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Abstract

Our main contribution is a method that generates categorizations of motion (Ch. 8)—We call
such motion categorizations story-based categorizations. More specifically, a story-based catego-
rization categorizes rigid entities that move independently of each other (Sect. 1.2); it categorizes
an instantaneous description of the entities’ motion, that is, a snapshot of the entities’ trajectory.

Our method can generate an unlimited number of story-based motion categorizations. This
is remarkable, considering the scarcity of motion categorizations in the literature (Sects. 5.1
and 5.2); in particular, we found only motion categorizations in the literature, but no method
for systematically generating them. To demonstrate the efficacy of our method, we generated six
story-based categorizations.

Another important contribution is to prove the relevant properties of the story-based motion
categorizations: we investigated their properties from two complementary perspectives. From
the standpoint of artificial intelligence, we proved that the story-based motion categorizations
are also qualitative calculi (Ch. 10), which means that they have very convenient mathematical
properties for solving navigation problems. From the standpoint of the psychology, we tested
two story-based categorizations for cognitive plausibility, and we confirmed experimentally that
they are cognitively plausible to varying degrees (Ch. 9). Our experimental tests of cognitive
plausibility are groundbreaking, because we found no experimental tests on cognitive plausibility
for qualitative calculi of motion in the literature, and only a reduced number for spatial qualitative
calculi.

A further contribution is that we provided a solid theoretical framework for story-based cat-
egorizations: We defined mathematically the main concepts of story-based categorizations with
clarity and simplicity. And we linked, or rather embedded, our framework in the vast and highly
heterogeneous literature on categorization (Ch. 6). Accordingly, we related the understanding
and terminology of categorization in psychology to those in artificial intelligence, which is unusual
in the literature—Researchers tend to treat categorization exclusively from either a psychological
or an artificial intelligence perspective.
This could not be possible without a survey of the research on categorization. We present, as
a chapter (Ch. 3), such a survey, certainly incomplete, which we believe can save many hours
of literature browsing—We deem our survey to be an additional contribution, because of its
comprehensibility and scope.

Our achievements are far from obvious in the light of the challenges that categorization, and
especially motion categorization poses (Ch. 2). We made several additional contributions which
we list in Section 1.3. Last but not least, I intended that you enjoy your reading: Have a blessed
journey on the quest for motion categorization!
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Kurzfassung

(German abstract)

Unser Hauptbeitrag ist eine Methode zur Erstellung von Bewegungskategorisierungen (Kap. 8).
Wir nennen solche Bewegungskategorisierungen story-based Kategorisierungen (story-based cat-
egorizations). Konkret kategorisiert eine story-based Kategorisierung starre Entitäten, die sich
unabhängig voneinander bewegen (Abs. 1.2); sie kategorisiert eine augenblickliche Beschreibung
der Bewegung der Entitäten, d.h. eine Momentaufnahme der Trajektorie der Entitäten.

Unsere Methode kann eine unbegrenzte Anzahl von story-based Bewegungskategorisierungen
erstellen. Dies ist bemerkenswert, wenn man bedenkt, wie wenige Bewegungskategorisierungen
in der Literatur zu finden sind (Abs. 5.1 und 5.2). Insbesondere haben wir dort nur Bewe-
gungskategorisierungen gefunden, aber keine Methode, um sie systematisch zu erstellen. Um die
Effektivität unserer Methode zu zeigen, haben wir sechs story-based Kategorisierungen erstellt.

Ein wichtiger weiterer Beitrag besteht darin, die relevanten Eigenschaften der story-based
Bewegungskategorisierungen zu beweisen: Wir haben ihre Eigenschaften von zwei komplemen-
tären Standpunkten aus untersucht. Vom Standpunkt der künstlichen Intelligenz aus haben
wir bewiesen, dass die story-based Bewegungskategorisierungen auch ‘qualitative calculi’ sind
(Kap. 10), was bedeutet, dass sie sehr geeignete mathematische Eigenschaften zur Lösung von
Navigationsproblemen haben. Vom Standpunkt der Psychologie aus haben wir zwei story-based
Kategorisierungen auf kognitive Plausibilität getestet, und wir haben experimentell bestätigt,
dass sie in unterschiedlichem Maße kognitiv plausibel sind (Kap. 9). Unsere experimentellen Tests
zur kognitiven Plausibilität sind bahnbrechend, da wir in der Literatur keine experimentellen
Tests zur kognitiven Plausibilität für qualitative calculi für Bewegung gefunden haben, und nur
eine reduzierte Anzahl für qualitative calculi für Raum.

Ein weiterer Beitrag ist, dass wir die story-based Kategorisierung mit einem soliden theoretis-
chen Rahmen ausgestattet haben: Wir haben die Hauptkonzepte der story-based Kategorisierung
mathematisch klar und einfach definiert. Und wir haben unseren Rahmen in die umfangreiche
und sehr heterogene Literatur zur Kategorisierung eingebettet (Kap. 6). Dementsprechend haben
wir das Verständnis und die Terminologie der Kategorisierung in der Psychologie mit denen in
der künstlichen Intelligenz in Beziehung gesetzt, was in der Literatur ungewöhnlich ist – Forscher
neigen dazu, sich mit Kategorisierung ausschließlich entweder aus der Perspektive der Psycholo-
gie oder der künstlichen Intelligenz zu beschäftigen. Dies wäre nicht möglich, ohne eine Übersicht
über die Forschung zur Kategorisierung zu geben. Wir haben als Kapitel (Kap. 3) eine solche,
sicherlich unvollständige Übersicht vorgelegt, von der wir glauben, dass sie viele Stunden der
Literatursuche ersparen kann – Wir halten unsere Übersicht wegen seiner Verständlichkeit und
seines Umfangs für einen Beitrag.

Angesichts der Herausforderungen, die die Kategorisierung und insbesondere die Bewegungskat-
egorisierung mit sich bringt (Kap. 2), sind unsere Leistungen alles andere als selbstverständlich.
Wir haben mehrere zusätzliche Beiträge geleistet, die wir in Abschnitt 1.3 auflisten. Zudem
habe ich mich bemüht, Ihnen eine unterhaltsame Lektüre zu bereiten: Ich wünsche Ihnen eine
gesegnete Reise auf der Suche nach der Bewegungskategorisierung!
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Chapter 1

Introduction

1.1 The Story Behind

This work originated in a research team of human-computer interaction—Jun. Prof. Alexandra
Kirsch’s team at the University of Tübingen—More concretely, I began this research to meet the
needs in human-aware navigation. As Kruse et al. (Concl., 2013) remark in their well-known
survey, all of about 120 surveyed papers dealt with “individual domains and challenges, [but] a
holistic theory of human-aware navigation was not attempted yet.” As in all those papers, in the
very beginning of my research, I was also concerned with a very specific case of human-aware
navigation, namely, I was trying to implement human-aware crossing situations between humans
and robots.

Along this endeavour, I realized that a first step in reacting to a crossing situation could
be the assessment, i.e., the classification or categorization, of that crossing situation. That
lead me to a search for categorizations of two moving entities and I encountered the promising
‘qualitative representations of motion’, such as QTC (Van de Weghe 2004; e.g., Bellotto 2012;
Lichtenthäler et al. 2013), but I found them wanting: In the crossing paradigm it became evident
to me that motion situations with the same QTC category might evolve differently; that is, QTC
did not reliably inform about the future position states of a current motion situation. Such
a categorization is cognitively disputable, because information is encoded in our mind mainly
in order to anticipate events, so that our behaviour can be decided (Butz and Kutter (2017,
Sect. 10.2.1); Sect. 11.7.4.B); if a motion categorization loses relevant information about the
future position states, great are the chances that such categorization is cognitively deficient.

Hence, I reoriented my research to develop categorizations that classify motion situations
(what in this work we call motion scenarios) according to the expected future position states.
In other words, I sought the answer to the question: How can we categorize motion situations,
so that each category corresponds to a specific spatial state in the future? As a base for such
categorizations I took the qualitative spatial representations, because they were successfully re-
searched and applied in Artificial Intelligence (AI) for decades (Chen et al. 2015). This endeavour
brought fruit forth: the contributions mentioned in Section 1.3. Amongst others, we generated
two motion categorizations that are attractive both from the perspective of AI and from the
perspective of human cognition; thus, they are fit for implementing human-aware navigation.
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Figure 1.1: A motion scenario of two entities k and l in two dimensions. The scenario is
characterized by their instantaneous positions, ~xk and ~xl, and velocities, ~vk and ~vl.

1.2 What We Categorize: Motion Scenarios

In this work, we categorize ‘motion scenarios’; these are like ‘snapshots’ of moving entities. The
motion scenarios describe a single instant of moving entities using the instantaneous values of
position and velocity (Fig. 1.1). The standard motion scenario contains two entities, k and l; it
is described by four real vector values: (~xk, ~vk; ~xl, ~vl). The vectors (~xk, ~xl) describe the positions
of the entities; the vectors (~vk, ~vl) describe their velocities. We often need extra positional
information (e.g., orientations, sizes) that is relevant for categorization; such information is
provided by additional parameters.
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Figure 1.2: A categorization problem for motion scenarios (the discs represent the entities and
the vectors represent the velocities): How should we group such motion scenarios according to
their similarity?

Note that as we concentrate on the categorization of motion scenarios, we implicitly limit
the influence of acceleration in our system. Truly, if the entities should experience extreme
accelerations, then the changes in the scenario’s configuration would be so abrupt that the
categorization of scenarios would seem pointless. In fact, we posit that it would be an impossible
task to obtain a motion categorization without any constraints on the acceleration.
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About the number of entities and dimensions

We focus on two entities because the categorization of two entities’ motion can be generalized
to three or more entities by considering the pairs of entities in a scenario; we illustrate this
generalization method by categorizing the motion of three entities in Section 11.6. Moreover,
our categorization method is based on qualitative representations (Ch. 4) which are devised
mostly for two entities—In Dylla et al. (2017, Tab. II), we find that only about 15% of the
representations are intended for three entities. As a final reason, the properties of qualitative
representations are studied only for two entities; the formalization of three entities relations is
inexhaustive (ibid., p. 6).

Although we develop our theory and methods in a general n-dimensional kinematic space,
all our examples and illustrations—including our validation experiment (Ch. 9)—are in two
dimensions for the sake of simplicity: both computations and visualization are easier in two
dimensions. Nonetheless, in Section 11.2, we generate a three-dimensional motion categorization
with our method in order to demonstrate its viability.

About The Entities

The entities of a motion scenario need not be punctual: they can be regions, but they cannot
alter their shape, i.e., they can only be ‘rigid regions’. To describe the shape and size of the
regions, we need additional parameters. For example, if entities are discs, we need their radii—
That is the case of a disc story-based categorization obtained in this work: Stories-RCC (See
Section 8.2.1).

In any case, entities can only translate, i.e., they cannot spin. Otherwise, we should add the
spin angular velocity as an extra value to the motion scenario. Summarizing, we concentrate our
research on rigid non-spinning entities.

We justify the separation of translation and spinning (or rotation) as a common practice
in classical mechanics, and, more importantly, as an observed cognitive phenomenon. Indeed,
infants can independently perceive the path of an object, and the manner this object moves
along the path, for example, by spinning (Pulverman et al. 2008; Pruden et al. 2013). That
is, the traditional separation of translation and rotation of a movement is more than a practical
mathematical device, but a cognitive feature present from infancy on.

Categorizing Trajectories from Motion Scenarios

Motion scenarios have an elementary role in motion description. The trajectories of n entities in
time, {~xk1

(t), ~xk2
(t), . . . , ~xkn

(t)}, can be seen as a continuous sequence of motion scenarios {~xk1
,

~vk1
; ~xk2

, ~vk2
; . . . ; ~xkn

, ~vkn
} for every instant t. For that reason, we can also describe trajectories

qualitatively by means of a categorization of motion scenarios, when we apply the categorization
at every instant of the trajectory. We provide the method in Section 11.4.

1.2.1 A Basic Example of Categorization for Motion Scenarios

In Chapter 6, we flesh out a detailed categorization model, which we also apply to motion
scenarios. Here, nonetheless, we sketch motion categorization in a basic example, to introduce
the reader to the subject. To categorize a motion scenario K = (~xk, ~vk; ~xl, ~vl), means that we
label it with a category Mi. We choose the category from a pool of categories, the ‘categories
set ’ M; which is finite, and contains m categories, M = {M1,M2, . . . ,Mm}.

As an illustration, we present here a most simple motion categorization for scenarios: Gaping.
The motion categorization Gaping considers how the distance between the entities instantly
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changes, i.e., the sign of d

dt
‖~xl−~xk‖. It consists of three possible categories M = {M1,M2,M3},

also called {(−), (0), (+)}. A motion scenario belongs to a certain category according to following
rules:

Category

Name
Description

M1 or (−) The distance between entity k and l decreases (
d

dt
‖~xl − ~xk‖ < 0) (1.1a)

M2 or (0) The distance between entity k and l remains constant (
d

dt
‖~xl − ~xk‖ = 0) (1.1b)

M3 or (+) The distance between entity k and l increases (
d

dt
‖~xl − ~xk‖ > 0) (1.1c)

We can now categorize the scenarios in Figure 1.2 according to the Gaping motion catego-
rization (Eq. (1.1)). The scenarios (1), (3), (4), and (6), belong to category M1, i.e., the entities
come closer; the scenarios (7) and (8) belong to category M2, i.e., the entities keep the distance
to each other; and the scenarios (2) and (5) belong to category M3, i.e., the distance between
the entities increases.
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Figure 1.3: The motion scenarios are coloured according to the Gaping category they belong
to: M1 (approaching), M2 (stable), M3 (distancing).

Later, as we formalize motion categorization, we thoroughly present some well-known simple
motion categorizations for motion scenarios (e.g., QTCB21 and QTCB22 in Sections 5.4 and 6.3).

1.3 Our Contributions

In this section, we listed our contributions in greater detail than in the Abstract in order to
rend our contribution clear and distinguishable from the results of other researchers. Otherwise,
our contribution might be difficult to recognize since we presented our research as a monograph
integrating our results with the current state-of-the-art in related scientific disciplines—That is
so because we prioritized comprehensibility and readability.

The contributions presented here all stem from the initial pursuit of a categorization of motion
scenarios (as exemplified in Section 1.2.1), a categorization that we sought to be cognitively
plausible.
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Primary contributions (Parts III and IV)

• We provide a method for generating motion categorizations from spatial and motion repre-
sentations. We call these generated motion categorizations the story-based categorizations
(Ch. 8). This is a remarkable contribution for the following reasons:

– In the literature, we find no method for generating motion categorizations. Note
that our method is described by means of complete algorithms that generate concrete
motion categorizations (e.g., Sect. 8.1.1), not just principles, guidelines, or ambiguous
steps. We call these generated motion categorizations ‘story-based categorizations’.

– We proved mathematically that, in most cases (possibly all), the story-based catego-
rizations are also qualitative calculi. They have powerful operations and tools that
allow reasoning and decision-making (Ch. 10), while a simple categorization (such as
fruits or furniture) has only the basic set operations.

◦ One of the key reasoning operations is the ‘composition’. We provided a method,
called ‘narrative composition’, to help compute the composition in the story-based
categorizations (Sect. 10.5). Even though this method does not exactly provide
the composition, it considerably narrows down the choices leading to the precise
result.
Notice that not all qualitative calculi in the literature address the composition;
this is also the case in qualitative motion calculi. We stress that our method helps
to compute the composition of any story-based representation: bear in mind that
story-based representations can be very different, and the method has a general
validity.

– In principle, our method generates an unlimited number of motion categorizations
with a wide variety of properties (Sect. 11.1). This is an exceptional strength of our
method, given the scarcity of qualitative calculi of motion. The number and variety
arises from several factors:

◦ Each story-based categorization is generated from a spatial qualitative calculi (i.e.,
a spatial categorization). In the literature, we have a large number of such spatial
qualitative calculi, even families of calculi with infinite members (Sect. 11.1.1).

◦ We combine the story-based categorizations by means of scalar product to create
more story-based categorizations (Sect. 11.1.2).

◦ Thanks to our framework for categorizations, we obtain the features of each
story-based categorization and combine them to create more motion categoriza-
tions (Sect. 11.1.3).
Furthermore, in this case, we can create purpose-tailored motion categorization
by specifically choosing the features relevant to our purpose.

– We generated two types of story-based categorizations. First, the bare story-based
categorizations, which are the simplest variant, and are denoted Stories-R (Sect. 8.1).
Second, the beaded story-based categorizations, denoted Motion-R; they are a refine-
ment of the bare categories in which the temporal precedence (past and future) is
distinguished within a bare category (Sect. 8.5).

– We did not only accurately described the method for obtaining the motion categoriza-
tions, but we obtained some concrete, ready-to-use, categorizations: We obtained both
bare and beaded categorizations for the spatial representations RCC and OPRA1, and
the bare categorization for the motion representation QTCB21. That is, we obtain
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Stories-RCC (Sect. 8.2.1), Motion-RCC (Sect. 8.6.1), Stories-OPRA1 (Sect. 8.2.2),
Motion-OPRA1 (Sect. 8.6.2), Stories-QTCB21 (Sect. 8.3.1).

Thus, we proved that our generation method is effective, and we enriched the mea-
gre panorama of qualitative calculi with these five ready-to-use qualitative motion
representations.

• We provided experimental evidence that the story-based categorizations Stories-RCC and
Stories-OPRA1 are cognitively plausible (Ch. 9). Our experimental tests of cognitive plausi-
bility are groundbreaking, because we found no experimental tests on cognitive plausibility
for qualitative calculi of motion in the literature, and only a reduced number for spatial
qualitative calculi.

Concerning the results, we generally established that story-based categorizations signifi-
cantly influenced the similarity choice of motion scenes. In that sense, we can affirm that
the story-based categorization in our experiment, Motion-RCC and Motion-OPRA1, are
cognitively plausible—At least in a weak manner.

Additional contributions (Part II)

• We presented comprehensive surveys in general categorization (Ch. 3), in spatial catego-
rization (Ch. 4), and in motion categorization (Ch. 5).

– We related the concepts of general categorization to the particular case of spatial and
motion categorization; specifically, we looked at qualitative representations from the
perspective of human cognition, illustrating basic psychological and linguistic aspects.

• We worked out an elementary model of categorization that allows us to formally deal with
categorizations and relate them to their description in psychology Sects. 6.1 and 6.2. The
model can reproduce all the basic psychological effects of gradation by means of a featural
distance upon which a similarity can be defined. Moreover, this model is designed with the
qualitative representations in mind, so that we can identify their main constituents: cate-
gories, features, categorical regions; and we can obtain their important functions: feature
extraction, and feature-based categorization.

– We applied our categorization model to the spatial categorizations RCC (Sect. 8.2.1.A)
and OPRA1 (Sect. 8.2.2.A), to the motion categorization QTCB (Sect. 6.3), and to the
story-based categorizations Stories-RCC (Sect. 8.2.1.C) and Stories-OPRA1(Sect. 8.2.2.C).
By doing so, we obtained their feature extraction function, along with their features,
and their featural categorization function.

Clarifying our Contribution Area

In this research converge two capital topics in psychology and artificial intelligence: categorization
and motion; we research the blurred boundary between engineering and science. This is an
interdisciplinary endeavour with methodological tensions between disciplines (see Sect. 2.4). For
this reason, we clarify our contribution: This work stands at the overlap of the two major goals of
cognition: constructive and explanatory (Gärdenfors 2004, Sect. 1.1.1). First, as a constructive
work, we offer motion categorizations that can be used in artificial intelligence, and engineering,
e.g., robotics and navigation. Second, as an explanatory work, we investigate the cognitive
plausibility of our categorizations, and test them experimentally.
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1.4 Motivation: Our Topics in the Landscape of Science

It is not easy to understand the relevance of the contributions in this work without understanding
the relevance of each topic—categorization and motion—on its own. Their relevance is enormous,
as we justify below. Furthermore, by bringing these topics together, our research has a surplus
value: indeed, motion is an infrequent categorization theme. In psychology, for instance, Medin
and Heit (1999, Sect. I.C) observe that categorization research is predominantly concerned with
natural objects and artificially created categories, as opposed to categorizing events or motion.
Likewise, in AI, we found an overwhelming majority of spatial versus motion categorizations
(See Section 5.1). We help correct this deficiency by providing the story-based categorizations,
which are both a motion categorization with cognitive plausibility in psychology (Ch. 9), and a
qualitative representation of motion with reasoning capabilities in AI (Ch. 10).

1.4.1 Relevance of Categorization

Concerning the relevance of categorization in cognition, Cohen and Lefebvre (2005, p. 2) assert
“[Categorization] is the basis for the construction of our knowledge of the world. It is the most
basic phenomenon of cognition, and consequently the most fundamental problem of cognitive
science.”. Harnad puts it more bluntly: “cognition is categorization: to cognize is to categorize”
(Harnad 2017).

Similarly, some decades before, pioneers in categorization research, Eleanor. Rosch and Lloyd
(1978, Intr., p.1), stated “categorization is important”, and they specified “[It is] a basic task of
all organisms (indeed, one mark of living things)”. Thus, we observe an augmenting emphasis in
the relevance of categorization in cognition throughout the years. Also, in artificial intelligence
we find similar claims: “The organization of objects into categories is a vital part of knowledge
representation” (Russell and Norvig 2014c, Sect. 2).

The reasons for that relevance are clear: categories allow an agent not to perceive every object
or event as unique, but to group them according to their use or effect (e.g., Bruner et al. 1956,
p. 245; Gerrig and Zimbardo 2005, pp. 229f.). For example, when we look at a bunch of grapes,
we are not overwhelmed by fifty different objects dangling in it; instead, we essentially overlook
the differences between each dangling object, and see fifty objects of the same kind: ‘grape’—
they fall into the same category. Thus, by categorizing, we save cognitive resources—‘cognitive
economy ’ (Eleanor. Rosch 1978, p. 28)—, we can store the bunch of fifty different objects (each
with its own features) in a more parsimonious representation, i.e., fifty times an object of one
kind, i.e., “fifty times grape”.

Beyond cognitive economy, categories are essential for reasoning and decision-making (Russell
and Norvig 2014c, Sect. 2 and 5; Medin and Heit 1999, Sect. II.A.1). For instance, if an agent
intends to produce wine, it could apply the rule ‘we can produce wine, if, and only if we have
grapes’ to plan the next action: ‘look for grapes’. Remarkably, the execution of such action
depends fully on the ability to cope with the category grape.

Summarizing, categorizations are an asset in artificial intelligence. Indeed, any sensor, either
robotic or human, is inundated by data with no direct meaning in itself, but its numerical value.
This requires both simplification—reducing the amount and the degree of detail of the data—,
and conceptualization—endowing data with a more straightforward meaning. As we have seen,
a meaningful categorization provides both in one stroke.

The type of categorizations we introduce in this work, the story-based, not only simplify,
the raw motion data a sensor or tracking device provides—as any motion categorization does
(e.g., QTC, Van De Weghe et al. 2005; QRPC, F. J. Glez-Cabrera et al. 2013), but, more
importantly, they produce meaningful categories which allow for reasoning and decision-making
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about moving entities (Sect. 11.5). We also show how story-based categories reflect the inner
structure of motions: categories correspond to relevant kinematic attributes, the featural variables
(e.g., Sects. 8.2.1.C and 8.2.2.C). Reflecting the relevant attributes is for Eleanor. Rosch (1978, p.
28) one of the two main principles characterizing categorizations: “categories map the perceived
world structure as closely as possible. [. . .] by the mapping of categories to given attribute
structures”.

A Minimal History of Categorization

The contemporary history of categorization helps us appreciate the current relevance of this
discipline. It was as recently as the 1970’s, when the millennia-long standing view on concepts
was successfully challenged (See Medin and Heit 1999, Brief History; detailed acccount Murphy
2002, Ch. 2): the view that definitions are the appropriate way to characterize categories
and, therefore, categories have perfectly delimited borders. This view had been implicit in all
categorization work since, at least, Aristotle (See transl., Apostle 1980, pp. 6, 19–20).

It was not a single person but many scientists with a variety of contributions who made the
classical view crumble. To name a few ones, A. J. Wilkins (1971); E. E. Smith, E. J. Shoben,
and L. J. Rips (1973; 1974); and M. E. McCloskey and S. Glucksberg (1978). One of the most
active and, thus, renowned contributors is Eleanor. Rosch (e.g., 1973; 1975; 1978) together with
her research partner C. B. Mervis (1976) .

Wrapping up, as Murphy (2002, Ch. 1) states about the study of concepts (i.e., categoriza-
tions): “a topic that seemed straightforward in 1960 has turned out to be a much deeper and
richer scientific problem than researchers expected”, so that in the current state of the art “no
theory has explanation for all findings even within a topic”, and, what is more, neither the basic
questions have been fully answered. We are confident that this work will shed more light on the
topic, as well, as rise more interesting research questions.

A Note on the Classical View

We carefully avoid the classical model when we model the story-based categorizations: we make
membership gradation available (Ch. 6). It might seem then contradictory, that our simplified
version of the membership function (also called ‘categorization rule’, Eq. (6.1)) does not reflect
a graded membership. As said, it is a simplified membership function; nevertheless, gradation is
readily available in the ‘featural space’—the metric space underlying the membership function—
in which we can define a similarity function based on a featural distance. Hence, when needed,
we can obtain a graded membership function for story-based categorizations by means of the
featural distance. In fact, we do apply the gradation properties of story-based categorization
when we experimentally test the cognitive plausibility of these categorizations: we generate
comparison stimuli equally similar to a reference stimulus (Sect. 9.3.3). However, we believe
that implementing a graded membership function of the story-based categorizations provides
no added value to our theoretical analysis; it makes mostly sense when modelling experimental
results on category membership. That is why we leave it as a future practical enhancement.

1.4.2 Relevance of Motion

Concerning the relevance of motion, we observe, in the last decades, a marked increase in motion
related research in artificial intelligence and neighbouring disciplines. Arguably, the explosion of
research in autonomous vehicles has brought the major focus on motion analysis. Above all, the
integration of autonomous agents in day-to-day life, e.g., robots or vehicles, heightens the need for
a formalization of the entities motion (Kurata and Shi 2008a)—most notably in machine-human
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interaction. Not least, the notorious rise in the ability to detect and record motion has ushered a
new era of motion analysis (Delafontaine et al. 2011); indeed, not only tracking devices, but the
locating possibilities of smartphones and their societal pervasiveness, furnishes a massive amount
of position data, and, hence, motion data that can be exploited (e.g., Roor 2018)

In this sense, a cognitively plausible motion categorization, such as, the story-based catego-
rizations, is an asset when processing motion data: they simplify kinematic floating point data
into a reduced finite set of concepts that largely reflect a human understanding of the moving
system, so we can more straightforwardly implement human-like navigation rules; in addition,
they lessen the overhead of floating point computations.

The understanding of motion is also a fundamental ingredient of human cognition. First of
all, motion attracts infants attention earlier (from birth) and more powerfully than most other
factors (Haith 1980; Fantz and Nevis 1967). At 5 months age, infants remember much better
the actions in events than the objects, people, or other elements involved (Bahrick et al. 2002;
Perone et al. 2008). Consequently, motion related concepts are amongst the first to be acquired
(Mandler 2012); Mandler uses the early concept ‘furniture’ as a vivid example: “[Furniture] may
mean [for the child] no more than ‘things that don’t move’”.

Motion has even a more profound role both in artificial intelligence and cognitive sciences.
On the one hand, regarding artificial intelligence, we have two different approaches: the mental
and the behavioural one, according to Russell and Norvig’s classification (Russell and Norvig
2014b, Sec. 1). The behavioural approach concentrates on issues such as perception, action, and
manipulation in which motion is an essential component. Practical examples are, classification
of video images, navigation in dynamical environments or human-aware navigation. On the
other hand, regarding cognitive science, we find behavioural approaches, often termed ‘embed-
ded ’. There, the motor system plays a basic role in cognition through its coupling to mental and
perceptual systems. In that way motion becomes integral part of cognitive research. Further-
more, we notice that in both artificial intelligence and cognitive science a shift from mental to
behavioural paradigm; thus, motion seems to gain relevance.





Chapter 2

Challenges in Motion Categorization

Here are some of the most challenging problems that we face when categorizing motion—As you
will appreciate, this is no banal research topic. Such challenges make motion categorization both
more difficult and more exciting to treat than other categorization domains.

In the conclusion (Sect. 12.1), we comment on how we tackled or overcame such challenges.

2.1 High Dimensional States Space

In the first place, the high number of dimensions that describe a motion scenario are a challenge
for researchers in motion categorization—Two entities moving in a two-dimensional space are
described as a point in R

8, i.e., 2 entities × (2 position coordinates + 2 velocity coordinates);
three entities in a three-dimensional space are described as a point in R

18. For that reason,
both mental and graphical representation of the space to categorize fail as a means to obtain
categorizations.

We overcome this complexity by using the well-founded spatial categorizations (also called
spatial qualitative representations, Hernández 1994) as the starting point of the categorization
process. Out of them we obtain motion categorizations by applying a general method, the
story-based method, that greatly reduces the mental demands of the researcher.

2.2 Variety of Categorization Criteria

A further challenge of categorizing motion is the variety of possible categorizations; we illustrate
it in Figure 2.1. Which attributes should we use—and how—in order to categorize the 4 motion
scenarios A, B, C, D, in this figure? For example, the pair of scenarios (A,B) and (C,D) are almost
identical, and differ only in the speed of k; consequently, each pair could become a category in
its own right. However—assuming velocities remain constant—in both scenarios A and C the
vehicle k would cross before l without colliding, while in scenario B the vehicles collide, and in
D the vehicle k crosses behind l.

Are, then, the three categories (A, C), (B), and (D) of scenarios in Figure 2.1 more meaningful
than the two previous, (A,B) and (C, D)? In theory, one cannot establish an absolute scale of
meaningfulness for motion categorizations. The meaningfulness of each categorization depends
on how useful the categorization is for the particular task of a given agent. Thus, one ends
up with a multitude of categorizations, each most meaningfully serving a specific purpose (e.g.,
Sect. 3.4.4). It is true that, in our categorization experiment (Ch. 9), we found that motion

27
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Figure 2.1: A challenge for motion categorization: 4 scenarios (A, B,C, D) with two moving
vehicles k and l, with velocity vectors ~vk and ~vl. Each pair (A,B) and (C,D) has identical
positions, velocity angles, and fulfils ‖~vk‖ > ‖~vl‖—each pair differs only in the speed of k, i.e.,
in ‖~vk‖.
Source: Purcalla Arrufi and Kirsch (2018a)
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categorization Motion-OPRA1 had a much higher saliency than Motion-RCC (Sect. 9.6), but
the stimuli were not general enough to make an overall statement about the meaningfulness of
both categorizations.

In any case, a model of motion categorization should address the need for a variety of catego-
rizations: it should be flexible enough to generate such wide variety of categorizations. We posit
that the variety of motion categorizations originates primarily in the variety of underlying spatial
categorizations. As we see in Figure 2.1, we can differently categorize A and D, due to the spatial
categories before and behind, and, again, we can categorize B as a single category, due to the
spatial category overlap, i.e., collision. This is a compelling reason to use spatial categorizations
as the basis of our method to generate categorizations of motion: spatial categorizations are a
source of variety for the resulting motion categorizations.

In addition to spatial categorizations, another source of variety in motion categorization are
the attributes of the moving entities. For example, if the entities have volume, there are many pos-
sible types of collisions between entities, which produce many types of motion categorizations—
Think of the many ways a foot can hit a ball. But, if the entities are seen as punctual, there
is only one possible type of collision: to be at the same point; in that case, another aspects
determine motion categorization.

Notably, spatial attributes and spatial categorizations are coupled: the considered attributes
of the moving entities determine—or are determined by—the spatial categorizations that we use.
If the entities have volume, we will tend to use a spatial relation that considers volume, e.g.,
RCC (as in Wu et al. 2014); if the entities relative orientation is relevant, e.g., ships, we will use
a categorization that considers orientation, e.g., OPRAm (as in Dylla et al. 2007).

Since our method can use any spatial categorization to create motion representations, our
method can create motion categorizations tailored to the attributes of the involved entities. In
Section 11.1.1, we see how two story-based categorizations, Motion-RCC and Motion-OPRA1,
categorize the example in Figure 2.1.

2.3 Loose Cognitive Structure

Evidence has accumulated that though language influences cognitive tasks—and notably catego-
rization—language actually reflects universals in cognitive structures (Kess 1992, Ch. 8). In Sec-
tion 5.5, we infer a universal property concerning motion categorization from L. Talmy’s (2000)
work in cognitive linguistics, namely, that humans categorize motion quite loosely: we do not
have a systematic cognitive structure for motion categorization, as we have it for spatial catego-
rization.

The attempts to formalize motion categorization are hampered by its loose cognitive struc-
ture. For example, if we undertake to formalize motion categorization for motion scenarios, we
would strive to partition the kinematic space of motion scenarios; in other words, we would like to
assign a category—at least one—to any motion scenario. However, according to Talmy (2000a),
humans do not linguistically partition the motion space, so that for most motion categorizations
some regions in the motion space (i.e., some motions) remain linguistically uncategorized (See
Fig. 2.2).

In contrast, spatial categorization is linguistically reflected by a partition of the space medi-
ated by the prepositions, to each position can be assigned a category. For example, let us take a
spatial categorization based on proximity of two entities, A and B, to an observer O. The cate-
gorization assigns three possible categories: A is nearer than B to the observer O, A is farther
than B to O, A and B are equidistant to O. Whatever the positions of A and B relative to
O are, we can always assign unambiguously a category: ‘nearer’, ‘farther’, or ‘equidistant’—i.e.,
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C. Curved motion

Figure 2.2: The first two motions, A and B, are linguistically categorized, respectively, as
‘crossing’ and ‘parallel’ motion. The last motion, C, is linguistically uncategorized; we use the
generic term ‘curved’.

the spatial categorization partitions the states space of the entities.
This is a first hurdle in the formalization of motion categorization: to overcome the loose

structure provided by our own cognitive system in order to achieve a systematic motion catego-
rization.

2.4 Disciplinary Fragmentation: Insularity and Tension

Topics in cognitive science, such as categorization, are prone to disciplinary fragmentation. ‘Dis-
ciplinary fragmentation’ occurs when disciplines develop their own research on a topic separately
or quite independently from each other, so that each discipline develops its own paradigm and
methodology on that topic (See Dawson 2013, Ch. 1; See also Schwartz 1997, p. 25).

As we show below, disciplinary fragmentation is specially acute in spatio-temporal catago-
rization, and, consequently, in motion categorization.

Insularity The first and most dramatic effect of disciplinary fragmentation is that the other
disciplines, being unaware of the results of a particular discipline, are unable to verify, refine, or
refute such results. This is notably the case for qualitative representation and reasoning (QSR),
particularly in the spatial domain.

Since the birth of qualitative representations—generally assumed to be J. F. Allen’s (1983)
intervals theory—AI researchers had been arguing that such representations capture the way
“ordinary people conceptualize various aspects of the world around them” (Hobbs and Moore
1985, p. ix); thus, they labelled them “commonsense” or “naive” theories (ibid.). Later on,
AI researches switched to the terms “cognitively plausible” (Freksa 1992a, p. 3) or “cognitively
adequate” (Hernández 1994, p. 4); but they meant the same as before: that such representations
are a model of, or can be found in human knowledge or reasoning (Strube 1992). Yet not until
the mid of the 90’s, psychologists began to proof in humans the experimental validity of such
claims (Mark and Egenhofer 1994; 1995; Knauff et al. 1995; 1997).

A fragmentation had occurred between AI and psychology in the field of spatial categorization
concerning cognitive plausibility of QSR. The QSR scientists had been making human-cognitive
claims about their spatial representations, and had not bothered to reach out to the psychologists
to verify them. Knauff et al. help us grasp such situation:

“Whether or not a formal approach to spatial relations is a cognitively adequate
[. . .] model of human spatial knowledge is more often based on the intuition of the
researchers than on empirical data.” (1997)
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“[. . .] attraction for qualitative spatial reasoning (QSR) rests on the claim that it is
akin to human inference. Yet there is only little justification for this claim.” (2004)

We faced an unpleasant situation. On the one hand, researchers in QSR emphasize how
central is the link with human cognition; for example, in the words of A. G. Cohn (1995), one of
the most cited QSR researchers:

“The principal goal of Qualitative Reasoning (QR) is to represent not only our
everyday commonsense knowledge about the physical world, but also the underlying
abstractions used by engineers and scientists when they create quantitative models.”

On the other hand, QSR researchers do not readily verify their claims by psychological
experimentation—or, at least, these researchers do not call loud enough for a verification—
(See notable exceptions such as Mark and Egenhofer 1994; 1995). For instance, as of 2004, one
of the most basic spatial representations, RCC, created in 1992, had not yet been checked for
cognitive plausibility with respect to reasoning (Knauff et al. 2004, p. 182). Still more recently,
researchers criticize startled that so few studies tackle the cognitive plausibility of qualitative
spatial representations, all the more because such representations are key in human-computer
interaction (Yang et al. 2015, Intr., ).

Since most people involved in studies of cognitive plausibility of qualitative representations
are not the ones developing them, we regrettably get the impression that the QSR community
has a marginal interest on experimentally studying cognitive plausibility and their main concern
is mathematical formalism; even though, they paradoxically continue to aim to model human
cognition, or, equivalently, ‘common-sense’ (e.g., Wolter and Wallgrün 2012; Dylla et al. 2017).

Anyway, we wrap up this critical view of disciplinary fragmentation between qualitative calculi
and psychology with the hope-giving words of Klippel et al. (2013, Sect. 2.2):

“While the number of behavioral [i.e., psychological] validations of spatial calculi
is small compared to the number of proposed formalism, there is an active community
that performs research on refining and tailoring formalisms through validating their
cognitive adequacy.”

We feel that we deserve to be included in this community that validates the cognitive adequacy of
qualitative formalisms, because in this work we prove the experimental validity of two qualitative
representations of motion. We stand against insularity in motion categorisation.

Tension A second dramatic effect of fragmentation is interdisciplinary tension. When dis-
ciplines use a different methodology or terminology, then statements in one discipline can be
misunderstood or disputed by other disciplines. For example, if we use the label ‘cognitive’, a
psychologist might understand that we talk about “human cognition”, but an AI researcher might
understand that we talk about “knowledge representation”—The difference is substantial.

More concretely, cognitive science has two prevailing goals: constructive and explanatory
(Gärdenfors 2004, Sect. 1.1.1). On the one hand cognition in AI is mostly constructive, they
create models to process information—though not necessarily mimicking human cognition—while
cognition in psychology is explanatory because they describe human cognitive processes. Thus,
the use of the term ‘cognitive’ by an AI researcher might bewilder (or even irritate) a psychologist;
we see such a tension in the editorial debate of the journal Cognitive Processing (Ross 2019;
Katsikopoulos 2019), which was sparkled by A. Kirsch’s (2019) paper.

Thank God, we can defuse tension: if we are transparent in our terminology (clearly defining
the terms we use), and if we found our methodology on solid principles, which need be openly
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and unambiguously stated. Even so, in my opinion, the key to eliminate fragmentation and
the consequent tension is to strive to integrate our cognitive result into the other disciplines,
i.e., to explicitly show the links, commonalities, and differences of our results with respect to
others—This is oftentimes a hard task.

In this work, we do strive to integrate our results, which originate in the field of artificial
intelligence, into other cognition fields such as psychology and linguistics: we invested effort
in linking our definitions and models to well-known results and models in categorization (e.g.,
Sects. 5.5, 6.2 and 6.4).
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Foundations of Categorization
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Chapter 3

Categorizations, Categories, and

Concepts in Human Cognition

God said, “Let there be light,” and
there was light.
God saw the light, and saw that it was
good. God divided the light from the
darkness.
God called the light “day”, and the
darkness he called “night”.

Genesis 1:3–4 (WEB)

God said, “Let there be light,” and there
was light.
God saw that the light had a very dis-
tinctive feature than darkness: ‘Goodness’.
Based on this feature, God established two
categories: light and darkness.
God labelled the category light ‘day’, and
the category darkness ‘night’.

