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Abstract

Traffic problems are an essential part of our everyday lives, from daily commuter traffic to the development
of urban infrastructures and global freight transportation. A key challenge is to optimize the allocation
of resources to minimize costs or maximize efficiency. Optimal Transportation (OT) theory provides a
mathematical framework to formally describe such problems and their solution, taking into account complex
objectives and constraints. Over the years, various methods have been developed to solve OT problems.
However, traditional methods reach their limits when solution spaces are continuous and the consideration
of traffic density is important. The Dynamic Monge-Kantorovich (DMK) algorithm developed in recent years
offers a solution to these challenges. It models traffic problems using dynamic equations and enables the
solution of transportation problems in continuous two-dimensional solution spaces. It also allows traffic
constraints due to traffic density to be taken into account, such as prioritizing busy routes over many smaller,
similar routes. With these properties, DMK offers a practical method for solving real-world problems.

Nevertheless, the DMK algorithm reaches its limits in certain situations. Although many practical scenarios
are defined in continuous space and therefore require a continuous solution, a discrete solution, for example
in the form of a graph, is often required for implementation in the real world. In addition, the algorithm
often requires a longer execution time, which can affect its practical applicability in time-critical scenarios.
Furthermore, the DMK model has not yet been sufficiently tested in its practical application, especially in the
field of machine learning, where OT problems play a major role.

In this thesis, we extend the aforementioned limitations of the DMK and show the practical application of the
model in classical machine learning contexts. We first present different methods to transform the continuous
solutions of the original two-dimensional space in which the DMK model is defined into practically realizable
discrete solutions. In the process, we transform DMK solutions, which are available as density distributions,
into graphs and hypergraphs that represent discrete solutions. Furthermore, we show that the DMK algorithm
can be stopped before its termination without strongly affecting the solution quality. In time-critical practical
applications, the DMK algorithm can thus find effective solutions in a short time by determining an optimal
stopping time.

The second part of this thesis focuses on the practical applicability of the DMK model. Based on the theoretical
findings described above, we develop algorithms for the practical use of a variant of the DMK model, the
Graph-DMK algorithm, in various machine learning tasks. Specifically, we show how DMK can be used for
the clustering of networks, the extraction of networks from images, and the classification of images. Our
results show the potential of the DMK algorithm to successfully solve a variety of machine learning tasks.

Thus, this thesis extends the previous limits of the DMK model and demonstrates its practical application.





Zusammenfassung

Verkehrsprobleme sind ein wesentlicher Bestandteil unseres Alltags, angefangen beim täglichen Berufsverkehr
über die Entwicklung städtischer Infrastrukturen bis hin zum globalen Gütertransport. Eine zentrale
Herausforderung besteht dabei darin, die Ressourcenallokation zu optimieren, um Kosten zu minimieren
oder Effizienz zu maximieren. Die Theorie des optimalen Transports (OT) bietet einen mathematischen
Rahmen zur formalen Beschreibung solcher Probleme und ihrer Lösung unter Berücksichtigung komplexer
Ziele und Einschränkungen. Im Laufe der Jahre wurden verschiedene Methoden entwickelt, um OT-Probleme
zu lösen. Traditionelle Methoden stoßen jedoch an Grenzen, wenn Lösungsräume kontinuierlich sind und
die Berücksichtigung der Verkehrsdichte von Bedeutung ist. Der in den letzten Jahren entwickelte Dynamic
Monge-Kantorovich (DMK) Algorithmus bietet eine Lösung für diese Herausforderungen. Er modelliert
Verkehrsprobleme mithilfe dynamischer Gleichungen und ermöglicht die Lösung von Transportproblemen
in kontinuierlichen zweidimensionalen Lösungsräumen. Außerdem erlaubt er die Berücksichtigung von
Verkehrseinschränkungen aufgrund der Verkehrsdichte, wie etwa die Priorisierung stark frequentierter
Routen gegenüber vielen kleineren, ähnlich verlaufenden Wegen. Mit diesen Eigenschaften bietet DMK eine
praktische Methode zur Lösung realweltlicher Probleme.

Dennoch stößt der DMK-Algorithmus in bestimmten Situationen an seine Grenzen. Viele praktische Szenarien
sind zwar im kontinuierlichen Raum definiert und erfordern daher eine kontinuierliche Lösung, aber für
die Umsetzung in der realen Welt ist oft eine diskrete Lösung erforderlich, zum Beispiel in Form eines
Graphen. Außerdem benötigt der Algorithmus häufig eine längere Ausführungszeit, was seine praktische
Anwendbarkeit in zeitkritischen Szenarien beeinträchtigen kann. Darüber hinaus wurde das DMK-Modell
bisher noch nicht in seiner praktischen Anwendung, insbesondere im Bereich des maschinellen Lernens, wo
OT-Probleme eine große Rolle spielen, ausreichend getestet.

In dieser Arbeit erweitern wir die genannten Grenzen des DMK und zeigen die praktische Anwendung
des Modells in klassischen Machine-Learning-Kontexten. Wir stellen zunächst verschiedene Methoden
vor, um die kontinuierlichen Lösungen des ursprünglichen zweidimensionalen Raums, in dem das DMK-
Modell definiert ist, in praktisch umsetzbare diskrete Lösungen zu transformieren. Dabei wandeln wir
DMK-Lösungen, die als Dichteverteilungen vorliegen, in Graphen und Hypergraphen um, die diskrete
Lösungen darstellen. Außerdem zeigen wir, dass der DMK-Algorithmus vor seiner Terminierung angehalten
werden kann, ohne die Lösungsqualität stark zu beeinträchtigen. In zeitkritischen praktischen Anwendungen
kann der DMK-Algorithmus somit durch die Festlegung einer optimalen Anhaltezeit effektive Lösungen in
kurzer Zeit finden.

Der zweite Teil dieser Arbeit fokussiert sich auf die praktische Anwendbarkeit des DMK-Modells. Basierend
auf den oben beschriebenen theoretischen Erkenntnissen entwickeln wir Algorithmen zur praktischen
Nutzung einer Variante des DMK-Modells, dem Graph-DMK-Algorithmus, in verschiedenen Aufgaben des
maschinellen Lernens. Konkret zeigen wir, wie DMK für das Clustern von Netzwerken, die Extraktion von
Netzwerken aus Bildern und die Klassifizierung von Bildern eingesetzt werden kann. Unsere Ergebnisse
zeigen das Potenzial des DMK-Algorithmus, eine Vielzahl von maschinellen Lernaufgaben erfolgreich zu
lösen.

Damit erweitert diese Arbeit die bisherigen Grenzen des DMK-Modells und demonstriert seine praktische
Anwendung.
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Introduction 1
1.1 Motivation . . . . . . . . . . 1

1.2 Outline and Contributions 3
1.1 Motivation

Transportation problems play a fundamental role in our daily lives,
whether it is us commuting from home to work, companies shipping
goods between locations, or municipalities managing underground
wastewater flow. When confronted with these challenges, whether in
designing or utilizing these transportation systems, we often have dif-
ferent objectives in mind: minimizing commuting time, reducing the
environmental impact of shipping, or mitigating risks of transportation
failures. When optimization fails, it can lead to detrimental outcomes for
our lives, such as arriving late to work, emitting large amounts of CO2,
or experiencing wastewater backups in our drains.

Such transport problems can be formally described as seeking to move
mass from designated sources to destinations, commonly referred to as
sinks, while minimizing transportation costs. Consider the infamous case
of Michigan State University (MSU) [1], where the administration aimed
to facilitate student mobility between campus buildings by constructing
paved pedestrian paths to minimize commuting time. We will use this
as a running example throughout this chapter. When pedestrian paths
are not optimally planned, it is common for people to bypass official
paths and instinctively opt for the most efficient route, often walking
over unpaved areas such as grass. These informal routes, known as
“desire paths”, can pose safety hazards [1] and are thus undesirable
for the university’s administration. MSU thus commissioned landscape
architects to create footpaths efficiently connecting campus buildings,
such that they would not be bypassed.

Optimal Transport (OT) is a mathematical framework that allows us to
formally describe such problems. OT problems are often highly complex,
characterized by numerous sources and sinks, high-dimensional and
large solution spaces, as well as various capacity or spatial constraints.
As a result, computational approaches to these problems demand sophis-
ticated algorithms capable of managing such complexity. Over the past
few decades, research has introduced several computational methods to
solve these types of problems efficiently, such as Transportation Simplex
[2], Auction algorithm [3], the Shortlist method [4], the Earth Mover’s
Distance (EMD)-Ĉ1 [5], and the Sinkhorn-Knopp algorithm [6].

The architects at MSU did not opt for a computational approach. They left
open spaces covered with grass without any footpaths [1]. Over time, they
observed students naturally forming informal “desire paths” over the
grass area. Later, these pathways were paved and formalized to comply
with safety regulations. To this day, these paths continue to honor the
naturally chosen efficient routes of the students [1], likely to still result in
high compliance with staying on the paved paths. Could the architects
have also employed one of the previously enlisted algorithms instead?
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While previous algorithms have indeed been successful in solving OT
problems across a wide range of applications, such as traffic simulation
[7], urban planning [8], and land-use dynamics [9, 10], they encounter
some major challenges. First, these algorithms solve OT problems that
are inherently defined on discrete spaces. In our example, this would be
applicable if architects were utilizing an existing path network and were
interested in discovering which paths the students most frequently took.
However, in many practical scenarios, the solution space is continuous.
In our example, the architects were indeed looking to construct paths
anywhere in the open grass area, i.e., in the entire continuous space. Sec-
ond, in many scenarios, we need to account for the density of resources
moved through a transportation system. This is because congestion on
overpopulated transportation paths can lead to increased transportation
costs [11]. For example, if a large number of students simultaneously
attempt to use a narrow footpath to walk between campus buildings,
this can lead to traffic congestion resulting in delays for students. The
architects may thus need to consider the density of student traffic when
planning pavements, i.e., constructing wider footpaths where pedestrian
flow is larger, and narrower ones where fewer students walk. The exist-
ing methods would thus have been unsuitable for the problem of the
architects.

The Dynamic Monge-Kantorovich (DMK) model [12–14] has been devel-
oped to address these challenges.* It models transportation problems
using dynamical equations. First, unlike previous approaches that focus
on inherently discrete problems, DMK offers an efficient computational
approach that enables solving problems defined over a continuous two-
dimensional space. The DMK performs a fine-grained discretization
of the continuous solution space and finds numerical solutions using
standard finite-element techniques. This effectively yields high-resolution
density maps for continuous problems. Second, it allows for imposing
traffic constraints such as prioritizing high-traffic paths over many small
parallel paths, and the solution includes information on traffic density,
which can help prevent congestion. This makes DMK a more practical
framework for solving real-world transportation problems. We use our
example to illustrate this. The architects allow individuals to move freely
around at each centimeter of the grass in the open space, which we can
consider as a fine-grained discretization of the solution space. Over time,
the students formed the “desire paths”, visible from an aerial perspec-
tive as varying shades of green and brown across the open area. This
pattern resembles a density map of pedestrian movement. Consequently,
architects could use the density information to construct wider paths
where more people walked, effectively preventing congestion.

However, DMK also has a few limitations. While in many practical
scenarios, the solution space is indeed continuous, planners often seek
for a discrete solution, for example, a graph. As mentioned above, the
DMK yields a high-resolution density map. While this solution provides
a good approximation of the optimal solution, discretizing it to a graph
presents a challenge due to the desiderata often associated with graphs,
such as ensuring there are no redundant paths. In our example, the
landscape architects at MSU also looked for a discrete solution, which

* Note that the DMK was introduced in 2018, which marked the start of my research on
this topic.
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can be seen as a graph of paved paths. Identifying which paths to pave
from the density map of worn-out grass involved delineating boundaries
and designating some areas of grass as paths, while others, potentially
redundant and less frequented paths, were designated as areas not to be
walked over. Thus, the density map of “desire paths” was discretized
into a graph of formalized footpaths.

Another challenge of the DMK is that it often requires a substantial
number of steps (updates) to achieve convergence. This poses challenges
for its practical implementation in time-sensitive scenarios like emergency
transportation problems of people [15] or drugs [16]. In the MSU example,
this means the following. Assume the landscape architects propose to
observe grass areas for one year to track “desire paths” before paving.
They argue that well-defined paths remain unchanged only after nearly all
students habitually utilize them, a process that typically takes about a year.
We can think of this as running the DMK algorithm until convergence for
365 time steps. Concerned about safety, the university, however, seeks to
minimize the number of days with permitted foot traffic in grass areas
and cannot afford to leave them without formalized footpaths for an
entire year.

Finally, the DMK has been introduced as a purely mathematical frame-
work, and it remains unclear whether it is suitable for informing real-
world applications. Previous OT approaches have proven successful in
machine learning tasks extending beyond the conventional problems
of transporting goods or people. These approaches have been utilized
in shape recognition [4, 17], object detection [18], cross-domain image
alignment [19], cell classification [4, 20, 21], and measuring linguistic
similarities [4]. The open question of DMK is thus, whether it can be
similarly applied to inform various other machine learning tasks beyond
traditional optimal transport problems.

In the thesis, we address the aforementioned limitations and open
questions of the DMK. We now offer a detailed outline of the thesis and
its contributions.

1.2 Outline and Contributions

Chapter 2 provides an introduction to OT theory and presents a theo-
retical foundation for our contributions. It begins with a review of the
mathematical discipline and then formally introduces the DMK model.

Chapter 3 examines scenarios where the solution space is continuous but
requires a discrete solution, and approaches the problem from a more
theoretical perspective. Our first contribution lies in proposing different
methods to discretize a density map into graphs and hypergraphs. Graphs
consist of edges, each connecting precisely two nodes (vertices), whereas
hypergraphs permit hyperedges, which can link multiple vertices. In our
MSU example, we can envision a hyperedge as a plaza connecting multiple
individual paths. The primary distinction from a regular crossing of two
paths (through a node) lies in the larger space the plaza (hyperedge)
offers, allowing higher numbers of students to move freely across it. This
can effectively prevent congestion of frequently used paths and turns.
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Secondly, we investigate strategies aimed at reducing the costs and
time requirements associated with running the DMK until it reaches
convergence. We study early stopping strategies and find that stopping the
algorithm after only a few time steps, long before it reaches convergence,
leads to only a slight decrease in the optimality of the discretized solution
compared to letting the algorithm continue until convergence. Early
stopping thus presents an efficient strategy for practical applications
constrained by cost and time considerations. Applying our findings to
the MSU example means that paths established after, for instance, 50
days—though not yet used by all students, with some still taking their
own routes—will show no significant change compared to waiting for the
remaining year. Paving the paths after 50 days could thus substantially
cut safety costs while preserving path optimality, making them highly
likely to be accepted by all students.

Chapter 4 shifts the focus to scenarios where the solution space is
discrete. Here, we use a special variant of the DMK algorithm tailored
for such settings, known as the graph DMK. A discrete solution space is
often prevalent in problems extending beyond classical transportation.
For instance, social networks are typically represented by graphs [22].
Consequently using machine learning techniques for analyzing social
networks, will require solving problems on graphs.

We demonstrate the versatility of the graph DMK algorithm in three
case studies, showcasing how it can effectively contribute to real-world
machine learning tasks across different domains. Thereby, Graph DMK
offers fast convergence and the ability to accommodate traffic density
constraints. Specifically, we use graph DMK for solving clustering prob-
lems in social networks under varying traffic rates affecting the spread
of social information; for segmenting images by extracting networks
from satellite images of rivers or retinal images of blood vessels; and
for classifying images by analyzing color flow patterns between them
to determine their similarities. Our results demonstrate that the DMK
algorithm can effectively inform a great variety of machine learning tasks,
underscoring the impact and significance of our research.

In conclusion, this thesis enhances the practicality of DMK for real-world
optimal transport problems by identifying practical and efficient solutions
to transportation problems. Moreover, our contributions pave the way
for future applications of DMK to advance machine learning domains
beyond transportation.
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In this chapter, we introduce the basic concepts of Optimal Transport
theory (OT) and present the theoretical foundation for our contributions.
We begin with a historical overview, highlighting the seminal contribu-
tions of Gaspard Monge and Leonid Kantorovich, who formulated the
mathematical optimization problem of transporting materials between lo-
cations (Section 2.1). We then introduce the Dynamical Monge-Kantorovich

Model [12] (Section 2.2), which allows us to impose traffic constraints on
the solution, such as controlling the capacity (congestion) of transport
paths, which affects the spatial extent occupied. We explore this phe-
nomenon in detail in the section on Branched and Congested OT (Section
2.2.1). In this thesis, we study the solutions of these types of OT problems,
their properties, and their implications.

2.1 From Monge and Kantorovich to Optimal

Transport Densities

OT theory provides a robust framework for optimizing resource allo-
cation while minimizing transportation costs. Its roots can be traced
back to Gaspard Monge’s pioneering exploration of material transport, a
foundation later refined and reshaped by Leonid Kantorovich’s transfor-
mative insights. In the following paragraphs, we examine these influential
contributions and highlight the connections between them.

Before going into more detail, however, we present some measure theory
concepts that form the basis of the theoretical framework introduced in
this chapter.

2.1.1 Measure Theory Concepts

The essential concepts for understanding OT theory are taken from
the book "Measure Theory and Probability Theory" [23]:

▶ A measure, denoted as č, is a non-negative set function defined
on a sigma-algebra Σ of subsets of a set ¬. In our context, we
primarily work with measures defined on subsets of ℝĚ. The
term marginal of a measure č refers to the distribution of a
measure along a specific dimension or coordinate.

▶ A measurable space is a pair (¬,Σ) consisting of a set ¬ and a
sigma-algebra Σ of subsets of ¬.

▶ A pivotal measure in this context is the Lebesgue measure, de-
noted as Č, or ČĚ when explicitly referring to the Ě-dimensional
Lebesgue measure. The Lebesgue measure is defined on the
Borel Ă-algebra B

Ě of subsets of ℝĚ, encompassing sets that
can be precisely measured using real numbers. This Ă-algebra
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1: These concepts can be intuitively de-
fined in the following way. We add rele-
vant references next to each item where
more precise definitions can be found.

▶ Open Set: A set where each point
has a neighborhood entirely con-
tained within the set.

▶ Bounded Set: A set that can be
enclosed within a finite-radius
ball.

▶ Convex Set: A set where the
line segment connecting any two
points is entirely within the set.

▶ Connected Set: A set that cannot
be separated into disjoint parts.

▶ Smooth Boundary: A boundary
free of abrupt irregularities or
singularities, approximable by a
smooth curve or surface.

More details about these notions can be
found in the book "Principles of Mathe-
matical Analysis" [25].

includes all open sets and is generated by open intervals, pro-
viding a foundation for rigorous measurement in real analysis.
It is commonly used as the standard measure on ℝ

Ě.
▶ A function Đ : ¬ → ¬ is considered a measurable map if the

pre-image of any measurable set is measurable, i.e., for all sets
þ in Σ, Đ−1(þ) is also in Σ.

▶ The density function, often denoted as Ĝ , represents a measure
in terms of an integral. Given a measure č and the Lebesgue
measureČĚ , the density function Ĝ satisfies the Radon-Nikodym
derivative condition, which ensures its existence and connection
to č:

č(ý) =

+

ý

Ĝ ĚČĚ , ý ∈ Σ.

Here, Ĝ characterizes the distribution and intensity of the mea-
sure č with respect to the Lebesgue measure ČĚ. The function
Ĝ is required to be measurable, and it facilitates the integration
of various functions involving the measure č. For the measure
č and the Lebesgue measure ČĚ to interact as described in
the equation above, č must be Ă-finite, ensuring that these
mathematical operations are well-defined. Throughout our ex-
ploration, we may interchangeably refer to measures č and their
density functions Ĝ using the same notation. In this context,
we say that č is absolutely continuous with respect to the Lebesgue

measure.
▶ To simplify notation, we use

+
Ĝ ĚĮ to represent the integral of

a function Ĝ with respect to the Lebesgue measure, simplifying
the notation for clarity.

▶ A property holds almost everywhere (a.e.) if the set of points
where the property does not hold has measure zero. In other
words, the exceptions are negligible in terms of measure.

2.1.2 Gaspard Monge’s Transportation Challenge

The foundations of OT theory were laid by Gaspard Monge in 1781 [24],
culminating in his seminal formulation. Monge’s problem, rooted in
practical considerations, addressed the optimal redistribution of material.
Specifically, it addressed the strategic challenge of moving matter from
one location ("déblais," excavation materials in French) to an equivalent
volume of terrain elsewhere ("remblais," fill materials). The goal was to
find the most efficient mass transportation strategy, where the cost of
transportation is a function of both mass and distance. We formalize
these concepts below.

Let ¬ ¢ ℝ
2 be an open, bounded, convex, and connected 2-dimensional

domain with a smooth boundary1. Let Ĝ + and Ĝ − be two measures
defined on ¬ to be transported. Let’s assume that the material capacities
of both the source and the target (commonly referred to as sink) are
identical, denoted by Ĝ +(¬) = Ĝ −(¬). From now on let’s use the term
"balanced" to describe this property. Consider the set Tof measurable
maps Đ : ¬ → ¬ defined as

T( Ĝ + , Ĝ −) := {Đ : Đ# Ĝ
+
= Ĝ −},



2.1 From Monge and Kantorovich to Optimal Transport Densities 9

2: Lower Semicontinuous: A function
is lower semicontinuous if it does not
decrease too abruptly; small variations in
its input produce only small variations in
its output, specifically in the downward
direction. [28].

where the image measureĐ# Ĝ
+ is defined asĐ#( Ĝ

+)(ý) := Ĝ +(Đ−1(ý)) ∀ý

measurable set in ¬; we refer to Tas the set of transport maps. This set
represents all possible ways to transport mass from the source to the
target while preserving the mass balance.

Let a cost function ę : ¬ × ¬ → ℝ+ := ℝ
+ ∪ {0} define the expense

associated with transporting mass from one point in the domain to
another.

Having established this notation, we can proceed to define the first
fundamental problem in OT [24]:

Definition 2.1.1 Monge Problem: Given two balanced measures Ĝ + and

Ĝ − defined on ¬, and a cost function ę : ¬×¬ → ℝ+, find Đ ∈ T( Ĝ + , Ĝ −)

that minimizes the transportation cost functional

Ię(Đ) :=

+

¬

ę(Į, Đ(Į))ĚĜ +(Į).

2.1.3 Kantorovich’s Relaxation: From Deterministic to

Probabilistic

Despite its elegance, Monge’s problem often faced challenges regard-
ing the existence and uniqueness of solutions. Constraints imposed by
measure-preserving maps and intricacies within the cost function ę

could render the problem ill-posed, raising doubts about the feasibility
of obtaining the transport maps in T.

Leonid Kantorovich’s pivotal contributions during the mid-20th century
[26] brought new perspectives into the field by addressing the ill-posed
nature of Monge’s problem. Kantorovich’s pioneering insight shifted the
focus from deterministic transport maps to probabilistic transport plans,
thus introducing a more tractable formulation [27].

Consider the set Π( Ĝ + , Ĝ −) of all probability distributions ÿ on ¬ ×¬

such that ÿ has marginals Ĝ + and Ĝ −. Here, ÿ(Į, į) represents the joint
measure that characterizes the transportation plan between Į and į

within the domain ¬. Kantorovich’s formulation can then be stated as:

Definition 2.1.2 Kantorovich Primal Problem: Given two balanced

measures Ĝ + and Ĝ − defined on ¬, and a cost function ę : ¬ ×¬ → ℝ+,

find a transport plan ÿ ∈ Π( Ĝ + , Ĝ −) that minimizes the functional

Kę(ÿ) :=

+

¬×¬

ę(Į, į)Ěÿ(Į, į).

Kantorovich transformed the initial problem, permitting solutions to take
the form of probability distributions in the joint space ¬×¬, rather than
strict deterministic maps. This ingenious relaxation shifted the focus to
redistribution, enabling the division of mass from the source to various
destinations.

It is worth noting that for any cost function ę : ¬ × ¬ → ℝ+ which
is lower semicontinuous2, Kantorovich’s problem admits a solution, as
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stated in the next theorem (and proved in the work of Kantorovich and
Santambrogio [26, 29]):

Theorem 2.1.1 Admissibility Theorem: For any lower semicontinuous

cost function ę : ¬ ×¬ → ℝ+, the Kantorovich Primal Problem admits a

solution ÿ ∈ Π( Ĝ + , Ĝ −).

One of the notable advantages of Kantorovich’s formulation is its versa-
tility in reformulation:

Definition 2.1.3 Kantorovich Dual Problem: Given two balanced mea-

sures Ĝ + and Ĝ −, and given a cost function ę : ¬ ×¬ → ℝ. Let Dę be the

set:

Dę := {(ī, Ĭ) ∈ ÿĘ(¬)×ÿĘ(¬)33: We use the notation ÿĘ(¬) to ref-
erence the space of continuous and
bounded functions.

: ī(Į)+Ĭ(į) f ę(Į, į)∀ (Į, į) ∈ ¬×¬}

Find (ī∗ , Ĭ∗) ∈ Dę that maximizes the functional:

I( Ĝ + , Ĝ −)[ī, Ĭ] :=

+

¬

ī(Į)ĚĜ +(Į) +

+

¬

Ĭ(į)ĚĜ −(į)

While the primal problem focuses on finding the OT planÿ that minimizes
the transportation cost, the dual problem seeks to find functions ī and Ĭ
that maximize the total cost, subject to specific constraints. These dual
functions ī and Ĭ are known as Kantorovich potentials.

The duality between the two problems is guaranteed by the following
theorem:

Theorem 2.1.2 Kantorovich Duality: Given two balanced measures Ĝ +

and Ĝ −, and a cost function ę : ¬ ×¬ → ℝ+ that is lower semicontinuous,

the following equality holds:

min
ÿ∈Π( Ĝ + , Ĝ −)

Kę(ÿ) = max
(ī,Ĭ)∈Dę

I( Ĝ + , Ĝ −)(ī, Ĭ)

A proof of this theorem can be found in the work of Villani [30].

2.1.4 The Ĉ1-OT Problem: ę(Į, į) = |Į − į |

While Monge and Kantorovich proposed results defined for general
spaces ¬ and cost functions ę, this section focuses on a more specific
formulation known as the Ĉ1-OT Problem. This formulation is obtained
by setting ę(Į, į) = |Į − į |, where | · | denotes the Euclidean distance.

Our emphasis on the Ĉ1 version of the OT problem stems from its ability
to be reformulated into the Monge-Kantorovich Equations, outlined in
the following definition (see Definition 2.1.4 below). This specific setup
serves as the basis for the dynamical formulation at the core of this thesis,
introduced in the next section.

Definition 2.1.4 Monge-Kantorovich Equations: Let Ĝ + and Ĝ − be two

balanced measures. Assume that they admit Ĉ1-densities44: This implies that the functions defin-
ing the measures are in Ĉ1, i.e., the in-
tegral of their absolute values over the
entire space is finite.

. Find č∗ and ī∗
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[32]: Tero et al. (2007), ‘A mathematical
model for adaptive transport network in
path finding by true slime mold’

[33]: Bonifaci et al. (2012), ‘Physarum can
compute shortest paths’

that solve the following Monge-Kantorovich equations:

−div(č∗∇ī∗) = Ĝ in ¬ (2.1)

|∇ī∗ | f 1 in ¬ (2.2)

|∇ī∗ | = 1 a.e. in č∗ > 0 (2.3)

with Ĝ = Ĝ + − Ĝ −.

The divergence div(č∗∇ī∗) represents the rate at which a quantity flows
or spreads out from a given point. The function č∗ is called OT density

map; the function ī∗ is one of the Kantorovich potentials mentioned in
Definition 2.1.3.

The link between these two problems is established through the resolution
of another OT formulation called the Beckman problem. We refrain from
presenting this problem here, as it involves a level of theory beyond the
immediate scope of interest in this thesis. However, we encourage the
interested reader to explore the details in the work of Brasco (2010) [31].

2.2 The Dynamical Monge-Kantorovich Model

In this chapter, we present a dynamical formulation for the Ĉ1-OT
problem, which serves as the foundation for the work presented in this
thesis. This formulation, as originally conjectured by Facca et al. [12–14],
provides solutions to the Monge-Kantorovich equations (Definition 2.1.4)
in long-term configurations. The origin of this conjecture is inspired
by the model proposed by Tero et al. (2007) [32] and its theoretical
connections to Kantorovich’s problem, as established by Bonifaci et al.
(2012) [33]. Detailed explanations of the concepts of both works are given
in Chapter 3.

Definition 2.2.1 Dynamical Monge-Kantorovich Problem:

Let Ĝ + and Ĝ − be two balanced measures. Assume that they are continuous

with respect to the Lebesgue measure. Find (č, ī) : ([0,+∞),¬) → (ℝ+ ,ℝ)

that solve the following system of equations, complemented by homogeneous

Neumann boundary conditions5 5: Homogeneous Neumann boundary con-

ditions require that the outward normal
derivative of the function č is zero at the

boundary ( ĉč
ĉĤ

= 0), as formally defined
by Evans (2022) [34]. This implies that
there is no mass flow across the bound-
ary, which means that no mass enters
or leaves the system through the bound-
aries

:

−div (č(Ī , Į)∇ī(Ī , Į)) = Ĝ +(Į) − Ĝ −(Į) (2.4)

ĉĪč(Ī , Į) = [č(Ī , Į)|∇ī(Ī , Į)|]ă − č(Ī , Į) (2.5)

č(0, Į) := č0(Į) > 0. (2.6)

Eq. (2.4) expresses that the divergence div(č∇ī) is equal to the difference
between the source and sink measures, indicating spatial balance. This
concept is characterized by the function ħ = č∇ī, following the Fick-

Poiseuille rule. The Fick-Poiseuille flow [35] is a concept related to the flow
of substances in confined spaces, such as fluid flow in small tubes or pipes.
It combines principles from Fick’s first law (describing diffusion) and
Poiseuille’s law (explaining viscous flow in pipes). This rule describes how
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mass is transported in response to the concentration gradient and finds
applications in microfluidics and related fields. Equation (2.5) dictates
the dynamics of the system, where the parameter ă plays a crucial role
in shaping various transportation mechanisms. Depending on its value,
the transportation map č will establish connections between the source
and the sink, utilizing either broad or narrow "roads" in the space. A
concise exploration of the impact of this parameter is presented in the
forthcoming Section 2.2.1 (Branched and Congested OT) on the facing
page. The conductivity distribution č0 delineates the initial distribution
of the transport density č.

Solving the Dynamical Monge Kantorovich Problem requires finding the
steady state solution (č∗ , ī∗) : ¬ → ℝ+ ×ℝ for Eqs. (2.4) and (2.5). This
solution characterizes the system in the long term, i.e,

(č∗(Į), ī∗(Į)) = lim
Ī→+∞

(č(Ī , Į), ī(Ī , Į)). (2.7)

Conjecture: DMK Solutions as Solutions to the MK Problem

It is conjectured that the OT density č∗ and the potential ī∗, as defined in

Eq. (2.7), serve as solutions to the Monge-Kantorovich Problem.

Although a formal proof is yet to be established, the authors have
gathered significant theoretical and numerical evidence that supports
the proposed idea [12–14].

Under certain continuity conditions on the partial derivatives of č∗ and
ī∗ [13, 14], the pair (č∗ , ī∗) minimizes the Lyapunov-candidate functional
Ldefined as

Figure 2.1: MK Problem: The plot illus-
trates the support of the solution č∗, rep-
resented by the color bar. The OT prob-
lem involves transporting Ĝ + supported
on the green rectangles to the target Ĝ −

supported by the red rectangle. The prob-
lem is defined in ¬ = [0, 1]2, with trian-
gles representing the discretization of the
numerical solution space. Plot extracted
from our published work [36].

L(č, ī) :=
1

2

+

¬

č|∇ī |2ĚĮ +
1

2

+

¬

čČ(ă)

Č(ă)
ĚĮ, (2.8)

where Č(ă) = (2−ă)/ă. Here, the left side of the functional measures total
energy dissipation during transport, while the right side captures the cost
of constructing transport infrastructure. The equilibrium solution (č∗ , ī∗)

balances energy minimization and transport capacity optimization. We
usually call this the transportation cost associated with the solutions,
and in the next chapters, we will use it to evaluate their quality.

Solutions to the DMK problem, and hence to the MK equations, are
approximated using a finite element scheme that discretizes both space
and time [12–14]. This approach combines P1 Finite Elements with forward
Euler time stepping. P1 Finite Elements is a method for approximating
solutions to partial differential equations (PDEs) by dividing the domain
into a mesh of simple shapes (elements) like triangles and solving the
equation within each element. Forward Euler time stepping is a numerical
method for solving ordinary differential equations (ODEs) by iteratively
advancing the solution in small steps forward in time [37]. See Figure
2.1 for a visual representation of the support of the transport density č∗

obtained as a solution to a synthetically generated MK problem.
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2.2.1 Branched and Congested OT

In the framework of the Monge-Kantorovich formulation discussed in
Definition 2.1.4, the transportation paths used by the solution form
straight lines connecting the source and the sink distributions [12].
Notice this, for instance, in the solution shown in Figure 2.1. However,
practical transport scenarios often require the ability to either incentivize
or penalize mass concentration along these paths. The DMK model,
introduced in Section 2.2, allows us to model such situations by adjusting
the parameter ă.

This ă parameter affects the transport of resources, primarily by dictating
the relationship between the transport density map at different points of
the domain ¬. This is a consequence of the fact that if we define these
as

ý = ħă(Į1) + ħ
ă(Į2), and þ = (ħ(Į1) + ħ(Į2))

ă ,∀Į1 , Į2 ∈ ¬,

Figure 2.2: BT Problem: Solution to the
problem introduced in Figure 2.1 found
using the DMK model for ă = 1.5. As
mentioned, the solution that enforces
traffic in a concentrated way. The topol-
ogy of the support resembles a net-
work, with a fractal-like structure. Plot
extracted from our published work [36].

then, for ă > 1, we obtain ý > þ. This indicates that the combined
transport of resources proves to be economically more advantageous
than their separation. If ă f 1, the reverse holds. These two scenarios
correspond to the fields of Branched Transportation (BT) and Congested

Transportation (CT) theories, respectively.

In the area of Branched Transportation (BT), a significant challenge lies
in the numerical solution of these problems. The BTs are known to have
an NP-hard nature [38]. Nonetheless, the presence of the superlinear
growth given by ă incentivates an intense flux of mass from the source
to the target distribution. This results in solutions characterized by a
"fractal-like" topology, where repetitive patterns become common. An
example of such type of solution can be seen in Figure 2.2 for the OT
problem presented in Figure 2.1. A detailed description of such behavior
can be found in [39, 40].

Figure 2.3: CT Problem: Solution to the
problem introduced in Figure 2.1 found
using the DMK model for ă = 0.5. As
mentioned, the solution avoids conges-
tion which makes it cover a larger area
of the domain. Plot extracted from our
published work [36].

