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Abstract

El Niño Southern Oscillation (ENSO) is the dominant mode of interannual variability of the global climate

and is characterized by anomalously warm (El Niño) and cold (La Niña) sea surface temperatures (SST) in

the tropical Pacific. El Niño and La Niña exhibit a large event-to-event variation in terms of temperature

intensity, spatial pattern, and temporal evolution, known as ENSO diversity. ENSO diversity is commonly

described by two distinct types — Eastern Pacific (EP) and Central Pacific (CP), based on the location of peak

SST anomalies — exhibiting different impacts on weather conditions worldwide, also called teleconnections.

While the coupled atmosphere-ocean feedback processes of ENSO are known, the mechanisms contributing

to its diversity are not clear.

This thesis introduces data-driven approaches to model various aspects of ENSO diversity, assess ENSOs

global impacts, refine its definition, and improve its forecasting accuracy. My contribution is three-fold:

i) I introduce a novel tool to visualize teleconnections of ENSO diversity worldwide, suggesting that EP El

Niño events mainly impact surface temperatures in the tropics whereas CP El Niño events exhibit only minor

impacts on temperature changes.

ii) Studying the impacts of El Niño events revealed inconsistencies between conventional definitions of ENSO

diversity. Consequently, I propose that ENSO diversity should be defined as a continuous phenomenon, rather

than the binary separation into CP and EP events. This perspective allows for a more nuanced estimation of

onset dynamics and low-frequency changes of ENSO.

iii) I propose a hybrid model for ENSO forecasting, that exhibits skillful forecasts up to 18 months with

uncertainty estimates. The combination of linear model and recurrent neural network is data efficient and

enables interpretable analysis, highlighting potential mechanisms of ENSO diversity.

With anthropogenic climate change projected to intensify El Niño events, this work contributes to enhancing

our understanding and predictive capabilities of ENSO diversity, which is crucial for agriculture, energy

production, and disaster mitigation.





Zusammenfassung

El-Niño-Southern-Oscillation (ENSO) ist die größte Klimaveränderung von einem Jahr zum Nächsten. ENSO

ist durch ungewöhnlich warme (El Niño) und kalte (La Niña) Meeresoberflächentemperaturen (SST) im

tropischen Pazifik gekennzeichnet. Sowohl El Niño als auch La Niña zeigen große Unterschiede zwischen

Ereignissen in ihrer Intensität und Temperaturverteilung im Pazifik auf, was als ENSO Diversität bezeichnet

wird. Üblicherweise wird zwischen zwei Typen unterschieden: dem Eastern Pacific (EP) und dem Central

Pacific (CP) Typ, je nachdem, ob die Temperaturanomalien im Ost- oder Zentralpazifik am größten sind.

Die Unterschiede zwischen EP- und CP-Ereignissen betreffen nicht nur den Pazifik, sondern beeinflussen

das globale Wettergeschehen. Diese langreichweitigen Auswirkungen auf andere Regionen werden als

Telekonnektionen bezeichnet. Trotz umfassender Kenntnisse über die grundlegenden atmosphärischen und

ozeanischen Prozesse von ENSO sind die Mechanismen, die zu den Unterschieden zwischen den Ereignissen

führen, noch nicht vollständig geklärt. Klimamodelle sind derzeit nicht in der Lage, die ENSO-Diversität

präzise abzubilden, was die Genauigkeit von Vorhersagen erheblich beeinträchtigt.

Diese Arbeit untersucht verschiedene Aspekte der ENSO-Diversität mithilfe datengetriebener Modelle:

i) Klimanetzwerke zeigen die Korrelationsstrukturen zwischen Stationen auf der Erde. Da vor allem

benachbarte Punkte starke Korrelationen aufweisen, sind die meisten Verbindungen in einem Klimanetzwerk

lokal. Wir schlagen eine Metrik vor, die basierend auf der Topologie des Klimanetzwerks Telekonnektionen

identifiziert. Damit können wir Unterschiede in globalen Auswirkungen von EP- und CP-El Niño-Ereignissen

aufzeigen.

ii) Die binäre Unterteilung von ENSO-Ereignissen in CP- und EP-Typen ist in vielerlei Hinsicht willkürlich,

da die Verteilung der El Niño- und La Niña-Ereignisse eher kontinuierlicher Natur ist. Diese Unterteilung

wurde eingeführt, um Eigenschaften mehrerer Ereignisse gemeinsam zu untersuchen. Statt einer diskreten

Unterteilung in CP und EP, schlagen wir jedoch vor, die Ereignisse mit einer multimodalen Verteilung

zu beschreiben, bei der bestimmte Kategorien häufiger auftreten als andere. So können wir El Niño- und

La Niña-Jahre mit Wahrscheinlichkeiten für bestimmte Kategorien beschreiben und deren langfristige

Veränderung über Jahrzehnte hinweg untersuchen.

iii) Zuletzt schlagen wir einen hybriden Ansatz zur ENSO-Vorhersage vor. Das hybride Modell besteht aus

einem linearen Modell und einem rekurrenten neuronalen Netz und sagt nicht nur die Wasseroberflächen-

temperaturen im Pazifik bis zu 18 Monate im Voraus vorher, sondern ermöglicht es auch, die Rolle der

nichtlinearen Dynamik im Pazifik zu untersuchen. Wir zeigen, dass Nichtlinearität vor allem im Westpazifik

zu besseren Vorhersagen führt. Zudem können wir mit unserem hybriden Ansatz die Vorhersageunsicherheit

quantifizieren und Bedingungen im Pazifik identifizieren, die zu einer höhere Vorhersagbarkeit führen.

Der anthropogene Klimawandel erhöht die Häufigkeit von El-Niño-Ereignissen und damit die Relevanz

genauerer Vorhersagen und eines besseren Verständnisses von ENSO. Vor allem für die Planung von

Wasserressourcen, Landwirtschaft und Energieerzeugung ist eine frühzeitige Vorhersage von ENSO unab-

dingbar.
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1.1. Introduction

Figure 1.1.: Daily SST averaged glob-

ally (60°S-60°N) for the years 1982 to

present. The current and last years are

highlighted, as well as the mean and 2𝜎
between 1982 and 2011. Data are taken

from Reanalyzer (2024).

At the time of writing, global sea surface temperature (SST) are the highest

on record. This unprecedented rise is largely driven by global warming,

caused by the burning of fossil fuels, and has led to land temperatures

being 1.5 degrees warmer than in pre-industrial times (Copernicus, 2024).

Given that the ocean takes up 90% of heat associated with anthropogenic

global warming, the rise in ocean temperatures is expected (Durack

et al., 2014). Nevertheless, the jump in global ocean temperatures to two

standard deviations higher than the 40-year average came as a surprise

in the scientific community (Fig. 1.1).

This unexpected ocean temperature jump highlights the interplay be-

tween anthropogenic climate change and natural climate variability. The

largest contributor to natural interannual variability is El Niño Southern

Oscillation (ENSO), which not only alters ocean temperatures but also

the atmospheric conditions worldwide (Taschetto et al., 2020). ENSO

is a coupled ocean-atmosphere phenomenon, that is characterized by

periods of warm (El Niño) and cold (La Niña) sea surface temperature

anomaly (SSTA) in the equatorial Pacific. The recent jump in global SST

coincides with a transition to a warm El Niño phase in 2023-2024, after

three consecutive years of cold La Niña conditions.

The recent El Niño has amplified the severity of weather events worldwide.

For example, Hurricane Otis, the strongest Pacific hurricane that made

landfall on records, rendered hundreds of people homeless in Acapulco

Mexico (Blake, 2023). At the same time, Australia faced severe droughts

and destructive wildfires (Magramo et al., 2024), and marine ecosystems

are at risk, with coral bleaching likely to occur on a widespread scale this

year (Leslie et al., 2024).

El Niño occurs semi-periodically every 2-8 years, altering SST, sea level

pressure (SLP), and atmospheric circulation in the tropical Pacific. ENSO

does not only include the warm El Niño phase but also a neutral phase

and a cold phase, known as La Niña. Both El Niño and La Niña exhibit

variations in intensity, temporal evolution, and spatial distribution of

SSTA, resulting in a wide range of climatic impacts. For example, the El

Niño events of 1982-83 and 1997-98 recorded exceptionally high SSTA

in the eastern equatorial Pacific, termed Eastern Pacific (EP) events, and

led to severe precipitation and flooding in Peru. In contrast, the 2002-

03 El Niño event displayed moderate SSTA concentrated in the central

equatorial Pacific, denoted as Central Pacific (CP), and was associated with

significantly less precipitation in South America (McPhaden, 2004).

To minimize the global impacts of ENSO events on society and agriculture,

accurate forecasts that account for diversity in intensity and spatial

distribution of SSTA are required. To date, most ENSO models are

physics-based, solving the differential equations that describe ocean and

atmosphere dynamics (Kirtman et al., 2014). These models, however,
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are limited in their representation of ocean-atmosphere processes due

to finite resolution and approximation errors (e.g. Liu et al., 2022a).

For instance, the most advanced physics-based models, such as those

within the Coupled Model Intercomparison Project (CMIP), exhibit

overly periodic SST variability in the Pacific and exaggerate anomalies in

western tropical Pacific - a key region for ENSO dynamics (e.g. Capotondi

et al., 2020a; Beverley et al., 2023). Additionally, these coupled ocean-

atmosphere models capture only a fraction of the spatial diversity of

ENSO events (Karamperidou et al., 2017; Dieppois et al., 2021; Cai et al.,

2018).

Over the past decades, the availability of observational data has substan-

tially increased, thanks in large part to real-time satellite observations.

This data availability allows the adoption of data-driven models as an

alternative to physics-based ENSO models. These models approximate

the generative processes of the data, and can thereby capture processes

that are unresolved in physics-based models.

This thesis employs data-driven approaches to identify remote impacts

of ENSO diversity, define it in terms of latent categories, and improve its

forecast accuracy.

1.2. Key Contributions

The key contributions of this thesis are as follows:

i. Impacts: This thesis develops a visual knowledge discovery tool based

on the topology of climate networks, that identifies differences in global

impacts between El Niño events. We demonstrate that different categories

of events exhibit more connections to tropical regions than others.

ii. Definition: We propose an alternative definition of ENSO diversity by

approximating the diversity of events with a multi-modal distribution,

that allows the assignment of membership probabilities to events instead

of grouping them into fixed categories.

iii. Forecasting: This thesis introduces a hybrid neural network-based

forecasting model that shows skillful forecasts up to 18 months in ad-

vance, provides ensemble-based uncertainty estimates, and asses its

predictability. The hybrid approach further allows disentangling linear

from nonlinear dynamics in the tropical Pacific.

1.3. Outline

This thesis is structured into four parts: Part I introduces main concepts

and sets the stage for the scientific contributions detailed in Part II.

Part III discusses the impact of these contributions and outlines potential

directions for future research. Supplementary material and additional

analyses are contained in Part IV.

Part I provides the background of this thesis, summarizing related work

and motivating the objective of this thesis. Chapter 2 introduces the

properties and challenges of climate data analysis, alongside methods for

pattern extraction and forecasting. Following this, Chapter 3 introduces
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ENSO and its diversity, providing details on its definition, impacts, and

forecasting models.

Part II contain the main contributions of this manuscript by addressing

challenges in defining ENSO diversity, identifying its global impacts, and

producing accurate forecasts.

Chapter 4: Impacts of ENSO diversity

jakob-schloer/netcurvature

Chapter 4 introduces a novel network measure designed to identify

teleconnections — links that connect remote regions — using climate

networks. Unlike previous studies, which focused on individual tele-

connections, this approach provides a comprehensive global view of

teleconnection patterns. When applied to networks constructed from

surface temperature data of EP and CP El Niño events, it is found that

EP events exhibit more teleconnections, predominantly confined to the

tropics, than CP events.

Chapter 4 is based on the peer-reviewed journal publication with the

following co-author contributions:

F. M. Strnad, J. Schlör, C. Fröhlich, and B. Goswami (2022). ‘Tele-

connection Patterns of Different El Niño Types Revealed by Climate

Network Curvature’. In: Geophysical Research Letters 49.17

Ideas Experiments Analysis Writing
F. Strnad* 25 % 40 % 45 % 40 %

J. Schlör* 25 % 40 % 45 % 40 %

C. Fröhlich 25 % 20 % 0 % 10 %

B. Goswami 25 % 0 % 10 % 10 %

* Authors contributed equally.

Chapter 5: Defining ENSO diversity in

terms of latent categories

jakob-schloer/LatentGMM

While selecting events for identifying the impacts of EP and CP El Niño

events in Chapter 4, I identified inconsistencies in their conventional

definitions, which do not account for the continuous nature of these events.

Chapter 5 challenges the traditional binary separation by modeling the

distribution of ENSO events using a mixture of Gaussians. It shows that

ENSO diversity should rather be described by a continuous distribution,

with certain states showing higher probability densities. The properties

of these states referred to as "fuzzy categories", are analyzed by assigning

membership probabilities to each event, revealing shifts in their decadal

variability, which are attributed to changes in the likelihood of strong La

Niñas and extreme El Niños.

https://github.com/jakob-schloer/netcurvature.git
https://github.com/jakob-schloer/LatentGMM
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Chapter 5 is based on the peer-reviewed journal publication with the

following co-author contributions:

J. Schlör, F. Strnad, A. Capotondi, and B. Goswami (2024). Contribu-
tion of El Niño Southern Oscillation (ENSO) Diversity to Low-Frequency
Changes in ENSO Variance

Ideas Experiments Analysis Writing
J. Schlör 40 % 80 % 70 % 60 %

F. Strnad 5 % 10 % 10 % 5 %

A. Capotondi 15 % 0 % 10 % 15 %

B. Goswami 30 % 10 % 10 % 20 %

Chapter 6: A hybrid model for ENSO

forecasting

jakob-schloer/HybridLIM

Chapter 6 proposes a hybrid model that combines a multivariate linear

model with a recurrent neural network to forecast SSTA in the tropical Pa-

cific. This approach allows disentangling linear from nonlinear dynamics

within the system, assessing their relative contributions to ENSO dy-

namics — an open question in the development of physics-based ENSO

models. The hybrid model not only offers a degree of interpretability

and access to its predictability but also achieves state-of-the-art forecast

accuracy. It provides uncertainty estimates by generating a set of ensem-

ble forecasts and maintains high accuracy even in scenarios with limited

data.

Chapter 6 is based on the manuscript in preparation with the follow-

ing co-author contributions:

J. Schlör, M. Newman, J. Thuemmel, A. Capotondi, and B. Goswami

(2024). ‘A Hybrid Model for ENSO Dynamics in the Low-Data Regime’.

In Preparation

Ideas Experiments Analysis Writing
J. Schlör 50 % 80 % 70 % 60 %

M. Newman 20 % 0 % 10 % 15 %

J. Thuemmel 10 % 20 % 0 % 5 %

A. Capotondi 10 % 0 % 10 % 10 %

B. Goswami 10 % 0 % 10 % 10 %

Part III summarizes the findings of this thesis, discussing their impact

and relevance to recent advances in the field. It concludes by proposing

directions for future research that build on the insights and methodologies

developed throughout this work.

https://github.com/jakob-schloer/HybridLIM
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Generative process: refers to a

model that describes how observa-

tions 𝑥 are generated in terms of un-

derlying hidden structures or typi-

cally low dimensional random vari-

ables 𝑧. Generative models aim to

capture the stochastic process that de-

fines the joint probability distribution

𝑝(𝑥, 𝑧) = 𝑝(𝑥|𝑧)𝑝(𝑧) over observed

and latent variables, where 𝑝(𝑧) is

the prior distribution and 𝑝(𝑥|𝑧) the

likelihood.

Climate system: I refer to the cli-

mate system as the complex interac-

tion between the atmosphere, hydro-

sphere, cryosphere, lithosphere, and

biosphere, governed by the dynamic

exchange of energy and moisture that

determines Earth’s climate. Weather

and climate correspond to different

timescales in these dynamics and are

not distinguished here.

Thousands of sites worldwide routinely gather operational surface, upper-

air, and ocean observations, supplemented by radar, aircraft, and satellite

data. Processing the sheer volume of this data is impractical for the

human mind; therefore, our objective is to develop data-driven models

that effectively summarize and capture the patterns within the data,

approximating their underlying generative process.

Typically, the climate system is modeled by describing the physical pro-

cesses using differential equations. Despite these models’ detailed nature,

accurately modeling all influences of this complex, chaotic system across

all scales remains infeasible (Lorenz, 1969; Stephenson et al., 2012). Data-

driven models, in contrast, extract the relevant dynamics from the data

by approximating known and unknown processes without explicitly

accounting for them.

Figure 2.1.: Climate data are high dimen-

sional. One variable (here, sea surface

temperature anomalies) has longitude

𝑁
lon

, latitudes𝑁
lat

, and temporal dimen-

sion 𝑁𝑡 .

Observational data from the climate system are characterized by unique

structural properties that have to be considered for their analysis:

i) Generally a climate dataset consists of several variables, 𝑁var, with

each variable having three spatial dimensions — latitude 𝑁lat,

longitude 𝑁lon, and height 𝑁z — and a temporal dimension 𝑁𝑡 .

In this thesis, I denote a dataset by 𝑋 = {x(𝑡1), x(𝑡2), . . . , x(𝑡𝑁𝑡 )},

where x(𝑡) ∈ ℝ𝑁var×𝑁𝑡×𝑁lon×𝑁lat×𝑁z
. Most surface variables, such as

SST, are defined for only one 𝑧-dimension.

ii) The data live on the surface of a sphere, with their x-y-coordinates

typically represented as angles. Latitude describes the north-south

position, ranging from -90 to 90 degrees, with 0 degrees at the Equa-

tor, and longitude specifies the east-west position, ranging from

-180 to 180 degrees, with 0 degrees defined as passing near the Royal

Observatory in Greenwich. Since points on the longitude-latitude

grid are not equidistant, alternative equidistant representations that

reflect the SO(3) symmetry have been proposed.

iii) Climate data exhibit strong local correlation structures, both spa-

tially and temporally. This means that measurements taken close

in time and space either influence each other or stem from the

same generative process without influencing one another. Such

correlations must be accounted for in models to avoid spurious

relationships and ensure robust statistical inference.

iv) In the climate system, dynamics occur at all spatial and temporal

scales which interact with each other. Averages computed over

larger areas can yield different spatial patterns and autocorrelation

structures. For example, local weather extremes may be lost in

broader regional averages.

v) The dynamics of the climate system are forced by the sun and

anthropogenic climate change, leading to periodicity and trends

in the data. These forcings can artificially inflate correlations and

forecasting accuracy. For example, predicting temperatures for next

August based on historical August temperatures typically shows

high accuracy because it captures a recurring pattern rather than
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novel information. To further improve predictions, it is necessary

to consider the deviation from these recurring patterns and work

with anomalies.
vi) The climate system’s chaotic behavior, exemplified by the butterfly

effect Lorenz (1963) and Lorenz (1969), indicates that small changes

in one location can grow exponentially, leading to large effects

elsewhere. This sensitivity to initial conditions makes forecasting

inherently challenging and underscores the need for uncertainty

estimates.

Equidistant projections: There

are several methods for generat-

ing points that are approximately

equidistant on the surface of a sphere:

▶ Reduced Gaussian grid
modifies the typically used

latitude-longitude grid by

reducing the number of

points when moving toward

the poles (Kurihara, 1965;

Hortal et al., 1991).

▶ Geodesic grid is constructed

by subdividing the faces of a

polyhedron into smaller trian-

gles, which are then projected

onto the sphere (Sadourny et

al., 1968; Williamson, 1968).

▶ HEALPix grid provides an

equal area projection of

points on a sphere by subdi-

visions into rhombic dodeca-

hedrons (Górski et al., 2005).

▶ Fibonacci grid: Points are

distributed using the Fi-

bonacci spiral and are pro-

jected onto the sphere, result-

ing in a quasi-uniform dis-

tribution (Chukkapalli et al.,

1999; Swinbank et al., 2006).

▶ Fekete grid numerically op-

timizes the distribution of

points on a sphere using

spherical harmonics (Bendito

et al., 2007).

Anomalies: Anomalies are calcu-

lated as deviations from the climatol-

ogy, which is the long-term average

of the respective month or season.

For instance, the monthly tempera-

ture anomaly for this year January is

obtained by subtracting the observed

temperature from the mean over Jan-

uary temperatures in the last 30 years.

Data-driven model: A model that

synthesizes and summarizes infor-

mation from data to approximate

their underlying generative pro-

cesses. The term "data-driven" is used

here in preference to "statistical" or

"machine learning" models to empha-

size the reliance on data for model

parameter inference.

Given a set of observations, our objective is to infer a model that approxi-

mates the data’s generative process. This inference, known as inductive

learning or learning from data in machine learning, can be categorized

into three types: unsupervised, supervised, and self-supervised learning,

where each type targets a distinct aspect of the generative process (Bishop,

2006; Murphy, 2013):

Unsupervised learning aims to approximate the probability distribution

of the dataset, 𝑝(𝑋) without using labeled outputs. Essentially, it seeks to

learn patterns or features from the data itself to extract knowledge about

the underlying processes. Unsupervised learning can be used to identify

clusters or patterns within the data that might signify different regimes

of the climate system.

Supervised learning seeks to approximate a conditional distribution of

the data, 𝑝(𝑌|𝑋), where 𝑌 serves as external labels. This approach aims

to learn a function that, given a new input, can predict the appropriate

output. For example, the probability of rain in a specific location using

input features such as temperature, humidity, and pressure.

Self-supervised learning focuses on approximating a conditional distri-

bution 𝑝(𝑋̂|𝑋), where 𝑋 and 𝑋̂ are two different views of the same set.

This approach is particularly relevant to sequence prediction tasks, such

as forecasting a future state x̂ from the current state x.

In the following, I provide a theoretical outline of data-driven models
used throughout this thesis. These include unsupervised approaches for

identifying patterns in the data (Ch. 4 and Ch. 5) and self-supervised

approaches for spatio-temporal sequence forecasting (Ch. 6).

2.1. Pattern Extraction

In this part, we introduce dimensionality reduction methods employed

in climate science, as used in Ch. 5, and outline climate network analysis

employed in Ch. 4.

2.1.1. Dimensionality Reduction

Dimensionality reduction techniques are designed to transform high-

dimensional data, into a lower-dimensional space while preserving

their essential structure. The corresponding generative process reads

𝑝(x) =
∫
𝑑z𝑝(x|z)𝑝(z), where 𝑝(z) represents the prior distribution in the

latent space ℝ𝑀
with 𝑀 << 𝑁lat × 𝑁lon and 𝑝(x|z) is its likelihood. The

primary objective is to infer the posterior distribution 𝑝(z|x), ensuring
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that the approximated generative process closely matches the true data

distribution 𝑝(x).

Empirical Orthogonal Function (EOF) Analysis

Figure 2.2.: First two leading EOFs

(a,c) obtained from tropical Pacific SSTA

alongside their corresponding PCs (b,d).

The EOF analysis is performed on the

HadISST dataset, see Tab. 3.2.

One of the most widely used dimensionality reduction techniques in

climate science is Empirical Orthogonal Function (EOF) analysis, also

known as Principal Component Analysis (PCA) (Lorenz, 1956; Wilks,

2019). EOF analysis is a linear dimensionality reduction technique for

spatial-temporal data, represented as 𝑋 = {x(𝑡)}𝑁𝑡
𝑡=1

, where 𝑥𝑠(𝑡) denotes

the value at time 𝑡 ∈ [1, . . . , 𝑁𝑡] and grid point 𝑠 ∈ [1, . . . , 𝑁lat · 𝑁lon]
of the flattened field vector x(𝑡) ∈ ℝ𝑁

lat
·𝑁

lon
. The principal components

(PCs) are defined by the latent vector z(𝑡) ∈ ℝ𝑀
, where each component

𝑧𝑟(𝑡), 𝑟 ∈ [1, . . . , 𝑀] is a linear combination of the field values, 𝑧𝑟(𝑡) =
𝑥𝑠(𝑡)𝑢𝑟𝑠 . Here, u𝑟 ∈ ℝ𝑁lat·𝑁lon

represents the EOF corresponding to the 𝑟th

eigenvector of the covariance matrix ⟨𝑋𝑋𝑇⟩, associated with eigenvalue

𝜆𝑟 . Redundancies in the original dataset 𝑋 allow for significant data

variance capture through only the most dominant directions of their

joint variations. Consequently, most of the informational content of 𝑋

can be represented using a significantly reduced number of components,

𝑀 ≪ 𝑁lat · 𝑁lon, by focusing on the leading eigenvectors, sorted by their

eigenvalues. The original data can be reconstructed using the inverse

transformation, x(𝑡) = ∑𝑀
𝑟=1

𝜆𝑟𝑧𝑟(𝑡)u𝑟 .

EOF analysis is frequently used in climate science, particularly in defining

indices such as the Madden-Julian Oscillation and ENSO. While EOFs

effectively reduce the dimensionality of complex data sets, it is important

to note that they do not necessarily represent dynamically meaningful

modes of the system. Instead, EOFs are influenced by boundary con-

ditions and may produce biased patterns, often referred to as "buell

patterns" (Wilks, 2019).

While EOF analysis is initially described as a deterministic linear trans-

formation, it can also be conceptualized as a probabilistic method with

both the prior and the likelihood assumed to be Gaussian (Bishop, 2006).

Moreover, instead of maximizing variance through the eigenvectors of

the covariance matrix, EOF analysis can alternatively be formulated to

minimize the reconstruction error. This involves calculating the root

mean squared error (RMSE) between the original data vector x and its re-

constructed version x̂ (Bishop, 2006). Thereby, EOF analysis is equivalent

to a linear autoencoder, as we will see in the next section.

Autoencoder

Autoencoder (AE) allow non-linear dimensionality reduction by using

neural networks as encoder and decoder functions, denoted by 𝑒𝜃𝑑 and

𝑑𝜃𝑑 respectively, where 𝜃𝑒 and 𝜃𝑑 represent the network parameters.

The encoder takes a datapoint x(𝑡) ∈ ℝ𝑁
lon

×𝑁
lat

as input and transforms

it into a lower-dimensional latent vector z(𝑡) ∈ ℝ𝑀
. Conversely, the

decoder creates a reconstruction x̂(𝑡) ∈ ℝ𝑁
lon

×𝑁
lat

from the latent vector.

The training of these networks focuses on minimizing information loss

at the bottleneck (Fig. 2.3), typically by reducing the RMSE between x(𝑡)
and x̂(𝑡), as
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𝑎𝑟𝑔𝑚𝑖𝑛𝜃𝑒 ,𝜃𝑑
1

𝑁

𝑁∑
𝑖=1

(̂x(𝑡) − x(𝑡))2

=𝑎𝑟𝑔𝑚𝑖𝑛𝜃𝑒 ,𝜃𝑑
1

𝑁

𝑁∑
𝑖=1

(
𝑑𝜃𝑑 (𝑒𝜃𝑒 (x(𝑡))) − x(𝑡)

)
2

,

with 𝑁 is the number of time points used for training.

Figure 2.3.: Sketch of an autoencoder net-

work. The input 𝑥 is first transformed to

a lower dimensional latent vector 𝑧 and

then projected back to the input space.

The encoder 𝑒 and decoder 𝑑 are neural

networks that are optimized to minimize

the information loss by the dimensional-

ity reduction.

In Ch. 5, we explore the use of a simple autoencoder for dimensionality

reduction. While the autoencoder is a deterministic dimensionality

reduction method, it can be seen as the maximum a posteriori estimate

of a probabilistic autoencoder, specifically the Variational Autoencoder

(VAE). The VAE employs both an encoder and a decoder to parameterize

the likelihood and the approximate posterior distribution, respectively.

Training the VAE minimizes the Kullback-Leibler (KL) divergence in its

variational inference approach to quantify the difference between the

learned distribution and the prior distribution.

Clustering

Clustering serves as a specialized form of dimensionality reduction in

which the one-dimensional latent variable 𝑧 can only take discrete values

𝑘 = 1, . . . , 𝐾 with prior probability 𝑝(𝑧 = 𝑘) = 𝜋𝑘 . This method utilizes

the degree of similarity and differences among individual observations x
to define groups and assign membership. Within a dataset 𝑋 , clustering

analysis categorically assigns data points to clusters 𝑘 = 1, . . . , 𝐾 based on

their proximity. For example, daily weather observations were clustered

into synoptic types by Kalkstein et al., 1987.

The concept of distance is fundamental to clustering. Ideally, clusters

consist of points that are closely spaced relative to the distances between

different clusters. There are numerous potential definitions of distance,

and the choice significantly influences the outcomes of the analysis.

While Euclidean distance is the most intuitive and commonly used

metric, it is not the only option, and sometimes may not be the best

choice. For climate data for instance the dimensionality of the data might

be much larger than the number of datapoints, i.e. 𝑁𝑡 ≪ 𝑁lat · 𝑁lon.