Genesis 1:3–4 (Cognitive Paraphrase)

In this chapter, we summarize previous research on categorization. Firstly, we introduce the
basic terms in the literature and explain how we use them in this work. We aim for clarity and
consistency; we also aim to make this work understandable and integrable into any discipline
that studies categories and concepts. Secondly, we mention important experimental results in
human categorization, which apply to virtually every human categorization, regardless of the
items they categorize. We consider these results in human categorization when developing our
motion categorizations, because a strong motivation for categorizing motion is to apply it in
human-computer interaction.

3.1 Terminology

All throughout this work, we use profusely the terms categorization and ‘category ’. A category
is one of the groups that result from a categorization, that is, one of the groups in which our mo-
tion categorizations group motion scenarios according to similarities, commonalities, or shared
properties. Yet, depending on the context, we use alternative terms for category/categorization
because they are the most common terms in another disciplines: We might use the terms ‘concep-
t/conceptualization’, common in linguistics; or ‘class/classification’, common in machine learn-
ing; and, often, we use the terms ‘qualitative representation’/‘qualitative relation’, common in
artificial intelligence, to name spatio-temporal categorizations and categories (Sect. 4.1).

Importantly, the term ‘concept ’ is a twin term of category ; it has a similar meaning as category,
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but, depending on the author, it has diverse nuances. Murphy (2002, Ch. 1, p. 5) provides basic
definitions that reflect the core understanding in psychology and cognitive science (e.g., Gerrig
and Zimbardo 2005, p. 230; Medin and Coley 1998, Sect. II): categories are classes of things, and
concepts are the mental representations of the categories—the descriptions for the categories.

‘Concept’ is, thus, a sophisticated term. It not only captures the commonalities and features in
a category, and how they are interrelated (Sloman et al. 1998), it also works as the “categorization
rule” (Bower and Clapper 1989). For that reason, we avoid the term concept : we advance
simplicity by using more specific terms.

In our case, we are primarily interested in deciding the membership of items to a certain
category; we intend to assign each motion scenario to a certain motion category. Thus, for us,
the categorization rule is an essential component of a categorization. By the term ‘categorization
rule’ we refer to the function that decides the category of any item (disregarding whether the
decision is deterministic or probabilistic, crisp or fuzzy). In that sense, ‘category ’ is the set of
items grouped by the categorization rule into the same value, and a ‘categorization’ consists of
a categorization rule, plus all categories that such rule creates: This is the most elementary
framework we can build to categorize items (More details in Section 6.1).

3.2 Classical Model and Classification

Before we delve into the nuances of how humans categorize and the categorization models that
try to fit in, we must mention the oldest and simplest model: the classical model or classical
view.

The ‘classical model ’ is equivalent to say that humans categorize items in the same way
mathematicians assign set membership; in set theory, membership is only a Boolean value: ‘1’,
if the item is a member, ‘0’, if it is not a member. In that sense, categories can be assimilated
to crisp sets and the most basic operations with categories are the set operations: union A ∪B,
intersection A ∩ B, and set difference A \ B; we can thus apply the powerful machinery of set
theory to work with categories. Furthermore, under a classical model, we can represent knowledge
as a hierarchical tree of categories (i.e., a hierarchical taxonomy) which has many advantageous
processing properties (Sect. 3.6.1).

Therefore, the classical model is the most popular one used in artificial intelligence: it is cheap
to machinally implement and to maintain, and it has powerful reasoning capabilities relying on
first order logic (Russell and Norvig 2014c). Mind you, computer scientist use unwillingly the
term ‘categorization’ but rather ‘classification’. When an AI researcher means to perform a
“classification” of certain items, chances are that she refers to a categorization according to the
classical model.

As we said in Sect. 1.4.1, p. 24, the classical view is outdated in human cognition as a precise
account of categorization. As we will immediately see in Section 3.3, humans categorize in a
graded manner; for example, apple is (in the Western culture) a member of the fruit category
in a higher degree than avocado (McCloskey and Glucksberg 1978). Actually, gradation is
one of the best established facts in human categorization. Does it mean that the classification
work in AI is futile? By no means! The classical model is the most elementary approach to
categorization, and, in that respect, we can always resort to it as most economical implementation
which under certain conditions (e.g., artificial categories, or negligible boundary effects) can be
effective enough.
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3.3 Category Typicality and Membership

3.3.1 Typicality and Prototypes

Humans perceive some items as the best examples of a category; those items are the [highly]
‘typical ’ category members, for example, apple as fruit, or chair as furniture—They are often
called also ‘prototypical items’. They play a pivotal role in categorization; even they underlie a
traditional categorization model, the ‘prototype model ’ (details in Sect. 3.4.2).

Some items are less typical members, for example, olive as fruit, or rug as furniture. Others
are extremely atypical, for example, beet as fruit, or telephone as furniture (E. Rosch and
Mervis 1975; McCloskey and Glucksberg 1978). This property of how items fit a category is
called ‘typicality ’, or ‘prototypicality ’.

Typicality is a continuous value, i.e., it is graded (e.g., Barsalou 1985; E. H. Rosch 1973);
subjects can numerically evaluate the typicality of an item with respect to a category. For exam-
ple, subjects can assign typicality a value in the unit interval [1.0, 0.0]: 1.0 is extremely typical,
and 0.0 is extremely atypical, i.e., unrelated to the category. In McCloskey and Glucksberg
(1978), subjects evaluate the typicality of certain items as fruit; for instance, apple obtains an
average typicality of 0.991, olive 0.338, beet 0.241; and as furniture, for instance, chair 0.994,
rug 0.583, telephones 0.291 (we have normalized the original values to the unit interval).

Typicality is, thus, a well-established property of categorizations, and, arguably, the most
influential. Eleanor. Rosch (1978, p. 38) states, “the prototypicality of items within a category can
be shown to affect virtually all the major variables used as measures in psychological research.”
Murphy (2002, Ch. 2, p. 22), restates it, “[t]ypicality differences are probably the strongest and
most reliable effects in the categorization literature.” We present a non-exhaustive list of how
typicality influences cognitive processes:

• Typical items are those that subjects most rapidly recognize as category members (E. H.
Rosch 1973, p. 141; see Rips et al. 1973, pp. 9, 19; c.f., Wilkins 1971).

• Typical items are more frequently produced as spontaneous examples of the category
(Mervis et al. 1976)—which is called ‘item dominance’; for example, if subjects are asked to
give examples of fruit, they will much more probably mention apple than olive. Indeed,
in the study of Battig and Montague (1969) with 442 Subjects, 97% mentioned apple in
their fruit list, appearing in almost 60% as the first mentioned fruit; while olive was only
mentioned by three subjects, i.e., 0.7%, never in the first place.

• Subjects learn sooner typical items than atypical ones as members of the category (Mervis
et al. 1975; in natural categories, Heider 1972, p. 19), even when atypical items are shown
more frequently (in artificial categories, E. Rosch, Simpson, et al. 1976, p. 498).

Even though typicality and, thus, the existence of real prototypical items in human cognition
are far beyond any empirical question, the existence of abstracted prototypes in our mental
representations of categories is heatedly debated; it is a decisive issue in the controversy of two
main categorization models, the prototype and exemplar theory (Sect. 3.4.2).

A. What makes something ‘typical’?

We have expounded on typicality and their effects on cognitive processes, but without addressing
the question of what makes an item typical in a category.

E. Rosch, Simpson, et al. (ibid., pp. 492f.) mention essentially two different sources of typi-
cality. First, when considering ‘continuous attributes’ (e.g., lengths, weights), the most typical
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items (i.e., prototypical items) are the ones having feature values close to the average values of
the category members; implying that an abstracted prototype is some sort of average of the cate-
gory members. This occurs, for example, with sizes of animals (Rips et al. 1973, p. 19) or facial
features (Reed 1972). Moreover, the most typical item in a certain category has very different
feature values than the items in other categories.

Second, when considering ‘binary attributes’ (‘is’ or ‘is not’), the most typical item is the
one having most common features with the category members (Note that the common features
can be disjoint). Moreover, the most typical item in a certain category has the least common
features with items in different categories. For example, if we consider the strings w1 = AABDEE,
w2 = AABKLM, w3 = ZXYKEE as members of a category, then, the string w1 would be the prototype,
because it shares AAB with w2, and EE with w3; while w2 and w3 share only K. Coincidentally, in
this case, the shared features of w1 (AAB and EE) are disjoint, i.e., have nothing in common.

Interestingly, those two sources of typicality can be summarized in one simple principle:
‘centrality ’ (E. Rosch 1977, p. 36), also called ‘central tendency ’ (Posner and Keele 1968). If we
represent the items of a category with continuous attributes in their multidimensional featural
space, the prototypical element lies at the centre of the points cloud of items. Likewise, it
occurs for items of a certain category with binary attributes: when we optimally represent their
dissimilarities in a continuous metric space (using the MDS technique), prototypical items appear
also central.

We can, thus, give an equivalent definition of typicality based on similarity : the most typical
of a category is the item being in average most similar to all items in the category and most
dissimilar to all items in the other categories.

Even though central tendency predicts typicality in ‘common taxonomic’ categories (e.g.,
fruit and furniture), it fails to predict typicality in other type of categories, such as goal-derived
categories (Barsalou 1985), in which typicality is rather predicted by the ‘ideal ’. For example,
the category Christian has as a typical member which is not the average features of the current
Christians, but rather an ideal member, namely, Jesus. In other words, one considers a person
to be more a member of the category Christian in the measure such person is similar to Christ
(Oxford English Dictionary n.d.), instead of comparing him to the average Church member.

Finally, central tendency and ideal might fail to predict typicality for subjects that are un-
knowledgeable about a category. In that situation, subjects resort to the most primitive source
of typicality: ‘familiarity ’ (e.g., Lynch et al. 2000), which amounts to ‘frequency ’ (Murphy 2002,
p. 31). Accordingly, the category prototype is the item that the subject has experienced (e.g.,
seen, heard, or read) more frequently. We can resort to familiarity, even if we do not personally
know the item or its features: it suffices that, in our everyday life, we hear the item’s name more
often than the other items in order to deem it prototypical.

3.3.2 Membership

Besides typicality—but extremely related to it—a chief term in categorization is ‘membership’,
i.e., whether an item belongs or not to a category. This question is answered by the categorization
rule, either deterministically or probabilistically, either fuzzy or crisp. For example, is apple a
fruit? Or, is olive a fruit?

From a practical stance, determining membership might be the most relevant question in
categorization, and it is indeed the question we answer when we create our motion categoriza-
tions in Chapter 8. In fact, determining membership has so impacted research that, though
categorization influences many psychological areas, in the decade of the 80’s most research on
concepts concentrated on the categorization rules (Medin 2011).
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A right answer to the membership question is vital in daily circumstances. For instance,
both humans and animals search tirelessly for items belonging to the category edible; also,
when doing the shopping, we purchase items belonging to the categories in the grocery list
(apple, olive, . . . ); and, particularly in navigation, an autonomous vehicle might categorize a
motion scenario as collision or collision-free, in order to start an avoidance manoeuvre.

A. Gradation and Fuzziness

According to the classical categorization theory, category membership is a binary value: either
an item belongs or not to the category—there is no intermediate value. Even more, all items
belonging to a category are equivalent members of the category: an item cannot be a preferential
or a marginal member. This idea harmonizes with logical thinking, and, notably, with the
classical set theory, where membership of an item to a set is a logical value, either true or
false. However, category membership in real world is not a logical value, as the seminal work of
McCloskey and Glucksberg (1978) clearly shows (See also, Lakoff 1973). They related typicality to
category membership and gave evidence that as much as typicality is graded, so it is membership
(Fig. 3.1; see also, Barsalou 1983). They showed that subjects agreed almost to 100% on the
category membership of both most typical items (typicality values 1.0–0.9), as belonging to the
category, and the most atypical items (typicality values 0.1–0.0), as not belonging. However, as
we approached the middle typicality (0.5–0.3), on average 40% of the subjects disagreed about
the membership of the items. For example, the majority of subjects accepted olive as member
of the fruit category, but as much of 40% of them did not; in a similar vein, the majority
rejected rug as furniture, but 48% of the subjects accepted it as member of such category. In
contrast, all subjects agreed that apple belongs to the category fruit, and almost all (88%)
agreed that beet does not.

Summarizing, the boundaries of category membership can be so fuzzy that virtually half
of the subjects may accept item membership, while the other half may reject it. Moreover,
the gradation on category membership occurs not only for members, but it is equally valid for
non-members: the more typical a non-member is, the higher percent of subjects classify it as
non-member, and, conversely, the more typical a member is, the lower percent of subjects classify
it as non-member—As Barsalou (1985) exemplifies it, “chair is a better non-member of birds
than is butterfly”.

B. Membership and similarity: Family resemblance

Comparing membership and typicality is straightforward, because both are scalar values as-
signed to every single item in a category (See, for instance, Figure 3.1). In contrast, comparing
membership and similarity is complex because similarity is a binary relation between items.

A fundamental result on similarity and membership is the so called ‘family resemblance’: The
average within-category similarity should be higher than the average between-category similarity.
That is, category members are in average more similar than non category members. (ibid., p. 630;
originally, E. Rosch and Mervis 1975).

3.3.3 Historical remarks

Typicality, gradation, and fuzziness in categories are far from obvious. Though now are com-
mon knowledge, they originated in the paradigm shift of categorization, which began 1970s. A
notorious testimony of this paradigm shift are the words of E. H. Rosch (1973, Abstr.):

[P]sychological and linguistic research has tended to treat categories (whether
perceptual or semantic) as though they were internally unstructured—that is, as
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Figure 3.1: It shows, for each typicality interval, the percent of subjects that disagreed with
the membership decision of the majority. For example, for the typicality interval [0.44, 0.33],
which has label 0.39, the average of subjects that contradicted the membership classification of
the majority is 36%. That is, if the majority accepted an item as category member, on average
the 36% rejected the item as member of such category, and vice versa.
Source: This figure was created with the manually taken values from Figure 2 in McCloskey and Glucksberg (1978),
typicality normalized to the unit interval.

though they were composed of undifferentiated, equivalent instances—and as though
category boundaries were always “well-defined”. [. . .] It is the contention of the
present paper that most “real” categories are highly structured internally and do not
have well-defined boundaries; thus, we may presently have a quite distorted view of
how real categories are learned and how they function in cognitive processes.

Once we have settled the experimental facts in categorization: typicality, gradation, and
fuzziness; we confront the awkward task to cognitively model it. To that end, two tools are
frequently used: similarity and fuzzy logic. Similarity is widely used to account for category
membership and comparison effects between items—we expand on it in the next section. Fuzzy
logic is used to account for decision making, inference, and, more generally, operations with
categories (e.g., Klir and Bělohlávek 2011, esp. Ch. 4, 5; Douven 2020; Lakoff 1973; c.f., Zadeh
1972).

3.4 [Dis-]Similarity

In the previous section, we showed that a category has internal structure: the members of
a category, though having binding commonalities (i.e., family resemblance), are not perfectly
equivalent; they are graded according to typicality. We also showed that both family resemblance
and typicality can be defined in terms of similarity. It follows that, as a very first step in modelling
a category, we can define a ‘similarity function’, S(A,B) to compare pairs of items, (A,B), and
use it to establish the category membership and the internal category structure—As is the case
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in most categorization models (Goldstone 1994; Kruschke 2001).
Actually, researchers often work with an alternative to similarity: the ‘dissimilarity function’

D(A,B) (e.g., Krantz and Tversky 1975; Klippel et al. 2012, p. 244), Dissimilarity has certainly
very convenient advantages over similarity. Foremost, from a practical view, dissimilarity behaves
like a distance, which is a very intuitive concept and has a firm mathematical foundation (p. 46);
moreover, distances enable the powerful technique of ‘multidimensional scaling ’ (MDS) in order
to determine the features underlying similarity (Section 3.4.1.A).

At any rate, we can easily switch between dissimilarity and similarity because they are in-
versely related: the higher the dissimilarity the lower the similarity. This relation can be specified
by means of a monotone decreasing function f(x), so that D(A,B) = f(S(A,B)); for example,
typically used are f(x) = 1/x if S(A,B) > 0, or f(x) = − log (x/maxA,B S(A,B)) (Mair et al.
2022). In fact, due to their direct relation, sometimes scientists use the generic term ‘proximity ’
to refer to any of them, similarity or dissimilarity (Borg et al. 2018, p. 2). In this work, we
will explicitly mention either ‘similarity’ and ‘dissimilarity’, but always bear in mind that they
are directly related. Even more, we can translate any comparison statements obtained using
similarity and express them equivalently in terms of similarity, and vice versa (Tab. 3.1); such
equivalence preserves the information about [dis-]similarity rankings.

Similarity Dissimilarity

A is more similar to B than to C ≡ A is less dissimilar to B than to C

A is less similar to B than to C ≡ A is more dissimilar to B than to C

A is the most similar item to B ≡ A is the least dissimilar item to B

A is the least similar item to B ≡ A is the most dissimilar item to B

Table 3.1: The statements in the same row are equivalent: on the left row are expressed with
the term ‘similarity’; on the right row are expressed with the term ‘dissimilarity’

The similarity usually outputs a real value, which belongs to an ‘ordinal scale’ (Stevens 1946;
See, Sternberg and Pickren 2019, pp. 100–104): we can compare similarity values, i.e., given two
pairs of items, (A,B) and (C,D), we can establish which relation is true, either S(A,B) ≤ S(C,D)
or S(C,D) ≤ S(A,B). Consequently, we can rank items with respect to similarity: the higher
the value the higher the similarity. For example, if we had S(A,B) ≤ S(A,D) ≤ S(A,C), we
could say that C is the most similar item to A, D is less similar, and B is the least similar item.

Unfortunately, other operations, such as adding or multiplying similarities, are not necessary
meaningful. For instance, in Tversky and Hutchinson (1986, Table 1) S(orange, grapefruit) =
2.69 and S(orange, coconut) = 1.33 in the 5-point scale 0 = unrelated, 4 = highly related.
Based in these values, it makes, however, no sense to affirm that an orange is twice similar to a
grapefruit that it is to a coconut.

In any case, the similarity function, or simply, the ‘similarity ’, is arguably the most intuitive
tool to model experimental results on categorization—as Murphy and Medin (1985, p. 291) put
it: “Perhaps the most powerful explanation of conceptual coherence is that objects, events, or
entities form a concept because they are similar to one another”. Indeed, the main types of
categorization theories, i.e., classical, prototype, and exemplar model, can be modelled using
a similarity function (Medin and Heit 1999, Sect. I.B). Even, not only models, but most
different sorts of categories, including ad-hoc categories (Barsalou 1983), seem to possess an
intern similarity function. In fact, E. J. Wisniewski (2002, pp. 467f.) finds in his survey only
theories of concept structure and models of concept acquisition and categorization that are
grounded in the similarity. About 20 years before, Murphy and Medin (1985) came to the same
conclusion: all accounts on categorization “rely directly or indirectly on the notion of similarity”.
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Figure 3.2: Schema of computing the similarity of two items A and B. The dashed lines
indicate controverted or rather ambiguous steps (Sect. 3.4.4).

It seems, thus, that similarity as a ground of categorization is a thread throughout modern
research history.

Being similarity so prominent in categorization for the last decades, we might be astounded
at this remark of pioneer F. Attneave (1950) (emphasis added):

The question ‘What makes things seem alike or seem different?’ is one so funda-
mental to psychology that very few psychologists have been naïve enough to ask it.
We are aware of only two papers devoted to a consideration of the problem[.]

From which we also draw a lesson: how decisive is, in science, to concretely define, measure, or
falsifiably model the key concepts. We can retrospectively affirm that, in psychology, the striving
to model similarity has unlocked a wealth of insight.

Concerning our motion categorizations, they possess also similarity functions (Sect. 6.1.3);
such functions arise effortless from the metric structure of the categorizations, as shown in
Metric models. Because of the explanatory power of similarity, its pervasiveness, and success
in categorization modelling (See Murphy 2002, p. 481), we consider the presence of a similarity
function a strength of our model.

3.4.1 Modelling and Computing Similarity

Similarity, as an ordered relation or a graded value, has been proved to have experimental
significance. Subjects understand and perform tasks that consist on assessing the similarity of
items (See tasks, Dunn-Rankin et al. 2004, pp. 27–34). The most performed similarity assessment
tasks are following: a) choose the most similar item to a reference item (e.g., Tversky and Gati
1978), b) ‘rank ’ items according to similarity to a reference item, i.e., order them without giving
a numerical similarity value; c) numerically ‘rate’ the similarity between items (e.g., Gati and
Tversky 1984).
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We apply such insights about similarity in this research: we experimentally check whether
our story-based motion categorizations are cognitively plausible (Ch. 9). To that end, we make
the subjects choose the more similar of two items compared to a reference item. Subsequently, in
order to evaluate the data, we transform the pairwise similarity choices into a similarity rating
(Sect. 9.2.1). Indeed, one can mathematically transform the similarity assessments between its
types: pairwise comparisons, ordinal and numerical ranking.

Featural Similarity Once we have experimental similarities, one of the greatest, and most
hotly debated challenges is to model the experimental similarity assessments by means of a
similarity function S(A,B) (see more in Sect. 3.4.2). The purpose is that, given two items,
A and B, we theoretically reproduce their experimental similarity values , i.e., their ordering
or the rating, by means of the similarity function. The first step towards the computation of
similarity is, almost inescapably, the extraction of relevant features from items 1. Indeed, feature
extraction is one of the earliest processes common to all models of categorization and concept
acquisition (See, E. J. Wisniewski 2002, pp. 474f.); actually, it is a basic assumption of cognitive
psychology that items in the world can be described using features (E. Wisniewski 2001, p. 5433).
Surely because features seem a transparent, readily accessible property of items (e.g., Eleanor.
Rosch 1978, but see Sect. 3.4.4). Based on the extracted features, one can compute a value for
the similarity (See Fig. 3.2).

We encounter, however, two distinct types of features that we cannot process with the same
methods: nominal and ordinal features:

• ‘Nominal features’ (e.g., eye colour) cannot be assigned a meaningful value. For example,
the eye colour may have following values (brown, blue, green); a numerical assignment of
values, e.g., (brown = 1, blue = 2, green = 3) is as valid as any other permutation, e.g.,
(brown = 3, blue = 1, green = 2); the value works only as identifier, but has no meaning
in itself. A particular case are the ‘binary features’ (e.g., canfly vs. cannotfly); they have
only boolean values.

• ‘Ordinal features’ (e.g., beauty, brightness) can be ranked, i.e., ordered, (e.g., the sun,
a headlight , a candle, and a glowingcoal can be ranked according to brightness). An
important particular case are the ‘cardinal features’, they are expressed numerically (e.g.,
temperature, length), so they allow arithmetical operations.

Interestingly, ordinal features can often be turned into cardinal by rating them against a
maximum and minimum value. For instance, considering sun the maximum brightness, value
1.0, and pitch black , the minimum brightness, value 0.0, we can cardinally rate brightness:
sun = 1.0, headlight = 0.3, candle = 0.1, glowing coal = 0.01). As a consequence, we can
eventually treat ordinal features as cardinal ones (See, Bartoshuk 2019, pp. 103f.).

Summarizing, cardinal features (eventually also ordinal features) use operations that are
incompatible with the nominal features. This has rather unpleasant consequences for the com-
putation of similarity: We must use different mathematical operations to compute the similarity
depending on the feature types. Cardinal features can be represented in a coordinate space, and,
consequently, their similarities can be built on metric distances; categorization models based on
such properties are called ‘geometric’ (Tversky 1977), ‘spatial ’ (Hahn and Heit 2001), or ‘multi-
dimensional scaling ’ (Kruschke 2001) models—we call them ‘metric’ models. Nominal features,

1Note that the ‘features’ are used to define the similarity by which ‘categories’, i.e., ‘concepts’, are defined.

Thus, we use the concept ‘feature’ to define the concept ‘concept’. We point here at the risk of circular definition

or infinite regress, when trying to define ‘concept’ and ‘feature’. As example, we may ask, “Are also the ‘features’

used to define the concept ‘feature’?”.
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however, allow only set operations; consequently, their similarities are based on union A ∪ B,
intersection A ∩B, and set difference A \B.

All considered, we might question how well-founded is comparing similarities obtained from
so different models (Fig. 3.2). In practice, we find examples where both models are efficaciously
combined (e.g., Volkert, Müller, and Kirsch 2018).

A. Metric models

‘Metric models’ (also called ‘geometric models’ (Tversky and Gati 1982) or, as a superordinate
concept, ‘dimensional models’ (Tversky and Krantz 1970; E. E. Smith and Medin 1981, pp.
102ff.)) base on two assumptions. First, an item—or rather, its relevant features—can be repre-
sented as a point in a real coordinate space, commonly called ‘psychological space’ (e.g., Nosofsky
2011; Tversky and Hutchinson 1986) and ‘feature space’ (e.g., Rogers and McClelland 2011, pp.
112f., Tversky 1977). For example, in order to represent a beep sound, we only need two fea-
tures: pitch and volume; accordingly, we can represent it in a two-dimensional coordinate space.
Second, we assume that the dissimilarity between items is strictly increasing with respect to the
metric distance d(A,B) between such featural points.

Thus, in practice, we have the following requirements for metric models: features must be
cardinal, and we have to choose a distance between features, a ‘featural distance’, widely known
as ‘psychological distance’. The common distances used in categorization experiments are gener-
alized Minkowski metrics (Eq. (3.1)) (Kruschke 2001), not only because of their computational
practicability (e.g., Ashby 1992), but also for the convenient mathematical psychological prop-
erties (Beals, Krantz, and Tversky 1968; see, Glazer and Nakamoto 1991).

d(A,B) = c

[

N
∑

i

wi|ai − bi|
p

]1/p

p ≥ 1 (3.1)

The Minkowski distance—also known as Lp or power distance—measures the distance be-
tween, {ai}, the features of item A, and {bi}, the features of item B. The weights wi, ‘attention
weights’, may refer to changes in the attention to different features, and c is a general sensitivity
parameter (Nosofsky 1992a, p. 366f.).

We further require a function, g(x), that relates the psychological distance to the similarity:

S(A,B) = g(d(A,B)) (3.2)

Such function g(x) is called ‘judgement function’ (e.g., Ennis 1992). Since dissimilarity is
strictly increasing with the psychological distance d, the judgement function must be strictly
decreasing (e.g., 1

1+x , e−x). Remarkably, in human and even animal psychology, the featural
distance d(A,B) relates to the judged similarity S(A,B) by means of an exponential decay
g(x) = e−xα

, α > 0: the ‘universal law of generalization’ (Shepard 1987; compare with 1957;
e.g., Perrin 1992, p. 124). Accordingly, we obtain the following closed formula for similarity:

S(A,B) = e
−d

α

(A,B)
α > 0 (3.3)

Metric models have successfully fitted wide range of data, moreover, they have proved to
distinguish ‘integral dimensions’ (types of features that can only exist simultaneously, such as the
pitch and volume of a sound, or, the hue and brightness of a colour) from ‘separable dimensions’
(those that can exist independently, e.g., colour brightness and sound volume) through the value
of p, i.e., through the norm type (see Eq. (3.3)). Separable dimensions fit better p = 1, city-block
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distance, while integral dimensions fit better p = 2, i.e., Euclidean metric (Hahn and Chater 1997,
pp. 55–57).

Another interesting property of the metric models, is that they reproduce a similarity rule
that is frequently used in modelling: the ‘multiplicative similarity ’ rule (Nosofsky 1992b; see
also, E. E. Smith and Medin 1981, pp. 154–156). This rule states that the overall similarity,
S(A,B), can be computed as the product of the similarity for each feature i, s(ai, bi) (e.g.,
Nosofsky 1986). This is the case, when the exponent α in Equation (3.3) equals the power p in
the distance d(A,B) (Eq. (3.1)) then

S(A,B)

Eq. (3.1)

Eq. (3.3)
= e−cα[

∑
N
i

wi|ai−bi|
p]

α=p

��
1

p
α

=

N
∏

i

e
−d

α

(ai,bi)
Eq. (3.3)

=

N
∏

i

s(ai, bi)

Nonetheless, metric models have their weaknesses (e.g., Maddox 1992, pp. 162–165; Hahn
and Chater 1997, pp. 57–60). Amongst others, the term psychological space, which is the ground
concept of the metric models, is, at most, vaguely defined; and the mathematical properties of
the metric distances are incompatible with numerous experimental psychological results.

Psychological Space It is an abundantly used concept with a long tradition in psychology—at
least from F. Attneave (1950)—(e.g., Shepard 1957; Nosofsky 1986; Pothos and Wills 2011b).
It is also called ‘semantic space’ (Rips et al. 1973), or ‘mental space’ (E. J. Wisniewski 2002,
p. 478). Briefly, it is the space where the representation of stimuli can more naturally reproduce
the experimental similarity assessments using a certain dissimilarity function called psychological
distance—metric models are a kind of psychological spaces.

Unfortunately, this concept is rather indefinite in psychology, as U. Hahn and N. Chater
(1997, p. 91) state:

[T]he notion of psychological space is not particularly well defined: there are no
commitments as to what exactly this space is, whether it is a long-term representation
or not, nor whether it is explicitly similarity that is represented here or whether the
representation of similarity it generates is merely a by-product of a general scheme
for the representation of objects.

We illustrate the indefiniteness of the concept ‘psychological space’ by means of two examples.
In his pioneer work, Attneave (1950) had subjects compare parallelograms that differed in tilt
(the angle between the base and the other side) and in side length obtaining dissimilarities
between the stimuli. He noticed that representing the stimuli, i.e., the parallelograms, as points
in a two-dimensional space with coordinates area and tilt angle resulted in a better analogy
between distance and dissimilarity than using side length instead of area. Again, he noticed that
such analogy could be further improved by using the city-block metric to measure the distance
between stimuli. In sum, Attneave concluded that subjects compared the parallelograms in a
two-dimensional psychological space consisting of area and tilt angle as coordinates, in which
they used the city-block metric, as a psychological distance.

In the second example, Rips, Shoben, and Smith (1973) measured the paired dissimilarities
between certain mammals (e.g., bear, lion, horse, sheep), subsequently they fit the dissimilarities
to the Euclidean distances of points in a two-dimensional space using multidimensional scaling.
In the best fit, the authors argue that the horizontal axis corresponds to size, animals to the
left (e.g., bear, deer, horse) are larger than those to the right (e.g., dog, rabbit, mouse); and
the vertical axis corresponds to predacy, animals to the bottom are wilder (e.g., lion, cat, bear),
while to the top are farm animals (e.g., goat, pig, ship) (similar results with animals, López et al.
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1997; Shoben 1976). In short, Rips et al. consider that subjects mentally represent mammals
in a two-dimensional space (the psychological space) with the features size and predacy, as
coordinates, and Euclidean metric as distance (the psychological distance).

These examples epitomize how psychological space is rather a pragmatic construct than an
empirical reality: it is the coordinates space in which items are featurally represented, and it
is endowed with the distance that most accurately reproduces the experimental dissimilarity
judgements. The coordinates used are sometimes precise measurable quantities (such as tilt and
area in Attneave (1950)), but often they are also abstract values obtained by numerical analysis,
e.g., multidimensional scaling, that can only be intuitively and approximatively interpreted (such
as predacy and size in Rips et al. (1973))—sometimes even lacking intuitive interpretation.

Accordingly, what motivates the use of psychological spaces is not a solid cognitive theory,
but rather the researchers’ necessity for a featural explanation of the similarity. In the words of
Rips, Shoben, and Smith (ibid., pp. 13, 14) (emphasis added):

While we have argued that [dissimilarity] distance can be conceptualized as [a
psychological] distance, this translation of constructs has not led to a gain in pre-
dictability. [. . .] [W]e have retained this construct because it seemed to capture
certain conceptual relations between the noun pairs [.]

Violation of Distance Axioms One basic component of metric spaces is the distance d,
which is directly related to the dissimilarity D(A,B) between items. Notably, d has sharp
defined mathematical properties, i.e., the distance axioms (e.g., Carothers 2000, p. 37):

i. self-distance constancy d(A,A) = 0

ii. minimality : d(A,B) ≥ d(A,A),

iii. symmetry : d(A,B) = d(B,A)

iv. triangle inequality : d(A,B) + d(B,C) ≥ d(A,C)

These distance axioms impose constraints on the similarity function, because, in metric models,
similarity is computed from a distance using a strictly decreasing function, g(x) (e.g., Eq. (3.3)).
Each distance axiom above yields its respective similarity constraint below marked with the same
item label but capitalized.

I. self-similarity constancy S(A,A) = S(B,B) ∀A,B

II. maximality S(A,A) ≥ S(A,B)

III. symmetry S(A,B) = S(B,A)

IV. Using the most general judgement function g(x), no constraint can be derived from the
triangle inequality (item iv.). However, making assumptions on the form of g(x), we can
obtain constraints on experimental similarity values.

a. If g(x) = e−xα

with 0 ≤ α ≤ 1, the triangle inequality for distances becomes a
multiplicative inequality for similarities: S(A,C) ≥ S(A,B) S(B,C) (Prop. A.5.1)

b. If the distance d is a Minkowski metric (Eq. (3.1)), then a tighter constraint for the
distances, the ‘corner inequality ’, can be derived from the triangle inequality (Tversky
and Gati 1982). The corner inequality has a powerful practical purpose: we can use
it to rebut the triangle inequality for the psychological distance using experimental
values of the psychological distance without the need to specify or know the function
g(x).
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It is experimentally verified that similarity properties I. and III. do not always hold (Tversky 1977;
Tversky and Gati 1978), the triangle inequality has also been rebutted experimentally by Tversky
and Gati (1982) under the conditions in IV.b.. Briefly, it seems that the metric assumption, i.e.,
that dissimilarity is strictly increasing related to a distance, is only an acceptable approximation,
but not a faithful psychological model. For that reasons, the metric models have been modified
to accommodate the discrepancies, mainly extending the distance with asymmetrical terms (e.g.,
Krumhansl 1978; Appelman and Mayzner 1982), but often opening more questions than solving
them (see critique, Corter 1987; 1988; Krumhansl 1988).

Finally, Nosofsky (1991a) sets a milestone in the attempts to create valid modified dis-
tances, as he notes that various modifications to the metric models (e.g., distance-density model,
Krumhansl 1978; hybrid tree-euclidean Carroll 1976)—and even some nominal models (e.g., the
additive contrast model, Tversky 1977)—are particular cases of a general model due to E. W.
Holman (1979), where

S(A,B) = F [s(A,B) + r(A) + c(B)]

F is a strictly increasing function, s(A,B) is a symmetric similarity function, r(A) and c(B)
are bias of the particular items. The key point is that the additive extra terms, r and c, account
for the asymmetry and violations of self-similarity.

Summarizing, a distance-based similarity is not an ideal psychological model, though in most
cases a very good approximation, as Tversky and Gati (1978) explain:

Although the violations of [similarity properties that base on distance] are sta-
tistically significant and experimentally reliable [. . .], the effects are relatively small.
Consequently, [such properties] may provide good first approximations to similarity
data. [Multidimensional] [s]caling models that are based on these assumptions, there-
fore, should not be rejected off-hand. A Euclidean map may provide a very useful
and parsimonious description of complex data, even though its underlying assump-
tions (e.g., symmetry, or the triangle inequality) may be incorrect. At the same time,
one should not treat such a representation, useful as it might be, as an adequate
psychological theory of similarity.

B. Nominal models

1

2 3

4
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6

Figure 3.3: Features (1–7 )
of a seven-segmented nu-
meral according to Keren
and Baggen (ibid.)

When features are nominal or binary values, the items are
described as a set of features. As example, we show how
Keren and Baggen (ibid.) described seven-segmented digits
(the numbers appearing in digital displays) using their seg-
ments as features. They labelled each segment with an integer
value, as shown in Figure 3.3. Thus, each digit was a set of
such labels. For instance, the digit 1 = {3 , 6} and the digit
6 = {1 , 2 , 5 , 7 , 6 , 4}.

Since, in nominal models, items are described as sets of fea-
tures, we can only apply set operations for whatsoever compu-
tation between items, particularly, when computing similarity.
That is, we are restricted to union X ∪ Y , intersection X ∩ Y ,
and set difference X \Y . On this fact bases the most influen-
tial model to compute similarity between items with nominal
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or binary features: A. Tversky’s (1977) ‘contrast model ’. He
postulated certain cogent assumptions for the similarity function, S(A,B), between two items A
and B: matching, monotonicity, independence, invariance, and solvability. Because of relevance
and simplicity, we present only the first two ones.

The matching assumption holds that the similarity of nominal values is only a function of
following set operations, namely A ∩B, A\B, and B\A. That is,

S(A,B) = F (A ∩B, A\B, B\A) (3.4)

It seems perfectly reasonable that the ‘common features’ of both items A and B, i.e., A∩B,
should mainly determine how similar two items are—things are similar inasmuch as they have
commonalities. It seems also reasonable that the features belonging exclusively to an item, i.e.,
the ‘distinctive features’, A\B and B\A, also influence similarity—for example horse and zebra

have countless common features; however, the very distinctive feature of being striped differentiate
unequivocally both concepts. Finally, Tversky excluded the whole features set, i.e., A ∪B, from
the computation of similarity—this decision is disputable, we cannot find convincing arguments
for this exclusion, neither Tversky does in his paper (See Sect. Contrast Model’s Criticism).

The monotonicity assumption holds that the similarity function F in Equation (3.4) is mono-
tone with respect to inclusion in its variables. That is

S(A,B) ≥ S(A,C) ⇐⇒











A ∩B ⊇ A ∩ C

A \B ⊆ A \ C

B \A ⊆ C \A

(3.5a)

(3.5b)

(3.5c)

The inequality is strict whenever any inclusion is proper.

Monotonicity fits also common sense: the more common features, A ∩ B, and the less dis-
tinctive features, A\B, B\A, the more similar the items A and B are.

In conclusion, based on the above mentioned assumptions (matching, monotonicity, indepen-
dence, invariance, and solvability), Tversky proved the main result of the contrast model: it
exists a similarity function, S(A,B), that monotonically matches the results of the experimental
similarity, s(A,B). Furthermore, the similarity function can be expressed as a linear combination
of a non-negative function f(X) on the features sets, which is a measure of the salience of each
features set .

S(A,B) = θf(A ∩B)− αf(A\B)− βf(B\A) θ, α, β ≥ 0 (3.6)

Using this similarity function, without specifying f , Tversky could explain several unintuitive
experimental results of similarity—mainly those challenging the metric models: the violation
of self-similarity constancy, maximality, and symmetry (See Items I. to III.). For example,
from Equation (3.6), we have S(A,A) = θf(A), hence, if θ 6= 0, the self-similarity constancy,
S(A,A) = S(B,B), can be easily violated when f(A) 6= f(B), that is, when the features of
each item have different salience. Likewise, from the equation, we have S(A,B) − S(B,A) =
(α− β) [f(B\A)− f(A\B)], that is, the degree of deviation from symmetry is settled by α− β;
only for α = β is symmetry guaranteed. (See Items i. to ii., i. and ii.)

Despite the appealing simplicity and explanation power of Equation (3.6), note that function
f(X) is quite general: it is a function from the power set of all features, P(A∪B ∪C ∪ . . .), into
R+; for instance, for three items A, B, and C, the domain of f(X) is P(A∪B∪C), which can be
a large set. It has only one restriction (due to Equation (3.5)), it has to be a strictly monotonic
set function, i.e., f(X) < f(Y ) ⇐⇒ X ( Y .
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We find interesting particular cases of f(X) that fulfil the above restriction. For example,
the set of additive functions, i.e., f(X ∪ Y ) = f(X) + f(Y ) whenever X ∩ Y = ∅; which is the
case in most experimental research (e.g. Tversky 1977; Keren and Baggen 1981; but see, Gati
and Tversky 1984, supporting subadditivity)—in that way, f is fully defined by its value on each
single feature, i.e., f({x}) x ∈ X. Another example is any monotonically increasing function,
g(x), of the cardinality |X|, i.e., f(X) = g(|X|) (see, Coletti and Bouchon-Meunier 2019). The
simplest particular case of both mentioned examples is the set cardinality f(X) = |X|, which is
equivalent to consider f additive, and assign value 1 to each feature, i.e., f({x}) = 1 ∀x ∈ X.

C. Contrast Model’s Criticism

As we mentioned above the exclusion of the whole features set, i.e., A∪B, from the computation
of S(A,B) is questionable. Even more, when we find featural similarity measures in the literature
where A ∪ B is used; for example in the similarity measure S(A,B) = f(A∩B)

f(A∪B) (Gregson 1975,
p. 47), already mentioned in 1901 by Jaccard with f(X) = |X| (formally defined, Jaccard 1902).