The Congested Transport Problem (CT) emerges as a distinct category
of OT problems. In CT, the goal is to penalize mass concentration as
the transition from Ĝ + to Ĝ − occurs [10]. These types of problems find
numerous real-world applications, including the study of urban traffic
dynamics and crowd motion [9, 10], where individuals choose which
paths to transit by minimizing the number of other individuals they
encounter. An example of such behavior can be seen in Figure 2.3 where
the solution occupies a wide domain extension.

In the following sections, we look at the practical applications of the
DMK model, intending to exploit its versatility to enhance its practicality
for solving real-world optimal transport problems.
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This chapter examines situations where the solution space is continuous
but a discrete solution is required. Building on the insights of Chapter 2,
which introduced the DMK model for solving OT problems in continuous
2-dimensional spaces, we make several contributions. Our first paper
focuses on proposing different methods to discretize transport density
maps into graphs. In our second work, we use these graphs to analyze
strategies to decrease the cost and time required to run the DMK to
convergence. Furthermore, we take a step beyond by introducing a
method that transforms the transport density maps into hypergraphs
consisting of hyperedges that can have more than two nodes. Thus, this
chapter establishes a link between solutions to the continuous problem
and some discrete structures. In the subsequent sections, we will elaborate
on these contributions in detail. References supporting these findings
are available in the Appendix.

3.1 Preamble

Before moving into the details of the papers, we provide some essential
background. We begin with an introduction to the concept of graphs
and related notions, followed by presenting a variant of the DMK model
defined on these discrete structures.

3.1.1 Graphs

We will establish some formal definitions [41]:

Definition 3.1.1 An (undirected) graph1 1: In this context, we use the terms
"graph" and "network" interchangeably.

, denoted as ă = (Ē, ā), is

composed of two fundamental components: Ē , a nonempty set representing

vertices (or nodes), and ā, a set of edges. These edges link either one or two

vertices, referred to as their endpoints, establishing connections between them.

We denote by Ċ the number of nodes |Ē |, and by ĉ the number of edges |ā |.

Definition 3.1.2 Graphs that have a number assigned to each edge are called

weighted graphs. We represent them by ă = (Ē, ā,ē) whereē is the set

of weights.

Definition 3.1.3 A subgraph of a graphă = (Ē, ā) is a graphĄ = (ē, Ă),

whereē ¦ Ē and Ă ¦ ā.

Definition 3.1.4 Consider a nonnegative integer Ĥ and an undirected graph

ă. A path from a vertex ī to a vertex Ĭ in ă is defined as a series of Ĥ

edges, denoted as ě1 , ě2 , . . . , ěĤ , where there exists a sequence of vertices

Į0 = ī, Į1 , Į2 , . . . , ĮĤ−1 , ĮĤ = Ĭ such that each edge ěğ connects the vertices



18 3 From Continuous Spaces to Discrete Structures

3: In graph theory, incidence indicates
which vertices are connected to which
edges in a graph.

4: The functions č(Ī) and ī(Ī) represent
the discrete analogs of conductivity and
potential in the continuous case (in the
Definition 2.2.1).

Įğ−1 and Įğ , for ğ ∈ [Ĥ]22: We denote by [Ĥ] the set {1, ..., Ĥ}. .

Intuitively, a path is a sequence of edges that starts at a vertex within a
graph and continues by traversing the edges of the graph from vertex to
vertex.

Definition 3.1.5 An undirected graph is said to be connected if there is a

path between every pair of different vertices in the graph.

Sometimes alternative representations are used to talk about graphs
using matrices, e.g., via their incidences3.

Definition 3.1.6 The incidence matrix B (of size Ċ ×ĉ) of an undirected

graph ă is a binary matrix where each row represents a vertex, each column

represents an edge, and each entry Bğ Ġ is defined as:

Bğ Ġ =

{
1, if vertex ğ is incident to edge Ġ ,

0, otherwise.

Many of the models presented in the following section use a particular
variation of the incidence matrix:

Definition 3.1.7 The signed incidence matrix (of size Ċ × ĉ) of an

undirected graph ă is a ternary matrix where each row represents a vertex,

each column represents an edge with a previously chosen orientation, and

each entry Bğ Ġ is defined as:

Bğ Ġ =





1, if vertex ğ ∈ Ē is the starting point of edge Ġ ∈ ā,

−1, if vertex ğ ∈ Ē is the ending point of edge Ġ ∈ ā,

0, otherwise.

Nodes that are incident to only a single edge are known as leaves [41];
these will be relevant in the following sections.

3.1.2 The DMK Model on Graphs

We now present a special variant of the DMK algorithm tailored for
graphs.

Let B be a signed incidence matrix of the weighted graph ă = (Ē, ā,ē) for
a previously chosen orientation of the edges. Let Ĝ be an Ċ-dimensional
vector of source-sink values, with entries ensuring

∑
ğ∈Ē Ĝğ = 0. Analogous

to the continuous scenario, we have functions č(Ī) ∈ ℝ
ĉ and ī(Ī) ∈ ℝ

Ċ

representing the conductivity and potential at time Ī, respectively4.
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Definition 3.1.8 Graph DMK:

The graph Dynamical Monge-Kantorovich equations are given by:

Ĝğ =
∑

ě∈ā

þğě
čě
ℓě

(
īğ − īĠ

)
, ě = (ğ , Ġ), ∀ğ ∈ Ē, (3.1)

č′
ě =

[
čě
ℓě

|īğ − īĠ |

]ă
− čě ∀ě = (ğ , Ġ) ∈ ā, (3.2)

čě(0) > 0, (3.3)

where ℓě > 0 denotes the weight of the edge ě and ă ∈ (0, 2) is a parameter

that determines the optimization mechanism.

Equation (3.1) is Kirchhoff’s law; Eq. (3.2) is the discrete dynamics
describing the feedback mechanism between conductivity and potentials;
Eq. (3.3) is the initial condition. The stationary solution of this dynamical
system can be mapped to the solutions of an optimization problem where
the cost function can be interpreted as a network transportation cost
[42]:

Lă(č(Ī)) =
1

2

∑

ě

čě(Ī)

(
1

ℓě

∑

Ġ

þě ĠīĠ(č(Ī))

)2

ℓě

+
ă

2

∑

ě

čě(Ī)(2−ă)/ă

2 − ă
ℓě , (3.4)

where č(Ī) = {čě(Ī)}ě . The first term is the network operational cost,
while the second represents the cost to build the network, similar to the
function defined in Section 2.2.

In particular, the equilibrium point of č(Ī) corresponds to a stationary
point of the energy function. For ă = 1, the energy function is convex,
making the equilibrium point a global minimizer. However, for ă > 1,
the energy function loses its convexity, leading to a more complicated
optimization landscape [12].

3.1.3 Biological Motivation

The DMK model and its discrete counterpart, the Graph DMK, draw
inspiration from a different model [32], which was developed to explore
the dynamics of the Physarum polycephalum (PP), a fascinating acellular
slime mold. This model has been instrumental in understanding the
PP’s remarkable ability to navigate efficiently between food sources,
with a particular emphasis on finding the shortest path. Experimental
evidence [43] supports this finding, highlighting the PP’s sophisticated
pathfinding capabilities.

Building on that foundational work, Bonifaci et al. [33] demonstrated the
equivalence of the Graph DMK model for ă = 1 to a specific OT problem,
defined on a graph.
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5: Eq. (2.5) corresponds to the adaptation

equation mentioned in Definition 2.2.1:

ĉĪč(Ī , Į) = [č(Ī , Į)|∇ī(Ī , Į)|]ă − č(Ī , Į).

Definition 3.1.9 Given a forcing term Ĝ satisfying
∑
Ĭ∈Ē ĜĬ = 0, find

č = {čě}ě∈ā such that it minimizes the quantity

∑

ě∈ā

čěℓě , (3.5)

where ℓě is the weight of the edge ě.

They demonstrated that by utilizing the solutions ī and č for the Graph
DMK problem to define a flux function, čě :=

čě
ℓě
(īğ − īĠ) for ě = (ğ , Ġ),

the resulting č solves the minimization problem outlined in Equation
(3.5).

In the following chapters, building on this biological motivation, we
compare our results with the behavior of real slime molds.

3.2 Publications

After establishing these foundational concepts, we provide an overview
of the individual papers and their contributions.

The Publication

[42] Baptista, D.*, Leite, D.*, Facca,
E., Putti, M., & De Bacco, C. (2020).
Network extraction by routing op-
timization. Scientific reports, 10(1),
20806.
* Equal contributions.

3.2.1 Network Extraction by Routing Optimization

This section is based on the content of the publication "Network Extraction
by Routing Optimization" [42].

About the Journal

Scientific Reports is a multidisci-
plinary journal from the Nature Port-
folio that publishes original research
from across all areas of the natural
sciences, psychology, medicine, and
engineering.

As illustrated in Chapter 2, solutions to the original 2-dimensional DMK
problem, particularly when ă g 1, exhibit network-like structures. In
this work, we introduce a methodology to transform these solutions into
graphs.

Our approach involves several steps. The first step is to solve the routing
problem by computing the steady-state solutions to the DMK equa-
tions. The routing optimization problem seeks the steady-state solu-
tion (č∗ , ī∗) : ¬ → ℝ

+ × ℝ of Eq. (2.5)5, namely (č∗(Į), ī∗(Į)) =

limĪ→+∞(č(Ī , Į), ī(Ī , Į)).

In the second stage of our process, we present a pre-extraction method
to produce an initial network based on the solution of the routing
optimization problem. The process begins by defining nodes based on
the discretization of the space, typically using the vertices of a finite
element mesh. Edges between nodes are then determined based on the
values of the optimal transport density č∗, following specific rules for
selecting nodes, edges, and assigning weights. More details on these rules
can be found in [42]. These resulting networks are called pre-extracted

networks; an example of which is shown in Figure 3.1.
Figure 3.1: Pre-extracted network show-
ing the solution of the OT problem be-
tween the source Ĝ + (green rectangles)
and the sink Ĝ − (red rectangles). The net-
work, depicted in black, is constructed
from the support of č∗, with intensity
indicated by the color bar. This plot is
extracted from our published work [42].

The networks obtained in the previous step often have more nodes and
edges than necessary. In this final step, we remove them by formulating
and solving a new routing problem on the pre-extracted graph, using the
Graph DMK model (Definition 3.1.8). This process allows us to identify
the nodes and edges that are most relevant to the new transport process.
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The unused elements are then removed from the graph, resulting in what
we refer to as a filtered graph.

We provide an implementation of this methodology as a Python tool
called Nextrout. This tool contains the entire pipeline, simplifying the
complex process of network extraction and promoting accessibility for
practitioners.

Personal Contributions to the Paper I proposed various graph rep-
resentations during the design phase and introduced a comprehensive
quality measure for evaluating the extracted graphs. Additionally, I
contributed to writing several sections of the network extraction code
and conducted extensive experiments on synthetic data. Moreover, a
substantial portion of the paper’s content was authored by me.

3.2.2 Convergence Properties of Optimal Transport-based

Temporal Networks

This section is based on the material covered in the publication "Con-
vergence Properties of Optimal Transport-based Temporal Networks"
[36].

The Publication

[36] Baptista, D., & De Bacco, C.
(2022). Convergence properties of
optimal transport-based temporal
networks. In Complex Networks &

Their Applications X: Volume 1, Pro-

ceedings of the Tenth International Con-

ference on Complex Networks and Their

Applications COMPLEX NETWORKS

2021 10 (pp. 578-592). Springer Inter-
national Publishing.

As discussed in Chapter 2, the original DMK model seeks to solve an
OT problem iteratively. It starts with an initial guess č0 and updates it
through its equations until reaching the equilibrium state č∗, thereby
solving the transportation problem between source Ĝ + and the target Ĝ −.
Building on our previous work, we present a method that converts this
sequence of updated functions into a family of graphs that evolve over
time. Our study of these sequences aims to reduce the cost and time of
running the DMK until convergence.

These evolving sequences of graphs, called temporal graphs, can be formally
defined as:

About the Conference

The International Conference on

Complex Networks and their Appli-

cations brings together researchers
from diverse scientific communities
who are focused on studying var-
ious aspects of complex networks.
The conference proceedings are pub-
lished by the multinational pub-
lisher, Springer.

Definition 3.2.1 A temporal graph is a sequence {ăĪ}Ī∈Đ , where each ăĪ
is a graph, and Đ is the set of times, often represented as discrete time points

or a continuous time interval.

Each ăĪ in the sequence represents the state of the graph at a specific
time Ī. Temporal graphs are used to model dynamic systems where the
structure of the graph changes over time, capturing the evolution of
relationships or interactions among its nodes.

Let č(Į, Ī) be a transport density (or conductivity) function that varies
with both time and space. This function is obtained as a solution to the
DMK model and can be represented as a sequence, denoted as {čĪ}ĐĪ=0

,
typically up to a convergent state at time Đ. Each čĪ represents an update
of our initial guess č0, computed by following the rules described in
Eqs. (3.1-3.3). We can apply the algorithm described in Section 3.2.1 to
extract a network from each of these functions čĪ . This process leads to
the creation of a new sequence, denoted as {ă(čĪ)}

Đ
Ī=0

, which forms a
temporal graph.

Once these sequences of networks {ă(čĪ)}ĐĪ=0
have been built, we study

the interplay between the network structure and transport efficiency in
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6: The total length of a graph ă is de-
fined as the total sum of the lengths of
its edges.

7: This paper presents a specialized
graph extraction method for network-
like images, to be discussed in detail in
the following chapter.

synthetically generated OT problems. We compare how the candidate
Lyapunov functional L evaluated on the sequence {čĪ}

Đ
Ī=0

compares to
the total length6 of the graphs in the sequence {ă(čĪ)}

Đ
Ī=0

.

Our main finding is that for ă > 1, the total length of graphs in the
temporal sequence significantly decreases at times Īă when the total cost
is nearing the convergent value (č∗), yet the number of iterations remains
far from convergence (Īă j Đ). This suggests that the DMK solver can be
stopped at these times, with minimal impact on its optimal properties.

Furthermore, the behavior of the total length of the graph sequences
derived from the updates also suggests a dynamic process for optimal
network design. This process consists of an initial optimization of trans-
port paths, followed by a consolidation phase in which these paths are
compressed, resulting in more efficient network structures.

We further investigate different temporal sequences, focusing in par-
ticular on the application of our analysis to networks derived from
images capturing changes in the shape of Physarum polycephalum. This
analysis builds on insights from a methodology introduced in [44]7. Our
observations reveal distinct phases in temporal networks: first an explo-
ration phase, followed by a consolidation phase. These results mirror
the patterns observed in synthetic experiments, validating the dynamic
mechanism identified for understanding temporal network evolution.

Personal Contributions to the Paper In this collaborative project, I
extended the model proposed in the previous section [42] to incorporate
temporal sequences, and designed both theoretical developments and
empirical experiments. Through experiments with synthetic data and
exploration of Physarum polycephalum data, I contributed to the vali-
dation and testing of our theoretical constructs. In addition, I actively
participated in the drafting of the manuscript.

The Publication

[45] Baptista, D., & De Bacco, C.
(2023). Convergence properties of
optimal transport-based temporal
hypergraphs. Applied Network Sci-

ence, 8(1), 3.

3.2.3 Convergence Properties of Optimal Transport-based

Temporal Hypernetworks

The content of this section is derived from the publication "Convergence
Properties of Optimal Transport-based Temporal Hypernetworks" [45].

About the Journal

Applied Network Science (ANS) is
an open-access journal with a rigor-
ous peer-review process, providing
researchers and practitioners in the
field with an expanded platform to
share their work. It is part of the
publisher Springer.

Building on our previous analysis of the DMK model’s solutions and
their connections to graphs, we now extend our study to hypergraphs.
Hypergraphs, defined as a generalization of graphs, allow edges to
interact with more than two nodes simultaneously. Formally, hypergraphs
can be defined as [46]:

Definition 3.2.2 A hypergraph is a tuple Ą = (ĒĄ , āĄ), where ĒĄ is the

nodeset and āĄ is the set of hyperedges. Each hyperedge, denoted as ℎğ ∈ āĄ ,

is mathematically represented as a non-empty subset of Ē : ℎğ ¦ Ē .

Similar to networks, hypergraphs can have a temporal component. For-
mally:
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8: The parameter ă, as presented in Sec-
tion 2.2.1 (Branched and Congested OT)
on page 13, dictates the preferred mode of
resource transportation from the source
to the destination.

Definition 3.2.3 A temporal hypergraph is a sequence {ĄĪ}Ī∈Đ , each ĄĪ

being a hypergraph, and Đ being the set of times, often expressed as discrete

time points or a continuous time interval.

Let č∗ be the conductivity derived as a solution to Eqs. (3.1-3.3). Building
on our previous work presented on Section 3.2.2 (Convergence Properties
of Optimal Transport-based Temporal Networks) on page 21, we propose
a method to transform this 2-dimensional function into a hypergraph.
This transformation is achieved as follows: consider ă(č) = (Ēă , āă) as
the network extracted according to the methodology proposed in Section
3.2.1. Now we define Ą(č) as the tuple (ĒĄ , āĄ), where ĒĄ = Ēă and
āĄ = āă ∪ Đă , with Đă = (ī, Ĭ, ĭ) : (ī, Ĭ), (Ĭ, ĭ), (ĭ, ī) ∈ āă . In simple
terms, Ą(č) includes the graph ă(č) and all its associated triangles.
Figure 3.2 illustrates a hypergraph Ą(č) derived from the solution č of a
synthetically generated transportation problem. The triangles used in
the construction are represented in red.

This hypergraph construction method applies not only to the convergent
state of č∗ but also to any time step before convergence. Therefore,
we can extract a hypernetwork from any intermediate update čĪ . This
allows us to represent OT sequences {čĪ}ĐĪ=0

as temporal hypernetworks
{Ą(čĪ)}

Đ
Ī=0

.

Figure 3.2: Hypergraph Ą(č) extracted
from the solution č of a synthetically
generated transportation problem. The
black circle denotes the source, and the
unfilled circles represent the targets. In
red, the hyperedges of size 3. The time
Ī = 26 when convergence is reached.
This plot is extracted from our published
work [45].

After constructing the hypergraph sequence, we analyze its coverage on
the domain ¬, where the OT problem is defined. This metric, known
as area coverage, represents the total sum of the area covered by the
hypergraph’s edges. In our construction, where edges consist of at most
three nodes, it equals the sum of the area enclosed by the triangles within
the hypergraph.

Our results indicate that the transport costs L tend to converge faster
than the expansion of the coverage in the hypergraphs. This suggests
that the DMK model quickly reduces the cost L of roads connecting
source and destination distributions without an immediate reduction in
coverage. However, the reduction in coverage becomes more pronounced
as the evolution proceeds.

Moreover, we perform a comparative analysis of these higher-order
structures with their traditional network equivalents, assessing them
in light of conventional graph properties. Our findings indicate that
specific transportation schemes, modulated by the parameter ă8, can
benefit from hypernetwork representations. In particular, as the traffic
rate increases, the benefits of using higher-order representations decrease.
This phenomenon can be attributed to the fact that high traffic rates tend
to demand more compact transport schemes, leading to a reduction in
the number of nodes required to transport resources.

Following a methodology similar to that used for graphs, we infer
hypernetworks from images. We are particularly interested in examining
the progression of the area coverage for sequences Ą(čĪ) extracted from
images documenting the growth of the slime mold Physarum polycephalum.
Significantly, our analysis shows that denser regions of the slime mold
structure tend to decrease in thickness as the organism evolves toward a
more uniform state. This observed pattern is consistent with the trends
identified in our synthetic data.
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Personal Contributions to the Paper I modified the model to generate
temporal hypernetworks and extensively analyzed their higher-order
properties. I carried out a thorough comparison of these properties with
those described in a previous publication, which focused on graphs
[36].
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Having established a good understanding of the DMK model and its
implications for network and hypernetwork extraction in continuous
scenarios, we now turn our attention to situations where the solution
space is discrete.

In this section, our focus is on showcasing the versatility of the Graph
DMK algorithm through three case studies: clustering in networks,
network extraction from images, and image classification. These studies
serve to illustrate how the algorithm can effectively address diverse
machine learning tasks across various domains.

Before presenting the specifics of each case study, we introduce some
important preliminary concepts. These fundamental concepts provide
the necessary context for understanding the subsequent papers and form
the cohesive framework that ties the sections together.

4.1 Preamble

This section lays the foundation for the applications discussed later in
this chapter. We begin by introducing the necessary theory and general
framework for using OT in various applications.

4.1.1 The Wasserstein distance

OT allows the comparison of probability distributions, a concept ex-
plored in Chapter 2. This involves converting domain-specific data into
probability distributions Ĝ + and Ĝ − while defining a base cost ÿ that
captures the complexities of the transportation process. Ultimately, OT
aims to achieve an optimal alignment between input data, guided by
geometric constraints. In the following paragraph, we formalize these
concepts and introduce the mathematical counterpart that supports the
utility of these tools in our discussion: the Wasserstein distance.

By now, it should be clear that solving the discrete OT problem involves
finding a function Ą∗ that minimizes the expression:

Ą∗ ∈ arg min
Ą∈Π

∑

ğ Ġ

Ąğ Ġÿğ Ġ , (4.1)

where Π is defined as:

Π =

{

Ą

�����
Ąğ Ġ g 0 ∀ğ , Ġ;

∑

Ġ

Ąğ Ġ = Ĝ +ğ ∀ğ;
∑

ğ

Ąğ Ġ = Ĝ −Ġ ∀Ġ

}

.

Here, ÿğ Ġ represents the cost of transporting mass from location ğ to
location Ġ.
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1: This corresponds to the discrete ver-
sion of theē1 distance. The generalized
ēĦ distance, as defined in [27], is ex-
pressed as:

ēĦ (č, Ď) :=

(
inf

ÿ∈Π(č,Ď)

+

Ĕ
Ě(Į, į)Ħ Ěÿ(Į, į)

)1/Ħ

,

where Ħ ∈ [1,∞), and Π(č, Ď) is the
space of all the probability distributions
ÿ defined on Ĕ × Ĕ , such that they have
marginal distributions č and Ď.

The expression at the core of the Eq. (4.1)

ē1( Ĝ
+ , Ĝ −) :=

∑

ğ Ġ

Ą∗
ğ Ġÿğ Ġ , (4.2)

serves as our similarity measure between the input data, effectively
quantifying their correspondence level. This similarity measure is known
as the Wasserstein distance1 between the distribution Ĝ + and Ĝ −, a fundamental
concept in OT theory.

We use the flux functionč, derived from the Graph DMK, as the solution
to (4.1). Notably, the solution depends parametrically on ă, representing
the chosen transport scheme, thus č becomes č(ă). This leads us to
extend the Wasserstein distance definition, resulting in a new function

denoted asē
ă
1

.

4.2 Publications

Having laid down this fundamental concept, we proceed to give an
outline of each paper and its respective contributions.

4.2.1 Community Detection in Networks by Dynamical

Optimal Transport Formulation

The Publication

[47] Leite, D.*, Baptista, D.*, Ibrahim,
A. A., Facca, E., & De Bacco, C.
(2022). Community detection in net-
works by dynamical optimal trans-
port formulation. Scientific Reports,
12(1), 16811.
* Equal contributions.

The content of this section is derived from the publication "Community
Detection in Networks by Dynamical Optimal Transport Formulation"
[47].

About the Journal

This paper was also published in
the Scientific Reports journal. More
about the journal in Section 3.2.1
(Network Extraction by Routing Op-
timization) on page 20.

In this section, we introduce an OT-based algorithm to discover commu-
nities within networks. Consider a weighted graph, ă = (Ē, ā,ē). We
leverage the insights derived from the neighborhood of a node, denoted
as Ċ(ğ) := { Ġ ∈ Ē | (ğ , Ġ) ∈ ā}, to determine its community affiliation.
This determination depends on a comparison between the distribution
defined over Ċ(ğ) and those associated with neighboring nodes nearby.

As mentioned, we assess the topological similarities between nodes in
the network. We achieve this by defining a discrete distribution, denoted
as ģğ , which encapsulates the topological features of each node ğ. We
then compare this distribution with those of its neighboring nodes.
We postulate that when nodes ğ and Ġ belong to the same community,
their distributions, ģğ and ģ Ġ , should exhibit some degree of similarity.

This similarity is quantified by the Wasserstein cost ē
ă
1
(ģğ , ģĠ) (as

introduced in Eq. (4.2)). It enables us to define a critical metric: the

discrete Ollivier–Ricci curvature [48], defined as ċă(ğ , Ġ) := 1 −
ē

ă
1
(ģğ ,ģĠ )

Ěğ Ġ
.

This curvature will be instrumental in adjusting the edge weights via the
Ricci flow algorithm [49]:

ĭğ Ġ := Ěğ Ġ − ċă(ğ , Ġ) · Ěğ Ġ .
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2: Sinkhorn, short for Sinkhorn Distance,
is a variant of the OT problem that intro-
duces regularization to make computa-
tions more tractable. It was introduced by
Marco Cuturi in 2013 [6]. The Sinkhorn
algorithm iteratively scales the rows and
columns of the transportation matrix to
approximate the optimal solution of the
OT problem.

3: The Infomap algorithm, also known
as the map equation [54, 55], leverages
principles of flow and information the-
ory to define a theoretical framework
for concisely describing the trajectory of
a random walker on a network. It op-
timizes the map equation, which finds
the balance between capturing commu-
nity structures and minimizing the de-
scription length of the random walker’s
movements.

This iterative process, presented as the ORC-Nextrout algorithm, dynami-
cally reshapes the weight distribution of the graph ă, prioritizing the
contraction of intracommunity edges and the expansion of intercommu-
nity ones.

Our algorithm is tested in three different scenarios: synthetic networks,
semi-synthetic networks, and real-world networks. To measure the ef-
fectiveness of our method in community recovery, we use the Adjusted

Rand Index (ARI) [50]. The ARI facilitates a comparative evaluation of the
community partitions generated by our algorithm with those based on
ground-truth clustering.

In our evaluation, our algorithm outperforms the Sinkhorn algorithm
[6] 2, especially in scenarios where community detection poses a moderate
challenge - neither too easy nor too hard. This highlights the adaptability
of our algorithm, allowing users to fine-tune the ă selection based on
performance metrics such as maximizing the ARI, tailored to their specific
applications.

The effectiveness of our model is highlighted by evaluations in diverse
real-world datasets rich in node metadata, allowing for a thorough
assessment of community recovery. These datasets span several domains:
co-occurrence networks of characters in "Les Misérables" [51], a social
network of bottlenose dolphins [52], a network of Division I American
football games in 2000 [22], and a network of US political books around
the 2004 presidential election [53]. Comparisons show that OT-based
algorithms outperform their counterparts, and match node metadata
well in two of the four datasets.

In a final examination, we widen the scope of our comparison between
OT-based methods and Infomap3. This extended assessment takes place
in semi-synthetic scenarios, where random noise is added to existing con-
nections within networks derived from the Les Misérables and Dolphins
datasets. In the majority of cases, ORC-Nextrout consistently outperforms
the other algorithms in terms of accuracy, demonstrating its robustness
in this type of scenario.

Personal Contributions to the Paper I contributed to establishing the
theoretical framework of our work, developed and tested the codebase,
and conducted experiments with real-world data to assess the perfor-
mance of our method. Additionally, I created some of the figures and
improved various sections of the paper to ensure the effective communi-
cation of our ideas.

4.2.2 Principled Network Extraction from Images

The Publication

[44] Baptista, D., & De Bacco, C.
(2021). Principled network extraction
from images. R. Soc. Open Sci., 8(7),
210025.

About the Journal

The Royal Society: Open Science

(R. Soc. Open Sci.) is an open-access
multidisciplinary journal published
by the Royal Society, the United
Kingdom’s National Academy of Sci-
ences.

The information in this section is based on the paper "Principled Network
Extraction from Images" [44].

Continuing our exploration of the DMK model’s versatility, we now
shift our focus from complex networks to image analysis. We present a
method for extracting graphs from images representing flows.

Exploiting the inherent "discretization" of images by their pixels, we
use the RGB color values assigned to them as conductivities. Inspired
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[42]: Baptista et al. (2020), ‘Network ex-
traction by routing optimization’

4: As introduced in [51]:

Definition 4.2.1 In a connected

weighted graph, a minimum Steiner tree

is a tree that connects a specified subset of

vertices (the terminals) with the smallest

total sum of edge weights.

by principles established in the continuous case [42], we construct pre-

extracted networks ăĦě = (Ē, ā). In this setup, we treat the centroids of
pixels as nodes and establish edges between them based on pixel locations
and greyscale values. Specifically, an edge is formed when adjacent pixels
have a sufficiently high color intensity.

Figure 4.1: The black lines represent the
network extracted from an image illus-
trating a river. The inset provides a closer
view of a section of the network. This plot
is extracted from our published work
[44].

Since this network may still contain redundancies such as dangling nodes
or redundant edges, we use the Graph DMK model (defined in Section
3.1.8). This process identifies the most relevant edges to connect pixels of
interest, resulting in a new filtered network, denoted as ă Ĝ .

Running this dynamic process yields tree-like structures. Yet, network
representations in images often contain loops. To address this, we iterate
the dynamics multiple times, each time selecting a different eligible
node as the source (and designating the rest as sinks). This iterative

approach results in a set of filtered networks denoted as {ă
Ĝ

1
, . . . , ă

Ĝ

Ċruns
}.

Combining these filtered networks through superposition yields the
unique representation we seek. Figure 4.1 shows a reference image
together with the network extracted from it.

We put our network-extraction model to the test using three image
datasets, each portraying various types of network-like structures com-
monly observed in biology and ecology. These datasets depict: (i) the
Physarum polycephalum slime mold [56], which initially inspired our
dynamics; (ii) the retinal vascular system [57]; and (iii) river networks
obtained from [58]. We compare our approach to methods like NEFI
[59] and Minimum Steiner Tree4-based techniques. Our evaluation rests
on the ability of the algorithms to faithfully recover the network-like
structures depicted in the underlying images.

Our algorithm outperforms other network extraction tools. It excels at
producing networks that closely approximate the structures depicted in
the images (see Figure 4.1). In particular, it demonstrates flexibility in
recognizing different network shapes, including curved geometries such
as those found in river networks.

Personal Contributions to the Paper I contributed to designing and
implementing the algorithm for network extraction from images, as
well as conducting real-data experiments and documenting results.
Additionally, I authored many sections of the paper.

The Publication

[60] Lonardi, A.*, Baptista, D.*, &
De Bacco, C. (2023). Immiscible color
flows in optimal transport networks
for image classification. Frontiers in

Physics, 11, 1089114.
* Equal contributions.

4.2.3 Immiscible Color Flows in Optimal Transport

Networks for Image ClassificationAbout the Journal

Frontiers in Physics is a distin-
guished journal that publishes rigor-
ously peer-reviewed research encom-
passing the entire field of physics,
ranging from experimental investi-
gations to computational and theo-
retical studies. It is part of the Swiss
publishing company, Frontiers Media

SA.

The content presented in this section is taken from the research paper
"Immiscible Color Flows in Optimal Transport Networks for Image
Classification" [60].

Here, we introduce an image classification algorithm based on a general-
ized version of the Graph DMK model, which extends its capabilities to
handle multiple sources and sinks in the OT problem.

To begin, let G and H represent two images as matrices of sizesģ×ĉ and
Ĥ ×ĉ. Here, ĉ denotes the number of color channels in the images, and
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5: The definition of a bipartite graph, as
outlined in [41], is as follows:

Definition 4.2.2 A graph ă is consid-

ered bipartite if it can be partitioned into

two separate sets of vertices, denoted as

Ē1 and Ē2, in such a way that every edge

in the graph connects a vertex from Ē1

to a vertex in Ē2. Importantly, this parti-

tioning ensures that no edge within the

graph links two vertices within either Ē1

or Ē2.

ģ and Ĥ are their sizes, respectively. We start by introducing an auxiliary
bipartite5 network, denoted as ćģ,Ĥ(Ē1 , Ē2 , ā12), which is the initial step
in solving the OT problem. Here, Ē1 and Ē2 represent the pixels of the
two images under consideration. The set of edges, ā12, initially includes
all possible connections between the pixels from both images. However,
for computational efficiency, we focus on those edges that carry the most
relevant information. This selection process involves a combination of
thresholding and balancing techniques to retain only the most significant
connections.

Once the bipartite graph is constructed, we proceed to solve the OT
problem. We achieve this by injecting color mass from the first image into
the nodes ğ ∈ Ē1, as defined by matrix G, and extracting it from nodes
Ġ ∈ Ē2 of the second image, as defined by matrix H.

Given that we have three sources of information for each pair of images
G and H, we employ a variation of the Graph DMK algorithm, known as
Multicommodity DMK [61]. This extension allows us to handle multiple
source and target distributions effectively. The following equations can
describe the formulation of Multicommodity DMK:

Definition 4.2.3 Multicommodity DMK:

Let B be a signed incidence matrix of the graph ă6 6: Notice that the graph ă used in this
model refers specifically to the auxiliary
bipartite graph ć introduced in the pre-
vious paragraph.

. Let { Ĝ ė+ , Ĝ ė−}ė∈[ĉ]

be a family of probability distributions defined on Ē. Assume that Ĝ ė :=

Ĝ ė+ − Ĝ ė− satisfies
∑
ğ∈Ē Ĝ

ė
ğ

= 0,∀ė. The Multicommodity Dynamical

Monge-Kantorovich equations are given by:

Ĝ ėğ =

∑

ě∈ā

þğě
čě
ℓě

(
īėğ − ī

ė
Ġ

)
ě = (ğ , Ġ), ∀ğ ∈ Ē, ė ∈ [ĉ] (4.3)

č′
ě = č

ă
ě

[
| |īğ − īĠ | |

2
2

ℓ 2
ě

]

− čě ∀ě = (ğ , Ġ) ∈ ā, 7 7: The quantity | |īğ | |2 represents the 2-

norm of īğ = (ī1
ğ
, . . . , īĉ

ğ
) and is math-

ematically defined as:

| |īğ | |2 :=

(∑

ė

[īėğ ]
2

)1/2

.

(4.4)

čě(0) > 0, (4.5)

where ℓě > 0 denotes the weight of the edge ě and ă is the parameter that

determines the optimization mechanism.

Notice that, as in the case presented in the previous section, Equation (4.3)
corresponds to Kirchhoff’s law. Equation (4.4) characterizes the discrete
dynamics governing the feedback mechanism between conductivity and
flow, while Equation (4.5) outlines the initial condition.

The principal deviation between this model and the one previously
discussed is the introduction of multiple source and target distributions
for transportation. Additionally, it is worth highlighting that Equation
(4.4) employs an alternative exponentiation mechanism compared to
the single commodity model. This choice is motivated by the favorable
theoretical properties associated with this approach, as detailed in the
provided reference [61].

