µ(n : N).Ω ⟩

After refunctionalizing this program by applying Ccodata we obtain the following pro-
gram which lives in the top right corner:

Example 4.2.5 (After refunctionalization).

cbv codata type N { pred(k
con
: N) }

Zero := matchcodata N {pred(k) ⇒ ⟨ Zero | k ⟩}
Suc(n : N) := matchcodata N {pred(k) ⇒ ⟨n | k ⟩}

main := ⟨µ(k con
: N).Done | µ(n : N).Ω ⟩

2In the following, we will often refer to core de/refunctionalization simply as just de/refunctionalization.
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In the last step we apply the cbv-to-cbn translation Tcbn to obtain the following
program in the lower right corner:

Example 4.2.6 (Final result).

cbn codata type N { pred(k
con
: ↑cbvN) }

cbv data type ↑cbvN { CBV(x : N) }
Zero := matchcodata N {pred(k) ⇒ ⟨ CBV(Zero) | k ⟩}
Suc(n :↑cbvN) := matchcodata N {pred(k) ⇒ ⟨n | k ⟩}

main := ⟨µ(k con
: ↑cbvN).Done | µ(n :↑cbvN).Ω ⟩

4.3. Formalization

In this section we will formally describe the syntax, type system and operational seman-
tics of our language. We will extend this language in section 4.5 with constructs which
allow to write programs in direct style.

The inherent symmetry of the system allows us to minimize the number of rules, since
we don’t have to write down separate rules for data and codata types, matches and
comatches, constructors and destructors. In order to do this, we introduce polarities p
which can either be data or codata. For example, a matchdata is a pattern match and
a matchcodata is a copattern match and so on. The syntax of our language is defined in
definition 4.3.1, and the typing and well-formedness rules are given in figs. 4.1 and 4.2,
which we will now explain in turn.

Definition 4.3.1 (Program declarations and terms). The syntax of terms and programs
is given by the following grammar.

x, y ∈ Var T ∈ Tname X ,Y ∈ Name Variables and Names

p ::= data | codata Polarity
s ::= cbv | cbn Evaluation Strategy
o ::= prd | con Orientation

Γ,∆,Π ::= ⋄ | Γ, x
o
: T Contexts

σ, τ ::= () | (σ, e) Substitutions

e ::= x | Xσ | matchp T {X∆ ⇒ c } Expressions
c ::= ⟨ e | e ⟩ | Done Commands

d ::= s p type T { X∆ } with f Type declarations

f ::= XΠ := matchp T {Y∆ ⇒ c} Functions

P ::= (d, c) Program

When specifying various of the rules and transformations which govern the system we
also use the following helper functions:
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Definition 4.3.2 (Helper functions).

val(data) := prd val(codata) := con

cnt(data) := con cnt(codata) := prd

ˆ︁data := codata ˆ︂codata := dataˆ︃cbv := cbn ˆ︃cbn := cbvˆ︃prd := con ˆ︃con := prd

We use the set Tname for names of types, and the set Name for for names of construc-
tors, destructors and functions. Whenever something can stand for either a constructor
or destructor, we refer to t as an xtor. All the typing rules implicitly have a program
in their context, and we use lookup functions to obtain various information about the
declarations in that program.

4.3.1. Type declarations and the program

A program P consists of a list of data and codata type declarations d and an entry
point in the form of a top-level command. In order to check that a program is well-
formed, we have to use the rule Wf-Prog to check that the entry point typechecks
as a command, which in turn uses the rule Wf-Type to check that each of the type
declarations is correct. Note that we do not consider declarations to be ordered and all
data and codata types, constructors, destructors and functions may reference one another
in mutual recursion. We also require all names that are used to be unambiguous, but
we don’t write down the obvious rules.

A type declaration s p type T { X∆ }with f introduces a data or codata type T (with
evaluation strategy s) by specifying both its xtors Xi∆i and a list of functions fi which
pattern match on its xtors. The only reason why the xtors of a type have to be declared
together with the functions matching on them is to allow for a simpler presentation of the
algorithm in section 4.4; a real programming language implementing these ideas would
not use this restriction. Each function declaration YΠ := matchp T {X∆ ⇒ c} declares
a function X with arguments Π by (co)pattern matching on all xtors of the type T to
which they belong. The rule Wf-Fun uses the expression typing judgement introduced
above to typecheck these global (co)pattern matches.

4.3.2. Contexts and Substitutions

The definition of data and codata types, constructors and destructors, pattern match-
ing and copattern matching can be formulated more concisely and uniformly by using
contexts and substitutions. Consider the example program from example 4.2.1, where
natural numbers are defined by two constructors: Zero and Suc. Zero does not bind
anything, but Suc is defined using the context ∆ = x : N. This context ∆ determines
simultaneously that pattern matching on a Suc constructor extends the context by ∆,
and that in order to construct a natural number with Suc, a substitution σ for ∆ has to
be provided.
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Context Formation: ⊢ Γ

T-Ctx1⊢ ⋄
⊢ Γ T ∈ Prog x ̸∈ dom(Γ)

T-Ctx2
⊢ Γ, x

o
: T

Substitution typing: Γ ⊢ σ : ∆

T-Subst1
Γ ⊢ () : ⋄

Γ ⊢ σ : ∆ Γ ⊢ e o
: T Subst(e)

T-Subst2
Γ ⊢ (σ, e) : ∆, x

o
: T

Expression typing: Γ ⊢ e o
: T

Γ(x) = (o, T )
T-Var

Γ ⊢ x o
: T

X∆ ∈ Xtors(T ) Polarity(T ) = p Γ ⊢ τ : ∆
T-Xtor

Γ ⊢ X τ
val(p)

: T

XΠ := . . . ∈ Funs(T ) Polarity(T ) = p Γ ⊢ τ : Π
T-Fun

Γ ⊢ X τ
cnt(p)

: T

Γ,∆ ⊢ c (Side condition: see text)
T-Match

Γ ⊢ matchp T {X∆ ⇒ c }
cnt(p)

: T

Command typing: Γ ⊢ c

Γ ⊢ e1 : T Γ ⊢ e2
con
: T

T-Cut
Γ ⊢ ⟨ e1 | e2 ⟩ T-Done

Γ ⊢ Done

Figure 4.1.: Typing rules.

Π ⊢ matchp T {X∆ ⇒ c}
cnt(p)

: T
Wf-Fun

⊢ XΠ := matchp T {X∆ ⇒ c}
cnt(p)

: T Ok

⊢ Γ ⊢ f Ok
Wf-Type

⊢ s p type T { X∆ } with f Ok

⊢ d Ok ⊢ c
Wf-Prog

⊢ (d, c) Ok

Figure 4.2.: Well-formedness rules.
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Contexts map variables from the set Var to their type and orientation (producer or
consumer) and are constructed according to the rules T-Ctx1 and T-Ctx2 from fig. 4.1.
A substitution σ for a context ∆ consists of one expression for each variable in ∆. We
use the typing judgement Γ ⊢ σ : ∆ to express that each expression in σ can be typed
in the context Γ with the type and orientation specified in the context ∆. The meaning
of the Subst(e) premise in the rule T-Subst2 will be explained in section 4.5 and is
irrelevant for now, as it holds for all expressions in the current setting. Note that there
is an obvious identity substitution idΓ for every context which satisfies Π,Γ ⊢ idΓ : Γ.

4.3.3. Expressions and Commands

While we have only one syntactic category e of expressions, there are two different typing
judgements for expressions; expressions can either be typed as a producer with Γ ⊢ e : T
or as a consumer with Γ ⊢ e con

: T . In all, there are four different rules which govern the
typing of expressions.

The rule T-Var is quite self-explanatory, we just have to look up both the type and
the orientation of the variable in the context.

The rule T-Xtor covers the typing of both constructors and destructors, which we
collectively call xtors. Constructors have to be typed as producers, and destructors as
consumers; the rule accomplishes this by looking up the type T to which the xtor belongs
in the program, and the polarity p of that type. Looking up the xtor in the program
also tells us what arguments we have to provide in the substitution τ , and the helper
function val(p) guarantees that the result is typechecked with the correct orientation.

The rule T-Fun is very similar to the rule T-Xtor. Instead of typechecking con-
structors and destructors, it governs the call of functions declared in the program. The
difference between T-Xtor and T-Fun is that we don’t look up the signature of a
constructor or destructor, but the declaration of a function, i.e. its signature together
with its body. If the polarity of the type to which the function belongs is data, then
the function is defined by pattern matching and the function call has to be typed as
a consumer; similarly, if the polarity is codata, the function is defined by copattern
matching and the call must be typed as a producer. The helper function cnt(p) ensures
that this is the case.

The rule T-Match covers local pattern and copattern matches. In that rule we have
to check that the right-hand side of each case typechecks as a command. In each case
we extend the outer context with the context bound by the constructor or destructor.
Pattern matching has to be exhaustive, and the arguments bound in the case have to
be identical to the ones declared in the program. We have omitted these requirements
in the formulation of the rule T-Match in order to keep it more legible.

There are two ways to form commands. A logical command ⟨ e1 | e2 ⟩ consists of two
expressions; the expression e1 has to typecheck as producer and the expression e2 as
a consumer of the same type. The rule is named after the “Cut” rule from sequent
calculus, to which it corresponds. The command Done typechecks in any context and
corresponds to a successfully terminated computation.
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4.3.4. Operational Semantics

Reduction only applies to closed commands, and the rules are given in definition 4.3.3.

Definition 4.3.3 (Operational semantics). The reduction rules for local matches and
comatches are:

⟨ Xσ | matchdata T {X∆ ⇒ c; . . . } ⟩ ▷ c σ (Match)

⟨matchcodata T {X∆ ⇒ c; . . . } | Xσ ⟩ ▷ c σ (Comatch)

The reduction rules for calls of producers and consumers are:

⟨ Yτ | Xσ ⟩ ▷ (c τ)σ if (XΠ := Y∆ ⇒ c; . . .) ∈ Prog (ConCall)

⟨ Xσ | Yτ ⟩ ▷ (c τ)σ if (XΠ := Y∆ ⇒ c; . . .) ∈ Prog (PrdCall)

Suppose that c is well-typed in the context Γ,∆, and that σ is a substitution from
the empty context for ∆, i.e. ⋄ ⊢ σ : ∆. Then the result of substituting σ in c for the
variables from ∆, which we write c σ, is well-defined and typechecks in the context Γ.
We don’t give the full rules for substitution, since these are obvious but involve the usual
technical complications of variable capture. Since all the xtors of the corresponding type
must occur exactly once inside a match, their order does not matter and we will thus
adopt the notational convention that the matching case in a pattern match is written as
its first case. When a value (constructor or destructor) meets a continuation (pattern
match or copattern match), evaluation proceeds by straightforward substitution. The
case is slightly more difficult if a constructor meets the call of a globally defined function.
In that case we have the two contexts, Γ and ∆, where the function X is declared in the
program. In that case c is typed in the context Γ,∆, and σ and τ are substitutions for
Γ and ∆, respectively. The Done command is in normal form and cannot be evaluated
further.

4.3.5. Type Soundness

The soundness of the system has been mechanically verified in Coq by formalizing the
following two theorems.

Theorem 4.3.4 (Preservation). If ⋄ ⊢ c1 and c1 ▷ c2, then ⋄ ⊢ c2
Theorem 4.3.5 (Progress). If ⋄ ⊢ c1 then either c1 = Done or there exists a command
c2 such that c1 ▷ c2.

4.4. Symmetric De/Refunctionalization

In this section we explain how to change the polarity of a type T via core defunctional-
ization Cdata and core refunctionalization Ccodata, which are subsumed by one algorithm
Cp. That is, we show how to implement the horizontal transformations of the diagram
introduced in section 4.2.
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cbv data cbv codata

cbn data cbn codata

Ccodata

Tcbn

Cdata
Tcbn

Ccodata

Tcbv

Cdata

Tcbv

We make one simplifying assumption; we assume that the program does not contain
any local pattern matches on T . This does not reduce the expressiveness of the system,
but simplifies the presentation of the algorithm.3

In definition 4.3.1 we used the same set Name for the names of both constructors/de-
structors and function calls. This choice was motivated by the fact that core de/re-
functionalization should be the identity function on terms. Typing derivations, on the
other hand, are affected by de/refunctionalization. For example, if a constructor X with
arguments ∆ is declared for the data type T , then a corresponding function declaration
X will be declared for the codata type T in the refunctionalized program. That is, the
the following type derivation for a term Xσ on the top will be replaced by the derivation
below, where D is some derivation for Γ ⊢ σ : ∆ and D′ is the corresponding derivation
for the same judgement within the refunctionalized program.

X∆ ∈ Xtors(T ) Polarity(T ) = data
D

Γ ⊢ σ : ∆
T-Xtor

Γ ⊢ Xσ : T

X∆ ∈ Funs(T ) Polarity(T ) = codata
D′

Γ ⊢ σ : ∆
T-Fun

Γ ⊢ Xσ : T

De/Refunctionalization CT
p does not change any type declaration apart from the type

declaration for T itself, which we now define. We do this by matrix transposition, as
described by Ostermann and Jabs (2018). A type declaration

s p type T { X∆} with f

is read into the first matrix of definition 4.4.1 and then transposed to obtain the second
matrix. The second matrix is then used to generate the new type declaration.

Definition 4.4.1 (Defunctionalization and refunctionalization as transposition).

3In order to lift this restriction, local pattern matches have to be first lambda-lifted and replaced by
functions declarions. Only in the next step can the the algorithm presented in this section be used.
Functions written by the programmer have to be distinguished from functions which are the result of
lambda lifting by use of annotations. After de/refunctionalization of the program, all functions which
resulted from lambda-lifting have to be inlined. All details about annotations, lifting and inlining
have been described in chapter 3.
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Dtor
Fun X1Γ1 · · · XmΓm

Y1∆1 c1,1 · · · c1,m
...

...
...

Yn∆n cn,1 · · · cn,m

Ctor
Fun Y1∆1 · · · Yn∆n

X1Γ1 c1,1 · · · cn,1

...
...

...
XmΓm c1,m · · · cn,m

defunctionalize

refunctionalize

For the system presented in section 4.3, the following properties are easily established.

4.4.1. Properties of De/Refunctionalization

Since matrix transposition is its own inverse, it is obvious that defunctionalization and
refunctionalization are mutually inverse:

Theorem 4.4.2 (Mutual Inverse). For every well-formed program P and data type T
in P :

CT
p̂ (CT

p (P )) = P

De/Refunctionalization also preserve well-formedness of programs.

Theorem 4.4.3 (Typeability preservation). If P is a well-formed program, then CT
p (P )

is also well-typed.

De/Refunctionalization is semantics-preserving.

Theorem 4.4.4 (Semantic preservation). Let P be a program, with ⊢ P Ok, T a type
of polarity p in P and c1 a closed command in P , i.e. ⊢ c1. Furthermore, c1 may not
contain any local pattern matches on T . Then, if c1 ▷ c2 in P , c1 ▷ c2 in CT

p (P ).

Proof. Since this transformation only transposes the matrix, the cell which is addressed
in this matrix by a pair of Fun and Xtor does not change, thus the body which will
be substituted for a command consisting of such a pair will be the same as before.

4.5. Evaluation Order

In this section we will formally introduce a new syntactic construct to the language:
µ-abstractions. The introduction of µ abstractions will create critical pairs. A critical
pair is a redex that can be evaluated to two different commands which don’t reduce to
the same normal form. In order to “defuse” these critical pairs we have to introduce
an evaluation order, which prescribes precisely how to evaluate these redexes. After
presenting several different alternative evaluation strategies we will end with a nominal
strategy in which every type declares how it’s redexes are evaluated.
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4.5.1. Extending the calculus with µ abstractions

We will now extend the syntax and typing rules with µ abstractions.

Definition 4.5.1 (Syntax of µ-abstractions).

e ::= . . . | µ(x
o
: T ).c Expressions

These µ-abstractions are governed by one additional typing rule

Γ, x
o
: T ⊢ c

T-µ
Γ ⊢ µ(x

o
: T ).c

ô
: T

and the following two reduction rules

Definition 4.5.2 (Reduction of µ-abstractions).

⟨µ(x
con
: T ).c | e ⟩ ▷ c[e/x] if Subst(e) (R-µ1)

⟨ e | µ(x : T ).c ⟩ ▷ c[e/x] if Subst(e) (R-µ2)

In the system of section 4.3 the syntax directly determined the only possible opera-
tional semantics. But with the addition of µ the calculus is no longer confluent, since
there is a critical pair which is well-known in the λ̄µµ̃ literature: A command where µ
and µ̃ meet. In our setting, this corresponds to a producer µ(x

con
: T ).c1 and a consumer

µ(x : T ).c2, as presented in section 4.2.3.

c1 ◁ ⟨µ(x
con
: T ).c1 | µ(y : T ).c2 ⟩ ▷ c2

In order to guarantee confluence we therefore need the Subst(e) predicate which we
introduced in section 4.3. If we know that Subst

(︁
µ(x

con
: T ).c1

)︁
and Subst

(︁
µ(y : T ).c2

)︁
never hold simultaneously for the same type T, then the two evaluation rules from
definition 4.5.2 don’t overlap.

A sensible definition of Subst(e) will therefore always determine which µ abstraction
to evaluate first. This corresponds precisely to specifying an evaluation order. In the
following subsection we will therefore discuss some possible evaluation strategies.

4.5.2. Specifying evaluation strategies

First, let us specify precisely what we mean by “call-by-value” and “call-by-name” in this
data-codata system. An evaluation strategy is characterized by what kind of expressions
we are allowed to substitute for a variable. For example, call-by-value lambda calculus
prohibits the substitution of non-canonical terms such as 1+1 for x in the redex (λx.t)(1+
1). We can directly translate this example to the symmetric calculus using the functions
from example 4.2.1. The term 1 + 1 corresponds to µ(k

con
: N).⟨ 1 | add(1, k) ⟩. We don’t
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allow this term to be substituted for a producer variable in a reduction step if we follow a
call-by-value reduction strategy. Generalizing from this concrete example, call-by-value
disallows the substitution of any µ-abstractions for producer variables in a reduction
step.

An evaluation strategy is fully specified by the rules that govern the Subst(e) predi-
cate. All evaluation strategies share the rules of definition 4.5.3.

Definition 4.5.3 (Common rules for evaluation orders).

Subst(Xσ) Subst
(︁
matchp T { . . .}

)︁
Subst(x)

These rules state that all function calls, xtors and local matches are substitutable.
Moreover, variables are also substitutable. The reasoning behind the latter is as follows:
Since expressions are only substituted into other expressions when they appear at the
top-level of a command that is being reduced, they cannot be variables, as the command
would not be closed otherwise. Thus, they must have been replaced with some other
term in an earlier substitution step and this term must have been itself substitutable for
this substitution to occur.

One way to specify an evaluating strategy is to prescribe a global evaluation order.
For example, OCaml chose call-by-value, whereas Haskell chose call-by-name.4 In our
formalism, this corresponds to the definitions given in definition 4.5.4 and definition 4.5.5.
Specifying a global evaluation order works, but has the disadvantage already indicated
in the introduction: the validity of η is restricted to data types (under call-by-value) or
codata types (under call-by-name).

Definition 4.5.4 (Global call-by-value evaluation order). Subst
(︁
µ(x : T ).c

)︁
Definition 4.5.5 (Global call-by-name evaluation order). Subst

(︁
µ(x

con
: T ).c

)︁
A better alternative is to specify evaluation order per-type; that is, whether a µ

abstraction is substitutable depends on the polarity of the type T . This corresponds to
the rules given in definition 4.5.6, which we call the polar evaluation order. The “polar”
evaluation strategy is the most natural, since it satisfies the most η-laws.

Definition 4.5.6 (Polar evaluation order).

Subst
(︁
µ(x : T ).c

)︁
if T has polarity data

Subst
(︁
µ(x

con
: T ).c

)︁
if T has polarity codata

Ideally we would want to prescribe the polar evaluation order in our system, but this
doesn’t interact nicely with de- and refunctionalization, which we discuss in the next
subsection. We therefore need an additional evaluation strategy, the nominal strategy
given in definition 4.5.7. In the nominal strategy every type declares whether to evaluate
its redexes by-value or by-name.

4We ignore the difference between call-by-name and call-by-need in this chapter.
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Definition 4.5.7 (Nominal evaluation order).

Subst
(︁
µ(x : T ).c

)︁
if T is a cbv type

Subst
(︁
µ(x

con
: T ).c

)︁
if T is a cbn type

This nominal evaluation strategy is the one we are ultimately going to adopt.

4.5.3. Extensionality

We now come back to the problem of η equalities mentioned in section 4.2. Assume that
the variables bound in the Γi do not occur free in the expression e. We define =η as the
congruence on terms generated by the following two equations.

matchdata T {X∆ ⇒ ⟨X idΓ | e ⟩} =η e (ηdata)

matchcodata T {X∆ ⇒ ⟨ e | X idΓ ⟩} =η e (ηcodata)

In section 4.2.3 we presented an example which showed that the validity of η equality
depends on the evaluation order of the language. For the polar evaluation order as
defined above, all η equalities are valid.

Lemma 4.5.8. Assuming the polar evaluation order from definition 4.5.6, we have for
any expression e and e′:

(Subst(e) ∧ e =η e
′) ⇒ Subst(e′)

Since =η is defined as a congruence generated by eq. (ηdata) and eq. (ηcodata), the
following theorem needs the reflexive-transitive closure ▷∗ of the reduction relation ▷
since multiple expansions might have occurred within one use of =η.

Theorem 4.5.9. Assuming the polar evaluation order from definition 4.5.6, let c1, c
′
1, c2

be commands s.t. c1 ▷ c2 and c1 =η c
′
1. Then there exists a command c′2, s.t. c2 =η c

′
2

and c′1 ▷
∗ c′2.

4.6. Changing Evaluation Order

In this section, we will define the missing two transformations which change the evalua-
tion strategy of a type, without changing its polarity (data or codata). That is, we show
how to implement the vertical transformations of the diagram introduced in section 4.2.

cbv data cbv codata

cbn data cbn codata

Ccodata

Tcbn

Cdata
Tcbn

Ccodata

Tcbv

Cdata

Tcbv
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The full refunctionalization from call-by-value data to call-by-name codata is then just
Ccodata, extended to account for µ, followed by Tcbn (or the other way around, which
makes no difference), and similarly for defunctionalization. The Tcbn and Tcbv transfor-
mations use so-called shifts, which we introduce in section 4.6.2, to embed cbn into cbv
types or vice versa. When we apply defunctionalization and then refunctionalization (or
vice versa), we use Tcbn after Tcbv and thus introduce double-shift artifacts (thanks to
Cdata and Ccodata being mutually inverse, apart from that aspect, we do get back to the
original program). However, we show how these artifacts can be removed so that the
two transformations are indeed mutually inverse.

4.6.1. De/Refunctionalization and evaluation order

Extending the transformations Cp of section 4.4 to cover µ abstractions is straight-
forward: Since evaluation order is not changed in these transformations, we can just
keep all µ abstractions within the program unchanged, i.e. the transformation on terms
still remains the identity function. Furthermore, the rest of the transformation remains
a simple matrix transposition, as before. However, as explained in section 4.2.4, the
resulting transformation is unsatisfying on its own, since it does not allow the input and
output to both have the transformed type in its polar, i.e. natural evaluation order.
Therefore, we introduce nominal evaluation order and the Tcbn and Tcbv transforma-
tions.

Specifically, there are two observations that we can make: Firstly, this extended trans-
formation only preserves typechecking if we keep the evaluation order of the type T con-
stant. Otherwise we might violate the additional premise in the Subst2 rule. Secondly,
even if the transformation were type-preserving, it would not be semantics-preserving,
since we would now disambiguate the critical pair differently. Thus, the central problem
that we tackle in this section is: We cannot combine the simple de/refunction-
alization approach described above with polar evaluation order.

Previously, user-defined types could be either data or codata types. We now extend
this scheme and parameterize user-defined types by their evaluation order, written with
prefix cbv or cbn e.g.

cbv data type N { Zero() ; Suc(x : N) }.

The evaluation order is now induced by this parameter of the type, as formally defined by
the two rules for the Subst(−) judgement for nominal evaluation order (definition 4.5.7).

As sketched above, we can now factorize the transformations between a cbv data
type and a cbn codata type into two steps, the first of which changes the polarity of the
type without changing its evaluation order (Ccodata and Cdata presented in section 4.4,
trivially extended to µ). In order to define the second part of this algorithm, we have to
introduce shift types, which we do in the next subsection.

4.6.2. Shift Types

The shift types, briefly introduced in section 4.2.5, are ordinary user-defined types in
this system; the type system does not need to be extended for them, and the normal
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evaluation and typing rules presented above apply. We allow ourselves to write the
definitions of the shifts parameterized by a type, even though our formalism doesn’t
allow this. This is not essential; we could alternatively add one shift type to the program
for every type that we want to shift. The definitions of the shift types are:

cbv data type ↑cbvT { CBV(x : T ) }
cbn codata type ↑cbnT { CBN(x

con
: T ) }

As is apparent from their definition, these types do not change the logical meaning of
the type they shift. Their effect is restricted to the evaluation order of the program, in
every other respect they behave like an identity wrapper. This is why the following helper
function So

s allows to embed any producer or consumer expression in the corresponding
shifted type:

Sprd
cbv (e) := CBV(e)

Sprd
cbn(e) := matchcodata ↑cbnT {CBN(x) ⇒ ⟨ e | x ⟩}

Scon
cbv (e) := matchdata ↑cbvT {CBV(x) ⇒ ⟨x | e ⟩}

Scon
cbn(e) := CBN(e)

That is, the following rule is derivable for all o, s, e and T :

Γ ⊢ e o
: T

Γ ⊢ So
s (e)

o
: ↑sT

We will now give some examples for how shift types can be used. The cbv data type
N of natural numbers can be wrapped as ↑cbn N to obtain a codata type of delayed
natural numbers. A list of ordinary natural numbers cannot contain the unevaluated
expression µ(k

con
: N).(⟨ 1 | add(1, k) ⟩), since this expression is not substitutable and can

therefore (according to rule T-Subst2) not occur in a substitution. However, a list
of delayed natural numbers can contain the equivalent expression matchcodata ↑cbn
T {CBN(k) ⇒ ⟨ 1 | add(1, k) ⟩}. This allows a very fine-grained control over evaluation
order in the types. In a program which contains cbv data type definitions of natural
numbers and lists, as well as a function type, three different kinds of functions which
expect a list of natural numbers can be distinguished. A function with argument of
type List N evaluates its arguments to a list of fully evaluated natural numbers. If the
argument type is List (↑cbnN), then the spine of the list has to be fully evaluated before
it is substituted in the body of the function, but the elements of the list might still be
unevaluated. Thirdly, if an argument of type ↑cbn (List N) is expected, the argument
is passed by-name to the body of the function.

4.6.3. Changing the evaluation order

Let us now define the transformation T T
s , which changes the evaluation strategy specified

for type T to the evaluation strategy s, for the different syntactic entities. For type
declarations we specify the transformation in definition 4.6.1.
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Definition 4.6.1 (Changing the evaluation order in type declarations).

T T
s (s′ p type T ′ {X ∆} with YΠ := e) :=

s′′ p type T ′ {X T T
s (∆)} with YT T

s (Π) := T T
s (e)

where s′′ is specified in the following way

s′′ :=

{︄
s′ (T ̸= T ′)

s (T = T ′)

T T
s of course changes the specified evaluation order of T to s, and in all declarations

applies T T
s to the contexts in the signatures. Note that we assume that the transforma-

tion is only applied to applied to types where it makes sense, i.e. T T
cbv is only applied if

T is a cbn type and T T
cbn only if T is a cbv type. If used this way, note that in the case

of T = T ′, we also have s = s′̂.

In contexts T T
s replaces T with the relevant shifted type to retain the original evalu-

ation order s. This is specified in definition 4.6.2.

Definition 4.6.2 (Changing the evaluation order in contexts and substitutions).

T T
s (⋄) := ⋄ T T

s (Γ, x
o
: T ′) :=

{︄
T T
s (Γ), x

o
: T ′ (T ̸= T ′)

T T
s (Γ), x

o
: ↑ŝT (T = T ′)

T T
s (()) := () T T

s ((σ, e) := (T T
s (σ), T T

s (e))

Accordingly, in the appropriate places in expressions, whose transformation is specified
in definition 4.6.3, the type of a µ has to be changed to the corresponding shifted type,
and a match or a call to CBV or CBN has to be inserted to wrap expressions of type T ,
resulting in the corresponding shifted type. Thus, overall, the evaluation order specified
for T is changed while retaining the operational semantics of the program.5

Definition 4.6.3 (Changing the evaluation order of expressions and commands). We
change the evaluation order of commands as follows:

T T
s (Done) := Done

T T
s (⟨ e1 | e2 ⟩) := ⟨ T T

s (e1) | T T
s (e2) ⟩

5Up to reduction of administrative redexes caused by the wrapping.
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and of expressions as follows:

T T
s (x) := x

T T
s (Xσ) :=

⎧⎪⎨⎪⎩
X T T

s (σ) X /∈ Funs(T ) and X /∈ Xtors(T )

Sval(p)
ŝ (X T T

s (σ)) X ∈ Xtors(T ) and Polarity(T ) = p

Scnt(p)
ŝ (X T T

s (σ)) X ∈ Funs(T ) and Polarity(T ) = p

T T
s (matchp T

′ {X∆ ⇒ c}) :=

{︄
matchp T

′ {X∆ ⇒ T T
s (c)} (T ̸= T ′)

Scnt(p)
ŝ (matchp T {X∆ ⇒ T T

s (c)}) (T = T ′)

T T
s (µ(x

o
: T ′).c) :=

{︄
µ(x

o
: T ′).T T

s (c) (T ̸= T ′)

µ(x
o
: ↑ŝT ).T T

s (c) (T = T ′)

4.6.4. Converting from call-by-value to call-by-name and back: removing
double-shifts

When using the transformation twice on a program P w.r.t. a type T, the resulting
program, i.e. T T

ŝ (T T
s (P )), contains double-shift artifacts, which can be removed in order

to obtain the original program (with type T replacing type ↑ŝ↑sT ). Expressions of type
↑cbv↑cbnT which contain such artifacts are either

CBV(matchp ↑cbnT {CBN(k) ⇒ ⟨ e | k ⟩})

or

µ(x
con
: ↑cbv↑cbnT ).c.

These can respectively be replaced by the result of recursively replacing subexpressions in
the expressions e and µ(x

con
: T ).c, obtaining expressions of type T . For a type ↑cbn↑cbvT ,

we proceed analogously. By a simple structural induction, one can show that the just
described transformation, which we call AT , indeed goes from T T

ŝ (T T
s (P )) to P .

Combining this result with theorem 4.4.2, we have shown that walking from one corner
of our diagram to another and back (and eliminating double-shifts) leads back to the
original program.

Theorem 4.6.4 (Mutual Inverse (overall)). For every well-formed program P and data
type T in P :

AT (T T
ŝ (CT

p̂ (T T
s (CT

p (P ))))) = P

4.7. Related Work

There are two separate strands of related work: the development of the theory of defunc-
tionalization and refunctionalization on the one hand, and the development of symmetric
calculi on the other hand.
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Defunctionalization and refunctionalization De/Refunctionalization of the function
type have a long history, of which we only cite the seminal papers (John Charles
Reynolds, 1972; Danvy and Nielsen, 2001; Danvy and Millikin, 2009). The general-
ization of defunctionalization from functions to arbitrary codata types was described
by Rendel, Trieflinger, and Ostermann (2015) for a simply typed system without local
lambda abstractions or local pattern matches. That the defunctionalization of poly-
morphic functions requires GADTs was first observed by Pottier and Gauthier (2006);
that the generalization to data and codata types then also requires GAcoDTs has been
described by Ostermann and Jabs (2018). How to treat local pattern and copattern
matches in such a way as to preserve invertibility of defunctionalization and refunction-
alization has been described by Binder, Jabs, Skupin, and Ostermann (2019), which is
the basis of chapter 3. The novel aspect of the present work is that it presents com-
pletely symmetric data and codata types, and that it also considers the interaction with
evaluation order.

Symmetric calculi Our core calculus was strongly influenced by the ideas of Zeilberger’s
Calculus of Unity (CU) (Zeilberger, 2008b). In contrast to our system, CU does not
provide direct means for user-defined data types (though a related system does have a
similar mechanism (Zeilberger, 2008a)). Furthermore, its treatment of pattern-matches
on recursive types is not syntactical: a pattern match on N contains an infinite amount of
cases, similar to the ω-rule (Hilbert, 1931) in formal systems of arithmetic. By contrast,
our system (which is hence easily implementable) only allows finite matches, which also
have to be shallow anyway, in order to facilitate de- and refunctionalization.

The other important heritage is the ongoing quest for proof-theoretically well-behaved
term assignment systems for sequent calculus. The λ̄µµ̃ calculus of Curien and Herbelin
(2000) is such a system with a fixed set of types; its authors discuss the problems of
confluence and evaluation order, but do not consider data and codata types in their
general form. The “codata–data” calculus (CD) of Downen and Zena M. Ariola (2020)
is an extension of λ̄µµ̃ with user-defined data and codata types, polymorphism and
higher kinds. They discuss extensively the relation between evaluation order and the
polarity of types (data or codata), but do not consider algorithms for switching these
properties. Their data and codata types are symmetric, but they do not exploit this fact
in their formalization; instead they present separate rules for data and codata types.

Another well-known symmetric calculus is the dual calculus of Wadler (2003). This
calculus uses the same judgements as our system and λ̄µµ̃, and contains both µ and µ̃
constructs. The types of that system are of ambiguous polarity; for example, the product
type is defined by a positive introduction rule (pairing) and negative elimination rules
(first and second projection). Wadler also discusses De Morgan duality. He defines a
dualizing operation −◦ which behaves as an involution on both types and terms, and
relates proofs of a type T to refutations of T ◦ (in our notation: Γ ⊢ t : T ⇔ Γ◦ ⊢
t◦

con
: T ◦). It is possible to define the same operation in our system. Taking polarity into

account, this relates proofs (refutations) of a product data type ⊗, i.e. a data type with
one “pair” constructor, to refutations (proofs) of sum codata type `, a codata type with
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one “case” destructor. The proofs and refutations for the sum data type ⊕, a data type
with two constructors “inl” and “inr”, and products codata type &, a codata type with
two destructors “outl” and “outr”, are similarly related.

4.8. Conclusion

This chapter presented a system with completely symmetric data and codata types.
There are two transformations which transform cbv data into cbn codata, and vice
versa; this transformation has been factored into one transformation which changes the
polarity and one transformation which changes the evaluation order. This has revealed
that evaluation order and polarity of a type, even though related, are best treated
separately when considering the conversion between data and codata. In particular,
codata types have more to offer than just the representation of infinite data, they are
an essential ingredient in getting the evaluation strategy of a language right.
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The contents of this chapter are based on an article that has been accepted at the
international conference on functional programming (ICFP), and the paper has been
published as:

Klaus Ostermann, David Binder, Ingo Skupin, Tim Süberkrüb, and Paul
Downen (2022a). “Introduction and Elimination, Left and Right”. In: Proc.
ACM Program. Lang. 6.ICFP. doi: 10.1145/3547637. url: https://doi.
org/10.1145/3547637

The Coq formalization of the main results of that paper are available online as Oster-
mann, Binder, Skupin, Süberkrüb, and Downen (2022b).

In this chapter I elaborate the idea that I have already introduced in section 1.2:
Different logic calculi correspond to different programming styles. In the introduction
we looked at three such correspondences for axiomatic calculi, natural deduction and the
sequent calculus. In this chapter we approach the problem more systematically. We start
with the observation that there are four different kinds of rules in derivation systems
based on sequents: left-introduction rules, right-introduction rules, left-elimination rules
and right-elimination rules. For a given logical connective we present all of its rules,
even though a subset of just the introduction, just the elimination, just the left or just
the right rules would be sufficient to prove all logically valid formulas. The completeness
of these subcalculi is proved by a principle called bi-expressibility : Left-introduction and
right-eliminiation rules, as well as left-elimination and right-introduction rules, can be
expressed through each other. This encompassing view of different calculi is the first,
theoretical contribution of this chapter.

The second contribution of this chapter is our analysis of how the chosen rules de-
termine the resulting programming style. If we choose just the right rules (i.e. right
introduction and right elimination rules), then we obtain ordinary functional programs
which introduce and eliminate producers of a given type. The left rules, on the other
hand, allow us to directly manipulate continuations. It might not be obvious that this
increased expressiveness can be useful in practice: In order to show that they are use-
ful we present two examples which use the increased expressiveness relative to ordinary
functional languages. The first example is about the parsimonious filter function that
yields the same result as an ordinary filter function which removes all the elements from
a list which don’t satisfy a given predicate. But the parsimonious filter function can
share the tail of the list in which each element satisfies the predicate; the ordinary filter
function will always create a copy of this tail in memory. And the parsimonious filter
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function does all that while traversing the list only once. The second example concerns
error handling. The study of linear logic has shown that there are two ways to polarize
disjunctions ∨: either as a positive data type ⊕ or as a negative codata type `. The data
type ⊕ is used in programming languages such as Haskell and Rust to handle errors. A
function which returns an element of type τ1⊕τ2 can return either an element of τ1 or of
τ2, and the caller of that function has to be able to handle these two possibilities. The
codata type ` offers another way which is closer to how languages like C++ or Java
handle errors with exceptions handlers. A function which returns an element of type
τ1 ` τ2 has to be called with two continuations, one for the error case and one for the
success case, and the function itself decides which continuation to call.

5.1. Introduction

Undoubtedly, the λ-calculus has had a profound impact on functional programming:
from language design, to implementation, to practical programming techniques. Through
the Curry-Howard correspondence, we know that the λ-calculus — and likewise, λ-based
functional languages — are oriented around the interplay between the introduction and
elimination rules of types as first formulated in natural deduction (ND). This natural
deduction style of programming nicely allows for a quite “natural” way of combining
sub-problems in programs, like basic operations of function composition f (g x) and
swapping the pair x as (Snd x,Fst x). The natural compositional style is afforded by
the fact that all expressions in the λ-calculus produce exactly one result that is implic-
itly taken by exactly one consumer: namely, the enclosing context of that expression.
While the single implicit consumer is natural for composition, it can be rather unnatural
if we ever want to work with more than one consumer. In these cases, we must reify
the implicit consumer to make it explicit — such as resorting to continuation-passing
style John Charles Reynolds, 1972 or control operators like call/cc — which leads to
the rather asymmetric situation of having a mix of one special implicit output with
additional explicit outputs.

When might functional programmers want to juggle multiple consumers at the same
time? Consider the familiar filter function, naturally expressible in any typed functional
language:

filter : (a→ Bool) → [a] → [a]

filter p [] = []

filter p (x :: xs) = If p x Then x :: filter p xs

Else filter p xs

This function successfully removes any elements from a given list xs which fail the
test p, leaving only those elements x for which (p x) is true. From a quick inspection of
the definition, we can see that the output of this function always fits its specification.
So what’s wrong? The problem is with efficiency. It’s quite likely that a large chunk
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of the filtered output will be the same as the input, and yet filter will reallocate a new
cons cell for every (::) in the output, even if that same list already exists in memory.
As an extreme case, if we filter with the constant function const x y = x, the call
filter (const True) xs will allocate and return an entirely new list that is equal to xs.

Instead, we would rather that a call like filter (const True) xs notices its output will
be equal to xs, so that it can return the exact same object x that was already allocated in
the heap. In a more general case, it may be that only some suffix of xs all passes the test
p; if so, filter p xs should return a list that only allocates new cons cells for the prefix of
the list that is changed, connected to an identical pointer to the same suffix of the original
xs list in the heap. And in any case, filter p xs should only traverse the list xs once,
and when it has reached the end of the list, it should return immediately and not have
to unwind a call-stack first, so it would need to be written in a partially tail-recursive
way. This is quite a tall order to satisfy in a conventional functional language. Shivers
and Fisher (2004) showed how to express efficient filtering using multi-return functions.
However, this solution complicates ordinary first-class functions with another concern
(multiple different return paths); going against orthogonal language design philosophy
of keeping separate features separate.

The classical sequent calculus (SC) can also be interpreted Curry-Howard-style as a
prototypical programming language. Sequent-style languages turn several implicit as-
pects of the λ-calculus into explicit, symmetric entities. There is a context containing
many named outputs, dual to the many named inputs in the context of free variables.
Besides terms which primarily produce results, there are terms which primarily consume
inputs. Elimination rules are replaced by left rules operating on consumers. Computa-
tion happens inside of a command ⟨ e | f ⟩, which connects the output of a producer e
with the input of a consumer f . For instance, the consumer Fst o

9 f should be read
as “project the implicit pair to its first component and then continue with f” and is
reduced as ⟨ (e1, e2) | Fst o

9 f ⟩ ▷ ⟨ e1 | f ⟩. Compared to ND, programs in SC have an
“inside-out” structure, which Wadler (2003) has compared to the external plumbing of
the Pompidou center in Paris. Yet, whereas gazing upon the Pompidou center may be a
beautiful sight, sifting through the bureaucratic plumbing of a large-scale sequent-style
program is not.

Still, the use of left rules lets the classical sequent calculus express new kinds of types
which are not expressible in conventional functional languages. These new, exotic types
would let us decompose a complex feature like multi-return functions into more basic
parts. But must we always suffer through painful bureaucracy to access these types
for programming? No! Our insight is that we can combine the best of both natural
deduction (introduction versus elimination) and sequent calculus (left versus right) styles
in the same program, making use of exotic new types of control flow that juggle multiple
consumers while still enjoying pleasantly natural, functional composition.

We propose having four styles of rules: introductions and eliminations on both the
left and the right. Doing so lets us introduce new ways of programming that keeps
all the familiar features we already know as they are, and also lets us talk about new
types that can’t be expressed in conventional functional languages. For example, we
can decompose the idea of multi-return functions (Shivers and Fisher, 2004) into several
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(◦) : b −≺≺ ¬(a→ b) −≺≺ a
⟨x | α ◦Not f ⟩ = ⟨ f x | α ⟩

filter : (a→ Bool) → [a] → [a]

⟨filter p xs | start ⟩ =

⟨Handle (filter/pass p xs) with (start ◦Not (const xs)) | start ⟩

filter/pass : (a→ Bool) → [a] → [a] ` ()

⟨filter/pass p [] | [diff , same] ⟩ = ⟨ () | same ⟩
⟨filter/pass p (x :: xs) | [diff , same] ⟩ =

If p x

Then ⟨filter/pass p xs | [diff ◦Not (x ::), same] ⟩
Else ⟨filter/pass p xs | [diff , diff ◦Not (const xs)] ⟩

Figure 5.1.: Parsimonious filter function

orthogonal features: regular functions (of type T1 → T2), computations juggling two
continuations (of type T1`T2), functions transforming a consumer of T1s to a consumer
of T2s (of type T1 −≺≺ T2), and the reversal between producers and consumers (of type
¬T ).

Together, these features let us write the efficient1 filtering function using familiar pro-
gramming concepts (first-class functions and exception handling) and reusable combina-
tors (like const above and the following composition ◦ of a function with a continuation)
based on a function filter/pass which either filters a list by removing at least one failing
element, or finds element passes (fig. 5.1). The rest of this chapter will go into the detail
needed to read, understand, and specify how this example works.

So, should we program in ND style or in SC style? We say: both! The purpose of
this work is to analyze and complete the logic calculus design space opened up by ND
and SC and investigate the interdependency between logical calculus style and program
structure. More specifically, we make the following contributions:

• We investigate the usage of all four kinds of rules, introduction and elimination,
both left and right. We identify four different sub-calculi: The intro calculus
(which corresponds to classical SC), the right calculus (which corresponds to ND),
the elimination calculus (which has only left and right elimination rules), and the
left calculus (which features left introduction and elimination rules).

1We are defining a calculus via a reduction semantics, and that semantics does not feature pointers, so
we cannot directly talk about sharing and do not make any practical efficiency claims here. We will
clarify that point in section 5.7.
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• We analyze the influence of these calculi on program structure (and hence mod-
ularity, extensibility etc.). Specifically, we argue that the common programming
design guideline “the structure of the program follows the structure of the data”
can be interpreted in four ways, and that those four ways correspond to the four
calculi described above.

• We clarify the relation between the different rules of a connective by the concept
of bi-expressibility . Informally, bi-expressibility means that the left introduction
rule is as powerful as the right elimination rule and the right introduction rule is
as powerful as the left elimination rule.

• We deepen the known dualities between connectives by using the proof/refutation
duality Tranchini, 2012. Specifically, we show that the typing, term-level repre-
sentation, and reduction of “dual” connectives can be derived mechanically, which
gives rise to the possibility of a new form of consumer/producer polymorphism, in
which a term can be interpreted as both a producer of type T or as a consumer of
the dual of T .

All theorems of this chapter have been mechanized and proven in Coq (submitted as
supplementary material).

The remainder of this chapter is structured as follows: In section 5.2, we give an
informal introduction to the language framework we present and describe the influence
of rule choice on program structure. In section 5.3, we present a small core language
featuring functions as well as positive sums and products. In section 5.4, we introduce
bi-expressibility and present an operational semantics of the language. In section 5.5,
we demonstrate how to mechanically derive the dual connectives (cofunctions, negative
sums and products) and elaborate on the idea of duality polymorphism. In section 5.6 we
describe extensions of the calculus framework with logical constants and universal and
existential types. In section 5.7.2 we present examples to illustrate the new possibilities
of programming in a language with all four kinds of rules. Section 5.8 presents related
and future work and section 5.9 concludes.

5.2. Motivation

To get started, let’s analyze the interaction between logical structure and program struc-
ture. As an example, consider the connective ⊕ as an algebraic data type in a typical
functional language. Values of the type X ⊕ Y are built using the constructors In1

and In2 — these correspond nicely to the two introduction rules of X ⊕ Y in natural
deduction. To use values of type X⊕Y , we can employ a Case-expression that pattern-
matches on the two possible alternatives — likewise corresponding exactly to natural
deduction’s elimination rule for X⊕Y . Using these tools, we can swap these two options
— transforming an unknown value z : X ⊕ Y into a result of Y ⊕X — by matching on
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the originally-chosen option and replacing it with the opposite constructor like so:

Case z { In1 x ↦→ In2 x;

In2 y ↦→ In1 y }

Rather than always thinking of producing some (implicit) output using introductions
and eliminations, a sequent-based language does away with eliminations altogether. In-
stead, it uses the dichotomy between producers which implicitly return some result as
an output — just like we are used to in conventional functional programming — versus
consumers which implicitly take an input to use analogous to continuations. The same
swapping operation — converting an unknown z : X⊕Y into a Y ⊕X — can be written
in sequent style as:

⟨z | Match { In1 x ↦→ ⟨ In2 x | α ⟩
In2 y ↦→ ⟨ In1 y | α ⟩}⟩

Notice the several differences in this version of the same program. The top-most oper-
ation is a command of the form ⟨ e | f ⟩ which connects the implicit output returned
from a producer e into the implicit input expected by a consumer f . Unlike producers
and consumers, commands have no implicit input or output. Rather than the Case
expression — which has an explicit input used to implicitly produce some result — we
use a Match, which forms a new consumer implicitly expecting an input of type X⊕Y .
The Match consumer has two branches pattern-matching on its implicit input — one
for each possibility between In1 and In2 — and because consumers have no implicit
output, both possible branches lead to commands. In either case, the swapped sum
value is explicitly “returned” (that is, passed via a command) to α, which gives a name
to the previously-implicit output of the whole operation.

Under our analysis of comparing different structures of logic — and their impact on
their corresponding programs — natural deduction has only right rules. In other words,
every rule of natural deduction is concerned with concluding the truth of propositions
(traditionally written on the right-hand side of the hypothetical turnstyle ⊢, hence the
name “right”). By the proofs-as-programs paradigm, this corresponds to the fact that
every primitive tool that typical functional languages have for working with its various
types of information — both introductions and eliminations — are inherently concerned
with producing something. The constructors In1 and In2 produce unique values of the
sum type X ⊕ Y . The Case expression uses an X ⊕ Y value, yes, but only in the
service of producing some other result (which may not necessarily be another sum type).
In contrast, the application of the sequent calculus as the basis for a programming
language has revealed a different way of organizing programs. Instead, it pairs rules
working on the right (which look just like natural deduction’s introduction rules) with
rules working on the left. These left rules can be seen as ways to refute propositions,
which are concerned with the falsehood of propositions (or equivalently, with assumed
truth of propositions, traditionally written on the left-hand side of ⊢, hence the name
“left”). But importantly, no matter which side of the divide the rules are focused, the
sequent calculus has only introduction rules
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Table 5.1.: Four different ways to swap the components of z : X⊕Y and send to consumer
α : Y ⊕X.

Calculus Program

Right Case z {In1 x ↦→ ⟨ In2 x | α ⟩; In2 y ↦→ ⟨ In1 y | α ⟩}
Intro ⟨z | Match {In1 x ↦→ ⟨ In2 x | α ⟩; In2 y ↦→ ⟨ In1 y | α ⟩}⟩
Left ⟨z | Match {In1 x ↦→ ⟨x | Out2 α ⟩; In2 y ↦→ ⟨ y | Out1 α ⟩}⟩
Elim Case z {In1 x ↦→ ⟨x | Out2 α ⟩; In2 y ↦→ ⟨ y | Out1 α ⟩}

We can compare these two logical styles of programming — one based on natural
deduction and the other on the sequent calculus — by modifying the elimination rule
slightly. When in the context of a command with an explicit consumer named α, a Case
does not need to implicitly produce some result, but can instead indicate what command
to execute next by sending either result to α. In effect, this “absorbs” the consumer α
into the Case like so:

⟨Case e {In1 x ↦→ e1; In2 y ↦→ e2} | α ⟩ =

Case e {In1 x ↦→ ⟨ e1 | α ⟩; In2 y ↦→ ⟨ e2 | α ⟩}

With this in mind, we present the two styles of sum-swapping in table 5.1, in each case
connecting an input z : X ⊕ Y to an output α : Y ⊕ X. The first line uses only right
rules (both introduction and eliminations on the right) in a typical functional style. The
next line illustrates how the same program can be written using only introduction rules
(both on the left and the right) in sequent style. The gray parts indicate how we can
connect the program to an explicitly given producer z.

But what about other combinations of rules? If we can make due with only right rules
or only introductions, can we also write the same program using only left rules and only
eliminations? Yes! The third line shows again the same program but this time using
only left rules. Out1 α and Out2 α are the left elimination rules for a consumer α of
type Y ⊕X. Out1 α should be read as: Inject the implicit value into the left component
of a sum and then continue with α. Finally, the last line shows how the program can
be formulated using only elimination rules. As we will later see, every program can be
written in each of these styles, and there is a simple and systematic way to transition
between them.

But what difference does it make which style we choose?
One of the main principles of programming that is taught in most introductory pro-

gramming courses (such as Felleisen, Findler, Flatt, and Krishnamurthi (2001)) is that
the structure of a program follows the structure of its input. A less common but equally
valid principle is that the structure of a program follows the structure of its output Gib-
bons, 2021. Both styles can also be reversed in that a program may also be “inside-out”,
that is, it follows the structure of the input or output from the inside to the outside and
not vice versa. Such a structure is common, for instance, in continuation-passing style.
The choice of style has a major influence on the modularity properties of the program:
How easily it can be read and understood, how extensible it is, and so forth.
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Table 5.2.: Computation from x : (⊤ &X) & ⊤ to α : ⊥⊕ ((X ⊕⊥) ⊕⊥).

Calculus Program Program Structure

Right ⟨In2 (In1 (In1 (Out2 (Out1 x))) | α⟩ α outside-in, x inside-out
Intro ⟨x | In1 (In2 µ̃x.⟨ In2 (In1 (In1 x)) | α ⟩)⟩ x outside-in, α outside-in
Left ⟨x | In1 (In2 (Out1 (Out1 (Out2 α))))⟩ x outside-in, α inside-out
Elim ⟨Out2 (Out1 x) | Out1 (Out1 (Out2 α)) ⟩ α inside-out, x inside-out

The observation that motivated this work is that the choice of rules determines which
of these styles our programs will naturally have. We illustrate this in table 5.2, which
shows four ways of projecting out of a nested product type (⊤ & X) & ⊤ and injecting
into a nested sum type ⊥⊕ ((X ⊕⊥) ⊕⊥). Our interest here is in four different calculi
corresponding exactly to the four different program styles illustrated in table 5.2.

The Intro variant uses Curien and Herbelin (2000)’s µ̃ operator to reify the currently
consumed value as a variable, which brings us to the last difference between the calculi
that we want to point out. Producer expressions have explicit inputs (given by variables)
and an implicit output (the current continuation). Consumer expressions have explicit
outputs (given by covariables) and an implicit input. Whenever we need to construct
programs where the flow of the respective implicit input/output does not match the
nesting structure of the program, we need to resort to µ or µ̃ operators to reify that
implicit input/output.

Here is another example: With right elimination rules, the composition of two func-
tions g and h is easy to express: ⟨h (g x) | α ⟩. However, when we have to express the
same program using the left introduction rule for functions instead (which constructs a
pair e · f consisting of a function argument e and a consumer f for the function result),
we have to express the program as ⟨ g | x ·(µ̃y.⟨h | y ·α ⟩) ⟩. The “intermediate result” g x
must be given a name y because the flow of data does not correspond to the structure
of the left introduction rule.

Last but not least, let’s consider how modularity and extensibility depend on the
program style we choose. We analyze the nesting structure of the term in relation to
the nesting structure of the type. Informally, outside-in means that the term is nested
similar to the type: subterms of the type correspond to subterms of the term. Inside-out
means that inner nodes of the term structure represent outer nodes of the type structure.
In general, introduction rules yield terms nesting outside-in because the introduced type
appears in the conclusion of the rule, while elimination rules induce an inside-out nesting
as the eliminated type occurs in the premise of the rule.

When we use elimination forms on the left to introduce a type on the right or vice-
versa we therefore reverse the nesting structure of the program and thereby also alter
its modularity properties.

Consider the programs in table 5.2 again. In the right calculus row, we destruct
x inside-out with right elimination rules and then construct a producer with the type
required by α outside-in using right introduction rules. The situation is reversed in the
left calculus row. Here we destruct the continuation α inside-out with left elimination
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rules and construct a continuation with the type required by x outside-in using left
introduction rules. Similarly, we can get any other combination of nesting orders by
choosing one of the other calculi.

To summarize, having a choice of all four kinds of rules makes it easier for the pro-
grammer to choose a program structure that has the desired modularity and extensibility
properties and maximizes the usage of implicit producers/consumers to avoid the naming
of intermediate results and the associated CPS-like program structure.

5.3. Introduction versus Elimination, Left versus Right

In this and the next section, we present our language framework, divided into logical
steps and parts. As the first step, we present a core language of inputs, outputs, and
interactions, without any logical connectives2 (Figure 5.2).

As usual in presentations of computational sequent calculi, we have three kinds of
sequents: Γ ⊢ e : T describes a producer term e that produces an output of type T
in variable context Γ. Symmetrically, Γ ⊢ f

con
: T describes a consumer term f that

consumes an input of type T . Finally, a command Γ ⊢ c describes a complete and
executable program. The core language only contains cut commands ⟨ e | f ⟩.

With regard to reduction, we opt to use the standard call-by-value evaluation strategy,
which involves prioritizing producers before consumers in cuts Downen and Zena M. Ar-
iola, 2018a. Alternatively, we could have chosen call-by-name evaluation in the standard
way by reversing this priority Wadler, 2003. The purpose of the focusing contexts E
and F (which are empty in the core language) and the ▷ς reduction rules are to push
pending computations embedded in subterms to the top-level. This is also standard
Wadler, 2003; Downen and Zena M. Ariola, 2018a.

In fig. 5.3 we extend the language with three connectives: → (functions), ⊕ (positive
sums), and ⊗ (positive products). The adjective “positive” comes from polarized type
theory Andreoli, 1992; Zeilberger, 2009 and denotes data types that are defined via
constructors, as opposed to negative types, which are codata types that are defined via
destructors. Positive types are evaluated eagerly, when constructed, whereas negative
types are evaluated on demand, when they are destructed. In this chapter, we use blue
for positive and red for negative connectives.

All connectives come with all four kinds of rules: introduction and elimination, both
left and right. Like in linear logic, we make a clear distinction between positive and nega-
tive connectives (the latter will be shown later); it turns out that for our bi-expressibility
property (introduced in section 5.4) it is essential that rules do not duplicate or destroy
information. That property also necessitates a few generalizations of standard rules.

For instance, the syntax of λ abstraction is λ(x·α).c rather than λx.e; the latter can be
encoded as λx.e := λ(x·α).⟨ e | α ⟩. The left introduction rule for → consists of a function
argument and a consumer for the function’s returned result. The left elimination rule
allows us to inspect both components of that pair, yielding a command.

2The core is similar to the presentation in Sec. 4 of Downen and Zena M. Ariola (2018a)
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Syntax
T ::= X Types

e ::= x | µα.c Producers
f ::= α | µ̃x.c Consumers
c ::= ⟨ e | f ⟩ Commands
v ::= x Values

E [] ::= ϵ Focusing Context
F [] ::= ϵ Cofocusing Context

Γ ::= x : T,Γ | α con
: : T,Γ | ϵ Context

Typing rules

x : T ∈ Γ

Γ ⊢ x : T
(R-Var)

α
con
: T ∈ Γ

Γ ⊢ α con
: T
(L-Var)

Γ, α
con
: T ⊢ c

Γ ⊢ µα.c : T
(R-µ)

Γ, x : T ⊢ c
Γ ⊢ µ̃x.c con

: T
(L-µ)

Γ ⊢ e : T

Γ ⊢ f con
: T

Γ ⊢ ⟨ e | f ⟩
(Cut)

Reduction
⟨ v | µ̃x.c ⟩ ▷µ̃ c{x := v}
⟨µα.c | f ⟩ ▷µ c{α := f}

In ς rules, x is fresh, e ̸∈ v.

⟨ E [e] | f ⟩ ▷ς ⟨ e | µ̃x.⟨ E [x] | f ⟩ ⟩
⟨ v | F [e] ⟩ ▷ς ⟨ e | µ̃x.⟨ v | F [x] ⟩ ⟩

Figure 5.2.: Core language
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Syntax

T ::= . . . | T → T | T ⊕ T | T ⊗ T
e ::= . . . | λ(x · α).c | e e | Ini e | [e, e]

f ::= . . . | e · f | Match {Ini xi ↦→ ci} | Outi f
| Match {[x, x] ↦→ c} | Handlei f with e

c ::= . . . | Case f {x · α ↦→ c} | Case e {Ini xi ↦→ ci} | Case e {[x, x] ↦→ c}
v ::= . . . | λ(x · α).c | Ini v | [v, v]
E [] ::= . . . | [□, e] | [v,□] | Ini □
F [] ::= . . . | □ · f

Typing
Γ ⊢ e : T1

Γ ⊢ f con
: T2

Γ ⊢ e · f con
: T1 → T2

(L-→-Intro)
Γ, x : T1, α

con
: T2 ⊢ c

Γ ⊢ λ(x · α).c : T1 → T2
(R-→-Intro)

Γ ⊢ f con
: T1 → T2

Γ, x : T1, α
con
: T2 ⊢ c

Γ ⊢ Case f {x · α ↦→ c}
(L-→-Elim)

Γ ⊢ e1 : T1 → T2
Γ ⊢ e2 : T1

Γ ⊢ e1 e2 : T2
(R-→-Elim)

∀i,Γ, xi : Ti ⊢ ci
Γ ⊢ Match {Ini xi ↦→ ci}

con
: T1 ⊕ T2

(L-⊕-Intro)

Γ ⊢ e : Ti

Γ ⊢ Ini e : T1 ⊕ T2
(R-⊕-Introi)

Γ ⊢ f con
: T1 ⊕ T2

Γ ⊢ Outi f
con
: Ti

(L-⊕-Elimi)

Γ ⊢ e : T1 ⊕ T2
∀i,Γ, xi : Ti ⊢ ci

Γ ⊢ Case e {Ini xi ↦→ ci}
(R-⊕-Elim)

Γ, x : T1, y : T2 ⊢ c
Γ ⊢ Match {[x, y] ↦→ c} con

: T1 ⊗ T2
(L-⊗-Intro)

Γ ⊢ e1 : T1
Γ ⊢ e2 : T2

Γ ⊢ [e1, e2] : T1 ⊗ T2
(R-⊗-Intro)

Γ ⊢ f con
: T1 ⊗ T2

Γ ⊢ e : Ti

Γ ⊢ Handlei f with e
con
: T2−i+1

(L-⊗-Elimi)

Γ ⊢ e : T1 ⊗ T2
Γ, x : T1, y : T2 ⊢ c

Γ ⊢ Case e {[x, y] ↦→ c}
(R-⊗-Elim)

Reduction

⟨λ(x · α).c | v · f ⟩ ▷β c{x := v, α := f}
⟨ Inj v | Match {Ini xi ↦→ ci} ⟩ ▷β cj{xj := v}
⟨ [v1, v2] | Match {[x, y] ↦→ c} ⟩ ▷β c{x := v1, y := v2}

Figure 5.3.: Syntax, typing and reduction for functions, positive sums, and positive prod-
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5. Introduction and Elimination, Left and Right

The rule R-⊕-Introi is standard. R-⊕-Elim uses again commands in its branches
and is in fact itself a command. An encoding for the more standard Case e {Ini xi ↦→ ei}
can be given as µα.(Case e {Ini xi ↦→ ⟨ ei | α ⟩}). The reason for the deviation from the
standard is symmetry with the L-⊕-Intro rule, which has the same structure except
that the value to be pattern-matched on is implicit. L-⊕-Elimi has also been designed
to be symmetric to R-⊕-Introi.

The rules for ⊗ follow the same design principles. Of particular note are the L-⊗-Elimi

rules. Their names Handlei are motivated by ` (the dual of ⊗), whose right elimination
rules are reminiscent of error handlers as shown in fig. 5.1.

The reduction rules cover only the introduction forms of the constructs. We will see
in the next section why that is sufficient.

This language and all its extensions we are about to present, has four subcalculi iden-
tified by considering the languages having only introduction rules (the Intro calculus),
only elimination rules (the Elim calculus), only right rules (the Right calculus), or only
left rules (the Left calculus).

We have proven (mechanized in Coq) standard type safety theorems for this language,
but before we can talk about the details we need to introduce bi-expressibility.

5.4. Bi-Expressibility and Soundness

Our language has been designed in such a way that all four sub-calculi are in a sense
equally powerful. This is made precise in fig. 5.4, which shows that each typing rule
is derivable using only core constructs and the diagonally opposing rule (left intro is
diagonally opposing to right elim and vice versa left elim to right intro):

Theorem 5.4.1 (Bi-Expressibility). Every typing rule of a connective can be encoded
using the diagonally opposing rule and core constructs only.

Proof. Simple inspection and type-checking of the encoding rules in fig. 5.4.

Corollary 5.4.2 (Subcalculus Restriction). Given any well-typed command Γ ⊢ c, pro-
ducer Γ ⊢ e : T , or consumer Γ ⊢ f con

: T and any subcalculus C ∈ {Intro,Elim,Left,Right},
there exists a translation result Γ ⊢ c′, Γ ⊢ e′ : T , or Γ ⊢ f ′

con
: T which uses only the

syntax available in subcalculus C.

Proof. We give a translation function (formalized in Coq) that restricts the command,
producer or consumer to the subcalculus C based on theorem 5.4.1 and show that it
preserves type soundness.

One thing to note about the encodings is that, when applied to a full program,
they will introduce administrative redexes. For instance, when applying the encod-
ings to the examples in section 5.2, then the encoding of the right elimination construct
by left introduction gives us directly the second line, whereas applying the encoding
of right introduction by left elimination gives as an administrative redex of the form
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Γ ⊢ e : T1
Γ ⊢ f con

: T2

Γ ⊢ µ̃x.⟨x e | f ⟩ con
: T1 → T2

(L-→-Intro)

Γ, x : T1, α
con
: T2 ⊢ c

Γ ⊢ µβ.Case β {x · α ↦→ c} : T1 → T2
(R-→-Intro)

Γ ⊢ f con
: T1 → T2

Γ, x : T1, α
con
: T2 ⊢ c

Γ ⊢ ⟨λ(x · α).c | f ⟩
(L-→-Elim)

Γ ⊢ e1 : T1 → T2
Γ ⊢ e2 : T1

Γ ⊢ µα.⟨ e1 | e2 · α ⟩ : T2
(R-→-Elim)

∀i,Γ, xi : Ti ⊢ ci
Γ ⊢ µ̃x. Case x {Ini xi ↦→ ci}

con
: T1 ⊕ T2

(L-⊕-Intro)

Γ ⊢ e : Ti

Γ ⊢ µα. ⟨ e | Outi α ⟩ : T1 ⊕ T2
(R-⊕-Introi)

Γ ⊢ f con
: T1 ⊕ T2

Γ ⊢ µ̃x. ⟨ Ini x | f ⟩ con
: Ti

(L-⊕-Elimi)

Γ ⊢ e : T1 ⊕ T2
∀i,Γ, xi : Ti ⊢ ci

Γ ⊢ ⟨ e | Match {Ini xi ↦→ ci} ⟩
(R-⊕-Elim)

Γ, x : T1, y : T2 ⊢ c
Γ ⊢ µ̃z.Case z {[x, y] ↦→ c} con

: T1 ⊗ T2
(L-⊗-Intro)

Γ ⊢ e1 : T1
Γ ⊢ e2 : T2

Γ ⊢ µα.⟨ e1 | Handle2 α with e2 ⟩ : T1 ⊗ T2
(R-⊗-Intro)

Γ ⊢ f con
: T1 ⊗ T2

Γ ⊢ e : T1

Γ ⊢ µ̃x.⟨ [e, x] | f ⟩ con
: T2

(L-⊗-Elim1)

Γ ⊢ f con
: T1 ⊗ T2

Γ ⊢ e : T2

Γ ⊢ µ̃x.⟨ [x, e] | f ⟩ con
: T1

(L-⊗-Elim2)

Γ ⊢ e : T1 ⊗ T2
Γ, x : T1, y : T2 ⊢ c

Γ ⊢ ⟨ e | Match{[x, y] ↦→ c} ⟩
(R-⊗-Elim)

Figure 5.4.: Bi-Expressibility: Diagonal encodings. New (co)variable names are always
assumed to be fresh.
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5. Introduction and Elimination, Left and Right

⟨µβ.⟨x | Out2 β ⟩ | α ⟩, which requires a reduction step to ⟨x | Out2 α ⟩ to yield the
third line.

Another thing to note is that the notion of value depends on the subcalculus. Since
we only define reduction for the Intro calculus, our value definition is tailored for it.
A term like a λ-abstraction is a value in the Intro calculus; when it gets encoded into
the Left or Elim calculus by the encoding rule, it turns into a µ-abstraction - which
looks superficially as if we would turn a value into a non-value. But this is misleading,
since each calculus would have its own definition of value, if we would define them
completely separately. Instead, we use bi-expressibility to give reduction rules for the
introduction constructs only: We assume that the elimination rules are “desugared”
using the encodings in fig. 5.4.

For the language where the elimination forms are encoded as in fig. 5.4, we have also
proven (in Coq) standard progress and preservation theorems.

Theorem 5.4.3 (Preservation). For all commands c and all typing contexts Γ, if Γ ⊢ c
and c ▷ c′, then Γ ⊢ c′.

For the statement of the progress theorem, it is convenient to have a Done command
with typing axiom Done : Γ ⊢ ∆, such that there are non-trivial closed commands:

Theorem 5.4.4 (Progress). For all closed commands c and all typing contexts Γ, if
Γ ⊢ c, then either c = Done or there exists c′ such that c ▷ c′.

Furthermore, reduction is deterministic:

Theorem 5.4.5 (Deterministic reduction). For all commands c, c′, c′′ and all typing
contexts Γ, if Γ ⊢ c, c ▷ c′, and c ▷ c′′, then c′ = c′′.

Let us briefly illustrate why bi-expressibility requires some generalizations of intro-
duction or elimination forms of standard constructs; in particular, why we have replaced
expressions by commands in some places. As an example, the standard right introduc-
tion rule for → is λx.e, whereas we use λ(x · α).c. If we look at R-→-Intro in fig. 5.4,
then λx.e could be encoded as µβ.Case β {x · α ↦→ ⟨ e | α ⟩}. However, L-→-Elim
would then be stronger than R-→-Intro and the L-→-Elim encoding in fig. 5.4 would
no longer work; if we wanted to reverse the transformation, we cannot guarantee that e
does not have α as free variable. Weakening L-→-Elim to Case f {x · α ↦→ f} instead
of Case f {x ·α ↦→ c} would not help; both constructs would be weaker, but they would
not be bi-expressible. Case f {x · α ↦→ e}, on the other hand, would be rather useless
in the left calculus, since the only valid (non-µ) producer expression is a variable.

5.5. Proof/Refutation Duality

Our setting with all four kinds of rules lets us use the proof/refutation duality Tran-
chini, 2012. The proof/refutation duality is a duality between proofs of a statement and
refutations of the dual statement. Tranchini (2012) defined a natural deduction calculus
of refutation which is completely isomorphic to the standard natural deduction calculus
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of proofs. For instance, the introduction and elimination rules for refutations of disjunc-
tions (written ∨R), are identical to the ones for proofs of conjunctions — another facet
of the duality between disjunction and conjunction:

Γ ⊢ T1 Γ ⊢ T2
Γ ⊢ T1 ∨R T2

(∨R-Intro)
Γ ⊢ T1 ∨R T2

Γ ⊢ Ti
(∨R-Elimi)

The introduction rule should be read as “if T1 is false and T2 is false, then T1 ∨ T2
is false”, the elimination rules as “if T1 ∨ T2 is false, then Ti is false”. Tranchini has
shown that a full (intuitionistic) refutation calculus containing all standard propositional
connectives can be defined in such a way that the rules are mirrors of the respective dual
connectives in the proof calculus. The duality between disjunction and conjunction as
well as between the logical constants ⊤ and ⊥ are standard; dualizing implication requires
the less common notion of co-implication Tranchini, 2012, also known as subtraction
Crolard, 2004 or difference Curien and Herbelin, 2000 (sometimes with reversed order
of arguments).

Tranchini’s work is purely in the logic domain and does not discuss programming, but
from the perspective of programming, a refutation calculus can be seen as a language
of consumers or continuations. The close symmetry between the corresponding proof
and refutation calculi suggests that the term language of the proof calculus can also be
used as a term language of the refutation calculus. In other words, we can have different
interpretations of the same term: once as a producer and once as a consumer.

Figure 5.5 illustrates the idea by defining typing rules for −≺≺, &, and `, the duals
of →, ⊕, and ⊗, respectively. What is noteworthy about these rules is that they are
completely determined by the typing rules of their respective duals. In fact, the rules in
fig. 5.5 could be replaced by fusing the syntactic categories e and f ,

e ::= x | µx.c | µ̃x.c | e · e | Match {Ini xi ↦→ ci} | Outi e | Match {[x, x] ↦→ c}
| Handlei e with e | λ(x · z).c | e e | Ini e | [e, e]

x, α ::= identifier

and adding these two rules

Γ◦ ⊢ e◦ con
: T ◦

Γ ⊢ e : T

Γ◦ ⊢ e◦ : T ◦

Γ ⊢ e con
: T

where T ◦ is defined as

X◦ = X
(T1 → T2)

◦ = T ◦
1 −≺≺ T ◦

2 (T1 −≺≺ T2)◦ = T ◦
1 → T ◦

2

(T1 ⊗ T2)
◦ = T ◦

1 ` T ◦
2 (T1 ` T2)

◦ = T ◦
1 ⊗ T ◦

2

(T1 & T2)
◦ = T ◦

1 ⊕ T ◦
2 (T1 ⊕ T2)

◦ = T ◦
1 & T ◦

2 ,

Γ◦ is the obvious extension to typing contexts, and e◦ creates a copy of the expression
that is identical except that ⟨ e1 | e2 ⟩◦ = ⟨ e◦2 | e◦1 ⟩ where e contains a command.

A fully shared and symmetric term syntax between producers and consumers would
enable an exciting new feature we call consumer/producer polymorphism. It becomes
possible to have libraries of code that can be used as both producers and consumers.
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Syntax

T ::= . . . | T −≺≺ T | T & T | T ` T

e ::= . . . | f · e | Match {Ini xi ↦→ ci} | Outi e
| Match {[x, x] ↦→ c} | Handlei e with f

f ::= . . . | λ(α · x).c | f f | Ini f | [f, f ]

c ::= . . . | Case e {α · x ↦→ c} | Case f {Ini αi ↦→ ci} | Case f {[α, α] ↦→ c}
v ::= . . . | f · v | Match {Ini αi ↦→ ci} | Match {[α, α] ↦→ c}
E [] ::= . . . | f ·□

Typing

Γ, x : T2, α
con
: T1 ⊢ c

Γ ⊢ λ(α · x).c
con
: T1 −≺≺ T2

(L-−≺≺-Intro)

Γ ⊢ f con
: T1

Γ ⊢ e : T2

Γ ⊢ f · e : T1 −≺≺ T2
(R-−≺≺-Intro)

Γ ⊢ f1
con
: T1 −≺≺ T2

Γ ⊢ f2
con
: T1

Γ ⊢ f1 f2
con
: T2

(L-−≺≺-Elim)

Γ ⊢ e : T1 −≺≺ T2
Γ, x : T1, α

con
: T2 ⊢ c

Γ ⊢ Case e {α · x ↦→ c}
(R-−≺≺-Elim)

Γ ⊢ f con
: Ti

Γ ⊢ Ini f
con
: T1 & T2

(L-&-Introi)
∀i,Γ, αi

con
: Ti ⊢ ci

Γ ⊢ Match {Ini αi ↦→ ci} : T1 & T2
(R-&-Intro)

Γ ⊢ f con
: T1 & T2

∀i,Γ, αi : Ti ⊢ ci
Γ ⊢ Case f {Ini αi ↦→ ci}

(L-&-Elim)
Γ ⊢ e : T1 & T2

Γ ⊢ Outi e : Ti
(R-&-Elimi)

Γ ⊢ f1
con
: T1

Γ ⊢ f2
con
: T2

Γ ⊢ [f1, f2]
con
: T1 ` T2

(L-`-Intro)
Γ, α

con
: T1, β

con
: T2 ⊢ c

Γ ⊢ Match {[α, β] ↦→ c} : T1 ` T2
(R-`-Intro)

Γ ⊢ f con
: T1 ` T2

Γ, α
con
: T1, β

con
: T2 ⊢ c

Γ ⊢ Case f {[α, β] ↦→ c}
(L-`-Elim)

Γ ⊢ e : T1 ` T2
Γ ⊢ f con

: Ti

Γ ⊢ Handlei e with f : T2−i+1

(R-`-Elimi)

Reduction

⟨ f · v | λ(α · x).c ⟩ ▷β c{x := v, α := f}
⟨Match {Ini αi ↦→ ci} | Inj f ⟩ ▷β cj{αj := f}
⟨Match {[α, β] ↦→ c} | [f1, f2] ⟩ ▷β c{α := f1, α := f2}

Figure 5.5.: Dual rules for −≺≺, &, and `
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For instance, λ-abstraction is the common way to abstract over certain code patterns,
and that is true regardless of whether the code consumes or produces values. A generic
function like the one for function composition, λf.λg.λx.f (g x), which desugars to

comp = λ(f · α).⟨λ(g · β).⟨λ(x · γ).⟨ f (g x) | γ ⟩ | β ⟩ | α ⟩

can be used both as a producer of type (Y → Z) → (X → Y ) →X → Z and, via

comp◦ = λ(f · α).⟨α | λ(g · β).⟨β | λ(x · γ).⟨ γ | f (g x) ⟩ ⟩ ⟩

as a consumer of type (Y −≺≺Z)−≺≺ (X −≺≺ Y )−≺≺X −≺≺Z. Similarly, a swap function of type
(X ⊗ Y )→ (Y ⊗X) can also be used as a cofunction of type (X ` Y )−≺≺ (Y `X). Both
are equally useful. Every program can be used in two ways - an exciting avenue that we
intend to explore more in future work.

In the design above, e◦ is not yet completely identical to e. In an earlier design, we
phrased the calculus in such a way that the dualization operation on expressions is indeed
the identity function (by having statements where the producer/consumer side switch
depending on whether one abstracts over a µ or a µ̃), but this made the presentation
more complicated in other ways. But even without this, code could be reused in the
form of “macro” transformations or with a dedicated language construct (say, a dual(e)
construct) where the interpreter takes care of switching the sides when necessary. We
leave the elaboration of these ideas to future work.

To summarize, the proof/refutation duality allows us to mechanically derive the syn-
tax, typing and reduction rules for the respective dual connective, and it opens a path
towards the reuse of a term as both a producer of a type and a consumer of its dual
type.

5.6. Extensions

In this section, we consider some standard extensions of the calculi in the new light of
having all four rules and bi-expressibility.

The first extension we consider are the logical constants, which serve as units for
products and sums. Since we have two differently polarized products and two differently
polarized sums, we consequently need 4 different units whose rules are given in fig. 5.6.
Following the standard notation from linear logic, the unit for ⊗ is written 1, the unit
for ⊕ is 0, the unit for & is ⊤, and the unit for ` is ⊥. 1 is dual to ⊥ and 0 is dual to
⊤, hence both the syntax and the typing rules of the respective dual connective follows
mechanically like described in the previous section.

One of the exciting insights of linear logic is that the function type → can be decom-
posed into a combination of a negative sum ` and negation type. The decomposition
of both negative functions → and positive cofunctions −≺≺ requires two different kinds of
negations; negative negations ¬ and positive negations ∼. The rules for both kinds of
negations, which are dual to each other, are given in fig. 5.7. With negation in place, we
can very directly see that the type T1 → T2 is isomorphic to ¬T1 ` T2 :
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Syntax

T ::= . . . | 1 | 0 | ⊤ | ⊥
e ::= . . . | triv | Case e {} | Match {triv ↦→ c} | Match {}
f ::= . . . | triv | Case f {} | Match {triv ↦→ c} | Match {}
c ::= . . . | UnTriv f | Case e {triv ↦→ c} | UnTriv e | Case f {triv ↦→ c}
v ::= . . . | triv | Match {triv ↦→ c}

Typing
Γ ⊢ c

Γ ⊢ Match {triv ↦→ c} con
: 1

(L-1-Intro)
Γ ⊢ triv : 1

(R-1-Intro)

Γ ⊢ f con
: 1

Γ ⊢ UnTriv f
(L-1-Elim)

Γ ⊢ e : 1
Γ ⊢ c

Γ ⊢ Case e {triv ↦→ c}
(R-1-Elim)

Γ ⊢ Match {} con
: 0

(L-0-Intro) no right introduction rule for 0

no left elimination rule for 0
Γ ⊢ e : 0

Γ ⊢ Case e {}
(R-0-Elim)

no left introduction rule for ⊤ Γ ⊢ Match {} : ⊤
(R-⊤-Intro)

Γ ⊢ f con
: ⊤

Γ ⊢ Case f {}
(L-⊤-Elim) no right elimination rule for ⊤

Γ ⊢ triv
con
: ⊥

(L-⊥-Intro)
Γ ⊢ c

Γ ⊢ Match {triv ↦→ c} : ⊥
(R-⊥-Intro)

Γ ⊢ f con
: ⊥

Γ ⊢ c
Γ ⊢ Case f {triv ↦→ c}

(L-⊥-Elim)

Γ ⊢ e : ⊥
Γ ⊢ UnTriv e

(R-⊥-Elim)

Reduction (no rules for ⊤ and 0)

⟨ triv | Match {triv ↦→ c} ⟩ ▷β c ⟨Match {triv ↦→ c} | triv ⟩ ▷β c

Bi-Expressibility (rules for ⊤ and ⊥ are analogous to those for 1 and 0)

Γ ⊢ c
Γ ⊢ µ̃x.Case x {triv ↦→ c} con

: 1
(L-1-Intro)

Γ ⊢ µα.UnTriv α : 1
(R-1-Intro)

Γ ⊢ f con
: 1

Γ ⊢ ⟨ triv | f ⟩
(L-1-Elim)

Γ ⊢ e : 1
Γ ⊢ c

Γ ⊢ ⟨ e | Match {triv ↦→ c} ⟩
(R-1-Elim)

Γ ⊢ µ̃x.Case x {} con
: 0

(L-0-Intro) no right introduction rule for 0

no left elimination rule for 0
Γ ⊢ e : 0

Γ ⊢ ⟨ e | Match {} ⟩
(R-0-Elim)

Figure 5.6.: Positive units 1, 0 and negative units ⊤, ⊥
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Syntax

T ::= . . . | ¬T | ∼T
e ::= . . . | Not f | Throw f f | Match {Not x ↦→ c} | Case e {Not α ↦→ c}
f ::= . . . | Not e | Throw e e | Match {Not α ↦→ c} | Case f {Not x ↦→ c}
v ::= . . . | Not f
F [] ::= . . . | Not □

Typing

Γ, α
con
: T ⊢ c

Γ ⊢ Match {Not α ↦→ c} con
: ∼T

(L-∼-Intro)

Γ ⊢ f con
: T

Γ ⊢ Not f : ∼T
(R-∼-Intro)

Γ ⊢ f1
con
: ∼T

Γ ⊢ f2
con
: T

Γ ⊢ Throw f1 f2
(L-∼-Elim)

Γ ⊢ e : ∼T

Γ, α
con
: T ⊢ c

Γ ⊢ Case e {Not α ↦→ c}
(R-∼-Elim)

Γ ⊢ e : T

Γ ⊢ Not e
con
: ¬T

(L-¬-Intro)

Γ, x : T ⊢ c
Γ ⊢ Match {Not x ↦→ c} : ¬T

(R-¬-Intro)

Γ ⊢ f con
: ¬T

Γ, x : T ⊢ c
Γ ⊢ Case f {Not x ↦→ c}

(L-¬-Elim)

Γ ⊢ e1 : ¬T
Γ ⊢ e2 : T

Γ ⊢ Throw e1 e2
(R-¬-Elim)

Reduction

⟨Not f | Match {Not α ↦→ c} ⟩ ▷β c{α := f}
⟨Match {Not x ↦→ c} | Not v ⟩ ▷β c{x := v}

Bi-Expressibility

Γ, α
con
: T ⊢ c

Γ ⊢ µx.Case x {Not α ↦→ c} con
: ∼T

(L-∼-Intro)

Γ ⊢ f con
: T

Γ ⊢ µ̃α.Throw α f : ∼T
(R-∼-Intro)

Γ ⊢ f1
con
: ∼T

Γ ⊢ f2
con
: T

Γ ⊢ ⟨Not f2 | f1 ⟩
(L-∼-Elim)

Γ ⊢ e : ∼T

Γ, α
con
: T ⊢ c

Γ ⊢ ⟨ e | Match {Not α ↦→ c} ⟩
(R-∼-Elim)

Γ ⊢ e : T

Γ ⊢ µx.Throw x e
con
: ¬T
(L-¬-Intro)

Γ, x : T ⊢ c
Γ ⊢ µ̃α.Case α {Not x ↦→ c} : ¬T

(R-¬-Intro)

Γ ⊢ f con
: ¬T

Γ, x : T ⊢ c
Γ ⊢ ⟨Match {Not x ↦→ c} | f ⟩

(L-¬-Elim)

Γ ⊢ e1 : ¬T
Γ ⊢ e2 : T

Γ ⊢ ⟨ e1 | Not e2 ⟩
(R-¬-Elim)

Figure 5.7.: Extension with negation
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Syntax

T ::= . . . | ∀X.T | ∃X.T
e ::= . . . | Λ{X,α}.c | e [T ] | {T, e}
f ::= . . . | Λ{X,x}.c | f [T ] | {T, f}
c ::= . . . | Case f {X,α ↦→ c} | Case e {X,x ↦→ c}
v ::= . . . | Λ{X,α}.c | {T, v}
E [] ::= . . . | {T,□}
Typing

Γ ⊢ f con
: T2{X := T1}

Γ ⊢ {T1, f}
con
: ∀X.T2

(L-∀-Intro)

Γ, X, α
con
: T ⊢ c

X /∈ FV (Γ)

Γ ⊢ Λ{X,α}.c : ∀X.T
(R-∀-Intro)

Γ ⊢ f con
: ∀X.T

Γ, X, α
con
: T ⊢ c

Γ ⊢ Case f {X,α ↦→ c}
(L-∀-Elim)

Γ ⊢ e : ∀X.T
Γ ⊢ e [T1] : T{X := T1}

(R-∀-Elim)

Γ, X, x : T ⊢ c
X /∈ FV (Γ)

Γ ⊢ Λ{X,x}.c con
: ∃X.T

(L-∃-Intro)

Γ ⊢ e con
: T2{X := T1}

Γ ⊢ {T1, e} : ∃X.T2
(R-∃-Intro)

Γ ⊢ f con
: ∃X.T

Γ ⊢ f [T1]
con
: T{X := T1}

(L-∃-Elim)

Γ ⊢ e : ∃X.T
Γ, X, x : T ⊢ c

Γ ⊢ Case e {X,x ↦→ c}
(R-∃-Elim)

Reduction

⟨Λ{X,α}.c | {T, f} ⟩ ▷β c{X := T, α := f}
⟨ {T, v} | Λ{X,x}.c ⟩ ▷β c{X := T, x := v}

Bi-Expressibility (Rules for ∃ are analogous to those for ∀)

Γ ⊢ f con
: T2{X := T1}

Γ ⊢ µ̃x.⟨x [T1] | f ⟩
con
: ∀X.T2
(L-∀-Intro)

Γ, X, α
con
: T ⊢ c

X /∈ FV (Γ)

Γ ⊢ µβ.Case β {X,α ↦→ c} : ∀X.T
(R-∀-Intro)

Γ ⊢ f con
: ∀X.T1

Γ, X, α
con
: T1 ⊢ c

Γ ⊢ ⟨Λ{X,α}.c | f ⟩
(L-∀-Elim)

Γ ⊢ e : ∀X.T
Γ ⊢ µα.⟨ e | {T1, α} ⟩ : T{X := T1}

(R-∀-Elim)

Figure 5.8.: Extension with universal and existential types.
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λ(x · β).c = Match {[α, β] ↦→ Case α {Not x ↦→ c}}
e1 e2 = Handle1 e1 with (Not e2)
e · f = [Not e, f ]
Case f {x · β ↦→ c} = Case f {[α, β] ↦→ Case α {Not x ↦→ c}}

And, by duality, the same holds for T1 −≺≺ T2 and ∼T1 ⊗ T2. It is also not hard to see
that Not e : ¬T is isomorphic to e · triv : T → ⊥ and Not f : ∼T is isomorphic to
f · triv : T −≺≺ 0.

With regard to universal and existential types, whose rules are given in fig. 5.8, it is
pleasing to see that the left elimination rule for universal types is basically the usual
right elimination rule for “opening an existential package”, and the left elimination rule
of existential types corresponds to the usual type application right elimination rule for
universal types. Of course, ∀ is dual to ∃, and the duality is again reflected directly
in the typing rules. Bi-expressibility follows the same structure as bi-expressibility for
functions.

5.7. Programming with all Rules

In this section, we present a few examples that illustrate the utility of polarized con-
nectives and the flexibility of having all rules. We also revisit the filter example from
section 5.1.

5.7.1. Error Handling

The first example serves to illustrate both the value of having first-class consumers, and
the naturality of programs using rules from all calculi. Consider the familiar problem of
error-handling. Suppose we have three functions f : A → B ∨ E, g : B → C ∨ E and
h : C → D∨E. These functions take an argument (of type A, B or C) and either return
a result (of type B, C or D) or return an error E. The problem is how to compose these
functions in such a way that h ◦ g ◦ f is a function of type A→ D ∨ E.

Solving this problem crucially depends on how the type ∨ is represented. In our
language, we have two choices: Positive (“data type”, evaluated when constructed)
disjunction ⊕ or negative (“codata type”, evaluated when destructed) disjunction `.
We will now discuss both alternatives in turn.3

Error Handling Using a Positive Type

When we choose to model ∨ as a positive type ⊕, we have constructors In1 and In2,
and can destruct a term of type A⊕ B by pattern matching on it. The composition of

3This example is inspired by Spiwack (2014), who discusses this example in the context of the λµµ̃-
calculus, where the sequent calculus syntax leads to terms that are less natural from a programmer’s
point of view.
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the three functions f , g and h can thus be written as follows:

h ◦ g ◦ f : A→D ⊕ E
h ◦ g ◦ f = λ(x · α).Case (f x) {

In1 y ↦→ Case (g y) {
In1 z ↦→ ⟨h z | α ⟩
In2 e ↦→ ⟨ In2 e | α ⟩}

In2 e ↦→ ⟨ In2 e | α ⟩}

This style of error handling is familiar in conventional functional programming lan-
guages with algebraic types. The verbosity of this implementation can, of course, be
greatly reduced by syntactic sugar or monadic do-notation. But what we really want to
point out is how un-noteworthy the implementation is. This illustrates our point that
we do not lose the naturality of natural deduction when writing programs using these
calculi.

Error Handling Using a Negative Type

Implementing the same example using the negative type ` is less familiar:

h ◦ g ◦ f : A→D ` E
h ◦ g ◦ f = λ(x · α).

⟨Match {[res, err ] ↦→
⟨ Handle2

h (Handle2

g (Handle2 f x with err)

with err)

with err) | res ⟩ }
| α⟩

After introducing the variables x and α by a lambda abstraction, we encounter the
` introduction form Match {[res, err ] ↦→ ⟨ . . . | res ⟩}, bringing two continuations into
scope: the continuation res which we can use to return a result of type D and the
continuation err which we can use to return an error of type E. Since we want to write
our program following the happy path, we return directly to the result continuation, so
we have to fill the hole with a term of type D. If t is a term of type A ` E, then the
elimination form Handle2 t with e returns the first option A along the implicit happy
path, and the possibility of an error case of type E is handled by the continuation e
explicitly in the handler.

Comparison

Programming with both polarities feels natural, leaving the choice of which construct to
use up to the programmer. In conventional (functional) programming languages, excep-
tions are usually modelled using the positive type ⊕. Since these languages are based on
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natural deduction, there is no natural way to model exceptions using the negative type
`, apart from rewriting the program into continuation-passing or callback style. On the
other hand, (checked) exceptions correspond more closely to the way we modelled ex-
ceptions with `. The difference is that instead of representing the additional exception
path in the types, languages using checked exceptions usually model this continuation
using the throws keyword, and usually scope the exception handler dynamically instead
of lexically.

5.7.2. Parsimonious Filter

Let us now return to the parsimonious filter example from fig. 5.1 in section 5.1. How
does that definition, based on equality between commands with nested (co)patterns,
relate to the formal calculus that we have seen so far? To begin, consider just the
left-hand sides of each definition in fig. 5.1 written by matching on the structures in a
command (since the right-hand sides of each equality will be the same in each step, we
will omit them for now):

⟨x | α ◦Not f ⟩ = . . .

⟨filter p xs | start ⟩ = . . .

⟨filter/pass p [] | [diff , same]⟩ = . . .

⟨filter/pass p (x :: xs) | [diff , same]⟩ = . . .

The first step to desugaring this syntax is to replace each (left or right) elimination
rule with the corresponding (left or right) introduction rule, according to the notion
of bi-expressibility given here. For example, given a definition clause filter p xs = . . .
familiar to functional programmers, we replace the application forms (corresponding
to right function elimination) with call stacks(corresponding to left function introduc-
tion) around the starting continuation p · xs · start . Dually, the composition operator
◦ combining a (negated) function with a continuation defines a consumer instead of
a producer. The infix application form α ◦ (Not f) can be rewritten in prefix nota-
tion as (◦) α (Not f) (corresponding to left subtraction elimination). This is replaced
with a stack (corresponding to right subtraction introduction) around the starting value:
α ·Not f · x. Replacing each (left and right) eliminations by its equivalent introduction
leads to these definition clauses:
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⟨α ·Not f · x | (◦) ⟩ = . . .

⟨filter | p · xs · start ⟩ = . . .

⟨filter/pass | p · [] · [diff , same]⟩ = . . .

⟨filter/pass | p · (x :: xs) · [diff , same]⟩ = . . .

The next step is to combine the (multi-)clause definitions on commands into the defini-
tion of a single consumer or producer which matches on its input or output, respectively.
This step can be performed uniformly with a Match introduction written with nested
(co)patterns like so:

(◦) = Match { α ·Not f · x ↦→ . . . }

filter = Match { p · xs · start ↦→ . . . }

filter/pass = Match { p · [] · [diff , same] ↦→ . . .

p · (x :: xs) · [diff , same] ↦→ . . . }

The final step to desugaring is to flatten out the Match with nested (co)patterns
into their single-step counterparts for each individual type. Fundamentally, flattening
combined patterns and copatterns is not that different from the procedure of flattening
ordinary nested patterns, involving tuples and sum types and other algebraic data types,
typically done in conventional functional programming languages. The flattening of our
parsimonious filter function looks like this:

(◦) = λ(α · y). Case y { β · x ↦→ Case β { Not f ↦→ . . . } }

filter = λ(p · α). Case α { xs · start ↦→ . . . }

filter/pass = λ(p · α). Case α { ys · β ↦→ Case ys {
[] ↦→ Case β { [diff , same] ↦→ . . . }
x :: xs ↦→ Case β { [diff , same] ↦→ . . . } } } }

The final, completely desugared and type-annotated version of fig. 5.1 into the core
calculus syntax (with some trivial extensions, such as Booleans or recursion) is shown
in fig. 5.9.

The desugared filter/pass function takes a predicate p on X as well as a list ys.
Using `, it returns a List X if at least one of the elements of the input do not fulfil p
and a unit value otherwise. This function uses direct style to analyze the list and split
into one of three cases:
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◦ : Z −≺≺ (¬(Y → Z) −≺≺ Y )

◦ = λ(α : Z · y : ¬(Y → Z) −≺≺ Y ).

Case y { β : ¬(Y → Z) · x : Y ↦→
Case β { Not (f : Y → Z) ↦→ ⟨ f x | α ⟩ } }

filter : (X →Bool) → List X → List X

filter = λ(p : X →Bool · α : List X → List X).

Case α { xs : List X · start : List X ↦→
⟨Handle2 (filter/pass p) xs with (start ◦ (Not (const xs)))

| start⟩ }

filter/pass : (X →Bool) → List X → (List X `⊤)

filter/pass =

λ(p : X →Bool · α : List X → List X `⊤).

Case α { ys : List X · β : List X `⊤ ↦→
Case ys {

[] ↦→ Case β { [diff : ListX, same : ⊤] ↦→ ⟨Match {} | same ⟩}
(x : X :: xs : List X) ↦→

Case β { [diff : ListX, same : ⊤] ↦→
Case (p x) {
True ↦→ ⟨ filter/pass p xs | [diff ◦ (Not (x ::)), same] ⟩
False ↦→ ⟨ filter/pass p xs | [diff , diff ◦ (Not (const xs))] ⟩ } } } }

Figure 5.9.: Parsimonious filter function reloaded
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• The list is empty. In this case, we send the unit Match {} to the continuation
same, which signals that the list contains no filtered elements.

• The list is non-empty and its head satisfies p. In this case, we call filter recursively
on the tail. If that call signals that nothing is filtered in the tail, then nothing
is filtered in the whole list (same). If something is filtered in the tail, we start
constructing the new tail with the curried constructor (x ::) and send the whole
tail (constructed from this call to (x ::) and the result of the recursive call) to diff .

• The list is non-empty and its head does not satisfy p. In this case we keep the
default continuation as-is and reset the shared tail to the current tail, since we
cannot use the previous one which would have contained x. We never invoke same
and implicitly discard it before the recursive call.

We can then use this function with the filter wrapper, which captures the current
continuation start with a λ and uses Handle2 to discharge the “same” case with a
continuation that passes the list to start .

The infix ◦ utility function is interesting in that it uses both the → and the ¬ con-
nective. It demonstrates the utility of having λ and application forms on the consumer
side, and of using negation to pass producers into a consumer context.

This example demonstrates the benefits of having all rules available. Compared to
sequent calculus, all program parts can be written in direct style, using appropriate elim-
ination forms. The usage and choice of polarized connectives leads to a more structured
and readable program than low-level usages of call/cc and similar control operators.

In what sense is this implementation of filter “efficient”? Consider the expression

⟨ filter(> 100)[0 . . . 106] | start ⟩.

It will reduce to

⟨filter/pass(> 100) [] |
[start ◦Not(101 ::) ◦ . . . ◦Not (106 ::), start ◦Not (const[101 . . . 106])⟩

which can immediately return to the second continuation with

⟨ () | start ◦Not (const[101 . . . 106]) ⟩

and thus avoid unwinding the stack built up in the left-hand diff continuation. In this
sense, the filter/pass function is “partially” tail-recursive: the recursive stack frame for
the pass case can be optimized away in this program, but not the return pointer for
when an element is removed. In a real implementation of our calculus, this would allow
the compiler to use sharing on the [101 . . . 106] tail of the input list.

To summarize, in a real implementation of the language, the code in fig. 5.9 would
combine these three properties:

1. Tail-call optimization of recursive calls when the head is removed.
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2. Sharing the common list suffix rather than reallocating it.

3. Immediately jumping to the starting caller when there is no more prefix to append
to a modified tail.

5.8. Related and Future Work

Computational Sequent Calculus. Our work is obviously related to previous sequent
calculus-based languages, in particular the λµµ̃-calculus of Curien and Herbelin (2000)
and the dual calculus of Wadler (2003). Being directly inspired by the sequent calculus,
each of these calculi define distinct syntactic categories for producers and consumers
— for syntactically representing the sequent calculus’ left and right rules logical rules
— and do not feature elimination forms. The syntactic categories of λµµ̃ with only
function types are similar but not fully isomorphic; this is why Curien and Herbelin
(2000) extend λµµ̃ with a subtraction type, corresponding to the −≺≺ connective discussed
here, which completes the duality with function types. In contrast, Wadler (2003)’s dual
calculus eschews functions altogether, instead focusing on only conjunction, disjunction,
and negation, presented in a non-polarized style (that is, the single conjunction type is
produced by the pair (x, y) and consumed by the projections fst[α] and snd[β]). These
connectives are given two dual interpretations — one following a call-by-value semantics
and one following call-by-name — which turns out to reveal the hidden polarities of the
connectives: under call-by-value conjunction and disjunction correspond equationally to
the positive ⊗ and ⊕ and under call-by-name they correspond to the negative & and
` discussed here, but not vice versa (Downen and Zena M. Ariola, 2014). Our calculus
also resembles the presentation of the calculus of classical natural deduction in Lovas
and Crary (2006), based on work by Nanevski. That calculus contains products and
sums, but does not differentiate between different polarizations. Instead, it uses the
left introduction rules of the corresponding positive and right introduction rules of the
corresponding negative connectives. They also don’t have elimination rules in the core
system but instead encode the right elimination rules in a manner similar to our diagonal
encodings.

λµ Calculus. The λµ calculus Parigot, 1992a is a natural deduction style language
that corresponds to classical logic. We conjecture that it can be very straightforwardly
embedded into our calculus with the following compositional transformation:

JxK = x
Jλx.eK = λ(x · α).⟨ JeK | α ⟩ α fresh
Je1 e2K = Je1K Je2K
Jµβ.([α] e)K = µβ.⟨ JeK | α ⟩

Wadler (2005) describes a translation from λµ to his aforementioned dual calculus
(and back); due to the absence of elimination forms, the translation is considerably
more complicated.
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Translating Natural Deduction to Sequent Calculus Gentzen (1935a) and Gentzen
(1935b) describes a translation of derivations in the intuitionistic deduction system NJ
into the intuitionistic sequent calculus LJ. In this translation, elimination rules are trans-
formed into usages of the corresponding left rule for the connective and then an invo-
cation of the cut rule, which means that normal forms are in general not translated to
normal forms. Prawitz (1965, p.92) discusses a translation from natural deduction to
sequent calculus that preserves normal forms, but at the expense of compositionality:
The translation extends the sequent calculus derivation at its bottom when translating
an introduction rule but from the top when an elimination rule is translated. Curien and
Herbelin (2000) present two term-level translations N and > that correspond to Prawitz’
and Gentzen; Gentzen’s proposals, respectively. These translations are similar to the
elimination rule encodings of bi-expressibility, and in terms of continuation-passing style
> is analogous to Hofmann and Streicher (1997)’s call-by-name CPS transformation
whereas N corresponds to Plotkin (1975)’s colon transformation.

Subtractive Logic. A dual to implication called subtraction, pseudo-difference, or co-
implication is well-known in the domain of (bi-intuitionstic) logic Rauszer, 1974; Tran-
chini, 2012, but finding an intuitive operational interpretation turned out to be difficult.
Crolard (2004) proposed a rather complicated operational interpretation as “coroutines”.
We suggest that the reason for the complication is that Crolard considered an asymmet-
rical language with no consumer language. We think that our completely symmetric
rules for → and −≺≺, with all rules, together with their simple operational semantics, is
an improvement over these works.

Linear Logic, Polarity, Data and Codata Types An important step in the develop-
ment of the proof theory of sequent calculus was the discovery of linear logic by Girard
(1987). Linear logic restricts the applicability of structural rules, like weakening and
contraction, which makes it possible to use a resource reading of typing judgements
Wadler, 1990: variables bound in the context are resources which are consumed in the
construction of terms, which explains why they cannot be freely duplicated or discarded.
A consequence of this resource interpretation is that the ordinary connectives of classical
or intuitionistic logic have to be split into multiple connectives; e.g. ∧ has to be split
into ⊗ and &, ∨ has to be split into ⊕ and `. Studying proof search for linear logic,
Andreoli (1992) realized that these connectives fall into two classes, which he called
synchronous and asynchronous; later this terminology changed to positive and negative
polarity. In programming language terms, polarity corresponds to the distinction be-
tween data types which are defined via their constructors, and codata types Hagino,
1989; Downen, Sullivan, Zena M. Ariola, and Jones, 2019 which are defined via their
observations/destructors. For example, while both ⊕ and ` are disjunctions, ⊕ cor-
responds to a data type defined with the help of two injections constructors, while `
corresponds to a codata type defined with one destructor bringing two continuations into
scope. As argued by Zeilberger (2009) and many others, this distinction is important
even in a system which does not enforce the linear use of variables because it deter-
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mines evaluation order. We have illustrated this with examples where the availability of
polarized connectives was critical.

When considering user-defined data and codata types, as we plan to do in future work,
one has to specify generic mechanisms to construct and destruct terms of those types.
Copattern matching Abel, Pientka, Thibodeau, and Setzer, 2013 was introduced as a
generic mechanism for constructing inhabitants of codata types, dually to how pattern
matching is used to destruct inhabitants of data types. For example, Zeilberger (2008b)
provided a calculus where pattern matching and copattern matching, constructors and
destructors are the only term-level constructs. In the context of the sequent calculus,
Downen and Zena M. Ariola (2021) provide a variant of the µ/µ̃ calculus with user
provided data and codata types, but consider only the left and right introduction forms
of the sequent calculus, and no elimination forms. The calculus presented in this chapter
could be similarly presented with user-defined data and codata type declarations, with
introduction and elimination forms, left and right, derived from these declarations. In
fact, a lot of the sets of rules presented here were considered by us in this more general
form first, but we defer a full development of that idea to future work.

One-Sided versus Two-Sided The calculus we present here is a two sided sequent
calculus, in the sense that we use both sides of the sequent separated by ⊢: producers
live on the right-hand side and consumers live on the left. This distinction can quickly
be summarized by the cut rule used in our core calculus:

Γ ⊢ e : T Γ ⊢ f con
: T

Γ ⊢ ⟨ e | f ⟩

Importantly, this rule promises any producer e of a type T can interact with any con-
sumer f of the same type T . But this isn’t the only way to arrange interaction in a
sequent calculus. A popular variant in the setting of classical linear logic (Girard, 1987)
is a one sided sequent calculus, which only ever uses a single side of the sequent through-
out. This “restriction” can be made without loss of expressivity because of involutive
negation in classical (linear) logic, for every proposition A there is a dual proposition
A⊥ such that A⊥⊥ = A, such that having A on the left of ⊢ is the same as having A⊥ on
the right. This involutive negation corresponds to the duality of types, here written as
T ◦, which can be used to formulate a one-sided language. Focusing again on the iconic
cut rule, we have two more possibilities for arranging a one-sided version of the calculus
as

⊢ e : T | ∆ ⊢ f : T ◦ | ∆′

⟨ e | f ⟩ : (⊢ ∆,∆′)

Γ ⊢ e : T Γ′ ⊢ f : T ◦

⟨ e | f ⟩ : (Γ,Γ′ ⊢)

by putting all types on the right of ⊢ (Munch-Maccagnoni, 2009) (as is popular in linear
logic) or all variables to the left of ⊢ and the expression to the right (Spiwack, 2014)
(more popular in the programming languages community). The important thing to
notice about these one-sided cut rules is the promise that any producer of a type T can
interact with any other producer of the opposite type T ◦.
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The idea of connecting producers to other producers fits with our idea of consumer/pro-
ducer polymorphism in section 5.5. Essentially, the point is that if the duality is complete
enough, and if consumers of T are completely interchangeable with producers of T ◦, then
two producers (or two consumers) of opposite types should be able to interact directly
with one another. In such a setting there is no difference between T consumers and
T ◦ producers, so Munch-Maccagnoni (2009) eliminates the distinction between the com-
mands ⟨ e | f ⟩ and ⟨ f | e ⟩. We conjecture that a complete story of consumer/producer
polymorphism should elaborate on this one-sided view of sequents.

Left calculus Right calculi are abounds in the literature behind both the fields of logic
and programming languages. Intro calculi frequently appear in the study of proof theory,
and are growing in number to help understand and implement programming languages,
too. However, examples of left calculi can scarcely be found in the literature.

The idea of left elimination rules has been presented before by Carraro, Ehrhard,
and Salibra (2012), which give a calculus similar to λµµ̃ with a left rule for introducing
function call stacks, but instead of ordinary λ-abstractions, it contains projections that
access the argument and the return-pointer in a call stack. These projections are similar
to the left elimination rule for functions presented here, by the analogy that a Case
extracting the two components of a pair of two things is similar to projections from that
pair to each component individually.

Independently, Nakazawa and Nagai (2014) introduces the same combination of left
introduction and eliminations for functions in the context of the Λµ-calculus (Groote,
1994), a variant of Parigot’s λµ-calculus which collapses the distinction between com-
mands and producers. This collapse improves the completeness properties of the rewrit-
ing theory Saurin, 2005 and elevates µ to a much more expressive delimited control
operator Herbelin and Ghilezan, 2008, and the use of left elimination rules were key to
reconciling extensionality (expressed by the λ-calculus’ η law) of delimited control in Λµ
with standard properties like confluence.

Elimination calculus We know of two calculi which correspond to what we call an elim-
ination calculus. Negri’s uniform calculus for classical linear logic (cf. Negri (2002) and
Negri and Von Plato (2001, p. 213ff.)) is a termfree logical calculus with only elimination
rules. Negri uses the term “general introduction rule” for what we call left elimination
rules. Natural deduction and sequent calculus can be obtained by instantiating major
and minor premises of these elimination rules with an instance of the axiom rule. This
is similar to our bi-expressibility rules, but since she doesn’t have to consider term as-
signment, she also doesn’t have to deal with the activation and deactivation of formulas.

Parigot’s free deduction Parigot, 1992b, a precursor to his λµ-calculus Parigot, 1992a,
also contains only elimination rules, and he also obtains natural deduction and sequent
calculus by instantiating major and minor premises by the axiom rule. In distinction to
Negri, he also provides a term system with constructs which can be seen as precursors
to both the µ and µ̃-abstractions of Curien and Herbelin (2000).
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5.8. Related and Future Work

Communication calculi and session types There is a well-known relationship between
linear logic and session types, both in its intuitionistic Caires and Pfenning, 2010 and
its classical Wadler, 2014 version. These session type systems are based on some form
of communication calculus, like the π-calculus, and provide a type system for the com-
munication channels. There are two relationships between session type systems and our
work. First, there is a relationship between the duality operation T ◦ on types and a
similar operation on session types: The dual of a session type for sending some data is a
session type for receiving some data of that type, the dual of a session type for choosing
between various options is a session type for offering those choices, and so on. The
second relationship concerns the non-local character of reduction in a communication
calculus: The term which wants to send some information on a channel might be at some
distance from the term for receiving information on that channel, but they nevertheless
interact in a reduction step. This can also be observed in the elimination calculus, if
we would formalize the reduction rules for that system directly. For example Parigot
(1992b), who considers reduction rules for a system based on elimination rules, uses the
following version of the axiom rule (which is derivable in our system)

Axiom
x : A, x⊥

con
: A ⊢ ⟨x | x⊥ ⟩

A cut in his system then consists between an elimination rule which uses x as the major
premise, and an elimination rule which uses x⊥ as the major premise, but they don’t
have to stand directly next to each other. The resulting reduction system is closely
reminiscent of a communication step happening between two ends of a channel. We plan
to investigate both these aspects in more detail in future work.

Relations between rules Our bi-expressibility principle concerns the “diagonal” rela-
tion between right-intro/left-elim and left-intro/right-elim. There are other sanity prin-
ciples for rule pairs, but they concern the relation between introduction and elimination
rules and are of particular interest in proof-theoretic semantics, such as invertibility and
harmony Schroeder-Heister, 2018.

Transformations between consumers and producers Our approach to consumer-producer
polymorphism is related to but very different from whole-program transformations (gen-
eralizations of defunctionalization and refunctionalization) that transform data types
into codata types or vice versa (Rendel, Trieflinger, and Ostermann, 2015 and chap-
ters 3 and 4). Consumer-producer polymorphism allows us to use the same program in
two ways, once as a consumer and once as a producer. When viewed as a macro code
generator, it is a compositional transformation. The aforementioned generalizations of
de- and refunctionalization, on the other hand, transform a whole program in a way that
can be viewed as a matrix transposition Ostermann and Jabs, 2018, while preserving its
operational behavior. For instance, when defunctionalizing a codata type into a data
type, all copattern-matches on a destructor in the whole program are turned into a single
pattern match.
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5.9. Conclusions

Programming abstractions based on sequent calculus have, despite their attractive sym-
metry and expressive power, seen only limited influence on functional language design.
We have opened up the design space of natural deduction and sequent calculus by con-
sidering all four kinds of rules and the four natural subcalculi. We have analyzed the
interdependency between program structure and rule choice and have argued that of-
fering all rules to the programmer maximizes expressiveness and allows a natural and
modular program structure. We have proposed a constructive sanity check for the rules,
bi-expressibility, and have shown how the dualities between the available connectives can
be deepened in the form of a uniform syntax and consumer/producer polymorphism.
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6. A Tale of Two Transformations:
Administrative Normal Forms and
Focusing

The content of this chapter is based on the following publication:

David Binder and Thomas Piecha (2022). “Administrative Normal Forms
and Focusing for Lambda Calculi”. In: Logically Speaking. A Festschrift for
Marie Duž́ı. Ed. by Pavel Materna and Bjørn Jespersen. Vol. 49. Tributes.
College Publications

In this chapter I introduce the correspondence between two normal forms and their
normalization procedures: administrative normal forms and the ANF-transformation on
the one hand, and focused normal forms and static focusing on the other. The admin-
istrative normal form applies to the natural-deduction based calculi that I presented
in part I, whereas the focused normal form belongs to the sequent calculi presented in
part II. These normal forms were invented for different purposes, compiler optimizations
in the case of the ANF-transformation and proof search in the case of focusing, but
they are structurally very similar. Both transformations bring proofs into a normal form
where functions and constructors are only applied to values and where computations are
sequentialized. Researchers familiar with both the ANF transformation and focusing are
likely aware that these two transformations are similar in nature. The contribution of
this chapter consists in making this relationship completely explicit for the first time.

We will use the λ-calculus and the λµµ̃-calculus, which are related by a translation
function from λ-terms Λ to λµµ̃-terms Λµµ̃. The two calculi that we consider in this
chapter do not support arbitrary data and codata types. Instead, I have specialized
the presentation to just the type of functions and products. For the λ-calculus we
define the administrative normal form ΛANF, together with a transformation from Λ to
ΛANF. In distinction to the usual presentation of the ANF-transformation, we divide
this transformation into two parts by using an intermediate normal form ΛQ between
Λ and ΛANF. For the Λµµ̃-calculus we define the so-called focused normal form ΛQ

µµ̃

(which corresponds to the subsyntax LKQ of Curien and Herbelin, 2000). The focusing
transformation from Λµµ̃ to ΛQ

µµ̃ is adapted from Downen and Zena M. Ariola, 2018a.

We define a new normal form ΛANF
µµ̃ for λµµ̃-terms, which exactly mirrors the syntactic

restrictions that characterize the administrative normal form ΛANF for λ-terms.

Our main result is depicted in fig. 6.1. We show how the ANF-transformation on λ-
terms corresponds to static focusing of λµµ̃-terms. The first part of the ANF-transformation
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corresponds precisely to the static focusing transformation. That is, it commutes with
focusing via the translation function up to α-equivalence. The second part of the ANF-
transformation can be simulated in the λµµ̃-calculus by µ-reductions.

Λ Λµµ̃

ΛQ ΛQ
µµ̃

ΛANF ΛANF
µµ̃

translation

ANF-transformation (1) focusing

translation

ANF-transformation (2) µ-reduction

translation

Figure 6.1.: The relationship between the ANF-tranformation of λ-terms and focusing
of λµµ̃-terms.

The rest of this chapter is structured as follows. In section 6.1 we present the main idea
using an informal example. In section 6.2 we formalize the syntax and type assignment
rules for the λ-calculus and the λµµ̃-calculus, and in section 6.3 we give the translation
from the former to the latter. In section 6.4 we provide the call-by-value operational
semantics for both calculi. We introduce the ANF-transformation in section 6.5 and
static focusing in section 6.6. The main result is presented in section 6.7 and summarized
in section 6.8, which also contains an outlook to future work. The proofs of the main
theorems can be found in section 6.9.

6.1. An informal example

We explain the main idea with an informal example. Consider the following program

π2(π1(1, 4), 3)

which consists of natural numbers 1, 4 and 3, pair constructors ( , ) and projections
π1 and π2 on the first and second element of a pair, respectively.

We expect this program to evaluate to the natural number 3. Using call-by-name
we could immediately evaluate this program to its final value 3. However, using call-
by-value we first have to evaluate the argument of π2 to the value (1, 3) by evaluating
π1(1, 4) to 1.

There are different ways to formalize the evaluation of a term within a context. Here we
choose the method of evaluation contexts (cf. Felleisen and Hieb (1992) and section 6.4.1
below). An evaluation context E[−] is a term with a placeholder □, which is to be filled
with the outermost redex to be evaluated next. We will use the symbol ≏ throughout
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to express syntactic equality up to α-equivalence (i.e., up to the renaming of bound
variables).

In our example, this allows us to evaluate the outermost redex π1(1, 4) within the
context E[−] ≏ π2(□, 3) as follows:

If π1(1, 4) ▷ 1, then π2(π1(1, 4), 3) ≏ E[π1(1, 4)] ▷ E[1] ≏ π2(1, 3).

The translation (cf. definition 6.3.1) of the program π2(π1(1, 4), 3) into the λµµ̃-
calculus (cf. section 6.2.3) results in the program

µα.⟨ (µβ.⟨ (1, 4) | π1 β ⟩, 3) | π2 α ⟩.

We can recognize many familiar constructs from the initial program. We still have
natural numbers 1, 4 and 3, the pair constructor ( , ) and projections π1 and π2, but
they are now organized and nested in a very different way with the help of two new
constructs.

The first new construct is the cut ⟨ | ⟩ which is used to oppose a proof (or proof
term) of a proposition with its refutation (or refutation term). In our example, we use
the cut to oppose a proof (1, 4) of the type N∧N with a refutation π1β of the same type,
where we assume that the covariable β stands for some unknown refutation of type N.
The reduction rules of the λµµ̃-calculus always replace a cut by another cut, and in the
case of pairs the reduction rule allows to replace ⟨ (1, 4) | π1 β ⟩ by the new cut ⟨ 1 | β ⟩.

The second new construct is the µ-abstraction µα. . We have more to say about
this construct in section 6.2.3, but for now it suffices to say that we use µα.⟨ | ⟩ to
introduce a subcomputation (represented by the cut ⟨ | ⟩) returning to the output
named by the covariable α. For example, in order to represent the subcomputation 2+2,
we use the term µα.⟨ 2 + 2 | α ⟩, which evaluates to µα.⟨ 4 | α ⟩.

We cannot evaluate the program µα.⟨ (µβ.⟨ (1, 4) | π1 β ⟩, 3) | π2 α ⟩ directly to its
final value, since one can only evaluate cuts ⟨ | ⟩, whereas this program has the form
of a µ-abstraction. This can be resolved by introducing a third construct, namely the
toplevel output Top, which enables us to embed any µ-program in a cut whose second
element is Top. Furthermore, a µ̃-abstraction µ̃x.⟨ | ⟩ has to be used, which binds a
value to the variable x in the subcomputation ⟨ | ⟩.

The example program then evaluates in the following way:

⟨µα.⟨ (µβ.⟨ (1, 4) | π1 β ⟩, 3) | π2 α ⟩ | Top ⟩ (6.1)

▷ ⟨ (µβ.⟨ (1, 4) | π1 β ⟩, 3) | π2 Top ⟩ (6.2)

▷ ⟨µβ.⟨ (1, 4) | π1 β ⟩ | µ̃x.⟨ (x, 3) | π2 Top ⟩ ⟩ (6.3)

▷ ⟨ (1, 4) | π1(µ̃x.⟨ (x, 3) | π2 Top ⟩) ⟩ (6.4)

▷ ⟨ 1 | µ̃x.⟨ (x, 3) | π2 Top ⟩ ⟩ (6.5)

▷ ⟨ (1, 3) | π2 Top ⟩ (6.6)

▷ ⟨ 3 | Top ⟩ (6.7)

Note that in step (6.5) we project from (1, 4) to 1 without being in an evaluation context.
The evaluation within an evaluation context is instead simulated by steps (6.4) and (6.6).
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That is, steps (6.4) to (6.6) correspond to the single evaluation step

π2(π1(1, 4), 3) ▷ π2(1, 3).

This sort of evaluation within a context, which is present in both the λ-calculus and
the λµµ̃-calculus, poses no problem from a theoretical point of view. However, from a
practical point of view, it is very inefficient to apply this kind of operational semantics
since the search for a redex requires in general to traverse deeply into a term. Moreover,
evaluations of this kind render the implementation of various compiler optimizations
(cf. Sabry and Felleisen, 1992; Flanagan, Sabry, B. F. Duba, and Felleisen, 1993) more
difficult. These difficulties can be avoided by using certain normal forms, for example,
the so-called administrative normal form (A-normal form or ANF )1 for the λ-calculus,
and the focused normal form for the λµµ̃-calculus.

The ANF of the first example program

π2(π1(1, 4), 3)

is

let x = π1(1, 4) in (let y = π2(x, 3) in y), (A)

whereas the focused normal form of the second program

µα.⟨ (µβ.⟨ (1, 4) | π1 β ⟩, 3) | π2 α ⟩

is

µα.⟨µβ.⟨ (1, 4) | π1 β ⟩ | µ̃x.⟨ (x, 3) | π2 α ⟩ ⟩. (F)

Comparing the ANF (A) with the focused normal form (F) makes the structural similar-
ity between the two normal forms apparent: in both cases the subcomputation π1(1, 4)
(resp. ⟨ (1, 4) | π1 β ⟩) was lifted out and then bound to the variable x in the subsequent
computation π2(x, 3) (resp. ⟨ (x, 3) | π2α ⟩). The difference between (A) and (F) consists
in the use of let-constructs in the λ-calculus on the one hand and the use of µ- and
µ̃-constructs in the λµµ̃-calculus on the other hand.

6.2. Syntax and type assignment

We present the syntax and type-assignment rules of the λ-calculus and of the λµµ̃-
calculus. The syntax for types is the same in both calculi.

Definition 6.2.1 (Types). There are three kinds of types τ :

τ ::= X | τ → τ | τ ∧ τ.

That is, we have atomic types X, implication types τ → τ and conjunction types τ ∧ τ .

1While the “A” in “A-normal” originally had no special meaning, it was later given the meaning of
“administrative normal form”, due to the administrative redexes it introduces.
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6.2.1. The λ-calculus

We use the standard simply typed λ-calculus with conjunction and a let-construct (cf.,
e.g., Benjamin C. Pierce, 2002). Since we only consider a call-by-value evaluation strat-
egy, the values consist of variables, λ-abstractions and tuples of values.

Definition 6.2.2. The syntax Λ of the λ-calculus is defined as follows, where x are term
variables:

1. Terms: e ::= x | λx.e | e e | (e, e) | π1 e | π2 e | let x = e in e.

2. Values: v ::= λx.e | (v, v) | x.

A judgement is a sequent of the form Γ ⊢ e : τ , where Γ is a (possibly empty) set of
declarations {x1 : τ1, . . . , xn : τn}.

Definition 6.2.3. The type assignment rules of the λ-calculus are:

Var
Γ, x : τ ⊢ x : τ

Γ ⊢ e1 : σ Γ, x : σ ⊢ e2 : τ
Let

Γ ⊢ let x = e1 in e2 : τ

Γ, x : σ ⊢ e : τ
Abs

Γ ⊢ λx.e : σ → τ

Γ ⊢ e1 : σ → τ Γ ⊢ e2 : σ
App

Γ ⊢ e1 e2 : τ

Γ ⊢ e1 : σ Γ ⊢ e2 : τ
Pair

Γ ⊢ (e1, e2) : σ ∧ τ
Γ ⊢ e : τ1 ∧ τ2

Proj
Γ ⊢ πi e : τi

Note that rule Proj comprises the two cases where either i = 1 or i = 2.

There are no structural rules since weakening and contraction are implicit. Note
that the rule Let is derivable since any term let x = e1 in e2 can be replaced by
(λx.e2)e1 without changing the type in the conclusion of a type assignment. However,
let-bindings are used to make the evaluation order explicit; we will come back to this
point in section 6.6.

6.2.2. Towards the λµµ̃-calculus

The λ-calculus corresponds to natural deduction for the {→,∧}-fragment of intuitionistic
logic. The λµµ̃-calculus Curien and Herbelin, 2000 was introduced as a system that
corresponds to the classical sequent calculus, in which sequents have the form Γ ⊢ ∆
with (possibly empty) sets Γ,∆ of formulas on either side of the sequent symbol ⊢.

The usual interpretation of a valid classical sequent Γ ⊢ ∆ can be expressed as “If
all the formulas in Γ are true, then at least one of the formulas in ∆ is true.” This
interpretation has to be refined in order to understand the correspondence between the
λµµ̃-calculus and the classical sequent calculus. The refinement consists in distinguishing
three variants of the sequent Γ ⊢ ∆:

1. Γ ⊢ [ϕ],∆

“If all γ ∈ Γ are true and all δ ∈ ∆ are false, then ϕ is true.”
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2. Γ, [ϕ] ⊢ ∆

“If all γ ∈ Γ are true and all δ ∈ ∆ are false, then ϕ is false.”

3. Γ ⊢ ∆

“The assumption that all γ ∈ Γ are true and all δ ∈ ∆ are false is contradictory.”

The formula in square brackets [ϕ] is called the active formula of the sequent. There can
be at most one active formula in any sequent.

The λµµ̃-calculus has one syntactic category and one judgement form for each of these
three interpretations:

1. The active formula ϕ in the succedent of a sequent Γ ⊢ [ϕ],∆ is assigned to a term
e, and the corresponding judgement form is

Γ ⊢ e : ϕ | ∆.

Here the symbol | singles out a formula ϕ for which the proof e is currently
constructed (cf. Curien and Herbelin, 2000).

2. The active formula ϕ in the antecedent of a sequent Γ, [ϕ] ⊢ ∆ is assigned to a
coterm s, and the corresponding judgement form is

Γ | s : ϕ ⊢ ∆.

In this case, the symbol | singles out a formula ϕ for which the refutation s is
currently constructed.

3. A sequent Γ ⊢ ∆ with no active formula is interpreted by a command c, and the
corresponding judgement form is

c : (Γ ⊢ ∆).

This judgement form can be read as follows: “If all γ ∈ Γ are true and all δ ∈ ∆
are false, then c is a contradiction and a well-typed command.”

6.2.3. The λµµ̃-calculus

We consider the syntax of the λµµ̃-calculus. We have to partition the set of λ-terms into
the three syntactic categories of the λµµ̃-calculus, namely terms, coterms and commands.
The basic idea is that the introduction forms λx.e and (e, e) (which correspond to the
introduction rules in natural deduction) will remain terms of the λµµ̃-calculus. On the
other hand, the elimination forms πie and e e (which correspond to the elimination rules
in natural deduction) will become coterms. The terms of the λµµ̃-calculus therefore
comprise the introduction forms λx.t and (t, t) of the λ-calculus, whereas the coterms
comprise the elimination forms πi s and t · s.

There are different ways to understand a coterm t ·s. First, since an implication ϕ→ τ
is false if ϕ is true and τ is false, one can interpret t · s as a constructive refutation of

138



6.2. Syntax and type assignment

an implication ϕ→ τ , consisting of a proof t of ϕ and a refutation s of τ . Alternatively,
in a computational context, t · s can be thought of as a stack frame in a call stack with
argument t on top and s being the rest of the stack.

There is only one form of command in the λµµ̃-calculus: the cut ⟨ t | s ⟩, which
combines a term with a coterm. The cut rule can be interpreted as a primitive way
to construct a contradiction, namely by providing both a proof and a refutation of the
same formula.

This leaves us with the two remaining constructs of µ- and µ̃-abstraction, which,
again, can be understood in two different ways. First, from a logical point of view, the
µ-construct encodes a form of reductio ad absurdum at the level of judgements:

[ϕ is false]

..
.

contradiction (µ)
ϕ is true

This explains why the addition of µ-abstraction makes the logic classical. The µ̃-
construct, on the other hand, encodes the logical inference

[ϕ is true]

..
.

contradiction (µ̃)
ϕ is false

Both inferences are on the level of judgements and do not involve logical constants;
neither absurdity ⊥ nor negation ¬ are used.

Second, from an operational point of view we see that µ̃ behaves very similarly to the
let-construct of the λ-calculus. In a command ⟨ t | µ̃x.c ⟩, the µ̃-abstraction is used to
bind the term t in the remaining computation c. The µ-construct behaves similarly to
control operators like call/cc or C (cf. Zena M. Ariola and Herbelin, 2003; Griffin, 1989).

Definition 6.2.4. The syntax Λµµ̃ of the λµµ̃-calculus is defined as follows, where x are
term variables and α are coterm variables:

1. Terms: t ::= x | λx.t | (t, t) | µα.c.

2. Coterms: s ::= α | t · s | π1 s | π2 s | µ̃x.c.

3. Commands: c ::= ⟨ t | s ⟩.

4. Values: w ::= λx.t | (w,w) | x.

In addition to term variable contexts Γ ≏ {x1 : τ1, . . . , xn : τn}, we now have to
consider also covariable contexts ∆ ≏ {α1 : τ1, . . . , αn : τn}.

Definition 6.2.5. The type-assignment rules of the λµµ̃-calculus for the three judge-
ment forms

1. term typing: Γ ⊢ t : τ | ∆,
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2. coterm typing: Γ | s : τ ⊢ ∆, and

3. command typing: c : (Γ ⊢ ∆)

are the following:

Term typing Coterm typing

Varx
Γ, x : τ ⊢ x : τ | ∆

Varα
Γ | α : τ ⊢ α : τ,∆

Γ, x : σ ⊢ t : τ | ∆
Abs

Γ ⊢ λx.t : σ → τ | ∆

Γ ⊢ t : τ | ∆ Γ | s : σ ⊢ ∆
App

Γ | t · s : τ → σ ⊢ ∆

Γ ⊢ t1 : τ1 | ∆ Γ ⊢ t2 : τ2 | ∆
Pair

Γ ⊢ (t1, t2) : τ1 ∧ τ2 | ∆

Γ | s : τi ⊢ ∆
Proj

Γ | π1 s : τ1 ∧ τ2 ⊢ ∆

c : (Γ ⊢ α : τ,∆)
Mu

Γ ⊢ µα.c : τ | ∆

c : (Γ, x : τ ⊢ ∆)
Mu∼

Γ | µ̃x.c ⊢ ∆

Command typing

Γ ⊢ t : τ | ∆ Γ | s : τ ⊢ ∆
Cut⟨ t | s ⟩ : (Γ ⊢ ∆)

6.3. Translating λ-terms to λµµ̃-terms

We introduce a compositional translation from λ-terms to λµµ̃-terms and show that it
preserves typeability.

Definition 6.3.1. The translation J−K : Λ → Λµµ̃ is defined as follows:

JxK :≏ x (T1)
Jλx.eK :≏ λx.JeK (T2)

J(e1, e2)K :≏ (Je1K, Je2K) (T3)
Je1 e2K :≏ µα.⟨ Je1K | Je2K · α ⟩ (T4)
Jπi eK :≏ µα.⟨ JeK | πi α ⟩ (T5)

Jlet x = e1 in e2K :≏ µα.⟨ Je1K | µ̃x.⟨ Je2K | α ⟩ ⟩. (T6)

In the last three clauses, the covariable α has to be fresh.

Let e be any expression of the λ-calculus typeable with type τ in a context Γ. Then
the translation JeK is a term of the λµµ̃-calculus that is typeable with the same type τ
(in the same context Γ of term variables and with an empty context of covariables).

Theorem 6.3.2. For all e, τ and Γ: if Γ ⊢ e : τ , then Γ ⊢ JeK : τ | ∅.
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Proof. The proof is by induction on the derivation of Γ ⊢ e : τ in the λ-calculus. The
cases for variables, tuples and λ-abstractions are trivial; we will only discuss the following
interesting cases.

The first case is for projections. Assume that the last rule in the typing derivation of
e is Proj. Then e has the form πi e, whose translation is defined as µα.⟨ JeK | πi α ⟩. We
replace the λ-calulus derivation by the following λµµ̃-calculus derivation:

IH
Γ ⊢ JeK : τ1 ∧ τ2 | ∅

Varα∅ | α : τi ⊢ α : τi
Proj∅ | πi α : τ1 ∧ τ2 ⊢ α : τi
Cut⟨ JeK | πi α ⟩ : (Γ ⊢ α : τi)

Mu
Γ ⊢ µα.⟨ JeK | πi α ⟩ : τi | ∅

The second interesting case is for function applications. Assume that the last rule in
the derivation of Γ ⊢ e : τ is App. Then e must have the form e1 e2, whose translation
is defined as µα.⟨ Je1K | Je2K · α ⟩. We replace the original derivation by:

IH
Γ ⊢ Je1K : σ → τ | ∅

IH
Γ ⊢ Je2K : σ | ∅

Varα∅ | α : τ ⊢ α : τ
App∅ | Je2K · α : σ → τ ⊢ α : τ

Cut⟨ Je1K | Je2K · α ⟩ : (Γ ⊢ α : τ)
Mu

Γ ⊢ µα.⟨ Je1K | Je2K · α ⟩ : τ | ∅

The last case is for let-bindings. Assume that the last rule in the derivation of Γ ⊢ e : τ
is Let. Then e must have the form let x = e1 in e2, whose translation is defined as
µα.⟨ Je1K | µ̃x.⟨ Je2K | α ⟩ ⟩. We replace the original derivation by:

IH
Γ ⊢ Je1K : σ | ∅

IH
Γ, x : σ ⊢ Je2K : τ | ∅

Varα∅ | α : τ ⊢ α : τ
Cut⟨ Je2K | α ⟩ : (Γ, x : σ ⊢ α : τ)

Mu∼
Γ | µ̃x.⟨ Je2K | α ⟩ ⊢ α : τ

Cut⟨ Je1K | µ̃x.⟨ Je2K | α ⟩ ⟩ : (Γ ⊢ α : τ)
Mu

Γ ⊢ µα.⟨ Je1K | µ̃x.⟨ Je2K | α ⟩ ⟩ : τ | ∅

We will also need the following lemma about the translation of values:

Lemma 6.3.3 (Translation preserves values). An expression e is a value of the λ-
calculus if, and only if, JeK is a value of the λµµ̃-calculus.

Proof. By inspection of the relevant cases.

6.4. Call-by-value operational semantics

We introduce the evaluation rules for the λ-calculus and for the λµµ̃-calculus.
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6.4.1. Evaluation in the λ-calculus

For the λ-calculus we first have to define how to reduce immediate redexes. We do this
in definition 6.4.1. One can note how all three rules implement the call-by-value strategy:
a function application (λx.e1)e2 can only be reduced if e2 is a value; a projection πi(e1, e2)
can only be reduced if both e1 and e2 are values; and a let-binding let x = e1 in e2 can
only be reduced if e1 is a value.

Definition 6.4.1. The call-by-value evaluation rules for the λ-calculus are:

(λx.e) v ▷ e[v/x] (β→)

πi(v1, v2) ▷ vi (β∧)

let x = v in e ▷ e[v/x]. (β let)

These rules are not sufficient, since none of the rules are applicable to the term
(π1(v1, v2), v3), for example. We therefore need to extend them to allow for the reduction
of redexes within a term. Furthermore, since we want evaluations to be deterministic,
we must extend definition 6.4.1 in such a way that there is always exactly one redex
within a term which can be evaluated next. For example, in a tuple (e1, e2) we must
specify whether we want to evaluate e1 or e2 first (and similarly for function applications
e1 e2).

We specify deterministic evaluations within a context by using the concept of evalu-
ation contexts, introduced in Felleisen and Hieb, 1992. An evaluation context E[−] is
a term with one argument place marked by the symbol □, which indicates where we
evaluate the next immediate redex. Deterministic evaluation is ensured by a unique
decomposition lemma:

Every term e that is not a value can be uniquely decomposed into an evalu-
ation context E[−] and an immediate redex e′ such that e ≏ E[e′].

Definition 6.4.2. The syntax of evaluation contexts E[−] is defined as follows:

E[−] ::= □ | E e | v E | (E, e) | (v,E) | let x = E in e | πi E.

Evaluation contexts now allow us to properly define evaluation within a context:

e ▷ e′ =⇒ E[e] ▷ E[e′]. (Congruence)

6.4.2. Evaluation in the λµµ̃-calculus

For the Λµµ̃-calculus, we again first introduce the rules for evaluating immediate redexes.
The choice of the call-by-value evaluation strategy is manifested in the following ways:
first, a redex ⟨λx.t | e · s ⟩ can only be reduced if the function argument e is a value;
second, a redex ⟨ (e1, e2) | πi s ⟩ can only be reduced if both e1 and e2 are values; third,
the critical pair ⟨µα.c1 | µ̃x.c2 ⟩, which could a priori be reduced to either c1[µ̃x.c2/α]
or c2[µα.c2/x], is resolved by requiring in the rule (µ̃) that a redex ⟨ e | µ̃x.c ⟩ can only
be reduced if e is a value.
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Definition 6.4.3. The call-by-value evaluation rules for the λµµ̃-calculus are:

⟨λx.t | v · s ⟩ ▷ ⟨ t[v/x] | s ⟩ (β→)

⟨ (v1, v2) | πi s ⟩ ▷ ⟨ vi | s ⟩ (β∧)

⟨µα.c | s ⟩ ▷ c[s/α] (µ)

⟨ v | µ̃x.c ⟩ ▷ c[v/x]. (µ̃)

These rules are, again, not complete. For example, there is no rule applicable to the
cut ⟨ (µα.c, v) | πi s ⟩, since the first element of the tuple is not yet a value. Instead of
the evaluation contexts E[−], we will add focusing contexts F [−] and dynamic focusing
rules ς. The focusing contexts play the role of the evaluation contexts for the λ-calculus,
while the ς-rules correspond to the rule (Congruence).

Definition 6.4.4. The syntax of focusing contexts F [−] is defined as follows:

F [−] ::= (□, t) | (w,□) | □ · s.

Definition 6.4.5. We extend the evaluation rules of definition 6.4.3 by the following
dynamic focusing rules:

⟨F [t] | s ⟩ ▷ ⟨ t | µ̃x.⟨F [x] | s ⟩ ⟩ (if t is not a value) (ς1)

⟨ v | F [t] ⟩ ▷ ⟨ t | µ̃x.⟨ v | F [x] ⟩ ⟩ (if t is not a value). (ς2)

6.5. The ANF-transformation

While the evaluation rules presented in section 6.4 are sufficient for purely theoretical
investigations into the reduction theory of the λ-calculus and the λµµ̃-calculus, they are
less ideal for other purposes. In particular, they are not ideal for generating efficient
code that can be run on a real computer. For example, consider the congruence rule
in definition 6.4.1. Its operational meaning implies that we have to search for the next
redex in the term, and this redex can appear nested at an arbitrary depth within the
term. If we implemented this search procedure naively for each reduction step, then the
resulting program would be very inefficient indeed.

Various methods to efficiently evaluate terms of the λ-calculus have been proposed,
for both the call-by-value and call-by-name evaluation orders. One of these methods is
the compilation to abstract machines2, like the SEK, SECD or Krivine machine, which
provide much more efficient means of evaluating λ-terms. The evaluation of commands
of the λµµ̃-calculus is, in fact, very similar to the evaluation of machine states of an
abstract machine. Another class of methods for compiling terms of the ordinary λ-
calculus is based on a translation into the so-called continuation-passing style (CPS),
which was introduced in a seminal paper by John Charles Reynolds (1972). These

2For an introduction to the theory of abstract machines, cf. Felleisen, Findler, and Flatt, 2009.
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translations have been studied both in logic, where they correspond to double negation
translations (cf. Sørensen and Urzyczyn, 2006), and in the theory of optimizing compilers
(cf. Appel, 1992).

One important variation of these CPS translations is the so-called ANF-transformation,
which was introduced by Sabry and Felleisen (1992) and later elaborated by Flanagan,
Sabry, B. F. Duba, and Felleisen (1993). We first introduce the syntax of the adminis-
trative normal form in definition 6.5.1. The ANF-transformation itself is introduced in
Definitions 6.5.3 and 6.5.7.

Definition 6.5.1. The syntax of the administrative normal form ΛANF is defined as
follows:

1. Values: v ::= λx.e | (v, v) | x.

2. Computations: c ::= v | v v | π1 v | π2 v.

3. Terms: e ::= c | let x = c in e.

The administrative normal form has two characteristic properties. The first is reflected
in the syntax of computations c: a projection πi can only be applied to a value, and,
similarly, a function application v1 v2 can only be formed between two values. This
excludes terms like π1(x, π2(y, z)) or (π1(f, g))(π2(x, y)). The second property is reflected
in the syntax of terms e: a let-expression let x = c in e can only bind the result of a
computation c to a variable x. Let-expressions cannot bind other let-expressions, that
is, expressions like let x = (let y = e1 in e2) in e3 are excluded by the second property.

Usual presentations of the ANF-transformation enforce both properties in a single
transformation from Λ to ΛANF. Instead, we present the transformation to administra-
tive normal form as a two-part transformation:

Λ ΛQ ΛANF.A L

The first part consists of a function A : Λ → ΛQ that enforces only the first of the two
characteristic properties described above. A second transformation L : ΛQ → ΛANF then
enforces the second property. By presenting the ANF-transformation in this way, we can
make the relation to focusing clearer. In section 6.7 we will show that the first part of this
transformation corresponds to focusing, whereas the second part of the transformation
can be simulated by µ-reductions in Λµµ̃.

Definition 6.5.2. The syntax of the intermediate normal form ΛQ is defined as follows:

1. Values: v ::= λx.e | (v, v) | x.

2. Terms: e ::= v | let x = e in e | e v | π1 e | π2 e.

Note that definition 6.5.2 only guarantees that pairs (v, v) consist of values, and that
functions are always applied to values in a function application e v. The two transfor-
mations A and L are introduced in turn.

144



6.5. The ANF-transformation

6.5.1. From Λ to ΛQ

Recall that the first property that we want to enforce is that pairs consist of syntactic
values, and that in function applications the function argument is already a value. The
transformation A defined next guarantees the first property by binding any non-value
argument which would violate this property to a fresh variable in a let-binding. For
example, the term π1(π2(x, y)) is transformed by generating a fresh variable z, and
binding the computation π2(x, y) to z in the computation π1 z: A(π1(π2(x, y))) :≏
let z = π2(x, y) in π1 z.

Definition 6.5.3. The transformation A : Λ → ΛQ is defined as follows:

A(x) :≏ x (A1)

A(λx.e) :≏ λx.A(e) (A2)

A(let x = e1 in e2) :≏ let x = A(e1) in A(e2) (A3)

A(πi e) :≏ πi(A(e)) (A4)

A((v1, v2)) :≏ (A(v1),A(v2)) (A5)

A((v1, e2)) :≏ let x = A(e2) in (A(v1), x) (A6)

A((e1, v2)) :≏ let x = A(e1) in (x, v2) (A7)

A((e1, e2)) :≏ let x = A(e1) in (let y = A(e2) in (x, y)) (A8)

A(e1 v2) :≏ A(e1) A(v2) (A9)

A(e1 e2) :≏ let x = A(e2) in A(e1) x. (A10)

Remark 6.5.4. Among the clauses of definition 6.5.3, the clauses (A5) to (A7) are
subsumed by (A8). Similarly, the clause (A9) is subsumed by (A10). This redundancy
is an optimization which guarantees that the transformation behaves as the identity
function on terms that are already in ΛQ.

Example 6.5.5. The result of the transformation

A(π1(π1(π1(x1, x2), x3), x4))

is the term
let z1 = (let z2 = π1(x1, x2) in π1(z2, x3)) in π1(z1, x4),

where z1 and z2 are variables that are generated during the transformation. This example
shows that the result of A is, in general, not yet in ΛANF.

6.5.2. From ΛQ to ΛANF

The second property which we want to enforce is that in a let-construct let x = c in e
the computation bound to the variable x must be of a restricted form. This will be
guaranteed by the transformation L, given by definition 6.5.7. In order to define this
transformation, we need to define a meta-level operation @ that operates on continua-
tions k and values v from ΛANF:

145



6. A Tale of Two Transformations: Administrative Normal Forms and Focusing

Definition 6.5.6. Continuations are defined as follows:

k ::= id | λv.let x = πi v in e | λv.let x = v v in e | λv.let x = v in e,

where e and v range over expressions and values from ΛANF.
The meta-level operation @ takes a continuation k and a value v from ΛANF and

returns an expression of ΛANF. It is evaluated as follows:

id @ v :≏ v (@1)

λv.let x = πi v in e@ v :≏ let x = πi v in e (@2)

λv.let x = v v2 in e@ v1 :≏ let x = v1 v2 in e (@3)

λv.let x = v in e@ v :≏ let x = v in e. (@4)

Using this technical tool we can now define the transformation L.

Definition 6.5.7. The transformation L : ΛQ → ΛANF is given as follows:

Values

L(x) :≏ x (L1)

L(λx.e) :≏ λx.Lid(e) (L2)

L((v1, v2)) :≏ (L(v1),L(v2)) (L3)

Terms

L(e) :≏ Lid(e) (L4)

Lk(e1 v2) :≏ Lλv.let x=v L(v2) in k @ x(e1) (L5)

Lk(πi e) :≏ Lλv.let x=πi v in k @ x(e) (L6)

Lk(v) :≏ k @ L(v) (L7)

Lk(let x = e1 in e2) :≏ Lλv.let x=v in Lk(e2)
(e1). (L8)

Example 6.5.8. As an example of the transformation L, consider the term (from ex-
ample 6.5.5)

let z1 = (let z2 = π1(x1, x2) in π1(z2, x3)) in π1(z1, x4),

which can be transformed into ΛANF as follows:

Lid(let z1 = (let z2 = π1(x1, x2) in π1(z2, x3)) in π1(z1, x4))

= Lλv1.let z1=v1 in Lid(π1(z1,x4))
(let z2 = π1(x1, x2) in π1(z2, x3))

= Lλv1.let z1=v1 in π1(z1,x4)
(let z2 = π1(x1, x2) in π1(z2, x3))

= Lλv2.let z2=v2 in Lλv1.let z1=v1 in π1(z1,x4)
(π1(z2,x3))

(π1(x1, x2))

= Lλv2.let z2=v2 in (let z1=π1(z2,x3) in π1(z1,x4))
(π1(x1, x2))

= let z2 = π1(x1, x2) in (let z1 = π1(z2, x3) in π1(z1, x4)).
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The term was transformed into ΛANF by (in a certain way) moving the let-binding of z2
to the outside of the let-binding of z1.

6.6. The focusing transformation

In distinction to the dynamic focusing rules of definition 6.4.5, we now consider only
static focusing. We first introduce the focused subsyntax ΛQ

µµ̃ as a subset of Λµµ̃ (defi-

nition 6.2.4).3

Definition 6.6.1. The focused subsyntax ΛQ
µµ̃ for the call-by-value evaluation strategy

is defined as follows:

1. Terms: t ::= w | µα.c.

2. Coterms: s ::= α | w · s | π1 s | π2 s | µ̃x.c.

3. Commands: c ::= ⟨ t | s ⟩.

4. Values: w ::= λx.t | (w,w) | x.

The focused subsyntax ΛQ
µµ̃ differs in two respects from Λµµ̃. First, terms t must now

either be values w or abstractions µα.c. This excludes terms like (µα.c, t) and (t, µα.c)
from the subsyntax ΛQ

µµ̃, which are part of the syntax of terms of definition 6.2.4. This
corresponds precisely to the restriction that constructors can only be applied to values.
Second, the syntax of coterms has been changed by requiring the function argument in
a coterm t ·s to be a value; that is, we require w ·s. This corresponds to the requirement
that functions can syntactically only be applied to values.

Lemma 6.6.2. For any term e ∈ ΛQ, JeK ∈ ΛQ
µµ̃.

Proof. By induction on e.

1. Case e ≏ let x = e1 in e2: the translation of e is µα.⟨ Je1K | µ̃x.⟨ Je2K | α ⟩ ⟩. Using
the induction hypothesis for e1 and e2, this term is in the subsyntax ΛQ

µµ̃.

2. If e is of the form e1v2, then the translation of e is µα.⟨ Je1K | Jv2K·α ⟩. By lemma 6.3.3,
Jv2K is a value, and by the induction hypothesis both Je1K and Jv2K are in the subsyntax
ΛQ
µµ̃, so the resulting term is in the subsyntax ΛQ

µµ̃.

3. If e is of the form πie1, then Jπie1K is µα.⟨ Je1K | πiα ⟩. Using the induction hypothesis
for e1, Je1K is in ΛQ

µµ̃. Therefore Jπi e1K is also in ΛQ
µµ̃.

4. If e ≏ v, then we have to distinguish the following cases:

a) If v ≏ x, then JxK ≏ x, which is in ΛQ
µµ̃.

3ΛQ
µµ̃ corresponds to the subsyntax LKQ defined in Curien and Herbelin, 2000.
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b) If v ≏ (v1, v2), then J(v1, v2)K ≏ (Jv1K, Jv2K). By lemma 6.3.3, both JviK are
values, and by the induction hypothesis they are in the subsyntax ΛQ

µµ̃. Therefore

JvK is also in ΛQ
µµ̃.

c) If v ≏ λx.e, then Jλx.eK ≏ λx.JeK. By the induction hypothesis JeK is in ΛQ
µµ̃,

therefore JvK is also in ΛQ
µµ̃.

The subsyntax does not restrict the set of derivable sequents, since any term, coterm
or command in the unrestricted syntax can be translated into the focused subsyntax
ΛQ
µµ̃ by using the following static focusing transformation.

Definition 6.6.3. The static focusing transformation F : Λµµ̃ → ΛQ
µµ̃ is defined as

follows:

Terms

F(x) :≏ x (F1)

F(µα.c) :≏ µα.F(c) (F2)

F(λx.e) :≏ λx.F(e) (F3)

F((w1, w2)) :≏ (F(w1),F(w2)) (F4)

F((w1, t2)) :≏ µα.⟨ F(t2) | µ̃x.⟨ (F(w1), x) | α ⟩ ⟩ (F5)

F((t1, w2)) :≏ µα.⟨ F(t1) | µ̃x.⟨ (x,F(w2)) | α ⟩ ⟩ (F6)

F((t1, t2)) :≏ µα.⟨F(t1) | µ̃x.⟨µβ.⟨F(t2) | µ̃y.⟨(x, y) | β⟩⟩ | α⟩⟩ (F7)

Coterms

F(α) :≏ α (F8)

F(µ̃x.c) :≏ µ̃x.F(c) (F9)

F(πi s) :≏ πi F(s) (F10)

F(w · s) :≏ F(w) · F(s) (F11)

F(t · s) :≏ µ̃x.⟨ F(t) | µ̃y.⟨x | y · F(s) ⟩ ⟩ (F12)

Commands

F(⟨ t | s ⟩) :≏ ⟨ F(t) | F(s) ⟩ (F13)

F(⟨ t1 | t2 · s ⟩) :≏ ⟨ F(t2) | µ̃x.⟨µα.⟨ F(t1) | x · α ⟩ | F(s) ⟩ ⟩. (F14)

In general, when several clauses are applicable, the most specific clause should be
applied. The clauses (F4), (F5) and (F6) are subsumed by the more general clause
(F7), and (F11) is subsumed by the clause (F12). The presence of these additional
clauses guarantees that F behaves as the identity function when it is applied to a term,
coterm or command that is already in the subsyntax ΛQ

µµ̃. With these optimizations, our
definition corresponds to the one given in Downen and Zena M. Ariola, 2018a, Fig. 18,
with the exception of the clause (F14). The additional clause (F14) is necessary to
guarantee that the functions J−K, A and F commute up to α-equivalence, as shown
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by theorem 6.7.1. Without the clause (F14), theorem 6.7.1 has to be slightly weakened
to theorem 6.7.2.

Lemma 6.6.4 (F preserves typeability). For all terms t, coterms s and commands c:

1. If Γ ⊢ t : τ | ∆, then Γ ⊢ F(t) : τ | ∆.

2. If Γ | s : τ ⊢ ∆, then Γ | F(s) : τ ⊢ ∆.

3. If c : (Γ ⊢ ∆), then F(c) : (Γ ⊢ ∆).

Proof. By simultaneous structural induction on t, s and c, respectively.

6.7. The main result

As explained in section 6.5, the ANF-transformation can be split into a purely local
transformation A and a global transformation L. We show what these two parts corre-
spond to in the λµµ̃-calculus, and prove how the ANF-transformation on λ-terms relates
to static focusing of λµµ̃-terms.

6.7.1. The correspondence between A and F

Theorem 6.7.1 (Focusing reflects the ANF-transformation). For all λ-terms e, we have
F(JeK) ≏ JA(e)K.

Proof. See section 6.9.

If we omit the focusing rule (F14) from definition 6.6.3, then theorem 6.7.1 no longer
holds up to syntactic equality (≏). Instead, the following weaker result (theorem 6.7.2)
holds for ηµ-equality ≡, which includes η-equivalence

µ̃x.⟨x | s ⟩ ≡η s (for x not free in s).

Theorem 6.7.2 (Focusing reflects the ANF-transformation; case ≡). For all λ-terms
e, we have F(JeK) ≡ JA(e)K.

Proof. See section 6.9.

6.7.2. Simulating L in the λµµ̃-calculus

Our main contention in this section is that a special purpose transformation like L is
not necessary in Λµµ̃. In order to transform from ΛQ

µµ̃ to ΛANF
µµ̃ we only have to apply

µ-reductions and µ̃-expansions. More concretely, the effect that L has on a term, namely
to globally reorganize the ordering of let-bindings, can be simulated by simply reducing
µ-redexes in the image of the translation. In order to illustrate this central point, let us
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come back to Examples 6.5.5 and 6.5.8. Recall that we showed in example 6.5.8 that L
has the effect of changing the order of the two let-bindings of z1 and z2:

L(let z1 = (let z2 = π1(x1, x2) in π1(z2, x3)) in π1(z1, x4))

≏ let z2 = π1(x1, x2) in (let z1 = π1(z2, x3) in π1(z1, x4)).

This can be simulated as follows:

Jlet z1 = (let z2 = π1(x1, x2) in π1(z2, x3)) in π1(z1, x4)K

≏ µα.⟨µβ.⟨ Jπ1(x1, x2)K | µ̃z2.⟨ Jπ1(z2, x3)K | β ⟩ ⟩ | µ̃z1.⟨Jπ1(z1, x4)K | α⟩ ⟩

▷ µα.⟨ Jπ1(x1, x2)K | µ̃z2.⟨ Jπ1(z2, x3)K | µ̃z1.⟨ Jπ1(z1, x4)K | α ⟩ ⟩ ⟩

◁ µα.⟨ Jπ1(x1, x2)K | µ̃z2.⟨µβ.⟨ Jπ1(z2, x3)K | µ̃z1.⟨ Jπ1(z1, x4)K | β ⟩ ⟩ | α ⟩ ⟩

≏ Jlet z2 = π1(x1, x2) in (let z1 = π1(z2, x3) in π1(z1, x4))K.

Next, we define the subsyntax ΛANF
µµ̃ , which differs from ΛQ

µµ̃ (definition 6.6.1) in two
aspects. First, commands are now required to consist of a value and a coterm instead
of a term and a coterm, i.e., they do not contain any µ-redexes. Second, the coterms for
projections and function applications are required to give an explicit name to the value
they bind in the coterm they contain, i.e., they are µ̃-expanded.

Definition 6.7.3. The focused subsyntax ΛANF
µµ̃ for the call-by-value strategy is defined

as follows:

1. Terms: t ::= w | µα.c.

2. Coterms: s ::= α | w · µ̃x.c | π1 µ̃x.c | π2 µ̃x.c | µ̃x.c

3. Commands: c ::= ⟨w | s ⟩.

4. Values: w ::= λx.t | (w,w) | x.

We have to refine definition 6.3.1.

Definition 6.7.4. The refined translation J−K∗ : ΛANF → ΛANF
µµ̃ is defined as the first
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function in the following set of mutually defined recursive functions:

First function (on expressions)

∗JeK∗ :≏ µα.JeK∗α (T ∗
1 )

Second function (on expressions)

∗Jlet x = c in eK∗s :≏ JcK∗µ̃x.JeK∗s (T ∗
2 )

Jv1 v2K∗s :≏ ⟨ Jv1K∗ | Jv2K∗ · s ⟩ (T ∗
3 )

Jπi vK∗s :≏ ⟨ JvK∗ | πi s ⟩ (T ∗
4 )

JvK∗s :≏ ⟨ JvK∗ | s ⟩ (T ∗
5 )

Third function (on values)

∗JxK∗ :≏ x (T ∗
6 )

J(v1, v2)K∗ :≏ (Jv1K∗, Jv2K∗) (T ∗
7 )

Jλx.eK∗ :≏ λx.JeK∗. (T ∗
8 )

Lemma 6.7.5. For all terms e ∈ ΛANF, JeK∗ ∈ ΛANF
µµ̃ .

Proof. By induction on terms e.

Theorem 6.7.6. For all terms e ∈ ΛQ, JL(e)K∗ ≡µ JeK.

Proof. See section 6.9.

6.8. Summary and outlook

We can summarize our results in the following diagram, where both the lower and the
upper part are commutative.
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Λ (Def. 6.2.2) Λµµ̃ (Def. 6.2.4)

(theorem 6.7.1)

ΛQ (Def. 6.5.2) ΛQ
µµ̃ (Def. 6.6.1)

(theorem 6.7.6)

ΛANF (Def. 6.5.1) ΛANF
µµ̃ (Def. 6.7.3)

J−K

A (Def. 6.5.3) F (Def. 6.6.3)

J−K

L (Def. 6.5.7) µ-reduction

J−K∗

These results are embedded in a wider conceptual context. By the Curry-Howard
correspondence, natural deduction for intuitionistic logic (more precisely, the {→,∧}-
fragment) corresponds to the λ-calculus on the one side, and the sequent calculus for
classical logic corresponds to the λµµ̃-calculus on the other side. Our results thus estab-
lish a bridge between natural deduction for intuitionistic logic with its computational
interpretation on the one side and the classical sequent calculus with its computational
interpretation on the other side.