In this case, many clustering algorithms struggle due to the curse of

dimensionality (Wilks, 2019). As the number of dimensions in a dataset

increases, distance measures become increasingly meaningless (Parsons

et al., 2004). Additional dimensions spread out the points until, in

very high dimensions, they are almost equidistant from each other. To

circumvent that issue, either only certain features should be selected or

the dimensionality of the features should be reduced first (Ch. 5).

2.1.2. Climate Networks

Another unsupervised approach to uncovering patterns in high-dimensional

data is climate networks. Climate networks structure data into a set of

nodes and edges which allows for the discovery of key communities and

pathways within the system.
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Figure 2.4.: Schematic representation of

a climate network construction. The ad-

jacency matrix,𝑊 , is obtained from the

pair-wise correlation between time series

at each location 𝑖 , 𝑗.

Given spatio-temporal data 𝑋 , where each spatial location 𝑖 represents a

time series (Fig.2.4). A graph 𝐺 is constructed, comprising a set of nodes

𝑉 = {𝑣1 , . . . , 𝑣𝑁𝑙𝑎𝑡 ·𝑁𝑙𝑜𝑛
}, each corresponding to a spatial location. Nodes

are interconnected by a set of edges 𝐸, with an edge 𝑒𝑖 𝑗 signifies the inter-

dependence between pairs of time series at nodes 𝑣𝑖 and 𝑣 𝑗 , determined

using a statistical similarity measure. The network is represented by a

weight matrix W, defined as:

W𝑖 𝑗 =

{
𝑤𝑖 𝑗 , 𝑒𝑖 𝑗 ∈ 𝐸
0, otherwise

,

where the edges 𝑒𝑖 𝑗 are assigned weights𝑤𝑖 𝑗 . A threshold is often applied

to these weights, resulting in an adjacency matrix A:

A𝑖 𝑗 =

{
1, 𝑒𝑖 𝑗 ∈ 𝐸
0, otherwise

,

The selection of input data, such as variables, time resolutions, and

the similarity measure, is critical for constructing a meaningful climate

network. The chosen similarity measure determines whether the graph’s

edges are directed (𝑒𝑖 𝑗 ≠ 𝑒 𝑗𝑖) or undirected (𝑒𝑖 𝑗 = 𝑒 𝑗𝑖). Common similarity

measures for continuous variables include the correlation coefficient

and mutual information, while for discretely distributed data, event

synchronization is often used.

Thorough testing for statistical significance is required when creating

unweighted climate networks (Wilks, 2019). This involves two steps:

1. Null Model Definition: To ascertain if connections occur by chance,

a null model is created. For each location (node), links are ran-

domly rewired. A Gaussian kernel density estimator (KDE) is then

used to determine the likelihood of a link existing to the chosen

location. An observed link is statistically significant if its spatial

likelihood, exceeds the 99.9th percentile in the local null model

link distribution.

2. Multiple Testing Corrections: Considering the vast number of

links in climate networks, it’s crucial to correct for multiple testing

to avoid false positives by chance. Techniques like the Bonferroni

correction (Holm, 1979), which adjusts p-values to account for the

number of tests, must be employed.

Teleconnections: refer to anoma-

lous climate conditions that are

related across large geographical

distances. Teleconnections are of-

ten characterized by atmospheric

changes such as temperature, pres-

sure, wind, or rain that occur simul-

taneously or sequentially across dif-

ferent regions.

Climate networks, once constructed, allow us to analyze their topological

properties. For instance, investigating network communities can uncover

regions with similar climatic behaviors and the network’s centrality

metrics help to identify the most influential nodes, indicative of regions

critical for information flow. Additionally, studying how the network

responds to perturbations can be crucial for understanding the system’s

stability and resilience to climatic anomalies. Furthermore, analyzing the

temporal evolution of the network’s topology enables us to study how

teleconnections change over time. In Ch. 4, we employ climate networks to

discern the global impacts of El Niño events, highlighting their changes

in teleconnection patterns between event types.

Climate networks serve as a visual knowledge-generating tool by con-

densing both time and variable dimensions of high-dimensional climate
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data. However, this comes with certain limitations. Most similarity mea-

sures used in climate networks capture simultaneous changes, while in

reality, physical interactions in the climate system often involve propaga-

tion time. Another limitation is that network links represent statistical

relationships but not causal interdependencies. For instance, a significant

link between two nodes might be induced by dependencies to a third

node, with no causal relationships between the first two.

Ideally, climate networks would be causal graphs with lagged dependen-

cies. Probabilistic graphical models, which model conditional probabili-

ties between nodes, have been developed to represent causal structures.

Learning these causal relationships from data is an active research field

in machine learning (Kaddour et al., 2022; Schölkopf, 2022).

Granger causality: Granger causal-

ity serves as a statistical test for deter-

mining whether a time series is use-

ful in forecasting another, but it has

been argued that regressions reflect

"mere" correlations, rather than cau-

sation (Thurman et al., 1988; Wilks,

2019).

Runge et al. (Runge et al., 2019a; Runge et al., 2019b) introduced PCMCI

for climate data, a method using Granger causality to determine links.

Although this method facilitates the detection of directed and lagged

links, it’s limited to a small number of nodes due to the computational

complexity of the vast amount of regression tasks. While the network links

obtained from PCMCI are referred to as causal, it is debatable if Granger

causality reflects true causality. Unfortunately, actual causality, typically

derived from interventions and randomized control experiments, is not

feasible in the climate system. Within climate models, single interventions

can be tested through ’nudging’ experiments, but these are limited by

computational complexities and aren’t widely scalable.

2.2. Data-Driven Forecasting
Forecasting can be either a self-

supervised learning task 𝑝(𝑋̂|𝑋),
when the target outcome is obtained

from the same distribution as the in-

put, such as in sequence-to-sequence

predictions, or a supervised learn-

ing task 𝑝(𝑌|𝑋), as for instance in

predicting a specific weather regime

that requires externally labeled data

𝑦.

Forecasting climate data is essentially a multivariate sequence prediction

task. This task requires estimating the future state x̂(𝑡 + 𝜏) at a given lag

time 𝜏, based on initial states {x(𝑡 − ℎ), . . . , x(𝑡)}. The goal is to find a

good estimate of the transition probability 𝑝(x̂(𝑡 +𝜏)|x(𝑡 − ℎ), . . . , x(𝑡)).

2.2.1. Model Design

Given the structural properties of climate data, outlined at the beginning

of the chapter, certain model design choices are beneficial. Here, I

outline design choices for data-driven models that are effective for

sequence prediction of climate data (Thuemmel et al., 2024). The focus

will be primarily on neural network models and include data selection,

learning objectives, loss functions, model architecture, and optimization

strategies.

i. Data selection: Data selection covers the choice of variables and

the selection of spatial and temporal resolutions for both the input and

target of the model. Specific considerations for selecting data for ENSO

forecasting will be discussed in Sec. 3.1.3.



2.2. Data-Driven Forecasting 13

ii. Learning objective: Learning objectives address the high-level func-

tionality of the model, specifying the forecast mode and addressing how

to handle uncertainty. These objectives determine whether the forecast

task is classification, regression, or generative modeling. For sequence

prediction, two primary approaches can be considered:

▶ Recurrent (iterative) forecast: This method involves predicting

future states iteratively, where each prediction is used recursively

as input for subsequent forecasts.

▶ Lag-time forecast: This approach uses direct forecast models to

generate predictions for specific target lag times, without producing

any intermediate predictions.

Continuous Ranked Probability
Score (CRPS):
The CRPS is a proper probabilistic

score defined as the integral of the

squared difference between the cu-

mulative distribution function (CDF),

𝐹(𝑥̂), of the forecast and the Heav-

iside step function at the observed

value 𝑥𝑜 . Mathematically, it can be

expressed as:

CRPS(𝐹, 𝑥𝑜) (2.1)

=

∫ ∞

−∞
(𝐹(𝑥̂) − 1(𝑥 ≥ 𝑜))2𝑑𝑥.

For a Gaussian distributed forecast,

𝑥̂ N
(
𝑥̂ , 𝜇, 𝜎

)
, the CRPS can be com-

puted analytically, by

CRPS(𝐹, 𝑥𝑜) (2.2)

= 𝜎[ 𝑥𝑜 − 𝜇

𝜎
(2Φ( 𝑥𝑜 − 𝜇

𝜎
) − 1)

+ 2𝜙( 𝑥𝑜 − 𝜇

𝜎
) − 1√

𝜋
]

where Φ and 𝜙 are the CDF and PDF

of the standard normal distribution,

respectively. Additionally, the CRPS

can be formulated for empirical dis-

tributions, as

CRPS(𝐹, 𝑥𝑜) (2.3)

= 𝐸|𝑋̂ − 𝑥𝑜 | −
1

2

𝐸
��𝑋̂ − 𝑋̂′�� ,

where 𝐸 is the statistical expectation,

and 𝑋̂ and 𝑋̂′
are independent real-

izations from 𝐹.

iii. Loss functions Loss functions are used to quantify the fit quality of

model predictions to the data and enable gradient-based optimization.

The choice of a loss function depends on the learning objective and the

nature of the data. I categorize loss functions into deterministic and

probabilistic scores:

▶ Deterministic losses: Common metrics include the L1-norm and

L2-norm, corresponding to mean absolute error (MAE) and RMSE,

respectively. The selection of a deterministic loss function should

align with the assumed probability distribution of the target; for

example, RMSE is appropriate for a Gaussian distribution, while

L1 is suitable for a Poisson distribution (Murphy, 2013).

▶ Probabilistic losses: For continuous variables, commonly used

losses are the negative log-likelihood and the Continuous Ranked
Probability Score (CRPS), the latter of which can be applied in both

parametric and non-parametric forms. For discretized variables,

such as rainfall measured in bins, Cross-Entropy loss has proven

effective.

Numerical physics-based models incorporate uncertainties through en-

semble predictions, generated by varying initial conditions and model

parameters. These ensemble-based forecasts are beneficial as each mem-

ber represents a possible forecast trajectory, allowing to capture of rare

events and bifurcation. Ensemble-based uncertainty estimates in neural

networks are proposed in Sec. 6.

iv. Model architectures Neural network architectures consist of stacked

computational primitives, each defined by learnable parameters tailored

to specific objectives. These architectures are typically arranged in a

sequence of layers, forming the overall network design.

The layers used in this thesis are:

▶ Fully Connected (Dense) Layer: Each input in a layer connects

to all inputs in the subsequent layer. Stacked dense layers with

a nonlinear activation function are called Multilayer Perceptron

(MLP) (e.g. Rumelhart et al., 1986).

▶ Convolutional Layer: Applies convolution of learnable parameters

and the input. Convolutional layers are particularly effective for pro-

cessing data with grid-like topologies, such as images (e.g. Lecun

et al., 1998). Stacked convolutional layers are called Convolutional

Neural Network (CNN).
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▶ Recurrent Layer: Used for sequential data, these layers maintain

memory states over time. Prominent examples are Long-Short Term

Memory network (LSTM) (Hochreiter et al., 1997) units and Gated

Recurrent Units (Cho et al., 2014).

▶ Normalization Layer: Normalize the inputs to stabilize and speed

up training. Batch and Layer Normalization for instance are widely

used (e.g. Wu et al., 2018).

▶ Activation Function: Non-linear functions such as Rectified Linear

Unit, Sigmoid, and Tanh is applied to the outputs of layers to learn

non-linearities in the data (e.g. Bishop, 2006).

▶ Embedding Layer: Transform categorical variables into high-dimensional

vector spaces (Mikolov et al., 2013).

▶ Residual Connection: Enhances the training of deeper networks by

allowing gradients to flow through a shortcut connection, used in

architectures like residual networks (He et al., 2015).

Other common layers:

▶ Pooling Layer: Reduces the

spatial dimensions (width,

height) of the input for sub-

sequent convolutional layers,

with Max Pooling and Aver-

age Pooling being the most

common forms.

▶ Dropout Layer: Serves as a

regularization technique to

prevent overfitting by ran-

domly omitting a subset of

features during training (Sri-

vastava et al., 2014).

▶ Attention Mechanism: Atten-

tion enables one to focus se-

lectively on only parts of the

input sequence. This mech-

anism computes the rele-

vance of different parts of the

data, facilitating tasks that re-

quire contextual understand-

ing, such as natural language

processing. Attention is the

building block in Transform-

ers (Vaswani et al., 2023).

▶ Message Passing: Crucial in

architectures designed for

data represented by graphs.

Here, it enables the integra-

tion and updating of infor-

mation between nodes in a

graph (Micheli, 2009; Scarselli

et al., 2009). Architectures

with blocks of message pass-

ing are typically called Graph

Neural Network (GNN).

For sequence prediction of climate data, networks should have large re-

ceptive fields to capture relevant features across various scales effectively.

Encoder-decoder architectures (Sec. 2.1), for example, are beneficial as

they reduce their effective internal resolution relative to the actual data

resolution, enhancing computational efficiency. Additionally, incorpo-

rating recurrence and memory capabilities is beneficial for sequence

prediction. These enable models to operate over larger temporal steps

compared to traditional numerical methods, thus improving computa-

tional efficiency.

v. Optimization: Optimizing model parameters defines the learning

process, which involves strategies such as mini-batching, learning-rate

adaptation, and scheduling of objectives. Neural networks are typically

trained using stochastic gradient descent (SGD) (e.g. Robbins et al.,

1951), which optimizes the model by iteratively updating parameters

to minimize the loss function. This optimization occurs over batches of

data — small subsets known as mini-batches — that represent the overall

dataset during each iteration. In deep learning libraries, such as pytorch

(Paszke et al., 2017), the optimization of model parameters, including

the automatic gradient computation, backpropagation, and parameter

updating, is computed automatically in an efficient manner.

2.2.2. Inductive Biases

Each design choice from steps i - v introduces structural assumptions

about the data and the modeled processes, known as inductive biases

(Wolpert et al., 1997; Battaglia et al., 2018). These biases can accelerate

model convergence and enhance both computational efficiency and the

model’s generalization to unseen data. For instance, a convolutional deep

learning model introduces the bias that adjacent pixels are likely to contain

correlated information, making it particularly effective for processing

images compared to a standard MLP, which does not account for spatial

proximity. Essentially, every decision in the learning pipeline embeds

implicit inductive biases that significantly influence model performance

(Thuemmel et al., 2024).
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To summarize, the key inductive biases for training neural networks on

climate data are:

i) Large Receptive Field: Essential for capturing salient features

across all scales is to reduce the effective internal resolution of the

model relative to that of the data.

ii) Recurrence and Memory: Incorporating recurrence and memory

within the model is required to forecast on longer temporal scales.

iii) Ensemble-based uncertainty: Effectively capturing uncertainties

is crucial for forecasting the climate system. Especially, ensemble-

based forecasts are beneficial to obtain coherent trajectories and

capture extreme events.
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3.1. What is ENSO and Why is it Diverse?

When I discuss El Niño with friends and family, they often recognize it

from school or news coverage, usually perceiving it as a kind of storm

in South America. This phenomenon, known to Peruvian fishermen

since the 19th century for its warm, southward ocean currents and

heavy rains around Christmas, was named "El Niño", Spanish for "Christ

child" (Carillo, 1892). Our understanding evolved with contributions

from Sir Gilbert Walker (Walker, 1925) and Jacob Bjerknes (Bjerknes,

1966), who identified El Niño as part of the larger El Niño Southern

Oscillation (ENSO) — a complex ocean-atmosphere phenomenon in the

tropical Pacific. The phases of ENSO include El Niño, marked by warmer

than average SSTs, La Niña with cooler SSTs, and Neutral for average

conditions. These phases occur irregularly every 2 to 8 years, not in a

periodic manner as the term “oscillation” might imply (McPhaden et al.,

2020). Detailed explanations of the mechanisms driving these phases are

presented subsequently.

3.1.1. Mechanisms of ENSO

Matt Newman, my advisor at National Oceanic and Atmospheric Ad-

ministration (NOAA), once broke down the mechanism of ENSO with

a simple analogy: Imagine the Pacific Ocean as a gigantic bathtub that

slowly absorbs heat from the warmer atmosphere. Over time, this heat

builds up below the surface, potentially over several years. When the

ocean gets sufficiently warm, small changes in the atmospheric condi-

tions, such as strong winds, can trigger an abrupt release of heat, resulting

in an El Niño event. The amount of heat released to the atmosphere

often exceeds what was accumulated, leading to cooler temperatures -

a phase we know as La Niña. The ocean then begins to balance these

cooler temperatures by gradually taking up heat from the atmosphere

once more. While this "bathtub" analogy is a simple picture, it helps in

understanding the complex mechanisms that will be detailed next.

Neutral Phase

Upwelling: Upwelling is a phe-

nomenon where deep, cold, and

nutrient-rich water rises to the sur-

face of the ocean. This process typ-

ically occurs along coastlines and

in the open ocean due to the wind-

driven movement of surface waters

away from an area.

Thermocline: In oceanography, the

thermocline refers to the layer within

a body of water, where the tempera-

ture gradient is substantially greater

than that of the warmer layer above

and the colder layer below. In the

Pacific Ocean, these vertical tempera-

ture jump occurs approximately from

17 to 23°C, centered on the 20°C

isotherm, which is typically referred

to as the main thermocline.

Around the equator, winds blow from the East to the West, driven by

temperature gradients between the equator and in the mid-latitudes.

In the Pacific, these easterly trade winds generate a surface current

that flows from Peru’s coast to the Maritime Continent in the West. As

this water travels westward, it warms up under the sun, culminating

in the Western Pacific warm pool, which results in the warmest open

ocean water temperatures on Earth (Fig. 3.1). Conversely, in the Eastern

Pacific, equatorial upwelling brings cold water from the ocean’s depths

to the surface, forming a "cold tongue" of SST that stretches to the

international dateline. The thermocline is a region that separates the warm
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Figure 3.1.: Schematic ocean and atmo-

sphere conditions in the tropical Pacific

during normal (Neutral), warm (El Niño)

and cold (La Niña) phase of ENSO. The

figure is adapted from L’Heureux (2020).

upper ocean from the cold deep waters. Its tilt in the east-west direction

is related to the strength of upwelling and the trade winds’ intensity.

Warm surface waters in the western Pacific, cause air to rise, leading to

deep atmospheric convection and heavy rainfall. After condensation in

the upper atmosphere, the dry air descends over the cooler waters of

the Eastern Pacific. These elements collectively define what we call the

Neutral phase of the ENSO.

El Niño Phase
ENSO phase locking: El Niño and

La Niña events typically peak in bo-

real winter, a phenomenon called

ENSO phase locking. This seasonal

dependency has been predominantly

attributed to the seasonal variation

of the cold tongue region in the East

and the variations of the warm pool

extend in the West Pacific.

Sverdrup transport: The surface

winds drive the ocean currents. In

oceanography, the wind force paral-

lel to the ocean surface is called wind

stress. Sverdrup transport describes

the meridional water transport, i.e.

water transport towards or away from

the poles, which results from wind

stress on a rotating sphere (Sverdrup,

1947).

An El Niño event typically begins with a deeper-than-average zonal

thermocline, warmer upper ocean temperatures, and weaker trade winds.

While these are necessary but not sufficient onset conditions, the reason

for their emergence, and their predictability remain a topic of ongoing

research. As trade winds weaken, the thermocline slope levels out, and

upwelling in the cold tongue reduces. These changes lead to a decrease in

east-to-west water transport, causing the warm pool to expand eastwards.

As the central and eastern Pacific warm up, the ascending air masses

responsible for deep convection and heavy rainfall in the western Pacific

migrate eastwards with the warm water. This shift further weakens the

trade winds, which in turn enhances surface warming. The interplay of

the ocean and the atmosphere becomes locked in a positive feedback loop,

known as the Bjerknes feedback (Bjerknes, 1966), where weakened winds

and warming SSTs intensify each other. El Niño typically reaches its peak

in the boreal winter months (ENSO phase locking) and is characterized by

warmer-than-average SSTs, elevated sea levels in the central and eastern

Pacific, and anomalously westerly winds (Fig. 3.1).

These deviations from the normal conditions initiate a counteracting

process. The primary balancing force is the Sverdrup transport, which

redistributes heat from the equator towards the extratropics, drawing

cooler water from deeper ocean layers to the surface. This heat discharge

at the equator leads to a decay of El Niño back to the Neutral phase but

often overshoots into the cold La Niña phase.
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La Niña Phase

La Niña conditions are typically initiated by anomalously strong temper-

ature differences between the warmer western and cooler eastern Pacific

along with cooler than average upper ocean heat content in the Pacific.

This leads to stronger easterly trade winds and enhanced upwelling in

the east, which subsequently leads to further cooling in the east and

warming in the west. This feedback loop of stronger trade winds, a

steeper westward inclination of the thermocline, increased upwelling in

the cold tongue region, and the westward shift of the warm pool drives

a mature La Niña event (Fig. 3.1). Similar to El Niño, La Niña peaks

in boreal winter, and its decay back to Neutral conditions is driven by

Sverdrup transport.

3.1.2. The Diversity of ENSO

Figure 3.2.: SSTA and sea surface height

anomaly (SSHA) during December-

January-February (DJF) for the El Niño

events of (a) 1997–1998, (b) 2002–2003,

and La Niña events of (c) 2020–2021, and

(d) 2021–2022. Monthly SST data were ob-

tained from the ORAS5 data set (ORAS5,

2021).

The previous section outlined the physical feedback processes of ENSO,

which can be described by oscillator-like differential equations (see

Sec. 3.3.2). While this mechanistic perspective has been substantial for our

understanding of ENSO, it is unable to explain why the El Niño in 1997-98

(Fig. 3.2a) was different from the El Niño 2002–2003 (Fig. 3.2b). Already

in 1975, Wyrtki highlighted the uniqueness of events by stating that “no

two El Niño events are quite alike” (Wyrtki, 1975). The characteristics of

event-to-event differences are:

▶ Stochastic Occurrence: Unlike a periodic cycle (Neutral → El Niño

→ La Niña → Neutral), ENSO phases occur stochastically. This

means that neither El Niño nor La Niña follow a predictable, regular

pattern but occur in succession or at irregular intervals (Fig. 3.5b).

For instance, three La Niña events have occurred successively

between 2020 and 2023, termed a triple-dip La Niña.

▶ Temporal variation: The start season of ENSO events and their

duration are highly variable. La Niña events, for instance, are more

likely to last for multiple years than El Niño events.

▶ Intensity variation: The strength of El Niño and La Niña events

differ substantially. Some events may be mild, barely altering global

weather patterns, while others can be extremely strong, causing

extreme weather events.

▶ Spatial variability: The zonal location and extent of warming (in

El Niño) and cooling (in La Niña) in the tropical Pacific are not

consistent across events (Fig. 3.2). This spatial variability can lead

to different impacts in different regions, such as altered rainfall

patterns, droughts, or floods.

▶ Asymmetry: There is a notable asymmetry in the intensity of warm

(El Niño) and cold (La Niña) events. Typically, warm events are

stronger than cold ones, leading to a positively skewed distribution

of SSTA.

The event-to-event variability, known as ENSO diversity (Capotondi et al.,

2015) or ENSO complexity (Timmermann et al., 2018), poses significant

challenges to the impacts and predictability of events. In the early 2000s,

the work of Larkin et al. (2005) drew much attention to the spatial

diversity of ENSO as they demonstrated how the zonal location of El
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Niño’s warming influences temperatures and precipitation in the United

States. Their work stimulated intense research activity on ENSO diversity

(Kug et al., 2009; Kao et al., 2009; Takahashi et al., 2011). ENSO events

have been divided into different categories (Ashok et al., 2007; Kug et al.,

2009; Takahashi et al., 2011) to more easily identify differences in the

leading dynamical processes, precursors, and impacts (Capotondi et al.,

2015; Capotondi et al., 2020b).

1Central Pacific El Niños have also

been called Dateline El Niños, El Niño

Modoki, or warm pool El Niño. Similarly,

Eastern Pacific El Niños are sometimes

termed conventional or cold tongue El

Niño.

Figure 3.4.: The international dateline

generally follows the 180° line of longi-

tude and serves as the boundary where

one calendar day ends and the next be-

gins. At the equator, the dateline passes

through the central Pacific.

Several indices and grouping criteria have been proposed to capture El

Niño’s diverse characteristics. While these definitions vary, most identify

two primary types of El Niño events: Central Pacific (CP) and Eastern
Pacific (EP) El Niño

1
. While EP events exhibit warming in the Eastern and

Central Pacific (Fig. 3.3c), CP events typically show warming around the

dateline (Fig. 3.4) and tend to have a smaller SSTA amplitude compared

to EP events (Fig. 3.3b). EP events are further characterized by a deeper

thermocline in the eastern and shallower thermocline in the western

equatorial Pacific, contrasted with the weaker positive thermocline depth

anomalies of CP events, which extend further west. Additionally, westerly

wind anomalies during CP conditions are weaker and located further

west compared to those under EP conditions. Although La Niña events

also exhibit variations in intensity and spatial pattern (Fig. 3.2c, d), these

differences are not as pronounced as those observed in ENSO’s warm

events (Kug et al., 2011). The common characteristics of EP and CP events

are derived from averages over a handful of events (Fig. 3.3a). However,

the mechanisms leading to the diversity of events remain unclear.

Despite a large amount of research efforts, to date, the understanding of

ENSO diversity is separated into two interpretations. The first, suggests

that nonlinear processes play a central role in understanding ENSO and

proposes that both types of ENSO are different expressions of a singular

phenomenon (Takahashi et al., 2011; Takahashi et al., 2016; Okumura,

2019). The alternative interpretation, supported by Bejarano et al. (2008)

and others (Newman et al., 2011b; Newman et al., 2011a; Vimont et al.,

Figure 3.3.: ENSO events are projected on

the first two EOFs of tropical Pacific SSTA

(a). El Niño, La Niña, and Neutral events

are identified by DJF average of Niño3.4

> 0.5, Niño3.4 < -0.5 and -0.5 < Niño3.4 <

0.5, respectively. Using the definition by

Kug et al. (2009), El Niño and La Niña

events are classified as CP when Niño3

> Niño4 and as EP for Niño4 > Niño3,

highlighted by different colors. Averages

over events classified as EP (b) and CP

(c) El Niño exhibit different locations of

peak SSTA.
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2014; Vimont et al., 2022; Chen et al., 2015) describes ENSO as a linear

system subject to stochastic forcing that exhibit different types through

unique patterns of optimal growth. Despite the insights offered by both

schools of thought, a comprehensive understanding of ENSO diversity

remains elusive, with each interpretation revealing only part of the

complex phenomena. Furthermore, the influence of external elements

such as the Pacific’s background state, interbasin interactions, and the

impact of extratropical regions, shape ENSO diversity (Capotondi et al.,

2020a).

In representing ENSO events within a lower-dimensional space, partic-

ularly through the PC1-PC2 plot in Fig. 3.3a, we observe not distinct

regimes but rather a continuous distribution of events. This finding leads

to a fundamental question: are EP and CP events distinct entities, or do

they represent extremes of a continuous spectrum? This question, raised

by Capotondi et al. (2015), will be addressed in Ch. 5.

3.1.3. ENSO in Data

In this section, I summarize how ENSO is characterized in data. Based

on the mechanisms of ENSO, I will motivate and outline how ENSO is

defined, and which variables and regions are relevant.

Definition

Since meteorological data is inherently high-dimensional, climate sci-

entists reduce the dimensionality by representing complex phenomena

like ENSO through a single time series or by grouping time points for

creating representative maps. For ENSO, various indices have been estab-

lished, using different variables and regions. These indices are broadly

classified into two types: those describing ENSO’s intensity and those

characterizing its spatial variability.

Among the various measures for ENSO intensity, the Niño3.4 index is the

most popular and widely used time series. The Niño3.4 index is obtained

from the average SSTA in the Niño3.4 region (5°N-5°S, 170°W-120°W).

While other region-specific indices such as Niño1+2 (0°-10°S, 90°W-80°W),

Niño3 (5N-5S, 150W-90W), Niño4 (5N-5S, 160E-150W) are also in use,

the Niño3.4 index represents average equatorial SSTs across the Pacific

Figure 3.5.: The Niño1+2, Niño3, Niño4, and Niño3.4 index are defined as the average SSTA over the respective boxes (a). El Niño (La

Niña) phase is defined as the Oceanic Niño Index (ONI) (b), obtained as the three-month running average of the Niño3.4 index, which is

larger than 0.5°C (smaller than -0.5°C). SSTA are used from ORAS5 (ORAS5, 2021).
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(Fig. 3.5)a. The Oceanic Niño Index (ONI), introduced by NOAA is based

on the three-month running mean of the Niño3.4 index and explicitly

defines that the climatology for the SSTA calculation uses a 30-year base

period updated every 5 years (Fig. 3.5b). Besides the indices based on

SSTA, the Southern Oscillation Index (SOI) provides a measure of ENSO

intensity using the atmospheric variable sea level pressure. All these

indices are highly correlated with each other and with the leading PCs

of SSTA in the tropical Pacific (Fig. 2.2b).