Similarly to that outlined in Definition 3.1.8 , our primary quantities of
interest are čě(Ī) and īğ(Ī), representing the conductivity and potential,
respectively. These quantities allow us to define a set of fluxes, each

corresponding to a specific commodity: čė
ě :=

čě (ī
ė
ğ
−īė

Ġ
)

ℓě
for an edge
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ě = (ğ , Ġ). These fluxes, in turn, facilitate the computation of a modified

Wasserstein function: ē�

1
(ă, Ą) :=

∑
ě∈ā | |čě | |

�

2
ÿě , with � =

2−ă
3−ă . This

Wasserstein measure stands as a pivotal component in quantifying the
similarity between the two images G and H.

To validate the effectiveness of our multicommodity dynamics, we con-
duct supervised classification tasks using a k-nearest neighbor (k-NN)
[62] classifier. We compare the classification accuracy of our model against
several alternatives, including i) the Sinkhorn algorithm (using a more
stable Sinkhorn scheme [63]); ii) a unicommodity dynamics executed on
grayscale images (i.e., with color information compressed into one single
commodity, ĉ = 1); and iii) the Sinkhorn algorithm applied to grayscale
images. All methods are assessed on two datasets: the Jena Flowers 30

Dataset [64] and the Fruit Dataset [65].

Our method outperforms the other algorithms in terms of classification
accuracy. Additionally, our model assigns a lower cost to correctly classi-
fied images compared to its unicommodity counterparts, indicating its
effectiveness in capturing image color-based similarities and differences.

Personal Contributions to the Paper I contributed to the development
of the theoretical foundations, participated in the conceptualization and
implementation of our method. Additionally, I desgined and executed
the experiments needed to validate the model’s performance.
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Summary In this manuscript, we study the DMK model, a recently
developed optimization algorithm designed to tackle transport problems
through dynamical equations. Unlike its predecessors, which primarily
address discrete problems, the DMK model introduces an efficient
computational method capable of solving challenges in a continuous two-
dimensional space. However, despite its advantages, this OT algorithm
has two key limitations. While many practical scenarios indeed demand
solutions within a continuous space, there remains a prevalent need
for discrete solutions, such as graphs. Furthermore, the DMK model,
originally introduced as a theoretical framework, requires a deeper
understanding of its practical applicability to real-world scenarios. This
thesis addresses these limitations by offering practical solutions and
insights, thereby enhancing the usability and relevance of the algorithm
in real-world applications.

In Chapter 3, we focus on overcoming the first limitation by proposing
an approach to network topology extraction. Our method provides a
flexible solution capable of processing the numerical solutions of routing
optimization problems. It consists of a sequence of three main algorithmic
steps: computing steady-state solutions of the DMK equations, extracting
optimal network solutions (graph pre-extraction), and filtering redundant
structures (graph filtering). Building on this framework, we introduce
a method that converts not only the optimal states of the dynamics but
also the intermediate updates into temporal graphs. Our main finding
highlights an important reduction in the total length of the graphs at
convergence points of the total continuous cost, indicating the potential to
reduce the number of iterations of the DMK solver with minimal impact
on optimality. In addition, our analysis suggests a dynamic process for
optimal network design, consisting of an exploration and a compression
step. We also propose a method for transforming graphs into temporal
hypergraphs. We use this to show that transport costs also converge
faster than the coverage area. These transformations (either to graphs or
to hypergraphs) of the sequences generated by the DMK model in the
search for optimal solutions to transport problems provide new insights
into the behavior of these functions and help improve the applicability
of the model.

In Chapter 4, we focus on the practical applications. Here we concentrate
on scenarios where the solution space is discrete and specifically study a
variant of the DMK model known as Graph DMK. We build algorithms
that integrate the insights gained from addressing the first limitation
and apply them to machine learning tasks such as network clustering,
network extraction from images, and image classification.

First, we introduce an OT-based algorithm to discover communities
within networks. Our study shows that by exploiting the hyperparameter
ă, which governs the transport scheme and influences the flow of informa-
tion within the network, we could significantly improve the classification
accuracy of the algorithm.
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Secondly, we propose an efficient method for extracting graphs from
images representing flows of mass. Building on the network extraction
method presented earlier, we adapt it to use images representing nat-
ural transport processes (such as rivers) by exploiting their inherent
discretization into pixels. This approach offers a new perspective on
graph extraction from real-world images.

Finally, we move one step further into the domain of image analysis
by introducing an OT-based classification method that exploits RGB
information. Using the Multicommodity DMK algorithm, a variant of
Graph DMK, we approach image classification as an OT problem with
multiple source and target distributions determined by the different
color channels. This approach enhances our ability to classify images
effectively and make better use of the information available.

These applications demonstrate the versatility and effectiveness of the
DMK model in different domains, highlighting its potential impact and
relevance in real-world scenarios.

Future Research Directions In terms of future work, this thesis lays a
solid foundation for further exploration of other OT algorithms. While
the current investigation sheds light on the solutions provided by the
DMK model, there is potential for other OT iterative methods to benefit
from the discretizations outlined in the previous sections.

Extending the scope of the DMK model opens up new avenues of research.
In addition to the structures discussed here, there is potential to explore
the extension of the DMK model to other frameworks. While our focus
has been on translating solutions into graphs and hypergraphs, or directly
using its graph version, there is room to consider introducing a new
variation of the DMK model defined directly on other discrete structures,
such as generalized hypergraphs (consisting of hyperedges of arbitrary
size).

Furthermore, the thesis points to the need for further refinement and
innovation in algorithms for community detection and image analysis.
Using the knowledge gained from OT-inspired structures, ongoing efforts
can be directed toward improving the accuracy and efficiency of these
algorithms. From the perspective of community detection, one can think
of ways to exploit more broadly the definition of similarity between
nodes that uses the Wasserstein measure that we consider in our work.
For instance, one could incorporate additional information as covariates
on nodes, or alternative definitions of node neighborhoods. From the
perspective of image analysis, we have provided here an example of color
as the main variable with multiple types of information (the three RGB
channels). But one can think of other types of information that could be
represented in a multicommodity formalism, and investigate how this
could be exploited to improve classification accuracy. These efforts are
in line with the broader goal of the thesis, which is to bridge theoretical
advances with practical applications, ensuring that theoretical advances
contribute directly to addressing real-world challenges.
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Network extraction by routing 
optimization
Diego Baptista1,4, Daniela Leite1,4, Enrico Facca2, Mario Putti3 & Caterina De Bacco1*

Routing optimization is a relevant problem in many contexts. Solving directly this type of optimization 
problem is often computationally intractable. Recent studies suggest that one can instead turn this 
problem into one of solving a dynamical system of equations, which can instead be solved eociently 
using numerical methods. This results in enabling the acquisition of optimal network topologies from a 
variety of routing problems. However, the actual extraction of the solution in terms of a fnal network 
topology relies on numerical details which can prevent an accurate investigation of their topological 
properties. In fact, in this context, theoretical results are fully accessible only to an expert audience 
and ready-to-use implementations for non-experts are rarely available or insuociently documented. 
In particular, in this framework, fnal graph acquisition is a challenging problem in-and-of-itself. Here 
we introduce a method to extract network topologies from dynamical equations related to routing 
optimization under various parameters’ settings. Our method is made of three steps: frst, it extracts 
an optimal trajectory by solving a dynamical system, then it pre-extracts a network, and fnally, it 
flters out potential redundancies. Remarkably, we propose a principled model to address the fltering 
in the last step, and give a quantitative interpretation in terms of a transport-related cost function. 
This principled fltering can be applied to more general problems such as network extraction from 
images, thus going beyond the scenarios envisioned in the frst step. Overall, this novel algorithm 
allows practitioners to easily extract optimal network topologies by combining basic tools from 
numerical methods, optimization and network theory. Thus, we provide an alternative to manual 
graph extraction which allows a grounded extraction from a large variety of optimal topologies. The 
analysis of these may open up the possibility to gain new insights into the structure and function of 
optimal networks. We provide an open source implementation of the code online.

Investigating optimal network topologies is a relevant problem in several contexts, with applications varying from 
transportation  networks1–4, communication  systems5–7,  biology8,9 and  ecology10–12. Depending on the specifed 
objective function and set of constraints of a routing optimization  problem13, optimal network topologies can 
be determined by diferent processes ranging from energy-minimizing tree-like structures ensuring steeper 
descent through a landscape as in river  basins10 to the opposite scenario of loopy structures that favor robustness 
to fuctuations and damage as in leaf  venation12,14, the retina vascular  system15,16 or noise-cancelling  networks7.

In many applications, optimal networks can arise from an underlying process defned on a continuous space 
rather than a discrete network as in standard combinatorial optimization routing  problems17–20. Optimal routing 
networks try to move resources by minimizing the transportation cost. Vis cost may be taken to be a function of 
the traveled distance, such as in Steiner trees, or proportional to the dissipated energy, such as optimal channel 
networks or resistance networks. Ve common denominator of these confgurations is that they have a tree-like 
shape, i.e., optimal routing networks are  loopless1,21. Recent developments in the mathematical theory of optimal 
 transport11,13 have proved that this is indeed the case and that complex fractal-like networks arise from branched 
optimal transport  problems22. While the theory starts to consolidate, eocient numerical methods are still in a 
pre-development stage, in particular in the case of branched transport, where only a few results are  present23,24, 
refecting the obstacle that all these problems are NP-hard. Recent promising  results25,26 map a computationally 
hard optimization problem into fnding the long-time behavior of a system of dynamic partial diferential equa-
tions, the so-called Dynamic Monge-Kantorovich (DMK) approach, which is instead numerically accessible, 
computationally eocient, and leads to network shapes that resemble optimal  structures27. Working in discretized 
continuous space, and in many network-based discretizations such as lattice-like networks as well, requires the 
use of threshold values for the identifcation of active network edges. Vis has the main consequence that there 
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might be no obvious fnal resulting network, an output that would be trivial when starting from an underly-
ing search space formed by predefned selected network structures. For example, the output of a numerically 
discretized (by, e.g., the Finite Element method) routing optimization problem in a 2D space is a real-valued 
function on a set of (x, y) points defned on a grid or triangulation, which already has a graph structure. Despite 
the underlying graph, this grid function contains numerous side features, such as small loops and dangling 
vertices, that prevent the recognition of a clear optimal network structure. Obtaining this requires a suitable 
identifcation of vertices and edges that should contain the optimal network properties embedded in the underly-
ing continuous space. In other words, the output of a routing optimization problem in continuous space carries 
unstructured information about optimality that is hard to interpret in terms of network properties. Extracting 
a network topology from this unstructured information would allow, on one hand, better interpretability of the 
solution and enable the comparison with networks resulting from discrete space. On the other hand, the use of 
tools from network theory to investigate optimality properties, for instance, to perform clustering or classifca-
tion tasks based on a set of network features.

One can frame this problem as that of properly compressing the information contained in the <raw= solu-
tion of a routing problem in continuous space into an interpretable network structure while preserving the 
important properties connected to optimality. Vis is a challenging task, as compression might result in losing 
important information. Ve problem is made even more complex because one may not know in advance what 
are the relevant properties for the problem at hand, a knowledge that could help drive the network extraction 
procedure. Vis is the case for any real network, where the intrinsic optimality principle is elusive and can only 
be speculated about by observing trajectories, an approach adopted for instance when processing images in 
biological  networks28–31.

Several works have been proposed to tackle domain-specifc network extraction. Vese methods include 
using segmentation techniques on a set of image pixels to extract a  skeleton28,29,32 that is then converted into 
a network; a pipeline combining diferent segmentation algorithms building from  OpenCV33, which is made 
available with an intuitive graphical  interface34; graph-based  techniques35 that sample junction-points from input 
images; methods that use deep convolutional neural  networks36 or minimum cost path  computations37 to extract 
road networks from images. Vese are mainly using image processing techniques as the input is an image or 
photograph, which might not necessarily be related to a routing optimization problem. In this work, we propose 
a new approach for the extraction of network topologies and build a protocol to address this problem. Vis can 
take in input the numerical solution of a routing optimization problem in continuous space as described  in25–27 
and then processes it to fnally output the corresponding network topology in terms of a weighted adjacency 
matrix. However, it can also be applied to more general inputs, such as images, which may not necessarily come 
from the solution of an explicit routing transportation problem. Specifcally, our work features a collection of 
numerical routines and graph algorithms designed to extract network structures that can then be properly 
analyzed in terms of their topological properties. Ve extraction pipeline consists in a sequence of three main 
algorithmic steps: (i) compute the steady-state solutions of the DMK equations (DMK-Solver); (ii) extract the 
optimal network solution of the routing optimization problem (graph pre-extraction); (iii) flter the network 
removing redundant structure (graph fltering). While for this work we test and demonstrate our algorithm on 
routing scenarios coming from DMK, which constitute our main motivation, we remark that only the frst step 
is specifc to these, whereas the last two steps are applicable beyond these settings. Ve graph pre-extraction step 
consists of a set of rules aiming at building a network from an input that is not explicitly a topological structure 
made of nodes and edges. Ve fltering step is based on a principled mathematical model inspired by that of the 
frst step, which leads to an eocient algorithmic implementation. Our network flter has a nice interpretation in 
terms of a cost function that interpolates between an operating cost and an infrastructure one, contrarily to com-
mon approaches used in image processing for fltering, which ogen relies on heuristics. Our numerical approach 
is based on fnite element-like solvers that transform the problem into a fnite sequence of linear systems with 
dimension equal to the number of nodes in the network. Using a careful combination of eocient numerical solv-
ers, the high computational eociency of our implementation allows addressing large scale problems, out of reach 
for standard methods of combinatorial optimization. In addition, the algorithmic complexity of our approach is 
independent of the number of sources and sinks, unlike more standard methods based on Steiner tree  solvers38,39.

A successful execution will return a representation of the network in terms of an edge-weighted undirected 
network. Ve resulting weights are related to the optimal fow, solution of the routing problem. Once the net-
work is obtained, practitioners can deploy arbitrary available network analysis  sogware40–43 or custom-written 
scripts to investigate properties of the optimal topologies. For instance, given that our model easily adapts to 
receive images as input, a promising application is that of extracting optimal network topologies from biological 
networks, in particular in systems that display a dynamic behavior of self-optimization, as recently found this 
being the case for neuronal  networks44. Note that our optimal transport-based approach naturally calculates 
Wasserstein-type distances between discrete measures on the network. Vis can be used, like other geometric 
approaches in network analysis, to address diferent network-related applications, for example for geometry-
based community detection  algorithms45–47. While our primary goal is to provide a framework and tool to solve 
the research question of how to extract network topologies resulting from routing optimization problems in 
continuous space or any other image containing a network structure, we also aim at encouraging non-expert 
practitioners to automatically extract networks from such problems or from more general settings beyond that. 
Vus we make available an open-source algorithmic implementation and executables of this work at https ://
githu b.com/Danie lalei te/Nextr out.
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The routing optimization problem
In this section, we describe the main ideas and establish notation. We start by introducing the dynamical system 
of equations corresponding to the DMK routing optimization problem as proposed by Facca et al.25–27 In these 
works, the authors frst generalize the discrete dynamics of the slime mold Physarum Polycephalum (PP) to a 
continuous domain; then they conjecture that, like its discrete counterpart, its solution tends to an equilibrium 
point which is the solution of the Monge-Kantorovich optimal mass  transport48 as time goes to infnity.

We denote the space where the routing optimization problem is set as Ω ∈ R
n , an open bounded domain 

that compactly contains f (x) = f +(x) − f −(x) ∈ R , the forcing function, describing the fow generating sources 
f +(x) and sinks f −(x) . It is assumed that the system is isolated, i.e., no fuxes are entering or exiting the domain 
from the boundary. Vis imposes the constraint 

∫
Ω
f (x)dx = 0 to ensure mass balance. It is assumed that the 

fow is governed by a transient Fick-Poiseuille type fux q = 2µ'u , where µ(t, x), u(t, x) are called conductivity 
or transport density and transport potential, respectively.

Ve continuous set dynamical Monge-Kantorovich (DMK) equations are given by:

where ' = 'x . Equation (1) states the spatial balance of the Fick-Poiseuille fux and is complemented by no-fow 
Neumann boundary conditions; Eq. (2) enforces the system dynamics in analogy with the discrete PP model and 
Eq. (3) provides the initial confguration of the system. Ve parameter β captures diferent routing transportation 
mechanisms. A value of β < 1 enforces optimal solutions to avoid traoc congestion; β = 1 is shortest path-like; 
while β > 1 encourages consolidating the fow so to use a smaller amount of network-like infrastructure, and 
is related to branched  transport11,49. Within a network-like interpretation, qualitatively, µ(x, t) describes the 
capacity of the network edges. With hydraulic interpretation, we can think of the edges as pipes, small cylindri-
cal channels where the mass is passing through, and the capacity is proportional to the size of the pipe diameter. 
Vus, its initial distribution µ0(x) describes how the initial capacities are distributed.

In this work, solving the routing optimization problem consists of finding the steady state solution 
(µ∗, u∗) : Ω → R≥0 × R of Eq. (1), i.e. (µ∗(x), u∗(x)) = limt→+∞(µ(t, x), u(t, x)) . Numerical solution of the 
above model can be obtained by means of a double discretization in time and  space25–27. Ve resulting solver 
(called from now on DMK-Solver) has been shown to be eocient, robust and capable of identifying the typically 
singular structures that arise from the original problem. In Fig. 1, some visual examples of the numerical µ∗ 
obtained for diferent values of β are shown. Ve same authors showed that the DMK-Solver is able to emulate 
the results for the discrete formulation of the PP model proposed by Tero et al.50

Under appropriate regularity assumptions, it can be  shown26,27 that the equilibrium solution of the above 
problem (µ∗(x), u∗(x)) is a minimizer of the following functional:

where P(β) = (2 − β)/β . In words, this functional is the sum of the total energy dissipated during transport (the 
frst term is the Dirichlet energy corresponding to the solution of the frst PDE) plus a nonlinear (sub-additive) 
function of the total capacity of the system at equilibrium. In terms of costs, this functional can be interpreted 

(1)2' · (µ(t, x)'u(t, x)) = f +(x) 2 f 2(x) ,

(2)
∂µ(t, x)

∂t
= [µ(t, x)'u(t, x)]

β
2 µ(t, x) ,

(3)µ(0, x) = µ0(x) > 0 ,

(4)L (µ, u) =
1

2

∫
Ω

µ|'u|2dx +

∫
Ω

µP(β)

P(β)
dx ,

Figure 1.  Diferent values of β in Eq. (2) lead to diferent settings of a routing optimization problem. Colors 
denote diferent intensities of conductivity µ as described by the color bar on the leg. (a) β < 1 enforces 
avoiding mass congestion ( β = 0.75 ); (b) β = 1 is shortest path-like, the mass goes straight from source to 
sink; (c) β > 1 encourages traoc consolidation ( β = 1.2 ). Red rectangle denotes the sink, green ones the four 
sources.
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as the cost of transport, assumed to be proportional to the total dissipated energy, and the cost of building the 
transport infrastructure, assumed to be a nonlinear function (with power 2 − β ) of the total transport capacity 
of the system.

We exploit the robustness of this numerical solver to extract the solutions of DMK equations corresponding 
to various routing optimization problems. We here focus on the case β ≥ 1 , where the approximate support of 
µ

∗ displays a network-like structure. Vis is the frst step of our extraction pipeline, which we denote as DMK-
Solver. Ve numerical solution of these equations does not allow for a straightforward network representation. 
Indeed, depending on various numerical details related to the spatial discretization and other parameters, one 
usually obtains a visually well-defned network structure (see Fig. 1) whose rendering as a graph object is how-
ever uncertain and non-unique. Vis in turns can hinder a proper investigation of the topological properties 
associated to routing optimization problems, motivating the main contribution of our work: the proposal of a 
graph extraction pipeline to automatically and robustly extract network topologies from the solutions9 output 
of DMK-Solver. We reinforce that our contribution is not limited to this application, but is also able to extract 
network-like shapes from any kind of image where a color or greyscale thresholds can be used to identify the 
sought structure.

Our extraction pipeline then proceeds with two main steps: pre-extraction and graph fltering. Ve frst one 
tackles the problem of translating a solution from the continuous scenario into a graph structure, while the 
second one addresses the problem of removing redundant graph structure resulting from the previous step. A 
pseudo-code of the overall pipeline is provided in Algorithm 1. In that pseudo-code, mesh-related parameters 
specify how the mesh for the discretization of space is built. Specifcally, we could specify ndiv, the number of 
divisions in the x axis and nref, the number of refnements, i.e. the number of times each triangle on the grid 
generated by a specifc ndiv is subdivided into four triangles. 

Our fnal goal is to translate the solution pair (µ∗, u∗) into a proper network structure using several techniques 
from graph theory. With these networks at hand, a practitioner is then able to investigate topologies associated 
with this novel representation of routing optimization solutions.

Graph preliminary extraction
In this section, we expand on the graph pre-extraction step: extracting a network representation from the numeri-
cal solution output of the DMK-Solver. Vis involves a combination of numerical methods for discretizing the 
space and translating the values of µ∗ , and u∗ into edge weights of an auxiliary network, which we denote as 
G = (V ,E,W) , where V  is the set of nodes, E the set of edges and W the set of weights.

Ve DMK solver outputs the solution on a triangulation of the domain Ω (here also named grid) and denoted 
as ∆Ω = {Ti}i , with ∪Ti = Ω . Ve numerical solution, piecewise constant on each triangle Ti , is considered 
assigned to the triangle barycenter (center of gravity) at position bi = (xi , yi) ∈ Ω . Note that in this work we 
focus on a 2D space, but the procedure can be generalized to 3D. Vis means that the result is a set of pairs 
{(µ∗(bi), u

∗(bi))}i . We can track any function of these two quantities. For simplicity, we use µ∗ (see Fig. 1 for 
various examples), but one could use u∗ or a function of these two. Vis choice does not afect the procedure, 
although the resulting network might be diferent.

We neglect information on the triangles where the solution is smaller than a user-specifed threshold δ ∈ R≥0 , 
in order to work only with the most relevant information. Formally, we only keep the information on Ti such that 
µ∗(bi) ≥ δ . We observed empirically that in many cases, several triangles contain a value of µ∗ that is orders of 
magnitude smaller than others, see for instance the scale of Fig. 1. Since we want to build a network that con-
nects these barycenters, we remark that this procedure depends on the choice of the threshold δ : if δ1 < δ2 , then 
G(δ2) ⊂ G(δ1) . On one hand, the smaller δ , the more likely G is to be connected, but at the cost of containing 
many possibly loop-forming edges and nodes (the extreme case δ = 0 uses the whole grid to build the fnal net-
work); on the other hand, the higher δ , the smaller the fnal network is (both in terms of the number of nodes 
and edges). Vus one needs to tune the parameter δ such that resulting paths from sources to sinks are connected 
while avoiding the inclusion of redundant information.

Ve set of relevant triangles does not correspond to a straightforward meaningful network structure, i.e. a 
set of nodes and edges connecting neighboring nodes. In fact, we want to remove as much as possible the biases 
introduced by the underlying triangulation and thus we start by connecting the triangle barycenters. For this, 
we need rules for defning nodes, edges and weights on the edges. Here, we propose three methods for defning 
the graph nodes and edges and two functions to assign the weights. Ve overall graph pre-extraction routine 
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is given by choosing one of the former and one of the latter, and it can be applied also to more general inputs 
beyond solutions of the DMK-Solver.

Rules for selecting nodes and edges. Selecting V  and E requires defning the neighborhood σ(Ti) of a 
triangle in the original triangulation ∆Ω (for i such that µ∗(bi) ≥ δ ). We consider three diferent procedures: 

 (I) Edge-or-node sharing: σ(Ti) is the set of triangles that either share a grid edge or a grid node with Ti.
 (II) Edge-only sharing: σ(Ti) is the set of triangles that share a grid edge with Ti . Note that |σ(Ti)| ≤ 3, ∀i.
 (III) Original triangulation: let v, w, s be the grid nodes of Ti ; then add v, w, s to V  and (v, w), (w, s), (s, v) 

to E . Note that in this case we make direct use of the graph associated to the triangulation and consider 
σ(Ti) as in rule (II).

It is worth mentioning that since the grid ∆Ω is non-uniform and µ∗ is not constant, we cannot control a priori 
the degree di of a node i in the graph G generated for a particular threshold δ . We give examples of networks 
resulting from these three defnitions in Fig. 2 and a pseudo-code for them in Algorithm 2. 

Figure 2.  Graph pre-extraction rules. Leg: edge-or-node sharing (I); center: edge-only sharing (II); right: 
original triangulation (III). We monitor the conductivity µ and use parameters µ0 = 1, β = 1.02, δ = 0.0001 . 
Weights wij are chosen with AVG (i), f is chosen such that sources and sinks are inside green and red rectangles 
respectively.

Rules for selecting weights. Ve weights wij are assigned to edges eij := (i, j) ∈ E by the function 
w(µ(bi),µ(bj)) , considering the density defned on the original triangles. We consider two possibilities for this 
function: 

 (i) Average (AVG): wij =
µ(bi)+µ(bj)

2
 .

 (ii) Efective reweighing (ER): wij =
µ(bi)
di

+
µ(bj)

dj
 .
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While using the average as in (i) captures the intuition, it may overestimate the contribution of a triangle when 
this has more than one neighbor in G with the risk of calculating a total density larger than the original output 
of the DMK-Solver. To avoid this issue, we consider an efective reweighing as in (ii), where each triangle contri-
bution by the degree di = |σi| of a node i ∈ V  is reweighted, with σi the set of neighbors of i. Vis guarantees the 

recovery of the density obtained from DMK-Solver, since 1
2

∑

i,j wij =
1
2

∑

i

[

µ(bi) +
∑

j∈σi

µ(bj)

dj

]

=
∑

i µ(bi) , 

where in the sum we neglected isolated nodes, i.e. i s.t. di = 0 . Note that in the case of choosing the original 
triangulation for node and edge selection (case (III) above), the ER rule does not apply; in that case, we use AVG, 
i.e. given an edge e, its weight is the average between its two neighboring triangles.

Graph fltering
Ve output of the graph extraction step is a network closer to our expectation of obtaining an optimal network 
topology resulting from a routing optimization problem. However, this network may contain redundant struc-
tures like dangling nodes or small irrelevant loops (see Fig. 2). Vese are not related to any intrinsic property 
of optimality, but rather are a feature of the discretization procedure resulting from the graph pre-extraction 
step. It is thus important to flter the network by removing these redundant parts. However, how to perform this 
removal in an automated and principled way is not an obvious task. One has to be careful in removing enough 
structure, while not compromising the core optimality properties of the network. Vis removal is then a problem 
in-and-of-itself, we name it graph fltering step. We now proceed by explaining how we tackle it in a principled 
way and discuss its quantitative interpretation in terms of minimizing a cost function interpolating between an 
operating and an infrastructural cost.

The Discrete DMK‑Solver. Going beyond heuristics and inspired by the problem presented in <Ve rout-
ing optimization problem= section, we consider as a solution for the graph fltering step, the implementation of a 
second routing optimization algorithm to the network G output of the pre-extraction step, i.e. in discrete space. 
Several choices for this could be drawn, for instance, from routing optimization  literature51, but we need to make 
sure that this second optimization step does not modify any of the intrinsic properties related to optimality 
resulting from the DMK-Solver. We thus propose to use a discrete version of the DMK-Solver (discrete-DMK-
Solver). Vis was proven to be related to the Basis Pursuit (BP) optimization  problem52. In fact, BP is  related53 to 
the PP dynamical problem in discrete space and the discrete-DMK-Solver gives a solution to the PP in discrete 
 space52. Ve discretization results in a reduction of the computational costs for solutions of BP problems, com-
pared to standard combinatorial optimization  approaches52. Being an adaptation to discrete settings of our origi-
nal optimization problem, it is a natural candidate for a graph fltering step, preserving the solution9s properties.

Ve problem is stated as follows. Consider the signed incidence matrix B ∈ MN×M of a weighted graph 
G = (V ,E,W) , with entries Bie = ±1 if the edge e has node i as start/end point, 0 otherwise; N = |V | and 
M = |E| . Denote 3 = {3e}e the vector of edge lengths, f  a N-dim vector of source-sink values with entries satisfy-
ing 

∑
i∈V fi = 0 ; this is the discrete analogues of the source-sink function f(x) introduced in Section <Ve routing 

optimization problem=; the functions µ(t) ∈ R
M and u(t) ∈ R

N correspond to the conductivity and potential 
respectively, similarly to the continuous case, but this time they are vectors with entries µe(t) and ui(t) defned 
on edges and nodes respectively. Ve PP discrete dynamics corresponding to the original routing optimization 
problem can be written as:

where | · | is the absolute value element-wise. Equation (5) corresponds to Kirchof 9s law, Eq. (6) is the discrete 
dynamics with βd a parameter controlling for diferent routing optimization mechanisms (analogously to β in 
Eq. 2); Eq. (7) is the initial condition. Ve importance of this system stems in having an interesting theoretical 
correspondence: its equilibrium point corresponds to the minimizer of a cost function analogous to Eq. (4) that, 
similarly to the continuous case, can be interpreted as global energy functional. Vis is:

where P(β) = (2 − β)/β and u(µ(t)) is a function implicitly defned as the solution of Eq. (5). Ve frst term 
corresponds to the energy dissipated during transport, it can be interpreted as the operating costs, whereas the 
second is the infrastructural cost. Ve equilibrium point of µe(t) is stationary at the previous energy function, 
and for βd = 1 it acts also as the global minimizer due to its convexity. For βd > 1 the energy is not convex, thus 
in general the functional will present several local minima towards which the dynamics will be attracted. Ve 
case βd < 1 does not act as a flter because it encourages trajectories to spread through the network, instead of 
removing edges, and so not interesting to our purposes. Discretization in time of Eq. (6) by the implicit Euler 

(5)fi =

∑

e

Bie
µe(t)

3e

∑

j

Bej uj(t) ,

(6)µ2
e(t) =

þ

ø

µe(t)

3e
|
ÿ

j

Bej uj(t)|

ù

û

³d

2 µe(t) ,

(7)µe(0) >0 ,
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scheme combined with Newton method leads to an eocient numerical solver, see Facca et al.52 for more details. 
Ve above scheme gives the solution to the BP problem and represents the discrete-DMK-Solver. Similarly to the 
graph pre-extraction step, the fltering is also valid beyond networks related to solutions of the DMK-Solver. It 
applies to more general inputs if defned on a discrete space, for instance, images. Finally, notice that the flter 
generates a graph with a new set of nodes and edges, both subsets of the corresponding ones in G , result of the 
pre-extraction. Ve weights of the fnal graph can then be assigned with same rules as in <Rules for selecting 
nodes and edges=; in addition, one can consider as weights the values of µ∗

e resulting from the BP problem (we 
named this weighing method <BPW=). Alternatively, one can ignore the weights of BP and keep (for the edges 
remaining ager the flter) the weights as in the previous pre-extraction step (labeled as <IBP=). Analogously to 
what done on the original triangulation, we discard the edges e for which µe < δd . In our experiments we use 
as initial density distribution µe(0) = w(e),∀e ∈ E , where w correspond to the weight of the edge e in the pre-
extracted graph. Figure 3 shows an example of three fltering settings on the same input.

Selecting sources and sinks. Ve discrete-DMK-Solver requires in input a set of source and sink nodes ( S+ 
and S− ) that identify the support of the forcing vector f  introduced in <Ve Discrete DMK-Solver=. However, the 
graph pre-extraction output G might contain redundant nodes (or edges) as mentioned before. In principle, 
among the nodes i ∈ V  , all of those contained in the support of f (x = bi) , i.e. contained in the supports of 
sources and sinks of the original routing optimization problem in Eq. (1), are eligible to be treated as sources or 
sink in the resulting network. However, several paths connecting source and sink nodes may be redundant and 
clearly not compatible with an optimal routing network (see Supplementary Fig. S2 for such an example). Vere-
fore, it is important to select <representatives= for sources and sinks, such that the fnal network is heuristically 
closer to optimality. Here we propose a criterion to select source and sink nodes from the eligible ones in each of 
the connected components {Cm}m of G , using a combination of two network properties. Starting from the com-
plete graph formed by all the nodes characterized by a signifcant (above the threshold) density, source and sink 
nodes and rates are defned as follows. A node i ∈ S

+ , i.e. is a source fi > 0 , if either i) is in the convex hull of the 
set of eligible sources or ii) its betweenness centrality is smaller than a given threshold τBC . Similarly for sink 
nodes in S− . Vis is because, on one side, nodes in the convex hull capture the outer shape structure of the source 
and sink sets defned in the continuous problem; on the other side, nodes with small values of the betweenness 
centrality capture the end-points of G inside the source and sink sets, analogously to leaves (i.e., degree-one 
nodes). Note that, due to the high graph connectivity, degree centrality is not appropriate for selecting these end-
ing parts. We present these ideas in more detail in the Supplementary Fig. S2. Once we have identifed the sets of 
source and sink vertices, we need to assign a proper value fi such that Kirchhof law is satisfed in each of the 
diferent connected components Cm . It is reasonable to assume that each connected component is <closed=, i.e. ∑

i∈Cm
fi = 0 , ∀Cm . Denoting with |S| the number of elements in a set S and V(Cm) the set of nodes in Cm , we 

then distribute the mass-fuxes uniformly by setting fi = 1

|S+∩V(Cm)|
 for i ∈ S

+ , and fi = − 1

|S−∩V(Cm)|
 for i ∈ S

− 

sinks ( fi = 0 otherwise) so that the total original source and sink fux is assigned to the overall source/sink nodes 
of all Cm . Note that this procedure maintains the overall system and each connected component <closed=, as 
stated above.

Computational complexity. Ve numerical implementation of our graph extraction algorithm is based 
on fnite element-like solvers that transform the problem into a fnite sequence of linear systems. Vis implies 
that we need to run a variable number NT of iterations in time, each requiring NN Newton steps. Every Newton 

Figure 3.  Graph fltering rules. Leg: βd = 1.0 ; center: βd = 1.4 ; right: βd = 1.8 . Ve numbers on top denote the 
percentage contributions of operating and infrastructural cost to the energy as in Eq. (8). Green and red dots 
represent sources and sinks respectively ( τBC = 10

−1 ); blue edges are those e with µ∗
e ≥ δd = 10

−3 . Ve fltering 
input is generated from DMK-Solver with β = 1.05 . Ve apparent lack of symmetry of the network9s branches 
is due to numerical discretization of the domain, solver and threshold δ . As the relative size of the terminal set 
decreases compared to the size of remaining part of the domain, this lack of symmetry becomes negligible.
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step requires the approximate solution of a linear system of dimension N by pre-conditioner conjugate gradi-
ent solver, which has complexity O(N logN)54. Ve time complexity of our graph extraction algorithm is then 
O(NT × NN × N logN) . In practice, because of exponential convergence of the time discretization towards 
 equilibrium52, NT is typically constant approximately < 10

2 , instead NN ∼ 5 . In the worst cases NT NN ∼ N
0.3 . 

Vus the total complexity is O(N logN).
Ve time complexity of other related approaches such as the ORC-based algorithms is dominated by the 

computation of the Wasserstein distance, which typically takes O(M k × k3 log k) , where k = 2M/N is the aver-
age network degree, when using linear programming and can be further improved using wavelet earth-mover-
distance approximation  approaches55. While M > N , in sparse networks such as those used in our experiments, 
M ∼ N.

Other approaches that solve similar problems are based on Steiner tree  solvers39 and have a complexity which 
depends on the number of sources and sinks, in addition to the system size. Instead, our method complexity 
does not depend on them, but only on the network size.

Model validation
Our extraction pipeline proceeds by compressing routing information in the raw output of the DMK-Solver 
(although what follows is not restricted to this case) on a lean network structure. Vis might lead us to lose 
relevant information in the process. Hence, we need to devise a posteriori estimates that provide quantitative 
guidance on the <leanness= and information loss of the fnal network. Here we propose metrics to evaluate the 
compression performance of the various graph pre-extraction and fltering protocols. Ve raw information is 
made of a set of weights w(Ti) representing the values (µ∗, u∗) on each of the triangles Ti ∈ Ω . We consider as 
the truth benchmark the distribution of w , or any other quantity of interest, supported on the subgrid ∆δ

Ω
⊂ ∆Ω 

formed by all triangles where w is larger than the threshold value δ , i.e., ∆δ
Ω := {Ti ∈ ∆Ω : w(Ti) ≥ δ} . We 

expect that a good compression scheme should preserve both the total amount of the weights from the original 
solution in ∆δ

Ω
 and the information of where these weights are located inside the domain Ω . Also, we want this 

compression to be parsimonious, i.e. to store the least amount of information as possible. We test against these 
two requirements by proposing two metrics that measure: i) an information diference between the raw output of 
the DMK-Solver and the network extracted using our procedure, capturing the information of where the weights 
are located in space; ii) the amount of information needed to store the network.

Our frst proposed metric relies on partitioning Ω in several subsets and then calculating the diference in 
the extracted network weights and the uncompressed output, locally within each subset. More precisely, we 
partition Ω into P non intersecting subsets Cα ⊂ Ω , with α = 1, . . . , P and ∪P

1
Cα = Ω . For example, we defne 

Cα = [xi , xi+1] × [yj , yj+1] , for xi , xi+1, yj and yj+1, consecutive elements of N-regular partitions of [0, 1], and 
P = (N − 1)2 . Denote with wδ(Ti) the weight on the triangle Ti ∈ ∆

δ

Ω
 , resulting from the DMK-Solver (usually 

a function of µ∗ and u∗ ). If we denote the local weight of ∆δ

Ω
 inside Cα as wα =

∑
i:bi∈Cα

wδ(Ti) , then we propose 
the following evaluation metric:

where Iα(e) is an indicator of whether an edge e = (i, j) ∈ E is inside an element Cα of the partition, i.e. 
Iα(e) = 1, 0, 1/2 if both bi , bj are in Cα , none of them are, or only one of them is, respectively. In words, ŵq(G) is 
a distance between the weights of the network extracted by our procedure and the original weights, output of the 
DMK-Solver, over each of the local subsets Cα . Vis metric penalizes networks that either place large-weight edges 
where they were not present in the original triangulation, or low-weight ones where they were instead present 
originally. In this work, we consider the Euclidean distance, i.e. q = 2 , but other choices are also possible. Note 
that ŵq(G) does not say anything about how much information was required to store the processed network. 
If we want to encourage parsimonious networks, i.e. networks with few redundant structures, then we should 
include in the evaluation the monitoring of L(G) =

∑
e∈E

3e , the total path length of the compressed network, 
where the edge length 3e can be specifed based on the application. Standard choices are uniform 3e = 1, ∀e or 
the Euclidean distance between bi and bj . Intuitively, networks with small values of both ŵq(G) and L(G) are 
both accurate and parsimonious representations of the original DMK solutions defned on the triangulation.

We evaluate numerous graph extraction pipelines in terms of these two metrics on various routing optimi-
zation problem settings and parameters. In Fig. 4 we show the main results for a distribution of 170 networks 
obtained with β ∈ {1.1, 1.2, 1.3} and βd = 1.1 . Similar results were obtained for other parameter settings. Net-
works are generated as follows: frst, we choose a set of 5 diferent initial transport densities µ0 , grouped in 
parabola-like, delta-like and uniform distributions, and a set of 12 diferent confgurations for sources/sinks 
(mainly rectangles placed in diferent positions along the domain, see Supplementary Information for more 
details). Ven, for each of these setups, we run our procedure: (i) frst the DMK-Solver calculates the solution 
of the continuous problems; (ii) then we apply the graph pre-extraction procedure according rules of  <Rules for 
selecting nodes and edges" and weights as in <Rules for selecting weights=; iii) fnally, we run the graph fltering 
step and consider various weight functions, as described in Fig. 4.

We observe that not applying the fnal fltering step and considering rule I with ER to build the graph (I-ER-
None), the values of ŵ2(G) are smaller than other cases. Vis is expected as by fltering we remove information 
and thus achieve better performance with this metric when compared to no fltering. However, we pay a price 
in terms of total relative length as L(G)/Lmax is larger for this case. When working with rule II, we notice the 
appearance of many non-optimal small disconnected components, and this efect deteriorates if fltering is acti-
vated. Corresponding statistics show low values for both ŵ2(G) and L(G)/Lmax . We argue that this is because rule 
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II produces, by construction, fewer redundant objects than rule I in the initial phase. Vis might have a similar 
efect as a flter but is done a priori during the pre-extraction, because rule II produces in this phase a limited 
number of efective neighbors. However, this comes at a price of higher variability with the sampled networks, as 
the variance of ŵ2(G) is higher than for the other combinations. Among the possibilities with fltering applied, we 
observe that rule I performs better than rule III, while all the weighting rules give a similar performance in terms 
of both metrics. Any combination involving rule I plus fltering has a similar performance as rule II in terms of 
both metrics but with smaller variability. Finally, these combinations perform diferently in terms of the number 
of disconnected components (not shown here), with rule II producing more spurious splittings, as already men-
tioned. Depending on the application at hand, a practitioner should select one of these combinations based on 
their properties as discussed in this section. We give an example of a network generated with I-ER-ER in Fig. 5.

Application: network analysis of a vein network
We demonstrate our protocol on a biological network of fungi foraging for resources in space. Ve network 
structure corresponds to the fungi response to food cues while  foraging56. Edges are veins or venules and con-
nect adjacent nodes. Vis and those of other types of fungi are well known networks typically studied using 

Figure 4.  Graph extraction performance evaluation. We plot results for the diferent combinations of the graph 
extraction rule in terms of: (leg) the metric ŵq(G) of Eq. (9); (right) total network length L(G) normalized 
by Lmax , the max length over the 170 networks. Each bar denotes a possible combination as follows: roman 
numbers denote one of the three rules I–III (<Rules for selecting nodes and edges=); frst label ager the number 
denotes one of the rules to assign weights i–ii (<Rules for selecting weights=), which is applied to the output of 
the frst step; the second (and last) label denotes the same rule but applied ager the fltering step, <None= means 
that nothing is done, i.e. no flter applied, <IBP= means flter applied but with no reweighing, i.e. when an edge 
is removed by the flter we simply lose information without relocating its weight. Bars are color-coded so that 
rules I–III have three diferent primary colors and their corresponding routines have diferent shades of that 
main color. Here, we keep track of the conductivity µ and show medians and quartiles of a distribution over 170 
networks generated with β ∈ {1.1, 1.2, 1.3} , βd = 1.1 and δ = 0.01.

Figure 5.  Network extraction example. We show a network generated from a routing optimization problem 
with parameters βc = 1.4 , βd = 1.3 and δ = 0.001 ; (leg) raw output of the DMK-Solver; (right) fnal network 
extracted using the routine I-ER-ER.
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image segmentation  methods28–31. It is thus interesting to compare results found by these techniques and by our 
approach, under the conjecture that the underlying dynamic driving the network structure could be the same as 
the optimality principles guiding our extraction pipeline. In particular, we are interested in analyzing the distribu-
tion P(3) of the vein lengths, i.e. the network edges. Ve benchmark P(3) distribution obtained by Baumgarten 
and  Hauser28 using image processing techniques is an exponential of the type P(3) = P0 e

−³ 3 . Accordingly, as 
shown in Fig. 6, we fnd that an exponential ft (with values P0 = 234.00, γ = 36.32 ) well captures the leg part of 
the distribution, i.e. short edges. Diferences between ft and observed data can be seen in the right-most tail of 
the graph, corresponding to longer path lengths, where the data decay faster than the ft. However, we fnd that 
the exponential ft is nevertheless better than other distributions, such as the gamma and log-normal proposed 
in Dirnberger and  Mehlhorn57 for the P. Polycephalum. Drawing defnite quantitative conclusions is beyond the 
scope of our work, as this example aims at a qualitative illustration of possible applications that can be addressed 
with our model. In general, however, it seems not possible to choose a single distribution that well fts both center 
and tails of the distribution for various datasets of this  type57.

To conclude, we demonstrate the fexibility of our graph extraction method on a more general input than the 
one extracted from DMK-Solver. Specifcally, we consider as example an image of P. Polycephalum taken from 
data publicly available in the Slime Mold Graph Repository (SMGR)  repository58. We frst downsample an image 
of the SMGR9s KIST Europe data set, using OpenCV (leg) and a color scale defned on the pixels as an artifcial µ∗ 
function. We build a graph using the graph pre-extraction and graph fltering steps as shown in Fig. 7. Notice that 
our protocol in its standard settings with fltering can only generate tree-like structures. Verefore, if we want to 
obtain a network with loops as we did in Fig. 7, we should consider a modifcation of our routine, which can be 
done in a fully automatized way, as explained in more details in the Supplementary S4. In short, ager the graph 
pre-extraction step, where loops are still present, we extract a tree-like structure close to the original loopy graph 
and give this in input to the fltering. We can then add a posteriori edges that connect terminals that were close 
by in the graph obtained from the pre-extraction step but removed by the flter, thus recovering loops. In case 
obtaining loops is not required, our routine can be used with no modifcations. Adapting our fltering model to 
allow for loopy structures in a principled way, analogously to what done in <Graph preliminary extraction", will 
be subject of future work.

Discussion
We propose a graph extraction method for processing raw solutions of routing optimization problems in continu-
ous space into interpretable network topologies. Ve goal is to provide a valuable tool to help practitioners bridg-
ing the gap between abstract mathematical principles behind optimal transport theory and more interpretable 
and concrete principles of network theory. While the underlying routing optimization scheme behind the frst 
step of our routine uses recent advances of optimal transport theory, our tool enables automatic graph extrac-
tion without requiring expert knowledge. We purposely provide a fexible routine for graph extraction so that 
it can be easily adapted to serve the specifc needs of practitioners from a wider interdisciplinary audience. We 
thus encourage users to choose the parameters and details of the subroutines to suitably customize the protocol 
based on the application of interest. To help guiding this choice, we provide several examples here and in the 
Supplementary Information. We anticipate that this work will fnd applications beyond that of automating graph 
extraction from routing optimization problems. We remark that two of the three steps of our protocol apply 
to inputs that might not necessarily come from solutions of routing optimization. Indeed, the pipeline can be 

Figure 6.  Application to fungi network. We generate a synthetic network similar to the image of Fig. 1a 
reported in Boddy et al.31 and Fig. 4a in Obara et al.29 for the of Phanerochaete velutina  fungus56 and 
Fig. 1 in their supplementary for the Coprinus picaceus. Fitted parameters are: P0 = 234.00, γ = 36.32 . 
Here f +(x, y) = 1, if (x − 0.5)2 + (y − 0.5)2 ≤ 0.01 ; f +(x, y) = 0, otherwise; f −(x, y) = −1, if 
0.01 < (x − 0.5)2 + (y − 0.5)2 ≤ 0.45 ; f −(x, y) = 0 , otherwise. Ve network on the leg corresponds to the 
fltered graph. Yellow nodes are degree-2 nodes that we omitted when computing the length distribution. Green 
and red outlines are used to denote nodes in S+ and S− , respectively.



11

Vol.:(0123456789)

Scientifc Reports |        (2020) 10:20806  | https://doi.org/10.1038/s41598-020-77064-4

www.nature.com/scientificreports/

applied to any image setting where an underlying network needs to be extracted. Vis can have relevant impact in 
applications involving biological systems like neuronal networks, for which we observe an increasing amount of 
data from imaging experiments. Ve advantage of our setting with respect to more conventional machine learning 
methods is that the fnal structure extracted with our approach minimizes a clearly defned energy functional, 
that can be interpreted as the combination of the total dissipated energy during transport and the cost of building 
the transport infrastructure. We foresee that this minimizing interpretation together with the simplifcation of 
the pipeline from abstract modeling to fnal concrete network outputs will foster cross-breeding between felds 
as our tool will inform network science with optimal transport principles and vice-versa. In addition, we expect 
to advance the feld of network science by promoting the creation of new network databases related to routing 
optimization problems. For instance, an interesting direction for future work is to extend our optimal transport-
based method to address other network-related applications such as geometry-based community detection.

Code availability
open source codes and executables are available at https ://githu b.com/Danie lalei te/Nextr out.
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Abstract. We study network properties of networks evolving in time
based on optimal transport principles. These evolve from a structure cov-
ering uniformly a continuous space towards an optimal design in terms of
optimal transport theory. At convergence, the networks should optimize
the way resources are transported through it. As the network structure
shapes in time towards optimality, its topological properties also change
with it. The question is how do these change as we reach optimality. We
study the behavior of various network properties on a number of network
sequences evolving towards optimal design and find that the transport
cost function converges earlier than network properties and that these
monotonically decrease. This suggests a mechanism for designing optimal
networks by compressing dense structures. We find a similar behavior in
networks extracted from real images of the networks designed by the
body shape of a slime mold evolving in time.

Keywords: Optimal transport theory · Graph theory · Network
structure · Network design

1 Introduction

Optimal Transport (OT) theory studies optimal ways of transporting resources
in space [1,2]. The solutions are optimal paths that connect sources to sinks
(or origins to destinations) and the amount of flow traveling through them.
In a general setting one may start from a continuous space in 2D, arbitrarily
set sources and sinks, and then look for such optimal paths without any pre-
defined underlying topology. Empirically, in many settings, these paths resemble
network-like structures that embed optimality, in that traffic flowing along them
is minimizing a transport cost function. Among the various ways to compute
these solutions [3], a promising and computationally efficient recent approach
is that of Facca et al. [4–6], which is based on solving a set of equations (the
so-called Dynamical Monge-Kantorovich (DMK) equations). This starts from an
initial guess of the optimal paths that are then updated in time until reaching
a steady state configuration. At each time step, one can automatically extract a
principled network from a network-like structure using the algorithm proposed

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
R. M. Benito et al. (Eds.): COMPLEX NETWORKS 2021, SCI 1072, pp. 578–592, 2022.
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Convergence Properties of Optimal Transport-Based Temporal Networks 579

in Baptista et al. [7]. This in turn allows observing a sequence of network struc-
tures that evolves in time towards optimality, as the dynamical equations are
iterated. While we know that the transport cost function is decreasing along this
trajectory, we do not know how network properties on these structures evolve.
For instance, in terms of the total number of edges or nodes, one may intuitively
expect a monotonically decreasing behavior, from a topology covering uniformly
the whole space, towards a compressed one only covering a subset of it efficiently.
Analyzing the properties of networks that provide optimal transport efficiency is
relevant in many contexts and has been explored in several works [8–11]. How-
ever, these studies usually consider pre-existing underlying topologies that need
to be optimized. Moreover, they focus on network properties at convergence.
Here instead we consider the situation where a network can be designed in a
continuous 2D space, i.e. with no pre-defined underlying topology, and monitor
the whole evolution of network properties, in particular away from convergence.
While this question has been explored in certain biological networks [12–15], a
systematic investigation of this intuition is still missing. In this work, we address
this problem by considering several optimization settings, extracting their opti-
mal networks, and then measuring core network properties on them. We find
that network sequences show similar convergence patterns of those exhibited by
their continuous counterparts. However, topological features of optimal networks
tend to develop slightly slower than total cost function minimization. We also
find that, in some cases, this delay in convergence presented by the networks
might give better representations than those extracted at other cost-based con-
vergence times. Finally, we analyze real data of the P. polycephalum slime mold
evolving its network-like body shape in time as it explores the space foraging.
We use networks extracted from images generated in wet-lab experiments [16],
and analyze their topological features. Pattern matches can be found between
synthetic graphs and this family of real networks.

Understanding how network topology evolves towards optimality may shed
light on broader questions about optimal network properties and how to obtain
them.

2 The Model

The Dynamical-Monge Kantorovich Set of Equations. We now present the main
ideas of how to extract sequences of networks that converge towards an optimal
configuration, according to optimal transport theory. We start by introducing the
dynamical system of equations regulating this, as proposed by Facca et al. [4–6].
We assume that the problem is set on a continuous 2-dimensional space Ω ∈ R

2,
i.e. there is no pre-defined underlying network structure. Instead, one can explore
the whole space to design an optimal network topology, determined by a set of
nodes and edges, and the amount of flow passing through each edge. Sources and
sinks of a certain mass (e.g. passengers in a transportation network, water in a
water distribution network) are displaced on it. We denote these with a “forcing”
function f(x) = f+(x)−f−(x) ∈ R, describing the flow generating sources f+(x)
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Fig. 1. Temporal networks. On the left, the total length l(G) (i.e. sum of the edge
lengths), as a function of time t; the networks inside the insets correspond to different
time steps. On the right, optimal transport density µ∗; triangles are a [0, 1]2 discretiza-
tion. In both plots, red and green circles correspond to the support of f+ and f−, i.e.
sources and sinks, respectively. This sequence is obtained for β = 1.5.

and sinks f−(x) (also known as source and target distributions, respectively).
It is assumed that

∫
Ω
f(x)dx = 0 to ensure mass balance. We suppose that the

flow is governed by a transient Fick-Poiseuille type flux q = −µ∇u, where µ, u

and q are called conductivity (or transport density), transport potential and flux,
respectively. Intuitively, the conductivity can be seen as proportional to the size
of the edges where mass can flow, the potential could be seen as pressure on
nodes, thus determining the flux passing on it.

The set of Dynamical Monge-Kantorovich (DMK) equations is given by:

−∇ · (µ(t, x)∇u(t, x)) = f+(x)− f−(x) , (1)

∂µ(t, x)

∂t
= [µ(t, x)∇u(t, x)]

β
− µ(t, x) , (2)

µ(0, x) = µ0(x) > 0 , (3)

where ∇ = ∇x. Equation (1) states the spatial balance of the Fick-Poiseuille flux
and is complemented by no-flow Neumann boundary conditions; Eq. (2) enforces
the dynamics of this system and Eq. (3) is the initial configuration, this can be
thought of as an initial guess of the solution. The parameter β (traffic rate) tunes
between various optimization setting: for β < 1 we have congested transportation
where traffic is minimized, β > 1 is branched transportation where traffic is
encouraged to consolidate along fewer edges, and β = 1 is shortest path-like. In
this work we only consider the branched transportation regime 1 < β < 2, as
this is the only one where meaningful network structures can be extracted [7].

Solutions (µ∗, u∗) of Eqs. (1)–(3) minimize the transportantio n cost function
L(µ, u) [4–6], defined as:

L(µ, u) := E(µ, u) +M(µ, u) (4)

E(µ, u) :=
1

2

∫
Ω
µ|∇u|2dx, M(µ, u) :=

1

2

∫
Ω

µ
(2−β)

β

2− β
dx . (5)
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L can be thought of as a combination of M, the total energy dissipated
during the transport (or network operating cost) and E , the cost to build the
network infrastructure (or infrastructural cost).

2.1 Network Sequences

The conductivity µ at convergence regulates where the mass should travel for
optimal transportation. This is a function of a 2-dimensional space, it can be
turned into a principled network G(µ) (a set of nodes, edges, and weights on
them) by using the method proposed by [7], which in turn determines the design
of the optimal network. While the authors of that work considered only values at
convergence, this method is still valid at any time step, in particular at time steps
before convergence. This then leads to a sequence of networks evolving in time as
the DMK equations are iterated. Figure 1 shows three networks built using this
method at different time steps. The leftmost inset is the densest representation
that one can build from the shown discretization of the space (a triangulation),
as in the plot on the right side: all the nodes are connected to all of their closest
neighbors. This is what happens at initial time steps where the network is built
from mass uniformly displaced in space, as per uniform initial condition. On the
other hand, the rightmost network is built from a µ at convergence, consolidated
on a more branched structure.

Formally, let µ(x, t) be a transport density (or conductivity) function of both
time and space obtained as a solution of the DMK model. We denote it as the
sequence {µt}

T
t=0, for some index T (usually taken to be that of the conver-

gent state). Every µt is the t-th update of our initial guess µ0, computed by
following the rules described in Eqs. (1)–(3). This determines a sequence of net-
works {G(µt)}

T
t=0 extracted from {µt}

T
t=0 with [7]. Figure 1 shows three different

snapshots of one of the studied sequences.

Convergence Criteria. Numerical convergence of the DMK equations (1)–(3)
can be arbitrarily defined. Typically, this is done by fixing a threshold τ , and
stopping the algorithm when the cost does not change more than that between
successive time steps. However, when this threshold is too small (τ = 10−12 in
our experiments), the cost or the network structure may consolidate to a constant
value way in advance, compared to the algorithmic one. Thus, to meaningfully
establish when is network optimality reached, we consider as convergence time
the first time step when the transport cost, or a given network property, reaches
a value that is smaller or equal to a certain fraction p of the value reached by
the same quantity at algorithmic convergence (in the experiments here we use
p = 1.05). We refer to tL and tP for the convergence in times in terms cost
function or a network property, respectively.

Network Properties. We analyze the following main network properties for the
different networks in the sequences and for different sequences. Denote with G

one of the studied networks belonging to some sequence {G(µt)}
T
t=0. We study
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the following properties relevant to the design of networks for optimal transport
of resources through it.

– |N |, total number of nodes;
– |E|, total number of edges;
– total length l(G) =

∑
e l(e), i.e. the sum of the lengths of every edge. Here

l(e) is the Euclidean distance between the nodes endpoints of e;
– Average degree, the mean number of neighbors per node;
– bif(G), the number of bifurcations; a bifurcation is a node with degree greater
than 2;

– leav(G), the number of leaves; a leave is a node with degree equal to 1.

3 Results on Synthetic Data

To study the behavior of network structures towards optimality, we perform an
extensive empirical analysis as follows. We generate synthetic data considering
a set of optimal transport problems, determined by the configuration of sources
and sinks. In fact, the final solutions strongly depend on how these are displaced
in space. We consider here a scenario where we have one source and many sinks,
which is a relevant situation in many applications. For instance, in biology, this
would be the case for a slime mold placed on a point in space (the source) and
looking for multiple sources of food (the sinks). Formally, consider a set of points
S = {s0, s1, ..., sM} in the space Ω = [0, 1]2, and 0 < r a positive number. We
define the distributions f+ and f− as

f+(x) ∝ 1R0
(x), f−(x) ∝

∑

i>0

1Ri
(x)

where 1Ri
(x) := 1, if x ∈ Ri, and 1Ri

(x) := 0, otherwise; Ri is the circle
of center si and radius r (the value of r is automatically selected by the solver
based on the discretization of the space); and the proportionality is such that
f+ and f− are both probability distributions. The transportation cost is that of
Eq. (4).

Data Generation. We generate 100 transportation problems by fixing the loca-
tion of the source s0 = (0, 0) (i.e. the support of f+ at (0, 0)), and sampling 15
points s1, s2, ..., sM uniformly at random from a regular grid (see supplementary
information). By choosing points from vertices of a grid, we ensure that the dif-
ferent sinks are sufficiently far from each other, so they are not redundant. We
start from an uniform, and thus non-informative, initial guess for the solution,
µ0(x) = 1, ∀x. We fix the maximum number of iterations to be 300. We say that
the sequence {µt}

T
t=0 converges to a certain function µ∗ at iteration T if either

|µT − µT−1| < τ, for a tolerance τ ∈ (0, 1], or T = 300. For the experiments
reported in this manuscript, the tolerance τ is set to be 10−12. We consider dif-
ferent values of β ∈ [1.1, 1.9], thus exploring various cost functions within the
branched transportation regime. Decreasing β from 2 to 1 results in traffic being
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more penalized, or consolidation of paths into fewer highways less encouraged.
In total, we obtain 900 network sequences, each of them containing between 50
and 80 networks.

Fig. 2. Total length and Lyapunov cost. Mean (markers) and standard deviations
(shades around the markers) of the total length (top plots) and of the Lyapunov cost,
energy dissipation E and structural cost M (bottom plots), as functions of time t.
Means and standard deviations are computed on the set described in Sect. 3. From left
to right: β = 1.2, 1.5 and 1.8. Red and blue lines denote tP and tL.

Convergence: Transport Cost vs Network Properties. Figure 2 shows a com-
parison between network properties and the cost function minimized by the
dynamics.

We observe that tP > tL in all the cases, i.e. convergence in the cost function
is reached earlier than convergence of the topological property. Similar behaviors
are seen for other values of β ∈ [1.1, 1.9] and for other network properties (see
supplementary information). For smaller values of β convergence in transport
cost is reached faster, when the individual network properties are still signif-
icantly different from their value at convergence, see Fig. 3 for an example in
terms of total path length at β = 1.2. In this case, while the cost function
does not change much after tL, the network properties do instead. This may be
because the solutions for β close to 1 have non-zero µ on many edges but most
of them have low values. Indeed, we find that the most important edges, mea-
sured by the magnitude of µ on them, are those corresponding to the topology
found at a later time, when the network properties also converge, as shown in
Fig. 3 (bottom). This indicates that the dynamics first considers many edges,
and distributes the fluxes optimally along fewer main roads. At the end, close
to convergence, it focuses instead on removing redundant edges, those that have
little flux traveling.

Finally, we notice how tL is smaller for β close to 1. This reflects the fact
that in this case it is easier to find a solution to the optimization problem, as for
increasing β the configuration space gets roughed with many local optima [4–6].
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Fig. 3. Network topologies for different convergence criteria. Mean (markers)
and standard deviations (shades around the markers) of total length l(G) as a function
of time. The red, black and blue vertical lines (and networks in the insets) correspond
to tP , the average of tP and tL, and tL, respectively. Networks without (top row) and
with (bottom) edge weights proportional to their µ are plotted at those times three
time steps. Hence, the networks on top highlight the topological structure, while those
on the bottom the flux passing through edges.

Convergence Behavior of Network Properties. Figure 4 shows how the various
network properties change depending on the traffic rate. The plots show their
mean values computed across times, for a fixed value of β. Notice that quantities
like the total length, the average degree, the number of bifurcations, the number
of edges and the number of nodes decrease in time, signaling that sequences
reach steady minimum states. These are reached at different times, depending
on β, with convergence reached faster for lower β. Moreover, mean values of these
properties converge to decreasing values, as β increases. This is explained by a
cost function increasingly encouraging consolidations of paths on fewer edges.
Finally, the magnitude of the gap between the different mean values of each
property for different β depends on the individual property. For instance, the
average degree changes more noticeably between two consecutive values of β than
the total path length, which shows a big gap between the value at β = 1.1 and
all of the subsequent β > 1.1, that have instead similar value of this property.
This also shows that certain properties better reveal the distinction between
different optimal traffic regimes. The number of leaves behaves more distinctly.
In fact, it exhibits two different patterns: either it remains constantly equal
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Fig. 4. Evolution of network properties. Mean (markers) and standard deviations
(shades around the markers) of total length l(G) (upper left), average degree (upper
center), number of leaves leav(G) (upper right), number of bifurcations bif(G) (lower
left), number of edges |E| (lower center) and number of nodes |N | (lower right), com-
puted for different values of β as a function of time. Notice that |E| keeps changing for
t > 70 but the scale makes it hard to perceive.

to 0 (β = 1.1) or it increases, and with different rates, as time gets larger
(β > 1.1). This number increases with β, as in this regime paths consolidate
into fewer edges, thus leaving more opportunities for leaves. To help intuition
of the different optimal designs for various β, we plot the extracted networks at
convergence in Fig. 5. The positions of source and sinks are the same in all cases.
The network obtained for higher β = 1.8 contains fewer edges and nodes than
the others cases. On average, these networks have bif(G) ≈ 13 , leav(G) ≈ 7,
l(G) ≈ 4 and an average degree ≈ 2. These reveal various topological features
on the converged networks of this traffic regime, that make it more distinct than
others. For instance, having approximately 7 leaves implies that the dynamics
builds networks with as many leaves as approximately half the number of sinks
(M = 15) in this transportation problem, while on the other hand, we can see
that bif(G) ≈ M , i.e., the number of bifurcations is almost as large as the
number of sinks.

3.1 Results on Real Networks of P. polycephalum

In this section, we compare the properties of the sequences {G(µt)}
T
t=0 to those

extracted from real images of the slime mold P. polycephalum. This organism
has been shown to perform an optimization strategy similar to that modeled by
the DMK equations of Sect. 2, while foraging for food in a 2D surface [17–19].
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Fig. 5. Example of optimal networks for various cost functions. Networks
extracted from the solutions of the same transportation problem but various β. Green
and red and circles denote source and sinks.

Fig. 6. Network evolution of P. polycephalum. On top: P. polycephalum images
and networks extracted from them. Bottom left: a zoomed-in part of the graph shown
inside the red rectangle on top. Bottom right: total length as a function of time. The
red shade highlights a tentative consolidation phase towards optimality.

We extract these networks from images using the method proposed by [20]. This
pipeline takes as input a network-like image and uses the color intensities of its
different pixels to build a graph, by connecting adjacent meaningful nodes. We
choose 4 image sequences from the Slime Mold Graph Repository [16]. Every
sequence is obtained by taking pictures of a P. polycephalum placed in a rectan-
gular Petri dish and following its evolution in time. Images are taken every 120 s
from a fixed position.

We study the evolution of the total length for every sequence. We show
in Fig. 6 the total length of the temporal network extracted from one of the
mentioned image sequences (namely, image set motion12 ; see supplementary
information), together with different network snapshots. As we can see from the
lower rightmost plot, the evolution of the total length of the extracted networks
resembles that of the synthetic network sequences analyzed above. This suggests
that the DMK-generated sequences resemble the behavior of this real system in
this time frame. This could mean that the DMK dynamics realistically represents
a consolidation phase towards optimality of real slime molds [16]. Similar results
are obtained for other sequences (see supplementary information).
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4 Conclusions

We studied the properties of sequences of networks converging to optimal struc-
tures. Our results show that network sequences obtained from the solution of
diverse transportation problems often minimize network properties at slower
rates compared to the transport cost function. This suggests an interesting
behavior of the DMK dynamics: first, it focuses on distributing paths into main
roads while keeping many network edges. Then, once the main roads are cho-
sen, it removes redundant ones where the traffic would be low. Measuring con-
vergence of network properties would then reveal a more compressed network
cleaned from redundant paths. The insights obtained in this work may further
improve our understanding of the mechanisms governing the design of optimal
transport networks.

We studied here a particular set of transportation problems, one source,
and multiple sinks. In this case, all the main network properties studied here
show similar decaying behavior. However this analysis can be replicated for more
complex settings, like multiple sources and multiple sinks [21] or in multilayer
networks [22], as in urban transportation networks. Potentially, this may unveil
different patterns of the evolution of the topological properties than those studied
in this work.

Results on real networks suggest that the networks generated by the DMK
dynamics (inspired by the P. polycephalum) resemble realistic features. Strongly
monotonic phases are not only typical of the mentioned slime molds but also
a pattern in the artificially generated data. Alternative realistic behaviors may
be seen by considering a modified version of the model described in Eq. (1) by
adding non-stationary forcing terms. This may highlight a behavior different
than the one observed in a consolidation phase, where a network converges to an
optimal design and then does not change further. This is an interesting direction
for future work.

Acknowledgements. The authors thank the International Max Planck Research
School for Intelligent Systems (IMPRS-IS) for supporting Diego Baptista.

Supplementary Information (SI)

1 Synthetic Data

Details of the Studied Transport Problems. As mentioned in the main
manuscript, we consider a set of points S = {s0, s1, ..., sM} in the space
Ω = [0, 1]2, and 0 < r a positive number, and we use this to define the dis-
tributions f+ and f− as

f+(x) ∝ 1R0
(x), f−(x) ∝

∑

i>0

1Ri
(x)

where Ri is the circle of center si and radius r. The points s1, ..., sM , the
support of the sink, are sampled uniformly at random from a regular grid. The
used grid and different realizations of the sampling are shown in Fig. 7.
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Fig. 7. Support of f−. The nodes of the grid constitutes the set of candidates from
which the support of f−

Fig. 8. Total length and Lyapunov cost. Top row: from left to right we see β =
1.1, 1.3 and 1.4. Bottom row: from left to right we see β = 1.6, 1.7 and 1.9. Mean and
standard deviation of the total length l(G) as function of time t; Bottom plot: Mean
and standard deviation of the Lyapunov cost L, energy dissipation E and structural
cost M of transport densities. Red and blue lines denote tP and tL for p = 1.05.

Total Length and Lyapunov Cost. We show in this section a figure like the
one presented in the Fig. 2 of the main manuscript, for other values of β. As
mentioned in there, the properties show decreasing behaviors for which is always
true that tP > tL (see Fig. 8).



Convergence Properties of Optimal Transport-Based Temporal Networks 589

Fig. 9. Other network properties and Lyapunov cost. From left to right: β =
1.2, 1.5 and 1.8. From top to bottom: Mean and standard deviation of the average
degree, number of nodes |N |, number of bifurcations bif(G), and the Lyapunov cost
L, energy dissipation E and structural cost M. Red and blue lines denote tP and tL
for p = 1.05.

Network Properties and Lyapunov Cost. We show in this section a figure like
the one presented in the Fig. 2 of the main manuscript, for the other network
properties (see Fig. 9).

2 P. polycephalum Networks

Data Information. In this section, we give further details about the used real
data. As mentioned in the main manuscript, the images are taken from the
Slime Mold Graph Repository [16]. The number of studied sequences {Gi}

T
i

equals 4. Every sequence’s length T changes depending on the amount of images
provided in the repository, since different experiments need more o less shots. An
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Fig. 10. Network properties for P. polycephalum sequences. From top to bot-
tom: motion12, motion24, motion40 and motion79. Subfigures show the evolution of
the properties |E|, average degree and |N | for every sequence as a function of time.

experiment, as explained in the repository’s documentation, consists of placing
a slime mold inside a Petri dish with a thin sheet of agar and no sources of food.
The idea, as explained by the creators, is to let the slime mold fully explore the
Petri dish. Since the slime mold is initially lined up along one of the short side
of the dish, the authors stop capturing images once the plasmodium is about to
reach the other short side.

Network Extraction. The studied network sequences are extracted from the
image sets motion12, motion24, motion40 and motion79, which are stored in
the repository. Each image set contains a number of images ranging from 60 to
150, thus, obtained sequences exhibit diverse lengths. Every network is extracted
using the Img2net algorithm described in [20]. The main parameters of this algo-
rithms are N runs, t2, t3 and new size. N runs controls how many times the
algorithm needs to be run; t2 (and t3) are the minimum value (and maximum)
a pixel’s grayscale value must be so it is considered as a node; new size is the
size to which the input image must be downsampled before extracting the net-
work from it. For all the experiments reported in this manuscript, the previously
mentioned parameters are set to be N runs = 1, t2 = 0.25, t3 = 1 and new size

= 180.

More Network Properties. Other network properties are computed for the real
systems referenced in this manuscript. Similar decreasing behaviors, like the one
shown for the total length property in the main manuscript, are found for these
properties; see Figs. 10 and 11.
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Fig. 11. P. polycephalum total length evolution. From top to bottom: motion24,

motion40 and motion79. Plots are separated in couples. For every couple, the plots on
top show both P. polycephalum images and networks extracted from them. The network
at the lower leftmost plot is a subsection of the graph shown inside the red rectangle
on top. The plot at the bottom shows the total length as a function of time. The red
shade in this plot highlights a tentative consolidation phase towards optimality.
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Abstract 

We present a method to extract temporal hypergraphs from sequences of 2-dimen-

sional functions obtained as solutions to Optimal Transport problems. We investigate 

optimality principles exhibited by these solutions from the point of view of hypergraph 

structures. Discrete properties follow patterns that differ from those characterizing 

their continuous counterparts. Analyzing these patterns can bring new insights into 

the studied transportation principles. We also compare these higher-order structures 

to their network counterparts in terms of standard graph properties. We give evidence 

that some transportation schemes might benefit from hypernetwork representations. 

We demonstrate our method on real data by analyzing the properties of hypernet-

works extracted from images of real systems.

Keywords: Optimal transport theory, Hypergraph theory, Graph theory, Network 

structure, Network design

Introduction

Optimal Transport (OT) is a principled theory to compare probability distributions 

(Kantorovich 1942; Villani 2009; Santambrogio 2015; Peyré et  al. 2019). Although this 

task is usually framed as an optimization problem, recent studies have mapped it within 

the framework of dynamic partial differential equations (Evans and Gangbo 1999; Facca 

et al. 2018, 2020, 2021; Tero et al. 2007, 2010). In this context, solutions to a transporta-

tion problem are often found as the convergent state of evolving families of functions.

In some scenarios, the steady states of these evolving families are supported in net-

work-shaped structures (Xia 2003, 2014, 2015). Recently, this fact has called the atten-

tion of network scientists and graph theorists leading to the development of methods 

that convert the solutions of OT problems into actual graph structures (Baptista et al. 

2020; Leite and De Bacco 2022). �is has broadened the available set of tools to under-

stand and solve these transportation problems. Recent studies have shown that common 

patterns can be unveiled in both the original mathematical setting and in the converted 

graph structures (Baptista and De Bacco 2021b).

Representations of these functions as sets of dyadic relations have been proven mean-

ingful in various applications (Baptista and De Bacco 2021a; Facca et al. 2021). Nonethe-

less, traditional dyadic representations may be limited in representing flows of quantities 
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like mass or information as observed in real systems. Various examples of systems where 

interactions happen between 3 individuals or more are observed in applications as social 

contagion (de Arruda et al. 2020; Chowdhary et al. 2021), random walks (Carletti et al. 

2020; Schaub et al. 2020) or non-linear consensus (Neuhäuser et al. 2020). Understand-

ing the relation between the structure and dynamics taking place on higher-order struc-

tures is an active field of research (Taylor et al. 2015; Patania et al. 2017). For instance, 

key elements controlling dynamics are linked to the heterogeneity of hyperedges’ sizes 

present in their higher-order representations (Patania et  al. 2017). �ese systems are 

hence best described by hypergraphs, generalizations of networks that encode struc-

tured relations among any number of individuals. With this in mind, a natural question 

to ask is how do OT-based structures perform in terms of higher-order representations?

To help bridge this knowledge gap about higher-order properties of structures derived 

from OT solutions, we elaborate on the results observed in Baptista and De Bacco 

(2021b). Specifically, we propose a method to convert the families of 2-dimensional 

functions into temporal hypernetworks. We enrich the existing network structures asso-

ciated with these functions by encoding the observed interactions into hyperedges. We 

study classic hypergraph properties and compare them to the predefined cost functional 

linked to the transportation problems. Finally, we extend this method and the analy-

sis to study systems coming from real data. We build hypergraph representations of P. 

polycephalum (Westendorf et al. 2016) and analyze their topological features.

Methods

The Dynamical Monge‑Kantorovich method

The Dynamical Monge‑Kantorovich set of equations

We start by reviewing the basic elements of the mechanism chosen to solve the OT 

problems. As opposed to other standard optimization methods used to solve this 

(Cuturi 2013), we use an approach that turns the problem into a dynamical set of partial 

differential equations. In this way, initial conditions are updated until a convergent state 

is reached. �e dynamical system of equations as proposed by Facca et al. (2018, 2020, 

2021), is presented as follows. We assume that the OT problem is set on a continuous 

2-dimensional space � ∈ R
2 , and at the beginning, no underlying network structure is 

observed. �is gives us the freedom of exploring the whole space to design an optimal 

network topology, solution of the transportation problem. �e main quantities that need 

to be specified in input are source and target distributions. We refer to them as sources 

and sinks, where a certain mass (e.g. passengers in a transportation network, water in a 

water distribution network) is injected and then extracted. We denote these with a “forc-

ing” function f (x) = f +(x) − f −(x) ∈ R , describing the flow-generating sources f +(x) 

and sinks f −(x) . To ensure mass balance it is imposed 
�
f (x)dx = 0 . We assume that 

the flow is governed by a transient Fick–Poiseuille flux q = −µ∇u , where µ,u and q 

are called conductivity (or transport density), transport potential and flux, respectively. 

Intuitively, mass is injected through the source, moved based on the conductivity across 

space, and then extracted through the sink. �e way mass moves determines a flux 

that depends on the pressure exerted on the different points in space; this pressure is 

described by a potential function.
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�e set of Dynamical Monge–Kantorovich (DMK) equations is given by:

where ∇ = ∇x . Equation (1) states the spatial balance of the Fick–Poiseuille flux and is 

complemented by no-flow Neumann boundary conditions. Equation (2) enforces the 

dynamics of this system, and it is controlled by the so-called traffic rate β . It determines 

the transportation scheme, and it shapes the topology of the solution: for β < 1 we have 

congested transportation where traffic is minimized, whereas β > 1 induces branched 

transportation where traffic is consolidated into a smaller amount of space. �e case 

β = 1 recovers shortest path-like structures. Finally, Eq. (3) constitutes the initialization 

of the system and can be thought of as an initial guess of the solution.

Solutions (µ∗,u∗) of Eqs. (1)–(3) minimize the transportation cost function L(µ,u) 

(Facca et al. 2018, 2020, 2021), defined as:

L can be thought of as a combination of M , the total energy dissipated during transport 

(or network operating cost) and E , the cost to build the network infrastructure (or infra-

structural cost). It is known that this functional’s convexity changes as a function of β . 

Non-convex cases arise in the branched schemes, inducing fractal-like structures (Facca 

et al. 2021; Santambrogio 2007). �is is the case that we considered in this work, and 

it is the only one where meaningful network structures, and thus, hypergraphs, can be 

extracted (Baptista et al. 2020).

Hypergraph sequences

Hypergraph construction

We define a hypergraph (also, hypernetwork) as follows (Battiston et  al. 2020): a 

hypergraph is a tuple H = (V ,E), where V = {v1, ..., vn} is the set of vertices and 

E = {e1, e2, ..., em} is the set of hyperedges in which ei ⊂ V , ∀i = 1, ...,m, and |ei| > 1 . If 

|ei| = 2, ∀i then H is simply a graph. We call edges those hyperedges ei with |ei| = 2 and 

triangles, those with |ei| = 3 . We refer to the 1-skeleton of H as the clique expansion of 

H. �is is the graph G = (V ,EG) made of the vertices V of H, and of the pairwise edges 

built considering all the possible combinations of pairs that can be built from each set of 

nodes defining each hyperedge in E.

Let µ be the conductivity found as a solution of Eqs. (1)–(3). As previously men-

tioned, µ at convergence regulates where the mass should travel for optimal 

(1)−∇ · (µ(t, x)∇u(t, x)) = f +(x) − f −(x),

(2)
∂µ(t, x)

∂t
= [µ(t, x)∇u(t, x)]

β
− µ(t, x),

(3)µ(0, x) = µ0(x) > 0,

(4)L(µ,u) := E(µ,u) + M(µ,u)

(5)E(µ,u) :=
1

2

∫
�

µ|∇u|2dx, M(µ,u) :=
1

2

∫
�

µ
(2−β)

β

2 − β
dx.
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transportation. Similar to Baptista and De Bacco (2021b), we turn this 2-dimensional 

function into a different data structure, namely, a hypergraph. �is is done as follows: 

consider G(µ) = (VG ,EG) the network extracted using the method proposed in Baptista 

et al. (2020). We define H(µ) as the tuple (VH ,EH ) where VH = VG and EH = EG ∪ TG , 

s.t., TG = {(u, v,w) : (u, v), (v,w), (w,u) ∈ EG , }. In words, H(µ) is the graph G(µ) 

together with all of its triangles. �is choice is motivated by the fact that the graph-

extraction method proposed in Baptista et al. (2020) uses triangles to discretize the con-

tinuous space � , which can have a relevant impact on the extracted graph or hypergraph 

structures. Hence, triangles are the natural sub-structure for hypergraph constructions. 

�e method proposed in this work is valid for higher-order structures beyond triangles. 

Exploring how these additional structures impact the properties of the resulting hyper-

graphs is left for future work.

Figure  1 shows an example of one of the studied hypergraphs. �e red shapes rep-

resent the different triangles of H(µ) . Notice that, although we consider here the case 

where |e| ≤ 3 for each hyperedge e—for the sake of simplicity—higher-order structures 

are also well represented by the union of these elements, as shown in the right panels of 

the figure.

Since this hypergraph construction method is valid for any 2-dimensional transport 

density, we can extract a hypergraph not only from the convergent µ but also at any time 

step before convergence. �is then allows us to represent optimal transport sequences as 

hypergraphs evolving in time, i.e. temporal hypernetworks.

Hypergraph sequences

Formally, let µ(x, t) be a transport density (or conductivity) function of both time and 

space obtained as a solution of the DMK model. We denote it as the sequence {µt}
T
t=0

 , for 

some index T (usually taken to be that of the convergent state). Each µt is the t-th update 

of our initial guess µ0 , computed by following the rules described in Eqs. (1)–(3). �is 

determines a sequence of hypernetworks {H(µt)}
T
t=0

 extracted from {µt}
T
t=0

 with the 

extraction method proposed in Baptista et al. (2020). Figure 2 shows three hypergraphs 

built from one of the studied sequences {µt} using this method at different time steps. 

�e corresponding OT problem is that defined by the (filled and empty) circles: mass is 

injected in the bottom left circle and must be extracted at the highlighted destinations. 

On the top row, different updates (namely, t = 12, 18, 26 ) of the solution are shown. 

�ey are defined on a discretization of [0, 1]2. Darkest colors represent their support. 

Fig. 1 Hypernetwork construction. Higher order structures are built using edges and triangles as 

hyperedges. The leftmost panel shows one of the studied graphs together with the triangles (in red) used. 

The subsequent panels highlight different clusters of triangles that can be seen in the main hypergraph
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Hypergraphs extracted from these functions are displayed at the bottom row. As can be 

seen, only edges (in gray) and triangles (in red) are considered as part of H(µt) . Notice 

that the larger the t is, the less dense the hypergraphs are, which is expected for a uni-

form initial distribution µ0 and branched OT ( β > 1 ) (Facca et al. 2021).

Graph and hypergraph properties

We compare hypergraph sequences to their correspoding network counterparts (defined 

as described in the previous paragraph). We analyze the following main network and 

hypergraph properties for the different elements in the sequences and for different 

sequences. Denote with G = (VG ,EG) and H = (VH ,EH ) one of the studied graphs and 

hypergraphs belonging to some sequence {G(µt)}
T
t=0

 and {H(µt)}
T
t=0

 , respectively. We 

consider the following network properties: 

1. |EG| , total number of edges;

2. Average degree d(G), the mean number of neighbors per node;

3. Average closeness centrality c(G): let v ∈ VG , the closeness centrality of v is defined 

as 
∑

u∈VG
1/d(u, v), where d(u, v) is the shortest path distance between u and v.

Hypernetwork properties can be easily adapted from the previous definitions with 

the help of generalized adjacency matrices and line graphs (Aksoy et al. 2020). Let H 

be a hypergraph with vertex set V = {1, .., n} and edge set E = {e1, ..., em} . We define 

the generalized node s-adjacency matrix As of H as the binary matrix of size n × n , s.t., 

As[i][j] = 1 if i and j are part of at least s shared hyperedges; As[i][j] = 0, otherwise. 

Fig. 2 Temporal hypergraphs. Top row: different timestamps of the sequence {µt} ; triangles are a 

discretization of [0, 1]2 . Bottom row: hypergraphs extracted for µt at the time steps displayed on the top row; 

triangles are highlighted in red. In both rows, filled and empty circles correspond to the support of f+ and f− , 

i.e. sources and sinks, respectively. This sequence is obtained for β = 1.5
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We define the s-line graph Ls as the graph generated by the adjacency matrix As . 

Notice that A1 corresponds to the adjacency matrix of H’s skeleton (which is L1 ). Fig-

ure  3 shows a family of adjacency matrices together with the line graphs generated 

using them. We can then define hypergraphs properties in the following way: 

1. |EH | , total number of hyperedges;

2. |T | = |{e ∈ EH : |e| = 3}|, total number of triangles;

3. S =

∑
t∈T

a(t), covered area, where a(t) is the area of the triangle t; 

4. Average degree ds(H) , the mean number of incident hyperedges of size greater or 

equal than s per node;

5. Average closeness centrality cs(H) : let v ∈ VH , the closeness centrality of v is defined 

as its closeness centrality in Ls.

S can be defined in terms of any other property of a hyperedge, e.g. a function of its 

size |e|. Here we consider the area covered by a hyperedge to keep a geometrical per-

spective. On the other hand, this area S can be easily generalized to hyperedges with 

|ei| > 3 by suitably changing the set T in the summation, e.g. by considering struc-

tures containing four nodes. As for the centrality measures, we focus our attention 

to compare the case s > 1 against s = 1 , as the latter traces back to standard graph 

properties and we are interested instead to investigate what properties are inherent 

to hypergraps. Figure  4 shows values of the ds(H) and cs(H) for convergent hyper-

graphs H (obtained from different values of β ) together with the degree and close-

ness centrality of their correspondent graph versions. �e considered hypergraphs are 

displayed in the top row of the figure. As can be seen in the figure, patterns differ 

considerably for different values of β . As s controls the minimum number of shared 

connections for different nodes in the networks, the higher this number, the more 

restrictive this condition becomes, thus leading to more disconnected line graphs. In 

the case of the s-degree centrality, we observe decreasing values for increasing s, with 

nodes with the highest centrality having much higher values than nodes less central. 

Fig. 3 Adjacency matrices and line graphs. Top: generalized node s-adjacency matrices for different values of 

s from a given toy graph G. Bottom, from left to right: reference network G, and s-line graphs for s = 2, 3, and 

4
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For both s = 2, 3 we observe higher values than nodes in G. �is follows from the 

fact that once hyperedges are added to G, the number of incidences per node can 

only increase. Centrality distributions strongly depend on β . For small values—more 

distributed traffic ( β = 1.1)—the number of hyperedges per node remains larger than 

the number of regular edges connected to it. But if traffic is consolidated on less space 

( β = 1.9 ), then very few hyperedges are found. �is suggests that the information 

learned from hypergraphs that is distinct to that contained in the graph skeleton is 

influenced by the chosen traffic regime.

As for the closeness centrality distribution, this resembles that of G for small val-

ues of β , regardless s. For higher β it switches towards an almost binary signal. �us, 

nodes tend to become more central as β increases, suggesting that adding hyperedges 

to networks G leads to shorter distances between nodes. �e loss of information seen 

for the highest values of s is due to the fact that the line graphs Ls become discon-

nected with many small connected components. In these cases, the closeness central-

ity of a node is either 0 if it is isolated, or proportional to the diameter of the small 

connected component where it lives in.

Convergence criteria

Numerical convergence of the DMK Eqs. (1)–(3) is usually defined by fixing a threshold 

τ . �e updates are considered enough once the cost associated to them does not change 

more ( ≤ τ ) than that of the previous time step. As it is usually the case when this thresh-

old is too small ( τ = 10
−12 in our experiments), the cost or the network structure may 

Fig. 4 Graph and Hypergraph properties. Top row: optimal hypernetworks obtained with different traffic 

rates. Center and bottom rows: degree distributions and closeness distributions for the hypernetworks shown 

on the top row, and their 1-skeletons. The node labels in the x-axis of the center and bottom rows are sorted 

by their degree of centrality values
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consolidate to a constant value earlier than algorithmic convergence. Similar to Baptista 

and De Bacco (2021b), to meaningfully establish when is hypergraph optimality reached, 

we consider as convergence time the first time step when the transport cost, or a given 

network property, reaches a value that is smaller or equal to a certain fraction p of the 

value reached by the same quantity at algorithmic convergence (in the experiments here 

we use p = 1.05 ). We refer to tL and tP for the convergence in times in terms of cost 

function or a network property, respectively.

Results

To test the properties presented in the previous section and understand their connec-

tion to transportation optimality, we synthetically generate a set of optimal transport 

problems, determined by the configuration of sources and sinks. As done in Baptista 

and De Bacco (2021b), we fix a source’s location and sample several points in the set 

[0, 1]2 to be used as sinks’ locations. Let S = {s0, s1, ..., sM} be the set of locations in the 

space [0, 1]2, and fix a positive number 0 < r . We define the distributions f + and f − as 

f +(x) ∝ 1R0(x), and f −(x) ∝

∑
i>0 1Ri(x), where 1Ri(x) := 1, if x ∈ Ri , and 1Ri(x) := 0 , 

otherwise; Ri = C(si, r) is the circle of center si and radius r. �e value of r is chosen 

based on the used discretization, and as mentioned before, the centers are sampled uni-

formly at random. �e symbol ∝ stands for proportionality and is used to ensure that f + 

and f − are both probability distributions. �e transportation cost is that of Eq. (4).

Synthetic OT problems

�e set of transportation problems considered in our experiments consists of 100 

source-sink configurations. We place the location of the source s0 = (0, 0) (i.e. the sup-

port of f + at (0, 0)), and sample 15 points s1, s2, ..., sM uniformly at random from a reg-

ular grid. By sampling them from the nodes of the grid, we ensure that two different 

locations are at a safe distance so they are considered different once the space is dis-

cretized. We initialize µ0(x) = 1, ∀x to be a uniform distribution on [0, 1]2 . �is can be 

interpreted as a non-informative initial guess for the solution. Starting from µ0, we com-

pute a maximum of 300 updates. Depending on the chosen traffic rate β more or fewer 

iterations can be needed. We claim that the sequence {µt}
T
t=0

 converges to a certain func-

tion µ∗ at iteration T if either |µT − µT−1| < τ , for a tolerance τ ∈ (0, 1], or T reaches 

the mentioned maximum. For the experiments reported in this manuscript, the toler-

ance τ is set to be 10−12 . Given the dependence of the solution of traffic constraints, a 

wide range of values of β is considered. Namely, we study solutions obtained from low 

traffic cases ( β = 1.1 , and thus, less traffic penalization) to large ones ( β = 1.9 ), all of 

them generating branched transportation schemes. Our 100 problems are linked to a 

total of 900 hypergraph sequences, each of them containing between 50 and 80 higher-

order structures.

Convergence: transport cost vs hypernetwork properties

As presented in Baptista and De Bacco (2021b), we show a comparison between hyper-

network properties and the cost function minimized by the dynamics, where conver-

gence times are highlighted (Fig. 5). We focus on the property S, the area of the surface 

covered by the triangles in H. �is quantity is influenced by both the amount of triangles 
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(hence of hyperedges) and their distribution in space. Hence, it is a good proxy for how 

hypergraph properties change both in terms of iteration time and as we tune β . We 

observe that tP > tL in all the cases, i.e. convergence in terms of transportation cost is 

reached earlier than the convergence of the topological property. Similar behaviors are 

seen for other values of β ∈ [1.1, 1.9] and other network properties (see “Appendix”). 

Similar to DMK-based network properties, the covered area’s decay is faster for the 

smallest values of β . �is is expected, given the convexity properties of L (Facca et al. 

2018, 2020, 2021). However, the transport cost decays even faster, in a way that the value 

of S is still far away from convergence in the congested transportation case (small β).

Notice that S remains stable after the first few iterations, and then it starts decreas-

ing at different rates (depending on β ) until reaching the converged value. �is suggests 

that the dynamics tend to develop thick branches—covering a large area— at the begin-

ning of the evolution, and then it slowly compresses them until reaching the optimal 

topologies.

�ese different convergence rates for S and L may prevent construction of converged 

hypernetwork topologies: if the solver is stopped at tL < tP , the resulting hypergraphs 

H(µt), t = tL would mistakenly cover a surface larger than that covered by the conver-

gent counterpart ( H(µt), for t ≥ tP ). �is scenario is less impactful for larger values of 

β , although in these scenarios H is much more similar to a regular graph, because of 

the small number of higher-order structures. Topological differences between converged 

hypernetworks can be seen in Fig. 4.

Finally, we observe that both tL(β) and tP(β) are increasing functions on β . �is is 

expected since the larger the traffic rate is, the longer it takes for the sequences to con-

verge. �is particular behavior matches what is shown in Baptista and De Bacco (2021b) 

in the case of tL , but this is not the case for tP(β) : it was observed a non-monotonic 

behavior in the network case.

Fig. 5 Covered area and Lyapunov cost. Mean (markers) and standard deviations (shades around the 
markers) of the covered area S (top plots) and of the Lyapunov cost, energy dissipation E and structural cost 
M (bottom plots), as functions of time t. Means and standard deviations are computed on the set described 
in Paragraph Synthetic OT problems. From left to right: β = 1.2, 1.5 and 1.8. Red and blue lines denote tP and tL
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Convergence behavior of hypernetwork properties

Figure 6 shows how the various network properties change depending on the traffic rate. 

Mean values and standard deviations are computed across times, for a fixed value of 

β . As shown, the number of hyperedges, number of triangles, covered area, and aver-

age 1-degree exhibit decreasing patterns as functions of t. As a consequence, transport 

optimality can be thought of as reaching minimum states on the mentioned hypernet-

work properties. Another clear feature of these functions is related to the actual con-

verged values: the larger the β is, the smaller these metrics become. �is is explained by 

a cost function increasingly encouraging consolidations of paths on fewer edges. Notice 

also that the gap between these converged values signals a non-linear dependence on 

the outputs of the dynamics; e.g., a converged hypernetwork obtained for β = 1.1. loses 

many more hyperedges if the traffic rate is then set to 1.2, whereas this loss would not be 

that large if β = 1.2 is increased to 1.3. �e nature of these gaps is substantially different 

depending on the property itself. �is also shows that certain properties better reveal 

the distinction between different optimal traffic regimes.

�e behavior of the closeness centralities is distinctly different than that of the other 

properties. While its initial values are the same for all values of β (similar to the previous 

properties), no clear trend can be found as time increases. For s = 1 , on average β = 1.1 

generates sequences that tend to recover initial values after increasing and then decreas-

ing behavior. For the other traffic rates, we observe different patterns. Notice that s−

closeness centrality on the hypergraph for s = 1 is the same as the classic closeness cen-

trality on the skeleton of it. �us, these rather noisy patterns are not due to the addition 

Fig. 6 Evolution of hypernetwork properties. Mean (markers) and standard deviations (shades around the 
markers) of number of hyperedges |EH | (upper left), number of triangles |T| (upper center), covered area S(H) 
(upper right), average 2-degree d2(H) (lower left), average 1-closeness centrality c1(H)(lower center) and 
2-closeness centrality c2(H)(lower right), computed for different values of β as a function of time
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of hyperedges. On the other hand, for s = 2 the average centrality shows increasing 

curves. �is may be due to Ls getting increasingly disconnected with small connected 

components. �erefore, the larger s, the closer the nodes are seen (see Fig. 3). Moreover, 

in this case small values of β lead to more stable closeness centrality values, showing 

the impact of β in building higher-order structures. While different values of β lead to 

different behaviors of the hypergraph properties (e.g. decreasing degrees and amount 

of hyperedges for increasing β ) we remark that choosing the value of β should depend 

on the application at hand. �e analysis performed here showcases how this choice may 

impact the resulting topologies. �is can help practitioners to visualize possible conse-

quences in terms of downstream analysis on the transportation properties of the under-

lying infrastructure.

P. polycephalum hypernetworks

We now analyze hypernetworks extracted from images of real data. We are interested 

in the evolution of the area covered by triangles in the sequences {H(µt)}
T
t=0

 extracted 

from real images of the slime mold P. polycephalum. �e behavior of this organism is the 

inspiration of the modeling ideas of the DMK equations described in Methods. It has 

been shown that these slime molds follow a similar optimization strategy as that cap-

tured by the DMK dynamics while foraging for food in 2D surfaces (Nakagaki et al. 2000; 

Tero et al. 2007, 2010). We extract hypernetworks from images using the idea described 

in Methods but instead of applying (Baptista et al. 2020) to obtain the networks, we use 

the method proposed by Baptista and De  Bacco (2021a) which takes images as input. 

�is pipeline uses the color intensities of the different image pixels to build a graph, by 

connecting adjacent meaningful nodes. We dedicate our attention to 4 image sequences 

from the Slime Mold Graph Repository (Dirnberger et al. 2017). �e sequences are then 

describing the evolution of a P. polycephalum placed in a rectangular Petri dish. Each 

image, and thus each hypernetwork, is a snapshot of the movement of this organism 

over periods of 120 seconds.

We study the covered area for every one of the 4 sequences, and plot the results for 

one of them (namely, image set motion12; see “Appendix”) in Fig. 7. We highlight 4 times 

along the property sequence to display the used images together with the corresponding 

hypernetworks. �e lower leftmost plot shows a subsection of one of the studied snap-

shots. As can be seen there, this subhypernetwork topology exhibits a significant num-

ber of hyperedges of dimension 3, mainly around the thickest parts of the slime mold. 

On the other side, in the lower rightmost plot, the evolution of S is overall decreasing in 

time (similar results are obtained for other sequences, as shown in the “Appendix”). �is 

suggests that the thicker body parts tend to get thinner as the P. polycephalum evolves 

into a consolidated state. �is pattern resembles what is shown above for the synthetic 

data, i.e. the covered area tends to decrease as time evolves similar to the behavior of 

the DMK-based hypernetwork sequence. �is suggests that the DMK model realistically 

mirrors a consolidation phase towards optimality of real slime molds (Dirnberger et al. 

2017).
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Fig. 7 P. polycephalum hypergraphs. On top: P. polycephalum images and hypernetworks extracted from 
them. Bottom left: a zoomed-in part of the hypergraph shown inside the red rectangle on top. Bottom 
right: covered area as a function of time. The red shade highlights a tentative consolidation phase towards 
optimality

Fig. 8 S and Lyapunov cost. First and second top-down rows: from left to right we see β = 1.1, 1.3 and 1.4. 
Third and fourth top-down rows: from left to right we see β = 1.6, 1.7 and 1.9. First and third top-down rows: 
mean and standard deviation of S as a function of time t; Second and fourth top-down rows: Mean and 
standard deviation of the Lyapunov cost L , energy dissipation E and structural cost M of transport densities. 
Red and blue lines denote tP and tL for p = 1.05
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Conclusions

We proposed a method to build higher-order structures from OT sequences. �is 

method maps every member of the sequence into a hypergraph, outputting a temporal 

hypernetwork. We analyzed standard hypergraph properties on these temporal families 

and compared them to their continuous counterparts. We showed that convergence in 

terms of transportation cost tends to happen faster than that given by the covered area 

of the hypernetworks. �is suggests that the dynamics used to solve the OT problems 

concentrates the displaced mass into main branches, and once this task is carried out, it 

slightly reduces the area covered by them. We studied this and other hypergraph proper-

ties, and compared them to those of their network versions. In some cases, hypernet-

works reveal more information about the topology at convergence. �is suggests that 

hypernetworks could be a better alternative representation to solutions of OT prob-

lems for some transportation schemes. �e conclusions found in this work may further 

enhance our comprehension of OT solutions and the links between this field and that of 

hypergraphs.

Appendix

Covered area for other values of β

We present in this section a similar plot to that of Fig. 5—comparing the covered area 

and the cost function— for other values of β . As mentioned there, S shows decreasing 

behaviors for which tP > tL holds true (see Fig. 8).

Fig. 9 Other hypernetwork properties and Lyapunov cost. From left to right: β = 1.2, 1.5 and 1.8. From top to 
bottom: Mean and standard deviation of the average degree d1(H) , number of hyperedges |EH |, number of 
triangles |T|, and the Lyapunov cost L , energy dissipation E and structural cost M . Red and blue lines denote 
tP and tL for p = 1.05
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Fig. 10 P. polycephalum S evolution. From top to bottom: motion24, motion40 and motion79. Plots 
are separated in couples. For every couple, the plots on top show both P. polycephalum images and 
hypernetworks extracted from them. The hypernetwork at the lower leftmost plot is a subsection of the 
hypergraph shown inside the red rectangle on top. The plot at the bottom shows the covered area as a 
function of time. The red shade in this plot highlights a tentative consolidation phase towards optimality
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Additional hypernetwork properties

In this section we extend the comparison between the cost function—minimized by the 

dynamics—and hypernetwork properties (see Fig. 9). As mentioned in the main manu-

script, similar monotonic behaviors can be observed in these cases.

P. polycephalum hypernetworks

Data information

We explain in this section further details about the analyzed real data.

�e images are taken from the Slime Mold Graph Repository (Dirnberger et al. 2017) 

as mentioned in the main manuscript. We study 4 {Hi}
T
i

 sequences of different lengths. 

�e length (T) varies depending on the number of images included in the sequence. �is 

is because different experiments need more o fewer shots. �ese experiments, as men-

tioned in the repository’s documentation, consist of placing a slime mold inside a Petri 

dish with a thin sheet of agar where no food is provided. Slime mold’s exploration of 

the dish, as explained by the creators, is unbiased, due to the lack of food. Given that 

this organism is initially placed along one of the short edges of the rectangular dish, the 

experiment is considered to be finished once the plasmodium reaches the other short 

side. No more pictures are taken after this happens (Fig. 10).

Hypergraph extraction

We used the image sets motion12, motion24, motion40 and motion79, located in the 

repository, to build the studied hypernetworks. �ese sets contain a number of images 

ranging from 60 to 150. Hypernetworks are then extracted using the Img2net algorithm 

described in Baptista and De Bacco (2021a) as mentioned in the main manuscript, using 

the same configuration described in Baptista and De Bacco (2021b).
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Community detection in networks 
by dynamical optimal transport 
formulation
Daniela Leite1,3*, Diego Baptista1,3, Abdullahi A. Ibrahim1, Enrico Facca2 & 
Caterina De Bacco1

Detecting communities in networks is important in various domains of applications. While a variety of 
methods exist to perform this task, recent e昀؀orts propose Optimal Transport (OT) principles combined 
with the geometric notion of Ollivier–Ricci curvature to classify nodes into groups by rigorously 
comparing the information encoded into nodes’ neighborhoods. We present an OT-based approach 
that exploits recent advances in OT theory to allow tuning between di昀؀erent transportation regimes. 
This allows for better control of the information shared between nodes’ neighborhoods. As a result, 
our model can 昀؀exibly capture di昀؀erent types of network structures and thus increase performance 
accuracy in recovering communities, compared to standard OT-based formulations. We test the 
performance of our algorithm on both synthetic and real networks, achieving a comparable or better 
performance than other OT-based methods in the former case, while 昀؀nding communities that better 
represent node metadata in real data. This pushes further our understanding of geometric approaches 
in their ability to capture patterns in complex networks.

Complex networks are ubiquitous, hence modeling interactions between pairs of individuals is a relevant problem 
in many  disciplines1,2. Among the variety of analyses that can be performed on them, community  detection3–6 
is a popular application that involves �nding groups (or communities) of nodes that share similar properties. 
�e detected communities may reveal important structural properties of the underlying system. Community 
detection has been used in diverse areas including, discovering potential friends on social  networks7, evaluating 
social  networks8, personalized recommendation of item to  user9, detecting potential terrorist activities on social 
 platforms10, fraud detection in  �nance11, study epidemic spreading  process12 and so on.

Several algorithms have been proposed to tackle this problem which utilize di�erent approaches, such as 
statistical  inference13,14, graph  modularity15, statistical  physics16, information  theory17 and multifractal topo-
logical  analysis18. Here, instead, we adopt a recent approach connecting community detection with geometry, 
where communities are detected using geometric methods like the Ollivier–Ricci curvature (ORC) and we 
exploit a dynamical approach of optimal transport theory to calculate this e�ciently and �exibly across various 
transportation regimes.

In Riemannian geometry, the sign of the curvature quanti�es how geodesic paths converge or diverge. In 
networks, the ORC plays a similar role: edges with negative curvature are tra�c bottlenecks, whereas positively 
curved ones allow mass to �ow more easily along the network. De�ning communities as structures that allow 
robust transport of information, we could cluster edges based on their curvature: those with positive curvature 
can be clustered together, while those with negative curvature may be seen as “bridges” connecting di�erent com-
munities. �e idea of using Ricci curvature to �nd communities on networks was �rst proposed by Jost and Liu 19 
and then further explored in subsequent  works20–23. Our work follows a similar approach as  in22,23 to calculate 
the OR curvature, but generalizes it for the cases of  branched24,25 and  congested26 optimal transport problems, 
building from recent  results27,28. Speci�cally, our algorithm allows to e�ciently tune the sensitivity to detecting 
communities in a network, through a parameter that controls the �ow of information shared between nodes. We 
perform a comprehensive comparison between the proposed algorithm and existing ones on synthetic and real 
data. Our algorithm, named ORC-Nextrout, detects communities in synthetic networks with similar or higher 
accuracy compared to other OT-based methods in the regime where inference is not trivial, i.e. the inference 
problem is neither too easy nor too di�cult to solve, and thus communities are only partially retrieved. �is is 
also observed in a variety of real networks, where the ability to tune between di�erent transportation regimes 
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allows �nding at least one result that outperforms other methods, including approaches based on statistical 
inference and modularity.

Related work. �e idea of exploring the geometrical properties of a graph, and in particular curvature, has 
been explored in di�erent branches of network science, ranging from  biological29 to  communication30 networks. 
Intuitively, the Ricci curvature can be seen as the amount of volume through which a geodesic ball in a curved 
Riemannian manifold deviates to the standard ball in Euclidean  spaces31. When de�ned in graphs, it indicates 
whether edges (those with positive values for the curvature) connect nodes inside a cluster, or if they rather bond 
di�erent clusters together (those with negative values for the curvature).

Previous  works32–35 extended the idea of the OR curvature.  In32, the authors introduced the concept of “resist-
ance curvature” for both nodes and edges. Taking inspiration from electrical circuits, this approach assigns a 
resistance being applied by the whole network from a current that �ows between any two edges and correlates 
this to known concepts of OR discrete curvature. �e resistance curvature provides a natural way to de�ne the 
Ricci �ow.  In33 the authors proposed a dynamical version of the OR curvature, where a continuous-time di�usion 
process is de�ned for every node, at di�erent time scales. In this context, the dynamical perspective is used to 
frame probability masses at nodes in terms of di�usion processes, e.g. those deployed in random walks. In our 
work instead, the dynamics enters to solve e�ciently the underlying optimization problem required to compute 
the OR curvature. Regardless of the choice of the distribution that characterizes mass on nodes, this quantity 
is then used to de�ne the curvature of the edges of the graph. Previous works have typically de�ned the OR 
curvature in terms of the 1-Wasserstein distance. In contrast, we take a more general approach and explore the 
usage of the β-Wasserstein, where β ∈ (0, 2] , to account for a variety of OT problems, ranging from branched 
to congested transportation.

Other discrete graph curvature approaches include the Ollivier–Ricci (OR) curvature based on the Optimal 
Transport theory introduced by Ollivier,36,37 and Forman–Ricci curvature introduced by  Forman38. While the 
graph Laplacian-based Forman curvature is computationally fast and less geometrical, we focus on the OT-based 
approach due to its more geometric nature. Some applications of the Ollivier–Ricci curvature include network 
 alignment39 and community  detection22,23,40.

On the other hand, community detection in networks is a fundamental area of network science, with a 
wide range of approaches proposed for this  task3,4,41. �ese include methods based on statistical mechanical 
 models16,17,42, probabilistic generative  models13,43–45, nonnegative matrix  factorization46, spectral  methods47,48, 
multifractal topological  analysis18 and modularity  optimization15,49,50. In contrast, our work is inspired by recent 
OT-based  methods22,23 for community detection. �ese methods consider the OR curvature to sequentially 
identify and prune negatively curved edges from a network to identify communities. While our approach also 
considers OR curvature to prune edges, it controls the �ow of information exchanged between nodes by means of 
a tra�c-penalization parameter, making the edge pruning completely dynamic. �is is detailed in “β-Wasserstein 
community detection algorithm” section.

β-Wasserstein community detection algorithm
In this section, we describe how our approach solves the community detection problem. As previously stated, we 
rely on optimal transport principles to �nd the communities. To solve the optimal transport problem applied in 
our analysis we use the discrete Dynamic Monge-Kantorovich model (DMK), as proposed by Facca et al.51,52 to 
solve transportation problems on networks.

We denote a weighted undirected graph as G = (V ,E,W) , where V, E, W are the set of nodes, edges, and 
weights, respectively. We use the information of the neighborhood of a node i, N(i) = {j ∈ V |(i, j) ∈ E}, to 
decide whether a node belongs to a given community. We do this by comparing a distribution de�ned on N(i) 
with those de�ned on other nodes close to i. �ere are several choices that can be made for this. For instance, 
one could frame this in the context of di�usion processes on networks and relate the distribution to random 
walkers traveling along the network with a certain jump  probability33. Here we follow previous  work39 and assign 
it as mα

i
 , where mα

i
(k) := α if k = i and mα

i
(k) := (1 − α)/|N(i)| if k ∈N(i) . Intuitively, the distribution m 

assigns a unit of mass to i and its connections: α controls how much weight node i should have, and once this is 
assigned, its neighbors receive the remaining mass in an even way. We use α = 0 in all the experiments reported 
in this manuscript, i.e. the mass is equally distributed on the neighbors. �is corresponds to a one-step transition 
probability for a random walker in the context of di�usion processes.

�e next step is to compare the distribution mα

i
 of node i to that of its neighbors. Consider an edge (i, j) ∈ E 

and mj , the distribution de�ned on node j, neighbor of i. We assume that if i and j belong to the same community, 
then both nodes may have several neighbors in common and, therefore, mi and mj should be similar. Note that 
this is valid for both assortative and disassortative community structures. In the former case, nodes are more 
likely to interact within the same community, while in the latter case we have the opposite, nodes are more likely 
to interact across  communities2,4. When there is a consistent community pattern for all groups (e.g. all communi-
ties are assortative), this idea of comparing the distributions mα

i
 may be appropriate to detect communities. On 

the contrary, it may be di�cult to perform this task in networks with mixed connectivity patterns, where some 
communities are assortative and others are disassortative. �is makes it di�cult to detect communities as edges 
within an assortative community are shortened, likewise edges between a node in a disassortative and a node in 
an assortative one. �is may confuse the algorithm, as both types of edges are shortened. A careful treatment of 
these cases is an interesting direction for future work.

To estimate the similarity between mi and mj we use OT principles. Speci�cally, we compute the cost of trans-
forming one distribution into the other. �is is related to the cost of moving the mass from one neighborhood 
to the other, and it is assumed to be the weighted shortest-path distance between nodes belonging to N(i) and 
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N(j) . A schematic representation of the algorithm can be seen in Fig. 1. �e OT problem is solved in an auxiliary 
graph, the complete bipartite network Bij = (Vij ,Eij ,ωij) where Vij := (Vi ,Vj) := (N(i) ∪ {i},N(j) ∪ {j}) , Eij 
is made of all the possible edges between Vi and Vj . �e weights of the edges are given by the weighted shortest 
path distance d between two nodes measured on the input network G.

�e similarity between mi and mj is the Wasserstein cost W(mi ,mj ,ωij) of the solution of the transportation 
problem. In its standard version, this number is the inner product between the solution Q, a vector of �ows 
de�ned on edges, and the cost ωij . In our case, since the DMK model allows to control the �ow of information 
through a hyperparameter β ∈ (0, 2] , we de�ne the β-Wasserstein cost, Wβ(mi ,mj ,ωij) , as the inner product 
of the solution Q = Q(β) of the DMK model and the cost ωij . For β = 1 we compute the 1−Wasserstein dis-
tance between mi and mj , while for β  = 1 the in�uence of β in the solution of the transportation problem can 
be seen in Fig. 2. When β < 1, more edges of B tend to be used to transport the mass, thus we observe con-
gested  transportation26. When β > 1 fewer edges are used, hence we observe branched transportation, and the 

Figure 1.  Le�: an example graph G where edges have unitary weights. Center: the edge (1, 5) (bold black line) 
is selected to de�ne the OT problem between m1,m5 ; neighborhoods of nodes 1 and 5 are highlighted with 
blue and red edges and are used to build the corresponding distributions m1,m5 . Right: �e complete bipartite 
graph B15 where the OT problem is de�ned. �e color intensity of the edges represents the distance between the 
associated nodes on the graph G, as shown by the color bar. m1 and m5 are both de�ned for α = 0, i.e. no mass is 
le� in 1 and 5.

Figure 2.  Visualization of how β impacts intra-community and inter-community edge weights. (a) Examples 
of intra-community (top panel) and inter-community (bottom panel) structures between nodes 6 and 7, and 
nodes 5 and 15, respectively. (b) �e weight of edge (6, 7) decreases when 0 < β < 0.6 , while for 0.5 < β < 2.0 
it reaches a minimum, and then slightly increases again. Similar but opposite pattern is observed for the edge 
(5, 15). (c) �e β-Wasserstein cost: for intra-community edges, β > 1 consolidates tra�c in the network as the 
Wasserstein cost stabilizes, making it minimum for the extreme value β = 2 , whereas it is maximized in the 
case of the inter-community edge. (d, e) Example cost graphs B67 (top) and B515 (bottom) with �uxes solution of 
the OT problem (edge thickness is proportional to the amount of �ux) in the regimes of small (d) and high (e) 
values of β.
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β-Wasserstein cost coincides with a branched transport  distance25,53. �e idea of tuning β to interpolate between 
various transportation regimes has been used in several works and engineering  applications27,54–59.

Calculating the Wasserstein cost is necessary to determine our main quantity of interest, the discrete 
Ollivier–Ricci curvature, de�ned as

where dij is the weighted shortest path distance between i and j as measured in G. Intuitively, if i and j are in the 
same communities, several k ∈ Vi and ℓ ∈ Vj will be also directly connected. �us, the Wasserstein distance 
between mi and mj will be shorter than dij , yielding a positive κβ(i, j) . Instead, when i and j are in di�erent com-
munities, their respective neighbors will be unlikely connected, hence dij <Wβ(mi ,mj ,ωij) , yielding a negative 
κβ(i, j).

�e Ricci �ow algorithm on a network is de�ned by iteratively updating the weights of the graph G22,23. �ese 
are updated by combining the curvature and shortest path distance  information36. We rede�ne these updates 
using our proposal for the Ollivier–Ricci curvature:

where w
(t+1)
ij  is the weight of edge (i, j) at time t, w

(0)
ij = d

(0)
ij , and d

(t)
ij  is the shortest path distance between nodes 

i and j at iteration t. At every time step t, the weights are normalized by their total sum.
�e algorithm ORC-Nextrout dynamically changes the weights of the graph G to isolate communities: intra-

community edges will be shortened, while inter-community ones will be enlarged. �ese changes are reached 
a�er a di�erent number of iterations of the whole routine depending on the input data. To �nd the communities, 
we apply a network surgery criterion on the edges based on the stabilization of the modularity of the network, 
as proposed by Ni et al.22. Notice that our algorithm does not need prior information about the number of 
communities: edges will be enlarged or shortened depending on the optimal transport principles, agnostic to 
community labeling. �e computational complexity of the algorithm is dominated by that of solving the DMK 
model, which takes O(|E|2.36) (estimated numerically) and by computing weighted shortest path distances dij , 
which costs O(|V |2 log |V | + |V ||E|)60. A pseudo-code of the implementation is shown in Algorithm 1.

Results on community detection problems
Synthetic networks. To investigate the accuracy of our model in detecting communities, we consider syn-
thetic networks generated using the Lancichinetti–Fortunato–Radicchi (LFR)  benchmark61 and the Stochastic 
Block Model (SBM)62. Both models provide community labels used as ground-truth information during the clas-
si�cation tasks.

Lancichinetti–Fortunato–Radicchi benchmark: this benchmark generates undirected unweighted networks 
G with disjoint communities. It samples node degrees and community sizes from power law distributions, see 
Fig. 4 for an example. One of its advantages is that it generates networks with heterogeneous distributions of 
degrees and community sizes. �e main parameters in input are the number of nodes N,  two exponents τ1 and 
τ2 for the power law distributions of the node degree and community size respectively, the expected degree d 
of the nodes, the maximum number of communities on the network Kmax and a fraction µ of inter-community 
edges incident to each node. To test the performance of our algorithm, we use the set of LFR networks used and 
provided by the authors  of22. We set τ1 = 2, τ2 = 1, d = 20, Kmax = 50 and µ ∈ [0.05, 0.75].

Stochastic Block Model: this model probabilistically generates networks with non-overlapping communities. 
One speci�es the number of nodes N and the number of communities K, together with the expected degree d 
of a node and a ratio r ∈ [0, 1] . Networks are generated by connecting nodes with a probability r ∗ pintra if they 
belong to di�erent communities; pintra if they are part of the same community, where pintra = d × K/N . Notice 
that the smaller the ratio r is, the fewer inter-community connections would exist, which leads to networks with 
a more distinct community structure.

We set N = 500 , K = 3 , d = 15 and r ∈ [0.01, 0.5] and generate 10 random networks per value of r.

(1)κβ(i, j) := 1 −

Wβ(mi ,mj ,ωij)

dij
,

(2)w
(t+1)
ij := d

(t)
ij − κ

(t)
β (i, j) · d

(t)
ij ,
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Results. To evaluate the performance of our method in recovering the communities, we use the Adjusted 
Rand Index (ARI)63. ARI compares the community partition obtained with the ground truth clustering. It takes 
values ranging from 0 to 1, where ARI = 0 is equivalent to random community assignment, and ARI = 1 denotes 
perfect matching with the ground truth communities, hence the higher this value, the better the recovery of 
communities. A more detailed presentation of this metric is given in the Supplementary Information.

We test our algorithm for di�erent types of information spreading in our OT-based model, as controlled by 
the parameter β , using the so�ware developed  in64 (available at https:// gitlab. com/ enrico_ facca/ dmk_ solver). 
We used β = 1 , i.e., standard Wasserstein distance; β ∈ {0.1, 0.5} for congested transportation, enforcing broad 
spreading across neighbors; and β ∈ {1.5, 2} to favor branching schemes, where fewer edges are used to decide 
which community a node should belong to. For OT-based algorithms where we update the weights in Eq. (2) for 
15 times ( MaxIterNum = 15 in Algorithm 1). Since in some cases the ARI score does not consistently increase 
with the number of iterations, we show results only for the iteration that maximizes the score.

�e results in Fig. 3 show the performance on both LFR and SBM benchmarks with OT-based methods, our 
method for various β and one based on the Sinkhorn algorithms (OTDSinkhorn)65,66. Our main goal is to assess 
the impact of tuning between di�erent transportation regimes (as done by β ) in terms of community detection 
via OT principles. Nevertheless, to better contextualize the performance of OT-based algorithms in the wide 
spectrum of community detection methods, we also include comparisons with algorithms that are not OT-based. 
Namely, we consider a probabilistic model with latent variables (MT)13, two modularity-based algorithms, Label 
 Propagation14 and  Louvain50, and with a �ow-based algorithm,  Infomap17. Our algorithm outperforms OTD-
Sinkhorn for various values of β in an intermediate regime where OT-based inference is not trivial, i.e. detecting 
communities is neither too easy nor too di�cult. �is occurs in both the LFR and SBM benchmark, as shown 
in Fig. 3. For lower and higher values of the parameters, performance is similar and close to the two extremes of 
ARI = 0 and 1. OT-based methods have a similar sharp decay in performance from the regime where inference 
is easy to the more di�cult one, as also observed  in22. �e other community detection methods have smoother 
decay, but with lower performance in the regime where OT-based approaches strive, except for Label Propaga-
tion and MT, which are more robust in this sense. In the intermediate regime where inference is not trivial (i.e. 
along the sharp decay of OT-based methods), we observe that di�erent values of β give higher performance than 
OTDSinkhorn in most cases. For SBM the highest performance is consistently achieved for high β = 2 , while for 
LFR the best β varies with µ . A qualitative example where ORC-Nextrout is performing better than OTDSink-
horn, in an instance of LFR of this intermediate regime, is shown in Fig. 4. Note that in this case, ORC-Nextrout 
perfectly recovers the 21 communities described by the ground-truth network, whereas OTDSinkhorn merges 
three of the central communities into one group, therefore recovering only 19 groups.

�ese results suggest that practitioners may choose the β that gives the best performance in detecting com-
munities, e.g. the one that maximizes ARI or other relevant metrics depending on the application at hand. We 
show examples of this on real data below.

Analysis of real networks. Next, we evaluate our model on various real  datasets67 containing node meta-
data that can be used to assess community recovery. While failing to recover communities that align well with 
node metadata should not be automatically interpreted as a model’s  failure68 (e.g. the inferred communities and 
the chosen node metadata may capture di�erent aspect of the data), having a reference community structure to 

(a) LFR (b) SBM

Figure 3.  Results on LFR and SBM synthetic data. Performance in detecting ground-truth communities is 
measured by the ARI score. Markers and shadows are the averages and standard deviations over 10 network 
realisations with the same value of the parameter used in generation. Markers’ shape denote di�erent 
algorithms. (a) LFR graph with N = 500 nodes and di�erent values of K ranging from (17, 22). (b) SBM 
with N = 500 nodes, K = 3 communities and average degree d = 15 . �e parameter r is the ratio of inter-
community with intra-community edges. �e inset on each plot zooms in the central parts of the plots.



6

Vol:.(1234567890)

Scienti昀؀c Reports |        (2022) 12:16811  | https://doi.org/10.1038/s41598-022-20986-y

www.nature.com/scientificreports/

compare against allows one to inspect quantitatively di�erence between models. �ese real networks di�er on 
structural features like number of nodes, average degree, number of communities, and other standard network 
properties as detailed in Table 1. Speci�cally, we consider (i) a network of co-appearances of characters in the 
novel Les Misérables69 (Les Miserables). Edges are built between characters that encounter each other. (ii) A 
network of 62 bottlenose dolphins in a community living o� Doubtful Sound, in New  Zealand70 (Dolphins). �e 
nodes represent dolphins, and the edges indicate frequent associations between them. �is network is clustered 
into four groups, conjectured as clustered from one population and three sub-populations based on the inter-
actions between dolphins of di�erent sex and  ages71. �e dolphins were observed between 1994 and 2001. (iii) 
A network of Division I matches of American Football during a regular season in the fall of  200049 (American 
football). Nodes represent teams, and edges are games between teams. Teams can be clustered according to their 
football college conference memberships. (iv) A network of books on US politics published around the 2004 
presidential election and sold by an online  bookseller72 (Political books). Nodes represent the books, and the 
edges between books are frequent co-purchasing of books by the same buyers. Books are clustered based on their 
political spectrum as neural, liberal, or conservative.

OT-based algorithms outperform other community detection algorithms in detecting communities aligned 
with node metadata for two of the four studied datasets, as shown in Fig. 5. In particular, ORC-Nextrout has 
the highest accuracy performance considering the best performing β in these cases. �e impact of tuning this 
parameter is noticeable from these plots, as the best-performing value varies across datasets. In Les Miserables 
and Dolphins networks, β < 1 has better performance, while in American Football the best performing value 
is for β > 1 . Performance is similar across OT-based methods in the Political books network. In Fig. 6 we show 
the communities detected by the best-performing ORC-Nextrout version together with OTDSinkhorn and Info-
map in Les Miserables and Political books (see Supplementary Material for the remaining datasets). Focusing 
on Les Miserables, we see how ORC-Nextrout successfully detects three characters in the green communities, 
in particular a highly connected node in the center of the �gure (in dark green). Notice that these are placed 
in the same community (pink or black) by OTDSinkhorn. �us ORC-Nextrout achieves a higher ARI than 
OTDSinkhorn. Both OT-based approaches retrieve well communities exhibiting clustering patterns with many 
connections within the community. Instead, they both divide the communities with a hub and spokes structure 
due to the lack of common connections within the group.

�e communities detected in both datasets highlight the tendency of OT-based methods to extract a larger 
number of communities than those observed from node metadata. Among these extra communities, some are 
made of a few nodes (e.g. the light-blue and violet), while others are made of one isolated node each (highlighted 

Figure 4.  Example of community structure on a synthetic LFR network. �e rightmost panel shows the 
ground-truth community structures to be predicted in an LFR network generated using µ = 0.35 . �is network 
is one sample of the synthetic data used in Fig. 3. Square-shaped markers denote nodes that are assigned to 
communities di�erent from those in ground-truth. In the middle and last panels, ORC-Nextrout with β = 2 
perfectly retrieves the 21 communities, while OTDSinkhorn predicts only 19 communities with an ARI score 
of 0.73, wrongly assigning ground-truth dark green and light brown (square-shaped) nodes to the light blue 
community.

Table 1.  Real networks description. We report statistics for the real networks used in our experiments. N and 
E denote the number of nodes and edges, respectively. K is the number of communities in the ground truth 
data. AvgDeg, AvgBtw and AvgClust are the average degree, betweenness centrality and average clustering 
coe�cient, respectively.

Dataset N E K AvgDeg AvgBtw AvgClust

Les Miserables 77 254 11 6.6 0.0219 0.5731

Dolphins 62 159 4 5.1 0.0393 0.2590

American football 115 613 12 10.7 0.0133 0.4032

Political books 105 441 3 8.4 0.0202 0.4875
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in black). �is is related to the fact that OT-based methods perform particularly well for networks with inter-
nally densely connected community structures, but may be weaker for community structures that are sparsely 
 connected23. One could potentially assign these nodes to larger communities, for instance, by preferential attach-
ment as done  in23, thus in practice reducing the number of communities. Devising a principled method or 
criterion to do this automatically is an interesting topic for future work. �is tendency is further corroborated 
by the fact that OT-based algorithms recover robustly the two communities that are mostly assortative (blue and 
brown in the �gure) in the Political books network, while they struggle to recover the disassortative community 
depicted in the center (violet). �is community has several connections with nodes in the other two communities 
and has been separated into smaller groups by OT-based approaches, as described above. �is also highlights the 

Figure 5.  Results on real data. Performance in terms of recovering communities using metadata information is 
calculated in terms of the ARI score. ORC-Nextrout shows competing results against all methods with di�erent 
optimal β across datasets.

(a) Les Miserables

(b) Political books

Figure 6.  Communities in real networks. We show the communities inferred for Les Miserables (a) and 
Political books (b) by ORC-Nextrout ( β = 0.5, 0.1 for top and bottom rows respectively), OTDSinkhorn and 
Infomap and compare against those extracted using node attributes (GT). �e visualization layout is given by 
the Fruchterman-Reingold force-directed  algorithm73, therefore, groups of well-connected nodes are located close 
to each other. Dark nodes represent individual nodes who are assigned to isolated communities by OT-based 
methods. Square-shaped markers denote nodes assigned to communities di�erent from those obtained from 
node metadata.
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need for methods that are robust against situations where mixed connectivity patterns arise, i.e. a combination 
of assortative and disassortative communities coexisting in a network.

Two tests on semi-synthetic networks. To further investigate the di�erent performance gaps between 
the various approaches, we expand the comparison between the OT-based methods and Infomap on two semi-
synthetic scenarios generated from Les-Miserables (Fig. 6a) and Dolphins datasets, where the largest ARI dif-
ferences were observed. Speci�cally, we add random noise to the existing set of connections to understand if 
the performance gap can also be observed in more challenging scenarios. We add noise to the real data in two 
di�erent ways (more details can be found in the Supplementary Material): 

1. Flipping entries: from a given network, we generate a new one by �ipping R entries of its adjacency matrix A 
uniformly at random. �is means that if Aij = 1 , this is changed to Aij = 0 , and vice versa. �e �ipping of 
an entry Aij occurs with probability p = 0.1.

2. Removing intra-community edges: from a given network, we build a new one with the same inter-community 
structure but modi�ed intra-community one by removing R within-community edges uniformly at random, 
based on the ground truth communities. To avoid generating disconnected networks, we only sample edges 
that are not connected to any leaves.

Both of these procedures make inference harder, but they act di�erently. �e �rst process is meant to add random 
noise independently of the community structure (�ips are made uniformly at random), while the second aims 
at targeting the community structure by weakening the assortative structure. We choose R to be r × |V |2 for the 
�rst test and r × |E| for the second, where we vary r ∈ [0, 1] to study the impact of these parameters on inferring 
the communities as measured by the ARI score. We generate 20 samples for each of these two mechanisms built 
using the Les-Miserables dataset ( |V | = 77 , |E| = 254 ) shown in Fig. 6a.

We show the results obtained in the test of removing intra-community edges as scatter plots in Fig. 7. We 
use these plots to compare the algorithms on trial-by-trial community detection tasks: a point on each plot 
is an instance of a semi-synthetic network with (x, y) coordinates being the ARI scores of ORC-Nextrout (y) 
and either OTDSinkhorn or Infomap (x). If y > x , then ORC-Nextrout outperforms the other method in this 
particular dataset (blue markers), and vice versa if x < y . We then compute the percentage of times that ORC-
Nextrout outperforms the other (as indicated in the legend). We �nd that ORC-Nextrout outperforms both 
OTDSinkhorn and Infomap clearly and consistently across di�erent values of r ranging from r = 0.01 (R ≈ 3) 
to r = 0.07 (R ≈ 20) . In at least 70% of the cases, ORC-Nextrout gives more accurate results than the other two 
algorithms. �is suggests that ORC-Nextrout is more robust against perturbations of the community structure. 

Figure 7.  Removing intra-community edges test on Les Miserables data. Markers correspond to 20 instances 
of semi-synthetic networks generated from real data. �eir (x, y) coordinates are ARI scores of the indicated 
method on the axes. Colors are given by the best performing algorithm, e.g. if x > y , the color of the associated 
method to x is chosen. �e legend shows the percentage of times that the corresponding method outperforms 
the other. �e parameter r describes the proportion of entries for the adjacency matrix A that have been 
changed. �is increases from le� to right.
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Similar patterns are seen in the case where edges are removed at random and in semi-synthetic networks gener-
ated from the Dolphins dataset, see Supplementary Material.

Conclusion
Community detection on networks is a relevant and challenging open area of research. Several methods have 
been proposed to tackle this issue, with no “best algorithm” that �ts well for every type of data. We focused here 
on a recent line of work that exploits principles from Optimal Transport theory combined with the geometric 
concept of Ollivier-Ricci curvature applied to discrete graphs. Our method is �exible in that it tunes between 
di�erent transportation regimes to extract the information necessary to compute the OR curvature on edges. On 
synthetic data, our model is able to identify communities more robustly than other OT-based methods based 
on the standard Wasserstein distance in the regime where inference is not trivial. On real data, our model shows 
better or comparable performance in recovering community structure aligned with node metadata compared 
to other approaches, thanks to the ability to tune the parameter β.

A relevant advantage of OT-based methods is that the number of communities is automatically learned from 
data, contrarily to other approaches that need this as an input parameter. In this respect, our model has the 
tendency to overestimate this number, similarly to other OT-based methods. Understanding how to properly 
incorporate small-size communities into larger ones in a principled and automatic way is an interesting topic 
for future work. Similarly, it would be interesting to quantify the extent to which various β capture di�erent 
network topologies. To address this, one could, for instance, use methods to calculate the structural distance 
between  networks74 and correlate this against the values of the best performing β . Similarly, as our approach 
allows obtaining di�erent sets of weights on edges, depending on β , it would be interesting to investigate how 
di�erent values of this parameter impact network properties that are governed by the weight distribution, such 
as multi-fractality75.

�ere are a number of directions in which this model could be extended. Nodes can be connected in more 
than one way, as in multilayer networks. Our model could be extended by considering a di�erent β for each edge 
type, as done  in59,76. Similarly, real networks are o�en rich in additional information, e.g. attributes on nodes. 
It would be interesting to incorporate a priori additional information to inform community  detection43,77. �is 
information can potentially be used to mitigate the problem of overestimation of the number of communities, 
as explained above. Finally, we have focused here on the �exibility of solving various transportation problems 
to provide di�erent computations of the OR curvature. Di�erent results could also be obtained by choosing dif-
ferent input mass distributions on nodes’ neighborhoods, as done  in33. It would be interesting to combine these 
two approaches to reveal further insights of the role that the OR curvature plays in detecting communities in 
networks.

Methods
Optimal transport formulation. Consider the probability distributions q that take pairs of vertices and 
also satisfy the constraints 

∑
i qij = mj ,

∑
j qij = mi . In other words, these are the joint distributions whose 

marginals are mi and mj . We call these distributions transport plans between mi and mj . �e Optimal Transport 
problem we are interested in is that of �nding a transport plan q∗ that minimizes the quantity 

∑
i∼j qijdij , where 

i ∼ j means that the nodes i and j are neighbors and dij is the cost of transporting mass from i to j, e.g. the dis-
tance between these two nodes. �e quantity Wβ(mi ,mj , d) :=

∑
i,j q

∗

ij dij , de�ned for this optimal q∗ , is the 
Wasserstein distance between mi and mj.

The dynamical Monge–Kantorovich model. It was recently  proved51,52 that solutions of the optimal 
transport problem previously stated can be found by turning that problem into a system of di�erential equations. 
�is section is dedicated to describe this dynamical formulation.

Let G = (V ,E,W) be a weighted graph, with N the number of nodes and E the number of edges in G. Let 
B be the signed incidence matrix of G. Let f + and f − be two N-dimensional discrete distributions such that ∑

i∈V fi = 0 for f = f +
− f − ; let µ(t) ∈ R

E and u(t) ∈ R
N be two time-dependent functions de�ned on edges 

and nodes, respectively. �e discrete Dynamical Monge-Kantorovich model can be written as:

where | · | is the absolute value element-wise. Equation (3) corresponds to Kirchho� ’s law, Eq. (4) is the discrete 
dynamics with β a tra�c rate controlling the di�erent routing optimization mechanisms; Eq. (5) is the initial 
distribution for the edge conductivities.

For β = 1 the dynamical system described by Eqs. (3)–(5) is known to reach a steady state, i.e., the 
updates of µe and ue converge to stationary functions µ∗ and u∗ as t increases. �e �ux function q de�ned as 
q∗
e := µ∗

e |u
∗
i − u∗

j |/we is the solution of the optimal transport problem presented in the previous section. Notice 

(3)fi =

∑

e

Bie
µe(t)

we

∑

j

Bej uj(t),

(4)µ′

e(t) =





µe(t)

we

�

�

�

�

�

�

�

j

Bej uj(t)
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



β

− µe(t),

(5)µe(0) > 0,
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that µ and u depend on the chosen tra�c rate β , and thus, so does q = q(β) . �erefore, we can introduce a 
generalized version of the distance W:

We then rede�ne the proposed Ollivier-Ricci curvature as:

Probability distributions on neighborhoods. ORC-Nextrout takes in input a graph and a forcing term. 
While the graph encapsulates the neighborhood information provided by the nodes i and j, the forcing function 
is related to the distributions that one needs to transport. Analogously to what was proposed  by22, we de�ne this 
graph to be the weighted complete bipartite Bij = (Vij ,Eij ,ωij) . �e weights in ωij change iteratively based on 
the curvature. Notice that a bipartite graph must satisfy N(i) ∩N(j) = ∅, which does not hold true if i and j 
have common neighbors (this is always the case since i ∈N(j) ). Nonetheless, this condition does not have great 
repercussions in the solution of the optimal transport problem since the weights corresponding to these edges 
(of the form (i, i)) are equal to 0. As for the forcing function, we de�ne it to be f := f +

− f −
= mi − mj.

Other methods. To evaluate the performance of ORC-Nextrout, we compare with some of the well-estab-
lished community detection algorithms including:  Infomap17,  MULTITENSOR13 (MT), discrete Ricci  �ow22 
(OTDSinkhorn), Label  propagation14 and  Louvain50. We brie�y describe each of these algorithms as follows;

• �e Discrete Ricci �ow (here addressed as OTDSinkhorn)22 is an iterative node clustering algorithm that 
deforms edge weights as time progresses, by shrinking sparsely traveled links and stretching heavily traveled 
edges. �ese edge weights are iteratively updated based on neighborhood transportation Wasserstein costs, 
similarly to what is proposed in this manuscript. A�er a prede�ned number of iterations, heavily traveled 
links are removed from the graph. Communities are then obtained as the connected components of this 
modi�ed network.

• MULTITENSOR (MT)13 is an algorithm to �nd communities in multilayer networks. It is a probabilistic 
model with latent variables regulating community structure and runs with a complexity of O(EK) with assor-
tative structure (as we consider here), where K is the number of communities. �is model assumes that the 
nodes inside the communities can belong to multiple groups (mixed-membership). In this implementation 
we use their validity for single layer networks (a particular case of a multilayer network).

• Infomap17 employs information theoretic approach for community detection. �is method uses the map equa-
tion to attend patterns of �ow on a network. �is �ow is simulated using random walkers’ traversed paths. 
Based on the theoretic description of these paths, nodes with quick information �ow are then clustered into 
the same groups. �e algorithm runs in O(E). In the experiments, we �x the number of random initialization 
of the random walkers to be equal to 10. �e inferred partition is then the one minimizing the entropy.

• Label propagation14 assigns each node to the same community as the majority of its neighbors. Its working 
principle start by initializing each node with a distinct label and converges when every node has same label 
as the majority of its neighboring node. �e algorithm has a complexity scaling as O(E).

• Louvain50 is a fast algorithm used to �nd communities on networks by maximizing the modularity of the 
associated partitions. It consists of two phases. First, it assigns every node on the network into a di�erent 
community. �en, it aggregates nodes and neighbors based on gains of modularity. �is last step is repeated 
until no further improvement can be achieved.

Data availability
�e real datasets analyzed during the current study are available at http:// www- perso nal. umich. edu/ ~mejn/ netda 
ta/. �e synthetic data generated are available from the corresponding author upon request.

Code availability
Open source codes and executables are available at https:// github. com/ Danie lalei te/ ORC- Nextr out. https:// gitlab. 
com/ enrico_ facca/ dmk_ solver.
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Images of natural systems may represent patterns of network-

like structure, which could reveal important information

about the topological properties of the underlying subject.

However, the image itself does not automatically provide a

formal definition of a network in terms of sets of nodes and

edges. Instead, this information should be suitably extracted

from the raw image data. Motivated by this, we present a

principled model to extract network topologies from images

that is scalable and efficient. We map this goal into solving a

routing optimization problem where the solution is a network

that minimizes an energy function which can be interpreted in

terms of an operational and infrastructural cost. Our method

relies on recent results from optimal transport theory and is a

principled alternative to standard image-processing techniques

that are based on heuristics. We test our model on real images

of the retinal vascular system, slime mould and river networks

and compare with routines combining image-processing

techniques. Results are tested in terms of a similarity measure

related to the amount of information preserved in the

extraction. We find that our model finds networks from retina

vascular network images that are more similar to hand-

labelled ones, while also giving high performance in extracting

networks from images of rivers and slime mould for which

there is no ground truth available. While there is no unique

method that fits all the images the best, our approach performs

consistently across datasets, its algorithmic implementation is

efficient and can be fully automatized to be run on several

datasets with little supervision.

1. Introduction
Extracting network topologies from images is a relevant problem

in applications where the subject of the image has a network-like

structure. For example, satellite images of rivers [1], neuronal

networks [2,3], blood or vein networks [4–6], mitochondrial

networks [7,8] or road networks [9–12]. Assuming this could

be done automatically and quantitatively, practitioners would

then be able to apply the mathematical study of networks to

make quantitative analyses about the topological properties of

© 2021 The Authors. Published by the Royal Society under the terms of the Creative

Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits

unrestricted use, provided the original author and source are credited.
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the system at study. In practice, given a raw image, for instance, a satellite image of a river embedded in a

landscape, extracting a network requires identifying a set of nodes and a set of edges connecting them.

While it might be relatively easy to perform this identification qualitatively, the challenge here is

performing this extraction automatically, thus avoiding tedious manual extraction or specific domain

knowledge and ad hoc tools. At the same time, this task should be scalable with system size and

number of images as high-quality images are increasingly available and for larger systems. In

addition, a qualitative intuition of the possible existence of a network behind an image is not enough

to ensure that no degree of subjectivity is introduced owing to the observer’s eye. For instance, two

different observers might both perceive the presence of a network-like structure but distinguish

two different sets of nodes, and thus two different networks behind the same image. Another

challenge is indeed that of performing this extraction in a principled way so that the number of

arbitrary choices in defining what the network is should be limited, if not completely absent.

Here, we present a method that addresses these issues by considering the framework of optimal

transport. Specifically, inspired by a recently developed model to extract network topologies from

solutions of routing optimization problems [13], we adapt this formalism to our specific and different

setting. We start from a raw image as input and propose a model that outputs a network representing

the topological structure contained in the image. The novelty of this method is that its theoretical

underpinning relies on a principled optimization framework. In fact, a proper energy function is

efficiently minimized using numerical methods, which results in an output network topology. This

implies, in particular, that network extraction may not depend on the observer’s eye, but rather can be

automatically done by solving this optimization problem.

We study our model on real images from different fields, we focus in particular on ecology and

biology and compare results with an algorithm that relies on standard image processing techniques,

highlighting the main differences resulting from these two different approaches. In particular, our

model allows for an automatic and principled performance of two tasks: filtering network

redundancies and selection of edge weights. These are usually challenging tasks for image processing

schemes, as they rely on some pre-defined parameter setting in input, while we obtain both directly in

output with our model.

Many solutions for the problem of automatic network extraction from images have been proposed in

computer vision, mainly relying on image-processing techniques [6,10–12,14–20], for instance

segmentation [21–23], or junction-point processes [24]. The idea is to measure variation of intensity

contrast in the image’s pixels to highlight curve-like structures. Within this context, NEFI [25] is a

flexible toolbox based on a combination of standard image-processing routines. A different approach,

closer to the one considered in this work, is that of adopting some sort of optimization framework.

For instance, Breuer & Nikoloski [26] considered an optimization problem where the goal is to

minimize the total roughness of a path (a measure depending on the difference of weights in adjacent

edges), in order to decompose a filamentous network into individual filaments. However, these

usually rely on domain-specific optimization set-ups that cannot be easily transferred across domains.

Another example is the ant-colony optimization scheme used to extract blood vessels from images of

retinas [27]. They all suffer from the nondeterministic polynomial time-hardness of the problem,

typical of routing optimization settings. Thus this type of approach relies on approximation

techniques. Finally, another approach is that of biologically inspired mathematical models like the one

of Tero et al. [28,29] that consider dynamical systems of equations that emulate network adaptability,

like that observed for the Physarum polycephalum slime mould. Our model is also inspired by the

feedback mechanism of a slime mould, which adapts the conductivity of the network edges to

respond to differences in fluxes.

Our method relies on the formalism of optimal transport theory used to extract networks from

solutions of routing optimization problems proposed in [13] and referred to as NextRout. This is

made of three subsequent steps, but here we need only the last two, namely the pre-extraction and

the filtering steps. While we refer to that work for all the mathematical details, here we describe the

main principles behind this method and adapt it to images. The idea is inspired by the behaviour of

the P. polycephalum slime mould. The body of this organism forms a network structure that flexibly

adapts to the surrounding environment and the distribution of food sources displaced in it. This

network grows with a feedback mechanism between two physical quantities: the conductivities of

network edges and the flow passing through them, through dynamics that is described by a set of

equations (sometimes referred to as ‘adaptation equations’). In practice, the problem starts by

assigning food sources in space and spreading the slime mould uniformly to cover the whole

space. The dynamics regulates how the slime mould changes its body shape in time to reach the
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food in an efficient way. The stationary solution of this dynamical system is a set of conductivities and

flows on edges that describe the optimal network topology covered by the mould. When the underlying

space is continuous, like a squared patch in two dimensions, these solutions are functions defined on

(x, y) coordinates on this space. These are not immediately associated with a network meant as a set

of nodes and a set of edges connecting them. However, Baptista et al. [13] propose principled rules to

automatically extract network topologies from these solutions in continuous space. While the main

focus of that work was to extract network topologies from this particular type of input (functions

defined in a continuous domain, e.g. the space where food sources are located), they hinted at the

possibility of adapting this formalism to discrete spaces, like images made of pixels. Here, we expand

on this insight, and adapt this principled network extraction to inputs that are images. In particular,

we propose an algorithm to effectively tackle two problems that are relevant for images and that were

only briefly discussed for general applications in [13]: how to select source and sinks and how to

obtain loopy structures.

2. Image2net: the method
The key idea is to treat the images as a particular discretization of a two-dimensional space by means of

the pixels and treat the red-green-blue (RGB) colour values on them as conductivities. With this set-up,

we can frame the problem as if there was an imaginary flow of colours. This starts by covering the whole

discrete domain of the image uniformly and then flows through the pixels until it consolidates to a

certain subset of them. The observed image corresponds to a network-like shape. Figure 1 illustrates

the analogy between the solutions of NextRout in continuous space and an image of a network-like

structure in discrete space.

As we mentioned before, this is not yet formally a network, as we do not have a rigorous definition of

what constitutes a node and how nodes are connected. However, thanks to the analogy proposed here,

we can use the rules introduced in [13] for the continuous case and adapt them to images. Specifically, we

consider the pixels’ centre of mass as nodes and draw edges between them depending on their pixels’

locations and values, so that two nearby pixels are connected whenever the colour has a high enough

intensity and their pixels are neighbours. We say that two pixels are nearby if they have a vertex or

an edge in common (this corresponds to the pre-extraction scheme I, as explained in [13]). The result

is a pre-extracted network [13] that we denote with Gpe. We denote with V and E the set of nodes and

edges, respectively. The network is mathematically encoded by a signed incidence matrix which has

entries Bie = ±1 if the edge e has node i as start/endpoint, 0 otherwise. The sign is important to define

the orientation of the flow passing through an edge.

This temporary network might contain redundancies like dangling nodes or redundant edges, see

figure 2 for an example. Standard image processing techniques address this problem with pruning

routines, e.g. by pruning away edges or branches shorter than a certain length. However, pruning has

to be handled with great care, as small redundancies could be a major source of information or they

could be completely irrelevant, depending on the network at hand. Usually, pruning is tuned by the

user, thus creating potential for subjective bias in extracting the network. Instead, our model relies on

a principled method for filtering such redundancies, which exploits a dynamics similar to that of the

original problem but adapted to a discrete space like that of the network Gpe. However, to apply the

(b)(a)

Figure 1. Analogy between optimizing trajectories and images. (a) The grid structure covering a continuous two-dimensional space

and the optimal flux obtained by NextRout for a specific routing problem where sources and sinks are inside the green and red

rectangles, respectively. Red tones of increasing darkness denote higher fluxes on the corresponding grid triangles. (b) The pixel grid

and colours of a reference network-like image.
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filter, one must specify a set of terminals, sources and sinks, as input to the discrete dynamics. Continuing

with our analogy, we need to locate the pixels where we imagine that colour mass is being injected and

extracted. These are the sources and sinks that drive the dynamics to consolidate the flux of colours on

the network-like structure observed in the input image.

2.1. Dynamics

Assume for a moment that we knew this set of terminal pixels and denote with fi the amount of

colour mass that enters or exits the image in node i (the centre of mass of pixel i). Note that to

preserve the mass, we have
P

i fi ¼ 0. Here we describe in more detail the dynamical rules that

regulate how colours spread along the pixels in an optimal way. To describe the flow of colours, we

consider the conductivity μe on an edge e∈ E and the potential ui on a node i∈V. The conductivities

can be interpreted as proportional to the size of the diameter of an edge, and the potentials as

pressures on nodes. Together, these two quantities determine the flow Fe of colour passing through an

edge e = (v1, v2) in the network:

Fe ¼
me

‘e
(uv1 � uv2 ) ¼

me

‘e

X

j[V

Bej u j

�

�

�

�

�

�

�

�

�

�

�

�

: (2:1)

The quantity ℓe denotes the Euclidean length of an edge using the centre of mass’ coordinates. Although

ℓe is either 1 or
ffiffiffi

2
p

for this particular choice of nodes, in the equations we keep ℓe for more general cases

where the topology may not be as regular.

In turns, the flow influences the conductivities and potentials, through a feedback mechanism

described by the following set of equations:

fi ¼
X

e[E

BieFe, (2:2)

m0e(t) ¼
me(t)

‘e

X

j[V

Bej u j(t)

�

�

�

�

�

�

�

�

�

�

�

�

2

4

3

5

b

�me(t) (2:3)

and me(0) . 0, (2:4)

where | · | is the absolute value and β is a parameter that determines the optimization mechanism.

Equation (2.2) is Kirchhoff’s law; equation (2.3) is the discrete dynamics describing the feedback

mechanism between conductivity and flow: when the flow of colours is high on an edge e, the

conductivity increases, and vice versa when the flow is low the conductivity decreases; equation (2.4)

is the initial condition. The stationary solution of this dynamical system can be mapped to the

Figure 2. Gpe taken from a river image. The subplot on the bottom left corner shows a section of Gpe (in black), highlighted in red

in the main plot, together with filtered graph G f (in blue).
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solutions of an optimization problem where the cost function can be interpreted as a network

transportation cost [13]:

Lb(m(t)) ¼
1

2

X

e

me(t)
1

‘e

X

j

Beju j(m(t))

0

@

1

A

2

‘e þ
b

2

X

e

me(t)
(2�b)=b

2� b
‘e, (2:5)

where μ(t) = {μe(t)}e, and the first term is the network operational cost and the second is the cost to build

the network. The values of μe at convergence can be used not only to determine the set of edges in the

extracted network but also its weights, which can be interpreted as proportional to the diameter of the

edge on the image. This is one of the advantages of our model, as estimating the diameter of edges

extracted from an image is an open problem when using image-processing techniques. We get this

automatically with the optimal conductivities.

The dynamics works as a filter, i.e. removes redundancies, for β≥ 1. In this work, we fix β = 1.5 as it

gives good performance consistently across the datasets studied here. The output result is a tree, i.e. it

does not contain loops and is the optimal one in terms of minimizing the transportation cost of

equation (2.5). In our experiments, we use the numerical solver proposed in [13] to extract the

stationary solutions of the system of equations (2.2)–(2.4).

2.2. Selecting terminal pixels

Having introduced how the dynamics of the colours works, we now tackle the problem of selecting

the terminal pixels where to inject or extract imaginary colour mass. This choice is crucial as it

determines the final extracted networks. In the original problem of [13], this was not an issue

because the set of terminals could be selected from that of the original problem in continuous space.

In other words, this was an input of the problem. Here, we do not start from that input, but rather

have access to only a raw image, without any notion of pre-specified terminals attached to it. In

practice, we need to find the pixel nodes corresponding to the rectangles inside figure 1a. Here, we

propose a method to make this selection effectively. Specifically, we select as a set of eligible terminals

T (G
pe
tree) all the leaves of the tree G

pe
tree obtained from running our dynamics on Gpe when we pass in

input all pixel nodes in Gpe as terminals, and selecting one of these at random as a source, all the rest

as sinks. This choice is motivated by the fact that the tree resulting from the filtering is a good

approximation of the pre-extracted Gpe, as it follows a principled optimization framework. The

obtained leaves determine the coverage of this network, as they are usually located in distant parts of

the network. Potentially, one could select terminal pixels ‘manually’, by using domain-knowledge to

determine what pixels are the most important. However, this strategy is not scalable to a large

number of images. Instead, our proposed procedure does not suffer from this problem as it can be

automatically implemented, while also being flexible to receive ‘hand-picked’ terminals if available.

Alternatively, a practitioner could make this selection based on some notion of network centrality, for

instance selecting as terminal the most ‘central’ nodes. However, this again assumes having extra

information to decide what definition of centrality is appropriate based on the application. We do not

explore this here.

2.3. Obtaining loops

Running the dynamics of §2.1 outputs trees, while network-like structures in images might have loops.

The question is thus how to recover networks that are not limited to trees. We tackle this problem by re-

running the dynamics multiple times, each time selecting a particular node as source from the eligible

ones (and sinks all the others). Specifically, we randomly select an individual source pixel i [ T (G
pe
tree)

and assign all the others j= i [ T (G
pe
tree) as sinks. Applying the dynamics to Gpe with this choice of

one source and multiple sinks outputs a filtered network G
f
r , indexed by the iteration run r. By

repeating for Nruns this filtering step, each time selecting a different source from T (G
pe
tree) (and all the

remaining node pixels as sinks), results in a set of filtered networks {G
f
1 , . . . , G

f
Nruns

}, all of them trees.

We combine them by superposition, so that we obtain a final network G(V, E, W ) where the set of

nodes and edges are the unions V ¼
SNruns

r¼1 V(G
f
r), and E ¼

SNruns

r¼1 E(G
f
r). The weights on the edges of the

final network are given by the sum of the weights on each run:

wjk ¼
X

Nruns

r¼1
wr

jk, 8 j, k [ V, (2:6)
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where wr
jk is the weight of edge ( j, k) in network G

f
r and corresponds to the optimal edge conductivities

as obtained from the dynamics at convergence. We assume wr
jk ¼ 0, if (j, k) � G

f
r: The value

of Nruns � jT (G
pe
tree)j is a parameter that has to be tuned based on the input image. Note that a high

value of Nruns might not necessarily result in a network more similar to the one depicted in the input

image. For instance, in the extreme scenario where the original network-like structure is a tree, then

Nruns = 1. Empirically, we find that a value of Nruns = 5 gives good results in all the experiments

reported here, see the electronic supplementary material for more details.

Combining these steps we obtain the whole algorithmic pipeline of our method, which we refer to as

Image2net. It takes in input an image and it gives in output a network. We provide an algorithmic

pseudo-code in algorithm 1 and an open-source implementation at https://github.com/diegoabt/Img2net.

Our algorithm can handle input images that display distinct objects, like parts of different rivers,

resulting in separate network connected components. In fact, depending on how sources and sinks are

selected, our algorithm can give in output naturally more than one connected component.

Alternatively, one can apply the algorithm separately on each of the different connected components

and then combine the results.

Algorithm 1. Image2net.

Input: Image I , threshold d, b � 1

Output: G(V , E, W) final network

1: function Image2net I ,d,b � 1

2: Gpe  NextRout pre-extraction(I ,d)

3: G
pe
tree  run Dynamics of §2.1 on Gpe ⊳ for b and using in input as starting sources and sinks

all the nodes in Gpe

4: T (G
pe
tree) {v [ V (G

pe
tree)jdv ¼ 1} ⊳ dv is the degree of node v

5: for r ¼ 1, . . . , Nruns do

6: Select i [ T (G
pe
tree) ⊳ uniformly at random

7: G f
r  run Dynamics of §2.1 on Gpe ⊳ for b and using as starting source i and sinks

{j = i [ T (G
pe
tree)}

8: end for

9: G(V , E, W) Superimpose G f1 , . . . , G
f
Nruns

n o

10: end function

3. Experiments on images
We run our model on three datasets of images covering various types of network-like topologies

observed in biology and ecology. The images represent: (i) the slime mould Physarum polycephalum

(Physarum polycephalum) [30], which is also the inspiration of our dynamics; (ii) the retinal vascular

system (retina) [31]; (iii) river networks (rivers) obtained by extracting images from [32]. The number of

images taken from the Physarum polycephalum, retina and rivers sources is 25, 20 and 10, respectively,

see table 1. Pre-processing was applied, see the electronic supplementary material for details.

For model comparison, we consider NEFI, a routine that combines various image processing

techniques, and a variant of our routine based on a combination of minimum spanning tree and

Steiner tree optimization (Image2net-MST). The idea behind this last routine is to run our procedure

but replacing the optimization steps based on the dynamics of §2.1 with standard routing

optimization algorithms, namely a combination of minimum spanning and Steiner trees [34]. The goal

is to see how the underlying optimization set-up impacts the final network topology. In fact, while

the core idea of treating the problem of network extraction from images within the framework of

routing optimization is the same for Image2net and Image2net-MST, the details of their corresponding

optimization differ. Specifically, for Image2net-MST, we first run a standard MST optimization

algorithm to extract GMST
tree from Gpe (this is the same input given to Image2net). From the

corresponding set of leaves T (GMST
tree ), this time one should extract a subset of terminals T # T (GMST

tree )
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of predefined size (no distinction between source and sinks is necessary to solve a minimum Steiner tree

problem). From Gpe and T, extract a Steiner tree GSt
r , repeat this Nruns times and obtain the set

{GSt
1 , . . . , G

St
Nruns

}. Finally, superimpose them as done for our method to obtain GMST, see the electronic

supplementary material for more details. Note that Steiner tree optimization has a complexity that

scales with the number of terminals, a problem not present in our dynamics. As a result, running

Image2net-MST is noticeably computationally more expensive than Image2net.

Finally, edgeweightswere assignedwith rules specific to eachmethod, as there is no commondefinition

that applies to all of them. In fact, the ability to extract edge weights is rare among image processing

techniques, and usually relies on image preprocessing and segmentation of the input image. Instead,

Image2net extracts edge weights in a principled way based on the results at optimality in terms of

conductivity, hence it has a nice direct interpretation as the diameter of the edges in the image. For

Image2net, we use the rule effective reweighing (ER) on the resulting conductivities, see [13]; for

Image2net-MST, we use the weights given in input to solve the Steiner tree problem, i.e. the weights

given by ER rule in Gpe; for NEFI, we use as weight the width, this is an output of the algorithm; for the

original image, we assign the RGB values of the pixels mapped into an integer number increasing with

the colour intensity (see the electronic supplementary material for details). All of these definitions of

weight agree on the higher the weight the thicker the edge is, and thus the conductivity. Figure 3

illustrates an example of the networks extracted using the various algorithms for an image in retina.

3.1. Performance metrics

We measure performance in terms of the ability of an algorithm to recover the network-like subject

depicted on the underlying image. We consider a measure of similarity adapted from the quality

measure defined in [13]. This relies on partitioning the image in a grid of P non-intersecting subsets

Cα inside the pixels’ domain and then compare the edges of G within Cα assigned by the algorithm

and those observed in the original image I (RGB values):

ŵb(G, I) ¼
1

P

X

P

a¼1

X

e[E

Ia(e)�
X

i[I

Ia(d, i)

�

�

�

�

�

�

�

�

�

�

 !2
2

4

3

5

1=2

, (3:1)

where Ia(d, i) ¼ 1, 0 for i∈ I, if the pixel i is in Ca or not, respectively; δ is a threshold used to decide

whether that pixel contributes to the network-like image. In words, if the pixel colour intensity is high

(b)(a) (c)

Figure 3. Example of network extraction. (a) Image2net; (b) NEFI; (c) Image2net-MST. The extracted network is coloured in black,

the original image is in light brown underneath. The inset is a zoom inside the image section highlighted in red.

Table 1. Datasets description. (NI is the number of images used; AW is the average width of the images in the dataset; MinW

and MaxW denote, respectively, the minimum and maximum width of the images in the dataset.)

dataset description NI AW (MinW,MaxW) ref.

retina retinal blood vessels 20 1791 (998,2302) [31,33]

Physarum polycephalum slime mould 25 400 (400,400) [30]

rivers riverbed 10 924 (718,958) [32]
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enough, then we label it as an edge. For δ, we use the same value as used in input to Image2net. This is a

coarse-grained measure of similarity that tells how many edges in the extracted graph correspond to

high-intensity pairs of pixels. In order to account for edge weights and pixel intensities, we also

consider a weighted version of this:

ŵ(G, I) ¼ 1

P

X

P

a¼1

X

e[E

Ia(e)we �
X

i[I

Ia(i)pi

�

�

�

�

�

�

�

�

�

�

 !2
2

4

3

5

1=2

, (3:2)

where pi is the intensity of the pixel i, and Ia(i) is 1 if i [ Ca, and 0 otherwise. Note that in this case δ is

not needed because pixels with low intensity are penalized by lower weight in their contributions to

ŵ(G, I). In both cases, small values of these measures mean higher similarity values between the

extracted network and the underlying network-like structure in the image.

While ground-truth for this network-like structure is normally absent, the retina dataset contains

ground-truth networks which were hand-labelled by individuals [31]. In this case, we calculate the

binary similarity using the hand-labelled images instead of the one given in input. There are two sets

of labelled images, each corresponding to a different person doing this manual identification. While

similar, the resulting two sets of networks are different. In the absence of ground truth, we compare

against the input image.

3.2. Implementation details

We apply image pre-processing to the input image to improve image quality and distinguish the main

subject from the background, see the electronic supplementary material for details. We rescale NEFI’s

pixels’ location to have them in the same scale as that of the other methods, i.e. the set [0, 1] × [0, 1]

(for simplicity, we consider only square-shaped images). All the edge lengths ℓe have been assigned

using the Euclidean distance between the corresponding endpoints. For NEFI, we used the two best

performing pipelines of image-processing techniques polycephalum_high (NEFI-high) and

crack_patterns (NEFI-crack) among the available predefined pipelines. In the figures, we show the

best results only, these vary based on the image given in input.

4. Results

4.1. Retinal vessel image validation

We use the similarity measure defined in the previous section to compare every graph-based

approximation of the image with the provided hand-labelled ones, assuming these last ones to be the

ground truth Igt. We compute ŵb(G, Igt) for each retinal image and the corresponding extracted

network, to measure how close a particular network is from the human-labelled one. Figure 4 shows

that Image2net consistently outperforms NEFI over all images and the two hand-labelled datasets.

Image2net and Image2net-MST perform similarly according to the binary similarity. However, if we

account for weight, we obtain the Image2net outperforms Image2net-MST in the majority of the

images. Note that Image2net-MST does not assign new weights while selecting the edges, as in a

Steiner tree problem, instead, it uses the weights of the input network, in this case, Gpe. Instead,

Image2net selects edges and weights at the same time, within the same optimization set-up. The fact

that the weighted similarity gives better results, signals that the values of the optimal conductivities

(the weights assigned to Image2net extracted networks) have a meaningful interpretation, as they

better match the pixel’s intensities than the weights given by the other algorithms.

4.2. Physarum polycephalum and rivers networks

We measure the performance in the two datasets where there is no ground truth, which is often the case

in real images. We find that Image2net recovers better the rivers networks, for both performance metrics

as we show in figure 5. In fact, our model is able to capture the detailed geometry of the network when

there are curves, while NEFI has limitations in that edges with curves or kinks are contracted to straight

lines. This is one of the main advantages of our model based on an underlying optimization framework,

the geometry of the network is automatically selected based on optimality, rather than a predefined

setting manually tuned. As a result, Image2net is flexible in detecting different network geometries, as
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can be seen in figure 6 (top). The situation for Physarum polycephalum is more nuanced as Image2net is

better than Image2net-MST, in particular when considering the weights, but NEFI outperforms all the

others. However, this is true if we use the NEFI-high routine, which is the one built on purpose to

detect Physarum polycephalum networks, it is not surprising that this has stronger results on these

datasets. In figure 6 (bottom), we note how these networks contain many small details that are better

captured by NEFI. Indeed, using other NEFI routines, performance aligns more to Image2net and

Image2net-MST. This also shows that if a practitioner aims at extracting networks from a particular

image, all the approaches allow for few degrees of freedom to be tuned in order to increase

performance. NEFI allows the specification of individual routines to design a custom pipeline,
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Figure 4. Recovering hand-labelled networks. Performance in terms of similarity ŵb(G, I) and ŵ(G, I) on hand-labelled retina networks,

(a) and (b) are networks labelled by two different people. First row shows ŵb values; second row shows ŵ values. Smaller values mean

higher similarity and thus better performance. Hence, points above the grey line (blue) means Image2net performs better, whereas points

below (red) means worse performance. (a) Hand-labelled by A. Hoover (b) Hand-labelled by V. Kouznetsova.
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14.4

14.2

14.0

13.8

13.6

13.4

13.4 13.6 13.8 14.0

Image2net 1.0Im
ag

e2
n

et
-M

S
T

 a
cc

u
ra

cy
 ŵ
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30

25

20

15

10

10 15 20 25

Image2net 0.0

N
E

F
I 

ac
cu

ra
cy

 ŵ
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 ŵ

 Image2net-MST 0.08

3.00 3.25 3.50

Image2net accuracy ŵ
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Figure 5. Recovering river and Physarum polycephalum networks. Performance in terms of similarity ŵb(G, I) and ŵ(G, I) on rivers
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means worse performance. (a) rivers and (b) Physarum polycephalum.
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Image2net and Image2net-MST have various parameters that could be tuned, the most important being δ

and β. For instance, decreasing δ will allow for more fine details on Physarum polycephalum networks, see

the electronic supplementary material. However, tuning each routine on each input image goes beyond

the scope of this work, as we aim at describing how different approaches perform on a corpus of images,

potentially quite different, and thus automatize network extraction in a scalable way.

5. Qualitative results
Beyond validating the model on recovering network structure that resembles well what is pictured in an

image, we illustrate the differences in topological properties of the extracted networks. This also

showcases possible applications for our model, where a practitioner extracts a network and can then

perform further analysis on it, for instance using the detected network properties.

We calculated the total network length as L ¼
P

e ‘e where ℓe is the Euclidean distance between the

nodes defining the edge e, see figure 7. We find that Image2net extracts on average longer rivers

networks, and similar to NEFI for the retina, but with lower variance in this case. Instead, NEFI extracts

much longer Physarum polycephalum networks, mainly owing to many small minor paths permeating

the whole image (this was signalled above by wider result difference in terms of similarity). Instead,

Figure 6. Results on rivers and Physarum polycephalum networks. We show the networks extracted on rivers (top) and Physarum

polycephalum (bottom) using Image2net (left), NEFI (centre) and Image2net-MST (right). Inset is the zoom over the area under the

red surface. The input image is depicted underneath the networks.
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Figure 7. Total network length. Boxes show the distribution over the images inside each dataset of the total network length

L ¼Pe ‘e calculated on the networks extracted by each method. Solid lines are the median, dashed lines are the average.

(a) rivers, (b) retina and (c) Physarum polycephalum.
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Image2net-MST finds smaller values in all the datasets. This highlights one important difference owing to

the underlying optimization set-up that distinguished these two approaches.

While a longer network total length might be owing to a higher number of edges, this is not always

the case. This can be seen from results on rivers in figure 8, where we plot the distribution of the number

of nodes and edges, other important topological properties. In fact, for these images, NEFI finds much

smaller network sizes than Image2net, while the distribution of L in figure 7 is similar for the two

routines. This is again owing to NEFI representing curved parts of the network with fewer but longer

straight edges, see figure 6 for an example. In these river networks, Image2net has a higher resolution,

where NEFI fails to find enough details. The opposite extreme is seen for the Physarum polycephalum

images where NEFI has many more nodes and edges when using the routine NEFI-high, and also

much higher L as we saw before. For the retina vessel networks, Image2net extracts on average

networks with higher number of nodes and edges than the other two methods, while L is similar to

NEFI, hence both Image2net and Image2net-MST have on average shorter edges than NEFI, with the

difference that Image2net extract networks with bigger sizes.

6. Conclusion
We propose Image2net, a model for extracting networks from images. It takes as input an image and

returns a network structure as a set of nodes, edges and the corresponding weights. Standard

approaches for addressing these problems rely on image processing techniques. Instead, our model is

based on a principled formalism adapted from recent results of optimal transport theory. We build an

analogy with fluid dynamics by treating colours on pixels as fluids flowing through an image and
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Figure 8. Number of nodes and edges. Boxes show the distribution over the images inside each dataset of N, the total number of

nodes (a) and E, the total number of edges (b), calculated on the networks extracted by each method. Solid lines are the median,

dashed lines are the average. (a) rivers, (b) retina and (c) Physarum polycephalum.
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considering a set of dynamical equations for their conductivities and flows. At convergence, these

correspond to stationary solutions of a cost function that has a nice interpretation in terms of a

transportation cost.

The advantage of our approach with respect to more conventional methods is that our model

naturally incorporates a principle definition of edge weights as the optimal conductivities and that can

be interpreted as proportional to the diameters of network edges. In addition, it allows for a

principled and automatic filtering of possible redundancies by means of solving a routing

optimization problem, instead of using pre-defined pruning routines.

We test our model on various datasets, and calculate performance measures in terms of recovering

the network-like shape in the input image. Image2net performs well compared to other network

extraction tools and yields networks that closely approximate the networks depicted in the images. In

particular, it is flexible in finding various network shapes, as it can find curved geometries as those

observed in river networks.

We expect our method to be appropriate for images that represent phenomena with well-defined and

physically meaningful flows or fluxes, as in the datasets considered here. In particular, for underlying

conserved incompressible flows as water or blood flows. However, not all networks shown in images

represent flow, for instance, fracture networks, foams, or grain boundaries in materials. While our

method is still applicable to these scenarios, as it is agnostic to what image is given in input, the

resulting networks may not be meaningful in these cases. In addition, there may be also flow-based

systems displaying many loops or dynamical behaviours changing frequently in time, e.g. tidal

marshes, which may not be captured well by our model. A possible solution for obtaining many

loops could be to adapt Image2net to a multi-commodity optimal transport approach as in [35],

which can naturally lead to loopy structures. We thus encourage practitioners to consciously select the

images given in input to our algorithm based on the expected behaviour of the underlying physical

phenomena being displayed.

In addition to being efficient, automated network extraction also has the advantage of yielding

reproducible results and reducing human biases. Indeed, given an input image, Image2net will always

yield the same networks, whereas manual extraction depends on the perception of the individual

performing the measurement. Our model also enables practitioners to measure network-related

quantities like centrality measures, branching points or curvature and angles. More importantly, given

the computational efficiency of the underlying solver, it also works for large networks where

manually measuring metrics across the whole network is not feasible.

In this work, we mostly show example applications from biology and ecology, but the usage of our

model is not limited to this kind of networks. It can be used in a broad array of datasets to detect and

measure network-like shapes, in particular, those displaying systems with incompressible flows. We

foresee that our model will be useful for practitioners willing to perform automatic and scalable

network analysis of large datasets of images.

Data accessibility. All data needed to evaluate the conclusions in the paper are present in the paper and/or the electronic

supplementary material [36]. An open-source implementation of the code is available online at https://github.com/

diegoabt/Img2net.

Authors’ contributions. D.B. and C.D.B. derived the model, analysed results and wrote the manuscript. D.B. conducted the

experiments.

Competing interests. The authors declare that they have no competing interests.

Funding. No funding has been received for the article.

Acknowledgements. The authors thank the International Max Planck Research School for Intelligent Systems (IMPRS-IS)

for supporting Diego Baptista.

References

1. Balister P, Balogh J, Bertuzzo E, Bollobás B,

Caldarelli G, Maritan A, Mastrandrea R, Morris R,

Rinaldo A. 2018 River landscapes and optimal

channel networks. Proc. Natl Acad. Sci. USA 115,

6548–6553. (doi:10.1073/pnas.1804484115)

2. Tsai PS, Kaufhold JP, Blinder P, Friedman B,

Drew PJ, Karten HJ, Lyden PD, Kleinfeld D. 2009

Correlations of neuronal and microvascular

densities in murine cortex revealed by direct

counting and colocalization of nuclei and

vessels. J. Neurosci. 29, 14 553–14 570. (doi:10.

1523/JNEUROSCI.3287-09.2009)

3. Yin C, Xiao X, Balaban V, Kandel ME, Lee YJ,

Popescu G, Bogdan P. 2020 Network science

characteristics of brain-derived neuronal cultures

deciphered from quantitative phase imaging

data. Sci. Rep. 10, 1–13. (doi:10.1038/s41598-

019-56847-4)

4. Gazit Y, Berk DA, Leunig M, Baxter LT, Jain RK.

1995 Scale-invariant behavior and vascular

network formation in normal and tumor tissue.

Phys. Rev. Lett. 75, 2428. (doi:10.1103/

PhysRevLett.75.2428)

5. Boddy L, Wood J, Redman E, Hynes J, Fricker

MD. 2010 Fungal network responses to grazing.

Fungal Genet. Biol. 47, 522–530. (doi:10.1016/j.

fgb.2010.01.006)

royalsocietypublishing.org/journal/rsos
R.
Soc.

Open
Sci.

8:
210025

12

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/ 

o
n
 0

9
 A

p
ri

l 
2
0
2
4
 



6. Montoya-Zegarra JA, Russo E, Runge P, Jadhav

M, Willrodt A-H, Stoma S, Nørrelykke SF,

Detmar M, Halin C. 2019 Autotube: a novel

software for the automated morphometric

analysis of vascular networks in tissues.

Angiogenesis 22, 223–236. (doi:10.1007/

s10456-018-9652-3)

7. Nikolaisen J, Nilsson LI, Pettersen IK, Willems

PH, Lorens JB, Koopman WJ, Tronstad KJ. 2014

Automated quantification and integrative

analysis of 2D and 3D mitochondrial shape and

network properties. PLoS ONE 9, e101365.

(doi:10.1371/journal.pone.0101365)

8. Ouellet M, Guillebaud G, Gervais V, St-Pierre DL,

Germain M. 2017 A novel algorithm identifies

stress-induced alterations in mitochondrial

connectivity and inner membrane structure from

confocal images. PLoS Comput. Biol. 13,

e1005612. (doi:10.1371/journal.pcbi.1005612)

9. Banavar JR, Colaiori F, Flammini A, Maritan A,

Rinaldo A. 2000 Topology of the fittest

transportation network. Phys. Rev. Lett. 84,

4745. (doi:10.1103/PhysRevLett.84.4745)

10. Hu J, Razdan A, Femiani JC, Cui M, Wonka P.

2007 Road network extraction and intersection

detection from aerial images by tracking road

footprints. IEEE Trans. Geosci. Remote Sens. 45,

4144–4157. (doi:10.1109/TGRS.2007.906107)

11. Tupin F, Maitre H, Mangin J-F, Nicolas J-M,

Pechersky E. 1998 Detection of linear features in

SAR images: application to road network

extraction. IEEE Trans. Geosci. Remote Sens. 36,

434–453. (doi:10.1109/36.662728)

12. Bastani F, He S, Abbar S, Alizadeh M,

Balakrishnan H, Chawla S, Madden S, DeWitt D.

2018 RoadTracer: automatic extraction of road

networks from aerial images. Proceedings of the

IEEE Conference on Computer Vision and Pattern

Recognition, pp. 4720–4728. New York, NY:

IEEE.

13. Baptista D, Leite D, Facca E, Putti M, De Bacco

C. 2020 Network extraction by routing

optimization. Sci. Rep. 10, 1–3. (doi:10.1038/

s41598-019-56847-4)

14. Dehkordi MT, Sadri S, Doosthoseini A. 2011 A

review of coronary vessel segmentation

algorithms. J. Med. Signals Sens. 1, 49. (doi:10.

4103/2228-7477.83519)

15. Fricker MD, Akita D, Heaton LL, Jones N, Obara

B, Nakagaki T. 2017 Automated analysis of

Physarum network structure and dynamics.

J. Phys. D: Appl. Phys. 50, 254005. (doi:10.1088/

1361-6463/aa72b9)

16. Lasser J, Katifori E. 2017 Net: a new framework

for the vectorization and examination of

network data. Source Code Biol. Med. 12, 4.

(doi:10.1186/s13029-017-0064-3)

17. Bühler J, Rishmawi L, Pflugfelder D, Huber G,

Scharr H, Hülskamp M, Koornneef M, Schurr U,

Jahnke S. 2015 Phenovein–a tool for leaf vein

segmentation and analysis. Plant Physiol. 169,

2359–2370. (doi:10.1104/pp.15.00974)

18. Wang W, Yang N, Zhang Y, Wang F, Cao T, Eklund P.

2016 A review of road extraction from remote

sensing images. J. Traffic Transp. Eng. (English

edition) 3, 271–282. (doi:10.1016/j.jtte.2016.05.005)

19. Rapacz M, Łazarz R. 2020 Automatic extraction

of leaf venation complex networks. ECAI 2020,

pp. 1914–1921. Amsterdam, The Netherlands:

IOS Press.

20. Price CA. 2012 Leaf gui: analyzing the geometry

of veins and areoles using image segmentation

algorithms. In High-throughput phenotyping in

plants, pp. 41–49. New York, NY: Springer.

21. Obara B, Grau V, Fricker MD. 2012 A bioimage

informatics approach to automatically extract

complex fungal networks. Bioinformatics 28,

2374–2381. (doi:10.1093/bioinformatics/bts364)

22. Baumgarten W, Hauser M. 2010 Detection,

extraction, and analysis of the vein network.

J. Comput. Interdiscipl. Sci. 1, 241–249.

23. Fraz MM, Remagnino P, Hoppe A, Uyyanonvara

B, Rudnicka AR, Owen CG, Barman SA. 2012

Blood vessel segmentation methodologies in

retinal images–a survey. Comput. Methods

Programs Biomed. 108, 407–433. (doi:10.1016/

j.cmpb.2012.03.009)

24. Chai D, Forstner W, Lafarge F. 2013 Recovering

line networks in images. Proceedings of the IEEE

Conference on Computer Vision and Pattern

Recognition, pp. 1894–1901. New York, NY:

IEEE.

25. Dirnberger M, Kehl T, Neumann A. 2015 Nefi:

Network extraction from images. Sci. Rep. 5,

15669. (doi:10.1038/srep15669)

26. Breuer D, Nikoloski Z. 2015 Define: an

optimisation-based method for robust

disentangling of filamentous networks. Sci. Rep.

5, 1–14. (doi:10.1038/srep18267)

27. Cinsdikici MG, Aydın D. 2009 Detection of blood

vessels in ophthalmoscope images using MF/ant

(matched filter/ant colony) algorithm. Comput.

Methods Programs Biomed. 96, 85–95. (doi:10.

1016/j.cmpb.2009.04.005)

28. Tero A, Kobayashi R, Nakagaki T. 2007 A

mathematical model for adaptive transport

network in path finding by true slime mold.

J. Theor. Biol. 244, 553–564. (doi:10.1016/j.jtbi.

2006.07.015)

29. Tero A, Takagi S, Saigusa T, Ito K, Bebber DP,

Fricker MD, Yumiki K, Kobayashi R, Nakagaki T.

2010 Rules for biologically inspired adaptive

network design. Science 327, 439–442. (doi:10.

1126/science.1177894)

30. Dirnberger M, Mehlhorn K, Mehlhorn T. 2017

Introducing the slime mold graph repository.

J. Phys. D: Appl. Phys. 50, 264001. (doi:10.1088/

1361-6463/aa7326)

31. Hoover A, Kouznetsova V, Goldbaum M. 2000

Locating blood vessels in retinal images by

piecewise threshold probing of a matched filter

response. IEEE Trans. Med. Imaging 19, 203–

210. (doi:10.1109/42.845178)

32. Openseamap, see https://map.openseamap.org/.

Accessed: from 7–28 September 2020.

33. Hoover A, Kouznetsova V, Goldbaum M. 2000

Hand-labeled dataset. See https://cecas.

clemson.edu/˜ahoover/stare/probing/index.html.

34. Hwang FK, Richards DS. 1992 Steiner tree

problems. Networks 22, 55–89. (doi:10.1002/

net.3230220105)

35. Lonardi A, Facca E, Putti M, De Bacco C. 2020

Optimal transport for multi-commodity routing

on networks. arXiv, 2010.14377.

36. Baptista D, De Bacco C. 2021 Supplementary

material from ’Principled network extraction

from images’. The Royal Society. Collection.

https://doi.org/10.6084/m9.figshare.c.5514773.

royalsocietypublishing.org/journal/rsos
R.
Soc.

Open
Sci.

8:
210025

13

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/ 

o
n
 0

9
 A

p
ri

l 
2
0
2
4
 





Immiscible color flows in optimal
transport networks for image
classification

Alessandro Lonardi*†, Diego Baptista*† and Caterina De Bacco

Physics for Inference and Optimization Group, Max Planck Institute for Intelligent Systems, Cyber Valley,

Tübingen, Germany

In classification tasks, it is crucial tomeaningfully exploit the information contained in

the data. While much of the work in addressing these tasks is focused on building

complex algorithmic infrastructures to process inputs in a black-box fashion, little is

known about how to exploit the various facets of the data before inputting this into

an algorithm. Here, we focus on this latter perspective by proposing a physics-

inspired dynamical system that adapts optimal transport principles to effectively

leverage color distributions of images. Our dynamics regulates immiscible fluxes of

colors traveling on a network built from images. Instead of aggregating colors

together, it treats them as different commodities that interact with a shared

capacity on the edges. The resulting optimal flows can then be fed into standard

classifiers to distinguish images in different classes. We show how our method can

outperform competing approaches on image classification tasks in datasets where

color information matters.

KEYWORDS

network flow optimization, image classification, network optimization, optimal transport,

self-adapting dynamical systems

1 Introduction

Optimal transport (OT) is a powerful method for computing the distance between two data

distributions. This problem has a cross-disciplinary domain of applications, ranging from

logistics and route optimization [1–3] to biology [4, 5] and computer vision [6–10], among

others. Within this broad variety of problems, OT is largely utilized in machine learning [11]

and deployed for solving classification tasks, where the goal is to optimally match discrete

distributions that are typically learned from data. Relevant usage examples are also found in

multiple fields of physics, as in protein fold recognition [12], stochastic thermodynamics [13],

designing transportation networks [14, 15], routing in multilayer networks [16], or general

relativity [17]. A prominent application is image classification [18–23], where the goal is to

measure the similarity between two images. OT solves this problem by interpreting image pairs

as two discrete distributions and then assessing their similarity via the Wasserstein (W1)

distance ([24], Definition 6.1), a measure obtained by minimizing the cost needed to transform

one distribution into the other. UsingW1 for image classification carries many advantages over

other similarity measures between histograms. For example, W1 preserves all properties of a

metric [9, 24], it is robust over domain shift for train and test data [22], and it provides

meaningful gradients to learn data distributions on non-overlapping domains [25]. Because of

these and several other desirable properties, much research effort has been put into speeding up

algorithms to calculate W1 [12, 19, 20, 26, 27]. However, all these methods overlook the

potential of effectively using image colors directly in the OT formulation. As a result,

practitioners have access to increasingly efficient algorithms, but those do not necessarily
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improve accuracy in predictions, as we lack a framework that fully

exploits the richness of the input information.

Colored images originally encoded as three-dimensional

histograms—with one dimension per color channel—are often

compressed into lower dimensional data using feature extraction

algorithms [9, 23]. Here, we propose a different approach that

maps the three distinct color histograms to multicommodity flows

transported in a network built using images’ pixels. We combine

recent developments in OT with the physics insights of capacitated

network models [1, 5, 28–31] to treat colors as masses of different

types that flow through the edges of a network. Different flows are

coupled together with a shared conductivity to minimize a unique cost

function. This setup is reminiscent of the distinction between

modeling the flow of one substance, e.g., water, and modeling the

flows of multiple substances that do not mix, e.g., immiscible fluids,

which share the same network infrastructure. By virtue of this

multicommodity treatment, we achieve stronger classification

performance than state-of-the-art OT-based algorithms in real

datasets where color information matters.

2 Problem formulation

2.1 Unicommodity optimal transport

Given twom- and n-dimensional probability vectors g and h and a

positive-valued ground cost matrix C, the goal of a

standard—unicommodity—OT problem is to find an optimal

transport path P+ satisfying the conservation constraints ∑jPij =

gi∀i and ∑iPij = hj∀j, while minimizing J(g, h) = ∑ijPijCij.

Entries P+ij can be interpreted as the mass transported from gi to hj
when paying a cost Cij, while J+, i.e., J evaluated at P+, encodes the

minimum effort needed to transport g to h. Notably, if all entries Cij are

distances between i and j, then J+ is the W1 distance between g and h

(see [24] for a standard proof and [9] for derivations focusing on the

discrete case).

2.2 Physics-inspired multicommodity optimal
transport

Interpreting colors as masses traveling along a network built from

images’ pixels (as we define in detail below), unicommodity OT could

be used to capture the similarity between grayscale images. However, it

may not be ideal for colored images, when color information matters.

The limitation of unicommodity OT in Section 2.1 is that it does not

fully capture the variety of information contained in different color

channels as it is not able to distinguish them. Motivated by this, we

tackle this challenge and move beyond this standard setting by

incorporating insights from the dynamics of immiscible flows into

physics. Specifically, we treat the different pixels’ color channels as

masses of different types that do not mix but rather travel and interact

on the same network infrastructure, while optimizing a unique cost

function. By assuming capacitated edges with conductivities that are

proportional to the amount of mass traveling through an edge, we can

define a set of ODEs that regulate fluxes and conductivities. These are

optimally distributed along a network to better account for color

information while satisfying physical conservation laws. Similar ideas

have been successfully used to route different types of passengers in

transportation networks [2, 16, 32].

Formally, we couple together the histograms of M = 3 color

channels, the commodities, indexed with a = 1, . . ., M. We define

ga and ha as m- and n-dimensional probability vectors of mass of type

a. More compactly, we define the matrix G with entries Gia � ga
i

(respectively,H for h), each containing the intensity of color channel a

in pixel i of the first (respectively, second) image. These regulate the

sources and sinks of mass in our setting. We then enforce the

conservation of mass for each commodity index a ∑ig
a
i � ∑jh

a
j .

This ensures that all the color mass in the first image is accounted

for in the second image, and vice versa. This should be valid for each

mass type.

Moreover, we define the set Π(G, H) containing (m × n × M)-

dimensional tensors P with entries Pa
ij being transport paths between

ga and ha. These regulate how fluxes of colors of different types travel

along a network. We enforce the interaction between transport paths

for different commodities by introducing a shared cost.

JΓ(G,H) � ∑
ij

‖Pij‖
Γ

2Cij, (1)

where ‖Pij‖2 � (∑aP
a
ij2)

1/2 is the 2-norm of the vector Pij �

(P1
ij, . . . , PM

ij ) and 0 < Γ < 4/3 is a regularization parameter. We

take Γ > 0 since a negative exponent would favor the proliferation of

loops with infinite mass [28]. Instead, we conventionally consider Γ <

4/3 (see Section 3.2) since the cost JΓ exhibits the same convexity

properties for any Γ > 1, i.e., it is strictly convex, and OT paths do not

change substantially with Γ in this regime [2]. We can thus formulate

its corresponding multicommodity OT problem as that of finding a

tensor P+ solution of

J+
Γ

G,H( ) � min
P∈Π G,H( )

JΓ G,H( ). (2)

It should be noted that for M = 1 and Γ = 1, we recover the

standard unicommodity OT setup.

The problem in Eq. 2 admits a precise physical interpretation. In

fact, it can be recast as a constrained minimization problem with the

objective function being the energy dissipated by the multicommodity

flows (Joule’s law) and a constant total conductivity. Furthermore,

transport paths follow Kirchhoff’s law enforcing conservation of mass

[2, 32, 33] (see Supplementary Material for a detailed discussion).

Noticeably, JΓ is a quantity that takes into account all the different

mass types, and the OT paths P+ are found through a unique

optimization problem. We emphasize that this is fundamentally

different from solving M-independent unicommodity problems,

where different types of mass are not coupled together as in our

setting, and then combining their optimal costs to estimate images’

similarity. Estimating J+
Γ
(G,H) directly gives a quantitative and

principled measure of the similarity between two images G and H.

The lower this cost, the higher the similarity of the two images. While

this is valid also for the unicommodity cost in Section 2.1, the

difference here is that we account differently for the color

information as we distinguish different colors via the M-

dimensional vector Pij. The cost in Eq. 2 then properly couples

colors by following physical laws regulating immiscible flows. The

idea is that if this information matters for the given classification task,

incorporating it into the minimization problem would output a cost

that helps to distinguish images better, e.g., with higher accuracy.
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3 Materials and methods

3.1 Optimal transport network on images

Having introduced the main ideas and intuitions, we now explain

in detail how to adapt the OT formalism to images. Specifically, we

introduce an auxiliary bipartite network Km,n(V1,V2, E12), which is the

first building block of the network where the OT problem is solved. A

visual representation of this is shown in Figure 1. The images 1 and

2 are represented as matrices (G and H) of sizes m × M and n × M,

respectively, where M is the number of color channels of the images

(M = 3 in our examples). The sets of nodes V1 and V2 of the network

Km,n are the pixels of images 1 and 2, respectively. The set of edges E12
contains a subset of all pixel pairs between the two images, as detailed

further. We consider the cost of an edge (i, j) as

Cij θ, τ( ) � min 1 − θ( )‖vi − vj‖2 + θ‖Gi −Hj‖1, τ{ }, (3)

where the vector vi = (xi, yi) contains the horizontal and vertical

coordinates of pixel i of image 1 (similarly vj for image 2). The quantity

θ ∈ [0, 1] is a hyperparameter that is given in input and can be chosen

with cross-validation. It acts as a weight for a convex combination

between the Euclidean distance between pixels and the difference in

their color intensities, following the intuition in [9, 23]. When θ = 0,

the OT path P+ is the one that minimizes only the geometrical

distance between pixels. Instead, when θ = 1, pixels’ locations are

no longer considered, and transport paths are only weighted by color

distributions. The parameter τ is introduced following [22, 23] with

the scope of removing all edges with cost Cij(θ, τ) = τ, i.e., those for

which (1 − θ)‖vi − vj‖2 + θ‖Gi −Hj‖1 > τ. These are substituted bym + n

transshipment edges e ∈ E′, each of which has a cost of τ/2 and is

connected to one unique auxiliary vertex u1. Thresholding the cost

decreases significantly the computational complexity of OT, making it

linear with the number of nodes |V1| + |V2| + 2 = m + n + 2 (see

Supplementary Material).

Furthermore, we relax the conservation of mass by allowing ∑iGia

≠ ∑jHja. The excess mass ma = ∑jHja − ∑iGia is assigned to a second

auxiliary node, u2. We connect it to the network with n additional

transshipment edges, e ∈ E′, each penalizing the total cost by c =

maxijCij/2. This construction improves classification when the

histograms’ total masses largely differ [22]. Intuitively, this can

happen when comparing “darker” images against “brighter” images

more precisely, when entries of ga and ha are further apart in the RGB

color space.

Overall, we obtain a network K with nodes V � V1 ∪ V2 ∪ u1, u2{ }

and edges E = E12 ∪ E′, i.e., the original bipartite graphKm,n, together with

the auxiliary transshipment links and nodes. It should be noted that in its

entirety, the system is isolated, i.e., the total mass is conserved. See

Supplementary Material for a detailed description of the OT setup.

Given this auxiliary graph, the OT problem is then solved by

injecting the color mass contained in image 1 in nodes i ∈ V1, as

specified by G, and extracting it from nodes j ∈ V2 of image 2, as

specified by H. This is carried out by transporting mass using either i)

an edge in E12 or ii) a transshipment one in E′. In the following section,

we describe how this problem is solved mathematically.

3.2 Optimizing immiscible color flows: The
dynamics

We solve the OT problem by proposing the following ODEs for

controlling mass transportation:

∑
j∈zi

Lij x[ ]ϕa
j � Sai ∀i ∈ V, a � 1, . . . ,M, (4)

dxe

dt
� xβ

e

‖ϕi − ϕj‖
2
2

C2
e

− xe, ∀e � i, j( ) ∈ E, (5)

which constitute the pivotal equations of our model. Here, we

introduce the shared conductivities xe ≥ 0 and define

Sai � Gia −Hia, taking values Sau1 � 0 and Sau2 � ma on the auxiliary

nodes. With Lij[x] =∑e(xe/Ce)BieBje, we denote the weighted Laplacian

of K, where B is its signed incidence matrix and zi is the neighborhood

of node i. Lastly, ϕai is the scalar potential acting on nodes for a given

FIGURE 1

Bipartite network representation for multicommodity OT. The two images (shown on the leftmost and rightmost sides of the panel) are encoded in the

RGBmatrices G and H, which regulate the flow traveling on the network K. The graph is made ofm + n + 2 nodes, i.e., the total number of pixels plus the two

auxiliary vertices introduced in Section 3.1. Gray edges (belonging to the set E12) connect nodes in image 1 to nodes in image 2; these edges are trimmed

according to a threshold τ. We highlight the entries of the matrix C in red if these are larger than τ. Transshipment and auxiliary edges used to relax mass

conservation (which belong to E′) are colored in brown and magenta.
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commodity a. The least-square solutions of Eq. 4 are

ϕai [x] � ∑jL
†
ij[x]S

a
i , where † denotes the Moore–Penrose inverse.

The critical exponent 0 < β < 2 [Γ = 2(2 − β)/(3 − β)] is a

hyperparameter that needs to be chosen before solving Eqs 4 and

5. Depending on the modeling task, its value can be fixed a priori (e.g.,

β = 1 for the shortest path problem [34], β ≃ 5/3 for river networks

[35], and β → 2− for the Steiner tree problem [36]) or cross-validated

as we do here for image classification. The exponent aggregates paths

using the principle of economy of scale if 1 < β < 2. It dilutes them

along the network otherwise, with the goal of reducing traffic

congestion. This behavior is a direct consequence of the

subadditivity of JΓ in Eq. 2 for β > 1 (Γ < 1), and, respectively,

superadditivity for β < 1 (Γ > 1). It has been theoretically discussed and

empirically observed, for example, in [32, 37, 38].

The feedback mechanism of Eq. 5 defines multicommodity fluxes

(Pa
e ) that are admissible for the minimization problem introduced in Eq.

2. Particularly, for color of type a on edges e = (i, j), we couple potentials

(ϕai ) that are the solutions of Eq. 4 and shared conductivities (xe) to define

Pa
e t( ) � xe t( )

ϕa
i x t( )[ ] − ϕa

j x t( )[ ]

Ce

, ∀e ∈ E, a � 1, . . . ,M. (6)

This also highlights another physical interpretation; i.e., by

interpreting the ϕai as pressure potentials, the fluxes are seen to

arise from a difference in pressure between two nodes as in

hydraulic or electrical networks. Crucially, this allocation is

governed by one unique conductivity for all commodities, whose

dynamics depends on the 2-norm over a of differences in

potentials, as in Eq. 5. In analogy with immiscible flows, this

ensures that flows of different types share the same infrastructure,

and in practice, it couples them into a unique optimization problem.

In the case of only one commodity (M = 1), variants of this

dynamics have been used to model transport optimization in various

physical systems [1, 5, 29–31].

The salient result of our construction is that the asymptotic

trajectories of Eqs 4 and 5 are equivalent to the minimizers of Eq.

2, i.e., limt→+∞P(t) = P+ (see Supplementary Material for derivations

following [32, 33]). Therefore, numerically integrating our dynamics

solves the multicommodity OT problem. In other words, this allows us

to estimate the optimal cost in Eq. 2 and use that to compute

similarities between images. A pseudo-code of the algorithmic

implementation is shown in Algorithm 1.

3.3 Computational complexity

In principle, our multicommodity method has a computational

complexity of order O(M|V|2) for complete transport network

topologies, i.e., when edges in the transport network K are assigned to

all pixel pairs. Nonetheless, we substantially reduce this complexity to

O(M|V|) by sparsifying the graphwith the trimming procedure of [22, 23].

More details are given in SupplementaryMaterial. Empirically, we observe

that by running Eqs 4 and 5, most of the entries of x decay to zero after a

few steps, producing a progressively sparser weighted Laplacian L[x]. This

allows for faster computation of the Moore–Penrose inverse L†[x] and

least-square potentials ϕai � ∑jL
†
ij[x]S

a
j . A thorough experimental

analysis of the convergence properties of the OT dynamics has been

carried out in [39].

4 Results and discussion

4.1 Classification task

We provide empirical evidence that our multicommodity dynamics

outperforms competing OT algorithms on classification tasks. As

anticipated previously, we use the OT optimal cost J+
Γ

as a measure

of similarity between two images and perform supervised classification

with a k-nearest neighbor (k-NN) classifier as described in [20].

Alternative methods (e.g., SVM as in [19]) could also be used for

this task. However, these may require the cost J+
Γ
to satisfy the distance

axioms to properly induce a kernel. While it is not straightforward to

verify these conditions for the OT cost in Eq. 2, this is not necessary for

the k-NN classifier, which requires looser conditions on J+
Γ
.

We compare the classification accuracy of our model against i) the

Sinkhorn algorithm [19, 40] (utilizing the more stable Sinkhorn scheme

proposed in [41]); ii) a unicommodity dynamics executed on grayscale

images, i.e., with color information compressed into one single

commodity (M = 1); and iii) the Sinkhorn algorithm on grayscale

images. All methods are tested on the following two datasets: the Jena

Flowers 30 Dataset (JF30) [42] and the Fruit Dataset (FD) [43]. The first

consists of 1,479 images of 30 wild-flowering angiosperms (flowers).

Flowers are labeled with their species, and inferring them is the goal of the

classification task. The second dataset contains 15 fruit types and

163 images. Here, we want to classify fruit types. The parameters of

Algorithm 1. Multicommodity dynamics.

Frontiers in Physics frontiersin.org04

Lonardi et al. 10.3389/fphy.2023.1089114



the OT problem setup (θ and τ) and regularization parameters (β and ε,

which enforce the entropic barrier in the Sinkhorn algorithm [19]), have

been cross-validated for both datasets (see Section 3 and Section 4 in

Supplementary Material). All methods are then tested in their optimal

configurations (see Supplementary Material for implementation details).

Classification results are shown in Table 1. In all cases, leveraging

colors leads to higher accuracy (about an 8% increase) with respect to

classification performed using grayscale images. This signals that in the

datasets under consideration, color information is a relevant feature for

differentiating image samples. Remarkably, we get a similar increase in

performance (about 7%–8%) on both colored datasets when comparing

our multicommodity dynamics against the Sinkhorn algorithm. As the

two algorithms use the same (colored) input, we can attribute this

increment to the effective usage of color that our approach is capable of.

In addition, by analyzing results in more detail, we first observe

that on JF30, all methods perform best when θ = 0.25, i.e., 25% of the

information used to build C comes from colors. This trend does not

recur on the FD, where both dynamics favor θ = 0 (Euclidean C).

Hence, our model is able to leverage color information via the

multicommodity OT dynamical formulation.

Second, on JF30, both dynamics perform best with τ = 0.125,

contrary to Sinkhorn-based methods that prefer τ = 0.05. Thus,

Sinkhorn’s classification accuracy is negatively affected both by low

τ—many edges of the transport network are cut—and by large τ

—noisy color information is used to build C. We do not observe this

behavior in our model, where trimming fewer edges is advantageous.

All optimal values of τ are lower on the FD since the color distributions

in this dataset are naturally light-tailed (see Supplementary Material).

Lastly, we investigate the interplay between θ and β. We notice that

θ = 0 (FD) corresponds to higher β = 1.5. Instead, for larger θ = 0.25

(JF30), the model prefers lower β (β = 1 and 1.25 for the

multicommodity and unicommodity dynamics, respectively). In the

former case (θ = 0, Cij is the Euclidean distance), the cost is equal to

zero for pixels with the same locations. Thus, consolidation of

transport paths—large β—is favored on cheap links. Instead,

increasing θ leads to more edges with comparable costs as colors

distribute smoothly over images. In this second scenario, better

performance is achieved with distributed transport paths, i.e., lower

β (see Supplementary Material).

4.2 Performance in terms of sensitivity

We assess the effectiveness of our method against benchmarks by

comparing the sensitivity of our multicommodity dynamics and that of

the Sinkhorn algorithm on the colored JF30 dataset. Specifically, we set all

algorithm parameters to their best configurations, as shown in Table 1.

Then, for each of the 30 classes in JF30, we compute its one-to-all

sensitivity, i.e., the true positive rate. This is defined for any class c as

S c( ) �
TP c( )

TP c( ) + FN c( )
, (7)

where TP(c) is the true positive rate, i.e., the number of images in c that

are correctly classified; FN(c) is the false negative rate, i.e., the number of

c-samples that are assigned a label different from c. Hence, Eq. 7 returns

the probability that a sample is assigned label c, given that it belongs to c.

We find that our method robustly outperforms the Sinkhorn

algorithm. Specifically, the multicommodity dynamics has the

highest sensitivity 50% of the times—15 classes out of a total of

30—as shown in Figure 2. For nine classes, Sinkhorn has higher

sensitivity, and for six classes, both methods give the same values of

S.Furthermore, we find that in 2/3 (20 out of 30) of the classes, the

multicommodity dynamics returns S(c) ≥ 1/2. This means that our

model predicts the correct label more than 50% of the time. In only

three out of these 20 cases, Sinkhorn attains higher values of S, while in

most instances where Sinkhorn outperforms our method, it has a

lower sensitivity of S < 1/2. Hence, this is the case in classes where both

methods have difficulty distinguishing images.

4.3 The impact of colors

To further assess the significance of leveraging color information,

we conduct three different experiments that highlight both

qualitatively and quantitatively various performance differences

between the unicommodity and multicommodity approaches. As

the two share the same principled dynamics based on OT with the

main difference being that multicommodity does not compress the

color information, we can use this analysis to better understand how

fully exploiting the color information drives better classification.

Experiment 1: Landscape of optimal cost. Here, we focus on a

qualitative comparison between the cost landscapes obtained with the

two approaches. We consider the example of an individual image taken

from the FD test set and plot the landscape of optimal costs J+
Γ

when

comparing it to the train set. Results for the multicommodity dynamics

(M = 3) and the unicommodity dynamics (M = 1) on grayscale images are

shown in Figure 3. Here, we highlight the five lowest values of the cost and

mark them in green if they correspond to correctly classified train samples

and in red otherwise. At first glance, one may conclude that their

performance is identical (as both dynamics classify correctly three

samples out of five), and we notice how the multicommodity dynamics

consistently clusters them at the bottom of the cost landscape, thus ranking

them in a better order. This may explain why the cross-validated best value

of k (the number of nearest neighbors in the k-NN classifier) is higher for

unicommodity methods in this dataset. On a larger sample of data, this

results in better overall classification performance, as shown in Table 1.

TABLE 1 Classification task results. With multicommodity, Sinkhorn RGB,

unicommodity, and Sinkhorn GS, we label methods on colored images (the first

two) and grayscale images (the second two). The optimal parameters in the

central columns are selected with a 4-fold cross-validation; k is the number of

nearest neighbors used in the classifier. The rightmost column shows the fraction

(in percentage) of correctly classified images. Results are ordered by

performance, and we highlight the best ones in bold.

Algorithm Hyperparameters Class accuracy

θ τ β ε k [%] (↑)

JF30 Multicommodity 0.25 0.125 1 — 1 62.2

Sinkhorn RGB 0.25 0.05 — 100 1 58.4

Sinkhorn GS 0.25 0.05 — 500 1 54.3

Unicommodity 0.25 0.125 1.25 — 1 53.6

FD Multicommodity 0 0.04 1.5 — 2 75.0

Sinkhorn RGB 0.5 0.06 — 750 1 69.6

Unicommodity 0 0.06 1.5 — 5 64.3

Sinkhorn GS 0.25 0.06 — 500 4 60.7
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Experiment 2: Controlling for shape. We further mark this tendency

with a second experiment where we select a subset of the FD composed of

images belonging to three classes of fruits that have similar shapes but

different colors such as red apples, orange apricots, and yellowmelons. As

we expect shape to be less informative than colors in this custom set, we

can assess the extent to which color plays a crucial role in the classification

process. Specifically, the test set is made of three random samples, each

drawn from one of these classes (top row of the rightmost panel) in

Figure 3, while the train set contains the remaining instances of the classes.

We plot the cost landscape J+
Γ

for the train set and draw in the red,

orange, and yellow values of J+
Γ
that correspond to the samples that are

compared against the test apple, apricot, andmelon, respectively. We also

sort the train samples so that they are grouped in three regions

(highlighted by the background color in Figure 3), which correspond

to train melons, apricots, and apples. With this construction, if the

minimum cost among the yellow markers falls in the yellow region, it

FIGURE 2

Sensitivity on the JF30 dataset. Sensitivity values are shown for the multicommodity dynamics (blue circles) and for Sinkhorn RGB (red triangles). Markers

are sorted in descending order of S, regardless of themethod. Background colors are blue, red, and gray, when S is higher for themulticommoditymethod, the

Sinkhorn algorithm, or none of them, respectively. In green, we plot frequency bars for all classes in the test set.

FIGURE 3

Evaluating the effect of colors. Experiment 1: The top black-framed image is the one to be classified. Predictions given by the multicommodity and

unicommodity dynamics (those with lower J+
Γ
) are shown on the right side of the panel and are displayed in a sorted fashion fromworst to best (from bottom

to top). Experiment 2: The top right samples are the three test images to be classified. Middle and bottom rows are predictions given by the two dynamics.

Markers, backgrounds, and test images shared a color code: red for apples, orange for apricots, and yellow for melons. In both panels, green circles and

red crosses are used to highlight classified andmisclassified images, respectively. All algorithms are executedwith their optimal configurations listed in Table 1.
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will correspond to a correctly classified sample (respectively, for orange

and red). We further mark the yellow, orange, and red minima in green if

the test and train labels correspond, i.e., the marker’s and background

colors are the same, and in red otherwise. Train and test samples are also

in Figure 3. The multicommodity dynamics correctly label each test

image. In contrast, unicommodity dynamics fails at this task, labeling a

melon as an apricot. This suggests that the multicommodity approach is

able to use the color information in datasets where this feature is more

informative than others, e.g., shape.

Experiment 3:When shapematters.Having shown results on a custom

dataset where shape was controlled to matter less, we now do the opposite

and select a dataset where this feature should be more informative. The

goal is to assess whether a multicommodity approach helps in this case as

well, as its main input information may not be as relevant anymore.

Specifically, we select as a test sample a cherry, whose form is arguably

distinguishable from that of many other fruits in the dataset. One can

expect that comparing it against the train set of the FDwill result in having

both unicommodity andmulticommodity dynamics able to assign low J+
Γ

to train cherries and higher costs to other fruits. This intuition is confirmed

by the results in Figure 4. Here, train cherries (in green) strongly cluster in

the lower portion of the cost landscape, whereas all the other fruits have

higher costs. In Figure 4, we also plot some of the correctly classified train

samples. These results suggest that when color information is negligible

compared to another type of information (e.g., shape), unicommodity and

multicommodity formulations perform similarly. In light of this, we

reinforce the claim that our multicommodity formulation can boost

classification in contexts where color information does matter but may

not give any advantage when other types of information are more

informative. We encourage practitioners to evaluate when this is the

case based on domain knowledge when available.

5 Conclusion

Wepropose a physics-informedmulticommodityOT formulation for

effectively using color information to improve image classification. We

model colors as immiscible flows traveling on a capacitated network and

propose equations for its dynamics, with the goal of optimizing flow

distribution on edges. Color flows are regulated by a shared conductivity

to minimize a unique cost function. Thresholding the ground cost as in

[22, 23] makes our model computationally efficient.

We outperform other OT-based approaches such as the Sinkhorn

algorithm on two datasets where color matters. Our model also assigns a

lower cost to correctly classified images than its unicommodity counterpart,

and it is more robust on datasets where items have similar shape. Thus,

color information is distinctly relevant. We note that for some datasets,

color information may not matter as much as another type of information

(e.g., shape), which has stronger discriminative power. However, while we

focused here on different color channels as the different commodities in our

formulation, the ideas of this study can be extended to scenarios where

other relevant information can be distinguished into different types. For

instance, one could combine several features together, e.g., colors, contours,

and objects’ orientations when available.

Our model can be further improved.While it uses the thresholding of

[22, 23] to speed up convergence (as mentioned in Section 3.1), it is still

slower than Sinkhorn-based methods. Hence, investigating approaches

aimed at improving its computational performance is an important

direction for future work. Speed-up can be achieved, for example, with

the implementation of [39], where the unicommodity OT problem on

sparse topologies is solved in O(|E|0.36) time steps. This bound has been

found using a backward Euler scheme combined with the inexact

Newton–Raphson method for the update of x and solving Kirchhoff’s

law using an algebraic multigrid method [44].

Our main goal is to frame an image classification task into that of

finding optimal flows of masses of different types in networks built from

images. We follow physics principles to assess whether using colors as

immiscible flows can give an advantage compared to other standard OT-

based methods that do not incorporate such insights. The increased

classification performance observed in our experiments stimulates the

integration of similar ideas into deep network architectures [45] as a

relevant avenue for future work. Combining their prediction capabilities

with our insights on how to better exploit the various facets of the input

data has the potential to push the performance of deep classifiers even

further. For example, one could extend the state-of-the-art architecture of

Eisenberger et al. [45], which efficiently computes implicit gradients for

generic Sinkhorn layers within a neural network, by including edge, shape,

and contour information for Wasserstein barycenter computation or

image clustering.

FIGURE 4

Evaluating the importance of colors: when shapesmatter most. Experiment 3: The top black-framed image is the one to be classified. The best three (out

of 10) predictions returned by the two dynamics are shown on the right. Wemark the training samples belonging to the same class as the test imagewith green

circles. All algorithms are executed with their optimal configurations listed in Table 1.
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