Interestingly, for the usual case of f(X) being additive, we have that f(X ∪Y ) = f(X ∩Y )+
f(X\Y ) + f(Y \X), which means that, Eq. (3.6) can be rewritten as

S(A,B) = θf(A ∪B) + α′f(X\Y ) + β′f(Y \X) θ ≥ 0

And, thus, in the additive case, A ∪B is actually present in the computation of similarity.

A more elaborated criticism of the contrast model is that it makes a shallow distinction of
the distinctive features. In Equation (3.6) only two groups of distinctive features are considered:
those features belonging exclusively to item A, i.e., A\B, and those belonging exclusively to item
B, i.e., B\A. This distinction fails to capture the contribution of the alignable differences to the
similarity.

‘Alignable differences’ are distinctive features that take the same place in a certain struc-
ture, while ‘non-alignable’ do not. Importantly, the aligned differences have a higher impact on
similarity than non-alignable do (E. J. Wisniewski 2002, p. 499; see also, Hahn and Heit 2001,
p. 13879).

As example, we compare event A. to events B. and C.:

A. a man driving to work on a sunny day

B. a family flying on holiday with their pet

C. a family buying food on a sunny day

The words driving and flying are different features, but they are aligned, because each ex-
presses how the subjects in each event move. On the other hand, the words driving and buying,
though being both verbs, are not aligned compared to driving and flying, since they express
very different types of actions. Because of the aligned different actions, subjects may find sen-
tence A. more similar to B. than to C., even though A. has exactly the feature on a sunny day

with C. in common. Such alignment effects would contradict the contrast model.

3.4.2 Category Membership: Prototype, Exemplar, and Clustering

One of the principal applications of similarity is to decide category membership. But even as-
suming we agree in the form of the similarity function we use, S(A,B), we still can work out a
myriad of methods to decide category membership based on that S(A,B). Anyway, two methods
(or models) have achieved overriding prominence: the prototype and the exemplar model.
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Prototype Model The ‘prototype model ’, also called ‘probabilistic model ’ (E. E. Smith and
Medin 1981), assumes that a category Mi has a most typical representative item: the ‘prototype’,
we call it Pi—caveat, usually the prototype does not exist as a real-world item, but it is computed
as the modal or average value of the items’ features in a category (See lucid intro., Minda and
J. D. Smith 2011). With this assumption, we define a prototype Pi for each category Mi, and
we obtain the category membership of an item A using the similarity of A to each prototype
Pi. For example, a possible method bases on a basic requirement of the theory: amongst all
prototypes, an item A has the highest similarity to the prototype Pi of its category M(A) (ibid.,
p. 59; Murphy 2002, p. 96):

M(A) = Mi such that S(A,Pi) = max
j=1...n

{S(A,Pj)} (3.7)

Although Equation (3.7) can coarsely model a categorization rule, it has two drawbacks.
First, even when the similarities of one item A to two prototypes are comparable or equal, we
may only decide for one of both categories: it seems unfit to affirm that such a boundary item, A,
belongs only to one of the two categories. Second, it misses the gradation effect of categorization,
namely, that humans rarely choose category membership with an absolute certainty: they assign
membership according to a certain probability. For that reason, the prototype theory resorts to
probabilistic formulae; these are based in Shepard’s (1957) and Luce’s (1963) stimulus-response
choice model (Minda and J. D. Smith 2011). In such formulae (Eq. (3.8)), similarity remains a
central constituent: it is computed between an item A and each prototype.

P (Mi|A) =
S(A,Pi)

∑

j=1...n S(A,Pj)
(3.8)

Exemplar Model The ‘exemplar model, of categoriz.’—originally known as ‘context model ’
(Medin and Schaffer 1978), and tweaked as ‘generalized context model ’ (Nosofsky 1986)—computes
the probability of categorization using the same pattern of the stimulus-response choice model.
But, in this case, instead of the similarity to the prototypes Pi, the model uses the similarity to
each known ‘exemplar ’ I of a category Mi, i.e., {I | I ∈ Mi} (2011).

P (Mi|A) =

∑

I∈Mi
S(A, I)

∑

j=1...n

∑

I∈Mj
S(A, I)

(3.9)

Note that similarity, in its own, does not determine category membership in any categorization
model, but helps us to define it. On the one hand, doubtless, similarity is the most fundamental
parameter to decide category membership. On the other hand, we have mostly to resort to
intuition both to define similarity and a categorization model, since they are so flexible that
otherwise they are overly undefined.

A further limitation for the prototype and exemplar models—as seen in Equations (3.8)
and (3.9)—is that they do not deal with the ‘complementary category ’: the item A can only
belong to the presented n possible categories {M1, . . . ,Mn}. But, how can we compute the
probability that the item A does not belong to any of those categories? For example, if we
consider only the categories cat, dog, and horse, we can never classify an item as fox.

The problem of the complementary category boils down to the disjunctive question ‘whether
an item A belongs to a certain category M or not’. To answer such question, we are left with one
single option: to intuitively choose a threshold value (fuzzy or crisp) on the similarity between
the item A and the category prototype or the category exemplars: above this threshold, we tend
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to accept category membership of the item, below it, we tend to reject it (See, E. J. Wisniewski
2002, p. 470; see also, Hampton 1995).

Finally, a more elaborated similarity-based categorization method is ‘clustering ’ (McDonnell
and Gureckis 2011). A cluster model, like prototype and exemplar models, is founded on similar-
ity to assign objects to clusters (i.e., categorize) or create new clusters (create new categories).
The great assets in clustering are the flexibility in categorization—which allows combination
of prototype and exemplar effects—and the possibility that the model proactively creates new
categories (which avoids the problem of the complementary category). Even so, the process of
category creation is tuned by, at least, one parameter. Thus, once again, our intuition guides
the process of computational category formation.

A. The controversy: prototype vs. exemplar model

One of the most lively and long-standing controversies in categorization, or psychology of concepts
is which model of categorization fits better human cognition: prototype or exemplar model—This
debate began at the end of the 70’s and is still active. Due to its relevance, I summarize key
facts that lead to an answer (See, Murphy 2002, pp. 95–114; Minda and J. D. Smith 2011, Sect.
Motivation).

At first glance, in the 80’s and 90’s, numerous experiments showed a higher validity of the ex-
emplar than of the prototype model (See inexhaustive list, Nosofsky 1992b, p. 149)—Experiments
that, admittedly, were mostly conducted by D. L. Medin (the founder of the exemplar theory)
and his colleagues, including R. M. Nosofsky (See acknowledgments, 1984), the founder of an
extended version of the example theory, the ‘generalized context model ’ (2011). Yet, such ex-
periments relied on categories with a remarkable unnatural structure (precisely opposite to the
natural categories): lower within-category and higher between-category similarity, minuscule
number of features (usually four), binary features (i.e., present or absent), categories of reduced
size. Most remarkably, these characteristics, as a whole, blatantly favour the memorization of
the single exemplars by the subjects (Blair and Homa 2003), as in the exemplar model, instead
of synthesizing a summary representation category, as in the prototype model.

In the above mentioned experiments, a final blow deceptively enhanced the bias towards the
exemplar model: the data aggregation. J. D. Smith et al. (1997, pp. 669f.) proved that fitting
the group data instead of fitting each subject individually favours the exemplar model. They
simulated groups with half of subjects categorizing according to prototypes and the other half
according to exemplars, and the aggregated data showed an overall best fit of the exemplar
model.

When we correct for the above mentioned experimental bias, we find compelling evidence
that prototypical categorization is far more prevailing than exemplar in humans—also in animals
(2008). For example, the default strategy for categorization in humans seems to be prototypical,
that is, the subjects begin categorization experiments using prototypes and change strategy in
case the categorization feedback shows unsatisfactory results; but this change occurs only after
numerous trials (J. D. Smith and Minda 1998, p. 1419f.), that is, subjects retain a deficient
prototypical categorization even when they repeatedly received negative feed-back on exception
items (J. D. Smith et al. 1997, p. 666).

Another issue that severely contradicts exemplar model and rather underpins the prototype
theory is learning performance. Exemplar models do not significantly predict differences in
learning performance for categories with different geometry; that is, in exemplar theory, although
a category had a convoluted domain (e.g., with disconnected or highly non-convex regions) the
learning performance should be similar to a category with a simple domain (e.g., with a single
straight boundary). However, it is well established that simple domains, e.g., ‘linearly separable’,
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(See def. Russell and Norvig 2014d), are much easier to learn than more complicated ones, e.g.,
‘non-linearly separable’ (J. D. Smith et al. 1997, p. 679; Ashby and Maddox 2005, p. 159). In
that sense, the prototype theory shows a greater experimental validity: it reproduces phenomena
that subjects exhibit in the category learning process. Certainly, if we allow only one prototype
per category, prototype theory can only fully learn categories that are linearly separable: the
exceptions remain unlearned. But such exceptions can be added by direct memorization, if we
augment the prototype model into the ‘mixture model ’ (J. D. Smith and Minda 2000, p. 12)—
whose performance is better than exemplar model (ibid., Tab. 2)

In conclusion, we deem prototypical categorization one of the most ready categorization
methods in human cognition, which is obviously tailored to process natural basic categories (those
with many members, features, and usually sharp differentiation). The extensive memorization of
exemplars—thus, eventually, the exemplar model—occurs only in the very odd cases when the
abstraction of a prototype is burdensome, which is not the case in the vast majority of natural
environments (ibid.; 1998; but see reply, Nosofsky 2000).

3.4.3 Backwards: From Dissimilarity to Features

Given a certain distribution of dissimilarity values between items, we can try to elucidate the
‘diagnostic features’: those features who decisively determine the categorization rule (Goldstone
1996, p. 611). To that end, we search for a metric space in which each item must be represented
as a point, and the distances between them must fit the given dissimilarities—such technique is
called ‘multidimensional scaling ’ (Dunn-Rankin et al. 2004), abbreviated as ‘MDS ’.

The coordinates of the points (i.e., the items) in such metric space can be assimilated to
continuous features. That is, the features arise from the ‘dimensionalization’ of scalar dissim-
ilarity results. For example, Rips et al. (1973) obtain the MDS of experimental dissimilarities
between animals as a two-dimensional space with the Euclidean distance; the two coordinates
are interpreted as size and predacity.

MDS has, regrettably, two main downsides. First, we cannot unequivocally determine the
dimensionality of our solution space. There is no optimal number of dimensions: we can always
reduce the fitting error by increasing the dimensionality—It is obvious. Since any dimensional
space can be perfectly embedded in a space of higher dimensionality, the fitting error must be
lower or, at most, equal for higher dimensions. Although, in concrete cases, some methods
provide a criterion to choose the dimensionality (e.g., M. D. Lee 2001), truth is that, ultimately,
lower dimensions are chosen (2 or 3) because the data can be better visualized and the dimensions
more easily interpreted. For example, Rips et al. (1973, p. 11) acknowledge that they cannot
interpret as features the coordinates of higher dimensions, even though for higher dimensions
they obtain a better data fitting:

[T]he correlations in question can eventually be made significant by further in-
creases in dimensionality, but this seemed a pointless endeavor since solutions for the
[...] mammals spaces in 4 and 5 dimensions already resulted in relatively uninter-
pretable dimensions.

Additionally, and connected to the first, the interpretation of the dimensions, as valid intel-
ligible or perceivable features, is not always straightforward nor clear even in the lowest dimen-
sionalities (See Sect. 3.4.1.A).

Altogether, MDS solutions are highly dependent in the judgement of the researcher. Never-
theless, we concede it is a powerful tool for data reduction: we represent n(n−1)

2 scalar distances
as n · d scalar components, where n are the number of items and d the number of dimension.
Thus, as long as d < n−1

2 , we effectively reduce data size. Moreover, if the solution has 2 or



3.4. [DIS-]SIMILARITY 53

3 dimensions, it can be humanly interpreted—as we said above. In other words, we obtain a
more parsimonious model than the dissimilarity matrix (See also, Irwing et al. 2018), even if the
cognitive validity of the transformation might be disputable.

3.4.4 Objections to Similarity

Despite all their successes, similarity models have their downside: they have many parameters
that must be determined, and those parameters vary depending on external variables, such as
the stimulus context, or the categorization task (See, Tversky 1977). Actually, we could argue
that a similarity function has too many parameters, and, even worse, we cannot determine all
of them systematically. Therefore, researchers restrict manually the parameters considered for
similarity, and, furthermore, they fix the external variables, e.g., the categorization context.

Even in the most simplified similarity models, we must keep following elementary parameters:
the items features, and, also, their associated weights, which materialize as the attention weights
wi, in the metric models (Nosofsky 1992a, p. 367), and as the salience function f , in the nominal
models—Such parameters are ubiquitous. Even if we restrict ourselves only to such parameters
alone, to determine the similarity between objects seems a daunting task, if not a lost battle.

For example, if we want to determine the similarity between apple, olive, and soccer

ball, we first should determine how many features are available. Unfortunately, there are,
virtually, infinity features available. Let us see: we could consider size, colour, form. . . ; and also
consider whether it rots, whether it has seeds, who/what produces it . . . ; and even more features:
whether it is edible, how good we can play soccer with it, whether it floats on water . . . A next
step on similarity-based categorization is to choose the features, or rather its relevance, i.e., the
weight of each feature (the irrelevant features have zero weight). Obviously, for practical reasons,
researchers choose a finite number of features.

Now we can show, how the weight, or, equivalently, the choice of features can yield complete
different similarity results. If we consider following features: who/what produces it, whether it
has seeds, and whether it is edible; apple is much similar to olive than it is to soccer ball.
But, if we consider following features: form (apple is more spherical than olive), whether it
floats on water (apple floats olive does not), and how good we can play soccer with it (apple
can be better kicked than olive); then apple is more similar to soccer ball than it is to olive.

Hence, the necessity of manually choosing from a set of infinity features and determining its
weights makes similarity flexible enough to produce any possible result and wipes away any trace
of falsifiability (Popper 1935).

The weak, if any, explanatory power of similarity was at fiercest criticized by Goodman
(1972a, p. 437):

Similarity, I submit, is insidious [. . .], ever ready to solve philosophical problems
and overcome obstacles, is a pretender, an impostor, a quack. It has, indeed, its
place and its uses, but is more often found where it does not belong, professing
powers it does not possess. [. . .] [O]nly recently have I come to realize how often I
have encountered this false friend and had to undo his work.

In sum, though, in the literature, we find similarity functions everywhere yielding good cate-
gorization results (e.g., Nosofsky 1991b; Volkert et al. 2018; 2019), similarity alone cannot ac-
count for categorization—researchers have to choose the computation model (e.g., metric spaces,
set-theoretic functions, ultrametric trees), its appropriate similarity or distance function (e.g.,
euclidean or city-block metric), and the relevant features (e.g., size, colour, predacy). Thus,
similarity has a limited explanation power, since the researchers’ choices play a dominant role.
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In other words, similarity help us to express categorization in terms of models, parameters, and
features, but sadly it cannot explain why certain choices are made to the detriment of others.

3.5 Boundary models

feature ϕ1

feature ϕ2

Figure 3.4: Three categories:
square, triangle, and circle. The
filled figures mark the prototypes, the
unfilled figures mark the exemplars,
and the lines mark the boundaries
between categories.

‘Boundary models’ are, in a sense, a case of metric
models. Items are likewise represented as points in a
featural metric space, the psychological space. How-
ever, they differ from the traditional metric models,
i.e., prototype and exemplar models, in how categories
are represented: boundary models represent a cate-
gory by means of its borders rather than its mem-
bers, as we see in Figure 3.4. Note that since bound-
ary models are metric spaces, they can be endowed
with a similarity function—this enriches the model
with the expected boundary fuzziness and member-
ship gradation of natural categories.

To a great extent, the three category models are
formally equivalent (boundary vs. prototype, Gold-
stone et al. 2012, p. 616; boundary vs. exemplar,
Shanks 2001, p. 2492) and each has its representa-
tional advantages. Nonetheless, we underscore the
virtues of the boundary models, since the story-based
categorizations are constructed as such.

First of all, the boundary models allow a more
immediate decision making : they define the border between categories, and, consequently, the
computation of category membership is straightforward. In fact, boundary models can be also
seen as a particular case of classical or rule-based models (Shanks 2001, p. 2492): a sharp border
works as a logical rule to decide for category membership.

Most importantly, we argue that boundary models are not only a formal device to define cate-
gories using their borders—as opposed to using, for example, their prototypes or exemplars—but
boundary models are the most natural approach for dealing with certain types of categories, no-
tably, those generated by ‘conceptually meaningful borders’; that is, when the borders between
categories are also categories. This is the case of geometric concepts, such as parallelism, per-
pendicularity, etc.

In this work, we deal with motion categorizations that originate from spatial categoriza-
tions; for that reason, geometric concepts are pervasive. Accordingly, our motion categories
are naturally defined as boundary models, and, moreover, the borders between motion categories
constitute also new categories. For that reason we further illustrate boundary models and borders
below.

An application of boundary model

We take the concept skew into consideration. Is this concept more naturally defined through
a prototype or through a border? According to the Oxford English Dictionary, skew means
“having an oblique direction or position, turning to one side, slanting, squint”. This definition
uses borders, i.e., paraphrasing, skew means “having angle between 0° and 90°”. If we attempt to
define skew by means of a prototype, then we come short, as we next argue.
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We assume that the prototype of skew is the middle point, i.e., 45°, of the categorical region,
the interval (0° 90°). This assumption relies on the key property of central tendency : the most
typical items are those most similar to the average values of the category members (Sect. 3.3.1).

Thus, a prototypical definition of skew could be verbalized as “having a direction similar
to an angle of 45°”. It seems, though, that such a prototypical definition is equivocal, because
it contradicts the family resemblance principles. For example, the prototype of parallel is,
doubtless, 0°, and, given that 10° is more similar to 0° than to 45° (building the similarity
on the difference of degrees), we conclude that 10° should be rather categorized as parallel

than skew—That seems not to be the case. Alternatively, we check, whether 45° fulfils the
typicality properties of a prototype, i.e., whether it is classified as more “typically skew ” than
any other angle: again, the result is unclear. Is it a 45° skewer than, for example, a 10° angle?
Geometrically, 45°, though undoubtedly oblique, has a sense of geometric stability that we
cannot so readily reconcile with the “slanting” or “squint” belonging to skew. This is not the case
of a 10° angle: we can more directly label it oblique, slant, and squint than 45°.

Summarizing, the skew seems to be most naturally modelled by means of boundaries. Additionally—
as we claimed for the boundary models—the category borders are conceptually meaningful; for
example, the borders of skew are 0°, the concept parallel, and 90°, the concept perpendicular.

3.5.1 Meaningful borders

We are persuaded that ‘meaningful borders’ is the distinctive mark of the boundary models, as
we here argue. In any psychological space, categories have boundaries which can be both math-
ematically sharpened or blurred at will—This is also the case for the prototypical or exemplar
models. However, for both the prototypical and exemplar models, the boundaries are cognitively
irrelevant regions of the psychological space.

To illustrate, we consider the categorical space of fruit, which fits in the prototype model.
The border between orange and grapefruit does not correspond to any meaningful category:
We can neither easily imagine how the fruit at the border between orange and grapefruit look
like nor call such border with a specific term. In contrast, we can easily visualize the borders
between the concepts right and left; and we have terms for it: these are the concepts ‘front’
(the border ahead) and ‘back’ (the border behind) when we consider an oriented entity, such as
a human.

Note that the borders of categories have a lower dimension than the categories themselves.
Thus, even when such borders are meaningful and form new categories, they are distinguished
from the original categories by their dimensionality. For example, on the plane, right and
left are half-planes (i.e., two-dimensional), and the borders front and back are a lines (i.e.,
one-dimensional).

We can recursively find the borders of border categories, and they are again meaningful. For
example, the border categories front and back (both one-dimensional) have a border, which is
the origin or centre (zero-dimensional), that is, the very location of an entity.

Apparently, when we claim that, in boundary models, the borders constitute categories related
to meaningful concepts, we contradict the conclusive evidence that category boundaries are fuzzy
transition regions (See Section 3.3). But the solution to this apparent contradiction lies on
considering the transition between the categories of different dimensionality. We saw above the
two-dimensional categories right and left separated by the one-dimensional category front.
In that case, there is indeed a fuzzy border between the categories—as we should expect—though
not between left and right, but rather between left and front, or between right and front.
Certain positions cannot be exclusively categorized as front or right, but ‘rather front’ or
‘extremely right’, which confirms both fuzziness and gradation. The key is that fuzziness and
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gradation appear not directly between the two-dimensional categories (i.e., right and left),
but between the two-dimensional categories and its one-dimensional border (i.e., front).

3.6 Between-Category Structure: Hierarchical Taxonomy

Similarity, as we have seen, provides essentially knowledge about the within-category (i.e., inner)
structure of categories—it relates pairs of category items. In this section, we want to take a look
at the between-category (i.e., intercategory) structure.

It is widely accepted that people organize categories as a hierarchical taxonomy (Murphy and
Lassaline 1997, p. 96; E. J. Wisniewski 2002, pp. 506f.). A ‘hierarchical taxonomy ’ is a structure
whose elements (e.g., the categories) are related by inclusion—We will use the simplified term
‘taxonomy ’ as a synonym, because we only deal with hierarchical ones. We can refer to the
inclusion relation in a taxonomy as the ‘is-a’ relation (Collins and Quillian 1969), e.g., ‘apple is
a fruit’ means that each object belonging to the category apple belongs also to the category
fruit. An example of everyday hierarchical taxonomy is displayed as a tree in Figure 3.5: apple,
pear, and banana are fruit; bean, lentil, and pea are legume; both fruit and legume are
vegetable.

Noteworthy, in a hierarchical taxonomy of categories, we exploit the set properties of cate-
gories (i.e., union, inclusion, and intersection). Since, in the taxonomy, each category is included
in a ‘supercategory ’, we have that each category can be extensively defined as the union of its
‘subcategories’; for example, fruit is the union of apple, pear, banana, and so forth.

Additionally, we might freely use the union of categories. For example, we might create a
new category favouriteFruit = apple ∪ lychee, which captures someone’s fruit preferences,
and, therefore might be relevant on a personally relational level. Also, beyond this personal
categories, we might observe the union operation in ordinary situations: We can generate a new
category citrus = orange ∪ lemon ∪ · · · ∪ pomelo which shows coarser information. We might
use such a category the first time we see a lime: if we do not know its specific name, we might
resort to call it or identify it as a citrus. Even to verbalize the undefined taste of a soda, we
might say the soda has a citrus taste. It seems, thus, that union of categories to define more
general categories is a cognitively plausible process.

Featural Approach Furthermore, if we use a featural approach, by which we define a category
as the set of elements that have certain features, then, each category must share all its features
with each subcategory. For example, apple shares its features (juicy, fist-sized, having seeds,
and so on) with the subcategories granny smith, red delicious, royal gala, . . . And this
recursively applies to each subcategory, e.g., fruit shares its features with apple and granny

smith. From a set-theoretical perspective, the features of subsequent subcategories in a taxonomy
yield a sequence of inclusions; for instance,

· · · ⊂ features(fruit) ⊂ features(apple) ⊂ features(granny smith) ⊂ · · ·

Remarkably, in the featural approach, we can create hierarchical taxonomies with maximum
flexibility: The uppermost category contains no feature; we define the next subcategories ac-
cording to the values of a certain feature, e.g., ϕ1; we subdivide the subcategories according to
another feature, e.g., ϕ2, and so on; so that each category is defined as the series of values that
the features have on the levels above such category. For example, beginning on the uppermost
category vegetable we can take the feature ‘sweetness’ and create subcategories according to
the sweetness values; subsequently we can take the feature ‘juiciness’ to further subcategorize
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vegetable

fruit

apple

granny
smith

red
delicious

royal
gala

. . .

pear banana . . .

legume

bean lentil pea . . .

nut . . .

Figure 3.5: Hierarchical taxonomy of vegetable subcategories represented as a tree according
to inclusion. The features of a category (e.g., fruit) are included in its children (e.g., apple,
pear, banana, . . . ). Children of a category are called subcategories and parents are called super-
categories. The basic level of this taxonomy is arguably apple, pear, banana, bean, . . .
Photos sources: vegetable, by Olearys; fruit, by Charli Lopez; apple, derived work from fotos by Apple and Pear
Australia Ltd; granny smith, by Deborah Fitchet; red delicious, by Zajac; royal gala by Apple and Pear Australia Ltd.
All used under CC BY 2.0.
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the subcategories, and so on. Note that, by modifying the order in which the features are cho-
sen, we obtain different taxonomies. Later, when we categorize motion, we can see this effect:
two different choices of features yield two different hierarchical taxonomies of the categorization
Stories-OPRA1 (Figs. 8.5 and 11.7)

We have seen that each category has more features than its containing supercategory. This
fact is expressed using the concept ‘informativeness’ (Murphy and Lassaline 1997, p. 106), also
called ‘specificity ’ (Murphy and Brownell 1985), which is the amount of information that a
category provides. Obviously, the greater the amount of features a category has, the greater
its informativeness; and the lower a category lies in the taxonomy the more informative such
category is.

Note that informativeness, plays a primary role in deciding what category one should use to
refer to an object. One can decide to provide more information about an object by moving from a
supercategory (e.g., fruit) into a subcategory (e.g., apple). We call this process of being more
specific ‘specialization’. However, sometimes one can decide to remain general, and opt for a
supercategory—for example, a physician may recommend, for health reasons, eating more fruit,
not exclusively apples2. We call this process ‘generalization’. In that way, we see the taxonomy
as consisting in ‘levels of abstraction’, each level associated to a certain informativeness. The
higher a category is in the hierarchy (e.g., vegetable) the higher level of abstraction: categories
are more general and less informative. The lower the category is in the hierarchy (e.g., granny
smith) the lower level of abstraction: categories are more specific and informative.

3.6.1 Category taxonomies in artificial intelligence

Category taxonomies have useful properties for knowledge representation and reasoning, so that
they are broadly adopted in artificial intelligence; in fact, they constitute the most basic imple-
mentation of an ‘ontology ’ (Russell and Norvig 2014c). The key property, is the possibility to
quickly draw ‘inferences’. For example, if we know that vegetable is edible, and legume is a
vegetable, we can infer that legume is edible, and—iterating the process—that beans, lentils,
and peas are edible. In other words, we can say that the features of categories are preserved by
specialization.

As advantageous side effect, inference allows us store information more efficiently: The fea-
tures of a certain category need not be stored in all their subcategories, thus, saving storage
space. For example, the feature of ‘being edible’ need only be stored in the category vegetable
and not in any subcategory (i.e., fruit, legumes, apples, etc.), since we know, due to inference,
that a category shares its features with all its subcategories.

Importantly, both the ability to draw inferences and store information efficiently lie wholly in
a featural approach of the categories in which all members of a category share certain features, or,
equivalently, the features of a category are the intersection of the features of all its members (or
subcategories). That is, if there is no common feature to all members of a category, then, inference
is either impossible, or restricted to probabilistic values, or forced to deal with exceptions—The
storage of information is similarly affected. A paradigmatic example is the item penguin which
belongs to the category bird: penguin lacks the feature can fly; therefore, drawing inferences
and storing information is hampered by the item penguin—but also by ostrich—in the category
bird.

All things considered, hierarchical taxonomies are a significant structure regarding the appli-
cations of categories. For that reason, it is worthwhile to build—at least, to explore the possibility
of building—hierarchical taxonomies for any given categorization. In this work, we undertake

2Here, we are not questioning the validity of the folk wisdom: “An apple a day, keeps the doctor away”.
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this task for our motion categorizations (Sect. 11.7.3): we briefly show the possibilities of the
featural approach to build taxonomies in the story-based categories.

3.6.2 The Basic Level

Figure 3.6: Granny Smith ap-
ple.
Source: by Apple and Pear Australia
Ltd used under CC BY 2.0.

In view of the hierarchical structure of categories, a question
arises: which is the most suitable hierarchical level to refer
to items? For example, if we are shown a granny smith
apple, as in Figure 3.6, how should we call it? We can call
it just granny smith. But we may also name it using a
supercategory : apple, fruit, or vegetable, as shown in
the taxonomy of Figure 3.5.

It is cognitively well-established—both psychologically
(E. Rosch, Mervis, et al. 1976) and anthropologically (Berlin
1978; 2014, pp. 31–35)—that humans have a preferred level
to name or refer to things: the ‘basic level ’. For example,
the basic level for the item in Figure 3.6 is apple; thus, un-
der ordinary circumstances, we would refer to Figure 3.6 as
apple and not as vegetable or granny smith.

The choice of a basic level is far from obvious. Indeed, all
four mentioned categories (vegetable, fruit, apple, and
granny smith) are true of the item in Figure 3.6, and each category offers advantages. On the
one hand, using general categories (i.e., vegetable) we save processing resources—we can identify
an item as member of a category considering less features than for specific categories. And, using
general categories also increase the chances of accurate identification—we are more certain of
an item belonging to a general category (e.g., fruit) than a specific one (e.g., granny smith).
On the other hand, specific categories provide a much richer featural information, i.e., they
have greater informativeness. For example, knowing that an object is granny smith provides
additional information of colour (green), and taste (sour), than apple alone cannot provide.

The most common explanation for the existence of the basic level is the ‘differentiation’ of a
hierarchical level (Murphy and Lassaline 1997, pp. 106–107; originally, Mervis and Crisafi 1982;
also, Murphy 2002, pp. 217–223), i.e., at the basic level the concepts are most differentiated.
The degree of differentiation of the hierarchy levels increases with the increase of two factors:
informativeness and distinctiveness.

The informativeness is related to the within-category similarity. The more similar the items
are within a category, the greater amount of features they share, that is, the greater the infor-
mativeness is. The ‘distinctiveness’ is related to the between-category dissimilarity at the same
hierarchical level. The more different a category is, compared to the other categories at the same
level, the more distinctive such category is.

Notice that, as we move from the higher to the lower hierarchy levels, the informativeness,
the within-category similarity, increases; e.g., the average similarity between items of the cate-
gory apple is higher than between items of fruit, and those items of fruit are more similar
between them that the items of vegetable. But, as we move to lower hierarchical levels, distinc-
tiveness, between-category similarity, decreases; e.g., the dissimilarity between the subcategories
of apple is lower than the similarity between the subcategories of fruit. Consequently, the
most differentiated hierarchy level is the the level with the higher combined value of informative-
ness and distinctiveness. Admittedly, how the “higher combined value” is computed remains
open—we can use endless mathematical methods. For example, Mervis and Crisafi (1982)
computed the differentiation as within-category similarity − between-category similarity, which
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is equivalent to differentiation = informativeness + distinctiveness, where informativeness =
within-category similarity and distinctiveness = −between-category similarity.

All in all, the differentiation theory provides a plausible principle to explain and compute the
basic level, which has been successfully validated experimentally.

In this work, we did not try to determine the basic level in motion categorizations, though
it manifests in a variety of cognitive areas: language, mental representation, identification (E.
Rosch, Mervis, et al. 1976). For that reason, because it connects experimentally different cogni-
tive areas, we regard the basic level as a powerful measure of cognitive plausibility of a catego-
rization. We expect to determine it as future work.

3.7 Categorization in Philosophy

In this section, we establish a link between the scientific results presented above and the work
in philosophy. We chiefly endeavour to ease the reading of philosophical works by relating
the specific terms about categorization between science and philosophy. Further, we deem it
necessary to mention the philosophers that have influenced or, rather, inspired the categorization
research.

A fundamental area of philosophy dealing with categorization is ‘ontology ’. It is solely con-
cerned with the study of reality at the most basic level, e.g., matter, persons, events, concepts,
ideas; that is—as ambitious as it may sound—a general theory of being. Ontology is often seen
as a part of ‘metaphysics’, and sometimes even as a synonym for it. It all depends on how we
define each of both concepts—an issue upon which philosophers disagree (See, Macdonald 2005,
pp. 3–8; Bunnin and Yu 2004, pp. 429, 491).

Interestingly, based on the definition of ontology, we expect no imperative relation to cate-
gorization, but truth is that ontology seeks primarily to answer which kinds of beings exist and
how these kinds relate to each other. In fact, Macdonald (2005) gives a more colloquial definition
of ontology: “it is the study of what kinds or sorts of things there are in the world” (e.g., also,
Chisholm 1992; Cumpa and Tegtmeier 2011). In order to show the tight link between ontology
and categorization, we reformulate the target questions of ontology as “Which are the most basic
category levels ever?” and “What is the relation among such categories?”.

Concluding, ontology contains the philosophical view of what, in science, we call categoriza-
tion. In that sense, philosophers have inspired work in categorization, chiefly W. V. O. Quine
(1969), advocating for modelling, for using theories to determine category membership (Mur-
phy and Medin 1985), and also N. Goodman (1972b) with his devastating critique on similarity
(Sect. 3.4.4).



Chapter 4

Spatial Categorizations

Spatial Representations

4.1 Introduction and Related Work

‘Spatial categorizations’—a very particular sort of categorizations—are at the foundation of our
story-based categorizations of motion. Spatial categorizations further permeate many areas of
science, which study them under diverse approaches. In the following, we explain what makes
spatial categorizations so peculiarly relevant, how some science areas approach them, and, fore-
most, which of such approaches on spatial categorizations we have embraced to develop our
motion categorizations. Thus, here, we pave the way to understanding both the generation
method of our motion categorizations and their properties, which largely base on the spatial
categorizations called qualitative spatial representations.

4.1.1 Spatial categories as relations between entities

Figure 4.1: Spatial configura-
tion of a bottle, cup, and plate
used in Examples 4.1 to 4.4
Source: Derivative from pictures in pub-
licdomainvectors.org used under Cre-
ative Commons Deed CC0. Licensed by
J. Purcalla A. under CC BY 4.0..

Spatial categorizations describe spatial configurations of en-
tities. As an illustration, we express some spatial categoriza-
tions for the entities in Figure 4.1; we use an everyday spa-
tial categorization: the allocentric reference system front,
behind, left, right. According to this system we can say
following:

Example 4.1 The bottle is in front of the plate

Note that unlike most categories, the spatial ones cannot
refer to a single entity, but they relate at least two entities—
In the previous example, we relate bottle and plate. This
is the first particular property of spatial categories: they
are ‘relations’, that is, they link several entities, mostly two
entities. In the following example, we relate three entities.

Example 4.2 The cup is between the bottle and the plate

Because they relate entities, ‘spatial categories’ are largely known as ‘spatial relations’, and
so we will predominantly use this term, although we will occasionally opt for the term spatial
category.

61
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4.1.2 Cognitive and linguistic aspects of spatial categorization

Another peculiarity: spatial relations have a fundamental role in cognitive development and
linguistics. Concerning cognitive development, it is staggering how early children learn spatial
relations; for instance, the relation contained, i.e., an entity fully inside another, begins to
be learned at only 21/2 months, when children already know that the container must have an
opening, and is fully learned at 71/2 months, when children know that an object cannot be totally
inside a shorter container (Hespos and Baillargeon 2001a; b; See summary, Mandler 2004, p.
111–115); similarly, the relations above and below are grasped already by 3-month-old children
(Quinn 1994; Quinn et al. 1996).
Concerning linguistics, the spatial relations play a central role, because they are encoded in
a cornerstone of our language: the ‘prepositions’, e.g., in front of, above, left. Certainly, the
basic elements to verbalize an object’s location in standard English are three (See Example 4.1):
the ‘located object ’1 (e.g., bottle), a ‘reference object ’2 (e.g., plate), and their relationship (e.g.,
in front of); and, importantly, “the relationship is encoded as a spatial preposition” (Landau
and Jackendoff 1993, Sec. 2.1). Moreover, as Landau and Jackendoff remark, the number of
prepositions is extremely small compared to other lexical units, such as nouns or verbs—English
has about 90 prepositions, and only about 10 of them are exclusively time prepositions. Hence,
spatial relations strongly identify with prepositions, a very salient lexical unit.

4.1.3 Formalization of spatial relations

Finally, and most relevant to this work, spatial relations are peculiar in that they have a precise
and powerful mathematical formalization.

Why can spatial relations be precisely formalized? Because spatial, or rather geometrical,
features are at the very core of mathematics; in contrast, other features can only be, at most,
vaguely defined. For example, as we saw in Section 3.4, Rips et al. (1973) analysed the category
mammal and, through dimensional analysis, suggested two main features that determine the
similarity in such category: size and predacy. The concept size is quite ambiguous: it can
be its length, its height, its volume, or combinations of any; and, in any case, can only be
statistically defined over a certain population. Even worse, the concept predacy is difficult to
define at all. Thus, it follows that animal categories, though intuitive, are difficult to define
precisely in mathematics. On the other hand, consider our egocentric reference system: front,
behind, left, right. We can define front as being at 0° and behind as 180°, left as the
interval (0°, 180°), and right as the interval (−180°, 0°)—mathematically precise and simple.
Another issue, that we do not treat here, is the ‘cognitive plausibility ’ of such a definition, i.e.,
to which extent humans mentally use such a spatial formalization.

Why are the formalized spatial relations powerful? Because we can mathematically operate
with spatial relations to obtain new relations. For example, spatial relations usually have an
‘converse’, also called ‘inverse’. We obtain it by swapping the spatially related entities from
main object to reference object. As illustration, consider Example 4.1 “The bottle is in front

of the plate”. In order to swap bottle and plate, we must use the new relation behind, as in the
following Example.

Example 4.3 The plate is behind the bottle.

Hence, behind is the converse (or inverse) of front; analogously, front is the converse of
behind.

1The located object is also called ‘primary object ’ (Hernández 1994, p. 28, Sect. 4.1.1) or ‘figure’ (Talmy 1983,
p. 232, Sect. 3.2)

2The reference object is also called ‘ground ’ (ibid., p. 232, Sect. 3.2)
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Another example of operation is the ‘composition’, which allows us to derive new relations
by combining known ones. For instance, combining both relations in Example 4.1, “The bottle
is in front of the plate”, and in Example 4.2, “The cup is between the bottle and the plate”, we
can derive a new relation:

Example 4.4 The cup is in front of the plate

Thus, spatial relations have both a precise mathematical definition and a rich variety of oper-
ations, which gave rise, in the ’90s, to a research area spanning the fields of computer science and
artificial intelligence (Pioneer work, Egenhofer 1991; Informative summary, Hernández 1994)—
This area is commonly called qualitative spatial (or spatio-temporal ) reasoning (QSTR), because
of how central reasoning is there. Truth is that not all spatial relations have a reasoning appa-
ratus; that is why we find this name inaccurate, and we will seldom refer to it. We will mostly
use the terms ‘spatial relations’ and ‘spatial categorizations’, even though AI researchers refer to
them respectively as ‘qualitative spatial relations’ and ‘qualitative spatial representations’ (e.g.,
Chen et al. 2015)—sometimes they call the qualitative spatial representations also ‘qualitative
spatial calculi ’ (e.g., Dylla et al. 2017), when they emphasize the ability to operate with them.
In Table 4.1, we relate the equivalent terminology used in different science areas.

Cognition / Psychology AI / Computer Science Linguistics

spatial category [qualitative] spatial relation spatial preposition
spatial categorization [qualitative] spatial representation —

Table 4.1: Terminology of spatial categorizations in different science areas. The word ‘qualita-
tive’ often drops, as indicated by the brackets.

4.1.4 Reasoning with qualitative spatial representations

As said before, when we examine the applications of qualitative spatial representations (e.g.,
Cohn and Hazarika 2001a; Renz and Nebel 2007; Dylla and Wallgrün 2007), we recognize
that one of their main purposes is ‘reasoning ’—in the broad sense of the term. More concretely,
reasoning with spatial representations helps us to derive new spatial information (new relations)
from certain known spatial information (known relations), or to check whether the known spatial
information is ‘consistent ’, i.e., contradiction-free; it also helps us to use the available spatial
information to make decisions, to plan, trajectories or movements.

Spatial representations provide two main instruments for reasoning: first, the ‘conceptual
neighbourhood diagrams’ (Freksa 1992a), which enable decision-making (e.g., Dylla and Moratz
2005; Dylla et al. 2007)); second, they provide operations between qualitative relations, the
‘converse’ (also called ‘inverse’; Ligozat (2012, p. xviii)), and the ‘composition’, which are the
base for the methods that find new relations and check consistency—mostly through ‘constraint
satisfaction techniques’ (e.g., Cohn and Renz 2008; Ligozat 2012, p. xii; A pedagogic intro,
Russell and Norvig 2014a).

It is much easier to show that a qualitative representation is suitable as a spatial categoriza-
tion (i.e., suitable to qualitatively represent spatial knowledge), than to present its conceptual
neighbourhood diagrams, (e.g., Van de Weghe and De Maeyer 2005), or to show its suitability for
reasoning through constraint satisfaction techniques, (e.g., Van De Weghe et al. 2005). Indeed,
the most important reasoning tool, composition, is not even handled in more than 10% of the
qualitative representations surveyed by Dylla et al. (2017), while about 30% only describe how
to compute it without computing the composition tables.
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A main cause is that both converse and composition can only be computed by using the
semantics of the relations (Renz and Nebel 2007). Consequently, the composition often requires
a burdensome manual case analysis, (e.g., Cohn et al. 1997, p. 292; Van de Weghe et al. 2005;
Mossakowski and Moratz 2010), which, once computed, it is kept in tabular form as a ‘composition
table’ (e.g., Randell, Cohn, et al. 1992).

The story-based motion categorizations are generated from qualitative spatial representa-
tions, and, thus, they naturally inherit their properties: formalization, operations, and reasoning
methods. This offers many advantages: we can easily implement the story-based categoriza-
tions in artificial intelligence and related disciplines, such as robotics; we can apply methods for
trajectory control (Sect. 11.5); and we can develop reasoning methods with the converse and
composition (Sects. 10.3 to 10.5)

For all aforementioned reasons, we readily use the formalism of the qualitative spatial re-
lations—notation and terminology—when dealing with the story-based motion categorizations.
Notwithstanding, we keep the link of story-based categorizations to cognition and psychology,
mostly using the related vocabulary. Accordingly, throughout this work, we use three rather
equivalent terminologies as shown in Table 4.1

4.2 Spatial Representations: Notorious Examples

Here, we present two qualitative spatial representations, i.e., spatial categorizations, RCC and
OPRA1 that we use to obtain story-based categorizations (Ch. 8). They are well-known and
most cited spatial representations: the foundational paper on RCC of Randell, Cui, and Cohn
(1992b) surpasses 2300 citations, and the OPRA paper of Moratz (2006) has over 100, according
to Semantic Scholar.

From RCC we generate the motion story-based categorizations Stories-RCC and Motion-RCC,
from OPRA1 we generate Stories-OPRA1 and Motion-OPRA1 (Ch. 8). These motion catego-
rizations exemplify, throughout this work, most properties and applications of the story-based
representations. For that reason, we encourage the reader to acquaint herself with RCC and
OPRA1.

4.2.1 RCC: A Topological Spatial Representation

The ‘Region Connection Calculus’, broadly known as ‘RCC ’, relates two finite regions in a
topological space according to their connectedness (Randell, Cui, et al. 1992b). We apply RCC
concretely to the two-dimensional euclidian space and convex regions. In this case, RCC simply
categorizes the overlapping between regions, resulting in 8 possible relations (Fig. 4.2): DC,
regions do not overlap; EC, regions are connected but non-overlapping; PO, regions overlap in
the interior, but none is contained in the other; TPP, region k is contained in l and is tangent
to the border; TPPI, region l is contained in k and is tangent to the border; EQ, both regions
overlap completely; NTPP, k is contained in l and does not overlap the border of l; NTPPI, l is
contained in k and does not overlap the border of k.

Note that the relative size of the regions, k and l, constrains the relations EQ, TPP∗, and
NTPP∗—namely, EQ can only occur when both regions have the same size, TPP and NTPP
when k is smaller than l, TPPI and NTPPI when k is larger than l. For the sake of simplicity,
we will assume in our examples that both regions are discs, and k is smaller than l (e.g., Fig. 8.2
and Sects. 11.4 and 11.5). That is, only in our examples, we omit the relations TPPI, NTPPI,
and EQ, but we include them in our theoretical results, chiefly when we develop our motion
categorizations with RCC (e.g., Sect. 8.2.1).
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Figure 4.2: The 8 qualitative relations of RCC; namely, DC, EC, PO, TPP, NTPP, EQ, TPPI,
and NTPPI; they depend on how two entities, k and l, overlap. Note that the relative size of the
entities constraints the possible relations: EQ can only occur when both regions have the same
size, TPP and NTPP when k is smaller than l, TPPI and NTPPI when k is larger than l.

The RCC representation presented in this Section is more accurately known as ‘RCC8 ’,
because it has 8 base relations. In fact, we find in the literature a family of RCC representations:
each family member is called ‘RCCn’ where n is the number of base relations. Important variants
are RCC5 (Cohn et al. 1997, Sect. 8), which disregards the tangent relations (EC, TPP, TPPI);
RCC15, which extends RCC5 for concave entities; and RCC23, which analogously extends RCC8
(ibid., Sect. 5). Even more detailed extension for concave entities are possible, such as RCC62
(OuYang et al. 2007). The most popular of all is RCC8, and, thus, simply known as RCC.

4.2.2 OPRA1: A Directional Spatial Categorization

OPRA1 (Moratz 2006) describes two punctual oriented entities according to their relative ori-
entation, it regards also the case whether the entities are at the same point or not. A single
punctual oriented entity partitions the space into four regions (Fig. 4.3) that are numbered as
following: 0 is the half line beginning at the entity and extending forwards in the entity’s orien-
tation sense, 1 is the half plane at the left of the entity, 2 is the half line beginning at the entity
and extending backwards opposite to the orientation sense, 3 is the half plane at the right of the
entity.

0

1 3

2

k

Figure 4.3: The regions that a punctual oriented particle defines under OPRA1: 0 the frontal
half line, 1 left half plane, 2 the back half line, 3 the right half plane. Note that the regions have
different dimensionality: 0 and 2 are half lines, while 1 and 3 are half planes.
Source: Purcalla Arrufi and Kirsch (2018a)

The relation between two non-overlapping entities (Fig. 4.4) is expressed as the region that
each entity occupies with respect to the other entity by using the symbol ∠ with the following



66 CHAPTER 4. SPATIAL CATEGORIZATIONS

0

1

3

2
l

0

1 3

2

k

(a) Spatial relation ∠
0

3

0

1 3

2

l

0

1 3

2

k

(b) Spatial relation ∠
1

3

Figure 4.4: Examples of OPRA1 spatial relations, ∠
b
a
, between two entities k and l that are

at different points. The syntax is ∠
region of l where k is
region of k where l is .

Source: Purcalla Arrufi and Kirsch (2018a)
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(b) Spatial relation ∠0

Figure 4.5: Examples of OPRA1 spatial relations, ∠a , between two entities k and l that are
at the same point. The syntax is ∠region of k at which l points .
Source: Purcalla Arrufi and Kirsch (2018a)

syntax:
∠

region of l where k is
region of k where l is

For example, in Figure 4.4a, the second entity l is on region 3 of the first entity k, and k is on
region 0 of l. Accordingly, the relation between both entities is expressed as ∠

0
3 .

There is, though, the singular case in OPRA1, when the entities overlap, i.e., they are at the
same point (see Figure 4.5). In that case, we obtain new categories defined as

∠region of k at which l points

Similarly as RCC, OPRA is a family of qualitative representations represented as OPRAn, in
which the n parameter sets the ‘granularity ’ (Moratz 2006, Sect. 2.2). The granularity n is related
to the number of regions of the representation: n = (number of regions)/4. For example OPRA1

has 4 regions, and OPRA5 has 20 regions (Figs. 4.6a and 4.6c). Note that the granularity, n,
indicates how accurate the OPRAn representation is—namely, the higher granularity, the higher
the accuracy. For example, the region 1 of OPRA1 (Fig. 4.6a) can be more accurately subdivided
in OPRA2 through the regions 1, 2, and 3 (Fig. 4.6b).

Of all OPRAn, we only use in this work OPRA1, the one with the lowest granularity; and
we obtain a quite elaborate and expressive motion categorization: Motion-OPRA1 (Sect. 8.6.2).
We anticipate, thus, that future work with higher granularity representations, such as OPRA2,
will produce much more expressive motion categorizations, e.g., Motion-OPRA2.
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(c) OPRA5: 20 regions

Figure 4.6: An entity k and its regions under different OPRAn representations with granularity
n = 1, 2, 5. For every representation, the even numbered regions are one-dimensional (half lines)
and the odd numbered regions are two-dimensional (infinite plane sectors).

4.3 Properties of Qualitative Spatial Representations

Qualitative spatial representations are spatial categorizations with extended mathematical prop-
erties. The building blocks of such representations are the ‘base relations’, which are a finite
set of relations that determine a spatial representation—not only a finite set, but very reduced:
about 70% of spatial representations have less the 100 base relations (Dylla et al. 2017, Table
II). For example, the RCC representation is determined by the 8 base relations, {DC,EC,PO,
EQ,TPP,TPPI,NTPP,NTPPI} (Fig. 4.2). OPRA1 has 20 base relations, the 16 ∠

b
a

and 4 ∠a

base relations, where a, b ∈ {0, 1, 2, 3} (Figs. 4.4 and 4.5).
Importantly, the base relations are Jointly Exhaustive and Pairwise Disjoint (JEPD), which

practically means following: the entities in a certain spatial configuration must fulfil one and only
one of the base relations—This is a crucial property when operating or reasoning with spatial
relations. We can check this property in RCC (Fig. 4.2): two solid figures in the plane must
necessarily overlap in one of the 8 basic relations, and they cannot simultaneously fulfil two of
such basic relations.

Equivalently, the JEPD property means that a qualitative spatial representation is a ‘par-
tition’ of the space that it categorizes. For instance, OPRA5 categorizes relative directions,
and in Figure 4.6c we realize how all possible directions are divided, i.e, partitioned, into the
20 regions. A categorization partitions a continuum into categories, and analogously do spatial
representations, they partition the space into qualitative relations.

In spatial representations the proper name for a relation between entities is ‘qualitative spatial
relation’, though we shorten it into ‘spatial relation’ or, even, ‘relation’ when the meaning is clear
through the context.

4.3.1 Operations with Qualitative Spatial Relations

We can both perform operations and create new relations with the base relations. The most
basic operation is the ‘disjunction’, i.e., the ‘or ’ operation. For example, we can define a new
relation NTO (Not Totally Overlapped) as NTO = {DC ∨ EC ∨ PO}, which means that if two
entities fulfil the relation NTO they must fulfil “DC or EC or PO”, that is, they do not totally
overlap. We call ‘composite relations’ those relations created by disjunction, i.e., those that are
not base relations. Note that, in RCC, with the |RCC| = 8 base relations, we can generate by
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Figure 4.8: Graphical representation of the result of the composition PO ◦ DC, which is the
composite relation {DC ∨ EC ∨ PO}. The relation PO, between k and l, is composed with the
relation DC, between l and m, yielding three possible relations between k and m, namely, (a)
DC, (b) EC, and (c) PO.

disjunction 2|RCC| − |RCC| = 198 composite relations.

m

k

l

Figure 4.7: Three entities,
k, l, and m, displaying differ-
ent RCC relations: k{NTPP}l,
l{DC}m, k{DC}m.

We have two important operations besides disjunction:
[ converse, of a qualit. relation]converse and composition.
The ‘converse, of a spatial relation’ operation—also called
‘inverse’—consists in finding the new relation that originates
when we swap the order of the entities (as already shown in
Example 4.3). For example, in Figure 4.7, k has relation
NTPP with respect to l; we write it k{NTPP}l. The con-
verse to such relation is asking “Which relation has l with re-
spect to k?”; the answer is NTPPI, i.e., l has relation NTPPI
with respect to k; we write it l{NTPPI}k. Thus, the con-
verse of NTPP is NTPPI, which we express by means of the
operator ()

`, NTPPI = NTPP`.
The ‘composition’ answers the transitivity question in

qualitative relations (Randell, Cohn, et al. 1992). That is, if we have 3 entities, k, l, and m;
a relation Rkl between the pair, (k, l); and a relation Rlm between the pair (l,m), what is the
relation Rkm between the pair (k,m)? As an illustration take Figure 4.7, we have k{NTPP}l
and l{DC}m, and we ask, then, what is the relation for the pair k,m? The only possible relation
is DC, as we see in the figure; thus, we should write DC = NTPP ◦ DC with the ‘composition
operator ’ ‘◦’, meaning that DC is the result of the composition of DC and NTPP.

Although, in the previous example, the composition of two base relations (NTPP◦DC) yields
also a base relation (DC), in most cases, the composition yields a composite relation. As example,
we show in Figure 4.8 how the composition PO ◦ DC yields three possible base relations: DC,
EC, and PO (respectively in subfig. (a, b, c)); in other words, it yields the composite relation
{DC ∨ EC ∨ PO}.

Remember that the aforementioned operations (disjunction, converse, and composition) are
the basic tools for solving reasoning problems in the paradigm of qualitative representations
(Ch. 10).

4.4 Overview on Spatial Representations

We importantly claim in this work that we can generate story-based motion representations from
any qualitative spatial representation and substantiate our claim by generating two story-based
representations (Motion-RCC and Motion-OPRA1) from the corresponding spatial representa-
tions, RCC and OPRA1. Indeed, as these two spatial representations have distinctive features
(Tab. 4.2), they compellingly uphold our claim.
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Now, the question is “how vast is the domain of applicability of the story-based method?”
Or equivalently, “how large is the field of qualitative spatial representations?” As an answer, we
provide an overview on qualitative spatial representations (Tab. 4.2) from a survey by Dylla et al.
(2017): they list as many as 33 main types of spatial representations, of which some unfold in an
endless number of spatial representations by modifying granularity or spatial dimensions. In view
of such large number of spatial representations, the possibilities of the story-based generating
method are huge.

Qualitative spatial representations in the overview are classified according to two features:
the dimensionality of the entities involved and the spatial aspects described. Regarding the enti-
ties’ dimensionality, some representations describe points (dimension = 0); others lines, curves,
segments, intervals (dimension = 1); and also surfaces or volumes (dimension > 2). Regarding
the spatial aspects, spatial representations describe absolute direction (direction relative to an
absolute reference system), relative direction (direction relative to an entity’s reference system),
distance, topology (mostly overlap), and shape. In sum, there are 15 (3 × 5) possible classes of
representations with only 4 classes without representation—namely, regarding zero dimensional
entities, topology and shape are missing, and regarding one dimensional entities, distance and
shape are missing.
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Table 4.2: Classification of qualitative spatial representations according to the dimensionality of
their entities and the spatial aspect they describe. Coloured cells indicate representations that
span more than one aspect or dimensionality, e.g., Elevated OPRAn describes relative direction
and distance. The representations used in this work, RCC and OPRA1, are framed in a rectangle
for visibility.
Source: Adapted from Dylla et al. (2017, Fig. 4, 5)

spatial

aspect
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dimensions

zero-dimensional
(point)

one-dimensional
two-dimensional

or higher

topology

Dipole Connectivity1 RCCn 2

Nine-Intersection Model3

Calculus Based Method4

Closed Disk Algebra5

9
+-Intersection Calculi6

Alg. of Cyclic Intervals7

absolute
direction

Star Calculi8

Cardinal Direction Calc.9

Point Calculus10

Cardinal Direction Relat.11

Rect. Card. Dir. Calc.12

Block Algebra13
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direction

LR Calculus14

OPRAn
15

Ternary Point Config. Calc.16

Ternary Projective Relat.17

StarVars18

Single/Double Cross Calc.19

3-D Orientation Model20

Dipole Calculus21

Alg. of Bipartite Arrang.22

Cyclic Ordering23

Visibility Relations24

Ternary Projective Relat.25
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26
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distance Elevated Point Rel. Alg.28

Lines of Sight29

Region Occlusion Calc.30

Occlusion Calculus31

(V)RCC-3D(+)32

MC-433

shape

1 (Wallgrün et al. 2010) 2 (Randell, Cui, and Cohn 1992a) 3 (Egenhofer 1991) 4 (Clementini et al. 1993)
5 (Egenhofer and Sharma 1993) 6 (Kurata 2010) 7 (Balbiani and Osmani 2000) 8 (Renz and Mitra 2004)
9 (Frank 1991) 10 (Vilain and Kautz 1986) 11 (Skiadopoulos and Koubarakis 2004)
12 (Navarrete et al. 2013) 13 (Balbiani et al. 1998) 14 (Scivos and Nebel 2001)
15 (Moratz 2006) 16 (Moratz and Ragni 2008) 17 (Clementini and Billen 2006) 18 (J. H. Lee et al. 2013)
19 (Freksa and Zimmermann 1992) 20 (Pacheco et al. 2001) 21 (Moratz et al. 2000) 22 (Gottfried 2004)
23 (Isli and Cohn 2000) 24 (Tarquini et al. 2007) 25 (Clementini and Billen 2006) 26 (Moratz and Wallgrün
2012) 27 (Kurata and Shi 2008a) 28 (Moratz and Wallgrün 2012) 29 (A. P. Galton 1994)
30 (Randell et al. 2001) 31 (Köhler 2002) 32 (Sabharwal and Leopold 2014) 33 (Cristani 1999)



Chapter 5

Motion Categorizations

Qualitative Representations of Motion

Motion categorization is increasingly attracting the interest of researchers. One obvious reason is
that motion categorization is a relatively untouched area compared to the extensively researched
spatial categorization; another more pungent reason is the massive rise of mobile positioning
(Chen et al. 2015, Sect. 3.4).

Yet “motion categorization” is a daunting endeavour due to the overwhelming variety of
motions, unless we restrict the kind of motions we categorize. In Section 1.2, we specified the
type of motion that we categorize in this work, i.e., motion scenarios—which are two or more
entities moving at a certain time instant. We now additionally establish which formalism we use
to handle the motion categorizations: we formalize them as qualitative representations. Thus,
we deal with ‘qualitative motion representations’, motion categorizations that possess analogous
properties as the qualitative spatial representations (See Sect. 4.3).

In this chapter, we firstly survey qualitative motion representations and classify them in a
taxonomy. Next, we describe a simple mathematical technique, concatenation of representations,
that is frequently used in the literature to create motion categorizations—We make extensive
use of this technique, notably, when building the story-based representations, and we apply it
also in Section 11.1.3. Finally, we compare motion and spatial categorization through cognitive
linguistics; our aim is to explain a striking result of the survey: in the literature, we find much
fewer motion representations than spatial representations.

5.1 Survey of Qualitative Motion Representations

Dylla et al. (2017) surveyed a total of 40 qualitative representations from which they only classify
three (< 8%) as representations of motion (“relative motion”): QRPC (F. J. Glez-Cabrera et al.
2013), RfDL-3-12 (Kurata and Shi 2008a), and, the most used, QTC (Van de Weghe 2004).

QTC refers to a varied family of representations characterized by suffixes (see concise and
complete summary, Delafontaine et al. 2011, Sect. 2): QTCBxy, QTCC2y. The subindex ‘B’
specifies that only relative approaching and speeds difference between entities are considered,
while the subindex ‘C’ specifies that, additionally, relative movement to the right or left is
considered; subindex ‘x’ = {1, 2} is the dimensionality of the space where the entities move (i.e.,
line or plane), and subindex ‘y’ = {1, 2} relates to the number of kinematic features considered.
For example, e.g., QTCB21 (See full description in Sect. 6.3) describes the relative approaching
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of entities (subindex ‘B’) in 2 dimensions (subindex ‘2’), but it disregards speeds difference
(subindex ‘1’). We find also a three-dimensional of QTC, namely, QTC3D (Mavridis et al. 2015),
however it is ill-defined for uniform motions and motionless particles.

The categories in a QTC representation are written as a n-tuple, each element in the tuple
describes a kinematic feature always by means of three symbols {−, 0,+}. For example, consider
the kinematic feature ‘relative approaching of entity k to entity l’. The ‘−’ symbol means that k
moves towards l, the ‘+’ symbol means that k moves away from l, and ‘0’ means that k remains
stationary with respect to l.

The RfDL-3-12 considers the straight path described by a point with respect to a two-dimensional
static region. Thus, we classify it as a ‘path representation’—a subclass of the motion represen-
tations. A similar path representation is Double Cross (Freksa 1992b; Zimmermann and Freksa
1996), which is defined like the RfDL-3-12, but instead of using a region as reference, it uses a
static point to describe the straight path of a displaced punctual entity. In these path repre-
sentations much kinematic information is lost: only the entity’s displacement is measured—time
is irrelevant—therefore, speed and acceleration are disregarded. In fact, the path considered in
these representations need not be an entity moving, it suffices that it is the path between two
different landmarks. For that reason, we see these path representations rather marginally as
motion representations.

More elaborated path representations are those describing polygonal trajectories qualita-
tively, as the QMV (Qualitative Motion Vector) sequences (Musto et al. 1998, 1999). The QMV
sequences include time since they are obtained by scanning at a fixed rate the positions of an
entity’s trajectory. QMV sequences include, amongst others, qualitative information about the
speed of the entity (slow, medium-vel, fast, . . . ). Nonetheless, this qualitative description ad-
dresses only one entity’s motion—we do not have a relation between two entities—thus, it falls
without the scope of this work.

In another survey of qualitative representations, Chen et al. (2015, Sect. 3.4) find three
motion representations: QTC (already mentioned), and two additional representations, Dipole
Calculus (Moratz et al. 2000) and DIA (Directed Intervals Algebra) (Renz 2001).

Interestingly, Chen et al. and Dylla et al. only coincide with classifying one representation
as motion, namely, QTC, while they disagree in classifying DIA and Dipole Calculus as motion
representations. We explain such disagreement by remarking a fine distinction: representations
such as Dipole Calculus and DIA (also OPRA (Moratz 2006)) are primarily relative direction
or orientation representations rather than motion representations—they ignore speed. However,
they can be used to represent moving entities by equating orientation with velocity direction (e.g.,
Dylla et al. 2007). For that reason, they are sometimes classified as motion representations.

Besides the mentioned motion representations, we also found one developed by Wu et al.
(2014). That is the only one, to our knowledge, that deals explicitly with regions. It combines
the spatial representation RCC with the distance between regions, hence, we call it RCC-d (see
details, Sect. 5.4.2.A).

Concluding, all the aforementioned representations, excepting the path representations, can
be used to categorize motion scenarios—our research endeavour (Sect. 1.2). Notwithstanding,
from the representations that categorize motion scenarios, few can be unambiguously classified
as motion categorization, namely, QTC, QRPC, and RCC-d. These are ‘genuine’ qualitative
motion representations, the other ones are primarily directional representations.
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5.2 Identified Shortcomings and our Story-Based Solutions

Observing our survey (Sect. 5.1), we identify relevant shortcomings in the current landscape of
qualitative representations of motion.

Sparse work on motion representations As we can observe from our survey, the work in
qualitative representations of motion is unusually sparse when compared to the vast research in
spatial representations (Cohn and Hazarika 2001a, Sect. 5.1.2, p. 16; Delafontaine et al. 2011,
p. 5187).

Mostly applicable in low dimensional domains Our surveyed motion representations are
quite limited in their application domain: they are mainly restricted to point-like entities moving
in one or two dimensions (e.g., QTCC, QTCB, QRPC), while spatial representations deal also
with region-like entities located in three-dimensional spaces (e.g., Egenhofer 1991; Albath et al.
2010) (See overview in Sect. 4.4).

Ill-defined categorization of motionless entities Some motion categorizations (e.g., QTC3D)
are ill-defined when at least one entity is motionless; they rely on the motion direction of the
entities to determine the qualitative values, and a motionless entity (~v = ~0) has an undefined
motion direction.

The situation is not much better with the directional categorizations, e.g., OPRA and QRPC.
There, the objects have an intrinsic orientation ~o; hence such categorizations are well-defined
even when entities are motionless. However, we cannot solely rely on the velocity vector ~v, for
motionless entities we must resort to the intrinsic orientation in Section 8.2.2.A, when we obtain
Stories-OPRA1.

Neglected composition Another problem in motion representations—which also occurs in
spatial representations (See Section 4.1.4)—is that, to some extent, researchers neglect the com-
position: neither compute their composition tables nor describe how to do it. If we consider the
genuine motion representations, only QTC (Van de Weghe et al. 2005) and QRPC1 (Alvarez
Bravo and F. Glez-Cabrera 2022) compute the composition tables; while RCC-d remains, so far,
without such a reasoning apparatus.

Our story-based motion representations overcome these limitations by presenting a method
to create qualitative representations of motion that work in any number of dimensions, with any
kind of entities, i.e., point-like or regions, and, that can categorize scenarios with motionless
entities as long as the generating representation is well-defined in (~v = ~0). Likewise, we oppose
the trend of neglecting the composition: In Chapter 10, we provide a method to facilitate the
computation of the composition for story-based motion representations.

5.3 A Taxonomy of Qualitative Relations of Motion

We present the above surveyed motion representations as a taxonomy according to two criteria.
First, on a higher level, we classify them according to the temporal duration of the categorized
motions. That is, some representations categorize instantaneous motion (a punctual instant of
time), while others categorize motion in a time interval, i.e., along a trajectory. In between are

1We mentioned in our paper of 2018 that, since 2010, QRPC lacked composition. The composition was shown
first in 2022.
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categorizations that, in addition to instantaneous motion, consider also the expected trajectory.
Second, on a lower level, we classify them according to the kinematic features captured; for
example, some representations consider only the direction of motion, while others consider the
entities’ speeds and distances.

A. Instantaneous motion

• Orientation of velocity vectors:
The family of representations ‘Oriented Point Relation Algebra’ (OPRA) (Mossakowski
and Moratz 2010)

• Orientation of velocity vectors + compared speeds and angles:
The family of representations ‘Qualitative Trajectory Calculus’ (QTC) relations (Van
de Weghe 2004; Delafontaine et al. 2011)

• Overlapping (RCC representation) + relative region approach:
RCC-d (Wu et al. 2014)

B. Instantaneous motion + expected trajectory

• Configuration of the velocity vectors + proximity and relative position to expected
crossing point: QRPC (F. J. Glez-Cabrera et al. 2013)

• Kinematic aspects are inherited from the generating (either spatial or motion) repre-
sentation:

– Story-based representations from spatial representations, e.g., Motion-RCC and
Motion-OPRA1 (Purcalla Arrufi and Kirsch 2018a)

– Story-based representations from qualitative representations of motion, e.g., Story-QTCB

(Section 8.3).

C. Trajectory segments

• Landmark based and path-centred frames:
Double Cross (Zimmermann and Freksa 1996; Freksa 1992b) and RfDL-3-12 (Kurata
and Shi 2008a; b)

• Oriented trajectory segments:
Dipole Calculus (Moratz et al. 2000)

D. Arbitrary trajectories
Described as temporal sequences of motion relations that belong to representations describ-
ing instantaneous motion (item A.):

• Permutable 4th order sequences of QTCC relations (Delafontaine et al. 2011)

• Sequences of QTCC relations with same start and end time (Hanheide et al. 2012)

5.4 Expanding Qualitative Representations of Motion

In this section, we present a standard method for creating or expanding—making finer— repre-
sentations of motion. The method relies on Cartesian product, that is, on the concatenation of
representations: We can concatenate arbitrary motion representations to form new qualitative
representations. For example, if we have motion representations MA and MB , we can create a
new representation by concatenating MB to MA; we obtain then the ‘product representation’
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MC = MA ×MB , in which each motion relation is expressed as a tuple RC = (RA, RB) where
RA ∈ MA and RB ∈ MB . Nonetheless, it is up to interpretation, whether we consider MC a
brand new qualitative motion representation, or just an expansion of the representation MA—or,
alternatively, an expansion of MB .

Now, we illustrate the method with a concrete example: we use N. Van de Weghe’s (2004)
QTC family of categorizations (Fig. 5.1). Initially, we take two qualitative motion representa-
tions, namely QTCB21 (fully described in Sect. 6.3), and a very simple representation that we
will call Speed.

A motion relation in QTCB21 describes two properties: Pk, ‘relative approaching of entity
k with respect to entity l’, and, conversely, Pl, ‘the relative approaching of entity l to entity
k’; each property, P∗, takes three possible symbols {−, 0,+}. The symbol ‘−’ means ‘moving
towards’, ‘+’ means ‘moving away’, and ‘0’ means ‘remaining stationary’. Accordingly, a motion
category is represented by the 2-tuple in which each element is a property. For instance, a motion
scenario where k chases l—that is, k moves towards l, and l moves away from k—is described as
(−,+) (See Figures 5.1a and 5.1b)

A motion category in the Speed representation simply describes which of the entities moves
faster. It also takes three possible symbols {−, 0,+}: the symbol ‘−’ means ‘k moves faster than
l’, ‘+’ means ‘k moves slower than l’, and ‘0’ means ‘k and l move equally fast’ (See, respectively,
Figures 5.1a to 5.1c).

Both QTCB21 and Speed are qualitative motion representations in their own right—they fulfil
the properties of qualitative representations (Sect. 4.3). Thus, following the indications above,
we can create a new motion representation MC = QTCB21 × Speed. In MC , a motion relation
is represented through the tuple (RQTCB21

, RSpeed); for example, the tuple ((−,+),+), which
describes following: k moves towards l, l moves away from k, and k moves slower than l (See
Fig. 5.1a). We can clearly appreciate the advantages of concatenating the extra representation: in
case k is chasing l, relation (−,+) in representation QTCB21, the extra relation in representation
Speed tells us how successful the chase is—if the relation is ((−,+),−), k may reach l, otherwise,
with Speed relations ‘+’ and ‘0’, k cannot reach l.

This “new” motion categorization QTCB21 × Speed is already known as QTCB22 (e.g., Van
de Weghe et al. 2007, Sect. 3). For the sake of simplicity, in the QTC family, the relations are
written as a simple tuple, i.e., without nested tuples; for example ((−,+),−) is written (−,+,−).
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QTCB21 = (−,+)

Speed = (0)

QTCB22 = (−,+, 0)

Figure 5.1: Motion scenarios classified according to QTCB21, Speed, and their product repre-
sentation QTCB22 = QTCB21 × Speed. All these scenarios share the same QTCB21 relation, but
differ in Speed; consequently, they have different QTCB22 relations.
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Theoretically, we can concatenate as many representations as we wish in order to obtain new
product representations, i.e., MC = MA1

×MA2
×· · ·×MAi

×· · ·. Every product representation
is at least as fine as each of its components, that is, MC has at least the same motion relations
that each component representations MAi

has. For example, in any QTCB22 motion relation,
we can find the corresponding QTCB21 and Speed relations: these are, respectively, the first two
coefficients and the last coefficient of a QTCB22 tuple (e.g., Fig. 5.1).

In fact, the product representation MC is usually finer than any of the component repre-
sentations. In other words, a category in any of the component representations MAi

is further
subcategorized into the categories of another component representation MAj

. For example,
the QTCB21 relation (−,+) is subcategorized in three QTCB22 relations, namely, (−,+,−),
(−,+,+), and (−,+, 0) (respectively, Figs. 5.1a to 5.1c).

Even though we might concatenate an unlimited number of motion representations {MA1
,

MA2
, . . .MAi

, . . .} to generate the corresponding product representation, we are ultimately con-
strained: only a product representation with a few of those MAi

can be handily implemented
and used. Hence, the question arises: which criteria could help us choose the more convenient
MAi

representations to concatenate?
Such a desired criterion is furnished in the next section, based on a key concept: the multi-

plicativity of concatenated representations.

5.4.1 Multiplicativity of Concatenated Representations

Ideally, we might expect that, in a product representation, MC = MA×MB , every concatenated
representation, MB , subdivides (i.e., subcategorizes) each motion relation in MA according to
its number of elements, |MB |. In short, we might expect following equality, |MA × MB | =
|MA| · |MB |, between the total number of relations in the product representation, |MA ×MB |,
and the number of relations in the component representations, namely, |MA| and |MB |.

For instance, in the product motion relation QTCB22 = QTCB21 × Speed (Fig. 5.1), we
should ideally expect that each of the 32 QTCB21 motion relations is subcategorized by the 3
Speed relations. If so, QTCB22 should have a total of 32 · 3 = 27 motions relations—which is
precisely the case.

Unfortunately, the ideal case observed in QTCB22, |QTCB22| = |QTCB21|·|Speed|, i.e., |MA×
MB | = |MA| · |MB |, does not apply to every concatenated representation. Most generally, we
can only confirm the inequality in Equation (5.1), which sets the upper bound for the number
of relations in the product representation. In the optimal case, where the equality holds, we say
that the representations MA and MB are ‘multiplicative’.

|MA ×MB | ≤ |MA| · |MB | (5.1)

In fact, component representations are often non-multiplicative, that is, usually only the
strict inequality holds in Equation (5.1). Non-multiplicativity arises when some combinations of
relations are physically unrealizable—This occurs, for example, with the one-dimensional motion
representation QTCB12.

QTCB12 is a motion representation for entities moving in one dimension. It is constructed
as the product representation of QTCB11 (exactly defined as QTCB21 but restricted to entities
moving in one dimension), and the representation Speed (as defined above but likewise restricted
to entities in one dimension). If QTCB11 and Speed were multiplicative, then |QTCB12| =
|QTCB11| · |Speed| = 32 · 3 = 27. But QTCB12 has only 17 relations, because 10 combinations
of QTCB11 and Speed relations are physically unrealizable. In Figure 5.2, we exemplify this
behaviour. The QTCB11 relation (−,+) combines smoothly with any of the Speed relations
yielding three different QTCB12 relations: (−,+,−), (−,+,+), and (−,+, 0) (Figs. 5.2a to 5.2c).
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Yet the QTCB11 relation (−, 0) is only compatible with the Speed relation ‘−’, yielding (−, 0,−).
Truly, the component ‘0’ of (−, 0) necessarily means—in one dimension—that l is motionless,
which entails that, if k moves towards l, the Speed relation can only be ‘−’. Consequently, the
relations (−, 0, 0) and (−, 0,+) are physically unrealizable in one dimension.
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QTCB11 = (−, 0)

Speed = ( − )

QTCB12 = (−, 0, − )

Figure 5.2: Motion scenarios classified according to QTCB11, Speed, and their product repre-
sentation QTCB12 = QTCB11×Speed. Scenarios (a), (b), and (c) display all three possible Speed
variants of the QTCB11 relation (−,+). Scenario (d) displays the only possible Speed variant,
(−), of the QTCB11 relation (−, 0); the Speed relations (+) and (0) are physically unrealizable.

We resume our determination of the bounds for |MA×MB |. The lower bound for occurs when
one of the representations contains the other, that is either MA ⊂ MB or MA ⊃ MB . In that
case, the corresponding subrepresentation does not provide any extra categorization information
at all, and, therefore, the product representation has the same number of relations as the finest
of both representations MA and MB . We express mathematically this fact in Equation (5.2)

max(|MA|, |MB |) ≤ |MA ×MB | (5.2)

Summarizing, we have the following bounds for |MA ×MB |:

max(|MA|, |MB |) ≤ |MA ×MB | ≤ |MA| · |MB | (5.3)

Equation (5.3) hints about the criterion for choosing the representation MB that we should
more conveniently concatenate to MA. On the one hand, if MA and MB are multiplicative the
product representation, MA × MB has the greatest possible number of categories (related to
the size of MB)—the product representation has the greatest granularity, namely, |MA| · |MB |
. On the other hand, if we concatenate a subrepresentation, i.e., MB ⊂ MA, the cardinality
of the product representation, |MA ×MB |, is the same as the cardinality of MA. As a result,
we should avoid the concatenation of subrepresentations and strive to concatenate multiplicative
representations.

However, not all pairs of motion representations are either multiplicative or are subrepre-
sentations of one another—we have cases in between. For that reason, instead of just defining
multiplicativity as a boolean feature—whether a motion representation is multiplicative or not—
we define multiplicativity as a graded value. The bounds of |MA ×MB | in Equation (5.3) help
us to define a ‘measure of multiplicativity ’, µ (MA,MB), with values in [0, 1] (Eq. (5.4); see
proof, Prop. A.1.2). The maximum value, 1, is attained if the representations are multiplicative;
the minumum, 0, is attained if one categorization is subcategory of the other—The higher the
value the more independent are the concatenated representations, that is, they generate more
effectively product relations by yielding finer subcategorizations.
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µ (MA,MB) =

|MA×MB |
max(|MA|,|MB |) − 1

min(|MA|,|MB |) − 1
(5.4)

0 ≤ µ (MA,MB) ≤ 1

In conclusion, the multiplicativity, µ (MA,MB), provides us with a criterion to choose
amongst representations that we want to concatenate. If we have some representation candidates
{MB1

, . . . ,MBn
} to concatenate with a motion representation MA, we can choose the one with

the highest multiplicativity, i.e., MB = maxi=1...n{µ (MA,MBi
)}. In that way, we ensure that

the concatenated representation optimizes the subcategorization of the motion categories of MA

in the new product representation MA ×MB .

A. An application of multiplicativity

We illustrate here the application of multiplicativity. Consider the motion representation MA =
QTCB11 and two candidates for expanding it, namely, MB1

= Speed and MB2
= Gaping. The

motion representation Gaping was wholly presented in Section 1.2.1. In brief, it takes, like Speed,
three possible values {−, 0,+}: the symbol ‘−’ means that the distance between the entities
decreases, the symbol ‘+’ means that the distance increases, and the symbol ‘0’ means that the
distance between the entities remains constant.

In the case we want to expand MA by concatenating one representation, we must choose
between MB1

or MB2
. The multiplicativity measure provides the criterion for the choice. In

order to obtain the multiplicativity (Eq. (5.4)), we must compute following values: |MA| = 9,
|MB1

| = 3, |MB2
| = 3, |MA×MB1

| = 17, |MA×MB2
| = 13. We obtain µ (MA,MB1

) = 0.44
and µ (MA,MB2

) = 0.22. This motivates the choice for MB1
, because it subcategorizes MA

more effectively.
Admittedly, in this case, it suffices to choose the representation whose product representation

has more elements (i.e., |MA ×MB1
| > |MA ×MB2

|), because both representations MB1
and

MB2
have the same number of relations, i.e., three relations. Notwithstanding, the multiplica-

tivity measure has the advantage that it compares also representations with different number of
relations (i.e, when |MB1

| 6= |MB2
|).

5.4.2 Further Types of Concatenation: Hybrids

So far, we have expanded motion representations by concatenating additional motion represen-
tations. However, we can also expand a motion representation MA by concatenating a spatial
representation DB , so that the product representation, MC = MA ×DB , contains both spatial
and motion relations. Such a representation—which we call ‘hybrid motion representation’—
retains all the properties of a genuine motion representation, for instance, the computation of
the composition table or the multiplicativity.

Most importantly, a main result of this work—the beaded story-based representations—are
mostly hybrid motion representation, as we comment at the end of this section. But first, we
detail an example of hybrid representation in the literature: the already mentioned RCC-d.

A. A hybrid motion representation: RCC-d

The RCC-d (Wu et al. 2014) relates two moving regions A and B (See Figure 5.3)—In the
following, we restrict to the case where region A is smaller than B. RCC-d is the Cartesian
product of the spatial representation RCC, and the motion representation “variation of distance
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Figure 5.3: Simplified iconic representation of the RCC-d relations—These cases are restricted
to region A being smaller than B. (Source: Wu et al. (2014), composed of Figures 1, 2, and 3. © Springer

Nature Customer Service Centre GmbH. Used with permission 5443550499269)

between regions”—we call it Gaping2, equivalent to the Gaping representation but for regions.
Consequently, a motion relation in RCC-d can be formalized as (R1,M1).

• R1 is the RCC value of the motion scenario (explained in Sect. 4.2.1), which, for entity A

smaller than entity B, can take following values: DC, EC, PO, TPP, NTPP.

• M1 is the distance variation between regions. Although Wu et al. (ibid.) omit any definition
of the distance between regions, from their fig. 1 and 2 (our Fig. 5.3) one can infer that the
“distance” they meant is the minimum distance between the border points of the regions—
notice, however, that this is not a ‘distance’ in the mathematical sense.
M1 can take following values: ‘+’, ‘0’, ‘−’; they respectively indicate if the nearest points
of the borders move away, remain at a constant distance, or approach2.

Accordingly, the RCC-d relations are AP=(DC,−), LP=(DC,+), AO=(DC, 0), TI=(EC, 0),
OI=(PO, 0), CB=(TPP, 0), MI=(NTPP,+), MB=(NTPP,−), AI=(NTPP, 0).

As to the rest, RCC-d functions as any motion representation. For example, we can cal-
culate the multiplicativity of RCC-d to see how effectively the spatial representation subcate-
gorizes the motion representation: |MRCC|=5, |MGaping2|=3, |MRCC × MGaping2|=9, thus,
µ (MRCC,MGaping2)= 0.4.

B. Hybrid story-based representations

In this work, we present two main types of story-based representations: the bare and the beaded
ones (Ch. 8). Even though the beaded story-based representations are thoroughly expounded in

2Wu et al. (2014) use the symbols dext9, dext=, dext+, dint9, dint=, dint+ instead of {−, 0,+}. Note, however,
that the additional identifiers ‘ext’ and ‘int’ are redundant when combined with the RCC relations; indeed, ‘ext’
associates to DC, and ‘int’ to NTPP.
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Section 8.5, we briefly mention them here because, in most cases, they are hybrid representations.
A beaded story-based representation is a product representation MA × RB , where RB is a
spatial or motion representation, and MA is a very specific motion representation, namely,
ΣRB

, which is obtained straightforwardly—but not effortlessly—from the original spatial (or
motion) representation RB (Sect. 8.1). We call the motion relations in ΣRB

‘stories’, and hence
the name ‘story-based representations’. Note that when the original representation RB is a
spatial representation, i.e., RB = DB , then the product representation MA ×RB is also hybrid
representation, MA ×DB .

Relations in a beaded story-based representation are expressed as Si(Rj) where Si is a story,
that is, a motion relation in ΣRB

; and Rj is a spatial relation in RB . The notation Si(Rj) is
equivalent to the traditional tuple notation (Si, Rj)—with our notation, we just highlight that
Rj ∈ Si.

5.5 Motion and spatial categorization: linguistic compari-

son

As we mentioned in our survey (Sect. 5.2), it is odd to find a much greater number of spatial rep-
resentations than motion representations. All the more, because both categorizations are directly
related—motion is spatial change in time—and have some fundamental cognitive commonalities.

In principle, we might expect that the abundant work in spatial representations should prompt
a similar number of results in motion representations; but this is not the case: scientists can-
not lightly transfer the formalism used in qualitative spatial representations to motion repre-
sentations. We hypothesize that such transfer difficulties arise from the different way humans
cognitively process spatial and motion relations.

We can best appreciate through our language how we cognitively process motion and spatial
categorization. Indeed, the differences—but also the commonalities—between these two catego-
rizations show up when we verbalize them. For that reason, in this section, we resort to ‘cognitive
linguistics’ to contrast space and motion relations: “[cognitive linguistics deals with] the linguis-
tic representation of conceptual structure” (Talmy 2000b, p. 1, Introduction). We are inspired in
our cognitive linguistic analysis by the work of L. Talmy, collected in his opus magnum Toward
a Cognitive Semantics.

The main insights we draw from cognitive linguistics are following. First, the powerful
mathematical formalism of qualitative spatial representations, used in spatial categorization
(Sect. 4.1.3), essentially mirrors the properties of spatial relations in language. Second, mo-
tion relations are expressed through different linguistic devices than spatial relations, and, this
is a compelling reason why scientists cannot straightforwardly transfer the formalism of quali-
tative representations from spatial into motion categorization. Admittedly, we exemplify such
insights in English language, but they are applicable to other European languages, and possibly
to general human linguistics.

5.5.1 Commonalities

Before we tackle the differences, we remark the most fundamental similarity between spatial and
motion categorization: they often relate at least two entities that have differentiated roles. The
first entity, a main object (called ‘figure’), is related to a second entity, a reference object (called
‘ground ’) (ibid., Ch. 5). In Example 5.1, we can see figure and ground for each categorization:
spatial (item a.) and motion (item b.).

Example 5.1 Figure and ground in spatial and motion relations.
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a. The bottle
figure

is in front of
preposition

the plate
ground

. (spatial relation)

b. The alpinist
figure

climbed
verb

the mountain
ground

. (motion relation)

5.5.2 Differences

In this section, we present the differences between the linguistic description of spatial and motion
relations. We use as a paradigm the differences between Example 5.1.a. and b..

A. Prepositions for spatial relations, verbs for motion relations

First of all, we argue that, in most cases, two entities are spatially related mostly by means of
a preposition. Indeed, in English—as in many other languages—places or position of objects
are predominantly represented by prepositions (Landau and Jackendoff 1993, p. 218). In Ex-
ample 5.1.a., the preposition in front of relates the two entities spatially. Secondly, we argue
that, in most cases, two moving entities are related by means of a verb which is eventually as-
sisted by and adverb. In Example 5.1.b. the two moving entities are related by means of a verb,
such as climbed.

One may object, though, that the spatial relation in Example 5.1.a. is also a verb, namely,
is in front of. However, if we turn both examples into adjective phrases (Ex. 5.2), then
we see which the decisive elements are. Indeed, in Example 5.2.a. the verb ‘to be’ drops from
the sentence gracefully—it is superfluous. Consequently, the preposition in front of is the key
element. Whereas in Example 5.2.b. the verb ‘to climb’, in the present participle form climbing,
cannot be stripped from the setence: it is the necessary key element to refer to the alpinist’s
motion.

Example 5.2 Adjective phrases obtained from Example 5.1.

a. I see the bottle in front of
preposition

the plate. (spatial relation)

b. I see the alpinist climbing
verb

the mountain. (motion relation)

One might further object that the preposition in Example 5.1.a. becomes the relevant element
in the spatial relation because the verb ‘to be’ is a dull verb. But notice that, whatever verb
of position we use (e.g., ‘to stand’, ‘to lie’, ‘to place’), the preposition remains most relevant.
Indeed, we can proceed as following: first, we exchange the verb ‘to be’ in Ex. 5.1.a. for ‘to lie’
and we get ‘the bottle lay in front of the plate’; next, we turn the sentence into an adjective
phrase (Ex. 5.3.a.), and test which element is most relevant by stripping it from the sentence
(Ex. 5.3.b. and c.). Then, we observe that only when we strip the prepositional information
(Item c.), any spatial relation between bottle and plate is lost; whereas when we strip the verbal
information (Item b.), the spatial relation remains.

Example 5.3

a. I see the bottle lying in front of the plate.

b. I see the bottle lying in front of the plate.
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c. I see the bottle lying in front of the plate.*

Some prepositions pose a challenge because they are closely related to motion, amongst
others the preposition conveying direction; for example, towards or through. However, such
prepositions still depend on the verb to express a motion or spatial relation (Ex. 5.4). At the
very most, just a couple of prepositions express only motion, i.e., they are not used to express
position; for instance, into.

Example 5.4 The prepositions below, toward and through, express a spatial or motion rela-
tion depending on the verb.

toward through

Spatial relation The child is pointing toward his
mom.

The broken bone sticks out
through the skin.

Motion relation The athlete runs toward the goal. The birds fly through the trees.

In sum, it is virtually impossible to describe the spatial relation between two objects without
a preposition (as explained in Sect. 4.1.2). Likewise, it is very difficult to describe the motion
between two objects without a verb. This linguistic difference has profound cognitive implica-
tions.

B. Cognitive differences between prepositions and verbs

According to L. Talmy (2000b, Intr. pp. 22f.) prepositions and verbs are cognitively very different
elements. Prepositions are ‘grammatical terms’, whereas verbs are ‘lexical terms’. In another
words, prepositions form a ‘closed class’ (like determiners or conjunctions do), which means
that the set of prepositions are relatively small compared to ‘open classes’, such as verbs or
adjectives. Moreover, the closed classes have a very stable membership—a language rarely adopts
new prepositions. However, open classes, such as verbs, are in steady change growing with new
members; for instance, verbs can be readily created from nouns and adjectives, e.g., the -ize
verbs.

More relevantly, the difference between closed-class and open-class elements manifests in dif-
ferent mathematical properties. Closed-class elements describe “largely a relativistic, topological,
qualitative, or approximative rather than a absolute, Euclidean, quantitative, or precisional”, as
open-class elements do (ibid., p. 28). Specifically, clossed-class elements comprise notions such
as partition, region, locatedness.

Finally, in spatial relations, the roles of figure and ground are exchangeable in a more sym-
metrical way than in motion relations. We illustrate this phenomenon in Example 5.5: when
we exchange the roles in the spatial relation, we obtain a sentence grammatically equivalent to
the first with a different preposition (behind); however, when we exchange roles in the motion
relation, we are forced to use the passive construction (i.e., was climbed by). As a consequence,
the motion relation with figure-ground exchanged is not grammatically equivalent to the original
one, but it is a different grammatical structure: a passive sentence. Certainly, though mountain
is the subject, it is not the one who performs the action, in fact, we have no verb which expresses
the mountain as a performer of the action on a climbing alpinist.

Example 5.5 We exchange ground and figure in Example 5.1.
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Original sentence Figure-Ground exchanged

Spatial relation The bottle is in front of the
plate

The plate is behind the bottle

Motion relation The alpinist climbed the moun-
tain.

The mountain was climbed by
the alpinist.

Admittedly, as noted by Talmy (1983, Sect. 3.1), spatial relations are not fully symmetric
concerning meaning. For instance, when we exchange figure and ground as in Example 5.6,
Item a. sounds more familiar than Item b., and, therefore, we may argue that it has different
meaning nuances. Nevertheless, grammatically both expressions are equivalent. Consequently,
we confirm our claim: spatial relations are grammatically equivalent when we exchange figure
and ground.

Example 5.6

a. The bicycle is near the house.

b. The house is near the bicycle.

By the way, motion relations are strongly asymmetrical, because usually one of the entities
performs a certain motion that the other does not. For example, an entity moves, while the
other remains motionless—as in Example 5.1.b.—or when an entity, e.g., a motorcycle, overtakes
another, e.g., a car. Spatial relations, however, remain to a great extent symmetrical because
both objects are motionless. We have, though, in spatial relations softer asymmetry sources
(For a complete list, see ibid., table (3) pp. 230f.); one of them relates to the item mobility.
For instance, in Example 5.6, ‘bicycle’ sounds more common as figure (item a.) than as ground
(item b.), because ‘bicycle’ is more movable than ‘house’.

5.5.3 Implications for Qualitative Representations

Section 5.5.2 considered, it is noteworthy how good the properties of a linguistic closed-class, i.e.,
a grammatical term, fit the properties of qualitative relations (Tab. 5.1). One of such closed-class
elements, the prepositions, is the standard way in language to express spatial relations. Con-
sequently, we argue that when researchers mathematically formalize spatial relations, e.g., in a
qualitative spatial representation, they intuitively reflect the linguistic properties of prepositions
in their formalization. It might be the other way round: prepositions and spatial representations
show similar properties, because they are, respectively, linguistical and mathematical manifesta-
tions of the same cognitive reality: the way our understanding processes space.

Conversely, it is also remarkable how different are the properties of linguistic open-classes
from the properties of qualitative representations. Thus, since motion is largely expressed
through verbs (open-class elements), it becomes awkward to formalize motion in a qualitative
representation—Notwithstanding, researchers have constructed a handful of such qualitative mo-
tion representation.

To wrap up, language seems to show that we cognitively process space in a very different man-
ner than we process motion. In that sense, the mathematical formalization of spatial relations
as qualitative representations is for humans more straightforward than, regrettably, the formal-
ization of motion relations as qualitative representations. Howbeit, in this work, we provide a
cognitively plausible method to generate qualitative motion representations.
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Table 5.1: Comparison of properties shown by three domains: qualitative representations,
open-class elements, closed-class elements.

properties

domain Qualitative representns.
(e.g., RCC, OPRA1)

Closed-class elemts.
(e.g., prepositions)

Open-class elemts.
(e.g., verbs)

Type of measure qualitative qualitative quantitative

Number of elements fixed, finite,
low number

fixed, finite,
low number

variable, growing

Topological Structure disjoint partition partitions, regions
(amongst others)

Operations

Converse Yes Yes
(different preposition

used)

Arguably, No
(passive form used)

Composition Yes Yes No



Part III

Developing Story-Based
Categorizations

85





Chapter 6

Describing [Motion]
Categorizations: A Framework

In some respects, it seems as if the study of con-
cepts is the study of theories that do not work for
one reason or another.

N. Braisby (2012)
“Concepts”, p. 162

In the literature, we find a great variety of categorization models, e.g., probabilistic models
based on prototypes, based on exemplars, categorization through clustering, and so on (Ch. 3).
Unfortunately, each model is built on a particular formalization, i.e., each model is described us-
ing its own mathematical tools (See comprehensive survey, Pothos and Wills 2011a). This makes
it a toilsome task trying to compare, or computationally implement, categorization models; even
more, because the formalization of many categorizations models is rather vague, notably, the
formalization of the prototype model (Murphy 2002, pp. 41–45). We avoid these drawbacks by
mathematically specifying our categorization model and relating it to the psychological termi-
nology.

The precise definition of our story-based motion categorizations takes place in Chapter 8,
but, in this chapter, we provide the mathematical building blocks that, then, enable a solid
definition of the story-based motion categorizations. Here, we define a mathematical framework
to formalize categorizations, concretely, motion categorizations. In plain words, here we describe
the categorization process mathematically. Admittedly, our framework suits more naturally a
boundary categorization model, but it allows for modifications to accommodate other types, such
as prototype or exemplar model.

We proceed as follows. At first, in Sections 6.1 and 6.2, we define our categorization frame-
work: we express the categorization process mathematically, in particular, we link the mathemat-
ical expressions to fundamental psychological categorization terms, such as category, attribute,
and feature. Subsequently, in Section 6.3, we illustrate our framework by describing a simple mo-
tion categorization, QTCB12, which is also a qualitative motion representation (Van De Weghe
et al. 2006). Finally, in Section 6.4, we go beyond pure descriptive tasks: we use our framework
to test which similarity function and which categorization model (prototype or boundary) most
suitably describes a motion categorization; we take again as example the QTCB12 categorization.

87
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We undertake to formalize categorization, because of its advantages (See, Murphy 2011): we
expect to be detailed enough, here, in our categorization framework, and, later, in our story-based
categorizations, that there be nothing left to intuition, but anyone may implement our methods
in the same way we do; so that we ensure that she obtains the same results we do (reproducibil-
ity), and make the same predictions we would (effectiveness) (Anderson 1976, p. 17–18). We
understand our categorization framework as an unambiguous formalization of the rather vague
concept of psychological space (Sect. 3.4.1.A, p. 45), and has, thus, many commonalities with
it. All throughout our formalization and subsequent modelling, we keep Braisby’s admonishing
words in mind: we know that for some reason our theory will be found wanting (See quotation
above).

That said, we acknowledge that our categorization framework is comparable to many imple-
mentations of a psychological space—for example, the ‘conceptual spaces’ of Gärdenfors (2004,
2014)—but with some customizations. The main virtues of our framework are following: the
terms are clearly, unambiguously, and mathematically defined; moreover, the terminology is
explained so that both researchers in psychology and AI should sympathize with the framework.

6.1 The Categorization Process: Formalization

In the following, we describe the categorization process using terms related to motion catego-
rization; more accurately, we use the terms concerning scenarios categorization because this
is the focus of this work. Thus, it might seem that we limit our description to the scenarios
categorization—It is not so. We could describe the categorization process in this chapter using
the more general terms shown in Table 6.1. For instance, we could substitute everywhere ‘mo-
tion scenario’ by the term ‘motion state’ which is a more general description of the motion of
two entities, not limited to the current positions and velocities. Even more, we could substitute
‘motion scenario’ and ‘kinematic space’ by the most general terms ‘item’ and ‘items space’; and
our description would still be consistent.

Scenarios

categorization
⊂

Motion

categorization
⊂

General

categorization

Kinematic space = Kinematic space ⊂ Items space
Motion scenario ⊂ Motion state ⊂ Item

Table 6.1: Hierarchy of terms according to the degree of specificity. From most specific
(‘scenarios categorization’) to most general (‘general categorization’).

6.1.1 Basic Elements: Kinematic space & categorization rule

First off, to categorize a motion scenario K = (~xk, ~vk; ~xl, ~vl) means that we label it with a
category Mi. Now, in our formalization, this categorization process is defined by the basic
elements that we list below:

i. The ‘categories set ’ M contains the categories M = {M1,M2, . . . ,Mm} in which a motion
scenario can be categorized. We assume the categories are a finite number m (e.g., the
nine QTCB12 categories in Eq. (6.9))—Both the requirement of cognitive economy and the
finite number of human concepts seem to enforce this assumption.
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ii. The ‘kinematic space’, K is the set of all possible motion scenarios K; they are represented
as a vector of positions, ~x, and velocities, ~v, for each entity. We call ‘kinematic coordi-
nates’, K, these parameters (positions and velocities) that uniquely characterize a motion
scenario—Depending on the context, we refer to them also as ‘kinematic variables’. In that
sense, K is a coordinate space in which each motion scenario K is described as a point.

iii. The ‘categorization rule’ fµ labels each motion scenario with a category. In other words, the
categorization rule is a function that maps each motion scenario, K, into the corresponding
motion category, Mi (e.g., Eq. (6.10)). Alternatively, we can say that the categorization
rule defines the category membership of the motion scenarios.

fµ : K −→ M
K 7−→ Mi

(6.1)

Summarizing, a ‘motion categorization’, K, is most basically defined as (kinematic space K,
categorization rule fµ, motion categories M), which is actually a formalization of the classical
model:

K = (K, fµ,M) (6.2)

Equivalently, we can define the motion categorization providing the categorical regions instead
of providing the categorization rule. A ‘categorical region’, Ki, is the set of scenarios that belong
to a certain category Mi. In this case, a motion categorization K is defined as (kinematic space
K, categorical regions Ki, motion categories M):

K = (K, {K1, . . . ,Km},M) (6.3)

where Ki = fµ
−1(Mi) ⊂ K Mi ∈ M

In our most simple understanding of categorization, the categorical regions, Ki, should verify
two properties: a motion scenario K cannot belong to more than one category, i.e., categorical
regions should be disjoint (Eq. (6.4a)); and every motion scenario should be categorized, i.e., the
categorical regions cover the whole kinematic space (Eq. (6.4b)). Hence, the categorical regions,
Ki, are a partition of the kinematic space K.

∀i, j Ki ∩Kj = ∅ (6.4a)

K =

m⋃

i=1

Ki (6.4b)

Both equivalent definitions of motion categorization, (fµ,M) (Eq. (6.2)) and ({K1, . . . ,Kn},
M) (Eq. (6.3)), correspond respectively to the ‘intensional ’, by rules, and ‘extensional ’, by
members, definitions of a category or concept (e.g., Houdé 2004, pp. 78f.). Note that the
intensional definition—in our case by means of the categorization rule fµ—is cognitively more
useful than just specifying all category members, because it allows us to more easily grasp a
categorization, that is, to understand what makes a category different from other, or which are
the key features upon which a category is built. As Hampton (2011) acknowledges “Intensions are
of more interest to psychologists, since they reflect the way in which we represent the concept[,
i.e., the category,] internally”.
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6.1.2 Additional Elements: Featural space & Feature extraction

The elements described in Section 6.1.1 (kinematic space, categorization rule, and categories set)
are indispensable to define a motion categorization. Nevertheless, there is no trace of two capital
concepts in categorization according to psychology: features and dissimilarity (Sect. 3.4). Here,
we work out these additional elements (features and dissimilarity) from the basic ones (kinematic
space, categorization rule, and categories set).

Please note that we work inversely as in traditional categorization: Instead of defining features
and a feature-based dissimilarity in order to create a categorization rule based on them (Bottom-

up method in Fig. 6.1), we extract the features and a feature-based categorization rule from the
general categorization rule, and, finally, define a dissimilarity in the obtained featural space (Top-

down method in Fig. 6.1). At the end, the result is equivalent as we had first defined the features,
and, of course, we can apply our framework also in a bottom-up context, when the features and
the dissimilarity are first given.

This top-down method is the only effective one when we deal with the story-based categories,
because our method for generating story-based categorizations provides, in first place, their
categorization rule (which we call story map, Sect. 8.1)—This is also the case for qualitative
representations (Sects. 4.4 and 5.1), where the categorization rule is defined without singling out
the features in advance.

MultiDimensional Scaling

Categorization rule
Featural
variables

Dissimilarity
measure

Bottom-up

Independent
variables are
extracted.

Featural dissimi-
larity is chosen.

Featural
variables

Dissimilarity
measure

Categorisation rule
(similarity-based)

Pairwise
dissimilarities

Top-Down

Featural dissim-
ilarity is chosen.

Dimensionality
is chosen.

Figure 6.1: Two methods of describing a categorization: ‘bottom-up’ and ‘top-down’. We denote
bottom-up when we start with the categorization rule, and, from it, we derive the remaining
categorization properties (first, features and, then, dissimilarity)—This is the case of story-based
representations. We denote top-down when we begin with the pairwise dissimilarities and, from
them, we obtain the best fit for dissimilarity measure and features (e.g., using MDS techniques).

In Equation (6.5), we apply the top-down analysis to our categorization method; we express
the categorization rule fµ in Equation (6.1) as a two-step process. First, the featural variables
F = (ϕ1, . . . , ϕn) are obtained from the kinematic variables K through function Φ—comparable
to a feature extraction. Second, based on the featural values F , the motion category Mi is
obtained by means of fΦ—comparable to a feature based categorization.

K −→ F −→ M

K = (~xk, ~vk; ~xl, ~vl)
Φ
7−→ F = (ϕ1, . . . , ϕn)

fΦ7−→ Mi

(6.5)

fµ (Eq. (6.1))
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Summing up, the decomposition of the categorization rule, fµ, as shown in Equation (6.5),
originates new elements: the features extraction function Φ, the featural variables F , the featural
space F , and the featural categorization rule fΦ. Below, we list these additional elements, we de-
fine them explaining how we obtain them from the categorization rule, and briefly illustrate them
with the motion categorizations QTCB21 and Stories-RCC—one of the motion categorizations
derived in this work (Sect. 8.2.1). Later in Section 6.3 we provide a full detailed example in which
we apply our categorization framework—and concretely this decomposition of the categorization
rule—to the QTCB21 motion categorization.

i. The ‘featural variables’ (or, simply, ‘features’) are the smallest set of independent vari-
ables, F = (ϕ1, . . . , ϕn), that determine the category for any given scenario, and fulfil the
requirements in Section 6.1.3. The featural variables must be obtained as function of the
kinematic variables, i.e., ∀i ϕi = ϕi(~xk, ~vk; ~xl, ~vl); we obtain them by inspection of fµ.

Example 6.1.i When we describe the motion categorization QTCB21 according to our
framework (Sect. 6.3), we obtain two featural variables, ϕk(~xk, ~vk; ~xl, ~vl) = cos(∠(~xl −
~xk, ~vk)) and ϕl(~xk, ~vk; ~xl, ~vl) = cos(∠(~xk − ~xl, ~vl)), which are the cosine of the relative
motion angles of each entity, γk = ∠(~xl − ~xk, ~vk) and γl = ∠(~xk − ~xl, ~vl) (Fig. 6.2, also see
Eqs. 6.12). In short, the featural variables are F = (ϕk, ϕl).

Example 6.2.i The categorization Stories-RCC is determined by two featural variables,
dmin and difV, i.e., F =(ϕ1, ϕ2) where ϕ1 = dmin and ϕ2 =difV. The first variable, dmin(~xk, ~vk;
~xl, ~vl) = ‖~xl − ~xk‖|det(~xl − ~xk, ~vl − ~vk)|, is the minimum distance between entities along

a uniform trajectory; the second one, difV(~xk, ~vk; ~xl, ~vl)=
‖~vl−~vk‖

‖~vk‖+‖~vl‖
, is real value in [0, 1]

telling how different are the velocities (‘0’ if they are equal, ~vk =~vl, and ‘1’ if they are
opposite ~vk =−|α|~vl) (Eq. (8.3)).

ii. The ‘featural space’ F , is the real coordinate space generated by the featural variables F .

Example 6.1.ii The featural variables of QTCB21 (Ex. 6.1.i), generate the featural space
F = [−1, 1]× [−1, 1] (See Fig. 6.4), because they are cosine values.

Example 6.2.ii The featural variables of Stories-RCC (Ex. 6.2.i), generate following
featural space F = [0,+∞)× [0, 1], because the first variable is a distance, and the second
a speeds ratio.

iii. The ‘features extraction function’ Φ, yields the values of the features F = (ϕ1, . . . , ϕn) for
each motion scenario K = (~xk, ~vk; ~xl, ~vl).

Φ : K −→ F
K 7−→ F = (ϕ1, . . . , ϕn)

(6.6)

Example 6.1.iii The featural variables of QTCB21, ϕk and ϕl, along with their formulae
define the features extraction function of QTCB21 as following (Eqs. 6.12):

(ϕk, ϕl) = Φ(~xk, ~vk; ~xl, ~vl) =
(
cos(∠(~xl − ~xk, ~vk)), cos(∠(~xk − ~xl, ~vl))

)

Example 6.2.iii The featural variables of Stories-RCC, dmin(~xk, ~vk; ~xl, ~vl) and difV(~xk, ~vk;
~xl, ~vl) (Ex. 6.2.i), along with their formulae define the features extraction function of
Stories-RCC as following (See Eq. (8.4)):

(ϕ1, ϕ2) = Φ(~xk, ~vk; ~xl, ~vl) = (dmin(~xk, ~vk; ~xl, ~vl), difV(~xk, ~vk; ~xl, ~vl))
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γk

γl

x

y

k

~vk

l

~vl

Figure 6.2: In this motion scenario, we show the angles γk and γl, which fully determine the
scenario categorization in QTCB21 through their cosine, ϕk = cos(γk) and ϕl = cos(γl) (Ex. 6.1.i)

iv. The ‘featural categorization rule’ fΦ maps the feature values F = (ϕ1, . . . , ϕn) into the
corresponding category Mi.

fΦ : F −→ M
F = (ϕ1, . . . , ϕn) 7−→ Mi

(6.7)

Example 6.1.iv Here we show the featural categorization rule of QTCB12. The cate-
gorization rule partitions the featural space in the categorical regions, as we will see in
Figure 6.4.

fΦ(ϕk, ϕl) :=







M1 if ϕk > 0, ϕl > 0
M2 if ϕk > 0, ϕl = 0
M3 if ϕk > 0, ϕl < 0
M4 if ϕk = 0, ϕl > 0
M5 if ϕk = 0, ϕl = 0
M6 if ϕk = 0, ϕl < 0
M7 if ϕk < 0, ϕl > 0
M8 if ϕk < 0, ϕl = 0
M9 if ϕk < 0, ϕl < 0

Example 6.2.iv In Section 8.2.1, we obtain the featural categorization rule, fΦ, of the
Stories-RCC categorization (which we later call σΦ). Recognizably, the domain variables
of fΦ are the featural variables, F = (ϕ1, ϕ2) = (dmin, difV). The categories are here noted
as Sij instead of Mi. Here, we show only a part of the categories set: S01, S02, S03, S11,
S12, and S13.

fΦ(dmin, difV) :=







S01 if dmin > d2, difV = 0
S02 if dmin = d2, difV = 0
S03 if d2 > dmin > d4, difV = 0
...

...
S11 if dmin > d2, difV > 0
S12 if dmin = d2, difV > 0
S13 if d2 > dmin > d4, difV > 0
...

...

where d2 = |rk + rl| and d4 = |rk − rl|, being rk and rl the radii of the entities.
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6.1.3 Properties of Features and Definition of Dissimilarity

Here we define decisive properties of the features in our framework: lower dimensionality and
self-density. We devote a section to it because features are central to categorization (Sect. 3.4.1).
Features allow us to comprehend, to conceptualize a categorization: Roughly, they are the con-
cepts on which a categorization bases (See Sect. 11.7.2). Furthermore, features are fundamental
to compute similarity, or, equivalently, dissimilarity (Sect. 3.4.1).

Additionally, as a by-effect, the property of self-density helps us to extract the features,
i.e., the featural variables. Certainly, the process of extracting the featural variables from the
categorization rule (item i., Sect. 6.1.2) is somewhat ambiguous: we can choose diverse sets,
or combinations, of featural variables which fulfil the requirement of minimality ; by enforcing
self-density, we reduce the ambiguity in the choice of featural variables.

Lower Dimensionality The featural space F has, by definition (item i., Sect. 6.1.2), lower or
equal dimensionality than the kinematic space K, i.e., dim(F) ≤ dim(K). In fact, the equality
hardly ever holds, because the featural space is always a simplification of the kinematic space—the
featural space focuses only in certain aspects of the motion—that is, generally, dim(F) < dim(K).

As an illustration, consider the featural space Stories-RCC, which consists only of two real
parameters (Ex. 6.2.i); it has much lower dimensionality than the kinematic space, K, which
consists of 8 real parameters for the simple case of two entities moving in the plane. Therefore,
in most cases, the featural space has not only lower but much lower dimensionality than the
kinematic space, i.e., dim(F) � dim(K).

Because of its much lower dimensionality, the featural space F allows a more direct under-
standing of the categorization than the kinematic space K does; the numerous dimensions of
K (normally dim(K) ≥ 8 (Sect. 2.1)) make this space hard—de facto impossible—to visualize
and, thus, to treat intuitively. Furthermore, in most cases, the coordinates in F , the ‘featural
coordinates’, correspond to natural kinematic concepts, such as distances or angles.

Self-Density The featural space F should have two additional characteristics that we summa-
rize in the property ‘self-density’: it should be a metric space, and it should be dense-in-itself.

First, the very purpose of requiring the featural space to be a metric space is to endow it with
a dissimilarity function D(F1, F2); so that we can obtain a dissimilarity function in the kinematic
space, D(K1,K2)—which is equivalent to obtaining a similarity function (See begin Sect. 3.4).

In more detail, if the featural space has a metric dF , then we can measure the distances
between the featural points F1 and F2, i.e., dF (F1, F2), as we do in Section 6.3—Note that once
we have a distance, we automatically have a dissimilarity (Sect. 3.4). The featural distance, dF ,
leads to a distance between scenarios, dK, by mapping the scenarios into the featural space using
the features extraction function Φ. In other words, we extract the features of each scenario, Fi

= Φ(Ki), and, then, we measure the featural distance dF between the extracted features, F1 and
F2, to obtain the dissimilarity between scenarios K1 and K2.

dK(K1,K2) = dF (Φ(K1), Φ(K2)) = dF (F1, F2) (6.8)

Second, a featural space with a metric is, additionally, dense-in-itself when the featural vari-
ables are continuum-like values—that is, intervals of R or Q values—instead of, for instance,
boolean or discrete values. As an illustration, consider a featural space with two featural vari-
ables: ϕx, which takes values in [−3, 3] and ϕy, which takes values in [0, 2]; both take values
in an interval, in consequence, such featural space is dense. In contrast, a featural space with
the variable ϕx which takes discrete values {−3, 3} and ϕy, which takes discrete values {0, 2} is
non-dense because we have discrete featural values.
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A crucial implication is following: a dense-in-itself space is more appropriate to describe
human categorization because the distances and the corresponding dissimilarities in such space
have an ideal gradation effect (See Sect. 3.3.2). In contrast, in a non-dense space, the distances
and the corresponding dissimilarities are discrete, which can lead to a coarse gradation or even
no gradation at all. Therefore, its featural space is less appropriate for describing human cate-
gorization.

In conclusion, since we have a certain flexibility in choosing the featural variables, we should
strive to define the featural variables as continuum values. This is the striving in our story-based
categorizations (e.g., Sect. 8.2). For example, for Stories-RCC we have chosen the featural

variable difV = ‖~vl−~vk‖
‖~vk‖+‖~vl‖

with values in the interval [0, 1], although we could have chosen the

discrete variable difV = {0 if ~vk =~vl; 1 if ~vk 6=~vl}. In the latter case, the featural variable would
not be dense, because it takes few discrete values, and it would separate scenarios into just two
groups according to the 0 or 1 value: within-category gradation would be lost for such a variable.

6.2 Link to Psychological and Philosophical Terms

Our framework reproduces basic categorization principles in human cognition. Indeed, as men-
tioned in Section 3.4.1, p. 43, all models of categorization and concept acquisition lie on the
feature extraction; our framework contains also a feature extraction by means of the function
Φ (item iii., Sect. 6.1.2). In addition, as mentioned in Section 3.4, p. 41, many models base on
similarity; in our framework, we can create a similarity measure based on the featural distance
dF (Eq. (6.8)).

Consequently, we can link the elements in our framework to terms and properties in human
categorization, as we do in the following.

Features We identify the featural variables in F with the ‘features’, as defined in the APA
Dictionary of Psychology, p. 370 (2007) “[A]ttribute of an object or event that plays an important
role in distinguishing it from other objects or events and in the formation of category judgements.”
Whereas the kinematic variables and all other non-featural variables are simply ‘attributes’,
the featural variables are a very particular type of attributes: they univocally determine the
category. Still, alternative terminology is used in the literature, which we mention for the sake
of completeness: often researchers use the term ‘feature’ to generally refer to ‘attribute’ (e.g.,
Colman 2015, pp. 812f.); because of this, they distinguish the relevant features by adding an
adjective such as ‘characteristic’, ‘defining ’ (Hampton 1979), or ‘diagnostic’ (Goldstone 1996),
e.g., ‘diagnostic features’.

Our framework stresses the feature extraction, Φ, as an intermediate step in categorization.
Even though we do not lie on the features from start—They are subsequently extracted—we can
rightly call our framework a ‘featural framework ’. This might be seen as a limitation, or even
as opposed to ‘neural networks’ methods, but truth is that modern neural networks, e.g., deep
learning, strive to automate the finding of features (Skansi 2018, p. 55), and, thus, the quest
after features seems a constant in categorization research (e.g., Sect. 3.4.1 and Fig. 3.2).

Interestingly, we give clear mathematical requirements in order to define the features, which
is rare in psychology.

Similarity function and Psychological Space In our framework, we can implement a simi-
larity function between motion scenarios, S(K1,K2), because the featural space is a metric space:
we can directly transform the distance function in the featural space into a dissimilarity, or into a
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similarity. In addition, such dissimilarity has the property of being graded due to the self-density
of the featural space; this increases its cognitive plausibility.

Furthermore, we can readily identify the featural space with the psychological space because it
is in the featural space where the dissimilarities are computed (Sect. 3.4.1.A, p. 45). We see this
clearly in Equation (6.8): the distance between scenarios, dK(K1,K2), is effectively computed in
the featural space, dF (ϕ1, ϕ2), after the features are extracted ϕ1 = Φ(K1) and ϕ2 = Φ(K2). In
other words, scenarios with exactly the same featural values are categorized as “identical”.

All considered, we advocate for the use of the term ‘featural space’ over the term ‘psychological
space’ to refer to a metric space in which similarities are measured (Sect. 3.4.1.A). The adjective
‘featural’ is more objective: it refers to the fact that such metric space consists of coordinates
which are called, by definition, ‘features’; and there is no psychological implication about such
space: it is only a practical modelling device. On the contrary, the adjective ‘psychological’
implies that such space is part of the mind or, at least, that is cognitively plausible.

Standard Categorization Models The categorization rule fµ—or rather its featural version
fΦ—tells us which standard categorization model is at work for a given categorization. By in-
specting the categorization rule according to our model, we can see whether a given categorization
implements a rule-based model (i.e., a boundary model, Sect. 3.5) or a similarity-based model
(i.e., a metric model, Sect. 3.4.2); moreover, we can see whether the similarity model requires
exemplars or category prototypes, or whether clustering is performed.

Regarding philosophical terms, we already mentioned above how the intensional and exten-
sional types of concept definitions are expressed respectively by each definition of categorization:
given the categorization rule (fµ,M) (Eq. (6.2)) and given the categorical regions ({K1, . . . ,

Kn},M) (Eq. (6.3)).

6.3 Example: Scenario Categorization by QTCB21

We illustrate the definitions and claims of the previous section through the well-known and
simple motion categorization QTCB21 (Van De Weghe et al. 2006). Although it is already briefly
defined in Sect. 5.4, we offer below a more extensive definition.

In QTCB21, each motion category is a 2-tuple (Pk,Pl), where each coefficient, P∗, can take
one of three symbols, {+, 0,−}. Accordingly, we have a total of 9 categories that we can alter-
natively name using the coefficients P∗ or the standard terms for motion categories Mi (item i.,
Sect. 6.1.1), e.g., (−,−) or M1.

MQTCB21
= {(Pk,Pl)}

= {
M1

(−,−),
M2

(−, 0),
M3

(−,+),
M4

(0,−),
M5

(0, 0),
M6

(0,+),
M7

(+,−),
M8

(+, 0),
M9

(+,+)}
(6.9)

The coefficients Pk and Pl are determined according to following rules:

• Pk is the relative motion of the entity k regarding l still.

− if k moves towards l

0 if k keeps distance to l

+ if k moves away from l

• Pl is the relative motion of the entity l regarding k still:

− if l moves towards k
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γk

γl
x

y

k

~vk

l

~vl

Figure 6.3: In this motion scenario, we show the angles γk and γl, which fully determine
the scenario’s categorization in QTCB21 through their cosine, cos(γk) and cos(γl) (Eqs. 6.12
and Eq. (6.10)). This motion scenario is categorized as (−,+), i.e., M3.

0 if l keeps distance to k

+ if l moves away from k

Categorization rule fµ

Based on the above definitions, we can explicitly define the categorization rule fµ.

fµ : K −→ MQTCB21

(~xk, ~vk; ~xl, ~vl) 7−→ Mi = (Sign(−
~vk · (~xl − ~xk)

‖~vk‖‖~xl − ~xk‖
)

︸ ︷︷ ︸

Pk

, Sign(−
~vl · (~xk − ~xl)

‖~vl‖‖~xk − ~xl‖
)

︸ ︷︷ ︸

Pl

) (6.10)

where Sign(x) is the ‘sign symbol function’; it outputs a character.

Sign(x) =







‘−’ if x < 0
‘0’ if x = 0
‘+’ if x > 0

(6.11)

Feature extraction Φ and feature categorization fΦ

The categorization rule fµ in Equation (6.10) becomes more graspable, if we decompose it into
the feature extraction Φ and the feature categorization fΦ, i.e., fµ = fΦ ◦Φ, according to Equa-
tion (6.5).

By inspecting fµ we discern the possible featural variables ϕk and ϕl (Eqs. 6.12), which
correspond to cosine values of the relative motion angles (γk and γl) of the entities k and l.

ϕk(~xk, ~vk; ~xl, ~vl) :=
~vk · (~xl − ~xk)

‖~vk‖‖~xl − ~xk‖
= cos(∠(~xl − ~xk, ~vk)) = cos(γk) (6.12a)

ϕl(~xk, ~vk; ~xl, ~vl) :=
~vl · (~xk − ~xl)

‖~vl‖‖~xk − ~xl‖
= cos(∠(~xk − ~xl, ~vl)) = cos(γl) (6.12b)

These features, ϕk and ϕl, fulfil the aforementioned main conditions for featural values
(item i., Sect. 6.1.2 and Sect. 6.1.3): they are the smallest set of independent variables that
determine the categorization; the dimensionality of the features space, dim(F) = 2, is much
lower than the dimensionality of the kinematic space, dim(K) = 8; they correspond to natural
kinematic concepts, and they are self-dense (they are real values).
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−1.0 −0.5 0.0 0.5 1.0

ϕk

−1.0

−0.5

0.0

0.5

1.0

ϕ
l

(−,−)

(−,+)(+,+)

(+,−)

QTCB21 Categories

M1: (−,−)

M2: (−, 0)

M3: (−,+)

M4: (0,−)

M5: (0, 0)

M6: (0,+)

M7: (+,−)

M8: (+, 0)

M9: (+,+)

Figure 6.4: Featural space of QTCB21, FQTCB21
, which is constituted by two variables ϕk =

cos(γk) and ϕl = cos(γl) (Eq. (6.14)). The different coloured regions correspond to the QTCB21

categories; i.e., they are categorical regions. They have different dimensionality; for example, M5

is 0-dimensional, M6 is 1-dimensional, and M7 is 2-dimensional.

Now, we define the feature extraction function, Φ, which maps every motion scenario into the
QTCB21 featural space, FQTCB21

, as follows.

Φ : K −→ FQTCB21
= [−1, 1]× [−1, 1]

(~xk, ~vk; ~xl, ~vl) 7−→ (ϕk, ϕl)
(6.13)

with ϕk and ϕl defined, respectively, in Equations (6.12a) and (6.12b)

As last step, we obtain the feature categorization function, fΦ, which yields the categories
based on the features ϕk and ϕl. We deduce the following fΦ function by filling the gap in
Equation (6.13) that allow us to obtain Equation (6.10). We can visualize this function, fΦ, in
Figure 6.4.

fΦ : FQTCB21
−→ MQTCB21

= {−, 0,+}2

(ϕk, ϕl) 7−→ Mi = (Pk,Pl) = (Sign(−ϕk), Sign(−ϕl))
(6.14)

with Sign defined in Equation (6.11)

At last, we have the main ingredients of a categorization: the categorization rule, fµ, and its
resolution into feature extraction, Φ, and feature categorization, fΦ. These three functions are
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K

(~xk, ~vk; ~xl, ~vl)

(ϕk, ϕl) Mi = (Pk,Pl)

FQTCB21
= [−1, 1]2 MQTCB21

= {−, 0,+}2

Φ

fµ=fΦ ◦Φ

fΦ

Figure 6.5: This diagram is a particular case of Equation (6.5) applied to QTCB12. The cat-
egorization rule fµ categorizes a motion scenario (~xk, ~vk; ~xl, ~vl) into a QTCB12 category (Pk,Pl)
(Eq. (6.10)). The categorization process is decomposed in, first, the extraction of features
(ϕk, ϕl), by Φ (Eq. (6.13)), and the subsequent feature-based classification, by fΦ (Eq. (6.14)).

related by the Equation (6.5), which we adapt in Figure 6.5 to this specific case of the QTCB21

representation.

Notice how in describing QTCB21 according to our framework, we have proceeded in a
top-down way (Fig. 6.1). As in any other qualitative representation of motion, QTCB21 was
defined without explicit mention of features or featural space; nevertheless, these were implicit
in the definition, and our framework brings them to light.

6.4 Testing Dissimilarities and Traditional Models

In this section, we show further capabilities of our categorization framework. We apply it to test
the dissimilarity measure in three different spaces and two traditional categorization models for
motion scenarios—We use as example the motion categorization QTCB12, which we described
in Section 6.3. Concerning the dissimilarity measures, we test in which representation space the
dissimilarity best captures the properties of a categorization, either in the kinematic space (K), or
in the featural space (F), or in the categorical space (M). Further, using the fittest dissimilarity,
we test which traditional model, either prototype or boundary (Sects. 3.4.2 and 3.5), is more
suitable to describe such motion categorization. Keep in mind that the results, in terms of
dissimilarities, can be directly translated in terms of similarities (as shown in Tab. 3.1).

Our prime aim is not to perform an in-depth analysis of all possible representation spaces
that are apt for computing dissimilarity measures, but to outline how dissimilarity measures
behave regarding the space in which they are computed. For that reason, we drastically restrict
the number of analyzed scenarios and representation spaces: 3 reprentation spaces and 9 motion
scenarios. The chosen representation spaces and scenarios are representative enough to show
common issues, which can be generalized to categorizations other than categorization of motion
scenarios.

We have chosen 9 scenarios, K∗, arrayed in three groups according to their QTCB21 categories:
the group Ka belongs to category (−,−), Kb belongs to (0, 0), and Kc to (+,+) (Fig. 6.6
and Tab. 6.2). We compare all scenarios pairwise using three different dissimilarity measures: dK,

dF , and dM (Eqs. 6.15). For each measure, we use the Euclidean norm, i.e., ‖~x‖2 =
(∑n

i=1 xi
2
)1/2

to compute the dissimilarities. Another possibility would be to use ‖ · ‖2 only for dK, because
many features are integral (they cannot exist independently of one another); while we could use
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Figure 6.6: Motion scenarios that we use to analyze the three different dissimilarity measures
in Table 6.3. The scenarios are grouped by QTCB12 categorization: scenarios Ka∗ belong to
category M1, i.e., (−,−), Kb∗ to category M5, i.e., (0, 0), and Kc∗ to M9, i.e., (+,+). The
complete kinematic, featural, and categorical data of the scenarios is listed in Table 6.2

K kinematic space FQTCB21
featural space MQTCB21(

~xk , ~vk ; ~xl , ~vl
)

(ϕk, ϕl)=(cos(γk), cos(γl)) (Pk,Pl)

Ka1

(
(0, 0), (1.0, 70°) ; (2,0), (1.0, 125°)

)
(0.34, 0.57)=(cos(70°), cos(−55°)) M1 = (−,−)

Ka2

(
(0, 0), (1.0, 0°) ; (2,0), (1.0, 180°)

)
(1.00, 1.00)=(cos(0°), cos(0°)) M1 = (−,−)

Ka3

(
(0, 0), (1.0,−45°); (2,0), (1.0, 225°)

)
(0.71, 0.71)=(cos(−45°), cos(45°)) M1 = (−,−)

Kb1

(
(0, 0), (1.0, 90°) ; (2,0), (1.0, 90°)

)
(0.00, 0.00)=(cos(90°), cos(−90°)) M5 = (0, 0)

Kb2

(
(0, 0), (1.0, 90°) ; (2,0), (1.0,−90°)

)
(0.00, 0.00)=(cos(90°), cos(90°)) M5 = (0, 0)

Kb3

(
(0, 0), (0.6,−90°); (2,0), (1.0,−90°)

)
(0.00, 0.00)=(cos(−90°), cos(90°)) M5 = (0, 0)

Kc1

(
(0, 0), (1.0, 110°) ; (2,0), (1.2, 70°)

)
(−0.34,−0.34)=(cos(110°), cos(−110°)) M9 = (+,+)

Kc2

(
(0, 0), (1.0, 180°) ; (2,0), (1.0, 0°)

)
(−1.0,−1.0)=(cos(180°), cos(180°)) M9 = (+,+)

Kc3

(
(0, 0), (1.0, 225°) ; (2,0), (0.6,−45°)

)
(−0.71,−0.71)=(cos(−135°), cos(135°)) M9 = (+,+)

Table 6.2: Complete kinematic, featural, and categorical data of each scenario K∗ in Figure 6.6
according to the QTCB21 categorization (Eq. (6.9)). The first column, ‘K kinematic space’,
displays the kinematic data (positions ~x∗ and velocities ~v∗); the length units are not specified,
one unit corresponds to the separation between grid lines at Fig. 6.6; the velocities are expressed
in polar coordinates (speed, angle). The featural coordinates ϕ∗ are those obtained through
Eqs. 6.12. The categories are determined through the categorization rule in Equation (6.10)
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‖ · ‖1 for dF and dM, because the features are separable (See Sect. 3.4.1.A). However, in our
example, the results are qualitatively the same independently of the norm used. We choose the
same norm for all measures, Euclidean, so that the difference lies only in the chosen representation
space. In that way, we can better appreciate how important is the choice of the representation
space (i.e., kinematic, featural, or categorical) to appropriately model the categorization.

The dissimilarity measures are defined as follows:

dK(KA,KB) =
[
(~xkB − ~xkA)

2 + (~vkB − ~vkA)
2 + (~xlB − ~xlA)

2 + (~vlB − ~vlA)
2
]1/2

(6.15a)

dF (KA,KB) =
[
(ϕkB − ϕkA)

2 + (ϕlB − ϕlA)
2
]1/2

(6.15b)

dM(KA,KB) =
[
(pkB − pkA)

2 + (plB − plA)
2
]1/2

(6.15c)

The parameters used in Equations 6.15 mean following:

(a) (~xkA, ~vkA, ~xlA, ~vlA) and (~xkB , ~vkB , ~xlB , ~vlB) are, respectively, the kinematic coordinates of
scenario KA and KB , that is, their coordinates in the kinematic space K.

(b) (ϕkA, ϕlA) and (ϕkB , ϕlB) are, respectively, the featural coordinates of scenario KA and KB ,
that is, their coordinates in the featural space F . They are computed from the kinematic
coordinates via Equations 6.12.

(c) (pkA, plA) and (pkB , plB) are the categorical coordinates of the scenarios KA and KB , that
is, the values {−1, 0,+1} that univocally determine the QTCB21 category of the scenarios,
(Pk,Pl) (Eq. (6.9)). That is, they are their coordinates in the categorical space M. For
example, if scenario KA belongs to the category (−,+), then (pkA, plA) = (−1, 1); and if
scenario KB belongs to the category (+, 0), then (pkB , plB) = (+1, 0).

6.4.1 Dissimilarity results: analysis

In order to analyze the dissimilarity values (Tab. 6.3) of the test scenarios (Tab. 6.2 and Fig. 6.6),
we regard as benchmark some desirable and plausible properties for dissimilarities, which we
derive from our exposition in Section 3.3—More accurately, there, we mentioned the properties
of similarity in human categorization, which, here, we translate into properties for dissimilarities
(items I. to III.). A dissimilarity having such properties should suitably reflect both the inner
and the outer category structure in human categorization.

I. (minimality) The lowest dissimilarity of an item should be the self-dissimilarity (Compare
with item ii. in distance axioms).

II. (‘family resemblance’) The average within-category dissimilarity should be lower than the
average between-category dissimilarity (Sect. 3.3.2.B).

III. (prototypes adequacy) If we assume that the categories are represented by prototypes fol-
lowing properties should apply:

A. The protypes are the central (sort of average) items of a category (Sect. 3.3.1).

B. A prototype is, in average, least dissimilar to the items within the category, and overall
most dissimilar to the items in other categories—This is a kind of family resemblance
property for prototypes.

C. An item’s category is determined by the least dissimilar prototype to such item
(Sect. 3.4.2). Equivalently, the category members should be less dissimilar to the
prototypes in their category than to those in other categories.
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dK(KA,KB) Ka1 Ka2 Ka3 Kb1 Kb2 Kb3 Kc1 Kc2 Kc3

Ka1 0.00 1.75 2.81 0.70 1.94 2.91 1.24 2.59 3.01
Ka2 0.00 1.29 2.24 2.24 1.93 2.61 2.83 2.47
Ka3 0.00 3.12 2.63 1.05 3.34 2.71 1.83
Kb1 0.00 2.00 3.02 0.56 2.24 2.92
Kb2 0.00 2.26 2.20 2.24 2.62
Kb3 0.00 3.09 1.93 1.02
Kc1 0.00 1.95 2.82
Kc2 0.00 1.26
Kc3 0.00

(a) Dissimilarity matrix between scenarios obtained from dK(KA, KB), which is the Euclidean norm applied to the
kinematic coordinates of the scenarios KA and KB (Eq. (6.15a)).

dF (KA,KB) Ka1 Ka2 Ka3 Kb1 Kb2 Kb3 Kc1 Kc2 Kc3

Ka1 0.00 0.78 0.39 0.67 0.67 0.67 1.14 2.07 1.66
Ka2 0.00 0.41 1.41 1.41 1.41 1.90 2.83 2.41
Ka3 0.00 1.00 1.00 1.00 1.48 2.41 2.00
Kb1 0.00 0.00 0.00 0.48 1.41 1.00
Kb2 0.00 0.00 0.48 1.41 1.00
Kb3 0.00 0.48 1.41 1.00
Kc1 0.00 0.93 0.52
Kc2 0.00 0.41
Kc3 0.00

(b) Dissimilarity matrix between scenarios obtained from dF (KA, KB), which is the Euclidean norm applied to the
featural coordinates of the scenarios KA and KB (Eq. (6.15b)).

dM(KA,KB) Ka1 Ka2 Ka3 Kb1 Kb2 Kb3 Kc1 Kc2 Kc3

Ka1 0.00 0.00 0.00 1.41 1.41 1.41 2.83 2.83 2.83
Ka2 0.00 0.00 1.41 1.41 1.41 2.83 2.83 2.83
Ka3 0.00 1.41 1.41 1.41 2.83 2.83 2.83
Kb1 0.00 0.00 0.00 1.41 1.41 1.41
Kb2 0.00 0.00 1.41 1.41 1.41
Kb3 0.00 1.41 1.41 1.41
Kc1 0.00 0.00 0.00
Kc2 0.00 0.00
Kc3 0.00

(c) Dissimilarity matrix between scenarios obtained from dM(KA, KB), the Euclidean norm applied to the categorical
values (pk, pl), of the scenarios KA and KB (Eq. (6.15c)).

Table 6.3: Dissimilarity matrices that pairwise relate the 9 scenarios in Items I. to III.. In
each matrix a different dissimilarity measure is used: all dissimilarities are Euclidean, but each
is computed in a different space. The level of dissimilarity is proportional to the blue saturation
of each cell: lowest dissimilarity (0.00) corresponds to white cells and highest (depending on the
measure) corresponds to blue saturated cells. The brown coloured rectangles are within-category
dissimilarities; the rest are between-category dissimilarities.
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Minimality In the Tables 6.3a to 6.3c, we observe how all dissimilarities fulfil the first property,
minimality. By definition all self-dissimilarities are zero, which is the minimum possible value.

Family resemblance We test the second property—family resemblance—aided by the brown
rectangles at the tables. The rectangles contain the within-category dissimilarities, i.e., dissim-
ilarities between scenarios belonging to the same category. For that reason, the dissimilarities
inside the brown rectangles should be lower than those outside them.

In the dissimilarity dK (Tab. 6.3a), the values inside the rectangles are not particularly low
in whatever measure we take (mean or median). Actually, by visual inspection, the kinematic
dissimilarities do not seem to follow any particular pattern related to category membership,
which makes dK an entirely useless dissimilarity with regard to the QTCB12 categorization. This
becomes more evident, if we notice that in our examples (Fig. 6.6), the only contributions to dK
arise from differences in the velocity vectors—since the positions of k and l are the same in each
scenario—and, hence, by modifying the entities’ positions alone, we could obtain any arbitrarily
high dissimilarity values between scenarios.

On the other hand, Tables 6.3b and 6.3c show family resemblance: we observe a clearly low
within-category and high between-category dissimilarity, though with some objections.

First, we realize that the categorical dissimilarity, dM, discerns no intra-categorical structure;
the differences of dM are only due to the different categorical membership, while all items of the
same category have the same dissimilarity. For example, all scenarios within the same category
have dM =0.0, and, between all scenarios of category (−,−) and category (+,+) there is the same
dissimilarity, dM =2.83. Thus, in practice, dM is a dissimilarity between categories not between
items; it is only a little finer than the ‘discrete dissimilarity ’ between categories which assigns 1.0
to items of different categories and 0.0 to items of the same category. The dissimilarity dM takes
advantage of the fact that QTCB12 is a concatenated representation, i.e., QTCB12 = Pk × Pl,
so that dM reflects the between-category structure provided by the Cartesian product, but it
obliterates all trace of within-category structure.

Second, the dissimilarity dF presents a marked effect of family resemblance. In fact, if we
take τF = 1.00 as threshold, the rule dF (KA,KB) < τF correctly classifies most pair of scenarios,
(KA,KB), as belonging to the same category. Even more, any scenario but scenario Kc1 belongs
to the same category of the scenario with which it has lowest dF ; in other words,

If dF (KA,KB) < dF (KA,KC) ∀KC 6= KB ⇒ KA and KB belong to the same category

In this sense, dF would be cognitively the most adequate of all similarities but with a caveat: its
family resemblance is imperfect. For example, family resemblance is flagrantly violated by the
scenario Kc1. This scenario—which according to the categorization rule (Eq. (6.10)) belongs to
the category M9, i.e., (+,+)—has lower dissimilarity, dF =0.48, to all scenarios in category M5,
i.e., (0, 0), than to those in its own category, dF (Kc1,Kc3) = 0.52 and dF (Kc1,Kc2) = 0.93.

Family resemblance is deficient in QTCB12, because this categorization is defined as a bound-
ary model in which the borders are categories: category (0, 0) is the border between categories
(−,−) and (+,+). For that reason, the scenarios of category (+,+) that are closer to the
boundary category (0, 0)—that is, those scenarios of (+,+) with (ϕk >−0.5, ϕl >−0.5), i.e.,
(−120°<γk < 120°, −120°<γl < 120°)—are in average more similar to the scenarios in (0, 0)
than to those in its own category, (+,+). An analogous effect occurs with category (−,−).

Prototypes adequacy If QTCB12 motion categorization were suitably modelled by proto-
types, the properties recounted in Item III. should apply. However, a prototype model cannot
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fully account for its category structure: The deficiencies that arose when we tested family re-
semblance reverberate throughout the testing of the prototypes adequacy.

For a start, the categorical distance, dM (Tab. 6.3c), cannot define prototypes because it
displays no inner structure in the categories; only the featural distance dF remains as possible
distance for defining the prototypes. Accordingly, the prototypes in the featural space F corre-
spond to the K∗3 scenarios (i.e., Ka3, Kb3, and Kc3); certainly, we observe that those scenarios
have the lowest dissimilarity dF to the other scenarios in their own category (Tab. 6.3b)—As
side note, the scenarios of the category (0, 0) are indistinguishable in the featural space: any of
them have the same featural distance dF to any other scenario; we have chosen Kb3 for ease of
exposition.

Therefore, by definition, the prototypical scenarios, K∗3, fulfil the centrality property (item III.A.),
and, thus, have the lowest within-category dissimilarity; this is the first condition of Item III.B..
However, they fail to fulfil the second condition of Item III.B., namely, that the prototypes have
the highest between-category dissimilarity. Indeed, the highest between-category dissimilarity is
given by the K∗2 scenarios: Ka2 in category (−,−), and by Kc2 in category (+,+)—As said
before, in the border category (0, 0) all scenarios have the same between-category dissimilarity,
so we can choose Kb2. Sadly, we find no scenarios that completely fulfil Item III.B.; we are
forced into a trade-off: if we increase the between-category dissimilarity, the within-category
dissimilarity will also increase, so we cannot increase one, while decreasing the other to find an
optimum.

On top of that, the prototypes fail to fully account for category membership (item III.C.),
which is a primary goal of the prototype theory. For example, the item Kc1 has a lower dis-
similarity dF to the prototype in the category (0, 0)—what is more, to any member of such
category—than to any possible prototype in its own category (+,+), i.e., to Kc2 or Kc3. Ac-
tually, all members of category (+,+) with featural coordinates (ϕk >−0.34, ϕl >−0.34), i.e.,
(−70°>γk > 70°, −70°>γl > 70°), have a higher dissimilarity to any of their possible prototypes
than to any member of the category (0, 0).

Much as we explained above for the family resemblance, the prototype model fails to precisely
describe QTCB12 because this motion categorization is defined as a boundary model. Even
though we can define prototypes in QTCB12 that retain some of their basic properties (for
instance, lowest within-category or highest between-category dissimilarity), we cannot find a
prototype that fulfils all properties. Moreover, prototypes can only approximatively account for
category membership; they fail when category members are near to category borders (as it is the
case of Kc1).

Although we did not prove it, it is evident that neither the exemplar model can provide a
detailed categorization account for similar reasons as the prototype model: one fails to reproduce
the effect of a border category by means of a finite number of exemplars. Technically, it is not
possible because, in a real continuum, a border has always at least one topologically open side. In
sum, only the boundary model can precisely describe the categorization originated by QTCB12.

6.4.2 Conclusion

By means of the simple example, QTCB12, we have seen how the motion categorizations behave
that are created as qualitative representations. The most meaningful dissimilarity function works
in the featural space, i.e., it is based on the featural distance dF . It yields acceptable results
regarding the expected properties of a dissimilarity (items I. to III.): In psychological jargon, we
would say that the featural space (F , dF ) is the most faithful representation of the psychological
space for the exemplified categorization.
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Prototypes can be used as a rough description of the categorization; they fulfil to a certain
degree their expected properties (item III.A. to item III.C.). Nevertheless, prototypes fail to
provide a precise categorization account because a motion categorization—at least in the form of
a qualitative representation—has meaningful borders, i.e., borders that are also categories; this
is the case of the category (0, 0), the border between categories (−,−) and (+,+). Moreover, as
we mentioned, the border categories make also the exemplar model inadequate.

All counted, we have established that only the boundary model captures the categorical
essence of a qualitative representation of motion, and, furthermore, we have also validated our
framework as a tool capable of describing and analyzing motion categorizations.



Chapter 7

Stories and

Temporal Sequences of Relations

The qualitative is supervenient on the quantitative. There can be
no qualitative distinctions without underlying quantitative ones.
This does not in itself necessarily imply that qualitative distinc-
tions arise from quantitative ones, [however,] that conclusion is
all but irresistible in very many cases.

A. Galton (2000, p. 341)

So far, we have presented a broad and multidisciplinary understanding of categorization
(Ch. 3), and have explained how qualitative representations, specifically those concerning motion,
are—or, rather, can be—integrated in such categorization domain (Chs. 4 to 6). In this chapter,
we begin the genesis of the story-based representations: motion categorizations derived from
spatial and motion representations. The keystone of story-based representations is the concept
of ‘story’; the most part of this chapter is devoted to defining it.

7.1 Motivation and Background for Temporal Sequences

Fundamental onset conditions We base the categorization of the movement on the following
conditions: (See Sects. 1.1 and 1.2):

i. We have ‘motion scenarios’ (Sect. 1.2), which are described by instantaneous position-velocity
pairs of vectors in a certain instant t = t0 (a vector pair for each entity). In the most com-
mon case of two entities, k and l, a motion scenario is described as (~xk, ~vk; ~xl, ~vl).

ii. We have a ‘qualitative spatial representation’ (D, δX ) (Ch. 4). It categorizes position
scenarios (~xk, ~xl) of two entities, into n possible categories, the qualitative spatial relations
{R1, R2, . . . , Rn}. The set of all possible position scenarios is the ‘position space’ X × X .
Note that a ‘position scenario’ (~xk, ~xl) describes not only the “positions” of two entities,
but any positional information (e.g., positions, orientations, sizes) that is relevant for the
spatial categorization D. Here, we briefly show how we integrate the qualitative spatial
relations, as defined in the literature, into our kinematic spaces—These are formal details.
As a result, we define the ‘spatial map’, δ, in Equation (7.1).

105
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The spatial categorization D is usually defined extensively. For example, a ‘qualitative
spatial relation’ is a region Pi of the ‘position space’ X ×X , i.e., Ri = {(~xk, ~xl) ∈ Pi ⊂ X ×
X} (e.g., Ligozat and Renz 2004; Dylla et al. 2017) (See gen. def. Sect. 10.1.1). In our work,
it is more convenient to define D intensionally (Eq. (7.2)); we call δX this categorization
rule that assigns the corresponding spatial relation Ri to each position scenario, i.e., Ri =
δX (~xk, ~xl).

As we want to obtain the spatial relations Ri for motion scenarios, we extend the spatial
categorization rule δX to motion scenarios and call it ‘spatial map’, δ. To obtain δ is a
trivial process (Eq. (7.1): first, we extract the positional information, (~xk, ~xl), from the
motion scenario (~xk, ~vk; ~xl, ~vl)—we use a projection, πX—then, we apply the categorization
rule δX to the extracted position scenario (~xk, ~xl).

K −→ X ×X −→ D

(~xk, ~vk; ~xl, ~vl)
π
X7−→ (~xk, ~xl)

δX7−→ Ri

(7.1)

δ

In sum, δ categorizes motion scenarios spatially by means of a spatial representation, δX ;
δ assigns a spatial relation Ri to each motion scenario.

X × X −→ D

(~xk, ~xl)
δX7−→ Ri

(7.2)

Trajectories and sequences of relations We endeavour to categorize motion by taking
advantage of the spatial representations; for that reason, the next step is to devise a method
by which spatial relations may describe motion. A most straightforward method is to describe
the entities’ trajectories as a temporal sequence of spatial relations. Based on such sequences,
researchers implemented successful methods for motion analysis: Delafontaine et al. (2011) ana-
lyzed complex trajectories in a squash game by looking at its 4-relations subsequences, Hanheide
et al. (2012) compared navigation trajectories in human-robot interaction by means of the Leven-
shtein distance between sequences, and Chavoshi et al. (2015) compared dance motions through
sequence alignment methods (SAM).

Therefore, we embrace temporal sequences of spatial relations as a decisive step towards
motion categorization. But, is this a sensible decision? How can then a motion scenario, which
occurs in a punctual time instant, be expressed as a sequence of relations, which extends through-
out a time interval? The solution is to embed each scenario in a certain motion trajectory, and,
then obtain the temporal sequence of such embedding trajectory.

Scenario

scenario is embedded

in a trajectory

Trajectory

trajectory’s temporal

sequence is extracted

Story (7.3)

The summarized final outcome is that we map each scenario onto a particular temporal sequence
which we call ‘story’, and this ‘story’ serves as a category for the scenario. Indeed, most spatial
representations yield a finite number of stories, and, therefore, mapping a scenario K onto a
story S is equivalent to label a scenario K with the category S.

Interestingly, we obtain stories not only from spatial relations, but we also obtain stories from
certain representations of motion, concretely, from those motion representations that categorize
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instantaneous motion (those motion representations listed as Items A. and B. in Section 5.3). For
that reason, we generalize Equation (7.1), in which scenarios are spatially categorized, into Equa-
tion (7.4), in which scenarios are generally categorized: ‘ρ’ represents the ‘qualitative map’ of any
kind of qualitative representation R that categorizes scenarios, notably, spatial (δ, D) or motion
(µ, M) representations. Concluding, we have broadened the condition in Item ii. to include also
qualitative motion representations with which create story-based motion representations.

K −→ R

(~xk, ~vk; ~xl, ~vl)
ρ

7−→ Ri
(7.4)

In the following, we reveal how to map scenarios onto stories. Before defining the ‘stories’, we
define temporal sequences of relations generally, i.e., for any kind of representation (Sects. 7.2
to 7.4). Moreover, we delve into the properties of general temporal sequences: we relate them
to fundamental concepts in the field of qualitative representations, and touch on properties that
broaden our understanding of such sequences. Subsequently, we define stories as a particular
case of the temporal sequences of relations (Sects. 7.5 and 7.6). All throughout this chapter, we
exemplify the concepts with the spatial relation RCC (Sect. 4.2.1). Later, in Chapter 8, we build
the full-fledged stories for RCC and OPRA1 spatial representations, as well as stories of motion
representations such as QTCB21.

7.2 Temporal Sequences: A Qualitative Trajectory Descrip-

tion

In this section, we deal with trajectories of entities (~xk, ~vk; ~xl, ~vl)(t) and how to describe them
using sequences of qualitative representations. As seen in the previous section, qualitative rep-
resentations categorize motion scenarios, that is, they categorize only each instantaneous point
of a trajectory, e.g., (~xk, ~vk; ~xl, ~vl)(t0). As a result, we might describe a trajectory by assigning
to every time instant t0 in the trajectory the corresponding qualitative relation Ri: This lead us
directly to the concept of temporal sequence (Def. 7.2.1).

We remark that a trajectory is a particular case of a more general concept, namely, continuous
transformations. Thus, for the sake of generality, we often refer in the following sections to
‘continuous transformations’; but, keep in mind that our focus are trajectories.

Definition 7.2.1 Temporal sequence of qualitative relations We borrow this term from
Hanheide et al. (2012), and we define it as follows: A ‘temporal sequence of qualitative relations’
is a chronologically ordered sequence of qualitative relations of any kind, e.g., space or motion,
generated by a continuous transformation of two entities in a time interval [ta, tb]. In each
temporal sequence, (R1, R2, . . . , , Ri, . . .), we avoid consecutive repeated relations—in case they
appear we merge them—so that, the resultant temporal sequence fulfils ∀i Ri 6= Ri+1.

We remark following important details in the definition:

• A temporal sequence of relations is as generally defined as possible. Firstly, the sequence
describes ‘continuous transformations’, which includes trajectories (as a continuous change
of position in time); but also deformations (as continuous change of form in time), in the
case that entities are regions; and even changes on non-spatial domains. Admittedly, later,
we will concentrate on trajectories and disregard any other kind of continuous transforma-
tions, especially deformations, because, in this work, we restrict ourselves to rigid entities
(Sect. 1.2).
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Figure 7.1: A trajectory, KA(t), of two entities, k and l. We display three time instants (t1, t2,
and t3) of the trajectory along with their corresponding RCC relations. The entities are circular
with radii rk =1 and rl =2; KA(t) =

(

(2t+ 2,− 4
9 t

2 − 0.5), (−t+ 2,− 8
9 t); (2− t, 2.5), (−1, 0)

)

.

Secondly, we do not restrict to sequences of spatial relations, temporal sequences can con-
tain any kind of qualitative relations—as long, as we do not mix kinds in the same sequence.
Although we predominantly use sequences of spatial relations, we also use sequences of mo-
tion relations; for example, in Section 8.3.

• The time interval [ta, tb] that determines the temporal sequnce can be freely chosen. For
example, we may consider a punctual interval by setting ta = tb, we may consider the limits
limta→−∞ or limtb→+∞, and, thus, have a half-bounded, e.g., [ta,∞), or totally unbounded
interval (−∞,∞). In fact, stories are defined over a totally unbounded interval (−∞,∞).

• We avoid repetitions of consecutive relations by assigning only one symbol Ri to each
relation that occurs in a subinterval of [ta, tb]. That means that the sequence captures
every transition of relations (from one relation Ri to the next different relation Ri+1)
within the continuous transformation (e.g., within the trajectories).

• The definition of temporal sequence of relations assumes implicitly the existence of a map
called fρ[ta,tb]

that, given a continuous transformation K(t) = (~xk, ~vk; ~xl, ~vl)(t) in a certain

interval [ta, tb] “generates” the corresponding temporal sequence of relations. Such map
exists and we describe it as follows.

K(t) −→ R(t) −→ Σ∗

K(t) = (~xk, ~vk; ~xl, ~vl)(t)
ρ

7−→ R(t)
TS[ta,tb]

7−→ s = (R1, R2, . . . , , Ri, . . .)
(7.5)

fρ[ta,tb]

In Equation (7.5), R(t) = ρ
(

(~xk, ~vk; ~xl, ~vl)(t)
)

is the function that provides the qualitative
relation at any time instant t of the continuous transformation (~xk, ~vk; ~xl, ~vl)(t). We can
call it ‘qualitative transformation’ or ‘qualitative trajectory ’. Subsequently, TS[ta,tb] extracts
from R(t) the temporal sequence of relations s, i.e., the relations in the temporal order as
they occur in the interval [ta, tb].

Example 7.1 We apply Equation (7.5) to the trajectory KA(t) in Figure 7.1.
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1. The trajectory in the figure is KA(t) = (~xk, ~vk; ~xl, ~vl)(t) =
(

(2t+2,− 4
9 t

2−0.5), (−t+2,− 8
9 t);

(2− t, 2.5), (−1, 0)
)

2. If we apply the spatial representation RCC, i.e., ρ = δ
RCC

, to the trajectory (~xk, ~vk;
~xl, ~vl)(t), we obtain the qualitative trajectory R(t):

R(t) =











DC t < 0

EC t = 0

DC t > 0

R(t) can be easily obtained graphically from the trajectory snapshots displayed in Fig-
ure 7.1.

3. Finally, we apply the function TS[ta,tb] to R(t) and obtain a qualitative temporal sequence
of relations in the interval [ta, tb]. For instance, in Figure 7.1 the considered interval
is [−1.5, 2.0]; so we have TS[-1.5,2.0] which applied to R(t) produces the three-elements
sequence (DC,EC,DC).

To further illustrate how TS[ta,tb] works, we apply the function TS[ta,tb] to the same tra-
jectory in Figure 7.1 considering other intervals.

(a) If we consider the interval [−10.0,−1.0], we have TS[-10.0,-1.0] which applied to R(t)
produces the one-element sequence (DC). This is the same sequence produced by any
interval [ta, tb] in which tb < 0.

(b) If we consider the interval [−5.0, 0.0], we have TS[-5.0,0.0] which applied to R(t) pro-
duces the two-elements sequence (DC,EC). This is the same sequence produced by
any interval [ta, tb] in which tb = 0.0 and ta 6= 0.0, e.g., the interval [−0.4, 0.0].

(c) If we consider the interval [0.0, 3.0], we have TS[0.0,3.0] which applied to R(t) produces
the two-elements sequence (EC,DC). This is the same sequence produced by any
interval [ta, tb] in which ta = 0 and tb 6= 0, e.g., the interval [0.0, 0.01].

(d) If we consider the interval [−1.7, 20.4], we have TS[-1.7,20.4] which applied to R(t)
produces the three-elements sequence (DC,EC,DC). In fact, any interval [ta, tb] con-
taining the instant t = 0 not in the boundaries produces the sequence (DC,EC,DC).

The whole process described in Items 1 to 3 is condensed in the mapping f
RCC[ta,tb]

. For

example, for the time interval in Figure 7.1, [−1.5, 2.0], we have

(DC,EC,DC) = f
RCC[-1.5,2.0]

(

KA(t)
)

The mapping f
RCC[ta,tb]

for Items 3a to 3d can be represented as following:

(a) (DC) = f
RCC[-10.0,-1.0]

(

KA(t)
)

(b) (DC,EC) = f
RCC[5.0,0.0]

(

KA(t)
)

(c) (EC,DC) = f
RCC[0.0,3.0]

(

KA(t)
)

(d) (DC,EC,DC) = f
RCC[-1.7,20.4]

(

KA(t)
)

A ‘temporal sequence of relations’ is a rather general term. In the following, we specify some
types of temporal sequences of relations which are specially interesting.
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Definition 7.2.2 Finite and infinite sequences ‘finite sequences’ are those containing a
finite number of relations, and ‘infinite sequences’ are those containing an infinite number of
relations.

For instance, all sequences obtained in Example 7.1, (DC), (DC,EC), (EC,DC), (DC,EC,DC)
are obviously finite.

Note that these two concepts, finite and infinite sequences, express the number of relations
that a sequence contains; what is usually called ‘length’ of a sequence. The length of the temporal
sequences influences heavily their practical application. We can deal much easier with finite
sequences than with infinite ones. For that reason, the most important sequences defined in this
work, the ‘stories’, are finite (item i., Sect. 7.6).

Definition 7.2.3 Complete temporal sequence of relations A complete temporal sequence
of relations is a temporal sequence in the whole unbounded time interval (−∞,∞). All possible
complete temporal sequences define the set Σ∗.

We can define the complete temporal sequence s of a certain trajectory (~xk, ~vk; ~xl, ~vl)(t) by
means of function fρ[ta,tb]

in Equation (7.5) and seeking its limits limta→−∞ and limtb→+∞:

s = fρ(-∞,∞)

(

(~xk, ~vk; ~xl, ~vl)(t)
)

. A compelling property of complete temporal sequence is that

they are invariant under monotone non-decreasing unbounded time transformations g(t):

s = fρ(-∞,∞)

(

(~xk, ~vk; ~xl, ~vl)(t)
)

= fρ(-∞,∞)

(

(~xk, ~vk; ~xl, ~vl)(g(t))
)

(7.6)

For example, a complete story is invariant under time translations and dilations, namely,
under g(t) = at+ b where a > 0.

As example of complete sequence, let us consider the trajectory KA(t) = (~xk, ~vk; ~xl, ~vl)(t) in
Example 7.1, which was illustrated in Figure 7.1. In Item 3d, we said that, for such trajectory, any
interval [ta, tb] containing the instant t = 0 not in the boundaries, i.e., t = 0 ∈ [ta, tb] and ta, tb 6=
0, produces the temporal sequence of relations (DC,EC,DC). And, we can easily see that the
limit lim ta → −∞

tb → +∞
f
RCC[ta,tb]

(

KA(t)
)

is the sequence (DC,EC,DC) too. Hence, we can compute

the complete temporal sequence of the trajectory KA(t):

(DC,EC,DC) = f
RCC(-∞,∞)

(

(~xk, ~vk; ~xl, ~vl)(t)
)

Certainly, we obtain the same sequence (DC,EC,DC) as complete sequence, i.e., in the
interval (−∞,∞), and as non-complete sequence in the interval I1 = [−1.7, 20.4]. What makes
then a complete sequence particular compared to a non-complete sequence?

In first place, a complete sequence is invariant under certain time transformations. For
instance, the sequence (DC,EC,DC) obtained from the interval I1 changes into the sequence
(EC,DC) if we shift the time t′ = t+1.7, since the interval I1 becomes [0, 22.1]. In second place,
if we restrict our analysis to the certain particular trajectories or motions the resultant number
of complete sequences is very limited. For instance, restricted to uniform linear motions the
sequence (DC,EC) can never be a complete sequence because it ends at EC but a uniform linear
motion in the interval (−∞,∞) which begins in the disconnected relation DC cannot get stuck
at the tangent relation EC for the rest of the time.

We remark that Definitions 7.2.2 and 7.2.3 are independent: we can have both finite and
infinite temporal sequences of relations that are complete sequences or not. In fact, the temporal
sequences defined in this work, the stories, are complete sequences of relations, i.e., defined in
the time interval (−∞,∞), and happen also to be finite sequences (Sect. 7.5). The most rare
case of temporal sequences, however, are the infinite temporal sequences that are not complete,
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i.e., which occur in a finite time interval; for that to happen, we need either entities or motions
that are extremely convoluted, actually, those only found in theoretical settings.

To conclude, a temporal sequence of relations is a parsimonious description of the entities’
continuous transformations (e.g., motion trajectories) in the space of qualitative relations R,
as compared to the most detailed description, R(t), the qualitative trajectory, which provides
the qualitative relation at any time instant t. In a temporal sequence of relations the precise
instant at which every qualitative representation occurs is lost, but a coarse temporal information
remains: the temporal order in which the qualitative relations occur (analogously to the events
models of Warglien et al. (2012)). The temporal sequence of relations is equivalent to an ordered
listing of the transitions between relations.

7.3 Transitions between relations: Conceptual Neighbour-

hood Diagram

As seen above, temporal sequences of relations are mainly about transitions between relations.
For example, in the temporal sequence of spatial relations (DC,EC,DC) (See Fig. 7.1), we
recognize two transitions: DC EC and EC DC. Actually, because the temporal sequences
are defined for continuous transformations, temporal sequences show more than just transitions:
they show direct transitions (as defined below).

Direct and indirect transitions A ‘direct transition’, Ra Rb is a transition between two
relations, Ra and Rb, that occurs when two entities go through a continuous transformation,
and there is no intermediate relation Rc involved. Now, we take as example the RCC relations
and their transitions as visualized in Figure 7.2. For instance, the transition DC EC is a
direct transition: two entities that are disconnected, DC, move continuously towards each other
until they become connected through their border, EC—There is no other intermediate relation
involved. The transition DC NTPP, however, cannot be direct—it is ‘indirect ’—because there
is no continuous trajectory that brings two disconnected entities, DC, into being one contained
in the other, NTPP, without going through an intermediate relation, such as partial overlap PO.

Transitions are not ‘direct’ in absolute terms. A transition Ra Rb might be direct in a
certain type of continuous transformation and indirect in another type. For example, the transi-
tion DC EC is direct both for translations or deformations; however, the transition TPP EQ
(from being contained and tangent to overlap perfectly) is a direct transition for deformations
but not for translations (Fig. 7.2).

Note, however, that if we had allowed discontinuous transformations in the definition of direct
transitions, then every transition between any relations would be a direct transition, and, hence,
the concept of ‘direct transition’ would be useless: we could instantly leap from one motion state
to any other motion state in order to generate whatsoever transition of relations. Therefore,
continuity is a fundamental assumption when considering transitions of qualitative relations.

By definition (Def. 7.2.1), a temporal sequence of relations shows direct transitions of two
entities occurring in a certain time interval. Restricting ourselves to continuous trajectories, if a
temporal sequence happens to include an indirect transition—e.g., the transition DC NTPP,
as in the sequence (PO,EC,DC,NTPP)—then such a temporal sequence cannot be obtained
from continuous trajectories of entities. In other words, such sequence is unrealizable under
common physical conditions.
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Figure 7.2: Conceptual Neighbourhood Diagram of RCC The RCC qualitative rela-
tions depend on how two entities overlap. This figure depicts the 8 RCC relations: DC, EC,
PO, TPP, NTPP, EQ, TPPI, and NTPPI as a conceptual neighbourhood diagram. The arrows
correspond to direct transitions, i.e., relations that are directly connected by any continuous
transformation: dashed arrows represent only deformations, solid arrows represent translations
and deformations.

Realizable and unrealizable temporal sequences A temporal sequence of relations is
‘unrealizable’, when it does not exist any continuous transformation (e.g., trajectories) of enti-
ties that produces such sequence. Conversely, any temporal sequence of relations that can be
produced from continuous transformations is ‘realizable’. Equivalently, expressed in terms of
transitions, a temporal sequence of relations is realizable if and only if each transition is a direct
transition.

In conclusion, when we use temporal sequences of relations to describe trajectories, it is
essential to know which transitions in a qualitative representation, under which type of continuous
transformation, are direct. This is when ‘conceptual neighbourhood diagrams’ come into play.

Conceptual Neighbourhood Diagram The ‘conceptual neighbourhood diagram’ (CND) is
simply a tool to display the direct transitions of a qualitative representation. It is a graph
linking the pairs of qualitative relations that have a direct transition, i.e., pairs of relations
directly connected by continuous transformation. Again, we remark a CND is not restricted to
spatial representations, but it can apply to any kind of representations; for example, motion
representations, and, more concretely, story-based representations.

Note that, as the CND displays the direct transitions, if we lift the continuity requirement
from the definition of direct transition, any possible transition becomes realizable, and, thus, the
CND becomes a complete graph. In that case, the CND would be pointless: it provides no extra
information about transitions.

As a CND example, we show the diagram for the spatial representation RCC in Figure 7.2.
We can apply this CND to analyze temporal sequences. For example, the temporal sequence (PO,

TPP,NTPP,TPP) is realizable as all transitions are represented as edges in the diagram. The
temporal sequence (PO,TPP,EQ,PO) is only realizable if the entities are deformed, because
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the transition TPP EQ is represented with a dashed arrow in the diagram, and, thus, is
only possible by deformation. In any case, sequences such as (EC,PO,NTPP) or (DC,PO,

TPP) are not realizable because, in the CND, it exists no direct transition (i.e., no edge) PO 
NTPP, neither DC PO. Notwithstanding, such sequences can become realizable by adding
intermediate relations (bold faced) (EC,PO,TPP,NTPP) and (DC,EC,PO,TPP).

We can formulate the connection between realizable temporal sequences and the CND in an
elegant way: Any realizable temporal sequence of relations in a certain qualitative representation
is a path in the CND of such qualitative representation—The CND let us visualize realizable
sequences as paths. Moreover, in the CND, we can visualize at once different types of direct
transitions, if we format the arrows connecting the relations according to the type of continuous
transition. For example, in Figure 7.2, the direct transitions obtained only through deformation
are denoted by dashed arrows, while those possible both by deformation and translation are
denoted by solid arrows.

In this work, we certainly benefit from the CND when we generate the story-based categoriza-
tions (i.e., story-based qualitative representations of motion), because a necessary step in such
generation is finding temporal sequences of spatial relations, the stories; these are particular
paths in the CND of the spatial representation. Interestingly, the story-based categorizations are
also qualitative representations of motion, and, thus, we could also obtain their CND in order to
analyse direct transitions between their relations: we refer to such analysis in the control of tra-
jectories (Sect. 11.5). Anyway, we leave for future work building whole CNDs of the story-based
categorizations.

CND in the literature

The conceptual neighbourhood diagram (CND) is widely acknowledged as one of the most ele-
mentary concepts concerning qualitative representations. It was introduced by C. Freksa (1992a),
though another names used are ‘transition graph’ (Cohn et al. 1994) or ‘continuity network ’ (1997,
p. 295)—compare also with the similar concept ‘closest-topological-relationship-graph’ (Egenhofer
and Al-Taha 1992).

When dealing with motion, the conceptual neighbourhood diagram becomes a ubiquitous
concept, because motion is a continuous transformation of the position in time (See thorough
analysis, Hazarika and Cohn 2001; Cohn and Hazarika 2001b). Therefore, when we represent
motion qualitatively, we are using (at least implicitly) the CND.

Furthermore, the conceptual neighbourhood diagram is a basic tool for implementation of
decision-making, planing, and control algorithms (e.g., Dylla and Wallgrün 2007; Dylla 2008;
Dylla et al. 2012)—Qualitatively steering a moving entity consists on making the entity tran-

sition through the desired relations in the conceptual neighbourhood diagram (Sect. 11.5). As
mentioned above, CND are not only created for spatial relations; we can also display motion
relations (e.g., Van de Weghe and De Maeyer 2005).

7.4 Dominance Theory

The ‘dominance theory ’—introduced by A. Galton (1995)—seeks a deeper mathematical insight
in the continuous transformations between qualitative relations than the conceptual neighbour-
hood diagrams (CND) (See didactical introduction, 2001). One result of the dominance theory
are the ‘dominance diagrams’, which are conceptual neighbourhood diagrams with additional
information about continuity at the transition of qualitative relations. In fact, the dominance
diagrams define a topology in the qualitative representations, the dominance topology, which
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Figure 7.3: A visual representation of the dominance theory. When entities transition from a
relation, R1, into another relation, R2, in a certain instant tT (Fig. (a)), the dominance theory
determines which relation occurs always at the transition instant tT (the boundary instant): In
Figure (b), the relation R1 dominates R2, i.e., R1 occurs always at the transition instant tT;
conversely, in Figure (c), the relation R2 dominates R1, i.e., R2 occurs always at the transition
instant tT.

characterizes the continuous transformations of entities. On this account, the dominance theory
underlie any analysis of continuous transformations of entities, particularly, continuous trajecto-
ries.

This theory has very practical applications: it provides tools to build conceptual neighbour-
hood diagrams (CND), and determines properties of the time intervals in which the relations
occur. For example, the dominance theory provides a method for obtaining the CND of a quali-
tative representation formed by Cartesian product of properties or representations whose CNDs
are known. Such method is used by Van de Weghe 2004 to obtain the CNDs for variants of the
QTC motion representation, since such variants are all constructed through Cartesian product of
simpler properties or representations (Sect. 5.4). Many story-based categorizations are also built
as product representations (as explained in Sect. 5.4.2.B), and, consequently, we could apply the
dominance theory to construct their CNDs.

In this work we resort twice to the dominance theory. In Section 7.6.2 we use the dominance
relation to differentiate two types of story-based relations, the rigid and singleton stories. Later,
in Section 10.5.2, the definition of position state will simplify the computation of the composition
of stories.

We stress that the dominance theory characterizes not only continuous map onto qualitative
representations, but more generally, continuous maps into discrete spaces. Examples of discrete
spaces are the discrete properties P∗ in Section 5.4, which are used to build qualitative relations.
For that reason, and in view of its limited success, we believe that the dominance theory is
currently undervalued, and still has much to say in qualitative description.

Dominance relation A. Galton (Def. 2.1, 2001) defines the dominance relation as follows: a
state R1 dominates another state R2, when R1 can occur at the boundary of an open interval
(ta, tb) in which R2 occurs, i.e., R1 can occur at ta or tb.

Another way to define the dominance relation is as in Figure 7.3: the relation that dominates
over the other is the one that must occur at the transition instant tT between both relations. For
instance, if R1 dominates R2, then whenever we transition from R1 to R2—or vice versa—R1

will be the relation occurring at the boundary, i.e., at the transition point tT (e.g., Fig. 7.3b). If
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on the contrary, R2 dominates R1, then it is R2 that will be occurring at the transition point tT
(e.g., Fig. 7.3c).

Example 7.2 In RCC, if we allow deformations, the following temporal sequence of relations
is realizable, (EQ,TPP,PO). If we inspect the transition EQ TPP, we realize that it is the
state EQ that must occur at the boundary instant tT of the transition; for instance, EQ occurs in
(ta, tT] and TPP in (tT, tb). However, a transition of the form (ta, tT) for EQ and [tT, tb) for TPP
would be impossible: In the dominance theory, one says that EQ dominates TPP. Analogously,
TPP dominates PO, because TPP must occur at the transition boundary, tT, of the interval
(tT, . . .) in which PO occurs.

Position and motion states Note that, in RCC, the states EQ and EC always dominate over
their neighbour states (no matter whether deformations or translations are allowed). Accordingly,
the dominance relation defines two new types of states: the position and the motion states.

A ‘position state’ is such that always dominates over its neighbour states. Thus, it can only
occur in a closed interval [ta, tb]. Particularly, a position state can occur in a single time instant
t0 = [t0, t0]. For example, the relation EC is a position state.

A ‘motion state’ is such that always is dominated by its neighbour states. Thus, it can
only occur in an open interval (ta, tb). Particularly, a motion state can never occur in a single
time instant t0. For example, the relation DC is a motion state—Do not confuse the ‘motion
states’ according to the dominance relation with the ‘motion states’ K = (~xk, ~vk; ~xl, ~vl) which
are kinematic descriptions of the entities, as sketched in Tab. 7.1.

Not all relations in a qualitative representation need to be either position or motion states:
they can be neither. In that case, we have a ‘non-motion non-position state’, which can occur in a
half-open interval, i.e., (ta, tb] or [ta, tb). If, in a qualitative representation, each relation is either
a position or a motion state then such representation constitutes a ‘regular space’ according to
the dominance relation. Remarkably, both RCC (without deformations) and OPRAn are regular.

Example 7.3 If we allow only translations and the entities have different size (Fig. 7.2), the
RCC relations EC, TPP, and TPPI are position states, while DC, PO, NTPP, and NTPPI are
motion states. It is evident, if we think of continuous translations, that EC can occur in a single
time instant (as in Fig. 7.1), and that PO cannot; the latter can only occur in open intervals
(See realization in Fig. 7.8).

Concluding, the dominance theory classifies the qualitative relations between entities accord-
ing to how they can occur at the boundaries of open time intervals. This is essential for analyzing
or building temporal sequences of relations, because the occurrence of relations at the boundaries
of time intervals determines how relations can be strung together to form temporal sequences.

Yet, behind this simple “property of time intervals”, lies a bigger picture: the ‘dominance
topology ’ (ibid., p. 60), which is the finest topology that makes a qualitative representation
continuous—specifically, it makes continuous its categorization rule. It is beyond the scope of
this work to delve into the topological properties of the story-based representations, though it is
a relevant topic for a deeper mathematical understanding of such representations.

7.5 Stories: From Scenarios to Temporal Sequences

Here, we aim to map each motion scenario into a particular temporal sequence of qualitative
relations: the ‘story’. To that end, we use the concepts in Section 7.2 but specialized to motion
trajectories instead of general continuous transformations.
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Figure 7.4: A motion scenario KB of two entities k and l with kinematic coordinates KB =
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Which type of qualitative representations can we use to create a story? Whatever. We can
choose the type of qualitative representation that is appropriate for our current purpose. For this
reason, we strive to keep as general as possible the qualitative representations in this section.
Although the examples and illustrations here have only spatial relations—mostly RCC—for the
sake of simplicity, in Section 8.3, we specifically deal with stories of qualitative relations of
motion. Throughout the section, we will use the scenario KB (Fig. 7.4) to illustrate the new
defined concepts.

7.5.1 Embedding a scenario in a uniform motion

In our aim to map scenarios into temporal sequences, the critical step is to embed a motion
scenario (~xk, ~vk; ~xl, ~vl) (e.g., KB in Fig. 7.4) into a trajectory (~xk, ~vk; ~xl, ~vl)(t); because, once we
map the scenario into a trajectory, we can obtain a temporal sequence rather straightforwardly.
We decide to embed a motion scenario into a uniform motion trajectory, i.e., a trajectory without
accelerations, because of the many persuading arguments:

• First of all, a motion scenario contains no information about the acceleration, only veloc-
ities. Therefore, as a best guess we can choose a central value, i.e., zero acceleration, for
the trajectory containing the scenario.

• At the very moment, when we consider it worth to categorize motion scenarios, we are
assuming a limited effect of acceleration on the entities—The extreme case is constant zero
acceleration. Conversely, if scenarios should belong to trajectories with high and greatly
variable acceleration, then the changes in the scenario’s configuration would be so abrupt
that the categorization of scenarios would be meaningless.

• Uniform motion is the state of steady motion of any entity (a person, an animal, a car); it
is a typical state, and, thus, has highly ecological validity.

Finally, we have relevant computational and mathematical reasons:

• In uniform motion, we can most easily compute the temporal sequence of relations for a
trajectory.

• And, perhaps, most decisive, we have only finite cardinalities (App. A.2.1): any temporal
sequence in uniform motion has a finite number of relations (i.e., it is finite), and, also, the
total number of temporal sequences that originate from a qualitative representation is finite.
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The latter is a necessary condition for stories to be a qualitative calculus (Sect. 10.1.1), and
also a desirable property for stories to act as categories (item i., Sect. 6.1.1)

After all, by embedding scenarios into uniform motion trajectories, we are not limiting our
categorization of scenarios to uniform motion in any case: the categorized scenario can belong
to any kind of trajectories (See examples in Sect. 11.4). The use of uniform motion embedding
is only a device that helps us categorize scenarios, and, as an advantageous effect, it enables us
to qualitatively detect accelerations when we categorize trajectories (See Sect. 11.5).

Thus, to resume, we embed the motion scenario K = (~xk, ~vk; ~xl, ~vl) into its uniform motion
trajectory K(t) = (~xk + ~vkt, ~vk; ~xl + ~vlt, ~vl), as given by the equation ~x(t) = ~x0 + ~v(t− t0) that
describes the position of an entity in uniform motion. This embedding is univocal, and, hence,
equivalent to the following map.

Ut : K −→ K(t)
K = (~xk, ~vk; ~xl, ~vl) 7−→ (~xk, ~vk; ~xl, ~vl)(t) = (~xk + ~vkt, ~vk; ~xl + ~vlt, ~vl)

(7.7)

Example 7.4 We embed the scenario KB in Figure 7.4 into a uniform motion and obtain the
trajectory KB(t).

Ut : K −→ K(t) (7.8)
KB =

(

(−2, 0), (2, 0); (4, 2), (−1, 0)
)

7−→ KB(t) = (~xk, ~vk; ~xl, ~vl)(t)

= ((−2, 0) + (2, 0)t, (2, 0); (4, 2) + (−1, 0)t, (−1, 0))

We display the trajectory KB(t) both in Figure 7.5 at interval [1.8, 3.2], and in Figure 7.6 at
interval [−1.0, 4.0].

Note that the mapping Ut creates a uniform trajectory K(t)=Ut(K), that contains the
embedded scenario at t=0, i.e., K =K(0). Alternatively, we could have defined the mapping
Ut-t0 , which is the same as Ut but with time shift t→ t− t0. In that case the uniform trajectory
K(t) reproduces the embedded scenario at t= t0, i.e., K =K(t0). Taking Ut or Ut-t0 , i.e.,
centering the embedded scenario at t = 0 or t = t0, will make no difference for our purpose at
hand: the generation of stories.

7.5.2 Mapping uniform motion into sequences

The next step in the stories generation is to obtain a qualitative temporal sequence from the
uniform trajectory (~xk, ~vk; ~xl, ~vl)(t) defined by the embedding Ut in Equation (7.7). To that
end, we apply onto the trajectory the map fρ[ta,tb]

that we defined in Equation (7.5). Remember

that, for the map to work, we must specify the qualitative representation ρ (e.g., RCC) and
the time interval [ta, tb] in which the sequence is computed. In summary, starting with a given
scenario (~xk, ~vk; ~xl, ~vl), we apply upon it the composition of both the map Ut, which embeds the
scenario in a uniform trajectory, and, subsequently, we apply the map fρ[ta,tb]

, which generates

the temporal sequence in the interval [ta, tb] (Eq. (7.9)). The end result is the mapping σ[ta,tb],
which assigns to a scenario (~xk, ~vk; ~xl, ~vl) a temporal sequence s = (Ri1 , Ri2 , . . . , Rim) in the
interval [ta, tb].

K −→ K(t) −→ ΣUt
⊂ Σ∗

(~xk, ~vk; ~xl, ~vl)
Ut7−→ (~xk, ~vk; ~xl, ~vl)(t)

fρ[ta,tb]

7−→ s = (Ri1 , Ri2 , . . . , Rim)
(7.9)

σ[ta,tb]
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Figure 7.5: Each picture is a snapshot of the trajectory obtained by embedding the scenario
KB (Fig. 7.4) into uniform motion, i.e., by applying Ut to KB, as in Eq. (7.8). Below each
picture, we display the time t of the trajectory and its corresponding RCC qualitative relation.
The scenario KB, which occurs at t = 0, is not visible in the figure, because we consider the time
interval [1.8, 3.2].
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Figure 7.6: Each picture is a snapshot of the uniform motion trajectory obtained by applying
Ut to the scenario KB, (~xk, ~vk; ~xl, ~vl)=

(

(−2, 0), (2, 0); (4, 2), (−1, 0)
)

of Figure 7.4; we consider
the time interval [−1.0, 4.0]. Below each picture, we display the time t of the trajectory and its
corresponding RCC qualitative relation. The scenario KB occurs at t = 0.

Example 7.5 We use Figure 7.5 to illustrate the mapping σ[ta,tb] of Equation (7.9). The

trajectory in Figure 7.5 is obtained by applying Ut to the scenario KB, (~xk, ~vk; ~xl, ~vl)=
(

(−2, 0),

(2, 0); (4, 2), (−1, 0)
)

of Figure 7.4 with time restricted to the interval [1.8, 3.2]. Its temporal
sequence of RCC relations is (PO,EC,DC). We can summarize all these operations by means of
σ[ta,tb] as follows:

(PO,EC,DC) = σ[1.8,3.2]

(

(−2, 0), (2, 0); (4, 2), (−1, 0)
)

= σ[1.8,3.2](KB)

Meaningful intervals [ta, tb] for categorization It is a non-trivial issue to decide the specific
values of the time interval [ta, tb] that map the scenario into a temporal sequence of relations.
As an illustration, consider two scenarios at the instant ta: K1 = (~xk, ~vk; ~xl, ~vl) and scenario
K2 = (~xk, α~vk; ~xl, α~vl); K2 has the same positions as K1 and proportional velocities by a factor
α. If we take the time interval [ta, tb] in which σ[ta,tb](K1) yields a certain temporal sequence,
e.g., (R1, R2, R3), then, by slowing K2 enough, i.e., making α arbitrarily near to zero, σ[ta,tb](K2)
would yield the one-element sequence (R1).

∗ The consequence would be that if we categorize
scenarios according to temporal sequences in finite intervals [ta, tb], scenarios with proportional
velocities might belong to different categories. We deem such behaviour undesirable, as we
see both scenarios (K1 and K2) being fully analogous, since they differ only in how fast they
temporally evolve. Now, if we take as time interval the unbounded interval (−∞,∞), the scenarios
with proportional velocities, such as K1 and K2, yield the same temporal sequences, and, hence,

∗We have tacitly assumed that R1 occurs in an interval [ta, tc] with ta <tc <tb and not only at the instant ta.
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belong to the same category. Following equations define the mapping σ[ta,tb] for the unbounded
interval (−∞,∞).

σ(-∞,∞)(K1) = σ(-∞,∞)(K2) ∀K1 = (~xk, ~vk; ~xl, ~vl),K2 = (~xk, α~vk; ~xl, α~vl) (7.10)

where σ(-∞,∞) = lim ta → −∞
tb → +∞

σ[ta,tb] (7.11)

Therefore, we choose the unbounded interval (−∞,∞) to generate temporal sequences of
trajectories in uniform motion by applying the mapping σ(-∞,∞). In other words, we choose to
work with complete sequences of relations because of the time invariance properties that they
possess (See Definition 7.2.3).

Example 7.6 We use Figure 7.6 to illustrate computation and meaning of the mapping σ(-∞,∞)

of Equation (7.11). The uniform trajectory in Figure 7.6 is the uniform motion trajectory
obtained from scenario KB, (~xk, ~vk; ~xl, ~vl)=

(

(−2, 0), (2, 0); (4, 2), (−1, 0)
)

of Figure 7.4 with time
restricted to the interval [−1.0, 4.0]. Therefore, its temporal sequence of relations is obtained as
(DC,EC,PO,EC,DC) = σ[-1.0,4.0]

(

(−2, 0), (2, 0); (4, 2), (−1, 0)
)

= σ[-1.0,4.0](KB).
From the pictures in Figure 7.6, it is clear that for every t≤−1.0 or t≥ 4.0 the qualitative

relation RCC remains DC, so we conclude that

(DC,EC,PO,EC,DC) = σ(-∞,∞)(KB) =

lim ta → −∞
tb → +∞

σ[ta,tb]

(

(−2, 0), (2, 0); (4, 2), (−1, 0)
)

= σ[-1.0,4.0](KB) (7.12)

7.5.3 The story map σ, stories Si, and stories set Σ

Recapitulating, in last section, we obtained the mapping σ[ta,tb] which maps a scenario into a
temporal sequence s by evolving the scenario into a uniform motion trajectory in the interval
[ta, tb]. Next, we saw that the unbounded interval (−∞,∞) was the most meaningful interval to
categorize scenarios using the σ[ta,tb] mapping. Accordingly, the application σ(-∞,∞) is the most
appropriate as categorization rule for scenarios. Using these results, we establish the fundamental
definitions of this work.

Story map σ and Stories Si The mapping σ(-∞,∞) possesses appropriate categorizations
properties. We display σ(-∞,∞) in Equation (7.13); it is obtained by mapping composition in two
steps:

1. Ut embeds the scenario (~xk, ~vk; ~xl, ~vl) into a uniform motion trajectory (~xk, ~vk; ~xl, ~vl)(t).

2. fρ(-∞,∞)
yields the complete sequence Si = (Ri1 , Ri2 , . . . , Rim) for the trajectory (~xk, ~vk;

~xl, ~vl)(t).

K −→ K(t) −→ Σ ⊂ ΣUt
⊂ Σ∗

(~xk, ~vk; ~xl, ~vl)
Ut7−→ (~xk, ~vk; ~xl, ~vl)(t)

fρ(-∞,∞)
7−→ Si = (Ri1 , Ri2 , . . . , Rim)

(7.13)

σ := σ(-∞,∞)

For the sake of simplicity, we denote as σ the mapping σ(-∞,∞). We call the mapping σ ‘story
map’ because we call ‘story’ each sequence of relations Si that the mapping σ generates. A
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‘story ’ is, thus, the complete temporal sequence of qualitative relations generated by a uniform
motion of entities.

In Equation (7.14), we represent the story map σ compactly by hiding the intermediate steps
of Equation (7.13):

σ : K −→ Σ
(~xk, ~vk; ~xl, ~vl) 7−→ Si = (Ri1 , Ri2 , . . . , Rim)

(7.14)

Equation (7.14) is a fundamental formula in this work: it shows how a motion scenario
(~xk, ~vk; ~xl, ~vl) is mapped into a story, Si. This is the cornerstone of the categorization of motion
scenarios, as we see below. Remember that we set modest prerequisites for obtaining the story
map (See items i. and ii., Sect. 7.1); we only need the description of entities as motion scenarios,
and a qualitative representation R, which provides the function ρ.

A story originates from a motion scenario (~xk, ~vk; ~xl, ~vl) by observing the time evolution of
the qualitative relations, considering that the velocities remain unchanged. That is, we list which
past relations of motion could have occurred (past inference), the current relation, and which
future relations of motion could follow (future inference).

Example 7.7 We already saw in the last section (Sect. 7.5.2) a single example of story, an
RCC story: The story obtained from the motion scenario KB, i.e., (DC,EC,PO,EC,DC) =
σ(-∞,∞)(KB) (Eq. (7.12)). Now, in Figure 7.7, we present some additional examples of RCC sto-
ries: the stories SCi

which we obtain from the scenarios KCi
; these stories are namely, (DC), (DC,

EC,DC), (DC,EC,PO,EC,DC), (DC,EC,PO,TPP,PO,EC,DC), (DC,EC,PO,TPP,NTPP,
TPP,PO,EC,DC).

Example 7.8 In Figure 7.8, we depict the uniform trajectory KD(t), which is generated by
the motion scenario KD (sketched at t=2). This trajectory yields the RCC story SKD

=(DC,
EC,PO,TPP,NTPP,TPP,PO,EC,DC). This is the same as the story SKC5

generated by the
uniform trajectory KC5

(t) in Figure 7.7.
We explicitly show here a trajectory in which the velocities are not antiparallel, as in the

other examples in this section, so that one can better grasp how the story map works in general.
Additionally, the uniform trajectory KD(t) contains the embedded scenario at t=2, KD =KD(2),
which means that it was embedded by Ut-2. It is trivial to see that whether we embed the scenario
at t=0, Ut, or t=2, Ut-2, the generated story remains the same. In that way, we exemplify our
previous statements: first, that we can choose any Ut-t0 to embed the scenario which generates
the story, and, second, equivalent to the first, that the stories are invariant to time translations.

Stories set The set that contains all possible stories is called ‘stories set ’, and we notate it
with Σ; it is a subset of the set of complete temporal sequences Σ∗. The stories set, as any
set of categories, can be endowed with a hierarchical structure, forming a tree of subsets (i.e.,
subcategories). We call such subsets Σ∗, where ‘∗’ is the name of the subset. For instance,
in the stories set of the spatial representation OPRA1, we have, amongst others, the subsets
ΣC (crossing trajectories, both entities moving) and ΣP (parallel non-superposed trajectories)
(Fig. 11.7).

Example 7.9 In Example 7.7, we have seen six RCC stories. Since the stories set of RCC,
Σ

RCC
, contains all RCC stories, these six stories offer us a first glance into Σ

RCC
.

{

(DC), (DC,EC,DC), (DC,EC,PO,EC,DC),

(DC,EC,PO,TPP,PO,EC,DC), (DC,EC,PO,TPP,NTPP,TPP,PO,EC,DC)
}

⊂ Σ
RCC
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We emphasize that we can use relations of any kind to create a story. Once we choose a
specific kind of relations, e.g., spatial relations, we obtain the corresponding kind of sequence. In
this work, we study the stories of spatial relations (Section 8.2) and stories of motion relations
(Section 8.3). There might be more types of relations that depend on the positions and velocities,
if so, the definition of stories extends to that types of relations as well.

We might add a subindex R to the story map, i.e., σR, that indicates the qualitative represen-
tation participating in the story generation. As an illustration, the story map σRCC application
uses the qualitative spatial representation RCC to generate stories; σQTCB

uses the qualitative
motion representation QTCB. But, often, the R drops, and we have σ, because the qualitative
representation R is clear from the context, or because we mean a general qualitative represen-
tation. For instance, in Figure 7.7, we wrote SCi

= σ(KCi
) to express that the RCC story SCi

was obtained from scenario KCi
. We could have written SCi

= σ
RCC

(KCi
), but it was clear by

the context and the name of the qualitative relations that we were dealing with RCC.

7.6 Stories become Categories: Story-based categorizations

Stories have two crucial properties that made them apt to form both a motion categorization
and, specifically, a qualitative representation of motion:

i. Stories are finite sequence of relations, i.e., stories have a finite number of relations (Prop. A.2.1).
In that way, computations are facilitated or, rather, made possible: we can obtain the full
temporal sequence of each story, and we can operate with stories as with qualitative rep-
resentation, for instance, to compute inverse and composition (Ch. 10).

ii. The set of all possible stories in uniform motion is finite (Prop. A.2.1). Only then makes it
sense to use stories as categories or qualitative relations—It would defeat cognitive economy
to categorize with a categorization that has an infinite number of categories.

Consequently, we have a motion categorization as we formalized it in Chapter 6, namely
(σ,Σ); we illustrate this in Table 7.1. The story map σ is the categorization rule, because it
maps the categorized objects (i.e., motion scenarios) into the categories (i.e., stories Si), which
form the set of stories Σ. In brief, the motion categorization induced by the stories is fully defined
as the categorization rule σ and the set of categories Σ.

We call ‘story-based’ any categorization that uses stories as a categorization cue.
Moreover, stories are not only categories, but they are also qualitative relations of motion—

we show it rigorously in Chapter 10. Thus, the stories set Σ is not only a categorization, but
also a qualitative representation of motion.

7.6.1 Types of Story-Based Categorization: Bare and Beaded

In this work, we treat two types of story-based categorizations: ‘bare’ and ‘beaded’. We ex-
pound them at length in Chapter 8. Here, we mention them in an example (Ex. 7.10) without
delving into details; we want to illustrate that not only the simple stories, Si, are story-based
categorizations, but, using the stories, we can create further types of story-based categorizations.

Example 7.10 (Bare and beaded story-based categorizations) In Figure 7.7c, we have five
scenarios, the five snapshots of the trajectory KC3(t), which can be categorized according to a
‘bare’ or a ‘beaded’ categorization, as shown in Table 7.2, both based in the spatial representation
RCC.

The bare categorization uses only the story, Si, to which the scenario belongs, as category.
For example, in Figure 7.7c, each scenario belongs to the same category, namely, SC3 .
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Figure 7.7: A sample of uniform trajectories, KCi
(t)= (~xk, ~vk; ~xl, ~vl)(t), of two circular entities k and l with

radii rk =1 and rl =2. Each trajectory displays a story. Although we show only the time interval in [0, 4], the
trajectory can be effortlessly extrapolated to the interval (−∞,∞); and, since each trajectory KCi

(t) is the
uniform embedding, Ut, of the motion scenario KCi

(sketched at t = 0), each obtained qualitative temporal
sequence SCi

is the story for each scenario KCi
. In other words, these qualitative temporal sequences are

obtained by story map σ as SCi
= σ(KCi

).
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Figure 7.8: A RCC story. The snapshots (each in a specific time t) depict the temporal
sequence of RCC relations SKD

=(DC,EC,PO,TPP,NTPP,TPP,PO,EC,DC) of the uniform
trajectory created by the scenario KD (t=2). The entities k and l are discs with rk =1 and
rl =2. We display only the sequence for the interval [−2.0, 2.0], but, obviously, it is the same
sequence as for (−∞,∞). Therefore, this sequence is a story, SKD

=σ(KD).

Source: Purcalla Arrufi and Kirsch (2017)
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General
term

Motion state
Kinematic space Categorization rule

Category
Category set

Categorization
(extensional def.)

symbol K ∈ K fµ Mi ∈ M (fµ,M)

Bare
Story-based

term
Motion scenario
Kinematic space Story map

Story
Stories set

Story categorization
(extensional def.)

symbol (~xk, ~vk; ~xl, ~vl) ∈ K σ Si ∈ Σ (σ,Σ)

Table 7.1: Terms and their symbols for the ‘general’ motion categorization model (Ch. 6)
compared with analogous terms and symbols of motion categorization through stories, i.e., ‘bare
story-based’ categorization.

Scenario

Name

Scenario as

Trajectory instant KC3
(t)

Bare

Category

Beaded

Category

KC31
KC3

(0.00) SC3
SC3

(DC−)
KC32

KC3
(1.25) SC3

SC3
(EC−)

KC33
KC3

(2.00) SC3
SC3

(PO)
KC34 KC3(2.75) SC3 SC3(EC+)
KC35 KC3(4.00) SC3 SC3(DC+)

Table 7.2: The scenarios in Figure 7.7c categorized according to its story SC3 , i.e., (DC,EC,
PO,EC,DC), (bare category), and according to its story along with the corresponding spatial
representation Si(Rj) (beaded category), e.g., SC3

(PO).

The beaded categorization uses both the story, Si, and the qualitative relation, Rj , to which
the scenario belongs. For example, in Figure 7.7c, the scenario at t=2 belongs to the story SC3

and to the relation PO, thus, its beaded category is SC3
(PO); in the same way, the scenario at

t=4.0 belongs to the beaded category SC3(DC+), because it belongs to the story SC3 and to the
relation DC.

The RCC stories have the particularity that some relations appear twice in the temporal
sequence; so we have added the signs ‘+’ and ‘−’ to discern which of both relations in the
sequence is meant, the one occurring first or second. For example the relations DC and EC in
the story sequence of SC3

would be noted as (DC−,EC−,PO,EC+,DC+).

As a third example, the scenario at t=0.0 in Figure 7.7c belongs to the beaded category
SC3

(DC−), because the scenario belongs to the story SC3
and to the first appearance of relation

DC in the story sequence.

7.6.2 Rigid and Singleton Stories

We subdivide the stories that have only one relation in either ‘rigid’ or ‘singleton’ stories. An
example of rigid story is S01 = (DC), and of singleton story is S11 = (DC) (Fig. 7.9). It might
seem bewildering, that we classify S01 and S11 as different stories, while they have the same one
element ‘DC’. Admittedly, we are slightly refining our categorization rule, σ. We differentiate
stories that according to the categorization rule should be the same story, when certain properties
hold. In the following, we explain the properties that make rigid stories, such as S01 = (DC),
different from singleton stories, such as S11 = (DC).
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k

l

vk

vl
k vk

lvl

Figure 7.9: Two motion scenarios that seemingly have the same story (DC), but are differently
classified according to a variety of criteria, such as Gestalt psychology, dynamic operations, or
dominance theory. The scenario left, in which both velocity vectors are equal, i.e., ~vk = ~vl, can
occur only in closed time intervals; such scenario is a rigid story S01 = (DC). The scenario right
can only occur in opened time intervals, velocity vectors are different, i.e., ~vk 6= ~vl; and it is,
thus, a singleton story S11 = (DC).

Source: Purcalla Arrufi and Kirsch (2018a)

Rigid stories A ‘rigid story ’ is the story of two entities that move with the same velocity, i.e.,
~vk = ~vl, including the case where both objects are motionless ~vk = ~vl = ~0 (Thereby, we state
that spatial categorization can be seen as a particular case of motion categorization).

Singleton Stories A ‘singleton story ’ is a story consisting of a single relation, where the
velocities of the entities are different, i.e., ~vk 6= ~vl.

According to the definitions above. We will consider as two different stories, if the same story
that consist on only one relation can be generated both by scenarios with the same velocity, i.e.,
~vk = ~vl, or different velocity, i.e.,~vk 6= ~vl. As in the case of story S = (DC), that results in rigid
story, such as S01 = (DC), and singleton story, such as S11 = (DC).

We can immediately see that the story map, σ, yields rigid stories for every spatial repre-
sentation. That is, every story-based motion representation contains rigid stories. However, not
every representation yields singleton stories; for instance, OPRA2 yields no singleton stories,
because any trajectory in uniform motion goes at least through two different relations. In any
case, the two spatial representations used in this work, RCC and OPRA1, yield singleton stories,
and, therefore, we devote next section to show the differences between singleton and rigid stories.

Differences between rigid and singleton stories

We have several ways to differentiate between rigid and singleton stories. The most direct way is
possibly the principle of the common fate which belongs to the Gestalt psychology—It has a long
tradition and profound influence in psychology. We can also distinguish rigid and singleton stories
through dynamic operations (rigid stories react differently to accelerations than singleton stories)
or through continuous transformations (in that case we resort to the commutative diagrams and
dominance theory).

Gestalt psychology Rigid stories are integral part of ‘Gestalt psychology ’. Indeed, they are
central in the ‘law of common fate’ (in German, gemeinsames Schicksal). This law is a particular
case of the ‘good continuation’ grouping law, which is one of the four original ‘grouping laws’
or ‘gestalt principles of organization’ defined by M. Wertheimer (1923). The law of common
fate states that entities “moving in time in the same direction and at the same speed” appear to
belong together, to form a single unit (Colman 2015, p. 148; compare, VandenBos 2007, p. 198).
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Actually, as we have seen, Gestalt psychology does not expressly distinguish between both
types of stories: it singles out the rigid stories as being extremely salient, and leaves singleton
stories unmentioned, most assuredly because they lack such saliency.

Dynamic operations Murphy and Medin (1985, p. 295f.) explain that further differences
between categories arise “from our knowledge about transformations and operations associated
with [them]”; they compare it with finding “higher order features” in the categories. Concerning
the motion scenarios, which are such “operations” associated with them? We argue that they are
the dynamic operations, i.e., accelerations: stories (i.e., the motion categories) react differently
depending on the acceleration applied on the entities.

Applying a tangential acceleration, i.e., changing speed, reveals a difference between singleton
and rigid stories. A singleton story remains unchanged for low enough speed changes, while most
rigid stories can switch into another story when either entity changes speed, no matter how
low the change might be—plainly expressed, rigid stories are extremely sensitive to tangential
accelerations. This is related to the fact that the velocities in a rigid story have a tighter, a lower
dimension constraint, i.e., ~vk = ~vl, than the velocities in a singleton story, e.g., ~vk ‖ ~vl. This is a
practical distinction, since it repercusses on navigation control (Sect. 11.5).

Continuous operations Rigid and singleton stories behave differently when we apply con-
tinuous operations on the entities. We note that dynamic operations are a case of continuous
operations limited to exerting forces on the particles. When we deal with continuous operations,
we can apply the insights of Sections 7.3 and 7.4: direct transitions and dominance theory. We
consider two continuous operations: translation, and speed variation (which is also a dynamic
operation, the tangential acceleration).

Most remarkably, the rigid stories are closed under translation; the non-rigid stories (e.g., the
singleton stories) are also closed under translation. Thus, there is no direct transition between a
rigid and a non-rigid story, if we allow only translations. However, the rigid↔non-rigid transitions
are possible, if we allow speed change.

The dominance theory also differentiates between rigid and singleton stories. The rigid stories
dominate over the non-rigid ones, and, particularly, over the singleton stories, because the rigid
stories correspond to the single value ‖~vk − ~vl‖ = 0 of the parameter ‖~vk − ~vl‖. Simply put, if
we change only speed, the rigid stories can occur in closed intervals while the non-rigid stories
cannot.

All the above arguments distinguishing rigid and singleton stories are presumably related.
Through dynamic and continuous operations, we show a particular behaviour of the rigid sto-
ries that might explain the saliency captured in the law of common fate. Remember that the
Gestalt principles of organization are not explained from higher principles, but postulated from
experimental results on human perception (see, Ullman 1979, Sect. 4.3, p. 144).



Chapter 8

Creating Story-Based Categorizations:

Bare and Beaded

In Chapter 7, we have shown that stories are fit to categorize motion scenarios, and we have
defined stories for any type of qualitative representations. Particularly, in Section 7.6, we estab-
lished that any categorization using stories as a categorization cue is a story-based categorization.
Further, in Section 7.6.1, we mentioned two main types of story-based categorizations: ‘bare’
(using stories, Si, as categories) and ‘beaded’ (using pairs stories-relations, Si(Rj), as categories).
Expanding on the definition in Chapter 7:

• The bare story-based representations are motion categorizations in which the categories
are simply the stories, Si. We call any of such representations ‘Stories-R’, where R is the
qualitative representation that generates it.
For example, we have the representations Stories-RCC or Stories-QTCB21. Some categories
of Stories-RCC are S11 or S13, some categories of Stories-QTCB21 are S00 or S191.

• The beaded story-based representation are motion categorizations in which each category
is a pair formed by a story, Si, and some of its constituting relations, Rj , i.e., Si(Rj)
where Rj ∈ Si. We call any of such representations ‘Motion-R’, where R is the qualitative
representation that generates it.
For example, we have the representations Motion-RCC, or Motion-OPRA1. Some cate-
gories of Motion-RCC are S11(DC−) or S13(PO), some categories of Stories-OPRA1 are
SC21(∠

3
1 ) or ST91(∠2 ).

In this chapter, we define more precisely both types of categorizations—bare and beaded—
and create full-fledged instances. Concretely, we create the bare story-based categorizations
Stories-RCC, Stories-OPRA1 (Sect. 8.2), and Stories-QTCB21 (Sect. 8.3). We also create the
beaded story-based categorizations Motion-RCC, Motion-OPRA1 (Sect. 8.6), and Motion-QTCB21

(Sect. 8.7).

Whatever the type of categorization (bare or beaded), the very first step in a story-based cat-
egorization is to find the stories set Σ—We provide an algorithm to find it in Section 8.1. When
finding the stories set, we obtain, as a by-product, the story map σ compactly defined. Once we
have the stories set and the story map, we already have the bare story-based categorization.

A beaded story-based categorization is obtained by adding the corresponding relation Rj to
the story Si given by the bare story-based categorization (Sect. 8.5). Equivalently, in the beaded

127
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categorization, the categorization rule is the Cartesian product of the story map, σ, and the
qualitative representation used to create the story map, ρ, i.e., fµ = σR × ρ (Sect. 8.5.1) .

8.1 Finding the Stories Set Σ

To obtain the story of a single scenario might be laborious but straightforward: we manually
apply the story map σ to the given scenario K = (~xk, ~vk; ~xl, ~vl). However, to obtain the stories
set Σ seems an overwhelming process. Theoretically, we should apply the storymap σ to every
scenario K in the kinematic space K—there are infinitely uncountable scenarios—to obtain the
stories set Σ. This is why we present a practical method to obtain Σ.

Conveniently, as we find the stories set, we find also a compact form of the story map. Indeed,
when we find the stories, we find simultaneously their categorical regions {K1, . . . ,Kn}, i.e., the
region Ki for each story Si (Sect. 6.1, p. 89). Since the categorical regions are finite, the story
map is defined as a piecewise constant function in the kinematic space. Therefore, to obtain the
categorical regions is equivalent to obtain the story map.

Summing up, the method for generating the stories set below, determines at once the sto-
ries set Σ with their categorical regions {K1,. . . ,Kn}, and the story map σ based on such
categorical regions. The method fully determines the bare story-based categorization (σ,Σ)—
actually, (σR,ΣR), when we spell out the used representation, R—and we call such categorization
‘Stories-R’.

8.1.1 Algorithm for stories set generation

At the beginning we have the empty stories set, ΣR = {}, the empty regions set, K = {},
and the story map σ defined by a qualitative representation R (Eqs. (7.13) and (7.14))

1. We pick a random motion scenario Ka = (~xk, ~vk; ~xl, ~vl) ∈ K that does not belong to any
categorical region Ki in the regions set K. That is, we pick Ka ∈ {K \

⋃

Ki∈K
Ki}.

2. We obtain the scenario’s story with the story map, Sa = σR(Ka).

3. Add the story to the stories set, ΣR = ΣR ∪ {Sa}

4. We find the categorical region of the story Sa, i.e., all scenarios in the kinematic space that
belong to such story, i.e., Ka = σR

−1(Sa).

5. We add the categorical region to the regions set K = K ∪ {Ka}

6. Repeat steps 1 to 5 until the whole kinematic space is partitioned in categorical regions,
each with its corresponding story.

At the end we have the stories set ΣR = {S1, . . . , Sn}, the categorical regions K =
{K1, . . . ,Kn}, and the story map σR defined according to the categorical regions. Im-
portantly, Proposition A.2.1 guarantees that this algorithm ends after a finite number of
steps, since in almost all representations the stories set is finite.

8.2 Stories-R of Spatial Representations

We show now concrete examples of the stories set Σ for spatial representations. We choose
two spatial representations which are simple but non-trivial: RCC and OPRA1. Since we use
the method in Section 8.1 to generate Σ, we will obtain for each spatial representation a bare
story-based categorization, namely, ‘Stories-RCC ’ and ‘Stories-OPRA1’.
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(b) A story S13 = (DC,EC,PO,EC,DC)

Figure 8.1: Examples of stories in RCC. (Source: Purcalla Arrufi and Kirsch (2018a))

8.2.1 Stories-RCC

We generate the categorization Stories-RCC by applying the method for stories set generation
(Sect. 8.1) with the spatial representation R = RCC. Our start point is the spatial map δ

provided by RCC, i.e., δ
RCC

; this map relates each motion scenario (~xk, ~vk; ~xl, ~vl) with a spatial
relation RCC.

The spatial map of RCC, δ
RCC

, and, consequently, the ensuing story map σ
RCC

depend
heavily on the geometry of the entities. In this work, we assume that the entities (k and l) are
discs with radii rk and rl; because, then, we have the simplest formulation of δ

RCC
and σ

RCC
.

Regarding notation, we tend to drop the suffix RCC and write simply δ and σ, whenever it
is clear that we deal with the representation RCC.

A. Spatial Map δ
RCC

For disc entities, k and l, the spatial relation of a motion scenario depends exclusively on their
radii and on the distance between their centres: rk, rl, d(~xk, ~vk; ~xl, ~vl) = ‖~xl − ~xk‖.

δ
RCC

(~xk, ~vk; ~xl, ~vl) :=



















































DC if d > d2
EC if d = d2
PO if d2 > d > d4

TPP if d = d4
NTPP if d4 > d

}

if rk < rl

TPPI if d = d4
NTPPI if d4 > d

}

if rk > rl

EQ if d = d4 (= 0)
}

if rk = rl

(8.1)

d2 = |rk + rl|, distance at spatial relation EC

d4 = |rk − rl|, distance at spatial relation TPP

B. Stories Set Σ
RCC

With the spatial map δ
RCC

, we need only apply the definition of story map (Eq. (7.13)) to
generate the stories—we show some examples of stories in Fig. 8.1. By applying our method, we
find the whole stories set (Table 8.1). We subdivide the set into two subsets: Σ0 = {S01, S02,

. . . , S08}, the rigid stories, and Σ1 = {S11, S12, . . . , S18}, the non-rigid stories. Some stories are
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Story Sequence Story Name Verbal Description

Rigid stories ~vk = ~vl
Flock motion

(entities move together)

Σ0



















































































(DC) S01

(EC) S02

(PO) S03

rk < rl
(TPP) S04

(NTPP) S05

rk > rl
(TPPI) S06

(NTPPI) S07

rk = rl
(EQ) S08

Entities move keeping distance
Entities move connected

Entities move overlapping

Entity k is carried inside l

. . . tangent to the inner border

. . . no tangent

Entity l is carried inside k

. . . tangent to the inner border
. . . no tangent

Entities move perfectly stapled

Non-rigid stories ~vk 6= ~vl Independent motion

Σ1















































































































(DC) S11

(DC, EC, DC) S12

(DC, EC, PO, EC, DC) S13

rk < rl
(DC, EC, PO, TPP,

PO, EC, DC)
S14

(DC, EC, PO, TPP, NTPP,
TPP, PO, EC, DC)

S15

rk > rl
(DC, EC, PO, TPPI,

PO, EC, DC)
S16

(DC, EC, PO, TPPI, NTPPI,
TPPI, PO, EC, DC)

S17

rk = rl
(DC, EC, PO, EQ,

PO, EC, DC) S18

Entities pass each other by
Entities brush past each other

Entities collision partially

Entity k goes fully through l

. . . moving tangent to the inner border

. . . no tangent to the inner border

Entity l goes fully through k

. . . moving tangent to the inner border

. . . no tangent to the inner border

Entities coincide exactly at the crossing

Table 8.1: Stories set, Σ, of RCC consisting of 16 stories. It is subdivided in rigid stories,
Σ0 (8 stories), and non-rigid stories, Σ1 (8 stories). For each story, we provide a description in
natural language.
Some stories depend on which of both entities is larger, as indicated through the radii relations
(rk and rl). The non-rigid stories are symmetrical, so we have marked bold-faced the middle
relation for clarity.
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vk − vl

k

k

S12

S14

S12

S14

S13

S13

S15

S11

S11

Figure 8.2: Depiction of {S11, S12, S13, S14, S15}, the non-rigid stories of Σ
RCC

for two entities
k and l with rk < rl and ~vk 6= ~vl (Tab. 8.1). Two stories correspond to one-dimensional regions:
S12 = (DC,EC,DC), and S14 = (DC,EC,PO,TPP,PO,EC,DC). The remaining three stories
correspond to two-dimensional regions: S11 = (DC), S13 = (DC,EC,PO,EC,DC), S15 = (DC,
EC,PO,TPP,NTPP,TPP,PO,EC,DC).
We depict l as being motionless and k moving with the difference of velocities ~vkl = ~vk − ~vl,
which is an equivalent depiction as l moving with ~vl and k moving with ~vk. The stories depend
on the direction of ~vkl.

Source: Purcalla Arrufi and Kirsch (2017)
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restricted to certain ratios of the entities’ radii: rk < rl, rk > rl, or rk = rl. The ratios remain
constant, because deformations are not allowed in our work (Sect. 1.2). In Figure 8.2, we depict
how the non-rigid stories originate in two entities with different size, rk < rl.

C. Story Map σ
RCC

and Featural Variables

Here, we define the core of the Stories-RCC categorization: the story map σ
RCC

, which is the
categorization rule; and we relate it to our categorization framework in Section 6.1.

As we generate the RCC stories, we observe that the categorical regions are fully determined
by two real variables, and, consequently, they are the featural variables for this categorization: the
minimum distance between entities in the story, dmin (Eq. (8.3a)), and the dissimilarity between
velocity vectors, difV (Eq. (8.3b))—additional parameters are the radii, rk and rl, but they are
constant for all stories of the same entities; for this reason, we do not consider them featural
variables. It is, thus, more natural to define the story map as the composition of two functions:
σΦ(dmin, difV) and Φ(~xk, ~vk; ~xl, ~vl) (Eq. (8.2)). We call the first function, Φ (Eq. (8.4)), feature
extraction function, because it maps the kinematic variables (~xk, ~vk; ~xl, ~vl) into (dmin, difV), which
act as featural variables, or simply, as features. We call the second function, σΦ (Eq. (8.5)),
‘featural story map’, because it maps the featural variables into stories.

Story map

σ
RCC

(~xk, ~vk; ~xl, ~vl) = σΦ(dmin, difV) ◦ Φ(~xk, ~vk; ~xl, ~vl) (8.2)

Featural variables and feature extraction function

dmin(~xk, ~vk; ~xl, ~vl) = ‖~xl − ~xk‖|det(~xl − ~xk, ~vl − ~vk)| (8.3a)

difV(~xk, ~vk; ~xl, ~vl) =







‖~vl − ~vk‖

‖~vk‖+ ‖~vl‖
‖~vk‖ 6= 0, ‖~vl‖ 6= 0

0 ‖~vk‖ = ‖~vl‖ = 0
(8.3b)

Φ(~xk, ~vk; ~xl, ~vl) = (dmin(~xk, ~vk; ~xl, ~vl); difV(~xk, ~vk; ~xl, ~vl)) (8.4)
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K

(~xk, ~vk; ~xl, ~vl)

(dmin, difV) Si

F
RCC

Σ
RCC

Φ
σRCC=σΦ ◦Φ

σΦ

Figure 8.3: Categorization of Stories-RCC reflecting the framework in Section 6.1 (Eq. (6.5)).
The story map of RCC, σ

RCC
, assigns a story Si—a motion category—to every scenario (~xk, ~vk;

~xl, ~vl) in the kinematic space K. The story map σ
RCC

can be expressed as a two-step process:
first, the featural variables, dmin and difV, are extracted from the kinematic variables (~xk, ~vk;
~xl, ~vl) through function Φ; second, based on the features, the featural story map σΦ assigns a
story to the scenario features, i.e., it performs a feature based categorization.

Featural story map

σΦ(dmin, difV) :=











































































































































S01 if dmin > d2
S02 if dmin = d2
S03 if d2 > dmin > d4

S04 if dmin = d4
S05 if d4 > dmin

}

if rk < rl

S06 if dmin = d4
S07 if d4 > dmin

}

if rk > rl

S08 if dmin = d4
}

if rk = rl



























































if difV = 0

S11 if dmin > d2
S12 if dmin = d2
S13 if d2 > dmin > d4

S14 if dmin = d4
S15 if d4 > dmin

}

if rk < rl

S16 if dmin = d4
S17 if d4 > dmin

}

if rk > rl

S18 if dmin = d4
}

if rk = rl























































if difV > 0

(8.5)

d2 = |rk + rl|, distance at spatial relation EC

d4 = |rk − rl|, distance at spatial relation TPP

The story map of Stories-RCC (Eq. (8.2)) is a clear example of the formalization of catego-
rization in Section 6.1. As shown in Figure 8.3, the categorization of motions in RCC by the
story map σ

RCC
(~xk, ~vk; ~xl, ~vl) can be seen as a two-step process: initially, the feature extraction

function, Φ (Eq. (8.4)), extracts the features, dmin and difV, from the motion scenario (~xk, ~vk;
~xl, ~vl); afterwards, the featural story map σΦ (Eq. (8.5)) assigns the story based on the features
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of the scenario.

8.2.2 Stories-OPRA1

We generate the categorization Stories-OPRA1 by applying the method for stories set generation
(Sect. 8.1) to the spatial representation R = OPRA1 (Sect. 4.2.2). Our start point is the spatial
map δ provided by OPRA1; the map relates each motion scenario (~xk, ~vk; ~xl, ~vl) to a spatial
relation.

A. Spatial Map δ
OPRA1

The spatial representation OPRA1 describes relative orientation of entities; for that reason
OPRA1 requires the orientation vectors of the entities, ~ok and ~ol; vectors that are intrinsic
to the entities. Nevertheless, we can use OPRA1 in motion scenarios even when entities do not
have an intrinsic orientation, e.g., simple points and circles, as we explain in the following.

In the case of moving entities, we identify the orientation vectors with the velocity vectors,
~o∗ := ~v∗. This is the most common way humans, animals, and vehicles move: they move
“forwards”—We leave the treatment of motions with divergent, i.e., non-aligned, orientation and
velocity for future work. For that reason, the definition of the spatial map in Equations (8.6)
and (8.7) uses the velocity vectors, ~v∗, instead of the orientation vectors, ~o∗.

In case that at least one entity is motionless ~v∗ = 0, the orientation ~o∗ is given by the
direction of its most recent past or future non-zero velocity vector ~v∗. This solves the problem of
undetermined orientation for motionless entities in the course of a trajectory. Note that when a
motionless entity accelerates, it must begin the motion in the direction of its current orientation,
i.e., its last velocity, so that the condition ~o∗ = ~v∗ always holds. Such requirement is consistent
with our ban on entities spinning (Sect. 1.2): an entity cannot stop, spin, and start again in a
different direction, but it must start in the direction in which it most recently stopped.

As last case, if the entity is motionless for the whole trajectory, or we want to categorize
a motion scenario alone, i.e., without trajectory, then we might question whether categorizing
according to a directional representation (i.e., OPRA1) is reasonable for an entity that neither
has intrinsic orientation vector nor moves at any time. Of course, we can always define an
arbitrary intrinsic orientation for the entity, as a workaround, but the meaningfulness of such
decision is debatable.

δ
OPRA1

(~xk, ~vk; ~xl, ~vl) =

{

∠
b
a if difX > 0

∠c if difX = 0
(8.6)

where difX(~xk, ~vk; ~xl, ~vl) =







‖~xl − ~xk‖

‖~xk‖+ ‖~xl‖
‖~xk‖ 6= 0, ‖~xl‖ 6= 0

0 ‖~xk‖ = ‖~xl‖ = 0
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a, b, and c are defined as follows:

a =















0 if cos(α∆xvk) > 0
2 if cos(α∆xvk) < 0

}

if sin(α∆xvk) = 0

1 if sin(α∆xvk) > 0
3 if sin(α∆xvk) < 0

(8.7a)

b =















0 if cos(αvl∆x) < 0
2 if cos(αvl∆x) > 0

}

if sin(αvl∆x) = 0

1 if sin(αvl∆x) > 0
3 if sin(αvl∆x) < 0

(8.7b)

where ∆~x = ~xl − ~xk

c =















0 if cos(αvv) > 0
2 if cos(αvv) < 0

}

if sin(αvv) = 0

1 if sin(αvv) > 0
3 if sin(αvv) < 0

(8.7c)

When ~vk = ~0 or ~vl = ~0, then, instead of the zero vector, we use its
most recent (past or future) non-zero velocity vector ~vk or ~vl, as-
suming that the motion scenario belongs to a trajectory. Otherwise,
we resort to defining an orientation vector ~ok or ~ol.

If we examine the spatial relation δ
OPRA1

(Eqs. (8.6) and (8.7)), it apparently depends on

four real values: difX, and the angles α∆xvk = ∠(∆~x,~vk), αvl∆x = ∠(~vl,∆~x), αvv = ∠(~vk, ~vl).
However, the variable αvv is not independent: we see that αvv = −(αvl∆x + α∆xvk) because
∠(~vk, ~vl) = − (∠(~vl,∆~x) + ∠(∆~x,~vk)). Thus, the total number of featural variables is three:
difX, α∆xvk , and αvl∆x.

By the way, to compute δ
OPRA1

, we just need the sign of the sine and cosine of the vector

angles, which can be efficiently calculated by means of dot product, cos(∠(~a,~b)) ∝ ~a ·~b, and the

determinant of the vectors, sin(∠(~a,~b)) ∝ det(~a,~b).

B. Stories Set Σ
OPRA1

Given the spatial map δ
OPRA1

, we only need to apply the definition of story map (Eq. (7.13)) to
generate the stories—we show some examples of stories in Fig. 8.4. By applying our method, we
find the whole stories set, Σ

OPRA1

(Table 8.2). We subdivide the stories set into six meaningful
subsets Σ∗; the subsets are grouped by pairs into three superordinate groups.

• Entities cross:

ΣC both entities are moving

ΣB one entity is motionless

• Entities move parallel:

ΣT the entities’ trajectories are superposed

ΣP the entities’ trajectories are not superposed
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Independent motion ~vk 6= ~vl

Entities cross ~vk ∦ ~vl
k comes from the right of l k comes from the left of l

ΣC















Both entities move ~vk 6= 0, ~vl 6= 0

∠
3
1 ∠

0
1 ∠

1
1 ∠

1
2 ∠

1
3 SC191 k crosses before l ∠

1
3 ∠

0
3 ∠

3
3 ∠

3
2 ∠

3
1 SC291 k crosses before l

∠
3
1 ∠3 ∠

1
3 SC10 entities collide ∠

1
3 ∠1 ∠

3
1 SC20 entities collide

∠
3
1 ∠

3
0 ∠

3
3 ∠

2
3 ∠

1
3 SC11 l crosses before k ∠

1
3 ∠

1
0 ∠

1
1 ∠

2
1 ∠

3
1 SC21 l crosses before k

ΣB























































Entity l is motionless ~vk 6= 0, ~vl = 0

∠
3
1 ∠

0
1 ∠

1
1 SB191 k crosses before l ∠

1
3 ∠

0
3 ∠

3
3 SB291 k crosses before l

∠
3
0 ∠3 ∠

1
2 SB10 k runs over l ∠

1
0 ∠1 ∠

3
2 SB20 k runs over l

∠
3
3 ∠

2
3 ∠

1
3 SB11 k crosses behind l ∠

1
1 ∠

2
1 ∠

3
1 SB21 k crosses behind l

Entity k is motionless ~vk = 0, ~vl 6= 0

∠
1
1 ∠

1
2 ∠

1
3 SB391 l crosses behind k ∠

3
3 ∠

3
2 ∠

3
1 SB491 l crosses behind k

∠
0
1 ∠3 ∠

2
3 SB30 l runs over k ∠

0
3 ∠1 ∠

2
1 SB40 l runs over k

∠
3
1 ∠

3
0 ∠

3
3 SB31 l crosses before k ∠

1
3 ∠

1
0 ∠

1
1 SB41 l crosses before k

Entities move parallel ~vk ‖ ~vl

ΣT























The entities’ trajectories are superposed

∠
2
0 ∠0 ∠

0
2 ST91 k overtakes l

∠
0
0 ∠2 ∠

2
2 ST0

k runs frontally
through l

∠
0
2 ∠0 ∠

2
0 ST1 l overtakes k

ΣP



































The entities’ trajectories are not superposed
Entities pass each

other by backwardly
Entities pass each
other by frontally

∠
3
1 SP2

l stays at the right of k
k stays at the left of l

∠
3
3 SP3

entities stay at the
right of each other

∠
1
3 SP92

l stays at the left of k
k stays at the right of l

∠
1
1 SP1

entities stay at the
left of each other

Flock motion ~vk = ~vl

ΣE



























Non-static entities ‖~v∗‖ 6= 0

∠
2
0 SE92 k follows l ∠

0
2 SE2 l follows k

∠
1
3 SE91

k stays at the

right of l
∠

3
1 SE1

k stays at the

left of l

∠0 SE0 entities coincide

ΣR



































Static scenarios ‖~v∗‖ = 0, equivalent to OPRA1

∠
0
0 SR00 ∠

0
1 SR10 ∠

0
2 SR20 ∠

0
3 SR30

∠
1
0 SR01 ∠

1
1 SR11 ∠

1
2 SR21 ∠

1
3 SR31

∠
2
0 SR02 ∠

2
1 SR12 ∠

2
2 SR22 ∠

2
3 SR32

∠
3
0 SR03 ∠

3
1 SR13 ∠

3
2 SR23 ∠

3
3 SR33

∠0 SR0 ∠1 SR1 ∠2 SR2 ∠3 SR3

Table 8.2: Stories set Σ of OPRA1, divided into meaningful subsets of stories: ΣC , ΣB , ΣT , ΣP ,
ΣE , ΣR. A total of 50 stories, but 20 belong to ΣR, i.e., fully motionless entities. The stories are
described both through sequences of spatial relations and through sentences in natural language.

Originally based in Table 1 in Purcalla Arrufi and Kirsch (2018a), though notably modified and expanded.
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∠
3
3 ∠

3
3 ∠

3
3

Story SC11

0
1

3
2

 l

0

1
3

2

k

0
1

3
2

l
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0
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2
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0
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l
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3 ∠
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Figure 8.4: Representation of two stories of OPRA1, SP3 and SC11. We display for each story
its complete sequence of spatial relations (See Table 8.2).

Source: Purcalla Arrufi and Kirsch (2018a)

• Rigid stories:

ΣE both entities are moving

ΣR both entities are motionless

C. Story Map σ
OPRA1

and Featural Variables

As usual, we separate the description of the story map, σ
OPRA1

, in two cases that we treat

differently: first, the non-rigid stories (~vk 6= ~vl); second, the rigid stories (~vk = ~vl) (See Tab. 8.2).
The rigid stories behave mostly like the spatial relation OPRA1, as described in Equations (8.6)
and (8.7). For that reason, in this section, we only describe the story map for the first case, the
non-rigid stories.

The OPRA1 non-rigid stories can be fully determined using four real features:

• αvv, the angle between orientations of velocities, i.e., ∠(~vk, ~vl).
To determine the category, we compute its sign, which is equivalent to the sign of det(~vk, ~vl).

• α∆x∆v, the angle between the positions’ difference and the velocities’ difference, i.e.,
∠(∆~x,∆~v).
To determine the category, we compute its sign, which is equivalent to the sign of det(∆~x,∆~v).

• uk and ul, which are the velocity ratio for each entity.
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uk =

{

‖~vk‖
max{‖~vk‖,‖~vl‖}

‖~vk‖ 6= 0

0 ‖~vk‖ = 0
(8.8a) ul =

{

‖~vl‖
max{‖~vk‖,‖~vl‖}

‖~vl‖ 6= 0

0 ‖~vl‖ = 0
(8.8b)

We use these ratios to know, whether and which entity is motionless, i.e., whether u∗ = 0;
and, also, to know whether one entity is faster than the other: for non-rigid scenarios
uk < 1 ⇔ ‖~vk‖ < ‖~vl‖, or, equivalently, ul < 1 ⇔ ‖~vl‖ < ‖~vk‖.

Since we fully determine the OPRA1 story of each scenario (~xk, ~vk; ~xl, ~vl) using the features
above, we have again the categorization model displayed in Equation (6.5): first, we extract
the Stories-OPRA1 features from the scenario, which we can express as the feature extraction
function Φ; and, second, we use the features to map the scenario into its corresponding story,
which we perform by means of the featural story map of OPRA1, σΦ—Since the featural variables
are independent and each forms at most four featural regions, we can represent σΦ as a tree
(Fig. 8.5).

8.3 Stories-R of Motion Representations

The method in Section 8.1 for obtaining Stories-R categorizations is a general method that uses
any kind of qualitative representations. Remember that, as we mentioned in Section 7.1, the
only condition for using a certain qualitative representation, is that it categorizes scenarios—
This condition was expressed in Equation (7.4). In the specific case of a qualitative representation
of motion that categorizes motion scenarios, Equation (7.4) can be rewritten as follows:

µ : K −→ M
K = (~xk, ~vk; ~xl, ~vl) 7−→ Mi

(8.9)

We have just made following substitutions: the qualitative representation R is expressed as
a motion representation M; the qualitative relation Ri is expressed as a motion relation Mi;
the relational map ρ of a qualitative representation is expressed as the relational map µ of a
qualitative motion representation.

The same substitutions take place in Equation (7.14) (the definition of story map), so that
we obtain following:

σ : K −→ Σ
(~xk, ~vk; ~xl, ~vl) 7−→ Si = (Mi1 ,Mi2 , . . . ,Mim)

(8.10)

We can see, in Eq. (8.10), that the stories of motion representations, Si, are a sequence of
relations, Ri, and, specifically, a sequence of motion relations, Mi.

Now, the construct “story of motion representations” might be confusing at first glance. If a
motion representation already categorizes motion, what does a story of a motion representation
categorize? The stories of motion representations categorize motion scenarios too. In short, we
can create a new motion categorization, e.g., Stories-QTCB21 (Sect. 8.3.1), using the stories of
another motion categorization, e.g., QTCB21.

Idempotence of Stories- Operation Notwithstanding, the process for obtaining new motion
categorizations by obtaining their stories cannot be applied recursively. Indeed, the story of a
certain story is by definition this same story, i.e., Stories-{Stories-R} = Stories-R. That is
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αvv

α∆x∆v

SP1

α∆x∆v > 0

ST0

α∆x∆v = 0

SP3

α∆x∆v < 0

αvv = 180°

α∆x∆v

SB41

uk = 0

SB21

ul = 0

SC21

uk 6= 0, ul 6= 0

α∆x∆v > 0

SB40

uk = 0

SB20

ul = 0

SC20

uk 6= 0, ul 6= 0
α∆x∆v = 0

SB491

uk = 0

SB291

ul = 0

SC291

uk 6= 0, ul 6= 0

α∆x∆v < 0

αvv > 0°
αvv ∈ (0°, 180°)

α∆x∆v

SP2

ul < 1

SP92

uk < 1

α∆x∆v > 0
ST91

ul < 1

rigid stories
ΣE

uk = ul = 1

ST1

uk < 1
α∆x∆v = 0

SP92

ul < 1

SP2

uk < 1

α∆x∆v < 0

αvv = 0°

α∆x∆v

SB391

uk = 0

SB191

ul = 0

SC191

uk 6= 0, ul 6= 0

α∆x∆v > 0

SB30

uk = 0

SB10

ul = 0

SC10

uk 6= 0, ul 6= 0
α∆x∆v = 0

SB31

uk = 0

SB11

ul = 0

SC11

uk 6= 0, ul 6= 0

α∆x∆v < 0

αvv < 0°
αvv ∈ (−180°, 0°)

σΦOPRA1

=

(~vk 6= ~vl)

Figure 8.5: Featural story map for Stories-OPRA1, σΦ. It maps non-rigid scenarios (~vk 6= ~vl)
into the corresponding stories by means of following four featural variables: αvv = ∠(~vk, ~vl);

α∆x∆v = ∠(∆~x,∆~v), where ∆~x = ~xl − ~xk, ∆~v = ~vl − ~vk; and u∗ = ‖~v∗‖
max{~vk,~vl}

.
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Figure 8.6: Two scenarios, K1 and K2, with their corresponding stories based in the motion
representation QTCB21: S391 = σ

QTCB21

(K1), and S293 = σ
QTCB21

(K2). The position of each

scenario in its own story is marked with a red dashed rectangle.

the Stories- operation that maps a qualitative representation into a motion representation is
idempotent.

8.3.1 Stories-QTCB21

As an example of stories of motion categorization, we create Stories-QTCB21. We apply the
algorithm given in Section 8.1.1 which uses the story map. The story map σ

QTCB21

is created by

means of the categorization map of QTCB21, which is presented as fµ in Section 6.3, and here
we will rename µ according to the notation in Equation (8.9).

A. Story Map σ
QTCB21

and Featural Variables

The QTCB12 scenarios are mapped into 18 different stories by means of σ
QTCB21

(Tab. 8.3).

For example, in Figure 8.6, we show how σ
QTCB21

maps two scenarios into their corresponding
stories.

Similarly to the previous story maps, σ
RCC

and σ
OPRA1

, the story map σ
QTCB21

is determined

by a limited number of featural variables, namely, α, τ , γ, q (Tab. 8.4). In other words, each
story is determined by 4-tuples of features. Most stories are determined by a unique tuple of
features, while some, such as S192, consist of several tuples. An interesting cognitive question is
whether stories defined with several tuples are recognized as a simple category or subjects tend
to associate each single tuple to a unique category—We leave this question for future work.

We explain here, in detail, the featural variables of QTCB21:
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Story
name

Story description

(as a sequence of QTCB21 relations)

Featural
variables

(α, τ, γ, q) Verbal description

Rigid stories ~vk = ~vl Flock motion

S091 (−,+) (P, k−, v=k , ∗) k follows after l

S00 (0, 0) (P, k=, v=k , ∗) the entities move side-by-side

S01 (+,−) (P, k+, v=k , ∗) l follows after k

Non-rigid stories ~vk 6= ~vl Independent motion

S192 (−,−), (0, 0), (+,+)

(A, ∗, ∗, ∗)
(FC, k=, ∗, ∗)
(BC, k=, ∗, q−)

antiparallel motion

front crossing, entities coincide at crossing

back crossing, entities coincide at crossing, the slower entity leaves
the faster behind

S191 (−, 0), (0, 0), (+, 0) (BC, k=, v+
k
, q=) back crossing, entities coincide at crossing, k is faster, k ends at

one side of l

S10 (−,+), (0, 0), (+,−)
(P, ∗, v+

k
, ∗)

(BC, k=, v+
k
, q+)

parallel motion, k is faster

back crossing, entities coincide at crossing, k is faster, k ends
ahead of l

S11 (0,−), (0, 0), (0,+) (BC, k=, v−
k
, q=) back crossing, entities coincide at crossing, l is faster, l ends at one

side of k

S12 (+,−), (0, 0), (−,+)
(P, ∗, v−

k
, ∗)

(BC, k=, v−
k
, q+)

parallel motion, l is faster

back crossing, entities coincide at crossing, l is faster, l ends ahead
of k

S391 (−,−), (−, 0), (−,+), (0,+), (+,+)
(FC, k−, ∗, ∗)
(BC, k−, ∗, q−)

forward crossing, l crosses first

back crossing, l crosses first, slower entity ends ahead of faster one

S31 (−,−), (0,−), (+,−), (+, 0), (+,+)
(FC, k+, ∗, ∗)
(BC, k+, ∗, q−)

forward crossing, k crosses first

back crossing, k crosses first, slower entity ends ahead of faster one

S291 [(−, 0)], (−,−), (0,−), (+,−), [(+, 0)] (BC, k+, v+
k
, q=) back crossing, k crosses first, k is faster, k ends at one side of l

S292 [(−, 0)], (−,+), (0,+), (+,+), [(+, 0)] (BC, k−, v+
k
, q=) back crossing, l crosses first, k is faster, k ends at one side of l

S293 (−,+), (−, 0), (−,−), (0,−), (+,−) (BC, k+, v+
k
, q+) back crossing, k crosses first, k is faster, k ends ahead of l

S294 (−,+), (0,+), (+,+), (+, 0), (+,−) (BC, k−, v+
k
, q+) back crossing, l crosses first, k is faster, k ends ahead of l

S21 [(0,−)], (−,−), (−, 0), (−,+), [(0,+)] (BC, k−, v−
k
, q=) back crossing, l crosses first, l is faster, l ends at one side of k

S22 [(0,−)], (+,−), (+, 0), (+,+), [(0,+)] (BC, k+, v−
k
, q=) back crossing, k crosses first, l is faster, l ends at one side of k

S23 (+,−), (0,−), (−,−), (−, 0), (−,+) (BC, k−, v−
k
, q+) back crossing, l crosses first, l is faster, l ends ahead of k

S24 (+,−), (+, 0), (+,+), (0,+), (−,+) (BC, k+, v−
k
, q+) back crossing, k crosses first, l is faster, l ends ahead of k

The sign ‘∗’ in the featural variables means that any value in the corresponding feature is allowed.

Square brackets around a relation, such as [(−, 0)], means that this is a limit relation either for t → −∞ or

t → +∞.

Table 8.3: This table displays both the stories set of QTCB12, i.e., Σ
QTCB21

, and its story map,

σ
QTCB21

. It contains 18 stories, and the corresponding tuple of featural variables F = (α, τ, γ, q)

that allows mapping each motion scenario into the corresponding story (See feat. var. Tab. 8.4).
Additionally, we provide a verbal description of the story based on its featural values.
We note that some stories, such as S192, are characterized by several featural tuples.
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i) α, ‘crossing angle’: It is the angle of the crossing trajectories, i.e., the minimum angle
between the entities’ velocities:

α(~xk, ~vk; ~xl, ~vl) = arccos(
~vk · ~vl

‖~vk‖‖~vl‖
) ∈ [0°, 180°] (8.11)

According to the values that α takes in the different stories, we identify four different
featural regions that categorize stories: A, FC, BC, and P. The regions are linked to the
values of α in the following equation:

A ‘antiparallel ’ if α = 180° , i.e., v̂k · v̂l = −1
FC ‘front crossing ’ if 90° ≤ α < 180° , i.e., 0 ≥ v̂k · v̂l > −1
BC ‘back crossing ’ if 0 < α < 90° , i.e., 1 > v̂k · v̂l > 0
P ‘parallel ’ if α = 0° , i.e., v̂k · v̂l = +1

(8.12)

ii) τ , ‘crossing delay ’: It indicates which of the entities goes first through the crossing point.
τ yields the time difference, τ = tk − tl, between the arrival of k and l at the crossing point
(See full deduction of the formulae in Propositions A.4.6 and A.4.8). Note that τ can only
be computed when ~vk ∦ ~vl or ~vk = ~vl. For the rest of stories τ is undetermined, but it does
not influences categorization.

τ(~xk, ~vk; ~xl, ~vl) =(~xk − ~xl)× (~vk − ~vl) ·
~vk × ~vl

‖~vk × ~vl‖2
for ~vk ∦ ~vl (8.13a)

τ(~xk, ~vk; ~xl, ~vl) =−
(~xk − ~xl) · v̂k

‖~vk‖
limit for ~vk = ~vl (8.13b)

According to the values that τ takes in the different stories, we identify three different
featural regions that categorize stories: k+, k=, and k−. The regions are linked to the
values of τ in the following equation:

k+ if τ < 0 k crosses first
k= if τ = 0 k and l cross simultaneously, i.e., they collide
k− if τ > 0 l crosses first

(8.14)

iii) γ, ‘relative speed ’: It indicates which entity moves faster.

γ(~xk, ~vk; ~xl, ~vl) = difV(~xk, ~vk; ~xl, ~vl) (8.15)

According to the values that γ takes in the different stories, we identify three different
featural regions that categorize stories: v+k , v=k , and v−k . The regions are linked to the
values of γ in the following equation:

v+k if γ > 0, i.e., ‖~vk‖ > ‖~vl‖ k is faster
v=k if γ = 0, i.e., ‖~vk‖ = ‖~vl‖ k and l move equally fast
v−k if γ < 0, i.e., ‖~vk‖ < ‖~vl‖ l is faster

(8.16)

iv) q, ‘side axis limit ’: This feature reveals whether in the long term, i.e., t → +∞, the slower
entity has the faster entity at its side axis (i.e., at its perfect right or left directions), before
this side axis, or behind it. More colloquially, whether in the long term the faster entity is
at one side of the slower entity, the faster entity is ahead of the slower one, or the slower
entity leaves the faster entity behind—The faster entity will always leave the slower entity
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behind. The value of the feature q is obtained in Equation (8.17a), and its interpretation
in Equation (8.17b).

q(~xk, ~vk; ~xl, ~vl) = cos(α)
max(‖~vk‖, ‖~vl‖)

min(‖~vk‖, ‖~vl‖)
=



























cos(α)
‖~vk‖

‖~vl‖
if ‖~vk‖ > ‖~vl‖

cos(α) if ‖~vk‖ = ‖~vl‖

cos(α)
‖~vl‖

‖~vk‖
if ‖~vl‖ > ‖~vk‖

From Equation (8.11), we note that cos(α) = v̂k · v̂l

(8.17a)

q -Value Symbol
Limit relation

for the slower entity
t → +∞

Verbal description

q > 1 q+ −
The faster entity ends ahead of the
slower one

q = 1 q= 0
The faster entity ends at one side
of the slower entity

q < 1 q− +
The slower entity leaves the faster
entity behind

(8.17b)

For example, in the story S293, the faster entity is k (i.e., v+k ) and the limit relation is
(+,−). Hence, the slower entity, l, has relation ‘−’, and, consequently, has the faster entity
rather before it, which we express as ‘q+’. Another example; in the story S21, the faster
entity is l (i.e., v−k ) and the limit relation is (0,+). Hence, the slower entity, k, has relation
‘0’, and, consequently, has the faster entity at one side (i.e., on its side axis): we express it
as ‘q=’.
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Feature
Name
(ϕi)

Trajectory
Angle
α

Crossing
Precedence
τ

Relative
Speed
γ

Normal
Overtaking
q

Feature
Values

A (antiparallel)
α = 180°

FC
(front crossing)
90° ≤ α < 180°

k+ if k crosses
first

k− if l crosses
first

k= if k and l

collide

P (parallel)
α = 0°

v+k if k is faster

v−k if l is faster

v=k if k and l

equally fast

BC
(back crossing)
0° < α < 90°

q+ faster behind of slower
q− faster ahead of slower
q= faster at one side of slower

Table 8.4: The features ϕi that allow a full categorization of the QTCB21 stories. In other
words, the features that define the story map σ

QTCB21

. The greyed cells illustrate that for

certain trajectory angles additional features do not refine the categorization. For example, the
stories with FC trajectory angle are only subcategorized by the feature crossing precedence, i.e.,
τ , while the features γ and q have no further subcategorization effect.
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(a) OPRA1: ∠
3
1

Stories-OPRA1: SC10

(b) OPRA1: ∠3

Stories-OPRA1: SC10

(c) OPRA1: ∠
1
3

Stories-OPRA1: SC10

Figure 8.7: OPRA1 story SC10 = (∠3
1 , ∠3 , ∠1

3 ); the story’s sequence is illustrated with the
corresponding motion scenarios. The time evolves from left to right, i.e., left picture is earlier,
right picture is latter. In each scenario, we write both the OPRA1 spatial relation and the
Stories-OPRA1 motion relation.

8.4 Motivation to Expand Bear into Beaded Categoriza-
tions

The bare story-based categorizations fulfil the initial goals and assumptions in this work (Sects. 1.1
and 1.2). Such categorizations accomplish also some basic purposes of categorization; for ex-
ample, cognitive economy : they simplify the R8 kinematic space of the motion scenarios of
two entities into a reduced number of categories (e.g., 16 categories in Stories-RCC, or 18 in
Stories-QTCB21); and the categories, i.e., the stories, are cognitively meaningful—They corre-
spond to certain types of motion with salient navigation features (parallelism, collision, . . . ).

Nevertheless, stories alone can very limitedly be used for decision-making. In truth, a story
corresponds to a whole trajectory, but, in order to take a control decision in a trajectory, we
should know in which stage of the trajectory the scenario is.

For instance, consider the story SC10, displayed in Figure 8.7. It is formed by the sequence of
relations (∠3

1 , ∠3 , ∠1
3 ), and it depicts a collision. Each scenario in the story (Figs. 8.7a to 8.7c)

is categorized with the same category SC10 according to the categorization Stories-OPRA1, al-
though the scenarios differ from each other regarding decision-making: In scenario (a), we must
control the entities to avoid collision, but in scenario (c), the collision threat is over—no action
is needed.

Thus, we need some extra information besides the story in case we want to effectively use a
story-based categorization for decision-making in trajectory control. The simplest solution is to
append the qualitative relation of the scenario, Ri, to the story, Sj . That is, the scenario (c)
would be categorized as SC10(∠

3
1 )—instead of simply SC10. Similarly, the scenario (a) would be

categorized as SC10(∠
1
3 ). Now the decision rule emerges lightly: collision danger exists, if the

scenario belongs to category SC10(∠
3
1 ); no collision danger if the category is SC10(∠

1
3 ).

8.5 Defining beaded story-based categorizations: Si(Rj)

As suggested above, we can create a new type of story-based categorizations by appending, i.e.,
concatenating, the qualitative relation Rj of a certain scenario to its story Si; thus, the categories
in these new categorizations are represented as Si(Rj), and we call them ‘beaded categories’. Cor-
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respondingly, we call the new categorizations ‘beaded story-based categorizations’. Each beaded
story-based categorizations is named ‘Motion-R’, according to the qualitative relation R used to
generate it. For instance, Motion-RCC and Motion-OPRA1 (Sects. 8.6.1 and 8.6.2).

A beaded story-based categorization, or simply, a beaded categorization is a subset of the
Cartesian product of the stories and their qualitative relations, