
Learning Event-Based Temporal Abstractions for
Hierarchical Prediction and Planning

Dissertation
der Mathematisch-Naturwissenschaftlichen Fakultät

der Eberhard Karls Universität Tübingen

zur Erlangung des Grades eines

Doktors der Naturwissenschaften

(Dr. rer. nat.)

vorgelegt von

Christian Gumbsch

aus Stuttgart

Tübingen

2024

Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der

Eberhard Karls Universität Tübingen.

Tag der mündlichen Qualifikation: 17.07.2024

Dekan: Prof. Dr. Thilo Stehle

1. Berichterstatter/-in: Prof. Dr. Martin Butz

2. Berichterstatter/-in: Prof. Dr. Justus Piater

3. Berichterstatter/-in: Prof. Dr. Olivier Sigaud

Abstract

Over the last decade, deep reinforcement learning systems have made remarkable progress in
various domains, partially reaching superhuman performance when trained extensively. How-
ever, no artificial system has yet reached the flexibility and efficiency with which intelligent
animals learn to solve novel problems. The goal of this thesis is to close this gap to some extent
by taking inspiration from biological cognition to enhance the goal-directed behavior of artificial
agents, in particular through the ability to hierarchically decompose sensorimotor experience
into events.

The central hypothesis of this work is that model-based temporal abstractions of events not
only play a crucial role in human behavior but by learning such structures artificial agents
can also acquire more adaptive, far-reaching, goal-directed behavior. To investigate this, a
formal framework for the event-based learning of hierarchical models with nested time scales is
introduced that is suitable for both computational cognitive modeling and sequential decision
making.

First, the cognitive plausibility of the approach is investigated by modeling human anticipa-
tory behavior. In these modeling experiments, an agent is equipped with a pre-structured model
of event-based abstractions. When the agent selects its gaze to minimize uncertainty across the
hierarchical predictions of its model, goal-anticipatory gaze behavior develops similarly to the
eye fixation behavior in infants.

Learning hierarchical predictions requires a mechanism that suitably decomposes activity into
events. For this purpose, a recurrent neural network is introduced next, which learns in a self-
supervised way to compress dynamics into latent states that are sparsely updated over time.
Including this mechanism in different prediction and planning systems improves their general-
ization abilities, their sample efficiency, and the explainability of the learned representations.

Finally, components of the previous methods are combined to learn a hierarchy of world models
from scratch. The high-level model in the hierarchy is only trained based on sparse latent state
changes of a low-level dynamics model. When the system selects its gaze focus based on the
hierarchical predictions, goal-anticipatory gaze behavior emerges similarly to how it develops in
infants during their first year of life. Furthermore, the learned hierarchical predictions can be
seamlessly integrated into model-based reinforcement learning and planning agents to improve
their performance in challenging problems with long task horizons.

Taken together, this thesis not only provides practical methods for learning event-based tem-
poral abstractions, but also demonstrates how such structures can explain human behavior and
enhance sequential decision making in artificial agents.

i

Kurzfassung

In den letzten Jahrzehnten haben Systeme mit tiefem Verstärkungslernen bemerkenswerte
Fortschritte erzielt und erreichen nach ausgiebigem Training teilweise übermenschliche Leistun-
gen. Allerdings hat noch kein künstliches System die Flexibilität und Effizienz erreicht, mit der
intelligente Tiere lernen neue Probleme zu lösen. Ziel dieser Arbeit ist es, diese Lücke ein Stück
weit zu schließen, indem Inspirationen von der biologischer Kognition genommen werden, um das
zielgerichtete Verhalten von künstlichen Agenten zu erweitern, insbesondere um die Fähigkeit,
sensorimotorische Erfahrungen hierarchisch in Ereignisse zu zerlegen.

Die zentrale Hypothese dieser Arbeit lautet, dass modellbasierte zeitliche Abstraktionen von
Ereignissen nicht nur eine entscheidende Rolle im menschlichen Verhalten spielen, sondern dass
künstliche Agenten durch das Erlernen solcher Strukturen auch adaptiveres und weitreichenderes
zielgerichtetes Verhalten erlangen können. Um das zu untersuchen, wird ein formeller Rahmen
für das ereignisbasierte Lernen hierarchischer Modelle mit verschachtelten Zeitskalen vorgestellt,
der sich sowohl für die kognitive Modellierung als auch für die Verbesserung der sequenziellen
Entscheidungsfindung eignet.

Zunächst wird die kognitive Plausibilität des Ansatzes durch die Modellierung von menschlich-
em antizipativem Verhalten untersucht. Für die Modellierungsexperiment wird ein Agent mit
einem vorstrukturierten Modell erreignisbasierter Abstraktionen ausgestattet. Wenn der Agent
seinen Blick ausrichtet, um Unsicherheit über die hierarchischen Vorhersagen des Modells zu mi-
nimieren, entsteht zielantizipatives Blickverhalten ähnlich der Augenfixationen bei Säuglingen.

Das Erlernen von hierarchischen Vorhersagen setzt einen Mechanismus voraus, der Aktivität
in Ereignisse einteilt. Für diesen Zweck, wird als Nächstes ein rekurrentes neuronales Netzwerk
vorgestellt, das selbstständig lernt Dynamiken in latente Zustände zu komprimieren, die zeitlich
selten aktualisiert werden. Die Integration dieses Mechanismus in verschiedene Vorhersage- und
Planungssysteme verbessert deren Generalisierungsfähigkeit, Lerneffizienz und Erklärbarkeit.

Schließlich werden Komponenten aus den vorherigen Methoden kombiniert, um eine Hierar-
chie von Weltmodellen von Grund auf zu lernen. Das übergeordnete Modell in der Hierarchie
wird nur aufgrund von punktuellen latenten Zustandsänderungen eines untergeordneten Dy-
namikmodells trainiert. Wenn das System seinen Blickfokus anhand der hierarchischen Vorher-
sagen auswählt, entsteht zielantizipatorisches Blickverhalten, ähnlich wie es sich bei Säuglingen
im ersten Lebensjahr entwickelt. Darüber hinaus können die erlernten hierarchischen Vorher-
sagen nahtlos in modellbasierte Verstärkungslern- und Planungsagenten integriert werden, um
deren Verhalten bei anspruchsvollen Problemen mit langen Aufgabenhorizonten zu verbessern.

Zusammengefasst bietet diese Arbeit nicht nur praktische Methoden für das Erlernen ereignis-
basierter zeitlicher Abstraktionen, sondern zeigt auch, wie solche Strukturen menschliches Ver-
halten erklären und die Entscheidungsfindung künstlicher Agenten verbessern können.

ii

Contents

Abstract i

1 Introduction 1
1.1 Foundations of Adaptive Problem Solving 2
1.2 Transfer Learning and Generalization . 3
1.3 Hierarchical Planning . 5
1.4 The Need for Sensorimotor Abstractions 7
1.5 Thesis Outline . 8

2 Theoretical Background 10
2.1 Event Cognition . 10
2.2 Sequential Decision Making . 15

3 Towards Sequential Decision Making with Events 26
3.1 Thick Markov Decision Processes . 26
3.2 Hierarchical Planning . 32
3.3 Examples . 33
3.4 Conclusion . 36

4 Developing Event-Based Goal Anticipations 38
4.1 Introduction . 39
4.2 Development of Goal Anticipations . 40
4.3 Cognitive Action Prediction in Infants (Capri) 42
4.4 Experiments . 46
4.5 Related Work . 52
4.6 Discussion . 53

5 Sparsely Changing Latent States for Prediction and Planning 56
5.1 Introduction . 57

iii

5.2 L0 Regularization of Latent State Changes 58
5.3 Gated L0 Regularized Dynamics (GateL0RD) 60
5.4 Experiments . 63
5.5 Related Work . 72
5.6 Discussion . 74

6 Hierarchical Predictions from Discrete Latent Dynamics 75
6.1 Introduction . 76
6.2 Learning Hierarchical Predictions . 78
6.3 Experiments . 83
6.4 Discussion . 91

7 Hierarchical World Models 93
7.1 Introduction . 94
7.2 Thick World Models . 95
7.3 Downstream Applications of Thick World Models 101
7.4 Experiments . 104
7.5 Related Work . 108
7.6 Discussion . 110

8 Discussion 112
8.1 Summary of Contributions . 112
8.2 Limitations and Extensions . 115
8.3 The Bitter Lesson and Cognition-Inspired AI 119
8.4 Integrating Theories on Cognition . 120
8.5 Outlook . 124

Appendix A Background and Approach: Supplementary Material 126

Appendix B Capri: Supplementary Material 130

Appendix C GateL0RD: Supplementary Material 143

Appendix D Skip Network: Supplementary Material 166

Appendix E Thick World Models: Supplementary Material 169

References 197

Acknowledgments 223

iv

List of Figures

1.1 An Example of Zero-Shot Problem Solving 2
1.2 Prerequisites for Adaptive Problem Solving 3
1.3 Contributions to Adaptive Problem Solving 8

2.1 Event Partonomy . 12
2.2 Markov Decision Processes and Models thereof 17
2.3 Partial Observability and Models . 21

3.1 Thick MDP . 27
3.2 Context Partonomy in Thick MDPs . 29
3.3 Models in Thick MDPs . 30
3.4 Goal-Anticipatory Gaze in Thick MDPs through Active Inference 35

4.1 Modeling Hypotheses for the Development of Goal Anticipation 41
4.2 Event Schemata in Capri . 43
4.3 Simulation Environment of Capri . 48
4.4 Exemplary Event and Policy Inference . 49
4.5 Mean Event Inference . 50
4.6 Anticipatory Gaze Behavior of Capri and in Infants 51

5.1 GateL0RD Architecture . 61
5.2 Simulation Environments of GateL0RD 64
5.3 Billiard Ball Prediction . 66
5.4 Generalization in Robot Remote Control 67
5.5 Precise Memorization in Shepherd . 68
5.6 Sample Efficient RL in MiniGrid . 69
5.7 Zero-Shot Policy Transfer in MiniGrid . 70
5.8 Explainability of the Latent States . 71

6.1 Hypothesis for Modeling Goal Anticipations via Event Codes 76

v

6.2 Skip Network Architecture . 79
6.3 Prediction and Gate Regularization for Scripted Events 85
6.4 Exemplary Sensorimotor Sequences and Latent States 86
6.5 Skip Predictions for Scripted Events . 87
6.6 Exemplary Event Boundary Predictions . 88
6.7 Prediction Errors and Skip Predictions for RL Interactions 89
6.8 Goal-Anticipatory Gaze of our System . 90
6.9 Goal-Anticipatory Gaze in Infants . 90

7.1 Thick World Models . 94
7.2 C-Rssm World Model . 96
7.3 High-Level Segmentation . 99
7.4 Temporal Abstract Predictions . 101
7.5 Exemplary Context Changes . 105
7.6 Exemplary High-Level Actions . 106
7.7 Long-Horizon RL in MiniHack . 107
7.8 Sample Efficient RL in VisualPinPad . 108
7.9 Zero-Shot MPC in Multiworld . 109

8.1 Towards Object-Centric World Models . 117
8.2 Actions, Events, and Context in Thick MDPs 122

vi

List of Symbols

Latin
a action
a refers to agent in Capri (Chap. 4)
A high-level action (Chap. 7)
c context, state component in Thick MDPs

(Chap. 3) or C-Rssm (Chap. 7)
d episode termination / “done” (Chap. 7)
D dataset
e event schema of Capri (Chap. 4)
h RNN latent state (Chap. 5-6) or deter-

ministic latent state component (Chap. 7)
H entropy
i image input of C-Rssm (Chap. 7)
J utility function for MPC (see Eq. 2.3)
K planning horizon for MPC (see Eq. 2.3)
l level of a hierarchy (Chap. 3)
L loss function (of low-level model)
L loss function of high level (Chap. 6-7)
N normal distribution
o observation
p refers to patient in Capri (Chap. 4)
P probability
r reward
R reward function
s state of MDP (Chap. 2) or internal state

of world model (Chap. 7)
t time
u sampled update gate input (Chap. 5)
v value function (Chap. 2) or critic (Chap. 7)
w low-level world model (Chap. 7)
W high-level world model (Chap. 7)
x network input (Chap. 5–6)
y network output (Chap. 5–6)
z stochastic latent state (Chap. 7)

Greek

α gaze focus (Chap. 6)
β loss scale; for sparsity loss (GateL0RD,

Chap. 5 – 6) or various losses (Chap. 7)
γ discount factor in RL (Eq. 2.2)
∆ denotes change in a vector
ζ loss scale for high-level model (Chap. 7)
η learning rate of neural networks
θ parameters of high-level model (Chap. 6-7)
ϑ parameters of the recognition density

(Sec. 2.2.4)
Θ Heaviside step function
κ intrinsic reward scale for hierarchical plan-

ning (Eq. 3.5, Eq. 7.26)
Λ ReTanh gate activation function (Eq. 5.7)

or (bold, Λ) vector of gates (Eq. 6.2)
µ mean of a normal distribution
ν parameters of sparse gates (Eq. 5.3)
ξ parameters of high-level critic (Chap. 7)
Ξ “clock function”, determines objective

time t (Eq. 3.2)
π policy
σ variance of a normal distribution
Σ covariance matrix of a normal distribution
τ function determining time step of next con-

text change (Eq. 3.1, Eq. 6.12, Eq. 7.10)
ϕ parameters of (low-level) model
χ parameters of low-level critic (Chap. 7)
ψ trade-off factor for short- and long-horizon

reward estimates (Eq. 7.23)
ω logits of stochastic state z (Chap. 7)

vii

1
Introduction1.1

Humans and several other intelligent animal species have the ability to break down com-
plex problems into simpler, previously learned sub-problems. This hierarchical approach
allows them to solve previously unseen problems in a zero-shot manner, i.e., without any
trial and error. For example, Fig. 1.1 depicts how a crow solves a novel non-trivial food
access puzzle that consists of three causal steps: It first picks a stick, then uses the stick
to access a stone, and then uses the stone to activate a mechanism that releases food
(Gruber et al., 2019). There exist numerous analogous experiments that attest similar
capabilities to primates, octopuses, and, of course, humans (Butz & Kutter, 2017; Perkins
& Salomon, 1992).

In the last decade, sequential decision making agents, and in particular deep reinforce-
ment learning (RL) agents, have made remarkable progress in various domains (Mnih
et al., 2015; Silver et al., 2016; Schrittwieser et al., 2020; Degrave et al., 2022). However,
these systems typically rely on extensive training and more or less clearly defined prob-
lem spaces. Adaptive problem-solving behavior in continuous space that is comparable
with the crow’s behavior in Fig. 1.1 has not yet been accomplished with any artificial

1.1This chapter is based on the first two sections of the publication:
Eppe, M., Gumbsch, C., Kerzel, M., Nguyen, P. D., Butz, M. V., & Wermter, S. (2022). Intelligent
problem-solving as integrated hierarchical reinforcement learning. Nature Machine Intelligence, 4 (pp.
11-20).
The figures and key ideas were adopted from the first two sections of the publication. The text was
largely rewritten to serve as an introduction to this thesis.

1

Stick Stone

in

tube

Stick
StoneStone

in

beak

Food

mech-

anism

Food

in

beak

(a) (b) (c) (d) (e)

Figure 1.1: An example of zero-shot problem solving taken from Gruber et al.
(2019) and previously published in Eppe et al. (2022). (a) First, the crow picks up a
stick. (b-c) Then it uses the stick to pull a stone out of a tube. (d-e) Finally, it uses
the stone to activate a mechanism that releases food. Although the crow has never solved
this problem setup before, it is able to solve it instantly after a brief inspection phase.

system. This raises the question of how we can equip intelligent artificial agents with
similar hierarchical learning and zero-shot problem-solving abilities.

A crucial ingredient to achieve flexible problem solving could be the ability to form
hierarchical abstractions of an agent’s interactions with the world. Such abstractions not
only allow an agent to plan goal-directed behavior on multiple levels of abstraction but
could also help to reuse knowledge about past experiences to solve novel problems. This
is a central theme of my thesis, which I will briefly motivate in the following.

1.1 Foundations of Adaptive Problem Solving

Few-shot problem solving is the ability to solve unknown problems with few (≲5) trials.
Zero-shot problem solving is a special case of few-shot problem solving, where no additional
training at all is required to solve a new problem (Kirk et al., 2023). For example, a crow
can use a stick as a tool for a novel food access problem without further training (Fig. 1.1),
given it has previously solved related problems (Gruber et al., 2019).

What are the cognitive abilities to achieve such adaptive decision making for com-
plex tasks? One the one hand, transfer learning is required such that the skills and
representations developed by the agent generalize across situations. For example, the
problem-solving crow has previously learned solutions to similar sub-problems which are
transferred and combined to solve the new problem at hand (Gruber et al., 2019). On
the other hand, the agent needs the ability to hierarchically plan goal-directed be-
havior. Our puzzle-solving crow, for instance, must plan ahead, because it can only see
one side of the cubic setup at a time (Gruber et al., 2019).

Thus, generalization and hierarchical planning seem to be essential components of adap-
tive problem solving (see Fig. 1.2): However, currently there is still a large mismatch

2

Adaptive Problem Solving

Generalization

Transfer

Hierarchical Planning

<GRASP>

<TRANSPORT>

Compositional Sensorimotor
Abstractions

<GRASP>

Figure 1.2: Prerequisites for adaptive problem solving: Compositional sensorimo-
tor abstractions allow an agent to decompose its interactions with the world into reusable
subprocesses, e.g. learning to encode a grasping event from interacting with a glass. This
improves generalization, since the agent can reason about novel situations by transferring
past solutions to novel problems, e.g. by executing suitable grasps onto other objects such
as a teapot. Based on sensorimotor abstractions, the agent can flexibly achieve desired
goal states by hierarchically planning how different processes would unfold, e.g. by plan-
ning to drink from a glass by first suitably grasping and then appropriately transporting
it. In summary, these abilities enable adaptive problem solving.

between biological and artificial agents when it comes to these abilities. What causes this
mismatch? And how can we improve artificial agents to close this gap? As we will see in
the following, compositional sensorimotor abstractions could be one of the missing
pieces needed to close this gap.

1.2 Transfer Learning and Generalization

In biological agents the ability to generalize, also known as transfer learning, is crucial
for adaptive behavior. With respect to problem solving, transfer learning allows apply-
ing the solution of a previously solved task to novel, but analogous, unseen tasks. This
ability can occur at different levels of abstraction (Perkins & Salomon, 1992). In near
transfer, skills are transferred across similar domains, e.g. learning to grasp a glass and

3

then learning to grasp other objects. In contrast, far transfer requires the transfer of
more abstract solutions between different situations, typically via analogies. As an ex-
ample of far transfer, consider the medical scenario where a doctor has to figure out how
to destroy an aggressive tumor through radiation without damaging the surrounding tis-
sue (Duncker & Lees, 1945). When participants in an experiment were faced with this
thought problem, they more often found the solution to attack the tumor through mul-
tiple weak beams of radiation after reading an analogous story of how soldiers took over
a fortress by attacking simultaneously from multiple directions (Gick & Holyoak, 1980).
Such analogical reasoning has been considered a critical cornerstone of higher-order cog-
nitive processes, including reasoning, communication, creativity, and scientific discovery
(Gentner & Maravilla, 2017; Gentner et al., 1997; Gentner, 2006).

One proposed mechanism enabling transfer learning is compositional generalization
(Lake et al., 2017; Frankland & Greene, 2020; Ito et al., 2022). In linguistics, expres-
sions are compositional if they are composed of sub-expressions and rules to determine
the semantics of the composition. The language of thought theory (Fodor, 2001) transfers
the compositionality principle from language to abstract mental representations, claim-
ing that thought must also be compositional. For example, the interaction <grasping
a glass> could be represented compositonally by the action <grasping> and the tar-
get <glass>. This enables the generation of a novel interaction given a new target, e.g.
<grasping a teapot> (see Fig. 1.2). While there exists behavioral evidence (Lake et al.,
2019; Franklin & Frank, 2020; Dekker et al., 2022) as well as neural evidence (Haynes
et al., 2015; Frankland & Greene, 2020; Ito et al., 2022) for compositional generalization
in human decision making, it is not clear how compositional representations are learned
from sensorimotor experiences.

In artificial systems we can distinguish between two types of generalization: in-
distribution generalization and out-of-distribution (OOD) generalization, depending on
whether the new data is drawn from the same distribution as the training data or not.
Current machine learning approaches, e.g. deep learning, are built around the assumption
that their data is independent and identically distributed (IID) (Bishop, 2006). Assuming
that sufficient training data is available, these systems can handle in-distribution general-
ization within the IID setting very well (Schölkopf, 2019). In the more challenging OOD
setup, test data on which generalization is tested stems from parts outside of the distri-
butions from which the training samples were drawn (Schölkopf, 2019; Goyal & Bengio,
2022). Causality research claims that OOD generalization is a fundamental challenge for
deep learning, which purely models the statistical dependencies of training data but not
their causal relationships (Schölkopf, 2019; Peters et al., 2017; Schölkopf et al., 2021). For
example, a vision-based agent that is prolific at stacking colorful blocks might fail when
encountering a white block, despite that color is causally irrelevant for block stacking.

4

Generically improving OOD generalization is not possible, because improving the ability
to generalize in one setting might harm generalization in another setting (Kirk et al.,
2023). However, by discovering the causal structure of the world via suitable inductive
biases a system could learn to generalize across various scenarios that share the same
causal structure.

How are the generative processes in our world causally structured? Principles from
causality research propose that generative processes of a system can be decomposed into
entities and mechanisms affecting them (Schölkopf et al., 2021; Goyal & Bengio, 2022)1.2.
Causal mechanisms are assumed to be independent of each other and tend to affect vari-
ables only locally (Schölkopf, 2019; Schölkopf et al., 2021). For example, a block stacking
robot could learn that collisions selectively affect some variables that describe the enti-
ties involved, e.g. their velocities, but do not influence other variables, e.g. color. As a
result, the robot could seamlessly generalize to stacking blocks with unseen colors. Al-
though recent research has made significant advances in extracting entities (Locatello
et al., 2020; Kipf et al., 2021; Traub et al., 2023; Seitzer et al., 2023; Zadaianchuk et al.,
2023) or causal mechanisms (Pitis & Garg, 2020; Goyal et al., 2021a,b; Seitzer et al., 2021)
from raw data, these approaches still have several drawbacks, e.g. detecting a predefined
number of objects or mechanisms, which hinders their universal application.

1.3 Hierarchical Planning

In biological agents behavior is traditionally divided into two categories: Stimulus-
driven habitual behavior and goal-directed planned behavior (Dayan, 2009; Dolan &
Dayan, 2013; O’Doherty et al., 2017). Habitual behavior refers to forms of reflexive con-
trol that are strongly automated, computationally efficient, and primarily learned from
past reinforcements (Dolan & Dayan, 2013). In the early 20th century, theories on motor
control mostly focused on habitual accounts of behavior. Behaviorists, such as Watson
(1920) and Washburn (1916), proposed that complex behavior, e.g. speech, could be ex-
plained by associative reflex chains: stimulations from performing a certain action would
trigger an associated next action in the chain. This view was challenged by a number
of protagonists, such as Tolman (1948) and Lashley (1951).1.3 The idea that humans
and other animals can hierarchically plan their behavior in a goal-directed fashion was a
central insight that contributed significantly to the cognitive revolution (Botvinick, 2008).

1.2Note that this assumption is very similar to the compositional representations proposed for human
cognition. It is possible that humans and other animals have evolved the tendency to represent their
experience in a compositional format because this best reflects the causal structure of the world.

1.3We provide more details of their prepositions and contributions in Suppl. A.1.

5

Many contemporary theories and models in cognitive science agree that behavior in
humans and other animals are encoded in a hierarchical part-whole organization (Cooper
& Shallice, 2000; Zacks & Tversky, 2001; Botvinick, 2008; Butz, 2016; Pezzulo et al., 2018).
When planning one’s behavior, humans seem to make use of this hierarchy. By now, there
exists numerous experimental findings that humans plan their behavior hierarchically in
various domains, ranging from simple coordinated button presses (Cohen et al., 1990;
Keele et al., 1990), to spatial navigation (Wiener & Mallot, 2003; Solway et al., 2014;
Balaguer et al., 2016), and speech production (Lee et al., 2013).

In artificial agents there have been tremendous amounts of effort to integrate hier-
archies into problem-solving and planning approaches since the early days of AI. Already
the famous general problem solver by Newell et al. (1959) attempted to solve problems
by hierarchically breaking them down into simpler sub-problems. In robotics different
behavior decompositions have been proposed (Schaal, 2003; Ijspeert et al., 2013; Peters &
Schaal, 2008; Toussaint et al., 2018) that chunk complex movements into simpler parts,
which can then be easily optimized. However, none of these approaches attempts to learn
the segmentation of behavior from scratch. Instead, the primitive elements of behavior
are predefined, or a segmentation is provided by an expert.

The strive to learn hierarchies of behavior and make use of these hierarchies for goal-
directed behavior, spawned the field of hierarchical reinforcement learning (HRL) (Sutton
et al., 1999b; Pateria et al., 2021; Eppe et al., 2022). In HRL, an agent selects actions on
different levels along a hierarchy in order to maximize future expected rewards. Actions
on a higher level, also known as options (Sutton et al., 1999b) or skills (Eysenbach et al.,
2018), typically encode a temporally extended sequence of low-level actions. For example,
a <grasp>-option could involve primitive actions that first move a gripper to an object and
then close the gripper. Although there has been great research to advance HRL in the last
two decades (see Pateria et al., 2021 for a review), groundbreaking achievements in the
field of RL were primarily achieved by flat, non-hierarchical approaches1.4. HRL systems
typically introduce more hyperparameters than their flat counterparts, which requires
a more elaborate hyperparameter search, while only achieving minor gains in standard
benchmarks (Bacon et al., 2017; Gürtler et al., 2021; Hafner et al., 2022). Despite the
evidence for hierarchical outcome-oriented planning in biological agents and the success
of integrating model-based planning into RL (Silver et al., 2016; Schrittwieser et al.,
2020), most HRL approaches learn reactive, habitual high-level policies (Pateria et al.,
2021; Eppe et al., 2022). The few HRL approaches that leverage model-based planning
across multiple levels of a hierarchy rely on hand-crafted dependencies (Pateria et al.,

1.4For example, groundbreaking achievements of RL include beating humans for the first time in a
game, such as Atari video games (Mnih et al., 2015) or the challenging game of Go (Silver et al., 2016) or
achieving superhuman performance in multiple games with the same system (Schrittwieser et al., 2020).

6

2021; Eppe et al., 2022). Thus, apparently HRL still lacks robust mechanisms to segment
sensorimotor sequences into stable, model-based, hierarchical representations to reach its
full potential.

1.4 The Need for Sensorimotor Abstractions

I have argued that flexible zero-shot problem solving depends on robust generalization
as well as hierarchical planning. Both of these abilities rely on suitable compositional
abstractions of the underlying sensorimotor processes. From a causality perspective, dis-
covering and encoding the modular causal mechanisms which constitute the generative
model of the world could foster OOD generalization of deep learning agents. From a plan-
ning perspective, hierarchical methods, such as HRL, need robust mechanisms to develop
model-based temporal abstractions of behavior in order to plan on multiple time scales.
In sum, problem-solving agents that encode their interactions with the world through
such model-based abstractions of sensorimotor dynamics could potentially plan complex
behavior in novel or changing environments.

Are there corresponding representations proposed for human cognition from which we
can take inspiration? A large body of findings from different fields of cognitive science
suggest that humans perceive, remember, and predict sensorimotor activity in terms of
events (see Radvansky & Zacks, 2014 for an overview). Different theories (Hommel et al.,
2001; Zacks et al., 2007; Butz et al., 2021) propose that internal event encodings, also
called event codes, event models, or event schemata (Radvansky & Zacks, 2014), encode
particular spatiotemporal processes, e.g. a grasping interaction. These event encodings
seem to exist on different hierachical levels of abstraction and for different nested tempo-
ral granularities (Zacks & Tversky, 2001; Zacks et al., 2001b; Cooper, 2021; Kuperberg,
2021). For example a <grasping a teapot>-event may be part of a longer <preparing
tea>-event (Kuperberg, 2021). Event encodings have been proposed to play a crucial
role in causal inference (Radvansky & Zacks, 2014), planning behavior (Hommel et al.,
2001; Butz, 2016; Cooper, 2021), action understanding (Elsner & Adam, 2021; Kuperberg,
2021), and language learning (Knott, 2012; Gärdenfors, 2014).

In this thesis, I attempt to enhance artificial agents by the ability to encode their
experiences in terms of events and use these encodings to hierarchically predict and plan
their interactions with the world. Thereby, I follow an interdisciplinary approach based on
cognitive science by taking inspiration from the event processing proposed for biological
agents. Besides employing the derived mechanisms for planning and RL, their cognitive
plausibility is verified by modeling human behavioral data. Some of the contributions
towards flexible problem solving are illustrated in Fig. 1.3. The remainder of this chapter
provides an outline of the thesis.

7

Adaptive Problem Solving

• Framework for adaptive hierarchical
problem solving (Chap. 3)

• Zero-shot hierarchical planning
(Sec. 7.4.4)

Generalization
• Generalization across training

schemes (Sec. 5.4.3)

• Generalization across spurious
dependencies (Sec. 5.4.4)

• Zero-shot policy transfer (Sec. 5.4.7)

Hierarchical Planning
• Learning hierarchical predictions

(Chap. 6 & 7)

• Hierarchical active inference
(Sec. 4.3.3 & 6.2.4)

• Hierarchical reward propagation
(Sec. 7.3.1)

• Hierarchical model-predictive
control (Sec. 7.3.2)

• Explainable hierarchcial predictions
(Sec. 6.3.3 & 7.4.2)

Compositional Sensorimotor
Abstractions

• Survey on event cognition (Sec. 2.1)

• Modeling goal-anticipations via
events (Chap. 4 & 6)

• Learning to compress dynamics into
event-encoding latent states (Chap. 5)

• Explainable event-encoding latent
states (Sec. 5.4.8 & 6.3.2 & 7.4.2)

• Planning and RL with event-encoding
latent states (Sec. 5.4.5 & 5.4.6)

Figure 1.3: Contributions to adaptive problem solving of the present research
categorized according to four key mechanisms (cf. Fig. 1.2). Theoretical results and
literature surveys are shown in green. Computational models and methods are displayed
in blue. For every mechanism exemplary empirical results are linked in red.

1.5 Thesis Outline

Chapter 2 provides the theoretical background for event cognition in humans and
for sequential decision making in artificial agents. Chapter 3 integrates these insights to
develop a theoretical framework of hierarchical temporal abstraction suitable for
model-based planning. In the following chapters, concrete computational implementations
are introduced that implement various aspects of this general approach. In Chapter 4,
a Bayesian model is outlined that is able to model the development of anticipatory
behavior in humans based on event encodings. Chapter 5 introduces GateL0RD, a
recurrent neural network which develops event-encoding latent states that compress
particular sensorimotor dynamics into sparsely changing codes. This compression can
improve various aspects of state-of-the-art planning and RL methods, especially their
ability to generalize across spurious dependencies in the training data. In the remainder

8

of the thesis, GateL0RD will serve as the central deep learning building block to develop
temporal abstractions. Chapter 6 revisits the modeling of the development of goal-
anticipatory behavior, but this time by learning temporal abstractions from scratch
based on the latent states of GateL0RD. In Chapter 7 this mechanism of hierarchical
abstraction is extended to learn a hierarchy of world models for hierarchical problem
solving. The resulting system learns high-level action abstractions and can hierarchically
plan goal-directed behavior, showing some degree of zero-shot planning capabilities
in highly challenging tasks with pixel-based inputs. Finally, in Chapter 8 I discuss the
general approach of this thesis.

9

2
Theoretical Background

Enhancing decision making agents via the ability to learn sensorimotor abstractions is a
highly interdisciplinary endeavor. We need to bridge the gap between artificial intelli-
gence research on sequential decision making, including paradigms such as reinforce-
ment learning and model-predictive control, and the research area of event cognition
which studies how humans encode their experience. In this chapter, I separately review
the theoretical background on event cognition (Sec. 2.1) and sequential decision making
(Sec. 2.2). In the following chapter, I will build upon the insights laid here to develop an
integrated framework.

2.1 Event Cognition

We humans continuously act on our world and perceive a continuous stream of high-
dimensional, perceptual information. However, a large body of psychological, neurological,
and linguistic evidence suggests that we perceive, memorize, and predict activity in terms
of discrete events (Zacks & Tversky, 2001; Radvansky & Zacks, 2014; Butz et al., 2021).

What is an event? Zacks & Tversky (2001) define an event as a “segment of time at a
given location that is conceived by an observer to have a beginning and an end” (Zacks &
Tversky, 2001, p. 3). Baldwin & Kosie (2021) describe events as “structured, describable,
memorable units of experience” that are constructed from multi-dimensional sensory flow
of information (Baldwin & Kosie, 2021, p.82). While both definitions are somewhat vague,

10

they already allude to a number of important properties: Namely, (1.) that events arise
in perception, (2.) they extend over some time, and (3.) that events are more or less
clearly separated in time. These separations between two events are commonly referred
to as event boundaries.

In the following, I will review evidence and theories that attempt to explain which type
of representations give rise to event perception and how these mechanisms influence other
cognitive processes such as causal inference and planning. For a more detailed review on
event cognition see Radvansky & Zacks (2014) or the special issue on event-predictive
cognition introduced by Butz et al. (2021).

2.1.1 Segmentation of Events

A large body of findings on event perception come from video segmentation tasks, origi-
nally introduced by Newtson (1973). In these tasks, participants watch videos of everyday
activities, such as cooking or cleaning. Participants are instructed to press a button when
“one meaningful unit of activity ends and another begins” (Radvansky & Zacks, 2014,
p. 81). Participants consistently segment the videos at similar points in time, producing
reliable segmentations both between subjects as well as within the same subject at dif-
ferent testing times (Newtson & Engquist, 1976; Speer et al., 2003). Additionally, neuro-
imagining studies revealed that the neuronal activity in multiple brain regions strongly
changes at the points of event boundaries, even when just passively watching the movies
(Zacks et al., 2001a). Similar results were found for participants reading narrative text
(Speer et al., 2007). These findings suggest that segmentation occurs automatically and
that people naturally segment perceived activity (Zacks & Swallow, 2007).

This process of segmenting activity into events appears to be a hierarchical process
(Zacks & Swallow, 2007; Zacks & Tversky, 2001). For example, the granularity of par-
titions in the video segmentation paradigm can be easily manipulated: Participants can
be instructed to segment videos into fine or coarse units that appear meaningful to them
(Newtson, 1973). When participants segment videos with different granularities, their
coarse boundaries tend to align with fine boundaries and each coarse segment consists
of multiple fine segments (Zacks et al., 2001b). Zacks & Tversky (2001) propose that
representations of events are hierarchically organized as a partonomy with nested time
scales, illustrated in Fig. 2.1. That is, an event at a certain level of the hierarchy, e.g.
<fill a cup with tea>, can be part of a longer event at a higher level, e.g. <prepare
a cup of tea>, and can itself be partitioned into smaller parts on a lower level of the
hierarchy, e.g. <grab teapot>, <pour tea into a cup>, etc.

Why have humans evolved the tendency to segment activity in such a hierarchical
fashion with strict boundaries? Event Segmentation Theory (EST) (Zacks et al., 2007)

11

<prepare a cup of tea>

<fill cup with tea>

<grab teapot> <pour tea into cup>

<reach for teapot> <grasp> <lift teapot over cup> <tilt>

ab
str

ac
tio

n

t

Figure 2.1: Event partonomy: Hierarchical organization of events proposed by Zacks
& Tversky (2001). An event on a certain level of the hierarchy can be partitioned into
multiple parts on a lower level of the hierarchy. The time scales are nested, i.e. event
boundaries on a high level coincide with event boundaries on a lower level.

argues that humans perceive activity in this way, because these segmentations mirror
the internal representation of the unfolding experience. According to EST, and in line
with various theories on predictive processing (Friston, 2010; Hohwy, 2013; Clark, 2015),
humans continuously attempt to predict future perceptual input. EST argues that event
schemata are formed to better predict the next immediate perceptions (Zacks et al., 2007;
Radvansky & Zacks, 2014; Richmond & Zacks, 2017). These event schemata are similar to
scripts (Schank & Abelson, 1975) and encode the typical dynamics of familiar activities.
For example, the schema for <prepare tea>, could detail all the steps involved in the
process, which allows predicting someone’s behavior when observing them preparing a
cup of tea. According to EST, at every point in time event models are active, i.e. concrete
instances of previously learned event schemata. During an ongoing event, the activation
of the current event models are robust towards perceptual inputs and remains constant
(Zacks et al., 2007). However, when transient prediction errors occur, the active model
may change to improve the predictions (Zacks et al., 2007). Once such an event boundary
is perceived, the catalogue of event schemata may give rise to a new event model. For
example, if during the <prepare a cup of tea>-event, the teapot unexpectedly drops
and shatters on the floor, the new event model may be instantiated from the <clean the
floor>-event schema.

12

2.1.2 Events and Causality

Besides simplifying predictions, Radvansky & Zacks (2014) argue that event perception
could also guide causal inference. Changes or interventions in causal processes tend to
coincide with event boundaries, e.g. the successful execution of the <grasp the teapot>-
event causes the teapot to move together with the hand. In classical experiments, Michotte
(1964) studied the perception of causality by showing participants videos of simple shapes
moving. In one line of experiments, one shape moved in one direction, stopped, and then
a second shape continued the movement. The perception of one shape causing the other
to move was most vivid when the shapes were close and the pause was brief. Mapping this
onto the outlined partonomy of events, translates to events <shape A moves> and <shape
B continues the motion> being directly connected by an event boundary, instead of
being interspersed with the event <shape A stands still>. On a higher level the two
events could be combined to one event of <shape A causes shape B to move>. The
perception of such a single high-level event could be critical to perceive the motions as
a causal interaction (Radvansky & Zacks, 2014). Furthermore, there is a large body
of evidence from memory tasks that a series of events that are causally connected are
retained better in memory than events without a causal connection (Trabasso & van den
Broek, 1985; Radvansky & Copeland, 2000; Radvansky et al., 2005). Since chunking is an
effective technique to memorize sequences (Miller, 1956), a potential explanation for this
effect is that causally connected low-level events are combined to form high-level chunks,
whereas causally disconnected events are not.

2.1.3 Events and Actions

So far, I have mostly outlined how events influence perception and memory. What is the
role of events in the generation of actions? Theory of Event Coding (TEC) (Hommel
et al., 2001) argues that action and event perception involve identical processes that
use the same common representations, i.e. event codes (Hommel et al., 2001; Hommel,
2019). For example, the event <reach for a teapot>, is both linked to the motor codes
for conducting the reaching movement as well as to the perceptual features of the final
action effect, e.g. the visual percept and haptic sensation of the hand touching the teapot.
According to TEC, learning of event codes starts early in infancy by first associating
involuntary reflex-like motions with the perception of the thereby produced effects (Elsner
& Hommel, 2001). With more coordinated movements, more sophisticated event codes
may develop. These event codes can then be used for anticipatory behavioral control
(Hommel, 2009), in line with ideomotor theories of action (Stock & Stock, 2004). By
considering a desired effect, e.g. perceptual features of holding a teapot, the associated
event code, e.g. <reach for a teapot>, is activated, which automatically triggers the

13

corresponding motor commands. Note that what TEC refers to as an action effect, e.g. a
grasp or opening a door (Hommel et al., 2001), typically corresponds to an event boundary.
TEC provides a unifying explanation for various experimental findings that support strong
links between action and perception (Hommel et al., 2001; Hommel, 2019).

In short, TEC proposes that events act as mediators between actions and goals. How-
ever, the explanations of TEC found in the literature (Hommel et al., 2001; Hommel, 2019)
focus mainly on rather simple behavior, such as reaching movements. Is it possible that
this relationship scales up to more complex action sequences? Recent theories on event-
predictive cognition (Butz, 2016; Butz et al., 2021; Kuperberg, 2021; Cooper, 2021; Elsner
& Adam, 2021) argue how hierarchical organization of predictive event representations
could enable complex reasoning and planning. Butz (2016) sketches out how hierarchi-
cal abstraction and chunking of events could lead to abstract symbol-like concepts, e.g.
<working on someones career>, grounded in sensorimotor experiences. When invoking
these event encodings for hierarchical model-based planning, they link back to concrete
sensorimotor consequences. Kuperberg (2021) proposes that hierarchical generative mod-
els of events could not only be used to select own goals while planning but also to infer
the goals of others when observing them. Along similar lines, Cooper (2021) argues that
top-down goals trigger events within the hierarchy during sequential action production,
whereas during event perception bottom-up sensory cues cause their activation.

2.1.4 Conclusion

In summary, there is converging evidence from different fields of cognitive science that hu-
mans structure their sensorimotor experience into highly specialized event encodings. The
integration of various theories on event cognition implies that events guide the perception
of the present, structure memories about the past, and enable prediction and planning
of the future. Box 1 briefly summarizes key findings about the proposed structure and
functions of event encodings.

14

Box 1 Event Encodings

Humans appear to represent temporal activity in terms of events. By integrating different
theories and experimental evidence on event cognition (Zacks & Tversky, 2001; Hommel
et al., 2001; Zacks et al., 2007; Radvansky & Zacks, 2014; Butz, 2016; Butz et al., 2021), I
hypothesize the following properties to be crucial for the underlying event encodings:

• Temporal persistence: events discretize the continuous stream of experience into
segments with stable activation of event encodings and distinct points in time, i.e.
event boundaries, where activations change.

• Hierarchically nested time scales: event encodings are hierarchically organized
in a partonomic structure, where a longer event on a high level can be partitioned
into multiple shorter events on a lower level of the hierarchy.

• Model-based predictions: when activated, an event encoding predicts how a
certain event unfolds.

• Action-goal-association: representations of event boundaries that encode the end
state or effect of an event are associated with the actions necessary to produce the
corresponding effect.

2.2 Sequential Decision Making

In this section, I will briefly review the theoretical foundations of sequential decision
making in Markov Decision Processes and variants thereof. Thereby, I will shortly in-
troduce common machine learning and sequential decision making methods to approach
such problems, including reinforcement learning and model-predictive control. Finally, I
will also introduce the active inference framework, which provides an objective based on
computational neuroscience for sequential decision making. For more detailed reviews,
see Sutton & Barto (2018) for reinforcement learning, Bertsekas (2012) for control theory,
and Parr et al. (2022) for active inference.

Notation In this section and the remainder of this thesis, I will use the following
notation: Bold lowercase letters denote vectors (e.g. x). Numbers (e.g. x) and func-
tions (e.g. f(·)) are written in light typeface. Subscript typically denotes time indices
for numbers or vectors (e.g. xt or xt). Temporal sequences are also denoted using sub-
script and a colon defining the range (e.g. x1:t = (x1,x2, . . . ,xt)). For functions with
adjustable parameters, e.g. neural networks, subscript denotes the parameters (e.g. fϕ(·)
for neural network f with parameters ϕ). Superscript denotes dimensions of a vector
(x = [x1, x2, . . . , xn] ∈ Rn) or additional information (e.g. xinfo).

15

2.2.1 Decision Making in Fully-Observable Processes

An idealized mathematical framework for sequential decision making is the Markov De-
cision Process (MDP) (Bellman, 1957; Sutton & Barto, 2018). In an MDP there exists
an agent that can interact with the environment at discrete time steps t, as illustrated in
Fig. 2.2a. Formally, an MDP can be defined by the 5-tuple (S,A, T, R, γ), with a set2.1 of
states S, a set of actions A, a transition function T , a reward function R, and a discount
factor γ. At every time step t, the MDP is in some state st ∈ S. The agent observes this
state st and can take an action at ∈ A. In some cases, not all actions are available in
every state, e.g. in chess an agent can only move the pieces that are still in the game. For
such problems, we can denote the available actions for state st as A(st). After executing
action at, the environment transitions to a new state st+1. The transition is modeled
by the transition function T , with T (st+1 | at, st) describing the probability of reaching
state st+1 ∈ S when action at is executed in the previous state st. Additionally, upon
each transition the agent has a chance to receive a scalar reward rt+1 ∈ R. The reward
obtained is defined over the probabilistic reward function R(rt+1 | st,at, st+1).

Thus, both the transitions and the reward distribution are stochastic processes. Taking
an action in a certain state does not necessarily guarantee a certain outcome. This enables
MDPs to model sources of randomness in the agent-environment interaction. However, an
important property of the MDP is that the transitions only depend on the current state
and action. Transitions are conditionally independent of all previous states and actions.
We can express this property as

T (st+1 | s1:t,a1:t) = T (st+1 | st,at) (2.1)

for the transition probability T and sequences of states s1:t and actions a1:t. This property
is called the Markov property. For this property to hold, a single state-action-pair needs
to contain all relevant information to predict a transition.2.2 This is a strong assumption
that typically does not apply to realistic processes. We will loosen this assumption later
with respect to time (see Sec. 2.2.2) and with respect to which information is available or
observable for the agent (see Sec. 2.2.3).

In reinforcement learning (RL), the goal is to maximize the discounted cumulative
rewards the agent receives in the long-run or over its life time (Sutton & Barto, 2018).
For this purpose, the agent learns a policy π. A policy is a function π(at | st) mapping
from a state st ∈ S to the probability of selecting an action at ∈ A. We can quantify how

2.1For simplicity, in this section I assume finite sets for actions and states instead of continuous spaces.
In principle, all formulations can be extended to continuous state- or action spaces by replacing sums,
e.g.

∑
s∈S(·), with integrals, e.g.

∫
S(·)ds, when marginalizing over S (analogously for A).

2.2The Markov property typically not only holds for state transitions but also for rewards and can be
formulated equivalently to Eq. 2.1 for the reward function R(·).

16

t← t+ 1

agent environment

at

st, rt

(a)

agentmodel

at

ŝt+1, r̂t+1

(b)

Figure 2.2: Markov Decision Processes and models thereof: (a) In a Markov
Decision Process an agent interacts with its environment at discrete time steps t. At
every time t the agent observes a state st and may receive a reward rt. Then the agent
executes an action at and the environment transitions to a new state. (b) In model-based
approaches the agent learns an internal model of the transitions.

well a policy is suited to maximize cumulative rewards in terms of the expected utility
function G, with

G(st, π) = Eπ
∞∑
k=0

γkR(rt+k+1 | st+k,at+k, st+k+1) (2.2)

from a starting state st. The expectation over the policy denotes that all actions are
distributed according to the policy π, i.e. at ∼ π(at | st) and state transitions follow this
action distribution.2.3 Additionally, Eq. 2.2 introduces the discount factor γ ∈ [0, 1].
The discount factor is a parameter that determines how much future rewards affect the
evaluation of the present (Sutton & Barto, 2018). For example, for γ = 0 the agent
focuses purely on maximizing the current reward. On the other hand, larger values of γ
increase the effect of future outcomes on the current utility G. An important effect of
the discount factor is that when rewards are bounded and γ < 1, the sum in Eq. 2.2 is
bounded despite summing over an infinite number of elements (detailed in Suppl. A.2.2).

The overall objective in RL is to find an optimal policy π∗ that maximizes the objective
defined in Eq. 2.2. A typical approach is to learn a value function vπ. The value function

2.3I provide a more formal definition in Suppl. A.2.1.

17

vπ(st) assigns a scalar value to every state st by approximating G(st, π) for the policy π.
The policy can then be optimized from the value estimates.

RL in its classical form is model-free (Sutton & Barto, 2018): The agent does not
have access to the underlying transition function of the MDP nor does the agent attempt
to learn a model of it. Common approaches of model-free RL are temporal difference
learning (Sutton, 1988), policy gradient methods (Sutton et al., 1999a), or actor-critic
approaches (Konda & Tsitsiklis, 1999; Schulman et al., 2017).

In contrast, in model-based RL a model of the transition function is involved (illus-
trated in Fig. 2.2b). In some cases, the underlying transition function is known, e.g. the
rules of a game such as chess. More commonly, transition functions are unknown and a
model of the MDP needs to be learned from the data collected by the agent. To this end, a
function fϕ(st+1 | st,at) with parameters ϕ can be learned to approximate the transition
function T (st+1 | st,at).2.4 A straightforward use case for such a model is data genera-
tion, as proposed by the DYNA algorithm (Sutton, 1991): Here, the policy is trained not
only on the data collected by the agent but also on simulations using the model. Since
model simulations are often computationally less expensive than taking steps in the envi-
ronment, this process can speed up training. Contemporary deep RL approaches (Ha &
Schmidhuber, 2018; Hafner et al., 2019a, 2020a, 2023) use this technique to boost sample
efficiency when training a policy.

Another application of a model is to deploy it for model-based planning. Tradi-
tionally, planning methods optimize a policy π for a finite horizon K (Bertsekas, 2012).
Thus, instead of Eq. 2.2 we can phrase the objective as

J(st, K, π) = Eπ
K∑
k=0

R(rt+k+1 | st+k,at+k, st+k+1) (2.3)

with actions ak2.5 and expected states sk. Note, that the discount factor γ is not required
here, unlike in Eq. 2.2 where it is needed to ensure that the sum over a infinite number
of rewards is bounded (see Suppl. A.2.1).

In its simplest form, the policy is a sequence of actions2.6 (Bertsekas, 2012). For plan-
ning, a model is used to simulate outcomes and optimize the policy. If the policy is

2.4The function fϕ can also model the reward function, i.e. fϕ(st+1, rt+1 | st,at). For simplicity, this
will not be mentioned explicitly in the remainder of this chapter.

2.5In control theory a different notation is commonly used: actions are denoted with ut and states are
denoted with xt. Besides that, in control theory the objective is usually to minimize a cost rather than
maximizing rewards per step (Bertsekas, 2012). For simplicity, we can treat the reward function R as a
cost function with a flipped sign and minimize the objective instead of maximizing it.

2.6Thus, in this case π = at:t+K . Note, that this is just a special case of the more general definition
of a policy as a mapping from a state to the probability of selecting an action. In this special case, the
probability for action at in the sequence is 1 at time t and the probability for all other actions is 0.

18

optimized at time t and subsequently executed without further optimization, the pro-
cess is called open-loop control. In contrast to closed-loop control, no feedback is taken
into account while executing the policy. Open-loop control is typically not desired, since
model error can quickly accumulate and the agent cannot react to unpredicted situations.
Model-Predictive Control (MPC) tackles this problem by repeatedly planning each
time step. At each time step t, the policy π is optimized according to Eq. 2.3, the first
action at is taken, feedback on the new state st+1 is received, and the process is repeated
(Glad & Ljung, 2018). Thus, by iteratively performing the process, the control loop is
closed.

There are various algorithms for model-based trajectory optimization in MPC. A com-
mon optimization method for planning (Chua et al., 2018; Hafner et al., 2019b; Pinneri
et al., 2021a; Sancaktar et al., 2022; Scholz et al., 2022) is the Cross Entropy Method
(CEM) (Rubinstein & Davidson, 1999). When using CEM for MPC with a planning
horizon K, a sequence of actions is sampled from K distributions over actions. The out-
comes of executing an action sequence are predicted by means of a model and evaluated
based on some optimization criterion (e.g. R in Eq. 2.3). After evaluating a fixed num-
ber of sampled trajectories, the sampling distributions are adapted based on the best
samples. This process is repeated several times before executing the first action of the
best policy. CEM is related to evolutionary optimization algorithms (Beyer & Schwefel,
2002). Since CEM is a zero-order optimization method and makes no assumptions about
the model involved, CEM is a versatile method for many planning applications. Other
planning methods include tree search algorithms for discrete actions (Silver et al., 2016;
Schrittwieser et al., 2020; Bagatella et al., 2021), or gradient-based optimization for dif-
ferentiable models (Otte et al., 2017; Scholz et al., 2022). Model-based planning can also
be seamlessly combined with RL to guide the optimization of a policy based on previously
planned action sequences (Schrittwieser et al., 2020; Pinneri et al., 2021b).

2.2.2 Temporal Abstractions

MDPs assume discrete time steps, for which an action is taken in every time step. How-
ever, in the real world time is continuous, actions can be taken at arbitrary points in
time, and different actions might take different durations to execute. To model processes
with transitions of variable duration, Semi-Markov Decision Processes (SMDPs) have
been proposed (Howard, 1964; Puterman, 1990). SMDPs generalize MDPs by formaliz-
ing the time between transitions via a random variable (Howard, 1964). SMDPs can be
formally defined as a 6-tuple (S,A, T, R, F, γ). In SMDPs, the system evolves based on
an action2.7 a ∈ A by remaining in a state s ∈ S for a random amount of time before

2.7For clarity, I omit time indices in this subsection.

19

transitioning to the next state s′ according to the transition probability T (s′ | s,a) (Put-
erman, 1990). The temporal transition function F (t | s,a) denotes the probability that
a transition occurs within t time steps (Puterman, 1990). Crucially, when only looking
at the points of transitions, and ignoring the true underlying time, the Markov property
still holds for SMDPs (Howard, 1964).

Sutton et al. (1999b) observed that SMDPs enable the modeling of temporal abstrac-
tions of actions. One goal of hierarchical RL is to define action abstractions that subsume
multiple atomic actions (Khetarpal et al., 2022; Eppe et al., 2022). Sutton et al. (1999b)
provide a framework to unify different approaches to action abstraction, called the op-
tions framework. Formally, an option is a 3-tuple (I, π, β) with an initiation set I, a
policy π and a termination function β. The initiation set I ⊆ S defines the subset of
states from which the option can be taken. Once the option is initiated, the policy π
selects actions that are executed until the termination condition β is met. The termi-
nation function β can be defined as a mapping from states to a termination probability,
i.e. β : S → [0, 1]. However, to avoid getting stuck in an option, it is useful to include
a timeout-condition in β, that terminates the option after a fixed time. Sutton et al.
(1999b) showed that if we replace the action set A of a given MDP with a set of options,
the resulting decision process is an SMDP.

2.2.3 Partially Observable Processes

While MDPs can model a variety of problems, ranging from board games to robotic
simulations, the assumption that the state is fully observable typically does not hold
for more realistic processes. In the real world the observation an agent receives about
its environment is noisy and incomplete. For such problems, Partially observable
Markov Decision Processes (POMDP) (Lovejoy, 1991; Kaelbling et al., 1998) have
been proposed (illustrated in Fig. 2.3). A POMDP can be formally described by a 7-tuple
(S,A, T, R, γ,Ω, O,). Thus, the POMDP extends the MDP tuple (cf. Sec. 2.2.1) by a set
of observations Ω and an observation function O. The main difference from MDPs is that
the agent does not observe the full state of the world st ∈ S at each time step. Instead,
after executing an action at−1 ∈ A and reaching the next state st ∈ S, the agent receives
an observation ot ∈ Ω based on the observation function O. The observation function
O(ot | st,at−1) describes the probability of observing ot ∈ Ω when taking action at−1 and
reaching state st.

Kaelbling et al. (1998) observed, that every POMDP can be transformed into an MDP
by estimating beliefs about the probable real state of the world st from past observations
and actions. In the resulting Belief MDP, the Markov Property holds (Kaelbling et al.,
1998). However, for the exact inference of the belief state, knowledge of transitions and

20

s∗t

t← t+ 1

st

at

ot, rtôt, r̂t

Figure 2.3: Partial observability and models: In POMDPs the true state s∗t of the
environment is hidden and the agent only receives incomplete observations ot. Thus, the
agent needs to maintain an internal belief st about the world. In model-based approaches,
e.g. active inference (Parr et al., 2022), the agent learns an internal model that attempts
to mirror the true generative process of the environment (green line).

reward functions of the underlying POMDP is required (Ni et al., 2022). To make matters
worse, even if the underlying POMDP is known, solving the problem optimally is often
computationally intractable (Hauskrecht, 2000).

Instead of inferring the exact state of the POMDP, a contemporary approach in deep
RL is to use recurrent neural networks (RNNs) (Wierstra et al., 2007; Hausknecht &
Stone, 2015; Igl et al., 2018; Ha & Schmidhuber, 2018; Hafner et al., 2020a, 2023; Ni
et al., 2022). RNNs embed past inputs into a hidden state or latent state. When applied
to POMDPs, the latent state can be used as a surrogate for the state information in the
policy and the value function. As a result, the problem can be treated as an MDP to
apply standard RL techniques, e.g. optimizing a policy using policy gradients (Wierstra
et al., 2007).

2.2.4 Active Inference

MDP frameworks and their derivatives simplify sequential decision making by expressing
rewards as numeric values given to the agent by the environment. However, in biological

21

agents there are no external rewards that simply fall from the sky.2.8 Biological behavior
seems to be driven by a multitude of objectives, including homeostatic needs, e.g. hunger
or thirst, epistemic motivation, e.g. curiosity or desire to play, and social motivations, e.g.
approval or affiliations.

The Free Energy Principle (FEP) has the ambitious goal of finding a unifying prin-
ciple to explain the mechanisms of the brain and its changes during development and
evolution (Friston et al., 2006; Friston, 2009, 2010). Thus, it also attempts to provide an
objective based on which biological agents select their actions. The following summary
of the FEP and active inference is mainly based on Friston et al. (2011), Sajid et al.
(2021a), and Parr et al. (2022). Please note that for the FEP there exist a multitude of
formulations with different notations and simplifications. I discuss the notable differences
in the literature in Suppl. A.2.3.

The FEP assumes that a biological agent and its environment can be modeled by a
POMDP (see Sec. 2.2.3). The FEP postulates that all adaptive agents strive to minimize
surprise (Friston et al., 2011; Sajid et al., 2021a). For an observation ot ∈ O, surprise
S(ot) can be defined as the negative log-likelihood of this particular observation, i.e.

S(ot) = − logP (ot). (2.4)

How would an agent know if a certain observation is surprising? According to the FEP,
the agent maintains internal belief states2.9 st ∈ S about the world and a generative model
fϕ with adaptive parameters ϕ. At every point in time t the belief state st attempts to
approximate the unobservable true state s∗t of the world. Just like the generative process of
the world progresses to a new state and generates a new observation upon each transition
(POMDP functions O and T in Sec. 2.2.3), the generative model fϕ(ot, st | o1:t−1,a1:t−1)
predicts the next state and observation based on past experiences (green line in Fig. 2.3).
Surprise can then be estimated via

S ′(ot | o1:t−1,a1:t−1) = − logEst∼S fϕ(ot | st,o1:t−1,a1:t−1). (2.5)

However, estimating surprise in this way is not trivial due to the potentially intractable
expectation over states (Sajid et al., 2021a). The FEP proposes a different and more
elegant solution, namely to minimize variational free energy (FE) (Friston et al., 2011).

2.8In the last decades, there has been converging evidence for neural correlates of reinforcement learning
in the brain (Niv, 2009), e.g. linking the phasic activity of dopaminergic neurons with reward predictions
(Schultz et al., 1997). Nonetheless, it is not clear how our own body distributes these internal reward
signals and whether more complex motivations, e.g. curiosity, are controlled via dopaminergic signals.

2.9In the remainder of this chapter st will refer to the internal state of the agent and not the true state
of the environment. I do this to align the notation with the active inference literature, e.g. Sajid et al.
(2021a). Additionally, since the true state of the world is assumed to be unknown, it is rarely mentioned.

22

FE is an upper bound on the surprise, and thus, by minimizing FE, the agent implicitly
minimizes surprise (Friston, 2010). To define FE, a recognition density qϑ with adaptable
parameters ϑ is required. The recognition density qϑ(st | a1:t−1) attempts to approximate
the current belief state st given past actions a1:t−1. In most formalizations of the FEP
(e.g. Friston et al., 2015, 2016; Sajid et al., 2021a; Schwöbel et al., 2018), the approximate
posterior qϑ is not conditioned on past observations unlike the true posterior density
p(st | o1:t,a1:t−1).2.10

Given past observations and actions, FE at a certain point in time t can be computed
as

FE(o1:t,a1:t−1,ϑ) = KL
[
qϑ(st | a1:t−1) || p(st | o1:t,a1:t−1)

]︸ ︷︷ ︸
evidence bound

− log p(ot)︸ ︷︷ ︸
surprise

, (2.6)

with KL denoting the Kullback-Leibler divergence. Free energy is composed of two
terms, the evidence bound described by the KL-term, and the surprise term from Eq. 2.4.
Since the KL divergence is always ≥ 0, Eq. 2.6 should make it clear that FE is strictly
larger or equal to surprise. Furthermore, we can see that FE should be minimized with
respect to the parameters ϑ, when the approximate posterior qϑ converges to the true
posterior. However, the agent cannot optimize Eq. 2.6 directly because the true posterior
p(st | o1:t,a1:t−1) is unknown and surprise is still potentially intractable. However, we can
use the generative model fϕ and the recognition density qϑ to estimate these quantities:

FE′(o1:t,a1:t−1,ϑ,ϕ) = KL
[
qϑ(st | a1:t−1) || fϕ(st | o1:t,a1:t−1)

]
(2.7)

− logEst∼qϑ
[
fϕ(ot | st,o1:t−1,a1:t−1)

]
.

This reformulation of FE now only depends on the past experience of an agent, its gen-
erative model fϕ, and the recognition density qϑ. Thus, it can be directly evaluated.

The FEP proposes that biological agents constantly strive to minimize free energy
on multiple time scales through perception, action, and learning (Friston, 2010). During
perception, the agent infers ϑ and ϕ on a short-time scale, leading to short-term adaptions
of the densities qϑ and fϕ to explain the underlying causes of current observations. During
life-long learning, the agent forms long-term adaptions of the parameters ϑ and ϕ, akin to
using Eq. 2.7 as a loss function for training the weights of a machine learning model.2.11

Heavily simplified, FEP proposes that the agent attempts to align its internal models
2.10In principle, the approximate posterior qϑ can also be conditioned on observations, as discussed in

more detail in Suppl. A.2.3.
2.11Variants of this objectives are also used in contemporary deep RL to train internal world models of

model-based RL agents (Hafner et al., 2019a, 2020a, 2023).

23

with the outside world. However, agents can not only align world and internal models by
adjusting the model parameters - they can also use their actions to align the outside world
to fit their internal models (Friston et al., 2009; Hafner et al., 2020b; Parr et al., 2022).
This process is called active inference. Here, free energy can be used as an objective to
optimize a policy.

For active inference, we need to modify Eq. 2.7, because it only considers past expe-
riences and does not take the future into account. We can do this via two steps (Sajid
et al., 2021a): First, we include expectations over the beliefs about future states and
observations. Second, we replace the state posterior fϕ(st | o1:t,a1:t−1) in Eq. 2.7 with a
prior over preferred states g(st). The prior preferences g can express desired goal states
on an arbitrary level of abstraction, ranging from clear homeostatic needs, such as thirst,
to abstract goals, such as physical safety. Incorporating these changes, we can formulate
expected free energy (EFE) over a future time horizon K as

EFE(π,K,o1:t,a1:t−1) =
1

K

t+K∑
k=t

Eat:k∼πKL
[
qϑ(sk+1 | a1:k) || g(sk+1)

]︸ ︷︷ ︸
predicted divergence

(2.8)

+ Eat:k∼π,st:k∼qϑ,ot:k∼fϕ
(
H
[
fϕ(ok+1 | sk,o1:k,a1:k)

])︸ ︷︷ ︸
predicted uncertainty

,

with H denoting entropy. An active inference agent selects its policy in order to minimize
EFE. This can be realized by using Eq. 2.8 as an objective for sequential decision making
(e.g. for MPC by replacing J from Eq. 2.3).

Policy optimization based on active inference entails two behavioral consequences based
on the two terms of EFE: The first term in Eq. 2.8 describes how much the agent expects to
diverge from the distribution of desired future states g(sk). Inferring actions to minimize
this term promotes greedy, goal-directed behavior. The second term encourages epistemic,
curious behavior, by incentivizing the agent to seek out states to minimize uncertainty
about the future. Thus, active inference offers a principle to tackle the exploration-
exploitation dilemma of RL (Sutton & Barto, 2018), which raises the question when an
RL agent should stop exploring its environment and focus solely on reward maximization.
Active inference encourages both the exploitation of past knowledge via the first term
and exploration via the second term. Active inference showed strong results in idealized
settings of this dilemma, especially for dynamical problems (Marković et al., 2021).

Various behavioral tendencies of humans and other animals have been modeled using
active inference (see Da Costa et al., 2020 for an overview). Nonetheless, the FEP is
a controversial framework. The FEP has been criticized for being overly general, con-
taining little explanatory power, and its falsifiability has been questioned (Colombo &
Wright, 2021). Furthermore, many formulations of active inference use open-loop policies

24

or simple action sequences (e.g. Friston et al., 2015, 2016; Sajid et al., 2021a), which
seems unrealistic given the highly adaptive behavior shown by many animals. Despite
the advanced mathematical formulations, active inference is often employed in simple,
low-dimensional and discrete settings (e.g. Friston et al., 2015, 2016). Recently, there
has been increasing research towards combining active inference with modern deep learn-
ing techniques (e.g. Fountas et al., 2020; Sancaktar et al., 2020). However, it is unclear
whether deep active inference scales as well to high-dimensional problems as simpler deep
RL approaches (Da Costa et al., 2022).

25

3
Towards Sequential Decision Making with

Events

Previously, I reviewed experimental evidence and theoretical considerations that humans
encode their experience in terms of hierarchically organized event representations. This
chapter analyzes these insights through the lens of sequential decision making. The goal
is to derive an integrative framework to model event perception and hierarchical action
generation in the language of Markov Decision Processes. This framework will guide the
design of all systems presented in the remainder of this thesis.

3.1 THICK Markov Decision Processes

Let us consider a problem that can be described by a POMDP (see Sec. 2.2.3). Due
to the partial observable nature of the problem, an agent needs to maintain internal
beliefs about the unfolding processes. Humans seem to encode processes they experience
in terms of hierarchically organized models of events (see Sec. 2.1). Inspired by human
event cognition, let us attempt to solve such problems using a hierarchy of Markov decision
processes (MDPs). In this section, I introduce an algorithm that describes how a decision
making hierarchy can be developed such that the resulting abstractions satisfy a number
of properties of human event encodings (see Box 1). This algorithm is named Temporal

26

t← t+ 1

s1t

s2t

..
.

sLt

c1t

c2t

cL−1
t

s∗t

at

ot, rtôt, r̂t

Figure 3.1: THICK MDPs model a POMDP via L different MDPs Ml for each level
l. The levels interact bidirectionally via the event context cl. In a bottom-up direction,
a context change on level l prompts a state transition in level l + 1. In the top-down
direction, the level l + 1 provides context cl as a goal for planning on level l.

Hierarchies from Invariant Context Kernels (THICK)3.1. Our framework is called
Thick MDP.

A Thick MDP encodes the underlying POMDP through L MDPs, as illustrated in
Fig. 3.1. The decision process Ml at each level l is defined with 1 ≤ l ≤ L, as Ml =
(S l,Al, T l, Rl), with the set of states S l, set of actions Al, transition function T l, and
reward function Rl. The different processes Ml represent temporal abstractions of
the true processes of the environment maintained internally by the agent. Thus, with
increasing levels of abstraction l, processes should cover a longer durations per transition.
Each level l operates on a level-dependent time scale tl. Level-dependent time scales tl are
slower than or equal to the objective time scale t of the ground-truth POMDP. To relate
the level-dependent time tl to the objective time t, we assume that the agent maintains
an “internal clock function” Ξ, such that Ξ(tl) = t. The function Ξ allows the agent to
look up the objective time t given the level-dependent time tl.

Now that the general setup and notation have been established, let us start to integrate

3.1In philosophy, the term ‘thickness’ refers to concepts that combine descriptions with an evaluative
context (Roberts, 2013). In Thick MDPs, each level attempts to represent the true decision process of
the world while also encoding contextual information to interact with adjacent levels in the hierarchy.

27

inductive biases based on event cognition into the framework. For this, I will specify, and
thereby constrain, the structure of the overall decision process. Refer to Box 1 for a
summary of the proposed properties of event representations.

1. Temporal persistence: It has been proposed that humans encode their experi-
ence in terms of event representations, which show stable activations over extended time
segments (Zacks et al., 2007). To integrate event representations into the state belief of
the agent, we can split the state sl

tl
into two parts, an event-encoding context cl

tl
∈ Cl and

the residual3.2 state information zl
tl
∈ Z l. Thus, sl

tl
= (cl

tl
, zl

tl
) is a tuple.

Now we can align the event context cl
tl

with what has been proposed for human event
representations. Activations of event models seem to persist over time. Along similar lines,
I propose that at a certain level l the event code cl

tl
can remain constant over multiple

time steps. However, cl
tl

should also change systematically and somewhat predictably.
Formally, we can state that for the MDP Ml, we want the next context changes for a
given state and policy to be semi-Markovian (detailed in Suppl. A.3.1). This means that
if we ignore the time points without context changes, the process still fulfills the Markov
property. These sparse but systematic transitions in contexts are a crucial prerequisite
for the following assumptions because this allows us to define a higher-level process based
on lower-level context transitions.

2. Nested time scales: Experimental evidence suggests that events are encoded in
a partonomy with nested time scales (Zacks & Tversky, 2001). How can we realize this
property for the decision making process? Assumption 1 constrains that the context cl

tl

at level l can remain constant for multiple time steps tl. I propose using the changes in
context cl

tl
as an adaptive time scale for the next level l + 1 up the hierarchy, illustrated

in Fig. 3.2. In other words, a transition in Ml+1 only occurs when the event context cl
tl

of Ml changes. Thus, the time scale tl+1 at level l + 1 is recursively defined over a time
scale tl of the lower level l. This results in a nested partonomy of contexts (Fig. 3.2).

How can we formalize this relationship between levels? At a certain level l we can
determine the next point in time tl for which the context changes, using a function τ with

τ(tl) = min
(
{τ | τ > tl ∧ clτ ̸= clτ−1}

)
. (3.1)

Thus, τ(tl) maps the time tl to the next point in time τ(tl) for which the event context
cl
tl

changes. Figure 3.2 illustrates τ as a red arrow. The level l+1 transitions only at the
time steps defined by τ(tl). According to this rule, we can define the time scales tl+1 in

3.2The residual state information could encode everything not captured by cltl such that Ml is still
Markov. This could be static information about the current scene or aspects irrelevant to the ongoing
event.

28

cL1

..
.

c31:2

c21:2 c23:4

c11:4 c15:6 c17:11 c112

a1 a2 a3 a4 a5 a6 a12a11a10a9a8a7

lev
els

l

l = L

..
.

l = 3

l = 2

l = 1

action

tL

..
.

t3

t2

t

1 2 3

1 32 4 5

1 5 7 1312

Ξ

τ

Figure 3.2: Context partonomy in THICK MDPs: Each level l has a different
time scale tl, with slower time scales at higher levels. The clock function Ξ (blue) maps
level-dependent time scales tl to the objective time t. On the objective time scale the
contexts form a partonomy: While on level l one context persists, on a lower level l − 1
multiple context changes may occur. The function τ determines the next point in time
with a context change (red).

terms of the objective time scale as

Ξ(tl+1 + 1) =̇ Ξ
(
τ(tl)

)
, ∀l : Ξ(tl+1) = Ξ(tl), (3.2)

with the clock function Ξ determining the objective time (blue arrow in Fig. 3.2). At the
lowest level, we set t1 = t to the objective time of the POMDP.

Informally, this means that the process at level l + 1 transitions at the time scale of
context changes or event boundaries of the lower level l. For example, at level l the event
<grab teapot> may take two steps, namely the events <reaching> and <grasping>
of the lower level l − 1, as shown in Fig. 3.3. This automatically fulfills a handful of
desiderata: For example, coarsely segmented event boundaries (i.e. context changes on
a higher level l + 1) per definition must fall onto finely segmented event boundaries (i.e.
context changes on a lower level ≤ l). Furthermore, for a given (objective) period of time,
events at a lower level change more frequently than events at a higher level.

3. Model-based predictions: An important property of event models is their
prediction of future perceptions (Zacks et al., 2007). How can we integrate model-based
predictions into the overall framework? As usual when modeling POMDPs via MDPs
(Kaelbling et al., 1998), we can split the transition function T l into two functions U l and

29

..
.

<prepare a cup of tea>

<fill cup with tea>

<grab teapot>

<reach> <grasp>

l = 4
..
.

l = 3

l = 2

l = 1

..
.. . .

. . . t4

t3. . .

t2. . .

t. . .

1 2

1 2

1 2

1 2

o1 ô1
2 ô2

2 ô3
2 ô4

2

Figure 3.3: Models in THICK MDPs: When using models f lϕ(otl+1 | sltl ,a
l
tl
) the

model at level l predicts the observation ôl
tl+1

at the next time tl + 1 when the context
of level l − 1 changes next. The lowest level simply predicts the next objective time step
t+ 1. Here this is illustrated for the example of preparing a cup of tea (cf. Fig. 2.1).

M l, with

T (sltl+1 | s
l
tl ,a

l
tl) =

∑
ol
tl
∈Ωl

U l(sltl+1 | s
l
tl ,a

l
tl ,o

l
tl)M

l(oltl+1 | s
l
tl ,a

l
tl+). (3.3)

For each level l, the function U l updates the belief, whereas M l mirrors the true observa-
tion function (O in Sec. 2.2.3) of the POMDP conditioned on beliefs sl

tl
. We can approx-

imate M l by learning a forward model f lϕ(otl+1 | sltl ,a
l
tl
) with parameters ϕ. Through

this model, the agent is able to predict the next observation otl+1. Thus, model-based
predictions of future observations can seamlessly be integrated into our framework.

Note that, due to Assumption 2, the level-dependent time tl+1 increases at the rate of
context changes at the lower level l. This means that at a certain level l, the model f lϕ
predicts the observation at the next context change or at the event boundaries of the lower
level. For example, on a level l the event <fill cup with tea> may take three steps,
which correspond to the events <grab teapot>, <lift teapot>, and <pour tea into
cup> of lower level l−1. A model at level l would predict at the same temporal resolution.
Thus, it would first predict an observation where the hand grasps the teapot (transition
from <grab teapot> to <lift teapot>), then an observation of the teapot over the cup

30

(transition from <lift teapot> to <pour tea into cup>), etc. As a result, models on
higher levels learn to predict sub-goal-like situations that need to be accomplished to
trigger an event transition, e.g. having grasped the teapot is the first step towards filling
tea in a cup. Model-based predictions for the tea example are visualized in Fig. 3.3.

4. Action-Goal Association: There is an increasing line of evidence for theories
that equate the representations involved in event perception with the representations used
for action planning (Hommel et al., 2001; Butz, 2016; Kuperberg, 2021; Cooper, 2021).
For Thick MDPs, I propose that possible next event codes cl

tl+1+1
∈ Cl on a certain level

l can serve as actions al+1
tl+1 ∈ Al+1 on the next higher level l+1, i.e. Al+1 = Cl. Crucially,

only contexts to which the lower level can directly transition from the current situation
are available as actions (detailed in Suppl. A.3.2). As a special case, on the lowest level
l = 1 we set A1 = A to the action set of the POMDP. Of course, this creates a series
of inter-dependencies between the levels. For example, a policy πl for level l outputs a
probability over next event codes cl−1

tl+1
∈ Cl−1. Similarly, the transition function T l is

conditioned on event codes cl
l−1
t+1 ∈ Cl−1.

It may seem counterintuitive that the state information of one MDP serves as the action
of another MDP. However, whenever the contexts encode temporally extended processes
that can be triggered by the agent, this not only aligns with the everyday notion of actions
but also fits more formal criteria of what constitutes an action representation in artifical
agents (Zech et al., 2019). For example, the event <pour tea into cup> is an action of
the higher level event <prepare a cup of tea>. This nested relationship even holds for
events triggered by an agent in which no motor commands are involved: For example,
the event <the ball flies into the basket> is one “action” of the higher level event
<score a basket ball shot>.

Summary: I have outlined the properties that contribute to a hierarchically nested
decision process. Each level l transitions at a level-dependent time scale tl. During
transitions the state sl

tl
changes, however, parts of the state, the event context cl

tl
tends

to remain constant over extended segments in time. The time scales of the hierarchy
are nested, and a transition at level l + 1 occurs only when the context cl

tl
of the lower

level changes. The contexts cl
tl

serve as the actions at the level l + 1 that determine the
transitions. Thus, for higher level up the hierarchy, temporally extended processes are
more and more compressed into context codes. We also indirectly provided an algorithm
to develop such a hierarchy of MDPs, starting from a single MDP in three steps: (1.)
Separate event-specific contextual knowledge from residual state information of every
state. (2.) Recursively define the time scale of the next level of the hierarchy based on
changes in the event codes, and (3.) replace the actions of the next level with event codes
of the lower level. This process can be repeated L times to form a hierarchy. We call this
algorithm Temporal Hierarchies from Invariant Context Kernels (THICK).

31

3.2 Hierarchical Planning

Temporal abstractions have the potential to drastically help agents to plan complex be-
havior over long time horizons. How could an agent plan their behavior within a Thick
MDP? Let us assume finite-horizon planning, where each level l plans up to a level-
dependent horizon K l. Hierarchical action planning typically assumes a top-down scheme
(Cooper, 2021), where a higher level affects the planning process at lower levels. Thus,
starting at the highest level L we simply set the policy optimization objective to JL with

JL(sLtL , π
L, KL) = EπL

KL∑
t=tL

RL(rLt | sLt ,aLt+1, s
L
t+1). (3.4)

Note that this corresponds to the finite horizon planning objective, defined in Eq. 2.3.
The only notable difference is that, in this case, the actions aLt correspond to a desired
next event code of the next lower level, i.e. aLt = cL−1

t+1 .
At any lower level l < L, we need to define a planning objective J l that takes into

account the plans of the higher levels. One potential way to express this is to guide each
level l to produce event codes cl

tl
that align with the policy πl+1 of the next level l+1 up

the hierarchy. We can formulate this, for example, using the Kullback-Leibler divergence
(KL), a prominent measure for distribution divergence (Hafner et al., 2020b). This gives
us the objective J l for every level l as

J l(sltl , π
l, πl+1, K l) = Eπl

Kl∑
t=tl

Rl(rlt | slt,alt, slt+1)︸ ︷︷ ︸
external rewards

(3.5)

−κKL
(
πl+1(clt+1 | sl+1

t) || T l(clt+1 | slt,alt+1)
)︸ ︷︷ ︸

intrinsic rewards

,

with T l(clt+1 | slt,alt+1) the transition function of contexts.3.3 Here, the objective is com-
posed of two terms: The first term encourages the policy πl to maximize external rewards
provided through the environment. The second term punishes πl for producing event codes
cl
tl

that diverge from the event codes planned by the higher-level policy πl+1. The new
hyperparameter κ controls the trade-off between extrinsic and intrinsic rewards. With
such a scheme, an agent can plan behavior in a top-down matter, with the higher-level
policy selecting events that serve as goals for the lower level. The policy π1 on the lowest
level translates this into concrete actions.

3.3This is the transition function T l at level l marginalized over the next states, i.e. T l(clt+1 | slt,al
t+1) =∑

zl
t+1∈Z T

l(clt+1, z
l
t+1 | slt,al

t+1).

32

Our event-based planning scheme can also be seamlessly integrated with active inference
(see Sec. 2.2.4), as previously proposed by Butz (2016). In active inference, an agent infers
its policy by attempting to minimize expected free energy (EFE) (cf. Eq. 2.8). To compute
EFE, the agent requires a generative model fϕ and a recognition density qϑ. As outlined
before, Thick MDPs can learn generative models f lϕ along every level l of the hierarchy.
The same is true for recognition densities qlϑ. In our planning objective in Eq. 3.5, we can
simply substitute the reward function Rl on each level l with the EFE for this particular
level. When minimizing EFE, the agent not only strives to minimize divergence from
desired states but also aims to minimize uncertainty about future observations on all
levels of the hierarchy.

3.3 Examples

I have outlined Thick MDPs, a theoretical framework for hierarchical decision making.
As this integrative framework is inspired by multiple theories of cognition, I hypothe-
size that Thick MDPs are not only useful for hierarchical problem solving, but
are suitable to model the behavior of humans and other biological agents. More
concretely, Thick MDPs allow for both planning complex goal-directed behavior and
showing human-like behavioral tendencies for which a non-hierarchical agent would re-
quire a very long planning horizon. In the following, I provide two examples to support
this claim by illustrating (1.) how complex action sequences can be planned and (2.) how
human-like behavior can emerge.

Example 1: Planning to drink tea Let us assume that an agent sits at a table with
a full teapot and an empty cup and wants to drink the tea. In a classic POMDP setting,
a reward could be +1 once tea is consumed. In the active inference formulation, the goal
could be expressed as a homeostatic state without any thirst and sufficient warmth (via
its prior preference g). Furthermore, let us assume that the agent is equipped with a
Thick MDP with four levels l as shown in Fig. 2.1 or Fig. 3.3.

To achieve its goal of drinking tea, the agent first plans at the highest level l = 4. Here,
the agent could come up with a policy π4, that plans to reach the event c4 =<prepare a
cup of tea>. The first action, or the lower level event c3, within this event is <fill cup
with tea>. Thus, at the level l = 3, the agent plans to trigger this event. The policy π3

might output <grab teapot> as a suitable first action, or the desired next low-level event
c2. This process continues recursively, such that c1 =<reach for teapot> is selected by
policy π2. Ultimately, at level l = 1, the policy π1 generates actions at that align with
the <reach for teapot>-event and move the agent’s hand towards the teapot.

By repeating this planning process, the agent is able to plan and conduct the complex
behavior of filling tea in a cup and drinking from it. The policy π1 of level l = 1 needs

33

to output a new action at at each time step t. At all other levels l, the agent only needs
to replan once the lower-level context cl−1

t changes. For example the <fill cup with
tea>-event is active until the <pour tea in cup>-event on the lower level is over, either
by successfully completing it or accidentally transitioning to the <drop teapot>-event.

Other reward formulations are also possible. For example, the active inference formu-
lation additionally uses a term that aims at minimizing the expected uncertainty about
the future. Including this aspect in the planning objective could result in more risk-aware
behavior. For example, let us assume that the agent lifts the teapot and it is much lighter
than expected. This creates a high uncertainty, for example, on level l = 3, because there
might not be enough tea in the pot to <fill cup with tea>. As a result, the agent
could plan to first execute the <shake teapot>-event at level 2, to receive auditory or
proprioceptive feedback on how much tea is left in the pot.

Could such behavior also be achieved by optimizing a single-level policy? Although in
principle it is possible, the planning horizon of the policy optimization would need to take
all steps into account to reach the final goal. Thus, a very long planning horizon is needed.
Although reinforcement learning (RL) aims to maximize reward over an infinite horizon
(cf. Eq. 2.2), it is infamous for requiring large amounts of training data (Lake et al., 2017).
For model-predictive control (MPC), long planning horizons are often impossible, since
model errors can accumulate very quickly, leading to suboptimal or erroneous behavior.
In the case of Thick MDP, the low-level policy has a much simpler objective: In the
absence of external rewards, the lowest level needs to only achieve the subgoal proposed
by level 2 (see Eq. 3.5). At all other levels l, the goal can be achieved by planning just a
few steps, i.e. planning with a short horizon K l.

Example 2: Anticipatory gaze behavior Next, let us consider whether Thick
MDPs can be used to model human behavior. More specifically, we focus on gaze behavior.
One robust effect of human gaze behavior is the goal-anticipatory gaze shift3.4 (Gredebäck
& Falck-Ytter, 2015). Goal-anticipatory gaze shifts describe the phenomenon that when
observing a movement, e.g. a reach, humans tend to shift their gaze from the moving
entity, e.g. the hand, to the goal of a movement, e.g. the target of a reach, before the
motion is concluded. This gaze behavior reliably arises in various settings (reviewed in
Chap. 4), e.g. when performing goal-directed behavior (Land et al., 1999; Johansson et al.,
2001) or when observing the behavior of others (Flanagan & Johansson, 2003).

How can such behavior be modeled using Thick MDPs? Consider an agent, illustrated
in Fig. 3.4a, equipped with a two-level Thick MDP. For simplicity, the only actions A

3.4Synonyms in the literature are anticipatory gaze shift (Paulus, 2011), predictive gaze shift (Gredebäck
& Falck-Ytter, 2015), or goal-predictive gaze shifts (Elsner & Adam, 2021). The act of looking at a location
in anticipation is also called proactive gaze (Flanagan & Johansson, 2003), in contrast to reactive gaze
in which the gaze follows a moving entity.

34

(a)

ot−1 ot ô1
t+1 ô2

t+1

ô2
t+2

(b)

Figure 3.4: Goal-anticipatory gaze in THICK MDPs through active inference:
Usually, the agent will infer its gaze to seek out desirable observations, e.g. by looking at
a teddy bear (a). However, under high uncertainty, e.g. when a ball unexpectedly starts
to move, the agent attempts to minimize uncertainty on multiple levels l of the model
hierarchy (b). On a low level l = 1 (red) the agent may predict immediate ball positions
in ô1

t+1. On a higher level l = 2 (blue), the agent might predict ball positions at the
next event boundaries, e.g. that the ball goes from rolling to falling in ô2

t+1. In order to
minimize uncertainty about these event boundaries, the agent might shift its gaze towards
the location of the next event boundary, i.e. the edge of the table.

available to the agent are eye movements. Low-level events c1 include gaze behavior such
as <track a moving hand> or <look at a teddy bear>. Various aspects of human
gaze behavior and eye movement have been modeled using active inference (Da Costa
et al., 2020). Thus, let us use the active inference formalism as our planning objective.

In the absence of any uncertainty, the agent will strive for desirable states. For exam-
ple, if it finds that teddy bears are visually pleasing, it will simply look at the teddy bear
(Fig. 3.4a). Now consider the scenario in which a ball in the periphery of the agent unex-
pectedly starts to move, as illustrated in Fig. 3.4b. This creates a high uncertainty about
future predictions. To minimize the expected uncertainty, the highest level L = 2 might
select the c1 =<look at the ball> as the next action. This guides the gaze behavior of
the lower level, resulting in the agent looking at the ball. After accumulating sufficient
evidence, we can assume that the agent has inferred that the ball is rolling and the agent
is experiencing the overall event c1 of <track a rolling ball>. Level 2 attempts to
minimize the expected uncertainty about the next transitions at t2. Because the time
scale t2 depends on the context changes at level 1, π2 aims at minimizing uncertainty
about when, where, and how the event c1 concludes and the next event begins. The ball

35

is likely to stop rolling and start to fall once it reaches the edge of the table. Therefore, to
minimize uncertainty about the next event boundary, π2 might select the <look at the
edge of the table>-event as its next action. As a result, the low-level policy π1 could
direct the gaze toward the edge of the table. The resulting gaze behavior, i.e. looking at
the goal of a movement in anticipation, describes exactly the goal-anticipatory gaze shift.

Again, we can ask ourselves if such a behavior could also emerge in a single low-level
policy. Using expected uncertainty as a reward, a low-level policy would attempt to
minimize uncertainty about every observation along a predicted trajectory. To minimize
uncertainty about future ball positions, tracking the ball is the most suitable gaze behav-
ior. Through tracking gaze, the agent gets the clearest information about the velocity
and rolling direction of the ball. Thus, to even consider that the ball might change its
trajectory when reaching the end of the table, a long planning horizon is needed. On the
other hand, to model proactive gaze behavior in Thick MDPs, a horizon of K l = 1 for
every level l is sufficient.3.5

3.4 Conclusion

This chapter introduced Thick MDPs, a theoretical framework that integrates insights
about event cognition and hierarchical sequential decision making. Based on two exam-
ples, I sketched out how Thick MDPs not only facilitate long-horizon problem solving,
but also enable modeling of behavioral tendencies of biological agents, such as proactive
gaze behavior. Of course, there are still many open puzzle pieces. Here, I briefly out-
line relevant questions about the overall approach and describe how these questions are
addressed in this thesis.

1. Can THICK MDPs be used to model aspects of cognition? Thick MDPs
were motivated and partially derived from different theories of cognitive science. However,
useful models of cognition explain behavior beyond narrative descriptions and generate
testable predictions. In Chap. 4, we3.6 demonstrate that Thick MDPs fulfill these
requirements using the example of goal-anticipatory gaze behavior. Based on Thick
MDPs and active inference we derive a simple Bayesian model of event cognition that
develops hierarchical predictions of event dynamics and event boundaries. When the
model plans hierarchically to minimize uncertainty, it generates behavior that matches
various findings of eye-tracking studies in infants. Crucially, the behavior develops with
training experience, similarly to how goal-anticipatory gaze develops when infants mature.

3.5Chapters 4 and 6 show this empirically.
3.6For chapters Chap. 4-7 first person plural (we) is used instead of first person singular (I), to ac-

knowledge the contributions of my collaborators on the presented hypotheses, methods, and results.

36

2. How can sparsely changing event codes be learned from scratch? The
heavylifting that enables the development of the hierarchy in Thick MDPs come from
the event contexts clt. Their stable temporal persistence gives rise to the overall hierarchy
with nested time scales. In realistic scenarios, events are not simply provided to the
system but need to develop from scratch based on interactions with the environment.
Chap. 5 outlines how sparsely changing latent states can be learned within a recurrent
neural network (RNN). Thereby, we not only show that the resulting latent states tend
to encode simple events, but also demonstrate that the resulting RNN can be employed
to improve state-of-the-art planning and reinforcement learning agents.

3. Can temporal abstractions develop from sparsely changing event codes?
In Thick MDPs one level of the hierarchy operates at the time scale of event context
changes of the next lower level. We hypothesized that such hierarchical organization could
give rise to temporal abstractions. In Chap. 6, we investigate this claim by training a
high-level neural network to only predict situations in which a latent state of a low-level
sensorimotor network is updated. We illustrate that on the basis of this training scheme,
meaningful temporal abstractions develop on the higher level.

4. Do THICK MDPs enable hierarchical planning? In Chap. 7, we combine all
the insights previously gathered to design a two-level hierarchical world model, following
the principles of Thick MDPs. We show in rich environments with image-based obser-
vation that the resulting Thick world model learns categorical, temporal abstractions on
a high level, while at the same time making precise predictions on a low level. Further-
more, we demonstrate that the developing hierarchical predictive model can enhance the
abilities of model-based reinforcement learning and planning methods.

5. Which aspects are still missing? I set out to create a cognition-inspired frame-
work for event-based hierarchical decision making. However, many aspects of event cog-
nition and human action planning have been simplified. In Chap. 8, the shortcomings of
this approach and the developed methods are discussed. Additionally, I provide an out-
look on how future research could overcome these limitations and build on the methods
developed in this thesis.

37

4
Developing Event-Based Goal

Anticipations4.1

My conceptual framework, Thick MDP, is inspired by theories on how humans encode
their experience and employ learned representations for prediction and planning. If the
framework indeed captures aspects of humans’ goal-directed planning, it should be useful
to explain, or model, findings on how anticipation and goal-directed behavior arise in
humans. This chapter presents Capri, a simple implementation of a Thick MDP, which
is capable of modeling a variety of experimental findings on the development of goal-
anticipatory gaze behavior in infants. Importantly, gaze behavior in Capri emerges purely
from inferring gaze according to active inference using the hierarchical nested structure
of Thick MDPs; no further assumptions are needed for modeling the experimental data.

4.1This chapter is based on the publication:
Gumbsch, C., Adam, M., Elsner, B., & Butz, M. V. (2021). Emergent Goal-Anticipatory Gaze in
Infants via Event-Predictive Learning and Inference. Cognitive Science, 45:e13016.
The text has been heavily revised to better suit the context of this thesis. The figures have been expanded
and modified cosmetically. In accordance with the publication and to recognize the contributions of my
coauthors, this chapter is written in first person plural (we).

38

4.1 Introduction

Already during the first year of life, infants appear to develop a rudimentary understanding
that human actions are directed towards goals. An associated paradigm investigates the
development of goal-anticipatory gaze shifts. In eye tracking studies, infants watch
videos showing action events, e.g. a hand reaching for an object. If an infant looks at the
goal of the shown event, e.g. a to-be grasped object, before the movement, e.g. a reach,
is completed, the infant successfully anticipated the goal of the event (Elsner & Adam,
2021). The development of this ability appears to be supported by various factors, such as
familiarity with the event and the agent involved (Cannon & Woodward, 2012; Kanakogi
& Itakura, 2011), the motor ability to perform the movement themselves (Kanakogi &
Itakura, 2011), behavioral cues indicating agency (Adam et al., 2017), and the saliency
of the produced effect (Adam & Elsner, 2018, 2020; Adam et al., 2021). Despite the
rather large conglomerate of findings, the internal computational mechanisms have been
characterized only descriptively so far (see Gredebäck & Falck-Ytter, 2015 for a review).

We propose that goal-anticipatory gaze shifts emerge in infants from two interplaying
factors: (1.) internally developing hierarchical predictions based on models of events, and
(2.) the objective to minimize uncertainty in all currently activated models.4.2

In support of this proposal, we modeled the emergence of goal anticipations in infants
in a simplified object-interaction simulation. The modeling system first learned about
simple events, such as reaching for an object or lifting an object. For each event, it
learned event schemata, i.e. predictive models, which encode the typical dynamics and
event boundary conditions in a probabilistic manner. Importantly, these event schemata
allow for hierarchical predictions on two time scales: They can predict ongoing dynamics,
e.g. a reaching hand moves towards an object, and they can predict upcoming event
boundaries, e.g. hand-object contact at the end of reaching.

Throughout training, we put our system in experimental conditions, similar to how
goal-anticipatory gaze shifts are tested in infants. The system was shown familiar action
events (reaching) performed by agents that typically perform this kind of action (hand)
or by unfamiliar agents (mechanical claw). We demonstrate that when the system chose
its gaze to minimize the predicted uncertainty in its hierarchical predictions, it showed
behavioral tendencies similar to the goal-anticipatory gaze behavior found in infants.

The remainder of this chapter is structured as follows. We first give an overview on
goal-anticipatory gaze shifts and motivate our modeling approach. Next, we provide the
algorithmic details of our model. In Sec. 4.4 we evaluate the model. Finally, we outline
related computational models and discuss our results and their implications.

4.2In other words, goal-anticipatory gaze should emerge from the gaze selection according to active
inference (Sec. 2.2.4) in a Thick MDP (Chap. 3) as motivated and exemplified in Sec. 3.3

39

4.2 Development of Goal Anticipations

4.2.1 Goal-Anticipatory Gaze Behavior in Infants

Looking behavior is one of the first behaviors in human development and as such has been
widely used to investigate how infants form expectations about observed goal-directed
actions (e.g. Fantz, 1958; Gredebäck et al., 2010). The research paradigm to study goal
anticipation online, i.e. while observing an action, is based on a seminal eye tracking study
in which adult participants tended to shift their gaze to a to-be-attained goal before it
was achieved in a block-stacking task (Flanagan & Johansson, 2003). Falck-Ytter et al.
(2006) applied this paradigm to infants in a study in which 6- and 12-month-old infants,
as well as adults, observed how toys moved into a container. The toys moved by being
grasped and transported by a human or floating into the container. The data revealed
anticipatory gaze behavior in the human agent condition for 12 months and adults, but
not in the self-propelled condition and not for the 6-month-olds.

Several studies replicated and extended these findings. At around 7 months of age, in-
fants start to show goal-anticipatory gaze shifts when observing human grasping actions,
while they reactively track unfamiliar actions or unfamiliar agents, e.g. mechanical claws
(Adam et al., 2016; Cannon & Woodward, 2012; Gredebäck & Melinder, 2010; Kanakogi
& Itakura, 2011; Krogh-Jespersen & Woodward, 2014; Adam & Elsner, 2020). Further-
more, infant motor skills and the amount of experience with certain actions are positively
correlated with the anticipation of goals during the observation of the respective actions
(Cannon et al., 2012; Gredebäck & Melinder, 2010; Kanakogi & Itakura, 2011). In addi-
tion to familiarity, bottom-up cues can also boost goal anticipations, e.g. salient action
effects or salient goals enable goal anticipations for unfamiliar agents at a younger age
(Biro, 2013; Adam et al., 2017; Adam & Elsner, 2018, 2020).

4.2.2 Developing Anticipations via Event-Predictive Models

As detailed in Sec. 2.1, different theories suggest that humans tend to organize their
experience through hierarchically structured predictive models of events (Butz, 2016, 2017;
Butz et al., 2021; Zacks et al., 2007; Zacks & Tversky, 2001). A crucial characteristic of
an event is that it is perceived to have a beginning and an end, i.e. an event boundary
(Zacks & Tversky, 2001). Event boundaries tend to coincide with goals or subgoals of
behavioral routines (Levine et al., 2017), e.g. the grasp of an object.

Our modeling approach, i.e. Thick MDP (see Chap. 3), follows the idea that event
models are hierarchically organized in a partonomy (Zacks & Tversky, 2001) in which
each level of the hierarchy transitions at the time scale of event boundaries of the next
lower level. According to our framework, by learning to encode events, humans simultane-

40

Everyday experience Experimental condition

?

Event boundary predictions

(a) < 6-month-olds
Everyday experience

REACH

Experimental condition

REACH

Event boundary predictions

(b) ≥ 7-month-olds (hand)
Everyday experience

REACH

Experimental condition

?

Event boundary predictions

hand/claw position object position

(c) 7-month-olds (claw)

Figure 4.1: Modeling hypotheses for the development of goal anticipation
for (a) infants younger than 6 months, (b) for older infants watching reaching motions
done by hands, and (c) for 7-month-olds watching reaching motions by mechanical claws.
White eye symbols visualize gaze. Colored circles visualize x−, y− position predictions
for the next event boundary and their confidence (blue for the reaching hand or claw, red
for the position of the object). The screenshots are taken from Adam & Elsner (2020).

ously learn to make hierarchical predictions about the exact low-level event dynamics and
temporal abstract predictions about upcoming next event boundaries. Thus, encoding a
certain event, e.g. a reach, allows the direct prediction of its goal by predicting its event
boundary.

Hierarchical model-based predictions in the brain have been studied within the frame-
work of the Free Energy principle and active inference (Kiebel et al., 2008; Pezzulo et al.,
2018, 2015; Friston et al., 2018). Thus, our event-predictive models can be seamlessly
merged with this line of work (Butz, 2016). According to active inference (Friston et al.,

41

2015, 2016; Parr et al., 2022), actions are partially inferred to minimize uncertainty about
current predictions of the future (see Sec. 2.2.4). In Thick MDP predictions can occur
simultaneously at hierarchical levels with nested time scales. Thus, when our approach
is combined with active inference, actions are inferred to minimize uncertainty across
multiple event-based time scales.

We hypothesize that merging active inference with event-predictive learning can explain
a variety of experimental findings on the development of goal-anticipatory gaze behavior
in infants, illustrated in Fig. 4.1. Let us assume a setting in which infants of different ages
observe simple reach-and-grasp events performed by different agents (e.g. as in Kanakogi
& Itakura, 2011; Adam & Elsner, 2020). We assume that infants younger than 6 months
do not have a sufficiently learned event encoding for <reaching>. As a result, when they
watch videos of reaching-events, they keep their gaze on the moving agent to better predict
its trajectory. From about 7 months, when infants begin to show a goal-anticipatory
gaze (Kanakogi & Itakura, 2011; Adam & Elsner, 2020), we hypothesize that they have
developed a sufficiently well-predicting encoding for the observed event. Visual cues, e.g.
appearance of the hand or movement-based information, activate the event encoding for
<reaching>. This allows them to predict not only the unfolding dynamics, but also the
next event boundary, which occurs for a reach when the hand touches the target object.
Therefore, older infants will look at the target object to reduce the uncertainty about
when, where, and how exactly the <reaching>-event will end. However, when 7-month-
olds observe a reaching movement by an unknown agent, e.g. a mechanical claw, infants
tend to track the claw with their gaze (Adam & Elsner, 2020).4.3 Our model assumes that,
even though these children have learned a model for <reaching>, this event encoding will
not be activated because some of the associated start conditions are not met.

We investigate the validity of our considerations by implementing and testing the
proposed computational model, which we name Cognitive Action PRediction in Infants
(Capri). Capri essentially implements a two-level Thick MDP (detailed in Suppl. B.1)
which learns schematic models for different events such as <reaching for an object>.
Capri continuously aims to decrease uncertainty through learning, inference, and ac-
tion. As a result, it develops anticipatory epistemic gaze behavior similar to the goal-
anticipatory gaze shifts generated by infants.

4.3 Cognitive Action Prediction in Infants (CAPRI)

Capri implements a model fϕ with learnable parameters ϕ and interacts with problems
that can be modeled as a POMDP (detailed in Sec. 2.2.3). We assume that the system is

4.3Assuming that the unfamiliar agent does not exhibit salient agency-related cues or action effects.

42

Event Dynamics

hand moves
toward object

End ConditionStart Condition
• hand visible
• fingers open
• object visible
• object reachable

• hand at object
• fingers closed

(a)

Event Dynamics

object moves
towards floor

End ConditionStart Condition

• object visible
• object above

ground

• object hits floor

(b)

Figure 4.2: Event schemata in CAPRI are composed of three components: A start
condition, an event dynamics model, and an end condition. We exemplify potential
encodings of two events: <reaching> (a) and <falling> (b).

equipped with a set of policies πi. In every time step t, the system receives an observation
ot and samples an action according to the active policy πt. In our scenario, the agent is
an observer, and thus policies correspond to gaze behavior.

4.3.1 Learning of Event Schemata

Capri encodes its interactions with the world in terms of events. For this, Capri learns
event schemata. Each event schema is a separate model composed of three components:
a start condition, the event dynamics model, and an end condition (see Fig. 4.2).
All components are encoded as probabilistic models, that is, conditional likelihood distri-
butions over observations.

The start condition P start
ei encodes the particular preconditions necessary for an event

ei to begin via the likelihood P start
ei

(
ot|πt−1

)
, with observation ot and the last executed

policy πt−1 at time t. For example, a <reaching>-event might typically start with the
observation ot of a hand that started to move towards a reachable object (cf. Fig. 4.2a).

The event dynamics model P event
ei encodes how an event ei typically unfolds. More

specifically, we model the likelihood of observation ot given the last observation ot−1

and the policy πt−1: P event
ei

(
ot|ot−1, πt−1

)
. For example, at a certain time t during a

<reaching>-event the position of the hand, described by observation ot, is expected to
be closer to the object than one time step before, described by observation ot−1 (Fig. 4.2a).

The end condition P end
ei encodes the typical end state of an event ei. We model the

end condition through the likelihood P end
ei

(
ot|ot−ι, πt−1

)
. We assume that the end of an

event is predictable from an arbitrary point during the event. We incorporate this idea
through a retrospective time horizon ι with 1 ≤ ι ≤ T that spans over the duration T of
the event ei. Thus, the end condition P end

ei models the likelihood of observation ot at the
end of event ei given the last policy πt−1 and some previous observation ot−ι, which lies ι

43

time steps in the past within the same event. For example, when <reaching> (Fig. 4.2a)
ends at time t, the final position of the hand, captured by observation ot, is close to the
reachable object, which can be predicted from some previous observation ot−ι.

Thus, for every event ei Capri learns three separate likelihood distributions encoding
the dynamics of an event and its boundaries. Based on these encodings, Capri is able to
make predictions about the future on two levels of abstraction. Let us assume that the
system has an event model efall, encoding <object is falling> (see Fig. 4.2b). When
Capri perceives that a ball that just rolled over the edge of a table, the start condition
P start
efall

would predict a high likelihood for this particular observation, activating the event
schema efall. Capri can either predict the immediate next observation ot+1 via P event

efall
,

which predicts the ball mid-air depending on its past position and velocity. Capri can also
make a temporal abstract prediction about the end of this event through P end

efall
, predicting

some future observation oτ of the ball when falling ends, e.g. upon hitting the floor.
All distributions are modeled as multivariate Gaussians. Each distribution is parame-

terized by a separate neural network (details in Suppl. B.2.2). During training, all event
schemata are learned in a supervised setting (details in Suppl. B.2.3). Thus, during
training Capri is informed about the underlying events. However, in the absence of ex-
plicit labels about the ongoing events, the likelihood estimates can be used for Bayesian
inference to infer the probability of an event.

4.3.2 Event Inference

During training Capri receives supervised information about which event is currently
unfolding. In contrast, during testing at time t Capri infers probabilities about which
event ei currently unfolds from past sensorimotor information, i.e. the sequence of all
observations o1:t = (o1,o2, ...,ot) and past policies π1:t−1 = (π1, π2, ..., πt−1) of the current
episode. Capri infers the probability P

(
eit | o1:t, π1:t−1

)
for every possible event ei being

active. This event inference is performed iteratively every time step t after executing an
action based on πt−1 and receiving a new observation ot via

P
(
eit | o1:t, π1:t−1

)
=

∑
ej

P
(
eit | ot,ot−1, πt−1, e

j
t−1

)
· P

(
ejt−1 | o1:t−1, π1:t−2

)
. (4.1)

At every time step t, Capri first computes the probability of an event transition P
(
eit |

ot,ot−1, πt−1, e
j
t−1

)
for every combination of ei and ej and then updates its current event

estimate. We compute P
(
eit | ot,ot−1, πt−1, e

j
t−1

)
as

P
(
eit | ot,ot−1, πt−1, e

j
t−1

)
=

P
(
ot | ot−1, πt−1, e

i
t, e

j
t−1

)
· P

(
eit | e

j
t−1

)∑
eh P

(
ot | ot−1, πt−1, eht , e

j
t−1

)
· P

(
eht | e

j
t−1

) . (4.2)

44

We provide the full derivation in Suppl. B.2.4. We set the event transition prior P
(
eit |

ejt−1

)
= 0.9 for staying in the same event, i.e. ei = ej and P

(
eit | e

j
t−1

)
= 0.1

N
for ei ̸= ej

where N is the number of available events. This corresponds to the assumption that
events tend to persist over time with a prior probability of 90%.

To compute the Bayesian posterior P
(
ot | ot−1, πt−1, e

i
t, e

j
t−1

)
, we use the event schemata

distributions, which were outlined in Sec. 4.3.1. There are two cases for computing this
likelihood depending on eit and ejt−1: Either the world remains in the same event, or an
event boundary occurred from time t− 1 to time t. When remaining in the same event,
i.e. ei = ej, we compute the likelihood of ot by

P
(
ot | ot−1, πt−1, e

i
t, e

i
t−1

)
= P event

ei

(
ot | ot−1, πt−1

)
, (4.3)

with P event
ei encoding the event-respective dynamics distribution (see Sec. 4.3.1). For the

event boundary case, where ei ̸= ej, the likelihood is computed by

P
(
ot | ot−1, πt−1, e

i
t, e

j
t−1

)
= P start

ei

(
ot | πt−1) · P end

ej (ot | ot−1, πt−1

)
, (4.4)

using the start and end conditions P start
ei and P end

ej (see Sec. 4.3.1).
The event inference process is initialized at time t = 1 with

P
(
ei1 | o1, π1

)
=

P start
ei

(
o1 | π1

)∑
eh P

start
eh

(
o1 | π1

) , (4.5)

using only the start conditions P start
ei (see Sec. 4.3.1).

4.3.3 Active Inference

Besides passively inferring events, Capri can actively gather sensory observations by se-
lecting (gaze) policies. For this, the system infers its policy based on computing Expected
Free Energy (EFE) (see Eq. 2.8). EFE is composed of two terms: predicted divergence
from desired states and predicted uncertainty. Since we are interested in gaze and assume
that the attractiveness of the visual stimuli is well controlled, we only focus on predicted
uncertainty (second term in Eq. 2.8)4.4. At t we can compute EFE for a candidate policy
πi and sensorimotor history o1:t and π1:t−1 with

EFE(πi, K,o1:t, π1:t−1) =
1

K

t+K∑
k=t

Eot:k,et:k∼fϕ
(
H
[
fϕ(ok+1 | e1:k,o1:k, π1:t−1, π

i
t:k)

])
, (4.6)

4.4To align with our notation we make minor changes to Eq. 2.8. Since Capri only interacts with the
world in terms of policies π, we omit actions ak replacing them with policies πk. Furthermore, Capri
infers the state of the world in terms of events ei. Thus, we replace states sk with events ek.

45

with Capri as fϕ, entropyH and a time horizon K. Thus, EFE is calculated by predicting
the execution of policy πi for a time horizon K expanding from the present into the future.

As described in Sec. 4.2.2, Capri can predict the future on two levels of abstraction.
It can make (1.) fine-grained predictions about the next observation within the current
event or (2.) temporal abstract predictions about upcoming event boundaries. We replace
the prediction horizon K with the two types of prediction:

EFE′(πi,o1:t, π1:t−1) =
∑
ej

H
[
P event
ej

(
ot+1 | ot, πi

)]
P
(
ejt | o1:t, π1:t−1

)
︸ ︷︷ ︸

uncertainty of event dynamics

+
∑
ej

∑
eh

H
[
P start
eh

(
oτ | πi

)
P end
ej

(
oτ | ot, πi

)]
· P

(
ejt | o1:t, π1:t−1

)
︸ ︷︷ ︸

uncertainty of event boundaries

,

(4.7)
with τ marking the time of the next event boundary. In the modified EFE′, Capri
attempts to minimize predicted entropy over the currently estimated event dynamics and
over all possible next event boundaries encoded by the end- and start conditions.

Assuming a set of policies, the next policy can then be selected via

πt = argmin
πi

EFE′(πi,o1:t, π1:t−1). (4.8)

We hypothesize that active inference based on the two terms of Eq. 4.7 leads to goal-
anticipatory gaze shifts.4.5 Inferring gaze policies to minimize predicted uncertainty
about current dynamics encourages tracking gaze, because tracking the velocity
of a moving entity helps to predict its immediate trajectory. Minimizing predicted
uncertainty about future event boundaries encourages proactive gaze towards
goals, because knowledge about the exact location of the goal reduces uncertainty about
when and where the next event boundary will occur. The combination could enable goal-
predictive gaze shifts, i.e. disengaging the gaze from a moving entity to its goal location
before it is reached.

4.4 Experiments

We evaluate Capri in a simple three-dimensional agent-patient interaction simulation,
mimicking the probable action experiences of infants. In the following, we first detail the
simulation and training procedure. We then evaluate the behavior of the system and show
that goal-anticipatory gaze behavior indeed emerges over the course of learning.

4.5We provide a more detailed example of how this might develop in the case of a rolling ball in Sec. 3.3.

46

4.4.1 Simulation Setup

Our simulation always contains two entities – an agent a, that is the active part of an
interaction, and a patient p, that is the passive part.4.6 At every time step t, Capri
received an observation ot ∈ [−1, 1]18, containing absolute and relative positions of the en-
tities, their velocities, and their distance. Furthermore, for all entities a one-dimensional
appearance of the entity was observed. The appearance serves as a simple cue to distin-
guish entities, e.g. distinguishing hands from claws, but does not affect dynamics.

Our system acted by choosing one of three different policies that evoke gaze behav-
ior. We model gaze as a simplified entity-based focus, influencing the standard deviation σ
of normally distributed sensory noise. When focusing on the agent (πa), large sensory
noise (σ = 0.1) is added for all patient-related components of ot, but small sensory noise
(σ = 0.01) was added to agent-based information. When focusing on the patient (πp),
the sensory noise scheme was reversed. When focusing on neither of the entities (πn),
normally distributed noise with σ = 0.1 was added to the full observation ot. Thus, in our
simplified entity-based gaze, the actual physical distances between entities are ignored.

Four possible events ei were simulated, mimicking events that may be encountered
and produced by infants:

• During a <standing still>-event estill the agent and the patient remained motion-
less for a fixed number of time steps, mimicking stationary objects.

• During a <randomly directed motion>-event erand the agent moved constantly
in a fixed but randomly generated direction with decreasing velocity. This event
mimics the observation of rolling or sliding entities, such as a toy car.

• In a <reaching>-event ereach a hand agent moved towards the patient with a ran-
domly set, constant velocity. The event ended when the hand reached the patient.

• A reach is always followed by a <transporting>-event etran, where hand and patient
moved together to a random goal location with a randomly set constant velocity.

By combining these events, three possible event sequences E were generated for training
(cf. Fig. 4.3): In Egrasp a hand agent reached for the patient (ereach), transported it (etran),
let go, and randomly moved away (erand). Erand started with a randomly directed motion
(erand) followed by both entities standing still (estill). Estill showed both entities motionless
(estill). For testing, we considered an additional sequence Etest identical to Egrasp, but also
allowed claw agents. Event sequences took roughly 100-300 time steps.

The experiments were divided into training and testing phases. Each training phase
consisted of 100 event sequences, in which the system was informed of the observed events
and gaze policies were randomly chosen per sequence. Each training phase was followed

4.6The agent could also be called the subject and the patient the object of an interaction.

47

sequence events visualization agents

Estill estill all types

Erand erand

→ estill
all types

Egrasp
ereach

→ etran

→ erand

only
hands

Etest
ereach

→ etran

→ erand

hands
or claws

t

Figure 4.3: Simulation environment of CAPRI showing event sequences, their in-
dividual events, corresponding exemplar visualizations rendered from a bird’s-eye view
(z−dimension shown via entity size), and potential agents.

by a testing phase, mimicking eye-tracking studies in infants (Kanakogi & Itakura, 2011;
Adam et al., 2016, 2017, 2021; Adam & Elsner, 2020). During testing, we recorded the
gaze of Capri while the system was shown grasping sequences (Etest). In contrast to
training, Capri had to infer which event was currently observed (cf. Sec. 4.3.2), select its
gaze policy using active inference (cf. Sec. 4.3.3), and no model updates were performed.

Similarly to Adam & Elsner (2020), we distinguished between two testing conditions:
In the hand-condition, the system was shown a grasping sequence Etest performed by a
hand agent, as during training. In the claw-condition, the same event sequence Etest was
shown with a claw agent. Claw agents only differed in the appearance component of the
observation ot. Each test phase consisted of 10 Etest event sequences for each condition.

We conducted 20 randomly initialized experiments by training Capri for 30 training
phases. We provide further simulation details in Suppl. B.3.

4.4.2 System Behavior

We first analyze Capri’s internally estimated event probabilities to quantify the sys-
tem’s beliefs about the unfolding events. Figure 4.4 (bottom) shows the inferred event
probabilities for two exemplary event sequences Etest for a fully trained system and either

48

πn

πa

πp

π
t

ereach etran erand
0

0.5

1

tP
(e

t
|o

1
:t
,π

1
:t
)

estill

erand

ereach

etran

(a) hand

πn

πa

πp

π
t

ereach etran erand
0

0.5

1

tP
(e

t
|o

1
:t
,π

1
:t
)

estill

erand

ereach

etran

(b) claw

Figure 4.4: Exemplary event and policy inference of Capri after full training over
the course of one event sequence Etest for a hand agent (a) and a claw agent (b). The
top rows show the active policy πt. The bottom rows show the inferred event probability
estimates. Event boundaries are marked by dotted lines.

(a) hand or (b) claw agents.4.7 For a hand agent, Capri tends to assign high probabil-
ities to the correct event quickly after an event started. For example, after roughly 20
time steps for ereach and only two steps for erand Capri assigned almost 100% probability
to the correct event. Inferred event probabilities differ drastically for claws (Fig. 4.4b).
For claw agents, Capri infers a high probability of erand during a reach and assigns high
probabilities to erand and estill during a transportation event.

These differences in event inference affect gaze behavior, exemplified in Fig. 4.4
(top). For the hand agent (Fig. 4.4a), Capri started looking at the patient, i.e. activated
πp, once it was certain of observing a reach (≳90% probability). Thus, for hands, we
observe a goal-anticipatory gaze: the system looked at the reaching target before it was
reached. For the claw agent (Fig. 4.4b), the system tracked the agent, i.e. chose πa,
throughout the reach. Thus, for the claw, Capri did not show goal-anticipatory gaze.

How are event inference and gaze behavior affected by experience? Figure 4.5 shows the
mean inferred event probability during test phases over training experience for hand (left)
and claw agents (right)4.8. During the course of training, CPARI learned to correctly infer
progressively higher probabilities for the actual underlying events when the hand executed
them. In contrast, when Capri observed a claw it incorrectly inferred estill and erand with
a much higher probability, even when actually observing ereach or etran.

As a result, gaze behavior develops differently for hands or claw agents. We
quantify gaze behavior by analyzing at what time Capri on average activated the policy

4.7We provide more exemplary sequences in Suppl. B.4.1.
4.8For every event ei ∈ Etest starting at time ts and ending at time te, we compute the mean event

probabilities as P̄
(
ejt | o1:t, π1:t

)
=

∑te

t=ts P
(
ejt | o1:t, π1:t

)
1

te−ts , for all events ej .

49

0 5 10 15 20 25
0

0.2
0.4
0.6
0.8
1

training phases

P̄
(e

t
|o

1
:t
,π

1
:t
)

estill

erand

ereach

etran

(a) ereach and hand agents

0 5 10 15 20 25
0

0.2
0.4
0.6
0.8
1

training phases

P̄
(e

t
|o

1
:t
,π

1
:t
)

estill

erand

ereach

etran

(b) ereach and claw agents

0 5 10 15 20 25
0

0.2
0.4
0.6
0.8
1

training phases

P̄
(e

t
|o

1
:t
,π

1
:t
)

estill

erand

ereach

etran

(c) etran and hand agents

0 5 10 15 20 25
0

0.2
0.4
0.6
0.8
1

training phases

P̄
(e

t
|o

1
:t
,π

1
:t
)

estill

erand

ereach

etran

(d) etran and claw agents

0 5 10 15 20 25
0

0.2
0.4
0.6
0.8
1

training phases

P̄
(e

t
|o

1
:t
,π

1
:t
)

estill

erand

ereach

etran

(e) erand and hand agents

0 5 10 15 20 25
0

0.2
0.4
0.6
0.8
1

training phases
P̄
(e

t
|o

1
:t
,π

1
:t
)

estill

erand

ereach

etran

(f) erand and claw agents

Figure 4.5: Mean event inference of Capri plotting P̄
(
eit | o1:t, π1:t

)
for ei ∈

{estill, erand, ereach, etran} during Etest over the course of learning for hand subjects (a,c,e)
and claw agents (b,d,f). (a)–(b) show the event probabilities during ereach, (c)–(d)
during etran, and (e)–(f) during erand.

πp within an event sequence Etest.4.9 Figure 4.6a plots the average time of first gazes at
the patient over training experience. Early during training, the system on average looked
at the patient after it was grasped, i.e. marked by t0. After the fourth training phase, the
system began to systematically activate πp in the beginning of reaching events ereach in
the case of hand agents. This goal-anticipatory gaze did not develop for claw agents.

These results indicate that over the course of training, Capri develops goal-anticipatory
behavior that is comparable with the gaze behavior that develops in infants
(Adam & Elsner, 2020). Figure 4.6b shows the mean gaze arrival time for infants of
different age groups watching videos of hand or claw agents reaching for and lifting a toy
(Adam & Elsner, 2020). The videos started with a 1000 ms still frame depicting a toy,
and then showed a hand or claw entering from the right part of the screen and moving
linearly toward the toy (≈ 2500 ms), lifting the toy and placing it down again (≈ 2800
ms), followed by a still frame (≈ 2400 ms). To measure gaze arrival times, an area of
interest (AOI) was created to cover the toy. Mean gaze arrival times were calculated by

4.9Simulations where πp was not activated counted as looking at the patient at the end of the sequence.

50

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

erand

etran

ereach

training phases

time t of the first activation of πp

Hand
Claw

t0

t

(a) Capri

6 7 11
−600

−400

−200

0

200

months of age

ga
ze

ar
riv

al
tim

e
(m

s)

Gaze behavior in infants

Hand
Claw

(b) infants

Figure 4.6: Anticipatory gaze behavior of CAPRI and in infants when watching
reach-grasp-lift (Etest) sequences performed by hands (blue) or claws (red). We plot (a)
the mean time t during Etest when Capri first activated πp, i.e. it looked at the patient,
and (b) the mean gaze arrival time at the reaching target for infants of different age from
Adam & Elsner (2020). The dotted horizontal line mark event boundaries with agent-
patient-contact at t = t0 in (a) or at t = 0 in (b). Thus, in both plots data points below
this contact line mark an anticipatory gaze. Shaded areas show standard deviation across
simulations (a) and error bars show standard error over participants (b).

subtracting the time the agent entered the AOI from the time of the first AOI fixation.
Thus, a negative gaze arrival time corresponds to goal-anticipatory gaze. As shown in
Fig. 4.6b, from 7 months onward, when the infants observed reaching movies done by
hands, they tended to look at the AOI before the hand arrived. For claw agents, 7-
month-olds tended to first look at the AOI upon arrival of the agent. Similar behavior
developed in Capri (cf. Fig. 4.6a and Fig. 4.6b).

4.4.3 Discussion of results

When did CAPRI show goal-anticipatory gaze shifts? Capri was neither trained
nor preprogrammed to generate goal-anticipatory gaze behavior. Instead, the behavior
emerged purely from the system estimating the ongoing event via Eq. 4.1 and choosing its
actions by means of active inference, aiming to decrease the expected uncertainty about
the ongoing event and the upcoming event boundaries according to Eq. 4.7. Apparently,
for reaching events ereach Capri could minimize uncertainty best by choosing policy πp,
likely because less noisy information about the patient’s position informed the system
where reaching would end.4.10 On the other hand, when the current event is uncertain or
a random motion event erand is unfolding, Capri could minimize the uncertainty best by

4.10Additional evaluations in Suppl. B.4.2 confirm that when uncertainty about event boundaries was
not considered for gaze selection, the system did not show goal-anticipations for hands.

51

looking at the agent, i.e. choosing gaze policy πa, in order to gain clear information about
the agent’s appearance, position, and velocity.

How did goal-anticipatory gaze shifts develop selectively with training? Dur-
ing the beginning of training, Capri did not show goal-anticipatory gaze shifts during
Etest because the system (1.) did not recognize the underlying events, inferring a low
probability for ereach, and (2.) had not yet learned through which policy expected un-
certainty could be decreased. Once its models were sufficiently precise, Capri learned
that fixating the target object served to decrease uncertainty best for ereach. As a result,
goal-anticipatory gaze behavior emerged during the course of training when observing a
reaching hand. For claw agents, the system produced incorrect inferences. This is mainly
due to the system learning that ereach and etran events are typically performed by agents
with a certain hand-like appearance, encoded in their observation ot. As a result, for
claws erand or estill were mostly inferred during a reach, resulting in tracking gaze, i.e. πa.

Could this explain experimental findings for infants? We propose that similar
processes are involved when infants exhibit goal-anticipatory gaze behavior (e.g. Adam &
Elsner, 2020). For most events involving a moving agent, tracking the agent with one’s
gaze can give the most information about the future, e.g. the agent’s future position.
However, for goal-directed events, e.g. a reach, information about the goal can also improve
predictions of the future. If the event is familiar, its event boundary tells us where to look
for the goal. When observing reaching actions, the anticipatory gaze of infants depends
on their action experience and on the familiarity with the agent (Adam et al., 2016; Falck-
Ytter et al., 2006; Kanakogi & Itakura, 2011). In Capri, goal-anticipatory gaze depends
on reaching experience and the recognition of the event.4.11 We assume that infants also
associate perceptual features, e.g. visuospatial features of a hand together with a graspable
object, with the encoding of an event. Unfamiliar situations, e.g. unfamiliar agents, may
not activate the correct event schema for generating goal-anticipatory gaze behavior.

4.5 Related Work

Event and context inference Similar to Capri, the Structured Event Model (SEM)
(Franklin et al., 2020) predicts event dynamics using likelihood distributions generated
by separate neural networks. In SEM, events are inferred via nonparametric Bayesian
clustering. SEM was able to produce human-like event segmentation for complex video
stimuli (Bezdek et al., 2022). However, unlike Capri, SEM does not explicitly model
event boundaries, which prohibits hierarchical predictions. The Contextual Inference
MOdel (COIN) (Heald et al., 2021) is a Bayesian model closely related to Capri. COIN

4.11We further investigate how experience with Egrasp and difficulty to recognize an agent affects the
goal-anticipatory gaze of Capri in additional experiments in Suppl. B.4.3– B.4.4.

52

infers contexts which encode temporal persistent dynamics and guide sensory predictions
(Heald et al., 2021), akin to events. COIN was able to model a variety of findings on
sensorimotor learning and memory formation (Heald et al., 2021, 2023). However, so far,
all experiments have been heavily simplified using one-dimensional sensory observations.

Modeling the development of goal-anticipations Goal-anticipation in infants was
previously modeled by Copete et al. (2016) using open-loop sensorimotor forward simula-
tions. In their model, the goals of reaching motions were detected through salient changes
in predicted tactile simulations. Although the model worked well in a complex robotic
reaching scenario with high-dimensional inputs, the simplified goal detection confines the
approach to scenarios in which the event boundaries involve tactile feedback.

4.6 Discussion

In this chapter, we have proposed how goal-anticipatory gaze shifts in infants may emerge.
We introduced and implemented Capri, a computational model that learns event schema-
ta, which predict the dynamics as well as the start and end conditions of an event. Thus,
Capri implements a simple two-level Thick MDP (see Chap. 3) allowing both low-level
dynamics predictions and high-level event boundary predictions. Capri constantly infers
which event is unfolding based on incoming observations. Additionally, Capri chooses
gaze behavior aiming solely at minimizing expected future uncertainty of its hierarchical
predictions about the current dynamics and the next expected event boundary.

In a simple agent-patient interaction scenario, Capri showed gaze behavior that qual-
itatively models three findings from eye-tracking studies in infants (Adam et al.,
2016; Cannon & Woodward, 2012; Kanakogi & Itakura, 2011; Adam & Elsner, 2020).
(1.) Early during training, Capri did not look at a reaching target before reaching was
complete. Similarly. infants younger than 6 months do not show goal-anticipatory gaze
behavior when observing reaching motions (Adam & Elsner, 2020). (2.) Later during
training, when a familiar hand reached for an object, Capri looked at the target before it
was reached, similar to 7-month-olds looking at the target of a hand-reaching movement
in anticipation (e.g. Adam et al., 2016; Adam & Elsner, 2020). (3.) When an unfamiliar
claw was observed reaching, Capri preferred to follow the agent with its gaze. Similarly,
when 7-month-olds (Adam & Elsner, 2020), and in some studies also 11- or 12-month-olds
(Adam et al., 2016, 2021), observe a mechanical claw reaching for an object, they tend to
perform tracking gaze. None of these effects were explicitly programmed into the system.
Instead, they emerged from combining the structure of event encodings (cf. Sec. 2.1) with
the minimization of predicted uncertainty through active inference (cf. Sec. 2.2.4).

Developmental research has raised the question of which representations may enable
goal-anticipatory gaze behavior in infants. Infants have been proposed to learn flexible

53

goal representations for each event (Cannon & Woodward, 2012). An alternative explana-
tion suggests that infants rely on trajectory-based information to estimate how an observed
movement will end (Ganglmayer et al., 2019). There seems to be experimental evidence
to support both explanations (Cannon & Woodward, 2012; Ganglmayer et al., 2019). Our
modeling results suggest that both types of representation are involved. Event dynamics
models encode changes over a short period of time, essentially predicting exact trajecto-
ries. However, inferring goals through open-loop forward simulation is costly, prone to
error accumulation, and might not elicit goal-anticipatory gaze (additional experiment in
Suppl. B.4.2). Encoding event boundaries enables the direct anticipation of goals.

Nonetheless, various aspects and design considerations demand future modeling work.
First, Capri never develops goal-anticipatory gaze for claw agents. However, starting
around 11 months of age infants perform a goal-anticipatory gaze shifts for mechanical
claws when they show cues of agency, such as self-propelled motion or salient action-
effects (Adam et al., 2017, 2021). Thus, instead of directly conditioning on the agent’s
appearance, more general agency cues may be encoded in the start conditions of the event
schemata. Identifying agency cues on the fly, i.e. within a test phase, could then help to
recognize events, e.g. reaching, thus enabling goal-anticipatory gaze.

Second, Capri selects its gaze to minimize predicted uncertainty over a fixed temporal
horizon into the future. This is sufficient for the investigated scenario. However, the
effects of goal anticipation might emerge even more strongly when the prediction horizon
is dynamically determined based on the available cognitive resources (Butz, 2022; Lieder
& Griffiths, 2020). For example, Capri could learn to only anticipate the next event
boundary when it is certain about the ongoing dynamics. Future research could explore
adaptive uncertainty- or resource-dependent prediction horizons.

Third, while Capri learns from its own experiences, we ignored the fact that motor
signals are available when executing particular events. In future modeling work (see
Chap. 6), we will enhance our system to learn from its own motor experience.

Finally, our experiments were heavily simplified. In more realistic applications there
might be thousands of potential events and tracking the probability of all events at all
steps is not feasible. In the current implementation, we provided supervised information
on observed events during training. Additionally, we specified for each event which entity
takes the role of agent and patient. Furthermore, each event schema components were
modeled as a single-layered neural network, essentially only allowing for linear predictions.
Clearly, this is all unrealistic. Humans learn to attend to relevant events and predict the
potentially non-linear event dynamics of the involved entities purely from the continuous
stream of sensorimotor information. Such self-supervised segmentation and encoding of
events would allow us to apply our modeling approach to much more complex scenarios
with unlabeled events, high-dimensional observations, and more complex dynamics. Thus,

54

as a next step in this thesis, we will attempt to tackle this challenge, by learning to segment
activity into events.

55

5
Sparsely Changing Latent States for

Prediction and Planning5.1

So far, I have emphasized the importance of events for prediction and planning. However,
how an agent could learn to compress its continuous stream of sensorimotor experience
into representations of events has not been addressed. In this chapter, we introduce
GateL0RD, a recurrent neural network (RNN) that incorporates the inductive bias to
maintain sparsely changing latent states. We show in various prediction and planning
tasks that GateL0RD tends to encode the underlying generative factors of the environ-
ment, ignores spurious temporal dependencies, and generalizes better than other RNNs.
Importantly, GateL0RD automatically discretizes time series into events with piece-
wise constant latent states and sparse event boundaries upon which its latent states are
updated.

5.1This chapter is based on the publication:
Gumbsch, C., Butz, M. V. & Martius, G. (2021). Sparsely Changing Latent States for Prediction and
Planning in Partially Observable Domains. Advances in Neural Information Processing Systems (NeurIPS
2021), 17518–17531.
The text has been slightly revised to better fit within the storyline of this thesis. The figures have been
adopted except for minor cosmetic changes. In accordance with the publication and to recognize the
contributions of my coauthors, this chapter is written in first person plural (we).

56

5.1 Introduction

When does the meeting start? Where are my car keys? Is the stove turned off? Since
many aspects of the world are not directly observable, humans need to memorize a lot of
information to plan their behavior. To allow artificial agents to plan in partially observable
domains (see Sec. 2.2.3), we need to give them the ability to develop suitable memory
structures for decision-making.

Recurrent neural networks (RNNs) are often used to deal with partial observability
(Hausknecht & Stone, 2015; Igl et al., 2018; Zhu et al., 2017; Hafner et al., 2019a). They
encode past observations by maintaining latent states, which are iteratively updated at
every time step. However, continuously updating the latent state causes past informa-
tion to quickly “wash out”. Long-Short Term Memory networks (LSTM, Hochreiter &
Schmidhuber, 1997) and Gated Recurrent Units (GRU, Chung et al., 2014) deal with
this problem by using internal gates. However, they cannot leave their latent states com-
pletely unchanged because small amounts of information continuously leak through the
sigmoidal gating functions. Additionally, inputs typically need to pass through the latent
state to affect the output, making it difficult to disentangle observable information from
unobservable information within their latent states.

In contrast to RNNs, humans seem to update latent beliefs about the world somewhat
sparsely in time. For example, as discussed in more detail in Sec. 2.1, it has been argued
that the activations of internal event encodings seem to persist over time (Zacks et al.,
2007; Butz, 2016; Radvansky & Zacks, 2014; Schapiro et al., 2013; Shin & DuBrow, 2021;
Butz et al., 2021). Event Segmentation Theory (EST) (Zacks et al., 2007) proposes that
at every point in time a set of event models is active and provides additional event-relevant
information to predict future perceptions. EST argues that the active set of event models
is only updated sparsely in situations in which transient prediction errors are detected.
Thus, humans seem to discretize sensorimotor activity into long segments with a stable
activity of event-encoding beliefs, and sparse points in time, i.e. event boundaries, in
which these beliefs are updated.

Our main hypothesis is that the latent states of planning agents do not need to be
updated in every time step. We hypothesize that many latent generative factors in the
physical world are constant over extended periods of time. Thus, there might not be a
need to update latent states at every time step. For example, consider dropping an object:
If the drop-off point as well as some latent generative factors, such as gravity and aero-
dynamic object properties, are known, iteratively predicting the fall can be reasonably
accomplished by a non-recurrent process. Similarly, when an agent picks up a key, it is
sufficient to memorize that the key is inside its pocket. However, latent factors typically
change systematically at particular points in time. For example, the aerodynamic prop-

57

erties of a falling object change drastically when it shatters on the floor, and the location
of the key changes systematically when the agent takes it out of their pocket.

These observations are related to assumptions used in causality research. A common
assumption is that the generative process of a system is composed of autonomous mecha-
nisms that describe causal relationships between the variables of the system (Peters et al.,
2017; Schölkopf, 2019; Schölkopf et al., 2021). When focusing on decision making, it has
been proposed that these mechanisms tend to interact sparsely in time and locally in
space (Pitis & Garg, 2020; Seitzer et al., 2021). Causal models aim at creating depen-
dencies between variables only when there exists a causal relationship between them, in
order to improve generalization (Schölkopf, 2019). Updating the latent state of a model
in every time step, on the other hand, induces the prior assumption that the generative
latent state typically depends on all previous inputs. Thus, by suitably segmenting the
dependencies of the latent variables over time, one can expect improved generalization
across spurious temporal dependencies.

In accordance with EST and our sparsely changing latent factor assumption, we in-
troduce Gated L0 Regularized Dynamics (GateL0RD). GateL0RD is a novel RNN
that employs L0-regularized gates for latent state updates, inducing an inductive learning
bias to encode piecewise constant latent state dynamics. GateL0RD learns to com-
press dynamics, e.g. sensorimotor events, into temporally stable latent states. We show
that planning with such sparsely changing latent states is beneficial in several ways, for
example, by improving generalization abilities across temporal dependencies, enhancing
long-horizon planning, and boosting explainability.

The main contributions of this chapter can be summarized as follows.
• We introduce a stochastic, rectified gating function for controlling latent

state updates, which we regularize towards sparse updates using the L0 norm.
• We demonstrate that our network performs as good or better than state-of-the-art

RNNs for prediction or control in various partially observable problems
with piecewise constant dynamics.

• We also show that the inductive bias leads to better generalization under dis-
tributional shifts.

• Lastly, we illustrate that the latent states tend to compactly encode the
dynamics of events and can be easily interpreted by humans.

5.2 L0 Regularization of Latent State Changes

Let fϕ : X ×H → Y×H be a recurrent neural network (RNN) with learnable parameters
ϕ mapping inputs xt ∈ X and ht−1 ∈ H the latent (hidden) state to the output ŷt ∈ Y

58

and updated latent states ht. We assume that the RNN is trained on a training dataset
D which consists of episodes of input-output pairs [(x1,y1), . . . , (xT ,yT)] of length T .

We want the RNN fϕ to learn to solve a task while maintaining piecewise constant
latent states over time. The network creates a dynamics of latent states ht when applied
to a sequence: (ŷt,ht) = fϕ(xt,ht−1) starting from some h0. The most suitable measure
to determine how much a time series is piecewise constant is the L0 norm applied to
temporal changes. With the change in latent state as ∆ht = ht−1 − ht, we define the
L0-loss as

LL0(∆h) = ∥∆h∥0 =
∑
j=1

I(∆hj ̸= 0), (5.1)

which penalizes the number of non-zero entries of the vector of latent state changes
∆h. This regularization loss in Eq. 5.1 can be combined with a task objective to yield
the overall learning objective L of the network:

L(D,ϕ) = Ed∼D

[∑
t

Ltask(ŷt,yt) + βLL0(∆ht)
]

(5.2)

with (ŷt,ht) = fϕ(xt,ht−1). The task-dependent loss Ltask(·, ·) can be, for instance, the
mean-squared error for regression or cross-entropy loss for classification. The hyperpa-
rameter β controls the trade-off between the task-based loss and the desired latent state
regularization. Thus, when training the network to minimize Eq. 5.2, the first term
pushes the network to generate outputs according to the task at hand while the second
term fosters the development of latent states that are piece-wise constant over time.

Unfortunately, we cannot directly minimize this loss using gradient-based techniques,
such as stochastic gradient descent (SGD), due to the non-differentiability of the L0-term.
Louizos et al. (2018) proposed a way to learn L0 regularization of the learnable parameters
of a neural network with SGD. They achieve this by using a set of stochastic gates that
control the usage of the parameters. Each learnable parameter ϕj that is subject to the
L0 loss is substituted by a gated version ϕ′j = Θ(uj)ϕj where Θ(·) is the Heaviside step
function (Θ(u) = 0 if u ≤ 0 and 1 otherwise) and u is determined by a distribution qν(u)
with learned parameters ν. Thus, ϕ′j is only nonzero if uj > 0. This allows us to rewrite
the L0 loss (Eq. 5.1) for ϕ′ as:

LL0(ϕ′,ν) = ∥ϕ′∥0 =
∑
j

Θ(uj) with u ∼ qν(u), (5.3)

where parameters ν influence sparsity and are affected by the loss.

59

To tackle the problem of non-differentiable binary gates, we can use a smooth approx-
imation as a surrogate (Maddison et al., 2017; Louizos et al., 2018; Jang et al., 2017) or
based on samples as in the REINFORCE algorithm (Williams, 1992). Alternatively, we
can substitute its gradients during the backward pass, for example, using the straight-
through estimator (Bengio et al., 2013), which treats the step function as a linear function
during the backward pass. Here, we will employ the straight-through estimator.

To transfer this approach to regularize the latent state dynamics in an RNN, we require
an internal gating function Λ(·) ∈ [0, 1], which controls whether the latent state is updated
or not. For instance:

ht = ht−1 + Λ(u)∆h̃t−1 with ∆h̃t−1 = h̃t − ht−1 (5.4)

where h̃ is the proposed new latent state and u is a stochastic variable depending on
the current input and previous latent state and the parameters, i.e. ut ∼ qν(ut | xt,ht−1).
For brevity, we merge the parameters ν into the overall parameter set, i.e. ν ⊂ ϕ. For
computing Eq. 5.2 we need to binarize the gate by applying the step function Θ(Λ(u)).
Thus we can rewrite Eq. 5.2 as

L(D,ϕ) = Ed∼D

[∑
t

Ltask(ŷt,yt) + βEjΘ(Λ(ujt))
]
. (5.5)

Thus, we replace the L0 norm on latent state changes with a penalty on latent state
updates. Additionally, we average the sparsity loss over latent state dimensions which is
an optional step and identical to using a different β and omitting the expectation.5.2

LSTMs and GRUs use deterministic sigmoidal gates for Λ in Eq. 5.4 to determine how
to update their latent state. However, it is not straightforward to apply this approach
to them (detailed in Suppl. C.1). Thus, we instead introduce a novel RNN, that merges
components from GRUs and LSTMs, to implement the proposed L0 regularization of
latent state changes while still allowing the network to make powerful computations. We
name our network Gated L0 Regularized Dynamics (GATEL0RD).

5.3 GATEL0RD

The core of GateL0RD implements the general mapping (ŷt,ht) = fϕ(xt,ht−1) using
three functions, or subnetworks: (1) a recommendation network rϕ, which proposes a new
candidate latent state, (2) a gating network gϕ, which determines how the latent state is

5.2Averaging over latent state dimensions lets β scale the fraction of hidden state changes instead of
their sum, yielding more natural ranges for the hyperparameter β. In our experiments, we use values of
β ∈ [0.0001, 0.1] that would require roughly β ∈ [10−6, 0.01] when summing the dimensions instead.

60

ht−1 ht

xt

ŷt

gϕ

ϵ ∼ N
+ Λ
ut

rϕ h̃t

bϕ mϕ

⊙

(a) Illustration of the core of GateL0RD.

1

-1 1

uit

Λ(uit)

(b) ReTanh gate Λ(u)

1

-1 1
uit

Θ(uit)

Forward
Backward

(c) Step function Θ(u)

fϕ

fpre
ϕ

fpost
ϕ

f init
ϕ

x0 xt

ŷt

h0 ht

(d) Overall system

Figure 5.1: GATEL0RD architecture (a) GateL0RD with its three subnetworks.
The gating function controls the latent state update (red), the recommendation function
computes a new latent state (blue) and the output function computes the output (purple).
(b) Gate-activation function Λ (ReTanh). (c) Heaviside step function Θ and its gradient
estimator. (d) Overall architecture.

updated, and (3) an output function, which computes the output based on the updated
latent state and the input. The network is systematically illustrated in Fig. 5.1a.

The overall processing is described by the following equations:

ut ∼ N (gϕ(xt,ht−1),Σ) (sample gate input) (5.6)
Λ(u) := max(0, tanh(u)) (new gating function) (5.7)

ht = ht−1 + Λ(ut)⊙ (rϕ(xt,ht−1)− ht−1) (update or keep latent state) (5.8)
ŷt = bϕ(xt,ht)⊙mϕ(xt,ht), (compute output) (5.9)

where ⊙ denotes element-wise multiplication (Hadamard product).
Latent state updates We start with the control of the latent state in Eq. 5.8. Follow-

ing Eq. 5.4, a new latent value is proposed by the recommendation function rϕ(xt,ht−1)
and the update is “gated” by Λ(u). Importantly, if Λ(u) = 0 no change in latent
state occurs. Note that the update in Eq. 5.8 is, in principle, equivalent to the la-
tent state update in GRUs (Chung et al., 2014), for which it is typically written as
ht = Λ(u)⊙ r(xt,ht−1) + (1− Λ(u))⊙ ht−1 with Λ(u) a deterministic sigmoidal gate.

Update gate activation Because we aim for piecewise constant latent states, the
activation function of the update gate Λ defined in Eq. 5.7 needs to be able to output
exactly zero. A potential choice would be the Heaviside function, i.e. either copy the
new latent state or keep the old one. However, this does not allow for any multiplicative

61

computation. So a natural choice is to combine the standard sigmoid gate of RNNs
with the step-function: Λ(u) = max(0, tanh(u)) which we call ReTanh (rectified tanh)5.3.
Figure 5.1b shows the activation function Λ depending on its input. The gate is closed
(Λ(ui) = 0) for all inputs ui ≤ 0. A closed gate results in a latent state that remains
constant in dimension i, i.e., hit = hit−1. On the other hand, for ui > 0 the latent state is
interpolated between the new value proposed and the old one.

Update gate inputs Motivated from the L0 regularization in Eq. 5.3 we use stochastic
inputs for the update gates. However, in our RNN setting, it should depend on the current
situation. Therefore, we use a Gaussian distribution from which we sample ut with the
mean determined by the gating network gϕ(xt,ht−1) as defined in Eq. 5.6. We chose a
fixed diagonal covariance matrix Σ, which we set to Σi,i = 0.1. To train our network using
backpropagation, we implement the sampling using the reparametrization trick (Kingma
& Welling, 2014). We introduce a noise variable ϵ and compute the gate activation as

ut = g(xt,ht−1) + ϵ with ϵ ∼ N (0,Σ). (5.10)

During testing, we set ϵ = 0 to achieve maximally accurate predictions.
RNN cell output Finally the output ŷ is computed from the inputs and the new

latent state ht in Eq. 5.9. Inspired by LSTMs (Hochreiter & Schmidhuber, 1997), the
output is determined by a multiplication of a normal branch (bϕ(xt,ht)) and a sigmoidal
gating branch (mϕ(xt,ht)). We thus enable both additive as well as multiplicative effects
of xt and ht on the output, enhancing the expressive power of the piecewise constant
latent states.

Subnetwork implementations In our implementation, all subnetworks are Multi-
Layer Perceptrons (MLPs). rϕ, bϕ use a tanh output activation; mϕ uses a sigmoid; gϕ
has a linear output. bϕ,mϕ are one-layer networks. By default, rϕ, gϕ are also one-
layer networks. However, when comparing against deep (stacked) RNNs, we increase the
number of layers of rϕ and gϕ to up to three (cf. Suppl. C.2).

Differentiability We use the loss of Eq. 5.5 that is fully differentiable except for
the Heaviside step function Θ. A simple approach to deal with discrete variables is to
approximate the gradients by a differentiable estimator (Bengio et al., 2013; Jang et al.,
2017; Maddison et al., 2017). We employ the straight-through estimator (Bengio et al.,
2013), which substitutes the gradients of the step function Θ by the derivative of the
linear function (see Fig. 5.1c).

Overall architecture We use GateL0RD as a memory module of a more general
architecture illustrated in Fig. 5.1d. The network input is preprocessed by a feed-forward
network fpre

ϕ (xt), which is an MLP or a Convolutional Neural Network (LeCun et al.,

5.3Note that tanh(u) = 2 · sigmoid(2u)− 1.

62

1989) for image-like inputs. Similarly, its output is postprocessed by an MLP fpost
ϕ (ŷt)

(i.e. a read-out layer) before computing the loss. The latent state h0 of GateL0RD could
be initialized by 0. However, improvements can be achieved if the latent state is instead
initialized by another network f init

ϕ , a shallow MLP that sets h0 based on the first input
(Mohajerin & Waslander, 2017; Ba et al., 2015).

Ablations In the Supplementary Material, we ablate various components of Ga-
teL0RD, such as the gate activation function Λ (Suppl. C.3.1), the gate stochasticity
(Suppl. C.3.2), the hidden state initialization through f init

ϕ (Suppl. C.3.3), the multiplica-
tive output branch mϕ (Suppl. C.3.4), and compare against L1/L2-variants (Suppl. C.3.5).

5.4 Experiments

Our experiments offer answers to the following questions:
• Does GATEL0RD generalize better to out-of-distribution inputs in par-

tially observable domains than other commonly used RNNs? We demon-
strate both GateL0RD’s ability to generalize from a 1-step prediction regime to
autoregressive N -step prediction (Sec. 5.4.3) and its prediction robustness when
facing action rollouts from different policies (Sec. 5.4.4).

• Is GATEL0RD suitable for control problems that require (long-horizon)
memory? We reveal precise memorization abilities (Sec. 5.4.5), show that Ga-
teL0RD is more sample efficient in various decision-making problems requiring
memory (Sec. 5.4.6), and generalizes well across different durations of memoriza-
tion (Sec. 5.4.7).

• Are the developing latent states in GATEL0RD easily interpretable by
humans? Finally, we examine exemplary latent state codes and illustrate their
explainability (Sec. 5.4.8).

5.4.1 Model Setup

In our experiments we compare GateL0RD to LSTMs (Hochreiter & Schmidhuber,
1997), GRUs (Chung et al., 2014), and Elman RNNs (Elman, 1990). We use the archi-
tecture shown in Fig. 5.1d for all networks, only replacing the core fϕ. We examine the
RNNs both as a prediction model for model-predictive control (MPC) as well as a memory
module in a reinforcement learning (RL) setup. The networks were trained using Adam
(Kingma & Ba, 2015), with learning rates and layer numbers determined through a grid
search for each network type individually (cf. Suppl. C.2).

When used for prediction, the networks received input xt = (ot,at) with observations
ot ∈ O and actions at ∈ A at time t and were trained to predict the change in observation

63

(a) Robot Remote Control (b) Shepherd (c) Pick&Place (d) MiniGrid
Figure 5.2: Simulation environments of GATEL0RD: (a) and (b) are continuous
2D-control tasks: (a) requires triggering the control of a robot by activating a computer;
(b) needs memorization of the sheep’s position behind a wall to capture it later. (c) is
the Fetch Pick&Place environment (Brockman et al., 2016) modified to become partially
observable and (d) shows a problem (DoorKey-8x8) of the MiniGrid suite (Chevalier-
Boisvert et al., 2018b).

i.e. yt = ∆ot+1 (residual connections, detailed in Suppl. C.2.1). During testing, the next
observational inputs were generated autoregressively as ôt+1 = ot + ŷt. Each experiment
using predictive models was run with 20 random initializations.

In the RL setting (detailed in Suppl. C.2.6), the networks received as input xt = ot
the observation ot ∈ O and were trained as an actor-critic architecture to produce both
policy and value estimations using Proximal Policy Optimization (PPO, Schulman et al.,
2017). All RL experiments were performed with 10 random seeds per configuration.

5.4.2 Simulation Environments

We evaluated GateL0RD in a variety of partially observable scenarios. In the Billiard
Ball scenario a single ball, simulated in a realistic physics simulator, is shot on a pool
table with low friction from a random position in a random direction with randomly
selected velocity. The time series contain only the positions of the ball. This is the only
considered scenario without actions purely analyzing predictions.

Robot Remote Control is a continuous control problem where an agent moves ac-
cording to two-dimensional actions at (Fig. 5.2a). Once the agent reaches a fixed position
(terminal), a robot in another room is also controlled by the actions. The observable
state ot is composed of the agent’s position and the robot’s position. Thus, whether the
robot is controlled or not is not directly observable. When planning, the goal is to move
the robot to a particular goal position (orange square).

Shepherd is a challenging continuous control problem that requires long-horizon mem-
orization (Fig. 5.2b). Here, the agent’s actions at are the two movement directions and a
grasp action that controls whether to pick up or drop the cage. The sheep starts at the

64

top of the scene moving downward with a fixed randomly generated velocity. The sheep
is then occluded by the wall, which masks its position from the observation. If the agent
reaches the lever, the gate inside the wall opens, and the sheep appears again at the same
horizontal position at the open gate. The goal is to get the sheep to enter the previously
placed cage. The challenge is to memorize the sheep’s horizontal position exactly over
a potentially long time to place the cage properly and to then activate the lever during
mental simulation. The seven-dimensional observation ot is composed of the height of
the occluder and the positions of all entities.

Fetch Pick&Place (OpenAI Gym v1, Brockman et al., 2016) is an RL benchmark
task in which a robotic manipulator must move a randomly placed box (Fig. 5.2c). In our
modified setting5.4, the observable state ot is composed of the gripper- and object position
and the relative positions of the object and fingers with respect to the gripper. The
four-dimensional actions at control the gripper position and the opening of the fingers.

MiniGrid (Chevalier-Boisvert et al., 2018b) is a gridworld suite with a variety of
partially observable RL problems. At every time t, the agent (red triangle in Fig. 5.2d)
receives an image-like, restricted, ego-centric view (gray area) as its observation ot (7×7×
3-dimensional). It can move forward, turn left, turn right, or interact with objects using
its one-hot-encoded actions at. The problems vary largely in their difficulty, typically
contain only sparse rewards, and often involve memorization, e.g. remembering that the
agent picked up a key. Suppl. C.2.7 details all MiniGrid environments examined.

5.4.3 Learning Autoregressive Predictions

First, we consider the problem of autoregressive N -step prediction in the Billiard Ball
scenario. Here, during testing, the networks receive the first two ball positions as input and
predict a sequence of 50 ball positions. We first train the RNNs using teacher forcing,
whereby during training the real inputs are fed to the networks. Figure 5.3a shows
the prediction error for autoregressive predictions. Only GateL0RD with latent state
regularization (β = 0.001) is capable of achieving reasonable predictions in this setup. The
other RNNs seem to learn to continuously update their estimates of the ball’s velocity
based on the real inputs. As a result, their prediction accuracy drops when during testing
the real inputs are not available. Because GateL0RD punishes continuous latent state
updates, learning leads to updates of the estimated velocity only when required, i.e. upon
collisions, improving its prediction robustness.

The problems of RNNs learning autoregressive prediction are well known (Bengio et al.,
2015a; Lamb et al., 2016). A simple countermeasure is scheduled sampling (Bengio et al.,
2015a), where each input is stochastically determined to be either the last output of the

5.4We omit all velocities and the rotation of the object to make the scenario partially observable.

65

(a) (b) (c) (d)

1k 2k 3k 4k 5k
10−2

10−1

100

epochs

M
SE

Testing prediction error

Elman RNN
GRU
LSTM
GateL0RD β = 0
GateL0RD β = .001

1k 2k 3k 4k 5k

10−2

10−1

epochs
M

SE

Testing prediction error

Elman RNN
GRU
LSTM
GateL0RD

1k 2k 3k 4k 5k

10−2

0.03

epochs

M
SE

Testing prediction error

β = 0
β = 0.001
β = 0.01
β = 0.1

1k 2k 3k 4k 5k
10−2

10−1

100

epochs

E i
,t
[Θ

(Λ
(u

i t)
)]

Number of gate openings

β = 0
β = 0.001
β = 0.01
β = 0.1

Figure 5.3: Billiard Ball prediction: prediction errors when trained using teacher
forcing (a), or using scheduled sampling (b). GateL0RD’s prediction error (c) and
mean number of gate openings (latent state updates) (d) for different values of β. Shaded
areas show ± one standard deviation.

network or the real input. The probability of using the network output increases over
the course of training. While the prediction accuracy of all RNNs improves when trained
using scheduled sampling, GateL0RD (β = 0.001) still achieves the lowest prediction
errors (see Fig. 5.3b).

How does the regularization affect GateL0RD? Figure 5.3c shows the prediction error
for GateL0RD for different settings of β. While a small regularization (β = 0.001) leads
to the highest accuracy in this scenario, similar predictions are obtained for different
strengths (β ∈ [0, 0.01]). Overly strong regularization (β = 0.1) degrades performance.
Figure 5.3d shows the average gate openings, i.e. latent state updates, per sequence. As
intendet, β directly affects how often GateL0RD’s latent state is updated: a higher
value results in fewer gate openings, and thus fewer latent state changes. Note that even
for β = 0 GateL0RD learns to use fewer gates over time. We describe this effect in more
detail in Suppl. C.4.1.

5.4.4 Generalization Across Policies

Traditionally, in model-based control, an agent learns directly from its own interactions
with the environment (Sutton & Barto, 2018). In offline RL (Levine et al., 2020), data
that was previously generated using some policy, is later reused to train a new model or
policy. This is a great challenge, mainly due to the distributional shift: While the data
was generated under one distribution, the model will be evaluated under a different one
(Levine et al., 2020). In particular, when priorities change or a data-generating policy
switches behavior, different spurious temporal correlations can easily occur in the resulting
sensorimotor data. This makes training models or policies based on offline data highly

66

(a) (b) (c) (d)

2k 4k 6k 8k 10k
10−4

10−3

10−2

epochs

M
SE

Testing error

Elman RNN
GRU
LSTM
GateL0RD

2k 4k 6k 8k 10k

10−3

10−2

epochs

M
SE

Generalization error

Elman RNN
GRU
LSTM
GateL0RD

2k 4k 6k 8k 10k
0

0.2

0.4

0.6

0.8

epochs

su
cc

es
s

ra
te

Planning success

Elman RNN
GRU
LSTM
GateL0RD

0

1

0

1 agent
x
y

robot
x
y

0 20 40
t

i
0

2

hi
t − hi

0

Figure 5.4: Generalization in Robot Remote Control: prediction error on the test
set (a) and on the generalization set (b). Success rate for MPC (c). Shaded areas show
standard deviation (a – b) or standard error (c). Exemplary generalization sequence (d)
showing the agent’s positions (top), the robot’s positions (middle) with GateL0RD’s
predictions shown as dots, and GateL0RD’s latent states (bottom).

challenging. Consequently, systems that generalize across such correlations are needed.
We investigate this aspect in Robot Remote Control.

In Robot Remote Control the training data was generated by performing rollouts with
50 time steps of a policy that produces random but linearly magnitude-increasing actions.
The magnitude of the actions in the training data is positively correlated with time,
which is a spurious correlation that does not alter the underlying transition function of
the environment in any way. We train different RNNs as models to predict the sequence
of observations given the initial observation and a sequence of actions. We test the
networks using data generated by the same policy (test set) and generated by a policy
that samples uniformly random actions (generalization set). Additionally, we employ the
trained RNNs for model-predictive control (MPC) using iCEM (Pinneri et al., 2021a), a
random shooting method based on CEM (Rubinstein & Davidson, 1999, see also 2.2.1)
that iteratively optimizes its actions to move the robot to the given goal position.

As shown in Fig. 5.4a, GateL0RD (β = 0.001) outperforms all other RNNs on the test
set. When tested on the generalization data (Fig. 5.4b), the prediction errors of the GRU
and LSTM networks even increase over the course of training. Thus, they likely overfit
to the spurious correlations in the training data. Only GateL0RD is able to maintain
a low prediction error. Figure 5.4c shows the MPC performance. GateL0RD yields the
highest success rate and outperforms all other RNNs.

Note that the other RNNs’ failure to generalize is not primarily caused by the choice
of hyperparameters: Even when the learning rate of the other RNNs was optimized for
the generalization set, GateL0RD still outperformed them (additional experiment in

67

(a) (b) (c)

2k 4k 6k 8k 10k
10−3

10−2

10−1

epochs

M
SE

Testing prediction error

Elman RNN
GRU
LSTM
GateL0RD

2k 4k 6k 8k 10k

10−2

10−1

epochs

M
SE

of
x
sh

ee
p

Sheep reappearance error

Elman RNN
GRU
LSTM
GateL0RD

2k 4k 6k 8k 10k
0

0.2

0.4

0.6

epochs

su
cc

es
s

ra
te

Planning success

Elman RNN
GRU
LSTM
GateL0RD

Figure 5.5: Precise memorization in Shepherd: prediction error for 100-step pre-
dictions (a) and 1-step prediction errors of the sheep’s x−position at the time step of its
reappearance behind the gate (b). Success rate for capturing the sheep using MPC (c).
Shaded areas show standard deviation (a-b) or standard error (c).

Suppl. C.4.3). Instead, GateL0RD’s better performance is likely because it mostly
encodes unobservable information within its latent state ht. This is shown exemplarily
in Fig. 5.4d (bottom row) and is further analyzed in Suppl. C.4.2. The latent state
remains constant, and only one dimension changes once the agent controls the robot’s
position (middle row) through its actions. Because the other RNNs also encode observable
information, e.g. actions, within their latent state, they are more negatively affected by
distributional shifts and spurious temporal dependencies.

GateL0RD’s improved generalization across temporal dependencies also holds for
more complicated environments. In an additional experiment in Suppl. C.4.4 we show
similar effects for the Fetch Pick&Place environment when trained on reach-grasp-and-
transport sequences and tested to generalize across grasp timings.

5.4.5 Memorization

We hypothesized that GateL0RD’s latent state update strategy fosters the exact memo-
rization of unobservable information, which we examine in the Shepherd task. We tested
the RNNs when predicting sequences of 100 observations given the first two observations
and a sequence of actions. Again, we used the trained models for MPC using iCEM (Pin-
neri et al., 2021a), with the aim of catching sheep by first placing a cage and then pulling
a lever. This is particularly challenging to plan because the sheep’s horizontal position
needs to be memorized exactly before it is occluded for quite some time (> 30 steps) in
order to accurately predict, and thus place the cage at the sheep’s future position.

Figure 5.5a shows the prediction errors during training. GateL0RD (β = 0.0001)
continuously achieves a lower prediction error than the other networks. Apparently, it is
able to accurately memorize the sheep’s future position while occluded. To investigate the

68

(a) (b) (c) (d) (e) (f)

0 10 20 30
0

.5

1

1e5 frames

success rate
SimpleCrossingS9N3

vanilla
GateL0RD

0 25 50
0

.5

1

1e5 frames

sucess rate
DoorKey-8x8

vanilla
GateL0RD

0 35 70
0

.5

1

1e5 frames

success rate
RedBlueDoors-8x8

vanilla
GateL0RD

0 5 10 15
0

.5

1

1e6 frames

success rate
LavaCrossingS9N2

vanilla
GateL0RD

0 25 50
.4

.6

.8

1

1e6 frames

success rate
MemoryS13Random

vanilla
GateL0RD

0 25 50
0

.5

1

1e6 frames

success rate
KeyCorridorS3R3

vanilla
GateL0RD

Figure 5.6: Sample efficient RL in MiniGrid: success rate in solving various tasks
when GateL0RD replaces an LSTM (vanilla) in a PPO architecture. Shaded areas
depict the standard deviation.

memorization, we consider the situation occurring during planning: the sequence of (past)
observations is fed into the network, and the prediction error of the sheep’s horizontal
position at the time of reappearance is evaluated (Fig. 5.5b). Only GateL0RD reliably
learns to predict where the sheep will appear when the lever is activated. GRU and
Elman RNNs do not noticeably improve in predicting the sheep’s position. LSTMs need
more training to improve their predictions and do not reliably reach GateL0RD’s level
of accuracy. This is also reflected in the success rate when the networks are used for MPC
(Fig. 5.5c). Only GateL0RD manages to solve this challenging task with a mean success
rate greater than 50%.

5.4.6 Sample Efficiency in Reinforcement Learning

Now that we have outlined some of GateL0RD’s strengths in isolation, we want to ana-
lyze whether GateL0RD can improve existing RL-frameworks when it is used as a mem-
ory module for POMDPs. To do so, we consider various problems that require memory in
the MiniGrid suite (Chevalier-Boisvert et al., 2018b). Previous work (Chevalier-Boisvert
et al., 2018a; Goyal et al., 2021b; Madan et al., 2021) used Proximal Policy Optimiza-
tion (PPO) (Schulman et al., 2017) to solve MiniGrid problems. We took an existing
architecture based on Chevalier-Boisvert et al. (2018a) (denoted as vanilla, detailed in
Suppl. C.2.6) and replaced the internal LSTM module with GateL0RD (β = 0.01).
Note that we left the other hyperparameters unmodified.

As shown in Fig. 5.6 the architecture containing GateL0RD achieves the same suc-
cess rate or higher than the vanilla baseline in all the tasks considered. Additionally,

69

GateL0RD is more sample efficient, i.e. it is able to reach a high success rate (Fig. 5.6)
or a high reward level faster (Suppl. C.4.6). The difference in sample efficiency tends
to be more pronounced for problems that require more training time. It seems that the
inductive bias of sparsely changing latent states enables GateL0RD to quicker learn to
encode task-relevant information, e.g. key pick-up, within its latent states. Additionally,
unchanged latent states enable longer backpropagation of information in time with less
vanishing gradients. This could boost learning of long-horizon dependencies.

5.4.7 Zero-Shot Policy Transfer

The amount of training an RL agent needs to solve a task scales with the complexity of the
problem. A simple approach to reduce training time for complex tasks is to train the agent
in simpler task variants and hope that the learned policy transfers well to the more com-
plex versions of the task. However, this requires architectures that generalize well across
problem complexity, e.g. environment size. Previous experiments revealed GateL0RD’s
precise memorization and its robustness towards spurious temporal correlations. Thus,
we hypothesize that GateL0RD can generalize well across task horizons.

(a)

0 25 50
0

0.5

1

1e5 frames

su
cc

es
s

ra
te

generalization success
DoorKey-16x16

vanilla
GateL0RD

(b)

0 25 50

0.4

0.6

0.8

1

1e6 frames

su
cc

es
s

ra
te

generalization success
MemoryS17Random

vanilla
GateL0RD

Figure 5.7: Zero-shot policy
transfer in MiniGrid: We plot
zero-shot success rate upon policy
transfer to new problems. Shaded
areas depict the standard deviation.

We investigate this aspect in MiniGrid by train-
ing an RL agent (as in 5.4.6) containing an LSTM
(vanilla) or GateL0RD on two problems that re-
quire memory, i.e. DoorKey-8x8 (Fig. 5.2d) and
MemoryS13Random. We evaluate the learned policies
on the same problems in larger environments, i.e.
DoorKey-16x16 and MemoryS17Random. Figure 5.7
plots the success rate in solving the more complex
problems over training time in the simpler variants.
For both problems GateL0RD achieves a higher
success rate. The better generalization performance
cannot simply be explained by GateL0RD’s better
performance on these types of problem. In train-
ing tasks, both architectures reach approximately
the same success rate after sufficient training (cf.,
Fig. 5.6b). Instead, the higher success rate dur-
ing zero-shot policy transfer is likely due to Ga-
teL0RD generalizing better across task horizons.

70

(a) Billiard Ball trajectory (b) Billiard Ball latent states

i

-2
0
2

i

-2
0
2

0 10 20 30 40
t

i

-2
0
2

hi
t − hi

0

GateL0RD

GRU

LSTM

(c) FPP sequence

0.5
1

1.5
gripper

x
y
z

0.5
1

1.5
object

x
y
z

0 10 20
t

i

-2
0
2

hi
t − hi

0

Figure 5.8: Explainability of the latent states: (a) Billiard Ball trajectory for Ga-
teL0RD (β = 0.01) with real positions (white), provided inputs (blue), and predicted
positions (red, saturation increasing with time). The inputs for which at least one gate
opened are outlined in black. (b) The latent states for the depicted trajectory for Ga-
teL0RD, GRU, and LSTM (cell states). (c) Fetch Pick&Place (FPP) sequence with
real (solid) and predicted (dotted) positions of gripper (top) and object (middle) and
GateL0RD’s latent states (bottom). Latent states are shown relative to initialization,
i.e. ht − h0.

5.4.8 Explainability of the Latent States

Lastly, we analyze the latent representations of GateL0RD, starting with Billiard Ball.
Figure 5.8a shows one exemplary ball trajectory in white and the prediction in red. Inputs
for which at least one gate opened are outlined in black. Figure 5.8b shows the corre-
sponding latent states ht relative to the initial latent state h0. GateL0RD updates two
dimensions of its latent states around the points of collisions to account for the changes
in x- and y-velocity of the ball. For β = 0.01 we find on average only two latent state
dimensions change per sequence (see Suppl. C.4.1), which hints at a tendency to encode x-
and y-velocity using separate latent dimensions. In contrast, the exemplary latent states
of the GRU and LSTM networks shown in Fig. 5.8b are not as easily interpretable.

For Robot Remote Control, GateL0RD (β = 0.001) updates only its latent state
once it controls the robot (exemplary shown in Fig. 5.4d). Thus, the latent state clearly
encodes control over the robot. We use the Fetch Pick&Place scenario as a higher-
dimensional problem to investigate latent state explainability when training on grasping
sequences (detailed in Suppl. C.2.5). Here, GateL0RD updates the latent state typically
when the object is grasped (exemplary shown in Fig. 5.8c). This hints at an encoding of
‘object transportation’ using one dimension. Other RNNs do not achieve such a clear rep-
resentation, neither in Robot Remote Control nor in Fetch Pick&Place (see Suppl. C.4.2
and C.4.4 for more examples).

71

5.5 Related Work

Structural regularization of latent updates: Pioneering work on regularizing latent
updates was done by Schmidhuber (1992) who proposed the Neural History Compressor,
a hierarchy of RNNs that autoregressively predict their next inputs. Thereby, the higher-
level RNN only becomes active and updates its latent states, if the lower-level RNN fails to
predict the next input. To structure latent state updates, the Clockwork RNN (Koutnik
et al., 2014) partitions the hidden neurons of an RNN into separate modules, where each
module operates at its own predefined frequency. Along similar lines, Phased LSTMs
(Neil et al., 2016) use gates that open periodically. The update frequency in Clockwork
RNNs and Phased LSTMs does not directly depend on the world state, but only on a
predefined time scale.

Loss-based regularization of latent updates: Krueger & Memisevic (2015) have
proposed using an auxiliary loss term that punishes the change in L2-norms of the latent
state, which results in piecewise constant norms but not dynamics of the hidden states.

Binarized update gates: Closely related to our ReTanh, Skip RNNs (Campos et al.,
2018) use a binary gate to determine latent state update decisions. In Skip RNNs, the gat-
ing depends only on the previous latent state and not the input. Thus, given a particular
latent state, the time required until the update is performed is fixed. Similarly, Gumbel-
Gate LSTMs (Li et al., 2018) replace sigmoid input gates and forget gates with stochastic
binary gates, approximated by a Gumbel-Softmax estimator (Jang et al., 2017). How-
ever, sparsity of the latent state updates is not incentivized. Selective-Activation RNNs
(SA-RNNs) (Hartvigsen et al., 2020) modify a GRU by masking the latent state with
deterministic, binary gate. Along similar lines, Variational Sparse Gating (VSG) (Jain
et al., 2022) samples latent state updates in a GRU from a Bernoulli distribution. Both
SA-RNNs and VSG incentivize sparse updates via an auxiliary loss term. However, for
GRUs the network output corresponds to the networks’ latent state, thus, a piecewise
constant latent state will result in piecewise constant outputs.

Attention-based latent state updates: Sparse latent state updates can also be
achieved using attention (Graves et al., 2014; Bahdanau et al., 2015; Vaswani et al.,
2017). Neural Turing Machines (Graves et al., 2014) use an attention mechanism to
update an external memory block. Thereby, the attention mechanism can focus and
only modify particular locations within the memory. Recurrent Independent Mechanisms
(RIMs) (Goyal et al., 2021b) use a set of recurrent cells that only interact sparsely with
the environment and one another through competition and a bottleneck of attention.
Recent extensions explore the update of the cells and the attention parameters at different
time scales (Madan et al., 2021). For RIMs, the sparsity of the latent state changes is
predefined via a hyperparameter that sets the number of active cells. In contrast, our L0

72

loss implements a soft constraint.
Event-encoding latent states Inspired by studies on event cognition, a number of

RNNs have been proposed to compress events into stable latent codes. Reynolds et al.
(2007) employed an update gate that modifies the latent state of an RNN when prediction
errors exceed a threshold. Along similar lines, gated surprise (Humaidan et al., 2020) or
surprise in combination with counterfactual regularization (Humaidan et al., 2021) was
used to update parts of an RNN latent state. In REPRISE (Butz et al., 2019), latent
states were inferred to retrospectively explain recent sensorimotor experiences. All of
these approaches managed to develop latent states encoding events. However, so far, each
technique has been used only on a family of highly related problems. Thus, it still needs
to be shown whether these approaches transfer to other environments and scale to more
complex problems.

Transformers: Transformers (Vaswani et al., 2017) omit memory altogether, process-
ing a complete sequence for every output at once using query-key-based attention. While
this avoids problems arising from maintaining a latent state, their self-attention mecha-
nism comes with high computational costs. Transformers have shown breakthrough suc-
cess in natural language processing. Recently, RL and planning systems have also started
to include transformers (Parisotto et al., 2020; Chen et al., 2022; Robine et al., 2023;
Micheli et al., 2023); however, it remains challenging to train them for these applications
(Parisotto et al., 2020).

Structured State Space Sequence: Concurrently to our work, the problem of long-
horizon memory was tackled by the Structured State Space Sequence (S4) models (Gu
et al., 2021). S4 builds on the state space model (SSM), a classical model from control
theory for continuous-timed inputs (Bertsekas, 2012). S4 learns the involved matrices of a
linear SSM and an appropriate step size for handling discrete inputs through deep learning.
Crucially, S4 is initialized with a specialized, structured state matrix (HiPPO matrix, Gu
et al., 2020), which has been shown to capture long-ranging dependencies (Gu et al., 2021).
In contrast to other RNNs, S4 brings the computational benefit that it offers parallel
computation, i.e. S4 can process a full time series at once by applying a convolutional
filter (Gu et al., 2021; Deng et al., 2023). S4 has been shown to learn dependencies over
thousand of time steps (Gu et al., 2021). Although originally the S4 layer was designed
to operate on one-dimensional inputs and outputs, extensions transferred the approach to
multi-input-output layers (Smith et al., 2022). Recent work showed that S4-based models
are well suited for model-based RL (Deng et al., 2023).

73

5.6 Discussion

We have introduced a novel RNN architecture (GateL0RD), which implements an in-
ductive bias to develop sparsely changing latent states. The bias is realized by a gating
mechanism, which minimizes the L0 norm of latent updates. In several empirical eval-
uations, we quantified and analyzed the performance of GateL0RD in various predic-
tion and control tasks. The results support our hypothesis that networks with piecewise
constant latent states can generalize better to distributional shifts of the inputs, ignore
spurious time dependencies, and enable precise memorization. This translates into im-
proved performance for both model-predictive control (MPC) and reinforcement learning
(RL). Moreover, we demonstrated that the latent space becomes interpretable, which is
important for explainability reasons.

Our approach introduces an additional hyperparameter which controls the trade-off be-
tween the task at hand and latent space constancy. When chosen in favor of explainability,
it can reduce the in-distribution performance while improving its generalization abilities.
When the underlying system has continuously changing latent states, our regularization
is counterproductive. As demonstrated by an additional experiment in Suppl. C.4.5, the
unregularized network performs well in such cases.

Our sparsity-biased gating mechanism segments sequences into chunks of constant la-
tent activation. These latent dynamics can show a striking similarity to what has been
proposed for the temporally persistent activity of event models of human cognition (see
Sec. 2.1). For example, while the robot reaches for an object in the Fetch Pick&Place
simulation the latent state remains unchanged. Once the object is grasped by the gripper,
the latent state is updated but remains unchanged while the object is carried. This sug-
gests event codes for <reaching for an object> or <lifting an object> that develop
within GateL0RD. Thus, when embedded in a suitable sensorimotor learning architec-
ture, GateL0RD develops latent states that compactly encode sensorimotor events.

The general approach of this thesis, Thick MDPs outlined in Chap. 3, proposes that
hierarchical models with nested time scales can develop based on temporally persistent
event codes. In this chapter, we demonstrated that GateL0RD is a practical deep
learning method to learn such codes with minimal supervision.5.5 Thus, GateL0RD
may allow us to develop hierarchical predictions based on the discrete dynamics of its
latent state – a direction we will explore in the next chapter.

5.5The only explicit supervision needed is correctly setting the hyperparameter β.

74

6
Hierarchical Predictions from Discrete Latent

Dynamics6.1

Events and their boundaries seem like ideal representations for the segmentation and
hierarchical compression of activity. With GateL0RD we now have a practical deep
learning method for encoding events as sparsely updated latent states. In this chapter,
we use GateL0RD to learn hierarchical predictions in a self-supervised way. Our system
trains a high-level model based on the sparse latent state changes of a low-level model. For
simulated robotic manipulations, we show that the high level learns to make meaningful
temporal abstract predictions. Furthermore, when applying the gaze selection strategy
of Capri, our system develops goal-anticipatory gaze behavior as found in eye-tracking
studies with infants thereby overcoming simplifications of our previous model.

6.1This chapter is based on the publication:
Gumbsch, C., Adam, M., Elsner, B., Martius, G. & Butz, M. V. (2022). Developing Hierarchical Antic-
ipations via Neural Network-based Event Segmentation. IEEE International Conference on Development
and Learning (ICDL 2022), 1-8.
The text has been slightly revised and shortened, mainly to avoid repetitions from previous chapters.
The figures have been adopted except for minor cosmetic changes. In accordance with the publication
and to recognize the contributions of my coauthors, this chapter is written in first person plural (we).

75

Event learning

REACH

Event inference

REACH

Event boundary prediction

(a) infants
Event learning Event inference Event boundary prediction

(b) model

Figure 6.1: Hypothesis for modeling goal anticipations via event codes: (a)
Infants first learn event encodings from their interaction with the world (left). When they
see familiar movements, these encodings get activated (middle), enabling the anticipation
of the next event boundary, i.e. the action consequences (right). (b) We model this process
in artificial systems, which learn event codes in a self-supervised manner. Screenshots are
taken from Adam & Elsner (2020).

6.1 Introduction

Humans are able to generate hierarchical predictions on various time scales. This ability
seems to develop already during the first year of life, as indicated by findings on goal-
anticipatory gaze shifts (reviewed in detail in Sec. 4.2.1): Infants start to look at the
goal of an action event before it is finished. Goal-anticipatory gaze shifts start to arise
with approximately six months of age (Kanakogi & Itakura, 2011; Adam & Elsner, 2020).
These goal anticipations seem to be to some degree temporal abstract, seeing that they do
not depend on the duration of the event as much as on other factors, e.g. agent familiarity,
action familiarity, the ability to execute the action themselves, agency cues, and action
effects (Gredebäck et al., 2010; Kanakogi & Itakura, 2011; Adam et al., 2016; Adam &
Elsner, 2018, 2020; Adam et al., 2021; Elsner & Adam, 2021).

In Chap. 4 we have introduced Cognitive Action PRediction in Infants (Capri), a
computational model based on theories of hierarchical event-predictive learning (Zacks &
Tversky, 2001; Zacks et al., 2007; Butz, 2016; Butz et al., 2021; Elsner & Adam, 2021)
and active inference (Friston et al., 2016; Parr et al., 2022) to explain these findings. We
briefly review the model here and illustrate the modeling hypothesis in Fig. 6.1. Our main

76

assumption is that infants learn to hierarchically compress their sensorimotor experiences
into event schemata. Via these event schemata, they not only learn to predict how an event
typically unfolds, but also learn to make temporal abstract predictions about upcoming
event boundaries. Once learned, the observation of a known event, e.g., a hand moving
towards an object, results in the activation of the matching event schema. Through
this event schema, infants can directly anticipate the next event boundary, i.e. the hand
touching the object. This activated schema leads to the generation of goal-anticipatory
gaze shifts, striving to minimize uncertainty about when, where, and how the event will
end.

Although Capri was able to model a variety of findings, the existing implementation
has several limitations (see Sec. 4.6). Most notably, Capri learns event models based on
supervised segmentations of sequences. Since event segmentation is a crucial aspect in
the development of event schemata (Zacks et al., 2007), this could raise doubts about the
cognitive plausibility of the model. Additionally, this prevents applying Capri to other
scenarios in which events are unknown.

In Chap. 5, we have introduced Gated L0 Regularized Dynamics (GateL0RD), a novel
RNN that only sparsely updates its latent state when the task demands it. We saw that
for some of the investigated tasks, GateL0RD developed temporally stable latent states
that seem to encode simple sensorimotor events, such as reaching or lifting. Our general
approach Thick MDPs (Chap. 3) proposes that hierarchical predictions can develop from
temporally stable event codes. Thus, through GateL0RD we could improve the modeling
approach Capri by giving the model the ability of self-supervised event segmentation and
developing hierarchical predictions from scratch.

In this chapter we introduce a hierarchical recurrent neural network architecture, which
can be trained end-to-end. The architecture learns to compress sensorimotor sequences
into sparsely changing latent states, developing event-encoding latent states from scratch.
Based on these event codes, the system learns temporal abstract event boundary pre-
dictions, based on the principles of Thick MDPs (see Chap. 3), that anticipate the
observations encountered upon latent state changes. Striving to minimize uncertainty
across its hierarchical predictions, the system develops goal-anticipatory behavior similar
to the way it develops in infants.

The main contributions of this chapter are the following:
• We develop a hierarchical architecture in which a higher level learns to predict

the situations in which the latent state of a lower level changes. This is the first
proof of concept that our algorithm for learning Temporal Hierarchies from
Invariant Context Kernels (Thick, Chap. 3) works in practice.

• We show for different interactions of a simulated robotic manipulator that mean-
ingful event boundary predictions develop at the high level.

77

• We use our system to model the development of goal-anticipatory gaze be-
havior in infants. Thereby, we improve our previous modeling approach in
several dimensions, namely, self-supervised event segmentation, predicting nonlin-
ear dynamics, and mental simulations of actions.

6.2 Learning Hierarchical Predictions

We present a neural network architecture that learns to process time series with sparsely
changing latent states, modulating predictive forward-inverse models. Furthermore, it
learns to predict situations where latent states tend to change. These predictive abilities
enable goal-anticipatory behavior. We now detail our architecture and describe (1.) how
its inductive biases enable it to maintain sparsely changing latent states, (2.) how we
embed it in a model such that these states encode the sensorimotor dynamics of events,
(3.) which allows learning event boundary predictions, and (4.) enable goal-anticipatory
gaze behavior.

6.2.1 Sparsely Changing Latent States

We want our system to encode the dynamics of events via latent temporally persistent
states ht ∈ RH . Thus, to develop such sparsely changing codes, the core of our system is
implemented by a GateL0RD cell f core

ϕ (green in Fig. 6.2) Here, we briefly review crucial
aspects of GateL0RD and our notation. We refer to Chap. 5 for a more detailed review.

GateL0RD uses three functions, or subnetworks, a recommendation function rϕ, a gat-
ing function gϕ, and an output function oϕ, which together route sensorimotor prediction
dynamics and maintain an inner latent state ht, as follows:

ĥt = rϕ(xt,ht−1) (latent state proposal) (6.1)
Λt = max(0, tanh(gϕ(xt,ht))) (update gate) (6.2)
ht = Λt ⊙ ĥt + (1−Λt)⊙ ht−1 (update or keep latent state) (6.3)
ŷt = oϕ(xt,ht) (compute output) (6.4)

with ⊙ the Hadamard product. The recommendation function rϕ proposes a new latent
state ĥt (Eq. 6.1). The gating function gϕ computes an update gate Λt ∈ [0, 1] (Eq. 6.2)
with a rectified tanh activation function. If Λit > 0 the latent state is updated at dimension
i (Eq. 6.3). The network output is then determined using the output function oϕ (Eq. 6.4).

78

Level 1

Level 2

fϕ

f IM
ϕ

fFM
ϕ

ot

ât

ôt+1

αt

.

ht−1
.

. .

ht ...

constant

fϕ

f IM
ϕ

fFM
ϕ

oτ

âτ

ôτ+1

ατ

.

hτ−1
.

. .

hτ

f skipθ
ot

αt

ht−1

ôτ

Figure 6.2: Skip Network Architecture: The forward-inverse model fϕ and its latent
states ht are unrolled over time (Level 1, bottom). The skip network f skip

θ (Level 2,
top) predicts input observation oτ for which the latent states change. The gaze input αt

(dashed lines) is only used for modeling infants’ goal anticipation (see Sec. 6.2.4).

To enforce sparse latent state updates, GateL0RD is trained using the loss:

L(D,ϕ) = ED

[∑
t

Ltask(ŷt,yt) + βLsparse(Λt)
]
= ED

[∑
t

Ltask(ŷt,yt) + βEiΘ(Λit)
]
,

(6.5)
where Ltask is the task-based loss, e.g. Mean Squared Error, Θ is the Heaviside step func-
tion, D a training data set, and ϕ are trainable parameters of the network. The sparsity
loss Lsparse punishes latent state changes and thus fosters the tendency to develop piecewise
constant latent states ht. The gradients of the Heaviside step function are approximated
by the straight-through estimator (Bengio et al., 2013). The hyperparameter β modifies
the influence strength of the regularization term.

6.2.2 Forward-Inverse Model

We use GateL0RD as a memory module, which is embedded into a predictive forward-
inverse model structure as shown in Fig. 6.2. In every time step, the model receives an
observation ot and an action at as its input. At time t the sensorimotor inputs (at,ot) are

79

fed into GateL0RD and a network output ŷt and a new latent state ht are computed as
(ŷt,ht) = f core

ϕ (ot,at,ht−1). The network outputs ŷt are processed by a forward model
fFM
ϕ , which predicts the next sensory observation ôt+1:

ôt+1 = fFM
ϕ (ŷt). (6.6)

Based on the updated latent state ht+1 and the next observation ot+1, an inverse model
f IM
ϕ predicts the next action ât+1:

ât+1 = f IM
ϕ (ot+1,ht+1). (6.7)

GateL0RD’s initial latent state h0 is determined by an initialization model f init
ϕ based

on the first sensorimotor inputs:

h0 = f init
ϕ (a1,o1). (6.8)

Our system implements a fully predictive sensorimotor model that attempts to con-
stantly predict its next sensory input as well as the next action. However, in many
situations, the prediction accuracy varies drastically across states of the environment.
For example, depending on the agent’s gaze, different parts of the observation may be
noisy or focused. Similarly, while in some state the model can be very certain about the
agent’s next actions, in other states a variety of potential actions could follow. Thus,
we want the sensorimotor predictions of our network to be probabilistic, reflecting the
heteroscedastic uncertainty in the world. Instead of directly predicting the next observa-
tion ôt+1, the forward model fFM

ϕ predicts a probability distribution Pϕ(ôt+1 | ot,at,ht),
from which an observation prediction ôt+1 is sampled. We model Pϕ(ôt+1 | ot,at,ht) as
a normal distribution with

Pϕ(ôt+1 | ot,at,ht) = N (ot + µt,∆o,Σt,o). (6.9)

The mean µt,∆o and a diagonal covariance matrix Σt,o are predicted by the forward model
fFM
ϕ . Equivalently, for the distribution over actions Pϕ(ât+1 | ot+1,ht) the inverse model
f IM
ϕ outputs a mean µt,a and diagonal covariance matrix Σt,a. We model the probability

distribution as
Pϕ(ât+1 | ot+1,ht) = N (µt,a,Σt,a). (6.10)

We can train the overall architecture to minimize the negative log likelihood (NLL)
loss. The overall loss of our forward-inverse model is defined as

L(D,ϕ) = E
[∑

t

− log
(
Pϕ(ot+1 | ot,at,ht)

)
− log

(
Pϕ(at+1 | ot+1,ht)

)︸ ︷︷ ︸
prediction loss

+ βLsparse(Λt)︸ ︷︷ ︸
regularization

]
.

(6.11)

80

This corresponds to the original loss from GateL0RD (Eq. 6.5) with the task-based loss
Ltask being the summed NLL of actions and observations (prediction loss). In practice,
we use the recently proposed β-NLL loss6.2 (Seitzer et al., 2022) (βNLL = 0.5), to avoid in-
stabilities during training and achieve high-quality predictions. We model all components
apart from GateL0RD, i.e. f init

ϕ , fFM
ϕ , and f IM

ϕ , as feed-forward neural networks.
Can we expect that the resulting latent states ht will resemble event encoding, as we

outlined them in Sec. 2.1? Event Segmentation Theory (Zacks et al., 2007) proposes that
event models are only updated upon transient prediction errors, or surprise. Equation 6.11
essentially phrases this idea in the form of a loss function: the system is trained to
minimize prediction errors of future sensorimotor inputs. In parallel, the regularization
loss punishes changes in its latent state. Thus, the system learns to change the latent
state only when transient prediction errors outweigh the regularization loss. According
to the Theory of Event Coding (Hommel et al., 2001), event codes should encode both
actions as well as sensory effects in a common code. The latent states ht will encode both
sensory- and motor-predictive aspects, because they are used to predict both the next
sensory states (Eq. 6.6) and the next actions (Eq. 6.7).

6.2.3 Event Boundary Predictions

A crucial characteristic of event encodings is that they seem to be hierarchically organized
in a partonomy with nested time scales (Zacks & Tversky, 2001). Thick MDPs, our
general framework of event-based decision making detailed in Chap. 3, proposes that this
nested hierarchy may develop when a high level in the hierarchy is only updated when
the next lower level adapts a temporally stable event code.

To implement this idea, we add a second-level neural network f skip
θ with learnable

parameters θ, which we call the skip network. The skip network is designed to predict
the observation that will occur at the next event boundary, that is, at the end of the
current event and at the start of a next event. For example, the sensation of one’s hand
touching an object could characterize the ending of a <reaching>-event and the start of
a <grasping>-event.

Let us assume that our system encodes an event with the same latent state ht. At an
event boundary, the latent state changes, which is caused by the opening of an update gate
Λit > 0 (Eq. 6.3). We can use this segmentation of time series to generate the training data
for the skip network in a self-supervised manner, illustrated in Fig. 6.2. To generate the
training data, we feed a sensorimotor sequence

(
(o1,a1), (a2,o2), ..., (oT ,aT)

)
through our

6.2The β-NLL loss scales the NLL gradients by a βNLL-exponentiated per-sample variance for a hyper-
parameter βNLL ∈ [0, 1]. βNLL = 0 corresponds to the normal NLL loss. For βNLL = 1 the mean µ is
learned as when using MSE loss.

81

forward-inverse model fϕ to receive a sequence of latent states and update gate openings(
(h1,Λ1), (h2,Λ2), ..., (hT ,ΛT)

)
. We define a function τ(·) that maps every time step t

to the next event boundary, with

τ(t) = min
(
{τ | t < τ ≤ T ∧Λτ > 0}

)
. (6.12)

Thus, τ(t) determines the next time step after t for which at least one gate opens.6.3 We
train the skip network to predict oτ(t) from the observation ot and latent state ht. In
other words, the skip network is trained to predict the final observation of an event from
an arbitrary starting point within this event. We treat the last time step T of a sequence
also as an event boundary.

To enable the skip network to predict uncertainties, we model its output as a dis-
tribution of observations Pθ(ôτ(t) | ot,ht) and use a multivariate Gaussian distribution
parametrization

Pθ(ôτ(t) | ot,ht) = N (ôτ(t) | µt,oτ(t) ,Σt,oτ(t)) (6.13)
with mean µt,oτ(t) and diagonal covariance matrix Σt,oτ(t) predicted by the skip network.
The skip network f skip

θ is trained to minimize the loss L(D,θ) with

L(D,θ) = ED

[
− log

(
Pθ(oτ(t) | ot,ht)

)]
, (6.14)

for its learnable parameters θ. As before, we use the β-NLL loss (Seitzer et al., 2022)
(βNLL = 0.5). We model the skip network as an MLP.

6.2.4 Modeling Goal Anticipations

As previously done in Capri (Chap. 4), we use the structure of events and event bound-
aries to model experimental findings on infants’ goal-anticipatory gaze. For modeling
infant gaze (experiments in Sec. 6.3.5) we modify the inputs of the two networks. Here,
the forward-inverse model fϕ and the skip network f skip

θ receive a simplified gaze or atten-
tional focus αt as an additional input. As in Chap. 4, we implement this focus as a noise
mask on the input observations. When the system attends to an entity e, e.g. the agent’s
hand, all dimensions of the input observation oe

t concerning this entity receive no sensory
noise, e.g. the position of the hand. All other dimensions of ot, for example, the position
of an object on a table, are masked by sensory noise. In this way, we model simplified
gaze behavior: The system can focus on entities, akin to looking at them, to gain clear
sensory observations, whereas unattended entities receive sensory noise.

6.3Note, that for the outlined architecture this implements the general function Eq. 3.1, that we previ-
ously defined for Thick MDPs.

82

In Chap. 4, we proposed that infants’ goal-anticipatory gaze emerges from selecting
gaze behavior that minimizes uncertainty across hierarchical predictions. According to
Capri, infants partially direct their gaze to minimize uncertainty within the ongoing
event to better predict the next sensory observations (event dynamics). In addition, they
attempt to minimize uncertainty about future event boundaries to better predict when,
where, and how future events will follow (event boundary). In our system we can express
this idea as

αt = argmin
α

[
U
(
Pϕ(ôt+1 | ot,at,ht,α)

)︸ ︷︷ ︸
event dynamics uncertainty

+ U
(
Pθ(ôτ(t) | ot,ht,α)

)︸ ︷︷ ︸
event boundary uncertainty

]
, (6.15)

where U is an uncertainty measurement and Pϕ and Pθ are the Gaussian distributions
over observations generated by the forward-inverse-model fϕ and skip network f skip

θ , re-
spectively. We use the following simple uncertainty estimation

U(P) =
∑
i∈I

Σi,i
t,P , (6.16)

which is the sum of variances6.4, with Σt,P the predicted covariance matrix of distribution
P , i.e. either Pϕ or Pθ, and I a set of relevant dimensions. The set of observation indices I
allows us to specify for which parts of the observation the system should aim to minimize
uncertainty, e.g., focusing only on future hand positions.

6.3 Experiments

Our experiments set out to empirically answer the following questions:
• Does our system learn to encode sensorimotor events within its sparsely

changing latent states? We evaluate the semantics of the learned event encoding
for scripted sequences (Sec. 6.3.2) and on more challenging data (Sec. 6.3.4).

• Does the skip network learn to make meaningful temporal abstract pre-
dictions? We showcase the quality of the skip predictions in Sec. 6.3.3.

• Can our system model the development of goal-anticipatory gaze be-
havior in infants? Finally, we demonstrate the emergence of goal-anticipatory
behavior in Sec. 6.3.5.

6.4In Capri, entropy was used for the uncertainty U . Computing the entropy of Gaussian distributions
involves multiplying variances. When some variances are very close to zero, we empirically found the
sum of variances to be more stable.

83

6.3.1 Scenario and Data

We apply our system in the Fetch Pick&Place environment (OpenAI Gym v1 Brock-
man et al., 2016), a benchmark reinforcement learning (RL) problem in which a robotic
manipulator should move a randomly placed box on a table to a random goal position.
The “hand” of the robot is a gripper with two fingers.6.5 The action at ∈ R4 position-
controls the movement of the hand and the opening of the gripper. In our experiments the
observation ot ∈ R11 is composed of the three-dimensional position of three entities, i.e.,
the hand, the object, and the goal, and the fingers’ opening. We modify the simulation
such that the height of the table can vary across simulations.

The system is trained and evaluated on datasets D of 9.2k sensorimotor sequences(
(o1,a1), ...(oT ,aT)

)
∈ D of length T = 25. We consider two types of sensorimotor

sequences, scripted and generated via model-based RL.6.6 The dataset Dscript contains
three types of scripted movements. In reach-grasp-transport sequences the hand
moves to the object until it is located between the fingers. Then the gripper closes, and,
once the object is fully grasped, the robot lifts the object to the goal position where it is
held until the sequence is over. In pointing sequences the robot “points” to the goal
by moving its hand to the goal position. In stretching sequences the robot stretches
its arm by repeatedly performing the same randomly generated motor command. In all
sequences, goal-directed motions follow a fixed direction and decrease their velocity when
approaching the target to avoid overshooting. All actions were perturbed by normally
distributed motor noise (σ = 0.05).

The DAPEX dataset contains sequences that were generated by the policy-guided model-
predictive control method APEX (Pinneri et al., 2021b) trained to move the object to
the goal position. APEX finds various ways to interact with the object, including lifting,
pushing, or flicking it. In DAPEX table height is fixed.

When modeling infant gaze behavior (experiment Sec. 6.3.5), we provide an additional
attention focus αt. This corresponds to attending to one of the three entities, i.e., hand,
object, or goal. When attending to one entity, sensory information about the other
entities’ positions is masked by normally distributed noise (σ = 0.05). During training,
the attentional focus is randomly shifted 5 times per sequence.

The forward-inverse model and the skip network were trained independently using
Adam (lrϕ = 0.0005, lrθ = 0.0001). Each experiment was carried out with 10 different
random seeds. We provide further details of the experiment in Suppl. D.1.

6.5In the remainder of this chapter we will refer to the endeffector of the robot as its hand. We do this
to unify notation and simplify the comparison to Capri.

6.6For both types of datasets (Dscript, DAPEX) we generate three version with 9.2k sequences, for
training, for validation (hyperparameter search), and for testing.

84

(a) (b) (c)

0 1 2 3
10−6

10−5

10k epochs

M
SE

prediction errors
of observations ot

GRU
β = 0.1
β = 1
β = 5

0 1 2 3

10−2

10−1

10k epochs

M
SE

prediction errors
of actions at

GRU
β = 0.1
β = 1
β = 5

0 1 2 3
10−3

10−2

10−1

10k epochs

E t
[Θ

(Λ
t)
]

mean gate openings

β = 0.1
β = 1
β = 5

Figure 6.3: Prediction and gate regularization on Dscript: Test prediction error of
observations ot (a) and actions at (b) and mean number of gate openings (c), i.e., latent
updates, for variants of our system with different regularization strengths β and a GRU
ablation. Shaded areas show ± one standard deviation.

6.3.2 Learned Event Segmentation

To analyze prediction accuracy and the learned latent state of the forward-inverse model,
we first trained our model on the dataset Dscript of scripted movements. We compare our
system (with GateL0RD) with different regularization strengths β to an ablated version
without sparsity regularization that uses a GRU (Chung et al., 2014) as its internal RNN.

Fig. 6.3a and Fig. 6.3b show the prediction errors for the next observations and ac-
tions, respectively. The networks learn to improve their predictions over training. For a
regularization of β ≤ 1 the regularized versions reach the same prediction accuracy as the
GRU ablation. Thus, the sparsity regularization via GateL0RD, does not necessarily
degrade performance. Figure 6.3c shows the mean number of gate openings, i.e., latent
state changes. With a higher β, fewer latent states are updated. Our system with β = 1
learns to only adapt its latent state on average a handful of times during a sequence6.7,
with the same prediction abilities as less regularized variants. Thus, for further analysis
we focus on our system with β = 1.

Figure 6.4 shows exemplary sequences for different interactions. The bottom row of each
plot illustrates the latent states for one exemplary model. For the reach-grasp-transport
sequence (Fig. 6.4a), the model changes its latent state when the hand has reached the ob-
ject, when the object is fully grasped, and when hand and object arrive at the goal. Thus,
the model seems to encode <reaching>, <grasping>, <transporting>, and <holding>
the object using four unique latent states. For the pointing sequence (Fig. 6.4b), the
model changes its latent state once the hand has reached the goal. Interestingly, the

6.7Et

[
Θ(Λt)

]
= 10−2 corresponds to changing one dimension of ht on average 4 times during a sequence

(for T = 25 and 16-dimensional ht).

85

(a) Reach-grasp-transport (b) Pointing

0.5
1

1.5

object
x
y
z

hand
x
y
z

−1
0
1

a1
a2
a3
a4

actions

0 5 10 15 20
t

i

-2

2

hi
t − hi

0

0.5
1

1.5

object
x
y
z

hand
x
y
z

−1
0
1

a1
a2
a3
a4

actions

0 5 10 15 20
t

i

-2

2

hi
t − hi

0

(c) Stretching (d) APEX

0.5
1

1.5

object
x
y
z

hand
x
y
z

0
0.5
1

a1
a2
a3
a4

actions

0 5 10 15 20
t

i

-2

2

hi
t − hi

0

0.5
1

1.5

object
x
y
z

hand
x
y
z

−1
0
1

a1
a2
a3
a4

actions

0 5 10 15 20
t

i

-1

1

hi
t − hi

0

Figure 6.4: Exemplary sensorimotor sequences and latent states for reaching,
grasping, and transporting an object (a), pointing to the goal (b), and stretching the
arm (c) from Dscript, or an object interaction from DAPEX (d). The upper row shows
the positions of the hands and objects over time. The middle row shows actions (a{1,2,3}t

control hand movements, a4t controls gripper closing). The bottom row shows the latent
states relative to initialization, i.e. ht−h0. The same model was used for generating plots
(a)-(c), allowing us to compare how the same model encodes different events.

same dimension is updated when reaching the object (Fig. 6.4a) and the goal (Fig. 6.4b),
indicating the similarity between the two events. For the stretching sequence (Fig. 6.4c),
no clear latent update is visible. This implies that stretching is encoded as one event.

6.3.3 Skip Predictions

To systematically analyze the skip predictions, we fed scripted sequences into the forward-
inverse model up to a fixed point in time at t = 2. We then used (o2,h2) as inputs to
the skip network to produce a skip prediction ôτ(2). Thus, we essentially queried the skip

86

(a) Reaching (b) Pointing (c) Stretching

0 1 2 3

10−1

100

10k epochs

eu
cl

id
ea

n
di

st
an

ce hand
object
goal

0 1 2 3

10−1

100

10k epochs

eu
cl

id
ea

n
di

st
an

ce hand
object
goal

0 1 2 3

10−1

100

10k epochs

eu
cl

id
ea

n
di

st
an

ce hand
object
goal

Figure 6.5: Skip predictions for Dscript: Euclidean distance between skip-predicted
hand position in ôτ(2) to the position of all three entities in o2 for a skip at time t = 2.
Shown for reach-grasp-transport (a), pointing (b), and stretching (c) sequences. Shaded
areas denote standard deviation.

network at time t = 2 which observation are predicted at the next event boundary.
We compare the predicted position of the hand from ôτ(2) to the current position of

the entities in o2. Figure 6.5 shows the Euclidean distances between the hand position
of the skip prediction and the current positions of all entities. For reaching sequences
(Fig. 6.5a) the distance between the predicted hand position and the current object po-
sition decreases, while the other distances remain the same or increase. Thus, the skip
network learns that the hand tends to move to the object, where the next gate opening,
or event boundary, will occur. Similarly, for pointing sequences (Fig. 6.5b) the system
learns that the hand will move toward the goal. For stretching sequences (Fig. 6.5c), on
the other hand, the predicted distances between the hand and the other entities show
high variances without any regularities.

Figure 6.6 shows the hand position predictions of all fully trained skip networks for three
exemplary sequences. One blue circle marks the predicted position of the hand for one
trained skip network. We show the predictions of all trained networks (10 random seeds)
overlayed. For reach-grasp-transport sequences (Fig. 6.6a), the skip network predicts
that the hand will be close to the object at the next event boundary. For pointing
sequences (Fig. 6.6b), the skip network predicts that the hand will be at the goal location
(red sphere). For both sequences, the predicted positions strongly overlap, implying a
consistent segmentation and hierarchical prediction across different random initializations.
For stretching sequences (Fig. 6.6c), the skip network predicts that the hand will be close
to positions when the arm is fully stretched-out, or somewhere in-between the current
position and the final position. We show skip predictions for other entities in Suppl. D.2.

87

(a) Reaching (b) Pointing (c) Stretching (d) APEX

Figure 6.6: Exemplary event boundary predictions. Skip predictions of hand
positions at t = 2 shown for reaching (a), pointing (b), and stretching (c) sequences
of Dscript and for reaching in DAPEX (d). One blue circle shows one skip-predicted hand
position. Predictions of all 10 random seeds are shown together. The goal position is
depicted as a red sphere.

6.3.4 Training on More Diverse Sequences

To investigate learning robustness, we trained our system on sequences of the DAPEX

dataset, which contains various object interaction sequences. Again, we compare our
system (with GateL0RD, β ∈ {1, 5, 10}) to a GRU ablation.

Fig. 6.7a and Fig. 6.7b show the prediction errors for the observations and actions,
respectively. Our system and the unregularized GRU ablation reach a similar level of
accuracy for predicting observation. However, the GRU ablation learns to better predict
actions. It seems that for predicting the unregularized outputs of a policy, strong regu-
larization of the latent state updates is detrimental. For further evaluations, we focus on
our system with β = 5.

Figure 6.4d shows an exemplary reach-grasp-and-transport sequence from DAPEX. The
latent states, depicted in the bottom row, change strongly at two points in the sequence.
First, when the object is grasped, and later, when the object was successfully transported
to the goal. Thus, the latent states seem to encode a similar event structure as for the
scripted data (cf. Fig. 6.4a), even for the much noisier actions of DAPEX.

To evaluate the system’s ability to make temporal abstract predictions, we input (o2,h2)
into the skip network and analyze the resulting predictions ôτ(2). Figure 6.7c shows the
Euclidean distance between the skip-predicted hand position in ôτ(2) and the current
positions of all entities at the time t = 2. During the course of training, the distance
between the predicted hand position and the current object position decreases. Thus,
with increasing experience the skip network learns that the hand will move to the object.
Additionally, the increasing distance between the current and predicted hand position

88

(a) (b) (c)

0 1 2 3

10−5

10−4

10k epochs

M
SE

prediction
errors of ot

GRU
β = 1
β = 5
β = 10

0 1 2 3

10−1

0.3

10k epochs

M
SE

prediction
errors of at

GRU
β = 1
β = 5
β = 10

0 1 2 3

10−1

100

10k epochs

eu
cl

id
ea

n
di

st
an

ce

distance of skip-predicted
hand positions to

hand
object
goal

Figure 6.7: Prediction errors and skip predictions on DAPEX: Test prediction error
of observations (a) and actions (b) for variants of our system with different regularization
strengths β and a GRU ablation. Euclidean distance between skip-predicted hand position
to the current position of all three entities for a skip at time t = 2 (c).

suggests that with more training experience, skip predictions reach farther into the future.
Figure 6.6d shows the skip-predicted hand positions for one exemplary sequence. Across
all random seeds, the system reliably learns to predict that the hand will be close to the
object position at the next event boundary.

6.3.5 Modeling Infants’ Goal Anticipations

Finally, we model the experimental findings of goal anticipations in infants. We train our
system on Dscript with an additional gaze focus αt. We test the system similarly to eye-
tracking studies on infant goal anticipation, e.g. Adam & Elsner (2020). We let the system
“observe” sequences. During observation, only ot is available and the action inputs are
generated by the inverse model f IM

ϕ .6.8 We let the system choose its gaze αt to minimize
uncertainty about future positions of the hand (specified as indices I in Eq. 6.16). Similar
to how developmental studies track the first gaze to a goal area, we track the time step
te, when the system first attended to entity e (hand, object, or goal)6.9. Akin to infants’
goal-anticipatory gaze shifts, we want to see if our system attends to the goal of an event,
e.g., the to-be-grasped object, before the goal is reached.

We compare three different versions of attention selection for reaching events: Min-
imizing uncertainty within the current event (event dynamics uncertainty in Eq. 6.15),
minimizing uncertainty about the next event boundary (event boundary uncertainty in
Eq. 6.15), or minimizing both uncertainties (full Eq. 6.15). When minimizing uncer-
tainty about the event dynamics for reaching (Fig. 6.8a), the system first attended to
the hand (blue) long before hand-object-contact (dashed black line) with little variance

6.8Only the first action a1 is provided to initialize the latent state h0 and start the process.
6.9For each entity e, we determine the first time step te for which αe

te = 1, with αt the one-hot encoded
gaze focus. No focus on an entity is treated as te = 25, i.e., maximum length T .

89

(a) (b) (c) (d)

0 1 2 3
−10

0

10

10k epochs

te
−
tE

B

Reach-grasp-transport:
event dynamics uncertainty

hand
object
goal

0 1 2 3
−10

0

10

10k epochs
te
−
tE

B

Reach-grasp-transport:
event boundary uncertainty

hand
object
goal

0 1 2 3
−10

0

10

10k epochs

te
−
tE

B

Reach-grasp-transport:
overall uncertainty

hand
object
goal

0 1 2 3
−10

0

10

10k epochs

te
−
tE

B

Pointing:
overall uncertainty

hand
object
goal

Figure 6.8: Goal-anticipatory gaze of our system: The y-axis shows the time te
of first attending to entity e relative to the time tEB of the first event boundary of a
sequence, i.e. te − tEB. Thus, negative values (gray area) for an entity indicate that the
system attended to this entity before the first event was over. tEB is marked as dashed
black lines (reaching: hand at object; pointing: hand at goal). For reaching events,
we evaluate gaze inference for minimizing uncertainty about event dynamics (a), about
the next event boundary (b), or both (c). For pointing sequences, we only consider
minimizing both uncertainties (d). Shaded areas show standard error.

across simulations. Naturally, attending to the hand helps to predict immediate hand
movements during reaching. The system on average attended to other entities only after
hand-object-contact with higher variance across simulations.

6 7 11

−400

−200

0

age (months)

m
s

Infants:
mean gaze arrival time

Figure 6.9: Goal-anti-
cipatory gaze in infants
from Adam & Elsner (2020).
The dashed line depicts hand-
object-contact. The gray area
marks anticipatory gaze. Er-
ror bars show standard error.

When minimizing uncertainty about the event bound-
ary (Fig. 6.8b), the system on average first attended to the
object (green) before it was reached by the hand (dashed
black line). Apparently, the system has learned that at-
tending to the object helps to minimize uncertainty about
the end of reaching.

When putting both uncertainties together, the system
exhibits goal-anticipatory gaze shifts: For reach-grasp-
transport sequences (Fig. 6.8c), the system on average
first attended to the hand (blue), followed by attending
to the object (green). The focus on the object happened
on average before hand-object-contact (dashed black line).
Similarly, for pointing sequences (Fig. 6.8d) the system
on average first attended to the hand (blue) and then to
the goal (red) before the hand arrived there (dashed line).
Thus, in both cases, the system shifted its gaze to the goal
of the event before the event was over. Crucially, this behavior developed with training

90

experience.
This behavior mimics gaze behavior found in infants: Figure 6.9 shows the mean gaze

arrival time for infants watching movies of a hand grasping and lifting a toy (Adam &
Elsner, 2020) depending on age. The movies started with a still frame depicting a toy
(0-1000ms), followed by a hand entering the screen and moving to the object (1000-3500
ms), lifting the toy and placing it back (3500-6300 ms). Mean gaze arrival times were
calculated by subtracting the time when the hand entered the target object area of interest
(AOI), from the time of the first fixation to that AOI. Negative gaze arrival times thus
indicate goal-anticipatory gaze. Only trials in which the hand was first fixated (for a
minimum of 200 ms) were considered. As shown in Fig. 6.9, 6-month-olds tend to follow
the hand with their gaze. Older infants (7 and 11 months) shift their gaze from the hand
to the object before it is reached. These results are qualitatively matched by our systems’
behavior (cf. Fig. 6.8c, green line).

6.4 Discussion

We introduced a hierarchical deep learning system that learns to encode its sensorimotor
experience in event-compressing, latent states, which are used for probabilistic forward-
and inverse predictions. We show that the learned codes can uncover suitable segmen-
tations of processed sensorimotor sequences. Based on our general modeling approach
of how nested temporal hierarchies of events may develop (Thick MDPs, Chap. 3), we
trained a high-level model to only predict situations prompting latent state changes. We
show that this hierarchical learning scheme enables the learning of meaningful temporal
abstract predictions of event boundaries from scratch without explicit supervision. Thus,
the system can be seen as the first proof-of-concept for deep learning Thick MDPs.

We tested our model similarly to how goal anticipation was studied in infants (Kanakogi
& Itakura, 2011; Adam & Elsner, 2020). Infants learn to shift their gaze from a moving
entity (hand) to the next goal of an event as they mature. In our system this developed
with training time and better segmentations. Thus, hypotheses that event familiarity and
motor experience enable goal-anticipatory gaze shifts in infants (Kanakogi & Itakura,
2011; Elsner & Adam, 2021) align with our model.

Previously, Capri used an explicit structure of events and their boundaries to model
the development of goal-anticipatory gaze in infants. Our system follows the modeling
approach of Capri but advanced several aspects: (1.) In Capri sequence segmentation
was supervised. Our system learns event segmentation in a completely self-supervised
fashion purely from prediction and latent state regularization. This allowed us to apply
uncertainty-minimizing gaze inference strategies without providing any event information
explicitly. (2.) In Capri event models were restricted to fully observable linear dynamics.

91

Our novel architecture is able to deal with more realistic scenarios, where motions are
boundedly complex but non-linear and information can be hidden. (3.) Capri ignored
the motor commands involved in the production of an event. Our new model is able to
simulate motor commands through its inverse model while observing a motion.

Apart from general hyperparameters related to neural networks, our model only has one
hyperparameter that needs to be set: the regularization strength β, controlling the trade-
off between prediction accuracy and sparsity in latent state changes. The parameter is
important for developing robust event segmentation and thus the emergence of meaningful
goal-predictive attention shifts. While GateL0RD works rather robustly under a range
of values for β, in the future it may be interesting to investigate a battery of gates with
different values of β and automatically determine the best-suited value.

Seeing that our model learns event segmentation best when there is clear sensorimotor
information available to separate events, our model predicts that salient segmentation
cues, e.g., a sound at the event boundary, should ease event segmentation, and thus boost
goal anticipations. Future infant studies could test whether goal anticipation for newly
learned event sequences occurs at an earlier age if during learning of sequences salient
segmentation cues are provided.

Our system hierarchically selects its gaze behavior while passively observing event se-
quences. Could the same system be used to hierarchically plan motor actions, e.g. grasping
or lifting an objects, while interacting with its environment? Unfortunately, in the cur-
rent state, one major restriction prevents universally applying the system for hierarchical
model-based planning: The high level only predicts the most likely next event bound-
ary. It cannot predict fundamentally different outcomes for the same situation.6.10 For
example, it would predict either moving the hand to an object or moving the hand to
the goal, depending on whether it judges reaching or pointing to be the likely event. For
goal-directed planning, the high level would either need to predict multimodal distribu-
tions that encode multiple possible event boundaries or learn a form of high-level action
such that it can distinguish between different next event boundaries. In the next chapter,
we will overcome this limitation and present a fully hierarchical generative world model,
where event boundaries are encoded as categorical distributions and action abstractions
enable planning on multiple time scales.

6.10The system is able to predict how gaze behavior affects the distribution for the next event boundary.
However, the distribution is unimodal and typically encodes one outcome, such as a grasp, and not
different event boundaries.

92

7
Hierarchical World Models7.1

Hierarchical predictions can substantially improve model-based reinforcement learning
(MBRL) and planning by enabling reasoning across multiple time scales. In this chapter,
we combine, enhance, and scale our previously developed methods to learn a hierarchy
of world models from scratch according to the principles of Thick. Our Thick world
models maintain sparsely changing latent states at the low level and learn to predict
situations prompting such latent state changes at its high level. Crucially, the high-
level model develops categorical high-level action abstraction in a self-supervised way to
disambiguate different temporal abstract outcomes. Based on these high-level actions
the system can simulate and plan behavior on an adaptive event-based time scale. We
show that the emerging hierarchical model seamlessly enhances the abilities of MBRL and
planning methods in challenging problems with pixel-based inputs.

7.1This chapter is based on the following manuscript, accepted for publication:
Gumbsch, C., Sajid, N., Martius, G. & Butz, M. V. (in press, 2024). Learning Hierarchical World
Models with Adaptive Temporal Abstractions from Discrete Latent Dynamics. The Twelfth International
Conference on Learning Representations (ICLR 2024)
The text has been slightly revised to avoid repetitions and to fit better within this thesis. The figures
have been adopted unchanged from the manuscript. In accordance with the manuscript and to recognize
the contributions of my coauthors, this chapter is written in the first person plural (we).

93

it

at Level 2 ît+τ

ît+1

Level 1

(a) (b)

Figure 7.1: THICK world models predict on two levels. (a) Level 1 predicts the next
input (t + 1). Level 2 predicts a future state (t + τ) expected to change an otherwise
constant latent state. (b) Exemplary low- (bottom) and high-level predictions (top) for
opening a door (Multiworld-Door), pushing a boulder into water (Minihack-River), or
activating a pad (VisualPinPadThree).

7.1 Introduction

There is a conglomerate of evidence that various representations formed by the human
brain to encode their sensorimotor experience are hierarchically structured (Lee & Mum-
ford, 2003; Rougier et al., 2005; Botvinick & Weinstein, 2014; Rohe & Noppeney, 2015;
Lake et al., 2017; Friston et al., 2018, 2021; Butz, 2016; Tomov et al., 2020). These hi-
erarchical abstractions seem to allow predictions and planning on different time scales
and levels of abstraction. Humans, for example, can plan their behavior on various time
scales and flexibly switch between them. For example, when organizing a birthday party,
a temporally distant event planned on a rather high-level of abstraction, one might pick
up a pen to write an invitation, a short-horizon, low-level sensorimotor event. The inte-
gration of hierarchical models in model-based reinforcement learning (MBRL) and model-
predictive control (MPC) could bolster planning efficiency and effectiveness in complex,
long-horizon, real-world tasks (Schmidhuber, 1992; LeCun, 2022).

Recent research has made tremendous advancements in equipping MBRL agents with
the capacity to learn world models, i.e., generative forward models that encode an agent’s
interaction with its environment from high-dimensional inputs (Ha & Schmidhuber, 2018;
Hafner et al., 2019b,a, 2020a, 2023). However, these models lack a hierarchical structure.
Consequently, they are restricted to predictions on predefined time scales, hampering
their capability for long-horizon planning. The main challenge lies in formalizing suitable
methods to learn higher-level abstractions (Sutton et al., 1999b; Pateria et al., 2021;
Precup, 2000; van Seijen et al., 2014). Fixed hierarchical time scales are inadequate since
different events, and even instances of the same event, typically have different durations.

94

Conversely, learning temporal abstractions from rewards like in hierarchical RL (Sutton
et al., 1999b; Pateria et al., 2021) binds the abstractions to a specific task, whereas world
models ideally should maintain a degree of task-agnosticism (Friston et al., 2021).

Throughout this thesis, I have argued for and developed the necessary tools for a
novel approach to learn hierarchical world models. This approach is called Temporal
Hierarchies from Invariant Context Kernels (THICK). Motivated by theories of
event cognition (Sec. 2.1) and our prior work on sparsely changing latent states (Chap. 5),
Thick assumes that temporally persistent contexts or events can be discovered by guiding
a lower-level world model to update parts of its latent state only sparsely in time. The
high-level model is then trained to predict scenarios involving changes in these low-level
latent states (as in Chap. 6). Driven by the objective of disentangling temporal abstract
outcomes, the Thick world models additionally develop high-level action abstraction in
a self-supervised way. Thus, we distill a high-level world model from discrete low-level
latent state updates. A depiction of Thick world models can be found in Fig. 7.1a.

In this chapter make the following key contributions:
• We introduce the Context-specific Recurrent State Space Model (C-Rssm), which

enhances Dreamer’s (Hafner et al., 2019b, 2020a) Recurrent State Space Model
(Rssm) by encoding context-sensitive dynamics via sparsely changing latent
factors, labeled context. Thus, we scale our previous models to complex problems
with high-dimensional inputs.

• We provide an implementation of Thick, an algorithm that learns a hierarchy of
world models. The high-level runs at an adaptive time scale developing categorical
representation of higher-level actions that anticipate lower-level context changes.

• We demonstrate the effectiveness of Thick in two planning scenarios: (1.) using
Thick’s hierarchical predictions to enhance MBRL in long-horizon tasks, and
(2.) using Thick’s high-level predictions to set sub-goals for hierarchical model-
predictive planning (MPC).

7.2 THICK World Models

Thick world models are composed of a low-level world model that predicts next obser-
vations at the time scale of an underlying POMDP, and a high-level world model that
predicts on an abstract, event-based time scale. First, we detail the low-level world model
(Sec. 7.2.1), before outlining the design and training scheme of the high-level world model
(Sec. 7.2.2).

95

c1 h1

z1ẑc1 ẑ
h
1

min KL

i1

î1

c2 h2

z2ẑc2 ẑ
h
2

min KL

a1

i2

î2

c3 h3

z3ẑc3 ẑ
h
3

min KL

a2

i3

î3

. . . ct−1 ct

ht

ht−1zt−1

at

gϕ ĉt

fϕ

Figure 7.2: C-RSSM world model. Left: The C-Rssm encodes dynamics within
latent states with a stochastic part zt, a high-dimensional deterministic part ht, and a
low-dimensional, sparsely changing context ct. The network predicts the next stochastic
state zt via two pathways: It makes coarse predictions ẑct based mainly on ct and precise
predictions ẑht based on ht. The posterior zt is updated given also the new input image it.
Right: Internally, the sparsely changing context ct is updated through a GateL0RD cell
gϕ with a sparsely operated update gate. A GRU cell fϕ is used to continuously change
ht.

7.2.1 C-RSSM World Model

The Rssm proposed in Hafner et al. (2019b) is a recurrent neural network (RNN) that
is commonly used for model-predictive control (Hafner et al., 2019b; Sajid et al., 2021b)
or model-based reinforcement learning (Hafner et al., 2019a, 2020a, 2023; Sekar et al.,
2020; Mendonca et al., 2021). The rssm embeds sequences of input images it and actions
at into a latent state st and predicts dynamics exclusively within this latent state. All
aspects of the latent state evolve continuously. We require sparse latent state changes to
establish hierarchical world models. We propose Context-specific RSSM (C-RSSM),
a modification of the Rssm that (1.) integrates a sparsely changing latent state ct as
context and (2.) adds a coarse prediction pathway. Figure 7.2 illustrates the C-Rssm.
Our C-Rssm world model wϕ with trainable parameters ϕ is computed by:

96

st ← [ct,ht, zt] (full latent state) (7.1)
ct = gϕ(at−1, ct−1, zt−1) (coarse dynamics) (7.2)
ht = fϕ(at−1, ct,ht−1, zt−1) (precise dynamics) (7.3)
ẑct ∼ pcϕ(ẑ

c
t | at−1, ct, zt−1) (coarse prior) (7.4)

ẑht ∼ phϕ
(
ẑht | ct,ht

)
(precise prior) (7.5)

zt ∼ qϕ(zt | ct,ht, it) (posterior) (7.6)

Equations in red are exclusive to C-Rssm.7.2 We separate the rssm’s latent state st
into three parts (Eq. 7.1): a stochastic state zt, a continuously updated, high-dimensional,
deterministic state ht, and a sparsely changing, low-dimensional context ct. At time t the
C-Rssm first updates the context ct (Eq. 7.2). The coarse dynamics gϕ is implemented
using a GateL0RD cell (see Chap. 5), such that actual ct changes only occur sparsely in
time.7.3 Next, C-Rssm updates ht through a GRU (Chung et al., 2014) cell fϕ (Eq. 7.3).
The C-Rssm makes two predictions about the next stochastic state ẑht : (1.) a precise
prior based on both ht and ct (Eq. 7.5), and (2.) a coarse prior ẑct based on the context,
stochastic state, and action, ignoring ht (Eq. 7.4). Given the input image it, C-Rssm
updates its posterior zt (Eq. 7.6). Following DreamerV2 (Hafner et al., 2020a), we sample
zt from a vector of categorical distributions. Thus, zt is a vector of one-hot encoded values.

Importantly, Eq. 7.2 and Eq. 7.4 do not depend on ht−1. This creates a coarse pro-
cessing pathway independent of h. This allows predictions using only ct as a deter-
ministic memory, which is crucial because it (1.) encourages encoding prediction-relevant
information in ct and (2.) allows predictions without ht which we will use later.7.4

In addition to encoding latent dynamics, C-Rssm is trained to reconstruct observable
variables yt of the outside world from its latent states st. Two output heads oϕ generate
precise and coarse predictions:

ŷt ∼ oϕ(ŷt | st) (precise prediction) (7.7)
ŷct ∼ ocϕ(ŷ

c
t | ct, zt) (coarse prediction) (7.8)

for some aspect yt of the world that we want to predict. More specifically, we predict the
input image it, the reward rt, and reward discount γt7.5, i.e., yt ∈ {it, rt, γt}.

7.2Removing c in all black equations recovers the equations for the rssm (Eqns. 7.1,7.3,7.5,7.6).
7.3In previous chapters, we referred to all RNN latent states, including the ones of GateL0RD, as ht.

Since the C-Rssm maintains a GRU latent state as well as the latent state of GateL0RD, we refer to
the latter now as ct to distinguish the two.

7.4We provide a more detailed explanation of our design choices in Suppl. E.3.1
7.5The discount γt is set to 0 if an episode terminates and to a fixed value γ otherwise.

97

Sparse context updates: The latent context code ct is designed to change sparsely
in time, ideally at distinct transition points, specific to the environment. Consequently,
the coarse dynamics gϕ (Eq. 7.2) are modeled by a GateL0RD cell (see Chap. 5), which
learns sparsely changing latent states ct through an update gate, whose activity is L0-
regularized via loss term Lsparse.

Loss function: Given a sequence of length T of input images i1:T , actions a1:t, rewards
r1:T , with discounts γ1:T , the parameters ϕ of C-Rssm are jointly optimized to minimize
the loss L(ϕ):

L(ϕ) = Eqϕ
[
βpredLpred(ϕ) + βKLLKL(ϕ) + βsparseLsparse(ϕ)

]
, (7.9)

including the prediction loss Lpred, the KL loss LKL, and sparsity loss Lsparse with re-
spective hyperparameters βpred, βKL, and βsparse scaling their impact. The prediction
loss Lpred drives the system to accurately predict perceptions y via its output heads oϕ,
including context-conditioned coarse predictions (Eq. 7.8). The KL loss LKL minimizes
the KL divergences between prior predictions phϕ and pcϕ and the approximate posterior
qϕ. The sparsity loss Lsparse encourages consistency of context ct. The exact loss func-
tions are provided in Suppl. E.3.3. We set βpred and βKL to DreamerV2 defaults (Hafner
et al., 2020a) and only modify the sparsity loss scale βsparse depending on the scenario (cf.
Suppl. E.2).

In summary, we have modified the Rssm to maintain a sparsely changing context ct.
As we will see later, C-Rssm learns to update ct at discrete points in time to memorize
unobservable information in order to better reconstruct the present and predict the future.
Additionally, we have equipped the system with two potential prediction pathways: It can
make detailed predictions about the future using the full latent state st. In addition to
that, it can also make coarse predictions using mainly the context ct and stochastic states
zt. The coarse predictions will be less accurate whenever unobservable information is
encoded in ht and not in ct, e.g. when there exist continuously changing latent factors in
the environment. We will now use both new features, i.e. sparsely changing contexts and
the coarse prediction pathway, to learn a hierarchy of world models.

7.2.2 Hierarchical World Model

To learn a hierarchical world model, we leverage C-Rssm’s discrete context ct updates
by means of our Temporal Hierarchies from Invariant Context Kernels (THICK)
algorithm. A C-Rssm world model wϕ segments sequences into periods of stable context
activity (ct = ct+1 = · · · = cτ−1), interspersed with sparse context updates (cf. Fig. 7.3a).
Thick uses these discrete context dynamics as an adaptive timescale for training a
high-level network Wθ. The core assumption is that the states that prompt context

98

ct

zt

ct+1

zt+1

at

ct+2

at+1

. . .

zτ−1

cτ

aτ−1

. . .

stable context ct = ct+1 = · · · = cτ−1 new
context

cτ

(a) Time series discretization

Wϕ

Ât

At

zt

ct

cτ(t)

ẑτ(t)

ẑτ(t)−1

âτ(t)−1

∆ ˆτ(t)

r̂t:τ(t)

min KL

(b) Level 2 world model

Figure 7.3: High-level segmentation: (a) The low-level C-Rssm discretizes se-
quences into segments with constant contexts. We use this segmentation to determine
inputs and targets for the high level. (b) The high-level world model predicts the states
and actions that lead to a context change at time τ(t) from latent states zt and ct.
High-level actions (At or Ât) distinguish high-level outcomes.

updates coincide with crucial changes in latent generative factors. These key states are
predicted by the high-level network Wθ, while the states between context updates are
ignored.

To train the high-level world model Wθ, we require input-target pairs for a given se-
quence of T images i1:T , actions a1:T , and episode termination flags d1:T . The sequence is
passed through the low-level model wϕ to obtain a sequence of contexts c1:T . The targets
are defined as all time steps τ with context changes, i.e., where cτ ̸= cτ−1 or the episode
ends. As in previous chapters, we define the function τ(·) as

τ(t) = min
(
{τ | τ > t ∧ (cτ ̸= cτ−1 ∨ dτ = 1)}

)
. (7.10)

Thus, τ(·) maps every point t to the next point in time τ(t) with context change, effectively
implementing a variable temporal abstraction that generates target predictions τ(t) for
every t.7.6

High-level targets: We predict all variables at τ(t) that may cause a context change
or are needed for planning across a context change: ẑτ(t)−1, âτ(t)−1, ∆τ̂(t), r̂γt:τ(t) (cf.
Fig. 7.3b). In particular, we predict the stochastic states ẑτ(t)−1 and actions âτ(t)−1 im-
mediately before a context change at time τ(t), because both can cause an update of cτ(t)
(see Eq. 7.2). Intuitively, this means that observations, e.g. seeing something fall, as well
as actions, e.g. catching something, could contribute to a change of ct. We furthermore

7.6Note this is essentially Eq. 3.1 from Thick MDPs or Eq. 6.12 of the skip network but tailored to
the C-Rssm.

99

predict the elapsed time ∆τ(t) and the accumulated discounted reward rγt:τ(t), which may
account for variable duration and rewards when evaluating high-level outcomes:

∆τ(t) = τ(t)− t (elapsed time) (7.11)

rγt:τ(t) =

∆τ(t)−1∑
δ=0

γδrt+δ (accumulated rewards) (7.12)

High-level inputs: To predict high-level targets, we use the low-level stochastic
state zt and context ct as inputs. However, we need to disambiguate different potential
outcomes, which generally depend on the world and the policy pursued by the agent.
Consequently, similar to actions at the low level, we create self-organizing high-level “ac-
tions” At, similar to skills or options (Sutton et al., 1999b). At encode a categorical
distribution over probable next context changes. To learn At, the high-level world model
implements a posterior action encoder Qθ and a prior action encoder Pθ (cf. Fig. 7.3b).
In summary, the high-level world model Wθ with learnable parameters θ is computed by:

At ∼ Qθ(At | ct, zt, cτ(t), zτ(t)) (posterior high-level action) (7.13)
Ât ∼ Pθ(Ât | ct, zt) (prior high-level action) (7.14)

ẑτ(t)−1 ∼ F ẑ
θ

(
ẑτ(t)−1 | At, ct, zt

)
(high-level state prediction) (7.15)

âτ(t)−1 ∼ F â
θ

(
âτ(t)−1 |At, ct, zt

)
(high-level action prediction) (7.16)

∆τ̂(t) ∼ F τ̂
θ

(
∆τ̂(t) |At, ct, zt

)
(high-level time prediction) (7.17)

r̂γt:τ(t) ∼ F r̂
θ

(
r̂γt:τ(t) | At, ct, zt

)
(high-level reward prediction) (7.18)

The posterior Qθ receives not only ct and zt as its input but also privileged information
about the actually encountered next context, i.e. cτ(t) and zτ(t) (Eq. 7.13), which leads to
the emergence of individualized, result-conditioned action encodings in At. The prior Pθ

learns a distribution over Ât approximating the posterior without privileged information
about the future (Eq. 7.14). During training, Thick samples the high-level action At

from Qθ. During evaluation, we obviously cannot know the future states, so we sample
from the prior Pθ instead. We model Ât and At as one-hot encoded categorical variables.

Loss function: The high-level world model Wθ with learnable parameters θ is trained
to minimize the loss

L(θ) = E
[
ζpredLpred(θ) + ζKLLKL(θ)

]
, (7.19)

with hyperparameters ζpred and ζKL scaling the prediction Lpred and action LKL loss terms,
respectively. The prediction loss is the summed negative log-likelihood of the high-level

100

Low level:

High level:

wθ

at−1

zt−1

ct−1

zt

ct

Ât

Wϕ
ẑτ(t)−1

âτ(t)−1

wθ ẑc
τ(t)

cτ(t)

. . .

Figure 7.4: Temporal abstract predictions. From a low-level context ct and stochas-
tic state zt, the high level predicts a future stochastic state ẑτ(t)−1 as well as the action
âτ(t)−1. With these predictions, the context cτ(t) is updated at the low level together with
the coarse prior ẑcτ(t). This process can be repeated (dashed line) to create a temporal
abstract roll-out.

predictions. The action loss drives the system to minimize the KL divergence between
the posterior high-level action distribution Qθ and the prior distribution Pθ. The exact
loss functions can be found in Suppl. E.3.4.

In sum, our Thick world model augments traditional flat world models by a high level,
which learns predictions of variable length, anticipating situations where low-level context
changes occur. We have carefully designed the low-level C-Rssm and the high-level world
model to seamlessly switch between coarse low-level predictions and temporal abstract
high-level predictions. This process is outlined in Fig. 7.4 and the supplementary Algo-
rithm 2 (see Suppl. E.1). Given a context ct, stochastic state zt, and sampled high-level
action Ât, the high-level model Wθ predicts a scenario (âτ(t)−1, ẑτ(t)−1) immediately before
the next anticipated context change. By design, the context should remain unchanged
until then. By feeding this prediction into the coarse processing pathway of C-Rssm, we
can predict the subsequent, new context cτ(t) (Eq. 7.2) and a coarse prior estimate of the
corresponding stochastic state ẑcτ(t) (Eq. 7.4). Longer temporal abstract roll-outs can be
created by feeding cτ(t) and ẑcτ(t) again into Wθ (dashed line in Fig. 7.4). In this way, the
actual context change predictions are generated naturally by C-Rssm.

7.3 Downstream Applications of THICK World Models

World models have been applied in many downstream tasks, including MBRL (Ha &
Schmidhuber, 2018; Hafner et al., 2019a, 2020a, 2023), exploration (Sekar et al., 2020;
Sancaktar et al., 2022), or model-predictive control (MPC) (Hafner et al., 2019b; Vlastel-
ica et al., 2022). With minimal changes, the hierarchical roll-outs from Thick can be
seamlessly integrated where flat roll-outs were previously utilized. We exemplify this
integration in two key areas: MBRL and MPC.

101

7.3.1 THICK Dreamer: MBRL with Hierarchical Roll-outs

Dreamer (Hafner et al., 2019a) learns behavior by training an actor and a critic from
the “imagined” roll-outs of its rssm world model. More specifically, Dreamer imagines a
sequence of states st:t+H from a start state st given an actor-generated action sequence
at:t+H . Dreamer computes the general λ−return V λ(st) (Sutton & Barto, 2018) that is
recursively defined as follows

V λ(st) = r̂t + γ̂t

{
(1− λ)vξ(st) + λV λ(st+1) for t < H,

vξ(st+1) for t = H
(7.20)

with r̂t and γ̂t the rewards and discounts predicted based on st (see Eq. 7.7). The critic
vξ is trained via

L(ξ) = Epϕ
[H∑
t=1

1

2

(
vξ(st)− sg

(
V λ(st)

))2]
, (7.21)

to regress the λ−return using a squared loss, with the stop gradient operation sg(·).
In sparse reward tasks, one challenge is the propagation of rewards to train the critic

(Andrychowicz et al., 2017; Patil et al., 2021). Here, Dreamer faces a difficult trade-off:
Long roll-outs (large H) accelerate reward propagation but degrade the quality of the
predicted roll-outs. We propose THICK Dreamer, which combines value estimates from
low- and high-level predictions to boost reward propagation. Thick Dreamer maintains
an additional critic vχ to evaluate temporal abstract predictions. Like Dreamer, we first
imagine a low-level roll-out of H states st:t+H . Additionally, for every time t in the roll-
out, we predict a temporal abstract outcome cτ(t) and zτ(t) and estimate a long-horizon
value V long as

V long(st) = r̂γt:τ(t) + γ∆t̂
(
r̂cτ(t) + γ̂cτ(t)vχ(ĉτ(t), ẑτ(t))

)
, (7.22)

with all variables predicted via the Thick world model and immediate rewards via Eq. 7.8
of C-Rssm given Thick’s world model predictions (cf. also supplementary Algorithm 2).
We estimate the value of a state st as a mixture of short- and long-horizon estimates with

V (st) = ψV λ(st) + (1− ψ)V long(st), (7.23)
where the hyperparameter ψ controls the trade-off between the two estimates. We set
ψ = 0.9 in all experiments and train both critics vξ and vχ to regress the value estimate
using a squared loss:

L(ν) = Epϕ
[H∑
t=1

1

2

(
vν(st)− sg

(
V (st)

))2]
, (7.24)

102

for the two critics vν ∈ {vξ, vχ} with parameters ν ∈ {ξ,χ}, and sg(·) the stop gradient
operator. In summary, to speed up credit assignment when learning a value function,
Thick Dreamer combines low-level roll-outs with temporal abstract predictions to addi-
tionally estimate the value of likely long-horizon outcomes.

7.3.2 THICK PlaNet: Hierarchical MPC

The original Rssm was proposed in PlaNet (Hafner et al., 2019b) as a world model for
MPC. PlaNet searches for the optimal action sequence a∗

t:t+K to maximize the predicted
returns r̂t:t+K for a planning horizon K. Therefore, PlaNet employs zero-order trajectory
optimization through the cross-entropy method (CEM) (Rubinstein & Davidson, 1999).
Once a∗

t:t+K is identified, the initial action a∗
t is executed, and the procedure is repeated.

CEM optimizes randomly sampled trajectories. Sampling a good action sequence is
exponentially harder for increasing task horizons. We hypothesize that such tasks could
be solved with much fewer high-level actions. For this, we propose THICK PlaNet.
Thick PlaNet plans on the high level to solve the task and uses the low level to follow
this plan. We define a reward function R(·) to estimate the return of a high-level action
sequence A1:K with length K recursively as

R(Ak:K , t
′) = r̂γt′:τ(t′) + γ∆t̂

{
r̂cτ(t′) + γ̂cτ(t′)R(Ak+1:K , τ(t

′) + 1) for k < K,

r̂cτ(t′) for k = K
(7.25)

with all variables predicted via a temporal abstract roll-out (see Sec. 7.2.2) starting with
k = 1 and t′ = t. We search for the optimal sequence Â∗

1:K maximizing R(·) with
Monte Carlo Tree Search. Based on the first action Â∗

1 we sample a subgoal ẑgoal
t ∼

Fθ(ẑ
goal
t |Â∗

1, ct, zt). This subgoal is valid as long as it has not been reached and nothing
has changed drastically in the environment. Thus, we only replan on the high level
when the context has changed. We apply CEM at the low level to reach zgoal

t while also
maximizing task return, with

a∗
t:t+K = argmax

at:t+K

t+K∑
t′=t

r̂t′ + κ sim(zt′ , z
goal
t) with r̂t′ ∼ oϕ(r̂t′ | st′), (7.26)

for a planning horizon K.7.7 The function sim(·) is a measure of similarity between
zgoal
t and zt. The hyperparameter κ controls the trade-off between external and internal

rewards. Previously, the similarity between the Gaussian distributed zt of the rssm was
7.7This corresponds to hierarchical planning in Thick MDPs according to Eq. 3.5, but replacing

minimization of subgoal divergence (KL term in Eq. 3.5) with maximization of similarity to a subgoal.

103

estimated using cosine similarity (Mendonca et al., 2021). However, for categorically
distributed zt, the cosine similarity can be low even when they come from the same
distribution. Instead, we use the cosine similarity of the logits, i.e.

sim(zt, z
goal
t) =

ωt · ωgoal
t

∥ωt∥∥ωgoal
t ∥

, (7.27)

where · is the dot product and ωt and ωgoal
t are the logits of the distributions that produced

zt and zgoal
t , respectively. Thus, we compute the similarity between the sampling distribu-

tions rather than the similarity of the samples. Compared to other similarity measures,
e.g. KL divergence, our measure has the desirable property that sim(zt, z

goal
t) ∈ [0, 1],

which simplifies setting the hyperparameter κ, which we set to κ = 0.025 to mainly guide
the behavior in the absence of external reward.

7.4 Experiments

We empirically evaluate Thick to answer the following questions:
• Can THICK learn temporal abstractions? We show that the learned high-level

world model indeed discerns meaningful, interpretable temporal abstractions across
various scenarios (Sec. 7.4.2).

• Can THICK’s hierarchical predictions improve MBRL? We show that Thick
Dreamer achieves higher returns than Dreamer in long-horizon tasks with sparse
rewards (Sec. 7.4.3).

• Can THICK’s world model be used to plan hierarchically? We show that
MPC with Thick world models is better than flat world models at solving long-
horizon tasks (Sec. 7.4.4).

7.4.1 Simulation Environments

We evaluate our Thick world models in various scenarios with pixel-based inputs.
MiniHack (Samvelyan et al., 2021) is a sandbox framework for designing RL envi-

ronments based on Nethack (Küttler et al., 2020). We test our system on benchmark
problems, as well as newly created tasks. All problems, detailed in Suppl. E.4.1, have
hierarchical structures in which sub-goals must be achieved (e.g. fetch a wand) to fulfill a
task (e.g. kill a monster) to exit a dungeon and receive a sparse reward. The observation is
a pixel-based, ego-centric view of ±2 grid cells around the agent. MiniHack uses discrete
actions. All problems are described in Suppl. E.4.1.

104

KeyRoom-Fixed-S5 Door

it

ct+1

HL:
îcτ(t)−1

t t+ 3 t+ 5 t+ 7 t t+ 5 t+ 10 t+ 15

0 10 20
t

i

-1

1

citc
i
t

-1

1

Figure 7.5: Exemplary context changes. We show the input images it, 16-
dimensional contexts ct+1 and reconstructions îcτ(t)−1 of the high-level predictions. For
KeyRoom the context changes when finding a key, picking it up, opening a door (here from
a diagonally adjacent grid), or exiting the room. In Door the context changes when the
robot grabs the handle or the door is fully opened. The high level predicts the states
before the next changes.

VisualPinPad (Hafner et al., 2022) is a suite of long-horizon visual RL problems.
Here, an agent (black square) needs to step on a fixed sequence of pads to receive a sparse
reward. We use three levels of difficulty based on the number of pads and target sequence
length (three, four, five).

MultiWorld (Pong et al., 2018) is a suite of robotic manipulation tasks for visual
RL. In these tasks, a Sawyer robot has to either move an object to a goal position (puck
in Pusher or ball in PickUp) or open a door (Door). We use fixed goals and take the
normalized distance between the to-be-controlled entity and the goal position as dense
rewards (in Pusher-Dense, PickUp, Door) and thresholded distances as sparse rewards
(in Pusher-Sparse). Details are provided in Suppl. E.4.2.

7.4.2 Interpretable Contexts and Hierarchical Predictions

First, we analyze the predictions of Thick world models across diverse tasks. Exam-
ple sequences are displayed in Fig. 7.5 and Suppl. E.5.1. In MiniHack, context updates
typically coincide with item discovery, item collection, map changes, area exploration,
or dungeon exits. In Multiworld, context changes occur due to object interactions or at
workspace boundaries. In VisualPinPad, activating the pads can prompt context changes.
The high-level model predicts the states preceding context changes, often abstracting de-
tails, leading to blurry reconstructions. For instance, in KeyRoom, the system forecasts the
agent’s level exit without knowledge of the exact room layout (Fig. 7.5, t+7). Nonetheless,

105

WandOfDeath-Advanced PickUp VisualPinPadFive

it

A1
t

A2
t

t t+ 2 t+ 4 t t+ 1 t+ 2 t t+ 1 t+ 3

Figure 7.6: Exemplary high-level actions At. We show input images it and predic-
tions îcτ(t)−1 for two high- level actions A1

t and A2
t . Red frames depict sampled actions

Ât. Exemplar actions At are exiting the room or attacking a monster (left), grasping or
pushing a ball (center), and activating pads (right).

the lower level consistently predicts the next frames accurately, as shown in Fig. 7.1b.
Abstract action representations At emerge on the high level, as illustrated in Fig. 7.6.

These actions categorically encode different agent-world interactions, e.g., grasping or
pushing a ball in PickUp (center in Fig. 7.6) or stepping on different pads in VisualPinPad-
Five (right in Fig. 7.6). The prior Qθ learns to sample actions based on the likelihood
of their outcomes (red frames in Fig. 7.6). If there are more actions At than necessary,
different actions encode the same outcome. We provide more examples and analysis of
predictions and contexts in Suppl. E.5.1.7.8

7.4.3 Model-Based Reinforcement Learning

We investigate whether hierarchical roll-outs can improve MBRL in the MiniHack suite by
comparing Thick Dreamer with DreamerV2 (Hafner et al., 2020a) and Director (Hafner
et al., 2022), a hierarchical RL method based on Dreamer. Fig. 7.7a–7.7d show that
Thick Dreamer matches or outperforms flat Dreamer in all tasks in terms of sample
efficiency or overall success rate. The advantage of Thick Dreamer is more pronounced
in tasks that require the completion of multiple subgoals (e.g. completing five subgoals
in EscapeRoom vs. finding a key to open a door in KeyRoom). Director outperforms the
other methods in KeyRoom, but fails to learn other MiniHack tasks. We investigate the

7.8Animations are also provided on our supplementary website https://sites.google.com/view/thick-
world-models.

106

https://sites.google.com/view/thick-world-models
https://sites.google.com/view/thick-world-models

(a) (b) (c) (d)

0 2 4 6

0

0.5

1

105 steps

success rate
KeyRoom-Fixed-S5

Director
Dreamer
Thick
Dreamer

0 2.5 5

0

0.5

1

105 steps

success rate
KeyCorridor-8

0 2 4 6 8

0

0.5

1

105 steps

success rate
WandOfDeath-Advanced

0 2 4 6 8
0

0.5

1

105 steps

success rate
EscapeRoom

(e) (f) (g)

corridor length

4 5 6 7 8 9 10 11

0

0.2

0.4

corridor length

mean improvements in returns

4 5 6 7 8 9 10 11

0

20

corridor length

mean % success improvements

Figure 7.7: Long-horizon RL in MiniHack. Top graphics (a-d) plot the mean
success rate during evaluation for various MiniHack tasks using 7 seeds. For KeyCorridor
(e) we systematically vary the length of the corridor and plot the mean difference in
evaluation returns (f) and percentage of task success (g) between Thick Dreamer and
Dreamer over different lengths. The shaded areas depict ± one standard error.

failure cases of Director in Suppl. E.5.3 and show more MiniHack results in Suppl. E.5.2.
We hypothesize that the length of the task horizon is the main factor boosting Thick

Dreamer’s performance. To investigate this, we systematically vary the task horizon in the
KeyCorridor problem (see Fig. 7.7e) by modifying the length of the corridor. Fig. 7.7f–
7.7g plot the mean difference in the rewards obtained and the success rate over 500k
training steps between Thick Dreamer and Dreamer for different corridor lengths. The
performance gain of Thick Dreamer tends to increase with the length of the corridor. At
some length, both approaches fail to discover rewards, detailed in Suppl. E.5.2.

We further analyze the effect of the task horizon in VisualPinPad. VisualPinPad
presents two challenges: exploration and long-horizon behavior. To analyze the latter
in isolation, we bypass the challenge of discovering the sparse rewards by initially filling
the replay buffer of all models with 1M steps of exploration using Plan2Explore (Sekar
et al., 2020) (details in Suppl. E.5.4). Fig. 7.8 shows the performance of Thick Dreamer,
DreamerV2, and Director. Thick Dreamer matches Dreamer in VisualPinPadThree and
is slightly more sample efficient in the more challenging tasks.7.9 Thus, fusing hierarchical

7.9Previously, Hafner et al. (2022) reported that Director outperforms Dreamer in VisualPinPad. We
believe this improvement stems from more sophisticated exploration, which is not necessary in our setting.

107

(a) (b) (c)

0 1 2 3 4
0

200

400

600

105 steps

returns
VisualPinPadThree

Director
Dreamer
Thick
Dreamer

0 1 2 3 4
0

200

400

105 steps

returns
VisualPinPadFour

1 2 3 4 5 6
0

100

200

300

105 steps

returns
VisualPinPadFive

Figure 7.8: Sample efficient RL in VisualPinPad. We plot the mean evaluation
returns for 7 seeds. Shaded areas depict the standard error.

predictions to train a single policy in Thick Dreamer seems better suited for long-horizon
learning than the hierarchical policies of Director or not employing hierarchies.

7.4.4 Zero-Shot Model-Predictive Control

Lastly, we analyze whether our hierarchical predictions are suitable for planning by com-
paring Thick PlaNet and PlaNet (Hafner et al., 2019b) in Multiworld. We consider the
challenging setup of MPC for models trained on an offline dataset of 1M samples col-
lected by Plan2Explore (Sekar et al., 2020). Fig. 7.9 shows the zero-shot performance
over training. For Pusher-Dense, i.e. a short-horizon task7.10 with dense rewards, there is
no notable difference between both methods. When rewards are sparse (Pusher-Sparse)
or the task horizon is long (Door and PickUp), Thick PlaNet achieves higher returns
than PlaNet. Additionally, the sub-goals set by the high level can be decoded, shown in
Suppl. E.5.6, which improves the explainability of the system’s behavior.

7.5 Related Work

Hierarchical RL (HRL): HRL is an orthogonal research direction to hierarchical world
models. In HRL, a high-level policy either selects a low-level policy or provides goals
or rewards for a low level (Pateria et al., 2021; Eppe et al., 2022). In contrast, our
Thick Dreamer uses high-level predictions to train a flat RL agent. Typically in HRL,
the high level operates on fixed time scales (Hafner et al., 2022; Nachum et al., 2018;
Vezhnevets et al., 2017; Gürtler et al., 2021). Alternatively, the high level is activated

7.10Since the puck starts between the gripper and goal, the task can be solved by moving directly to the
goal.

108

(a) (b) (c) (d)

0 4 8 12 16
0

20

40

104 updates

returns
Pusher-Dense

PlaNet
Thick
PlaNet

0 4 8 12 16

0

20

40

104 updates

returns
Pusher-Sparse

0 4 8 12 16

0

10

20

30

104 updates

returns
Door

0 0.5 1 1.5 2

0

10

20

30

105 update

returns
PickUp

Figure 7.9: Zero-shot MPC in Multiworld. Each graphic plots the mean returns
for zero-shot planning in Multiworld over world model updates using 10 seeds. Shaded
areas depict the standard deviation.

task-dependently based on subgoal completion (Bacon et al., 2017; Levy et al., 2019). In
Thick world models, the high level is learned time- and task-independently purely from
predictions and latent state regularization.

Temporal abstractions with fixed time scales: Saxena et al. (2021) introduced a
hierarchical video prediction model (i.e. without action) that used different clock speeds
at each level to learn long-term dependencies using pixel-based input. Although this was
suitable for learning slow-moving content at higher levels of the temporal hierarchy, unlike
C-Rssm and Thick, it requires explicitly defining the time scale factors.

Temporal abstractions from predictability: Adaptive Skip Intervals (ASI) (Neitz
et al., 2018) is a method for learning temporal abstract autoregressive predictions. In
ASI, a network is trained to predict those inputs within a predefined horizon that best
allow predicting extended sequences into the future. As a result, the model learns to
skip a number of inputs towards predictable transitions. Similarly, temporal-agnostic
predictions (TAP) (Jayaraman et al., 2019) identify frames of a video within a time
horizon that are highly predictable. TAP is then trained to only predict those predictable
“bottleneck” frames. Zakharov et al. (2022b) provide a learning-free mechanism to detect
context change by evaluating how predictable future states are. Briefly, their approach
detects changes in latent representation of each layer in the model hierarchy and introduces
temporal abstraction by blocking bottom-up information propagation between different
contexts. Another approach is to use unexpected prediction errors from a forward model
for self-supervised time series segmentation (Gumbsch et al., 2019). Here, the idea is that
in certain states the dynamics of the agent-environment interactions change, e.g. changing
the terrain during locomotion, which leads to a temporary spikes in the prediction errors.

Temporal abstractions from learning boundary detectors: In addition to using
indirect measures to segment a sequence, a straightforward approach is to train a boundary

109

detector that signals the boundary of subsequences (Kim et al., 2019; Zakharov et al.,
2022a). Kim et al. (2019) train a boundary detector that is regularized by specifying the
maximum number of subsequences allowed and their maximum length. This requires prior
knowledge about the training data and imposes hard constraints on the time scales of the
learned temporal abstractions. Our sparsity loss instead implements a soft constraint –
while a low number of context changes is desired, C-Rssm can violate this constraint
if prediction accuracy demands it. Conversely, Zakharov et al. (2022a) introduced a
boundary detection mechanism using a non-parametric posterior over the latent states.
Here, the model learns to transition between states only if a change in the represented
features had been observed, otherwise temporally persistent states were clustered together.

Different world model backbones: An alternative approach to developing hierar-
chies for long-horizon learning in world models is to enhance the memory module. For
example, Transformers (Vaswani et al., 2017) can improve the learning of long-horizon
dependencies in world models (Chen et al., 2022; Robine et al., 2023; Micheli et al., 2023).
Along similar lines, Deng et al. (2023) showed that replacing the GRU with an S4 model
(Gu et al., 2021) improves the memory and long-horizon predictions of the Rssm. How-
ever, neither applying Transformers nor S4 leads to temporal abstract predictions that
can serve as subgoals for hierarchical planning, necessary for Thick PLaNet.

7.6 Discussion

We have introduced C-Rssm and Thick– fully self-supervised learning methods to con-
struct hierarchical world models. By embedding a GateL0RD cell within the Rssm and
imposing a sparsity objective, C-Rssm develops context codes that update only in criti-
cal situations, where prediction-relevant aspects of the environment change, e.g. when the
agent interacts with objects. As a result, C-Rssm tends to generate an approximation
of a hierarchical hidden Markov world model, where the context conditions approximate
lower-level Markov models. On a higher level, Thick learns to anticipate context-altering
states. Categorical high-level action codes enable the anticipation of different outcomes,
accounting for multiple lower-level context transitions. As a result, Thick world models
can predict both abstract context transitions and exact low-level dynamics. Addition-
ally, we have shown that through minor changes to existing MBRL and MPC methods,
hierarchical predictions can improve long-horizon learning.

Thick relies on setting the hyperparameter βsparse, which determines the high-level
segmentation. Ideally, this hyperparameter should be tuned for every task. However,
we found that the same value works well across similar tasks, e.g. setting the value only
per suite. Furthermore, except for improving long-horizon learning, our downstream
applications have similar restrictions as the method they build upon. For example, if

110

Dreamer never discovers a solution to a task, Thick cannot decompose it.
A promising direction for extending Thick world models is the combination of MCTS

with RL (Schrittwieser et al., 2020). The system could search for high-level goals that
goal-condition low-level policies (Nasiriany et al., 2019; Akakzia et al., 2021) –a technique
that may even be related to computations unfolding in our brains (Mattar & Lengyel,
2022).

Another potential lies in the integration of more active epistemic-driven exploration
(Sekar et al., 2020; Sancaktar et al., 2022) on both levels of the hierarchy. The agent
could, for example, either seek out context transitions that cause uncertainty on the high
level or actively avoid transitions to further explore a certain context. This could lead to
a more robust consolidation of context codes and transitions between them and foster the
exploration of long-horizon temporal dependencies.

Future extensions could also explore richer predictions purely from the context ct.
This would allow the high-level to directly predict context transitions without predicting
observable state information used for intermediate queries to the low-level.

Lastly, we employed Thick to establish a two-level hierarchy of world models. However,
the principles of Thick could be applied on multiple levels to build anN -level world model
hierarchy. A potential generalization of Thick, detailed in Chap. 3, could implement
each level as a C-Rssm and thus recursively develop a hierarchy of nested time scales.
An alternative route would be to add multiple coarse prediction pathways and contexts to
the low-level world model that are regularized with separate sparsity parameters βsparse.
For each coarse prediction pathway, a separate high-level model could be trained. As a
result, the network would maintain multiple levels of abstraction in parallel and could
learn to select which level is suitable for the task at hand. However, in this approach the
time scales would not necessarily be nested.

In sum, we see great potential for Thick world models as a tool to build more so-
phisticated agents that explore and plan on multiple time scales and develop increasingly
abstract levels of prediction.

111

8
Discussion

I conclude this thesis by discussing the general approach and results of this thesis. For
this, I first summarize my contributions before critically analyzing them. In addition,
I discuss the relations and implications of my approach for both artificial intelligence
research and cognitive science. Last but not least, I provide an outlook on how future
research could build on and benefit from the presented work.

8.1 Summary of Contributions

The primary objective of my research is to improve the problem-solving capabilities of
artificial intelligence (AI). The review of the literature in Chap. 1 revealed that two
mechanisms seem to be present in biological agents but are still largely missing in many
artificial agents: (1.) Artificial systems often struggle with generalization across dis-
tributions, presumably because they lack the ability to encode the compositional and
causal structures of the environment. (2.) Hierarchical model-based planning is
underrepresented in many planning systems, although it could enable a system to solve
complex problems by internally simulating the necessary sub-steps of the solution. In hu-
mans, causal inference and hierarchical planning have been linked to event cognition.
Converging theories from different disciplines propose that humans seem to memorize the
past, reason about the present, and predict the future in terms of discrete, hierarchically
organized models of events. Therefore, I set out to equip artificial agents with the

112

ability to encode their sensorimotor experience by means of events to improve
their problem-solving capabilities through better generalization and hierarchical planning.

After reviewing the theoretical background of event cognition in biological agents and
sequential decision making in artificial agents in Chap. 2, I combined these insights
into THICK MDP, a theoretical framework of hierarchical event-based deci-
sion making. The main proposal of this framework is Thick (Temporal Hierarchies
from Invariant Context Kernels) an algorithm to learn hierarchical abstractions of
transition functions. I proposed hierarchical processing with a specific nested structure.
That is, persistent latent states or contexts encode the events unfolding at each level of
abstraction. In Thick, a higher level would only become active when the context of the
next lower level changes. In Chap. 3, I detailed how such bottom-up activation of levels
during learning could give rise to hierarchical abstractions with nested time scales; and,
inversely, how top-down activation could enable hierarchical goal-directed planning.

With Thick MDPs, I made two claims: (1.) The framework is a simplified model of
the processes involved in human event perception and anticipatory goal-directed planning,
and (2.) implementing such a structure for artificial agents could improve their planning
capabilities. In the following chapters, I then provided evidence for these claims employing
Thick MDPs to model human goal-anticipatory behavior and to improve state-
of-the-art planning and reinforcement learning (RL).

To investigate cognitive plausibility, CAPRI was outlined in Chap. 4. Capri is a
predictive model, following the structure of Thick MDP, which encodes its interactions
with the environment through two levels of a prediction hierarchy. Capri showed that
when gaze behavior is selected to minimize uncertainty about both levels of prediction, the
system developed goal-anticipatory gaze behavior, i.e. it shifted its gaze to the goal
of a reaching movement in anticipation. Crucially, this behavior emerged with increasing
experience in reaching and only for familiar hand agents, not for unfamiliar claw agents.
This qualitatively matches the experimental data of eye-tracking studies for infants under
12 months of age (Kanakogi & Itakura, 2011; Adam & Elsner, 2020). Thus, inferring
actions to minimize predicted uncertainty, which has been proposed elsewhere (Friston
et al., 2015; Parr et al., 2022), combined with the structure of Thick MDPs seems to
explain numerous findings on the development and functionality of goal-anticipatory gaze
behavior in infants.

Next, the challenge of learning to segment sensorimotor activity from scratch was tack-
led. Chap. 5 introduced GATEL0RD, a recurrent neural network (RNN) designed to
maintain piecewise constant latent states, meaning its memory is only updated rarely.
GateL0RD employs a specialized update gate and an auxiliary loss term to regular-
ize its latent states towards sparse changes in time. In Chap. 5 we experimen-
tally demonstrated in a variety of scenarios, ranging from grid-world scenarios to realistic

113

physics simulations, that replacing other RNNs by GateL0RD brings several advan-
tages for prediction, planning, and RL: GateL0RD boosts sample efficiency of
sparse-reward RL, enhances long-horizon prediction, and improves generalization across
training schemes and spurious correlations in its training data. Furthermore, GateL0RD
naturally segments activity into parts with stable constant latent state activity, similar
to events, and detects sparse points in between, similar to event boundaries, in which
latent states are updated.

In Chap. 6, we employed GateL0RD to learn hierarchical predictions to overcome
previous limitations for modeling goal-anticipatory gaze behavior through self-
supervised hierarchical predictions. In our hierarchical deep learning architecture
the lower level maintains piecewise constant latent states and a high-level skip network
is trained to predict only situations in which latent states change. Experiments in a
robotic manipulation scenario showed that latent states developed that encode simple
interaction events, e.g. reaching. In addition, the skip network learned to make meaningful
predictions about upcoming event boundaries. In Chap. 6, we partially reproduced the
modeling findings of Capri, demonstrating that the modeling approach holds for a more
complicated setup, i.e. in a more realistic simulator, with self-supervised segmentations,
and when internally simulating motor commands required for the observed movement.

Finally, Chap. 7 introduced THICK world models, i.e. hierarchical, generative for-
ward models for high-dimensional inputs. As before, the low-level model encoded its in-
teractions via sparsely changing latent states and a high-level model predicted potential
situations in which the lower-level latent states change. Therefore, the system developed
categorical high-level action encodings that allowed the system to disambiguate
different context changes, or event boundaries, that it might encounter. In Chap. 7,
we showed that Thick world models can outperform flat models in both RL and
planning: In particular, we demonstrated that anticipating the next abstract temporal
outcome can increase the sample efficiency of learning a value function in model-based
RL in various tasks with sparse rewards. Furthermore, we showed that through high-level
planning, various robotic manipulation tasks could be solved more efficiently.

In summary, the present research showed how latent states that encode events can
develop and improve prediction and planning of a wide set of deep learning agents
with different input modalities and action spaces, as well as within different environments.
Furthermore, I outlined and experimentally demonstrated how such latent states can give
rise to hierarchical predictions suitable for hierarchical planning. In addition to that,
cognitive plausibility of these mechanisms was demonstrated by modeling experimental
data of human goal-anticipatory gaze behavior. Thus, this thesis also provides a model
that explains various findings on the development of goal anticipations in infants.

Nevertheless, much progress is needed to achieve the behavioral flexibility exhibited by

114

intelligent animals, such as the crow in Fig. 1.1. In what follows, I first critically discuss
current shortcomings and potential extensions of the presented methods for segmenting
activity (Sec. 8.2.1), toward more explicitly encoding objects (Sec. 8.2.2), and extensions
for other forms of hierarchical learning (Sec. 8.2.3). Next, I discuss the general approach
of taking inspiration from cognitive science for building AI (Sec. 8.3). Subsequently, I
relate my approach to other theories and notions in cognitive science (Sec. 8.4). Lastly, I
provide an outlook on how future research could build on this work (Sec. 8.5).

8.2 Limitations and Extensions

8.2.1 Segmentation of Temporal Abstractions

For learning hierarchical model-based abstraction, we rely on a meaningful segmentation
of sensorimotor activity. As a backbone for the segmentation of time series, the presented
methods employed GateL0RD. GateL0RD segments activity by means of piecewise-
constant latent states that are regularized towards temporally sparse updates. When
used in predictive models, this segmentation criterion is closely related to surprise- or
prediction error-based segmentation (Zacks et al., 2007; Reynolds et al., 2007; Gumbsch
et al., 2019; Franklin et al., 2020; Basgol et al., 2024), because the loss of GateL0RD
aims to minimize prediction error while simultaneously minimizing latent state changes.

Since the latent state regularization is defined relative to the prediction error (or other
loss terms), the segmentation hinges on the predictability of the data and the predic-
tion power of the overall model. The hierarchical models in Chap. 6 and Chap. 7 only
employ feed-forward networks besides GateL0RD for their (coarse) predictions. Thus,
the systems segments activity mainly on the basis of partial observability. That is, the
boundaries correspond to situations in which latent factors in the environment change or
task-relevant information needs to be memorized, e.g. a key is picked up. Thus, tasks
could be easily constructed where this approach fails to discover a suitable segmentation
of time series, e.g. making environments fully observable and trivial to predict.

That being said, I hypothesize that sufficiently complex, realistic applications tend
to be partially observable, and their latent generative factors tend to change somewhat
systematically. Complex systems, e.g. biological agents, have restricted sensors, which
creates the need to maintain latent beliefs about entities and events that unfold in their
environment. Furthermore, in practice, GateL0RD updated its latent states even in fully
observable scenarios, triggered, for example, by sudden strong perceptual changes whose
prediction needs to be timed precisely.8.1 Scaling the impact of latent state regularization

8.1An example for this is the VisualPinPad suite in Chap. 7 which is fully observable. Stepping on a
pad causes the pad to light up which is often accompanied by a context update.

115

on the overall model loss8.2 can also compensate for prediction difficulty (or simplicity) of
a task.

Future work could extend the segmentation of time series by further criteria to develop
more robust temporal abstractions. For example, changes in objects and their interactions
(detailed in Sec. 8.2.2) or changes in a causal graph (Pitis & Garg, 2020; Seitzer et al.,
2021; Pitis et al., 2022) seem promising candidates to supplement the current segmentation
based on latent state stability.

8.2.2 Towards Object-Centric Representations

Events revolve around entities and their interactions. Most events describe the spatiotem-
poral dynamics of at least one entity, potentially affecting other entities. Gärdenfors
(2014) proposes that a prototypical event describes an agent entity generating a force
that can affect a patient entity. According to Gärdenfors (2014), the event structure is
somewhat analogous to the subject-object structure of sentences, where the roles of the
subject or objects are filled by the involved entities.

Hence, the role of entities and their interactions seems to be crucial for the structure of
events. However, in the presented research I did not fully make use of this structure for
the segmentation or the representation of temporal abstractions.8.3. Future work could
explore whether encoding events using object-centric representations can guide
the discovery and learning of event-based temporal abstractions.

Graph neural networks (GNNs) are a common approach to encode objects and their
interactions (Battaglia et al., 2018). GNNs represent the state of an entity as a node
and the interaction between objects as an edge. The per-edge and per-node functions are
typically reused within the graph, thus supporting combinatorical generalization across
objects (Battaglia et al., 2018). Extending GNN-based dynamics models to include events
is a promising research direction to better include the role of entities.

How could a GNN-based world model be extended to include events? One approach
could be to reuse GateL0RD’s regularized update gates to sparsely route the infor-
mation flow across entities. By embedding sparse gates at the edges of a GNN, one
could control which aspects of an entity’s state currently affect another entity, illustrated
in Fig. 8.1. This essentially implements a bias towards sparse object interactions and
could guide the system towards discovering local causal relationships (Goyal & Bengio,

8.2The impact of latent state regularization can be scales by tuning the hyperparameter β (Chap. 5–6)
or βsparse (Chap. 7).

8.3For example, the x−,y−, and z−position was provided for a hand, object and a goal entity for
learning temporal abstractions of reaching in Chap. 6. However, the system did not explicitly encode
that a three-dimensional position triple belongs to a single entity.

116

input
image it

predicted
image ît+1

slot 1

slot 3

slot 2

empty

slot 4

GNN
world
model

Figure 8.1: Towards object-centric world models: In a Graph Neural Network
(GNN) world model the information flow between entities could be controlled through
gates regularized toward sparse activity, as before in GateL0RD (cf. Chap. 5). This
could allow adaptively determining the number of objects (gates at nodes) and detecting
object interactions (gates at edges).

2022; Seitzer et al., 2021). For example, when a robot reaches for a block, the position
of the block influences the next movement of a gripper (Fig. 8.1, arrow from green to red
node). However, in reverse, the gripper would not affect the position of an object while
out of reach (open gate at the arrow from red to green node). Event boundaries could be
detected by registering changes in the interactions of entities. For example, upon contact,
the gripper would affect the future positions of the object.

In addition to guiding event segmentation, sparsely-operating gates could help extract
objects from pixel-based inputs. Recently, slot-based vision systems have been de-
veloped that assign parts of an image to slots, thus discovering objects from pixel-based
inputs (Locatello et al., 2020; Kipf et al., 2021; Traub et al., 2023; Seitzer et al., 2023;
Zadaianchuk et al., 2023). However, typically only a fixed number of objects are de-
tected. Gating the recruitment of new slots via sparse gates could enable the detection of
a variable number of objects. The system could learn to assign new slots, causing a gate
opening and sparsity penalty, only if otherwise prediction losses (Ltask) would increase.

117

Changes in the number of active slots could also indicate event boundaries, for example,
if an object falls out of a box once the box is picked up.

In summary, future work could explore the combination of event-based abstraction and
object-centric representations. This could improve the discovery of temporal abstractions
and generalization in model-based RL. Consider, for example, a block-stacking robot.
By encoding interaction events in an object-centric structure, an RL agent could learn to
seamlessly generalize across the number of objects, e.g. blocks. Changes in the interaction
graph could mark event boundaries. Additionally, the system could potentially learn to
better generalize across out-of-distribution shifts by learning which aspects of an object
state, e.g. position, are affected by an event, e.g. lifting, and which are not, e.g. mass and
color. Thus, physical reasoning could be learned from simple object interaction events,
similar to how it can be observed in children during their first years of life (Lin et al.,
2022).

8.2.3 Extending Model-Based Hierarchies

The hierarchical model-based abstractions discovered by the presented methods are best
characterized as a partonomy of events, i.e. a hierarchical organization reflecting the rela-
tionship of parts and subparts (Zacks & Tversky, 2001). For example, moving a gripper
towards an object is part of a <reaching for an object>-event. According to Zacks
& Tversky (2001), events can also be organized into a taxonomy, i.e. a hierarchical or-
ganization that defines an “instance-of” relationship between abstraction levels. For ex-
ample, <filling water into a teapot> or <pouring tea into a cup> could both be
instances of the more abstract event <filling a container>.

Future work could explore how to learn a taxonomy of events. Qualitatively, it can
be observed that GateL0RD tends to encode similar dynamics within the same latent
state dimensions.8.4 Thus, one could potentially learn more abstract event categories
from suitably clustering the learned event codes. Potentially, further regularization of the
latent states is needed to foster encoding similar dynamics proximally in the latent space.

Thick world models (Chap. 7), developed a two-level (partonomic) hierarchy of world
models. Thick, the algorithm for learning model-based hierarchies, is defined level-wise.
It could in principle generalize to arbitrary levels of abstraction by adding new levels
whenever the latent state changes of the currently highest level.

8.4Note, that latent state similarity was not quantified. However, examples illustrate the systematics
of GateL0RD’s latent updates. For example in Fetch Pick&Place, one model (one seed) updates the
same dimensions at certain event boundaries, e.g. when grasping an object (Fig. C.15). Similarly, at the
ends of two different events with similar dynamics (linearly moving to a goal or object), the same latent
state dimensions are updated (cf. reaching and pointing in Fig. 6.4).

118

However, it is questionable whether adding higher levels in this way is useful for model-
based planning. Each added level comes with the high computational cost of training a
new network. Additionally, for complex agents facing multiple domains, it seems unreal-
istic to globally define the granularity of segmentation.

From a cognitive science perspective, it is also debatable whether biological action
representations are strictly hierarchically organized. Botvinick (2007), for example, argues
that graded, loosely hierarchical representations may develop from dense connections
without an explicit hierarchy. Neuroimaging studies suggest that there may exist gradients
of abstraction in the brain (Badre & D’esposito, 2009; Nee & Brown, 2012; Brunec et al.,
2018), i.e. certain axes along which the representations of memories (Brunec et al., 2018)
or actions (Badre & D’esposito, 2009) appear to increase in their level of abstraction.
This could also hint at a more continuous scale of abstraction.

Could Thick be extended to more fluent levels of abstraction? In practice, the
segmentation relied on update gates gϕ(x) for some inputs x and learnable parameters ϕ,
which were regularized to sparse activity. The regularization was set via a hyperparameter
β.8.5 To learn continuous abstractions, one could treat β as an adjustable parameter and
simultaneously learn segmentations for various values of β. For example, a hypernetwork
(Ha et al., 2016) could learn to set the weights ϕ of the gating network conditioned
on a continuously sampled β. Subsequently, a high-level model trained on the resulting
segmentation could make predictions dependent on β. Thus, for high-level predictions in
the resulting hierarchy, β would determine the temporal horizon and could be adjusted
on the fly depending on the current task and the available computational resources.

8.3 The Bitter Lesson and Cognition-Inspired AI

In the current age of large language models (LLMs), taking inspiration from cognitive
science to improve AI has fallen out of popularity. In his seminal essay, ‘The Bitter
Lesson’, Sutton (2019) argued that the biggest lesson of decades of AI research is that
methods that leverage computation will ultimately outperform methods that
leverage domain knowledge. The rise of LLMs largely supports his point: At their
core, LLMs are generative language models (Devlin et al., 2018; Radford et al., 2019)
that are massively scaled up with respect to model size, dataset size, and duration of
training (Brown et al., 2020). Interestingly, by scaling up these models, abilities beyond
simple text generation seem to emerge (Wei et al., 2022; Bubeck et al., 2023), e.g. the
ability to solve canonical tasks of cognitive psychology reasonably well (Binz & Schulz,
2023; Buschoff et al., 2023). Is cognition-inspired AI doomed to fail in the long run when

8.5In Chap. 7 this hyperparameter is called βsparse.

119

“computation is all you need”?
Taking inspiration from biological intelligence has helped AI development before, when

the inspired design choices are not literal copies but respect hardware and processing
differences in vivo and in silico. For example, as the name suggests, neural networks
are inspired by the network of neurons found in our brains (Goodfellow et al., 2016;
Schmidhuber, 2022). The main inspiration here is that through the composition of small
computational units that learn locally from their interactions with connected units, very
complex functions can be learned. However, how artificial neurons in typical deep learning
systems learn, i.e. through gradient backpropagation, is much different from neurobiolog-
ical learning (Bengio et al., 2015b). Similar points can be made about machine learning
paradigms, e.g. RL, or deep learning building blocks, e.g. self-attention, which took some
inspiration from natural processes.8.6 Therefore, we should ask not only which structures
aid biological cognition, but also how such structures can be learned so that they scale
with computation and data. Or, to quote Sutton (2019), “we want AI agents that can
discover like we can, not which contain what we have discovered”.

I believe that the work of this thesis is largely in the vein of the proposal of Sutton
(2019). I investigated how event-based temporal abstractions can be discovered without
explicit supervision and suitably represented in deep neural networks. Much of the thesis
focused on showing that this approach scales well.8.7 Hence, this research worked towards
giving AI the ability to discover model-based temporal abstractions of sensorimotor data,
as humans can discover events from their sensorimotor experiences.

8.4 Integrating Theories on Cognition

The models developed in this thesis attempt to integrate and partially unify approaches
from different fields of cognitive science and AI research. Most notably, I took inspiration
from research on event cognition (Hommel et al., 2001; Zacks et al., 2007; Butz et al.,
2021) to improve sequential decision making, such as model-predictive control and RL.

8.6RL has its historic roots in psychology, dating back to the era of behaviorism, and animal experiments
on conditioning and learning by trial and error (Sutton & Barto, 2018). Self-attention (Cheng et al.,
2016), one of the main driving forces of Transformers (Vaswani et al., 2017) and LLMs, was developed
based on precursors of the attention mechanism (Bahdanau et al., 2015; Graves et al., 2014), which were
partially inspired by psychological theories of working memory and attentional focus (Graves et al., 2014).
However, neither RL nor attention attempt to exactly replicate their natural counterparts.

8.7For example, it was demonstrated that GateL0RD’s compression of time series into latent states
scales from toy environments to realistic physics simulations (Chap. 5), from scripted to RL-generated
sequences (Chap. 6), and from low-dimensional position-based inputs (Chap. 6) to high-dimensional pixel-
based inputs (Chap. 7). Similarly, the modeling of goal-anticipatory gaze scaled from predefined scripted
events (Chap. 4) to self-segmented events in more realistic simulations (Chap. 6).

120

Beyond that, ideas from predictive processing (Friston et al., 2006; Hohwy, 2013; Clark,
2015), active inference (Friston et al., 2015; Sajid et al., 2021a; Parr et al., 2022), and
causality research (Schölkopf et al., 2021; Schölkopf, 2019) were integrated. Combining
different theories can create interesting synergies, as demonstrated by Capri (Chap. 4):
By applying active inference to a hierarchical model that mirrors the structure of events
and event boundaries, various findings of developmental research (Kanakogi & Itakura,
2011; Adam & Elsner, 2020) could be modeled without any additional assumptions.

In this section, I discuss further unification options and the relation to other theories
in cognitive science. First, I discuss whether the main approach of this thesis, to some
extent, can unify the terminology of actions, events, and context (Sec. 8.4.1). Next, I
discuss how the presented models relate to more general theories of resourceful cognition
(Sec. 8.4.2).

8.4.1 Action, Event or Context?

In this work I used the terms context, event, and action somewhat interchangeably.8.8

To show that this is not due to sloppy terminology, imagine a breakfast scene, where
a human subject is preparing a cup of tea and a group of scientists study the neural
and cognitive representations involved when performing or perceiving this activity. How
would they call the segments that make up the activity, e.g. <grabbing the teapot> or
<pouring tea into a cup>? Arguably, the everyday notion for such a segment is an
action. Cognitive scientists or psychologists who investigate goal-directed behavior would
probably also refer to this as an action, e.g. Cooper & Shallice (2000). Some researchers
in AI may hesitate to call this an action, because in sequential decision making, action
typically refers to the elementary actions of the underlying decision process (see Sec. 2.2).
For cognitive psychologists studying the segmentation of perceptual activity, for example,
from an observational perspective, the more common notion for a segment of activity
is an event, e.g. Zacks (2010). To make matters even more complicated, neuroscientists
studying brain activity might refer to a stable segment as the context, e.g. Shahnazian
et al. (2022).

So what is the relation between actions, events, and context? Do these terms refer to
different representations that encode redundant content? Or does each notion refer to a
different aspect of the same underlying representation?

The main framework of this thesis, Thick MDP (Chap. 3), argues for the latter. In
Thick MDPs ongoing activity and latent information is compressed into temporally

8.8For example, in Chap. 7, we argue that the context ct of the lower level of a Thick world model
encodes events. At the higher level, embeddings At of low-level codes ct are referred to as high-level
actions.

121

t

lev
el

of
ab

str
ac

tio
n

l + 1

l

l − 1 <lift teapot> <pour tea into cup> <put teapot down>

<steep tea> <fill cup with tea> <add milk to tea>

<put on music> <prepare cup of tea> <enjoy cup of tea>

..
.

..
.

context event

action

Figure 8.2: Actions, events, and context in THICK MDPs are all encoded as
latent states clt. However, at a certain level of abstraction l, the notions might refer to
different codes. For example, an event (red) describes the ongoing dynamics encoded in clt
at the abstraction level l, e.g. that an agent fills a cup with tea. The context (blue) is past
and top-down information conditioning processing at level l, e.g. higher-level information
cl+1
t that the agent wants to prepare a cup of tea. The action (green) is the next desired

state cl−1
t set for the lower level l − 1, e.g. to pour tea into a cup.

persistent codes ct. Context, events, and (higher-level) actions are all encoded as such
codes ct. However, at a certain level l different terms may refer to different aspects of these
stable codes, illustrated in Fig. 8.2. For example, at a certain level l, context could refer
to past and top-down information cl+1

t from higher levels that conditions the processing.
In contrast, events may refer to ongoing predicted dynamics at the level l encoded within
clt. For example, within the context <prepare a cup of tea>, an event may be <fill a
cup with tea>. During planning, the level l provides top-down goals for the next lower
level l−1, in the form of a desired and potentially achievable next code cl−1

t+1. This can be
seen as the action at this level of processing. For example, actions during a <fill a cup
with tea>-event might be <grasp the teapot>, <pour tea into the cup> and <put
teapot down>. Note that in Thick MDPs the notions are level-dependent. At level l+1,
for example, the event cl+1

t may be <prepare a cup of tea> in the context of <prepare
breakfast> and an elementary action might be <fill a cup with tea>.

Thus, Thick MDPs blurs the line between context, events, and action representations.
Similar propositions have been made before. Hommel et al. (2001) emphasized that

122

event codes relate actions to perceptions. This strong connection between events and
actions has received increasing attention over the last decades (Elsner & Hommel, 2001;
Butz, 2016; Radvansky & Zacks, 2014; Cooper, 2021; Kuperberg, 2021; Elsner & Adam,
2021). Furthermore, contextual shifts have been associated with event boundaries when
studying episodic memory (DuBrow & Davachi, 2013; Zheng et al., 2022). Finally, in
cognitive models, the term context is commonly used to refer to the encodings of events
or event-like dynamics (Butz et al., 2019; Humaidan et al., 2020; Heald et al., 2021, 2023).

8.4.2 Resourceful Cognition

While many design choices for the models presented were primarily motivated by theories
of event cognition, the proposed models can also be understood in light of resourceful
cognition. To account for the limitations of the human brain, computational models
of cognition need to consider processing constraints. From a neuroscience perspective,
efficient coding proposes that sensory processing attempts to maximize performance under
the constraints of its processing capacities (Barlow et al., 1961; Sims, 2018). In cognitive
modeling, theories of bounded rationality or resource rationality (Simon, 1997; Gershman
et al., 2015; Lieder & Griffiths, 2020; Bhui et al., 2021) claim that humans make rational
decisions subject to cognitive resource constraints. Cognitive resources typically refer to
the amount of time and computation the brain spends on mental operations (Lieder &
Griffiths, 2020), such as memorizing, mental simulation, or focusing attention. Similarly,
the concept of mental effort has been proposed (Kahneman, 1973; Shenhav et al., 2017).
Mental effort has been formalized as a cost to update previous beliefs about the world
(Zénon et al., 2019), for example, when switching between tasks (Butz, 2022).

How does resourceful cognition relate to the methods developed in this thesis? Ga-
teL0RD (Chap. 5) is trained to minimize a task-based loss while simultaneously minimiz-
ing the number of latent state updates. If updating the latent state is seen as an effortful
or resource-costly operation, similar to adding an item to working memory (Lieder &
Griffiths, 2020) or changing a prior belief (Zénon et al., 2019), then GateL0RD aims
at maximizing task-based performance subject to resource constraints on latent updates.
Event boundary prediction of Capri (Chap. 4) or high-level predictions of the Skip Net-
work (Chap. 6) or Thick world models (Chap. 7) can also be viewed as means of saving
computational resources. Let us assume that a high-level prediction is as computation-
ally costly as a low-level prediction. Then the system can save computational resources
for long-horizon prediction by querying the high-level model once as opposed to running
open-loop simulations of the low-level for multiple iterations. Seeing that principles in-
spired by event cognition can also be explained through the lens of resourceful cognition
suggests that the associated theories could be unified even further, as has been partially

123

done by Butz (2022).

8.5 Outlook

Future work could build upon the methods developed in this thesis to further advance the
problem-solving skills of artificial agents. The systems presented in this thesis generalize
better across various factors, e.g. spurious temporal correlations or training schemes. In
addition to that, they can plan their behavior hierarchically. Further scaling and extending
these mechanisms (e.g. as described in Sec. 8.2), could give artificial agents the ability to
flexibly reason about their experience on different time scales and levels of abstraction.
Planning on longer time scales could allow the agent to learn more complex behavior
by focusing on long-horizon outcomes and automating the necessary low-level substeps
(Schmidhuber, 1992; LeCun, 2022). Adding further levels of abstraction could allow
problem solvers to generalize across irrelevant details. This could make their behavior
more robust to changes in their environment, their body, or task specifics, which is a
crucial step toward open-ended or continual learning (Doncieux et al., 2018; Khetarpal
et al., 2022) and zero-shot skill transfer (Kirk et al., 2023).

Moreover, this thesis presented tools that enable artificial agents to encode sensorimotor
dynamics into stable, discrete, latent state codes. Different theories of cognitive science
propose that such event encodings may give rise to more symbolic concepts and struc-
tures in language (Knott, 2012; Gärdenfors, 2014; Butz, 2016). Future work could explore
how the latent states discovered by the presented systems could be linked to language.
This could allow embodied agents to ground high-level symbolic representations in their
sensorimotor experience, a long-standing challenge in cognitive science and AI research
(Harnad, 1990; Barsalou, 2008; Butz & Kutter, 2017; Taniguchi et al., 2019; Lake et al.,
2019; Greff et al., 2020; LeCun, 2022; Lin et al., 2023). The grounding of language in
cognitively plausible representations would be a huge advancement for human-AI align-
ment. Not only could a user more easily provide instructions to an AI system, but also
the system could better explain its decisions by directly expressing them in words, making
the overall process much more transparent. When the artificial system learns language
functionally in a way similar to that of humans, the risk of miscommunication could also
be somewhat mitigated. Alignment of AI with humans is a pressing challenge as AI be-
comes more and more inter-webbed in our daily lives. I hope that my research can provide
a step towards this direction.

Lastly, the outlined work could also pave the way for computational cognitive modeling
in more elaborate settings. Events, episodes, or other forms of temporal abstraction of ex-
perience are at the heart of many cognitive models (Radvansky & Zacks, 2014). However,
including them in computational models requires knowledge about event segmentation in

124

the to-be-modeled data. The methods developed in this thesis provide a practical deep
learning implementation for event segmentation without direct supervision and can be
applied to high-dimensional data, such as videos. Thus, this work offers a bridge between
models of higher-level cognition and high-dimensional unprocessed stimuli, by grounding
events and model-based abstractions directly in the low-level data.

In summary, the outlined research could further advance AI development and cogni-
tive science research. On the one hand, the presented work could lead towards further
advancing AI systems by providing practical methods that artificial agents can use to
hierarchically represent their experience and plan based on these representations. On the
other hand, my research could contribute further to a better understanding of human
cognition by modeling human behavior and providing tools that may be useful in other
computational cognitive models. Thus, I hope that the research of this thesis provides a
small step towards a better understanding of what constitutes intelligence, both artificial
and natural.

125

A
Background and Approach: Supplementary

Material

A.1 Hierarchical Planning and the Cognitive Revolution

Tolman (1948) was a central critic of behaviorist theories. He demonstrated that rats
can find rewards in a maze faster when they have visited the maze before, even if their
previous visits had not been rewarded (Tolman & Honzik, 1930). These findings suggest
that rats form representations that allow them to plan their behavior prospectively toward
a certain outcome (O’Doherty et al., 2017). Along similar lines, Lashley (1951) challenged
the view of motor control as reflex chains in his famous seminal work ’on the problem
of serial order in behavior’. Lashley argued that all behavior, from spoken language to
reaching and grasping movements, is hierarchically organized. Lashley already provided
a large amount of evidence for his hypotheses, which have been expanded since then (see
Rosenbaum et al. (2007) for a review), and his theory in large part stands the test of
time (Fitch & Martins, 2014). A few years later, Miller et al. (1960) proposed the TOTE
model, a highly influential computational model for cognitive action control. In TOTE,
actions are selected based on an iterative, hierarchical feedback loop. Here, a desired
anticipated state is compared to the current sensory state to select the next action. These
ideas sparked the development of numerous other hierarchical models of behavior (see
Botvinick, 2008 for a review).

126

A.2 Details on Sequential Decision Making

A.2.1 Bellman Equation

Equation 2.2 contains the expectation Eπ[·] over a policy π. This denotes the expectation
of a random variable, e.g. a state sk or action ak, assuming the agent follows the policy π
(Sutton & Barto, 2018). We can directly express this expectation for G using a recursive
definition with

G(st, π) =
∑
at∈A

π(at | st)
∑

st+1∈S

T (st+1 | st,at)R(rt | st+1, st,at) + γG(st+1, π). (A.1)

This equation is known as a Bellman equation, based on Bellman (1957), and it relates
the value of a state to all of its successor states (Sutton & Barto, 2018).

A.2.2 Discount Factor

An important effect of the discount factor γ is that when γ < 1 and all rewards rt are
bounded, the sum over infinite elements in Eq. 2.2 has a finite value (Sutton & Barto,
2018). For example, if the agent would receive a constant reward r at every time step,
Eq. 2.2 forms a geometric series, that can be computed in closed form as

K∑
k=t

γkr =
r

1− γ
. (A.2)

From this we can derive a general upper bound for G. If rmax is the maximum reward
possible then

G(st, π) ≤
rmax

1− γ
,∀γ < 1. (A.3)

In practice, the discount factor is typically chosen as γ ∈ [0.95, 0.99]. This keeps G
bounded, while still taking future rewards into account for rather long horizons.

A.2.3 Differences in Formulations of the Free Energy Principle

There exits a lot of literature on the Free Energy Principle (FEP) with varying notation
and simplifications. In this section, notable differences are discussed between the review
of the FEP in Sec. 2.2.4 and other descriptions in the literature.

• states: Sometimes a distinction is made between the state of the environment and
hidden causes of the sensory signal (Friston, 2010; Friston et al., 2011). Often (e.g.
in Friston et al., 2015, 2016; Sajid et al., 2021a) this is not the case.

127

• actions: In some formulations of the FEP the true actions at of the POMDP are
distinct from internal action representations of the agent (e.g. Friston et al., 2015).
In other variants, this distinction is ignored (e.g. Friston et al., 2011; Sajid et al.,
2021a; Schwöbel et al., 2018). For simplicity, we follow the latter.

• generative model: We define the generative model fϕ(ot, st | o1:t−1,a1:t) as a
predictive distribution that generates states st and observations ot based on previous
sensorimotor experiences, done similarly in Friston et al. (2011, 2010); Sajid et al.
(2021a). In other formulations of the FEP, the generative model fϕ is a joint
distribution over states, observations, and actions, e.g. Friston et al. (2015, 2016);
Schwöbel et al. (2018).

• recognition density: In most versions of the FEP, the recognition density qϑ is
conditioned on past actions a1:t or on a policy π (e.g. Friston et al., 2015, 2016;
Sajid et al., 2021a; Schwöbel et al., 2018). In other variants, there is no explicit
conditioning on actions (e.g. Friston et al., 2010, 2011). Rarely is the recognition
density conditioned on past observations. However, this is in principle also possible:
The recognition density could be defined as qϑ(st+1 | a1:t−1,o1:t−1) or alternatively,
by using past state belief qϑ(st+1 | at, st−1). In fact, the latter of the formulations
is how variational free energy is implemented as a model loss in recent model-based
reinforcement learning approaches (Hafner et al., 2019a, 2020a).

• prior preferences: In some active inference formulations, the prior over desired
states is expressed as part of the generative model fϕ (e.g. in Friston et al., 2015). In
our formulation, we split preferences and predictions into two separate components,
g and fθ, respectively, to avoid convoluted terminology. However, without loss of
generality, the prior preferences could also be a prediction of the generative model.

A.3 THICK MDP details

A.3.1 Semi-Markovian Context Changes

LetMl = (S l,Al, T l, Rl) be the Markov Decision Process at a certain level l transitioning
at time tl. The states sl

tl
∈ S l are composed of event-encoding contexts cl

tl
and residual

state information zl
tl
, i.e. sl

tl
= (cl

tl
, zl

tl
). I want to allow for context changes that occur

sparsely in time tl. However, these changes in context should be systematic and fully
predictable from state and action information. How can we formalize this?

Let Π be the set of all possible policies π in Ml. Furthermore, let us denote τ(tl) as
the next time step after tl for which the context changes, i.e. cl

τ(tl)
̸= cl

tl
(see Eq. 3.1). For

128

every MDP Ml of our framework, we require the following equality to hold:

T l(clτ(tl) | s
l
tl , π) = T l(clτ(tl) | s

l
1:tl , π),∀π ∈ Π, sltl ∈ S. (A.4)

This means that the transitions T l in contexts cl
tl
, conditioned on an arbitrary policy

π ∈ Π and state sl
tl
∈ S, need to fulfill the Markov property (cf. Eq. 2.1). In other

words, these context transitions are semi-Markovian on the time scale tl of the underlying
Markov model Ml (see Sec. 2.2.2 for details on Semi-MDPs).

What does this entail? This means that given a state and a policy, we are able to
fully predict the probabilities of the next context transitions. This restricts what kind
of information states sl

tl
and contexts cl

tl
can encode. For example, systematic changes

based on interacting with the state space can be encoded in cl
tl
, such as cl

tl
representing

temporally extended sequences, e.g. <reach>, or parts of the state space, e.g. <being in
the kitchen>. However, unpredictable context transition probabilities are not allowed.

A.3.2 Available Actions

In Thick MDPs, I equate actions al of a level l with event contexts cl−1 of a lower level
l − 1. However, not every event is possible in every situation. How can we define the
available actions A(sl) for a certain state sl?

First, we define the set S l−1(sl) as the states that can occur on the lower level l− 1 at
the same time as a high-level state sl. Now we can define A(sl) with

A(sl)=̇{cl−1 | ∃sl−1 ∈ S l−1(sl),al−1 ∈ Al−1(sl−1) s.t. T l−1(cl−1 | sl−1,al−1) > 0}. (A.5)

Thus, an event cl−1 is only an available action if there exists a transition to a state with
this event-encoding context on the level l − 1.

129

B
Capri: Supplementary MaterialB.1

B.1 Relation to THICK MDPs

In Chap. 3 I introduced Thick MDPs as a formal framework for hierarchical decision
making inspired by various findings on event cognition. The main preposition of Thick
MDPs is that hierarchical levels interact bidirectionally via temporal persistent event
contexts clt. The state of level l + 1 changes on the time scale of context changes at level
l. During planning, a high level l + 1 guides the lower level l by proposing the desired
next contexts cl.

Capri can be understood as a simplified two-leveled Thick MDP. Intuitively, Capri’s
low level (l = 1) predicts the next observations via its event dynamics models. At the
same time, its high level (l = 2) predicts upcoming event boundaries, i.e. situations
that change low-level events codes or contexts. Applying active inference to both levels
attempts to minimize the uncertainty about both types of predictions. In the remainder
of this section, I demonstrate how the action selection strategy of Capri can be derived
directly from Thick MDPs with some simplifications.

In Thick MDPs, for every level l the full state slt = (clt,y
l
t) is composed of a temporally

persistent part, the context code clt, and a continuously changing residual part ylt. Let us

B.1This chapter is based on the supplementary material of:
Gumbsch, C., Adam, M., Elsner, B., & Butz, M. V. (2021). Emergent Goal-Anticipatory Gaze in
Infants via Event-Predictive Learning and Inference. Cognitive Science, 45:e13016.

130

assume that in Capri the residual state information ylt is some function of the observation
ot. Thus, for simplicity, we set ylt = ot for every level l. The context clt needs to capture
stable events. Thus, we set the context code of the lowest level l = 1 to the currently
active event c1t = et. The second level l = 2, becomes active when the lower level context
c1t changes, i.e. at event boundaries. Let us assume that the environment of Capri is
simple enough so that for level 2 no context changes of c2t occur. Thus, we can omit the
context here and set c2t = 0.

How are the actions then inferred? We start at the highest level l = 2 with

J2(πi, K) = Eπi

K∑
t=t2

R2(r2t | s2t ,a2
t+1, s

2
t+1). (B.1)

for a policy πi and planning horizon K. We can replace actions at level l = 2 with
lower level contexts a2

t = c1t = et. Additionally, we can rewrite states as s2t = (c2t ,y
2
t) =

(0,ot) = ot. We can do this because of the simplifications we introduced earlier, i.e.
setting residual states to observations (ylt = ot) and assumed that there are no event
contexts on level 2 (c2t = 0). As a result, we get

J2(πi, K)′ = Eπi

K∑
t=t2

R2(r2t | ot, et+1,ot+1). (B.2)

We plan by means of active inference (Parr et al., 2022). Thus, we replace our reward
function R2 with expected free energy (EFE) focusing on minimizing uncertainty as in
Eq. 4.6, which gives us

J2(πi, K)′′ = Eπi

1

K

K∑
t=t2

H
[
f 2(ot+1 | et+1,ot)

]
, (B.3)

with f 2 the model of level l = 2. What is the model f 2? As outlined above, level l = 2
should predict context changes, i.e. event boundaries. Thus, we get

J2(πi, K)′′′ = Eπi

1

K

K∑
t=t2

H
[
P start
et+1

(
ot+1 | πi

)
P end
et

(
ot+1 | ot, πi

)])
, (B.4)

by replacing the model f 2(ot+1 | et+1,ot) with the event boundary models that model the
transition from the current event et to the next event et+1. Additionally, we condition the
models on the policy πi, since all event schmemata are policy-conditioned.

The policy on level l = 1 is inferred based on Eq. 3.5 to maximize external rewards,
according to the reward function R1, while minimally diverging from a high-level plan.

131

For simplicity, we enforce minimal divergence from the high level plan by simultaneously
optimizing J2. As a result, we can write

J1(πi, K) = Eπi

K∑
t=t1

R1(r1t | s1t ,a1
t , s

1
t+1) + J2(πi, K). (B.5)

We can rewrite s1t = (et,ot). Additionally, as before we replace the reward function R1

with EFE from Eq. 4.6 to get

J1(πi, K)′ = Eπi

1

K

K∑
t=t1

H
[
f 1(ot+1, et+1 | et,ot,at)

]
+ J2(πi, K) (B.6)

What is the generative model of level l = 1? As outlined earlier, level 1 predicts event
dynamics. This is why we simply replace f 1 with the event dynamics models and get

J1(πi, K)′′ = Eπi

1

K

K∑
t=t1

H
[
P event
et

(
ot+1 | ot, πi

)]
+ J2(πi, K). (B.7)

Note that we replaced at with πi since our event dynamics model directly takes a policy
as an argument. Additionally, we omit the likelihood of event et+1 because this is not
predicted by the event dynamics models. If we insert J2 from Eq. B.4, we end up with

J1(πi, K)′′′ =Eπi

1

K

K∑
t=t1

H
[
P event
et

(
ot+1 | ot, πi

)]
(B.8)

+
1

K

K∑
τ=t2

H
[
P start
eτ+1

(
oτ+1 | πi

)
P end
eτ

(
oτ+1 | oτ , πi

)])
. (B.9)

This is our overall objective for policy inference. When we set K = 1 and compute
the expectation based on the probabilities of past events P

(
et | o1:t, π1:t−1

)
, we arrive at

Eq. 4.7.

132

B.2 Implementation Details

B.2.1 Pseudocode

Here we provide pseudocode of Capri. A Python implementation can be found at https:
//github.com/CognitiveModeling/CAPRI.

Algorithm 1 Sensorimotor loop of Capri
1: procedure Capri
2: while simulation is running do
3: start new episode E
4: t← 1
5: determine whether training or testing
6: initialize π1
7: while E is not finished do
8: receive ot
9: if training then

10: receive currently active event et
11: set P (eit|o1:t, π1:t) = 1 for ei = et
12: set P (ejt |o1:t, π1:t) = 0 ∀ej ̸= et
13: update P start

ei , P event
ei , P end

ei (see Sec. 4.3.1)
14: πt ← πt−1

15: else
16: compute P (eit | o1:t, π1:t) ∀ei (Eq. 4.1)
17: compute F̂E(π) ∀π (Eq. 4.7))
18: πt ← argminπ F̂E(π)

19: execute πt
20: t← t+ 1

133

https://github.com/CognitiveModeling/CAPRI
https://github.com/CognitiveModeling/CAPRI

B.2.2 Gaussian Neural Networks

Each event schema aims to model a distribution P (ot | x) over observations at time t
and x some conditional variables. Because we assume that this distribution can locally
be modeled as a multivariate Gaussian distribution dependent on x. Thus, in our imple-
mentation, each likelihood distribution P (ot | x) is parameterized by a separate neural
network that outputs a mean µ and diagonal covariance matrix Σ from inputs x (Bishop,
2006). We use linear activations to predict the mean µ and employ exponential linear
units (ELU) shifted by 1 for Σ, to ensure that Σ > 0.

The networks can be trained using the negative log likelihood (NLL) of observations ot
under a parameterized Gaussian as its loss function. We modify the NLL loss slightly to
avoid problems that could arise from gradient-based training :

L(ϕ) = tanh
(
− logN (ot | µ,Σ) · b

)
, (B.10)

with ϕ the parameters of the neural network and b a scaling hyperparameter. We squash
the loss by a tanh-function avoids that a very low likelihood (≈ 0) lead to exploding
weights in the beginning of training. The empirically chosen constant factor b = 0.01
scales the likelihood so that little relevant information is lost in the squashing process.
We use single-layered networks predicting mean and covariance matrix seperately, seeing
that linear dependencies are sufficient in our simulations. To speed up the training of the
networks while avoiding local overfitting, we use a sampling buffer with a large capacity
(1000 samples) for each network and draw two additional training samples per update
step. With this balanced training scheme, we could train the networks with a rather high
learning rate of η = 0.1 using stochastic gradient descent. The weights of the neural
networks were randomly initialized following a zero-centered Gaussian distribution with
a standard deviation of 0.1.

B.2.3 Training details

During training, the system learns its generative Gaussian neural networks in a supervised
manner. Each training episode E can consist of one or more events, i.e. E = (ei, ej, . . . , ez).
When an event ei starts at time ts, the starting condition P start

ei is updated using πts−1 as
input and ots as target. At each time step t during the event ei, the event dynamics model
P event
ei is updated using ot−1 and πt−1 as inputs and ot as target. When an event ei ends

at time step te, the end condition P end
ei is updated te − ts times. P end

ei is updated using
ote as target and π(te − 1) and ote−ι as inputs with ι ∈ [1, . . . , te − ts]. These multiple
model updates do not only increase the training data for the end condition, but also allow
Capri to learn to generally predict how an event ends from any observation that had
previously occurred during this event.

134

B.2.4 Derivation of Event Probability Estimation

Here we provide a full derivation of Eq. 4.2:

P
(
eit | ot,ot−1, πt−1, e

j
t−1

)
=
P
(
eit,ot,ot−1πt−1, e

j
t−1

)
P
(
ot,ot−1, πt−1, e

j
t−1

) Bayes rule

=
P
(
ot | ot−1, πt−1, e

i
t, e

j
t−1

)
· P

(
ot−1, πt−1, e

i
t, e

j
t−1

)
P
(
ot,ot−1, πt−1, e

j
t−1

) Bayes rule

=
P
(
ot | ot−1, πt−1, e

i
t, e

j
t−1

)
· P

(
ot−1, πt−1 | eit, e

j
t−1

)
· P

(
eit | e

j
t−1

)
· P

(
ejt−1

)
P
(
ot,ot−1, πt−1, e

j
t−1

)
factoring the joint likelihood P

(
ot−1, πt−1, e

i
t, e

j
t−1

)
in numerator

=
P
(
ot | ot−1, πt−1, e

i
t, e

j
t−1

)
· P

(
ot−1, πt−1 | eit, e

j
t−1

)
· P

(
eit | e

j
t−1

)
· P

(
ejt−1

)∑
eh P

(
ot,ot−1, πt−1, e

j
t−1, e

h
t

)
marginalization of P

(
ot,ot−1, πt−1, e

j
t−1

)
over eh in denominator

=
P
(
ot | ot−1, πt−1, e

i
t, e

j
t−1

)
· P

(
ot−1, πt−1 | eit, e

j
t−1

)
· P

(
eit | e

j
t−1

)
· P

(
ejt−1

)∑
eh P

(
ot | ot−1, πt−1, eht , e

j
t−1

)
· P

(
ot−1, πt−1 | eht , e

j
t−1

)
· P

(
eht | e

j
t−1

)
· P

(
ejt−1

)
factoring the joint probability P

(
ot,ot−1, πt−1, e

h
t , e

j
t−1

)
in denominator

=
P
(
ot | ot−1, πt−1, e

i
t, e

j
t−1

)
· P

(
ot−1, πt−1 | eit, e

j
t−1

)
· P

(
eit | e

j
t−1

)∑
eh P

(
ot | ot−1, πt−1, eht , e

j
t−1

)
· P

(
ot−1, πt−1 | eht , e

j
t−1

)
· P

(
eht | e

j
t−1

)
canceling P

(
ejt−1

)
in numerator and denominator

=
P
(
ot | ot−1, πt−1, e

i
t, e

j
t−1

)
· P

(
ot−1, πt−1 | ejt−1

)
· P

(
eit | e

j
t−1

)∑
eh P

(
ot | ot−1, πt−1, eht , e

j
t−1

)
· P

(
ot−1, πt−1 | ejt−1

)
· P

(
eht | e

j
t−1

)
Markov Assumption (Eq. 2.1): P

(
ot−1, πt−1 | eht , e

j
t−1) = P (ot−1, πt−1 | ejt−1

)
=

P
(
ot | ot−1, πt−1, e

i
t, e

j
t−1

)
· P

(
eit | e

j
t−1

)∑
eh P

(
ot | ot−1, πt−1, eht , e

j
t−1

)
· P

(
eht | e

j
t−1

)
canceling P (ot−1, πt−1 | ejt−1

)
in numerator and denominator

135

B.3 Simulation Details

Here we provide further details on the simulation environment. In our simulation, the
system received an 18-dimensional real-valued observation o with:

o = [pa,x, pa,y, pa,z, va,x, va,y, va,z, λa,

pp,x, pp,y, pp,z, vp,x, vp,y, vp,z, λp,

pp−a,x, pp−a,y, pp−a,z, δp−a],

(B.11)

with p positions, v velocities, λ appearance, and δ distance. Entities and denoted by
superscript letters, a for agent, p for patient, and p−a denoting agent relative to patient.
The positions were bound with px/y ∈ [−1, 1] and pz ∈ [0, 1]. The appearance was always
λ ∈ [0, 1] and uniformly sampled for all entities except for hands and claws.

During training, the starting positions of the agent and the patient were randomly
sampled for each new event sequence, ensuring that agent and patient were sufficiently
distant (δp−a > 0.1). Additionally, the patient started always on the ground, with pp,z = 0.
For all events involving agent motions, a goal position was either uniformly sampled, for
erand and etran, or set to the patient position for ereach. Per step the agent decreased the
overall overall distance by a fraction v ∈ [0.01, 0.05] by linearly moving to the goal. For
ereach this means va = v ·pp−a For erand, we simulated a simplified version of friction where
v decreased over time by a fixed factor of 0.97.

To ensure that the test event sequences had the same duration and were comparable
between simulations, Etest was determined differently. The patient was always placed in
the center of the screen, i.e. pp = (0, 0, 0). The agent started in the air (pa,z = 0.6) and
close to one corner of the screen (pa,x/y ∈ {−0.6, 0.6}). For reaching, we set v = 0.1. The
goal of transporting the object was set to (±0.77,±0.77, 0). The direction and velocity of
erand were determined randomly.

The different events ended based on different criteria: All <standing still>-events
ended after 100 time steps. Randomly directed motion ended when the agent’s velocity
was approximately zero (|va| < 0.0005). Reaching and lifting ended when the distance
between the agent and the goal was less than a threshold (δp−a < 0.05).

The appearance of hand or claw was randomly sampled for each simulation. The
appearance of a hand could be λhand ∈ [0, 0.5[, whereas the appearance of a claw could
be λclaw ∈]0.5, 1.0]. The idea for this is that we do not want to make any assumptions on
how differently hands and claws were perceived. In this way we randomize the difference
in visual appearance between simulations, and the difference in appearance lies ∈ (0, 1].
Note that setting the shape of a hand agent to sa = 0 and the shape of a claw agent to
sa = 1 yielded very similar results in pre-tests for both the inferred event probabilities

136

πn

πa

πp

π
t

ereach etran erand
0

0.5

1

tP
(e

t
|o

1
:t
,π

1
:t
)

estill

erand

ereach

etran

(a) hand

πn

πa

πp

π
t

ereach etran erand
0

0.5

1

tP
(e

t
|o

1
:t
,π

1
:t
)

estill

erand

ereach

etran

(b) claw

πn

πa

πp

π
t

ereach etran erand
0

0.5

1

tP
(e

t
|o

1
:t
,π

1
:t
)

estill

erand

ereach

etran

(c) hand

πn

πa

πp

π
t

ereach etran erand
0

0.5

1

tP
(e

t
|o

1
:t
,π

1
:t
)

estill

erand

ereach
etran

(d) claw

Figure B.1: More exemplary event and policy inference of Capri after full
training over the course of one event sequence Etest for hand (a)&(c) or claw agents
(b)&(d). The upper rows show the active policy πt. The bottom rows show the inferred
event probability estimates. Event boundaries are marked by dotted lines.

and the gaze behavior. However, for fixed appearances, there was less variation between
simulations.

The policy π was represented by a three-dimensional one-hot encoding. During training
for each new event sequence a policy was randomly sampled and the system executed this
policy over the whole event sequence. During testing, the system always started with the
no fixation policy πn before inferring its policy.

B.4 Additional Experiments and Analysis

B.4.1 Examples

Figure B.1 provides more exemplary sequences for event and policy inference of Capri.
While the exact inference patterns vary across random simulations, Capri tends to infer
the correct events more often when observing hands. Different gaze patterns (top) may
develop in different simulations.

137

B.4.2 Comparison with Dynamics Simulation

Previously, it has been proposed that trajectory-based information is used by infants to
estimate then end of an observed movement (Ganglmayer et al., 2019). Similarly, goal-
anticipation in infants was modeled before through open-loop forward simulations (Copete
et al., 2016). In its classical form, active inference also does not require hierarchical
predictions, but instead assumes that expected free energy is minimized over a fixed
prediction horizon of low-level environment steps (Friston et al., 2015, 2016). Thus, an
alternative explanation for the development of goal-anticipatory gaze behavior in infants,
is that, instead of directly predicting the event boundary, infants use low-level forwards
simulations over a longer time horizon to predict the future. Could such a non-hierarchical
prediction scheme also yield goal-anticipatory gaze behavior when gaze is inferred to
minimize predicted uncertainty?

We test this hypothesis by slightly modifying Capri so that actions are inferred only
based on the predictions of the event dynamics models. For this, we can reformulate the
general active inference equation of Eq. 4.6 to

EFE′′(πi,o1:t, π1:t−1, K) =

K∑
k=1

Eot:k∼fϕ

∑
ej

H
[
P event
ej

(
ot+k+1 | ot+k, πi

)]
P
(
ejt+k | o1:t+k, π1:t, π

i
t+1:t+k

) (B.12)

where K is a prediction horizon expanding into the future. This corresponds to the
uncertainty of event dynamics prediction of Eq. 4.7 over a horizon of K steps.

Computing this expectation in Eq. B.12 in closed form quickly becomes intractable.
Thus, we estimate future observation and event probabilities iteratively using Monte Carlo
estimates starting with k = 1. For each step t + k in the future, an event schema ejt+k is
first sampled based on the latest event probabilities P

(
ejt+k | o1:t+k, π1:t, π

i
t+1:t+k

)
. Next,

we predict the following observation ot+k+1 by sampling it according to the corresponding
dynamics model of ejt+k, i.e. ot+k+1 ∼ P event

ej

(
ot+k+1 | ot+k, πi

)
. Based on the predicted

ot+k+1 the event probabilities are updated for time t+k+1 (see Sec. 4.3.2). This process
continues until k = K. As before, we select the policy with the lowest EFE′′ (Eq. 4.8).

We compare different prediction horizons K (K ∈ [1, 5, 10]), trained with 10 random
seeds, to Capri. Note that K = 1 corresponds to Capri without minimization of event
boundary uncertainty (Eq. 4.7).

Fig. B.2 shows the time t when all versions of the system first focused on the patient,
i.e. activated πp, within a Etest sequence for hands (Fig. B.2a) and claws (Fig. B.2b) over
training. Only Capri, reliably looked at the patient when observing a reach by hand
agents. With long-horizon predictions (K ≥ 5) and early during training (phases ≤ 5),

138

0 5 10 15 20 25

erand

etran

ereach

training phases

time t of the first activation of πp for hands

Capri
K = 1
K = 5
K = 10 t0

t

(a) hand

0 5 10 15 20 25

erand

etran

ereach

training phases

time t of the first activation of πp for hands

Capri
K = 1
K = 5
K = 10 t0

t

(b) claw

Figure B.2: Effect of prediction horizon: We compare Capri to an ablation that
predicts the future over K low-level prediction steps. We plot the mean time t during
Etest when the system first activated πp, over training phases. The y-axis shows time
during one sequence Etest with t0 marking the arrival of the agent at the patient. We
compare hand (a) and claw agents (b). Shaded areas show the standard deviation.

the system sometimes activated πp during ereach. However, we mainly attribute this to
poorly learned models and the stochasticity of iterative sampling. Although increasing K
appeared to result in an earlier gaze at the object, without hierarchical predictions, the
system on average did not look at the object before agent-patient contact (t0).

Thus, if a non-hierarchical prediction scheme is used in Capri, goal-anticipatory gaze
does not develop. We see this as evidence that hierarchical event-based predictions are
necessary to elicit the goal-anticipatory gaze pattern observed in the eye-tracking studies
of infants.

B.4.3 Effect of Event Experience

To investigate how the experience of reaching affects the goal-anticipatory gaze of Capri
we manipulated how often the system encountered the event sequence Egrasp during train-
ing. We tested five conditions that differ in the percentage of Egrasp sequences during
training: The system was trained on 0.1%, 1%, 10%, 20% and 50% Egrasp sequences of
overall 1000 training event sequences. We ran this experiment 10 times per condition with
different random seeds. After complete training, we tested gaze inference of the systems
for hand or claw-agents on 10 Etest sequences each.

Figure B.3 shows the point in time t when Capri focused the patient, i.e. activated πp,
for the first time within a Etest sequence for different conditions. With more experiences
of Egrasp the system tended to look at the patient earlier. For 0.1− 10% experience with
Egrasp the system selected πp on average during etran or at the beginning of erand regardless

139

0.1% 1% 10% 20% 50%

erand

etran

ereach

%Egrasp in training

Time t of the first activation of πp

Hand
Claw

t

t0

Figure B.3: Effect of reaching experience on gaze for Capri when observing hands
(blue) or claws (red). We plot the mean time t during Etest when Capri first activated
policy πp, which corresponds to looking at the patient, over percentage of grasping se-
quences Egrasp during training. The y-axis shows time during one sequence Etest with t0
marking the agent-patient-contact arrival of the agent at the patient. Error bars show
the standard deviation. Data points in the gray area mark anticipatory gaze behavior.

of the type of agent. For more than 20% experience with Egrasp and when observing a
hand agent, Capri activated πp shortly after the onset of the reaching event ereach.

Thus, when Capri has little experience with reaching events ereach, the system does
not show goal-anticipatory gaze behavior. With increasing experience, the system tends
to look at the patient earlier, typically once it was able to identify the reaching event.

These results are in line with experimental findings on the goal anticipation in infants.
4-month-old infants, who have little or no experience grasping themselves, do not show a
goal-anticipatory gaze when watching reaching movements (Kanakogi & Itakura, 2011).
Instead, they reactively track the moving hand with their gaze. Similarly, our system
reactively tracked the hand with little reaching experience. Furthermore, in infants, the
goal anticipations for hand agents appear to be positively correlated with grasping ex-
perience (Kanakogi & Itakura, 2011). In Capri, goal-anticipatory gaze develops with
sufficient reaching experience.

B.4.4 Differences in Gaze Shift Timing

Our main findings (Sec. 4.4) demonstrated that Capri shows gaze behavior comparable
to that of infants. However, there are numerical differences between the gaze timing of
Capri and the eye tracking results in infants. Namely, infants tended to shift their gaze
to the object during the last 10− 20% of a hand-reaching event (Adam & Elsner, 2020).

140

0.05 0.1 0.2 0.3 0.4 0.5

erand

etran

ereach

σ of Gaussian distribution from which ∆laσ is sampled

Time t of the first activation of πp

t

t0

Figure B.4: Effect of hand perception on the gaze behavior in Capri when the
appearance of the hand is systematically modified. We modified la by adding randomly
sampled noise ∆laσ. We plot the mean time t during an event sequence Etest when the
system first activated policy πp, i.e. looking at the patient, over different standard de-
viations σ. The y-axis shows time during one testing sequence Etest with t0 marking
agent-patient-contact. Error bars show the standard deviation.

Our system focused on the object right after the onset of reaching.
We hypothesize that these numerical differences can be attributed to the simplifications

of our scenario. An explanation could be that our system experiences Etest sequences
exactly like the Egrasp sequences that had occurred during training, while infants observe
reaching movements from other hands than their own and on a screen. Thus, it may be
harder for the infant to recognize the hand, and as a result, it might take more time to
recognize the reaching event.

To test this assumption, we systematically altered the perceived appearance of the hand
agents during testing. We took fully trained systems from our main experiments (Sec. 4.4),
and conducted an additional testing phase, each composed of 10 testing sequences Etest

with hand agents. For each event sequence Etest, we altered the perceived appearance of
the hand agent (λa) by an offset ∆λaσ. The offset ∆λaσ was randomly sampled per sequence
from a zero-centered Gaussian distribution with standard deviation σ. We tested five
different conditions with σ ∈ [0.05, 0.1, 0.2, 0.3, 0.4, 0.5].

Figure B.4 shows the point in time t when Capri first looked at the patient, i.e.
activated πp, during the Etest sequence with a hand agent. The x-axis shows different
standard deviations σ for the shape modification ∆λaσ. For σ ≤ 0.1 the system activated
πp immediately after the onset of ereach. With increasing values of σ the system activated
πp later during the reaching event. For σ = 0.5 the system activated on average πp

141

shortly before ereach was concluded. Besides delaying the goal-anticipatory gaze, larger
shape modifications resulted in larger variations across simulations.

Thus, our results largely confirm the hypothesis that the earlier gaze in Capri can
partially be attributed to the similarity of training and testing for our system. This can
be understood when we focus on the event inference of Capri: For an agent with a less
‘hand-like’ appearance, the system requires on average more observations to correctly
infer that reaching is being observed. Later recognition of a reaching event results in a
later goal-anticipatory gaze.

142

C
GateL0RD: Supplementary MaterialC.1

C.1 Relation to other RNNs

In Sec. 5.2 we set out to create an RNN fϕ that maintains piecewise constant latent states
over time. This led us to the conclusion that a simple approach to implement this is by
employing an internal gating function Λ that controls the latent state update (e.g. as in
Eq. 5.4). The gating function Λ can be binarized using the Heaviside step function, and
a sparse gating can be incentivized using the loss function described in Eq. 5.5.

GRUs (Chung et al., 2014) and LSTMs (Hochreiter & Schmidhuber, 1997) both use
internal gates with the sigmoid activation function σ to control the update of their latent
state ht. GRUs update ht with

ht = (1− σ(st))ht−1 + σ(st)h̃t, (C.1)

where st is a linear projection of input xt and previous latent state ht−1 and h̃t is a
proposed new latent state, also determined based on the input xt and previous latent
state ht−1.

C.1This chapter is based on the suplementary material of:
Gumbsch, C., Butz, M. V. & Martius, G. (2021). Sparsely Changing Latent States for Prediction and
Planning in Partially Observable Domains. Advances in Neural Information Processing Systems (NeurIPS
2021), 17518–17531.

143

LSTMs use two gates, i.e. a forget and an input gate, with the sigmoid activation
function σ to determine whether to update their latent (cell) state ht with

ht = σ(s1,t)ht−1 + σ(s2,t)h̃t, (C.2)

where s1,t and s2,t are linear projections and h̃t a non-linear function of the input and
previous hidden state (RNN cell output).

Nonetheless it is not straightforward to apply our approach, described in Sec. 5.2, to
GRUs and LSTMs. Our loss (see Eq. 5.5) punishes non-zero gate activation. The sigmoid
activation function σ only achieves an output of zero if its input converges to negative
infinity, thus never truly achieving zero output. Thus, their gating function would need
to be modified or replaced, e.g. by our ReTanh gate Λ.

However, even when their gate activation function is replaced, the performance of
LSTMs and GRUs is negatively affected by piecewise-constant latent states. For both
networks, input information essentially needs to pass through the latent state to affect
the network output. For GRUs, the network output corresponds to the latent state ht.
Thus, a GRU with constant latent states will produce constant outputs. In LSTMs, the
network output is computed by multiplying the latent (cell) state with an input-dependent
output gate. Thus, in LSTMs, a constant latent state will result in a constant output
that is scaled depending on the network input.

GateL0RD attempts to overcome the downsides outlined by using LSTMs and GRUs
with our proposed latent state regularization. Like GRUs, GateL0RD uses a single
update gate to avoid unnecessary parameters. Furthermore, GateL0RD separates the
latent state from the network output, as done in LSTMs, which have both a cell state
and a hidden state. In addition to that, GateL0RD uses more powerful functions for
computing the network output such that the input and latent states both have addi-
tive and multiplicative effects on the network output. Note that GateL0RD still has
approximately the same number of parameters as a GRU.

C.2 Experimental Details

The code for running our experiments can be found at:
https://github.com/martius-lab/GateL0RD

C.2.1 Predictive Models: General Training Principles and Hyperparameter
Search

In the following, we will outline the general training principles that we used in all exper-
iments, when the RNNs were trained as predictive models. Training details for reinforce-

144

https://github.com/martius-lab/GateL0RD

Table C.1: Learning rate choices for Billiard Ball (BB), Robot Remote Control (RRC),
Shepherd, and Fetch Pick&Place (FPP)

Experiment GATEL0RD LSTM GRU Elman RNN

BB teacher forcing (Sec. 5.4.3) 0.001 0.001 0.001 0.00005
BB scheduled sampling (Sec. 5.4.3) 0.0005 0.0005 0.0005 0.0005
RRC (Sec. 5.4.4) 0.005 0.005 0.005 0.005
RRC improved baselines (Suppl. C.4.3) 0.005 0.001 0.001 0.001
Shepherd (Sec. 5.4.5) 0.001 0.001 0.001 0.001
FPP filtered data (Suppl. C.4.4) 0.005 0.005 0.005 0.005
FPP full data (Suppl. C.4.5) 0.001 0.001 0.001 0.001

ment learning experiments are found in Suppl. C.2.6. Suppl. C.2.2 - C.2.5 provide further
details specific to each simulation independent of the hyperparameter search (e.g. dataset
size, batch size, etc.).

In our experiments, we train each network to predict the change in the observations
instead of the next observation (i.e. residual connections) to avoid the trivial solution of
achieving high prediction accuracy simply by outputting the input observation. However,
since the change in observation can be quite small (typically ∆ot < 0.1) we use a constant
c to scale the network output when used as autoregressive input i.e. ôt+1 = ot + c · ŷt.
We set c = 0.1 in all of our experiments, which corresponds to scaling ∆ot by a factor of
10. For the task-based loss, i.e. Ltask in Eq. 5.2, we use the mean squared error between
predicted observations ôt and real observations ot.

We train the networks using Adam (Kingma & Ba, 2015) with the hyperparameters
β1 = 0.9, β2 = 0.999, and ϵ = 0.0001. The learning rate η was determined through a grid
search with η ∈ {0.005, 0.001, 0.0005, 0.0001, 0.00005} for each scenario. For this grid
search, we examined two random seeds for each parameter configuration and chose the
setting that results in the lowest mean squared prediction error on a validation set after
full training. The learning rates chosen for all experiments are listed in Table C.1.

In addition to determining the learning rate, we also use grid search to determine the
number of RNN layers for all scenarios with simulated physics, i.e.Billiard Ball and Fetch
Pick&Place. For LSTMs, GRUs, and Elman RNNs we compare the 1-layered RNNs to
a stacked version composed of up to three RNN cells (fϕ in Fig. 5.1d). For GateL0RD
we instead considered 1- to 3-layered rϕ and gϕ-networks (see Fig. 5.1a), since we found
that this typically results in a stronger increase in performance with fewer parameters
compared to stacking GateL0RD cells. In Billiard Ball (Sec. 5.4.3) and Fetch Pick&Place
(full data, Suppl. C.4.5), all networks achieve a slightly better mean prediction accuracy
with the 3-layered versions, which is why we use the 3-layered versions to compare the

145

prediction accuracy. However, for GRUs and LSTMs the 3-layered versions have three
times the number of latent state dimensions, which negatively affects the interpretability
of the latent states. Therefore, to make a fair comparison in terms of explainability, we
additionally performed experiments with 1-layered LSTMs and GRUs to visualize the
latent states (e.g. in Fig. 5.8b). For Fetch Pick&Place with pre-selected reach-grasp-
lift sequences (Suppl. C.4.4) there was no noticeable improvement when increasing the
number of layers, therefore, we used one-layered versions of the networks.

RNNs can suffer from the exploding gradient problem when predicting long sequences
(Hochreiter, 1998). An effective technique to deal with this is gradient norm clipping
(Pascanu et al., 2013). Here, the norm of a backpropagated gradient is clipped when it
exceeds a threshold. We applied gradient norm clipping in all our experiments with a
clipping threshold of 0.1.

In Sec. 5.4.3 we showed that training models using teacher forcing can be problem-
atic. Thus, in all our other experiments, we train the networks using scheduled sampling
(Bengio et al., 2015a), a curriculum learning strategy that smoothly changes the training
regime from teacher forcing to autoregressive predictions. When applying scheduled sam-
pling, a probability pi is used to stochastically determine whether the real input is fed
into the network (teacher forcing) or whether to use the previous network output. This
sampling probability pi decreases with training time i. Based on Bengio et al. (2015a),
we use an exponentially decreasing probability pi with

pi = max(ki, pmin) (C.3)

where i is the epoch number, k < 1 a constant, and pmin the minimum sampling proba-
bility. We set k = 0.998 in all experiments. The minimum sampling probability pmin is
chosen individually for each scenario.

All experiments using predictive models were performed with 20 different random seeds
for each setting.

C.2.2 Billiard Ball

In Billiard Ball, a ball is shot on a pool table with low friction. We generated sequences
of 50 time steps by shooting the ball from a random starting position in a random di-
rection with a randomly selected velocity. The sequences were generated using the Open
Dynamics Engine (ODE)C.2—an open source physics simulator for simulating rigid body
dynamics. Sequences contain only observations ot ∈ [−1, 1]2, which are composed of the
positions of the ball, and no actions (A = ∅).

C.2ODE, available at http://www.ode.org/, is licensed under the GNU Lesser General Public License
version 2.1 as published by the Free Software Foundation.

146

http://www.ode.org/

The networks were trained on a training set of 12.8k sequences and tested on a testing
set of 3.2k sequences. Hyperparameters were determined based on a validation set of 3.2k
sequences. All datasets were balanced to include different velocities and to guarantee that
in at least 15% of the sequences the ball drops into a pocket. We trained the networks
using minibatches of size 128 for 5k epochs. We applied scheduled sampling (Bengio et al.,
2015a) by exponentially annealing the sampling probability pi to 0.

We used an 8-dimensional latent state ht for all RNNs. The latent state h0 was ini-
tialized based on the first two inputs using a 3-layered MLP f init

ϕ (neurons per layer:
64→ 32→ 16). All RNNs used a 3-layered MLP fpre

ϕ (neurons per layer: 64→ 32→ 16)
to preprocess inputs and a single linear mapping as a readout layer fpost

ϕ .

C.2.3 Robot Remote Control

In the Robot Remote Control scenario, an agent continuously moves through a room
based on its two-dimensional actions at ∈ [−1, 1]2. After the agent reaches a computer, it
also controls the position of a robot in another room through its actions. The goal during
planning is to move the robot to a goal area. The observation ot ∈ [−1, 1]4 is composed
of the position of the agent and the position of the robot. The robot and agent start from
randomly sampled positions, while the computer and goal area are always at the same
fixed positions. The robot is controlled as soon as the distance between the agent and
the computer is below a certain interaction threshold (0.1).

We generated datasets composed of 50 time step rollouts using two synthetic policies.
The dataset Dtime, which contains spurious temporal dependencies, was generated by sam-
pling uniformly distributed random actions that were scaled by a factor that increases
linearly with time from 0.0001 to 1.0. The (generalization) dataset Drand was generated
by sampling uniformly distributed random actions without further modifications. Both
datasets were balanced in terms of robot control events such that in half of the sequences
the robot was controlled by the agent. The datasets were split into equally sized train-
ing, validation, and testing sets (6.4k sequences each). The validation sets were used to
determine hyperparameters. The networks were trained for 5k epochs using minibatches
of size 128. We trained the networks using scheduled sampling (Bengio et al., 2015a) by
exponentially annealing the sampling probability pi to a minimum value of pmin = 0.02.

In this scenario, the latent states ht of all RNNs were 8-dimensional and initialized
based on the first input using a 2-layered MLP f init

ϕ (neurons per layer: 16 → 8). All
RNNs used a 3-layered preprocessing fpre

ϕ (neurons per layer: 32→ 16→ 8) and a linear
mapping fpost

ϕ from the output of the RNN cell to the overall output.
During planning, the goal was to move the robot to the goal area (distance < 0.15)

within 50 time steps. For model-based planning, we used iCEM (Pinneri et al., 2021a).

147

ht−1

+

+

+

++

Figure C.1: Shepherd scenario: Relevant positions are marked by a plus (+), with
the lever in yellow, the agent in pink, the sheep in cyan, its reapearrance position in
white, and the cage in purple. The orange bar visualized the wall height. The blue line
and red line illustrate the sheep’s and agent’s starting position, respectively. The green
area illustrates the cost function used for model-based planning. See text for more details.

We left the default hyperparameters as outlined in Pinneri et al. (2021a), but employed
a planning horizon J = 50 and simulated 256 trajectories per optimization step. Addi-
tionally, we used colored noise with a colored noise scaling exponent ρ = 3. Cost was
defined as the distance between the robot and the goal area. We found that iCEM, which
was previously used with the ground truth simulator as a model (Pinneri et al., 2021a),
was relatively sensitive to model errors, resulting in the agent often slightly missing the
computer or walking over it without activating the robot. To avoid floor effects based on
the planning method, we simplified the task during planning by increasing the radius to
interact with the computer by 50%.

C.2.4 Shepherd

In the Shepherd scenario, illustrated in Fig. C.1, an agent’s goal is to catch a sheep using
a portable cage. The agent’s actions at ∈ [−1, 1]3 control the agent’s two-dimensional
movement and whether the cage is grasped and carried (a3t > 0) if it is in proximity. When
the cage is carried, it moves with the agent. In every sequence, a sheep starts on the upper
side of the scene (blue line in Fig. C.1). The sheep moves downwards with a randomly
selected velocity, i.e. only changing its y-position (cyan arrow in Fig. C.1). Therefore, the

148

horizontal x-position of the sheep remains the same. Once the sheep reaches a wall, its
position is occluded from the observation. The height of the wall (orange bar in Fig. C.1)
varies between simulations. The agent triggers the reappearance of the sheep by activating
a lever in a fixed position (yellow + in Fig. C.1). The lever is activated once the distance
between agent and lever is below a certain interaction threshold. As a result, a gate in
the wall opens, causing the sheep to appear in the same horizontal position as before,
but in a lower vertical position (white + in Fig. C.1). After its reappearance, the sheep
moves downward with the same velocity as before. It stops moving once it reaches the
cage (distance below a certain threshold) or once it reaches the lower border of the scene.
Observation ot ∈ [−1, 1]7 contains the agent’s position (pink + in Fig. C.1), the sheep’s
position (cyan +), the cage’s position (purple +), and the height of the wall (orange bar).
When the sheep is occluded, its position is masked by replacing it with a fixed value (-1)
outside the normal range of coordinates.

We generated a dataset of 100 time step sequences by using randomly sampled ac-
tions. In 75% of the sequences up- and left-movements were sampled more frequently to
get the agent to activate the lever. The dataset was divided into training data (12.8k
sequences), testing data (12.8k sequences), and validation data (6.4k sequences). To bal-
ance the datasets across possible events, we ensured that in each dataset during 75% of
the sequences the lever was activated and in 25% of the sequences the sheep was caught
in the cage. We trained the networks using minibatches of size 128 for 10k epochs. We
used scheduled sampling (Bengio et al., 2015a) as a training regime and exponentially
decreased the sampling probability pi to a minimum value of pmin = 0.05.

All RNNs used 8-dimensional latent states ht. The latent state h0 was initialized based
on the first two inputs using a 3-layered MLP f init

ϕ (neurons per layer: 64 → 32 → 16).
All RNNs used a 3-layered preprocessing fpre

ϕ (neurons per layer: 64 → 32 → 16) and a
linear mapping fpost

ϕ as a readout layer.
During planning, the agent started on the right side of the environment (red line in

Fig. C.1) holding the cage. The agent had 60 time steps to place the cage, move to the
lever to open the gate, and let the sheep enter the previously placed cage. We chose a
tight task horizon of 60 time steps for this task to eliminate time-consuming solutions that
avoid predicting the future position of the occluded sheep, e.g. by catching the sheep after
its reappearance by going back and replacing the cage. For model-based planning, we used
iCEM (Pinneri et al., 2021a) with the same parameters as in Suppl. C.2.3 but predicting
for a longer planning horizon of J = 100 time steps as during training. Cost was defined
as the distance between the sheep and the cage, which was clipped to a large constant
value when the sheep was above the gate (i.e. outside of the green area in Fig. C.1). As
in Robot Remote Control (Suppl. C.2.3), we increased the radius of interaction between
the lever and the cage during planning by 50%.

149

C.2.5 Fetch Pick&Place

Fetch Pick&Place is a benchmark reinforcement learning environment of OpenAI Gym
(Brockman et al., 2016). In Fetch Pick&Place a 7 degrees-of-freedom robotic arm with
a two-fingered gripper is position controlled through its four-dimensional action. The
state of the scenario st ∈ R25 is composed of the positions of the endeffector and the
object, the relative position between endeffector and object, the distance of the fingers
to the center of the gripper, the rotation of the object, and the positional and rotational
velocities of the endeffector, the object, and the fingers. To make the scenario partially
observable, we omitted the positional and rotational velocities as well as the rotation of
the object in the observation ot ∈ R11. The four-dimensional actions at ∈ [−1, 1]4 control
the three-dimensional position of the endeffector and the closing or opening of the fingers.
Internally, the position control of the endeffector is realized by a PID-controller that runs
at a higher frequency.

We generated our training data using APEX (Pinneri et al., 2021b), a policy-guided
model predictive control method, which was trained to move the object to a random
position of the goal. APEX was deployed using the ground-truth simulator as the internal
model and hyperparameters as detailed in Pinneri et al. (2021b).

APEX finds various surprisingly creative ways to move the object to the goal position,
including pushing, sliding, or flicking the object. For the experiments on policy gener-
alization (Suppl. C.4.4), we only considered sequences in which the object was grasped
and lifted. Thus, we excluded all sequences in which the object moved while not being
inside the gripper. For training and testing we considered 3.84k sequences with a length
of 25 time steps, in which the hand grasps the object exactly at t = 5. A grasp was only
considered if the relative x− and y− distance to the gripper was less than 0.0005 and the
relative z−distance was less than 0.15. We randomly split this dataset into a training
(3.2k) and testing set (640). For the generalization set, we composed of 3.2k randomly
selected sequences in which the grasp occurs later (t ∈ [6, 10]).

In an additional experiment outlined in Suppl. C.4.5 we train the networks on all kinds
of sequences. For that, we randomly split the collected dataset without further filtering
into training (12.8k sequences), validation (6.4k sequences) and testing (6.4k sequences)
sets. Here, we considered sequences that are 50 time steps long.

In both experiments, we trained the networks using minibatches of size 128 for 5k epochs
using scheduled sampling (Bengio et al., 2015a), where we exponentially decreased the
sampling probability pi to a minimum value of pmin = 0.05. The latent state ht of all
RNNs was 16-dimensional. The first latent state h0 was initialized based on the initial
input (o1,a1) using a 2-layered MLP f init

ϕ (neurons per layer: 32→ 16). All RNNs used a
3-layered preprocessing fpre

ϕ (neurons per layer: 64→ 32→ 16) and a linear mapping two-

150

layered MLP fpost
ϕ to the network output. In the experiment using simpler filtered data

(Suppl. C.4.4) we used one-layered RNN cells. For the diverse data set (Suppl. C.4.5) we
use stacked RNN cells (3 layers) and GateL0RD with 3-layered gϕ− and rϕ−functions.

C.2.6 Reinforcement Learning: General Training Principles and Hyperpa-
rameter Search

For our RL experiments in MiniGrid (Chevalier-Boisvert et al., 2018b), we used an actor-
critic architecture as previously done by Chevalier-Boisvert et al. (2018a).C.3 The archi-
tecture can be seen as a modified version of our general architecture (Fig. 5.1d), shown
in Fig. C.2. The image-like input is preprocessed by a three-layered convolutional neural
network fpre

ϕ with 2 × 2 convolution kernels and with max-pooling after the first layer.
The 64-dimensional image embedding is processed by an LSTM with 64-dimensional la-
tent state. The LSTM output is processed by two separate MLPs, similar to using two
fpost
ϕ in Fig. 5.1d, which take the role of the actor and the critic. The actor MLP f actor

ϕ

outputs the policy πt, which determines the next one-hot encoded action at. The critic
MLP f critic

ϕ outputs a value estimate vt. Both MLPs use two layers with 64 neurons on
the intermediate layer. In our experiments with GateL0RD, we only replace the LSTM
cell and leave fpre

ϕ , f actor
ϕ , and f critic

ϕ unmodified.

fϕ

fpre
ϕ

f actor
ϕ

πt

f critic
ϕ

vt

ot

ht

Figure C.2: RL architec-
ture used in MiniGrid.

As in Chevalier-Boisvert et al. (2018a), we train the sys-
tem using Proximal Policy Optimization (PPO) (Schul-
man et al., 2017) with a batch size of 256. We took
the PPO hyperparameters from (Chevalier-Boisvert et al.,
2018a), setting γ = 0.99 and the generalized advantage
estimation to 0.99.

We train the system using Adam (Kingma & Ba, 2015)
with β1 = 0.9, β2 = 0.999, and ϵ = 0.0001. To determine
the learning rate η we ran a grid search on the vanilla
system (LSTM) with η ∈ {0.005, 0.001, 0.0005, 0.0001} for
two random seeds and compared the mean rewards af-
ter training. In five of the six environments η = 0.001
achieved the best results. Thus, for consistency we ran the
MiniGrid experiments with a learning rate of η = 0.001.
For the one environment (KeyCorridorS3R2) in which a
lower learning rate (η = 0.0005) produced better results,
we additionally evaluated the system with the optimized

C.3We used an implementation by one of the authors available at https://github.com/lcswillems/
rl-starter-files. The code is licensed under MIT license.

151

https://github.com/lcswillems/rl-starter-files
https://github.com/lcswillems/rl-starter-files

learning rate and report the results in Suppl. C.4.6. As before, we apply gradient norm
clipping (Pascanu et al., 2013) with a clipping threshold of 0.1. The loss was backpropa-
gated for 32 time steps.

When using GateL0RD, we simply replaced the LSTM cell and left all hyperparam-
eters unmodified. PPO loss (Schulman et al., 2017) was used as Ltask in Eq. 5.2 and we
set β = 0.01 in all experiments. All reinforcement learning experiments were run with 10
random seeds per configuration.

C.2.7 MiniGrid

MiniGrid (Chevalier-Boisvert et al., 2018b) is a library of partially observable benchmark
reinforcement learning problems.C.4 All MiniGrid environments consist of N ×M tiles.
Each tile can be empty or contain one entity such as keys, doors, or walls. The agent
receives an image-like, egocentric view of the 7 × 7 tiles in front of the agent. For each
tile, the agent receives a 3-dimensional signal, describing what type of object is in this
tile, the color of the object, and its state (e.g. open, closed, or locked doors). The agent
cannot see through walls or closed doors. In every time step, the agent can perform one of
the following actions: move forward, turn left, turn right, pick-up an object, drop-off an
object, or interact with an object (e.g. open doors). In all environments, a sparse reward
of 1 is received once the task is fulfilled. In some environments, the time to fulfill a task
is used to discount the rewards. Figure C.3 shows all the problems we consider.

In DoorKey-8x8 (Fig. C.3a) the agent needs to move to the green square behind a
locked yellow door. The agent needs to learn to pick up a yellow key to open the door.
The environment is 8 × 8 tiles big, but the size of the two rooms varies per simulation.
DoorKey-16x16 (Fig. C.3g) is the same problem, but in a larger 16 × 16 environment.
We use the larger version to test zero-shot generalization, by training the system in the
smaller environment and testing it on the larger one (see Sec. 5.4.7).

In RedBlueDoors-8x8 (Fig. C.3b) the agent is randomly placed in a room (8× 8 tiles)
with a red and a blue door. The agent has to first open the red door and afterwards open
the blue door. Opening the blue door first results in an early episode termination.

In KeyCorridorS3R2 (Fig. C.3c) the agent needs to pick up a ball. The ball is locked
behind a door and the key is hidden in some other room. Thus, the agent needs to learn
to explore the rooms, by opening differently colored doors, to find the key. The agent
can only pick up the ball if the agent does not hold the key, so after unlocking the door
leading to the ball, the agent needs to drop the key.

C.4MiniGrid is available at https://github.com/maximecb/gym-minigrid. MiniGrid is licensed under
Apache License 2.0.

152

https://github.com/maximecb/gym-minigrid

(a) DoorKey-8x8 (b) RedBlueDoor-8x8

(c) KeyCorridorS3R2

(d) SimpleCrossingS9N3 (e) LavaCrossingS9N2 (f) MemoryS13-Random

(g) DoorKey-16x16 (h) MemoryS17-Random

Figure C.3: MiniGrid envrionments used in this work.

153

In SimpleCrossingS9N3 (Fig. C.3d) the agent needs to navigate through a maze to
a green square in the bottom left corner. The maze is constructed randomly by three
walls that run horizontally or vertically through the room. Each wall has a single gap.
LavaCrossingS9N2 (Fig. C.3e) poses the same problem, however, the walls of the maze
are replaced by two lava rivers. Lava rivers do not occlude the view, but entering lava
terminates the episode without rewards. Due to early terminations and sparse rewards,
this environment is much more challenging to learn than the maze with walls.

MemoryS13Random (Fig. C.3f) is a memory task. Here the agent needs to memorize a
green object (key or ball) in one room, move through a corridor, and then either go left
or right to the matching object. The environment is 13 × 13 tiles big. The length of
the corridor is randomly generated per run. In MemoryS17Random (Fig. C.3h) the same
problem needs to be solved, but the environment is larger (17 × 17 tiles). We use this
version to test zero-shot generalization by training the system in the smaller environment
and testing it in the larger one (see Sec. 5.4.7).

C.3 Ablation Studies

In this section, we investigate the importance of each of the components of our proposed
architecture.

C.3.1 Ablation of the Type of Gate Function

1k 2k 3k 4k 5k

10−2

10−1

epochs

M
SE

Testing prediction error

Heaviside, β = 0
Heaviside, β = 0.001
ReTanh, β = 0
ReTanh, β = 0.001
Sigmoid, β = 0

Figure C.4: Gate acti-
vation ablation: Billiard
Ball test error for GateL0RD
with different gate functions.

We use the Billiard Ball scenario, trained using scheduled
sampling (Bengio et al., 2015a) as in Sec. 5.4.3, to ana-
lyze the effect of different gate activation functions. In
an ablated setting, we replace our ReTanh activation Λ
in Eq. 5.8 with a sigmoid activation function σ. Further-
more, we test using the Heaviside step function Θ as a
gate activation function in Eq. 5.8. When using the Heav-
iside step function, we estimate the gradients using the
straight-through estimator (Bengio et al., 2013), which
treats the step function as a linear function during the
backward pass (illustrated in Fig. 5.1c). We tested the
Heaviside gates both with our L0 loss (β = 0.001) and
without latent state regularization (β = 0). Because a
gate output of 0 is practically not achieved for the sig-
moid function, we tested the sigmoidal gates without la-
tent state regularization (β = 0).

154

Figure C.4 shows the autoregressive prediction errors of the ablated versions of Ga-
teL0RD. The ablations with Heaviside gates perform worse than GateL0RD with
nonbinary gates. When using the Heaviside gate without any regularization, the mean
prediction error even increases with training time. GateL0RD with a sigmoid gate and
our ReTanh gate reach the same level of prediction accuracy.

We believe that the worse performance of the Heaviside gate is due to the network
profiting from multiplicative computations when computing the next latent state. For
the Heaviside gate, interpolations of old and new latent states are not possible. Here, the
latent state is either completely replaced or left unmodified. We conclude that our novel
ReTanh gate is as suitable for gating as the classically used sigmoid gate. Furthermore,
it has the practical advantage of achieving an output of exactly 0, which allows the gate
activation to be regularized, as we do with our L0 loss.

C.3.2 Effect of Gate Stochasticity

(a)

1k 2k 3k 4k 5k

10−2

10−1

epochs

M
SE

Testing prediction error

det., σ = 0
stoch., σ = 0.01
stoch., σ = 0.1

(b)

1k 2k 3k 4k 5k
10−2

10−1

epochs

E i
,t
[Θ

(Λ
(u

i t)
)]

Number of gate openings

Figure C.5: Gate stochasticity ablation Comparing
effect of gate noise on GateL0RD (β = 0.01) in Billiard
Ball for prediction errors (a) and mean number of gate
openings (b). Shaded areas denote standard deviation.

To ablate the effect of
the gate noise we compare
GateL0RD with different
strengths of the gate noise.
For deterministic gates, we
set ϵ = 0 in Eq. 5.10.
Additionally, we compare
two values for the noise
variance σ of the diago-
nal covariance matrix Σ in
Eq. 5.10. We test the ef-
fects of gate stochasticity for
a fixed value of gate regular-
ization β = 0.01 in the Bil-
liard Ball task.

Figure C.5a shows the
prediction errors when com-
paring deterministic gates to stochastic gates with different gate noise. There are no
noticeable differences in the prediction accuracy between the different settings. Thus,
reasonable values of noise on the gate input during training do not noticeably affect the
prediction error during testing. Figure C.5b shows the average changes in latent state per
sequence, calculated as Ei,t

[
Θ
(
Λ(sit)

)]
, for all settings. Here, a larger value of gate noise

results in fewer gate openings, and thus in fewer changes in the latent state.

155

We conclude that combining stochastic gates together with our L0 loss has a regularizing
effect: GateL0RD trained with stochastic gates seems to achieve the same level of
prediction accuracy as with deterministic gates, but changes its latent states more sparsely.

C.3.3 Ablation of the Latent State Initialization

1k 2k 3k 4k 5k

10−2

10−1

epochs

M
SE

Testing prediction error

Elman RNN
GRU
LSTM
GateL0RD
Elman RNN, no f init

ϕ

GRU, no f init
ϕ

LSTM, no f init
ϕ

GateL0RD, no f init
ϕ

Figure C.6: Latent state initialization ablation: Ef-
fect of latent state initialization with or without f init

ϕ on
prediction errors in Billiard Ball.

Next, we ablate the effect of
f init
ϕ , which sets the latent

state based on a few initial
inputs (see Fig. 5.1d). We
compare all RNNs with vari-
ants without f init

ϕ in the Bil-
liard Ball scenario. When
we omit f init

ϕ , we initialize
the latent state with h0 = 0.

Figure C.6 shows the pre-
diction errors for all RNNs
when using the initialization
network f init

ϕ (solid lines)
and when initializing the la-
tent state with zeros (dotted
lines). Prediction accuracy
decreases for all types of network when trained without the context network. However,
how much their performance drops varies among the different types of RNNs. GRUs
seem to be much less affected by using them without f init

ϕ than LSTMs and GateL0RD
(β = 0.001).

C.3.4 Ablation of the Output Function

After updating its latent state ht, GateL0RD uses two one-layered MLPs bϕ and mϕ to
compute the network output as bϕ(xt,ht) ⊙mϕ(xt,ht) (see Eq. 5.9). With this output
function we want to enable both additive as well as multiplicative effects of the latent
state ht and input xt on the network output. Is this justified, or would a simple MLP as
output function suffice?

We analyze the effect of our output function in Robot Remote Control (β = 0.001,
trained on random action rollouts Drand). Here we compare GateL0RD using our stan-
dard output function (bϕ(xt,ht)⊙mϕ(xt,ht)) with an ablated version using only a one-
layered MLP with tanh activation (bϕ(xt,ht)).

156

1k 2k 3k 4k 5k

10−3

10−2

epochs

M
SE

Testing prediction error

bϕ(xt,ht)
bϕ(xt,ht)⊙mϕ(xt,ht)

Figure C.7: Output function abla-
tion: GateL0RD output function with
(bϕ ⊙mϕ) or without (bϕ) multiplication
in Robot Remote Control

Figure C.7 shows the resulting prediction
errors of GateL0RD using its normal out-
put function compared to the case without a
multiplicative gate (bϕ(xt,ht)). Clearly, Ga-
teL0RD achieves a much better prediction
when using a multiplicative output gate in-
stead of a simple MLP. Thus, a multiplica-
tive branch for computing the network output
seems to improve the accuracy of prediction.
This may also explain the poorer prediction
accuracy of Elman RNNs in most tasks, since
they lack the multiplicative gates that can be
found in all other investigated RNNs.

C.3.5 Comparison against L1/L2-versions

(a)

2k 4k 6k 8k 10k

10−4

10−3

10−2

epochs

Testing prediction error (MSE)

L0 (GateL0RD)
L1

L2

(b)

2k 4k 6k 8k 10k

10−3

10−2

epochs

Generalization error (MSE)

Figure C.8: Comparing L0−, L1−, and L2-
regularization for prediction errors on the test set (a)
and the generalization set (b) in Robot Remote Control.

Our hypothesis is that spar-
sely changing latent states
enable better generalization
across spurious temporal de-
pendencies. GateL0RD
implements sparse latent up-
dates via the novel ReTanh
gate, instead of the com-
monly used sigmoid gates,
and an auxiliary L0 loss term
that is made differentiable
using the straight-through
estimator. Is this necessary
or would a simple sigmoid
gate in conjuction with an L1 or L2 loss also improve generalization?

To analyze this, we compare GateL0RD against ablated versions that use a sigmoid
gate and penalize the L1 or L2 norm of gate activations in Robot Remote Control (as
in Sec. 5.4.4). We train the networks on random action rollouts with linearly increasing
action magnitude and test it on either data generated by the same process (testing) or on
uniformly sampled random actions (generalization). We chose a suitable regularization
hyperparameter β = 0.001 for all variants.

Figure C.8a shows the prediction errors during testing. The L1- and L2-ablations

157

(a) example trajectory (b): RNN latent states (hit − hi0)

GateL0RD i

-2
0
2

GRU i

-2
0
2

LSTM
0 10 20 30 40 50

t

i

-2
0
2

(c) example trajectory (d): GateL0RD latent states (hit − hi0)

β = 0 i

-2
0
2

β = .001 i

-2
0
2

β = 0.01
0 10 20 30 40 50

t

i

-2
0
2

Figure C.9: Example trajectories in Billiard Ball (a) & (c): Exemplary trajectories
with real positions in white, the provided inputs in blue, GateL0RD (β = 0.01) position
predictions in red (saturation increasing with time). The inputs for which at least one
gate opened are outlined in black. (b): The latent states ht for different RNNs for the
sequence shown in (a). (d): The latent states ht for GateL0RD with different values of
β for the sequence in (c). Latent states are shown relative to the initial latent state h0.

achieve a very low prediction error on the test set, even exceeding GateL0RD’s prediction
in terms of accuracy. However, when applied to the generalization set, shown in Fig. C.8b,
their prediction error increases drastically.

We conclude that the L1/L2-variants achieve a low testing error, but fail to generalize
to data generated by a different policy. This suggests that they also strongly overfit to
spurious temporal dependencies, as LSTMs and GRUs, unlike our L0-version. However,
it should be noted that on the test set the L2-variant manages to achieve the highest
prediction accuracy of all investigated RNNs.

158

C.4 Additional Experiments and Analysis

C.4.1 Billiard Ball: Analyzing Latent States and Gate Usage

In this section, we provide further exemplary latent states for RNNs when applied to the
Billiard Ball scenario. Figure C.9 shows two exemplary ball trajectory and the corre-
sponding latent states. GateL0RD is able to make accurate autoregressive predictions
(see red dots in Fig. C.9a and Fig. C.9c) and tends to open its gates around wall collisions
(black circles). Figure C.9b shows the latent states of GateL0RD (β = 0.01) compared
to the latent states of a GRU and a LSTM for the trajectory shown in Fig. C.9a. Ga-
teL0RD’s changes in latent states are easily interpretable: GateL0RD seems to encode
x− and y− velocity in two dimensions of its latent state and updates these latent state
dimensions upon collisions. LSTM and GRU latent states are much harder to interpret.

1k 2k 3k 4k 5k
0

2

4

6

8

epochs

nu
m

be
r

di
m

en
sio

n

Number of latent state
dimensions changing

β = 0
β = 0.001
β = 0.01
β = 0.1

Figure C.10: Latent di-
mension usage in Billiard
Ball for different values of β.

Figure C.9d shows the latent states of differently reg-
ularized GateL0RD networks for the same sequence,
shown in Fig. C.9c. As before, GateL0RD with β = 0.01
uses two dimensions of its latent state to encode ball ve-
locity and updates these two dimensions upon collisions.
In this example, GateL0RD with β = 0.001 uses three
dimensions to encode the ball’s velocity. With every colli-
sion, a different latent state dimension is updated, instead
of using the same dimension for changes in y−velocity, as
done by GateL0RD with β = 0.01. In this example, Ga-
teL0RD with β = 0 uses five dimensions to encode x−
and y− velocities. At points of collision, multiple latent
dimensions change.

To further illustrate how the regularization hyperpa-
rameter β affects latent state changes, we plot the number
of latent state dimensions that change on average while predicting a Billiard Ball sequence
in Fig. C.10. As expected, a stronger regularization through β results in fewer dimensions
of the latent state changing.

As shown in Fig. 5.3d, even without regularization (β = 0) GateL0RD continuously
decreases the mean number of gate openings. After 5k epochs, on average a gate opens less
than 50% of the time. Similarly, it does not use all dimensions of its latent state, as shown
in Fig. C.10. This effect emerges from the interplay of stochastic gradient descent and the
ReTanh having gradients of 0 for inputs sit ≤ 0. Over training time, gates will randomly
close and be kept closed if they do not contribute to decreasing the loss. This effect is
closely related to the “dying ReLU problem” when using ReLU activation functions (Lu,
2020). While dying ReLUs are considered a problem, in our case this is advantageous

159

whenever gate regularization is beneficial. We believe that this makes GateL0RD more
robust to out-of-distribution shifts than GRUs and LSTMs, even without regularization.
For example, GateL0RD with β = 0 achieves a smaller mean autoregressive prediction
error when trained using teacher forcing (Fig. 5.3a), compared to the other RNNs.

C.4.2 Robot Remote Control: Learned Latent States

(a) sequence with robot control

0
0.5
1 agent

x
y

−0.5
0

0.5 robot
x
y

GateL0RD: i

-2

2

GateL0RD: i

-2

2

GRU: i

-2

2

GRU: i

-2

2

LSTM: i

-2

2

1 20 40
t

LSTM: i

-2

2

hi
t − hi

0

(b) sequence without robot control

−1
−0.5

0 agent
x
y

−1
−0.5

0
0.5

robot
x
y

GateL0RD: i

-2

2

GateL0RD: i

-2

2

GRU: i

-2

2

GRU: i

-2

2

LSTM: i

-2

2

1 20 40
t

LSTM: i

-2

2

hi
t − hi

0

Figure C.11: Latent states in Robot Remote Control for sequences in which the
robot was either controlled (a) or not (b). Latent states ht are shown relative to their
initialization h0. We provide the latent states for two GateL0RD, GRUs, and LSTMs
(different random seeds). One row shows the same random seed.

In this section, we further analyze latent states in the Robot Remote Control scenario.
Figure C.11a shows one exemplary sequence in which the robot was controlled and the

160

Table C.2: Gating in Robot Remote Control

gate open gate closed
control 0.978± 0.016 (hits) 0.022± 0.016 (misses)
no control 0.089± 0.037 (false alarms) 0.911± 0.037 (correct rejections)

corresponding latent states for two instantiations of GateL0RD, GRU, and LSTM with
different random seeds. GateL0RD seems to only use one dimension of its latent state
to encode robot control. For GRUs and LSTMs the latent states also seem to strongly
change around the point where the agent gains control over the robot; however, their
latent states are not as interpretable. Figure C.11b shows one exemplary sequence, in
which the robot was not controlled. Here, GateL0RD does not modify its latent states,
whereas LSTMs and GRUs continuously change their latent states.

When the robot is not controlled, as in Fig. C.11b, Robot Remote Control is fully
observable. Thus, it seems that GateL0RD is capable of learning to distinguish observ-
able from unobservable information and attempts to update its latent state only when
unobservable information changes. To evaluate this claim, we feed in all generalization
sequences and classify gate usage. The inputs of the sequences were classified based on
whether control of the robot was triggered at this time step (control) or not (no control).
Additionally, we analyzed for each input whether one of GateL0RD’s gates opened (gate
open) or not (gate closed). The mean gate openings for the two events are shown in Ta-
ble C.2 with ± denoting the standard deviation. GateL0RD seems to mostly open its
gates when robot control is triggered and tends to keep its gate closed at other time steps.
Thus, GateL0RD indeed seems to mostly update its latent state when the unobservable
state of the environment changes.

C.4.3 Robot Remote Control: Improving RNN Generalization

In Sec. 5.4.4 we showed that LSTMs and GRUs trained on data in which action magni-
tude was positively correlated with time (Dtime), failed to properly generalize to testing
data without this correlation (Drand). GateL0RD showed less performance degener-
ation when tested on the generalization dataset. We hypothesized that GateL0RD’s
superior generalization performance comes from its robustness towards spurious temporal
dependencies in the training data. However, an alternative explanation would be that the
overfitting of LSTMs and GRUs was caused by their learning rate.

161

1k 2k 3k 4k 5k
10−3

10−2

10−1

epochs

M
SE

Generalization error

Elman RNN
GRU
LSTM
GateL0RD

Figure C.12: Improved
baselines in Robot Re-
mote Control: Generaliza-
tion prediction error with op-
timized learning rates.

To investigate whether the other RNNs’ generalization
abilities can be improved to the level of GateL0RD by
choosing a different learning rate, we ran a grid search
over three learning rate values (η ∈ {0.005, 0.001, 0.0005})
for LSTMs, GRUs, Elman RNNs with two random initial-
izations. We selected the learning rate that lead to the
lowest mean squared prediction error for the 50 time step
predictions on the generalization dataset of Drand after 5k
epochs. Seeing that a learning rate of 0.001 yielded the
best generalization error for all RNNs, we reran the ex-
periment with this learning rate (10 random seeds).

Figure C.12 shows the resulting prediction error when
testing the RNNs on the generalization set of Drand. Al-
though the prediction error of GRUs and LSTMs on the
generalization test set improved compared to our previous
experiment, GateL0RD still achieved a lower generaliza-
tion error than the other RNNs. Note that GateL0RD was not further optimized in this
experiment. Thus, we conclude that GateL0RD’s superior generalization performance
in this setting is not caused by poorly tuned learning rates.

C.4.4 Fetch Pick&Place: Generalization across Grasp Timings

In Sec. 5.4.4 we showed that GateL0RD is better at generalizing across spurious temporal
dependencies in the training data than other RNNs in the simple Robot Remote Control
scenario. In a follow-up experiment, we want to investigate if similar effects can be found
in a more complex environment and when trained on more natural training data. For that,
we use the Fetch Pick&Place environment and train the networks to predict reach-grasp-
and-lift sequences. The training sequences were generated by a policy-guided model-
predictive control method (Pinneri et al., 2021b). Importantly, we train the network only
on sequences in which the gripper first touches the object exactly at time t = 5. We test
the networks to predict sequences where gripper-object contact occurs as during training
(testing) or where the object is grasped later (generalization).

Figure C.13a shows the mean autoregressive prediction errors during testing. All net-
works achieve a very low prediction error. The prediction accuracy is similar for all RNNs,
but LSTMs achieve a slightly lower prediction error than GateL0RD (β = 0.0001).
When networks were tested on sequences with different grasp times, they produced much
higher prediction errors as shown in Fig. C.13b. GateL0RD prediction accuracy does
not drop as strongly as the accuracy of the other networks. Thus, as in the previous ex-

162

periments, GateL0RD more robustly generalizes across spurious temporal correlations.

(a)

4k 8k 12k 16k 20k
10−5

10−4

10−3

epochs
M

SE

Testing prediction error

Elman RNN
GRU
LSTM
GateL0RD

(b)

4k 8k 12k 16k 20k

10−4

10−3

epochs

M
SE

Generalization error

Elman RNN
GRU
LSTM
GateL0RD

Figure C.13: Generalization in Fetch Pick&Place:
prediction error on test set (a) and generalization set (b).
Shaded areas denote standard deviation.

Figure C.15 shows the la-
tent states of the different
RNNs when predicting two
exemplary sequences. Here,
GateL0RD (β = 0.0001)
uses one or three dimensions
of ht that change around the
time when GateL0RD pre-
dicts that the gripper grasps
the object. During the pre-
dicted transportation of an
object, the latent state does
not change anymore. This
indicates GateL0RD en-
coding the event <transporting an object> in parts of its latent state.

C.4.5 Fetch Pick&Place: Training on Diverse Sequences

2k 4k 6k 8k 10k

10−3

10−2

epochs

M
SE

Testing prediction error

Elman RNN
GRU
LSTM
GateL0RD, β = 0
GateL0RD, β = .0001
GateL0RD, β = 0.001

Figure C.14: In-
distribution prediction in
Fetch Pick&Place trained
on diverse data. Shaded areas
denote standard deviation.

Previously, we only considered reach-grasp-lift sequences
in the Fetch Pick&Place environment. However, there are
multiple other ways to move the object to a target position,
such as pushing, sliding, or even flicking. Thus, in a next
experiment we analyze the performance of RNNs when
trained as a model on a diverse set of interactions gen-
erated by the policy-guided model-based control method
APEX (Pinneri et al., 2021b).

Figure C.14 shows the mean autoregressive prediction
errors for different RNNs. Here, all RNNs achieve a very
similar prediction accuracy. GateL0RD with β = 0.001
produces a slightly higher mean prediction error than the
other RNNs, whereas GateL0RD with β = 0 achieves
a slightly lower error. We believe that in this scenario
the small differences in prediction accuracy are a result
of better approximations of the endeffector velocities. In
Fetch Pick&Place the position control of the endeffector
is realized by a PID-controller running at a higher frequency. Thus, in this scenario
continuous latent state updates are advantageous for predicting the endeffector speed.

163

(a)

0.5
1

1.5
gripper

x
y
z

0.5
1

1.5 object
x
y
z

GateL0RD i

-2

2

GateL0RD i

-2

2

LSTM i

-2

2

LSTM i

-2

2

GRU i

-2

2

0 10 20
t

GRU i

-2

2

hi
t − hi

0

(b)

0.5
1

1.5
gripper

x
y
z

0.5
1

1.5 object
x
y
z

GateL0RD i

-2

2

GateL0RD i

-2

2

LSTM i

-2

2

LSTM i

-2

2

GRU i

-2

2

0 10 20
t

GRU i

-2

2

hi
t − hi

0

Figure C.15: Latent states in Fetch Pick&Place for two exemplary sequences.
Latent states ht are shown relative to their initialization h0. We compare the latent
states for two random seeds each, where each row shows the same random seed.

C.4.6 MiniGrid: Further Analysis and Experiments

In Sec. 5.4.6 we demonstrated improved sample efficiency in MiniGrid when GateL0RD
replaces an LSTM in a PPO architecture. Some problems of MiniGrid discount the final
reward based on the number of actions taken. Thus, another metric to judge success
in MiniGrid is the mean reward collected. Figure C.16 shows the mean rewards for the
vanilla architecture and architecture containing GateL0RD over training experience. For
all problems, the architecture containing GateL0RD is more sample efficient in achieving
high levels of reward.

164

(a) (b) (c) (d) (e) (f)

0 10 20 30
0

.5

1

1e5 frames

mean return
SimpleCrossingS9N3

vanilla
GateL0RD

0 25 50

0

.5

1

1e5 frames

mean return
DoorKey-8x8

vanilla
GateL0RD

0 35 70
0

.5

1

1e5 frames

mean return
RedBlueDoors-8x8

vanilla
GateL0RD

0 5 10 15

0

.5

1

1e6 frames

mean return
LavaCrossingS9N2

vanilla
GateL0RD

0 25 50
.4

.7

1

1e6 frames

mean return
MemoryS13Random

vanilla
GateL0RD

0 25 50
0

.5

1

1e6 frames

mean return
KeyCorridorS3R3

vanilla
GateL0RD

Figure C.16: Rewards in MiniGrid: Mean rewards when GateL0RD replaces an
LSTM (vanilla) in a PPO architecture. Shaded areas show standard deviation.

(a)

0 25 50
0

.5

1

1e6 frames

success rate
KeyCorridorS3R3

vanilla
GateL0RD

(b)

0 25 50
0

.5

1

1e6 frames

mean return
KeyCorridorS3R3

vanilla
GateL0RD

Figure C.17: Improved
baselines in MiniGrid:
The learning rate of the
vanilla system was optimized
for KeyCorridorS3R3.

For consistency we used the same hyperparameters in
all MiniGrid experiments and only swapped the LSTM cell
for GateL0RD. However, as described in Suppl. C.2.6 a
grid search showed that for the KeyCorridorS3R3 prob-
lem a lower learning rate (η = 0.0005) resulted in higher
mean rewards for the vanilla architecture. Therefore, to
exclude the possibility that GateL0RD outperformed
the LSTM in this problem based on the choice of learn-
ing rate, we performed an additional experiment in the
KeyCorridorS3R3 problem with the vanilla architecture
using the optimized learning rate. The resulting mean
success rate and mean rewards are shown in Fig. C.17a
and Fig. C.17b, respectively. Although the vanilla archi-
tecture now manages to reach a success rate of 100% and a
mean reward greater than 0.8, GateL0RD still achieves
the same level of performance faster.

165

D
Skip Network: Supplementary MaterialD.1

D.1 Implementation Details

For our system in Chap. 6, we use GateL0RD with a 16-dimensional latent state ht.
The subnetworks g and r are implemented by multilayer perceptrons (MLPs) with three
layers (64 → 32 → 16 feature neurons, tanh hidden activation), while o is implemented
as two single-layered neural networks (16 feature neurons per layer), whose outputs are
multiplied element-wise. When using GRUs (Chung et al., 2014) we found that a 16-
dimensional latent state ht performs much worse on DAPEX, which is why we used a GRU
with 32 latent dimensions. The other components of the forward-inverse model, i.e. f init

ϕ ,
fFM
ϕ , and f IM

ϕ , are also implemented as feed-forward neural networks. For f init
ϕ and fFM

ϕ

we use MLPs with three layers (64 → 32 → 16 feature neurons, tanh hidden activation).
The inverse model f IM

ϕ has an additional multiplicative layer, similar to the GateL0RD
output function o (16 features per layer), followed by a three-layered MLP (64 → 32 →
16 feature neurons , tanh hidden activation). We add this extra layer so that f IM

ϕ has the
same computational power to compute its outputs based on ot and ht as fFM

ϕ . We modeled
the skip network as a deep MLP with five layers (512 → 256 → 128 → 64 → 32 feature

D.1This chapter is based on the supplementary material of:
Gumbsch, C., Adam, M., Elsner, B., Martius, G. & Butz, M. V. (2022). Developing Hierarchical Antic-
ipations via Neural Network-based Event Segmentation. IEEE International Conference on Development
and Learning (ICDL 2022), 1–8.

166

(a) Reaching (b) Pointing (c) Stretching (d) Transport

object
goal

skip prediction of

Figure D.1: Event boundary predictions for objects and goals: Exemplary skip
predictions at t = 2 shown for reaching (a), pointing (b), and stretching (c). Skips at
t = 12 shown for a transport event (d). A circle shows one skip-predicted position of the
object (green) or the goal (red). The predictions of all 10 random seeds are overlayed.

neurons, tanh hidden activation). Networks predicting Gaussian distributions (i.e. fFM
ϕ ,

f IM
ϕ and f skip

θ) use separate read-out layers for predicting the mean and predicting the
covariance. The read-out layers for mean predictions have a linear activation function,
whereas the read-out layers for the covariance matrix predictions use the Exponential
Linear Unit (ELU) activation function shifted by 1 to avoid covariances ≤ 0.

We trained and tested on datasets of 9.2k sequences using a batch size of 192. The
forward-inverse model and the skip network were trained independently using Adam
(learning rates ηϕ = 0.0005 and ηθ = 0.0001, ϵ = 10−4) and gradient norm clipping
(max= 0.1). The code for running our experiments can be found at https://github.
com/CognitiveModeling/HierarchicalGateL0RD.

D.2 Additional Experiments and Analysis

In Sec. 6.3.3 we showed that our system learns meaningful temporal abstractions for future
hand positions. How are the skip predictions for the other two entities?

We exemplify the skip predictions for the position of the object and the goal as before by
feeding the scripted sequence of Dscript into the forward-inverse model to generate inputs
for the skip network. Figure D.1 (a)-(c) shows the skip predictions for three exemplary
sequences based on the inputs (o2,h2). For all sequences, the skip network predicts that
the object position (green) and the goal position (red) will not change (cf. Fig. 6.6 for
hand predictions and the ground truth goal positions). This is reasonable for the given
events. However, for reach-grasp-transport sequences, the object position changes once

167

https://github.com/CognitiveModeling/HierarchicalGateL0RD
https://github.com/CognitiveModeling/HierarchicalGateL0RD

the object is grasped (typically t ≤ 12). As shown in exemplary fashion in Fig. D.1d, if
we use (o12,h12) of a reach-grasp-transport sequence, the skip network actually predicts
that the object will be close to the goal at the next event boundary.

168

E
Thick World Models: Supplementary

MaterialE.1

E.1 Pseudocode

Algorithm 2 outlines how Thick world models make temporal abstract predictions using
both levels of the hierarchy (also visualized in Fig. 7.4). Blue parts are only needed for
MBRL or MPC (see Sec. 7.3). For temporal abstract rollouts, which are used in Thick
PlaNet, the process can be repeated K times by using the output states, i.e. cτ(t) and
ẑcτ(t), as inputs again.

Algorithm 3 describes how to create input-target data for training the high-level world
model. In continual learning environments with no early termination of an episode, we
omit the red part.

Algorithm 4 describes the general main training and generation of behavior Thick
world models. Red parts are only used for Thick PlaNet. Blue parts are only used for
Thick Dreamer. In our zero-shot planning experiments using Thick PlaNet, we do not
add new data to the replay buffer and only plan and execute actions during evaluation.

E.1This chapter is based on the following manuscript, accepted for publication:
Gumbsch, C., Sajid, N., Martius, G. & Butz, M. V. (in press, 2024). Learning Hierarchical World
Models with Adaptive Temporal Abstractions from Discrete Latent Dynamics. The Twelfth International
Conference on Learning Representations (ICLR 2024).

169

Algorithm 2 THICK Temporal Abstract Prediction
1: input: context ct, stochastic state zt
2: Ât ∼ Pθ(Ât | ct, zt) ▷ sample high-level action
3: ẑτ(t)−1 ∼ Fθ

(
ẑτ(t)−1 | Âtct, zt

)
▷ high-level state prediction

4: âτ(t)−1 ∼ Fθ
(
âτ(t)−1 | Âtct, zt

)
▷ high-level action prediction

5: ˆ∆τ(t) ∼ Fθ
(ˆ∆τ(t) | Âtct, zt

)
▷ high-level time prediction

6: (r̂γt:τ(t) ∼ Fθ
(
r̂γt:τ(t) | Âtct, zt

)
▷ high-level reward prediction

7: cτ(t) ← gϕ
(
âτ(t)−1, ct, ẑτ(t)−1

)
▷ low-level context

8: ẑcτ(t) ∼ pcϕ

(
ẑc
τ(t)−1 | âτ(t)−1, cτ(t), ẑτ(t)−1

)
▷ low-level coarse prior

9: r̂cτ(t), γ̂
c
τ(t) ∼ ocϕ

(
r̂cτ(t), γ̂

c
τ(t) | cτ(t), ẑcτ(t)

)
▷ coarse reward & discount prediction

10: output: cτ(t), ẑcτ(t), ∆̂t, r̂
γ
tτ r̂

c
τ(t), γ̂

c
τ(t)

Algorithm 3 THICK Training Data Generation
1: input: discount factor γ, sequences of contexts c1:T , stochastic states z1:T ,
2: actions a1:T , rewards r1:T , and episode termination flags d1:T
3: initialize: train data D ← {}, unassigned inputs I ← {}
4: for τ ← 1 to T do
5: if cτ ̸= cτ−1 or dτ = 1 then ▷ context change or episode is over at time τ
6: for (ct, zt) ∈ I do
7: compute passed time ∆τ ← τ − t
8: compute accumulated rewards rt:τ ←

∑∆t−1
δ=1 γδrt+δ

9: add input-target tuple
(
(ct, zt), (zτ−1,aτ−1,∆t, rt:τ)

)
to D

10: remove (ct, zt) from I
11: add potential input (cτ , zτ) to I
12: output: train data D

170

Algorithm 4 THICK World Models
1: initialize neural networks and replay buffer
2: tplan = −I
3: for t← 1 to tend do
4: update low-level world model state st ∼ wϕ(st | st−1,at−1)
5: // Behavior
6: if ct ̸= ct−1 ∧ t ≥ tplan + I then
7: plan subgoal zgoal

t using MCTS and temporal abstract rollouts (Alg. 2)
8: tplan ← t
9: plan new action at using CEM given st and zgoal

t (Eq. 7.26)
10: sample new action at from actor π given st
11: execute action at in environment and observe rt, it and dt
12: add (it,at, rt, dt) to replay buffer
13: // Train world models
14: draw sequence batch B ← (it′:T ,at′:T , rt′:T , dt′:T) from replay buffer
15: embed batch in latent state st′:T ∼ wϕ

(
st′:T | B

)
16: update low-level world model wϕ using B (Eq. 7.9)
17: generate high-level training batch D from (st′:T ,at′:T , rt′:T , dt′:T) (Alg. 3)
18: update high-level world model Wθ using D (Eq. 7.19)
19: // Train actor and critic
20: imagine trajectory (st′′:H ,at′′:H , rt′′:H , γt′′:H) using wϕ from random start st′′ ∈ B
21: make temporal abstract predictions for each st′′:H using Wθ and wϕ (Alg. 2)
22: compute value V (Eq. 7.23)
23: update critics vχ and vξ (Eq. 7.24)
24: update actor π

171

E.2 Hyperparameters

Table E.1: Hyperparameter choices. If there is only one centered value it counts
for all suites. Otherwise different values are chosen for MiniHack (MH), VisualPinPad
(VPP), or Mulitworld (MW).

Name Value
MH VPP MW

Low-Level World Model (C-Rssm or Rssm)
Batches (size × sequence length) 16 × 50
Dimensions of ct 16
Dimensions of ht 256
Dimensions of zt 32× 32
MLP features per layer 256
Sparsity loss scale βsparse 1E.2/10 1 25
Prediction loss scale βpred 1
KL loss scale βKL 1
KL balancing βbal 0.8
Output heads oϕ for it, γt, rt it, rt it, rt
Prioritize ends in replay yes no no
Learning rate 0.0001
High-Level World Model
Qθ & Pθ number of layers × features 3 × 200
Fθ number of layers × features 5 × 1024
Number of actions At 3 5 5
Use terminations dt for segmentation yes no no
Loss for training F â

θ

(
âτ(t)−1 |At, ct,zt

)
CCE CCE NLL

Action prediction loss scale ζaτ(t)−1 1 1 0.1
State prediction loss scale ζzτ(t)−1 1
Time prediction loss scale ζ∆τ(t) 1 1 0.1
Reward prediction loss scale ζr

γ
t:τ(t) 1

KL balancing ζbal 0.8
Learning rate 0.0001
Thick Dreamer
Imagination horizon H 15 15
Value estimate balance ψ 0.9 0.9
λ-target of V λ

t 0.95 0.95
Long-horizon critic vχ layers × features 4× 400 4× 400
Long-horizon critic vχ learning rate 0.0002 0.0002
Thick PlaNet
CEM planning horizon H 12
Long-horizon scale κ 0.025
MCTS simulations 100
MCTS discount 0.997
Common
Optimizer Adam
MLP activation functions ELU
Discount γ 0.99

E.2Unlike the other MiniHack problems, MiniHack-Corridor tasks are fully deterministic, which is
why we use a lower factor of βsparse = 1 here.

172

World model learning hyperparameters For optimizing the world models, i.e.
our Thick world models and the baseline models in Dreamer and Director, we use the
default DreamerV2 hyperparameters (Hafner et al., 2020a), except for minor variations.
Specifically, we reduced the size of the model by setting the feature size of the Rssm and
the dimensionality of ht to 256. As we show in Suppl. E.5.7 model size does not strongly
affect performance in our setting. Additionally, for Thick Dreamer and Dreamer we did
not employ layer normalization for the GRU within the Rssm, because in pre-tests this
showed increased robustness for both approaches.

MBRL hyperparameters For training the actor and critic in Thick Dreamer and
Dreamer we use the default hyperparameters of DreamerV2. For Director we mostly
used its default hyperparameters (Hafner et al., 2022), however, we made some minor
adjustments to the training frequency to ensure a fair comparison. Director performs
one training update every 16 policy steps instead of every 5 steps in DreamerV2. This
was done to reduce wall-clock time but decreases sample efficiency (Hafner et al., 2022).
We increase the update frequency (16 → 5) in order to fairly compare sample efficiency
between approaches.

MPC hyperparameters For MPC with CEM we use the hyperparameters of PlaNet
(Hafner et al., 2019b). For high-level planning with MCTS, we use MuZero’s (Schrittwieser
et al., 2020) implementation, with mostly the same hyperparameters. However, intuitively
we would not expect multiple predictions to reach a goal. Thus, we decrease the number
of simulations to S = 100.

Differences between environments The main difference between MiniHack and the
other environments is that in MiniHack episodes can terminate based on the success of
the task or the death of the agent. VisualPinPad and Multiworld are continual learning
environments without early episode termination. As is customary with the use of Dream-
erV2, for environments that do not feature early episode termination, we do not predict
discounts γt, nor do we prioritize sampling subsequences around episode termination from
the replay buffer. Additionally, we do not treat episode terminations as context changes.
For action prediction, we use the Categorical Cross Entropy Loss (CCE) for predicting
discrete actions (Minihack and VisualPinPad), and scale down the high-level prediction
loss for predicting actions and elapsed time when training purely on task-free offline data
(Multiworld). Lastly, the sparsity loss scale βsparse was tuned for each suite.

Hyperparameter search For determining the sparsity loss scale βsparse, the value
estimate balance ψ, and the long-horizon planning scale κ, we ran a grid search using
three random seeds and using two tasks of each suite (MiniHack: KeyRoom-Fixed-S5,
WandOfDeath-Advances; MiniHack-Corridor: KeyCorridor-4, KeyCorridor-8, Visual
Pin Pad: VisuaLPinPadFour, VisuaLPinPadFive; Multiworld: Door, PickUp). We de-
termined the best hyperparameter value for each suite depending on task performance

173

and a qualitative inspection of the high-level predictions (see Suppl. E.5.8). For simplic-
ity and to demonstrate robustness, we used the same values for each suite, whenever it
was reasonable.

How to tune When tuning Thick world models for a new task, we recommend mainly
searching over the sparsity loss scale βsparse ∈ {1, 5, 10, 25, 50}. Typically, one random seed
is sufficient to determine which βsparse leads to few, but not too few, context changes.

E.3 THICK World Models: Implementation Details

E.3.1 THICK Design Choices

Here, we explain some design choices in more detail here.
High-level targets Our goal is to learn a high-level world model that predict situ-

ations in which latent generative factors are assumed to change, e.g. a door openings or
object manipulations. In addition to that, we want to use high-level outputs to predict
future rewards and reconstruct images at some time τ(t). Thus, we at least need the
context cτ(t) and the stochastic state zτ(t) to make these reconstructions via the coarse
processing pathway (see Eq. 7.8). There are two potential ways to predict cτ(t) and zτ(t),
either predict the state before or after the context transition.

We predict the states before the context transition. Our main reasoning is that the
prediction of context-altering situations presents two challenges: (1.) learning in which
situation such transitions are currently possible and (2.) how these transitions affect the
latent generative factors. The C-Rssm already learns to encode ii). Therefore, to reduce
redundancy and simplify the challenge, we train the high-level model to only learn (1.)
and then prompt the low-level model for (2.). One example from MiniHack would be
predicting the agent standing in front of closed door and performing the a door-opening-
action. We believe this is a simpler prediction compared to predicting the ego-centric view
of the agent after opening a door and looking into a (potentially unknown) new room.

Coarse predictions for contextual learning We want the context ct to encode
latent information that is necessary for prediction and reconstruction. If we omit the
coarse prior predictions (Eq. 7.4) and coarse output reconstructions (Eq. 7.8) the C-
Rssm would have no incentive to encode prediction-relevant latent information in ct.
Instead, it could purely utilize ht and avoid a sparsity penalty in Eq. 7.9 via Lsparse by
never updating ct. Completely omitting h in the C-Rssm impedes learning, as we show
in our ablations in Suppl. E.5.8. Thus, we instead add the coarse processing pathway.
Via the coarse predictions, the C-Rssm needs to encode latent factors in ct in order to
reduce the KL-loss (Eq. E.8) and prediction loss (Eq. E.7).

Coarse predictions to omit ht The high-level model attempts to predict a future

174

state of the system. The full latent state would contain the deterministic component h.
However, for the high-level model it would be very challenging to predict the unregularized
high-dimensional deterministic hidden state h many time steps in the future. The coarse
pathway of the C-Rssm allows updates of the context dynamics ct, predictions of the
stochastic states zct , and reconstructions of external variables without the deterministic
hidden state ht. Thus, it is advantageous that the C-RSSM can make predictions without
h. After a high-level prediction, we can feed the high-level outputs (ẑτ(t)−1, âτ(t)−1) into
the low-level world model. This brings many advantages: For example, this allows us
to predict rewards or discounts/episode termination at particular states after a high-
level prediction, which we use in Thick Dreamer in and Thick PlaNet (see Sec. 7.3).
Furthermore, we can reconstruct images to visualize predictions as shown in Sec. 7.4.2.
Additionally, we can continue with low-level rollouts after a high-level prediction, which
is a feature we have not yet utilized.

E.3.2 GATEL0RD

We want the context code ct to change only sparsely in time. Thus, we implement the
discrete context dynamics gϕ as a GateL0RD cell (details in Chap. 5). For the sake
of completeness, we briefly review GateL0RD and our slightly changed notation here.
GateL0RD is an RNN designed to maintain sparsely changing latent states ct.E.3 To
realize this inductive bias, GateL0RD uses two subnetworks gpϕ and ggϕ that control ct
updates via an internal update gate Λt. GateL0RD can be summarized as

ĉt = gpϕ(at−1, ct−1, zt−1) (candidate proposal) (E.1)
Λt = ggϕ(at−1, ct−1, zt−1) (update gate) (E.2)
ct = Λt ⊙ ĉt + (1−Λt)⊙ ct−1 (context update) (E.3)

with ⊙ denoting the Hadamard product. We use the action at−1 and the last stochastic
state zt−1 as the cell inputs. Based on this cell input and the last context ct−1, Ga-
teL0RD proposes a new context ĉt via its proposal subnetwork gpϕ (Eq. E.1). Whether
the context is updated depends on an update gate Λt ∈ [0, 1]m (Eq. E.3). This update
gate Λt is the output of the gating subnetwork ggϕ (Eq. E.2) which uses a rectified tanh
activation function (ReTanh), with ReTanh(x) := max(0, tanh(x)). This ensures that the
gate activations are ∈ [0, 1]m. Note that to compute Λt, the subnetwork ggϕ internally
samples from a Gaussian distribution before applying the ReTanh function to improve
robustness. Thus, the context updates are a stochastic process.

E.3In previous chapters, we referred to the latent state of GateL0RD, as well as to other RNNs’ latent
states as ht. Since C-Rssm maintains a GRU latent state as well as the latent state of GateL0RD, we
now refer to the latter as ct to distinguish the two.

175

Originally, GateL0RD used a subnetwork to compute the cell output using multi-
plicative gating. We omit this here and instead feed the output to the GRU cell fϕ as
shown in Fig. 7.2 (right).

The centralized gate Λt of GateL0RD makes it easy to determine context changes,
i.e. ct ̸= ct−1. Since all context updates depend on Λt, we know that the context changed
if Λt > 0. This is an advantage over other RNNs that use multiple gates for sparsely
changing latent states. We use this measure to determine context changes when building
the world model hierarchy.

E.3.3 C-RSSM Loss

The loss of the C-Rssm (Eq. 7.9) is composed of three parts: the prediction loss Lpred,
the KL loss LKL, and the sparsity loss Lsparse. Except for the sparsity loss, we adapt these
loss terms from the RSSM. However we always need to account for the coarse prediction
pathways of the C-Rssm.

We define the prediction loss Lpred as

Lpred(ϕ) =
1

T

T∑
t=1

[∑
y∈{it,rt,γt}

− log oϕ(y | st)− log ocϕ(y | ct, zt)
]
. (E.4)

Equations in red are exclusive to the C-Rssm. Thus, the network is trained to minimize
the negative log likelihood for predicting the images it, rewards rt and future discounts
γt. Here, we account for both precise predictions over the output heads oϕ (Eq. 7.7), and
coarse predictions over the output heads ocϕ (Eq. 7.8). Following the DreamerV2 codebase
(Hafner et al., 2020a), in continual learning environments when there is no early episode
termination, we do not predict the discount γt, and instead use a fixed discount γ = 0.99.

The C-Rssm predicts two prior distributions for the next stochastic state ẑt: fine
predictions using the full state (Eq. 7.5) and coarse predictions based only on the context,
last action and stochastic state (Eq. 7.4). We need to account for both types of prediction
in the KL loss LKL with

LKL(ϕ) =
1

T

T∑
t=1

KL
[
qϕ
(
zt | ht, it

)
||phϕ

(
ẑt | ht

)]
+KL

[
qϕ
(
zt | ht, it

)
||pcϕ(ẑc

t | at−1, ct, zt−1)
]
.

(E.5)

Thus, we want to minimize the divergence between both the fine prior phϕ and the
approximate posterior qϕ, as well as the divergence between the coarse prior pcϕ and qϕ.
As in DreamerV2 (Hafner et al., 2020a), we use KL-balancing, which scales the loss

176

contribution of the prior pϕ of each KL divergence by a factor βbal = 0.8, and of the
posterior qϕ by 1 − βbal. This enables faster learning of the prior to avoid that the
posterior is regularized towards an untrained prior.

We take the sparsity loss Lsparse from GateL0RD (see Sec. 5.3) which is an L0-
regularization of the context changes ∆ct. This is implemented as

Lsparse(ϕ) =
1

TJ

T∑
t=1

J∑
j=1

∥∥∆cjt∥∥0
=

1

TJ

T∑
t=1

J∑
j=1

Θ
(
Λjt

)
(E.6)

where J is the dimensionality of the context ct and Θ
(
·
)

denotes the Heaviside step
function. That is, an L0-regularization of the context changes is implemented as the
binarization of the update gates Λt (Eq. E.3). We estimate the gradient of the Heaviside
step function using the straight-through estimator (Bengio et al., 2013).

E.3.4 High-level World Model Training

The high-level world model with parameters θ is trained to minimize both the prediction
loss Lpred, of predicting the next context change state, and the action loss LA, which is
the divergence of the prior and posterior high-level action distributions.

For every high-level target Y ∈ {aτ(t)−1, zτ(t)−1,∆τ(t), r
γ
t:τ(t)}, we use an appropriate

prediction loss and use a weighted sum in Lpred. For the to-be-predicted action aτ(t)−1,
the time passed ∆τ(t), and the rewards rγt:τ(t), we use the negative log-likelihood (NLL).
For the prediction of stochastic state zτ(t)−1, we know the underlying distribution that
generated the target variable, i.e. the posterior qϕ(·). Thus, we can use the KL divergence
as a loss for high-level state predictions. Overall, we get

Lpred(θ) =
1

T

T∑
t=1

[∑
Y ∈{aτ(t)−1,∆τ(t),r

γ
t:τ(t)

}

−ζY logFθ(Y | At, ct, zt)

+ ζzKL
[
qϕ
(
zτ(t)−1 | cτ(t)−1,hτ(t)−1, iτ(t)−1

)
||F ẑ

θ

(
ẑτ(t)−1 | At, ct, zt

)]]
.

(E.7)
Hyperparameters ζY ∈ {ζa, ζz, ζ∆τ(t), ζrγ} can be used to scale individual loss terms.
By default, we set ζY = 1 for all loss terms. When training the network on task-free
exploration, i.e. during zero-shot MPC as described in Sec. 7.4.4, we found that predicting
actions aτ(t)−1 at context changes and the elapsed time ∆τ(t) was challenging. To mitigate
this, during task-free exploration, we set ζaτ(t)−1 = 0.1 and ζ∆τ(t) = 0.1.

The action loss LA drives the system to minimize the divergence between the posterior
high-level action distribution Qθ(At | ct, zt, cτ(t), zτ(t)), and the prior distribution Pθ(Ât |

177

ct, zt) with

LA(θ) =
1

T

T∑
t=1

KL
[
Qθ(At | ct, zt, cτ(t), zτ(t)) || Pθ(Ât | ct, zt)

]
. (E.8)

Like the KL loss LKL on the low level (see Suppl. E.3.3), we use KL balancing (Hafner
et al., 2020a) to scale the prior part by ζbal = 0.8 and the posterior part by 1− ζbal.

E.3.5 THICK Dreamer: Details

Thick Dreamer estimates the overall value V (st) of a state st as a mixture of short- and
long-horizon estimates (Eq. 7.23) using critics vξ and vχ, respectively. Like DreamerV2,
we stabilize critic training by using a copy of the critics during value estimation (in 7.20
and Eq. 7.22). The copy is updated every 100 updates.

E.3.6 THICK PlaNet: Details

For planning on the high level we use a MCTS implementation based on MuZero (Schrit-
twieser et al., 2020). We only replan on the high level if the context changes, i.e. ct ̸= ct−1.
Since all subgoals zgoal

t are situations that lead to context changes, no additional crite-
rion for subgoal completion is needed. Upon reaching a subgoal, e.g. touching an object,
the context can sometimes change for multiple subsequent time steps. This causes the
high-level to replan multiple times in a row. To avoid a high computational cost and to
allow smoother trajectories, we inhibit replanning for I = 3 time steps after setting a new
subgoal. While this could potentially degrade performance in dynamic environments, we
found this to work well in Multiworld.

E.4 Environment Details

E.4.1 MiniHack

Here we provide a detailed explanation of all MiniHack problems we considered. In all
settings, we restricted the action space to the minimum number of actions needed to
solve the task. In all tasks the agents receives a sparse reward of 1 when exiting the
room and a small punishment of −0.01 when performing an action that has no effect, e.g.
moving against a wall. In the easier tasks (WaterCrossing-Ring, KeyRoom-Fixed-S5,
KeyCorridor) the agent is allowed 200 time steps to solve the task. In all other tasks the
time limit is set to 400 time steps. For aesthetic reasons, we use different characters in
different levels.

178

(a) WaterCrossing-Ring (b) KeyRoom-Fixed-S5 (c) WandOfDeath-Advanced

(d) River

Figure E.1: MiniHack environments: Staircases with an upwards facing arrows mark
the starting point of the agents. Staircases with downward facing arrows are the exits
that need to be reached. In (a), (b), and (d) start points and exits are randomized.

WaterCrossing-Ring is a newly designed, simple level in which an agent needs to fetch
a randomly placed ring of levitation and float over a river to get to the goal (Fig. E.1a).
When a ring is picked up in our tasks, it is automatically worn.E.4 The level is inspired by
LavaCross-Levitate-Ring-PickUp from the MiniHack benchmark suite, where a river
of deadly lava blocks the exit. However, we found that Dreamer struggles to learn this
task because of the early terminations when entering the lava.

KeyRoom-Fixed-S5 is a benchmark task, in which an agent spawns in a room at a
random position and has to fetch a randomly placed key to open a door and enter a
smaller room with a randomly located exit (Fig. E.1b). The door position is fixed. In
all our tasks, using the key opens the door from any grid cell adjacent to the door, even
diagonally.

KeyCorridor-N is a novel task, in which an agent starts in front of a locked door in the
top left corner of a corridor. In the bottom right corner of the corridor is the key for the
door. We vary the length N of the corridor to systematically manipulate the task horizon.

WandOfDeath-Advanced is based on the WandOfDeath benchmark tasks, in which an exit
is guarded by a minotaur, which instantly kills the agent upon contact. The agent needs

E.4Usually, to wear a ring in MiniHack a sequence of actions needs to be performed: PUTON → RING
→ RIGHT, for putting the ring on the right finger. We simplify this by automatically applying the action
sequence when the ring is picked up.

179

to pick up a wand to attack and kill the monster. Thereby, the agent needs to carefully
select the direction of the attack, because if the attack bounces off a wall, it kills the
agent instead. WandOfDeath comes in multiple levels of difficulty. WandOfDeath-Advanced
(Fig. E.1c) is a self-created level layout, designed to be more challenging than WandOf-
Death-Medium but not as difficult as WandOfDeath-Hard. In WandOfDeath-Medium the
agent can only walk horizontally and the location of the wand is fixed. In WandOfDeath-
Hard the map is very large, which makes this a hard exploration problem. Our version is
of intermediate difficulty, where the number of accessible grids (28) is roughly the same
as in WandOfDeath-Medium (27), while the randomly placed wand needs to be found first.

River is a benchmark task, in which an agent needs get to an exit on the other side of
a river (Fig. E.1d). In order to cross the river the agent needs to push boulders into the
water to form a small land bridge. To solve the task the agent needs to move at least two
randomly placed boulders into the river.

EscapeRoom is a difficult new problem designed by us, which combines the challenges of
many other problems (Fig. E.5a). Via EscapeRoom we test the ability to learn to execute
a complex event sequence of five subgoals. However, the task can be learned without
extensive exploration or large action spaces. The agent starts in a small room and the
goal is to unlock a door and escape. However, in order to obtain the key, the agent must
(1.) pick up a ring of levitation and (2.) float over a small patch of water into a corridor.
In the corridor, the agent can (3.) exchange the ring of levitation for a key. To get back to
the door in the first room, the agent must (4.) push a boulder into the water. Aferwards,
the agent can (5.) unlock the door and exit the room. When levitating, the agent is too
light to push the boulder. In EscapeRoom, the agent can only carry one item at the time,
and picking up a second item results in dropping the first one.

E.4.2 Multiworld

In Multiworld we use tasks that have previously been used to study visual reinforcement
learning (Nair et al., 2018; Pong et al., 2020). All tasks in Multiworld use different action
spaces and camera viewpoints for their pixel-based observation, shown in Fig. E.2. In
Pusher the 2-dimensional actions control the x− and y−movement of the endeffector,
whereas the gripper is fixed. In Door the robot is equipped with a hook instead of a
gripper and the 3-dimensional action controls x−, y−, and z−movement. In PickUp the
3-dimensional action controls the y− and z−movement and the gripper opening. We
binarized the gripper opening to prevent accidental object drops. In all tasks, the goal
positions are fixed. In Pusher and PickUp goals are visible in the video frames. In Door
the goal is to fully open the door. For Pusher-Dense and PickUp we compute the reward

180

(a) Pusher (b) Door (c) PickUp

Figure E.2: Multiworld environments: Goal positions for the objects are shown in
yellow.

rt for every time step t as
rt = 1− δt

δ1
, (E.9)

where δt is the Euclidean distance between object and goal at time t. For Pusher-Sparse
the agent received a reward of rt = 1 when the distance between puck and goal δt < 0.025,
otherwise rt = 0. For Door the reward rt is the current angle of the door joint.

E.5 Extended Results and Experiment Details

E.5.1 Analysis of Contexts and Predictions

In this section, we provide further examples of high- and low-level predictions and context
codes ct.

KeyRoom-Fixed-S5 Door

it

LL:
îht+1

t t+ 3 t+ 5 t+ 7 t t+ 5 t+ 10 t+ 15

Figure E.3: Low-level predictions. The low-level predictions accurately predict the
next frames (cf. Fig. 7.5 for high-level predictions and contexts ct of the same sequences).

181

WaterCrossing-Ring Pusher

it

ct+1

HL:
îcτ(t)−1

t t+ 3 t+ 5 t+ 7 t t+ 2 t+ 4 t+ 6
River VisualPinPadFive

it

ct+1

HL:
îcτ(t)−1

t t+ 2 t+ 4 t+ 11 t t+ 6 t+ 10 t+ 14

Figure E.4: Exemplary context changes. We show the input images it, 16-dim.
contexts ct+1 and reconstructions îcτ(t)−1 of high-level predictions. Contexts are visualized
relative to the first context ct of the sequences, i.e. we plot ct′ − ct for every time t′.

C-RSSM predictions Figure E.3 visualizes the low-level predictions for two example
sequences. The low-level world model predicts the immediate next state and its recon-
structions are more accurate than the abstract high-level predictions (cf. Fig. 7.5).

Examples of context changes Figure E.4 displays four example sequences with
the corresponding contexts ct and high-level predictions. For WaterCrossing-Ring the
context changes when stepping on the ring, picking it up, or arriving on the other side of
the shore. In Pusher the context changes when the robot moves the puck. In River the
context changes when pushing a boulder into water. In VisualPinPadFive the context
changes when stepping on a pad.

High-level actions We analyze the high-level actions At in more detail for the
EscapeRoom problem. EscapeRoom is a challenging MiniHack level, designed to con-
tain diverse agent-environment interactions, shown in Fig. E.5a and described in detail
in Suppl. E.4.1. To illustrate the emerging high-level action representations of Thick
Dreamer, we show inputs it and image reconstructions îcτ(t)−1 and predicted low-level
actions âτ(t)−1 for all high-level actions At in Fig. E.5b for one exemplary sequence.

182

(a) (b)

EscapeRoom

it

A1
t

A2
t

A3
t

t 3 6 10 16 22 26

Figure E.5: Example sequence of high-level action predictions: (a) In
EscapeRoom an agent needs to pick up a ring of levitation, hover over a patch of wa-
ter to get to a key, exchange the ring for key, push a boulder into the water, and use
the key to unlock a door. (b) Visualization of the high-level actions for one exemplary
sequence. The top row shows the input image it. Image reconstructions îcτ(t)−1 and low-
level action predictions âτ(t)−1 are shown for all three high-level actions At. Red outlines
depict which action Ât was sampled.

At specific time steps, the three possible high-level actions At encode particular agent-
environment interactions: A1

t encodes picking up the ring of levitation (t = 3) or exiting
the level (t ∈ {22, 26}). A2

t encodes crossing the water after obtaining the ability to
levitate (t ∈ {6, 10, 16}), either upwards (t ∈ {6, 10}) or downwards (t = 16). A3

t encodes
pushing the boulder into water (t ∈ {6, 10, 16}) or walking in front of the door (t = 22).
For all other time steps, the high-level actions produce identity predictions (e.g. A1

6) or
predictions that seem to encode average scene settings (cf. A2

3 or A1
10). These predictions

account for unexpected context shifts, which can always occur with a small chance due
to the randomness of sampling zt and the stochastic update gates of GateL0RD (see
Suppl. E.3.2). The predicted low-level actions for these situations seem to be mostly
random. The prior Qϕ (red frames and text in Fig. E.5b) typically samples reasonable
high-level actions. However, occasionally the prior samples an action Ât leading to an

183

(a) (b) (c)

0 2 4 6
0

20

40

60

105 steps

%t with ct ̸= ct−1 in
MiniHack

WaterCross-Ring
KeyRoom-Fixed-S5
WandOfDeath-Adv.
EscapeRoom
River

0 1 2
0

20

40

60

80

100

105 updates

%t with ct ̸= ct−1 in
Multiworld

Pusher-Sparse
Door
PickUp

0 2 4 6
0

20

40

60

80

100

105 steps

%t with ct ̸= ct−1 in
VisualPinPad

Three
Four
Five

Figure E.6: Context changes over training: Each graphic plots the mean percent-
age of time steps per training batch for which the context ct changes in MiniHack (a),
VisualPinPad (b), and Multiworld (c). Shaded areas depict the standard deviation.

identity or average prediction (e.g. t = 6) due to the randomness of the process.
Quantifying context changes To quantify the changes in context, we plot the

mean percentage of time steps with context changes (i.e. ct ̸= ct−1) over the course of
training in Fig. E.6. Importantly, context changes are somewhat consistent within the
same task, but, as expected, can vary between tasks in the same suite despite using the
same hyperparameter βsparse. Additionally, we analyze the time between context changes
for some MiniHack tasks. We plot the histogram of time gaps between context changes in
Fig. E.7, illustrating how different tasks show different distributions of context durations.

Task-relevance of contexts Lastly, we analyze whether context changes occur in
task-relevant situations for some MiniHack problems. For this, we generated rollouts of
the fully trained policy and identify points t∗, that we consider to be crucial for solving
the task. For WandOfDeath-Adv., WaterCross-Ring, and KeyRoom-Fixed-S5 we take
the time points t∗ before picking up an item. For EscapeRoom, we use points in time t∗
when the agent stands in front of a movable boulder blocking the path to the exit. We
compute the mean percentage of context changes occurring around t∗ (±1 step) over 10
sequences and take the average over all 7 randomly seeded models. The results are shown
in Table E.2. The C-Rssm tends to update its context with a high probability at the
identified situations. This suggests that task-relevant aspects, such as item-pickups or
boulder pushes, are encoded in the contexts.

E.5.2 MBRL in MiniHack: Experiment Details and Extended Results

In Fig. E.8 we plot the success rate of Thick Dreamer, DreamerV2, and Director for
additional MiniHack tasks not shown in the main paper.

To investigate the effect of task horizon, we compare the performance gain of Thick

184

(a) (b)

0 2 4 6 8 10 12 14
0

2

4

∆t

fre
qu

en
cy WaterCross-Ring

0 5 10 15 20

0
1
2
3

∆t

fre
qu

en
cy WandOfDeath-Adv.

(c) (d)

0 5 10 15 20 25
0
1
2

∆t

fre
qu

en
cy EscapeRoom

0 5 10 15 20 25
0
2
4
6

∆t

fre
qu

en
cy River

Figure E.7: Context duration: Each graphic plots a histogram of the mean number
of time steps ∆t between two consecutive context changes during an episode (over 10
episodes, max 50 steps) for different MiniHack tasks (7 seeds). Shaded areas depict the
standard deviation.

Table E.2: Task-relevance of context changes. We list the mean percentage of
context changes ct∗ ̸= ct∗−1 for fully trained policies (7 seeds) at crucial task-relevant
times t∗ in 10 sequences (± denotes standard deviation). See text for criterion of t∗.

WaterCross KeyRoom-Fixed-S5 WandOfDeath-Adv. EscapeRoom
% 97.1 (± 4.9) 91.4 (± 6.9) 91.4 (± 1.5) 88.57 (± 15.7)

Dreamer over Dreamer for different corridor lengths in KeyCorridor. To compute im-
provements, we subtract the mean success rate and returns of Dreamer from the corre-
sponding measure of Thick Dreamer (visualized in Fig. 7.7f–7.7g). For corridor lengths
of 6 onward, the improvements of Thick Dreamer over Dreamer tend to increase with
corridor length. However, for a corridor length of 11 most runs fail to discover the reward
(see Fig. E.8g), which dampens the improvement in performance. The inability to solve
these tasks seems to be due to inadequate exploration. Our results in VisualPinPad indi-
cate that if exploration is addressed, then the performance gain of Thick Dreamer also
holds for longer task horizons.

E.5.3 MBRL in MiniHack: Director

Director (Hafner et al., 2022) shows strong performance in the KeyRoom-Fixed-S5 task.
However, Director does not learn the other MiniHack tasks that we considered (Fig. 7.7).

185

(a) (b) (c)

0 2.5 5

0

0.5

1

105 steps

KeyCorridor-4

Director
Dreamer
Thick
Dreamer

0 2.5 5

0

0.5

1

105 steps

KeyCorridor-5

0 2.5 5

0

0.5

1

105 steps

KeyCorridor-6

(d) (e) (f)

0 2.5 5

0

0.5

1

105 steps

KeyCorridor-7

0 2.5 5

0

0.5

1

105 steps

KeyCorridor-9

0 2.5 5

0

0.5

1

105 steps

KeyCorridor-10

(g) (h) (i)

0 2.5 5

0

0.5

1

105 steps

KeyCorridor-11

0 2 4 6

0

0.5

1

105 steps

WaterCross.-Ring

0 2 4 6

0

0.5

1

105 steps

River

Figure E.8: MiniHack success for more tasks: We plot the mean evaluation success
rate (7 seeds, ± standard error).

Which crucial aspects are different across tasks and what causes Director to fail? We
identify two key problems when applying Director in MiniHack, namely (1.) Director’s
reliance on diverse initial data and (2.) problems with specifying unobservable
goal information.

Diversity of initial data Director trains a goal encoder on its replay buffer from
which it samples when training a goal-conditioned policy. We hypothesize that if early
in training not enough diverse data is collected, this is reflected in the goal space. As a
result, the manager (high-level) does not set meaningful goals for the worker (low-level)
and learning is severely slowed down or stuck.

We analyze this aspect by training Director on variants of the KeyRoom-Fixed-S5
problem. By default, the initial positions of agent, key, and goal within the second room

186

(a) (b) (c)

0 2.5 5

−1

0

1

105 steps

KeyCorridor-5

Director
Dreamer
Thick
Dreamer

0 2.5 5

−1

0

1

105 steps

KeyCorridor-6

0 2.5 5

−1

0

1

105 steps

KeyCorridor-7

(d) (e) (f)

0 2.5 5

−1

0

1

105 steps

KeyCorridor-8

0 2.5 5

−1

0

1

105 steps

KeyCorridor-9

0 2.5 5

−1

0

1

105 steps

KeyCorridor-10

(g) (h) (i)

0 2.5 5

−1

0

1

105 steps

KeyCorridor-11

0 2 4 6
−1

0

1

105 steps

WaterCross-Ring

0.5 1
−2

−1

0

1

106 steps

River

(j) (k) (l)

0 2 4 6

−1

0

1

105 steps

KeyRoom-Fixed-S5

0 2 4 6 8

−2

−1

0

1

105 steps

WandOfDeath-Adv.

0 2 4 6 8
−2

−1

0

1

105 steps

EscapeRoom

Figure E.9: MiniHack rewards: We plot the mean evaluation returns (7 seeds, ±
standard error).

187

(a) (b) (c)

0 0.5 1 1.5

0

0.5

1

105 steps

Director: success rate

KeyRoom: random
KeyRoom: random key
KeyRoom: fixed
KeyCorridor-4: fixed

0 0.5 1 1.5

−1

0

1

105 steps

Director: returns

Figure E.10: Director in key-door-environments: We test Director in variants of
the KeyRoom-Fixed-S5 problem, with either fixed spawn positions of agent, key, and goal
(i.e. KeyRoom: fixed, shown in a), random spawns points of the key (i.e. KeyRoom: random
key), fully randomized spawn points (KeyRoom: random) or the similar KeyCorridor-4
problem. We plot mean evaluation success rate (b) and mean evaluation returns (c) (7
seeds for KeyRoom: random, 3 seeds otherwise, ± standard error).

are randomized in KeyRoom-Fixed-S5. We create additional variants of the task where
either all entities spawn at fixed positions (positions shown in Fig. E.10a) or only the initial
position of the key is randomized. Additionally, we train Director in the KeyCorridor-4
task, which is very similar to KeyRoom-Fixed-S5 with fixed spawn points but of much
smaller size (8 grid corridor vs. two rooms with 16 and 4 grids). Thus, in KeyCorridor-4
the observations show little diversity.

Figure E.10b plots evaluation success rates of Director in the KeyRoom-variants. Director
needs more steps to solve the tasks when entities spawn at fixed positions. Director does
not learn to solve KeyCorridor-4 whereas with the same training it consistently learns to
solve KeyRoom-Fixed-S5. Note that KeyCorridor-4 is much smaller and has a shorter
task horizon. A similar trend can be observed in the collected returns (Fig. E.10c).

Thus, we conclude that diversity in the initial observations drastically boosts Director’s
performance. The ego-centric views of MiniHack often contain the same or similar obser-
vations, especially when traversing long corridors or empty rooms, e.g. in KeyCorridor-8
or WandOfDeath-Advanced. This similarity in observations might impede Director’s learn-
ing in the MiniHack tasks we considered here.

Unobservable aspects of goals We hypothesize that a severe problem of Director
could be specifying unobservable information in the goals. The RSSM encodes both
observable and unobservable information within its deterministic latent state ht. If the
unobservable information, e.g. item pick-ups in MiniHack, does not directly affect rewards
or substantially influence image reconstruction, it might be encoded only locally in ht

188

(a) (b) (c)

0 1 2 3
0

200

400

600

105 steps

VisualPinPadThree
(no exploration steps)

Dreamer
Thick
Dreamer

0 1 2 3
0

200

400

600

105 steps

VisualPinPadThree
(2.5 · 105 exploration steps)

0 1 2 3 4
0

100

200

300

400

105 steps

VisualPinPadFour
(2.5 · 105 exploration steps)

(d) (e) (f)

0 1 2 3
0

200

400

600

105 steps

VisualPinPadThree
(5 · 105 exploration steps)

0 1 2 3 4
0

200

400

105 steps

VisualPinPadFour
(5 · 105 exploration steps)

1 2 3 4 5 6
0

100

200

300

105 steps

VisualPinPadFive
(5 · 105 exploration steps)

Figure E.11: Effects of exploration in VisualPinPad: We plot the mean evaluation
returns (7 seeds for 5 · 105 exploration, 5 seeds otherwise; ± standard error).

and fade over time. In Dreamer this is not a problem because the policy can amplify
task-relevant information in ht. Director, however, compresses ht into a low-dimensional
goal-encoding. Thereby, task-relevant latent information could get lost. Note that all
novel tasks proposed in Hafner et al. (2022), in which Director shows strong performance,
avoid long-horizon memory, e.g. by coloring walls in a maze (Egocentric Ant Maze) or by
providing a visible history of past button presses (VisualPinPad).

In smaller MiniHack tasks, e.g. KeyRoom-Fixed-S5, memory can sometimes be circum-
vented by specifying goals via observable information. For example, if both the key and
door are visible, a goal would be the same observation without the key visible (picked up)
and an open door. This creates a curriculum in which the worker can first learn from such
simpler situations and later learn to pick up a key and open the door automatically from
the high-level goal of an open door. In larger task spaces, e.g. KeyCorridor-8, Director
never encounters such simpler situations to begin with.

E.5.4 MBRL in VisualPinPad: Experiment Details

For the VisualPinPad suite we generated offline training data to avoid the challenge of
discovering very sparse rewards. For data collection, we used Plan2Explore (Sekar et al.,

189

2020) with the default settings of the DreamerV2 (Hafner et al., 2020a) codebase. We
trained two randomly initialized models of Plan2Explore for S ∈ {0, 250k, 500k, 1M}
environment steps in each task. For each setting, we determined the model that achieved
the highest overall returns during training.We initialized the replay buffer of all new
models with the S samples.

Originally, VisualPinPad has more levels of difficulty. However, in VisualPinPadSix
Plan2Explore did not receive any rewards during the 1M steps of exploration. In addition
to that, the results in Hafner et al. (2022) suggest that Dreamer is also not able to
discover the very sparse rewards of VisualPinPadSix on its own. Thus, we omitted
VisualPinPadSix and more complicated levels.

E.5.5 MBRL in VisualPinPad: Effect of Exploration

We analyze the effect of the exploration data by varying the number of data points with
which we initialize the replay buffers. For this, we consider exploration data collected by
S ∈ {0, 250k, 500k} environment steps of Plan2Explore and compare Thick Dreamer to
Dreamer. In PinPadThree, Dreamer and Thick Dreamer always achieve the same per-
formance regardless of available exploration data (cf. Fig. E.11a, Fig. E.11b, Fig. E.11d).
Without exploration data, neither Thick Dreamer nor Dreamer manage to obtain re-
wards in PinPadFour and PinPadFive within 600k steps. Similarly, both methods do not
discover rewards when initialized with 250k steps of exploration in PinPadFive. Thus, for
the more complicated problems both Thick Dreamer and Dreamer need sufficient explo-
ration. Whenever there is enough exploration data to learn the more complicated tasks,
Thick Dreamer manages to achieve high rewards faster than Dreamer (see Fig. E.11c,
Fig. E.11e, Fig. E.11f).

For the larger problems, i.e. PinPadFour and PinPadFive, we quantify the effect of
exploration data on sample efficiency by determining the number of environment steps
needed to reach a certain level of reward. We take 95% of the highest mean reward across
all our experiments as a threshold.E.5 Table E.3 shows the number of environment steps
needed for Thick Dreamer and Dreamer reach this threshold for particular environments
over exploration data. In sum, a medium amount of exploration data (500k) enables the
fastest time to reach the threshold. Thick Dreamer reaches the reward threshold faster
than Dreamer in all experiments. This advantage increases with level difficulty.

190

Table E.3: Sample efficiency in VisualPinPad. We list the number of environment
steps needed for Thick Dreamer and Dreamer to reach a reward threshold (95% of max.
reward) during evaluation for particular environments over amount of exploration data.

PinPadFour
exploration data 250k 500k 1M
Thick Dreamer 200k 120k 140k
Dreamer 280k 180k 200k
difference 80k 60k 60k

PinPadFive
exploration data 250k 500k 1M
Thick Dreamer / 260k 340k
Dreamer / 360k 590k
difference / 100k 250k

E.5.6 MPC: Experiment Details and Extended Results

Experiment details To study zero-shot planning, we generated offline datasets of 1M
environment steps for each task. For data collection, we used Plan2Explore in the same
way as described in Suppl. E.5.4. After determining one dataset for every task, we trained
the models purely on this data.

Pusher-Dense Door PickUp

Figure E.12: Subgoals during hierarchical planning of Thick PlaNet reconstructed
from zgoal

1 in the first time step. The subgoals are typically pushing the puck (Pusher),
moving to the door handle (Door), or grasping the ball (PickUp). For PickUp the system
sometimes fails to find a reasonable subgoal (center).

E.5This corresponds to a mean reward of 359 for PinPadFour and 274 for PinPadFive.

191

(a) (b)

0 2 4 6 8

−0.5

0

0.5

1

105 steps

re
tu

rn

WandOfDeath-Advanced

Dreamer-S
Dreamer-M
Dreamer-L
Dreamer-XL
Thick Dreamer

0 1 2 3

0

10

20

30

104 updates

re
tu

rn

Door

PlaNet-S
PlaNet-M
PlaNet-L
PlaNet-XL
Thick PlaNet

Figure E.13: Effect of scaling model size: We modify the number of hidden units per
layer and dimensionality of the deterministic hidden state ht by a factor (S = 0.5,M =
1,L = 2,XL = 4) for Dreamer (a) or PlaNet (b) and compare to the unmodified Thick
counterparts. Each graphic plots the mean returns over training (5 random seeds for
ablations). Shaded areas depict the standard error in (a) or standard deviation in (b).

Subgoal reconstructions Besides boosting performance for long-horizon tasks, Thick
PlaNet provides the additional advantage that the subgoals proposed by the high-level
network can directly be reconstructed into images through the low-level output heads ocϕ.
The resulting goal images are easily interpretable by humans. Figure E.12 shows exem-
plary goals selected by the high-level planner in the first time step of an episode. Thus,
the behavior of Thick PlaNet is much more explainable than simply performing MPC in
a flat world model.

E.5.7 MBRL & MPC: Scaling Models vs. Hierarchy

A alternative approach towards improving world models, besides to adding hierarchies,
is scaling up model size (Hafner et al., 2023; Deng et al., 2023). Could simply increasing
the capacity of the world model improve performance of Dreamer or PlaNet similar to
our approach of incorporating hierarchical abstraction?

We investigate this in the WandOfDeath-Adv. task for MBRL and in Door for zero-shot
MPC. We increase the Rssm model capacity by scaling up the number of hidden units per
layer (256 before) and the dimensionality of the determinstic hidden state ht (256 before)
by different factors (factors: S = 0.5,M = 1,L = 2,XL = 4). Unlike the model scaling in
Hafner et al. (2023), we did not increase the dimensionality of zt since both investigated
environments are visually rather simple. Figure E.13 plots the returns of the different
model sizes over environment steps. In both tasks, increasing the size of the model did

192

(a) (b)

0 2 4 6 8
−1

−0.5

0

0.5

1

105 steps

re
tu

rn
WandOfDeath-Advanced

0 1 2 3 4
0

100

200

300

105 steps

re
tu

rn

VisualPinPadFour

Dreamer
Thick Dreamer
Thick Dreamer
Thick Dreamer (no ht)
Thick Dreamer (no vξ)

Figure E.14: C-RSSM ablations in THICK Dreamer. Each graphic plots the mean
returns over training. We compare Dreamer, Thick Dreamer (7 seeds), and various
ablations (5 seeds each): Dreamer with C-Rssm (C-Rssm Dreamer), Dreamer using only
the coarse processing pathway of C-Rssm (C-Rssm Dreamer no ht), and Thick Dreamer
with only one critic (Thick Dreamer no vξ). Shaded areas depict standard error.

not improve Dreamer (Fig. E.13a) or PlaNet (Fig. E.13b). Thus, for the investigated
setups, scaling up model size does not bring the same advantages as our Thick hierarchy.

E.5.8 Ablations and Hyperparameters

Ablations We ablate various components of the C-Rssm and Thick Dreamer within
a MBRL setup. We evaluate the resulting systems using the two exemplary tasks of
MiniHack-WandOfDeath-Adv. and VisualPinPadFour. Figure E.14 plots the returns of
the ablated systems over environment steps. Using the C-Rssm in DreamerV2 results in
roughly the same performance (WandOfDeath-Advances) or slightly better performance
(VisualPinPadFour) than using the Rssm (i.e. Dreamer). However, removing the de-
terministic latent state ht and the precise processing pathway from the C-Rssm (i.e.
C-Rssm Dreamer without h) impedes the system from learning the tasks.E.6 Omitting
vξ, and only using one critic vχ for both the short- and long-horizon returns (Eq. 7.23),
slightly degrades the performance of Thick Dreamer.

Hyperparameter βsparse Next, we compare the effect of sparsity loss scale βsparse on
Thick Dreamer in VisualPinPadFour and on Thick PlaNet in Multiworld-Door.

Figure E.15a plots the mean returns of Thick Dreamer or different values for βsparse

in VisualPinPadFour. Figure E.15b shows the percentage of time steps with context

E.6For this ablation we picked higher sparsity regularization βsparse for both tasks (βsparse = 50 for
WandOfDeath-Advances, βsparse = 10 for VisualPinPadFour), such that the number of time steps with
open gate roughly matches that of the C-Rssm.

193

(a) (b) (c) (d)

0 1 2 3 4
0

100

200

300

105 steps

returns in
VisualPinPadFour

0 1 2 3 4
0

20

40

60

80

100

105 steps

%t with ct ̸= ct−1 in
VisualPinPadFour

βs. = 0.01

βs. = 1

βs. = 10

βs. = 100

0 1 2 3

0

10

20

30

104 updates

returns in
Door

0 1 2 3
0

20

40

60

80

100

104 updates

%t with ct ̸= ct−1

in Door

βs. = 5

βs. = 10

βs. = 25

βs. = 100

Figure E.15: Effect of sparsity on THICK. We plot the the mean return for Thick
Dreamer in VisualPinPadFour (a) and the mean zero-shot planning returns of Thick
PlaNet in Door (c) for different values of the hyperparameter βsparse (5 random seeds).
Additionally, we plot the percentage of time steps with context changes over training time
for both tasks (b, d). We test different ranges of βsparse for the different tasks. Shaded
areas depict the standard deviation.

changes over training. For Thick Dreamer, regularizing context changes too little is
not as detrimental as overly regularizing context changes. If the contexts are weakly
regularized, i.e. small βsparse, then the context changes in most time steps. As a result,
the high-level learns an identity mapping, and during a temporal abstract prediction, the
network simply predicts the next state at time t+ 1 (see Alg. 2). Stronger regularization
boosts sample efficiency of learning long-horizon behavior. This is even true if, at some
point after the behavior is sufficiently learned, the context is no longer adapted (e.g.
βsparse = 10). However, overly strong regularization, which prohibits context changes
early during training, impedes the learning of the task (e.g. βsparse = 100). In this case,
the high-level predictions are essentially average state predictions, which only contribute
noise for learning the critic. Thick Dreamer is very robust to the choice of βsparse in
VisualPinPadFour.

Figure E.15c plots zero-shot planning performance of Thick PlaNet for different values
for βsparse, with the percentage of context changes shown in Fig. E.15d. For Thick PlaNet
both too strong as well as too weak regularization degrade performance. However, strongly
regularizing the network towards sparse context changes is slightly less detrimental for
Thick PlaNet than a weak sparsity regularization (cf. βsparse = 100 and βsparse = 5).
For weak sparsity regularization the context changes in every time step, which prevents
the high level from finding a useful subgoal sequence during planning. As a result, the
low-level might be guided into the wrong direction by the proposed subgoals.

Hyperparameter ψ Thick Dreamer introduces a new hyperparameter ψ which

194

(a) (b)

0 2 4 6 8
−1

−0.5

0

0.5

1

105 steps

re
tu

rn
WandOfDeath-Advanced

0 1 2 3 4
0

100

200

300

105 steps

re
tu

rn

VisualPinPadFour

ψ = 1
ψ = 0.9
ψ = 0.8
ψ = 0.5

Figure E.16: Effect of hyperparameter ψ. Each graphic plots the mean returns
for Thick Dreamer over training steps for different values of the hyperparameter ψ (5
random seeds). Shaded areas depict standard error.

balances the influence of the short-horizon value estimates V λ and long-horizon value
estimates V long on the overall value V (Eq. 7.23). Figure E.16 shows how ψ affects
task performance. Only considering short-horizon value estimates, i.e. ψ = 1, results
in less sample efficient learning than taking small amounts of long-horizon value esti-
mates into consideration, i.e. ψ = 0.9 for WandOfDeath-Advances and 0.8 ≤ ψ ≤ 0.9 for
VisualPinPadFour. However, relying too strongly on long-horizon estimates, i.e. ψ = 0.5,
impedes policy learning. This effect is less pronounced for very long-horizon tasks such
as VisualPinPadFour. We set ψ = 0.9 in all experiments.

Hyperparameter κ Thick PlaNet introduces the hyperparameter κ, which scales
the influence of the subgoal proximity on the reward estimate of the low-level plan-
ner (Eq. 7.26). We analyze the effect of κ on the performance of Thick PlaNet in
Multiworld-Door, shown in Fig. E.17. Incentivizing subgoal proximity too strongly, i.e.
κ = 1, can result in the agent getting stuck at a subgoal. This reduces overall task per-
formance. Ignoring the subgoal, i.e. κ = 0, also decreases performance for long-horizon
tasks such as Door. In Door, Thick PlaNet works well across a wide range of κ.

Replanning strategy Thick PlaNet proposes new goals on the high-level upon
context transitions. We do this mainly to save computational cost from running MCTS at
the high-level at every time step. Figure E.18 compares the effect of high-level planning in
every time step to replanning upon context transitions in Door. The returns seem mostly
the same. Thus, replanning at every time step is as effective as setting new subgoals only
upon context transitions and can be applied if computational efficiency is not a concern.

195

0 1 2 3

0

10

20

30

104 updates

re
tu

rn
Door

κ = 0

κ = 0.025

κ = 0.05

κ = 0.25

κ = 1

Figure E.17: Effect of hyperparam-
eter κ. We plot mean returns of Thick
PlaNet for zero-shot MPC for different
values of the hyperparamter κ balancing
external and subgoal-reaching rewards (5
seeds, ± standard deviation).

0 1 2 3

0

10

20

30

104 updates

re
tu

rn

Door

ct−1 ̸= ct

always

Figure E.18: Effect of replanning. We
plot mean returns of Thick PlaNet for
zero-shot MPC when only replanning upon
context transition or when planning on ev-
ery step (5 seeds, ± standard deviation).

196

Bibliography

Adam, M. & Elsner, B. (2018). Action effects foster 11-month-olds’ prediction of action
goals for a non-human agent. Infant Behavior and Development, 53, 49–55.

Adam, M. & Elsner, B. (2020). The impact of salient action effects on 6-, 7-, and 11-
month-olds’ goal-predictive gaze shifts for a human grasping action. PLOS ONE, 15(10),
1–18.

Adam, M., Gumbsch, C., Butz, M. V., & Elsner, B. (2021). The impact of action
effects on infants’ predictive gaze shifts for a non-human grasping action at 7, 11, and
18 months. Frontiers in Psychology, 12.

Adam, M., Reitenbach, I., & Elsner, B. (2017). Agency cues and 11-month-olds’ and
adults’ anticipation of action goals. Cognitive Development, 43, 37–48.

Adam, M., Reitenbach, I., Papenmeier, F., Gredebäck, G., Elsner, C., & Elsner, B.
(2016). Goal saliency boosts infants’ action prediction for human manual actions, but
not for mechanical claws. Infant Behavior and Development, 44, 29–37.

Akakzia, A., Colas, C., Oudeyer, P.-Y., Chetouani, M., & Sigaud, O. (2021). Grounding
language to autonomously-acquired skills via goal generation. In The Ninth International
Conference on Learning Representation, ICLR’21.

Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong, R., Welinder, P., McGrew,
B., Tobin, J., Abbeel, P., & Zaremba, W. (2017). Hindsight experience replay. In
Advances in Neural Information Processing Systems, volume 30.

Ba, J., Mnih, V., & Kavukcuoglu, K. (2015). Multiple object recognition with visual
attention. In The Third International Conference on Learning Representations, ICLR’15.

Bacon, P.-L., Harb, J., & Precup, D. (2017). The option-critic architecture. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, volume 31 (pp. 1726–1734).

197

Badre, D. & D’esposito, M. (2009). Is the rostro-caudal axis of the frontal lobe hierar-
chical? Nature Reviews Neuroscience, 10(9), 659–669.

Bagatella, M., Olšák, M., Rolínek, M., & Martius, G. (2021). Planning from pixels in en-
vironments with combinatorially hard search spaces. In Advances in Neural Information
Processing Systems, volume 34 (pp. 24707–24718).

Bahdanau, D., Cho, K. H., & Bengio, Y. (2015). Neural machine translation by jointly
learning to align and translate. In The Third International Conference on Learning
Representations, ICLR’15.

Balaguer, J., Spiers, H., Hassabis, D., & Summerfield, C. (2016). Neural mechanisms of
hierarchical planning in a virtual subway network. Neuron, 90(4), 893–903.

Baldwin, D. A. & Kosie, J. E. (2021). How does the mind render streaming experience
as events? Topics in Cognitive Science, 13(1), 79–105.

Barlow, H. B. et al. (1961). Possible principles underlying the transformation of sensory
messages. Sensory Communication, 1(01), 217–233.

Barsalou, L. W. (2008). Grounded cognition. Annual Review of Psychology, 59(1),
617–645.

Basgol, H., Ayhan, I., & Ugur, E. (2024). Predictive event segmentation and represen-
tation with neural networks: A self-supervised model assessed by psychological experi-
ments. Cognitive Systems Research, 83, 101167.

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V., Ma-
linowski, M., Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R., et al. (2018). Re-
lational inductive biases, deep learning, and graph networks. arXiv preprint. https:
//arxiv.org/abs/1806.01261.

Bellman, R. (1957). A markovian decision process. Journal of Mathematics and Me-
chanics, 6(5), 679–684.

Bengio, S., Vinyals, O., Jaitly, N., & Shazeer, N. (2015a). Scheduled sampling for
sequence prediction with recurrent neural networks. In Advances in Neural Information
Processing Systems, volume 28.

Bengio, Y., Lee, D.-H., Bornschein, J., Mesnard, T., & Lin, Z. (2015b). Towards biolog-
ically plausible deep learning. arXiv preprint. https://arxiv.org/abs/1502.04156.

198

https://arxiv.org/abs/1806.01261
https://arxiv.org/abs/1806.01261
https://arxiv.org/abs/1502.04156

Bengio, Y., Léonard, N., & Courville, A. (2013). Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint. https://
arxiv.org/abs/1308.3432.

Bertsekas, D. (2012). Dynamic Programming and Optimal Control: Volume I, volume 4.
Athena scientific.

Beyer, H.-G. & Schwefel, H.-P. (2002). Evolution strategies–a comprehensive introduc-
tion. Natural computing, 1, 3–52.

Bezdek, M., Nguyen, T., Gershman, S. J., Bobick, A. F., Braver, T. S., & Zacks, J. M.
(2022). Uncertainty-driven updating enables human-like segmentation and categoriza-
tion of naturalistic activity. PsyArXiv preprint. https://doi.org/10.31234/osf.io/
pt6hx.

Bhui, R., Lai, L., & Gershman, S. J. (2021). Resource-rational decision making. Current
Opinion in Behavioral Sciences, 41, 15–21.

Binz, M. & Schulz, E. (2023). Using cognitive psychology to understand gpt-3. Proceed-
ings of the National Academy of Sciences, 120(6), e2218523120.

Biro, S. (2013). The role of the efficiency of novel actions in infants’ goal anticipation.
Journal of Experimental Child Psychology, 116(2), 415–427.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Berlin, Heidelberg:
Springer-Verlag.

Botvinick, M. (2007). Multilevel structure in behaviour and in the brain: a model of
fuster’s hierarchy. Philosophical Transactions of the Royal Society B: Biological Sciences,
362(1485), 1615–1626.

Botvinick, M. (2008). Hierarchical models of behavior and prefrontal function. Trends
in Cognitive Sciences, 12(5), 201–208.

Botvinick, M. & Weinstein, A. (2014). Model-based hierarchical reinforcement learning
and human action control. Philosophical Transactions of the Royal Society B: Biological
Sciences, 369(1655), 20130480.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., &
Zaremba, W. (2016). OpenAI gym. arXiv preprint. https://arxiv.org/abs/arXiv:
1606.01540.

199

https://arxiv.org/abs/1308.3432
https://arxiv.org/abs/1308.3432
https://doi.org/10.31234/osf.io/pt6hx
https://doi.org/10.31234/osf.io/pt6hx
https://arxiv.org/abs/arXiv:1606.01540
https://arxiv.org/abs/arXiv:1606.01540

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan,
A., Shyam, P., Sastry, G., Askell, A., et al. (2020). Language models are few-shot
learners. In Advances in Neural Information Processing Systems, volume 33 (pp. 1877–
1901).

Brunec, I. K., Bellana, B., Ozubko, J. D., Man, V., Robin, J., Liu, Z.-X., Grady, C.,
Rosenbaum, R. S., Winocur, G., Barense, M. D., & Moscovitch, M. (2018). Multiple
scales of representation along the hippocampal anteroposterior axis in humans. Current
Biology, 28(13), 2129–2135.e6.

Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J., Horvitz, E., Kamar, E., Lee, P.,
Lee, Y. T., Li, Y., Lundberg, S., et al. (2023). Sparks of artificial general intelligence:
Early experiments with GPT-4. arXiv preprint. https://arxiv.org/abs/2303.12712.

Buschoff, L. M. S., Akata, E., Bethge, M., & Schulz, E. (2023). Have we built machines
that think like people? arXiv preprint. https://arxiv.org/abs/2311.16093.

Butz, M. V. (2016). Towards a unified sub-symbolic computational theory of cognition.
Frontiers in Psychology, 7(925).

Butz, M. V. (2017). Which structures are out there. In Philosophy and Predictive
Processing chapter 8. MIND Group.

Butz, M. V. (2022). Resourceful event-predictive inference: The nature of cognitive
effort. Frontiers in Psychology, 13.

Butz, M. V., Achimova, A., Bilkey, D., & Knott, A. (2021). Event-predictive cognition:
A root for conceptual human thought. Topics in Cognitive Science, 13(1), 10–24.

Butz, M. V., Bilkey, D., Humaidan, D., Knott, A., & Otte, S. (2019). Learning, planning,
and control in a monolithic neural event inference architecture. Neural Networks, 117,
135–144.

Butz, M. V. & Kutter, E. F. (2017). How the Mind Comes into Being. Oxford University
Press.

Campos, V., Jou, B., Giró-i Nieto, X., Torres, J., & Chang, S.-F. (2018). Skip rnn:
Learning to skip state updates in recurrent neural networks. In The Sixth International
Conference on Learning Representations, ICLR’18.

Cannon, E. N. & Woodward, A. L. (2012). Infants generate goal-based action predictions.
Developmental Science, 15(2), 292–298.

200

https://arxiv.org/abs/2303.12712
https://arxiv.org/abs/2311.16093

Cannon, E. N., Woodward, A. L., Gredebäck, G., von Hofsten, C., & Turek, C. (2012).
Action production influences 12-month-old infants’ attention to others’ actions. Devel-
opmental Science, 15(1), 35–42.

Chen, C., Wu, Y.-F., Yoon, J., & Ahn, S. (2022). Transdreamer: Reinforcement learning
with transformer world models. arXiv preprint. https://arxiv.org/abs/2202.09481.

Cheng, J., Dong, L., & Lapata, M. (2016). Long short-term memory-networks for ma-
chine reading. In 2016 Conference on Empirical Methods in Natural Language Processing
(pp. 551–561).

Chevalier-Boisvert, M., Bahdanau, D., Lahlou, S., Willems, L., Saharia, C., Nguyen,
T. H., & Bengio, Y. (2018a). BabyAI: A platform to study the sample efficiency of
grounded language learning. In The Sixth International Conference on Learning Repre-
sentations, ICLR’18.

Chevalier-Boisvert, M., Willems, L., & Pal, S. (2018b). Minimalistic gridworld envi-
ronment for openai gym. https://github.com/maximecb/gym-minigrid. Accessed:
03.08.2021.

Chua, K., Calandra, R., McAllister, R., & Levine, S. (2018). Deep reinforcement learn-
ing in a handful of trials using probabilistic dynamics models. In Advances in Neural
Information Processing, volume 31.

Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated
recurrent neural networks on sequence modeling. arXiv preprint. https://arxiv.org/
abs/1412.3555.

Clark, A. (2015). Surfing Uncertainty: Prediction, Action, and the Embodied Mind.
Oxford University Press.

Cohen, A., Ivry, R. I., & Keele, S. W. (1990). Attention and structure in sequence
learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16(1),
17.

Colombo, M. & Wright, C. (2021). First principles in the life sciences: The free-energy
principle, organicism, and mechanism. Synthese, 198, 3463–3488.

Cooper, R. & Shallice, T. (2000). Contention scheduling and the control of routine
activities. Cognitive Neuropsychology, 17(4), 297–338.

201

https://arxiv.org/abs/2202.09481
https://github.com/maximecb/gym-minigrid
https://arxiv.org/abs/1412.3555
https://arxiv.org/abs/1412.3555

Cooper, R. P. (2021). Action production and event perception as routine sequential
behaviors. Topics in Cognitive Science, 13(1), 63–78.

Copete, J. L., Nagai, Y., & Asada, M. (2016). Motor development facilitates the pre-
diction of others’ actions through sensorimotor predictive learning. In 2016 Joint IEEE
International Conference on Development and Learning and Epigenetic Robotics (ICDL-
EpiRob) (pp. 223–229).

Da Costa, L., Lanillos, P., Sajid, N., Friston, K., & Khan, S. (2022). How active inference
could help revolutionise robotics. Entropy, 24(3).

Da Costa, L., Parr, T., Sajid, N., Veselic, S., Neacsu, V., & Friston, K. (2020). Active
inference on discrete state-spaces: A synthesis. Journal of Mathematical Psychology, 99,
102447.

Dayan, P. (2009). Goal-directed control and its antipodes. Neural Networks, 22(3),
213–219.

Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T.,
Hafner, R., Abdolmaleki, A., de Las Casas, D., et al. (2022). Magnetic control of tokamak
plasmas through deep reinforcement learning. Nature, 602(7897), 414–419.

Dekker, R. B., Otto, F., & Summerfield, C. (2022). Curriculum learning for human
compositional generalization. Proceedings of the National Academy of Sciences, 119(41),
e2205582119.

Deng, F., Park, J., & Ahn, S. (2023). Facing off world model backbones: Rnns, trans-
formers, and s4. In Advances in Neural Information Processing Systems, volume 37.

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint. https:
//arxiv.org/abs/1810.04805.

Dolan, R. J. & Dayan, P. (2013). Goals and habits in the brain. Neuron, 80(2), 312–325.

Doncieux, S., Filliat, D., Díaz-Rodríguez, N., Hospedales, T., Duro, R., Coninx, A., Roi-
jers, D. M., Girard, B., Perrin, N., & Sigaud, O. (2018). Open-ended learning: A con-
ceptual framework based on representational redescription. Frontiers in Neurorobotics,
12.

DuBrow, S. & Davachi, L. (2013). The influence of context boundaries on memory for
the sequential order of events. Journal of Experimental Psychology: General, 142(4),
1277.

202

https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805

Duncker, K. & Lees, L. S. (1945). On problem-solving. Psychological Monographs, 58(5).

Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14(2), 179–211.

Elsner, B. & Adam, M. (2021). Infants’ goal prediction for simple action events: The
role of experience and agency cues. Topics in Cognitive Science, 13(1), 45–62.

Elsner, B. & Hommel, B. (2001). Effect anticipation and action control. Journal of
Experimental Psychology: Human Perception and Performance, 27(1), 229–240.

Eppe, M., Gumbsch, C., Kerzel, M., Nguyen, P. D., Butz, M. V., & Wermter, S. (2022).
Intelligent problem-solving as integrated hierarchical reinforcement learning. Nature
Machine Intelligence, 4, 11–20.

Eysenbach, B., Gupta, A., Ibarz, J., & Levine, S. (2018). Diversity is all you need:
Learning skills without a reward function. In The Sixth International Conference on
Learning Representations, ICLR’18.

Falck-Ytter, T., Gredebäck, G., & von Hofsten, C. (2006). Infants predict other people’s
action goals. Nature Neuroscience, 9(7), 878–879.

Fantz, R. L. (1958). Pattern vision in young infants. The Psychological Record, 8, 43–47.

Fitch, W. T. & Martins, M. D. (2014). Hierarchical processing in music, language, and
action: Lashley revisited. Annals of the New York Academy of Sciences, 1316(1), 87–104.

Flanagan, J. R. & Johansson, R. S. (2003). Action plans used in action observation.
Nature, 424(6950), 769–771.

Fodor, J. A. (2001). Language, thought and compositionality. Mind & Language, 16(1),
1–15.

Fountas, Z., Sajid, N., Mediano, P., & Friston, K. (2020). Deep active inference agents
using monte-carlo methods. In Advances in Neural Information Processing Systems,
volume 33 (pp. 11662–11675).

Frankland, S. M. & Greene, J. D. (2020). Concepts and compositionality: In search of
the brain’s language of thought. Annual Review of Psychology, 71, 273–303.

Franklin, N. T. & Frank, M. J. (2020). Generalizing to generalize: Humans flexibly
switch between compositional and conjunctive structures during reinforcement learning.
PLOS Computational Biology, 16(4), 1–33.

203

Franklin, N. T., Norman, K. A., Ranganath, C., Zacks, J. M., & Gershman, S. J. (2020).
Structured event memory: A neuro-symbolic model of event cognition. Psychological
Review, 127(3), 327–361.

Friston, K. (2009). The free-energy principle: a rough guide to the brain? Trends in
Cognitive Sciences, 13(7), 293–301.

Friston, K. (2010). The free-energy principle: a unified brain theory? Nature Reviews
Neuroscience, 11(2), 127–138.

Friston, K., FitzGerald, T., Rigoli, F., Schwartenbeck, P., O’Doherty, J., & Pezzulo,
G. (2016). Active inference and learning. Neuroscience & Biobehavioral Reviews, 68,
862–879.

Friston, K., Kilner, J., & Harrison, L. (2006). A free energy principle for the brain.
Journal of Physiology, 100(1-3), 70–87.

Friston, K., Mattout, J., & Kilner, J. (2011). Action understanding and active inference.
Biological Cybernetics, 104, 137–160.

Friston, K., Moran, R. J., Nagai, Y., Taniguchi, T., Gomi, H., & Tenenbaum, J. (2021).
World model learning and inference. Neural Networks, 144, 573–590.

Friston, K., Rigoli, F., Ognibene, D., Mathys, C., FitzGerald, T., & Pezzulo, G. (2015).
Active inference and epistemic value. Cognitive Neuroscience, 6, 187–214.

Friston, K. J., Daunizeau, J., & Kiebel, S. J. (2009). Reinforcement learning or active
inference? PLOS ONE, 4(7), 1–13.

Friston, K. J., Daunizeau, J., Kilner, J., & Kiebel, S. J. (2010). Action and behavior: a
free-energy formulation. Biological Cybernetics, 102, 227–260.

Friston, K. J., Rosch, R., Parr, T., Price, C., & Bowman, H. (2018). Deep temporal
models and active inference. Neuroscience & Biobehavioral Reviews, 90, 486–501.

Ganglmayer, K., Attig, M., Daum, M. M., & Paulus, M. (2019). Infants’ perception of
goal-directed actions: A multi-lab replication reveals that infants anticipate paths and
not goals. Infant Behavior and Development, 57, 101340.

Gärdenfors, P. (2014). The Geometry of Meaning: Semantics Based on Conceptual
Spaces. Cambridge, MA: MIT Press.

204

Gentner, D. (2006). Analogical reasoning, psychology of. Encyclopedia of Cognitive
Science, (pp. 106–112).

Gentner, D., Brem, S., Ferguson, R. W., Markman, A. B., B, B., Levidow, Wolff, P.,
& Forbus, K. D. (1997). Analogical reasoning and conceptual change: A case study of
johannes kepler. Journal of the Learning Sciences, 6(1), 3–40.

Gentner, D. & Maravilla, F. (2017). Analogical reasoning. International Handbook of
Thinking and Reasoning, (pp. 186–203).

Gershman, S. J., Horvitz, E. J., & Tenenbaum, J. B. (2015). Computational rational-
ity: A converging paradigm for intelligence in brains, minds, and machines. Science,
349(6245), 273–278.

Gick, M. L. & Holyoak, K. J. (1980). Analogical problem solving. Cognitive Psychology,
12(3), 306–355.

Glad, T. & Ljung, L. (2018). Control theory. CRC press.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press. http:
//www.deeplearningbook.org.

Goyal, A. & Bengio, Y. (2022). Inductive biases for deep learning of higher-level cog-
nition. Proceedings of the Royal Society A: Mathematical, Physical and Engineering
Sciences, 478(2266), 20210068.

Goyal, A., Didolkar, A. R., Ke, N. R., Blundell, C., Beaudoin, P., Heess, N., Mozer,
M. C., & Bengio, Y. (2021a). Neural production systems. In Advances in Neural Infor-
mation Processing Systems, volume 34 (pp. 25673–25687).

Goyal, A., Lamb, A., Hoffmann, J., Sodhani, S., Levine, S., Bengio, Y., & Schölkopf, B.
(2021b). Recurrent independent mechanisms. In The Nineth International Conference
on Learning Representations, ICLR’21.

Graves, A., Wayne, G., & Danihelka, I. (2014). Neural turing machines. arXiv preprint.
https://arxiv.org/abs/1410.5401.

Gredebäck, G. & Falck-Ytter, T. (2015). Eye movements during action observation.
Perspectives on Psychological Science, 10(5), 591–598.

Gredebäck, G., Johnson, S., & von Hofsten, C. (2010). Eye tracking in infancy research.
Developmental Neuropsychology, 35(1), 1–19.

205

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://arxiv.org/abs/1410.5401

Gredebäck, G. & Melinder, A. (2010). Infants’ understanding of everyday social inter-
actions: A dual process account. Cognition, 114(2), 197–206.

Greff, K., Van Steenkiste, S., & Schmidhuber, J. (2020). On the binding problem in
artificial neural networks. arXiv preprint. https://arxiv.org/abs/2012.05208.

Gruber, R., Schiestl, M., Boeckle, M., Frohnwieser, A., Miller, R., Gray, R. D., Clayton,
N. S., & Taylor, A. H. (2019). New caledonian crows use mental representations to solve
metatool problems. Current Biology, 29(4), 686–692.

Gu, A., Dao, T., Ermon, S., Rudra, A., & Ré, C. (2020). Hippo: Recurrent memory with
optimal polynomial projections. In Advances in Neural Information Processing Systems,
volume 33 (pp. 1474–1487).

Gu, A., Goel, K., & Re, C. (2021). Efficiently modeling long sequences with structured
state spaces. In The Nineth International Conference on Learning Representations,
ICLR’21.

Gumbsch, C., Adam, M., Elsner, B., & Butz, M. V. (2021a). Emergent goal-anticipatory
gaze in infants via event-predictive learning and inference. Cognitive Science, 45(8),
e13016.

Gumbsch, C., Adam, M., Elsner, B., Martius, G., & Butz, M. V. (2022). Developing
hierarchical anticipations via neural network-based event segmentation. In 2022 IEEE
International Conference on Development and Learning (ICDL) (pp. 1–8).: IEEE.

Gumbsch, C., Butz, M. V., & Martius, G. (2019). Autonomous identification and goal-
directed invocation of event-predictive behavioral primitives. IEEE Transactions on
Cognitive and Developmental Systems, 13(2), 298–311.

Gumbsch, C., Butz, M. V., & Martius, G. (2021b). Sparsely changing latent states
for prediction and planning in partially observable domains. In Advances in Neural
Information Processing Systems, volume 34 (pp. 17518–17531).

Gumbsch, C., Sajid, N., Martius, G., & Butz, M. V. (2024, to appear). Learning hierar-
chical world models with adaptive temporal abstractions from discrete latent dynamics.
In International Conference on Learning Representations.

Gürtler, N., Büchler, D., & Martius, G. (2021). Hierarchical reinforcement learning with
timed subgoals. In Advances in Neural Information Processing Systems, volume 34 (pp.
21732–21743).

206

https://arxiv.org/abs/2012.05208

Ha, D., Dai, A. M., & Le, Q. V. (2016). Hypernetworks. In The Fourth International
Conference on Learning Representations, ICLR’16.

Ha, D. & Schmidhuber, J. (2018). World models. arXiv preprint. https://arxiv.org/
abs/1803.10122.

Hafner, D., Lee, K.-H., Fischer, I., & Abbeel, P. (2022). Deep hierarchical planning from
pixels. In Advances in Neural Information Processing, volume 35 (pp. 26091–26104).

Hafner, D., Lillicrap, T., Ba, J., & Norouzi, M. (2019a). Dream to control: Learning
behaviors by latent imagination. In The Seventh International Conference on Learning
Representations, ICLR’19.

Hafner, D., Lillicrap, T., Fischer, I., Villegas, R., Ha, D., Lee, H., & Davidson, J.
(2019b). Learning latent dynamics for planning from pixels. In Proceedings of the 37th
International Conference on Machine Learning (pp. 2555–2565).

Hafner, D., Lillicrap, T. P., Norouzi, M., & Ba, J. (2020a). Mastering atari with discrete
world models. In The Eigth International Conference on Learning Representations,
ICLR’20.

Hafner, D., Ortega, P. A., Ba, J., Parr, T., Friston, K., & Heess, N. (2020b). Action
and perception as divergence minimization. arXiv preprint. https://arxiv.org/abs/
2009.01791.

Hafner, D., Pasukonis, J., Ba, J., & Lillicrap, T. (2023). Mastering diverse domains
through world models. arXiv preprint. https://arxiv.org/abs/2301.04104.

Harnad, S. (1990). The symbol grounding problem. Physica D: Nonlinear Phenomena,
42(1), 335–346.

Hartvigsen, T., Sen, C., Kong, X., & Rundensteiner, E. (2020). Learning to selectively
update state neurons in recurrent networks. In Proceedings of the 29th ACM International
Conference on Information & Knowledge Management (pp. 485–494).

Hausknecht, M. J. & Stone, P. (2015). Deep recurrent Q-learning for partially observable
MDPs. arXiv preprint. https://arxiv.org/abs/1507.06527.

Hauskrecht, M. (2000). Value-function approximations for partially observable markov
decision processes. Journal of Artificial Intelligence Research, 13, 33–94.

207

https://arxiv.org/abs/1803.10122
https://arxiv.org/abs/1803.10122
https://arxiv.org/abs/2009.01791
https://arxiv.org/abs/2009.01791
https://arxiv.org/abs/2301.04104
https://arxiv.org/abs/1507.06527

Haynes, J.-D., Wisniewski, D., Görgen, K., Momennejad, I., & Reverberi, C. (2015).
FMRI decoding of intentions: Compositionality, hierarchy and prospective memory. In
The 3rd International Winter Conference on Brain-Computer Interface (pp. 1–3).

Heald, J. B., Lengyel, M., & Wolpert, D. M. (2021). Contextual inference underlies the
learning of sensorimotor repertoires. Nature, 600, 489–493.

Heald, J. B., Lengyel, M., & Wolpert, D. M. (2023). Contextual inference in learning
and memory. Trends in Cognitive Sciences, 27(1), 43–64.

Hochreiter, S. (1998). The vanishing gradient problem during learning recurrent neu-
ral nets and problem solutions. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, 6(02), 107–116.

Hochreiter, S. & Schmidhuber, J. (1997). Long short-term memory. Neural Computation,
9(8), 1735–1780.

Hohwy, J. (2013). The Predictive Mind. Oxford University Press.

Hommel, B. (2009). Action control according to TEC (theory of event coding). Psycho-
logical Research PRPF, 73(4), 512–526.

Hommel, B. (2019). Theory of event coding (TEC) v2.0: Representing and controlling
perception and action. Attention, Perception, & Psychophysics, 81, 2139–2154.

Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. (2001). The theory of event
coding (TEC): A framework for perception and action planning. Behavioral and Brain
Sciences, 24(5), 849–878.

Howard, R. A. (1964). System analysis of semi-markov processes. IEEE Transactions
on Military Electronics, 8(2), 114–124.

Humaidan, D., Otte, S., & Butz, M. V. (2020). Fostering event compression using gated
surprise. In International Conference on Artificial Neural Networks, ICANN’20 (pp.
155–167).

Humaidan, D., Otte, S., Gumbsch, C., Wu, C. M., & Butz, M. V. (2021). Latent event-
predictive encodings through counterfactual regularization. In Proceedings of the Annual
Meeting of the Cognitive Science Society, volume 43 (pp. 1726–1732).

Igl, M., Zintgraf, L., Le, T. A., Wood, F., & Whiteson, S. (2018). Deep variational
reinforcement learning for POMDPs. In Proceedings of the 36th International Conference
on Machine Learning (pp. 2117–2126).

208

Ijspeert, A. J., Nakanishi, J., Hoffmann, H., Pastor, P., & Schaal, S. (2013). Dynamical
movement primitives: learning attractor models for motor behaviors. Neural Computa-
tion, 25(2), 328–373.

Ito, T., Klinger, T., Schultz, D., Murray, J., Cole, M., & Rigotti, M. (2022). Compo-
sitional generalization through abstract representations in human and artificial neural
networks. In Advances in Neural Information Processing Systems, volume 35 (pp. 32225–
32239).

Jain, A. K., Sujit, S., Joshi, S., Michalski, V., Hafner, D., & Ebrahimi Kahou, S. (2022).
Learning robust dynamics through variational sparse gating. In Advances in Neural
Information Processing Systems, volume 35 (pp. 1612–1626).

Jang, E., Gu, S., & Poole, B. (2017). Categorical reparameterization with gumbel-
softmax. In The Fifth International Conference on Learning Representations, ICLR’17.

Jayaraman, D., Ebert, F., Efros, A., & Levine, S. (2019). Time-agnostic prediction: Pre-
dicting predictable video frames. In The Seventh International Conference on Learning
Representations, ICLR’19.

Johansson, R. S., Westling, G., Bäckström, A., & Flanagan, J. R. (2001). Eye–hand
coordination in object manipulation. Journal of Neuroscience, 21(17), 6917–6932.

Kaelbling, L. P., Littman, M. L., & Cassandra, A. R. (1998). Planning and acting in
partially observable stochastic domains. Artificial Intelligence, 101(1), 99–134.

Kahneman, D. (1973). Attention and Effort. Citeseer.

Kanakogi, Y. & Itakura, S. (2011). Developmental correspondence between action pre-
diction and motor ability in early infancy. Nature Communications, 2, 341.

Keele, S. W., Cohen, A., & Ivry, R. (1990). Motor programs: Concepts and issues.
Attention and Performance, 13, 77–110.

Khetarpal, K., Riemer, M., Rish, I., & Precup, D. (2022). Towards continual reinforce-
ment learning: A review and perspectives. Journal of Artificial Intelligence Research,
75, 1401–1476.

Kiebel, S. J., Daunizeau, J., & Friston, K. J. (2008). A hierarchy of time-scales and the
brain. PLOS Computational Biology, 4(11), 1–12.

Kim, T., Ahn, S., & Bengio, Y. (2019). Variational temporal abstraction. In Advances
in Neural Information Processing Systems, volume 32.

209

Kingma, D. P. & Ba, J. (2015). Adam: A method for stochastic optimization. In The
Third International Conference for Learning Representations, ICLR’15.

Kingma, D. P. & Welling, M. (2014). Auto-encoding variational bayes. In The Fourth
International Conference on Learning Representations, ICLR’14.

Kipf, T., Elsayed, G. F., Mahendran, A., Stone, A., Sabour, S., Heigold, G., Jon-
schkowski, R., Dosovitskiy, A., & Greff, K. (2021). Conditional object-centric learn-
ing from video. In The Nineth International Conference on Learning Representations,
ICLR’21.

Kirk, R., Zhang, A., Grefenstette, E., & Rocktäschel, T. (2023). A survey of zero-shot
generalisation in deep reinforcement learning. Journal of Artificial Intelligence Research,
76, 201–264.

Knott, A. (2012). Sensorimotor Cognition and Natural Language Syntax. MIT press.

Konda, V. & Tsitsiklis, J. (1999). Actor-critic algorithms. In Advances in Neural Infor-
mation Processing Systems, volume 12.

Koutnik, J., Greff, K., Gomez, F., & Schmidhuber, J. (2014). A Clockwork RNN. In
Proceedings of the 31st International Conference on Machine Learning (pp. 1863–1871).

Krogh-Jespersen, S. & Woodward, A. L. (2014). Making smart social judgments takes
time: Infants’ recruitment of goal information when generating action predictions. PLOS
ONE, 9(5), e98085.

Krueger, D. & Memisevic, R. (2015). Regularizing RNNs by stabilizing activations.
arXiv preprint arXiv:1511.08400. https://arxiv.org/abs/1511.08400.

Kuperberg, G. R. (2021). Tea with milk? a hierarchical generative framework of sequen-
tial event comprehension. Topics in Cognitive Science, 13(1), 256–298.

Küttler, H., Nardelli, N., Miller, A., Raileanu, R., Selvatici, M., Grefenstette, E., &
Rocktäschel, T. (2020). The nethack learning environment. In Advances in Neural
Information Processing Systems, volume 33 (pp. 7671–7684).

Lake, B. M., Linzen, T., & Baroni, M. (2019). Human few-shot learning of compositional
instructions. In Proceedings of the Annual Meeting of the Cognitive Science Society,
volume 41 (pp. 611–617).

Lake, B. M., Ullman, T. D., Tenenbaum, J. B., & Gershman, S. J. (2017). Building
machines that learn and think like people. Behavioral and Brain Sciences, 40, e253.

210

https://arxiv.org/abs/1511.08400

Lamb, Alex M, A. G., Zhang, Y., Zhang, S., Courville, A. C., & Bengio, Y. (2016).
Professor forcing: A new algorithm for training recurrent networks. In Advances in
Neural Information Processing Systems, volume 29.

Land, M., Mennie, N., & Rusted, J. (1999). The roles of vision and eye movements in
the control of activities of daily living. Perception, 28(11), 1311–1328.

Lashley, K. (1951). The problem of serial order in behavior. In Cerebral mechanisms in
behavior; the Hixon Symposium (pp. 112–136). Wiley.

LeCun, Y. (2022). A path towards autonomous machine intelligence. Open Review,
version 0.9. 2, 2022-06-27, https://openreview.net/pdf?id=BZ5a1r-kVsf.

LeCun, Y., Boser, B., Denker, J., Henderson, D., Howard, R., Hubbard, W., & Jackel,
L. (1989). Handwritten digit recognition with a back-propagation network. In Advances
in Neural Information Processing Systems, volume 2 (pp. 396–404).

Lee, E.-K., Brown-Schmidt, S., & Watson, D. G. (2013). Ways of looking ahead: Hier-
archical planning in language production. Cognition, 129(3), 544–562.

Lee, T. S. & Mumford, D. (2003). Hierarchical bayesian inference in the visual cortex.
JOSA A, 20(7), 1434–1448.

Levine, D., Hirsh-Pasek, K., Pace, A., & Michnick Golinkoff, R. (2017). A goal bias in
action: The boundaries adults perceive in events align with sites of actor intent. Journal
of Experimental Psychology: Learning, Memory, and Cognition, 43(6), 916.

Levine, S., Kumar, A., Tucker, G., & Fu, J. (2020). Offline reinforcement learning:
Tutorial, review, and perspectives on open problems. arXiv preprint. https://arxiv.
org/abs/2005.01643.

Levy, A., Konidaris, G., Platt, R., & Saenko, K. (2019). Learning multi-level hierarchies
with hindsight. In The Seventh International Conference on Learning Representations,
ICLR’19.

Li, Z., He, D., Tian, F., Chen, W., Qin, T., Wang, L., & Liu, T. (2018). Towards
binary-valued gates for robust LSTM training. In Proceedings of the 35th International
Conference on Machine Learning, volume 80 (pp. 2995–3004).

Lieder, F. & Griffiths, T. L. (2020). Resource-rational analysis: Understanding human
cognition as the optimal use of limited computational resources. Behavioral and Brain
Sciences, 43, e1.

211

https://openreview.net/pdf?id=BZ5a1r-kVsf
https://arxiv.org/abs/2005.01643
https://arxiv.org/abs/2005.01643

Lin, J., Du, Y., Watkins, O., Hafner, D., Abbeel, P., Klein, D., & Dragan, A. (2023).
Learning to model the world with language. arXiv preprint. https://arxiv.org/abs/
2308.01399.

Lin, Y., Stavans, M., & Baillargeon, R. (2022). Infants’ physical reasoning and the
cognitive architecture that supports it. Cambridge Handbook of Cognitive Development,
(pp. 168–194).

Locatello, F., Weissenborn, D., Unterthiner, T., Mahendran, A., Heigold, G., Uszkoreit,
J., Dosovitskiy, A., & Kipf, T. (2020). Object-centric learning with slot attention. In
Advances in Neural Information Processing Systems, volume 33 (pp. 11525–11538).

Louizos, C., Welling, M., & Kingma, D. P. (2018). Learning sparse neural networks
through L0 regularization. In The Sixth International Conference on Learning Repre-
sentations, ICLR’18.

Lovejoy, W. S. (1991). Computationally feasible bounds for partially observed markov
decision processes. Operations Research, 39(1), 162–175.

Lu, L. (2020). Dying ReLU and initialization: Theory and numerical examples. Com-
munications in Computational Physics, 28(5), 1671–1706.

Madan, K., Ke, N. R., Goyal, A., Schölkopf, B., & Bengio, Y. (2021). Fast and slow
learning of recurrent independent mechanisms. In The Nineth International Conference
on Learning Representations, ICLR’21.

Maddison, C. J., Mnih, A., & Teh, Y. W. (2017). The concrete distribution: A contin-
uous relaxation of discrete random variables. In The Fifth International Conference on
Learning Representations, ICLR’17.

Marković, D., Stojić, H., Schwöbel, S., & Kiebel, S. J. (2021). An empirical evaluation
of active inference in multi-armed bandits. Neural Networks, 144, 229–246.

Mattar, M. G. & Lengyel, M. (2022). Planning in the brain. Neuron, 110(6), 914–934.

Mendonca, R., Rybkin, O., Daniilidis, K., Hafner, D., & Pathak, D. (2021). Discovering
and achieving goals via world models. In Advances in Neural Information Processing
Systems, volume 34 (pp. 24379–24391).

Micheli, V., Alonso, E., & Fleuret, F. (2023). Transformers are sample-efficient
world models. In The Eleventh International Conference on Learning Representations,
ICLR’23.

212

https://arxiv.org/abs/2308.01399
https://arxiv.org/abs/2308.01399

Michotte, A. (1964). The Perception of Causality, volume 21. Routledge.

Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our
capacity for processing information. Psychological Review, 63(2), 81–97.

Miller, G. A., Galanter, E., & Pribram, K. H. (1960). Plans and the Structure of
Behavior. Holt, Rinehart and Winston.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves,
A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-level control
through deep reinforcement learning. Nature, 518(7540), 529–533.

Mohajerin, N. & Waslander, S. L. (2017). State initialization for recurrent neural network
modeling of time-series data. In 2017 International Joint Conference on Neural Networks
(IJCNN) (pp. 2330–2337).

Nachum, O., Gu, S. S., Lee, H., & Levine, S. (2018). Data-efficient hierarchical rein-
forcement learning. In Advances in Neural Information Processing Systems, volume 31.

Nair, A. V., Pong, V., Dalal, M., Bahl, S., Lin, S., & Levine, S. (2018). Visual rein-
forcement learning with imagined goals. In Advances in Neural Information Processing
Systems, volume 31.

Nasiriany, S., Pong, V., Lin, S., & Levine, S. (2019). Planning with goal-conditioned
policies. In Advances in Neural Information Processing Systems, volume 32 (pp. 14843–
14854).

Nee, D. E. & Brown, J. W. (2012). Rostral–caudal gradients of abstraction revealed by
multi-variate pattern analysis of working memory. NeuroImage, 63(3), 1285–1294.

Neil, D., Pfeiffer, M., & Liu, S.-C. (2016). Phased LSTM: Accelerating recurrent network
training for long or event-based sequences. In Advances In Neural Information Processing
Systems, volume 29 (pp. 3882–3890).

Neitz, A., Parascandolo, G., Bauer, S., & Schölkopf, B. (2018). Adaptive skip intervals:
Temporal abstraction for recurrent dynamical models. In Advances in Neural Information
Processing Systems, volume 31.

Newell, A., Shaw, J. C., & Simon, H. A. (1959). Report on a general problem solving
program. In IFIP congress, volume 256 (pp.6̃4).

Newtson, D. (1973). Attribution and the unit of perception of ongoing behavior. Journal
of Personality and Social Psychology, 28(1), 28––38.

213

Newtson, D. & Engquist, G. (1976). The perceptual organization of ongoing behavior.
Journal of Experimental Social Psychology, 12(5), 436–450.

Ni, T., Eysenbach, B., & Salakhutdinov, R. (2022). Recurrent model-free RL can be a
strong baseline for many POMDPs. In Proceedings of the 39th International Conference
on Machine Learning, volume 162 (pp. 16691–16723).

Niv, Y. (2009). Reinforcement learning in the brain. Journal of Mathematical Psychology,
53(3), 139–154. Special Issue: Dynamic Decision Making.

O’Doherty, J. P., Cockburn, J., & Pauli, W. M. (2017). Learning, reward, and decision
making. Annual Review of Psychology, 68(1), 73–100.

Otte, S., Schmitt, T., Friston, K., & Butz, M. V. (2017). Inferring adaptive goal-directed
behavior within recurrent neural networks. In International Conference on Artificial
Neural Networks, ICANN’17 (pp. 227–235).

Parisotto, E., Song, F., Rae, J., Pascanu, R., Gulcehre, C., Jayakumar, S., Jaderberg,
M., Kaufman, R. L., Clark, A., Noury, S., Botvinick, M., Heess, N., & Hadsell, R.
(2020). Stabilizing transformers for reinforcement learning. In Proceedings of the 37th
International Conference on Machine Learning, volume 119 of Proceedings of Machine
Learning Research (pp. 7487–7498).

Parr, T., Pezzulo, G., & Friston, K. J. (2022). Active inference: the free energy principle
in mind, brain, and behavior. The MIT Press.

Pascanu, R., Mikolov, T., & Bengio, Y. (2013). On the difficulty of training recur-
rent neural networks. In Proceedings of the 30th International Conference on Machine
Learning, volume 28 (pp. 1310–1318).

Pateria, S., Subagdja, B., Tan, A.-h., & Quek, C. (2021). Hierarchical reinforcement
learning: A comprehensive survey. ACM Computing Surveys (CSUR), 54(5), 1–35.

Patil, V. P., Hofmarcher, M., Dinu, M.-C., Dorfer, M., Blies, P. M., Brandstetter, J.,
Arjona-Medina, J., & Hochreiter, S. (2021). Align-RUDDER: Learning from few demon-
strations by reward redistribution. In The Nineth International Conference on Learning
Representations, ICLR’21.

Paulus, M. (2011). How infants relate looker and object: evidence for a perceptual
learning account of gaze following in infancy. Developmental Science, 14(6), 1301–1310.

214

Perkins, D. N. & Salomon, G. (1992). Transfer of learning. In International Encyclopedia
of Education (pp. 6452–6457). Pergamon Press.

Peters, J., Janzing, D., & Schölkopf, B. (2017). Elements of Causal Inference: Founda-
tions and Learning Algorithms. MIT press.

Peters, J. & Schaal, S. (2008). Reinforcement learning of motor skills with policy gradi-
ents. Neural Networks, 21(4), 682–697.

Pezzulo, G., Rigoli, F., & Friston, K. (2015). Active inference, homeostatic regulation
and adaptive behavioural control. Progress in Neurobiology, 134, 17–35.

Pezzulo, G., Rigoli, F., & Friston, K. J. (2018). Hierarchical active inference: A theory
of motivated control. Trends in Cognitive Sciences, 22(4), 294–306.

Pinneri, C., Sawant, S., Blaes, S., Achterhold, J., Stueckler, J., Rolinek, M., & Martius,
G. (2021a). Sample-efficient cross-entropy method for real-time planning. In Proceedings
of the 2020 Conference on Robot Learning, volume 155 (pp. 1049–1065).

Pinneri, C., Sawant, S., Blaes, S., & Martius, G. (2021b). Extracting strong policies
for robotics tasks from zero-order trajectory optimizers. In The Nineth International
Conference on Learning Representations, ICLR’21.

Pitis, Silviu Creager, E. & Garg, A. (2020). Counterfactual data augmentation using
locally factored dynamics. In Advances in Neural Information Processing Systems, vol-
ume 34 (pp. 3976–3990).

Pitis, S., Creager, E., Mandlekar, A., & Garg, A. (2022). Mocoda: Model-based coun-
terfactual data augmentation. In Advances in Neural Information Processing Systems,
volume 35 (pp. 18143–18156).

Pong, V., Dalal, M., Lin, S., Nair, A., Bahl, S., & Levine, S. (2020). Skew-fit: State-
covering self-supervised reinforcement learning. In Proceedings of the 37th International
Conference on Machine Learning, volume 119 (pp. 7783–7792).

Pong, V., Dalal, M., Lin, S., & Nair, A. V. (2018). Multiworld: Multitask environments
for RL. https://github.com/vitchyr/multiworld. Accessed: 23.01.2023.

Precup, D. (2000). Temporal abstraction in reinforcement learning. PhD thesis, Univer-
sity of Massachusetts Amherst.

215

https://github.com/vitchyr/multiworld

Puterman, M. L. (1990). Markov decision processes. In Stochastic Models, volume 2 of
Handbooks in Operations Research and Management Science chapter 8, (pp. 331–434).
Elsevier.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al.
(2019). Language models are unsupervised multitask learners. OpenAI blog https:
//insightcivic.s3.us-east-1.amazonaws.com/language-models.pdf. Accessed:
11.12.2023.

Radvansky, G., Copeland, D., & Zwaan, R. (2005). A novel study: Investigating the
structure of narrative and autobiographical memories. Memory, 13(8), 796–814. PMID:
16298889.

Radvansky, G. A. & Copeland, D. E. (2000). Functionality and spatial relations in
memory and language. Memory & Cognition, 28(6), 987–992.

Radvansky, G. A. & Zacks, J. M. (2014). Event Cognition. Oxford University Press.

Reynolds, J. R., Zacks, J. M., & Braver, T. S. (2007). A computational model of event
segmentation from perceptual prediction. Cognitive Science, 31(4), 613–643.

Richmond, L. L. & Zacks, J. M. (2017). Constructing experience: Event models from
perception to action. Trends in Cognitive Sciences, 21(12), 962–980.

Roberts, D. (2013). Thick concepts. Philosophy Compass, 8(8), 677–688.

Robine, J., Höftmann, M., Uelwer, T., & Harmeling, S. (2023). Transformer-based world
models are happy with 100k interactions. In The Eleventh International Conference on
Learning Representations, ICLR’23.

Rohe, T. & Noppeney, U. (2015). Cortical hierarchies perform bayesian causal inference
in multisensory perception. PLOS Biology, 13(2), e1002073.

Rosenbaum, D. A., Cohen, R. G., Jax, S. A., Weiss, D. J., & Van Der Wel, R. (2007).
The problem of serial order in behavior: Lashley’s legacy. Human movement science,
26(4), 525–554.

Rougier, N. P., Noelle, D. C., Braver, T. S., Cohen, J. D., & O’Reilly, R. C. (2005).
Prefrontal cortex and flexible cognitive control: Rules without symbols. Proceedings of
the National Academy of Sciences, 102(20), 7338–7343.

Rubinstein, R. & Davidson, W. (1999). The cross-entropy method for combinatorial and
continuous optimization. Methodology and Computing in Applied Probability, 1, 127–190.

216

https://insightcivic.s3.us-east-1.amazonaws.com/language-models.pdf
https://insightcivic.s3.us-east-1.amazonaws.com/language-models.pdf

Sajid, N., Ball, P. J., Parr, T., & Friston, K. J. (2021a). Active Inference: Demystified
and Compared. Neural Computation, 33(3), 674–712.

Sajid, N., Tigas, P., Zakharov, A., Fountas, Z., & Friston, K. (2021b). Exploration and
preference satisfaction trade-off in reward-free learning. In ICML 2021 Workshop on
Unsupervised Reinforcement Learning.

Samvelyan, M., Kirk, R., Kurin, V., Parker-Holder, J., Jiang, M., Hambro, E., Petroni,
F., Kuttler, H., Grefenstette, E., & Rocktäschel, T. (2021). Minihack the planet: A sand-
box for open-ended reinforcement learning research. In Neural Information Processing
Systems Datasets and Benchmarks Track.

Sancaktar, C., Blaes, S., & Martius, G. (2022). Curious exploration via structured
world models yields zero-shot object manipulation. In Advances in Neural Information
Processing Systems, volume 35 (pp. 24170–24183).

Sancaktar, C., van Gerven, M. A., & Lanillos, P. (2020). End-to-end pixel-based deep
active inference for body perception and action. In 2020 Joint IEEE 10th International
Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob) (pp.
1–8).

Saxena, V., Ba, J., & Hafner, D. (2021). Clockwork variational autoencoders. In Ad-
vances in Neural Information Processing Systems, volume 34 (pp. 29246–29257).

Schaal, S. (2003). Dynamic movement primitives - a framework for motor control in
humans and humanoid robots. In The International Symposium on Adaptive Motion of
Animals and Machines.

Schank, R. C. & Abelson, R. P. (1975). Scripts, plans, and knowledge. In IJCAI,
volume 75 (pp. 151–157).

Schapiro, A. C., Rogers, T. T., Cordova, N. I., Turk-Browne, N. B., & Botvinick, M. M.
(2013). Neural representations of events arise from temporal community structure. Na-
ture Neuroscience, 16(4), 486–492.

Schmidhuber, J. (1992). Learning complex, extended sequences using the principle of
history compression. Neural Computation, 4(2), 234–242.

Schmidhuber, J. (2022). Annotated history of modern ai and deep learning. arXiv
preprint. https://arxiv.org/abs/2212.11279.

217

https://arxiv.org/abs/2212.11279

Schölkopf, B. (2019). Causality for machine learning. arXiv preprint. https://arxiv.
org/abs/1911.10500.

Schölkopf, B., Locatello, F., Bauer, S., Ke, N. R., Kalchbrenner, N., Goyal, A., & Bengio,
Y. (2021). Toward causal representation learning. Proceedings of the IEEE, 109(5), 612–
634.

Scholz, F., Gumbsch, C., Otte, S., & Butz, M. V. (2022). Inference of affordances and
active motor control in simulated agents. Frontiers in Neurorobotics, 16.

Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K., Sifre, L., Schmitt, S., Guez,
A., Lockhart, E., Hassabis, D., Graepel, T., et al. (2020). Mastering atari, go, chess and
shogi by planning with a learned model. Nature, 588(7839), 604–609.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal
policy optimization algorithms. arXiv preprint. https://arxiv.org/abs/1707.06347.

Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and
reward. Science, 275(5306), 1593–1599.

Schwöbel, S., Kiebel, S., & Marković, D. (2018). Active Inference, Belief Propagation,
and the Bethe Approximation. Neural Computation, 30(9), 2530–2567.

Seitzer, M., Horn, M., Zadaianchuk, A., Zietlow, D., Xiao, T., Simon-Gabriel, C., He, T.,
Zhang, Z., Schölkopf, B., Brox, T., et al. (2023). Bridging the gap to real-world object-
centric learning. In The Eleventh International Conference on Learning Representations,
ICLR’23.

Seitzer, M., Schölkopf, B., & Martius, G. (2021). Causal influence detection for improv-
ing efficiency in reinforcement learning. In Advances in Neural Information Processing
Systems, volume 35.

Seitzer, M., Tavakoli, A., Antic, D., & Martius, G. (2022). On the pitfalls of het-
eroscedastic uncertainty estimation with probabilistic neural networks. In The Tenth
International Conference on Learning Representations, ICLR’22.

Sekar, R., Rybkin, O., Daniilidis, K., Abbeel, P., Hafner, D., & Pathak, D. (2020). Plan-
ning to explore via self-supervised world models. In Proceedings of the 38th International
Conference on Machine Learning (pp. 8583–8592).

Shahnazian, D., Senoussi, M., Krebs, R. M., Verguts, T., & Holroyd, C. B. (2022). Neural
representations of task context and temporal order during action sequence execution.
Topics in Cognitive Science, 14(2), 223–240.

218

https://arxiv.org/abs/1911.10500
https://arxiv.org/abs/1911.10500
https://arxiv.org/abs/1707.06347

Shenhav, A., Musslick, S., Lieder, F., Kool, W., Griffiths, T. L., Cohen, J. D., &
Botvinick, M. M. (2017). Toward a rational and mechanistic account of mental effort.
Annual Review of Neuroscience, 40(1), 99–124. PMID: 28375769.

Shin, Y. S. & DuBrow, S. (2021). Structuring memory through inference-based event
segmentation. Topics in Cognitive Science, 13, 106–127.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al. (2016). Mas-
tering the game of go with deep neural networks and tree search. Nature, 529(7587),
484–489.

Simon, H. A. (1997). Models of Bounded Rationality: Empirically Grounded Economic
Reason, volume 3. MIT press.

Sims, C. R. (2018). Efficient coding explains the universal law of generalization in human
perception. Science, 360(6389), 652–656.

Smith, J. T., Warrington, A., & Linderman, S. (2022). Simplified state space layers for
sequence modeling. In The Eleventh International Conference on Learning Representa-
tions, ICLR’22.

Solway, A., Diuk, C., Córdova, N., Yee, D., Barto, A. G., Niv, Y., & Botvinick, M. M.
(2014). Optimal behavioral hierarchy. PLOS Computational Biology, 10(8), 1–10.

Speer, N. K., Swallow, K. M., & Zacks, J. M. (2003). Activation of human motion pro-
cessing areas during event perception. Cognitive, Affective, & Behavioral Neuroscience,
3(4), 335–345.

Speer, N. K., Zacks, J. M., & Reynolds, J. R. (2007). Human brain activity time-locked
to narrative event boundaries. Psychological Science, 18(5), 449–455.

Stock, A. & Stock, C. (2004). A short history of ideo-motor action. Psychological
Research, 68(2-3), 176–188.

Sutton, R. (2019). The bitter lesson. http://www.incompleteideas.net/IncIdeas/
BitterLesson.html. Accessed: 11.12.2023.

Sutton, R. S. (1988). Learning to predict by the methods of temporal differences. Ma-
chine Learning, 3, 9–44.

Sutton, R. S. (1991). Dyna, an integrated architecture for learning, planning, and react-
ing. ACM Sigart Bulletin, 2(4), 160–163.

219

http://www.incompleteideas.net/IncIdeas/BitterLesson.html
http://www.incompleteideas.net/IncIdeas/BitterLesson.html

Sutton, R. S. & Barto, A. G. (2018). Reinforcement learning: An Introduction. Cam-
bridge, MA: MIT press, second edition edition.

Sutton, R. S., McAllester, D., Singh, S., & Mansour, Y. (1999a). Policy gradient meth-
ods for reinforcement learning with function approximation. In Advances in Neural
Information Processing Systems, volume 12.

Sutton, R. S., Precup, D., & Singh, S. (1999b). Between MDPs and semi-MDPs: A
framework for temporal abstraction in reinforcement learning. Artificial Intelligence,
112(1), 181–211.

Taniguchi, T., Ugur, E., Hoffmann, M., Jamone, L., Nagai, T., Rosman, B., Matsuka,
T., Iwahashi, N., Oztop, E., Piater, J., & Wörgötter, F. (2019). Symbol emergence
in cognitive developmental systems: A survey. IEEE Transactions on Cognitive and
Developmental Systems, 11(4), 494–516.

Tolman, E. C. (1948). Cognitive maps in rats and men. Psychological Review, 55(4),
189–208.

Tolman, E. C. & Honzik, C. H. (1930). Introduction and removal of reward, and maze
performance in rats. University of California Publications in Psychology, 4, 257–275.

Tomov, M. S., Yagati, S., Kumar, A., Yang, W., & Gershman, S. J. (2020). Discovery
of hierarchical representations for efficient planning. PLOS computational biology, 16(4),
e1007594.

Toussaint, M. A., Allen, K. R., Smith, K. A., & Tenenbaum, J. B. (2018). Differentiable
physics and stable modes for tool-use and manipulation planning. Proceedings of the
Robotics: Science and Systems.

Trabasso, T. & van den Broek, P. (1985). Causal thinking and the representation of
narrative events. Journal of Memory and Language, 24(5), 612–630.

Traub, M., Otte, S., Menge, T., Karlbauer, M., Thuemmel, J., & Butz, M. V. (2023).
Learning what and where: Disentangling location and identity tracking without supervi-
sion. In The Eleventh International Conference on Learning Representations, ICLR’23.

van Seijen, H., Whiteson, S., & Kester, L. (2014). Efficient abstraction selection in
reinforcement learning. Computational Intelligence, 30(4), 657–699.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,
L. u., & Polosukhin, I. (2017). Attention is all you need. In Advances in Neural Infor-
mation Processing Systems, volume 30.

220

Vezhnevets, A. S., Osindero, S., Schaul, T., Heess, N., Jaderberg, M., Silver, D., &
Kavukcuoglu, K. (2017). Feudal networks for hierarchical reinforcement learning. In
Proceedings of the 34th International Conference on Machine Learning, volume 70 (pp.
3540–3549).

Vlastelica, M., Blaes, S., Pinneri, C., & Martius, G. (2022). Risk-averse zero-order
trajectory optimization. In Proceedings of the 5th Conference on Robot Learning, volume
164 (pp. 444–454).

Washburn, M. F. (1916). Movement and Mental Imagery: Outlines of a Motor Theory
of the Complexer Mental Processes. Houghton Mifflin.

Watson, J. B. (1920). Is thinking merely the action of language mechanisms? British
Journal of Psychology, 11, 87–104.

Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B., Borgeaud, S., Yogatama, D.,
Bosma, M., Zhou, D., Metzler, D., Chi, E. H., Hashimoto, T., Vinyals, O., Liang, P.,
Dean, J., & Fedus, W. (2022). Emergent abilities of large language models. Transactions
on Machine Learning Research.

Wiener, J. M. & Mallot, H. A. (2003). ‘Fine-to-coarse’ route planning and navigation in
regionalized environments. Spatial Cognition and Computation, 3(4), 331–358.

Wierstra, D., Foerster, A., Peters, J., & Schmidhuber, J. (2007). Solving deep memory
POMDPs with recurrent policy gradients. In International Conference on Artificial
Neural Networks, ICANN’17 (pp. 697–706).

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine Learning, 8(3-4), 229–256.

Zacks, J. M. (2010). How we organize our experience into events. Psychological Science
Agenda, 24(4).

Zacks, J. M., Braver, T. S., Sheridan, M. A., Donaldson, D. I., Snyder, A. Z., Ollinger,
J. M., Buckner, R. L., & Raichle, M. E. (2001a). Human brain activity time-locked to
perceptual event boundaries. Nature Neuroscience, 4(6), 651–655.

Zacks, J. M., Speer, N. K., Swallow, K. M., Braver, T. S., & Reynolds, J. R. (2007).
Event perception: a mind-brain perspective. Psychological Bulletin, 133(2), 273–293.

Zacks, J. M. & Swallow, K. M. (2007). Event segmentation. Current Directions in
Psychological Science, 16(2), 80–84.

221

Zacks, J. M. & Tversky, B. (2001). Event structure in perception and conception. Psy-
chological Bulletin, 127(1), 3–21.

Zacks, J. M., Tversky, B., & Iyer, G. (2001b). Perceiving, remembering, and communi-
cating structure in events. Journal of Experimental Psychology: General, 130(1), 29.

Zadaianchuk, A., Seitzer, M., & Martius, G. (2023). Object-centric learning for real-
world videos by predicting temporal feature similarities. In Advances in Neural Infor-
mation Processing Systems, volume 36.

Zakharov, A., Guo, Q., & Fountas, Z. (2022a). Long-horizon video prediction using a
dynamic latent hierarchy. arXiv preprint. https://arxiv.org/abs/2212.14376.

Zakharov, A., Guo, Q., & Fountas, Z. (2022b). Variational predictive routing with nested
subjective timescales. In The Tenth International Conference on Learning Representa-
tions, ICLR’22.

Zech, P., Renaudo, E., Haller, S., Zhang, X., & Piater, J. (2019). Action representations
in robotics: A taxonomy and systematic classification. The International Journal of
Robotics Research, 38(5), 518–562.

Zheng, J., Schjetnan, A. G., Yebra, M., Gomes, B. A., Mosher, C. P., Kalia, S. K.,
Valiante, T. A., Mamelak, A. N., Kreiman, G., & Rutishauser, U. (2022). Neurons detect
cognitive boundaries to structure episodic memories in humans. Nature Neuroscience,
25(3), 358–368.

Zhu, P., Li, X., & Poupart, P. (2017). On improving deep reinforcement learning for
POMDPs. arXiv preprint. https://arxiv.org/abs/1804.06309.

Zénon, A., Solopchuk, O., & Pezzulo, G. (2019). An information-theoretic perspective
on the costs of cognition. Neuropsychologia, 123, 5–18.

222

https://arxiv.org/abs/2212.14376
https://arxiv.org/abs/1804.06309

Acknowledgments
First of all, I would like to express my gratitude to my supervisors Martin V. Butz and Georg

Martius. Thank you not only for giving me the opportunity to pursue my doctoral degree but
also for giving me the freedom to explore ideas while also providing fantastic scientific guidance.

Specifically, I would like to thank Martin V. Butz for ongoing enormous support over many
years and for consistently encouraging me to expand my skills and horizons. Your ability to
recognize interdisciplinary connections has profoundly shaped the way I think about problems.

I am very grateful to Georg Martius for providing great support and a fantastic working
environment. I have greatly benefited from your guidance and your ability to give constructive
feedback on various levels, from technical questions to conceptual approaches. Your combination
of enthusiasm and scientific rigor has deeply inspired me.

I have had the privilege of working in two amazing research groups. Many thanks to all my
friends and colleagues at the Autonomous Learning Group and the Neuro-Cognitive Modeling
Group for creating excellent and friendly working environments. In particular, I want to thank
Cansu Sancaktar, Marco Bagatella, Andrii Zadaianchuk, Fedor Scholz, Maximilian Mittenbüh-
ler, and Johanna Theuer, who helped me by proofreading this thesis and providing feedback.

Many thanks go to my collaborators outside of Tübingen, without whom the presented re-
search would not have been possible. I would like to thank Birgit Elsner and Maurits Adam for
the fruitful interdisciplinary exchange and for providing invaluable expertise on developmental
psychology. Many thanks to Manfred Eppe for all the stimulating discussions, our excellent
collaboration, and the support beyond that. Thanks to Noor Sajid for the great collaboration
and the pleasure of sharing and combining our perspectives on hierarchical predictions.

I would also like to thank Charley Wu for being on my thesis advisory committee and always
providing helpful and constructive feedback and encouragement.

I would like to thank the DFG SPP “The Active Self” for providing financial support and
thank their coordinators for organizing interesting events and funding my lab visits to both
Nijmegen and Hamburg. Furthermore, I am grateful for the financial support of IMPRS-IS and
would like to thank Leila Masri and Sara Sorce for their enthusiasm in coordinating the program.

Last but not least, many thanks go to my friends and family, especially my parents Susanne
and Peter Gumbsch who have provided support, stability and assurance in so many ways for
as long as I can remember. And a very special thanks goes to my wife Lea Hölz for always
caring for me, helping me through stressful deadlines, adjusting to unusual working hours, and
for countless other things I cannot compress into a single paragraph. Thank you for your love
and unlimited personal support.

223

This thesis was typeset using
LATEX, originally developed by
Leslie Lamport and based on

Donald Knuth’s TEX. The body text
is set in 11 point Egenolff-Berner Gara-
mond, a revival of Claude Garamont’s
humanist typeface. A template that
can be used to format a PhD thesis
with this look and feel has been re-
leased under the permissive mit (x11)
license, and can be found online at
github.com/suchow/Dissertate or from
its author, Jordan Suchow, at su-
chow@post.harvard.edu.

224

https://github.com/suchow/Dissertate
mailto:suchow@post.harvard.edu
mailto:suchow@post.harvard.edu

	Abstract
	Introduction
	Theoretical Background
	Towards Sequential Decision Making with Events
	Developing Event-Based Goal Anticipations
	Sparsely Changing Latent States for Prediction and Planning
	Hierarchical Predictions from Discrete Latent Dynamics
	Hierarchical World Models
	Discussion
	Appendix Background and Approach: Supplementary Material
	Appendix Capri: Supplementary Material
	Appendix GateL0RD: Supplementary Material
	Appendix Skip Network: Supplementary Material
	Appendix Thick World Models: Supplementary Material
	References
	Acknowledgments

