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Abstract

Uncertainty quantification is a key pillar of trustworthy machine learning. It enables
safe reactions under unsafe inputs, like predicting only when the machine learning
model detects sufficient evidence, discarding anomalous data, or emitting warnings
when an error is likely to be inbound. This is particularly crucial in safety-critical areas
like medical image classification or self-driving cars. Despite the plethora of proposed
uncertainty quantification methods achieving increasingly higher scores on performance
benchmarks, uncertainty estimates are often shied away from in practice. Many machine
learning projects start from pretrained latent representations that come without uncertainty
estimates. Uncertainties would need to be trained by practitioners on their own, which is
notoriously difficult and resource-intense.

This thesis makes uncertainty estimates easily accessible by adding them to the latent rep-
resentation vectors of pretrained computer vision models. Besides proposing approaches
rooted in probability and decision theory, such as Monte-Carlo InfoNCE (MCInfoNCE)
and loss prediction, we delve into both theoretical and empirical questions. We show that
these unobservable uncertainties about unobservable latent representations are indeed
provably correct. We also provide an uncertainty-aware representation learning (URL)
benchmark to compare these unobservables against observable ground-truths. Finally, we
compile our findings to pretrain lightweight representation uncertainties on large-scale
computer vision models that transfer to unseen datasets in a zero-shot manner.

Our findings do not only advance the current theoretical understanding of uncertainties
over latent variables, but also facilitate the access to uncertainty quantification for future
researchers inside and outside the field. As downloadable starting points, our pretrained
representation uncertainties enable a range of novel practical tasks for straightforward
but trustworthy machine learning.
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Zusammenfassung

Die Quantifizierung von Unsicherheiten ist ein Grundpfeiler des vertrauenswürdigen
maschinellen Lernens. Sie ermöglicht sichere Reaktionen bei unsicheren Eingaben, wie
etwa Vorhersagen nur dann zu treffen wenn ein künstlich intelligentes Modell genü-
gend Anhaltspunkte findet, anomale Daten zu filtern oder Warnungen auszugeben wenn
ein Fehler wahrscheinlich ist. Dies ist besonders in sicherheitskritischen Bereichen wie
der Klassifizierung medizinischer Bilder oder bei selbstfahrenden Autos wichtig. Trotz
der Fülle an publizierten Methoden zur Quantifizierung von Unsicherheiten, die in
numerischen Vergleichen immer bessere Ergebnisse erzielen, werden Unsicherheitss-
chätzungen in der Praxis oft gescheut. Viele Projekte des maschinellen Lernens starten mit
vortrainierten latenten Repräsentationen, die von sich aus keine Unsicherheitsschätzungen
beinhalten. Die Unsicherheiten müssten von Anwendern selbst trainiert werden, was
jedoch als kompliziert und ressourcenintensiv angesehen wird.

In dieser Doktorarbeit werden Unsicherheitsschätzer leichter zugänglich gemacht, in-
dem sie zu den latenten Repräsentationsvektoren von vortrainierten Modellen für die
Verarbeitung von Bilddaten hinzugefügt werden. Wir entwickeln Ansätze aus der
Wahrscheinlichkeits- und Entscheidungstheorie, wie Monte-Carlo InfoNCE (MCInfoNCE)
und die Schätzung von Vorhersagefehlern, und befassen uns sowohl mit mathematischen
als auch empirischen Aspekten des Problems. Wir zeigen, dass diese unbeobachtbaren
Unsicherheiten über unbeobachtbare latente Repräsentationen tatsächlich beweisbar ko-
rrekt sind. Wir stellen außerdem einen numerischen Leistungstest für Unsicherheiten
über latente Repräsentationen vor (URL), um diese unbeobachtbaren Schätzungen mit
beobachtbaren Vergleichswerten abzugleichen. Schließlich bündeln wir unsere Ergebnisse,
um kostengünstige Unsicherheitsschätzer für die latenten Repräsentationen großer Mod-
elle des computergestützten Sehens vorzutrainieren, die ohne weiteres Training auf neuen
Datensätzen funktionieren.

Unsere Ergebnisse erweitern nicht nur das aktuelle theoretische Verständnis von Unsicher-
heiten über latente Variablen, sondern erleichtern auch den Zugang zur Quantifizierung
von Unsicherheiten für zukünftige Forschung innerhalb und außerhalb des Feldes. Als
herunterladbare Ausgangspunkte ermöglichen unsere vortrainierten Repräsentationsun-
sicherheiten eine Reihe neuartiger praktischer Anwendungen für unkompliziertes, aber
vertrauenswürdiges maschinelles Lernen.
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1Introduction

1.1 Of Penguins and Uncertainties

Any human will recognize the image in Figure 1a as a penguin and store it accordingly in
their mental map of animals. Now consider Figure 1b. It could show a penguin, but also a
seal, or maybe a beaver. The picture itself is uncertain, that is, it does not contain enough
information to infer what it shows. The best any human can do is to store it somewhere
in the region of aquatic animals in their mental map, flagged with a question mark.

Figure 1b is no exception and the problem can not be trained away, whether we deploy a
computer vision model or a human expert. Beyer et al. (2020) show that humans disagree
about the class of 29.9% of the images in the popular ImageNet-1k benchmark (Deng
et al., 2009). This is even more pronounced when images are no high-quality photographs
from the internet but automatically taken by magnetic resonance imaging scanners or
surveillance cameras on animal farms, as studied by Schmarje et al. (2022). Even their
best real-world dataset with only four classes to choose from has a disagreement rate of
92.2%. Vision inherently is and will remain ambiguous.

Current deep encoders in computer vision also have mental maps, their embedding spaces,
where they store what they detect in images as representation vectors. But they lack the
ability to express their uncertainty: Although Figure 1b is much more ambiguous than
Figure 1a, both will be pinpointed to an exact representation vector in the embedding
space. Any module that further processes these representations, for retrieving similar
images or predicting the animal species, has no more sense of the ambiguity.

This thesis adds uncertainty estimates to representation vectors. This enhancement may
seem nuanced at first glance, but it conceals an iceberg of challenges beneath the surface:
Representations are latent variables, meaning that they are not observable in the real
world and a computer vision model has to find them itself. Adding uncertainties, which
are also not observable in the real world, to such already unobservable latent variables
makes the problem even more complicated. And more still, we also have to compare these
unobservables about unobservables against some notion of observable ground-truth in the
real world to ensure their quality and good performance, which is a territory uncharted
by state-of-the-art uncertainty benchmarks. But the reward of solving these challenges is
high: Uncertainties added directly to representations will trickle down to all applications
that start off from representations, e.g., of pretrained models.

13



14 chapter 1. introduction

(a) A clear image of a penguin. (b) An ambiguous image of a penguin.

Figure 1: Images can be inherently ambiguous, making it necessary to quantify their
uncertainty. Both images are from the ImageNet-1k benchmark dataset (Deng et al., 2009).

Before diving into details, we give a teaser of our results in Figure 2. This is the embedding
space of six dog breeds, where more uncertain representations are larger and more
transparent. The plot makes it easy to understand which images are more ambiguous and
likely to be misclassified because they reveal too few information. This enables computer
vision models to automatically treat uncertain images differently, e.g., by abstaining from
classifying them until a user inputs a more clear image, enabling a more trustworthy
deployment of machine learning models in practice (Mucsányi et al., 2023). Notably, these
uncertainties are provided zero-shot. The model was trained on a different dataset and the
uncertainties are generalized from the large pretraining corpora we scaled our approach
to. This means that practitioners can make direct use of the findings of this thesis by
downloading our pretrained uncertainty models and running them on their data.

Let us now return to the start of our expedition, formally defining representation learning
and uncertainties in computer vision as well as our precise research questions, which cul-
minated in the development of these general-purpose representation uncertainties.

1.2 Related Work

1.2.1 Pretrained Representations

We first establish notation that will reoccur throughout the thesis. Let x denote an input
from the input space X and y an output from the output space Y . The task of any
machine learning model is to fit a function f : X → Y that predicts y from x. In computer
vision, these are commonly an image x and a class label y. To predict a label from an
unstructured information source like an image, modern deep learning architectures first
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u(x) = 0.243

u(x) = 0.046

u(x) = 0.147 u(x) = 0.256

u(x) = 0.169

u(x) = 0.051

Figure 2: Each point is the representation of an Oxford Pets image (Parkhi et al., 2012).
The size of each dot visualizes the uncertainty u(x) of the representation, calculated by our
approach in Chapter 5. This makes it easier to detect images that are naturally ambiguous
(large and transparent). Figure cited from the original paper (Kirchhof et al., 2024).

extract features from the image. That is, they have an encoder component e : X → Z
and a subsequent classifier c : Z → Y with f = c ◦ e. The goal of representation learning
(Bengio et al., 2013) is to learn a versatile encoder e such that the representations z in
the embedding spaces Z in the middle represent the content of the image in an abstract
manner, as a high dimensional latent vector.

Since training the encoder is often the most time and data consuming part of training
a deep learning architecture, the representations are often trained in advance on large
image datasets with versatile classes to learn diverse features. Most modern computer
vision projects start off from such pretrained models. Pretrained representations enable,
e.g., to search for semantically similar images, called retrieval (Chang and Fu, 1979; Liu
et al., 2021; Jush et al., 2023; Douze et al., 2024), or to re-use the encoder and learn new
tasks quicker by finetuning on a small dataset in a few-shot or even zero-shot manner
(Weiss et al., 2016; Goyal et al., 2023; Ramesh et al., 2021).



16 chapter 1. introduction

The key to well usable pretrained representations is that semantically similar images
should lay close to one another in the embedding space. Contrastive learning approaches
(Chopra et al., 2005; Schroff et al., 2015; Hadsell et al., 2006; Chen et al., 2020; Grill et al.,
2020; Radford et al., 2021; Chen and He, 2021) formulate this directly as an objective
function when training the encoder. As an example, tuples of images cropped from the
same underlying image are encouraged to be close to one another (Hadsell et al., 2006)
or they are encouraged to be close to one another and far from other images (Schroff
et al., 2015). Besides these self-supervised approaches, modern pretraining approaches
also return to traditional supervised learning, where the supervision signal that tells if
two images are similar is whether they have the same class label. The key here is that the
class labels are diverse enough, such as on the ImageNet-1k dataset (Deng et al., 2009)
that comprises 1.2 million images of 1000 classes or on ImageNet-21k (Deng et al., 2009)
that comprises 14.2 million images of 21.8 thousand classes.

These advances in pretrained representations reveal important desiderata for our desired
representation uncertainties: If representation uncertainties are output along with pre-
trained representations, we need to pretrain them on similar scales. We also need to
ensure that our representation uncertainties capture uncertainties of the general image
content that the representation summarizes, not just uncertainty in terms of the (pre-)
training task. With these properties in mind, let us review the current state uncertainty
estimation approaches in computer vision.

1.2.2 Large-scale Uncertainties in Computer Vision

Uncertainty estimation adds a second task to the model. In addition to the estimate for y
it also has to output an uncertainty estimate u(x), u : X → U , sometimes in the form of a
probability U = [0, 1] or more generally any scalar value with U ⊆ R. These uncertainty
estimates are a key prerequisite to deploy models in safety-critical areas like medical
imaging or self-driving cars (Gulshan et al., 2016; Carannante et al., 2021; Kurz et al., 2022;
Franchi et al., 2022) where we want to predict only if we are certain. Uncertainties are
also fundamental ingredients of anomaly detection (Chalapathy and Chawla, 2019) and
active learning (Settles, 2009; Nguyen et al., 2022).

First attempts to bring uncertainty into deep learning and computer vision stem from
Bayesian roots (Bernardo and Smith, 2009). A prominent example is the Laplace approxi-
mation (Mackay, 1992) that approximates a Gaussian around the network’s parameters.
This allows to sample multiple output vectors per input, which can be processed into
scalar uncertainty estimates u(x). The issue is that these approximate Bayesian approaches
are hard to scale to deep architectures, with work on scaling going on to this date (Ritter
et al., 2018; Daxberger et al., 2021; Deng et al., 2022). Later works thus yield these samples
more directly: Deep ensembles (Lakshminarayanan et al., 2017) train multiple networks
to output multiple vectors, and Gal and Ghahramani (2016) activate random Dropout
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(Srivastava et al., 2014) at inference time to produce multiple slightly different outputs.
These approaches are scalable to arbitrarily deep architectures, but their runtime (and
memory) costs still scale linearly in the number of samples. Anyhow, they mark the
start of a trend: Reducing the computational hurdle of uncertainty estimation to enable a
widespread application in practice.

A recent step towards low-cost uncertainties is to output uncertainty estimates u(x) di-
rectly during the forward pass of the model, so called deterministic methods (Postels et al.,
2022; Haußmann et al., 2020). This is implemented by adding modules to the architecture
that output specialized uncertainties u(x). These modules are trained for specialized
tasks (Mucsányi et al., 2024). For example, to detect out-of-distribution inputs (Galil et al.,
2023a), deterministic methods estimate the data density in the model’s latent space (Lee
et al., 2018; Van Amersfoort et al., 2020; Mukhoti et al., 2023). To estimate correctness of
prediction, they predict the model’s own loss at any given sample (Yoo and Kweon, 2019;
Cui et al., 2023; Lahlou et al., 2023; Laves et al., 2020). Such specialized approaches are also
relevant for the recent strive for decomposed or disentangled uncertainties (Wimmer et al.,
2023; Bengs et al., 2023; Gruber et al., 2023; Valdenegro-Toro and Mori, 2022; Depeweg
et al., 2018). We contribute to these disentanglement efforts in Chapter 5.

So how could one build a specialized uncertainty estimate for representations? One strain
of research are probabilistic embeddings (Oh et al., 2019; Collier et al., 2023; Kim et al.,
2023; Nakamura et al., 2023). They add an auxiliary output head that estimates a variance
parameter for each representation, resulting in a distribution over all possible latents that
an input could show. While probabilistic embeddings have shown increased performance
(Karpukhin et al., 2022) and qualitatively sensible outputs (Oh et al., 2019; Scott et al.,
2019), their theoretical underpinning and evaluation metrics are still in their infancy. We
contribute to these efforts in Chapters 2 to 4.

The last gap to bridge uncertainty estimates with pretrained representations is their
transferability. Initial works (Guo et al., 2017) but also current large-scale undertakings
(Dehghani et al., 2023) often consider calibration only on the dataset the model was
trained on. The largest distribution shifts that uncertainties are evaluated on are corrupted
versions of the train dataset (Ovadia et al., 2019; Tran et al., 2022). At a certain level of
corruption, let alone on new datasets with new classes, images are commonly considered
out-of-distribution, so that the evaluation protocol is just to achieve high uncertainties
on these samples compared to in-distribution ones (Park et al., 2023; Galil et al., 2023a;
Postels et al., 2022; Ovadia et al., 2019). This is a reasonable goal, but we want to take
the generalization of uncertainty estimators one step further. Similar to representation
learning, we want uncertainties to work within completely new datasets, where uncer-
tainties should not be generally high but differ between the unseen samples. Also similar
to representation learning, this requires novel benchmarking metrics, see Chapter 4, and
large-scale pretrained models developed along these metrics, see Chapter 5.
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1.3 Research Questions

The main goal of this thesis is to provide uncertainty estimates along with representa-
tion vectors, merging the current enhancements in representation learning with those
in uncertainty estimation. As we have outlined before, this is intended to make uncer-
tainties transferable to new datasets and tasks and thus easier to use. To this end, we
need to develop new approaches, gain a theoretical understanding about representation
uncertainties and how to benchmark them, and finally scale our findings to match current
pretrained representation models. We take on these challenges one by one in the following
chapters, guided by the following research questions (RQs).

RQ1. Which methods can provide uncertainties about representations?

RQ2. What do these uncertainties reflect theoretically or in the real-world?

RQ3. How to quantify how good an uncertainty about a representation is?

RQ4. Can we scale the uncertainties to large models and large pretraining corpora?

1.4 Contributions and Outline

We answer these questions in four chapters, each resembling one paper. We summarize
their main findings and contributions to the scientific community below.

Chapter 2 takes on RQ1, providing first methods that add uncertainties to representations
in a subfield of representation learning, deep metric learning. In particular, we utilize
the probabilistic embeddings framework where we predict a mean and a variance for
each representation. We expand these works by implementing distribution-to-distribution
distance functions and generalizing previous distributions to more flexible covariance
structures. These enhancements make deep metric learning probabilistic and we find
that they increase the performance. We take a first look at RQ2 to analyze why the
uncertainties lead to higher performance.

Chapter 3 provides deeper theoretical insights into RQ2. We derive a theoretical framework
to define representation uncertainties formally and to investigate in which sense they
are correct. We find that they can be seen as the posteriors of a lossy image-generating
process, generalizing previous theoretical results of nonlinear independent component
analysis (Zimmermann et al., 2021; Reizinger et al., 2022). We also provide a new method
to learn representation uncertainties in self-supervised, adding to RQ1. We verify that its
representation uncertainties are indeed correct in the theoretical sense and, in the practical
sense of RQ3, correlated with human uncertainties.

Chapter 4 provides the community with the first benchmark to measure correctness of
representation uncertainties at scale and under distribution shifts, answering RQ3. This
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allows representation learning researchers to enhance their benchmarking code with
metrics for uncertainties in four lines of code. We verify our benchmark with comparisons
to the human and other real-world uncertainties studied in the previous chapter to
broaden our understanding of RQ2. We reimplement both of our approaches from RQ1

and add multiple ones from literature. We scale them all to ImageNet-1k and use a
pretraining-like train and test framework, paving the way for RQ4.

Chapter 5 uses this benchmark to develop pretrained representation uncertainties at the
scale of ImageNet-21k and large Vision Transformer, aiming for RQ4. This compiles the
findings of all previous chapters and research questions into one downloadable model
for future researchers. In the process, we fix a gradient conflict that deteriorated the
performance of deterministic uncertainty approaches in the literature. We also study the
behaviour of our uncertainties and find that they provide aleatoric uncertainties devoid
from epistemic uncertainties, contributing to RQ2 and to the recent efforts in uncertainty
disentanglement (Wimmer et al., 2023; Mucsányi et al., 2024).

Finally, in Chapter 6 we outline the applications that representation uncertainties enable
and discuss how our findings shape future directions in uncertainty quantification.

1.5 List of Publications

1.5.1 Publications Relevant to this Thesis

This thesis comprises four main publications that I have published as first author in the
last three years. All papers are summarized and discussed in their corresponding chapters
in the main text, and appended to the thesis in their full form.

Michael Kirchhof, Karsten Roth, Zeynep Akata, and Enkelejda Kasneci.
A non-isotropic probabilistic take on proxy-based deep metric learning.
European Conference on Computer Vision (ECCV), 2022.

Michael Kirchhof, Enkelejda Kasneci, and Seong Joon Oh. Probabilistic
contrastive learning recovers the correct aleatoric uncertainty of ambiguous
inputs. International Conference on Machine Learning (ICML), 2023.

Michael Kirchhof, Bálint Mucsányi, Seong Joon Oh, and Enkelejda Kasneci.
URL: A representation learning benchmark for transferable uncertainty
estimates. Neural Information Processing Systems Track on Datasets and Bench-
marks (NeurIPS D&B), 2023.

Michael Kirchhof, Mark Collier, Seong Joon Oh, and Enkelejda Kasneci.
Pretrained visual uncertainties. arXiv preprint arXiv:2402.16569, 2024.
Under submission.
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1.5.2 Further Publications

Besides these main works, I have been involved in three major side projects during my
time as a Ph.D. student, all centered around representations and uncertainty.

Tobias Leemann, Michael Kirchhof, Yao Rong, Enkelejda Kasneci, and
Gjergji Kasneci. When are post-hoc conceptual explanations identifiable?
Uncertainty in Artificial Intelligence (UAI), 2023.

Bálint Mucsányi, Michael Kirchhof, Elisa Nguyen, Alexander Rubin-
stein, and Seong Joon Oh. Trustworthy machine learning. arXiv preprint
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2Probabilistic Representation Learning

Michael Kirchhof, Karsten Roth, Zeynep Akata, and Enkelejda Kasneci. A non-isotropic
probabilistic take on proxy-based deep metric learning. European Conference on Computer
Vision (ECCV), 2022.

2.1 Prologue

"That probabilistic approach seems to work, I’m right now at 66% Recall@1 on CUB.", I
wrote to Karsten Roth, at that time a Ph.D. student specializing in representation learning.
I had just sent him an initial implementation of what happens if we change vector
representations to distributional or probabilistic ones. What had happened was that it
outperformed most baselines in his recent benchmark. He responded within seconds, with
a scientist’s mixture of excitation and caution, "I’d have time for a meeting later today?
Let’s just double check the code.". The code was fine and by evening we had set up our
collaboration. In combining our strenghts, we expanded the initial idea mathematically
and gained more evidence empirically. We presented the results at a computer vision
conference, ECCV, that would have impacts on the next chapters of this dissertation.

2.2 Motivation

We develop our uncertainties for representations from classical representation learning.
The goal here is to encode images into vectors, such that images of, e.g., the same
class, have similar vector representations. This is a mandatory property for retrieval
systems (Sohn, 2016; Brattoli et al., 2020; Douze et al., 2024). One sub-field of this is deep
metric learning (Roth et al., 2020). It investigates which distance function between the
representations one should use to train the encoder. We find that simple ones like cosine
distance do not account for uncertainties in the images, despite the field having argued
that this was an intended feature to ensure all images were treated the same (Ranjan
et al., 2017). We, along with concurrent works (Scott et al., 2021), question this and argue
that uncertainties are informative features that support the training. In this chapter, we
represent images as distributions over possible latents instead of single vectors, so called
probabilistic embeddings. We show how to calculate distances between them, and how
much and why this improves deep metric learning.
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(a) von Mises Fisher (vMF) (b) non-isotropic von Mises-Fisher (nivMF)

Figure 3: Densities of a vMF and a non-isotropic vMF distributions on a three-dimensional
unit-sphere. Purple is a low and yellow a high density. Figure adapted from the original
paper (Kirchhof et al., 2022).

2.3 Methods

The goal of deep metric learning is to learn representations e(x) for each image such that
similar images are placed close to one another and dissimilar ones far from another in a
model’s representation space Z . Similarity is usually defined as belonging to the same
class or being two crops from the same image. These representations are learned by loss
functions that measure the distance between representations and push similar ones closer
to one another and dissimilar ones away from each other. To reduce the noise in this
process, ProxyNCA and ProxyNCA++ (Movshovitz-Attias et al., 2017; Teh et al., 2020)
propose to use proxies for each class, so that each image is pushed closer to the proxy of
its class. The contrastive loss function is

LNCA++ = log
exp

(
s
(

e(x)
∥e(x)∥ , p∗

)
/t
)

∑C
c=1 exp

(
s
(

e(x)
∥e(x)∥ , pc

)
/t
) , (2.1)

where p∗ is the true proxy (i.e., class) of x, t > 0 is a temperature, and pc, c = 1, . . . , C, are
all C possible classes. In practice, the representations e(x) are often normalized to unit
length, so the representation space Z is a unit sphere and the similarity function s is a
cosine similarity.

Our key idea is to allow uncertainties about what an image represents, e.g., if it is blurry
or an information-losing crop. For this, we represent images as distributions ζ(x) over all
possible latents, so called probabilistic embeddings. In particular, we use von Mises-Fisher
(vMF) distributions (Fisher, 1953; Mardia and Jupp, 2009) over the unit-sphere Z , as
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Recall@1 (CARS)
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Figure 4: Probabilistic embeddings (green) lead to better retrieval performance than
deterministic ones (blue). Bars show the standard deviation across five seeds. Figure
adapted from the original paper (Kirchhof et al., 2022).

shown in Figure 3. For proxies, we develop non-isotropic von Mises-Fisher (nivMF)
distributions ρ. They allow class distributions to have non-unit covariances. To measure
the distribution-to-distribution similarity between probabilistic embeddings and proxies,
we use the expected likelihood kernel (ELK, Jebara and Kondor, 2003). These changes
result in the uncertainty-aware contrastive loss function

LnivMF = log
exp(s(ζ(x), ρ∗)/t)

∑C
c=1 exp(s(ζ(x), ρc)/t)

. (2.2)

We implement this by using auxiliary learnable variables for the proxy means and
covariances. For the probabilistic embeddings of images, we use the typical (normalized)
representations e(x)

∥e(x)∥ as the mean value of the ζ(x) distribution. The concentration
(inverse variance) parameter is set to the pre-normalization representation norms, i.e.,
∥e(x)∥, following Li et al. (2021). This utilizes that the representation norm is empirically
related to certainty, namely how many class characteristic features can be detected in an
image. We dicuss this further in the main paper.

2.4 Core Results

2.4.1 Probabilistic Embeddings Improve Retrieval Performance

The primary objective of deep metric learning is to learn a well-structured embedding
space. Representations of similar images should be close to one another, enabling retrieval.
This is measured via the Recall@1: If we compute mean representations for each image
in the test dataset, how often is the nearest neighbor of each representation in the same
class? This percentage is computed on the dataset the model was trained on, but on a
withheld set of classes. This induces a small domain shift to ensure the representations
generalize beyond the training classes.
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Figure 4 shows that training probabilistic embeddings with LnivMF leads to a higher
Recall@1 than the vector representations of LNCA++ on two representation learning bench-
mark datasets, CUB-200 (Wah et al., 2011) and CARS-196 (Krause et al., 2013). As a step
in-between, LvMF uses vMF distributions for both images and classes, showing that both
enhancements, probabilistic embeddings and non-isotropy, increase retrieval performance.
The main paper presents similar advantages when adding probabilistic embeddings to
more complicated contrastive loss functions.

2.4.2 Uncertainties Re-weight the Gradients

The above experiment does not use the learned uncertainties during testing. It only
measures the Recall@1, i.e., nearest (mean) representation in terms of cosine similarity. So
training with uncertainties has helped learn better representations, but how?

In the main paper, we analyze our probabilistic loss analytically. We find that the gradient
that each image has on the representations is scaled up by its certainty. More certain
images receive a higher weight during training than uncertain images. This reduces the
impact of samples that are low-quality or potentially mislabeled. We provide more details
and comparisons to the deterministic LNCA++ in the main paper in the appendix.

2.5 Discussion

This work centered around RQ1, finding a method to add uncertainties to representations,
namely probabilistic embeddings. Our main finding is that uncertainties are not just an
end unto themselves, but help learn better representations. This work also contributed
fundamentals that we will see reoccurring in the next chapters, such as the non-isotropic
vMF distribution or a corrected approximation to the vMF normalizing constant, excluded
here but detailed in the main paper. We have also touched upon RQ2, gaining a first
understanding of how uncertainties benefit representation learning.

But the main limitation is that we have evaluated the learned uncertainties only indirectly.
They helped learn representations with higher retrieval performance, but we have not
evaluated how correct the uncertainties are in and by themselves. In fact, one could
argue that they are also trained only indirectly, since they are parametrized by the
representation vector norms which other side effects during training could have influenced.
We investigate these two open points in the next chapter to verify and expand our
understanding of representation uncertainties.
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Probabilistic Embeddings are Provably

Correct

Michael Kirchhof, Enkelejda Kasneci, and Seong Joon Oh. Probabilistic contrastive
learning recovers the correct aleatoric uncertainty of ambiguous inputs. International
Conference on Machine Learning (ICML), 2023.

3.1 Prologue

"But how do you know that these variances are correct?". It was at a poster session at
ECCV where I presented the previous paper, and I had just encountered a mind-reader
(or my mind was very easy to read). This question turned out to be not just in my mind,
but to be haunting the field ever since probabilistic embeddings, or even variational
auto-encoders, were invented. In parallel, a new researcher came to Tübingen: Seong
Joon Oh. I knew his name. "Aren’t you the author of hedged instance embeddings, the
first paper on probabilistic embeddings?", I asked. He confirmed. And he also confirmed
that he had also been looking for a mathematical answer to the upper question. We
compared our notes and so started hours-long discussions of potential proof techniques,
thought experiments, and scrutiny of potential loopholes. My coworkers may remember
me sitting in the office for days, weeks, and months on end without a laptop, only with
countless scribbled papers and a pencil. We succeeded eventually, and the chapter below
summarizes our mathematical formalization of the question, as well as its answer.

3.2 Motivation

The previous chapter introduced probabilistic embeddings as a way to represent uncer-
tainties in representation spaces. And they indeed work in the sense that they improve
performance. But what is it that their variance parameters capture? Are they indeed the
correct uncertainties (and if yes, in which sense)? To establish a ground for mathematical
arguments, we first need a formal framework. We generalize the non-linear independent
component analysis framework of Zimmermann et al. (2021) to formalize data-generating
processes that lose information while generating images, where the amount of lost infor-
mation equals the uncertainty that the probabilistic embeddings have to resemble. The

25
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Figure 5: Images are created from unknown latent vectors by a data-generating process.
Deterministic image representations intend to rediscover this vector (top). When the
data-generating process is probabilistic (bottom) and creates ambiguous images, it loses
information about the latent vectors, so that several ones could have created the image.
Probabilistic embeddings recover this posterior, which we prove for MCInfoNCE. Figure
cited from the original paper (Kirchhof et al., 2023a).

challenge here is that the amount of lost information is also a lost information – we only
have access to the final image without any further supervision on how uncertain it is.
Strikingly, we find a loss function called MCInfoNCE whose probabilistic embeddings
are provably correct: Their variances exactly reflect the amount of lost information, while
being learned solely from self-supervision.

3.3 Methods

To be able to discuss any notion of correctness, let us first formalize how images are
generated. Following Zimmermann et al. (2021), we assume that some data-generating
process turns latent vectors into images, as depicted in Figure 5. In mathematical terms, a
function g : Z → X maps the latent z to an image x. To add uncertainties to the process,
this mapping is not deterministic. The same latent could be mapped to different images,
blurred, cropped, or pixelated in different ways. In statistical terms, g is no more a
function with one output per input, but a likelihood P(X|Z). This likelihood is even more
complicated than the already complicated generative process g. The trick is that we are
not actually interested in the generator P(X|Z) – we are only interested in reconstructing
z from x, i.e., in its posterior P(Z|X). This posterior describes which latents z could have
generated the image x. If more information about z is lost during the generation of x and
x could match several possible z, the posterior becomes wider.



3.4 core results 27

This is what probabilistic embeddings Q(Z|X) are designed to represent. Consequently,
we can define correctness for them: Probabilistic embeddings Q(Z|X) (including their
uncertainty parameters or variances) are correct iff they are equal to the posteriors P(Z|X)
of the generative process. What is left to show is that some loss function is minimized by
probabilistic embedding estimates only if they are equal to the true posteriors.

To this end, we introduce the MCInfoNCE loss

LMCInfoNCE = − log E
z∼Q(z|x)

E
z+∼Q(z+|x+)

E
z−m∼Q(z−m |x−m)




eκposz⊤z+

1
M eκposz⊤z+ + 1

M

M
∑

m=1
eκposz⊤z−m


 .

(3.1)

The innermost part is a self-supervised InfoNCE loss (Oord et al., 2018) that trains the
representation z of an image to be closer to a positive partner z+ (a crop of the same image)
than to negatives z−m (other images in the batch). This whole inner term is then evaluated
not over predicted deterministic representations z but over representations z drawn from
the predicted probabilistic embeddings, usually 4 to 16 samples. We implement the
probabilistic embeddings by vMF distributions whose variances are learned by an MLP
head. This adjustment to turn InfoNCE into the probabilistic MCInfoNCE is enough to
guarantee the above identifiability condition, as we show below.

3.4 Core Results

3.4.1 MCInfoNCE Learns the Correct Posterior

The main result of this paper is a proof that the only minimizer of LMCInfoNCE are
probabilistic embeddings Q(Z|X) that are equal to the true posteriors of the generative
process, up to a general rotation of the whole embedding space Z . This has some technical
assumptions like that the probabilistic embedding distribution must be the same family as
the true posterior, in this case vMF distributions, for otherwise it is impossible to exactly
match it. We refer to the appendix for the full statement, conditions, and proof. This proof
shows that the variances of probabilistic embeddings are not just training artifacts, but
theoretically grounded.

3.4.2 The Correctness is Robust to Violations of Assumptions

We empirically verify this proof in a controlled experiment where a generator network
with a randomly initialized posterior produces ambiguous data. We train a probabilistic
embedding encoder using MCInfoNCE and find that its probabilistic embeddings are
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indeed equal to the generator posterior. This is robust to violations of the assumptions,
like a different distribution family, a too low or too high dimensional embedding space,
or even a generator without uncertainty, in which case MCInfoNCE correctly converges
to Dirac probabilistic embeddings, that is, deterministic embeddings. We further test
the vMF loss from the previous chapter and find that it also leads to correct posteriors,
showing that several probabilistic embedding approaches learn correct uncertainties.
However, this is no trivial property, as other losses like hedged instance embeddings (HIB,
Oh et al., 2019) do not provide the correct posteriors.

3.4.3 The Learned Uncertainties are Aleatoric Uncertainties

The theoretical formulation of the data-generating process hinted at the idea that these un-
certainties are intrinsic to the image and that even the best model, the true posterior, could
not reduce them. This is known as aleatoric uncertainty (Hüllermeier and Waegeman,
2021). To investigate this experimentally, we apply MCInfoNCE to CIFAR-10H (Peterson
et al., 2019), an image dataset with around 50 annotations per image. The entropy of
these annotations serves as a proxy for the irreducible aleatoric uncertainty. We find
that our probabilistic embeddings’ uncertainties are indeed correlated to those human
ones. Similarly, they are correlated to the amount of aleatoric uncertainty we synthetically
induce in images by cropping them, thereby losing information. This is first evidence that
we can learn the aleatoric uncertainty of images and their representations.

3.5 Discussion

This work focussed on RQ2, understanding what our uncertainties about latents represent.
To the best of my knowledge, it is the first paper to find that uncertainties in latent spaces
are not just theoretical artifacts of variational training but have a real-world justification
and show consistent behaviour. One detail that underlines this is that the uncertainties are
trained from a randomly initialized MLP without any prior bias that could explain away
its behaviour. This is an issue in the previous chapter (and the literature it followed (Scott
et al., 2021; Ko et al., 2021; Ranjan et al., 2017)), where the representation vector norm
we used to parametrize the uncertainties is nowadays suspected to be a mere fragment
of cross-entropy training (Kang et al., 2023). Beyond RQ2, this chapter also added to
RQ1 by giving a new approach to learn uncertainties about latent representations, this
time self-supervised, and opened ways for RQ3 by pioneering evaluations that test the
uncertainties about unobservable latents against observable ground-truths.

One limitation is that this work is limited to vMF posteriors. An extension to different
exponential families as in Zimmermann et al. (2021) or even mixture densities would have
been possible because the proof’s arguments still hold: 1) MCInfoNCE is a cross-entropy
that when optimized equalizes a certain expected positivity score between the generative
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process (and its posterior embeddings) and the predicted embeddings. This proof does
not use the vMF assumption. And 2), this expected positivity can only be equal to
the generative process’s expected positivity if all embeddings match the true posteriors.
The uniqueness argument of 2) would still hold for other posterior families, except that
permutations of mixture components and other invariances in distribution parameters
could add technical corner-cases. Formalizing these corner cases would have been very
time-consuming without adding interesting proof techniques or novel understanding, so
we decided to present only the core result on vMFs.

A second limitation is the scale of the experiments. Our first experiment was necessarily a
toy experiment, because we needed full control over the data-generating process which is
unknown in real-world data. The second experiment on real-world data, however, could
have been on a larger scale. MCInfoNCE is scalable because it only adds a lightweight MLP
head and 16 Monte-Carlo samples at a late model layer with near diminishing runtime
and memory costs. The limiting factor here is that only CIFAR-10H (or datasets of similar
scale (Schmarje et al., 2022)) provide sensible ground-truths to compare our uncertainties
against. At the time of publication, the literature lacked metrics and benchmarks to
evaluate representation uncertainties, which hindered their development and scaling. This
changed with the paper we present in the next chapter.
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The URL Benchmark for Representation

Uncertainties

Michael Kirchhof, Bálint Mucsányi, Seong Joon Oh, and Enkelejda Kasneci. URL:
A representation learning benchmark for transferable uncertainty estimates. Neural
Information Processing Systems Track on Datasets and Benchmarks (NeurIPS D&B), 2023.

4.1 Prologue

"That’s neat, but does it scale?", inquired Enkelejda. She did not mean MCInfoNCE, for
scaling it to a larger dataset and architecture would still fit on consumer-grade GPUs.
Instead, the challenge in scaling the previous results was the evaluation protocol. What
metric could we compare the learned uncertainties against if human uncertainty ground-
truths are not available? I started forging and comparing several metrics. After weeks
of tinkering, there finally was one metric to rule them all, one metric to find the best
methods, one metric to scale them and in benchmarks develop them.1 This metric, the
R-AUROC, would allow to benchmark arbitrary representation uncertainty methods on
arbitrarily large datasets – if only I could implement them by the rapidly approaching
NeurIPS deadline. I turned to Bálint Mucsányi, a student visiting the lab and inter alia an
excellent code engineer, and asked "Do you want to write a NeurIPS paper?".

4.2 Motivation

The previous chapters have demonstrated the promises of representation uncertainties.
But further progress can only be enabled by a large-scale benchmark. The key to such a
benchmark is a metric that quantifies the performance of representation uncertainties and
is 1) scalable, 2) easy to implement, but 3) hard enough to be of longer term utility. Human
annotations, as in the previous chapter, are not scalable as they have to be recollected for
each dataset. Interventional metrics, like checking if uncertainties increase when an image
is cropped or deteriorated, can be easily cheated by an overspecialized approach and are
already saturated. In this section, we find a metric that fulfills all above criteria, and is even

1Inspired by The Lord of the Rings, The Fellowship of the Ring, J.R.R. Tolkien, 1954, George Allen and
Unwin.
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correlated with the human annotation gold-standard. We find it by broadening the view
away from specific solutions and towards the problem that representation uncertainties
address from a decision theory perspective.

4.3 Methods

We derive our metric, the R-AUROC, by reconsidering the problem from a decision theory
perspective. In principle, uncertainties reflect the loss we expect when making a decision.
In classification, when we give the decision "dog" with probability 80%, we quantify how
high of a 0/1 correctness loss we expect. We can evaluate our uncertainty estimate of 80%
by comparing it to the actual 0/1 correctness on test data. In representation learning, our
decision is the representation vector and a popular loss is the Recall@1. The Recall@1

measures if, when we embed all test samples, each representation’s next neighbour is in
the same class. This is also a 0/1 loss. So, when we give an uncertainty estimate about our
decision, the representation, we evaluate whether it is predictive of this 0/1 correctness. To
quantify this, we use the area under the ROC curve (AUROC) that tells if the uncertainties
are predictive of the binary outcome variable. We name this the representation AUROC
(R-AUROC). The R-AUROC allows evaluating a broad range of approaches, including
ones that give a variance estimate u(x) ∈ R instead of a probability u(x) ∈ [0, 1]. It can be
evaluated on any classification dataset without new annotations, overcoming the previous
hurdle, and can be added to existing representation learning benchmarks in four lines of
code, thereby taking the practical hurdle for the field.

The R-AUROC has another advantage inherited from representation learning: We do not
need to know the classes at train time. They are added to the Recall@1, and hence the
R-AUROC, at test time. This allows testing the representation correctness not just on seen
but also on unseen datasets. We leverage this to test the transferability of uncertainty
estimates on distribution shifts beyond previous benchmarks on robustness to corruptions
(Galil et al., 2023a; Ovadia et al., 2019). We train uncertainty estimators on ImageNet-1k
(Deng et al., 2009) and evaluate them on three zero-shot datasets using the R-AUROC.
This allow judging which approaches learn a notion of uncertainty that is transferable,
paving the way for pretrained uncertainties.

The remaining details of the benchmark protocol are specified in the appendix. The core
idea is to train eleven uncertainty estimators from the probabilistic embeddings from
Chapters 2 and 3 to ensembles, determine their optimal hyperparameters via Bayesian
optimization on a validation set, and test them via the zero-shot R-AUROC. To ensure a fair
comparison, we reimplement all approaches as an extension of the timm (Wightman, 2019)
library. To move towards scalability, another catalyst for future pretrained uncertainties,
we use both ResNet 50 (He et al., 2016) and medium-sized Vision Transformers (ViT
Medium, Dosovitskiy et al., 2021) as model backbones. Together, this comprises the
uncertainty-aware representation learning (URL) benchmark.
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Figure 6: Dots represent all models we train with all approaches, hyperparameters, and
backbones. Models with a higher R-AUROC reflect human uncertainties better (left) and
behave better under uncertainty inducing transforms like cropping (right). This supports
the R-AUROC empirically. Figure cited from the original paper (Kirchhof et al., 2023b).

4.4 Core Results

4.4.1 The R-AUROC Metric Correlates with Gold Standard Metrics

Before we start, we verify the integrity of our novel R-AUROC metric empirically by
comparing it to existing uncertainty evaluation metrics. First, we use the gold standard
from the previous section. That is, besides the R-AUROC, we track how well correlated
the uncertainty estimates are with human annotator disagreements on five datasets
(Schmarje et al., 2022), including the previous CIFAR-10H. Figure 6 shows that these two
metrics are highly correlated (rank correlation = 0.80) across all approaches, backbones,
hyperparameters, and seeds we used in the benchmark. This means that whenever a model
has a high R-AUROC, it also tends to score high on the gold standard human annotator
metric (which is unavailable in most datasets). In the plot, even their random performance
levels, 0.5 for the R-AUROC and 0 for rank correlation with human uncertainties, coincide.
The same holds for an interventional metric that checks how often a smaller cropped
version of an image receives a higher uncertainty estimate than its original (Figure 6,
right). Last, the R-AUROC is also highly correlated with the widely used classification
AUROC, when the latter is available on the seen classes of the ImageNet-1k validation set
(see appendix). These experiments demonstrate that the R-AUROC judges uncertainty
estimates consistent with previous gold standards, while being simpler to compute and
available on arbitrary, even unseen, classification datasets.
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Figure 7: Methods from Chapters 2 and 3, MCInfoNCE, nivMF, and vMF, give among
the best transferable uncertainties. Loss prediction also stands out, which we further
investigate in Chapter 5. Bars indicate minimum and maximum performance across three
seeds. Figure adapted from the original paper (Kirchhof et al., 2023b).

4.4.2 Approaches from Previous Chapters are Among the Best

We now use the R-AUROC to evaluate the methods from the previous chapters, MCIn-
foNCE, nivMF, and vMF, on a large scale and compare them to contemporary methods.
Figure 7 shows that they are the best three approaches on ResNets and among the best
on ViTs. A second approach, loss prediction, which we imported in this paper from
regression literature (Upadhyay et al., 2023b; Levi et al., 2022; Laves et al., 2020; Yoo and
Kweon, 2019), also shows stable performance across both models. The plot additionally
highlights that the R-AUROC is far from being saturated: As a reference, we trained a
ResNet 50 with cross-entropy loss on the downstream datasets to obtain an upper bound
on the performance. This is a loose bound since the zero-shot approaches do not know
the precise downstream classes and can not use different uncertainty estimators on each
downstream dataset, but it shows that there is room for improvements. In Chapter 5, we
reduce this gap by using URL to develop a new state-of-the-art.
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4.4.3 Uncertainty Quantification Sometimes Degrades the Main Task

Figure 7 reveals another detail: MCInfoNCE is performant on ResNet 50, but not on
ViT Medium. This is not a bug in implementation, but the result of a conflict of the
intertwined representation learning and uncertainty estimation tasks. Although MCIn-
foNCE has one joint optimum, in practice the predicted (mean) representations and the
predicted uncertainties drive the backbone into different gradient directions, and here the
representatons’ gradients were orders of magnitude stronger. This conflict is not exclusive
to MCInfoNCE. In the main paper, we find that 15 of the 22 approaches have a trade-off
when optimizing for Recall@1 versus for R-AUROC. We solve this in Chapter 5.

4.5 Discussion

This paper answers RQ3 by providing a both theoretically funded and empirically well
behaving metric to evaluate representation uncertainties. We developed it with RQ4

in mind, ensuring that it can be scaled to ImageNet and beyond. We also found that
an approach originating from regression, loss prediction, achieves strong performance,
adding to the methods sought after in RQ1. It takes a less variational, more direct
approach at learning our desired representation uncertainties. This is why we further
investigate unlocking its full potential in the next chapter, with a special emphasis on the
gradient conflict we uncovered in this benchmark.





5
Pretrained Representation

Uncertainties

Michael Kirchhof, Mark Collier, Seong Joon Oh, and Enkelejda Kasneci. Pretrained visual
uncertainties. arXiv preprint arXiv:2402.16569, 2024. Under submission.

5.1 Prologue

"We need to talk!", I said, excitedly. I had just met Mark Collier at ICML. He had been
working on the same problem of scalable uncertainties, had come to the same solution,
probabilistic embeddings (Collier et al., 2023), and, I figured, now faced the same hurdle.
He had a look at my preliminary analysis of the gradient conflicts. A 15 minutes coffee
break became a 1 hour lunch break became regular meetings with Enkelejda and Joon.
We were determined to scale our previous efforts up, while cutting away any complexity
that did not lead to measurable improvements on the URL benchmark. Ultimately, this
chapter compiles the findings on all above research questions into one downloadable
plug-and-play model.

5.2 Motivation

The previous chapters have shown that our representation uncertainties are scalable
and learn transferable notions of uncertainty. The last challenge is to scale them to
large pretraining datasets, so that they can be deployed in a zero-shot plug-and-play
manner by downstream practitioners. In particular, the pretrained model’s representation
uncertainties should (i) not interfere with the main pretraining or downstream task, (ii)
generalize to zero-shot downstream datasets, (iii) flexibly adjust to any (downstream) task,
(iv) have minimal compute overhead, and (v) converge stably to ensure scalability.

The main remaining hurdles are desiderata (i) and (v) because of the gradient conflict we
discovered in Chapter 4. As portrayed in Figure 8a for loss prediction, where uncertainty
estimation and representation learning are two distinct losses, the uncertainty objective
hurts the performance of the pretrained model’s main objective, transferable representa-
tions, and vice versa. This is because the gradients flowing back from both task heads
attempt to change the backbone in interfering directions. This was so far avoided by
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(b) Ours: Loss Prediction + StopGrad

+ StopGrad

Figure 8: There is a conflict between the uncertainty and the classification objective
when pretraining on ImageNet-1k, deteriorating both performances. A StopGrad resolves
this conflict, enabling stable and scalable training. Figure cited from the original paper
(Kirchhof et al., 2024).

stopping early, roughly around epoch 12 in the figure. However, early stopping prohibits
training on large pretraining corpora. This chapter presents our solution to solve the
conflict, scale up the training, and, finally, provide pretrained representation uncertainties
for computer vision, as we set out to find in this thesis.

5.3 Methods

We decide to base our model on the loss prediction method from Chapter 4 over the equally
well performing probabilistic embeddings, which we discuss further in the discussion
below. Loss prediction stems from a decision theory perspective. The (in-)correctness of
any task is defined by its loss function. Hence, to provide uncertainty estimates u(x) ∈ R

that predict incorrectness, we predict the (gradient-detached) loss at each input (Yoo and
Kweon, 2019). As in the previous two chapters, this uncertainty estimation is realized by
a lightweight MLP head added to a pretrained model. To a practitioner, this results in a
simple dual-output API.

embedding, uncertainty = pretrained_model(input)

A big hurdle is the gradient conflict. Although we have experimented with techniques
like PCGrad (Yu et al., 2020) to resolve it, the best performing and simplest solution is
to place a StopGrad between the uncertainty MLP head and the model backbone. This
strictly ensures the non-interference principle (i) and improves not only the main objective,
but also the uncertainty performance, as shown in Figure 8b.

The last challenge was to train on large pretraining corpora, here ImageNet-21k (Deng
et al., 2009), with large Vision Transformer backbones under limited compute. The solution
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is also enabled by StopGrad: Since StopGrad ensures that the backbone and classifier head
are completely independent from influences of the uncertainty module, their training is
orthogonal. We first load a pretrained checkpoint for the backbone (and classifier), and
then cache the representations e(x) throughout the whole training process once (all epochs
including their random augmentations). Then we train the uncertainty head, which only
needs to load the representations as inputs and the class labels as targets from disk. This
increases the training throughput by a factor of 180x, enabling to train the uncertainty
head of a ViT-Large for seven ImageNet-21k epochs (92 million samples) in 2:26 hours on
a single V100 GPU, as opposed to 18 days when loading images x from disk.

We report more possible methodological enhancements in the main paper, but as negative
results. None of them substantially increases the performance on the URL benchmark.
We remove them to maintain the simplest possible approach.

5.4 Core Results

5.4.1 Pretrained Visual Uncertainties Transfer Across Datasets

The performance of our enhanced pretrained uncertainties exceeds that of the previous
approaches on the URL benchmark, even when we use the smaller ImageNet-1k dataset
for pretraining. In fact, the datasets in the URL benchmark (CUB 200 Wah et al. (2011),
SOP (Song et al., 2016), and CARS 196 (Krause et al., 2013)) are among the hardest due to
their fine-grained and thus highly specialized classification task. Figure 9 shows that our
pretrained uncertainties generalize to other natural image datasets, including those from
the visual task adaptation benchmark (Zhai et al., 2020). This shows that our pretrained
uncertainties behave as expected from a pretrained model, spanning the domain of the
natural images pretraining dataset.

5.4.2 Pretrained Uncertainties Represent Aleatoric Uncertainties

When providing uncertainties, it is inevitable to specify which kind of uncertainties these
are, commonly epistemic or aleatoric (Hüllermeier and Waegeman, 2021). Epistemic
denotes uncertainties about the correct choice of model parameters on unseen inputs,
which can be reduced by collecting more similar inputs. Aleatoric are uncertainties in the
data itself, e.g. a blurred or pixelated image, which are irreducible even with an expert or
a Bayes-optimal model. We hypothesize that our pretrained visual uncertainties capture
aleatoric uncertainty, without epistemic uncertainties.

We find three pieces of evidence for this in the paper. First, ImageNet images where
humans report ambiguity (Beyer et al., 2020) receive a higher pretrained uncertainty
estimate than images where they agree on a Dirac label, similar to Chapters 3 and 4.
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Figure 9: Pretrained uncertainties transfer to various downstream datasets, as measured
by the R-AUROC. Bars indicate minimum and maximum performance across three seeds.
Figure cited from the original paper (Kirchhof et al., 2024).

Second, if we intervene on the images by cropping, but also by noising, blurring, or
overlaying with grey boxes, uncertainties increase with the strength of intervention. Third,
we find that uncertainty estimates on unseen datasets follow the same distribution as on
the seen pretraining dataset, indicating the absense of epistemic influences.

These findings support our hypothesis that pretrained uncertainties model aleatoric
uncertainty exclusively. This is a positive trait for a pretrained model, since it is intended
to be deployed on unseen data where generally high epistemic uncertainty could drown
out any aleatoric signal. It also provides one of the first methods that can disentangle
the two uncertainties, which has been a recent effort in the field because it enables novel
applications (Wimmer et al., 2023; Mucsányi et al., 2024).

5.5 Discussion

This work focussed on RQ4, overcoming remaining challenges to enable scaling, benefiting
from the approaches and benchmarks we’ve built through the previous chapters and
research questions. But it also adds new understanding about which uncertainties our
representation uncertainties resemble, thereby contributing to RQ2.

We made two major design choices in developing our pretrained visual uncertainties:
Using loss prediction as a starting point, and applying StopGrad. Both have viable
alternatives, which we discuss in the following two paragraphs.

We made our decision about the approach to base pretrained uncertainties from a problem-
oriented perspective by introducing five desiderata meaningful to future practitioners.
Both loss prediction and probabilistic embeddings have shown strong empirical per-
formance in Chapter 4, have theoretical foundations, and, with StopGrad, ensure non-
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interference, fulfilling desiderata (i), (ii), and (v). The biggest differences lie in the effort
downstream users would have to make to adjust the pretrained model to their task of
choice. In Chapter 3, we have seen that a simple blueprint can turn deterministic losses
like InfoNCE into probabilistic ones like MCInfoNCE, maintaining their original prop-
erties and adding guarantees about the uncertainties. We are confident that this holds
for further losses, but in comparison loss prediction is guaranteed by construction to
adapt to any loss a downstream user may insert. As for compute, both methods output
a scalar uncertainty u(x) ∈ R via an MLP head at inference time. However, at train
time, MCInfoNCE requires Monte-Carlo samples whereas loss prediction uses the already
computed loss value. This difference is small as sampling only happens in a late layer,
but practitioners may be discouraged when remembering the large computational hurdle
of sampling-based approaches like deep ensembles or MCDropout (Mucsányi et al., 2024).
Thus, we anticipate that pretrained uncertainties based on loss prediction will be more
readily accepted outside the uncertainty quantification field.

The decision for StopGrad was based on Occam’s razor. Instead of using StopGrad to
ensure that the uncertainty training does not interfere with the backbone, we could
have first trained the backbone and classifier head and then frozen it before training
the uncertainty head. This stagewise training would have been functionally the same,
but StopGrad unloads this implementation hurdle from practitioners. Further, it enables
training both the main task head and the uncertainty head at the same time (as in Figure 8),
providing a fail-safe mechanism for future users. Second, we could have implemented a
gradient disentanglement approach like PCGrad to overcome the interferences. However,
besides not working empirically in preliminary experiments, this would complicate
training and add a dependency to be tuned. We encourage future researchers to reassess
this point when the multi-task learning community finds new, robust algorithms.





6Discussion

Uncertainties are often thought of as probabilities over output classes or intervals of
the target variable in regression. These uncertainties are specific to each individual
task. To provide uncertatinties that are more independent of the task, we attached
uncertainties to representations. Chapter 2 demonstrated how to achieve this by simple
adjustments to representation learning. Chapter 3 showed that these uncertainties about
latent representations indeed have a provable notion of correctness. Chapter 4 provided
a benchmark to quantify how practically correct different methods for representation
uncertainties are. Chapter 5 brought these findings to a large scale and developed a
pretrained model whose representation uncertainties transfer across datasets.

Besides this transferability, representation uncertainties also enable novel applications,
which we outline below. Further, we comment on how our pretrained uncertainties are
a starting point for specialized uncertainties, in which we see fruitful ends in future of
uncertainty quantification research.

6.1 Applications

Representation uncertainties add a new dimension to representations that opens up novel
applications. Having provided a downloadable model for representation uncertainties
in Chapter 5, we expect future research to explore the multitude of applications that
representation uncertainties enable. We outline some applications below, some of which
we already investigated in the main papers in the appendix, whereas others are given as
inspiration for future researchers.

We start with a traditional application of uncertainties, selective prediction (El-Yaniv
et al., 2010; Tran et al., 2022; Galil et al., 2023b). In selective prediction, the estimated
uncertainty of each input is compared to a threshold and if the uncertainty is too high,
we refuse to predict on this input. Figure 10 shows that when increasing this threshold
and rejecting more of the samples that the model considers uncertain, the accuracy on
the remaining samples in fact increases. While machine learning may not be able to
handle all inputs, this allows giving automated decisions at least for certain ones at a high
accuracy. Remaining samples can, e.g., be asked to be re-taken or handed over to humans
for inspection, as proposed by Tran et al. (2022).
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Figure 10: When the model rejects inputs where it predicts a high uncertainty, it can
achieve a high accuracy on the remainder of the data. This abstained prediction enables
deploying models in situations with a high desired accuracy. Performance of MCInfoNCE
trained on CIFAR-10. Figure cited from the original paper (Kirchhof et al., 2023a).

The paradigm of selective prediction can also be applied to retrieval. In retrieval, the
user inputs an image (or in multimodal settings, a text (Chun et al., 2021; Upadhyay
et al., 2023a)) and we output matching images from our database by comparing the
representations of inputs and the database. Uncertainties can be added in two ways: We
can reject inputs that are uncertain, and we can remove images with high representation
uncertainties from our database to prevent matching them to any input. In the main
paper of Chapter 5, we show that these enhancements decrease the retrieval error, both
on databases the model was trained on (10% reduction each) and on databases where it
gives zero-shot uncertainties (14% and 17% each). This marks low-hanging performance
improvements and paves the way for safer retrieval.

If one is hesitant to reject user queries, one can also react more softly to ambiguous
retrieval inputs. Figure 11 shows how we utilize the representation uncertainty, here
probabilistic embeddings over the latent space from Chapter 3, to flexibly adjust how
many possible matches we return to the user. If an input is clear, like the car in the
top example, we return only a single sample, also a car. If the input is ambiguous,
like in the lower examples, we return multiple matches, spanning images from several
possible classes. This simple way to visualize the uncertainty is concurrently explored
by Upadhyay et al. (2023a) and reminds of the current advances in conformal prediction
(Angelopoulos and Bates, 2022) where one outputs the set of all possible class labels to
cover the true class with high probability. This similarity is no coincidence: Conformal
prediction builds and calibrates these sets on the basis of score functions that indicate the



6.1 applications 45

Query Retrieved Images in 95% Credible Interval

low uncertainty

medium uncertainty

high uncertainty

Figure 11: When a user inputs an image whose representation is uncertain, we retrieve
multiple images that may match the input. The size of the output set depends on
the ambiguity of the input. Here, it is the 95% highest density region of the input’s
probabilistic embedding, learned by MCInfoNCE on CIFAR-10. Figure adapted from the
original paper (Kirchhof et al., 2023a).

uncertainty of every possible event. Our (pretrained) representation uncertainties are such
score functions, enabling future advancements in zero-shot conformal prediction.

Another area that can benefit from our representation uncertainties is active learning.
The most recent approaches (Mindermann et al., 2022; Lahlou et al., 2023) seek samples
that are not learned yet but of high quality. In other words, samples that have a high
epistemic but low aleatoric uncertainty. To this end, they require estimators for aleatoric
uncertainty that are not influenced by epistemic uncertainty. As we have seen in Chapter 5,
our pretrained representation uncertainties are among the first approaches to fulfill these
criteria, simplifying active learning endeavours.

A similar strain of literature is dataset curation and handling noisy training signals (Ortiz-
Jimenez et al., 2023; Marion et al., 2023; Sachdeva et al., 2024; Evans et al., 2024). This
challenge gained new interest with the current paradigm of using web-crawled, uncurated
data to train large models (Schuhmann et al., 2021; Tran et al., 2022). Recent approaches
find that removing low-quality data improves performance. Pretrained representation
uncertainties capture precisely this, inputs with a generally low quality, and can be
computed on the spot even for new data, enabling future use as dataset curators.
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Last, representation uncertainties can be used in any approach that uses representations
to visualize datasets, such as clustering (van der Maaten and Hinton, 2008; McInnes
et al., 2018). We have already seen in Figure 2 how uncertainties enhance these plots to
communicate uncertainties to practitioners, allowing to understand and debug datasets
for more trustworthy machine learning.

6.2 Specialized Uncertainties

Throughout the thesis, the reader may have noted an increasing abstraction of our
uncertainties. Whereas previous approaches commonly define uncertainties as, e.g.,
classification probabilities, Chapters 2 and 3 first abstract uncertainties away from the
classification task and towards uncertainties about representations in general, independent
of the specific task. Chapter 4 generalizes this further by going from probabilistic embed-
dings towards any uncertainty estimator that provides uncertainties about representations.
Last, we settle on a loss-based interpretation of uncertainties. If uncertainties aim to
estimate how wrong we are then the loss quantifies what wrongness precisely means in
the task the practitioner is handling. This is the paradigm that our pretrained uncertainties
use in Chapter 5, with the intention that the pretrained uncertainties will adjust to the
practitioner’s loss once they are finetuned on downstream data.

This shows our main vision: Specializing uncertainties to individual tasks (Franchi et al.,
2022; Mucsányi et al., 2024). This is a pragmatic generalization of the recent efforts
in uncertainty disentanglement. Here, the field is currently moving from one-fits-all
predictive uncertainty values (Gal and Ghahramani, 2016; Lakshminarayanan et al., 2017)
to disentangled aleatoric and epistemic uncertainties (Hüllermeier and Waegeman, 2021;
Valdenegro-Toro and Mori, 2022; Wimmer et al., 2023; Mucsányi et al., 2024). One
unsolved issue in this framework is that epistemic uncertainty remains only vaguely
defined (Der Kiureghian and Ditlevsen, 2009; Jürgens et al., 2024). We expect that a
loss-based view will move uncertainty estimation forward by making it more explicit and
more specialized to the tasks practitioners intend to solve with it.

As examples, aleatoric uncertainty in classification becomes the remaining cross-entropy
loss of the trained classifier. Epistemic uncertainty for outlier detection becomes a 0/1

loss of a binary OOD classification task. Density estimation is predicting a log likelihood
loss. If there are further tasks a practitioner wants to use uncertainties for, they do not
have to be fitted into the epistemic-aleatoric dichotomy, but can be defined as a precise
task to be optimized by the uncertainty module. This makes uncertainty estimation more
pragmatic and more explicitly optimizable since loss prediction is, in essence, just another
regression task. We anticipate that this specialization enabled by abstraction will both
simplify and unify future works on uncertainty estimation.
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6.3 Conclusion

This thesis brought uncertainties in computer vision to the layer of representations. This
has the advantage that they can be pretrained on a large scale and then transferred to
new datasets and tasks. Besides these practical advances, we also explored the theoretical
foundation of uncertainties about latents and how to benchmark them. We compiled
all these theoretical and practical findings into one downloadable model in order to
facilitate uncertainty quantification for researchers inside and, importantly, outside the
field. This demonstrates our vision for the future of uncertainty quantification: We
encourage researchers from inside the field to shape their sophisticated methods and
findings into pragmatic answers to the pragmatic questions practitioners outside the field
face. We expect that this will enable a widespread application of uncertainties, making
trustworthy machine learning the norm.





List of Abbreviations

API Application Programming Interface

AUROC Area Under the Receiver Operating Characteristic, measure

Caltech 101 Caltech 101 dataset (Fei-Fei et al., 2004)

CARS Stanford Cars 196 dataset (Krause et al., 2013)

CE Class Entropy, uncertainty estimator

CIFAR-10 Canadian Institute For Advanced Research dataset (Krizhevsky, 2009)

CIFAR-100 Canadian Institute For Advanced Research dataset (Krizhevsky, 2009)

CUB Caltech-UCSD Birds-200-2011 dataset (Wah et al., 2011)

DTD Decribable Textures dataset (Cimpoi et al., 2014)

ECCV European Conference on Computer Vision

ELK Expected Likelihood Kernel (Jebara and Kondor, 2003)

GPU Graphics Processing Unit

HET-XL Large Heteroscedastic Classifier (Collier et al., 2023)

HIB Hedged Instance Embeddings (Oh et al., 2019)

ICML International Conference on Machine Learning

InfoNCE Info Noise Contrastive Estimation loss (Oord et al., 2018)

Losspred Loss prediction (Kirchhof et al., 2023b)

MCDropout Monte-Carlo Dropout (Gal and Ghahramani, 2016)

MCInfoNCE Monte-Carlo InfoNCE (Kirchhof et al., 2023a)

MLP Multi-layer Perceptron

NeurIPS Neural Information Processing Systems conference

nivMF non-isotropic von Mises-Fisher distribution (Kirchhof et al., 2022)

Oxford Flowers 102 Category Flower dataset (Nilsback and Zisserman, 2008)

Oxford Pets Oxford-IIIT Pet dataset (Parkhi et al., 2012)

PCGrad Projecting Conflicting Gradients (Yu et al., 2020)

ProxyNCA Proxy Noise Contrastive Estimation (Movshovitz-Attias et al., 2017)

R-AUROC Representation AUROC, measure (Kirchhof et al., 2023b)

49



50 list of abbreviations

ResNet Residual Neural Network (He et al., 2016)

RQ Research Question

SNGP Spectral-normalized Neural Gaussian Process (Liu et al., 2020)

SOP Stanford Online Products dataset (Song et al., 2016)

StopGrad Gradient Stopping module

SUN Scene Recognition Benchmark Database (Xiao et al., 2010)

SVHN Street View House Numbers dataset (Netzer et al., 2011)

Treeversity Treeversity dataset, single label (Schmarje et al., 2022)

URL Uncertainty-aware Representation Learning benchmark (Kirchhof et al., 2023b)

ViT Vision Transformer (Dosovitskiy et al., 2021)

vMF von Mises Fisher distribution (Fisher, 1953)

VTAB Visual Task Adaptation Benchmark, dataset collection (Zhai et al., 2020)



List of Figures

1 Images can be inherently ambiguous, making it necessary to quantify their
uncertainty. Both images are from the ImageNet-1k benchmark dataset
(Deng et al., 2009). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Each point is the representation of an Oxford Pets image (Parkhi et al., 2012).
The size of each dot visualizes the uncertainty u(x) of the representation,
calculated by our approach in Chapter 5. This makes it easier to detect
images that are naturally ambiguous (large and transparent). Figure cited
from the original paper (Kirchhof et al., 2024). . . . . . . . . . . . . . . . . . 15

3 Densities of a vMF and a non-isotropic vMF distributions on a three-
dimensional unit-sphere. Purple is a low and yellow a high density. Figure
adapted from the original paper (Kirchhof et al., 2022). . . . . . . . . . . . . 22

4 Probabilistic embeddings (green) lead to better retrieval performance than
deterministic ones (blue). Bars show the standard deviation across five
seeds. Figure adapted from the original paper (Kirchhof et al., 2022). . . . . 23

5 Images are created from unknown latent vectors by a data-generating
process. Deterministic image representations intend to rediscover this
vector (top). When the data-generating process is probabilistic (bottom) and
creates ambiguous images, it loses information about the latent vectors, so
that several ones could have created the image. Probabilistic embeddings
recover this posterior, which we prove for MCInfoNCE. Figure cited from
the original paper (Kirchhof et al., 2023a). . . . . . . . . . . . . . . . . . . . . 26

6 Dots represent all models we train with all approaches, hyperparameters,
and backbones. Models with a higher R-AUROC reflect human uncertain-
ties better (left) and behave better under uncertainty inducing transforms
like cropping (right). This supports the R-AUROC empirically. Figure cited
from the original paper (Kirchhof et al., 2023b). . . . . . . . . . . . . . . . . 33

7 Methods from Chapters 2 and 3, MCInfoNCE, nivMF, and vMF, give among
the best transferable uncertainties. Loss prediction also stands out, which
we further investigate in Chapter 5. Bars indicate minimum and maximum
performance across three seeds. Figure adapted from the original paper
(Kirchhof et al., 2023b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

8 There is a conflict between the uncertainty and the classification objective
when pretraining on ImageNet-1k, deteriorating both performances. A
StopGrad resolves this conflict, enabling stable and scalable training. Figure
cited from the original paper (Kirchhof et al., 2024). . . . . . . . . . . . . . . 38

51



52 list of figures

9 Pretrained uncertainties transfer to various downstream datasets, as mea-
sured by the R-AUROC. Bars indicate minimum and maximum perfor-
mance across three seeds. Figure cited from the original paper (Kirchhof
et al., 2024). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

10 When the model rejects inputs where it predicts a high uncertainty, it can
achieve a high accuracy on the remainder of the data. This abstained
prediction enables deploying models in situations with a high desired
accuracy. Performance of MCInfoNCE trained on CIFAR-10. Figure cited
from the original paper (Kirchhof et al., 2023a). . . . . . . . . . . . . . . . . . 44

11 When a user inputs an image whose representation is uncertain, we retrieve
multiple images that may match the input. The size of the output set
depends on the ambiguity of the input. Here, it is the 95% highest density
region of the input’s probabilistic embedding, learned by MCInfoNCE on
CIFAR-10. Figure adapted from the original paper (Kirchhof et al., 2023a). . 45



Bibliography

Anastasios N. Angelopoulos and Stephen Bates. A gentle introduction to conformal pre-
diction and distribution-free uncertainty quantification. arXiv preprint arXiv:2107.07511,
2022. Cited on page 44.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review
and new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35

(8):1798–1828, 2013. Cited on page 15.

Viktor Bengs, Eyke Hüllermeier, and Willem Waegeman. On second-order scoring rules
for epistemic uncertainty quantification. In International Conference on Machine Learning
(ICML), 2023. Cited on page 17.

José M Bernardo and Adrian FM Smith. Bayesian theory, volume 405. John Wiley & Sons,
2009. Cited on page 16.

Lucas Beyer, Olivier J Hénaff, Alexander Kolesnikov, Xiaohua Zhai, and Aäron van den
Oord. Are we done with ImageNet? arXiv preprint arXiv:2006.07159, 2020. Cited on
pages 13 and 39.

Biagio Brattoli, Joseph Tighe, Fedor Zhdanov, Pietro Perona, and Krzysztof Chalupka.
Rethinking zero-shot video classification: End-to-end training for realistic applications.
In Computer Vision and Pattern Recognition (CVPR), 2020. Cited on page 21.

Giuseppina Carannante, Dimah Dera, Nidhal C Bouaynaya, Ghulam Rasool, and Has-
san M Fathallah-Shaykh. Trustworthy medical segmentation with uncertainty estimation.
arXiv preprint arXiv:2111.05978, 2021. Cited on page 16.

Raghavendra Chalapathy and Sanjay Chawla. Deep learning for anomaly detection: A
survey. arXiv preprint arXiv:1901.03407, 2019. Cited on page 16.

Ning-San Chang and King Sun Fu. A relational database system for images. Technical
Report TR-EE 79-28, 1979. Cited on page 15.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple
framework for contrastive learning of visual representations. In Proceedings of the 37th
International Conference on Machine Learning (ICML), 2020. Cited on page 16.

Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In
Computer Vision and Pattern Recognition (CVPR), 2021. Cited on page 16.

53



54 BIBLIOGRAPHY

Sumit Chopra, Raia Hadsell, and Yann LeCun. Learning a similarity metric discrimina-
tively, with application to face verification. In Computer Vision and Pattern Recognition
(CVPR), 2005. Cited on page 16.

Sanghyuk Chun, Seong Joon Oh, Rafael Sampaio De Rezende, Yannis Kalantidis, and
Diane Larlus. Probabilistic embeddings for cross-modal retrieval. In Conference on
Computer Vision and Pattern Recognition (CVPR), 2021. Cited on page 44.

M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, and A. Vedaldi. Describing textures in the
wild. In Computer Vision and Pattern Recognition (CVPR), 2014. Cited on page 49.

Mark Collier, Rodolphe Jenatton, Basil Mustafa, Neil Houlsby, Jesse Berent, and Ef-
frosyni Kokiopoulou. Massively scaling heteroscedastic classifiers. arXiv preprint
arXiv:2301.12860, 2023. Cited on pages 17, 37, and 49.

Peng Cui, Dan Zhang, Zhijie Deng, Yinpeng Dong, and Jun Zhu. Learning sample
difficulty from pre-trained models for reliable prediction. In Neural Information Processing
Systems (NeurIPS), 2023. Cited on page 17.

Erik Daxberger, Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, Matthias
Bauer, and Philipp Hennig. Laplace redux-effortless bayesian deep learning. Neural
Information Processing Systems (NeurIPS), 2021. Cited on page 16.

Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin
Gilmer, Andreas Peter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin,
et al. Scaling vision transformers to 22 billion parameters. In International Conference on
Machine Learning (ICML), 2023. Cited on page 17.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-
scale hierarchical image database. In Computer Vision and Pattern Recognition (CVPR),
2009. Cited on pages 13, 14, 16, 32, 38, and 51.

Zhijie Deng, Feng Zhou, and Jun Zhu. Accelerated linearized laplace approximation for
bayesian deep learning. Neural Information Processing Systems (NeurIPS), 2022. Cited on
page 16.

Stefan Depeweg, Jose-Miguel Hernandez-Lobato, Finale Doshi-Velez, and Steffen Udluft.
Decomposition of uncertainty in bayesian deep learning for efficient and risk-sensitive
learning. In International Conference on Machine Learning (ICML), 2018. Cited on page 17.

Armen Der Kiureghian and Ove Ditlevsen. Aleatory or epistemic? does it matter?
Structural safety, 31(2):105–112, 2009. Cited on page 46.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain
Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers
for image recognition at scale. In International Conference on Learning Representations
(ICLR), 2021. Cited on pages 32 and 50.



BIBLIOGRAPHY 55

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy, Pierre-
Emmanuel Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. The Faiss library.
arXiv preprint arXiv:2401.08281, 2024. Cited on pages 15 and 21.

Ran El-Yaniv et al. On the foundations of noise-free selective classification. Journal of
Machine Learning Research, 11(5), 2010. Cited on page 43.

Talfan Evans, Shreya Pathak, Hamza Merzic, Jonathan Schwarz, Ryutaro Tanno, and
Olivier J Henaff. Bad students make great teachers: Active learning accelerates large-
scale visual understanding. arXiv preprint arXiv:2312.05328, 2024. Cited on page
45.

Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning generative visual models from few
training examples: An incremental Bayesian approach tested on 101 object categories.
Computer Vision and Pattern Recognition Workshop (CVPRW), 2004. Cited on page 49.

Ronald Aylmer Fisher. Dispersion on a sphere. Proceedings of the Royal Society of London.
Series A. Mathematical and Physical Sciences, 217(1130), 1953. Cited on pages 22 and 50.

Gianni Franchi, Xuanlong Yu, Andrei Bursuc, Angel Tena, Rémi Kazmierczak, Séverine
Dubuisson, Emanuel Aldea, and David Filliat. Muad: Multiple uncertainties for
autonomous driving, a benchmark for multiple uncertainty types and tasks. British
Machine Vision Conference (BMVC), 2022. Cited on pages 16 and 46.

Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian approximation: Representing
model uncertainty in deep learning. In International Conference on Machine Learning
(ICML), 2016. Cited on pages 16, 46, and 49.

Ido Galil, Mohammed Dabbah, and Ran El-Yaniv. A framework for benchmarking
class-out-of-distribution detection and its application to ImageNet. In The Eleventh
International Conference on Learning Representations (ICLR), 2023a. Cited on pages 17

and 32.

Ido Galil, Mohammed Dabbah, and Ran El-Yaniv. What can we learn from the selective
prediction and uncertainty estimation performance of 523 ImageNet classifiers? In
International Conference on Learning Representations (ICLR), 2023b. Cited on page 43.

Sachin Goyal, Ananya Kumar, Sankalp Garg, Zico Kolter, and Aditi Raghunathan. Finetune
like you pretrain: Improved finetuning of zero-shot vision models. In Computer Vision
and Pattern Recognition (CVPR), 2023. Cited on page 15.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond,
Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad
Gheshlaghi Azar, et al. Bootstrap your own latent-a new approach to self-supervised
learning. Neural Information Processing Systems (NeurIPS), 2020. Cited on page 16.



56 BIBLIOGRAPHY

Cornelia Gruber, Patrick Oliver Schenk, Malte Schierholz, Frauke Kreuter, and Göran
Kauermann. Sources of uncertainty in machine learning–a statisticians’ view. arXiv
preprint arXiv:2305.16703, 2023. Cited on page 17.

Varun Gulshan, Lily Peng, Marc Coram, Martin C Stumpe, Derek Wu, Arunacha-
lam Narayanaswamy, Subhashini Venugopalan, Kasumi Widner, Tom Madams, Jorge
Cuadros, et al. Development and validation of a deep learning algorithm for detection
of diabetic retinopathy in retinal fundus photographs. JAMA, 316(22):2402–2410, 2016.
Cited on page 16.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern
neural networks. In International Conference on Machine Learning (ICML), 2017. Cited on
page 17.

Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by learning an
invariant mapping. In Computer Vision and Pattern Recognition (CVPR), 2006. Cited on
page 16.

Manuel Haußmann, Fred A Hamprecht, and Melih Kandemir. Sampling-free variational
inference of bayesian neural networks by variance backpropagation. In Uncertainty in
Artificial Intelligence (UAI), 2020. Cited on page 17.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Computer Vision and Pattern Recognition (CVPR), 2016. Cited on
pages 32 and 50.

Eyke Hüllermeier and Willem Waegeman. Aleatoric and epistemic uncertainty in machine
learning: An introduction to concepts and methods. Machine Learning, 110:457–506,
2021. Cited on pages 28, 39, and 46.

Tony Jebara and Risi Kondor. Bhattacharyya and expected likelihood kernels. In Learning
Theory and Kernel Machines. 2003. Cited on pages 23 and 49.

Mira Jürgens, Nis Meinert, Viktor Bengs, Eyke Hüllermeier, and Willem Waegeman. Is
epistemic uncertainty faithfully represented by evidential deep learning methods? arXiv
preprint arXiv:2402.09056, 2024. Cited on page 46.

Farnaz Khun Jush, Tuan Truong, Steffen Vogler, and Matthias Lenga. Medical image
retrieval using pretrained embeddings. arXiv preprint arXiv:2311.13547, 2023. Cited on
page 15.

Katie Kang, Amrith Setlur, Claire Tomlin, and Sergey Levine. Deep neural networks tend
to extrapolate predictably. arXiv preprint arXiv:2310.00873, 2023. Cited on page 28.

Ivan Karpukhin, Stanislav Dereka, and Sergey Kolesnikov. Probabilistic embeddings
revisited. arXiv preprint arXiv:2202.06768, 2022. Cited on page 17.



BIBLIOGRAPHY 57

Eunji Kim, Dahuin Jung, Sangha Park, Siwon Kim, and Sungroh Yoon. Probabilistic
concept bottleneck models. In International Conference on Machine Learning (ICML), 2023.
Cited on page 17.

Michael Kirchhof, Karsten Roth, Zeynep Akata, and Enkelejda Kasneci. A non-isotropic
probabilistic take on proxy-based deep metric learning. In European Conference on
Computer Vision (ECCV), 2022. Cited on pages 22, 23, 49, and 51.

Michael Kirchhof, Enkelejda Kasneci, and Seong Joon Oh. Probabilistic contrastive
learning recovers the correct aleatoric uncertainty of ambiguous inputs. International
Conference on Machine Learning (ICML), 2023a. Cited on pages 26, 44, 45, 49, 51, and 52.

Michael Kirchhof, Bálint Mucsányi, Seong Joon Oh, and Enkelejda Kasneci. Url: A
representation learning benchmark for transferable uncertainty estimates. Proceedings of
the Neural Information Processing Systems Track on Datasets and Benchmarks, 2023b. Cited
on pages 33, 34, 49, 50, and 51.

Michael Kirchhof, Mark Collier, Seong Joon Oh, and Enkelejda Kasneci. Pretrained visual
uncertainties. arXiv preprint arXiv:2402.16569, 2024. Cited on pages 15, 38, 40, 51,
and 52.

Byungsoo Ko, Geonmo Gu, and Han-Gyu Kim. Learning with memory-based virtual
classes for deep metric learning. In International Conference on Computer Vision (ICCV),
2021. Cited on page 28.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3D object representations for
fine-grained categorization. In Conference on Computer Vision and Pattern Recognition
(CVPR) Workshop, 2013. Cited on pages 24, 39, and 49.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
2009. Cited on page 49.

Alexander Kurz, Katja Hauser, Hendrik Alexander Mehrtens, Eva Krieghoff-Henning,
Achim Hekler, Jakob Nikolas Kather, Stefan Fröhling, Christof von Kalle, and Titus Josef
Brinker. Uncertainty estimation in medical image classification: systematic review. JMIR
Medical Informatics, 10(8):e36427, 2022. Cited on page 16.

Salem Lahlou, Moksh Jain, Hadi Nekoei, Victor I Butoi, Paul Bertin, Jarrid Rector-Brooks,
Maksym Korablyov, and Yoshua Bengio. DEUP: Direct epistemic uncertainty prediction.
Transactions on Machine Learning Research (TMLR), 2023. ISSN 2835-8856. Cited on pages
17 and 45.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable
predictive uncertainty estimation using deep ensembles. Advances in Neural Information
Processing Systems (NeurIPS), 2017. Cited on pages 16 and 46.



58 BIBLIOGRAPHY

Max-Heinrich Laves, Sontje Ihler, Jacob F Fast, Lüder A Kahrs, and Tobias Ortmaier. Well-
calibrated regression uncertainty in medical imaging with deep learning. In Medical
Imaging with Deep Learning, pages 393–412. PMLR, 2020. Cited on pages 17 and 34.

Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework
for detecting out-of-distribution samples and adversarial attacks. Neural Information
Processing Systems (NeurIPS), 2018. Cited on page 17.

Dan Levi, Liran Gispan, Niv Giladi, and Ethan Fetaya. Evaluating and calibrating
uncertainty prediction in regression tasks. Sensors, 22(15):5540, 2022. Cited on page 34.

Shen Li, Jianqing Xu, Xiaqing Xu, Pengcheng Shen, Shaoxin Li, and Bryan Hooi. Spherical
confidence learning for face recognition. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2021. Cited on page 23.

Jeremiah Liu, Zi Lin, Shreyas Padhy, Dustin Tran, Tania Bedrax Weiss, and Balaji Laksh-
minarayanan. Simple and principled uncertainty estimation with deterministic deep
learning via distance awareness. Advances in Neural Information Processing Systems
(NeurIPS), 2020. Cited on page 50.

Zheyuan Liu, Cristian Rodriguez-Opazo, Damien Teney, and Stephen Gould. Image re-
trieval on real-life images with pre-trained vision-and-language models. In International
Conference on Computer Vision (ICCV), 2021. Cited on page 15.

David John Cameron Mackay. Bayesian methods for adaptive models, PhD thesis. California
Institute of Technology, 1992. Cited on page 16.

Kanti V Mardia and Peter E Jupp. Directional statistics. Wiley Series in Probability and
Statistics. John Wiley & Sons, 2009. Cited on page 22.

Max Marion, Ahmet Üstün, Luiza Pozzobon, Alex Wang, Marzieh Fadaee, and Sara
Hooker. When less is more: Investigating data pruning for pretraining llms at scale.
arXiv preprint arXiv:2309.04564, 2023. Cited on page 45.

Leland McInnes, John Healy, Nathaniel Saul, and Lukas Großberger. UMAP: Uniform
manifold approximation and projection. Journal of Open Source Software, 3(29):861, 2018.
doi: 10.21105/joss.00861. URL https://doi.org/10.21105/joss.00861. Cited on page
46.

Sören Mindermann, Jan M Brauner, Muhammed T Razzak, Mrinank Sharma, Andreas
Kirsch, Winnie Xu, Benedikt Höltgen, Aidan N Gomez, Adrien Morisot, Sebastian
Farquhar, et al. Prioritized training on points that are learnable, worth learning, and
not yet learnt. In International Conference on Machine Learning (ICML), 2022. Cited on
page 45.

Yair Movshovitz-Attias, Alexander Toshev, Thomas K Leung, Sergey Ioffe, and Saurabh
Singh. No fuss distance metric learning using proxies. In International Conference on
Computer Vision (ICCV), 2017. Cited on pages 22 and 49.

https://doi.org/10.21105/joss.00861


BIBLIOGRAPHY 59

Bálint Mucsányi, Michael Kirchhof, Elisa Nguyen, Alexander Rubinstein, and Seong Joon
Oh. Trustworthy machine learning. arXiv preprint arXiv:2310.08215, 2023. Cited on
page 14.

Bálint Mucsányi, Michael Kirchhof, and Seong Joon Oh. Benchmarking uncertainty
disentanglement: Specialized uncertainties for specialized tasks. arXiv preprint
arXiv:2402.19460, 2024. Cited on pages 17, 19, 40, 41, and 46.

Jishnu Mukhoti, Andreas Kirsch, Joost van Amersfoort, Philip HS Torr, and Yarin Gal.
Deep deterministic uncertainty: A new simple baseline. In Computer Vision and Pattern
Recognition (CVPR), 2023. Cited on page 17.

Hiroki Nakamura, Masashi Okada, and Tadahiro Taniguchi. Representation uncertainty in
self-supervised learning as variational inference. In International Conference on Computer
Vision (ICCV), 2023. Cited on page 17.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng.
Reading digits in natural images with unsupervised feature learning. 2011. Cited on
page 50.

Vu-Linh Nguyen, Mohammad Hossein Shaker, and Eyke Hüllermeier. How to measure
uncertainty in uncertainty sampling for active learning. Machine Learning, 111(1):89–122,
2022. Cited on page 16.

M-E. Nilsback and A. Zisserman. Automated flower classification over a large number
of classes. In Proceedings of the Indian Conference on Computer Vision, Graphics and Image
Processing, 2008. Cited on page 49.

Seong Joon Oh, Andrew C. Gallagher, Kevin P. Murphy, Florian Schroff, Jiyan Pan, and
Joseph Roth. Modeling uncertainty with hedged instance embeddings. In International
Conference on Learning Representations (ICLR), 2019. Cited on pages 17, 28, and 49.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive
predictive coding. arXiv preprint arXiv:1807.03748, 2018. Cited on pages 27 and 49.

Guillermo Ortiz-Jimenez, Mark Collier, Anant Nawalgaria, Alexander Nicholas D’Amour,
Jesse Berent, Rodolphe Jenatton, and Efi Kokiopoulou. When does privileged informa-
tion explain away label noise? In International Conference on Machine Learning (ICML),
2023. Cited on page 45.

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, David Sculley, Sebastian Nowozin,
Joshua Dillon, Balaji Lakshminarayanan, and Jasper Snoek. Can you trust your model’s
uncertainty? Evaluating predictive uncertainty under dataset shift. Neural Information
Processing Systems (NeurIPS), 2019. Cited on pages 17 and 32.

Jaewoo Park, Jacky Chen Long Chai, Jaeho Yoon, and Andrew Beng Jin Teoh. Under-
standing the feature norm for out-of-distribution detection. In International Conference
on Computer Vision (ICCV), 2023. Cited on page 17.



60 BIBLIOGRAPHY

O. M. Parkhi, A. Vedaldi, A. Zisserman, and C. V. Jawahar. Cats and dogs. In Computer
Vision and Pattern Recognition (CVPR), 2012. Cited on pages 15, 49, and 51.

Joshua C Peterson, Ruairidh M Battleday, Thomas L Griffiths, and Olga Russakovsky.
Human uncertainty makes classification more robust. In International Conference on
Computer Vision (CVPR), pages 9617–9626, 2019. Cited on page 28.

Janis Postels, Mattia Segù, Tao Sun, Luca Daniel Sieber, Luc Van Gool, Fisher Yu, and Fed-
erico Tombari. On the practicality of deterministic epistemic uncertainty. In International
Conference on Machine Learning (ICML), 2022. Cited on page 17.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini
Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervision. In International Conference
on Machine Learning (ICML), 2021. Cited on page 16.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford,
Mark Chen, and Ilya Sutskever. Zero-shot text-to-image generation. In International
Conference on Machine Learning (ICML), 2021. Cited on page 15.

Rajeev Ranjan, Carlos D Castillo, and Rama Chellappa. L2-constrained softmax loss for
discriminative face verification. arXiv preprint arXiv:1703.09507, 2017. Cited on pages
21 and 28.

Patrik Reizinger, Yash Sharma, Matthias Bethge, Bernhard Schölkopf, Ferenc Huszár, and
Wieland Brendel. Jacobian-based causal discovery with nonlinear ica. Transactions on
Machine Learning Research (TMLR), 2022. Cited on page 18.

Hippolyt Ritter, Aleksandar Botev, and David Barber. A scalable laplace approximation
for neural networks. In International Conference on Representation Learning (ICLR), 2018.
Cited on page 16.

Karsten Roth, Timo Milbich, Samarth Sinha, Prateek Gupta, Bjorn Ommer, and Joseph Paul
Cohen. Revisiting training strategies and generalization performance in deep metric
learning. In International Conference on Machine Learning (ICML), 2020. Cited on page 21.

Noveen Sachdeva, Benjamin Coleman, Wang-Cheng Kang, Jianmo Ni, Lichan Hong,
Ed H Chi, James Caverlee, Julian McAuley, and Derek Zhiyuan Cheng. How to train
data-efficient llms. arXiv preprint arXiv:2402.09668, 2024. Cited on page 45.

Lars Schmarje, Vasco Grossmann, Claudius Zelenka, Sabine Dippel, Rainer Kiko, Mariusz
Oszust, Matti Pastell, Jenny Stracke, Anna Valros, Nina Volkmann, et al. Is one
annotation enough? A data-centric image classification benchmark for noisy and
ambiguous label estimation. arXiv preprint arXiv:2207.06214, 2022. Cited on pages 13,
29, 33, and 50.



BIBLIOGRAPHY 61

Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding
for face recognition and clustering. In Computer Vision and Pattern Recognition (CVPR),
2015. Cited on page 16.

Christoph Schuhmann, Richard Vencu, Romain Beaumont, Robert Kaczmarczyk, Clayton
Mullis, Aarush Katta, Theo Coombes, Jenia Jitsev, and Aran Komatsuzaki. Laion-400m:
Open dataset of clip-filtered 400 million image-text pairs. arXiv preprint arXiv:2111.02114,
2021. Cited on page 45.

Tyler R Scott, Karl Ridgeway, and Michael C Mozer. Stochastic prototype embeddings. In-
ternational Conference on Machine Learning (ICML) Workshop on Uncertainty and Robustness
in Deep Learning, 2019. Cited on page 17.

Tyler R Scott, Andrew C Gallagher, and Michael C Mozer. von Mises-Fisher loss: An
exploration of embedding geometries for supervised learning. In International Conference
on Computer Vision (ICCV), 2021. Cited on pages 21 and 28.

Burr Settles. Active learning literature survey. University of Wisconsin-Madison Department
of Computer Sciences, 2009. Cited on page 16.

Kihyuk Sohn. Improved deep metric learning with multi-class n-pair loss objective. Neural
Information Processing Systems (NeurIPS), 2016. Cited on page 21.

Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio Savarese. Deep metric learning via
lifted structured feature embedding. In Computer Vision and Pattern Recognition (CVPR),
2016. Cited on pages 39 and 50.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Dropout: A simple way to prevent neural networks from overfitting. Journal of
Machine Learning Research (JMLR), 15(1):1929–1958, 2014. Cited on page 17.

Eu Wern Teh, Terrance DeVries, and Graham W Taylor. ProxyNCA++: Revisiting and
revitalizing proxy neighborhood component analysis. In European Conference on Computer
Vision (ECCV), pages 448–464, 2020. Cited on page 22.

Dustin Tran, Jeremiah Liu, Michael W Dusenberry, Du Phan, Mark Collier, Jie Ren, Kehang
Han, Zi Wang, Zelda Mariet, Huiyi Hu, et al. Plex: Towards reliability using pretrained
large model extensions. arXiv preprint arXiv:2207.07411, 2022. Cited on pages 17, 43,
and 45.

Uddeshya Upadhyay, Shyamgopal Karthik, Massimiliano Mancini, and Zeynep Akata.
ProbVLM: Probabilistic adapter for frozen vison-language models. In International
Conference on Computer Vision (ICCV), 2023a. Cited on page 44.

Uddeshya Upadhyay, Jae Myung Kim, Cordelia Schmidt, Bernhard Schölkopf, and Zeynep
Akata. Posterior annealing: Fast calibrated uncertainty for regression. arXiv preprint
arXiv:2302.11012, 2023b. Cited on page 34.



62 BIBLIOGRAPHY

Matias Valdenegro-Toro and Daniel Saromo Mori. A deeper look into aleatoric and
epistemic uncertainty disentanglement. In Computer Vision and Pattern Recognition
Workshops (CVPRW), 2022. Cited on pages 17 and 46.

Joost Van Amersfoort, Lewis Smith, Yee Whye Teh, and Yarin Gal. Uncertainty estimation
using a single deep deterministic neural network. In International Conference on Machine
Learning (ICML), 2020. Cited on page 17.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of
Machine Learning Research (JMLR), 9(86):2579–2605, 2008. Cited on page 46.

C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The Caltech-UCSD birds-200-
2011 dataset. Technical Report CNS-TR-2011-001, California Institute of Technology,
2011. Cited on pages 24, 39, and 49.

Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. A survey of transfer learning.
Journal of Big data, 3(1):1–40, 2016. Cited on page 15.

Ross Wightman. PyTorch image models. GitHub repository, 2019. doi: 10.5281/zenodo.441

4861. Cited on page 32.

Lisa Wimmer, Yusuf Sale, Paul Hofman, Bernd Bischl, and Eyke Hüllermeier. Quantifying
aleatoric and epistemic uncertainty in machine learning: Are conditional entropy and
mutual information appropriate measures? In Uncertainty in Artificial Intelligence (UAI),
2023. Cited on pages 17, 19, 40, and 46.

J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba. Sun database: Large-scale scene
recognition from abbey to zoo. In Conference on Computer Vision and Pattern Recognition
(CVPR), 2010. Cited on page 50.

Donggeun Yoo and In So Kweon. Learning loss for active learning. In Conference on
Computer Vision and Pattern Recognition (CVPR), 2019. Cited on pages 17, 34, and 38.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea
Finn. Gradient surgery for multi-task learning. Neural Information Processing Systems
(NeurIPS), 2020. Cited on pages 38 and 49.

Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov, Pierre Ruyssen, Carlos Riquelme,
Mario Lucic, Josip Djolonga, Andre Susano Pinto, Maxim Neumann, Alexey Dosovitskiy,
Lucas Beyer, Olivier Bachem, Michael Tschannen, Marcin Michalski, Olivier Bousquet,
Sylvain Gelly, and Neil Houlsby. A large-scale study of representation learning with
the visual task adaptation benchmark. arXiv preprint arXiv:1910.04867, 2020. Cited on
pages 39 and 50.

Roland S. Zimmermann, Yash Sharma, Steffen Schneider, Matthias Bethge, and Wieland
Brendel. Contrastive learning inverts the data generating process. In Proceedings of the
38th International Conference on Machine Learning (ICML), 2021. Cited on pages 18, 25,
26, and 28.



AA non-isotropic probabilistic take on

proxy-based deep metric learning

This appendix contains the full paper and appendix discussed in Chapter 2, reproduced
with permission.

Michael Kirchhof, Karsten Roth, Zeynep Akata, and Enkelejda Kasneci. A non-isotropic
probabilistic take on proxy-based deep metric learning, 2022. First published in: Avidan,
S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV
2022. ECCV 2022. Lecture Notes in Computer Science, vol 13686, pp 435–454, by Springer
Nature. DOI: https://doi.org/10.1007/978-3-031-19809-0_25. Reproduced with
permission from Springer Nature.

63

https://doi.org/10.1007/978-3-031-19809-0_25


A Non-isotropic Probabilistic Take

on Proxy-based Deep Metric Learning

Michael Kirchhof(B) , Karsten Roth , Zeynep Akata ,
and Enkelejda Kasneci
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Abstract. Proxy-based Deep Metric Learning (DML) learns deep rep-
resentations by embedding images close to their class representatives
(proxies), commonly with respect to the angle between them. However,
this disregards the embedding norm, which can carry additional bene-
cial context such as class- or image-intrinsic uncertainty. In addition,
proxy-based DML struggles to learn class-internal structures. To address
both issues at once, we introduce non-isotropic probabilistic proxy-based
DML. We model images as directional von Mises-Fisher (vMF) distri-
butions on the hypersphere that can reect image-intrinsic uncertain-
ties. Further, we derive non-isotropic von Mises-Fisher (nivMF) distri-
butions for class proxies to better represent complex class-specic vari-
ances. To measure the proxy-to-image distance between these models, we
develop and investigate multiple distribution-to-point and distribution-
to-distribution metrics. Each framework choice is motivated by a set of
ablational studies, which showcase benecial properties of our probabilis-
tic approach to proxy-based DML, such as uncertainty-awareness, better
behaved gradients during training, and overall improved generalization
performance. The latter is especially reected in the competitive perfor-
mance on the standard DML benchmarks, where our approach compares
favourably, suggesting that existing proxy-based DML can signicantly
benet from a more probabilistic treatment. Code is available at http://
github.com/ExplainableML/Probabilistic Deep Metric Learning.

Keywords: Deep metric learning · von Mises-Fisher · Non-isotropy ·
Probablistic embeddings · Uncertainty

1 Introduction

Understanding and encoding visual similarity is a key concept that drives appli-
cations ranging from image (video) retrieval [3,27,60,65,70] to clustering [1] and
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Fig. 1. Class proxy distributions (blue (Color gure online)) and image distributions
(red) embedded on the 3D unit sphere. The central proxy has a non-isotropic variance,
so it can represent the high variance in body color between male (left) and female
(right) cardinals and the low variance in their beak shape (top to bottom). Ambiguous
images (e.g. middle left) have higher variance than images that clearly show class-
discriminating features (top left, middle right). Best viewed in color.

face re-identication [9,20,33,56]. Most commonly, approaches leverage Deep
Metric Learning (DML) [40,52,56,60,70] to reformulate visual similarity learn-
ing into a surrogate, contrastive representation learning problem: Here, a deep
network is tasked to embed images such that a simple predened distance metric
over pairs of embeddings represents their actual semantic relations. Similar con-
trastive learning is used for representation learning tasks s.a. supervised image
classication [25] or self-supervised learning [5,18]. Common DML approaches
are formulated as ranking tasks over data tuples (e.g. pairs [15], triplets [56] or
quadruplets [6]) of similar and dissimilar samples. Unfortunately, the complexity
of sampling such tuples grows exponentially with the tuples size [70]. This has
motivated recent advances in DML to focus on proxy-based approaches, where
the similar samples are summarized into learnable proxy representations [40,47]
against which the sample embeddings are contrasted.

While this allows for fast convergence and reliable generalization, drawbacks
may arise both in the treatment of proxies and samples: Firstly, the determin-
istic treatment of sample representations does not oer any degrees of freedom
to address ambiguities and uncertainty (e.g., an image of a bird covered by
branches). Secondly, isotropic distance scores between proxy-sample pairs (e.g.,
cosine similarity) provide only limited tools for the network to derive the simi-
larity of samples within a class, as the distance to each proxy alone is insucient
to resolve relative sample placements around a proxy. This hinders class-specic
variance and substructures to be successfully accounted for, which have been
shown to notably benet downstream generalization performance [37,52].

To address these issues, we propose a probabilistic interpretation of proxy-
based DML. Driven by the fact that modern DML consistently operates on
hyperspherical (i.e., normalized) representations [52,70], we derive hyperspheri-
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cal von-Mises Fisher (vMF) distributions for each sample. A sample embedding’s
direction controls the placement on the hypersphere, and therefore its semantic
content, and its norm parametrizes the certainty of the distribution. In con-
junction, we also treat class proxies probabilistically, but through non-isotropic

vMF distributions. This enforces the distributional prior over each class proxy to
explicitly account for dierent, non-isotropic distributions, capturing more com-
plex class-specic sample distributions (c.f. Figure 1). As this moves the DML
training from point-based to distributional comparisons, we merge both com-
ponents into a sound setup by motivating distribution-to-distribution matching
metrics based on probabilistic product kernels. Our full framework is supported
through an extensive set of derivations and experimental ablations that showcase
and support how the extension to probabilistic proxy-based DML oers signif-
icant improvements, with competitive performance across the standard DML
benchmarks – CUB200-2011 [64], CARS196 [30], and Stanford Online Products
[42] – even when compared to much more complex training methods.

Overall, our contributions can be summarized as: (1) We propose and derive
a novel probabilistic interpretation of proxy-based DML to account for sample
and class ambiguities by reformulating the standard proxy-based metric learn-
ing approach to a distributional one on the hypersphere. (2) We extend the
vMF model to a non-isotropical one for each class proxy to better incorporate
and address intra-class substructures for better generalization. (3) We introduce
various distribution-to-distribution metrics for DML and contrast them to tradi-
tional point-to-point metrics. (4) We support our proposed framework through
various derivational and experimental ablations showcasing how a distributional
treatment can positively impact the learned representation spaces. (5) Finally,
we benchmark against standard DML approaches and provide further signicant
experimental support for our probabilistic approach to proxy-based DML.

2 Related Work

Deep Metric Learning comprises several conceptually dierent approaches.
Firstly, one can dene ranking tasks over data tuples such as pairs [15,70], triplets
[56], quadruplets [6] or higher-order variants [42,60,67]. An underlying network
then learns to solve each tuple presented by learning a representation space in
which distances between embeddings correctly reect their respective seman-
tics/labelling. However, as the sizes of presented tuples increase, so does the
tuple space each ranking task is sampled from, resulting in notable redundancy
and impacted convergence behaviour [52,56,70]. As a result, a secondary branch
evolved focusing on heuristics which target ranking tuples fullling a set of pre-
dened [56,67,70,71] or learned [16,50] criteria. In a similar vein, DML research
has also tried to address the sampling complexity issue through the replacement
of tuple components with learned concept representations denoted as proxies,
with some approaches leveraging proxies in a classication-style setting [9,73] or
in a ranking fashion, where each sample is contrasted against a respective proxy
[26,40,47,63]. Finally, benets have also been found in orthogonal extensions and
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fundamental improvements to the general DML training pipeline, through vari-
ous dierent approaches such as the usage of adversarial training [10], synthetic
samples [32,75], higher-order or curvilinear metric learning [4,21], feature mining
for ranking [37,38,49] or proxy-based [54] approaches, a breakdown of the overall
metric space into subspaces [43,44,55], orthogonal modalities [53] or knowledge
distillation [51]. Our proposed probabilistic proxy-based DML falls into this line
of work, but is orthogonal to these other approaches, as these extensions can
be applied in a method-agnostic fashion. In particular, we extend proxy-based
DML by specically accounting for sample and class ambiguity through a distri-
butional treatment of samples and proxies, and by utilizing non-isotropic proxy
distributions to encourage more complex intra-class distributions around each
proxy, which has been shown to be benecial for generalization [39,52,54].

Probabilistic Embeddings. Various approaches to DML can already be
framed from a more probabilistic standpoint, where softmax-based approaches
on the basis of cosine similarities [9,63,73] can be seen as analytical class pos-
teriors if each class assumes a von Mises-Fisher (vMF) distribution [45,74].
While these methods implicitly model classes as vMFs, probabilistic embed-
ding approaches further model each sample as a distribution in the embedding
space [31,57,58]. This allows the model to express uncertainty when images are
ambiguous. Recent works argue that this ambiguity is captured in the image
embedding’s norm [31,48,57]: [57] argues that the embedding of an image that
shows many class-discriminative features of one class consists of several vectors
that all point in the same direction, resulting in a higher norm. On this basis,
[31,57] pioneered the use of embedding direction and norm to model each image
as a vMF distribution, in particular for supervised classication. Utilizing vMF
distributions, we are the rst to introduce a full probabilistic proxy-based DML
framework, yielding distribution-to-distribution metrics. Additionally, we pro-
pose a non-isotropic vMF for proxy distributions, which allows us to represent
richer class structures in the embedding space benecial to generalization [37,52].

3 Non-isotropic Probabilistic Proxy-based DML

3.1 A Probabilistic Interpretation of Proxy-based DML

In this section, we extend the common DML framework to a probabilistic one.
Fundamentally, DML aims to nd embedding functions e : X → E from image
X ⊂ R

H×W×3 to M -dimensional metric embedding spaces E ⊂ R
M such that

a distance function d : E × E → R between embeddings z1 = e(x1) and
z2 = e(x2) of images x1, x2 ∈ X reects the semantic relation between them.
The embedding space E is chosen to be the M -dimensional unit hypersphere
E = SM−1, i.e. z = 1. While an euclidean E might appear more natural, recent
works in DML [26,51,52,67,70] and other contrastive learning domains like self-
supervised learning [5,8,18,66] have seen signicant benets in a directional
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treatment through normalization of embeddings to the unit hypersphere. This
can in parts be attributed to better scaling with increased embedding dimensions
[68] and semantic information being mostly directionally encoded [48]. To learn
the respective embedding space E , DML commonly employs ranking objectives
over sample tuples. Based on the class assignments for each sample, an embed-
ding network is tasked to minimize distances between same-class samples while
maximizing them when classes dier. More recently, proxy-based approaches
[26,40,47,63] directly model the class assignments by introducing class repre-
sentatives during training – the proxies p ∈ SM−1. These are contrasted against
the sample embeddings e(x) = z using a NCA-like [14] formulation (ProxyNCA,
[40]), which was slightly modied by [63] as a softmax-loss

LNCA++ = log
exp(−d(p∗, z)/t)

C
c=1 exp(−d(pc, z)/t)

. (1)

Here, p∗ denotes the ground-truth proxy associated with z, t a temperature,
and d a distance metric, most commonly the negative cosine similarity d = −s
with s(pc, z) = (pcz)/(pcz). This implies a problematic assumption: Since
only angles between samples and proxies are leveraged, class-specic distribution
variances around each proxy cannot be accounted for. Second, the deterministic
underlying network e induces a Dirac delta distribution over sample represen-
tations [59]. This treats all the input data the same regardless of the level of
ambiguity, not accounting for sample-specic uncertainties.

Therefore, we suggest to represent samples and proxies as random variables
Z and P with densities ζ and ρ on SM−1, which allows both samples and proxies
to carry uncertainty context to address sample ambiguity while encouraging to
account for more complex class distributions. This converts the above loss to

L = log
exp(−d(ρ∗, ζ)/t)

C
c=1 exp(−d(ρc, ζ)/t)

. (2)

Below in Sect. 3.2, we discuss how precisely ρ and ζ are parametrized, and in
Sect. 3.3, we nd a d(·, ·) suitable for distribution-to-distribution matching .

3.2 Probabilistic Sample and Proxy Representations

Sample Representations. A common distribution on SM−1 is the von Mises-
Fisher (vMF) distribution [13,35,79]. It parametrizes the sample distribution ζ

by a direction vector μz ∈ SM−1 that points towards the mode of the distribution
and a concentration parameter κz ∈ R≥0 that controls the spread around the
mode, where a higher κz yields a sharper distribution. The density ζ of a vMF-
distributed sample Z ∼ vMF(μz,κz) at a point z̃ ∈ SM−1 is

ζ(z̃) = CM (κz) exp (κz s(z̃,μz)) . (3)

CM is the normalizing function which we approximate in high-dimensions
(see Supp. ??). The advantage of the vMF is a duality to the un-normalized
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image embeddings z = e(x) ∈ R
M : The natural parameter of the vMF is

νz = κzμz ∈ R
M , such that if we set μz = z

z and κz = z, the embed-

ding norm gives the vMF concentration without needing to explicitly predict it
(as necessary for normal distribution [7,58]). This is further motivated by recent
ndings indicating that CNNs encode the amount of visible class discriminative
features in the norm of the embedding (e.g. [57]). We validate this assumption
in Sect. 4.4.

Fig. 2. Densities of (a) vMF and (b) non-isotropic vMF distributions on S
2. The

density is proportional to the color gradient from violet (zero) to yellow (high).

Proxy Representations. It is possible to analogously treat the proxy distri-
butions ρ as vMF distributions with parameters νρ = κρμρ. However, a limiting
factor owed to the simplicity of the vMF is its isotropy: The vMF is equivariant
in all directions as shown in Fig. 2a. Proxies, however, need to account for more
complex class distributions, i.e., non-isotropic ones (c.f. Figure 2b). Generalized
families of vMF distributions, such as Fisher-Bingham or Kent distributions
[24,35,36], are able to capture non-isotropy. However, they use covariance matri-
ces with a quadratic number of parameters and constraints on their eigenvectors.
This complicates their training via gradient descent, especially in high dimen-
sions. Hence, we propose a low-parameter vMF extension called non-isotropic
von Mises-Fisher distribution (nivMF). Just like the vMF, the M -dimensional
nivMF of a proxy p is parametrized by a direction μp ∈ SM−1, but its con-
centration is described by a concentration matrix Kp ∈ R

(M×M). To reduce its
parameters, we assume Kp = diag(κp) = diag(κp,1, . . . ,κp,M ) to be a diagonal
matrix where κp,m > 0,m = 1, . . . ,M, gives the concentration per dimension.
They are treated as learnable parameters (see Supp.??). Then, we dene the den-
sity ρ of a nivMF distributed proxy P ∼ nivMF(μp,Kp) at a point z̃ ∈ SM−1

as
ρ = fP (z̃) := CM (Kpμp)D(Kp) exp (Kpμp s(Kpz̃, Kpμp)) . (4)
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with vMF normalizer CM , and D approximating an additional normalizing con-
stant (see Supp. ??). Intuitively, the nivMF is obtained from a vMF by a change-
of-variable transformation: The unit sphere is stretched into an ellipsoid with axis
lengths κm,m = 1, . . . ,M, before the angle to the mode μp is measured. Thus,
distances of z̃ to μp along dimensions with high concentrations are emphasized
and distances along dimensions with low concentrations are weighted less. In
eect, the M -dim Kp is projected onto the (M − 1)-dim tangential plane of μp

and controls the density’s spherical shape (see Fig. 2b). The remaining concen-
tration projected on the μp-axis, i.e., Kpμp, controls the density’s peakedness,
analogously to the κ parameter from a standard vMF. Thus, when Kp = cIM is
the identity matrix scaled by some c > 0, the nivMF simplies to a vMF (up to
a constant due to an approximation, see Supp. ??).

3.3 Comparing Distributions Instead of Points

As proxies and images are no longer modeled as points but as distributions, we
present several distribution-to-distribution metrics (in the sense of distance func-
tions d in DML – formally, they are no metrics as they don’t fulll the triangle
inequality) and contrast them to traditional distribution-to-point metrics.

Distribution-to-Distribution Metrics. Probability product kernels (PPK)
[22] are a family of metrics to compare two distributions ρ and ζ by the product
of their densities. One member of this family is the expected likelihood kernel
(or mutual likelihood score [58]). Although there is no analytical solution for
nivMFs, we can derive a Monte-Carlo approximation

dEL-nivMF(ρ, ζ) := − log



E

ρ(a)dζ(a)



≈ − log

⎛

⎜

⎜

⎝

1

N



i=1,...,N
zi∼ζ

ρ(zi)

⎞

⎟

⎟

⎠

, (5)

where N is the number of samples. Similar to [57], we empirically found that a
low number of samples (N = 5) is sucient. We use [8] to sample from ζ.

The expected likelihood kernel is advantageous since it is easily Monte-Carlo
approximated, but there are other distribution-to-distribution metrics we would
like to survey. Hence, we derive them under a vMF assumption for ρ, where they
have analytical solutions (see Supp. ??). Namely, these are an analogous expected
likelihood kernel dEL-vMF, a related PPK kernel dB-vMF, and a Kullback-Leibler
distance dKL-vMF. All three implicitly use the norm of the image embeddings in
their calculations to respect the ambiguity, but dier in performance (see Sect. 4.3).

Distribution-to-point Metrics. Classical metrics like the cosine distance of
the loss in Eq. 1 implicitly assume a distribution for each proxy and evaluate
its log-likelihood at each sample. Hence, we will refer to them as distribution-
to-point metrics. E.g., the cosine metric used in Eq. 1 is equivalent to the log-
likelihood of the normalized sample embedding under vMF-distributed prox-
ies with equal concentration values [17], i.e., dCos(ρ, ζ) := −s(μp,μz) =
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Fig. 3. Distances of a sample embedding to a vMF-distributed proxy with norm κp =
10. (a) and (b) treat the sample as a point and (c) as a vMF distribution.

− log(ρ(μz)). Another common example is the L2-distance dL2(ρ, ζ) := (νp −
νz)

2 = −log(ρ(νz)) which is obtained by an equivariance normal distribution
assumption for ρ. We analogously dene dnivMF(ρ, ζ) := −log(ρ(μz)) under a
nivMF assumption for ρ to benchmark it against the dEL-nivMF distance.

3.4 Probabilistic Proxy-based Deep Metric Learning

Utilizing distributional proxies ρ, distributional sample presentations ζ and the
Monte-Carlo approximated Expected Likelihood Kernel dEL-nivMF(ρ, ζ) we can
ll in Eq. 2 and dene the probabilistic extension to proxy-based DML, precisely
of the basic ProxyNCA ( [63]), as

L
EL-nivMF
NCA++ = log

exp(−dEL-nivMF(ρ
∗, ζ)/t)

C
c=1 exp(−dEL-nivMF(ρc, ζ)/t)

. (6)

While this can be used as standalone loss, it can also probabilistically enhance
other proxy-based objectives LProxy-DML, such as ProxyAnchor [26]. For easy
usage in practice, we thus also propose using it as a regularizer via

L
NCA++
joint = L

EL-nivMF
NCA++ (ρ, ζ) + ω · LProxy-DML(μρ,μζ) (7)

with regularization scale ω. Crucially, μρ and μζ of the proxy and sample dis-
tributions are shared parameters with the non-probabilistic objective’s proxies.
This ensures alignment between the two learned representations spaces. The
scaling ω balances the orthogonal benets of the two approaches: An increas-
ing ω highlights the non-probabilistic objective that encourages a better global
alignment of distribution modes, and a decreasing ω yields a continuously more
distributional treatment. For the remainder of this work, we use EL-nivMF for
the standalone probabilistic extension of ProxyNCA (Eq. 6), and PANC+EL-
nivMF for the probabilistically regularized ProxyAnchor (Eq. 7).

3.5 How Uncertainty-awareness Impacts Training

Before the experimental evaluation, we provide an insight into how incorporating
uncertainty into the training benets it. For this, we take a closer look at the
norms of sample embeddings that, by duality, yield the concentration κz of ζ.
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Uncertainty as Sample-wise Temperature. Fig. 3 displays two distri-
bution-to-point and one distribution-to-distribution metric with regard to the
dierence in norms and directions. We use the isotropic dB-vMF as a represen-
tative for distribution-to-distribution metrics since it has an analytical solution.
While dCos ignores the dierence in norms, dL2 and the similar, yet smoother,
dB-vMF incorporate it as an sample-wise temperature: The larger the norm of the
sample gets, the steeper the metrics rise with increasing cosine distance. Thus,
when comparing a sample to several proxies of roughly the same norm, their
distances to the sample will be more uniform when the sample embedding norm
is low and become more contrasted when it is high. In other words, ambigu-
ous images produce more similar logits across all proxies and thus atter class
posterior distributions whereas highly certain images produce sharp posteriors.

Uncertainty as Gradients Scale. κz has another inuence on the training:
Dierentiating the losses LCos

NCA++ and LL2
NCA++, obtained when using the norm-

agnostic dCos or the norm-aware dL2 as distance functions in Eq. 1, w.r.t. the
cosine similarity between μz and μp (as in [26]) reveals (see Supp. ??)

δLCos
NCA++

δ cos(μp,μz)
=

⎧

⎨

⎩

1
t



−1 + exp(−dCos(ρ
∗,ζ)/t)

∑
C
c=1 exp(−dCos(ρc,ζ)/t)



if p = p∗

1
t

exp(−dCos(ρ
∗,ζ)/t)

∑
C
c=1 exp(−dCos(ρc,ζ)/t)

else
(8)

δLL2
NCA++

δ cos(μp,μz)
=

⎧

⎨

⎩

2κpκz

t



−1 + exp(−dL2(ρ
∗,ζ)/t)

∑
C
c=1 exp(−dL2(ρc,ζ)/t)



if p = p∗

2κpκz

t
exp(−dL2(ρ

∗,ζ)/t)
∑

C
c=1 exp(−dL2(ρc,ζ)/t)

else
, (9)

where p∗ denotes the ground-truth class. Besides the sample-wise tempera-
ture in dL2, the gradients dier in that the gradient of LL2

NCA++ scales propor-
tionally to κz. This means that in batch-wise gradient descent, samples with a
high embedding norm are pulled towards ground-truth proxies and pushed away
from others stronger than samples with low norm. In other words, the impact
of an image on the structuring process of the embedding space depends on its
ambiguity. This holds similarly for the distribution-to-distribution metrics, but is
harder to derive than for dL2. This analysis unveils that using the Euclidean dL2
distance is adequate during training albeit switching to the hyperspherical dCos

at retrieval-time, as it can be seen as a simple approximation to the uncertainty-
aware training of hyperspherical distribution-to-distribution metrics.

4 Experiments

We now detail the experiments (Sect. 4.1) that benchmark our method
(Sect. 4.2), before surveying dierent distr.-to-distr. metrics (Sect. 4.3) and the
role of the norm (Sect. 4.4).
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4.1 Experimental Details

Implementations. All experiments use PyTorch [46]. We follow standard DML
protocols by leveraging ImageNet-pretrained ResNet50 [19] and Inception-V1
networks with Batch-Normalization [62] as encoders. Their weights are taken
from torchvision [34] and timm [69]. To further ensure standardized training, we
built upon the code and standardized DML protocols proposed in [52], using the
Adam optimizer [28], a learning rate of 10−5 and weight decay of 4 ·10−3. In the
more open state-of-the-art comparison (Table 2), we additionally use step-wise
learning rate scheduling. To ensure comparability and access to fast similarity
search methods, all test-time retrieval uses cosine distances. To sample from
vMF-distributions, we make use of [8] and respective implementations. Further
details on our method and hyperparameters are provided in Supp. ??. All exper-
iments were run on NVIDIA 2080Ti GPUs with 12GB VRAM.
Datasets. We benchmark on three standard datasets: CUB200-2011 [64] (has a
100/100 split of train and test bird classes with 11,788 images in total), CARS196
[30] (contains a 98/98 split of car classes and 16,185 images), and Stanford Online
Products (SOP) [42] (covers 22,634 product categories and 120,053 images).

Table 1. We re-run various strong benchmarks in the standardized comparison setting
of [52]. We nd strong improvements both when enhancing simple ProxyNCA towards
probabilistic DML (EL-nivMF) and when using our approach as a regularizer on top
of more versatile approaches (PANC + EL-nivMF).

Benchmarks→ CUB200-2011 CARS196 SOP

Approaches ↓ R@1 mAP@1000 R@1 mAP@1000 R@1 mAP@1000

Sample-based Baselines.

Margin [70] 62.9 ± 0.4 32.7 ± 0.3 80.1 ± 0.2 32.7 ± 0.4 78.4 ± 0.1 46.8 ± 0.1

Multisimilarity [67] 62.8 ± 0.2 31.1 ± 0.3 81.6 ± 0.3 31.7 ± 0.1 76.0 ± 0.1 43.3 ± 0.1

Standard versus

Probabilistic.

ProxyNCA [40,63] 63.2 ± 0.2 33.4 ± 0.1 78.8 ± 0.2 31.9 ± 0.2 76.2 ± 0.1 43.0 ± 0.1

EL-nivMF 64.8 ± 0.4 34.3 ± 0.3 82.1 ± 0.3 33.4 ± 0.2 76.6 ± 0.2 43.3 ± 0.1

Probabilistic DML

as Regularization.

ProxyAnchor (PANC,

[26])

64.4 ± 0.3 33.2 ± 0.3 82.4 ± 0.4 34.2 ± 0.3 78.0 ± 0.1 45.5 ± 0.1

PANC + EL-nivMF 66.5 ± 0.3 35.3 ± 0.1 83.6 ± 0.2 35.1 ± 0.1 78.2 ± 0.1 45.6 ± 0.1

Fig. 4. Probabilistic regularization as a function of the scaling factor ω. We nd a
notable benet when accounting for both orthogonal enhancements, i.e., the more
probabilistic treatment (decreasing ω) and the better global alignment of the proxy
distribution modes (increasing ω).
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4.2 Quantitative Evaluation of Probabilistic Proxy-Based DML

Standardized Comparison. We rst follow protocols proposed in [52], which
suggest comparisons under equal pipeline and implementation settings (and no
learning rate scheduling) to determine the true benets of a proposed method,
unbiased by external covariates. Particularily, we thus compare the standard
ProxyNCA (see Eq. 1) against our proposed EL-nivMF extension of ProxyNCA
that includes sample and proxy distributions with distribution-to-distribution
metrics during training. We further apply EL-nivMF as a probabilistic regu-
larizer on top of the strong, but hyperparameter-heavy ProxyAnchor objective.
Here, we only optimize the scaling ω. Finally, we rerun the two strongest sample-
based methods used in [52]. In all cases, Table 1 shows signicant improvements
in performance and outperforms the sample-based methods. First, converting
from standard to probabilistic proxy-based DML (ProxyNCA → EL-nivMF)
increases R@1 on CUB200-2011 by 1.6pp, 3.3pp on Cars196 and 0.4pp on SOP.
This highlights the benets of accounting for uncertainty and explicitly encour-
aging non-isotropic intra-class variance. However, due to the large number of
proxies and low number of samples per class, on SOP benets are limited when
compared to datasets such as CUB200-2011 and CARS196, as the estimation of
our proxy distributions becomes noticeably noisier. When using EL-nivMF as
probabilistic regularization, we nd boosts of over 2.1pp and 1.2pp on CUB200-
2011 and CARS196, respectively, with expected smaller improvements of 0.2pp
on SOP. Generally however, the consistent improvements, whether as a stan-
dalone objective or as a regularization method, highlight the versatility of a
probabilistic take on DML, and oer a strong proof-of-concept for future DML
research to built upon.

Impact of Dierent Scaling Factors. ω. Figure 4 showcases the generaliza-
tion performance as a function of the scaling weight ω (see Eq. 7). Higher ω

denotes a more non-probabilistic treatment to the point of ignoring the distri-
butional aspects and returning to the auxiliary ProxyAnchor loss [26]. Lower
ω indicates a higher emphasis on distributional treatment of proxies (and sam-
ples). Across benchmarks and backbones, the best performance is reached with
an ω that is neither high nor 0. Thus, the results highlight that our probabilistic
proxy-based DML helps the better global realignment of each proxy distribution
mode via ProxyAnchor, and vice-versa. Overall, R@1 increases up to 4pp at the
most suitable scaling choice. This optimum is reached robustly in a large area
around the peak (note the logarithmic x-axes).

Comparison Against SOTA. After these strictly standardized comparisons,
we now compare the combination of ProxyAnchor and EL-nivMF, which per-
formed best in the previous study to the larger DML literature. The hyper-
parameters and pipeline components (e.g., learning rate, weight decay) dier
between the approaches, and so the comparison should be taken with a grain of
salt [41,52,57], but we still separate by the backbones and embedding dimension-
alities, which are identied as the largest factors of variation [52]. Accounting
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Table 2. Comparison to Literature, separated by backbones and embedding dimen-
sions. Bold denotes best results for a respective Backbone/Dim. subset, bold the
overall best. Results show that our probabilistically regularized ProxyAnchor method
matches or beats previous, in parts notably more complex state-of-the-art methods.

Benchmarks → CUB200 [64] CARS196 [30] SOP [42]

Methods ↓ Venue Arch/Dim. R@1 R@2 NMI R@1 R@2 NMI R@1 R@10 NMI

Margin [70] ICCV ’17 R50/128 63.6 74.4 69.0 79.6 86.5 69.1 72.7 86.2 90.7

Div&Conq [55] CVPR ’19 R50/128 65.9 76.6 69.6 84.6 90.7 70.3 75.9 88.4 90.2

MIC [49] ICCV ’19 R50/128 66.1 76.8 69.7 82.6 89.1 68.4 77.2 89.4 90.0

PADS [50] CVPR ’20 R50/128 67.3 78.0 69.9 83.5 89.7 68.8 76.5 89.0 89.9

RankMI [23] CVPR ’20 R50/128 66.7 77.2 71.3 83.3 89.8 69.4 74.3 87.9 90.5

PANC + EL-

niVMF

- R50/128 67.0 77.6 70.0 84.0 90.0 69.5 78.6 90.5 90.1

NormSoft [73] BMVC ’19 R50/512 61.3 73.9 – 84.2 90.4 – 78.2 90.6 –

EPSHN [72] WACV ’20 R50/512 64.9 75.3 – 82.7 89.3 – 78.3 90.7 –

Circle [61] CVPR ’20 R50/512 66.7 77.2 – 83.4 89.7 - 78.3 90.5 –

DiVA [37] ECCV ’20 R50/512 69.2 79.3 71.4 87.6 92.9 72.2 79.6 91.2 90.6

DCML-MDW [76] CVPR ’21 R50/512 68.4 77.9 71.8 85.2 91.8 73.9 79.8 90.8 90.8

PANC + EL-

niVMF

– R50/512 69.3 79.3 72.1 86.2 91.9 70.3 79.4 90.7 90.6

Group [12] ECCV ’20 IBN/512 65.5 77.0 69.0 85.6 91.2 72.7 75.1 87.5 90.8

DR-MS [11] TAI ’20 IBN/512 66.1 77.0 – 85.0 90.5 – – – –

ProxyGML [78] NeurIPS ’20 IBN/512 66.6 77.6 69.8 85.5 91.8 72.4 78.0 90.6 90.2

DRML [77] ICCV ’21 IBN/512 68.7 78.6 69.3 86.9 92.1 72.1 71.5 85.2 88.1

PANC + MemVir [29] ICCV ’21 IBN/512 69.0 79.2 - 86.7 92.0 – 79.7 91.0 -

PANC + EL-

niVMF

- IBN/512 69.5 80.0 71.0 86.4 92.0 71.3 79.2 90.4 90.2

for that, we nd competitive performance on all benchmarks (c.f. Table 2), even
when compared against other, much more complex state-of-the-art methods rely-
ing on multitask learning (DiVA [37], MIC [49]) or reinforcement learning (PADS
[50]). This makes our probabilistic take on proxy-based DML a generally attrac-
tive approach to DML, with further potential improvements down the line by
implementing the probabilistic perspective into these orthogonal extensions.

Computational Overhead. We do note that training with EL-nivMF
requires the dierentiable drawing of samples from vMF-distributions (see Eq. 5
and [8]). This can increase the overall training time, but we found 2–5 sam-
ples to already be suitable, limiting the impact on overall walltime to < 25%
against pure ProxyNCA. This is in line with other extensions of ProxyNCA (s.a.
[21,37,49,50,55]). The retrieval walltime remains unaected as cosine-similarity
is deployed. As an alternative for rapid training, we provide further probabilis-
tic distribution-to-distribution distances (dEL-vMF, dB-vMF, dKL-vMF) along with
analytical solutions (Supp. ??), so that no sampling is required and computa-
tional overhead is negligible. We study them in the next section.
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Fig. 5. Distance-to-point (blue) vs. distance-to-distance (green) metrics on CUB and
CARS. Bars show average R@1 with standard deviation. (Color gure online)

4.3 Quantitative Comparison of Metrics

Sects. 3.3 and 3.2 provided numerous modeling choices for distributions and dis-
tance metrics that can be plugged into the probabilistic DML framework in Eq. 2.
This section investigates these possibilities, ultimately motivating the particular
choice of dEL-nivMF, and also compares to more traditional distribution-to-point
metrics. To ensure fair comparisons, we return to the standardized benchmark
protocol of [52] using a 512-dimensional ResNet-50. All hyperparameters are
xed, except for the initial proxy norm and temperature, which are tuned via
grid search on a validation set.

Figure 5 shows the R@1 of all three distribution-to-point and four distribution-
to-distribution metrics on CUB and CARS. Comparing the distribution-to-point
metrics, dL2 outperforms dCos on both datasets, but is dominated by dnivMF. The
non-isotropic approach also performs best within the distribution-to-distribution
metrics. Within the three isotropic distribution-to-distribution metrics, dKL-vMF

shows the worst performance, with a small gap to the Bhattacharyya and a larger
gap to the expected likelihood PPKs. This stands in line with preliminary ndings
of [7]. The latter performs within one standard deviation of dL2. Altogether, we
nd that adding non-isotropy to the standard dCos (i.e., using dnivMF) increases
the R@1 by 2.1pp on CUB and 1.7pp on CARS. Further considering the image
norm (i.e., dEL-nivMF) adds another 0.6pp on CUB and 0.3pp on CARS.

The enhancement by non-isotropic modeling can be seen as inductive
bias towards better resolution of intra-class variances and substructures (see
Supp. ??), which drives generalization performance [32,37,52,72,77]. The strong
performance of dL2 is surprising as many current approaches use a dCos-based
loss [9,26,63]. The crux is that dL2 in our setting still uses the cosine distance at
retrieval-time, similar to, e.g., [2]. Using dL2 also as the retrieval metric would
reduce the R@1 by up to −5.34pp across all metrics and datasets, with the high-
est reduction appearing on the dL2-trained model itself (see Supp. ??). This sup-
ports the usage of the norm only during training, discussed in Sect. 3.5, where dL2
shares the uncertainty-awareness of distribution-to-distribution metrics, explain-
ing the small gap between dL2 and dEL-vMF. Thus, ultimately, we conjecture

76



448 M. Kirchhof et al.

. . .

. . .

. . .

. . .

. . .

lowest norm highest norm

Fig. 6. CARS train images with lowest (left) to highest (right) embedding norms.

that it doesn’t matter whether an approach is motivated from a distribution-
to-distribution or distribution-to-point perspective, as long as it considers the
ambiguity of images (and proxies) during training.

4.4 Embedding Norms Encode Uncertainty

In the previous section, we found that considering the norms of embeddings
during training leads to a higher performance. In this section, we qualitatively
support that the learned norms actually correspond to a sample-wise ambiguity.

For this, we study the EL-nivMF model on CARS. Figure 6 shows the
images with the lowest and highest embedding norm in the training set. In many
samples with low norm, characteristic parts of the cars are cropped out by the
data augmentation (this also happens in the test set, hindering perfect accuracy).
Others are overlaid or portray multiple distracting objects. In high-norm images,
illumination and camera angle facilitate the detection of class-discriminative fea-
tures. A competing hypothesis could be that high-norm images comprise mostly
car classes with more distinctive designs. However, the dierences between low
and high norm images also hold within classes, see Supp. ?? and ??. These
ndings are in line with [31,48,57] and support the hypothesis that the image
norm indicates image certainties, motivated by being the sum of visible class-
discriminative parts [57]. This justies the κz = z duality underlying the vMF
assumption and is consistent with our analysis of uncertainty-aware training in
Sect. 3.5.

5 Conclusion

This work proposes non-isotropic probabilistic proxy-based deep metric learn-
ing (DML) through uncertainty-aware training and non-isotropic proxy-
distributions. Uncertainty-aware training is achieved by treating sample embed-
dings not as deterministic points but as directional distributions parametrized by
embedding directions and, beyond popular DML approaches, norms. This allows
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semantic ambiguities to be decoupled from the directional semantic context,
which mathematically manifests itself in sample-wise temperature scaling and
certainty-weighed gradients. Additionally, our non-isotropic von Mises-Fisher
distribution for proxies better models intra-class uncertainty, which introduces
a low-parameter inductive prior for better generalizing embedding spaces. We
support our approach through various ablation studies, which showcase that our
proposed framework can operate both as a standalone objective and a probabilis-
tic regularizer on top of existing proxy-based objectives. In both cases, we further
found strong performances on the standard DML benchmarks, in parts matching
or beating existing state-of-the-art methods. Our ndings strongly indicate that
a probabilistic treatment of proxy-based DML oers simple, orthogonal enhance-
ments to existing DML methods and enables better generalization.

Limitations. We nd that for applications with only few samples per class, the
ability to estimate the non-isotropic proxy densities is limited (c.f. performance
on SOP). For future work in such sparse settings, returning to the proposed
isotropic distribution-to-distribution metrics or introducing across-class priors
for the covariance matrices might serve as alternatives.
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A Approximation of the von Mises-Fisher Distribution’s
Normalizing Constant
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Fig. 8: Comparison of approximations and exact values of the logarithmized normaliza-
tion constant of the vMF distribution logCM (κ) for M = 512 dimensions.

As we aim to resolve sample-specific ambiguities captured by κz , we need to cal-
culate the logarithmic normalizing constant of the vMF distribution:

logCM (κ) = log
κM/2−1

(2π)M/2IM/2−1(κ)
, (11)

where Id is the modified Bessel function of first kind at order d and M is the dimen-
sionality of the embedding space. However, Id is expensive to compute and impossible
to backpropagate through in high dimensions since it has no closed form. Hence, it is
commonly approximated in the literature. [3] and [9] for example utilize approxima-
tions from lower and upper bounds which are shown in Figure 8c and 8d for M = 512.
However, if we calculate logCM from the exact Bessel functions implemented in R
4.1.1’s base package [7], we see in Figure 8a that logCM is monotonically decreas-
ing, because Id is monotonically increasing with κ [5, Section 10.37].

To account for this issue, we thus choose to derive an approximation by directly
fitting a quadratic model to the exact Bessel function for M ∈ {128, 512} with κ ∈
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{10, . . . , 50}. The resulting approximations are

logC128(κ) ≈ 127− 0.01909 · κ− 0.003355 · κ2 and (12)

logC512(κ) ≈ 868− 0.0002662 · κ− 0.0009685 · κ2. (13)

The mean squared error of these approximations to the ground truth values is smaller
than 0.1%, which is visually confirmed in Figure 8b. During experimentation, we found
that the model is insensitive to perturbations in the precise coefficients. Also, we found
that a linear model is too simple and an exponential model imposed very high gra-
dients and inverts the behaviour of the metrics when κ is high. Hence, we decided
for the quadratic approximation as the simplest yet well extrapolating function. As a
reference for future work, we note that [2] recently gave an additional approximation
implemented in PyTorch.

B Derivation of the Non-isotropic von Mises-Fisher Distribution

The nivMF can be motivated by a transformed vMF distribution, which we assume to be
parametrized by µ ∈ SM−1 and K = diag(κ) ∈ R(M×M)

>0 , κ ∈ RM
>0. Transforming our

parameters into µ̃ = Kµ
∥Kµ∥ and κ̃ = ∥Kµ∥, we can define an ordinary vMF distribution

X̃ ∼ vMF(µ̃, κ̃) with density

fX̃(x̃) = CM (κ̃) exp
(
κ̃x̃⊤µ̃

)
. (14)

For ease of notation, we do not include the subscript p to denote specific proxies. Now,
we substitute x̃ := g(x) = Kx

∥Kx∥ . Note that g is bijective as a function g : SM−1 →
SM−1, but non-bijective when seen as a function g : RM → RM , since it would lose a
degree of freedom due to normalization. We will still treat it as the latter and ignore the
non-bijectivity, such that the following should be seen as motivation and not proof, and
comment on the implications further below. We now seek the density of X = g−1(X̃).
The change-of-variable theorem gives

fX(x) = fX̃(x̃)|det ∂g(x)
∂x

| . (15)

By Equation 130 given in [6] and the chain rule, we obtain

∂g(x)

∂x
=

(
1

∥Kx∥Im − K⊤xx⊤K
∥Kx∥3

)
K⊤ (16)

=

(
1

κ̃
IM − (κ̃µ̃)(κ̃µ̃)⊤

κ̃3

)
K⊤ (17)

=
1

κ̃

(
IM − µ̃µ̃⊤)K⊤ . (18)

Since the first part of this matrix is a projection on the orthogonal complement of µ̃,
the matrix has rank M − 1 and the determinant becomes zero. This is a consequence of
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the broken bijectivity assumption from above. However, we can see that Equation 18 es-
sentially projects K on the tangential plane of µ̃. By taking its determinant, we measure
the volume of the remaining (M − 1)-dimensional concentration sphere. Performing
a singular value decomposition on Equation 18 reveals that µ is the eigenvector with
eigenvalue 0. So, if we substract the contribution of µ to the volume of K, which is
∥Kµ∥ = κ̃, we obtain

D(K) =

∏M
m=1 κm

κ̃
. (19)

When we plug this heuristic into Equation 15, we arrive at the nivMF density:

fX(x) = CM (κ̃) exp
(
κ̃x̃⊤µ̃

)
D(K) (20)

= CM (∥Kµ∥)D(K) exp

(
∥Kµ∥

(
Kx

∥Kx∥

)⊤
Kµ

∥Kµ∥

)
(21)

= CM (∥Kµ∥)D(K) exp (∥Kµ∥ s(Kx,Kµ)) . (22)

We stress that D(K) is a heuristic choice, such that the proposed nivMF density strictly
speaking yields only a measure and not necessarily a probability measure. An analytical
solution is promising material for future work. It may also enable the density of the
nivMF to become a true expansion of the vMF density, i.e., D(K) may vanish when
K = κIM for κ > 0, which is currently not the case. In empirical tests, dropping D(K)
lead to a considerably severed performance.

C Further distribution-to-distribution Metrics

We can define further distribution-to-distribution metrics beyond dEL-nivMF. One starting
point are probability product kernels (PPK) [1]. They are a family of metrics to compare
two distributions ρ and ζ by the product of their densities:

PPKγ(ρ, ζ) =

∫

E
ρ(a)γζ(a)γda, with γ > 0. (23)

Since the loss in Equation 2 takes the exponential of the distance metrics, we take their
logarithms here to retain the PPK as actual score in nominator and denominator. In
particular, if we assume a vMF distribution for both ρ and ζ

dB-vMF(ρ, ζ) := −log(PPK0.5(ρ, ζ)) (24)

gives the Bhattacharyya distance and

dEL-vMF(ρ, ζ) := −log(PPK1(ρ, ζ)) (25)

gives the expected likelihood distance, also known as mutual likelihood score [10].
Their analytical solutions are provided in Supp. D.

The previous metrics are symmetric in ρ and ζ. To capture the inherent asym-
metry between samples and proxies, we also study the Kullback-Leibler divergence
dKL-vMF(ρ, ζ) := KL(ζ||ρ). Its analytical solution if both ρ and ζ are vMF densities is
given in Supp. E.
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D Analytical Solutions of Bhattacharyya and Expected Likelihood
Distance

Let ζ and ρ be densities of two vMF-distributed random variables with parameters
νz = κzµz and νp = κpµp, respectively.

Bhattacharyya distance. Since the vMF is a member of the exponential family, [1]
gives us that

PPK0.5(ρ, ζ) = exp(K(νz/2 + νp/2)−K(νz)/2−K(νp)/2), with (26)
K(ν) = − logCM (∥ν∥) . (27)

Thus,

dB-vMF(ρ, ζ) = −log(PPK0.5(ρ, ζ)) (28)
= logCM (∥νz + νp∥/2)− logCM (νz)/2− logCM (νp)/2 . (29)

Expected likelihood distance. We can extend

PPK1(ρ, ζ) =

∫

E
ζ(z̃)ρ(z̃)dz̃ (30)

= CM (κz) · CM (κp)

∫

E
exp((κzµz + κpµp)

⊤z̃)dz̃ (31)

=
CM (κz) · CM (κp)

CM (∥ν0∥)

∫

E
CM (∥ν0∥) exp(ν⊤0 z̃)dz̃, with (32)

ν0 := κzµz + κpµp, (33)

such that the latter is again the density of a vMF distributed random variable, whose
integral over the embedding space is 1. Then,

dEL-vMF(ρ, ζ) = −log(PPK1(ρ, ζ)) (34)
= logCM (∥νz + νp∥)− logCM (νz)− logCM (νp) . (35)

Note that both dEL-vMF and dB-vMF depend on ∥νz + νp∥ which implicitely respects the
cosine similarity between µz and µp, but also processes κz and κp.

E Analytical Solution of KL-Divergence

Let ζ and ρ be densities of two vMF-distributed random variables with parameters
µz, κz and µp, κp, respectively. Then

KL(ζ||ρ) =
∫

E
ζ(z̃) log

ζ(z̃)

ρ(z̃)
dz̃ (36)

=

∫

E
logCM (κz)− logCM (κp) + (κzµ

⊤
z − κpµ

⊤
p )z̃dζ(z̃) (37)

= logCM (κz)− logCM (κp) + (κzµ
⊤
z − κpµ

⊤
p )

∫

E
z̃dζ(z̃) (38)

= logCM (κz)− logCM (κp) + (κzµ
⊤
z − κpµ

⊤
p )µz (39)
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F Gradients of dL2 and dCos

We are interested in differentiating the loss LNCA++ from Equation 1 in §3.2 by the
cosine similarity between the image z and a proxy of interest p. Let p∗ denote the
ground-truth proxy of z and δ

δs := δ
δs(µp,µz)

. Then,

δ

δs
LNCA++ =

{
δ
δsd(ρ

∗, ζ)/t+ δ
δs log(

∑C
c=1 exp(−d(ρc, ζ)/t)) , if p = p∗

δ
δs log(

∑C
c=1 exp(−d(ρc, ζ)/t)) , else

(40)

and by the chain rule we get

δ

δs
log

(
C∑

c=1

exp(−d(ρc, ζ)/t)

)
= − exp(−d(ρ, ζ)/t)

∑C
c=1 exp(−d(ρc, ζ)/t)

δ

δs
d(ρc, ζ)/t . (41)

Let’s consider the LCos
NCA++ loss, i.e., d(ρ, ζ) = −s(µp, µz). We can plug δ

δsd(ρ, ζ) =
−1 into Equations 40 and 41 and obtain:

δ

δs
LCos

NCA++ =





1
t

(
−1 + exp(−d(ρ,ζ)/t)∑C

c=1 exp(−d(ρc,ζ)/t)

)
, if p = p∗

1
t

exp(−d(ρ,ζ)/t)∑C
c=1 exp(−d(ρc,ζ)/t)

, else
(42)

=





1
t

(
−1 +

exp(s(µp,µz)/t)∑C
c=1 exp(s(µpc ,µz)/t)

)
, if p = p∗

1
t

exp(s(µp,µz)/t)∑C
c=1 exp(s(µpc ,µz)/t)

, else
. (43)

Now, consider LL2
NCA++, i.e., d(ρ, ζ) = ∥νp − νz∥2 = κ2

p + κ2
z − 2κpκzs(µp, µz),

following from the law of cosines. Here, δ
δsd(νp, νz) = −2κpκz , which we can again

plug into Equations 40 and 41 and obtain:

δ

δs
LL2

NCA++ =

{
− 2κpκz

t +
2κpκz

t
exp(−d(ρ,ζ)/t)∑C

c=1 exp(−d(ρc,ζ)/t)
, if p = p∗

2κpκz

t
exp(−d(ρ,ζ)/t)∑C

c=1 exp(−d(ρc,ζ)/t)
, else

(44)

=




− 2κpκz

t +
2κpκz

t

exp((κ2
p+2κpκzs(µp,µz))/t)∑C

c=1 exp((κ2
pc

+2κpκzs(µpc ,µz))/t)
, if p = p∗

2κpκz

t

exp((κ2
p+2κpκzs(µp,µz))/t)∑C

c=1 exp((κ2
pc

+2κpcκzs(µpc ,µz))/t)
, else

.

(45)

G Summary of Loss Calculation

Algorithm 1 sketches how EL-nivMF is implemented practically. As discussed, the
parameters of the proxies are learnable parameters, whereas the vMF distributions of
points are predicted by an encoder. Thus, the module in Algorithm 1 can be plugged
on-top of an encoder and trained jointly. Since test-time retrieval only requires access
to the image-embeddings, the module can be discarded after training.
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Algorithm 1: Module to compute EL-nivMF loss
Function initialize(C: num proxies, M : dimensions, N : num samples):

µρ ← learnable tensor ∈ [C,M ]
κρ ← learnable tensor ∈ [C,M ]
t← learnable parameter ∈ [1]
Save C,M,N

Function loss(z: image embedding ∈ [1,M ], c∗: ground-truth proxy index):
samples← empty matrix ∈ [N,D]
for n = 1, . . . , N do

samples[n, :] ∼ vMF
(
µ = z

∥z∥ , κ = ∥z∥
)

end
sim to proxy← empty vector ∈ [C]
for c = 1, . . . , C do

logls← empty vector ∈ [N ]
for n = 1, . . . , N do

logls[n]
= log(nivmf likelihood(z, µ = µρ[c, :],K = diag(κρ[c, :]))

end
sim to proxy[c]← logsumexp(logls/t)

end
logloss← −sim to proxy[c∗] + logsumexp(sim to proxy)
return logloss

H Experimental Details

As already noted in §3.3, we generally utilize N ≈ 10 for our Monte-Carlo estima-
tion of the PPK kernel (Eq. 5), but switch to N = 5 for hyperparameter searches and
N = 20 for our ablation experiments, as within this range, we found performance to be
similar.

I Experimental Details Ablation Study

To reduce any influences of covariates, we seek to keep experimental settings in the
ablation study in §4.3 constant across all benchmarked metrics. Hence, we fixed all hy-
perparameters as in the previous experiment, and tuned the following hyperparameters
for each approach on validation data:

t ∈ {1, 1/32, 1/256} (46)
κp ∈ {10, 50, 200} (for ni-vMF, this is for each dimension) . (47)

Across all metrics, we used the dimensionality M = 512, a batchsize of 106, and
150 epochs on CARS and 50 on CUB. To reduce the initialization noise, we initiated
each hyperparameter-tuning experiment 3 times with random seeds, then calculated
the median of the maximum R@1 performance on the validation set, and ran the best
hyperparameter settings with 5 seeds.
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J L2 Distance as Retrieval Metric

Table 4: R@1 of the same trained models from Figure 5, but using the euclidean instead
of the cosine distance for retrieval.

Method CUB CARS

dL2 61.89± 0.36 76.61± 0.17
dCos 62.01± 0.35 76.94± 0.49
dnivMF 63.74± 0.18 78.62± 0.41

dB-vMF 62.29± 0.34 79.69± 0.15
dEL-vMF 62.49± 0.56 80.17± 0.24
dKL-vMF 61.68± 0.36 76.65± 0.20
dEL-nivMF 63.69± 0.56 76.37± 5.32

K Qualitative Impact on Image Norms

To understand in more detail the difference in learned and assigned image norms pro-
duced when training with dEL-nivMF, we compare the distribution of image norms be-
tween those belonging to originally correctly and incorrectly classified samples (initial
separation done using a standard baseline DML model operating on dcos) for CUB &
CARS, respectively. Results are shown in Fig. 9, which reveal that correct classifica-

Fig. 9: Norms of prev. correct/incorrect pred. on CUB/CARS.

tions on average have higher norms while miss-classifications are more often attributed
to lower norms. This aligns well with the underlying motivation assigning low norms
to ambiguous images (compare to e.g. Sec.4.4).
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L Non-isotropic Proxies Encourage Diverse Representations

Finally, we qualitatively investigate the metric representation spanned by metric learn-
ers trained using dEL-nivMF. To do so, we follow both [8] and look at the feature diversity,
as well as evaluating the cluster diversity to see whether encouraging unique class-proxy
distributions helps in learning a more diverse class-specific encoding. For the former,
we follow [8] and evaluate the uniformity of the sorted spectral value distribution of
all training image embeddings to measure the number of significant directions of vari-
ances in feature space. The latter is simply computed as the variance (i.e. diversity) of
intraclass distances for each class-cluster. For both cases, we specifically care about
relative changes compared to models trained without probabilistic treatment (i.e. us-
ing dcos) as well as changes going from an isotropic (dEL-vmf) to a non-isotropic setup
(dEL-nivMF). Results are summarized in Tab. 5, showcasing a consistent improvement

Dataset Metric dcos → dEL-vMF dcos → dEL-nivMF

CARS
Cluster-Div.↑ +24% +31%
Feat.-Div. ↑ +13% +14%

CUB
Cluster-Div. ↑ +11% +25%
Feat.-Div. ↑ +6% +8%

Table 5: Metrics on how EL-nivMF structures the embeddings.

in both feature and cluster diversity when incorporating both a probabilistic treatment
and a non-isotropic encoding of proxy distributions. This provides further heuristic ev-
idence linking the usage of dEL-nivMF to a better capture of the semantic class variability
as well as an improved incorporation of a more diverse feature set, shown to facilitate
generalisation [8,4].
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M Further Qualitative Embedding Norm Studies

. . .

. . .

. . .

. . .

. . .

lowest norm highest norm

Fig. 10: CARS train images with lowest (left) to highest (right) embedding norms on a
M = 512 dimensional ResNet-50 backend.

. . .

. . .

. . .

. . .

lowest norm highest norm

Fig. 11: Images for four randomly chosen classes (rows) of the CARS training set, or-
dered by their norm from lowest (left) to highest (right). Obtained from the dEL-vMF
model on a ResNet-50, where the norms of image embeddings range from 70.58 to
140.09 whereas the proxy norms are between 45.95 to 79.98.
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Probabilistic Contrastive Learning Recovers
the Correct Aleatoric Uncertainty of Ambiguous Inputs

Michael Kirchhof 1 Enkelejda Kasneci 2 Seong Joon Oh 3

Abstract
Contrastively trained encoders have recently
been proven to invert the data-generating process:
they encode each input, e.g., an image, into
the true latent vector that generated the image
(Zimmermann et al., 2021). However, real-world
observations often have inherent ambiguities. For
instance, images may be blurred or only show
a 2D view of a 3D object, so multiple latents
could have generated them. This makes the
true posterior for the latent vector probabilistic
with heteroscedastic uncertainty. In this setup,
we extend the common InfoNCE objective and
encoders to predict latent distributions instead of
points. We prove that these distributions recover
the correct posteriors of the data-generating pro-
cess, including its level of aleatoric uncertainty,
up to a rotation of the latent space. In addition to
providing calibrated uncertainty estimates, these
posteriors allow the computation of credible in-
tervals in image retrieval. They comprise images
with the same latent as a given query, subject to
its uncertainty. Code is at https://github.
com/mkirchhof/Probabilistic_
Contrastive_Learning.

1. Introduction
Contrastive learning (Chen et al., 2020) trains encoders to
output embeddings that are close to one another for seman-
tically similar inputs and far apart for unsimilar inputs. This
general notion of similarity allows transferring pretrained
encoders to downstream tasks (Wang et al., 2022; Ardeshir
& Azizan, 2022; Islam et al., 2021; Khosla et al., 2020).

Recently, Zimmermann et al. (2021) corroborated this in-

1University of Tübingen, Germany 2TUM University, Munich,
Germany 3University of Tübingen, Tübingen AI Center, Germany.
Correspondence to: Michael Kirchhof <michael dot kirchhof at
uni dash tuebingen dot de>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

tuition by a theoretical result: under weak assumptions,
the embeddings learned under an InfoNCE (Oord et al.,
2018) loss are exactly equal to the true latent vectors, up to
a rotation of the spherical latent space. This comes from
a nonlinear Independent Component Analysis (ICA) per-
spective (Comon & Jutten, 2010). It assumes an unknown
nonlinear generative process that transforms true latents into
our observations. Contrastively trained encoders invert this
nonlinear function and recover the original latent space.

This holds for the class of generative processes that are de-
terministic and injective, so that each image could have been
generated by only one latent vector. This is often violated in
practice. In Figure 1, the lower image of an animal is in low-
resolution, so it is impossible to tell which exact species,
i.e., which latent variables, underlie the image. In fact, most
scenarios in the wild involve some form of such aleatoric
uncertainty, including 3D-to-2D projections (Chen et al.,
2021), partially covered objects (Kraus & Dietmayer, 2019),
or images with a low resolution or bad crop (Li et al., 2021).
It also manifests itself outside the image domain, such as
in the inherent ambiguity of natural language (Chun et al.,
2022) or measurement noise in general (Meech & Stanley-
Marbell, 2021). Quantifying such uncertainties is a key goal
of the recent reliable machine learning efforts (Tran et al.,
2022; Galil et al., 2023). This has use cases in safety-critical
downstream applications like medical imaging (Barbano
et al., 2022). If an image is too ambiguous, a model can
reject it or defer the prediction to a human. Another appli-
cation is active learning, where we want to choose samples
with high uncertainty (Lewis & Catlett, 1994).

This work generalizes the previous theoretical result to this
more challenging setting. We do not assume that generative
process is an injective and deterministic function, but allow
it to be a conditional distribution. We propose Monte-Carlo
InfoNCE (MCInfoNCE), a probabilistic analog of InfoNCE.
It trains encoders to predict distributions over the possible
latents, called probabilistic embeddings (Oh et al., 2019; Shi
& Jain, 2019). We prove that MCInfoNCE attains its global
minimum when the encoder recovers the true posteriors of
the generative process, up to a rotation of the latent space;
both in terms of both the mean (which latent is most likely
to have generated the image) and the variance (the level of

1
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Figure 1. Deteministic encoders embed images to points in the latent space. This recovers the latent vectors that generated them (dashed),
up to a rotation (top). However, if an image is ambiguous there are multiple possible latents that could have generated it (bottom). An
encoder trained with MCInfoNCE correctly recovers this posterior of the generative process, up to a rotation, from contrastive supervision.

aleatoric uncertainty of the individual image). Our work
thus generalizes the previous theoretical result in nonlinear
ICA to a broader class of generative processes, and provides
a theoretical foundation for probabilistic embeddings.

We show empirically that an encoder trained with MCIn-
foNCE learns the correct posteriors in a controlled experi-
ment with known posteriors. We find that it even provides
sensible embeddings when the distribution family or the
encoder dimensionality is misspecified and when the gener-
ative process may be injective, making it robust in practice.
We then show that these predicted uncertainties are consis-
tent with human annotator disagreements reported in the
recent CIFAR-10H dataset (Peterson et al., 2019), providing
a way to handle uncertainty for high-dimensional inputs. We
also demonstrate that knowing the true posteriors enables
new applications, such as computing credible intervals for
image retrieval tasks. They visualize how uncertain we are
about a query image by showing other images that represent
the region of latents the query is in with a given probability.

In summary, (1) We extend nonlinear ICA to non-injective
non-deterministic generative processes to model realistic
input ambiguities. (2) We propose MCInfoNCE for training
encoders that predict probabilistic embeddings. (3) We show
theoretically and empirically that the predicted posteriors are
correct and reflect the true amount of aleatoric uncertainty.

2. Related Works
Our work serves as a bridge between the theoretical under-
standing of contrastive learning via nonlinear ICA, proba-

bilistic embeddings, and recent discussions on the aleatoric
uncertainty inherent in vision problems. Below, we discuss
how our work extends and connects recent work in these
three fields. Extended literature reviews can be found in
Kendall & Gal (2017) and Karpukhin et al. (2022).

Nonlinear ICA. From a nonlinear Independent Compo-
nent Analysis (ICA) perspective (Hyvärinen & Oja, 2000;
Comon & Jutten, 2010), images x are generated from
ground-truth latent components z via an unknown nonlinear
generative process. The goal is to invert it to recover the
original latents z, which are useful for downstream tasks.
This formalization allows for theoretical proofs of which
(contrastive) losses achieve this. Building on Wang & Isola
(2020), Zimmermann et al. (2021) recently proved that op-
timizing a contrastive InfoNCE loss (Oord et al., 2018)
recovers z up to a rotation of the latent space, as visualized
in Figure 1. This requires certain assumptions about the
generative process. A recent strain of literature seeks to
reduce these assumptions (Leemann et al., 2022) to allow
modeling broader classes of generative processes, bringing
the theoretical results closer to practice. Our work broadens
this class by no longer requiring the injectivity assumption
of Zimmermann et al. (2021) and at the same time allowing
stochasticity. This is made possible by modeling the gen-
erative process as a conditional distribution P (x|z) instead
of a function, which generalizes the class of generative pro-
cesses. In the vein of Zimmermann et al. (2021), we prove
that our contrastive MCInfoNCE loss recovers the correct
posterior distribution P (z|x) of the original latents, up to a
rotation of the latent space.
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Aleatoric Uncertainty. The above generalization allows us
to model scenarios in which we encounter aleatoric uncer-
tainty, i.e., the input has reduced information such that z is
only recoverable only up to some uncertainty. A prominent
practical example is face recognition, where images may be
blurred or in low-resolution (Shi & Jain, 2019; Schlett et al.,
2022). Other problems with ambiguous inputs include 3D
reconstruction from 2D data (Chen et al., 2021), partially
occluded traffic participants (Kraus & Dietmayer, 2019), or
noisy physical sensors (Meech & Stanley-Marbell, 2021).
Such problems with aleatoric uncertainty can be detected by
label noise: CIFAR-10H (Peterson et al., 2019) comprises
multiple labels for each image in the CIFAR-10 test-set,
and shows that the more ambiguous an image is, the more
annotator labels disagree. This finding occurs in several
other recent classification datasets (Schmarje et al., 2022;
Mehrtens et al., 2023; Tran et al., 2022), but also in more
complex tasks such as multimodal visual question answer-
ing (VQA). Chun et al. (2022) show that there are many
possible textual answers to the same visual prompt because
language is inherently more ambiguous than vision; i.e.,
language has more aleatoric uncertainty. Our MCInfoNCE
loss explicitly accounts for these uncertainties and learns the
correct level of aleatoric uncertainty, which we demonstrate
on high-dimensional image inputs.

Probabilistic Embeddings. An emerging approach to mod-
eling this uncertainty is to have encoders predict distribu-
tions over the latent space instead of point estimates. There
are three main lines of work to learn these probabilistic em-
beddings. The first idea is to compute a match probability
between point estimates, but to integrate it over the predicted
distributions. This idea was pioneered via Hedged Instance
Embeddings (HIB) (Oh et al., 2019) and has since been
successfully extended, e.g., to the above multimodal VQA
problem (Chun et al., 2021; Neculai et al., 2022). A second
line of works turns existing losses into probabilistic ones
by integrating the whole loss over the predicted probabilis-
tic embeddings (Scott et al., 2021; Roads & Love, 2021).
Our MCInfoNCE extension of InfoNCE demonstrates that
this blueprint strategy can inherit the properties of the origi-
nal losses, like Zimmermann et al. (2021)’s identifiability
theorem. The third line of works provides distribution-to-
distribution distances to replace point-to-point distances in
losses. The most popular approach is the expected likeli-
hood kernel (ELK) (Jebara & Kondor, 2003; Shi & Jain,
2019). It has recently shown success even in high dimen-
sional embedding spaces (Kirchhof et al., 2022; Karpukhin
et al., 2022). Yet, there is no answer to whether and in what
sense the predicted probabilistic embeddings, and in particu-
lar their variances, are correct. Our work answers this ques-
tion through its proof and a controlled experiment where the
true posteriors are recovered. The experiments on CIFAR-
10H further ground this theoretical correctness in the human

perception of uncertainty. We also show novel practical
applications of probabilistic embeddings, such as retrieving
credible intervals on which latents the image might show.

3. Probabilistic Generative Processes
In this section, we extend the generative processes com-
monly used in nonlinear ICA to non-injective, randomized
ones. This allows modeling real-world image distributions
better and serves as a framework for the upcoming proof.

Let us first understand the class of generative processes for
which Zimmermann et al. (2021) prove identifiability. They
take the nonlinear ICA perspective that there is a natural gen-
erative process g that transforms latent components z ∈ Z
into the images x = g(z) we observe, as shown in Figure 1.
Following the popular cosine-based similarity comparisons
(Deng et al., 2019; Teh et al., 2020), Z is assumed to be
a D-dimensional hypersphere Z = SD−1. We are inter-
ested in recovering the latents z that underlie the images x,
because they are low-dimensional descriptions useful for
downstream tasks. To formalize this problem, they assume
that g : Z → X is an injective (and deterministic) function.
Thus, only one latent z can correspond to each image x, and
g is invertible. They prove that an encoder f trained with a
contrastive InfoNCE loss achieves this inversion and recov-
ers the correct latent z, i.e., f(x) = f(g(z)) = ẑ = Rz, up
to an orthogonal rotation R of the learned embedding space.

However, let us move on to setups where an image x may
be motion blurred, low-resolution, or partially obscured.
For instance, a 2D projection x of a 3D object z does not
show the back part of z, and there are several possible z
that could have generated x. In other words, the generative
process g is non-injective and the best our encoder can do is
to recover the set of possible latents {ẑ|g(ẑ) = x}. Further,
g may be stochastic. E.g., a random patch of pixels may be
occluded, or the image may be zoomed in and show only a
random crop of z. The best the encoder can do is to predict
a posterior over the possible latents, see Figure 1.

The common denominator of these setups is that g loses in-
formation about z and x becomes ambiguous. To subsume
them, we can model g as a likelihood P (x|z). This general
formulation allows for a large class of operations within
g. However, this generality comes at the cost that P (x|z)
can be very complicated and difficult to parameterize. We
therefore apply a posterior trick: instead of explicitly char-
acterizing g by P (x|z) we implicitly characterize it by its
posteriors P (z|x). We parameterize P (z|x) by simple von
Mises-Fisher distributions vMF(z;µ(x), κ(x)):

P (z|x) = C(κ(x))eκ(x)µ(x)
⊤z . (1)

This distribution on SD−1 is unimodal around the location
parameter µ(x) ∈ Z with a certain concentration (i.e., an
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inverse variance) κ(x) ∈ R>0, and a normalizing constant
C(·). The functions µ : X → SD−1 and κ : X → R>0

fully parameterize the posterior of each image x. In particu-
lar, κ(·) represents the aleatoric uncertainty due to informa-
tion loss, which can be heterogeneous across the images.

The intuition behind modeling the posterior of the gener-
ative process as a vMF is that latents of degraded images
can usually be located down to sets of semantically simi-
lar rather than very dissimilar latents. This is reflected in
the unimodality of the vMF and its use of the dot product,
which commonly represents how semantically similar two
latents are. There may still be images where it is impos-
sible to tell which highly dissimilar latents they show. In
these cases, κ(x) is low and the posterior spreads broadly
across the latent space. At the other end of the spectrum,
as κ(x) → ∞, P (z|x) converges to a Dirac distribution.
This allows modelling deterministic and injective generative
processes as in Zimmermann et al. (2021). This makes the
vMF a reasonable and flexible choice for the posterior of
generative processes.

4. Probabilistic Contrastive Learning
This section presents our main theoretical result: a proba-
bilistic encoder trained under an MCInfoNCE loss recovers
the true posteriors of probabilistic generative processes, up
to a rotation, from simple contrastive supervision.

4.1. MCInfoNCE for Probabilistic Contrastive Learning

Let us first formalize the contrastive learning setup. Each
training triplet comprises a reference sample x along with
a positive (similar) sample x+ and negative (dissimilar)
samples x−

1 , . . . , x
−
M against which it is to be contrasted.

As introduced in the previous section, we assume that
these samples are generated from corresponding latents
z, z+, z−1 , . . . , z−M . Following Zimmermann et al. (2021),
the reference z is drawn from the marginal distribution in
the latent space, a uniform distribution. The positive sample
z+ is drawn from a close region around z, while negatives
z−1 , . . . , z−M are random i.i.d. draws from the marginal:

z ∼ P (z) = Unif(z;SD−1), (2)

z+ ∼ P (z+|z) = vMF(z+; z, κpos), (3)

z−m ∼ P (z−|z) =: P (z−) = Unif(z−;SD−1). (4)

The fixed constant κpos > 0 controls how close latents must
be to be considered positive to each other1. This formaliza-
tion of contrastive learning ensures that positive samples
are semantically similar and negatives are dissimilar. Zim-
mermann et al. (2021) showed this is the generative process
InfoNCE implicitly assumes. The probabilistic generative

1κpos should not to be confused with κ(x), which controls the
heteroscedastic uncertainty of the generative process.

process comes into play when the latents z, z+, z−1 , . . . , z−M
are transformed into observations x, x+, x−

1 , . . . , x
−
M via

P (x|z). This defines P (x), P (x+|x), and P (x−), and thus
our contrastive training data (x, x+, x−

1 , . . . , x
−
M ).

Our Monte-Carlo InfoNCE (MCInfoNCE) loss is

Lf :=− log E
z∼Q(z|x)

z+∼Q(z+|x+)

z−
m∼Q(z−

m|x−
m),m=1,...,M




eκposz
⊤z+

1
M eκposz⊤z+

+ 1
M

M∑
m=1

eκposz⊤z−
m


 (5)

and is evaluated over the contrastive training dataset via

L := E
x∼P (x)

x+∼P (x+|x)
x−
m∼P (x−),m=1,...,M

(
Lf

(
x, x+, {x−

m}m=1,...,M

))
. (6)

This probabilistically generalizes the widely used InfoNCE
family (Oord et al., 2018), and, in the limit of M → ∞,
SimCLR (Chen et al., 2020). Instead of outputting a point
embedding, the encoder f we train outputs probabilistic
embeddings Q(z|x) := vMF(z; µ̂(x), κ̂(x)) by predicting
f(x) = (µ̂(x), κ̂(x)). The InfoNCE fraction within Lf is
evaluated over these posteriors. In practice, we backpropa-
gate through K = 512 MC samples via a reparametrization
trick for vMFs (Davidson et al., 2018; Ulrich, 1984):

Lf≈− log



1

K

K∑

k=1

eκposz
⊤
k z+

k

1
M eκposz⊤

k z+
k + 1

M

M∑
m=1

eκposz⊤
k z−

m,k


. (7)

The only training data for MCInfoNCE are contrastive exam-
ples, without any additional supervision on the true aleatoric
uncertainty κ(x) or the generative latents z.

4.2. Provably Learning the Correct Posteriors

We prove below that the optimizer of this loss learns the
correct latent posteriors. More precisely, it predicts the cor-
rect location µ̂(x) = R · µ(x), up to a constant orthogonal
rotation R of the latent space, and the correct level of am-
biguity κ̂(x) = κ(x) for each observation x. To prove this,
we first show that MCInfoNCE is a cross-entropy between
the generative process and the learned contrastive encoder
(Proposition 4.1). This means that the loss matches the
expected positivity of a pair (x, x+) computed using the
true P (z|x) to that computed using Q(z|x). We then show
that this expected positivity can be written as a function and
depends only on (µ(·)⊤µ(·), κ(·)), resp. (µ̂(·)⊤µ̂(·), κ̂(·))
(Proposition 4.2). Due to monotonicity, the predicted func-
tion value can only match that of the generative process if
their arguments (µ(·)⊤µ(·), κ(·)) and (µ̂(·)⊤µ̂(·), κ̂(·)) are
equal (Proposition 4.3). In summary, the posteriors must be
equal, up to a rotation of the latent space (Theorem 4.4).
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First, we generalize Zimmermann et al. (2021) and Wang &
Isola (2020) to probabilistic generative processes.

Proposition 4.1 (L is minimized iff expected positivity
matches). Let the latent marginal P (z) =

∫
P (z|x)dP (x)

and
∫
Q(z|x)dP (x) be uniform. limM→∞ L attains its

minimum when ∀x, x+ ∈ {x ∈ X |P (x) > 0}
∫∫

Q(z|x)Q(z+|x+)P (z+|z)dz+dz =

∫∫
P (z|x)P (z+|x+)P (z+|z)dz+dz .

The intuition is that MCInfoNCE corresponds to a cross-
entropy between the true latents and our model predictions.
This characterizes the solution set: An encoder Q minimizes
MCInfoNCE if and only if the chance of (x, x+) being a
positive pair computed using Q is equal to the true chance
of being a positive pair computed using the GT distribution
P for all data pairs (x, x+). We refer to this chance, the
upper integral, as expected positivity. Next, we prove that
the equality of the expected positivities implies that the
predicted posteriors Q must be equal to the GT P , up to
the mentioned rotations. To this end, we first find that the
expected positivity marginalizes out all random variables
and can be written as a function of µ(x) and κ(x).

Proposition 4.2 (Expected positivity is a function). Let
P (z|x) and P (z+|z) be vMF distributions as defined in
Section 4.1. Given x, x+ ∈ X , we can rewrite

∫∫
P (z|x)P (z+|x+)P (z+|z)dz+dz (8)

=: hκpos(µ(x)
⊤µ(x+), κ(x), κ(x+)), (9)

i.e., as a function hκpos that depends only on
µ(x)⊤µ(x+), κ(x), and κ(x+). The same function
can be used for µ̂(x)⊤µ̂(x+), κ̂(x), κ̂(x+):

∫∫
Q(z|x)Q(z+|x+)P (z+|z)dz+dz (10)

= hκpos(µ̂(x)
⊤µ̂(x+), κ̂(x), κ̂(x+)). (11)

The key is that the expected positivities calculated using Q
and P have the same functional form hpos; they differ only
in their arguments, where they use either the true κ(x), µ(x)
or the predicted κ̂(x), µ̂(x). What remains to show is that
the expected positivities can only be equal if the arguments
match, i.e., κ̂(x) = κ(x) and µ̂(x)⊤µ̂(x+) = µ(x)⊤µ(x+).
Proposition 4.3 proves this via some monotonicities of hpos.

Proposition 4.3 (Arguments of hpos must be equal).
Define hpos as in Proposition 4.2. Let X ′ ⊆
X , µ, µ̂ : X ′ → Z , κ, κ̂ : X ′ → R>0,
κpos > 0. If hκpos(µ̂(x)

⊤µ̂(x+), κ̂(x), κ̂(x+)) =

hκpos(µ(x)
⊤µ(x+), κ(x), κ(x+)) ∀x, x+ ∈ X ′, then

µ̂(x)⊤µ̂(x+) = µ(x)⊤µ(x+) and (12)

κ̂(x) = κ(x) ∀x, x+ ∈ X ′. (13)

In the above Equation (12), the pairwise cosine similari-
ties in the true and the predicted latent space can only be
equal if the two spaces are the same up to a rotation, i.e.,
µ̂(x) = Rµ(x). This is ensured by the Extended Mazur-
Ulam Theorem (Zimmermann et al., 2021). We can now
combine these ingredients to derive our main result: If an
encoder minimizes the MCInfoNCE loss, then it must have
identified the correct posteriors, up to a constant orthogonal
rotation of the latent space.

Theorem 4.4 (L identifies the correct posteriors). Let Z =
SD−1 and P (z) =

∫
P (z|x)dP (x) and

∫
Q(z|x)dP (x) be

the Unif(z;Z). Let g be a probabilistic generative process
defined in Formulas 2, 3, and 4 with known2 κpos. Let g
have vMF posteriors P (z|x) = vMF(z;µ(x), κ(x)) with
µ : X → SD−1 and κ : X → R>0. Let an encoder f(x)
parametrize vMF distributions vMF(z; µ̂(x), κ̂(x)). Then
f∗ = argminf limM→∞ L has the correct posteriors up to
a rotation, i.e., µ̂(x) = Rµ(x) and κ̂(x) = κ(x), where R
is an orthogonal matrix, ∀x ∈ {x ∈ X |P (x) > 0}.

This generalizes the recent results of Zimmermann et al.
(2021) to the broader family of probabilistic generative pro-
cesses. MCInfoNCE recovers not only the correct (mean)
embeddings µ(x) under a noisy and non-injectivity genera-
tor, but also the heterogeneous aleatoric uncertainty κ(x).

5. Experiments
5.1. MCInfoNCE Learns the Correct Posteriors

In this section, we experimentally confirm the theoretical
result that probabilistic embeddings learned under a MCIn-
foNCE loss recover the correct posteriors up to a rotation.
We also test its robustness to violated assumptions.

Setup. To test whether MCInfoNCE recovers the correct
posteriors, we need a controlled experiment where the true
posteriors of the generative process are known. Previous
nonlinear ICA experiments randomly initialize a multi-
layer perceptron (MLP) as the nonlinear data-generating
process and train a second one to invert it (Hyvarinen &
Morioka, 2017; Zimmermann et al., 2021). In our proba-
bilistic setup we randomly initialize two MLPs to parameter-
ize µ(x) and κ(x) of the vMF posteriors of the generative
process. The MLP for µ(x) outputs normalized vectors
of dimension D = 10 and the MLP for κ(x) outputs a
scalar κ̃(x) wrapped in an exponential Softplus function
κ(x) = 1+exp(κ̃(x)) to ensure the strict positivity of κ(x)

2In practice, κpos is a tuneable temperature hyperparameter.

5
100



Probabilistic Contrastive Learning Recovers the Correct Aleatoric Uncertainty

Table 1. MCInfoNCE recovers the generative processes’ true pos-
teriors for various degrees of ambiguity and even in the limit of an
injective generative process. Mean ± std. err. for five seeds.

True vs Pred. Location µ̂(x) True vs Pred. Certainty κ̂(x)
Generative Process Ambiguity RMSE ↓ Rank Corr. ↑ RMSE ↓ Rank Corr. ↑
Ambiguous (κ(x) ∈ [16, 32]) 0.04± 0.00 0.99± 0.00 6.15± 0.61 0.82± 0.04
Clear (κ(x) ∈ [64, 128]) 0.05± 0.00 0.98± 0.00 125.02± 10.64 0.64± 0.04
Injective (κ(x) = ∞) 0.05± 0.01 0.98± 0.00 κ̂(x) → ∞

Generative Process
 Latent Space

Learned Encoder
 Latent Space

Figure 2. Five posteriors of the generative process and the encoder
trained in a run with a 2D latent space. The encoder correctly
predicts the posteriors of the generative process, up to a rotation:
Rank corr. between µ̂(x) and the true µ(x) is 1.00± 0.00 (RMSE
0.05±0.00) and that of κ̂(x) is 0.82±0.05 (RMSE 2.89±0.56).

(Li et al., 2021; Shi & Jain, 2019). We sample contrastive
training data (x, x+, (x−

m)m=1,...,M ) from the generative
process parameterized by µ(x) and κ(x) via rejection sam-
pling, as explained in the supplementary. On this data, we
train two MLPs to predict µ̂(x) and κ̂(x). All hyperparame-
ters of the generative process and MLP architectures follow
the deterministic counterpart of this experiment in Zimmer-
mann et al. (2021) and are reported in the supplementary.

Metrics. To quantify if the predicted posteriors are correct
up to a rotation, i.e., κ̂(x) = κ(x) and µ̂(x) = Rµ(x) with
an orthogonal matrix R, we compare κ̂(x) to κ(x) on 104

samples of x and compare µ̂(x1)
⊤µ̂(x2) to µ(x1)

⊤µ(x2)
on all pairs (x1, x2) of the 104 samples. We use the root
mean square error (RMSE) to test for exact correctness and
Spearman’s rank correlation (Rank Corr.) to test for correct
ordering. The latter is sufficient in practical scenarios that
are invariant to scale, such as retrieval based on embedding
distances µ̂(x1)

⊤µ̂(x2) or abstention from prediction based
on a threshold of the predicted certainty κ̂(x).

Results. Table 1 shows that MCInfoNCE recovers the
correct posteriors of ambiguous inputs up to a high rank
correlation of 0.99 for µ̂(x) and 0.82 for κ̂(x). Figure 2
visualizes this in a simplified 2D case. The learned latent
space equals the true latent space up to a rotation. How-
ever, we can see in Table 1 that κ̂(x) tends to be over-
confident (RMSE = 125.02) especially for high values of
κ(x) ∈ [64, 128] (yet, the ranking is still largely preserved,
Rank Corr. = 0.64). This is because Formula 7 is a biased
MC estimator of the loss in Formula 5. This is also known
as marginal likelihood estimation problem (Perrakis et al.,

Table 2. MCInfoNCE predicts sensible vMF posteriors if the true
generative posteriors are non-vMF. Mean ± std. err. for five seeds.

True vs Pred. Location µ̂(x) True vs Pred. Spread
Posterior RMSE ↓ Rank Corr. ↑ RMSE ↓ Rank Corr. ↑
vMF 0.04± 0.00 0.99± 0.00 0.05± 0.00 0.75± 0.04
Gaussian 0.04± 0.00 0.99± 0.00 0.04± 0.00 0.70± 0.05
Laplace 0.05± 0.01 0.98± 0.00 0.02± 0.00 0.66± 0.06
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Figure 3. The marginal likelihood approximation bias diminishes
with sufficient MC samples. Mean ± std. err. for five seeds.

2014; Burda et al., 2015). The bias decreases with the num-
ber of MC samples, as shown in Figure 3. In the standard
setup with κ(x) ∈ [16, 32], it is largely mitigated with 16
samples (RMSE = 4.55), or already with 4 samples if only
the relative ordering of the samples matters in practice (Rank
Corr. = 0.77). This coincides with the range of number of
MC samples used by other probabilistic embedding losses:
Oh et al. (2019) use 10 and Kirchhof et al. (2022) use 5. In
summary, MCInfoNCE behaves as theoretically expected
and fulfills our main theoretical hypothesis.

Violated Assumptions. We test MCInfoNCE in setups
where its assumptions are violated. First, we change the
posterior of the generative process to Gaussian and Laplace
distributions on SD−1 while the encoder still predicts vMFs.
Since these distributions have incomparable variance param-
eters, we measure their spread by the avg. absolute cosine
distance from the mode. Table 2 shows that the vMFs model
Gaussians almost as well as vMFs (Rank Corr. 0.70 vs
0.75), since Gaussians with normalized outputs are similar
to vMFs (Mardia et al., 2000). For Laplace, the encoder
predicts vMFs with high concentrations (κ̂(x) ≈ 2000), be-
cause the Laplace distribution is more concentrated around
its mode than the vMF the encoder uses. Second, we over-
and underparameterize the latent dimension of the encoder
compared to that of the generative process (D = 10). Fig-
ure 4 shows that encoder dimensions between 8 and 32 still
all yield κ̂ predictions with a Rank Corr. ≥ 0.6. Third, we
test the behaviour of MCInfoNCE when the generative pro-
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Table 3. Besides MCInfoNCE, ELK also gives correct probabilistic
embeddings. Mean ± std. err. for five seeds.

True vs Pred. Location µ̂(x) True vs Pred. Certainty κ̂(x)
Loss RMSE ↓ Rank Corr. ↑ RMSE ↓ Rank Corr. ↑
HIB 0.18± 0.02 0.82± 0.03 1014 ± 1014 −0.02± 0.09
ELK 0.02± 0.00 1.00± 0.00 21.70± 0.31 0.92± 0.00
MCInfoNCE 0.04± 0.00 0.99± 0.00 6.15± 0.61 0.82± 0.04
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Figure 4. MCInfoNCE learns good κ̂(x) even when the encoder
latent space dimension mismatches the true generative dimension-
ality (D = 10). Mean ± std. err. for five seeds.

cess is injective and deterministic, i.e., when all posteriors
are Diracs. This is a limiting case of the vMFs the encoder
uses. Table 1 shows that the predicted vMFs converge to
infinite concentrations κ̂(x), recovering the Diracs. Last,
the uniformity assumption was violated in all experiments
as we only ensured µ(x) to be not collapsed, but not neces-
sarily fully spread around SD−1. In summary, these results
indicate that MCInfoNCE is a robust approach even when
characteristics of the generative process such as its (non-)
injectivity, posterior family, or dimension are unknown.

Further losses. Recent literature has proposed other losses
to predict probabilistic embeddings. We investigate their
empirical successes further under our experimental setup
to find whether they exactly match the true posteriors. We
reimplement Hedged Instance Embeddings (HIB) (Oh et al.,
2019) and Expected Likelihood Kernels (ELK) (Kirchhof
et al., 2022) and modify them to our contrastive setup, as
detailed in the supplementary. All losses are hyperparameter
tuned via grid search. Table 3 shows that all losses recover
µ(x) with a Rank Corr. ≥ 0.82 despite the high noise in
our experimental setup. We find that, besides MCInfoNCE,
ELK also recovers κ(x) well (Rank Corr. = 0.92). This is
the first confirmation that ELK predicts correct posteriors
in a controlled setup and opens space for future theoretical
investigations.

Table 4. Predicted certainties κ̂(x) of MCInfoNCE correlate with
human annotator disagreement and information reduction via crop-
ping images smaller. Rank correlation on unseen test data.

Loss Annotator Entropy ↑ Crop Size ↑
HIB 0.28± 0.00 0.69± 0.02
ELK 0.14± 0.05 0.51± 0.03
MCInfoNCE 0.29± 0.01 0.68± 0.01
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Figure 5. Rejecting images with low certainty values κ̂(x) im-
proves the performance on the remaining data monotonically with
the threshold. This shows that κ̂(x) is predictive of performance.

5.2. Posteriors Reflect Aleatoric Uncertainty in Practice

After confirming that the predicted posteriors are correct,
this section shows that they resemble the aleatoric uncer-
tainty in image data. We also show that this enables novel
applications such as credible intervals for image retrieval.

Measuring Aleatoric Uncertainty. In the upcoming ex-
periment, we do not have access to any ground-truth κ(x)
against which to compare κ̂(x). Instead, we need to com-
pare it to various indicators of aleatoric uncertainty. We use
three different indicators that capture human uncertainty, in-
formation loss, and performance decrease with respect to the
amount of aleatoric uncertainty. First, if an image is ambigu-
ous, human annotators disagree about the latent that it shows.
We therefore conduct our experiment on CIFAR-10H (Peter-
son et al., 2019). It comprises fifty class annotations for each
image. This gives a soft-label distribution whose entropy
reflects the ambiguity of the image. We compute the Rank
Corr. between 1/κ̂(x) and this annotator entropy to measure
how well κ̂(x) reflects human-perceived input ambiguity.
Second, we induce controlled information loss by deteriorat-
ing the image. (Wu & Goodman, 2020) identified cropping
to increase aleatoric uncertainty most clearly. Thus, we crop
test images to percentages crop size ∼ Unif([0.25, 1])
of their original size. The aleatoric uncertainty increases
the more the image is cropped. We thus report the Rank
Corr. between 1/κ̂(x) and the crop size as a second met-
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Table 5. κ̂(x) can be learned by MCInfoNCE from both soft and
hard labels. Rank correlation on unseen test data.

Labels Annotator Entropy ↑ Crop Size ↑
CIFAR-10H Soft Labels 0.29± 0.01 0.68± 0.01
CIFAR-10H Hard Labels 0.24± 0.01 0.64± 0.02
CIFAR-10 Hard Labels 0.28± 0.01 0.69± 0.02

ric. Third, ambiguous images inevitably lead to decreased
performance. To investigate whether κ̂(x) is indicative of
performance, we calculate the Recall@1 (Jegou et al., 2010)
on the p% images with the highest κ̂(x). If κ̂(x) correctly
reflects aleatoric uncertainty, removing ambiguous images
should improve performance, so the Recall@1 should in-
crease monotonically with p. This metric also illustrates the
popular use case of abstaining from uncertain predictions.

Architecture and Training. We translate the CIFAR-
10H classification task into a contrastive task by consid-
ering images to be positive if they are in the same class
and negative otherwise. We create training examples
(x, x+, x−

1 , . . . , x
−
M ) by drawing class labels for each im-

age from its soft class distribution, selecting a random im-
age x, an image x+ with the same class label, and M im-
ages x−

m with different class labels. On this data, we train
a ResNet-18 (He et al., 2016) pre-trained on CIFAR-10
(Phan, 2021) that outputs embeddings e(x). We define
µ̂(x) := e(x)/∥e(x)∥2 and, following common practices
for probabilistic embeddings (Kirchhof et al., 2022; Scott
et al., 2021; Li et al., 2021), κ̂(x) as ∥e(x)∥2. We run a
5-fold cross validation where we train for 175 epochs and
select the best epoch via the Rank Corr. with the crop size
on validation data. We choose this metric over the others be-
cause it can be computed on any dataset without additional
supervision. All details on generating the contrastive data
and the hyperparameter search are in the supplementary.

Results. Table 4 shows that κ̂(x) learned via MCInfoNCE
has a high Rank Corr. of 0.68 with the information lost due
to cropping, i.e., images with less information return more
uncertain posteriors. The correlation with the human anno-
tator entropy is lower (0.29), but positive. HIB achieves a
similar performance, while ELK shows lower correlations
with both ground-truths (0.51 and 0.14, resp.). Figure 5
shows the performance decrease metric. Up to noise, the Re-
call@1 increases monotonically as images with the lowest
κ̂(x) are rejected. This means that κ̂(x) is a good predic-
tor of performance. As an additional qualitative metric the
supplementary shows images with the lowest and highest
κ̂(x) of each class. MCInfoNCE learns from labeling noise
in this experiment, since the image class was drawn anew
from its soft label distribution each time the image was used.
In practice, we may have only one annotation per image, so
that labeling noise occurs across examples rather than on
each individual image. To this end, we further train on hard

Query Images in 95% Credible Interval

κ̂ = 82

κ̂ = 45

κ̂ = 25

Figure 6. We use an image’s posterior to define the credible interval
that its latents lie in with a given probability. Clear query images
(top) have small credible intervals containing images of the same
class as the query. More ambiguous queries (bottom) return larger
credible intervals with images from multiple possible classes.

labels. These are either the most likely class of each soft
label distribution on CIFAR-10H or the classical class la-
bels on the CIFAR-10. Table 5 shows that MCInfoNCE can
learn under both of these circumstances with a performance
roughly equal to that when soft labels are available.

Credible Intervals for Image Retrieval. Since we esti-
mate posteriors Q(z|x), we can also introduce Bayesian
credible intervals (Lee, 1989) to our image representation
task. Such intervals CIp(x) ⊂ Z contain the true generative
latent z of x with a user-defined probability p ∈ [0, 1], i.e.,
P (z ∈ CIp(x)) = p for x ∼ P (x|z). Credible intervals
help understand the degree to which our model can identify
the latent that x shows. We can visualize these latents by
searching for images whose µ̂(x) fall within CIp. Figure 6
shows such intervals on our MCInfoNCE model for CIFAR-
10H. A clear image (top) has a sharp posterior and thus a
small CI containing only one image from the same class.
The CI of a more ambiguous query image, like the second,
tells us that the model places the query in the region of cats,
but that it could also be a dog. Highly ambiguous queries,
like the last one, lead to wide CIs that span multiple possible
classes. They examples show how credible intervals can
augment retrieval with uncertainty-awareness: They deter-
mine the number of images to retrieve subject to the query’s
ambiguity and allow users to judge the uncertainty better
than a simple scalar uncertainty value.

6. Discussion
Relations to Broader Variational Inference. Our work
advances the recent theoretical discussions about contrastive
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learning and variational inference. Oord et al. (2018) and
Poole et al. (2019) initially showed that the minimizer of
InfoNCE is the likelihood ratio of positive and negative den-
sities of the generative process. Zimmermann et al. (2021)
used this to show that the minimizer recovers the latents,
modulo rotations. Our work shows that we can even learn
the correct posterior of a probabilistic generative process,
modulo rotations, i.e., the internal probabilistic latent repre-
sentations of our specific encoder are indeed correct. This
may have implications to other works on variational ap-
proaches and contrastive learning, like Aitchison (2021).

Multi-modal Posteriors. The vMF posteriors should be
able to capture most augmentations in self-supervised con-
trastive learning that deteriorate the image whole image,
i.e., all latent factors equally. However, it is also interest-
ing to think about deteriorations that lead to multi-modal
posteriors. In this case, Proposition 4.1 does not make any
parametric assumption on the posteriors and thus still holds.
Proposition 4.2 and Proposition 4.3 need to be extended
regarding the identifiability of the mixture component, but
could then utilize our propositions for each component. We
see this as an exciting direction for future works.

7. Conclusion
This work presented MCInfoNCE, a probabilistic con-
trastive loss that predicts posteriors instead of points. We
proved that it learns the generative processes’ true posteriors.
This provides a theoretical grounding for the recent proba-
bilistic embeddings literature and connects it to a probabilis-
tic extension of nonlinear ICA. In practice, the posteriors
allow predicting the level of aleatoric uncertainty in am-
biguous inputs as well as estimating credible intervals with
flexible sizes depending on a query’s ambiguity in image
retrieval. These are only two usages that correct posteriors
enable and further usages are a promising area for future
research. Aleatoric uncertainty is not only faced in com-
puter vision and retrieval. We hope that the blueprint way of
enhancing InfoNCE into MCInfoNCE inspires applications
in further tasks with intrinsic ambiguities in their inputs.
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A. Proofs
A.1. Proof of Proposition 4.1

Proposition 4.1 (L is minimized iff marginals match) Let the latent marginal distributions P (z) =
∫
P (z|x)dP (x) and∫

Q(z|x)dP (x) be uniform. limM→∞ L attains its minimum when ∀x, x+ ∈ {x ∈ X |P (x) > 0}
∫∫

Q(z|x)Q(z+|x+)P (z+|z)dz+dz =

∫∫
P (z|x)P (z+|x+)P (z+|z)dz+dz .

Proof. All of the above densities are integrable, so we can write the loss function L in the form of Riemann integrals.

lim
M→∞

L = − lim
M→∞

∫
P (x)P (x+|x)

∫ M∏

m=1

P (x−
m) log

∫
Q(z|x)Q(z+|x+) (14)

M∏

m=1

Q(z−m|x−
m)

eκposz
⊤z+

1
M eκposz⊤z+

+ 1
M

M∑
m=1

eκposz⊤z−
m

dz−1 . . . z−Mdz+dzdx−
1 . . . dx−

Mdx+dx (15)

We know that κpos < ∞, κ(x) < ∞∀x ∈ X , the normalization constants C(κ) < ∞∀κ < ∞, and the dot products are
bounded. This implies that all densities inside these integrals as well as the exponentials in the fraction are bounded. Thus,
the whole term inside the outmost integral is bounded. Due to the dominated convergence theorem we can pull the limit into
the integral.

= −
∫
P (x)P (x+|x) lim

M→∞

∫ M∏

m=1

P (x−
m) log

∫
Q(z|x)Q(z+|x+) (16)

M∏

m=1

Q(z−m|x−
m)

eκposz
⊤z+

1
M eκposz⊤z+

+ 1
M

M∑
m=1

eκposz⊤z−
m

dz−1 . . . z−Mdz+dzdx−
1 . . . dx−

Mdx+dx (17)

The strong law of large numbers and the fact that
∫
Q(z−|x−)P (x−)dx− = P (z) imply

= −
∫
P (x)P (x+|x) lim

M→∞
log

∫
Q(z|x)Q(z+|x+)

eκposz
⊤z+

1
M eκposz⊤z+

+ E
z−∼P (z)

(eκposz⊤z−
)
dz+dzdx+dx . (18)

Both densities and the fraction inside the inner integral are positive and bounded, so the integral is, too. In this range, i.e.,
(0,∞), the logarithm is continuous, so the continuous mapping theorem gives

= −
∫
P (x)P (x+|x) log lim

M→∞

∫
Q(z|x)Q(z+|x+)

eκposz
⊤z+

1
M eκposz⊤z+

+ E
z−∼P (z)

(eκposz⊤z−
)
dz+dzdx+dx . (19)

With the arguments from above, the inside of the inner integral is bounded, so we can again apply the dominated convergence
theorem.

= −
∫

P (x)P (x+|x) log
∫

Q(z|x)Q(z+|x+) lim
M→∞

eκposz
⊤z+

1
M eκposz⊤z+

+ E
z−∼P (z)

(eκposz⊤z−
)
dz+dzdx+dx (20)

= −
∫

P (x)P (x+|x) log
∫

Q(z|x)Q(z+|x+)
eκposz

⊤z+

E
z−∼P (z)

(eκposz⊤z−
)
dz+dzdx+dx (21)
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Since P (z) = Unif(SD−1) = 1
∥SD−1∥ , which we define as 1

S in shorthand, we get

= −
∫

P (x)P (x+|x) logS
∫

Q(z|x)Q(z+|x+)
eκposz

⊤z+

∫
SD−1

eκposz⊤z−
dz−

dz+dzdx+dx (22)

= −
∫

P (x)P (x+|x) logS
∫

Q(z|x)Q(z+|x+)P (z+|z)dz+dzdx+dx . (23)

Let us turn our attention to P (x+|x). By marginalization, factorization, and the conditional independencies of the data-
generating process, we get

P (x+|x) (24)

=

∫
P (x+, z+, z|x)dz+dz (25)

=

∫
P (x+|z+, z, x)P (z+|z, x)P (z|x)dz+dz (26)

=

∫
P (x+|z+)P (z+|z)P (z|x)dz+dz . (27)

After a multiplication with 1, Bayes Theorem, and using P (z) = 1
S , we get

=

∫
P (x+|z+)P (z+)P (x+)

P (z+)P (x+)
P (z+|z)P (z|x)dz+dz (28)

=

∫
P (z|x)P (z+|x+)P (z+|z)P (x+)

P (z+)
dz+dz (29)

=P (x+)S

∫
P (z|x)P (z+|x+)P (z+|z)dz+dz . (30)

We can insert this into Formula 23.

−
∫

P (x)P (x+)S

∫
P (z|x)P (z+|x+)P (z+|z)dz+dz (31)

logS

∫
Q(z|x)Q(z+|x+)P (z+|z)dz+dzdx+dx (32)

= E
x∼P (x)

x+∼P (x+)

(
S

∫
P (z|x)P (z+|x+)P (z+|z)dz+dz logS

∫
Q(z|x)Q(z+|x+)P (z+|z)dz+dz

)
. (33)

Note that both terms are conditional on x, x+ and the expected value is taken over both of these. I.e., L in the limit is a
(non-normalized) cross-entropy between

∫
P (z|x)P (z+|x+)P (z+|z)dz+dz and

∫
Q(z|x)Q(z+|x+)P (z+|z)dz+dz. The

loss is minimized iff the two terms match for all values in the outmost expected value, i.e., ∀x, x+ ∈ {x ∈ X |P (x) > 0}. □

A.2. Proof of Proposition 4.2

Proposition 4.2 (The marginal is a function) Let P (z|x) and P (z+|z) be vMF distributions as defined in Section 4.1. Given
x, x+ ∈ X , we can rewrite

∫∫
P (z|x)P (z+|x+)P (z+|z)dz+dz (34)

=: hκpos(µ(x)
⊤µ(x+), κ(x), κ(x+)), (35)

i.e., as a function hκpos that depends only on µ(x)⊤µ(x+), κ(x), and κ(x+). The same function can be used for
µ̂(x)⊤µ̂(x+), κ̂(x), κ̂(x+):

∫∫
Q(z|x)Q(z+|x+)P (z+|z)dz+dz (36)

= hκpos(µ̂(x)
⊤µ̂(x+), κ̂(x), κ̂(x+)). (37)
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Proof. Let us first insert the vMF densities.∫∫
P (z|x)P (z+|x+)P (z+|z)dz+dz (38)

=C(κ(x+))C(κpos)

∫∫
C(κ(x)) exp[κ(x)µ(x)⊤z + κ(x+)µ(x+)⊤z+ + κposz

⊤z+]dz+dz (39)

=C(κ(x+))C(κpos)

∫
C(κ(x)) exp(κ(x)µ(x)⊤z)

∫
exp[(κ(x+)µ(x+) + κposz)

⊤z+]dz+dz (40)

The term inside the inner integral can be rewritten into an unnormalized vMF density if we specify µ∗ :=
κ(x+)µ(x+)+κposz

∥κ(x+)µ(x+)+κposz∥
and κ∗ := ∥κ(x+)µ(x+) + κposz∥. The integral over this density is 1.

=C(κ(x+))C(κpos)

∫
C(κ(x)) exp(κ(x)µ(x)⊤z)

1

C(κ∗)

∫
C(κ∗) exp[κ∗µ∗⊤z+]dz+dz (41)

=C(κ(x+))C(κpos)

∫
C(κ(x)) exp(κ(x)µ(x)⊤z)

1

C(κ∗)
dz (42)

=C(κpos) E
z∼vMF(µ(x),κ(x))


 C(κ(x+))

C
(√

κ(x+)2 + κ2
pos + 2κ(x+)κposµ(x+)⊤z

)


 (43)

=:hκpos(µ(x)
⊤µ(x+), κ(x), κ(x+)) (44)

In the last step, the expected value is over µ(x+)⊤z, z ∼ vMF(µ(x), κ(x)). This depends only on the distance µ(x)⊤µ(x+)
instead of the full location parameters µ(x) and µ(x+) because the vMF is rotationally symmetric and we can perform a
suitable Householder rotation, see also Romanazzi (2014). □

A.3. Proof of Proposition 4.3

Proposition 4.3 (Arguments of hpos must be equal) Define hpos as in Proposition 4.2. Let X ′ ⊆ X , µ, µ̂ : X ′ → Z ,
κ, κ̂ : X ′ → R>0, κpos > 0. If hpos(µ̂(x)

⊤µ̂(x+), κ̂(x), κ̂(x+)) = hpos(µ(x)
⊤µ(x+), κ(x), κ(x+)) ∀x, x+ ∈ X ′, then

µ̂(x)⊤µ̂(x+) = µ(x)⊤µ(x+) and (45)

κ̂(x) = κ(x) ∀x, x+ ∈ X ′. (46)

Proof. (a) The normalization constant of the vMF C(κ) = κD/2−1

(2π)D/2ID/2−1(κ)
, where Io is the modified Bessel function of

the first kind and order o, is strictly monotonically decreasing and convex (Kirchhof et al., 2022).

(b) Consider arbitrary x = x+, x ∈ X ′. In this case, µ(x)⊤µ(x+) = µ̂(x)⊤µ̂(x+) = 1, and both sides of the equality
simplify

∫∫
Q(z|x)Q(z+|x+)P (z+|z)dz+dz =

∫∫
P (z|x)P (z+|x+)P (z+|z)dz+dz (47)

⇐⇒ hκpos(1, κ(x), κ(x)) = hκpos(1, κ̂(x), κ̂(x)) (48)

⇐⇒ h̃κpos(κ(x)) = h̃κpos(κ̂(x)) (49)

with h̃κpos(κ) := hκpos(1, κ, κ). Due to (a), the denominator in Formula 43 grows strictly faster than the numerator. So h̃ is
strictly monotonically increasing. Thus, h̃κpos(κ(x)) = h̃κpos(κ̂(x)) only if κ(x) = κ̂(x).

(c) Let x, x+ ∈ X ′ be arbitrary. From (b) we know κ̂(x) = κ(x), so we can simplify

hκpos(µ(x)
⊤µ(x+), κ(x), κ(x+)) = hκpos(µ̂(x)

⊤µ̂(x+), κ̂(x), κ̂(x+)) (50)

⇐⇒ h∗
κpos,κ(x),κ(x+)(µ(x)

⊤µ(x+)) = h∗
κpos,κ(x),κ(x+)(µ̂(x)

⊤µ̂(x+)) (51)

with h∗
κpos,κ(x),κ(x+)(·) := hκpos(·, κ(x), κ(x+)). In other words, both sides of the equality are the same function

h∗
κpos,κ(x),κ(x+) with only one free variable. Due to (a), the denominator in Formula 43 strictly decreases with in-

creasing µ(x)⊤µ(x+) if κ(x+) > 0 and κpos > 0. So, h∗
κpos,κ(x),κ(x+) is strictly monotonically increasing and

h∗
κpos,κ(x),κ(x+)(µ(x)

⊤µ(x+)) = h∗
κpos,κ(x),κ(x+)(µ̂(x)

⊤µ̂(x+)) implies µ(x)⊤µ(x+) = µ̂(x)⊤µ̂(x+). □
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A.4. Proof of Theorem 4.4

Theorem 4.4 (L identifies the correct posteriors) Let Z = SD−1 and P (z) =
∫
P (z|x)dP (x) and

∫
Q(z|x)dP (x) be the

uniform distribution over Z . Let g be a probabilistic generative process defined in Formulas 2, 3, and 4 with known κpos.
Let g have vMF posteriors P (z|x) = vMF(z;µ(x), κ(x)) with µ : X → SD−1 and κ : X → R>0. Let an encoder f(x)
parametrize vMF distributions vMF(z; µ̂(x), κ̂(x)). Then f∗ = argminf limM→∞ L has the correct posteriors up to a
rotation of Z , i.e., µ̂(x) = Rµ(x) and κ̂(x) = κ(x), where R is an orthogonal rotation matrix, ∀x ∈ {x ∈ X |P (x) > 0}.

Proof. If f∗ optimizes L, then by Proposition 4.1 ∀x, x+ ∈ {x ∈ X |P (x) > 0} we have

∫∫
Q(z|x)Q(z+|x+)P (z+|z)dz+dz =

∫∫
P (z|x)P (z+|x+)P (z+|z)dz+dz . (52)

Then by Proposition 4.3 with X ′ := {x ∈ X |P (x) > 0} we get κ̂(x) = κ(x) and µ(x)⊤µ(x+) = µ̂(x)⊤µ̂(x+). With the
extended Mazur-Ulam Theorem (Zimmermann et al., 2021), the latter implies µ̂(x) = Rµ(x) with an orthogonal rotation
matrix R ∈ RD×D. □

B. Controlled Experiment
B.1. Network Architectures

We use MLPs to parametrize the generative processes’ posteriors µ(x) and κ(x) as well as the encoder µ̂(x) and κ̂(x).

For µ(x) and µ̂(x) we follow Zimmermann et al. (2021). The MLP for µ(x) has three linear layers with 10 dimensions
and leaky ReLU activations. To prevent collapsed initializations we take 1000 exemplary samples for µ(x) and re-
initiate it if the smallest cosine similarity x⊤

1 x2 between any pair x1, x2 of them is bigger than 0.5. µ̂(x) has six hidden
linear layers with leaky ReLU activations plus an input and and output layer with the input and output dimensions
[D → 10·D, 10·D → 50·D, 50·D → 50·D, 50·D → 50·D, 50·D → 50·D, 50·D → 50·D, 50·D → 10·D, 10·D → D].
The outputs of both networks are normalized to an L2 norm of 1 to ensure they are on the unit sphere.

The MLPs for κ(x) and κ̂(x) have the same architecture as µ(x) and µ̂(x), but κ(x) has one less hidden layer than
µ(x). The last layer of both networks outputs only a scalar instead of a D-dimensional vector. It is postprocessed by
κ̃(x) = 1 + exp(κ(x)) to ensure their strict positivity. Before training, κ̂(x) is normalized to output the same range of
values as κ(x) to improve training stability.

B.2. Generating Contrastive Training Data

The generative process in Section 4.1 first draws latents z and then generates observations x to create contrastive training
data. However, we want to control our generative processes’ posteriors. Thus, we need to first sample x and then z ∼ P (z|x).
A method to sample backwards like this while still obtaining samples as if they were from the forward generative process is
rejection sampling. We first draw random candidates (x, x+) from X = [0, 1]D, then draw (z, z+) from their corresponding
posteriors. To ensure that they form a valid positive example as per the distributions in Formulas 2 and 3, we accept or reject
them with a probability proportional to

C(κpos)e
κposz

⊤z+

C(κpos)eκposz⊤z+
+ C(0)

. (53)

This is the probability that z and z+ are positive to one another. The proposal distribution’s density for rejection sampling is
dropped here due to the uniform priors. Negative examples (x−

m)m=1,...,M are drawn randomly from X due to Formula 4.

B.3. Experiment Parameters

Following Zimmermann et al. (2021), all experiments used κpos = 20 and the above network architectures. The learning
rate was 0.0001 and was decreased after each 25% of training progress by a factor of 0.1. Performance was measured at the
end of the training without early stopping on 10000 sampled x points. All experiments were implemented in Python 3.8.11,
PyTorch 1.9.0 on NVIDIA-RTX 2080TI GPUs with 12GB VRAM. Table 6 below summarizes the remaining parameters
used by all ablations of the controlled experiment.
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Experiment Gen. D Enc. D′ Posterior min(κ(x)) max(κ(x)) Batchsize Number of Batches Number MC Samples Comment

Ambiguous (κ(x) ∈ [16, 32]) 10 10 vMF 16 32 512 100000 512 Also used for HIB, ELK, InfoNCE
Clear (κ(x) ∈ [64, 128]) 10 10 vMF 64 128 512 100000 512
Injective (κ(x) = ∞) 10 10 vMF/Dirac ∞ ∞ 512 100000 512
D = 2 2 2 vMF 16 32 512 8192 512
Gaussian 10 10 Gaussian 16 32 512 100000 512 σ2 = 1/κ(x)
Laplace 10 10 Laplace 16 32 512 100000 512 b = 1/κ(x)
MC Samples 10 10 vMF 16 32 512 100000 x x ∈ {1, 4, 16, 64, 256, 512}
Encoder Dim 10 x vMF 16 32 512 100000 512 for x ∈ {4, 8, 10, 16, 32}
— ” — 512 256 for x = 64
— ” — 256 256 for x = 128
High Dim x x vMF 16 32 512 100000 512 x ∈ {10, 16}
— ” — 256 256 for x ∈ {32, 40, 48, 56, 64}

Table 6. Parameters of the generative process and loss in the controlled experiments. x denotes variable parameters. Batchsize and number
of MC samples were reduced in high dimensions to not exceed the available VRAM.

B.4. Contrastive Hedged Instance Embeddings

HIB (Oh et al., 2019) is formulated similarly to MCInfoNCE in that it also draws samples of a posterior and computes a
probability score with them. HIB originally uses Gaussians and compares L2 distances between samples. We adapt this to
vMFs and cosine distances to align it with the spherical formulation of the latent space. The reformulated HIB loss is

LHIB := E
x∼P (x)

x+∼P (x+|x)
x−
m∼P (x−),m=1,...,M


− log E

z∼Q(z|x)
z+∼Q(z+|x+)

(
s(a · z⊤z+ + b)

)
− 1

M

M∑

m=1

log E
z∼Q(z|x)

z+∼Q(z−|x−
m)

(
1− s(a · z⊤z−m + b)

)

, (54)

where s(·) is the Sigmoid function and a and b are tuneable hyperparameters. We excluded the KL regularizer originally
proposed by Oh et al. since none of the other losses receive prior information on κ(x).

B.5. Contrastive Expected Likelihood Kernel

The ELK is commonly used inside a classification cross-entropy loss (Kirchhof et al., 2022). Its key characteristic is that it re-
places the point-to-point distance, e.g., cosine distance, by the expected likelihood distance. An analytical solution to compare
two vMFs is provided in the supplementary of Kirchhof et al.. We can plug this distance dEL-vMF(µ̂(x1), κ̂(x1), µ̂(x2), κ̂(x2))
into InfoNCE and transform it into a similarity by multiplying it with −1 to obtain our contrastive ELK loss:

LELK := E
x∼P (x)

x+∼P (x+|x)
x−
m∼P (x−),m=1,...,M


− log

e−κposdEL-vMF(µ̂(x),κ̂(x),µ̂(x
+),κ̂(x+))

1
M e−κposdEL-vMF(µ̂(x),κ̂(x),µ̂(x+),κ̂(x+)) + 1

M

M∑
m=1

e−κposdEL-vMF(µ̂(x),κ̂(x),µ̂(x
−
m),κ̂(x−

m))


. (55)

B.6. Hyperparameter Tuning

All losses were tuned on the ”Standard” experiment setup via grid search. The seed for the generative process was exclusive
and not used in the five seeds of the final results. Table 7 below gives the hyperparameters along with the chosen best setup
according to the rank correlation between κ(x) and κ̂(x).

There are two interesting results in this tuning. First, the true generative κpos was indeed the best choice. All methods
performed worse when they learned it themselves (starting from the true value) or when given a different value (not shown
here). Second, MCInfoNCE performs best with a high number of negative samples. This corroborates the theoretical study
of its limiting behaviour as M → ∞.

Phasewise training is the empirical strategy of first learning µ̂(x) during the first half of epochs, then fixing it and learning
κ̂(x) (Shi & Jain, 2019; Li et al., 2021). MCInfoNCE showed an improved performance with this strategy. This is likely
because the training signal of κ(x) is far lower in the loss than that of µ(x). During the training phase of µ̂(x), it turned out
beneficial to use negatives from the same batch, i.e., M = 0.
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HIB ELK MCInfoNCE

Number of negatives M {0, 1, 32} {0,1, 32} {0, 1,32}
κpos learnable {yes, no} {yes, no} {yes, no}
Phasewise training {yes, no} {yes, no} {yes, no}
a {0.5,1, 2, 4}
b {−8,−4,−2,−1,0, 1, 2, 4, 8}

Table 7. Possible hyperparameters and best-performing hyperparameters (bold). M = 0 corresponds to not sampling negatives, but using
one sample from the same batch as a negative. HIB’s additional hyperparameters were tuned after the first three parameters to reduce the
number of grid-search evaluations.

B.7. Ablation with High Latent Space Dimension

We use the latent space dimension D = 10 for most experiments following Zimmermann et al. (2021). Below in Figure 7,
we increase the latent space dimension of the generative process and encoder up to 64. We notice considerable performance
drops for D ≥ 40. Other losses than MCInfoNCE also suffer this. Hence, it is likely because of our experimental setup: We
use uniformly distributed negatives instead of sophisticated negative mining and the rejection sampling has lower success
probabilities in high dimensions, making it harder to generate valid contrastive examples.
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Figure 7. The metrics worsen if the generative process has a latent space of dimension D ≥ 40. This is likely not due to MCInfoNCE, but
a limitation of the contrastive setup of our controlled experiment. Mean ± std. err. for five seeds.

B.8. Ablation with Joint Architecture

In the upper experiments, the networks for κ(x) and µ(x) (and κ̂(x) and µ̂(x)) were independent, i.e., did not share
parameters. This was to make clear that κ(x) characterizes the uncertainty of the input x, rather than the latent of a shared
backbone. However, a shared backbone with two heads for µ(x) and κ(x) is a common architecture as, e.g., in VAEs. We’ve
thus run an ablation where µ(x) is the output of the embedder (a 6-layer MLP) and κ(x) is a 3-layer MLP attached after it.
This keeps the total number of parameters the same as in the independent case. We rerun the ”Ambiguous” setting with
κ(x) ∈ [16, 32]. Table 8 shows that MCInfoNCE achieves similar performance in both cases.

Table 8. MCInfoNCE also discovers correct posteriors if µ̂(x) and κ̂(x) have a shared backbone. Mean ± std. err. for five seeds.

True vs Pred. Location µ̂(x) True vs Pred. Certainty κ̂(x)
Architecture RMSE ↓ Rank Corr. ↑ RMSE ↓ Rank Corr. ↑
Independent Networks 0.04± 0.00 0.99± 0.00 6.15± 0.61 0.82± 0.04
Shared Backbone with Two Heads 0.04± 0.00 0.99± 0.00 7.31± 1.53 0.87± 0.02
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C. CIFAR-10H Experiment
C.1. Contrastive Learning on CIFAR

To test whether the predicted certainty κ̂(x) aligns with human-judged aleatoric uncertainty, we require a dataset that
provides a ground-truth. CIFAR-10H (Peterson et al., 2019) provides 50 annotations for each test-set image of CIFAR-10.
We use the entropy of the probability distribution over these annotations as a measure of aleatoric uncertainty in each image,
and compare its negative to the predicted certainty κ̂(x) via rank correlation. Since the annotations were only collected for
the 10000 images of the test set of CIFAR-10, we apply a 5-fold cross validation. The 10000 images are randomly split into
sets of 2000. For five iterations, three of these sets form the train data, one the validation, and one the test data. To prevent
confusions with the CIFAR-10 train and test set, we refer to these as the CIFAR-10H train, validation, and test sets. The
image indices that belong to each set are provided in our code repository.

This leaves us with the task of redefining the CIFAR classification task into a contrastive learning problem. To this end,
we simply assume that images are positive to one another if they belong to the same class and negative if they do not.
CIFAR-10H, however, has soft class distributions for each image instead of a crisp class. Thus, we first draw a class c
from the class distribution P (C|x) of a reference image x from the train set. We then draw a positive image x+ from a
multinomial distribution over all train images weighed by their probabilities of that class P (C = c|x+). Negative images
x− are selected the same way, but weighed by the probability of not being class c, i.e., 1− P (C = c|x−). This provides the
contrastive data generator required for training.

Since the human annotation data might be noisy in how well it captures the aleatoric uncertainty, we complement it with a
synthetical way to introduce aleatoric uncertainty. In a second test dataset, we copy the CIFAR-10H test images, but perform
a random crop and rescale that reduces the image to a proportion crop size ∼ Unif([0.25, 1]) of its original width and
length. This directly reduces the information available in the image and therefore increases its aleatoric uncertainty, without
introducing artifacts that might let the image go out-of-distribution. We calculate the rank correlation of the reduction in size
crop size and the (negative) predicted certainty −κ̂(x) as an alternative way to evaluate whether κ̂(x) reflects loss in
information in the input, and therefore aleatoric uncertainty.

C.2. Hyperparameters

We use a ResNet-18 (He et al., 2016) pretrained on the CIFAR-10 train dataset (Phan, 2021) and replace the classification
layer by a linear layer with the input and output dimensions [512, D]. We then train the linear layer and the ResNet backbone
under each loss for 8192 batches of batchsize 128, which corresponds to roughly 175 epochs on the 6000 CIFAR-10H train
images. We use the CIFAR-10H validation set to select the best model, evaluated after each 16 batches. The criterion
is the rank correlation between κ̂(x) and the crop size in the synthetically deteriorated CIFAR-10H validation set. We
chose this metric rather than the human annotator disagreement since it can be generated on arbitrary datasets without new
annotations. All losses use 128 MC samples and, according to the results in Appendix B.6, a fixed κpos. We use the same
Adam optimizer with a learning rate of 0.0001, learning rate scheduling, and (optional) phase-wise training as in B.6. The
remaining hyperparameters were tuned via grid search. The best choices are highlighted in Table 9.

Loss HIB ELK MCInfoNCE MCInfoNCE MCInfoNCE
Train Dataset / Label Type CIFAR-10H soft CIFAR-10H soft CIFAR-10H soft CIFAR-10H hard CIFAR-10 hard

Latent Dim D {8, 16} {8, 16} {8, 16} {8,16} {8, 16}
Number of negatives M {0, 1, 32} {0,1, 32} {0, 1,32} {0, 1, 32} {0, 1, 32}
κpos {16,32, 64} {16,32, 64} {16, 32, 64} {16, 32, 64} {16, 32,64}
Phasewise training {yes, no} {yes, no} {yes, no} {yes, no} {yes, no}
a {0.5, 1,2, 4}
b {−2,−1, 0,1, 2}

Table 9. Possible hyperparameters and best-performing hyperparameters (bold). M = 0 corresponds to not sampling negatives, but using
one sample from the same batch as a negative. HIB’s additional hyperparameters were tuned after the first four parameters to reduce the
number of grid-search evaluations.
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C.3. Ablation without Pretraining

All experiments on CIFAR started from weights pretrained on CIFAR-10 to reduce the required computational resources.
However, it is also an intriguing question if MCInfoNCE is able to train a network from scratch. Table 10 shows that it
achieves a similar performance to when it is used on pretrained weights. The small gap in performance may be explained by
the fact that we chose the same hyperparameters for both scenarios for fairness. In particular, the learning rate is tuned for
the pretrained scenario but not for the non-pretrained one.

Table 10. MCInfoNCE can also be used to train on CIFAR-10H from scratch, without pretraining. Rank correlation on unseen test data.

Pretraining Annotator Entropy ↑ Crop Size ↑
With Pretraining 0.33 0.70
From Scratch 0.31 0.62

C.4. Uncertainty Estimation is Not At Stakes With First-Moment Estimation

It is a popular question whether uncertainty estimation worsens the general performance, i.e., the estimation of the first-
moment embedding µ̂(x). To add evidence to this discussion, we’ve implemented the normal InfoNCE loss which estimates
only µ̂(x) but not κ̂(x). In both for the CIFAR and controlled experiment. Table 11 shows that MCInfoNCE is not worse than
InfoNCE at predicting µ̂(x). In terms of the RMSE in the controlled experiment, it even outperforms InfoNCE as InfoNCE
puts the embeddings too close to one another (RMSE = 0.83). This is although InfoNCE was hyperparameter-tuned.

Table 11. MCInfoNCE is not worse than InfoNCE at predicting the first moment of the embedding despite also providing a variance
estimate.

Loss µ(x) vs µ̂(x) RMSE ↓ µ(x) vs µ̂(x) Rank Corr. ↑ Recall@1 on CIFAR-10H ↑
MCInfoNCE 0.04± 0.00 0.99± 0.00 0.863
InfoNCE 0.83± 0.00 0.99± 0.00 0.858

C.5. Credible Intervals

Since we have a (estimated) posterior distribution P (z|x), we can give a credible interval CIp ⊆ Z that the latent z of x
falls into with a probability p ∈ [0, 1], i.e., P (z ∈ CIp) = p. We center this interval around the mode of the posterior vMF,
such that it is a highest posterior density interval (HPDI). Due to the rotational symmetry of the vMF, for a given κ(x) and
credible level p, this interval has the form CIp = {z ∈ Z|z⊤µ(x) ≤ t}, i.e., all latents z closer to the mode µ(x) than a
certain threshold t ∈ [−1, 1] measured by cosine similarity. This threshold is the (approximated) (1− p) quantile of the
vMF.

To visualize this latent interval, we define the credible images interval (CII). This is a pre-image of the corresponding CI and
gives all images whose mode is within the CI, i.e., CIIp := {x ∈ X |µ(x) ∈ CIp}. This can either be visualized via a GAN
conditional on z ∈ CIp or by images from the dataset with µ(x) ∈ CIIp. We note that this does not reflect the aleatoric
uncertainty of those images. We leave this extension for future work.

C.6. Qualitative Evaluation of Aleatoric Uncertainty

Besides the quantitative metrics reported in the main text, we can also take a qualitative look at whether κ̂(x) represents
aleatoric uncertainty in the inputs. Figure 8 visualizes the five images with the lowest and highest κ̂(x) in each class in the
CIFAR-10H test set, i.e., on unseen data. It can be seen that images with a low κ̂(x) tend to hide characteristic parts of
the object via bad crops, being too far away from the object, or an uncommon perspective. Images with a high κ̂(x) show
characteristic features clearly, making it less ambiguous to tell what they show. In other words, they indeed have a lower
aleatoric uncertainty.
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Lowest κ̂(x) Highest κ̂(x)

Class=Truck

Class=Ship

Class=Horse

Class=Frog

Class=Dog

Class=Deer

Class=Cat

Class=Bird

Class=Automobile

Class=Airplane

Figure 8. Images for which MCInfoNCE predicts the highest aleatoric uncertainty , i.e., lowest κ̂(x), (left) per class qualitatively look
more ambiguous than those with the highest predicted κ̂(x) (right).
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Abstract

Representation learning has significantly driven the field to develop pretrained
models that can act as a valuable starting point when transferring to new datasets.
With the rising demand for reliable machine learning and uncertainty quantification,
there is a need for pretrained models that not only provide embeddings but also
transferable uncertainty estimates. To guide the development of such models,
we propose the Uncertainty-aware Representation Learning (URL) benchmark.
Besides the transferability of the representations, it also meaExamplessures the
zero-shot transferability of the uncertainty estimate using a novel metric. We apply
URL to evaluate eleven uncertainty quantifiers that are pretrained on ImageNet and
transferred to eight downstream datasets. We find that approaches that focus on
the uncertainty of the representation itself or estimate the prediction loss directly
outperform those that are based on the probabilities of upstream classes. Yet,
achieving transferable uncertainty quantification remains an open challenge. Our
findings indicate that it is not necessarily in conflict with traditional representation
learning goals. Code is available at https://github.com/mkirchhof/url.

1 Introduction

Pretrained models are a vital component of many machine learning applications. The driving force
behind their development has been representation learning benchmarks, e.g. Roth et al. (2020); Chen
et al. (2020): They task models to output representations e(x) of input data x that generalize across
datasets in a zero-shot manner. These pretrained representations provide a valuable starting point for
downstream applications, requiring less supervised data to be fine-tuned for specific tasks.

At the same time, uncertainty quantification remains a major challenge in the recent efforts towards
reliable machine learning (Collier et al., 2023; Tran et al., 2022). Uncertainty quantification refers to
estimating the degree of uncertainty or risk u(x) ∈ R in a model’s prediction. This is particularly
important in high-stakes applications such as medical image classification. Here, the model can
refrain from making predictions if the uncertainty, e.g., u(x) := 1−maxy P (Y = y|x), is too high
(Zou et al., 2023; Bouvier et al., 2022). Beyond classification, uncertainty is an inherent property
of vision and language (e.g., low image resolution or ambiguous text inputs) that cannot be learned
away even with large amounts of data (Chun et al., 2022; Kendall and Gal, 2017). Consequently,
recent literature suggests representing images not as points e(x), but as probabilistic embeddings
(Kirchhof et al., 2023; Collier et al., 2023; Chun et al., 2021). Here, u(x) is the variance parameter of
a distribution around e(x) in the embedding space, representing the input’s inherent ambiguity. This
can then be utilized for uncertainty-aware retrieval.
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A major hurdle on the way to reliable uncertainty estimates is that u(x) needs to be trained from
the ground up for each specific task, requiring substantial labeled data. Replicating the successes of
representation learning promises to reduce this burden by pretraining a u(x) which can be transferred
to downstream tasks in a zero- or finetuned few-shot manner. Yet, this transferability of u(x) to new
datasets has not been tested in literature, with previous benchmarks evaluating on the same datasets
they trained on (Detommaso et al., 2023; Nado et al., 2021). Thus, we propose a novel Uncertainty-
aware Representation Learning (URL) benchmark. Models that output both embeddings e(x) and
uncertainty estimates u(x) of any form are pretrained on large collections of upstream data and
evaluated on unseen downstream datasets. The transferability of their embeddings e(x) is evaluated
in terms of the Recall@1 (R@1), as in established representation learning benchmarks (Roth et al.,
2020; Chen et al., 2020). The transferability of their uncertainty estimates u(x) is evaluated with
a novel metric, the Recall@1 AUROC (R-AUROC). It naturally extends R@1-based benchmarks
and can be seamlessly integrated in as little as four lines of code, without requiring any new ground-
truth labels. Nonetheless, it is not only an abstract metric but has practical significance: Models with
higher R-AUROC are also more aligned with human uncertainties and react better to uncertainty-
inducing interventions like image cropping.

On this benchmark, we reimplement and train eleven state-of-the-art uncertainty estimators, from
class-entropy baselines over probabilistic embeddings to ensembles, with ResNet (He et al., 2016) and
ViT (Dosovitskiy et al., 2021) backbones on ImageNet-1k (Deng et al., 2009). Our main findings are:

1. Transferable uncertainty estimation is an unsolved challenge (Section 4.2),

2. MCInfoNCE and direct loss prediction generalize best (Section 4.3),

3. Uncertainty estimation is not always in conflict with embedding estimation (Section 4.4),

4. Models with good uncertainties upstream are not necessarily good downstream (Section 4.5),

5. URL captures how aligned a model is with human uncertainty (Section 4.6).

These findings demonstrate that pretraining models for downstream uncertainty estimation is an
important yet unsolved challenge. We hope that our benchmark will serve as a valuable resource in
guiding the field towards pretrained models with reliable and transferable uncertainty estimates.

2 Related work

Our benchmark connects recent uncertainty quantification benchmarks with representation and
zero-shot learning for unseen data, which we introduce below. Specific datasets and methods for
uncertainty quantification are described in the experiments section when they are benchmarked.

Uncertainty benchmarks. Uncertainty quantification has become an essential consideration for
reliable machine learning, and so several libraries have been recently developed to guide its advance-
ment (Detommaso et al., 2023; Nado et al., 2021). These libraries provide various metrics for eval-
uating and improving uncertainty estimates on in-distribution data. Galil et al. (2023b) and Galil
et al. (2023a) benchmarked over 500 large vision models trained on ImageNet from the timm (Wight-
man, 2019) library and reported that Vision Transformers (ViT) provide the best uncertainty esti-
mates. Further, scaling of these ViTs to up to 22B parameters and pretraining on a large corpus of
upstream data results in very accurate uncertainty estimates (Dehghani et al., 2023; Tran et al., 2022).
However, when moving away from in-distribution data, the quality of uncertainty estimates deteri-
orates (Tran et al., 2022) and we can only expect that they will be generally higher and allow for
out-of-distribution detection (Ovadia et al., 2019). This motivates our benchmark: We aim to de-
velop pretrained models that can generalize their uncertainty estimates and discriminate certain from
uncertain examples even within unseen datasets. While some works applied their uncertainty esti-
mates to unseen datasets (Cui et al., 2023; Collier et al., 2023; Ardeshir and Azizan, 2022; Karpukhin
et al., 2022), their downstream evaluations focused on embeddings, leaving the uncertainty estimates
untested. Our benchmark intends to bridge this gap and assess the transferability of uncertainty es-
timates, with the goal of enhancing large pretrained models towards zero-shot uncertainty estima-
tion. To design a benchmark for transferability, we connect the upper benchmarking techniques to
paradigms from representation and zero-shot learning below.
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1 def url_benchmark(pretrained_model , downstream_loader):
2 # Predict embeddings and uncertainties on downstream data
3 labels = embeddings = uncertainties = list()
4 for (image , label) in downstream_loader:
5 embededding , uncertainty = pretrained_model(image)
6 (labels , embeddings , uncertainties).append(label , embedding , uncertainty)
7
8 # Calculate R@1 and R-AUROC
9 next_neighbor_idx = search_most_similar(embeddings)

10 is_same_class = labels == labels[next_neighbor_idx]
11 r_at_1 = mean(is_same_class)
12 r_auroc = compute_auroc(uncertainties , not is_same_class)
13
14 return r_at_1 , r_auroc

Algorithm 1: Adding URL to existing representation learning benchmarks takes only the four
highlighted lines of code.

Representation and zero-shot learning. Transferability is generally evaluated by testing whether
models can make sensible decisions on unseen data. In zero-shot learning (Xian et al., 2017), the
model is tasked to give class-predictions on new downstream classes. This requires both learning a
transferable representation space on upstream data and creating classifier heads for the new classes
from auxiliary information. Representation learning benchmarks (Roth et al., 2020; Khosla et al.,
2020; Bengio et al., 2013) focus on the former. To this end, they use a metric similar to class accuracy,
the Recall@1 (R@1) (Mikolov et al., 2013). It calculates the model’s embeddings of all unseen
downstream data and compares whether each embedding’s next neighbor is in the same class or not.
This tells whether the embeddings are semantically meaningful, such that the pretrained model can
be successfully transferred to downstream tasks. We extend representation learning benchmarks to
additionally judge the transferability of uncertainty estimates. To this end, we propose a metric that
can be implemented on top of the R@1 in four lines of code in the next section.

3 Uncertainty-aware representation learning (URL) benchmark

3.1 Evaluating uncertainty about representations

To quantify its uncertainty, a model f : X → E × U is assumed to predict both an embedding
e(x) ∈ E and a scalar uncertainty value u(x) ∈ U ⊂ R for each input image x ∈ X . We do not
impose restrictions on how u(x) is calculated, e.g., it could be the negative maximum probability of
a softmax classifier, a predicted variance from a dedicated uncertainty module, or the disagreement
between ensemble members. The predicted uncertainty u(x) is commonly benchmarked in terms
of its expected calibration error (ECE), negative log-likelihood, area under the receiver-operator
characteristics curve (AUROC), or abstained prediction curves. All of these measures are w.r.t. the
correctness of a classification decision. Hence, u(x) can only be evaluated in-distribution with known
classes. Our setup involves unseen datasets and classes, so we need to develop a fitting measure.

To this end, let us take Lahlou et al. (2023)’s decision-theoretic perspective on uncertainty quantifica-
tion: Uncertainty quantification is loss prediction. The uncertainty expresses the expected loss of a
model’s decision on a specific datapoint. In Gaussian regression with an L2 loss, the expected loss is
the target’s variance, so an uncertainty quantifier u(x) should be proportional to it. In classification
with a 0-1 loss, u(x) should be proportional to the probability of returning the correct class.

In representation learning, the model’s decision is the embedding e(x) and the loss is the R@1. The
uncertainty quantifier’s goal is then to report the loss attached to the embedding, i.e., u(x) should
be proportional to whether the R@1 will be correct or not. This demonstrates the use case of u(x):
Telling whether an embedding e(x) can be trusted or could be misplaced in the embedding space.
This is an important property as models of the form x → e → y have an information bottleneck in
the quality of the embedding e(x) due to the data-processing inequality (Cover, 1999). For every
downstream task, a higher uncertainty u(x) about e(x) monotonically increases the loss of y(e(x)).
In other words, if the embedding is wrong, then the prediction in any downstream task will be wrong.
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We measure whether the uncertainty quantifier u(x) is proportional to the correctness of the embed-
ding e(x) via the AUROC with respect to whether the R@1 is correct (one) or not (zero), named
R-AUROC. As the R@1 is a 0-1 loss, the R-AUROC can be interpreted as the probability that an in-
correct embedding will receive a higher uncertainty score than a correct embedding (Fawcett, 2006).
An R-AUROC close to 1 means that u(x) clearly separates correct from incorrect embeddings, while
an R-AUROC of 0.5 means that it has no more predictive power than a random guess.

A positive trait of the R-AUROC is that it is indicative of how well-aligned the model is with human
uncertainties and how well the model reacts to uncertainty-inducing interventions (see Fig. 5 and
Section 4.6). It also does not require uncertainty ground-truths and takes only four lines of code to
implement into existing representation learning benchmarks, as shown in Algorithm 1. We choose the
AUROC over other calibration measures such as the ECE because it accepts uncertainties u(x) ∈ R
(instead of u(x) ∈ [0, 1]) and because it avoids some loopholes of the ECE. We discuss these and
more design choices behind this metric in Appendix A.

3.2 URL benchmark protocol

The R-AUROC can be evaluated on any downstream dataset that allows calculating the R@1, i.e.,
has class labels. Yet, in order to keep future results comparable, we propose a benchmark protocol
for uncertainty-aware representation learning (URL). Our code is based on timm (Wightman, 2019)
and available at https://github.com/mkirchhof/url.

Datasets. We train each model on ImageNet-1k (Deng et al., 2009) as upstream dataset. We note
that future works may use larger-scale upstream datasets (Collier et al., 2023; Tran et al., 2022) or
auxiliary information (Han et al., 2023; Ortiz-Jimenez et al., 2023), as long as they stay disjoint to the
downstream datasets. As downstream datasets, we follow the standardized representation learning
protocol of Roth et al. (2020) and use CUB-200-2011 (Wah et al., 2011), CARS196 (Krause et al.,
2013), and Stanford Online Products (Song et al., 2016). We follow the original splits that divide
their classes into equally sized train and test sets. Following Roth et al. (2020), we further divide the
classes in the train set equally into a train and a validation split. In our zero-shot transfering setup, all
models are trained only on the upstream ImageNet dataset and do not use the downstream train splits.
All results report the performance on the test sets, averaged across the three datasets and three seeds.

Hyperparameters. We use the downstream validation split to select the best learning rate, early
stopping, and further hyperparameters of each model individually, see also Appendix B. Each model
is tuned for 10 search iterations via Bayesian Active Learning (Biewald, 2020). The best model is
chosen based on the R-AUROC on validation data, where models with an R@1 below 0.1 on the
validation splits are filtered out. The best model is replicated on three seeds.

Architectures. Following uncertainty quantification and representation learning benchmarks (Wen
et al., 2021; Dusenberry et al., 2020; Roth et al., 2020), we use a ResNet-50 (He et al., 2016) with
an embedding space dimension of 2048 as a backbone. We further study ViT-Medium (Dosovitskiy
et al., 2021) backbones due to their performance (Galil et al., 2023a,b) and increasing number of large-
scale uncertainty quantifiers built on top of them (Collier et al., 2023; Tran et al., 2022). Methods
that predict u(x) with explicit modules use a 3-layer MLP head attached to the embeddings.

Training infrastructure. Each model is trained with an aggregated batch size of 2048, as recent
studies indicate higher batch sizes might benefit uncertainty quantification (Galil et al., 2023b). We
use the Lamb optimizer (You et al., 2020) with cosine annealing learning rate scheduling (Loshchilov
and Hutter, 2017) for all models since it performed best in preliminary experiments. The ResNets
and ViTs are trained on NVIDIA RTX 2080 Ti and A100 GPUs, respectively, for 32 epochs from a
checkpoint pretrained on ImageNet to reduce the computational costs. In total, the experiments took
3.2 GPU years of runtime.

Further metrics. Uncertainty estimates aim to assess the errors made by individual models, so that
they are necessarily model- and performance-dependent. To provide a comprehensive view, we not
only evaluate the quality of the uncertainty estimate using R-AUROC but also consider the model’s
representation learning performance using R@1.
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4 Experiments

4.1 Uncertainty estimators

We apply URL to benchmark two baselines (CE, InfoNCE), five probabilistic embeddings approaches
(MCInfoNCE, ELK, nivMF, HIB, HET-XL), two direct variance models (Losspred, SNGP), and
two ensembles (Ensemble, MCDropout). We introduce each approach below and explain further
details on their reimplementations and hyperparameters in Appendix B and runtimes in Appendix C.7.

Cross Entropy (CE) is a supervised baseline which trains under a cross-entropy loss. It uses the
entropy of the upstream class probabilities u(x) := H(P (Y |x)) as uncertainty estimate.

InfoNCE (Oord et al., 2018) is an unsupervised baseline. Following SIMCLR (Chen et al., 2020), it
takes two random transforms of each image and pulls their embeddings towards each other and repels
them from the remaining batch. InfoNCE itself does not estimate u(x), so we use the embedding
norm u(x) := ∥e(x)∥2 as a heuristic (Kirchhof et al., 2022; Scott et al., 2021; Li et al., 2021).

MCInfoNCE (Kirchhof et al., 2023) follows the unsupervised setup of InfoNCE, but predicts a
certainty κ(x) =: 1/u(x) along with each embedding to define a distribution in the embedding space,
so called probabilistic embeddings. It draws samples from them and applies InfoNCE on each.

Expected Likelihood Kernel (ELK) (Kirchhof et al., 2022; Shi and Jain, 2019) also predicts
certainties κ(x) =: 1/u(x) to define probabilistic embeddings. The probabilistic embeddings are
compared to class distribution via an expected likelihood distribution-to-distribution kernel (Jebara
and Kondor, 2003). This makes it a supervised probabilistic embedding-based loss.

Non-isotropic von Mises-Fisher (nivMF) (Kirchhof et al., 2022) is analoguous to ELK, but models
class distributions as non-isotropic von Mises-Fisher distributions, thereby allowing different vari-
ances along each embedding space axis. Image certainties are still scalars κ(x) =: 1/u(x).

Hedged Instance Embeddings (HIB) (Oh et al., 2019) predicts variances σ(x) =: u(x) of proba-
bilistic embeddings. Samples are drawn to compute match probabilities between two images. It aims
to increase the match probabilities of same-class pairs and decrease that of different-class ones.

Heteroscedastic Classifier (HET-XL) (Collier et al., 2023) differs from the above probabilistic
embeddings approaches in that it predicts full covariance matrices Σ(x) in the embedding space. It
draws samples from these probabilistic embeddings to calculate the expected P (Y |x). We test both
u(x) := detΣ(x) and the class entropy u(x) := H(P (Y |x)) as possible uncertainty estimates.

Spectral-normalized Neural Gaussian Processes (SNGP) (Liu et al., 2020) model class logits
as Gaussian Processes with a predicted mean and a heteroscedastic variance. They are pooled into
class probabilities P (Y |x) and trained under a CE loss. The entropy of these probabilities serves as
uncertainty value u(x) := H(P (Y |x)).
Loss Prediction (Losspred) approaches (Upadhyay et al., 2023; Lahlou et al., 2023; Levi et al., 2022;
Laves et al., 2020; Yoo and Kweon, 2019) in regression treat uncertainty quantification as secondary
regression task. We apply the same principle to classification, where we task the uncertainty module
u(x) to predict the (gradient-detached) CE loss at each sample via an L2 loss added to the train loss.

Deep Ensembles (Lakshminarayanan et al., 2017) train multiple randomly initiated networks under a
CE loss to obtain several predictions. They are pooled one class distribution P (Y |x). We define the
uncertainty either via its entropy u(x) := H(P (Y |x)) or the Jensen–Shannon divergence between
the ensemble members’ class probability distributions. Following (Lee et al., 2015), we only train
multiple output heads and share the backbone to reduce computational complexity.

MCDropout (Gal and Ghahramani, 2016) applies Dropout (Srivastava et al., 2014) at inference time.
This gives multiple predictions per input, imitating the upper Ensemble. We use both the entropy
u(x) := H(P (Y |x)) and the Jensen–Shannon divergence between the ensemble members’ class
probability distributions as possible uncertainty metrics.

4.2 Transferable uncertainty estimation is an unsolved challenge

Fig. 1 presents the URL benchmark results, i.e., the R-AUROC calculated for all above approaches on
ResNet and ViT backbones. The barplot shows the minimum, average, and maximum performance
across three seeds of each hyperparameter-tuned approach.
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Figure 1: Zero-shot uncertainty estimates of pretrained models (bars) do not reach the performance
of many-shot models yet (dashed line). The URL benchmark aims to guide the field to close this gap.
Minimum, average, and maximum R-AUROC across three seeds.

Before comparing the models, we first investigate whether the transferability problem URL addresses
is already solved by any of the existing methods. To obtain an upper reference, we additionally train
a ResNet 50 with standard cross-entropy loss and entropy of the class probabilities as uncertainty
prediction on the downstream test classes (split into a train and test split for this experiment only). This
many-shot performance of 0.68 is not reached by any of the methods that transfer their uncertainty in
a zero-shot way, marking URL as an open challenge. In the standard R@1, this gap has already been
closed in representation learning (see Appendix C.1) and we hope that URL guides the field towards
the same for transferable uncertainty estimation.

4.3 MCInfoNCE and direct loss prediction generalize best

To compare the approaches in detail, in addition to Fig. 1, Fig. 2 reports both the downstream
uncertainty and R@1 performance. The overall best method is Losspred, with the second-best average
R-AUROC of 0.568, close to the best method, MCInfoNCE, with an average R-AUROC of 0.569,
while maintaining the second-best average R@1 of 0.53, close to the best R@1 of 0.57 achieved by
nivMF. MCInfoNCE marks the best performance in both metrics within the ResNet models, closely
followed by nivMF. This is remarkable as it is the only unsupervised method aside from the InfoNCE
baseline. One final noteworthy mention is ELK which provides decent uncertainty estimates on both
ResNets and ViTs, whereas most other models vary in their performance depending on the backbone.

When grouping the approaches, those that directly model the variance (Losspred, SNGP) appear
to have an edge on the ViTs, especially Losspred, which is the only method that disentangles
variance estimation from how the class logits are calculated. Such disentanglement via having two
losses could be added to other approaches in future works. Probabilistic embeddings, especially
MCInfoNCE, nivMF and ELK, also show promising performance both on the bigger ViTs and
the smaller ResNets. Ensembles fail to provide transferable uncertainty estimates. The baselines
unsurprisingly fail, indicating that well-calibrated class probabilities on the upstream dataset do not
serve as good uncertainties on downstream data. We investigate this further in Section 4.5.

4.4 Uncertainty estimation is not always in conflict with embedding estimation

A commonly raised concern is whether or not uncertainty quantification deteriorates the prediction,
or, in the representation learning setup, the embedding quality. In the previous section, we have
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Figure 2: Among ViTs and ResNets, respectively, Losspred and MCInfoNCE transfer best both in
terms of uncertainty estimates (y-axis), measured by our R-AUROC, and embedding quality (x-axis),
measured by Recall@1. Three seeds per model and architecture.
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Figure 3: Best hyperparameters chosen for R@1 and for R-AUROC for each model. For some
models, there is one best hyperparameter for both, resulting in a point, but most have a large trade-off.
Average performance across three seeds.

already seen that Losspred can achieve both with only a slight trade-off to the best method in each
category. In this section, we further detail this question within each model class.

Fig. 3 shows the performance of the best hyperparameters chosen according to R-AUROC or
according to the R@1. If there was no trade-off, the points would lay at the same position or only
have a short line connecting them. This is the case for MCInfoNCE, ELK, nivMF, HET-XL, and
Ensemble on ViTs and MCInfoNCE, MCDropout, and InfoNCE on ResNets. The remaining 14 of
the 22 approaches show large tradeoffs, e.g., −0.21 R@1 for +0.01 R-AUROC for HIB on ViTs.
Whereas this comparison regards only the two extreme ends of the spectrum, Appendix C.2 measures
the rank correlation across all tested hyperparameters. It shows a similar conlusion, with 15 out of 22
approaches trading off uncertainty and prediction. However, from another perspective, Losspred,
nivMF, and MCInfoNCE are model classes that provide good performance in both simultaneously.
Hence, the question of whether there is a general trade-off between uncertainty estimation and
prediction is still up to debate. Studying these models and mitigating the model-internal trade-offs is
an interesting future work that we hope URL can enable.
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Figure 4: The R-AUROC on upstream data does not indicate the performance on downstream data
(left). Yet, the percentage of upstream images where a cropped version receives a higher uncertainty
is indicative (right). Plots show all hyperparameters, including non-optimal ones.

4.5 Models with good uncertainties upstream are not necessarily good downstream

We have seen that CE is unable to transfer its well-calibrated upstream uncertainty estimates to
downstream datasets. This brings up the question of how much the upstream and downstream
uncertainty quantification abilities coincide in general. Fig. 4 (left) shows that the majority of models
achieves an R-AUROC above 0.7 on the upstream seen classes. But this does not indicate a good
downstream performance (Rank Corr. 0.09), neither across nor within model classes (unlike up- and
downstream R@1, which transfers better, see Appendix C.3). This demonstrates that transferable
uncertainty quantification will not solve itself by merely becoming better on the upstream data.

This also opens a question about model choice: If the upstream performance cannot tell how well the
model’s uncertainty predictions will perform downstream, how should we select pretrained models?
In this paper, we used downstream validation data. However, if we are limited to upstream data,
we may test the uncertainty module in a more general task that also holds downstream. In Fig. 4
(right), we calculate how often the model assigns a higher uncertainty value to a cropped version of
an image than to the original image. The rank correlation of 0.54 with the downstream R-AUROC
signals that models that perform well on this general uncertainty task also tend to generalize better to
the downstream data. This means that general uncertainty tasks might be good heuristics to choose
models, reinforcing practices in recent literature (Kirchhof et al., 2023).

4.6 URL captures how well-aligned a model is with human uncertainty

While the R-AUROC is simple and theoretically founded, readers might still wonder why we want to
drive the development of models based on this rather technical-seeming metric. In this section, we
show that the R-AUROC reflects how well-aligned the model is with human uncertainties.

To verify this, we use five additional downstream datasets from Schmarje et al. (2022): CIFAR-10H
(Peterson et al., 2019), Benthic (Langenkämper et al., 2020; Schoening et al., 2020), Pig (Schmarje
et al., 2022), Turkey (Volkmann et al., 2022, 2021), and Treeversity#1 (Arnold Arboretum, 2020).
They present human annotators with naturally ambiguous images and record their uncertainty by
collecting multiple class annotations per image. The entropy of this distribution measures the
human uncertainty h(x) = H(Phuman(Y |x)). We can then measure the alignment of the model
f ’s uncertainties with human uncertainties via rank correlation a(f) = Rank Corr.({u(x), h(x)}x).
Fig. 5 (left) shows that this alignment metric a(f) is positively correlated with the R-AUROC (Rank
Corr. 0.80). Further, Fig. 5 (right) shows that the same holds for the correlation between R-AUROC
and how well a model detects the uncertainty introduced synthetically via cropping (Rank Corr. 0.71),
as in the previous section. This means that the R-AUROC is not just a technical metric, but reveals
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Figure 5: If a model has a high R-AUROC, it is likely also well-aligned with human uncertainties
(left). Further, it is likely able to detect uncertainties induced via synthetical cropping (right). All
results on five further downstream datasets from Schmarje et al. (2022).

how well a model’s uncertainty estimate is aligned with human and synthetical notions of uncertainty,
despite not requiring access to human uncertainty ground truths.

4.7 URL is no out-of-distribution detection benchmark

Last, we want to clarify how URL is different from out-of-distribution (OOD) detection benchmarks
like (Ovadia et al., 2019). While both test uncertainty estimates on OOD data, the goal is different:
In OOD detection benchmarks, the uncertainty estimates are tasked to be generally higher for
OOD than for in-distribution (ID) samples. In URL, we look only at the OOD data and see if the
uncertainties within this data are correctly sorted. This is because our use-case is not to build OOD or
anomaly detectors, but pretrained models whose uncertainty estimates generalize to new datasets. In
Appendices C.4 and C.5 we show that methods with good OOD detection abilities are not necessarily
good in URL or vice versa. This demonstrates that URL is concerned with predictive uncertainty
estimation (and generalization), which is largely driven by aleatoric uncertainty, rather than epistemic
uncertainty estimation, which is tested in OOD benchmarks.

5 Conclusion

Summary This paper proposes the uncertainty-aware representation learning (URL) benchmark.
On top of the Recall@1, URL adds an easy-to-implement metric that evaluates how well models
estimate uncertainties on unseen downstream data. Besides having a theoretical foundation, it also
behaves similarly to practical metrics like the alignment with human uncertainties. In benchmarking
eleven state-of-the-art approaches on ResNet and ViT backbones, we found that the challenge URL
poses is far from being solved. We hope that URL guides the field to overcome this challenge and
yield models with reliable pretrained uncertainty estimates.

Outlook We gathered some insights that might guide future developments: Both unsupervised and
supervised methods can learn transferable uncertainty estimates. This is not necessarily at stakes
with the embedding and prediction quality. However, many methods have internal trade-offs in their
hyperparameters. A deeper analysis of the reasons for this trade-off could allow us to control and
mitigate it. Loss prediction and probabilistic embedding methods are currently the most promising
approaches. They may be combined to enhance each other and define a new state-of-the-art.

Limitations Although URL allows using any upstream benchmark, we have focused on ImageNet-
1k to train all current methods on the same ground. We leave the investigation of further scaled
datasets to forthcoming research. Further, we hyperparameter-tuned each model individually with the
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same budget, but the vast number of hyperparameters in some models, like SNGP, means that our
active learning search may have missed some fruitful combinations. Finally, our study concentrates
on zero-shot uncertainty estimates. It will be an interesting endeavour to see if pretrained models
with good zero-shot estimates also accelerate learning uncertainties in few-shot scenarios.
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A FAQ on URL benchmark and R-AUROC

A.1 Why AUROC with respect to R@1 and not accuracy?

First attempts in zero-shot learning literature measured the accuracy on unseen classes. This required
learning not only an embedder, but also constructing classifier labels, usually through prototypes
or attributes. Subsequent approaches in representation and deep metric learning seeked generally
transferable embeddings, where no information is known about the test classes. So, it was impossible
to give class logits and calculate an accuracy. Instead they measure the R@1. We have the same
goal of transferring uncertainty estimates to unknown test conditions, so we built up the uncertainty
benchmark on predicting whether the R@1 will be correct or wrong. This measures the risk inherent
to the embedding, rather than the (classification) downstream task, which is unknown in advance.
However, the risk in the embedding is a bottleneck to the potential subsequent classification layer
and we indeed observe in Appendix C.3 that R@1 and accuracy are highly correlated, so that the
difference is negligible.

A.2 Why a ranking-based metric (AUROC) and not probability-based calibration?

The AUROC measures if the predicted uncertainties are ranked such that the most uncertain have the
most erroneous predictions. It is intriguing to use a different metric, which is to predict the probability
of error directly as a value in [0, 1]. However, this metric fundamentally cannot be calibrated before
the downstream task is known: In classification, we do not know how many classes there will be and
beyond classification, our uncertainty metric should indicate the prediction risk, but without knowing
the loss or its range in before, we cannot calibrate the uncertainty estimates. Therefore, the best
strategy is to give a correctly ranked uncertainty metric, which is what AUROC measures. It can be
calibrated into the [0, 1] region for the downstream task at hand once data is available. Another point
is that a [0, 1] estimate has the trivial solution of always giving a random prediction the certainty being
the prior over the classes. A ranking based metric cannot do that, as that would have an AUROC of
0.5. The AUROC thus forces the model to quantify how uncertain it is, not only that it is uncertain.

A.3 Does URL measure predictive, aleatoric, or epistemic uncertainty?

The R-AUROC in our setup measures the predictive uncertainty, in other words, the overall expected
risk of a prediction. We believe this overall uncertainty is most relevant when seeking a reliable model.
Note, however, that the AUROC uses a rank-based relative comparison of the uncertainty estimates.
This means that a constant high uncertainty on out-of-distribution data does not suffice; instead, the
model needs to quantify how uncertain it is, not just that it is uncertain. This is influenced both by the
inherent ambiguity of the downstream sample (aleatoric) and how far it is from the upstream data
(epistemic).

A.4 How is the AUROC implemented precisely?

We use the TorchMetrics implementation (Detlefsen et al., 2022). It applies the trapezoidal rule
and uses every uncertainty value as a possible threshold.

A.5 Why CUB200-2011, CARS196, and Stanford Online Products?

Our definition of URL is agnostic of the datasets and can be applied to any downstream dataset.
For this paper, we use CUB200-2011 (Wah et al., 2011), CARS196 (Krause et al., 2013), and
Stanford Online Products (Song et al., 2016), because they are commonly used as zero-shot learning
and representation learning datasets. We hope that this status prevents data-leakage to upstream
pretraining datasets.

A.6 Can URL also be implemented for downstream datasets that don’t have labels?

Throughout this paper, we measure the R@1 by seeing if the next neighbor of a test image has the
same class label. This is to ensure the compatibility with representation learning benchmarks. One can
also define a self-supervised R@1 (e.g., seeing if a crop of the same image is detected as belonging
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to that image). In this case, R-AUROC automatically generalizes to this form of supervision, as it
still measures errors in R@1, regardless of how it was computed.

A.7 Can URL be applied beyond vision tasks?

Yes. URL can be deployed whenever there is a downstream dataset on which we measure a R@1.

B Reimplementations and hyperparameters

All methods benchmarked in this paper are re-implemented and hyperparameter tuned to ensure
a consistent comparison. First, let us explain the hyperparameters shared by all approaches: As
backbones, we use ResNet-50 (He et al., 2016) architectures with 224x224 inputs and 2048-dim max-
pooled embeddings, and ViT-Medium (Dosovitskiy et al., 2021) with an input size of 256x256 split
into 16x16 patches. All models are tuned for 32 epochs with a Lamb optimizer (You et al., 2020). 16
minibatches of size 128 are accumulated to reach a summed batch size of 2048, unless otherwise
noted. The learning rate is fixed at the first epoch, then warmed up for five epochs and cooled down
using a cosine scheduler (Loshchilov and Hutter, 2017). The learning rate is a hyperparameter for
all approaches, searched over a range of [0.0001, 0.01]. The hyperparameter search is extended by
more runs if the optimal value is close to a boundary. Let us now describe the approaches and their
additional hyperparameters in detail. All optimal hyperparameters are reported in the code appendix.

B.1 Cross-Entropy (CE)

The CE baseline applies a cross-entropy loss to the class-logits output by a final linear layer appended
to the embeddings. It has no hyperparameters except the learning rate.

B.2 InfoNCE

InfoNCE (Oord et al., 2018) uses two random crops per input image that are considered positive,
whereas the remaining batch is considered negative. This results in a doubled VRAM usage, so that
the batch size is reduced to 21 minibatches of 96 images each. InfoNCE uses an (inverse) temperature
parameter t, tuned within [8, 64]. All embeddings e are normalized to lay on the unit sphere, where
e+1 and e+2 denote the positive and e− all negative embeddings. The final loss is

L = −t · e+1
⊤
e+2 + log

∑

e−∈Batch

exp
(
t · e+1

⊤
e−
)
+ log

∑

e−∈Batch

exp
(
t · e+2

⊤
e−
)

. (1)

B.3 MCInfoNCE

MCInfoNCE (Kirchhof et al., 2023) works similar to InfoNCE, except that it does not directly
compare the embeddings, but samples from estimated posteriors s+1,i ∼ vMF(e+1 , κ(e

+
1 )), s

+
2,i ∼

vMF(e+2 , κ(e
+
2 )), s

−
i ∼ vMF(e−, κ(e−)). The concentration, i.e., inverse uncertainty, κ is estimated

from a 3-layer MLP attached to the embeddings. Its initial value is either randomly initialized
or warmed up to 0.001, which is a hyperparameter. The second hyperparameter is its (inverse)
temperature t ∈ [8, 64]. Like InfoNCE, it uses a reduced batch size of 21 times 96. The loss is
obtained by calculating the InfoNCE loss for 16 samples si from the respective posteriors.

L =
1

16

16∑

i=1

−t · s+1,i
⊤
s+2,i + log

∑

s−i ∈Batch

exp
(
t · s+1,i

⊤
s−i

)
+ log

∑

s−i ∈Batch

exp
(
t · s+2,i

⊤
s−i

)
(2)

B.4 Expected Likelihood Kernel (ELK)

ELK uses a ProxyNCA formulation, as proposed in Kirchhof et al. (2022). Like MCInfoNCE, it
parametrizes posteriors ζ = vMF(e, κ(e)) from each image’s normalized embeddings e and a 3-
layer MLP for κ. Its initial value is either randomly initialized or warmed up to 0.001, which is a
hyperparameter. ELK is supervised and learns vMF class distributions ρc for each class c = 1, . . . , C.
The concentrations of these classes are scaled up by the hyperparameter t ∈ [8, 64], which takes a
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similar role to the inverse temperature in the previous losses. These are compared to the embedding
posteriors via a distribution-to-distribution similarity function elk_sim. This is solved analytically,
not requiring sampling. With ρ∗ denoting the true class of the given sample, the loss can be written as

L = −elk_sim(ζ, ρ∗) + log
C∑

c=1

exp (elk_sim(ζ, ρc)) . (3)

B.5 Non-isotropic von Mises-Fisher (nivMF)

nivMF (Kirchhof et al., 2022) has the same hyperparameters and loss as ELK, except that the class
proxy distributions ρc are non-isotropic vMFs. Since the expected-likelihoood between the image
embeddings’ vMFs and the classes’ non-isotropic vMFs has no analytical solution, it is Monte-Carlo
approximated with 16 samples.

L = −approx_elk_sim(ζ, ρ∗) + log
C∑

c=1

exp (approx_elk_sim(ζ, ρc)) . (4)

B.6 Hedged Instance Embeddings (HIB)

HIB (Oh et al., 2019), like MCInfoNCE, takes samples from estimated posteriors sn,i ∼
vMF(en, κ(en)), where en are the image’s L2 normalized embeddings en and κ is estimated by a
3-layer MLP. Its initial value is either randomly initialized or warmed up to 0.001, which is a hyper-
parameter. HIB then calculates a matching probability by comparing the samples of every pair of
images n,m in the batch: pn,m =

∑16
i=1 sigmoid

(
t · s⊤n,ism,i + b

)
, where t ∈ [8, 64] is a hyperpa-

rameter similar to the (inverse) temperature and b ∈ [−8, 8] is a second hyperparameter. The match-
ing probability should be high for images with the same label and low for images with different labels.
Let Isame denote the pairs of images with the same label and Idifferent the pairs with different labels,
both without self-matches. Then the loss is

L = − 1

|Isame|
∑

(n,m)∈Isame

log pn,m +
1

|Idifferent|
∑

(n,m)∈Idifferent

log pn,m , (5)

where | · | denotes the cardinality of the set. As opposed to the original implementation, we use
cosine distances instead of L2 distances and remove the prior regularizer. This is to make HIB
more comparable to the other approaches in this paper. We also changed the second term from
encouraging low log match probabilities for different labels (− log(1− pn,m)) to discouraging high
ones (+ log pn,m), which stabilized training. HIB requires additional VRAM and thus uses 21
batches of size 96 (43 of size 48 on ViTs).

B.7 Heteroscedastic Classifier (HET-XL)

HET-XL (Collier et al., 2023) predicts a distribution in the embedding space for each image. It
then takes samples and calculates a Monte Carlo estimate of the expected model output under the
embedding distribution. As opposed to the other probabilistic embedding approaches from above, it
operates in Euclidean space by predicting a Gaussian distribution N (ϕ(x; θ),Σ′(x; θcov)) with a low-
rank approximation of the covariance matrix Σ′(x; θcov) = V (x)⊤V (x) + diag(d(x)). V (x) and
d(x) are output by a linear layer attached to the embeddings. The number of columns in V increases
the rank of the low-rank approximation, but also the number of parameters that the final linear layer
has to predict, and thus the memory requirements. We thus set this hyperparameter to 1 (exploratory
experiments with a rank of 10 did not show increased performance). The final loss is
Lcross-entropy

(
Eϵ′
[
softmaxτ (W⊤(ϕ(x; θ) + ϵ′(x))

]
, y
)

with ϵ′(x) ∼ N (0,Σ′(x; θcov)) , (6)
where the softmax temperature τ is a learnable parameter.

B.8 Spectral-normalized Neural Gaussian Processes (SNGP)

SNGP (Liu et al., 2020) predicts a Gaussian distribution

N
(
ϕ(x)⊤β, ϕ(x)⊤

(
I +Φ⊤Φ

)−1
ϕ(x)

)
(7)
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over the class logits, which is cast into class probabilities via a mean-field approximation. These
class probabilities are then trained under a CE loss. β is a learnable parameter matrix, ϕ(x) =
cos (Wh(x) + b) is a feature embedding based on frozen random parameters W and b, and Φ⊤Φ is
the empirical covariance matrix of the feature embeddings over the training dataset. The method also
applies spectral normalization to the hidden weights in each layer in order to satisfy input distance
awareness. We treat whether to apply spectral normalization through the network and whether to use
layer normalization in the last layer as hyperparameters.

B.9 Direct Loss Prediction (Losspred)

Losspred trains a classifier under a cross-entropy loss and uses its uncertainty module κ, a 3-layer
MLP attached to the embedding space, to predict the value of the cross-entropy loss. Both components
are balanced by the hyperparameter λ ∈ [0.01, 0.99]:

L = Lcross-entropy(x, y) + λ
(
κ(x)− Ldetached

cross-entropy(x, y)
)2

. (8)

The gradients of Ldetached
cross-entropy inside the L2 loss are detached to prevent fitting it to κ(x), instead of

the other way around. Besides λ, a second hyperparameter is whether or not to warm up κ to 0.001.

B.10 Deep Ensemble

Ensemble (Lakshminarayanan et al., 2017) has 10 classifier heads attached to the embedding space.
Their logits are transformed into probabilities by a softmax and then averaged. This average is trained
under a CE loss. Ensemble has no hyperparameters other than the learning rate.

B.11 MCDropout

MCDropout (Srivastava et al., 2014) trains with a dropout rate of [0.05, 0.25], which is a hyperpa-
rameter. During inference time, it keeps the dropout activated to sample 10 logits and averages them
like Ensemble.

C Additional results

C.1 Pretrained models already close the gap in terms of R@1

This section compares the models in terms of their R@1. To this end, we hyperparameter-tuned them
with respect to R@1, and not R-AUROC. Similar to the main text, we also add an additional baseline
that was trained on the downstream classes, where the original test split was split into equal sized
train and test splits.

Fig. 6 shows these performances. As opposed to the R-AUROC, we can see that the gap between
pretrained zero-shot and many-shot models is much tighter in terms of the R@1. The best pretrained
ResNet-50 has an average R@1 of 0.48 vs. 0.54 when training on the downstream data.

Surprisingly, when it comes to R@1, CE is among the best two approaches both for ResNet and ViT
backbones. In fact, three of the four best approaches on ViTs and two of the four on ResNets rely
on CE as part of their loss. The approaches that do not rely on CE are probabilistic embeddings –
nivMF on ResNet and ViT and ELK on ResNet.

C.2 R@1 and R-AUROC correlate negatively in most models

In extension to the plot that compared the best hyperparameter setup for R-AUROC to the best for
R@1, Fig. 7 and Fig. 8 present the trade-offs for all tested hyperparameters.

The general picture is the same as in the comparison of best vs best: Most models show a trade-
off between achieving the best R-AUROC and the best R@1. This is indicated by a negative rank
correlation in 15 out of 22 models. Still, there are some models where the uncertainty estimation
and prediction performances correlate moderately positively (0.4 ≤ Rank Corr. ≤ 0.72). These are
InfoNCE and MCInfoNCE on ResNets, and HET-XL, nivMF, and HIB on ViTs.
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Figure 6: Pretrained models achieve an almost as good R@1 on unseen downstream data as models
trained on the downstream data. Minimum, average, and maximum R@1 per model. Model
hyperparameters were optimized w.r.t. R@1.

As mentioned in Appendix B, each approach was tested on 10 hyperparameters, with 2 additional
runs on other seeds for the best hyperparameters. The reason that some plots show less than 12 points
is that those had a R@1 < 0.1 on the downstream datasets and were excluded from the analysis.
Some plots also show more than 12 points. This is because their best hyperparameter for R@1 was
unlike that for R-AUROC, adding another 2 runs on different seeds for the R@1. Further, some
approaches had optimal hyperparameters close to the original search bounds, such that the search
was extended, leading to additional points in the plots.
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Figure 7: R@1 and R-AUROC are negatively correlated on seven out of ten model classes with
ResNet backbones. Plot shows all tested hyperparameter combinations.
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Figure 8: R@1 and R-AUROC are negatively correlated on seven out of ten model classes with ViT
backbones. Plot shows all tested hyperparameter combinations.
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C.3 Further correlation of up- and downstream metrics

This section reports further metrics for each model. These include a new metric (top-1 accuracy on
upstream ImageNet) and all downstream metrics (R@1, R-AUROC, percentage where cropped image
has higher uncertainty) on the upstream dataset.

Fig. 9 shows the pairwise correlations between all metrics, for every tested hyperparameter setting.
Let us first consider the new metric, ImageNet top-1 accuracy, on its own. The best-performing
models are a CE and a nivMF ViT, with an accuracy of 0.84 each. Other than them, Losspred and
HET-XL on ViTs also have a high accuracy, similar to the results on the R@1 benchmark.

Regarding correlations between metrics, accuracy and R@1 are highly correlated, as expected.
Further, models with a high accuracy or R@1 on ImageNet also have a high R@1 on the downstream
data, resulting in the small gap explained in Appendix C.1. While up- and downstream R-AUROC
do not correlate, up- and downstream percentage of cropped images having a higher uncertainty
correlate nearly linearly. This reinforces that the percentage can be considered as a general notion of
uncertainty. It should, however, be noted that ELK ViTs already achieve a performance of 0.99 on
this metric, even on downstream data, such that it is not able to guide the field as well as R-AUROC.
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Figure 9: Correlations between several up- and downstream metrics across all models and hyperpa-
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C.4 Class-entropy is useful for OOD detection
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Figure 10: Cross-entropy and embedding norm-based uncertainty estimators have the best OOD
detection capabilities. Averaged AUROC of distinguishing ImageNet vs CUB, ImageNet vs CARS,
and ImageNet vs SOP. Error bars indicate minimum/maximum performance across seeds.
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Figure 11: Embeddings of OOD images tend to have smaller L2-norms than embeddings of ID
images. Embedding norms are from InfoNCE models that use the (inverse) norm as uncertainty
estimate (without using them during training) and reach an OOD AUROC of 0.73.

In this section, we study if uncertainties on downstream data are generally higher than for the upstream
data. To this end, we perform out-of-distribution detection experiments: Using the same pretrained
models as before, we calculate their uncertainties on downstream dataset samples and on an equally
sized set of upstream samples. We quantify how well the predicted uncertainties distinguish whether
the sample was from a downstream dataset (1) or not (0) by calculating the AUROC on ImageNet vs
CUB, ImageNet vs CARS, and ImageNet vs SOP, and averaging them across the datasets.

Fig. 10 shows the average result across all seeds, along with minimum and maximum performances.
Generally, pretrained models perform differently than in the URL benchmark in the main text. This
is because the OOD task benchmarks epistemic uncertainty (i.e., OOD data just has to have generally
high uncertainties). On the other hand, the URL benchmark tests predictive uncertainties on OOD
data. There, it is not enough to predict high values on OOD data but the models need to differentiate
within them, which lays more focus on aleatoric uncertainty. In more detail, models that directly
predict variances or losses do not provide as good OOD performance. Models that use class-entropy
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as uncertainty estimates (SNGP, HET-XL, CE, Ensemble, and, only on ViTs, MCDropout) and
also InfoNCE, which uses the norm of the embedding vector, do work well.

There is an intuitive explanation for this. The latter models implicitly provide epistemic uncertainty
estimates by construction: ResNets and ViTs embed inputs with less known features closer to the
origin. As an example, Fig. 11 shows that for InfoNCE, the embedding norms of OOD samples are
smaller. Note that this is no trained behaviour; InfoNCE only trains on normalized embeddings, so
the norms occur naturally. In InfoNCE, we use this embedding norm directly as uncertainty estimator.
But the same happens in models that use the class entropy: Embeddings with small norm lay close to
the origin, where they lead to uniform distributions over the classes, i.e., a high entropy.

In summary, the OOD experiment reveals that probabilistic embeddings and loss prediction methods
provide aleatoric uncertainty estimates, whereas models that explicitly or implicitly use the embedding
norm provide good epistemic uncertainty estimates. Some models, like SNGP, provide a mixture
and are good in both tasks.

C.5 Uncertainties on mixtures of in- and out-of-distribution data
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Figure 12: Cross-entropy based uncertainties provide the best mix of OOD detection capability and
ordering within ID and OOD uncertainties. R-AUROC on mixed ImageNet+CUB, ImageNet+CARS,
and ImageNet+SOP data. Error bars indicate minimum/maximum performance across seeds.

In some applications, models might encounter a mixture of in-distribution and out-of-distribution
data. In this case, the model both needs to assign higher uncertainties to the OOD data and it needs to
differentiate the uncertainties within both the ID and the OOD sets. This blends the OOD detection
of the previous experiment with traditional ID calibration and the OOD calibration of the URL
benchmark.

Fig. 12 measures the R-AUROC on a mixture of upstream and downstream data. As in the previous
experiment, we use 50/50 splits of ImageNet+CUB, ImageNet+CARS, and ImageNet+SOP, and
average across those combinations. We find that HET-XL and SNGP, which previously performed
well on both OOD detection and the URL benchmark, also perform well on this mixed task. The
remaining models tend to follow the ranking of the OOD benchmark rather than that of URL. This
indicates that good epistemic uncertainty estimation outweighs aleatoric uncertainty estimation in
this task. This is intuitive, because the R-AUROC measures how likely it is that a wrong prediction
has a higher uncertainty than a correct one. In such a 50/50 split of ID and OOD data, the capability
to distinguish ID from OOD data, and thus data with generally less errors from data with generally
more errors, thus leads to a higher R-AUROC.
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This serves to demonstrate that the quality of an uncertainty estimate always depends on the task and
setup at hand. While OOD detection and ID calibration are ideally both reflected within the very
same predictive uncertainty value, both are of different importance depending on the data mixture.

C.6 Few-shot uncertainties starting from pretrained models
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Figure 13: Cross-entropy training on the downstream test data reaches the zero-shot AUROC of 0.6
at 2-5 samples. R-AUROC of pretrained models when finetuned on the downstream test classes.

In this section, we provide an initial attempt on a few-shot experiment. We use both the best three
pretrained models (ELK, MCInfoNCE, and nivMF for ResNet 50; ELK, Losspred, and SNGP
for ViT Medium) along with the CE model as pretrained checkpoints and continue to train under
the same hyperparameters and losses on k ∈ {1, 2, 5, 10} samples of each class of the downstream
datasets. This is done on the test classes of the downstream classes, which were separated into disjoint
train and test samples for this experiment. We train on each CUB/CARS/SOP separately and average
their performance.

Fig. 13 shows the minimum, maximum and average performance across the seeds. First, we can
see that the normal cross entropy training reaches the zero-shot R-AUROC of the currently best
pretrained models at around 2 samples per class (totaling in 200 samples on CUB, 196 on CARS, and
22636 on SOP). This again demonstrates the point that the challenge URL addresses is unsolved yet.
It also shows that knowledge of the specific downstream task can increase the uncertainty estimators
quality even at only a few samples. Second, we find that most pretrained models increase their
performance as well. This, however, happens not for all models and is highly noisy. We attribute this
to the simple setup of our experiment, which uses the same hyperparameters as for the pretraining and
performs standard training as opposed to specialized few-shot methods. Finding best practices to tune
pretrained uncertainties to downstream few-shot tasks is a promising undertaking for future research.

C.7 Uncertainty estimation does not add significant computational costs

Table 1 reports the computational complexity during all benchmarks. It shows the number of
parameters as proxy for RAM usage, the duration of the first training epoch and evaluation, and the
time needed for each sample during evaluation. These results were collected on the go and there are
possible confounders such as network storage workload. We thus recommend to interpret them as
rough indicators. Note also that ViTs were run on NVIDIA A100 GPUs, and ResNets on NVIDIA
RTX2080TIs (except HET-XLon ResNet, due to RAM usage).

First, we see that explicit uncertainty estimation does not come at a high RAM cost. The 3-layer
MLP serving as uncertainty head for MCInfoNCE, ELK, nivMF, HIB, and Losspred adds 4.2M
parameters to a ResNet or 2.6M to a ViT. The difference is due to the ViT’s lower-dimensional
embedding space. Bigger increases occur only for ensembles, which uses additional classifiers with
10 · 2.1M parameters on ResNets and each 10 · 0.5M on ViTs.
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Model Parameters (Millions) Epoch Time (s) Inference time per sample (ms)

R
es

N
et

50
on

R
T

X
20

80
T

I CE 25.6 5971 3.7
InfoNCE 23.5 6703 3.7
MCInfoNCE 27.7 6656 3.8
ELK 29.8 6703 3.8
nivMF 29.8 6256 3.8
HIB 29.8 7279 3.8
HET-XL (on A100) 33.9 (4189) (2.3)
Losspred 29.8 6526 3.7
MCDropout 25.6 7105 13.1
Ensemble 46.0 6002 3.7
SNGP 28.7 7632 3.7

V
iT

M
ed

iu
m

on
A

10
0

CE 38.9 4922 2.8
InfoNCE 38.3 7804 2.7
MCInfoNCE 41.0 9883 2.4
ELK 41.5 4838 2.7
nivMF 41.5 4121 2.4
HIB 41.5 3950 2.5
HET-XL 39.4 4205 2.4
Losspred 41.5 3814 2.6
MCDropout 38.9 4721 9.6
Ensemble 44.0 4107 2.5
SNGP 42.0 4811 2.9

Table 1: Computational costs of all approaches. Epoch times include training on ImageNet as well as
evaluating on all eight downstream datasets.

Training times should be interpreted with caution due to the aforementioned network storage. How-
ever, in general uncertainty estimates do not seem to exceedingly increase the train time, with be-
tween -22% and +28% over the CE baseline. Taking multiple samples during training (MCInfoNCE,
nivMF, HIB, HET-XL) also does not systematically increase runtime. This is likely due to their
efficient sampling implementations (Kirchhof et al., 2022; Davidson et al., 2018; Ulrich, 1984). The
only consistent runtime cost occurs when training unsupervised models (InfoNCE, MCInfoNCE),
which need to forward propagate two augmentations of each sample to obtain have positive pairs.

Similarly, providing an uncertainty estimate at inference takes only up to 0.1 additional milliseconds
on ResNets, because the uncertainties are all calculated within a single forward pass, and sampling
was only required for the losses during training. The only exception here is MCDropout, which
requires making 10 full forward passes during inference, which increases the time by a factor of
roughly 3.6. The factor is not 10, because loading the data and storing the results is part of the
measured elapsed time.

In summary, we find that uncertainty estimates only have small computational costs if they are
implemented in a forward fashion.
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DPretrained Visual Uncertainties

This appendix contains the full paper and appendix discussed in Chapter 5, reproduced
with permission.

Michael Kirchhof, Mark Collier, Seong Joon Oh, and Enkelejda Kasneci. Pretrained visual
uncertainties, 2024. First published in Arxiv. Available from https://arxiv.org/abs/2402.16569.
Reproduced under a Creative Commons Attribution 4.0 International License (https:
//creativecommons.org/licenses/by/4.0/). Under submission.
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Pretrained Visual Uncertainties

Michael Kirchhof 1 Mark Collier 2 Seong Joon Oh 3 Enkelejda Kasneci 4

Abstract
Accurate uncertainty estimation is vital to trust-
worthy machine learning, yet uncertainties typ-
ically have to be learned for each task anew.
This work introduces the first pretrained uncer-
tainty modules for vision models. Similar to stan-
dard pretraining this enables the zero-shot trans-
fer of uncertainties learned on a large pretraining
dataset to specialized downstream datasets. We
enable our large-scale pretraining on ImageNet-
21k by solving a gradient conflict in previous
uncertainty modules and accelerating the train-
ing by up to 180x. We find that the pretrained
uncertainties generalize to unseen datasets. In
scrutinizing the learned uncertainties, we find that
they capture aleatoric uncertainty, disentangled
from epistemic components. We demonstrate
that this enables safe retrieval and uncertainty-
aware dataset visualization. To encourage appli-
cations to further problems and domains, we re-
lease all pretrained checkpoints and code under
https://github.com/mkirchhof/url.

1. Introduction
With every prediction comes the risk of an error. Uncer-
tainty estimates quantify this expected error in order to
defer predictions and catch errors before they happen, a key
requirement for trustworthy machine learning (Mucsányi
et al., 2023). Uncertainty quantification has seen tremen-
dous advances in recent years, bringing principled methods
such as Gaussian processes (Liu et al., 2020) and probabilis-
tic embeddings (Oh et al., 2019; Kirchhof et al., 2023a; Kim
et al.; Nakamura et al., 2023) to large-scale computer vision
(Tran et al., 2022; Dehghani et al., 2023; Collier et al., 2023).
Recent benchmarks reveal that they excel at their metrics
and are ready for application (Galil et al., 2023a;b). How-
ever, there is a lack of widespread adoption of uncertainty

*Equal contribution 1University of Tübingen, Germany 2Google
Research, Switzerland 3University of Tübingen, Tübingen AI Cen-
ter, Germany 4TUM University, Munich, Germany. Correspon-
dence to: Michael Kirchhof <michael dot kirchhof at uni dash
tuebingen dot de>.
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Figure 1. Our pretrained uncertainties generalize to unseen
datasets. The R-AUROC measures the quality of uncertainty esti-
mates on zero-shot datasets, see Section 4.

methods by practitioners. The hurdle is that modern uncer-
tainty quantification methods can be complex, making them
difficult to implement and increasing the inference costs. So
what if uncertainty estimates were as easy to access as being
shipped along with every pretrained model?

We seek a method that is simple to implement and train,
even on large scales, and most importantly does not inter-
fere with the main objective of a practitioner’s model. One
group of recent methods stands out on these terms: Feed-
forward uncertainties (Cui et al., 2023; Kirchhof et al., 2022;
Yoo & Kweon, 2019; Oh et al., 2019). They an auxiliary
uncertainty head to a deep network that is evaluated along-
side every forward pass. Not only is this cheap and simple
to implement, it was also recently found that its uncertainty
estimates transfer well (Kirchhof et al., 2023b).

Our work solves a remaining gradient conflict of these feed-
forward uncertainties to guarantee non-interference with the
main objective. We also implement massive caching in our
pretraining pipeline, reducing the train time by a factor of
up to 180x. This enables us to scale up both the pretraining
dataset to ImageNet-21k Winter-2021 (ImageNet-21k-W)
(Deng et al., 2009) and the vision backbone to large Vision
Transformers (Dosovitskiy et al., 2021).

Figure 1 shows that our pretrained uncertainties now transfer
beyond the train dataset to unseen datasets, outperforming
previous zero-shot uncertainties (Kirchhof et al., 2023b).
We find that the learned uncertainties are generalizable no-

1

ar
X

iv
:2

40
2.

16
56

9v
2 

 [c
s.C

V
]  

27
 F

eb
 2

02
4

144



Pretrained Visual Uncertainties

tions of aleatoric uncertainty disentangled from epistemic
uncertainty. This enables multiple use-cases: Beyond er-
ror prediction, we showcase novel applications like safe
retrieval and uncertainty-aware dataset visualization. To fa-
cilitate widespread adoption, we release checkpoints for our
pretrained uncertainties along with efficient code to pretrain
them for arbitrary model architectures.

In summary, our contributions are:

• We develop a method which learns pretrained uncer-
tainties that transfer zero-shot.

• This is based on fixing a gradient conflict in previous
feed-forward uncertainties and speeding up the training
by 180x, enabling large-scale pretraining (Section 3.3).

• Our uncertainties represent aleatoric uncertainty, dis-
entangled from epistemic uncertainty (Section 4.5).

• We apply the uncertainties to improve the reliability of
retrieval and to aid data visualization (Section 5).

2. Related Work
Large-scale uncertainty quantification. Uncertainty quan-
tification has recently been scaled rapidly. Within one year,
the largest vision models capable to perform uncertainty
quantification grew from 1B (Tran et al., 2022) to 22B
parameters (Dehghani et al., 2023). Benchmarks have in-
creased accordingly. Previous surveys on out-of-distribution
detection of 32x32 sized images (Ovadia et al., 2019) have
been scaled to real-world images (Galil et al., 2023a) and
to several additional tasks (Galil et al., 2023b). One such
task is the uncertainty-aware representation learning (URL)
benchmark that pretrains an uncertainty estimator and then
tests zero-shot uncertainties on unseen datasets (Kirchhof
et al., 2023b). Our work sets a new state-of-the-art on this
task. In particular, we provide pretrained uncertainty mod-
ules for large computer vision models, independent from
the classes or specific task of a dataset.

Feed-forward uncertainties. State-of-the-art models at-
tempt to give such transferable uncertainties by moving
away from classifier-layer uncertainties and towards uncer-
tainties in the representation space (Collier et al., 2023).
This approach falls under the category of feed-forward or
deterministic uncertainties (Postels et al., 2022). They have
a specialized uncertainty module that outputs predicted un-
certainties during the forward pass of the model at minimal
computational costs, which enables scaling. A variational
take on this are probabilistic embeddings (Oh et al., 2019;
Chun, 2023; Kim et al.; Nakamura et al., 2023) that output
a variance estimate to give a distribution of possible repre-
sentations instead of just one. This has recently been proven
to recover the aleatoric uncertainty of the true posterior

(Kirchhof et al., 2023a) and improve retrieval performance
(Karpukhin et al., 2022). As opposed to such indirect ap-
proaches, a second group of feed-forward approaches makes
uncertainty quantification a direct regression task (Yoo &
Kweon, 2019; Cui et al., 2023; Lahlou et al., 2023; Laves
et al., 2020). In initial experiments, we found this direct ap-
proach to scale better. We use it as a starting point to develop
our pretrained uncertainties in the next section, overcoming
some remaining challenges to enable scaling.

3. Developing Pretrained Uncertainties
In this section we set out the desired properties of our pre-
trained uncertainties and then extend a popular feed-forward
uncertainty method to satisfy these properties in the large-
scale pretraining case.

3.1. Basic Principles

We develop pretrained uncertainties from basic principles
for scalability and ease of use, in order of importance:

(i) Non-interference with primary task. Adding pre-
trained uncertainties to a model should not worsen
the performance of the pretrained model’s primary
objective, e.g., its accuracy.

(ii) Generalization. The predicted uncertainty estimates
should reflect general forms of uncertainty that transfer
to unseen datasets and tasks beyond the pretraining
data and task.

(iii) Flexible adjustment. The uncertainties should be
general enough to adapt to new tasks and/or datasets
that downstream practitioners might introduce.

(iv) Minimal overhead. Providing uncertainties add only
minimal runtime and memory usage to the main task
prediction model.

(v) Scalable optimization. Training should converge sta-
bly to ensure scalability to large pretraining corpora.

In summary, we seek a download and forget approach that
requires minimal interventions from practitioners.

3.2. Recap: Loss Prediction

We now introduce a simple yet general uncertainty method
that we build our method upon. From a decision theory per-
spective, giving an uncertainty estimate means predicting
how wrong one thinks one’s estimate is. The key is that
any task’s level of wrongness is defined by its loss Ltask. So
in loss prediction (Yoo & Kweon, 2019; Cui et al., 2023;
Lahlou et al., 2023; Laves et al., 2020), the model has an
additional module u that predicts the model’s own loss at
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.detach()

encoder backbone (ViT)

classifier

loss

unc head

.stopgrad()

loss pred

Figure 2. Pretrained uncertainties are returned by an auxiliary head
(blue) that is trained to predict the classification loss of each image.

each of its predictions. This is learned via a L2 loss be-
tween u and the (gradient-detached, det.) main task loss
Ldet.

task(y, f(x)) at every sample (x, y). This is trained along
with the main task (Kirchhof et al., 2023b), yielding the
combined objective L:

L = Ltask(y, f(x)) + (u(e(x))− Ldet.
task(y, f(x)))

2 . (1)

The uncertainty module u is implemented as a small MLP
head u(e(x)) on top of the model representations e(x). This
makes it cheap to compute during the forward pass, fulfill-
ing the minimal overhead principle (iv). Loss prediction’s
uncertainties also adapt to any loss, fulfilling the flexibility
principle (iii), and transfer well (Kirchhof et al., 2023b),
fulfilling the generalization principle (ii).

Yet, loss prediction’s implementation has a limitation: Fig-
ure 3a depicts a conflict between the uncertainty and the
classification task. Their gradients interact negatively with
one another, deteriorating the joint backbone and violating
the non-interference principle (i). To resolve it, the current
implementation stops early, roughly at epoch 12 in the plot.
However, this early stopping is at odds with the scalability
principle (v). Below, we fix these issues.

3.3. Enhancing Loss Prediction

We introduce four changes to the above loss prediction:

1. Stopgrad. As visualized in Figure 2, we add a stopgrad
behind the uncertainty module. This prevents its gradients
from flowing to the backbone and interfering with the clas-
sification head. This strictly ensures the non-interference
principle (i), and, indeed, the training now converges ro-
bustly, see Figure 3b. This way, uncertainties can be trained
in parallel to the main task, as opposed to only in post-hoc.

2. No early stopping. With the gradient conflict resolved,
there is no more need for early stopping. The uncertainty
head converges to its maximum at the end of the training in
Figure 3b, making the training scalable as per principle (v).

3. Cache everything. Since the classification head and
backbone are now independent from the uncertainty head,

we pretrain and then freeze them before training the uncer-
tainty module. Only the uncertainty objective remains:

L = (u(e(x))− Ldet.
task(y, f(x)))

2 (2)

This can be optimized efficiently: The uncertainty module
uses only the representations e(x) as inputs, and, likewise,
the task loss depends only on them via f(x) = c(e(x)),
where c is the classifier layer. So, we do not need to load
the images x or run them through the backbone, but can
cache the representations e(x) of the whole training pro-
cess once (all epochs, including random augmentations).
When learning the uncertainty module on top of a pretrained
model, this increases the train speed by a factor of 180x
and reduces the memory usage so far that we can pretrain
uncertainties even for large models on single GPUs (or even
CPUs). This paves the way for scalability: After caching
the representations once, training the uncertainty module of
a ViT-Large for seven ImageNet-21k-W epochs takes 2:26
hours on a single V100 GPU as opposed to 18 days with the
standard loss prediction implementation.

4. Scale-free uncertainties. With the current L2 loss, the
uncertainty module is trained to match the scale of the pre-
training loss. However, a downstream user might switch to
a different loss on a different scale, which would introduce
destructive gradients during finetuning. Thus, we switch to
the ranking-based objective of Yoo & Kweon (2019):

L = max(0,1L · (u(e(x1))− u(e(x2)) +m)), (3)

s.t. 1L :=

{
+1 , if Ldet.

task(y1, f(x1))>Ldet.
task(y2, f(x2))

−1 , else
(4)

For every pair of images x1 and x2, the indicator function
compares which image has the higher primary task loss
Ldet.

task. Then, the uncertainty u of that sample is forced to be
higher than that of the other sample, by a margin of at least
m = 0.1. This unties the uncertainty values from the scale
of the task loss, improving on the flexibility principle (iii).1

4. Experiments
We now study the main objective of pretrained uncertainties,
their performance on downstream datasets. Additionally,
we investigate which types of uncertainties they represent.

4.1. Experimental Setup

We are interested in how good our uncertainties perform
on unseen datasets. This challenging zero-shot transfer is
simple with our pretrained uncertainties, our enhanced loss

1Being scale-free also means being uncalibrated. However, this
is not a disadvantage for pretrained uncertainties, because during
pretraining the downstream task is unknown, hence it is impossible
to be calibrated for the unseen downstream task in the first place.
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(a) Vanilla Loss Prediction
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(b) Ours: Loss Prediction + Stopgrad

+ stopgrad

Figure 3. (a) The uncertainty and classification heads of Loss Prediction are in conflict. We solve this in (b) by adding a stopgrad. It
ensures that the uncertainty head’s gradients do not interfere with those of the classifier head, stabilizing the performance of both. The
uncertainty and classifier heads were finetuned on ImageNet-1k on a pretrained (but unfrozen) ViT-Base backbone.

prediction module outputs an uncertainty u(x) for every
image x from the downstream task. In order to measure
the quality of these uncertainty estimates, we follow URL
(Kirchhof et al., 2023b) in using the representation AUROC
(R-AUROC) metric. It performs a 1-nearest neighbor clas-
sification on the representations e(x) on all images of a
downstream dataset. The uncertainties u(x) should then be
higher for images that are misclassified, which is quantified
by the area under the ROC curve between the predicted un-
certainties and whether or not the representation is correct
in the sense that it is placed next to another representations
of the same class. The R-AUROC can benchmark uncer-
tainties when the classes are unseen during training, but if
classes are seen during training, it is highly correlated with a
conventional classification AUROC (Kirchhof et al., 2023b).
In all experiments we also report the 1-nearest neighbor ac-
curacy (Recall@1) from representation learning to quantify
the retrieval performance of the representations and verify
the non-interference principle (i) above.

We focus on Vision Transformers (Dosovitskiy et al., 2021)
of several sizes and report results for the ViT-Base unless
otherwise noted. Their backbone and classifiers were al-
ready pretrained by (Steiner et al., 2021) on ImageNet-
21k-Winter-2021 (ImageNet-21k-W) (Deng et al., 2009)
in timm (Wightman, 2019), so we only train the uncertainty
module. As we show in Section 4.4, our approach is ro-
bust to architecture and optimizer hyperparameters, so we
use the default values reported in Appendix A, inter alia a
lightweight 2-layer MLP with width 512 for the uncertainty
head. We train each model on five seeds and report the me-
dian as well as the distance to the maximum or minimum,
whichever is larger, to provide an interpretable means to
judge the variation.

As datasets, we use ImageNet-21k-W for pretraining and
twelve datasets that span a variety of natural image domains
for zero-shot transfer. Three are used in the URL bench-

mark, namely CUB-200-2011 (Wah et al., 2011), CARS196
(Krause et al., 2013), and Stanford Online Products (SOP)
(Song et al., 2016). Seven are the natural images datasets of
the Visual Task Adaption Benchmark (VTAB) (Zhai et al.,
2020), namely Caltech101 (Fei-Fei et al., 2004), Oxford IIIT
Pets (Parkhi et al., 2012), CIFAR100 (Krizhevsky, 2009),
Scene Understanding 397 (SUN) (Xiao et al., 2010), Ox-
ford Flowers 102 (Nilsback & Zisserman, 2008), Describ-
able Textures (DTD) (Cimpoi et al., 2014), and Street View
House Numbers (SVHN) (Netzer et al., 2011). The remain-
ing two are CIFAR10 (Krizhevsky, 2009) and Treeversity#1
(Schmarje et al., 2022).

4.2. Pretrained Uncertainties Generalize

We first test the generalization principle (ii) on the twelve
unseen datasets. Figure 1 shows that our pretrained uncer-
tainties generalize well on eleven of the twelve datasets. The
best R-AUROCs (Caltech101: 0.758± 0.006, Oxford Pets:
0.740 ± 0.008, and CIFAR10: 0.739 ± 0.002) are close
to that of the pretraining dataset (0.791 ± 0.001). In Ap-
pendix B we find that the zero-shot R-AUROC is higher on
datasets that are closer to the domain spanned by ImageNet-
21k-W, as one would expect from a pretrained model. This
implies that further scaling the pretraining corpus, which
is possible with our efficient training, may further benefit
performance. The performance also depends on the granu-
latity of the zero-shot dataset. SVHN for example demands
fine-grained house number disambiguation. It is harder to
assign a pretrained uncertainty to such specialized tasks
without knowing them in advance.

4.3. A New State-of-the-art

How do these results compare to the transfer performances
of other methods in the field? The URL benchmark (Kirch-
hof et al., 2023b) has recently tested the R-AUROC of eleven
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Figure 4. Our pretrained uncertainties outperform the approaches in the URL benchmark (Kirchhof et al., 2023b). The URL benchmark
trained ViT-Mediums on ImageNet-1k. We reimplement its best approach (orange) on ViT-Base (green), then enhance it with our changes
(red), and finally scale the training of ours to ImageNet-21k with various ViT sizes (blue). Each dot is one seed.

(a) Most certain images (u(x) ≤ 0.04) (b) Most uncertain images (u(x) ≥ 0.38)

Figure 5. Pretrained uncertainties separate clear from ambiguous images on Stanford Online Products, a zero-shot dataset.

approaches on the CUB, CARS, and SOP datasets, averaged.
URL tested the methods on ViT-Medium, a niche architec-
ture that does not have ImageNet-21k checkpoints available.
Thus, we switch to ViT-Base and reimplement URL’s best
performing method, the original loss prediction from Sec-
tion 3.2. We reuse their codebase for compatibility.

Figure 4 shows the results, both in terms of R-AUROC
and Recall@1. First, we find that our ViT-Base loss pre-
diction reimplementation (red stars) achieves comparable
performance to the original ViT-Medium backbone (orange
stars). We then enhance the original loss prediction with our
changes from Section 3.3 (green crosses). We find that the
Recall@1 increases by 0.065±0.012 because the backbone
is no longer deteriorated by the uncertainty module gradi-
ents. The Recall@1 is now constant because we only train
the uncertainty head anymore, keeping the pretrained back-
bone frozen. This does not restrict the R-AUROC of the un-
certainty head, it in fact increases slightly by 0.021± 0.030.
Finally, we scale from ImageNet-1k to ImageNet-21k-W
pretraining (blue crosses). This increases the R-AUROC
again by 0.028± 0.014 on the ViT-Base. Because we now

use a different ImageNet-21k-W pretrained checkpoint, its
Recall@1 changes. Upon training uncertainty modules
for various ViT sizes, we find that they all have higher
R-AUROC than the previous state-of-the-art. This demon-
strates the generality of our approach.

4.4. Negative Results: Simple Beats Complex

Before we continue, we share some negative results. In Ap-
pendix C, we experiment with several techniques to further
improve our method, including softening the loss function,
uncertainty-induced training data augmentations, architec-
ture changes, optimizer modifications, and initialization
schemes. However, none of them significantly improve the
uncertainties beyond the method presented in Section 3.3.
Thus, to avoid adding unnecessary complexity, we decide
to keep our approach as clean and simple as it is.

4.5. Pretrained Uncertainties ≈ Aleatoric Uncertainty

If pretrained uncertainties work on unseen datasets, then
which uncertainties do they capture? In this section, we
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Figure 6. Pretrained uncertainties grow as images are deteriorated. Distributions and medians over unseen datasets (CUB, CARS, SOP).
Note that except zooming, the pretrained model is not exposed to these data augmentations during training.
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Figure 7. Pretrained uncertainties are systematically higher for Im-
ageNet ReaL-H images with multiple possible labels.

find that they model primarily aleatoric uncertainty and are
mostly invariant to epistemic uncertainty. We conduct all
analyses on unseen datasets and the ViT-Base model, unless
otherwise noted.

To form a working hypothesis, we give some randomly se-
lected examples with low and high predicted uncertainty in
Figure 5. Although the network was not trained on this task,
eBay product images, it correctly gives low uncertainties to
clear and high uncertainties to ambiguous images. Not even
a human expert or a Bayes classifier will be able to reduce
the ambiguous images’ uncertainty to zero, their ambiguity
is intrinsic. This is known as aleatoric uncertainty. We hy-
pothesize that pretrained uncertainties represent this form
of uncertainty. Below, we investigate this hypothesis.

Human ambiguities. Aleatoric uncertainty is what is left
even when an expert makes a prediction, for example a
human annotator. So, we compare the model uncertainties
to those of human annotators. ImageNet-1k ReaL-H (Beyer
et al., 2020) re-collected labels for the 50,000 images in the
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Figure 8. Pretrained uncertainties are consistent between train and
unseen datasets, indicating the absence of epistemic uncertainty.

ImageNet-1k validation set.2 While clear images kept their
original Dirac label, annotators gave multiple or no labels to
an image if it was ambiguous. Figure 7 shows that pretrained
uncertainties are systematically higher on images the human
annotators considered ambiguous (AUROC 0.701). This
reinforces the aleatoric uncertainty hypothesis.

Interventional study. Second, we run an interventional
experiment to induce aleatoric uncertainty. We deteriorate
the images of the unseen datasets by blurring, overlaying
with grey boxes, zooming in strongly, and adding Gaussian
noise. Except zooming, these transformations were not
applied during pretraining. Figure 6 shows that each of these
transformations increases the pretrained uncertainties, the
more strongly we deteriorate the images. This is additional
evidence for the aleatoric uncertainty hypothesis.

No sign of epistemic uncertainty. We now consider the
opposite hypothesis: Besides aleatoric uncertainty, do pre-

2Our pretraining dataset ImageNet-21k-W covers the classes of
ImageNet-1k but neither its validation images nor any soft labels.
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Figure 9. Visualizing pretrained uncertainties makes it easy to identify outliers in a tSNE plot. Images with high uncertainty u(x) are
larger and transparent. Six classes of the zero-shot Oxford Pets dataset.

trained uncertainties comprise epistemic uncertainty? This
uncertainty arises when a model has not seen an input before.
Note that this would be detrimental to a pretrained uncer-
tainty model, since it is intended to be used (exclusively) on
unseen datasets where every image would be highly epis-
temically uncertain, drowning out the aleatoric signal. To
test for epistemic uncertainty, we compare the pretrained
uncertainties of in-distribution pretraining images to those
of out-of-distribution images from unseen datasets. Figure 8
shows that the uncertainties on the pretraining data are sim-
ilarly distributed to the unseen dataset (pairwise AUROC
0.503± 0.004). This suggests they are primarily capturing
aleatoric uncertainty.

In summary, our results suggest that pretrained uncertain-
ties quantify the amount of aleatoric uncertainty in an im-
age, both in- and out-of-distribution, without being con-
founded by epistemic uncertainty. This constitutes signifi-
cant progress for the ongoing efforts to disentangle epis-

temic from aleatoric uncertainty (Wimmer et al., 2023;
Valdenegro-Toro & Mori, 2022).

5. Application Examples
In this section we showcase two applications that are un-
locked by our new pretrained uncertainties.

5.1. Uncertainty-aware tSNE

Pretrained representations are often used to visualize
datasets using methods like tSNE (van der Maaten & Hinton,
2008) or UMAP (McInnes et al., 2018). With pretrained un-
certainties, we can now communicate inhererent ambiguities
and explain outliers in these plots.

Figure 9 shows a tSNE visualization of six dog breeds in
Oxford Pets, an unseen dataset. If an image has a high pre-
trained uncertainty, it is plotted as a larger and increasingly
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transparent circle. The core region of each class cluster,
typified by many small opaque circles, is now visually dis-
tinct from border regions and outliers, which are typified by
collections of large transparent circles. By inspecting the
images that underlie each representation, we verify that the
core regions with low uncertainties comprise prototypical
images whereas more uncertain images are often cropped
out or in a camera angle that makes the exact dog breed am-
biguous. We can also see that images lying in other classes’
regions are often highly uncertain. Such misclassifications
can be prevented by using our uncertainty-enhanced tSNE
plots by allowing practitioners to understand and adjust the
data preprocessing and filtering.

5.2. Safe Retrieval

This outlier identification can also be automated and utilized
to make image retrieval more robust, enabling safe retrieval.

Consider again the Oxford Pets dataset in Figure 9. If we
add a new dog image and search for its nearest neighbor,
existing next-neighbor retrieval systems (Douze et al., 2024)
may match it to an ambiguous image since these tend to
lay at border regions. Similarly, if our new image itself
is ambiguous, it is likely misplaced and existing systems
will match it an arbitrary class. We can utilize pretrained
uncertainties to tackle both of these problems by

1. Rejecting queries that are uncertain, and

2. Removing ambiguous images in the existing dataset,
making it impossible to match to them.

As an example, we reject and/or clean the 10% most un-
certain images per class in Oxford Pets. Table 1 shows
that a typical cosine-distance based next-neighbour search
achieves a Recall@1 of 0.772 ± 0.000, or in other words
a rate of 0.228 ± 0.000 wrong retrievals. Refusing to re-
trieve images when the input query is uncertain reduces
this error rate by 14% to 0.196 ± 0.003 and cleaning the
dataset from ambiguous images as potential retrieval part-
ners reduces it by an additional 17%. These improvements
are not only observed on unseen dataset but also on data
that the retrieval system is familiar with. When using the
ImageNet-1k validation set, whose classes were seen during
ImageNet-21k-W pretraining (but whose validation images
are unseen), deferring ambiguous queries reduces the error
rate by 10% and cleaning the database reduces another 10%.
All of these improvements are obtained automatically and
fully unsupervised - we do not need to know the ground truth
label of either the input or the database, since pretrained
uncertainties can be computed for any input.

These are only first demonstrations of the opportunities that
pretrained uncertainties offer. We anticipate further applica-
tions building up on pretrained uncertainties. For example,

1-NN error Oxford Pets ImageNet-1k

Full datasets 0.228± 0.000 0.382± 0.000
+ clean queries 0.196± 0.003 0.343± 0.001
+ clean database 0.163± 0.003 0.307± 0.001

Table 1. Pretrained uncertainties reduce the error rate of next-
neighbour retrieval systems by rejecting ambiguous queries and/or
removing ambiguous images from the database.

recent literature proposes retrieving a set of potential neigh-
bours that is close to an ambiguous input with respect to
its representation uncertainty (Kirchhof et al., 2023a). This
can be implemented with pretrained uncertainty since they
give uncertainties about representations. Similarly, confor-
mal prediction (Angelopoulos & Bates, 2022) can view our
pretrained uncertainties as a scoring function and calibrate
its uncertainty predictions to downstream datasets. To facili-
tate future research, we provide all pretrained uncertainty
checkpoints and code under the link in the abstract.

6. Conclusion
This work introduces a pretrained uncertainty module for
computer vision models that is simple, cheap and scalable.
We demonstrate its scalability by pretraining on ImageNet-
21k-W. Our pretrained uncertainties method gives state-of-
the-art zero shot uncertainty estimates on unseen datasets
i.e. without finetuning. In future work, we anticipate scaling
to even larger pretraining datasets as well as extending the
method to pretraining objectives beyond classification and
beyond the vision domain. We expect our fixes to the vanilla
loss prediction method, that eliminate interference between
uncertainty prediction and the main task, to also help in
other feed-forward uncertainty quantifiers. By providing
pretrained checkpoints, we intend to support applications
similar to enhanced visualization and safe retrieval.

Impact Statement
Our uncertainties are intended to capture errors before they
happen and reveal uncertainties that would remain unde-
tected when images are solely expressed as representation
vectors. This makes models more safe and trustworthy by al-
lowing them to fulfill their tasks with less errors. We enable
an easier access to these uncertainties by our ease-of-use
principles and providing plug-and-play checkpoints. We see
this as a positive impact on both the community and society.
As with all general-purpose machine learning advancements,
this assumes that a practitioner does not develop a model
with a harmful task, which is beyond our sphere of influence.
Additionally, we encourage researchers to follow our exam-
ple of finding ways to significantly reduce training costs for
a lower energy consumption during training. We provide
our code standalone to help start these efforts.
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A. Training details
Architecture. With de denoting the dimensionality of the (flattened) embeddings e(x) of each ViT size, our pretrained
uncertainty module has the following size across all ViT sizes: Linear(de, 512), LeakyReLU (negative
slope 0.01), Linear(512, 512), LeakyReLU (negative slope 0.01), Linear(512, 1),
Softplus(β=1, threshold=20). The softplus in the end is to ensure that all uncertainties are strictly positive. This
could be dropped since our uncertainties are scale free, but we added it for convenience of interpretation.

Optimizer. We train on ImageNet-21k-W for 460 episodes of 200,000 images, corresponding to roughly seven full epochs.
We use a cosine learning rate scheduler that warms up the learning rate from 0.0001 to 0.0028 for 25 episodes and then
decays it down to 1e-8 for the remaining episodes. We use an AdamW (Loshchilov & Hutter, 2017) optimizer with β1 = 0.8
and β2 = 0.95. We apply weight decay of strength 0.0001. These settings are constant for all experiments, without any
hyperparameter tuning.

Augmentations. We use the torchvision (TorchVision, 2016) augmentations that timm applies by default. Inter alia, all
images are cropped to 224x224 pixels. We first apply a RandomResizedCropAndInterpolation(size=(224,
224), scale=(0.08, 1.0), ratio=(0.75, 1.3333), interpolation=bilinear bicubic), and
then randomly add RandomHorizontalFlip(p=0.5) and with p = 0.4 a ColorJitter(brightness=[0.6,
1.4], contrast=[0.6, 1.4], saturation=[0.6, 1.4], hue=None).

B. Transfer analysis
In this section, we analyze which datasets our pretrained uncertainties transfer to. We hypothesize that they behave similarly
to the classifier head for ImageNet-21k. To test this, we use the entropy of the 21k class predictions of the classifier head as
uncertainties and test its R-AUROC. We find that our pretrained uncertainties achieve a similar performance on all datasets.
This indicates that pretrained uncertainties works on datasets similar enough to ImageNet-21k that its classifier is also
informative. Note that this classifier method is not applicable to provide pretrained uncertainties in practice since it requires
maintaining a heavy classifier head (17M parameters for ViT-Base), violating principle (iv), is not scalable to datasets with
more classes, violating principle (v), and is not available outside ImageNet-21k classification, violating principle (iii).

Dataset Pretrained Uncertainties 21k Classifier Entropy

ImageNet-21k 0.791± 0.001 0.798
Caltech 101 0.758± 0.006 0.808
Oxford Pets 0.740± 0.008 0.724
CIFAR 10 0.739± 0.002 0.716
CIFAR 100 0.706± 0.002 0.696
SUN 0.691± 0.002 0.697
Oxford Flowers 0.659± 0.009 0.679
Describable Textures 0.649± 0.006 0.610
CUB 200 0.626± 0.008 0.608
Stanford Online Products 0.607± 0.001 0.591
CARS 196 0.589± 0.003 0.554
Treeversity 0.560± 0.003 0.565
SVHN 0.495± 0.005 0.524

Table 2. Pretrained uncertainties perform similarly to using the entropy of the ImageNet-21k classifier head as uncertainty estimate (note
that this is impractical due to its size and violating the first principles in Section 3.1). This implies that pretrained uncertainties cover
roughly the classes that ImageNet-21k also covers.

C. Simple beats Complex: Negative Results
We test multiple adjustments to our loss, architecture and optimizer in Table 3. We report the average R-AUROC on
the unseen datasets CUB, CARS, and SOP as in the URL protocol, evaluated for five seeds on a ViT-Base pretrained on
ImageNet-21k-W.

The first change regards the loss function. Currently, when comparing two images, it always requires one image to have
a pretrained uncertainty of at least 0.1 larger than the other one. In the formula below, we add an ’approximately equal’
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category, such that images whose ground-truth loss is within a leeway l are not required to have different loss values:

1L :=





+1 , if Ldet.
task(y1, f(x1)) > l + Ldet.

task(y2, f(x2))

−1 , if Ldet.
task(y1, f(x1)) + l < Ldet.

task(y2, f(x2))

0 , else
. (5)

However, at several values of the allowed leeway l, this does not change the performance outside the margin of error of the
baseline method (0.608± 0.004).

Second, we change the size of the uncertainty head MLP. By default it has 2 hidden layers of width 512. We either shrink
it to 1 hidden layer with width 256 or enlargen it to 3 hidden layers of width 1024. While there is a slight trend favoring
smaller heads, it does not exceed the margin of chance.

Third, we briefly experimented with initializing the uncertainty module with zero-weights. However, this failed to train at
all, which is theoretically expected.

Fourth, we add strong augmentations that add different types of aleatoric uncertainty to half of the train dataset. None of
these increase the performance, with some even deteriorating it. While this might seem counterintuitive, we presume such
artificial sources of uncertainty do not reflect the uncertainties occuring on real images.

Last, we experiment with optimizers other than our default AdamW with cosine learning rate scheduler. While Lion
collapses after less than one epoch, SGD performs slightly better than the baseline. However, it might be a false positive,
especially taking multiple testing into account. Indeed, the reason we did not select SGD for the main paper is that it did not
systematically outperform AdamW during our preliminary experiments on the validation splits with less seeds. The test
splits were held strictly secret until the writing of the paper. We suggest future researchers to experiment with replacing
their advanced optimizers by SGD.

Method R-AUROC

Default 0.608± 0.004

Softened loss (l = 0.001) 0.607± 0.006
Softened loss (l = 0.01) 0.607± 0.005
Softened loss (l = 0.1) 0.609± 0.005

Smaller uncertainty module 0.611± 0.002
Larger uncertainty module 0.606± 0.004

Initialize uncertainty module with zero 0.500± 0.000

AugMix (Hendrycks et al., 2020) for 50% of train data 0.606± 0.005
CutMix (Yun et al., 2019) for 50% of train data 0.575± 0.002
MixUp (Zhang et al., 2018) for 50% of train data 0.552± 0.009
Blurred images for 50% of train data 0.609± 0.003
Small crops for 50% of train data 0.610± 0.004
Box overlay for 50% of train data 0.606± 0.001

Adam optimizer (Kingma & Ba, 2015) 0.609± 0.002
Lion optimizer (Chen et al., 2023) 0.500± 0.000
SGD optimizer 0.614± 0.005
Step learning rate scheduler 0.607± 0.003

Table 3. No change to loss, architecture, optimizer, or data augmentation improves the performance. R-AUROC averaged across CUB,
CARS, and SOP as in the URL protocol, for five seeds on a ViT-Base.
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