We would like to extend this work in two directions. The first concerns the asymmetry
of the translation J−K, which is only a mapping from Λ to Λµµ̃, but not vice versa. In
order to provide a translation in the opposite direction, from Λµµ̃ to Λ, we will have
to extend the λ-calculus with control operators. The seond extension concerns the
treatment of evaluation orders other than call-by-value. While the treatment of call-by-
name seems to be straightforward, the study of call-by-need (cf. Zena M. Ariola, Maraist,
Odersky, Felleisen, and Wadler, 1995; Launchbury, 1993) and its dual call-by-co-need
(cf. Downen and Zena M. Ariola, 2018b) in both the λ-calculus and the λµµ̃-calculus
seems to be promising.

6.9. Proof of the main theorems

Theorem 6.7.1 (Focusing reflects the ANF-transformation). For all λ-terms e, we have
F(JeK) ≏ JA(e)K.

Proof. By induction on the structure of e.

1. Case e ≏ x: F(JxK) ≏ x ≏ JA(x)K.

2. Case e ≏ λx.e1:

F(Jλx.e1K) ≏ λx.F(Je1K)
IH
≏ λx.JA(e1)K ≏ JA(λx.e1)K.

152



6.9. Proof of the main theorems

3. Case e ≏ πi e1:

F(Jπi e1K) ≏ F(µα.⟨ Je1K | πi α ⟩) (T5)
≏ µα.⟨ F(Je1K) | πi α ⟩ (F2, F13, F10, F8)

≏ µα.⟨ JA(e1)K | πi α ⟩ (IH)

≏ Jπi A(e1)K (T5)
≏ JA(πi e1)K. (A4)

4. In case e ≏ e1 e2, we have to distinguish two subcases:

(i) Subcase e ≏ e1 v2:

F(Je1 v2K) ≏ F(µα.⟨ Je1K | Jv2K · α ⟩) (T4)
≏ µα.⟨ F(Je1K) | F(Jv2K) · α ⟩ (F2, F13, F11, F8)

≏ µα.⟨ JA(e1)K | JA(v2)K · α ⟩ (IH)

≏ JA(e1) A(v2)K (T4)
≏ JA(e1 v2)K. (A9)

(ii) Subcase e ≏ e1 e2:

F(J(e1 e2)K) ≏ F(µα.⟨ Je1K | Je2K · α ⟩) (T4)
≏ µα.⟨ F(Je2K) | µ̃x.⟨µβ.⟨ F(Je1K) | x · β ⟩ | α ⟩ ⟩ (F14, F2, F8)

≏ µα.⟨JA(e2)K | µ̃x.⟨µβ.⟨JA(e1)K | x · β⟩ | α⟩⟩ (IH)

≏ Jlet x = A(e2) in A(e1) xK (T4, T6)
≏ JA(e1 e2)K. (A10)

5. In case e ≏ (e1, e2), we have to distinguish four subcases:

(i) Subcase e ≏ (v1, v2):

F(J(v1, v2)K) ≏ F(Jv1K, Jv2K) (T3)
≏ (F(Jv1K),F(Jv2K)) (F4)

≏ (JA(v1)K, JA(v2)K) (IH)

≏ J(A(v1),A(v2))K (T3)
≏ JA((v1, v2))K. (A5)

(ii) Subcase e ≏ (v1, e2):

F(J(v1, e2)K) ≏ F((Jv1K, Je2K)) (T3)
≏ µα.⟨ F(Je2K) | µ̃x.⟨ (F(Jv1K), x) | α ⟩ ⟩ (F5)

≏ µα.⟨ JA(e2)K | µ̃x.⟨ (JA(v1)K, x) | α ⟩ ⟩ (IH)

≏ Jlet x = A(e2) in (A(v1), x)K (T3, T6)
≏ JA((v1, e2))K. (A6)
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(iii) Subcase e ≏ (e1, v2):

F(J(e1, v2)K) ≏ F((Je1K, Jv2K)) (T3)
≏ µα.⟨ F(Je1K) | µ̃x.⟨ (x,F(Jv2K)) | α ⟩ ⟩ (F6)

≏ µα.⟨ JA(e1)K | µ̃x.⟨ (x, JA(v2)K) | α ⟩ ⟩ (IH)

≏ Jlet x = A(e1) in (x,A(v2))K (T3, T6)
≏ JA((e1, v2))K. (A7)

(iv) Subcase e ≏ (e1, e2):

F(J(e1, e2)K)
≏ F((Je1K, Je2K)) (T3)
≏ µα.⟨ F(Je1K) | µ̃x.⟨µβ.⟨ F(Je2K) | µ̃y.⟨ (x, y) | β ⟩ ⟩ | α ⟩ ⟩ (F7)

≏ µα.⟨ JA(e1)K | µ̃x.⟨µβ.⟨ JA(e2)K | µ̃y.⟨ (x, y) | β ⟩ ⟩ | α ⟩ ⟩ (IH)

≏ Jlet x = A(e1) in (let y = A(e2) in (x, y))K (T3, T6)
≏ JA((e1, e2))K. (A8)

6. In case e ≏ let x = e1 in e2 we have:

F(Jlet x = e1 in e2K) ≏ F(µα.⟨ Je1K | µ̃x.⟨ Je2K | α ⟩ ⟩) (T6)
≏ µα.⟨ F(Je1K) | µ̃x.⟨ F(Je2K) | α ⟩ ⟩ (F2, F13, F9, F8)

≏ µα.⟨ JA(e1)K | µ̃x.⟨ JA(e2)K | α ⟩ ⟩ (IH)

≏ Jlet x = A(e1) in A(e2)K (T6)
≏ JA(let x = e1 in e2)K. (A3)

Theorem 6.7.2 (Focusing reflects the ANF-transformation; case ≡). For all λ-terms
e, we have F(JeK) ≡ JA(e)K.

Proof. We only have to modify subcase 4(ii) in the proof of theorem 6.7.1. The modified
proof is as follows (evaluated redexes are underlined).

4. In case e ≏ e1 e2, we have to distinguish two subcases:

(i) Subcase e ≏ e1 v2: identical to the proof of theorem 6.7.1.
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(ii) Subcase e ≏ e1 e2:

F(J(e1 e2)K) ≏ F(µα.⟨ Je1K | Je2K · α ⟩) (T4)
≏ µα.⟨F(Je1K) | µ̃y.⟨ F(Je2K) | µ̃x.⟨ y | x · α ⟩ ⟩⟩

(F2,F13, F9, F1, F8, F11)

▷ µα.⟨ F(Je2K) | µ̃x.⟨ F(Je1K) | x · α ⟩ ⟩
IH≡ µα.⟨ JA(e2)K | µ̃x.⟨ JA(e1)K | x · α ⟩ ⟩
◁ µα.⟨ JA(e2)K | µ̃x.⟨µβ.⟨ JA(e1)K | x · β ⟩ | α⟩ ⟩
≏ Jlet x = A(e2) in A(e1) xK (T4 + T6)
≏ JA(e1 e2)K. (A10)

In order to prove that for all e ∈ ΛQ, JL(e)K∗ =µ JeK (theorem 6.7.6), we introduce
a transformation M that simulates the effect of applying L on a term from ΛQ on its
translation in ΛQ

µµ̃.

Definition 6.9.1. The µ-normalization operation M : ΛQ
µµ̃ → ΛANF

µµ̃ is defined by the
following clauses:

Values

M(x) :≏ x (M1)

M(λx.e) :≏ λx.M(e) (M2)

M((w1, w2)) :≏ (M(w1),M(w2)) (M3)

Terms

M(e) :≏ µα.Mα(e) (M4)

Ms(w) :≏ ⟨M(w) | s ⟩ (M5)

Ms(µα.c) :≏ M(c[s/α]) (M6)

Coterms

M(α) :≏ α (M7)

M(πi s) :≏ πi µ̃x.⟨x | s ⟩ (M8)

M(w · s) :≏ w · µ̃x.⟨x | s ⟩ (M9)

M(µ̃x.⟨ e | s ⟩) :≏ µ̃x.Ms(e) (M10)

Computations

M(⟨ e | s ⟩) :≏ MM(s)(e). (M11)
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Definition 6.9.2. We define the operation ; which takes a continuation k (cf. defini-
tion 6.5.6) and a coterm s, and returns a coterm k; s:

id; s :≏ s (C1)
λv.let x = πi v in e; s :≏ πi µ̃x.JeK∗s (C2)
λv.let x = v v′ in e; s :≏ v′ · µ̃x.JeK∗s (C3)
λv.let x = v in e; s :≏ µ̃x.JvK∗s. (C4)

Lemma 6.9.3. We have Jk @ vK∗s ≏ ⟨ JvK∗ | k; s ⟩.

Proof. By case analysis on k:

1. Case k ≏ id:

Jid @ vK∗s ≏ JvK∗s (@1)

≏ ⟨ JvK∗ | s ⟩ (T ∗
5 )

≏ ⟨ JvK∗ | id; s ⟩. (C1)

2. Case k ≏ λv.let x = πi v in e:

Jλv.let x = πi v in e@ vK∗s ≏ Jlet x = πi v in eK∗s (@2)

≏ Jπi vK∗µ̃x.JeK∗s (T ∗
2 )

≏ ⟨ JvK∗ | πi µ̃x.JeK∗s ⟩ (T ∗
4 )

≏ ⟨ JvK∗ | λv.let x = πi v in e; s ⟩. (C2)

3. Case k ≏ λv.let x = v v′ in e:

Jλv.let x = v v′ in e@ vK∗s ≏ Jlet x = v v′ in eK∗s (@3)

≏ Jv v′K∗µ̃x.JeK∗s (T ∗
2 )

≏ ⟨ JvK∗ | Jv′K∗ · µ̃x.JeK∗s ⟩ (T ∗
3 )

≏ ⟨ JvK∗ | λv.let x = v v′ in e; s ⟩. (C3)

4. Case k ≏ λv.let x = v in e:

Jλv.let x = v in e@ vK∗s ≏ Jlet x = v in eK∗s (@4)

≏ JvK∗µ̃x.JeK∗s (T ∗
2 )

≏ ⟨ JvK∗ | µ̃x.JeK∗s ⟩ (T ∗
5 )

≏ ⟨ JvK∗ | λv.let x = v in e; s ⟩. (C4)

The µ-normalization operation M corresponds precisely to the transformation L:
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Lemma 6.9.4. The following statements hold:

1. For all values v ∈ ΛQ: JL(v)K∗ ≏ M(JvK).

2. For all expressions e ∈ ΛQ: JL(e)K∗ ≏ M(JeK).

3. For all e ∈ ΛQ, continuations k and coterms s:

JLk(e)K∗s ≏ Mk;s(JeK).

Proof. We prove these three statements by simultaneous induction. For the first state-
ment, lemma 6.9.4(1), we use induction on v:

1. Case v ≏ x:

JL(x)K∗ ≏ JxK∗ (L1)

≏ x (T ∗
6 )

≏ M(x) (M1)

≏ M(JxK). (T1)

2. Case v ≏ (v1, v2):

JL((v1, v2))K∗ ≏ J(L(v1),L(v2))K∗ (L3)

≏ (JL(v1)K∗, JL(v2)K∗) (T ∗
7 )

≏ (M(Jv1K),M(Jv2K)) (IH for lemma 6.9.4(1))

≏ M((Jv1K, Jv2K)) (M3)

≏ M(J(v1, v2)K). (T3)

3. Case v ≏ λx.e:

JL(λx.e)K∗ ≏ Jλx.L(e)K∗ (L2)

≏ λx.JL(e)K∗ (T ∗
8 )

≏ λx.M(JeK) (IH for lemma 6.9.4(2))

≏ M(λx.JeK) (M2)

≏ M(Jλx.eK). (T2)

For lemma 6.9.4(2), we show the following:

JL(e)K∗ ≏ µα.JL(e)K∗α (T ∗
1 )

≏ µα.JLid(e)K∗α (L4)

≏ µα.Mid;α(JeK) (IH for lemma 6.9.4(3))

≏ µα.Mα(JeK) (C1)
≏ M(JeK). (M4)

For lemma 6.9.4(3), we perform induction on e:
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1. Case e ≏ v:

JLk(v)K∗s ≏ Jk @ L(v)K∗s (L7)

≏ ⟨ JL(v)K∗ | k; s ⟩ (lemma 6.9.3)

≏ ⟨M(JvK) | k; s ⟩ (IH for 1)

≏ Mk;s(JvK). (M5)

2. Case e ≏ let x = e1 in e2:

JLk(let x = e1 in e2)K∗s ≏ JLλv.let x=v in Lk(e2)
(e1)K∗s (L8)

≏ Mλv.let x=v in Lk(e2);s
(Je1K) (IH)

≏ Mµ̃x.JLk(e2)K∗s (Je1K) (C4)
≏ Mµ̃x.Mk;s(Je2K)(Je1K) (IH)

≏ MM(µ̃x.⟨ Je2K | k;s ⟩)(Je1K) (M10)

≏ M(⟨ Je1K | µ̃x.⟨ Je2K | k; s ⟩ ⟩) (M11)

≏ Mk;s(µα.⟨ Je1K | µ̃x.⟨ Je2K | α ⟩ ⟩) (M6)

≏ Mk;s(Jlet x = e1 in e2K). (T6)

3. Case e ≏ e v:

JLk(e v)K∗s ≏ JLλv′.let x=v′ v in k @ x(e)K∗s (L5)

≏ Mλv′.let x=v′ v in k @ x;s(JeK) (IH)

≏ MJvK·µ̃x.Jk @ xK∗s (JeK) (C3)
≏ MJvK·µ̃x.⟨x | s ⟩(JeK) (lemma 6.9.3)

≏ MM(JvK·k;s)(JeK) (M9)

≏ M(⟨ JeK | JvK · k; s ⟩) (M11)

≏ Mk;s(µα.⟨ JeK | JvK · α ⟩) (M6)

≏ Mk;s(Je vK). (T4)

4. Case e ≏ πi e:

JLk(πi e)K∗s ≏ JLλv.let x=πi v in k @ x(e)K∗s (L6)

≏ Mλv.let x=πi v in k @ x;s(JeK) (IH)

≏ Mπi µ̃x.Jk @ xK∗s (JeK) (C2)
≏ Mπi µ̃x.⟨x | k;s ⟩(JeK) (lemma 6.9.3)

≏ MM(πi (k;s))(JeK) (M8)

≏ M(⟨ JeK | πi (k; s) ⟩) (M11)

≏ Mk;s(µα.⟨ JeK | πi α ⟩) (M6)

≏ Mk;s(Jπi eK). (T5)
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The effect of the application of M can be achieved by applying µ-reductions in com-
mands and η-expansions in coterms:

Lemma 6.9.5. For all terms, coterms and commands t ∈ ΛQ
µµ̃ we have t ≡µ M(t).

Proof. By inspection of the relevant clauses in definition 6.9.1. The combination of
the clauses (M6) and (M11) corresponds to the reduction of µ-redexes. Coterms are
η-expanded in the clauses (M8) and (M9).

Theorem 6.7.6. For all terms e ∈ ΛQ, JL(e)K∗ ≡µ JeK.

Proof. By combining Lemmas 6.9.4 and 6.9.5.

159





Bibliography

Abel, Andreas, Brigitte Pientka, David Thibodeau, and Anton Setzer (2013). “Copat-
terns: Programming Infinite Structures by Observations”. In: Proceedings of the 40th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages. POPL ’13. Rome, Italy: Association for Computing Machinery, pp. 27–38.
isbn: 9781450318327. url: https://doi.org/10.1145/2480359.2429075 (cit. on
pp. 5, 46, 47, 50, 69, 79, 129).

Andreoli, Jean-Marc (1992). “Logic Programming with Focusing Proofs in Linear Logic”.
In: Journal of Logic and Computation 2 (3), pp. 297–347. url: https://doi.org/
10.1093/logcom/2.3.297 (cit. on pp. 109, 128).

Appel, Andrew W. (1992). Compiling with Continuations. Cambridge University Press
(cit. on p. 144).

Ariola, Zena M. and Hugo Herbelin (2003). “Minimal classical logic and control oper-
ators”. In: Automata, Languages and Programming. Ed. by Jos C. M. Baeten, Jan
Karel Lenstra, Joachim Parrow, and Gerhard J. Woeginger. Springer, pp. 871–885
(cit. on p. 139).

Ariola, Zena M., John Maraist, Martin Odersky, Matthias Felleisen, and Philip Wadler
(1995). “A Call-by-Need Lambda Calculus”. In: Proceedings of the 22nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. POPL ’95. San Fran-
cisco, California, USA: Association for Computing Machinery, pp. 233–246. doi:
10.1145/199448.199507 (cit. on pp. 39, 44, 152).

Atkey, Robert and Conor McBride (2013). “Productive Coprogramming with Guarded
Recursion”. In: Proceedings of the 18th ACM SIGPLAN International Conference
on Functional Programming. ICFP ’13. Boston, Massachusetts, USA: Association
for Computing Machinery, pp. 197–208 (cit. on p. 59).

Barendregt, Hendrik Pieter (1981). The Lambda Calculus: Its Syntax and Semantics.
New York, NY, USA: Elsevier (cit. on pp. 12, 32).

Bhanuka, Ishan, Lionel Parreaux, David Binder, and Jonathan Immanuel Brachthäuser
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Jaśkowski, Stanislaw (1934). “On the Rules of Suppositions in Formal Logic”. In: Studia
Logica 1, pp. 5–32 (cit. on p. 13).

Johann, Patricia and Janis Voigtländer (2004). “Free Theorems in the Presence of Seq”.
In: Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. POPL ’04. Venice, Italy: Association for Computing Ma-
chinery, pp. 99–110. isbn: 158113729X. doi: 10.1145/964001.964010. url: https:
//doi.org/10.1145/964001.964010 (cit. on p. 77).

Johnsson, Thomas (1985). “Lambda lifting: Transforming programs to recursive equa-
tions”. In: Functional Programming Languages and Computer Architecture. Ed. by
Jean-Pierre Jouannaud. Berlin, Heidelberg: Springer, pp. 190–203. isbn: 978-3-540-
39677-2 (cit. on p. 49).

166

https://doi.org/10.1016/S0747-7171(89)80065-3
https://doi.org/10.1145/1328438.1328484
https://doi.org/10.1145/1328438.1328484
https://doi.org/10.1109/LICS.1997.614964
https://doi.org/10.1145/3591241
https://doi.org/10.1145/3591241
https://doi.org/10.1007/978-1-4613-1437-0_5
https://doi.org/10.1007/978-1-4613-1437-0_5
https://doi.org/10.1007/978-1-4613-1437-0_5
https://doi.org/10.1145/964001.964010
https://doi.org/10.1145/964001.964010
https://doi.org/10.1145/964001.964010


Bibliography

Krishnamurthi, Shriram, Matthias Felleisen, and Daniel P. Friedman (1998). “Synthe-
sizing Object-Oriented and Functional Design to Promote Re-Use”. In: Proceedings
of the 12th European Conference on Object-Oriented Programming. ECCOP ’98.
Berlin, Heidelberg: Springer, pp. 91–113. isbn: 3-540-64737-6. url: http://dl.
acm.org/citation.cfm?id=646155.679709 (cit. on p. 46).

Laforgue, Paul and Yann Régis-Gianas (2017). “Copattern Matching and First-class
Observations in OCaml, with a Macro”. In: Proceedings of the 19th International
Symposium on Principles and Practice of Declarative Programming. PPDP ’17. New
York, NY, USA: Association for Computing Machinery (cit. on pp. 48, 69, 70).
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Martin-Löf, Per (1996). “On the Meanings of the Logical Constants and the Justifications
of the Logical Laws”. In: Nordic journal of philosophical logic 1.1, pp. 11–60 (cit. on
p. 6).

Munch-Maccagnoni, Guillaume (Sept. 2009). “Focalisation and Classical Realisability”.
In: Computer Science Logic: 23rd international Workshop, CSL 2009, 18th Annual
Conference of the EACSL. Ed. by Erich Grädel and Reinhard Kahle. CSL ’09. Coim-
bra, Portugal: Springer, pp. 409–423. url: https://doi.org/10.1007/978-3-
642-04027-6_30 (cit. on pp. 129, 130).

Nakazawa, Koji and Tomoharu Nagai (2014). “Reduction System for Extensional Lambda-
mu Calculus”. In: Rewriting and Typed Lambda Calculi. Ed. by Gilles Dowek. Cham:
Springer International Publishing, pp. 349–363. url: https://doi.org/10.1007/
978-3-319-08918-8_24 (cit. on p. 130).

Negri, Sara (2002). “Varieties of Linear Calculi”. In: J. Philos. Log. 31.6, pp. 569–590.
url: https://doi.org/10.1023/A:1021264102972 (cit. on p. 130).

Negri, Sara and Jan Von Plato (2001). Structural Proof Theory. Cambridge University
Press. url: https://doi.org/10.1017/CBO9780511527340 (cit. on p. 130).

Oliveira, Bruno C. d. S. and William R. Cook (2012). “Extensibility for the Masses:
Practical Extensibility with Object Algebras”. In: Proceedings of the 26th Euro-

167

http://dl.acm.org/citation.cfm?id=646155.679709
http://dl.acm.org/citation.cfm?id=646155.679709
https://doi.org/10.1145/363744.363749
https://doi.org/10.1145/363744.363749
https://doi.org/10.1145/158511.158618
https://doi.org/10.1007/978-3-642-04027-6_30
https://doi.org/10.1007/978-3-642-04027-6_30
https://doi.org/10.1007/978-3-319-08918-8_24
https://doi.org/10.1007/978-3-319-08918-8_24
https://doi.org/10.1023/A:1021264102972
https://doi.org/10.1017/CBO9780511527340


Bibliography

pean Conference on Object-Oriented Programming. ECOOP’12. Berlin, Heidelberg:
Springer, pp. 2–27 (cit. on p. 69).

Ostermann, Klaus, David Binder, Ingo Skupin, Tim Süberkrüb, and Paul Downen (2022a).
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