ENSO phases are characterized by grouping time points based on a

threshold. The most recognized definition, established by NOAA, identi-

fies an El Niño (or La Niña) event when the ONI index exceeds 0.5 K (or

falls below -0.5 K) for a minimum of five consecutive months (Fig.3.5b).

Conditions are defined as Neutral when the ONI index lies between

-0.5 K and 0.5 K. In numerical climate models, where SSTA variability

can be larger, an alternative definition employs the standard deviation of

the ONI index as the threshold for categorizing ENSO events.

Niño3–Niño4 Approach: Kug et al.

(2009) and Yeh et al. (2009) proposed

to use the Niño3 and Niño4 indices

to differentiate between EP and CP El

Niño events. EP events are identified

when the boreal winter Niño3 index

exceeds 0.5°C and is greater than the

Niño4 index. Conversely, CP events

are determined when the boreal win-

ter Niño4 index exceeds 0.5°C and

surpasses the Niño3 index.

E and C Indices:: Defined by Taka-

hashi et al. (2011), the E and C indices

are based on the two leading PCs of

SSTAs within the 10°S–10°N tropical

Pacific band. The C index is calcu-

lated as 𝐶 =
(𝑃𝐶1+𝑃𝐶2)√

2

, and the E

index as 𝐸 =
(𝑃𝐶1−𝑃𝐶2)√

2

. These in-

dices are designed to be independent

and effectively differentiate between

moderately warm CP events (𝐶 > 𝐸)

and extreme EP events (𝐸 > 𝐶).

Similarly, indices that track ENSO’s spatial diversity have been established

by comparing SSTA between different regions, such as between Niño3

and Niño4 (Niño3-Niño4) (Kug et al., 2009), or by considering the first

two PCs of the tropical Pacific (EC)(Takahashi et al., 2011). For instance,

the former identifies an El Niño event as EP when Niño3 is greater than

Niño4, and as CP when the opposite is true (Fig. 3.3a). Comprehensive

comparisons of different definitions are provided in the works of Yu et al.

(2013), Capotondi et al. (2020a), and Karamperidou et al. (2017).

Data Design

ENSO is a coupled ocean-atmosphere phenomenon with potential feed-

backs globally (Sec. 3.2). To model ENSO one would ideally consider

a large range of variables on high spatial and temporal resolution, to

capture the global climate dynamics on different scales, and thereby also

the dynamics of ENSO. Current physics-based global climate models

(Sec. 3.3.2), pursue this comprehensive approach, however, besides their

computational limitations, encounter a range of issues and biases. Data-

driven models, on the other hand, are limited by the short observational

record. These limitations necessitate design choices on the variables,

regions, and resolution to use for capturing the complex dynamics of

ENSO. While there is no conclusive selection, I will outline and motivate

my data design choices for developing data-driven ENSO models, which

is summarized in Tab. 3.1.

i) Variables:

SST is central to ENSO modeling due to its dual role in capturing ocean

dynamics and integrating information from the fast-varying atmosphere.

Since 1980 satellites have enabled almost real-time SST measurements of

the whole ocean, while earlier data was derived from point measurements

made by buoys and ships.

Probably the second most important predictor for ENSO is the subsurface

ocean temperature within the top 300 meters. This parameter is often
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Variable Region Temporal Resolu-
tion

Comments

Sea surface tem-

perature (SST)

Pacific (Indian

Ocean and At-

lantic)

Monthly

Sea surface height

(SSH)

Pacific Monthly SSH is a proxy for

thermocline depth

but is observed

from satellites.

10M zonal-

component of

wind (u10)

Pacific, especially

the western Pacific

Daily Alternatively,

zonal wind stress.

Sea level pressure

(SLP)

Pacific Monthly Captures the

Southern Oscilla-

tion

Table 3.1.: Relevant variables, regions,

and temporal resolution for data-driven

models of ENSO.

described by the thermocline depth or the ocean heat content (OHC),

obtained by vertically integrating the subsurface temperatures. The

TOGA project (McPhaden et al., 1998) marked the beginning of systematic

subsurface temperature measurements using buoys. Alternatively, sea

surface height (SSH) exhibits a strong correlation with the thermocline

depth (Rebert et al., 1985) and can be measured via satellite. For this

reason, I use SSHA as a predictor for ENSO in Ch. 6.

While sea level pressure (SLP), associated with the Southern Oscillation,

could be a relevant quantity, its strong correlation with SSTA often limits

its additional predictive value. Surface winds, which are related to SLP

as they blow from high to low-pressure regions, exhibit significant high-

frequency variability. The high-frequency zonal winds in the western

Pacific, known as westerly wind burstss (WWBs), is a stochastic forcing for

ENSO, that can trigger El Niño and La Niña events through momentum

transfer to the ocean surface (e.g. Vecchi et al., 2006; Capotondi et al.,

2018). Consequently, the zonal wind component of surface winds, 10m

zonal-component of wind (u10), is an important predictor of ENSO.

Zonal wind stress, 𝜏𝑥 , which reflects the surface wind’s force on the

ocean may also be used. However, it is not directly accessible through

satellite observations.

Fair-sliding: Fair-sliding is a

method to compute anomalies specif-

ically suited for forecasting models.

This involves using a 30-year sliding

window for the climatology prior to

the forecast initialization time. For in-

stance, a forecast made in 2000 would

use climatology from the 1969–1999

period, thereby excluding any post-

1999 data that would not have been

available initially. This approach en-

sures that our forecasts are based

solely on relevant, contemporaneous

data, avoiding any hindsight biases.

The seasonal nature of the ENSO requires focusing on anomalies in-

dependent of the variable. To calculate anomalies, we first remove a

linear trend from the dataset, establish the climatological mean, and then

subtract this mean from the data. In forecasting models, the method

of computing climatology requires additional consideration to avoid

introducing artificial skills. Specifically, the climatology used should not

contain information unavailable at the time of forecast initiation. This

issue can be addressed by employing a fair-sliding method (Risbey et al.,

2021) for anomaly calculation.

ii) Spatial Regions and Resolution:
The spatial region of warming and cooling SST spans large parts of the

tropical Pacific. For this reason, the resolution of the data fields is less

critical, with resolutions up to 2.5° generally sufficient to capture the

primary spatial characteristics of ENSO.
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Including the tropical Pacific, stretching from South America in the east to

the Maritime Continent in the west [120°W-70°E], is crucial for describing

ENSO. The impact of off-equatorial SSTA on ENSO, and consequently,

the determination of the appropriate latitudinal range for inclusion,

remains a subject of active research. Following insights from Richter

et al. (2022), incorporating areas like the North Pacific Meridional Mode

(NPMM)and the South Pacific Meridional Mode (SPMM), spanning 30°S

- 30°N, should enhance model predictability.

North/South Pacific Meridional
Mode (NPMM/SPMM:) The

NPMM/SPMM is characterized

by changes in the north-south

SST gradient in the North/South

East Pacific Ocean. This mode of

variability impacts the atmospheric

circulation and the trade winds, and

thus affects ENSO.

While the focus has predominantly been on the Pacific, the potential

roles of other ocean basins, notably the Indian and Atlantic Oceans, as

predictors for ENSO are subjects of active research, hinting at possible

future expansions in our understanding of ENSO dynamics (Sprintall

et al., 2020).

iii) Temporal Resolution:
Given that ENSO is the predominant mode of interannual variability,

substantial shifts in SSTA and SSHA primarily occur on a monthly

timescale. This suggests that a monthly temporal resolution is adequate

to encapsulate the necessary oceanic variability linked to ENSO dynamics.

However, when it comes to atmospheric elements, a monthly resolution

may not be sufficiently granular. Specifically, abrupt shifts in westerly

trade winds are known to trigger El Niño and La Niña events. To

effectively capture these critical changes, I recommend including zonal

winds at a daily resolution (Tab. 3.1).

Data Sources
TOGA-project: Tropical Ocean-

Global Atmosphere (TOGA) project,

a ten-year international study

(1985–1994) to monitor the ENSO

phenomenon, significantly enhanced

the observational infrastructure

across the tropical Pacific. Key

elements such as the TOGA-TAO

moored array, which consists of 70

stationary buoys, provided real-time

measurements of wind and ocean

thermodynamics.

Observational Data: Since the 1980s, satellites have provided automatic

and almost real-time measurements of oceanic surface variables. Prior to

this, our insights came from station data gathered by buoys and ships.

The TOGA project (McPhaden et al., 1998), and later the Argo Project

(Feder, 2000), with its array of floating sensors, has further enhanced the

information we get from the upper ocean layers. The primary advantage

of observational data lies in its minimal biases. However, missing data

points, the absence of gridded data for earlier records and subsurface

ocean measurements, and a relatively short observational history are a

strong limiting factor for applying data-driven models.

Reanalysis Data: Reanalysis data offers a solution to some of the lim-

itations of observational data. They essentially represent interpolated

observational data, laid out on a grid and compiled from diverse sources.

This interpolation approach, called assimilation, uses a numerical model,

which is nudged to the observations by using ensemble Kalman filter

techniques. The most notable advantage of reanalysis data is the creation

of a continuous, gridded dataset, devoid of missing data points. However,

this approach bears its own set of challenges. Notably, the biases of the

underlying numerical model, especially in regions where observational

data are sparse, can skew results. Furthermore, the short observational

record also limits the length of the reanalysis datasets.

Climate Model Data: Data from numerical coupled ocean-atmosphere

models provide another data source. These models solve the governing
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Reanalysis prod-
uct

Resolution Period Variables

ERSSTv5 (Zhang

et al., 2019)

2
◦ × 2

◦
1854-present SST

ERA5 (Hersbach

et al., 2020)

0.25
◦ × 0.25

◦
1940-present SST, 𝜏𝑥

COBE2 (COBE,

2006)

1
◦ × 1

◦
1891-present SST

HadISST (Rayner

et al., 2003)

1
◦ × 1

◦
1870-present SST

ORAS5 (ORAS5,

2021)

0.25
◦ × 0.25

◦
1958-present SST, SSH, 𝜏𝑥

SODA (Giese et

al., 2011)

0.25
◦ × 0.25

◦
1980-present SST

GODAS

(Behringer et al.,

1998)

0.33
◦ × 1.0◦ 1980-present SST, SSH, 𝜏𝑥

CERA-20C (Laloy-

aux et al., 2018)

1
◦ × 1

◦
1901-2009 SST, SSH, 𝜏𝑥

Table 3.2.: Reanalysis products. A non-

comprehensive list of reanalysis prod-

ucts of ocean variables. The products

contain one or more variables: SST, SSH,

and surface wind stress (𝜏𝑥 ). The listed

datasets are used in the analysis in Ch. 5.

physical equations on a gridded duplicate of our Earth system. A signifi-

cant advantage of using climate model data is the sheer volume of data

available. These models can run for over a hundred years, generating

numerous ensemble members that offer insights into uncertainties and

potential future scenarios, including conditions like a 4-degree warmer

climate. Especially, the standardization of variables and scenarios for

CMIP simulations is a great source of openly available data. However,

climate models often exhibit large biases due to their resolution and the

absence or approximation of certain processes. For instance, SSTA in the

Pacific shows exaggerated variability in most global climate models (e.g.

Capotondi et al., 2020a; Beverley et al., 2023), which in turn, is reflected

in the data-driven models based on these data.

3.2. Why Do We Care About ENSO?

Changes in heat transfer between the ocean and the atmosphere during

the different ENSO phases alter the atmospheric circulation and affect

weather patterns far beyond the tropics. Hydrological extremes such as

floods and droughts are common with ENSO and are expected to increase

with global warming (Trenberth, 2011). For instance, the strong 2015–2016

El Niño event triggered widespread coral bleaching (Hughes et al., 2017)

and led to anomalously warm winters in Canada and the northeastern

United States (e.g. Taschetto et al., 2020). Similarly, South America often

experiences significant rainfall increases during El Niño phases, leading to

flooding in countries like Ecuador and Peru. Furthermore, the frequency

and intensity of tropical cyclones are substantially enhanced by La Niña

(e.g. Taschetto et al., 2020).

These far-reaching effects of ENSO, known as teleconnections, highlight

ENSO’s essential role in global seasonal weather predictability. For
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instance, teleconnections allow estimating likelihoods of increased or

decreased precipitation in the Midwest of the US months ahead. Such

forecasts are critical for decision-making in sectors like agriculture and

water management. Callahan et al. (2023) estimated that in the decade

following a potent El Niño event, the global economy could incur costs of

up to 84 trillion dollars. Fortunately, the El Niño of 2023-24 manifested

with only moderate intensity.

Rossby waves: Rossby waves, also

known as planetary waves, occur

in rotating fluids due to the con-

servation of potential vorticity that

changes with latitudes. In the atmo-

sphere, they are large-scale meanders

in high-altitude winds that transport

heat between the equator and the

poles.

The primary mechanism driving ENSO’s atmospheric teleconnections

involves shifts in convective activity, due to changes in SSTAs. These

shifts trigger atmospheric waves, called Rossby waves, that propagate

ENSOs’ signal to distant regions. Numerous teleconnections for both El

Niño and La Niña have been documented, as outlined in the chapter by

Taschetto et al. (2020), which is not reiterated here. Instead, I will present

the typical approach used to determine ENSO teleconnections.

Identifying Teleconnections

Identifying teleconnections in climate science is essentially a pattern

recognition task, like noticing trends of increased rainfall that coincide

with El Niño conditions. The standard methodology in climate science

discovering these links involves the following steps:

1. Pattern Extraction: Commonly, scientists start by examining EOFs

or correlations. For example, to investigate precipitation patterns

in California, one would analyze weather station data for high

correlations with indices that represent global circulation patterns,

such as the ONI index for ENSO.

2. Causality Assessment: Beyond identifying correlations, it’s cru-

cial to establish causation. This is usually done by grouping time

periods according to correlation intensity and examining compos-

ite variables like atmospheric pressure. Such analysis can reveal

underlying propagation pathways, potentially involving Rossby

waves, jet streams, or other climatic factors.

3. Climate Modeling: After formulating a possible mechanism, it

can be tested in climate models. This often involves "pacemaker

experiments", where for instance SSTs in the Pacific are prescribed to

suppress typical El Niño conditions, allowing scientists to observe

the effect on the proposed teleconnection.

This methodology, while comprehensive and demanding thorough data

analysis, statistical validation, and complex climate modeling, is a stan-

dard approach for identifying teleconnections in climate science. A

crucial initial step in this process is the careful selection of the region or

phenomenon of interest. In Ch. 4, climate network analysis is used to

identify global teleconnections of EP and CP El Niño events.

3.3. How Well Can We Predict ENSO?

Given ENSO’s large impact on weather and climate conditions worldwide,

it is an important source of predictability for long-range weather forecasts,

specifically on seasonal to annual scales. The effort to improve long-

range ENSO forecasting began following the devastating 1982-83 El
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Niño event, which triggered severe drought and heatwaves in Australia

(Taschetto et al., 2009), highlighting the need for reliable long-term rainfall

predictions. Subsequent initiatives, like the TOGA program, have led to

the development of models that accurately simulate ENSO dynamics.

Currently, the International Research Institute for Climate and Society

(IRI) provides a list of operational ENSO forecasting models (IRI, 2024),

demonstrating forecast skills for the Niño3.4 index up to 18 months in

advance (Zhou et al., 2023). The IRI distinguishes between dynamical

and statistical models, which I refer to as physics-based models and

data-driven models. While models of the first type describe the physical

mechanisms of the system explicitly with differential equations, the latter

infers the dynamics from the data.

3.3.1. Predictability

Lorenz’s seminal work in 1963 and 1969 on the concept of the ’butterfly

effect’, has shaped our understanding of the weather as an inherently

chaotic system. The sensitivity of the weather system to initial condition

perturbations and the interaction between small and large spatial scales

limits the predictability of weather and climate (Palmer et al., 2014). For

instance, in the mid-latitudes information from the atmospheric initial

state decays in less than two weeks. For this reason, weather forecasting

is not reliable beyond 14 days. Given these constraints, how is it possible

to generate seasonal forecasts for ENSO?

Several factors contribute to the predictability of ENSO. Unlike in the

mid-latitudes, the tropics allow for a slower decay of atmospheric initial

state information, extending up to about 20 days (Judt, 2020). Moreover,

ENSO has an oceanic component and the ocean exhibits a slower rate of

variability compared to the atmosphere. The ocean effectively acts as a

low-pass filter on the atmospheric dynamics. The most important factor,

however, is the large-scale and quasi-periodic characteristics of ENSO

which substantially reduces its sensitivity to the chaotic component of

the atmosphere, allowing it to be predicted up to two years in advance

(e.g. DiNezio et al., 2017).

Despite ENSO’s predictability on longer timescales, uncertainties remain

that constrain its forecast accuracy, namely:

1. Initial state uncertainties: Even minor inaccuracies in determining

the current oceanic and atmospheric states can amplify over time,

resulting in significant forecast errors.

2. Model uncertainties: Models often lack key physical processes

or represent them imprecisely, usually due to their occurrence at

smaller spatial or temporal scales than what model resolutions can

capture.

Spring predictability barrier: The

term "spring predictability barrier",

denoting the reduced forecasting

skill of ENSO during the boreal

spring, might be somewhat mis-

leading, as predictions initialized in

the preceding winter often exhibit

higher accuracy. Therefore, the phe-

nomenon should rather be called

“spring predictability minimum”.

Besides these general limitations of predictability, ENSO forecasting

skill exhibits seasonal fluctuations, present in both physics-based and

data-driven models. Forecasts initialized in the boreal spring show

significantly reduced skill called the spring predictability barrier (Duan

et al., 2013). This phenomenon is attributed to the strongly damped SSTA

in the equatorial cold tongue during this period (Jin et al., 2007; Stein

et al., 2014). Furthermore, ENSO predictability shows decadal variations,

a pattern consistent across different models. Hypotheses suggest that
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these variations may be due to the nature of ENSO events and associated

changes in atmospheric forcing (McPhaden, 2012; Neske et al., 2018) or

alterations in the ocean’s background state (Capotondi et al., 2017; Lou

et al., 2023).

In addition to the decadal variability in forecasting skills, certain ENSO

states demonstrate higher predictability than others. Notably, forecasts

following strong El Niño events tend to be more skillful, as these con-

ditions often transition into La Niña in the subsequent year, enhancing

predictability (Gonzalez et al., 2016; DiNezio et al., 2017; Lou et al., 2023).

These periods of enhanced forecast accuracy are often termed “windows

of opportunity”.

Other sources of ENSO predictability are a current research focus, in-

volving interbasin interactions, notably the Indian Ocean and the At-

lantic Ocean, as well as influences from the extratropics (e.g. L’Heureux,

2020).

3.3.2. Physics-Based Models

ENSO forecasting accuracy is hindered not only by uncertain initial condi-

tions but also by the often limited representation of dynamic processes in

models. This section provides an overview of physics-based ENSO mod-

els and discusses their advances and limitations. Physics-based models

have significantly contributed to our understanding of ENSO dynamics

over the centuries. They rely on differential equations to simulate physical

processes and require numerical methods for solutions. These models are

categorized hierarchically based on their complexity: (i) simple oscillators,

which capture the cyclic nature and key parameters of ENSO; (ii) inter-

mediate models, focusing on the fluid dynamics and thermodynamics of

the equatorial ocean and atmosphere with certain simplifications; and

(iii) Global Circulation Model (GCM), offering detailed global climate

simulations utilizing advanced computing resources.

Oscillator Models

Recharge/discharge oscillator: In

its simplest form, the recharge/dis-

charge oscillator reads

𝑑𝑇

𝑑𝑡
= 𝑎𝑇 + 𝑏𝐻

𝑑𝐻

𝑑𝑡
= 𝑐𝐻 + 𝑑𝑇,

where 𝑇 is a spatial average of SSTA,

𝐻 is a spatial average of thermocline

depth anomalies, and 𝑎, 𝑏, 𝑐, 𝑑 are

fixed parameters.

The simplest ENSO models are harmonic oscillators constructed using

ordinary differential equations. These 1D models capture ENSO’s oscil-

latory nature, characterized by periods ranging from 2 to 7 years, and

describe the dynamics of the spatial average SSTA and thermocline depth

in the tropical Pacific. The delayed oscillator (Suarez et al., 1988), and the

recharge/discharge oscillator model (Jin, 1997) are notable examples. These

models exhibit rapid positive feedback leading to the growth of El Niño

and delayed negative feedback, which reverses the oscillation’s phase.

The positive feedback represents the Bjerknes feedback (Sec. 3.1.1) in both

models. In contrast, the delayed oscillator captures the negative feedback

through delayed equatorial oceanic wave propagation and reflection. The

recharge/discharge model, meanwhile, interprets the negative feedback

via the meridional transport of equatorial heat content (Jin et al., 2020).

Subsequent advancements in these oscillator models have incorporated

nonlinearities (Timmermann et al., 2003; Guckenheimer et al., 2017),

integrated atmospheric interactions through stochastic forcing (Jin et al.,
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2007; Levine et al., 2010; Bianucci et al., 2018), and explored shifts in the

Walker Circulation (Thual et al., 2023).

These simplistic models have formed much of our mechanistic under-

standing of ENSO. They offer intuitive illustrations of its fundamental

aspects, including causes and evolution, and allow testing of new physical

hypotheses. However, their practical application in forecasting is limited.

This limitation stems primarily from their low-dimensional structure and

lack of interaction with other climate components, like the atmosphere.

While important for theoretical understanding, these models do not fully

capture the complex behavior of ENSO in observations.

Intermediate Complexity Models

Following simple oscillator models in the hierarchy of ENSO models

are the earth model of intermediate complexity (EMIC). EMICs are

two-dimensional models, depending on variations in longitude, latitude,

and time, while their vertical structure is fixed in both the ocean and

atmosphere. These models are typically based on the shallow water

equation for the oceanic component which distinguishes a dynamic upper

layer from the passive deeper ocean, separated by a stable thermocline.

Similarly, atmospheric dynamics in EMICs are also often represented

through shallow water equations, considering the atmosphere as a fast-

responsive layer compared to the ocean (Gill, 1980). A prominent example

of EMICs for ENSO is the Cane-Zebiak model (Cane et al., 1986; Zebiak

et al., 1987), along with its evolved variants summarized in the Lamont-

Doherty Earth Observatory model (LDEO) (Gao et al., 2020) that are

used for operational ENSO forecasting
2
.

2
Operational forecast of the LDEO

model: https://iri.columbia.edu/

our-expertise/climate/forecasts/

enso/archive/200907/models/

Lamont_Doherty.html

The advantage of EMICs lies in their computational efficiency and com-

plexity, allowing sensitivity experiments and control over the simulated

ENSO dynamics. For instance, conducting a century-long simulation with

the Cane-Zebiak model on a single CPU can be completed in less than

two hours. This allows for conducting extensive ensemble experiments

over long durations, yielding robust statistics of ENSO. Furthermore,

EMICs can be initialized with observational data, making operational

forecasts possible. Remarkably, their forecasting skill is on par with more

complex models, including comprehensive GCMs (Barnston et al., 2012),

which are described in the next section.

Nevertheless, the accuracy and efficiency of EMICs heavily rely on the

parametrization of unresolved processes. These empirical approximations

limit the models’ ability to simulate diverse climate scenarios. The LDEO,

for example, primarily models the tropical Pacific and is unable to fully

represent the spatial diversity of ENSO (e.g. Geng et al., 2022).

Coupled Ocean-Atmosphere Models

Coupled ocean-atmosphere models that solve the primitive equations of

fluid dynamics and thermodynamics across multiple vertical pressure

levels globally are the gold standard for weather and climate prediction.

This category includes Global Circulation Model (GCM) and numerical

weather prediction (NWP). While GCMs and NWPs are designed for

different objectives — weather models focus on initial value problems

https://iri.columbia.edu/our-expertise/climate/forecasts/enso/archive/200907/models/Lamont_Doherty.html
https://iri.columbia.edu/our-expertise/climate/forecasts/enso/archive/200907/models/Lamont_Doherty.html
https://iri.columbia.edu/our-expertise/climate/forecasts/enso/archive/200907/models/Lamont_Doherty.html
https://iri.columbia.edu/our-expertise/climate/forecasts/enso/archive/200907/models/Lamont_Doherty.html
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and climate models on boundary value problems — they solve the same

physical dynamics of the earth system. Both discretize the ocean and

atmosphere into boxes and numerically solve the governing differen-

tial equations. GCMs used for ENSO modeling need to account for

Primitive equations: The primitive

equations of ocean/atmosphere dy-

namics are:

i. Continuity equation: Repre-

senting the conservation of

mass.

ii. Conservation of momen-
tum: Consisting of the

Navier–Stokes equations that

describe hydrodynamical

flow on the surface of a

sphere under the hydrostatic

assumption.

iii. Thermal energy equation:
Relating the overall temper-

ature of the system to heat

sources and sinks.

iv. The Equation of State for
Air/Water: Links pressure,

temperature, in the atmo-

sphere or salinity, temper-

ature, and pressure in the

ocean to the density of

air/seawater.

slow-varying factors like the cryosphere, biosphere, ocean currents, and

volcanic activity. These models usually run for a hundred to several

hundred years and simulate different climate scenarios by changing their

boundary conditions like greenhouse gases and solar activity.

Due to their finite resolution, GCMs approximate the impact of small-scale

processes that are not resolved on the larger grid. This approximation,

known as parametrization, often relies on heuristic or empirically derived

models (Palmer, 2001). Notable examples include the parametrization

of convection and cloud formation, processes that occur on a kilometer-

scale but significantly alter the energy balance — the difference between

incoming and outgoing radiation — of the larger grid boxes (e.g. Arakawa,

2004). These parameterizations represent the primary sources of error in

GCMs (e.g. Brenowitz et al., 2018; Rasp et al., 2018).

Since the early 2000s, GCMs have begun to generate realistic simula-

tions of ENSO (Guilyardi et al., 2020). An important factor in these

improvements has been the availability of observational data from TOGA

(McPhaden et al., 1998) and the Coupled Model Intercomparison Project

(CMIP) (Eyring et al., 2016). Today, a wide range of models contribute to

ENSO forecasting, with the ensemble average from the North American

Multi-Model Ensemble (NMME, Kirtman et al., 2014) representing the

state-of-the-art in predictive capability.

The primary advantage of using GCMs for ENSO modeling is their

ability to generate realistic dynamics of the tropical Pacific that capture

the complex interactions of ENSO with other global processes. These

models produce extensive simulations with multiple ensemble members,

providing insights into associated uncertainties. Furthermore, GCMs

generate all relevant variables, allowing researchers to trace mechanisms

that emerge from complex interactions between them. Despite their high

computational cost, GCMs enable specialized experiments, such as nudg-

ing techniques where experts can investigate the atmospheric responses

to specific temperature conditions in the tropical Pacific (Fedorov et al.,

2000).
3
For the Coupled Earth System Model

2 (CESM2), for instance, to run one year

of global simulations on a resolution of

100 × 100 km requires 3456 CPU-hours

(Danabasoglu et al., 2020).

However, the GCMs also present large challenges for ENSO modeling. (i)

Due to their complexity, GCMs can appear as "black boxes". Users can

only analyze model outputs rather than interact directly with the models.

(ii) Running GCMs are computationally expensive
3
, requiring large

supercomputers. This also limits the ability to generate large ensembles

for operational forecasts. (iii) GCMs exhibit notable biases, such as the

eastward displacement of warm pool anomalies and overestimation

of SST anomalies in the tropical Pacific, as seen in the latest CMIP5

and CMIP6 models (Capotondi et al., 2020a; Beverley et al., 2023).

These biases are challenging to address due to the intricate ocean-

atmosphere interactions and the models’ limited resolution. Efforts to

refine the physical representation within models sometimes lead to

poorer performance, likely due to the interaction of parametrizations

and the chosen validation standards.
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3.3.3. Data-Driven Models

With the availability of observational data from satellites (Sec. 3.1.3),

data-driven models have entered the field of sub-seasonal to seasonal

forecasts, and thereby also the task of ENSO prediction. In contrast to

physics-based models (Sec. 3.3.2) data-driven models do not rely on

solving differential equations describing the known physical processes,

but infer its dynamics from data (see Sec. 2.2 for a general introduction

into data-driven forecasting models). This section provides an overview

of data-driven models for ENSO forecasting which motivates the hybrid

model approach in Ch. 6.

The first operational data-driven models for ENSO forecasting were based

on multivariate linear statistical techniques, such as canonical-correlation

analysis (e.g. Barnett et al., 1988), principal oscillation pattern analysis

(e.g. von Storch et al., 1990), and Markov models (e.g. Xue et al., 1994).

These models predicted ENSO states with lead times of six to twelve

months (Latif et al., 1994). The Linear Inverse Model (LIM) (Penland

et al., 1995), derived from the Fokker-Planck equation, is a probabilistic

linear model that describes the linear dynamics of the ocean under

stochastic atmospheric forcing, approximated as white noise (see Ch. 6

for a detailed description). Subsequent enhancements to these linear

models have incorporated seasonality (Shin et al., 2021), state-dependent

noise (Martinez-Villalobos et al., 2018), and extended historical data

(Chapman et al., 2015). Furthermore, Chen et al. (2015) introduced

nonlinear elements by including higher-order polynomials.

Another early data-driven approach involves analog methods, initially

proposed by Lorenz (1969) for weather forecasting. These methods iden-

tify historical states similar to the current state and use their subsequent

evolution to forecast future conditions. Barnston et al. (1989) applied

this technique to ENSO forecasting; however, the limited length of the

observational record limited the prediction accuracy (Dool, 1989). More

recently, the introduction of “model-analogs” — analogs derived from

GCM simulation runs — has enabled skillful ENSO forecasts extending

beyond 12 months (Ding et al., 2018; Wang et al., 2020; Toride et al.,

2024).

While analogs require explicit structuring of the data, neural networks

learn the structure in the data implicitly. First applied to ENSO forecasting

in the 1990s (Tangang et al., 1997), neural networks initially did not

show an improvement in skill upon linear models due to the small

network sizes and sparse data availability. However, with observations

from satellites and increased computational power, Ham et al. (2019)

demonstrated that a CNN could predict the Niño3.4 index up to 17 months

in advance, surpassing both data-driven and physics-based models. This

seminal work has sparked extensive research on deep learning-based

ENSO forecasting. Tab. 3.3 provides a non-comprehensive overview,

highlighting differences in input variables, data sources, objectives —

fixed lag-time models or recurrent models — and whether they predict a

single index or forecast entire fields. The maximum lag time, where the

ACC of the Niño3.4 index exceeds 0.5, is a commonly reported metric

for these models. However, comparisons should be taken with caution

due to differences in the reanalysis products and time periods used for

evaluation.
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Table 3.3.: Deep learning-based ENSO

forecasting models show differences in

input variables, data sources, model ob-

jectives, architectures, and skills. For the

model objective, I differentiate between

models that produce the forecast recur-

rently and models that forecast fixed lag

times, as well as, whether the forecast

objective is the Niño3.4 time series or the

full spatial fields. The most frequently re-

ported measure of skill is the maximum

forecast lag-time, where the anomaly cor-

relation coefficient (ACC) of the Niño3.4

index exceeds 0.5. This list of forecasting

models is not comprehensive.

Paper Variables Sources Objective Architecture Skill
[month]
(ACC>0.5)

Ham et al.

(2019)

SSTA, OHC CMIP5,

SODA,

GODAS

Lag-time of

Niño3.4

CNN 17

Cachay et

al. (2021)

SSTA, OHC CMIP5,

SODA,

GODAS

Lag-time of

Niño3.4

GNN 15

Zhou et al.

(2023)

SSTA,

𝜏𝑥 , 𝜏𝑦 ,

OHC

CMIP6,

SODA,

ORAS5

Lag-time of

full field

Transformer 18

Wang et al.

(2023)

SSTA,

OHCA

CMIP5/6,

SODA,

GODAS

Lag-time of

Niño3.4

CNN & At-

tention

24

Lyu et al.

(2023)

SSTA CMIP6,

ERSSTv5

Lag-time of

Niño3.4

CNN & At-

tention

18

Taylor et al.

(2022)

SSTA,

T2MA

ERA5 Recurrent

of full field

U-Net &

LSTM

-

Neural networks are nowadays considered state-of-the-art in ENSO

forecasting (e.g. Ham et al., 2019; Zhou et al., 2023) because they are

capable of learning dynamics that are unresolved in physics-based models.

Due to their fast inference, they are also well-suited for operational

forecasts, avoiding the slow integration steps required by numerical

models. However, to date, most approaches predict only a single index

and their forecasts are deterministic (Tab. 3.3). Additionally, the available

observational monthly data is too short for training large neural networks

(Ch. 6). Long simulations from GCMs suggest that at least 200 to 300

years of data may be necessary to robustly capture changes in ENSO

properties (Wittenberg, 2009), necessitating the use of GCM simulations

for training neural networks. When trained on these simulations, neural

networks inherit the biases of the GCMs. Attempts to bridge the domain

gap between simulations and observations, such as fine-tuning models

on observational data that have been pre-trained on GCM simulation,

have been applied (Ham et al., 2019), but as Zhou et al. (2023) report,

these methods do not always lead to improved skill.
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Abstract

The diversity of El Niño events is commonly described by two distinct

flavors, the Eastern Pacific (EP) and Central Pacific (CP)-type. While

the remote impacts, i.e., teleconnections, of EP and CP events have

been studied for different regions individually, a global picture of their

structure is still lacking. Here, we use Forman-Ricci curvature applied

on climate networks constructed from surface air temperature data to

distinguish regional links from teleconnections. Our results confirm that

both El Niño types influence the teleconnection patterns, however, with

different spatial manifestations. Our analysis suggests that EP El Niños

alters the general circulation which changes the teleconnection structure

to primarily tropical teleconnections. In contrast, the teleconnection

pattern of CP El Niños shows only subtle changes to normal conditions.

Moreover, this work identifies the dynamics of the Eastern Pacific as a

proxy for the remote impact of both El Niño types.

Code and experiments available at the

Github repository:

jakob-schloer/netcurvature

4.1. Introduction

The El Niño-Southern Oscillation (ENSO) is the most dominant interan-

nual variation in the global climate system. It is a dynamical atmospheric

and oceanic phenomenon characterized by anomalously warm (El Niño)

or cold (La Niña) phases of sea surface temperature (SST) in the equatorial

Pacific. Both phases are known to impact Earth’s climate significantly on

large spatial scales, typically referred to as teleconnections (Trenberth,

1997) and thus have been investigated in many studies over the past two

decades (Capotondi et al., 2015; Timmermann et al., 2018; Capotondi

et al., 2020a).

Yet, significant differences in the downstream impacts of El Niño events

are reported (Shi et al., 2019), depending on the amplitude and spatial

position of SST anomalies. Impacts can range from devastating floods

and droughts during strong El Niño events to only mild increases in

rainfall and temperature changes during moderate to weak El Niños.

These differences can be partly related to the type of El Niño. The

diversity of El Niño events is typically characterized by two modes: The

“canonical” or Eastern Pacific (EP) El Niño (Rasmusson et al., 1982) with

peak SST anomalies in the eastern equatorial Pacific, and the “El Niño

Modoki” (Ashok et al., 2007) or Central Pacific (CP) El Niño with peak

SST anomalies in the central equatorial Pacific (Kao et al., 2009).

Although the effect of both El Niño types on different locations of

the Earth — such as the Indian Ocean (IO) (e.g. Klein et al. (1999)),

maritime continent (e.g. Wang et al. (2007)), tropical Atlantic (e.g. Huang

(2004)), and Northern America (e.g. Yu et al. (2012)) — has been studied

thoroughly (see Okumura (2019) and Taschetto et al. (2020) for an

https://github.com/jakob-schloer/netcurvature.git


36 4. Teleconnection Patterns of Different El Niño Types Revealed by Climate Network Curvature

overview), previous work has mainly focused on single teleconnections

of the El Niño types.

In comparison, little is known about differences in the spatial extent of

global teleconnection patterns between EP and CP events. In this study,

we address this issue by introducing a novel machine-learning approach

that employs complex climate networks combined with Ricci-curvature,

an abstract tool from the theory of complex networks. Climate networks

(Dĳkstra et al., 2019) have gained increasing interest in the analysis of

spatial dependencies of climatic variables through their ability to reduce

data to relevant climatic patterns, and therefore, have been widely used

in the analysis of ENSO. Tsonis et al. (2008) investigated the topology

of El Niño and La Niña networks of surface air temperature. The global

impact of El Niño on various geographical zones (Yamasaki et al., 2008),

on geographical long-range teleconnections (Donges et al., 2009a; Zhou

et al., 2015), and its diversity (Radebach et al., 2013; Kittel et al., 2021) have

been analyzed by evolving climate network analyses. Wiedermann et al.

(2016) employ them to find a robust way to distinguish between different

types of El Niños flavors and Lu et al. (2020) estimate the expected El

Niño impacts by using climate networks.

Ricci-curvature of complex networks is a recent approach to visualize

the structure of a network intuitively by highlighting whether an edge of

the network connects nodes within a community (i.e., a group of densely

connected nodes) or bridges two communities (Ollivier, 2009; Sreejith

et al., 2016). It has been proven useful, for example in the analysis of

financial markets (Sandhu et al., 2016), gene expressions (Sandhu et al.,

2015; Pouryahya et al., 2018), brain connectivity (Farooq et al., 2019),

urban transportation (Gao et al., 2019), power grids (Jonckheere et al.,

2019), and epidemiology (Souza et al., 2021).

We show that our approach is an intuitive yet informative tool to ana-

lyze the spatial organization of teleconnections that outlines structural

differences between EP and CP El Niño impacts.

4.2. Data and Methods

4.2.1. Data

Figure 4.1.: Gaussian Grid and Fekete
Grid. In the Gaussian grid (a) points at

the poles are much closer to each other

than at the equator. To avoid artificially

higher correlation values at the poles due

to the shorter geographical distances, we

interpolate the data on the Fekete grid

(b) with approximately uniformly dis-

tributed grid points. For visual reasons,

we show a grid resolution of 5
◦

instead

of the 2.5◦ resolution used in the analysis

of this work.

We use daily surface air temperature (SAT, 2-meter air temperature)

data for the years 1959–2020 from the ERA5 Global Reanalysis database

(Hersbach et al., 2020). We first detrend each time series, then subtract

the daily climatology of the whole time period resulting in anomaly

time series with respect to the day of the year. We use next-neighbor

interpolation to map the data to a grid of spatially approximately uni-

formly distributed points using the Fekete algorithm (Bendito et al., 2007)

to avoid spurious correlation patterns close to the poles (Ebert-Uphoff

et al., 2012) (Fig. 4.1). The distance between grid points in the Fekete grid

corresponds to the distance between two points at the equator of a 2.5
◦

Gaussian grid, resulting in a total of ≈ 6000 grid points.
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4.2.2. Classification of EP and CP El Niño Conditions

We use Dec–Feb daily SAT anomalies and select EP El Niño events, CP

El Niño events, and ‘Normal’ winters based on the average DJF sea

surface temperature anomalies in the Niño 3 (N3) and Niño 4 (N4) region

(Trenberth et al., 2001). We classify a winter as EP (CP) event if N3 is

greater (less) than N4 and N3 (N4) larger than 0.5 (Capotondi et al., 2020a).

Winters with N3 and N4 between -0.5 and 0.5 are labeled as ‘Normal’. The

SST anomalies are calculated using a centered sliding-window 30-year

base period, successively updated in 5-year steps. Although the onset

and duration of El Niño events show high variability, we restrict our

analysis to the Dec–Feb period where El Niño events show in general the

highest intensities to avoid seasonality effects in our analysis.

4.2.3. Ricci Curvature of Correlation-Based Climate
Networks

We demonstrate the process of computing the curvature of a climate net-

work using a toy dataset. Fig. 4.2 a denotes a set of time series distributed

over a sphere. Correlations between all pairs of time series are predefined
(in contrast to our actual SAT dataset) with a priori fixed covariance

structure created from a stochastic block model.

Toy dataset: We use a stochastic block model (SBM) to generate a

random graph with four equal-sized communities. We set their edge

probabilities to

𝑃 =


0.7 0.02 0.02 0.03

0.02 0.6 0.02 0.01

0.02 0.02 0.6 0.02

0.03 0.01 0.02 0.7

 .
The adjacency matrix 𝐴toy ∈ R𝑁

of the SBM graph are used to specify

the covariance structure of a multivariate Gaussian, N
(
𝑥, 0, 𝐴toy

)
,

with 𝑁 is the number of nodes/data points. We draw 𝑇 = 1000

samples from the Gaussian which forms the 𝑁 time series of length 𝑇

of our toy dataset 𝑋toy ∈ R𝑁𝑥𝑇
with known covariance structure.

In order to calculate the Ricci curvature, we first need to create a climate

network, which signifies the most related grid points over the entire

globe. The network is determined by considering the 2% strongest

(𝜌0.98) statistically significant correlations 𝜌𝑖 𝑗 between pairs of time series

𝑥𝑖(𝑡), 𝑥 𝑗(𝑡) which is described by the weighted adjacency matrix W𝑖 𝑗

(Fig. 4.2 b):

W𝑖 𝑗 =

{
|𝜌𝑖 𝑗|, |𝜌𝑖 𝑗| > 𝜌0.98 ,

0, otherwise .
(4.1)

This is equivalent to a network 𝐺 whose nodes 𝑉 = {𝑣𝑖 : 𝑖 = 1, .., 𝑁}
correspond to spatial locations 𝑖 = 1, . . . , 𝑁 with edge 𝑒𝑖 𝑗 connecting the

nodes (𝑣𝑖 , 𝑣 𝑗) ∈ 𝑉 if |𝜌𝑖 𝑗| > 𝜌0.98 (Fig. 4.2 c) weighted by 𝜌𝑖 𝑗 (for details

see Sec. A.1).
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a. b. c.

d.e.

Figure 4.2.: Construction of a climate network and its curvature measure for a toy dataset. By computing correlations of time series

between all pairs of locations (a), we obtain the adjacency matrix W𝑖 𝑗 (eq. 4.1), orange dots denote points of significant correlations

between time series 𝑥𝑖(𝑡), 𝑥 𝑗(𝑡) (b), visualized as a network graph (c). The Forman curvature 𝐹𝑖 𝑗 of each edge (d) reveals the property of

an edge as within-community (positive curvature) or bridging communities (negative curvature). Positive (negative) node curvature

hotspots 𝑓 +
𝑖 𝑗

( 𝑓 −
𝑖 𝑗

) (e) are obtained by aggregating the 10% most positively and 10% most negatively curved edges on the nodes.

Figure 4.3.: Forman-curvature of an edge

𝑒𝑖 𝑗 with weight 𝑤𝑖 𝑗 connecting nodes 𝑣𝑖
and 𝑣 𝑗 is obtained by Eq. 4.2.

Forman curvature: The Ricci-curvature of a network link describes

how the connectivity of its network neighborhood differs from the

connectivity of a regular grid. Forman curvature of edge 𝑒𝑖 𝑗 in an

undirected network with weight 𝑤𝑖 𝑗 ∈ W is estimated as,

𝐹𝑖 𝑗 = 𝑤𝑖 𝑗

©­­­«|T𝑖 𝑗| · 𝑤𝑖 𝑗 +
2

𝑤𝑖 𝑗
−

𝑁∑
𝑘=1

𝑤𝑖𝑘𝑤𝑘 𝑗=0

∑
𝑙∈{𝑖 , 𝑗}
𝑤𝑙𝑘>0

1

√
𝑤𝑖 𝑗 · 𝑤𝑙𝑘

ª®®®¬ , (4.2)

where T𝑖 𝑗 := {𝑣𝑘 : 𝑤𝑖𝑘𝑤 𝑗𝑘 > 0} denotes the set of nodes in the

neighborhood of 𝑣𝑖 and 𝑣 𝑗 which form triangles containing edge 𝑒𝑖 𝑗
(green edges in Fig. 4.3) and | · | denotes set cardinality. The last term

in Eq. 4.2 counts the number of edges adjacent to node 𝑣𝑖 and 𝑣 𝑗 which

do not form triangles with edge 𝑒𝑖 𝑗 (black edges in Fig. 4.3). Equation

4.2 approximates the “augmented” Forman curvature (cf. Samal et al.

(2018), Eq. 9) by considering only triangles, no node weights, and no

cycle weights.

Ricci curvature provides a continuous measure over network links (i.e.,

independent from the spatial grid) using the connectivity between points

to describe their relationship in the network. Fig. 4.2 d shows the network

of our toy example with their edges 𝑒𝑖 𝑗 colored by their curvature 𝐹𝑖 𝑗 . We

see that positive curvature indicates an edge being embedded within a

community of nodes. The neighborhood of a positively curved edge is

more densely connected than a regular graph which is a network with

each node containing the same number of neighboring nodes. Positive
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curvature thus indicates a community of nodes with similar dynamics.

Negative curvature corresponds to an edge connecting two communities,

with its own neighborhood containing fewer connections than a regular

graph. It thus can indicate teleconnections as shown in Sec. 4.3.1.

Node curvature: The Forman-

curvature of a network node 𝑣𝑖 , is

defined as

𝑓𝑖 :=

∑
𝑗 𝐹𝑖 𝑗

𝑘𝑖
, (4.3)

with 𝐹𝑖 𝑗 is the edge-based measure

of all edges connected to that node,

normalized by the number of edges

𝑘𝑖 .

Since multiple edges are difficult to visualize (≈ 10
6

links for the SAT

network), we define node curvature 𝑓𝑖 of the node 𝑣𝑖 as the summation

of the edge-based measure 𝐹𝑖 𝑗 of all edges 𝑒𝑖 𝑗 connected to 𝑣𝑖 . The

node curvature is easier to visualize on a map and allows identifying

geographical locations connected to strongly negatively or positively

curved links.

Positive/Negative curvature: We de-

fine the 10% most positive (𝐹+
𝑖 𝑗

) and

most negative 𝐹+
𝑖 𝑗

link curvature, as

𝐹+𝑖 𝑗 := {𝐹𝑖 𝑗 : 𝐹𝑖 𝑗 > 𝑄𝐹(0.9)}, (4.4)

𝐹−𝑖 𝑗 := {𝐹𝑖 𝑗 : 𝐹𝑖 𝑗 < 𝑄𝐹(0.1)}. (4.5)

More precisely, we define the upper 90th (lower 10th) percentile of all

edges as 𝐹+
𝑖 𝑗

(𝐹−
𝑖 𝑗

) and analogously, the aggregation of the upper 90th

(lower 10th) percentile of the curvature values as 𝑓 +
𝑖

( 𝑓 −
𝑖

), which we denote

as ‘hotspots’ (Fig. 4.2 e). As the value ranges differ between networks, we

normalize them by using the min-max transformation to (−1, 1), denoted

by 𝐹̃𝑖 𝑗 and analogously, 𝑓𝑖 .

The intensity of the positive node-curvature hotspots 𝑓 +
𝑖

reveals the

communities with the highest edge probabilities in the stochastic block

model outlining a community of nodes that behave similarly in time.

Negative node-curvature hotspots 𝑓 −
𝑖

coincide with the underlying

probabilities used for constructing the dataset indicating locations that

are highly teleconnected on the globe.

Of the two numerical approximations of Ricci curvature on networks —

Forman-Ricci curvature (Forman, 2003; Sreejith et al., 2016) and Ollivier-

Ricci curvature (Ollivier, 2010) — we use Forman-Ricci curvature (hence-

forth simply Forman curvature) as it is computationally cheaper. Both

definitions are highly correlated, barring slight differences in extreme

values (Samal et al., 2018).

4.3. Results

4.3.1. Spatial Organization of Teleconnections Depends
on El Niño Type

We compute correlation-based climate networks and their Forman curva-

ture using global SAT data for EP, CP, and Normal conditions. Fig. 4.4 a–c

show the distribution of spatial link lengths as the shortest distance

between two connected points on the globe, the so-called great-circle

lengths. Shown are all links of the network (black markers), the most

positively curved 𝐹+
𝑖 𝑗

(red) and most negatively curved 𝐹−
𝑖 𝑗

(blue) network

links for Normal, EP, and CP conditions.

The spatial distribution of 𝐹+
𝑖 𝑗

(Fig. 4.4 d–f) shows that positive curvature

occurs at only regional scales ≤ 5 · 10
3

km, resulting in the enforcement

of local community structures.

While 𝐹−
𝑖 𝑗

links occur at all spatial scales, for lengths ≥ 10
4

km, the 𝐹−
𝑖 𝑗

and

‘All’ link distributions almost overlaps for CP and Normal conditions.

Long-range teleconnections are here thus modulated predominantly via

negatively curved links. As the curvature estimation of climate network
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Figure 4.4.: Forman curvature of Normal, EP, and CP El Niño climate network links. The networks are computed from SAT anomalies

for Normal (left column), EP (middle column), and CP (right column) conditions. The first row (a, b, c) depicts the spatial link length

distribution for all (black), most positively 𝐹+
𝑖 𝑗

(red) and most negatively curved 𝐹−
𝑖 𝑗

(blue) edges. The second row shows 𝐹+
𝑖 𝑗

(d, e, f), the

third row 𝐹−
𝑖 𝑗

(g, h, i). Colorbars indicate the number of incoming edges to a node. For visual reasons only every 20th edge is plotted in

d-i.

links does not include any information on the spatial length, this suggests

that the relationship between negative climate network link curvature

and long spatial scales is an intrinsic topological property of the SAT

dynamics. Therefore, negative curvature results in link bundles that are

related to well-known teleconnection patterns which are discussed in

Sec. 4.3.3.

In contrast to CP and Normal conditions, for EP El Niño conditions the

distribution of 𝐹−
𝑖 𝑗

does not describe all spatially long-range links (Fig.

4.4 b) and the most negative network links undergo a drastic spatial

reorganization (compare Fig. 4.4 h to Fig. 4.4 g, i).

In particular, we observe that the connection between the tropical Pacific

and the southern Atlantic is strengthened during EP conditions (Fig.

4.4 h), while during CP El Niños the tropical Pacific shows an enhanced

connection to the extratropical Pacific as well as to the mid-latitude North

Atlantic region (Fig. 4.4 i, Sec. 4.3.3).

Changes in most positively curved links 𝐹+
𝑖 𝑗

are more subtle between

Normal (Fig. 4.4 d, f), CP (Fig. 4.4 f) and EP conditions (Fig. 4.4 e), such as

the weakening of regional correlation structures in the tropical Atlantic

(CP conditions) and the strengthening of correlation in the Eastern Pacific

and the West African monsoon belt (EP conditions).

Note, we mainly discover teleconnections within the global oceans

because correlations are generally higher over oceans than over land due

to slower oceanic SAT variability (Lambert et al., 2011).
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Figure 4.5.: Node curvature of Normal, EP El Niño, and CP El Niño climate networks. Node curvature hotspots for Normal (left

column), EP (middle column) CP (right column) hotspots are shown summing the most positively curved 𝑓 +
𝑖

(a-c), most negatively

curved 𝑓 −
𝑖

(d-f) links, as well as the aggregated zonal medians of 𝑓 +
𝑖

(red) and 𝑓 −
𝑖

(blue) (g-i) are shown.

4.3.2. EP El Niño Conditions Lead to Enforcement of
Teleconnections to the Tropics

The global teleconnection pattern is under EP conditions strongly alter-

nated compared to Normal conditions (Fig. 4.4, Fig. 4.5). We suggest that

the stronger alternation can be attributed to the intensity of the events.

EP events tend to have higher temperature anomalies and more stable

warming locations in the tropics than CP events leading to a stronger

alternation of the global atmospheric circulation which results in the

confinement of hotspots around the tropics for both regional links and

teleconnections (Fig. A.3a).

In contrast, CP conditions show unstable warming locations (Fig. A.3b)

and a weaker amplitude and thus cannot alter the general circulation.

Therefore, Normal and CP networks reveal various similarities resulting

in positive and negative curvature hotspots over all latitudes (Fig. 4.5).

This is further confirmed by the zonal medians (Fig. 4.5 g–i).
4
We consider El Niño events to be "mod-

erate" 0.5𝐾 ≤ 𝑁3(𝑁4) ≤ 1𝐾, and

"strong" when N3 (N4) ≤ 1 K.We repeat our analysis for strong and moderate El Niño events
4

separately

and find that the EP curvature results (Fig. 4.5) are mainly dominated by

the strong EP El Niños (not shown). We thus conclude that the differences

between EP conditions to CP and Normal conditions are driven by strong
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EP El Niño events. This corroborates previous works by (Wiedermann

et al., 2016; Lu et al., 2020) who report a strong localization of climate

network links during EP conditions as well.

For EP conditions, positive curvature hotspots 𝑓 +
𝑖

reveal the well-known

ENSO tongue (Fig. 4.5 b) typically observed in empirical orthogonal

function analysis of SST data (Johnson, 2013). We also find pronounced

regions of 𝑓 +
𝑖

in the Indian Ocean (IO) and the tropical Atlantic which

are known to be affected by strong EP El Niño events (Klein et al., 1999;

Wang et al., 2014; Zhang et al., 2015; Rodrigues et al., 2015).

Under CP conditions, 𝑓 +
𝑖

is spread over all latitudes and over different

regions of the globe (Fig. 4.5 c). For instance, we observe a hotspot in the

tropical Pacific similar to the El Niño tongue, which is however shifted

towards the dateline and also extended southwards.

Negative node-curvature hotspots, 𝑓 −
𝑖

, for EP conditions (Fig. 4.5 e) show

enhanced teleconnections in the South China Sea, tropical IO, eastern

tropical Pacific, and the tropical Atlantic. This coincides with a decrease

in teleconnections in the extratropical Pacific, southern IO, North Atlantic

(near Greenland), and the Southern Ocean.

Under CP conditions (Fig. 4.5 f), we find negative node curvature hotspots

in the extratropics and mid-latitudes similar to 𝑓 +
𝑖

. While some similarities

between CP and Normal conditions are found (Fig. 4.5 d, f), for example

at the US-West Coast (Capotondi et al., 2019), in the northern tropical

Pacific, and in the tropical Atlantic, the major difference can be found

over the European continent, the Northern Atlantic, and the Labrador

Sea (see as well Fig. 4.4 g,i).

We repeat our analysis using 1000 years of pre-industrial run of the

UKESM1-0-LL model from the Coupled Model Intercomparison Project

(CMIP)6 project (Eyring et al., 2016) which shows a comparable variation

of SSTA in the tropical Pacific to observational data (Dieppois et al., 2021).

We obtain a localization of positive and negative curvature hotspots to

the tropics under EP conditions and teleconnections to the mid-latitudes

under CP conditions (Fig. A.4), similar to our analysis of observational

data (Fig. 4.5). The long time period of the pre-industrial run allows us to

study the effect of the small number of EP and CP events in the reanalysis

dataset, discussed in Sec. A.4. The curvature analysis obtained from only

7 EP/CP events tends to overestimate the number of negatively curved

links. However, qualitatively the spatial patterns of positive and negative

curved links are robust in comparison to the 297 EP events obtained in

the whole pre-industrial time period (Fig. A.5).

4.3.3. EP and CP El Niño Teleconnection Patterns of
Eastern and Central Pacific Ocean, Indian Ocean,
and the Labrador Sea

During EP conditions, teleconnections link the N3 region (Fig. 4.6a) to the

tropical Atlantic, supporting earlier work showing that strong El Niños

can lead to warming in the tropical Atlantic mediated by the tropospheric

temperature mechanism (Chang et al., 2006) and the atmospheric bridge

via the Pacific North American (PNA) pattern (Alexander et al., 2002;

Rodrigues et al., 2011).
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Figure 4.6.: Teleconnections from east-
ern and Central Pacific Ocean, IO, and
the Labrador Sea. 𝐹−

𝑖 𝑗
, i.e., teleconnec-

tions, for EP (purple) and CP (green) El

Niño events connected to the four se-

lected regions (black rectangles): Niño 3

(a), Niño 4 (b), IO (c), and Labrador Sea

(d). For visual clarity, only a third of all

links are shown.

The links connecting N3 to the IO are likely apparent because of the

influence of eastern tropical Pacific SSTs on the IO during and after El

Niño events attributed to net heat flux anomalies due to changes in the

atmospheric circulation of ENSO (Klein et al., 1999).

During CP conditions, we observe links from the N3 box as well, primarily

connecting to the extratropical Pacific. These are likely due to the North

Pacific Meridional Mode (NPMM) and South Pacific Meridional Mode

(SPMM), as atmospheric and oceanic anomalies in the extratropics

associated with SPMM and NPMM affect the intensity and flavor of El

Niño (You et al., 2018).

Capotondi et al. (2021) showed that the dominant patterns of wind

variability in the Northern and Southern Hemispheres, which represent

the atmospheric expressions of the NPMM and SPMM, have a stronger

relationship with CP events than EP events (Capotondi et al., 2021;

Capotondi et al., 2019; Amaya, 2019), consistent with the extratropical

links observed during CP events (Fig. 4.6 a).

The teleconnections of the N4 region (Fig. 4.6b) are far fewer compared

to the N3 region (Fig. 4.6a). It is rather surprising that the N4 region is

not well connected even during CP conditions, although a CP El Niño

is primarily characterized by higher SST anomalies in the N4 region

(Fig. A.3b).

These findings are in apparent disagreement with Barsugli et al. (2002)

and Shi et al. (2019) who showed that the PNA and the northern Pacific

are most sensitive to changes of SST in the central tropical Pacific using

Global Circulation Model (GCM). GCMs are known to produce SST

anomalies too far in the west (Capotondi et al., 2006; Kug et al., 2010;

Ham et al., 2012), however, this can only partially explain the missing

teleconnections in the Central Pacific. We find that although anomalies in

the Central Pacific are stronger during CP conditions, the Eastern Pacific

shows significantly higher local correlations (Fig. A.6).

Strong anomalies do not necessarily imply high correlations, therefore, we

attribute the weak correlations in the Central Pacific under CP conditions

to the higher spatial variability of anomalously warm temperatures
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between CP El Niño events than between EP El Niño events (Wang et al.,

2013; Chen et al., 2021). During CP conditions, anomalies in the tropical

Eastern Pacific are weaker but behave more consistently in time than in

the Central Pacific. We thus suggest that the teleconnections from the N3

region are artifacts of the correlation but proxies for the stimulation by

the Central Pacific.

This is further supported by the curvature analysis on the UKESM1-0-LL

(Sec. A.4). Teleconnections to the northern Pacific and west American

coast are found in the CP network while the Central Pacific does not

exhibit strong teleconnections. Further analysis using model runs with

nudged SSTA could therefore allow disentangling the role of the central

and Eastern Pacific on teleconnections to the northern Pacific and North

America.

The IO has a large number of most negatively curved links during EP

conditions but not for CP (Fig. 4.5 c, d). The EP event teleconnections

link the IO to the tropical Atlantic and Pacific basins (Fig. 4.6 c). The

links to the tropical Atlantic could be either attributed to indirect links

mediated by the impact of the Ninõ 3 region on the tropical Atlantic or

might resemble direct impact between the oceans as recently described

by Zhang et al. (2021). CP conditions do not result in teleconnections in

the IO as CP events are generally weaker (Zhang et al., 2015).

The Labrador Sea (Fig. 4.6d) is another pronounced area of most negative

node-curvature in the CP network not present in the EP network (compare

Fig. 4.5 c,d. Edges with the most negative curvature adjacent to the

Labrador Sea connect to the extra topical Atlantic and, in contrast to

Normal year conditions (Fig. S13), to the eastern tropical Pacific. This

pattern may be attributed to the North Atlantic Oscillation (NAO), which

refers to sea level pressure changes in the Arctic and subtropical Atlantic

(Jiménez-Esteve et al., 2018). El Niño is known to cause a negative NAO

pattern driven by the PNA pattern where a negative NAO phase is

attributable to CP El Niño events via the subtropical bridge (Graf et al.,

2012; Domeisen et al., 2019).

Note that we can identify the teleconnection patterns primarily because

we have the results from the curvature-based climate network analysis

to identify differences in the teleconnection structure and to guide

our interpretations. Without the curvature analysis, for instance using

classical complex network measures like betweenness centrality (Sec. A.2),

it is not trivial to figure out the most important regions for each El Niño

flavor.

4.4. Discussion

We presented a new approach to estimate global teleconnection patterns

of surface air temperature and used it to investigate the teleconnections

of Eastern Pacific and Central Pacific El Niño events. Our approach

involves the combination of correlation-based climate networks with

a recently established network measure based on Ricci-curvature. In

particular, we used Forman-Ricci curvature to distinguish links related to

small-scale regional structures (positively curved links) from long-range
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teleconnections connecting regions from different parts of the globe

(negatively curved links).

We showed that El Niño diversity drastically impacts the spatial organiza-

tion of teleconnections. We identified teleconnection hotspots for both EP

and CP conditions and showed that EP conditions strongly alternate the

teleconnection structure of the climate network to be mainly confined to

the tropics, whereas CP network teleconnections were found in northern

and southern mid-latitudes as well. A comparison of the results from

the application of our approach on model output from the UKESM-LL2

Model from the CMIP6 project further corroborates our findings.

We further investigated the impact of ENSO diversity on the telecon-

nection patterns of four specific regions: the Niño 3 region, the Niño 4

region, the northern IO, and the Labrador Sea. We found that the Niño 3

region in the Eastern Pacific has a large number of teleconnections irre-

spective of whether we consider EP or CP conditions, whereas the Niño 4

region in the Central Pacific has, in comparison, very few teleconnections

under both EP and CP conditions and our analysis suggests the higher

spatio-temporal variability of anomalous SSTs in the Central Pacific to be

related. We thus conclude that the Eastern Pacific is the primary mediator

of El Niño impacts irrespective of the El Niño type, and acknowledge

that further work on the role of the Eastern Pacific during CP El Niños is

needed.

We found that the northern IO and the Labrador Sea show teleconnec-

tions almost only under EP and CP conditions respectively. While the

teleconnections of the IO region to the Niño 3 region during EP condi-

tions are well-known, the links between the Labrador Sea to the eastern

tropical Pacific and northern tropical Atlantic are not fully understood.
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Abstract

El Niño Southern Oscillation (ENSO) diversity is characterized based on

the longitudinal location of maximum sea surface temperature anomaly

(SSTA) and amplitude in the tropical Pacific, as Central Pacific (CP) events

are typically weaker than Eastern Pacific (EP) events. SSTA pattern and

intensity undergo low-frequency modulations, affecting ENSO prediction

skill and remote impacts. Yet, how different ENSO types contribute to

these decadal variations and long-term variance trends remain uncertain.

Here, we decompose the low-frequency changes of ENSO variance

into contributions from ENSO diversity categories. We propose a fuzzy

clustering of monthly SSTA to allow for non-binary event category

memberships. Our approach identifies two La Niña and three El Niño

categories and shows that the shift of ENSO variance in the mid-1970s is

associated with an increasing likelihood of strong La Niña and extreme

El Niño events.

Code is available at the Github

repository: jakob-schloer/LatentGMM

5.1. Introduction

The El Niño-Southern Oscillation (ENSO), characterized by anomalous

sea surface temperatures (SSTs) in the tropical Pacific, exhibits notable

diversity in its amplitude, temporal evolution, and spatial pattern. The El

Niño events of 1982-83 and 1997-98, for instance, recorded exceptionally

high SST anomaly (SSTA) values in the eastern equatorial Pacific, whereas

the El Niño of 2002-03 was less extreme and exhibited the largest

anomalies in the central equatorial Pacific (McPhaden, 2004). In order

to describe these event-to-event differences, El Niño events have been

generally categorized as Eastern Pacific (EP), and Central Pacific (CP)

types (Capotondi et al., 2015). EP El Niño events typically have their peak

SSTA in the eastern Pacific, may exhibit stronger intensities, and a largely

reduced zonal thermocline slope, resulting in the pronounced discharge

of warm water from the equatorial thermocline. In contrast, CP events

show peak SSTA in the central Pacific and are comparatively weaker with

smaller changes in zonal thermocline slope and warm water discharge

(Kug et al., 2009; Capotondi, 2013).

These different types of ENSO events have substantially different down-

stream impacts on the global climate (Strnad et al., 2022; Beniche, 2023).

For example, extreme drought conditions were recorded in eastern Aus-

tralia in 2002, while a minor impact on precipitation was detected during

the extreme 1997 event (Wang et al., 2007). Weaker and shorter-lived CP

events are associated with warm conditions in the equatorial Atlantic

during boreal winter, while stronger and persistent EP events lead to

cold anomalies in that area, with different impacts on precipitation over

northeastern Brazil (Kao et al., 2009; Rodrigues et al., 2011). Thus, a

https://github.com/jakob-schloer/LatentGMM
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deeper understanding of ENSO diversity is critical to support predictions

of ENSO impacts.

ENSO characteristics, including amplitude and spatial pattern, exhibit

decadal variations, which are mediated by changes in the background

state of the tropical Pacific (Capotondi et al., 2023). Notable decadal

phase transitions were observed in the late 1970s (Miller et al., 1994) and

around the year 2000 (McPhaden, 2012). Paleoclimate data also indicate

an increase in ENSO amplitude over recent decades (Grothe et al., 2020),

consistent with modeling results showing a significant increase in ENSO

amplitude after 1960, which was attributed to anthropogenic forcing

(Cai et al., 2023). Analysis of a large number of observationally-based

datasets revealed that the longitudinal location of the maximum SST

anomalies, as well as the intensity of both El Niño and La Nina events,

undergo decadal fluctuations (Dieppois et al., 2021), which can, in turn,

modulate ENSO predictions (Lou et al., 2023). However, event location

and intensity were considered separately by Dieppois et al. (2021), so that

the contribution of different ENSO types to these decadal changes and

long-term trends in ENSO variance remains unclear. Paleoclimate data

(Lawman et al., 2022) indicate that extreme ENSO events may contribute

to increases in ENSO variance. Similarly, climate models that capture

relevant aspects of ENSO nonlinearities project an increase in ENSO

variance that is linked to an increase in the frequency of extreme ENSO

events (Cai et al., 2021). However, a more comprehensive understanding

of these changes from an ENSO diversity perspective is still missing.

One main reason hindering the estimation of the contribution of different

ENSO categories to its decadal modulation is that ENSO classifications

often depend on the chosen definitions (Pascolini-Campbell et al., 2015;

Yu et al., 2013; Capotondi et al., 2020a; Abdelkader Di Carlo et al., 2023).

The disagreement between different ENSO classification methods is

likely due to the assumption that ENSO events can be classified into

binary types, based on indices capturing the location of the highest

SSTA in the Tropical Pacific (like the Niño3 and Niño4 regions), or

using Empirical Orthogonal Functions (EOFs) (Ashok et al., 2007; Kug

et al., 2009; Kao et al., 2009; Takahashi et al., 2011). However, ENSO

events are continuously distributed in the space spanned by the two

leading principal components (PCs) (Takahashi et al., 2016; Cai et al.,

2018; Capotondi et al., 2020a). Approaches that use a more continuous

distribution of SSTAs to identify diversity show that events occur over

multiple locations but with enhanced probabilities over the central

and eastern tropical Pacific (Dieppois et al., 2021; Shin et al., 2021).

In addition, both EP- and CP-type events appear to share common

underlying dynamical processes, albeit with varying relevance depending

on the longitude (Capotondi, 2013).

A notable example of an El Niño that eludes a binary classification is the

2015/16 events. While its SSTA and several of its impacts were typical

of extreme EP events (Santoso et al., 2017), this event was not associated

with a significant impact on California precipitation and was not followed

by a strong La Niña, as other events of this type (i.e., 1982-83 and 1997-98).

Indeed, this event was considered a mixture of EP and CP types (Paek

et al., 2017; Capotondi et al., 2020a).

Here, we propose a new approach for characterizing ENSO diversity to

better understand its relationship with decadal changes in ENSO variance.
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Figure 5.2.: Sketch of the experimental setup. We transform the high-dimensional input fields to a low-dimensional latent space which

is denoted by the encoder and decoder function. The distribution of the data in the latent space is then approximated by a GMM.

To that end, we develop a fuzzy clustering of the low-dimensional

representation of monthly SSTA in the PC1-PC2 space to achieve a

non-binary event categorization (i.e., events belonging to one cluster or

not). Instead, in this fuzzy clustering approach, individual events are

assigned a probability of belonging to a given cluster. Such membership

probabilities are then used to determine their relative contributions to

the low-frequency ENSO variance.

5.2. Data and Methods

5.2.1. Data

Figure 5.1.: Averages of monthly boreal

winter (DJF) SSTAs of eight reanalysis

products (A) are projected on EOF1 (B)

and EOF2 (C). El Niño (La Niña) boreal

winters are selected when the DJF aver-

age Niño3.4 is larger than 0.5 K (smaller

than -0.5 K).

Our analysis is conducted on monthly SSTA using eight reanalysis

datasets (Tab. 3.2). Anomalies are computed by linearly detrending each

dataset after 1950 and removing the monthly climatology. We select the

Pacific region (130°E-70°W, 30°S-30°N) and interpolate each dataset to

a 1
◦ × 1

◦
, resolution using the ‘nearest-neighbor’ technique. In order

to ensure the same number of data points per time step, we randomly

select four data points without replacement at each month between

1901–2022.

While the EOF analysis is calculated over all months in the merged

dataset, we use only El Niño and La Niña winter months for fitting the

GMM in the lower dimensional space. El Niño and La Niña boreal winters

(December-January-February (DJF)) are selected when the average SSTA

in the Niño3.4 region is larger than 0.5 K or smaller than -0.5 K.

If not stated differently, we use ORAS5 for plotting Hovmöller diagrams

and composites of ocean variables (SSTA and SSHA). The atmospheric

variables used in this study, namely the 6-hourly eastward component

of the wind at 10 meters above the surface are taken from ERA5. Their

anomalies are computed as described above. We select the zonal wind

component over the tropical Pacific (130°E - 70°W, 5°S-5°N) and decom-

pose it into HF (periods longer than 250 days) and LF (periods between

250 - 5 days) using Fourier filtering, as described by Capotondi et al.

(2018). For the multivariate GMM analysis, we use SST and SSH which

are only available in a subset of the aforementioned datasets, namely, in

ORAS5, GODAS, and CERA-20C.



50 5. Contributions of El Niño Southern Oscillation Diversity to Decadal Variability

5.2.2. Fuzzy clustering

Clustering algorithms are typically based on a distance measure between

data points which becomes ill-posed in high-dimensional spaces (Parsons

et al., 2004). To mitigate this issue, we first reduce the dimensionality

of the geospatial fields before applying fuzzy clustering using EOF

analysis.

Our input data, 𝑋 = {x(𝑡)}𝑁𝑡
𝑡=1

, which consists of tropical Pacific SSTA

fields x(𝑡) ∈ ℝ𝑁
lon

·𝑁
lat

, are projected onto the first two EOF patterns to

obtain the two PCs z(𝑡) ∈ ℝ2
, referred to as a latent vector. Besides EOFs,

we also use a nonlinear dimensionality reduction method, specifically a

convolutional autoencoder neural network (Fig. 5.2, Sec. B.1.1).

We apply the Gaussian Mixture Model (GMM), a probabilistic unsuper-

vised clustering approach to identify different types of ENSO events.

GMMs describe each cluster via a multivariate Gaussian distribution,

accommodating overlapping probabilities. Mathematically, GMMs as-

sume that the probability distribution of latent states, 𝑝(z), comprises a

mixture of Gaussians:

𝑝(z) =
𝐾∑
𝑘=1

𝜋𝑘N
(
z | 𝜇𝑘 ,Σ𝑘

)
, (5.1)

with 𝐾 representing the number of Gaussians, N
(
z | 𝜇𝑘 ,Σ𝑘

)
, each char-

acterized by a mean 𝜇𝑘 and covariance Σ𝑘 . The probability of each

Gaussian is denoted as 𝑝 (𝑐𝑘) = 𝜋𝑘 with

∑𝐾
𝑘=1

𝜋𝑘 = 1. The parameters

of the Gaussians 𝜇𝑘 ,Σ𝑘 are estimated iteratively using the Expectation

Maximization (EM) algorithm (Yu et al., 2010). A detailed description

of the EM algorithm for estimating GMM parameters can be found for

instance in Murphy (2013).

Category membership: The GMM approximation of the low - di-

mensional distribution enables us to assign conditional probabilities

that an event z(𝑡) belonging to category 𝑐𝑘 , using Bayes’ theorem:

𝑝 (𝑐𝑘 |z(𝑡)) =
𝑝 (𝑐𝑘) 𝑝 (z(𝑡)|𝑐𝑘)∑
𝑙 𝑝 (𝑐𝑙) 𝑝

(
z(𝑡)|𝑝(𝑐𝑙)

) =
𝜋𝑘𝑁

(
z(𝑡);𝜇𝑘 ,Σ𝑘

)∑
𝑙 𝜋𝑙𝑁

(
z(𝑡);𝜇𝑙 ,Σ𝑙

) . (5.2)

These category membership probabilities, denoted as 𝑝 (𝑐𝑘 |z(𝑡)), form

a time series for each category, indicating the likelihood of occurrence.

Notably, the conditional probabilities for a given event z(𝑡) across

the categories sum up to one, i.e. 𝑝 (𝑐𝑘 |z(𝑡)) = 1. This indicates that

𝑝 (𝑐𝑘 |z(𝑡)) = 1 signifies the event belonging exclusively to category

𝑐𝑘 . Conversely, events with probabilities shared among multiple

categories cannot be assigned to a single category but exhibit some

probability of belonging to two or more categories.

In order to estimate the optimal number of clusters 𝑘, we apply the

Bayesian Information Criterion (BIC) (Schwarz, 1978). The likelihood of

the GMM can generally be increased using more clusters which on the

other hand increases the complexity of the model and is therefore prone

to overfitting. BIC is a model selection criterion that when minimized

balances the model complexity to the increase in the likelihood. BIC
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is defined as 𝐵𝐼𝐶(𝑘) = 𝑃𝑙𝑛(𝑁) − 2𝑙𝑛
(
𝑝 (𝑍|𝜃)

)
with 𝑃 is the number

of parameters of the GMM, 𝜃 =
(
𝜋𝑘 , 𝜇𝑘 ,Σ𝑘

)
, 𝑁 is the number of data

points and 𝑝 (𝑋|𝜃) is the likelihood. In our analysis, we fit 100 GMMs

with random initialization for each value of 𝑘 (number of Gaussians) and

compute the BIC. The model with the lowest BIC represents the best trade-

off between model complexity and fit quality. Additionally, the spread

of the BIC values across different initializations serves as a measure of

the robustness of the fit, indicating whether the Gaussian parameters

consistently converge to the same values regardless of initialization.

5.2.3. Variability estimation
Probabilistic weighted averages:

In our approach, we determining

composites for each category 𝑐𝑘 of

a desired variable, y, through their

weighted average:

y
𝑘
=

𝑁∑
𝑡=1

𝑝 (𝑐𝑘 |z(𝑡)) y(𝑡), (5.3)

where the weights are the condi-

tional probabilities 𝑝 (𝑐𝑘 |z(𝑡)) given

for each event 𝑡 = 1, . . . , 𝑁 .

The GMM allows assigning a probability, 𝑝 (𝑐𝑘 |z(𝑡)), to each data point,

z(𝑡), that quantifies its likelihood of belonging to category 𝑐𝑘 . These

are the category memberships of the data point (Eq. 5.2), which are

inherently fuzzy and non-binary (i.e. they are probabilities between 0

and 1), and allow us to model ENSO events in terms of their likelihood

of occurrence. As a consequence, we can decompose a variable y(𝑡), for

instance, SSHA, into the contributions of each category, by

y(𝑡) =
∑
𝑘

𝑝 (𝑐𝑘 |z(𝑡)) · y(𝑡) :=
∑
𝑘

y𝑘(𝑡) (5.4)

where y𝑘(𝑡) is defined as the contribution of category 𝑐𝑘 . Averaging y𝑘(𝑡)
over time corresponds to a weighted average, with the weights being the

categorical memberships (Eq. 5.3). Similarly, we can write the variance

⟨y2⟩, as

⟨y2⟩ = ⟨
(∑
𝑘

y𝑘

)
2

⟩ =
∑
𝑘

⟨y2

𝑘
⟩ +

∑
𝑙≠𝑚

⟨y𝑙 , y𝑚⟩, (5.5)

where ⟨y2

𝑘
⟩ is the variance contribution of category 𝑐𝑘 and ⟨y𝑙 , y𝑚⟩ is the

co-variability of categories 𝑙 and 𝑚.

5.3. Results

5.3.1. ENSO Diversity is Well Explained by Five
Categories

The two most dominant EOFs of all eight SSTA datasets combined

(Tab. 3.2) present the well-known spatial patterns associated with

ENSO, i.e. EOF1 depicts the typical ENSO pattern with anomalies in the

central-eastern Pacific, while EOF2 exhibits an east-west dipole struc-

ture (Fig. 5.1B, C). Projection of the monthly SSTA of all boreal winter

(December-January-February) El Niño and La Niña events onto EOF1

and EOF2, produces a distribution in the corresponding PC1–PC2 space

that exhibits a wide, boomerang-like shape (Fig. 5.3A, Fig. 5.1A). This

nonlinear relationship between PC1 and PC2 has been considered an

expression of key ENSO dynamics (Cai et al., 2018; Takahashi et al., 2016;

Ham et al., 2012; Karamperidou et al., 2017), and used in the selection

of models to consider for examining future projections (Cai et al., 2018;
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Figure 5.3.: El Niño and La Niña categories in PC1-PC2 space. Monthly boreal winter (DJF) SSTAs of El Niño and La Niña events of

all reanalysis products (Tab. 3.2) projected onto the PC1-PC2 space and fitted by a Gaussian Mixture Model (GMM). Each event (DJF

averages are shown as black dots in A) has a probability of belonging to each of the five categories (colored Gaussians in A). Pacific SSTA

composites for each category are obtained by using the category membership as weights for the averages, depicted in panels (B-F). We

obtain three El Niño-like patterns: Extreme EN (B), Strong EN (C), and Weak EN (D), while La Niña events form two categories: Weak LN
(E) and Strong LN (F).

Cai et al., 2021). The nonlinear relationship itself can be accounted for

by using a nonlinear transformation in place of the linear EOF-based

transform, e.g., an autoencoder, and in that case, the boomerang-like

shape is replaced by a simple linear relation between the two latent

dimensions (Fig. B.2).

The distribution of boreal winter El Niño and La Niña months in the

PC1-PC2 space do not exhibit clear gaps visually, however, their density

varies, suggesting a categorical structure (Takahashi et al., 2016). We

model this distribution using a GMM with 𝑘 = 5 categories (Eq. 5.1),

a number determined using the BIC to ensure parsimony (Fig. B.1A).

The five Gaussians are arranged in a row along the boomerang-shaped

distribution from the coldest events at the leftmost tip to the warmest

events at the rightmost end (Fig. 5.3A).

We use the category memberships, 𝑝 (𝑐𝑘 |z(𝑡)), as weights for averaging

the Pacific SSTAs of each category (Eq. 5.3) and find three El Niño-

like patterns (Fig. 5.3B-D), and two La Niña-like patterns (Fig. 5.3E-F).

Besides the different zonal locations of maximum warming/cooling,

their defining factor is the Tropical Pacific SSTA intensity. Hence, we will

refer to the three El Niño categories as Extreme EN (Fig. 5.3B), Strong EN
(Fig. 5.3C) and Weak EN (Fig. 5.3D), and correspondingly to Weak LN
(Fig. 5.3E) and Strong LN (Fig. 5.3F) for the La Niña categories. We find

that the overall clustering of the SSTA patterns into the five categories

is robust (SI Sec. B.2)upon changing the number of EOFs (SI Fig. B.1B),

incorporating SSHA data along with the SSTA, or varying the latitudinal

range of the input. The mean category membership for each boreal winter

averaged across the datasets results in five time series of probabilities —

one for each category — which reflect the likelihood of their occurrences

(Fig. 5.4). We find that the indices are not sensitive to the dataset used for

their estimation, as seen in the relatively small spread of the membership

probabilities over the datasets at each time point. As with the number of

clusters, the category membership is also robust to changes in the number
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Figure 5.4.: Probabilistic category mem-
bership. The GMM in Fig. 5.3 allows us

to estimate the likelihood, 𝑝 (𝑐𝑘 |z(𝑡)), of

each El Niño and La Niña winter month,

z(𝑡), to belong to each of the categories,

𝑐𝑘 (Eq. 5.2). An event belongs only to

one category when its probability is 1.

However, many events have shared prob-

abilities across several categories. The

categories are sorted in the following

order (top to bottom): Extreme EN (A),

Strong EN (B), Weak EN (C), Weak LN (D),

and Strong LN (E). For visual reasons, we

average the monthly probabilities over

each winter (DJF) and over reanalysis

products. The dashed lines indicate the

reported shifts in ENSO variability in

1976-77 and 2000.

of variables, spatial domain, and the use of nonlinear encoding.

Comparing the category membership series for Strong and Weak EN
events (Fig. 5.4B, C) to two conventional classifications – the Niño3-Niño4

classification by Kug et al. (2009) and the EOF-based E/C classification by

Takahashi et al. (2011) – we find that our classification mostly agrees with

them (Tab. B.1, Sec. B.3). Differences, when they do occur, correspond to

differences between the other classifications as well (Pascolini-Campbell

et al., 2015; Yu et al., 2013; Capotondi et al., 2015). The two El Niños

of 1994-95 and 2006-07, however, are classified by both conventional

classifications as CP events, whereas we find them to be Strong EN events

(Tab. B.1). This is likely because the warm water anomalies span from the

central to the eastern Pacific during the duration of these events, leading

to possible ambiguities in the event definition. We also note that unlike

the 1982-83 and 1997-98 events, which unambiguously belonged to the

Extreme EN category, the 2015-16 event also has a nonzero membership

in the Strong EN category, confirming its mixed nature.

5.3.2. Extreme EN Events are Different from Strong EN
Events

A key distinction of our ENSO categorization from conventional methods

is the identification of the extreme El Niños as a separate class. While

our Weak EN category corresponds to the conventional CP El Niño type,

the conventional EP El Niño type is split into Extreme EN and Strong EN
categories (Sec. B.3, Tab. B.1). SSTA composites of conventional EP El
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Figure 5.5.: Extreme EN and Strong EN
category. Hovmöller diagrams of SSTA

(A, B), SSHA (C, D), high-frequency (HF)

zonal wind anomalies (E, F), and low-

frequency (LF) zonal wind (G, H) anoma-

lies are obtained by meridional aver-

ages (5°S - 5°N) of each month in the

year preceding and succeeding El Niño

events. Each two-year period is weighted

by the corresponding DJF average cate-

gory membership probability (Fig. 5.4).

The black line in (A) and (B) indicates

the warm-pool edge, i.e., the 29°C SST

isotherm (Sec. B.1.2). Only values that

are statistically significant above the 95th

percentile are displayed (Sec. B.1.3). SSTA

and SSHA are taken from ORAS5 (1958–

2022), while 10-meter zonal winds, with

their HF- and LF components (Sec. 5.2.1)

are computed from ERA5.

Niño events exhibit the maximum warming in the eastern Pacific. The

maximum warming is however strongly influenced by the few extreme

EN events (1982/83, 1997/98, 2015/16), with an eastward shift of the

peak towards the central Pacific when we exclude the extreme events.

The two categories also differ in their evolution, analyzed using Hov-

möller diagrams for the year preceding and succeeding an event (Fig. 5.5).

Extreme EN events show significant warm water volume anomalies, as

described by SSHA, around the dateline already in the spring before

an event, corresponding with a shift of the warm pool edge near the

dateline (black line Fig. 5.5A, C). The Extreme EN onset phase also shows

strong positive HF and LF zonal wind components to the west of the

dateline, during the preceding spring, extending further east as the event

develops to its mature phase (Fig. 5.5E, G). Strong EN events, on the other

hand, do not demonstrate a consistent onset pattern in the preceding

spring (Fig. 5.5D, F, H).

These findings corroborate ideas presented in prior research on the

impact of the Walker circulation’s zonal shift (Thual et al., 2023) and

the influence of stochastic high-frequency winds, called Westerly Wind

Bursts (WWBs), on ENSO Diversity (Fedorov et al., 2015; Capotondi et al.,

2018; Puy et al., 2019).

5.3.3. Interdecadal ENSO Variability is Driven by Strong
and Extreme events

The membership probabilities of each category (Fig. 5.4A, B) encode

a distinct pattern of decadal-to-multidecadal ENSO variability. In par-
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Figure 5.6.: Low-frequency changes of ENSO variance. For each category, the Niño3.4 index is multiplied by their category membership

probabilities (A). The histogram of Niño3.4 intensities (B), highlights different SSTA amplitudes between categories. The 20-year running

variance of Niño3.4 every 10 years (C), is used to normalize the 20-year running variance of each category (D). Extreme EN and Strong
EN categories dominate the Niño3.4 variance in the early and late 20th century. The variance shift in 1976-77 and 2000 (dashed lines)

highlight reported changes in ENSO variability. The Niño3.4 index is taken from HadISST (Rayner et al., 2003).

ticular, the Strong LN and the Extreme EN categories show a markedly

prominent low-frequency variability, which is less evident in other cate-

gories. To quantify the low-frequency variation of ENSO, we multiply

the Niño3.4 index (from HadISST) by the corresponding membership

probabilities for each category (Eq. 5.4, Fig. 5.6A) and calculate their

20-year running variances every 10 years (Eq. 5.5). The variance of each

category is normalized by the 20-year running variance of the Niño3.4

index (Fig. 5.6C) to determine their relative contributions.

The total variance of the Niño3.4 index shows a low-frequency modula-

tion, with a minimum around 1920-1960, followed by an increasing trend,

which is consistent with the shift in the mean and variance of ENSO after

the so-called “1976-77 climate shift” (e.g. Miller et al., 1994), (dashed line

in Fig. 5.6C). A slight decrease in variance is noticeable after the year

2000, in line with the other reported climate shift (e.g. McPhaden, 2012).

While changes are noticeable in the variance of all categories, only minor

contributions to the total Niño3.4 variance are observed for the Weak LN
and Weak EN categories (Fig. 5.6D). The Strong LN category exhibits a

substantial contribution starting around 1970, and the Strong EN category

dominates the variance from 1890 to ∼1930. Meanwhile, the contribution

of the Extreme EN category is particularly visible towards the end of the

19th century and after 1980.

Between 20-40% of the decadal variance is due to the covariance between

the different ENSO categories (denoted as cov in Fig. 5.6D). The covariance
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captures mainly the contribution of co-occurrences of different categories

to the overall variance in a decade. However, other factors such as events

with intermediate values of category memberships and statistical errors

in estimating the GMM categories also influence the covariance.

Our statistical approach does not allow us to assess the dynamics under-

pinning these decadal changes in the contribution of the different ENSO

categories. ENSO decadal modulation is often associated with changes in

the mean state, but it is not clear whether mean state changes are induced

by influences from the extratropical Pacific or other ocean basins, or

result as a residual of random variations of ENSO itself (Capotondi et al.,

2023). Some studies, however, suggest that some ENSO events could

induce decadal phase transitions through either nonlinear dynamical

heating (Liu et al., 2022b) or by inducing a discharge of upper ocean heat

content in the off-equatorial Western Pacific (Meehl et al., 2021).

Our results provide novel insights into low-frequency changes in ENSO

variance, which combines changes in frequency and intensity. We find

that although the magnitude of total variance contributed by Eastern

Pacific warming events (i.e. Extreme EN and Strong EN events combined)

since the turn of the 20th century is comparable to that seen during the

period from the 1880s to 1940s, the variance in the recent decades has

been dominated by the Extreme EN category, a result consistent with

the statistically significant change in ENSO properties in the late 1970s

(Capotondi et al., 2017). This shift was associated with a weakening

of the easterly trade winds and a zonal reduction of the equatorial

thermocline slope, conditions favoring stronger El Niño events. Linked

to the increased contributions from Extreme EN events is the concurrent

increase in the contributions of Strong LNs since the 1970s (dark blue in

Fig. 5.6D), manifested in very strong, multi-year events starting around

1970 (Fig. 5.6A). These results are consistent with a higher likelihood of

stronger CP La Niñas following the heat discharge of strong El Niños, as

exemplified by the 1998-99 La Niña event after the extreme 1997-98 El

Niño (Cai et al., 2015; Geng et al., 2023). While the increasing contribution

of Extreme EN and Strong LN to ENSO variance starting around 1970

aligns with results from climate model simulations (Cai et al., 2021; Gan

et al., 2023), our findings more specifically highlight the key role played

by Strong LN in the ENSO variance changes after 1970.

We also find that during the ‘quiescent’ period of ENSO, roughly from

the 1930s to the 1960s, most of the ENSO variability originated from

Central Pacific warming and Eastern Pacific cooling events, i.e., from the

weaker event types, while the influence of central Pacific warming on

the ENSO variance in recent decades has been almost negligible. This

latter result is in apparent disagreement with the reported increase in

intensity and frequency of CP events since 1980 (Lee et al., 2010), and

especially after 2000 (dashed line in Fig. 5.6D; (McPhaden et al., 2011)).

This discrepancy may be related to the 20-year running variance we used

to construct Fig. 5.6D, and our inclusion of the 2015/16 El Nino, an event

that was missing in the records used by the earlier studies.



5.4. Discussion 57

5.4. Discussion

We present a new approach for studying the influence of ENSO diversity

on low-frequency changes in ENSO variance. In particular, we use a

Gaussian Mixture Model (GMM) within the low-dimensional PC1-PC2

space of monthly SSTA, which enables the assignment of non-binary event

category memberships. We identify two La Niña categories (Weak LN,

Strong LN) and three El Niño categories (Extreme EN, Strong EN, Weak EN),

which combine the two dimensions of ENSO diversity — longitudinal

location of maximum SSTA and its intensity. A key contribution of

our work involves utilizing the membership probabilities to determine

how each of the five categories individually affects the overall decadal

variability in the Niño3.4 region. We find that the increasing frequency of

both Extreme EN and Strong LN are the primary drivers of the increased

ENSO variance post-1970. While these findings are consistent with

previous studies that also detected an increase in extreme ENSO events

in the second half of the 20th century (Cai et al., 2018; Cai et al., 2023), our

results further highlight the key role played by the increasing frequency

of Strong LN in these ENSO variance changes.
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Figure 5.7.: Nonlinearity of ENSO diver-
sity. Monthly tropical SSTA (10°S-10N)

exhibits a parabolic shape when pro-

jected in PC1-PC2 space. The leading

coefficient 𝛼 of a quadratic fit, 𝑃𝐶2 =

𝛼𝑃𝐶1
2+𝑏𝑃𝐶1+𝑐, is a measure of ENSO

nonlinearity (Dommenget et al., 2013;

Karamperidou et al., 2017; Cai et al., 2018).

Grey dots indicate monthly data and

black dots show averages over DJF of

winters identified as either El Niño or La

Niña. The quadratic curve (blue) shows

the fit to the monthly data from (A) all

reanalysis products and (B) CESM2.

The proposed fuzzy clustering approach could also be used to quantify

how well climate models represent ENSO diversity, akin to Dieppois et al.

(2021) and Ayar et al. (2023). A preliminary analysis of the Community

Earth System Model version 2 (CESM2) shows that this model only

exhibits four ENSO categories instead of five (SI Sec. B.4, Fig. B.3), a

discrepancy which cannot be explained by the different number of

samples or other technical choices. Specifically, the Extreme EN category

is missing in the model. While ENSO in CESM2 has an amplitude larger

than observed, modeled SSTAs tend to occur preferentially in the central

equatorial Pacific, with a more limited range of ENSO spatial patterns

(Capotondi et al., 2020a), a behavior that seems to align with the model’s

inability to simulate extreme events in the eastern Pacific. In addition, the

model appears to underestimate ENSO’s nonlinearities, as quantified by

the quadratic fit coefficient, 𝛼, in PC1-PC2 space (Dommenget et al., 2013;

Karamperidou et al., 2017; Cai et al., 2018), which is smaller in CESM2

compared to reanalysis (Fig. 5.7). An extensive examination of several

climate models using our methodology is beyond the scope of this paper.

However, our analysis of CESM2 demonstrates the potential value of

our approach for achieving a detailed assessment of ENSO diversity in

climate models. Such an investigation, as well as the analysis of possible

changes in ENSO types in future climate scenarios, will be considered in

subsequent studies.

Open Research

The data on which this article is based are publicly available in Zhang et al.

(2019), Hersbach et al. (2020), COBE (2006), Rayner et al. (2003), ORAS5

(2021), Giese et al. (2011), Behringer et al. (1998), and Laloyaux et al.

(2018), with their details are listed in Tab. 3.2. Our code is publicly avail-

able under Schlör (2023) and https://github.com/jakob-schloer/

LatentGMM.git.

https://github.com/jakob-schloer/LatentGMM.git
https://github.com/jakob-schloer/LatentGMM.git
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Abstract

While deep-learning models have demonstrated skillful El Niño South-

ern Oscillation (ENSO) forecasts up to one year in advance, they are

predominantly trained on climate model simulations that provide thou-

sands of years of training data at the expense of introducing climate

model biases. Simpler Linear Inverse Model (LIM) trained on the much

shorter observational record also make skillful ENSO predictions but

do not capture predictable nonlinear processes. This motivates a hybrid

approach, combining the LIM’s modest data needs with a deep-learning

non-Markovian correction of the LIM. For O(100 yr) datasets, our result-

ing Hybrid model is more skillful than the LIM while also exceeding

the skill of a full deep-learning model. Additionally, while the most

predictable ENSO events are identified in advance by the LIM, they are

better predicted by the Hybrid model, especially in the western tropical

Pacific for leads beyond about 9 months, by capturing the subsequent

asymmetric (warm versus cold phases) evolution of ENSO.

Code is available at the Github

repository: jakob-schloer/HybridLIM

6.1. Introduction

In the past year, deep learning has revolutionized weather forecasting

with models such as GraphCast (Lam et al., 2023), Pangu (Bi et al., 2023),

and FourCastNet (Pathak et al., 2022) now outperforming traditional state-

of-the-art numerical weather prediction models (Ben-Bouallegue et al.,

2023). These advancements are largely due to the availability of millions

of data points from reanalysis data on hourly resolution, which allows

the training of large neural networks with negligible generalization error.

While these models demonstrate exceptional medium-range forecasting

skills, it remains unclear if these capabilities extend to seasonal or

annual predictions. Unlike medium-range forecasting, which is mainly

dependent on initial conditions, long-range forecasts of the climate are

primarily shaped by boundary forcing.

A prominent example of seasonal to annual forecasting is El Niño-

Southern Oscillation (ENSO). Characterized by tropical Pacific sea surface

temperature anomaly (SSTA), ENSO, significantly influences global

climate patterns and is thereby a primary source of seasonal to annual

predictability. Its events are characterized by anomalously warm (cold)

tropical SSTA, which exhibit a rich diversity in their spatial structure,

temporal evolution (Capotondi et al., 2015; Timmermann et al., 2018),

and impact on extreme weather conditions worldwide (Taschetto et al.,

2020; Strnad et al., 2022). Subsequently, early forecasts of not only the

ENSO event likelihood but also its spatial structure are of great value for

agriculture and society globally (Callahan et al., 2023).

Deep learning models have demonstrated the capability to produce

skillful ENSO forecasts (Ham et al., 2019; Petersik et al., 2020; Cachay

https://github.com/jakob-schloer/HybridLIM
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et al., 2021; Zhou et al., 2023). However, the short observational record

hampers training these models directly on observational data. To address

this, models are trained on simulations from global climate models like

models of the CMIP5 and CMIP6 suite. While providing thousands of

years of data, these simulations possess inherent biases due to their reso-

lution and the parametrization of unresolved processes, for instance, by

overestimating the variability in the Western tropical Pacific (Capotondi,

2013; Chen et al., 2021; Beverley et al., 2023). When trained on simulations

the climate model biases transfer to the neural network. Transfer learning,

used by Ham et al. (2019), presents a potential workaround for bridging

the gap between simulation data and observations. Nevertheless, Zhou

et al. (2023) found no significant improvement in model performance

when fine-tuning their transformer with reanalysis data, indicating the

need for more research in this domain.

The Linear Inverse Model (LIM), first introduced by Penland and Sardesh-

mukh (Penland et al., 1995), offers an alternative data-driven approach for

ENSO forecasting. When fitted on the short observational record alone,

LIM demonstrates annual-to-seasonal forecasting skill on par with the

North American Multi-Model Ensemble (NMME) (Kirtman et al., 2014)

mean forecast, a set of coupled ocean-atmosphere models (Newman et al.,

2017). The LIM describes the slower-varying ocean dynamics as a linear

system of SSTA and SSHA driven by stochastic atmospheric forcing. The

noise forcing is assumed to be white in time but correlated in space,

which is modeled by a multivariate Gaussian distribution. Refinements to

the LIM, such as the cyclostationary (CS)-LIM to account for the annual

cycle (Shin et al., 2021), the inclusion of ocean memory (Chen et al.,

2016), and state-dependent noise (Martinez-Villalobos et al., 2018), have

improved its predictive skill. However, nonlinear processes in the system

are treated as part of LIM’s white noise component and are not captured

deterministically.

The tropical Pacific SSTA distribution, however, is skewed, with warmer

events being more intense and frequent than cooler ones. This asymmetry,

not captured in the linear dynamics of the LIM, has been attributed to

nonlinear processes in the region (Takahashi et al., 2011; Takahashi et

al., 2016; Okumura, 2019; Geng et al., 2022). This raises the question,

of whether we can model these nonlinear dynamics by capturing the

residual dynamic between the LIMs prediction and observations.

Hybrid models, which combine numerical or empirical models with

neural networks, offer a promising approach to capturing unresolved

dynamics in the low-data regime (Irrgang et al., 2021). Instead of learning

the complex system dynamics of the full system with a neural net-

work, hybrid approaches are more data efficient due to their simpler

learning objective. Applications include post-processing of weather fore-

casts (Gneiting et al., 2005; Bauer et al., 2015) and machine learning

parametrization in coupled ocean-atmosphere models (Rasp et al., 2018;

Watt-Meyer et al., 2021; Kochkov et al., 2023).

In the context of ENSO forecasting, Goel et al. (Goel et al., 2017) combined

an RNN with a vector autoregressive model for time-series forecasting.

Similarly, Wang et al. (Wang et al., 2021) and Zhou et al. (Zhou et al.,

2022) integrated the principal oscillation pattern, akin to the LIM, with

an RNN for forecasting ENSO indices. Expanding beyond ENSO index

prediction, Rodrigues et al. (Rodrigues et al., 2021) developed a hybrid
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Figure 6.1.: Variations in forecast skill
over training data length. The maximum

lead time of a forecast to be skillful is de-

fined by its ACC exceeding 0.5. Training

on 70 to 150 years of monthly data (equiv-

alent to ORAS5 and CERA-20C, shown

with dashed lines), both the CS-LIM and

the Hybrid-model outperform the pure

LSTM model, which is only marginally

better than a persistent forecast. LSTM

reaches a 15-month skillful lead time,

matching CS-LIM and Hybrid, with 300

years of data. Beyond 500 years of data,

both the LSTM and the Hybrid-model

surpass the CS-LIM, showing a skillful

forecast of up to 18 months.

neural network using the LIM operator within a ResNet-like architecture

for global SSTA prediction. A different approach is taken by Wang and

Huang (Wang et al., 2024), their fusion model consists of a CNN that is

first trained to forecast tropical Pacific SSTA and then perform a weighted

average of the CNN with the NMME forecast. Except for the work by

Wang and Huang, these Hybrid-models have not yet achieved state-of-

the-art forecasting skills, and their potential advantages over fully deep

learning models, such as interpretability and data efficiency, remain

underexplored.

Here, we propose a Hybrid deep-learning model for ENSO forecasting

that combines the LIM with a Long-Short Term Memory (LSTM) network

(Hochreiter et al., 1997). This model is designed to capture the residuals

between LIM forecasts and target data, thereby improving seasonal

forecast accuracy. We diverge from existing methodologies by including

seasonality in both the LIM and the LSTM. Furthermore, we adapt both

the Hybrid-model and the LSTM to generate probabilistic ensemble

forecasts of the full field variables, SSTA and SSHA. This is achieved

by employing a set of output layers that generate ensemble members,

designed to match the nonparametric distribution of the target data

(Lessig et al., 2023).

We conduct a comparative analysis between our Hybrid-model and

our fully deep-learning model, LSTM, of ENSO dynamics, focusing on

their data requirements. Training on 70 to 150 years of monthly data,

comparable in length to reanalysis products like ORAS5 and CERA-20C,

both the CS-LIM and the Hybrid-model exhibit a skillful forecast up

to 12 months, as indicated by an anomaly correlation coefficient (ACC)

exceeding 0.5 (Fig. 6.1). In contrast, the pure LSTM model’s forecast skill,

marginally better than a persistent forecast, extends only to 6-9 months.

The LSTM model requires 300 years of data to reach a forecast skill of 15

months on par with the CS-LIM and Hybrid-model. With the training

dataset size exceeding 500 years, both the LSTM and the Hybrid-model

surpass the CS-LIM, showing a skillful forecast of up to 18 months.

Our evaluation is performed on 2000 years of pre-industrial control

simulations from the Coupled Earth System Model 2 (CESM2) (Danaba-

soglu et al., 2020), a state-of-the-art coupled global climate model known

for its reasonable representation of ENSO diversity (Capotondi et al.,

2020a). All metrics are computed for a 200-year test period as detailed in

Sec. 6.2.2.
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6.2. Data and Methods

6.2.1. Data

Training DL models for ENSO prediction with monthly data is limited

by the short observational record. To circumvent this, we use the 2000-

year CESM2 pre-industrial control simulation (Danabasoglu et al., 2020),

focusing on monthly SST and SSH data in the tropical Pacific region (130°E

- 70°W, 31°S - 32°N), which we linearly interpolate to a resolution of 1°x1°.

SSH is a proxy for the upper ocean temperatures and the thermocline

depth. Despite the lack of external forcing in the control simulation, we

observe a trend in SST data. We linearly detrend the data and remove the

seasonal cycle by subtracting the monthly climatology which is obtained

over the training set (0-1500). As SSTA and SSHA differ in units and

scales, we perform a z-score normalization before model training. Both

the LIM and Hybrid-model require us to reduce the dimensionality,

which is achieved using Empirical Orthogonal Function (EOF) analysis.

The dataset is divided into training (75%, year 1-1500), validation (15%,

years 1500-1800), and test set (10%, 1800-2000), where the validation set

is used for refining the hyperparameters of our models.

6.2.2. Methods

The objective of our study is to accurately predict SSTA and SSHA fields

for a specified forecast lag time 𝜏. We define the stacked variable fields

at a given time 𝑡 as x(𝑡) = (xSSTA , xSSHA)(𝑡), where each field spans the

tropical Pacific xSSTA/SSHA(𝑡) ∈ ℝ𝑁𝑙𝑎𝑡×𝑁𝑙𝑜𝑛
. We estimate a function 𝑓 that

predicts the future state, x̂(𝑡 + 𝛿) at an incremental time step 𝛿, by

x𝑖(𝑡+𝛿) = 𝑓𝑚(𝑡)
(
x(𝑡), 𝑓𝑚(𝑡−𝛿)

(
x(𝑡 − 𝛿), . . . , 𝑓𝑚(𝑡−𝑡hist) (x(𝑡 − 𝑡hist))

) )
, (6.1)

The autoregressive prediction is based on the previous states, x(𝑡 −
𝛿), . . . , x(𝑡− 𝑡hist), referred to as history. All our model forecasts consist of

𝑖 ensemble members, which allows us to estimate the model uncertainty.

The dynamics of the tropical Pacific Ocean show a strong seasonal phase

locking. We therefore condition 𝑓 on the month of the year, 𝑚(𝑡). The

month conditioning depends on the model architecture and will be

discussed for each model separately.

Empirical Orthogonal Function (EOF)

Estimating the linear evolution operator of the LIM requires a matrix

inversion of the number of input dimensions. The matrix inversion

is intractable for the full spatial fields of SSTA and SSHA. For this

reason, each state x(𝑡) is transformed into a lower-dimensional state

z(𝑡) = (zSSTA , zSSHA). Dimensionality reduction of the SSTA and SSHA

fields in the tropical Pacific is achieved through EOF analysis, utilizing

the first 20 Principal Components (PCs) for SSTA and the first 10 PCs for

SSHA. Including higher-order PCs does not affect our results. Forecasting

in the lower dimensional space is then equivalently conducted on these
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PCs, as formulated in Eq. 6.1. For analysis and evaluation, we transform

our forecast back to grid space. To adequately replicate the high spatial

frequencies of the input fields, we add variability by randomly sampling

loadings of the higher-order PCs (20-300) (citation) for both SSTA and

SSHA at each time step. These random features are then combined with

their respective EOFs and added to the forecast fields, ensuring a closer

match to the spatial intricacies of the original data.

Linear Inverse Model

The Linear Inverse Model (LIM) describes the dynamic of the tropical

Pacific as a multivariate linear system subject to stochastic forcing from

the atmosphere. The underlying dynamic of such a system is described

by a linear stochastic differential equation,

𝑑z
𝑑𝑡

= Lz + 𝜁 (6.2)

where L is the linear operator describing the dynamics of z and 𝜁 ∼
N(0,Q) is a noise vector that is uncorrelated over time but spatially

correlated, as encoded in the covariance matrix Q. Forecasts of z for a lag

time 𝜏 are given by the transition probability as,

𝑝 (z(𝑡 + 𝜏)|z(𝑡)) = N
(
z(𝑡 + 𝜏);𝜇𝜏(𝑡),Σ𝜏

)
(6.3)

with 𝜇𝜏(𝑡) := 𝑒L𝜏z(𝑡) and Σ𝜏 :=

∫ 𝜏

0

𝑒L𝑠QQ𝑇 𝑒L𝑇 𝑠𝑑𝑠, (6.4)

where 𝜇𝜏(𝑡) is the infinite ensemble mean forecast and Σ𝜏 is the forecast

covariance matrix.

Penland et al. (1995) show that the linear operator L and the noise

covariance Q can be estimated from the data under two assumptions.

First, the system has to be statistically stationary which allows us to write

the Fluctuation-Dissipation relationship as

LC(0) + C(0)L𝑇 + Q = 0, (6.5)

where C(0) = ⟨z(𝑡)z𝑇(𝑡)⟩ is the spatial covariance matrix. Secondly, the

autocorrelation of the system decays with lag time 𝜏 which can be

expressed using the time-lag covariance matrix C(𝜏) = ⟨z(𝑡 + 𝜏)z𝑇(𝑡)⟩
as

lim

𝜏→∞
C(𝜏)C(0) = 0 ⇒ C(𝜏) = 𝑒L𝜏C(0), (6.6)

where G(𝜏) := exp(L𝜏) is the Greens function that must tend to zero for

long lag times. Typically, both assumptions hold for detrended anomaly

data of a chaotic system.

Once L and Q are estimated from the data, we obtain forecast trajectories

from an initial time 𝑡 to 𝑡 + 𝑇, by numerically integrating Eq. 6.2 using

the forward Euler-method with incremental update steps 𝛿 as
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Figure 6.2.: Schematic Representation of the Hybrid-Model. First, the initial state at time 𝑡 is projected onto the PCs. This is followed by

an ensemble forecast using the CS-LIM which is conditioned on the forecast months. Subsequently, the LSTM adjusts each ensemble

member of the linear CS-LIM forecast. Finally, the refined forecast is transformed back to grid space by multiplying the PCs with the

respective EOF patterns.

z(𝑡 + 𝛿) = z(𝑡) + Lz(𝑡)𝛿 + 𝜁
√
𝛿, (6.7)

where 𝜁 ∼ N(0,Q) is a random sample from the noise distribution. We

create 𝑛 ensemble member trajectories from 𝑡 to 𝑡 + 𝑇 when integrating

the system 𝑛-times. The infinite ensemble member mean is given by 𝜇(𝑡)
in Eq. 6.3.

In the equatorial Pacific, the variance in SSTA shows a distinct annual

pattern with low variance during the boreal spring and high variance in

the boreal winter. This peak in winter variance aligns with the occurrence

of the most intense warm and cold ENSO events, a phenomenon referred

to as "ENSO phase locking" (Rasmusson et al., 1982). Shin et al. (2021)

showed that including seasonality in the LIM improves its forecast

reliability. Their cyclostationary (CS)-LIM involves estimating unique

linear operators and noise covariances for each month, indexed using

𝑚(𝑡) = 1, 2, . . . , 12. The numerical integration of the stationary (ST)-LIM

outlined in Eq. 6.7 changes to

z(𝑡 + 𝛿) = z(𝑡) + L𝐶𝑆
𝑚(𝑡)z(𝑡)𝛿 + 𝜁𝐶𝑆

𝑚(𝑡)
√
𝛿, (6.8)

where 𝜁𝐶𝑆
𝑗

∼ N

(
0,Q𝐶𝑆

𝑗

)
. The CS-LIM forms the base model of our

Hybrid-model outlined in the following.

Hybrid-model

We introduce a novel Hybrid-model that combines the LIM with an LSTM

network. While the LIM captures the predictable linear dynamics, the

LSTM learns the residuals between the LIM predictions and the actual

data, thus the nonlinear dynamics. Our methodology is schematically

detailed in Fig. 6.2.

During inference, we project the initial state of the tropical Pacific, x(𝑡),
onto the leading EOFs and employ the LIM to predict future states over
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𝜏 = 1, . . . , 𝑇 timesteps. For each timestep, 𝑡 + 𝜏, we predict a correction,

ẑres(𝑡 + 𝜏), to the LIM forecast, ẑLIM(𝑡 + 𝜏). The final forecast is thus

defined as:

ẑ(𝑡 + 𝜏) = ẑLIM(𝑡 + 𝜏) + ẑres(𝑡 + 𝜏). (6.9)

The nonlinear correction is modeled by the LSTM as ẑres(𝑡 + 𝜏) =

LSTM (ẑLIM(𝑡 + 𝜏), h(𝑡)), where h(𝑡) is the latent state of the LSTM which

aggregates the information of previous states. The LSTM is selected not

only for its ability to capture nonlinear relationships inherent in deep

neural networks but also for learning non-Markovian dynamics.

To include seasonality within the LSTM, we introduce a learned affine

transformation to its latent state (Perez et al., 2017), h(𝑡), as follows:

h𝑚(𝑡)(𝑡) = (1 + 𝛼𝑚(𝑡))h(𝑡) + 𝛽𝑚(𝑡) , (6.10)

where 𝛼𝑚(𝑡) and 𝛽𝑚(𝑡) represent embeddings for each month, enabling

the network to adapt its latent state dynamically to seasonal variations.

The LSTM component is configured to process the forecast from each

CS-LIM ensemble member, represented as [ẑ(𝑡 + 1), ..., ẑ(𝑡 + 𝑇)]. At each

time step, the input to the LSTM network is linearly projected into a

higher-dimensional latent space where it is processed by two consecutive

LSTM layers. By combining the LIM forecast at each timestep with the

LSTM’s hidden state from the previous time step, the model iteratively

accumulates information across the entire forecast sequence. Finally,

the predicted latent states are linearly projected back onto the PCs and

added to the original LIM prediction. The combined prediction is then

transformed to grid space by multiplication with the respective EOFs, as

described in Sec. 6.2.2.

Purely deep learning baselines

To verify the utility of our Hybrid-model, we provide a comparison

against fully neural network-based approaches. Similar to the structure

of our Hybrid-model, we construct an LSTM that operates in the PC

space. Additionally, we explore the application of a Convolutional LSTM

(ConvLSTM (Shi et al., 2015)) architecture in grid space. We employ a

custom variant of ConvLSTM, termed SwinLSTM, that has been specif-

ically tailored to perform forecasts on fields with large-scale spatial

structures.

Both the PC-LSTM and the SwinLSTM have a standard Encoder-Decoder

structure used for sequence-to-sequence modeling (Sutskever et al., 2014),

as depicted in Fig. C.1. Unlike the LIM and Hybrid-model, these models

incorporate information from time points preceding the initialization

time. The Encoder network is designed to aggregate this historical

information into a latent state which initializes the Decoder model. It

begins with a downsampling block that transforms the history into a

higher-dimensional latent space, which is then processed by two LSTM

layers, where the input is added to the hidden state from the previous

time step. The hidden state of the second LSTM layer at time 𝑡 is then

passed to the Decoder network. The Decoder mirrors the Encoder with
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two LSTM layers of its own, which do not require any additional input

other than the hidden state and can thus be rolled out over the full

prediction horizon 𝑡 + 𝑇, transferring the hidden state autoregressively

for each successive prediction time. This is followed by an upsampling

block that transforms the hidden state back to the input grid space. To

generate 16 ensemble members, we employ a separate upsampling block

for each member. Similar to the Hybrid-model, we incorporate seasonal

information through a learned affine transformation in both the Encoder

and Decoder networks.

PC-LSTM In the PC-LSTM, the downsampling consists of an EOF-

truncation of the entire SSTA and SSHA fields onto their respective PCs

(Sec. 6.2.2), followed by a learned linear layer that projects the data into

the latent space. The latent states are recursively predicted using LSTM

layers, in both the encoder and the decoder network. Equivalently to

the downsampling, the upsampling block starts with a linear layer to

project the latent space back to the PCs, followed by a projection on their

respective EOFs to yield a forecast of the variables in grid space.

SwinLSTM We employ a second DL model that does not involve

EOF-truncation of data. This model, which we refer to as the shifting

window (Swin) LSTM, was inspired by the popular Swin-Transformer

architecture (Liu et al., 2021) a state-of-the-art DL architecture for spatial

and spatiotemporal data. The model incorporates a ConvLSTM-like

Encoder-Decoder architecture with a customized LSTM cell (Fig. C.2).

Unlike the PC-LSTM, the input, latent, and hidden states in our model

maintain dimensions of channel, height, and width, albeit of varying sizes.

For model input, both variables are stacked along the channel dimension.

The encoder initially downscales the height and width dimensions to

reduce computational costs, while simultaneously expanding the channel

dimension via a strided convolutional layer. Following the methodology

of Liu et al. (2021) and Liu et al. (2022b) we use equal stride and kernel

sizes for this initial encoding, effectively partitioning the input into small

patches of equal size (4x4 grid steps in latitude/longitude direction).

This method of dimensionality reduction differs from the EOF as it is

learned end-to-end with the forecasting model, as well as being based

on local patches, rather than global features as encoded in EOFs. Our

approach further adapts the standard ConvLSTM layer, in a similar

fashion to Liu et al. (2022b), by splitting the convolution into spatial and

channel mixing components, interspersed with layer normalizations, as

depicted in Fig. C.2. This modification facilitates two major improvements

over standard ConvLSTMSs, (i) the spatial mixing component enables

a substantially larger receptive field while reducing the number of

parameters and (ii) the added normalization stabilizes training and

supports conditioning on monthly embeddings, implemented through

the affine transformation outlined in Eq. 6.10. Finally, the mirrored

Decoder network, which also consists of two SwinLSTM layers and a

strided and transposed convolution, transforms the aggregated hidden

state back into the full-resolution grid space. An ensemble of 16 separate

final projection layers is used to generate a probabilistic prediction and

the model is trained using the Ensemble CRPS as detailed below.
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Optimization procedure

Each model is designed to produce a probabilistic prediction by generat-

ing an ensemble of 16 sequences. We train the models to enhance both

the accuracy of individual predictions and the spread among ensemble

members. This is achieved by employing the CRPS for optimization. The

CRPS is a probabilistic metric that compares the cumulative probability

distribution (CDF) of the forecast to the CDF of the target. The target,

x(𝑡), is a single observation, and thus its CDF is a step function. A perfect

CRPS score of zero would be a Dirac delta-like predictive probability

density function centered at the target, for which the CDF would be

the same step-function as is for the target. The CRPS has an analytic

expression for parametric distributions, like the Gaussian distribution,

but also a statistical form for empirical distributions (Hersbach, 2000;

Gneiting et al., 2007).

For our 𝑀-ensemble member prediction, we compute the pixel-wise

CRPS for empirical distributions as,

CRPS(𝑋𝑠(𝑡), 𝑥𝑠(𝑡)) = 𝐸[|𝑋𝑠(𝑡) − 𝑥𝑠(𝑡)|] −
1

2

· 𝐸
[���𝑋𝑠(𝑡) − 𝑋𝑠 ′(𝑡)���] , (6.11)

where 𝑋𝑠(𝑡) and 𝑋𝑠
′(𝑡) are the 𝑀-ensemble member prediction and 𝑥𝑠(𝑡)

the target value at each location 𝑠 = 1, . . . , 2 ·𝑁𝑙𝑎𝑡 ·𝑁𝑙𝑜𝑛 . We optimize the

parameters of each model by minimizing the averaged CRPS between

the observed data, x(𝑡 + 𝜏), and its ensemble hindcast, X̂(𝑡 + 𝜏), across all

locations and lag 𝜏 ∈ [1, 𝑇]. Using Eq. 6.11, we define our tailored loss

function as:

𝑙
(
𝑋̂(𝑡), x(𝑡)

)
=

𝑇∑
𝜏=1

𝛾𝜏
2·𝑁𝑙𝑎𝑡 ·𝑁𝑙𝑜𝑛∑

𝑠=1

CRPS

(
𝑋𝑠(𝑡 + 𝜏), 𝑥𝑠(𝑡 + 𝜏)

)
(6.12)

(6.13)

To address the greater loss values at longer forecast lags, we introduce a

power-law decaying weight over lag time, 𝛾𝜏
, where 𝛾 is an empirically

set hyper-parameter.

In addition, we use the AdamW adaptive gradient algorithm (Loshchilov

et al., 2019) in conjunction with cosine annealing (Loshchilov et al., 2017)

to dynamically adjust the learning rate during the training phase.

Evaluation metrics

Our analysis of the models, all of which generate ensemble member

predictions, is based on probabilistic metrics as well as deterministic

metrics of their ensemble mean. We evaluate all models on the test set

(200 years) using SSTA and SSHA in the tropical Pacific.
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Anomaly correlation coefficient (ACC) The ACC is the temporal cor-

relation between the model forecast time series 𝑥̂𝑠 and the target time

series 𝑥𝑠 at spatial location 𝑠. The ACC is defined as,

ACC𝑠 =
cov(𝑥̂𝑠(𝜏), 𝑥𝑠)

𝜎̂𝑠,𝜏𝜎𝑠
(6.14)

where cov(𝑥𝑠(𝜏), 𝑥𝑠) = ⟨𝑥̂𝑠(𝜏), 𝑥⟩ is the covariance between the time

series and 𝜎𝑠 their respective variance.

Root mean squared error (RMSE) The RMSESS is a deterministic metric

that compares the RMSE of the model to the RMSE of a reference forecast.

Throughout this work, we choose the climatology as our reference forecast.

The RMSESS can be written as

RMSESS𝑠(𝜏) = 1−RMSEmodel,𝑠(𝜏)
RMSEref,𝑠(𝜏)

= 1−

√
1

𝑁

∑𝑁
𝑡=1

(𝑥̂𝑠(𝑡 + 𝜏) − 𝑥𝑠(𝑡 + 𝜏))2

𝜎𝑠
(6.15)

where 𝜎𝑠 is the variance of the data at point 𝑠. An RMSESS of 1 is a perfect

model forecast and 0 is as good as the climatology forecast.

Continuous Ranked Probability Score (CRPS) Equivalently to the

skill score of the RMSE, we define the CRPS skill score using Eq. 6.11 as,

CRPSS(𝑋̂𝑠 , 𝑥𝑠) = 1 − CRPSmodel(𝑋̂𝑠 , 𝑥𝑠)/CRPSref(𝑋̂ref,𝑠 , 𝑥𝑠), where the

reference forecast 𝑋̂ref,𝑠 is the climatology. A CRPSS of 1 is a perfect

model forecast and 0 is as good as the climatology forecast.

6.3. Results

6.3.1. Improved Skill due to Nonlinearities

The CS-LIM estimated from the PCs of SSTA and SSHA using CESM2

pre-industrial control run in the tropical Pacific, as described in Sec. 6.2.2,

captures all predictable linear dynamics of the system. Our Hybrid-

model is designed to have the LSTM learn the residuals between the

LIM’s predictions and the target data. The improvement of the Hybrid-

model upon the LIM itself can thus be attributed to the ability of the

Hybrid-model to capture the nonlinearities of the tropical Pacific Ocean

dynamics.

As an example, we compare a 24-month hindcast of tropical SSTs con-

ducted with the LIM and Hybrid-model (Fig. 6.3) for a chosen El Niño

exemplar. The forecasts are initialized in December, 12 months before

the peak of the El Niño event (dashed line in Fig. 6.3a). El Niño events

are identified when the Niño3.4 index exceeds its standard deviation for

at least three consecutive months. The evolution of the average SSTA in

the Niño4 region of the target is presented as a black line in Fig. 6.3a.

Throughout this work, we analyze the Niño4 instead of the Niño3.4

region because of the west Pacific bias in CESM2. Both the CS-LIM
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Figure 6.3.: Example El Niño hind-
cast. Example of a hindcast initialized

12 months prior to an EN event exem-

plar. The Niño4 mean (solid line) and

standard deviation (shading) of the 16

ensemble members of the CS-LIM and

Hybrid-model forecast are shown in a.

The dashed line in (a) indicates the 12-

month lag. The mean SSTA forecast at

𝜏=12 months for the CS-LIM (b) and

Hybrid-model (c) show warming pat-

terns similar to the target (d). Mean SSTA

are shown as color shadings while mean

SSHA are depicted as contour lines.

(red line) and Hybrid-model (blue line) forecasts predict the observed

warming, as depicted by the ensemble members’ mean, with the shading

indicating their respective standard deviations. The SSTA and SSHA

field forecasts at 𝜏=12 months lag time (Fig. 6.3c, d), exhibit the El Niño

warming in the equatorial Pacific, although they lack some smaller spatial

structure evident in the target fields. Notably, the Hybrid-model forecast

magnitude is closer to the CESM2 target data than the CS-LIM forecast.

The Hybrid-model’s uncertainty range, given by the standard deviation

between 16 ensemble member forecasts, is also narrower than that of

the CS-LIM forecast, yet still encompasses the target data, which might

suggest a more accurate ensemble spread.

We evaluate the RMSE and CRPS skill scores of the CS-LIM and Hybrid-

model on 200 years of test data to quantify the improvement in skill.

Both skill scores are obtained with respect to monthly climatology as a

baseline model. Various LIM variants, including different influences on

the tropical Pacific dynamics, are constructed to ensure that we use the

best linear model.

The initial LIM variant, formulated by Penland et al. (1995), is solely

fitted to the first 30 PCs of SSTA in the Pacific and is termed stationary

(ST)-LIM (ssta). An advancement to this is the CS-LIM (ssta), introduced

by Shin et al. (2021), which includes seasonal variation and substantially

surpasses the skill of ST-LIM (ssta), as shown by the RMSE (a) and CRPS

(b) skill scores of the Niño4 index in Fig. 6.4. For reference, we present

the skill of the persistence forecast which is worse than a climatological

forecast (dashed line at zero) after 𝜏 = 6 months forecast lag time.

In line with Chen et al. (2016)’s insight on the role of ocean variables in

forecasting, a third variant, the CS-LIM (ssta, ssha), incorporating the

first 10 PCs of SSHA in the tropical Pacific is employed. We select SSH for

its model and observational accessibility and its strong relationship with

important ENSO precursors, namely the upper ocean heat content and
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Figure 6.4.: RMSE and CRPS skill scores of the LIM versions and our Hybrid-model. Skill scores for RMSE (a) and CRPS (b) across

various LIM versions and the Hybrid-model are evaluated over forecast lag time (𝜏) using the average SSTA in the Niño4 index region on

the test set. The progression in LIM versions from the stationary (ST)-LIM, which uses SSTA data and does not include seasonally-varying

operators, to the more advanced cyclostationary (CS)-LIM incorporating seasonality, and then to the CS-LIM (ssta, ssha) that includes

both seasonality and SSH factors is depicted. Enhancing the CS-LIM (ssta, ssha), our Hybrid-model utilizes an LSTM to effectively learn

and adjust for its residuals.

thermocline depth. This version leads to additional skill enhancement

relative to the CS-LIM (ssta). Progressive improvements are evident in

each LIM version, with the inclusion of seasonality and ocean variables

contributing significantly to enhanced skill(Fig. 6.4). The CS-LIM (ssta,

ssha) (from now on only CS-LIM) exhibits the highest skill upon the linear

models and thus captures all known predictable linear dynamics.

Our Hybrid-model builds upon the CS-LIM by using an LSTM that learns

to correct the error between the LIM forecast and the target data. The

LSTM takes 16 ensemble member forecasts of the CS-LIM as input and

learns their residuals to the target data by minimizing the CRPS loss

function detailed in Eq. 6.13. To ensure the robustness of our findings,

we repeat the model training five times with varied weight initialization

and data shuffling, whose variability is depicted through error bars in

Fig. 6.4. The skill improvement of the Hybrid-model upon the CS-LIM

is significant at lag times larger than 6 months. We argue that the skill

improvements can be attributed to predictable nonlinearities because all

known linear dynamics are captured by the CS-LIM.

We conducted a further examination of the seasonal dependency (Sec. C.2)

and spatial distribution of skill for both the LIM and the Hybrid-model.

The ensemble mean RMSESS for a 12-month CS-LIM forecast of SSTA

exhibits higher skill around the equator compared to the Extratropics

(Fig. 6.5a). In contrast, the RMSESS of SSHA demonstrated high skill in

both the Eastern and North Western tropical Pacific (Fig. 6.5c), where the

largest centers of SSH variability associated with ENSO occur (Capotondi

et al., 2020a).

When comparing the Hybrid-model with the CS-LIM (Fig. 6.5b, d), there

is a discernible skill improvement around the equator, with the most

significant enhancement observed in the western tropical Pacific. This

improvement is consistent with the patterns obtained using the CRPSS

(not shown).
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Figure 6.5.: Spatial distribution of skill improvement. RMSE skill score of SSTA and SSHA for the 𝜏 = 12 month hindcast of CS-LIM

(a, c) and the differences in RMSE skill scores relative to the Hybrid model (b, d). Red colors indicate an improvement in skill in the

Hybrid-model, while blue colors indicate a decrease in skill. Using a two-sided t-test, we evaluate the significance of the difference

between the 1000 randomly bootstrapped means of CS-LIM and the 95% confidence interval threshold.

6.3.2. Comparison to Purely Deep Learning Baselines

We conducted a comparative analysis between the Hybrid-model and

the two fully deep learning models outlined in Sec. 6.2.2, the PC-LSTm,

and the SwinLSTM. To ensure the robustness of our findings, each

model underwent five separate training sessions with varied weight

initialization and data shuffling, the variability of which is depicted

through error bars in Fig. 6.6. When trained on 1500 years of data, the

deep learning models have similar RMSE and CPRS skill scores to the

Hybrid-model (Fig. 6.6a, b), though the SwinLSTM exhibits a slight

improvement at the 12-month forecast horizon. This suggests that the

Hybrid-model successfully captures most of the predictable dynamics,

with the marginal gains of the SwinLSTM likely attributable to the PC

truncation. Crucially, the Hybrid-model achieves this level of forecasting

skill with significantly fewer parameters compared to the full deep

learning models. This aspect is particularly beneficial in scenarios with

limited data, as shown in Fig. 6.6c and d. With less than 500 years of

monthly data, both the LIM and Hybrid-model exhibit higher 12-month

RMSES and CRPS skill scores than the LSTM. This indicates that pure

deep learning models trained on the observational record alone (≈70

years) have substantially worse performance than the LIM. It is only

with more than 500 years of data that the forecast skill of both the

Hybrid-model and the LSTM substantially improve upon the LIM.
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Figure 6.6.: Skill of purely deep learning baselines. When trained on 1500 years of CESM2 data, LSTM and SwinLSTM show

deterministic RMSE (a) and probabilistic CRPS (b) scores comparable to the Hybrid model at all lag times 𝜏. However, with limited data

(50 or 150 years), the CS-LIM and Hybrid models surpass LSTM forecast skill, shown here for 𝜏 = 12 month (c, d). LSTM achieves parity

with CS-LIM and Hybrid at 300 years, and exceeds CS-LIM with over 500 years, indicating the extensive data requirements for the pure

deep learning models. Skill scores are based on monthly climatology (Sec. 6.2.2) with error bars reflecting model training runs with

varied weight initialization and data shuffling.

6.3.3. Predictability Assessment in the Hybrid-model

Within the linear framework of the LIM, we can calculate the optimal

initial condition (OIC) for a forecast lag time 𝜏. The OIC, also referred to

as optimal precursor, is the singular vector that aligns with the largest

singular value of the forecast operator 𝐺(𝜏) = exp(L𝜏). This condition

is optimal in the sense that of all possible initial conditions of unit

amplitude, it evolves into the largest state vector after time 𝜏 (Penland

et al., 1995). For CS-LIM, we obtain a different OIC for every month and

lag time.

The CS-LIM’s OIC for a 12-month forecast in April (Fig. 6.7a) exhibits an

SST and SSH structure that aligns closely with earlier research (Newman

et al., 2011b; Vimont et al., 2014). Key features of the OIC are a band of

positive SST anomalies in the northern subtropics, stretching diagonally

from approximately 0°, 180° northeastward to around 30°N, 120°W;

positive SST anomalies in the southern subtropics, predominantly east

of 120°W; enhanced thermocline depth anomalies along the equator;

and comparatively weak negative thermocline depth anomalies located

at approximately 10°N in the eastern tropical Pacific. We obtain its

subsequent evolution after 𝜏 = 12 months by applying the LIM operator

to the OIC (Fig 6.7b). It is important to note that the magnitude of these
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Figure 6.7.: Predictability is determined by linear optimals. The optimal initial condition (OIC) (a) of the CS-LIM for a 12-month lag

forecast initialized in April evolves into an El Niño-like pattern after 12 months (b). The projection of the data on the OIC does not only

indicate the potential skill of the CS-LIM but also of the Hybrid-model and LSTM (c). We compute the anomaly correlation coefficient

over the CS-LIM, Hybrid-model, and LSTM forecasts where the absolute projection of the data on the optimal initial pattern is the lowest

(0-10%) and the highest (90-100%).

patterns is arbitrary, a result of the unit norm of the singular vector.

For any given initial forecast state, the CS-LIM’s predictability can be

estimated by projecting the state onto its OIC. The strength of this

projection, or how well the first singular vector aligns with the initial

state – termed as optimal initial growth – is a key determinant of the

potential forecast skill of the CS-LIM (Sardeshmukh et al., 2000; Newman

et al., 2003). To illustrate this point, we select initial states from the test

set that have either the lowest (0-10%) or highest (90-100%) projections

on the OIC. The average ACC, illustrated in Fig. 6.7c, is substantially

larger for hindcasts initialized from states with the highest optimal initial

growth than for states with the lowest optimal initial growth.

The ACC of the Hybrid-model forecast initialized from states with the

lowest and highest optimal initial growth exhibit both a clear difference

in skill and also a substantial skill increase compared to the CS-LIM

(Fig. 6.7c). This result implies that optimal initial growth, a property

derived from the CS-LIM, influences not only linear predictability but

also significantly impacts the predictability of nonlinear dynamics. This

hypothesis is further supported by our analysis of the LSTM forecast,

where a marked increase in skill is observed for initial states with high

optimal initial growth as opposed to those with low initial growth.

6.3.4. ENSO Asymmetry is Nonlinearly Predictable

The initial states projected onto the OIC, shown in Fig. 6.7a, can yield

either positive or negative optimal initial growth which evolves into warm

and cold patterns, respectively. We examine the average 𝜏 = 12 month

hindcast of April initial states with the absolute highest optimal initial

growth (>90%) for our CS-LIM, Hybrid-model, and LSTM model.
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Figure 6.8.: Nonlinear models capture
ENSO asymmetrie. The 12-month evolu-

tions of states initialized in April with the

absolute highest optimal initial growth

(>90%) show warm and cold patterns.

The average target state of warm-cold

patterns (a) and warm+cold patterns (b)

are depicted, as well as their hindcasts

of the CS-LIM (c, d), Hybrid-model (e,

f) and LSTM (g, h). While the warm-

cold pattern delineates the average hind-

cast pattern’s magnitude, the warm+cold

pattern depicts their asymmetry. Using

a two-sided t-test, we evaluate the sig-

nificance of the difference between the

means of the cold and the warm patterns.

Only those values that surpass the 95%

confidence interval threshold are shown.

The average hindcast pattern’s magnitude and their asymmetry are

presented by warm-cold patterns (Fig. 6.8, first column) and warm+cold

patterns (Fig. 6.8, second column), respectively. A two-sided t-test is

utilized to ascertain if there is a statistically significant difference between

the means of the two distributions. We report only those values that

surpass the 95% confidence interval threshold. The warm-cold pattern in

the target data (Fig. 6.8a) closely resembles the evolved optimal pattern of

the CS-LIM (Figure 6.7b) and its average empirical hindcast (Fig. 6.8c).

An evident east-west dipole structure is observed in the asymmetry of

warm versus cold events of the target data, see Fig. 6.8b. Cold events

exhibit higher SSTA and SSHA magnitudes in the western tropical Pacific,

while warm events show greater magnitudes in the Eastern Pacific. This

asymmetry is not present in the warm+cold patterns of CS-LIM hindcast

(Fig. 6.8d), which is due to its linear and therefore symmetric evolution

of cold and warm events. The remaining subtle differences between

warm and cold patterns of CS-LIM hindcast likely originate from the

asymmetrical distribution of initial conditions.

In contrast, the Hybrid-model and LSTM hindcasts accurately capture

both the magnitude and asymmetry of warm and cold events. Both

nonlinear model hindcasts exhibit the zonal dipole structure present in

the target data, as shown in Fig. 6.8f and h. This finding highlights the

ability of nonlinear models to predict the asymmetry between warm

and cold patterns. They also underscore the Hybrid-model’s potential to

disentangle linear and nonlinear predictable dynamics, setting the stage

for future systematic analysis of nonlinearities in subsequent work.
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6.4. Discussion

In this study, we introduce a Hybrid-model specifically tailored for

forecasting SST and SSH in the tropical Pacific, critical factors in sea-

sonal forecasting worldwide. We start from the LIM, an empirical model

describing the dynamics of the slower-varying ocean as stochastically

forced by the rapidly varying atmosphere with its deterministic dy-

namics assumed to be linear. However, while the LIM produces ENSO

foreScasts comparable to state-of-the-art numerical models, it is unable

to capture observed asymmetries of ENSO that may also be important to

its predictability.

We combine an LSTM with the LIM to capture predictable nonlinearities

and non-Markovianity in the evolution of monthly tropical SSTA. This

Hybrid-model is trained and tested on SSTA and SSHA data from the

CESM2 pre-industrial control run, where we observe that modeling

nonlinearities significantly enhances the forecast accuracy, particularly

in the western tropical Pacific within the 9 to 18-month range.

Our Hybrid-model facilitates disentangling linear from nonlinear dynam-

ics. Our findings provide initial evidence that the asymmetry between

warm and cold events is a key source of nonlinearity that improves

forecasting skills. This first insight lays the groundwork for a more com-

prehensive follow-up investigation of the potential sources of nonlinearity

of ENSO forecasting.

Moreover, we demonstrate that the predictability of the Hybrid-model

is strongly related to the theoretical expected skill of the LIM which

allows us to reliably assess its predictability. In contrast, neural networks

typically struggle to provide accurate predictability assessments on

seasonal to annual scales, primarily hindered by their weak spread-to-

skill relationship. While our Hybrid-model shows accurate predictability

in the tropical Pacific, this potentially offers predictability for other

climate oscillation and variables on sub-seasonal to seasonal scales, a

promising avenue for future research.

A notable feature of our Hybrid-model is its relatively modest data

requirements for training, particularly when compared to more data-

intensive deep learning models like the LSTM network. This aspect is

crucial given the limited span of available oceanic observational data. For

a fair comparison, we utilized data from global circulation models in our

training, acknowledging their inherent biases as discussed in our study.

The use of domain adaptation methods from deep learning emerges as a

promising strategy to close the gap between Global Circulation Model

(GCM) data and observational data. However, the field still needs more

research to fully understand how neural network models can be adjusted

to observational data when pre-trained on simulated data.
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ENSO alters weather and climate conditions worldwide and is therefore

the largest source of seasonal predictability. ENSO events vary in their

intensity, spatial, and temporal characteristics, necessitating accurate

representation of this diversity. However, the mechanisms driving ENSO

diversity remain unclear, making it challenging for physics-based models

to provide reliable forecasts. The main objective of this thesis was to

develop models that capture the diversity of ENSO events from data. This

work presents new data-driven approaches for defining ENSO diversity,

identifying its global impacts, and forecasting it accurately.

In this final chapter, I summarize the contributions of this thesis and lay

out possible future directions.

7.1. Summary & Impact

i. Impacts of ENSO Diversity

Besides the scientific curiosity to understand the dynamical properties

that yield to the large diversity of ENSO events, it’s their impacts on

weather conditions worldwide that are important for society. While

teleconnections differ between EP and CP El Niño events, their analysis

is usually based on a certain region. Chapter 4 introduces a graphical

representation to identify teleconnections globally based on climate

networks. The analysis shows that teleconnections of EP are stronger

and more constrained to the tropics than CP events. Visualizing global

patterns of teleconnections is not just important for identifying unknown

teleconnections, it can also be used by climate modelers to check where

GCMs are not representing teleconnections of ENSO correctly.

ii. Definition of ENSO Diversity
ENSO and its diversity are generally described by single indices. For

instance, ENSO intensity is characterized by averages over a certain

region in the Pacific, and its spatial diversity is distinctly separated into

EP and CP-type events. In Chapter 5, we argue that these indices and

thresholds are a too strong simplification, and propose a more nuanced

description of the intertwined intensity and spatial distribution of events.

The proposed approach approximates the distribution of ENSO events in

a lower dimensional space, assigning membership probabilities to events

instead of splitting events into binary types. We show how composites

and Hovmoeller diagrams, the favorite tools of climate scientists, can

still be used with our approach. Providing the tools to work with the

probabilistic definition of ENSO diversity, we want scientists to embrace

the continuous stochastic nature of ENSO.

iii. Forecasting ENSO Diversity
The hybrid model proposed in Chapter 6, is the first neural network-

based model that produces skillful forecasts for up to 18 months with

uncertainty estimates based on ensemble members. The combination of
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the LIM with the LSTM allows skillful forecasts in the low-data regime,

while also enabling the estimation of the nonlinear dynamics. This hybrid

approach further allows distinguishing between predictable and non-

predictable cases and identifying windows of opportunity. Modification

to the neural network baselines in Chapter 6, such as multiple output

heads capturing the forecast uncertainty and conditioning the latent space

via affine transformations, seem to improve skill across architectures.

Our hybrid model is openly available and might become operational in

the PSL-NOAA suite.

7.2. Future Work

Working with computer scientists and meteorologists during my PhD, I

believe that deep learning approaches in climate science are still in their

infancy. To leverage their full potential, we require easier data availability

by having well-documented datasets and more efficient access to data.

Moreover, a collaborative environment where climate scientists and

computer scientists can work together is needed to ensure that relevant

questions are addressed with the best suitable techniques. Below, I outline

future research directions that I find promising and interesting:

Large-Scale Phenomena Beyond ENSO

ENSO is the most extensively studied large-scale climate phenomenon,

however, a large potential exists for analyzing and forecasting other large-

scale atmospheric and oceanic oscillations using similar methodologies

to the ones developed in this work. Examples of these include:

▶ The Madden-Julian Oscillation (MJO) (Madden et al., 1971): a

recurring band of rainfall that moves along the equator, significantly

influencing monsoon patterns.

▶ The North Atlantic Oscillation (NAO) (e.g. Stephenson et al., 2003):

comprises high and low-pressure systems in the North Atlantic that

alter the jet stream, affecting weather patterns, such as blocking

events, over Europe.

▶ The Polar Vortex (Baldwin et al., 1999): involves circulating winds

around the North Pole that confine cold air over the polar re-

gion. The strength and collapse of the Polar Vortex are critical

determinants of cold spells over the Northern Mid-latitudes.

▶ The Atlantic Niño (Zebiak, 1993): often considered the smaller

counterpart of the Pacific El Niño, it impacts rainfall in the Sahel

and interacts with other ocean basins.

Causal mechanism of ENSO diversity

The data-driven methods proposed in this thesis focus on identifying

structure within the data, thereby representing statistical properties.

Statistical properties hint at underlying processes, but they do not es-

tablish causation. The approach used to identify teleconnections (Ch. 4)

relies on instantaneous correlations and does not reflect causal relation-

ships. Similarly, the GMM used to approximate the distribution of ENSO
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events (Ch. 5) does not identify physical attractors, and the LSTM model

(Ch. 6), with its hundred-thousand parameters, captures nonlinearities

and ENSO asymmetry but lacks interpretability.

A logical next step would be to study the physical mechanisms underlying

the findings in this thesis. As a starting point, I would suggest improving

the parameterization of air-sea interactions in models (e.g. Liu et al.,

2022a). This likely enhances the representation of skewness and spatial

distribution of SSTA in models. Alternatively, modifying our hybrid

approach could allow distinguishing state-dependent noise from the

deterministic dynamics that drive ENSO diversity (Geng et al., 2022). This

could be achieved by explicitly learning terms in the stochastic differential

equation (SDE) that describes the noise-driven ocean dynamics. However,

such Neural SDE models can be challenging to train due to the complexity

of the integration steps required during training.

Data-Driven Climate Models

An unexplored research question in this thesis is how ENSO will change

in the future. Given that data-driven methods are unable to extrapolate

to different climate conditions, physics-based models are a natural choice

to study climate scenarios.

However, in the last year, deep learning weather prediction (DLWP)

models have achieved forecasting skills on par with numerical weather

prediction (NWP) models (Ben-Bouallegue et al., 2023). Observations

from large language models suggest that these large models can often

generalize beyond their training data envelope (e.g. Kaplan et al., 2020).

This raises the question: can sufficiently large neural networks learn

the underlying physical processes and generalize to warmer climate

conditions? Are these models capable of realistically simulating the

climate a century ahead, and can we rely on their projections?

One approach to constructing deep-learning climate models is training

them on simulations of future climate scenarios derived from existing

GCMs. However, this model would inherit the biases of the GCMs

used for training. Although training across multiple GCMs could cancel

individual GCM biases, this does not address potential biases shared

among them (Wittenberg et al., 2006; Capotondi et al., 2020a; Beverley

et al., 2023; Lin et al., 2023).

Alternatively, constructing deep-learning climate models based on ob-

servational data alone requires training on high temporal resolution

datasets, similar to the DLWP models. The hope is that despite the short

observational record, the hourly data is sufficiently detailed to enable

the model to learn a physical representation of the system, thus allowing

generalization to different climate conditions.

I am excited to see how climate and weather modeling will evolve in the

future, leveraging the advancements in deep learning.
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A.1. Network Construction

Assume complex network graph 𝐺, defined by its set of nodes 𝑉 , con-

nected by its set of edges 𝐸, where 𝑒𝑖 𝑗 denotes an edge connecting node

𝑣𝑖 to node 𝑣 𝑗 . This type of graph is described by its adjacency matrix A:

A𝑖 𝑗 =

{
1, 𝑒𝑖 𝑗 ∈ 𝐸
0, otherwise

,

If the edges 𝑒𝑖 𝑗 are weighted by weights 𝑤𝑖 𝑗 , the weighted graph is

described by

W𝑖 𝑗 =

{
𝑤𝑖 𝑗 , 𝑒𝑖 𝑗 ∈ 𝐸
0, otherwise

,

We estimate the weighted adjacency matrix W of the climate network by

placing links between pairs of locations which have a correlation value

among the 2% strongest absolute correlations. Thus, for the correlation

threshold 𝜌0.98 = 𝑄|𝜌|(0.98), where 𝑄𝑋(·) denotes the quantile function

for 𝑋, we define

W𝑖 𝑗 =

{
|𝜌𝑖 𝑗|, |𝜌𝑖 𝑗| > 𝜌0.98

0, otherwise

, (A.1)

where 𝑖 , 𝑗 ∈ {1, . . . , 𝑁} index spatial locations and 𝜌𝑖 𝑗 is the Dec–Feb

correlation between locations 𝑖 and 𝑗. W𝑖 𝑗 thus defines a network 𝐺 by a

set of edges (or links) 𝑒𝑖 𝑗 ∈ 𝐸, where 𝑒𝑖 𝑗 connects the nodes (𝑣𝑖 , 𝑣 𝑗) ∈ 𝑉
with link weight 𝑤𝑖 𝑗 = |𝜌𝑖 𝑗|. We compute instantaneous correlations

using Spearman’s rank-order correlation to capture nonlinear behavior

between all pairs of time series. For a detailed introduction to climate

networks, we refer the reader to Dĳkstra et al. (2019).

Accounting for autocorrelation in the data, a two-sided test for non-

random correlations at a confidence level of 1 % yields a threshold

|𝜌̂| = 0.1. While our threshold is far higher, due to the high number

of hypotheses tests (3.6 × 10
7
), we nevertheless expect a non-negligible

number of network links to be false positives. We thus additionally use a

spatial null model which assumes that correlations caused by physical

mechanisms are likely to occur in bundles of links (Boers et al., 2019).

For each spatial location, we randomly rewire its corresponding network

links 2000 times and use a Gaussian kernel density estimator (KDE) to

get the likelihood of a link to the chosen location. An observed network

link to the chosen location is considered statistically significant if the

spatial likelihood of the link (also obtained via Gaussian KDE) is above

the 99.9-th percentile of the local null model link distribution. For our

SAT climate networks, we found that 2 % of all links were identified as

spurious links. In Fig. A.1 we visualized an example of the correction
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Figure A.1.: Link bundle correction to
climate networks. We show a network

for CP conditions. The network is further

corrected by a Gaussian KDE to avoid

spurious links that occur out of random

coincidence. We analyze an example for

links of the location of the Indian Subcon-

tinent (70°E-90°E, 15°N-35°N, marked by

the violet rectangle). a shows the uncor-

rected network, b shows the corrected

network. For visual reasons, only every

3rd link is plotted.

method by the Gaussian KDE for the location of the Indian subcontinent.

In this example, spurious links in the Equatorial and Northern Atlantic

Ocean and the Southern Indian Ocean are removed.

A.2. Forman-Ricci Curvature and Betweenness
Centrality

Betweenness centrality is a measure of information flow within the

network, quantifying the importance of a node based on the number of

the shortest paths that pass through it. Betweenness Centrality is defined

for nodes 𝑣 and edges 𝑒 as,

𝐵𝐶𝑣(𝑣𝑖) =
𝑁∑
𝑠,𝑡

𝜎(𝑣𝑠 , 𝑣𝑡 |𝑣𝑖)
𝜎(𝑣𝑠 , 𝑣𝑡)

, (A.2)

𝐵𝐶𝑒(𝑒𝑖 𝑗) =
𝑁∑
𝑠,𝑡

𝜎(𝑣𝑠 , 𝑣𝑡 |𝑒𝑖 𝑗)
𝜎(𝑣𝑠 , 𝑣𝑡)

, (A.3)

where 𝜎(𝑣𝑠 , 𝑣𝑡) denotes the number of the shortest paths between nodes

𝑣𝑠 and 𝑣𝑡 and 𝜎(𝑣𝑠 , 𝑣𝑡 |𝑣𝑖) ≤ 𝜎(𝑣𝑠 , 𝑣𝑡) the number of all shortest paths that

include node 𝑣𝑖 . Similarly, for edge betweenness centrality 𝜎(𝑣𝑠 , 𝑣𝑡 |𝑒𝑖 𝑗) ≤
𝜎(𝑣𝑠 , 𝑣𝑡) yields the number of all shortest paths that include edge 𝑒𝑖 𝑗 . 𝐵𝐶𝑛
is often referred to as the pathway of a variable through the network and

therefore taken as an indicator for the flow of the variable of interest.

Betweenness centrality is typically used to identify edges that connect

communities (Freeman, 1977; Donges et al., 2009b; Boers et al., 2013;

Ciemer et al., 2018) and is thereby similar to Forman-Ricci curvature. We

compare those two measures on a random network with four communities

(Fig. A.2) generated using a stochastic block model from NetworkX

(Hagberg et al., 2008).

Forman-curvature separates the between-community links from the

within-community links. Within-community links are typically part of

triangles, indicating local convergence of the shortest paths, i.e. positive

curvature. Conversely, links connecting nodes with a high degree that are

not part of triangles indicate local divergence of the shortest paths and

negative curvature. Forman-curvature provides a continuous measure

over network links that indicates if an edge is inside a community or

if it straddles two communities (Fig. A.2a). By comparison, the edge

betweenness centrality fails to identify many between-community links

(Fig. A.2b). This is likely due to the binary notion of the shortest path -
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Figure A.2.: Betweenness centrality vs.
Forman curvature. In the synthetic net-

work constructed with a Stochastic Block

Model, Forman-curvature (a) provides

values to distinguish within-community

links (red) from between-community

links (blue) in contrast to betweenness

centrality (b) with only a few links with

high scores. The network with four com-

munities is visualized using the spring

layout from NetworkX (Hagberg et al.,

2008).

either a path is the shortest or it is not, implying that “almost-shortest”

paths are not considered.

A.3. Variability within El Niño Types

We are interested in the center of the anomalies during El Niños. The

contours for every year are computed based on the quantiles 𝑄 of the

seasonal spatial maps for each individual El Niño event. The aggregation

of the yearly 𝑄(0.85)-DJF contours yields Fig. A.3 suggesting a more

extensive spatial diversity of the 8 CP events compared to the 7 EP

events.

Figure A.3.: Counts of anomaly center
during El Niño. We compute composite

anomalies for the DJF time series for all

years between 1959 and 2020. The year

is indicated in which the event mainly

occurred. In total 7 events have been

identified as EP (a) and 8 events as CP

(b) El Niños. The colorbars indicate the

number of counts at a spatial location.

The contour was chosen according to the

𝑄(0.9) quantile of the spatial map values

for each year separately.

A.4. Teleconnections in Climate Models

In order to estimate the error due to the finite amount of EP and CP

El Niño events available in the reanalysis data, we repeat our analysis

on data from Global Circulation Model (GCM). Model data have the

advantage that they can run for a longer period of time and thereby

in principle produce an infinite amount of data to compare to. Here,

we use the pre-industrial control run of the UKESM1-0-LL model from

the CMIP6 which covers 1000 years. We use UKESM1-0-LL because it is

known to reproduce similar sea surface temperature variability in the

tropical Pacific than found in observations (Dieppois et al., 2021). We

again use surface air temperatures on a daily resolution interpolated on

an equidistant Fekete grid. Using sea surface temperature data from the

same model run, we identify 296 EP El Niño, 168 CP El Niño, and 653

Normal winters in the pre-industrial run.

We compute the correlation-based networks and Forman curvature on

the pre-industrial model run. The most positive and most negative
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Figure A.4.: Same as Fig. 4.5 but for daily SAT data of the pre-industrial control run of the UKESM1-0-LL model.

curvature hotspots are shown in Fig. A.4. The UKESM1-0-LL model

resembles similar teleconnection patterns found in the reanalysis data.

Teleconnections are more constrained to the tropical ocean basins under

EP conditions while under CP conditions teleconnections are found in

the mid-latitudes.

With 296 EP events from the pre-industrial run at hand, we can estimate

the error due to the finite amount of events in the observational period.

We randomly sample 7 from the 296 available EP events and calculate the

curvature. We repeat the sampling procedure 10 times. We compare the

obtained distribution of curvature values of the 7 events to the distribution

obtained with all 296 EP events (see Fig. A.5 b). The curvature distribution

of two samplings are shown in Fig. A.5 c. We find that the distributions

cover the same curvature range and show a peak close to zero which is

also the case for the curvature distribution obtained from ERA5 (shown

in Fig. A.5 a.). This suggests that the UKESM1-0-LL model represents the

topology of the SAT reanalysis data well.

However, the curvature distributions obtained from 7 events show higher

densities at negative curvatures than the distribution obtained from all

EP events. The overestimation of negatively curved links in the network

due to the small number of events is also found in the analysis of ERA5

data (see Fig. A.5 a c). We hypothesize that a shorter time period leads

to spurious pair-wise correlations which form links over long spatial

distances and are thus negatively curved.

This hypothesis is supported by comparing the spatial extent of the

curvature obtained by using all 296 EP events from the pre-industrial run

(Fig. A.5 d-e) and the average over curvatures obtained from repeated

sampling with 7 EP events each (Fig. A.5 f-g). While the most spatial

patterns of positively curved edges are similar, we obtain more negatively

curved edges to the extra-tropics in the networks constructed from

only 7 events. However, pronounced regions of negative curvature are

consistent between the analysis using 296 EP events and 7 randomly

sampled events. We also find an overestimation of negative curvature

using only 7 randomly sampled CP events out of the 168 events in the

pre-industrial run (not shown).
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Figure A.5.: Effect of the finite amount of EP El Niño events. The distribution of curvature obtained from all 296 EP El Niño events in

the pre-industrial control run of the UKESM1-0-LL model (b) is compared to the distributions obtained from 7 randomly sampled EP

events from the pre-industrial control run (c) and the distribution obtained from EP events in ERA5 (a). The number of links with positive

and negative curvature on each node is shown for the network constructed from 296 EP El Niño events of the pre-industrial control run

(d, e). The average number of positively/negatively curved links on each node over the networks constructed from 7 randomly sampled

events are displayed in (f/g),

A.5. Local Correlation Analysis

We introduce the average local correlation 𝑅𝑖 to better understand the

regional dynamics and variability of spatially close points. We define

the local correlation as the average correlation of the time series 𝑥𝑖(𝑡)
associated with the node 𝑣𝑖 to every time series of the node 𝑣𝑏 in the set

of nodes B𝑖 , where B𝑖 describes the set of the 𝐵 = 200 spatially closest

next-neighbor nodes to 𝑣𝑖 :

𝑅𝑖 =
1

𝐵

∑
𝑣𝑏∈B𝑖

𝜌(𝑥𝑖(𝑡), 𝑥𝑏(𝑡)) . (A.4)

Here, 𝜌 describes the Spearman’s rank order correlation function between

the time series 𝑥𝑖(𝑡) and 𝑥𝑏(𝑡). Note, as we have interpolated the grid to

a Fekete Grid, the nodes are approximately uniformly distributed, and

therefore no north-south bias due to higher latitudes is included Heitzig

et al., 2012. The results are depicted in Fig. A.6.
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Figure A.6.: Local Correlation Analysis
of ENSO conditions. We analyze the lo-

cal correlation of nodes for the different

ENSO conditions. The local correlation

(Eq. A.4) takes the 𝑁𝑏 = 200 next neigh-

bor points and uses Spearman’s rank

correlation. Displayed are local correla-

tions for (a) EP (b) CP and (c) normal

year DJF conditions.
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B.1. Methodological Details

B.1.1. Autoencoder

We denote the data by 𝑋 = {x(𝑡)}𝑁𝑡
𝑡=1

, with each time point 𝑡 is a field

x(𝑡) ∈ ℝ𝑁lon×𝑁lat
. We reduce the dimensionality using a transformation

z(𝑡) = 𝑒 (x(𝑡)) that maps ℝ𝑁lon×𝑁lat → ℝ𝑀
with 𝑀 << 𝑁lon · 𝑁lat. The

downscaling function is called an encoder, 𝑒. The inverse transformation

from latent to data space is described by the function x̂(𝑡) = 𝑑 (z(𝑡)),
called decoder. When reducing the dimensionality, we lose information

such that x̂ ≠ x, i.e. the entire encoding-decoding pipeline can also be

seen as a lossy compression-decompression method.

We use an autoencoder neural network to obtain a non-linear dimen-

sionality reduction (Sec. 2.1.1). Our encoder network consists of four

convolutional layers followed by a linear layer. Each convolutional layer

halves the longitude and latitude dimension of the input by using a

kernel size of 3, a stride of 2, and padding of zero. The output of each

convolutional layer is transformed by a ReLU function. We double the

number of channels in the first two layers and keep it fixed for the last

two layers. After the last convolutional layer, we flatten the output and

pass it through a linear layer whose output has the dimensionality 𝑀.

The decoder is designed to be symmetric to the encoder. A linear layer

is followed by four deconvolutional layers with each layer doubling the

dimension of x and y. The number of channels is fixed in the first two

convolutional layers but halve in the last two layers respectively. This

way the output dimensionality matches the dimension of the encoder

input. Again we use the ReLU activation function after each layer except

the last one. Different variables (SSTA, SSHA) are stacked in the channel

dimension.

B.1.2. Warm-Pool Edge

Thual et al. (2023) propose that the diversity in ENSO is linked to the

zonal shift of the Walker circulation over the tropical Pacific. They suggest

that the edge of the warm-pool serves as an indicator for deep convection

shifts, characterizing it as the 29°C isotherm where SSTs saturate over the

warm pool. The warm-pool edge is identified as the earliest longitude

moving from 80°W (East) to 120°E (West), where the equatorial SST

exceeds 29°C for a subsequent 10° westward.

B.1.3. Testing for Statistical Significance of Averages

We utilize a bootstrapping approach to test the hypothesis that the means

associated with ENSO categories are statistically distinct from the ENSO
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Figure B.1.: Determining the optimal number of clusters. The distribution of BIC is computed for each number of clusters 𝑘 by fitting

100 GMMs which are randomly initialized. The mean, 10th, and 90th percentile as well as the median are shown as boxplots for the

two-dimensional EOF latent representation of SSTA (A). The same analysis is repeated by increasing the number of EOFs (B). The mean

BIC over the 100 GMMs for each 𝑘 is ranked for each number of EOF to show that our results are robust with the number of EOFs used.

Neutral conditions, i.e. the DJF Niño3.4-index is between -0.5 and 0.5.

This technique is used for both weighted and unweighted averages.

Statistical significance of the mean y
𝑘

over N data points is obtained by

generating a null distribution through resampling. We draw N data points

with replacement from Neutral conditions and calculate the mean of these

samples. The process is repeated 1000 times to produce a distribution of

the random means. When considering weighted averages, the resampling

procedure is adapted by using the shuffled weights as probabilities of the

random sampling across the Neutral years. Significance is then quantified

by the percentile of the mean against the null distribution which yields

the p-values.

Given that our statistical evaluation spans multiple grid points, one has

to adjust the p-values to counteract the risk of type-1 errors from multiple

comparisons, i.e. false positives arising from repeated testing (Wilks,

2019). We account for multiple comparisons using the test procedure by

Holm (1979) combined with the Sidak (1967) correction, ensuring the

p-values are corrected appropriately. Throughout this work, statistically

significant values are those exceeding the 𝛼 = 1 − 𝑝 ≥ 95% confidence

threshold.

B.2. Robustness Analysis

To assess the robustness of our approach, we conduct a sensitivity analysis

by varying the number of EOFs. We performed the analysis for 2-6 EOFs

and visualized the BIC as a function of categories in Fig. B.1B. Since the

BIC values exhibit changes with an increasing number of EOFs, we sort

the mean BIC values for each number of EOFs and plot their ranks. Our

results consistently indicated that the 5-dimensional latent space yielded

the lowest BIC values, except in the case of the 4-dimensional latent

space, where the minimum BIC was observed at 𝑘 = 6. It is worth noting

that the BIC values displayed a wider distribution at 𝑘 = 6 compared to

𝑘 = 5 in the 4-dimensional latent space which explains the deviation (not

shown).
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Figure B.2.: GMM applied in latent
space of Autoencoder. Boreal winter

SSTA of El Niño and La Niña events are

projected on the two-dimensional latent

space of an autoencoder (black points

in D). The nonlinear encoder-decoder

neural networks are trained to minimize

the reconstruction loss of monthly SSTA

across all reanalysis datasets, details are

described in Sec. B.1.1. Applying the

GMM in this reduced space yields five

categories (A), minimizing the BIC. The

decoded Gaussian means (B, C, E, F, G)

and their category probabilities (H, I, J,

K, L) align closely with the results in

Fig. 5.3 A and Fig. 5.4.

To examine the potential bias introduced by linear dimensionality reduc-

tion in our approach, we adopt an alternative method using a convolu-

tional autoencoder. Unlike the EOF-truncation, this approach allowed for

nonlinear dimensionality reduction of the SSTA fields. Here, we employ a

symmetric autoencoder as described in Sec. B.1.1. Subsequently, the GMM

was fitted based on the low-dimensional representation obtained from

the autoencoder. The encodings of the optimal GMM means (Fig. B.2B-G)

exhibited similar patterns to those obtained from the EOF analysis. These

results imply that a linear decomposition of the SSTA fields suffices to

capture their diversity, minimizing concerns regarding bias introduced

by the linear dimensionality reduction.

B.3. Comparison to Conventional ENSO
Categorization Approaches

In order to compare our category membership with conventional index-

based classifications of El Niño events, we present a comparison between

the Niño3-Niño4 classification by Kug et al. (2009), the EOF-based E/C
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Table B.1.: Classification of El Niño
events. Listed are two conventional used

indices-based classification approaches

of El Niño events as well as our prob-

abilistic clustering. We use E to denote

Eastern Pacific, C for Central Pacific type

events, W for our Weak EN, S for our

Strong EN, and E* for our Extreme EN
category. The Niño3-Niño4 approach by

Kug et al. (2009) classifies events as E

when the DJF average Niño3 > Niño4

and C when Niño4 < Niño3. Takahashi

et al. (2011) use the first two PCs of SSTA

to create an E- and C-index. When DJF

average E-index > C-index events are

considered of type E and events are of

type C when C-index > E-index. The last

column shows the largest category mem-

bership and their probability in brackets,

𝑝 (𝑐|𝑥). In cases where the probabilities

are shared (i.e. 0.4 < 𝑝 (𝑐|𝑥) < 0.6), we

show the largest two category member-

ships. The blank entries denote cases in

which the respective conditions were not

met to classify an event.

Niño3-Niño4 E/C 𝑝(𝑐𝑘 |𝑥)
1951-1952 E E E (0.87)

1953-1954 C C (0.45) / E (0.33)

1957-1958 E C C (0.54) / E (0.44)

1958-1959 C C (0.97)

1963-1964 E C C (0.80)

1965-1966 E C E (0.81)

1968-1969 C C C (0.97)

1969-1970 C E (0.60) / C (0.37)

1972-1973 E E E (0.98)

1976-1977 E E (0.92)

1977-1978 C C (0.84)

1979-1980 C C (0.89)

1982-1983 E E E*(1.00)
1986-1987 E E E (0.88)

1987-1988 C C E (0.52) / C (0.47)

1991-1992 E C E (0.99)

1994-1995 C C E (0.89)

1997-1998 E E E*(1.00)
2002-2003 C C C (0.51) / E (0.49)

2004-2005 C C C (0.77)

2006-2007 C C E (0.93)

2009-2010 C C C (0.58) / E (0.42)

2014-2015 C C (0.98)

2015-2016 E C E*(0.83)
2018-2019 C C E (0.59) / C (0.40)

2019-2020 C C C (0.79)

classification by Takahashi et al. (2011), and our category membership

(Tab. B.1).

The events 1983/84, 1997/98, and 2015/16 have a high membership

probability in the Extreme EN category, while they are classified as EP-

type events in the conventional methods. The 1951/52, 1972/73, 1976/77,

and 1986/87 events show a high likelihood of being part of the Strong EN
category which concurs with conventional classifications. We identified

the events of 1958/59, 1968/69, 1969/70, 1977/78, 1979/80, 2004/05,

2014/15, and 2019/20 as having a high probability of belonging to the

Weak EN category, also aligning with conventional classification.

We observe inconsistencies in indices-based classifications for the 1994/95

and 2006/07 events, displaying high membership probability for the

Strong EN category, despite being labeled as CP-type by Niño3-Niño4

and E/C definitions. The conventional EP- and CP-type definitions,

however, lack consistency as summarized by Pascolini-Campbell et al.

(2015), Yu et al. (2010), and Capotondi et al. (2020a).

B.4. ENSO diversity in CESM2

Given the limited number of extreme El Niño events in the observational

record, we have extended our analysis to the Coupled Earth System

Model 2 (CESM2), chosen because of its large-ensemble simulations

and the 2000-year pre-industrial control simulation. Monthly tropical
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Figure B.3.: GMM analysis on model data from CESM2-LENS historical simulations. We project monthly SSTA during El Niño and

La Niña winters (DJF) of all CESM2-LENS historical runs on the first two EOFs from the joined reanalysis dataset (black points in D)

and from CESM2 historical runs selecting only the equatorial domain (10°S to 10°N) (black points in E). For comparison to the shorter

observational period, we fit the GMM on a randomly selected subset of EN and LN winters of CESM2-LENS data such that the number

of events matches the ones in the joined reanalysis data (F). The optimal number of categories of the GMM is based on the smallest BIC

using 100 randomly initialized GMMs for each number of clusters 𝑘. The mean, 10th and 90th percentile as well as the median are shown

as boxplots (A, B, C). In contrast to the five clusters obtained from the reanalysis products, the mean BIC is minimized for k=4 categories

using the CESM2-LENS. The decoded means of each Gaussian is projected on EOF1 and EOF2 resemble the typical Strong El Niño (G, H,

I), Weak El Niño (J, K, L), Weak La Niña (M, N, O) and Strong La Niñaz (P, Q, R) categories.

Pacific SSTA of CESM2 are selected analogously to the reanalysis data.

However, our EOF analysis uses SSTA which is confined within a narrower

latitudinal range of 10°S to 10°N, as proposed by (Takahashi et al., 2016).

This modification is due to the fact that the second EOF from CESM2 over

the full latitudinal range diverges in pattern from EOF2 from reanalysis.

Equivalently to the analysis on reanalysis data, we select the boreal

winters of El Niño and La Niña, project them onto the first two EOFs

which are then utilized for fitting the GMM (Sec. 5.2.1).

We employ the GMM approach on the SSTA from CESM2’s historical

simulations of boreal winter El Niño and La Niña events, projected
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onto the first two EOF modes. By minimizing the BIC, we obtain solely

four categories, separating El Niño and La Niña into strong and weak

categories, respectively (Fig. B.3). These results are consistent when

projecting the CESM2 events on EOF1 and EOF2 from reanalysis or using

the 2000-year pre-industrial control simulation of CESM2. Additionally,

we repeated the analysis by randomly selecting the same number of

events from the CESM2 historical simulations as in the reanalysis dataset,

which still resulted in only four clusters (Fig. B.3F). This result suggests

that the cluster formation in reanalysis data is not an artifact of the

limited number of samples. Instead, we hypothesize that CESM2 may not

fully capture the distribution of El Niño and La Niña events as observed

in reanalysis data. Moreover, the model’s symmetric event distribution

and categorization suggest that Extreme El Niños are not represented in

CESM2.

The reasons for the model’s inability to capture the Extreme EN category

remain speculative, but it may be related to model biases in upper-ocean

processes which impact the evolution and intensity of extreme ENSO

events in the model (Wei et al., 2021). Other factors, including influences

from the extratropical Pacific (Chiang et al., 2004; Zhang et al., 2014)

or from other oceans (Cai et al., 2019), could affect the evolution and

distribution of El Niño and La Niña events in CESM2 compared to

observational data.

Given that CESM2 fails to simulate extreme El Niño events limits our

ability to rigorously test the robustness of the results on the reanalysis

data. Despite this limitation, we have thoroughly tested for statistical

significance using a bootstrapping method (Sec. B.1.3). Our approach

yields robust statistical evidence even with the short observational

record.
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C.1. LSTM Architecture

The LSTM and SwinLSTM neural network have the same encoder-decoder

structure (Fig. C.1). The encoder network starts with a downsampling

operation, which is represented by the EOF-truncation for the PC-LSTM

and a strided convolution for the SwinLSTM. After downsampling, the

input is linearly projected onto a higher-dimensional latent representation.

This is sequentially processed through two LSTM (SwinLSTM) layers,

integrating the transformed input with the preceding hidden state. The

resulting hidden state at time t is passed to the decoder network. Reflecting

the encoder’s design, the decoder is composed of two LSTM (SwinLSTM)

layers, extending over the future prediction span 𝑡 + 𝑇, transferring the

hidden state across time without further input. A final upsampling phase,

using individual upsampling layers for each m-ensemble, members

reverts the hidden state to the original input space. Monthly conditioning

is incorporated into both encoder and decoder LSTM layers via affine

transformations (Eq. 6.10) of the month embedding.

Inspired by the popular Swin-Transformer architecture (Liu et al., 2021),

we modify the classical ConvLSTM cell (Fig. C.2B) to separate spatial and

channel mixing into two convolutions. The convolutions are separated

by a group normalization layer and a FiLM-layer (Eq. 6.10).

Figure C.1.: Encoder-Decoder architecture of the LSTM and SwinLSTM. Both the LSTM and SwinLSTM neural networks have the same

encoder-decoder architecture. The encoder network downsamples the input into a hidden state, which is then sequentially processed

through two LSTM-(SwinLSTM)-layers. The hidden state is passed to the decoder network which is rolled out to some future hidden

state. Finally, the hidden state is projected back to the input space using an upsampling layer. A affine transformation is used to include

monthly information into the LSTM-layers.
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Figure C.2.: Schematic representation of the SwinLSTM and the ConvLSTM cell. Input to our adapted ConvLSTM cell, the SwinLSTM

(A), and the ConvLSTM cell by Shi et al. (2015) (B) is the concatenated latent state 𝑥 and hidden state from the previous time step ℎ
old

.

While in the ConvLSTM cell spatial and channel mixing is performed at once, in the SwinLSTM, we separate spatial and channel mixing

into two convolutions, which drastically reduces the number of parameters. We further apply a layer normalization and conditioning on

the monthly embedding (Eq. 6.10) in between the spatial and channel mixing. The remainder of the cells are equivalent to the standard

LSTM.

C.2. Seasonal Skill Dependency

In addition to assessing the spatial distribution of skill (Sec. 6.3.1), we

investigate the seasonal skill variation. The average RMSESS of the Niño4

SSTA from the CS-LIM forecast, evaluated over different lag times and

verification months, indicates that late winter and spring months are

better predicted than the late summer and fall (Fig. C.3a). These results

are consistent with the findings by Shin et al. (2021), and align with the

phenomenon known as the spring predictability barrier, characterized

by a notable drop in the autocorrelation of the tropical Pacific SSTA in

boreal spring.

For the Hybrid-model forecast, we observe the most significant RMSESS

improvements upon the CS-LIM at lag times ranging between 9 and 18

months (Fig. C.3B). Specifically, the maximum enhancements are seen

at 15 and 18 months during the winter months (December to February),

while in spring, the peak skill improvement is at a lag time of 12 months.

Figure C.3.: Seasonal skill dependency
of Niño4. The average RMSE skill score

of the CS-LIM forecast for Niño4 SSTA is

analyzed over various lag times and ver-

ification months (a). The Hybrid-model

forecast significantly improves relative

to the CS-LIM, particularly for lag times

between 9 and 18 months (b). In both pan-

els, statistical significance is determined

using a two-sided t-test on 1000 boot-

strapped means of CS-LIM and Hybrid-

model forecasts. Results displayed ex-

ceed the 95% confidence interval.
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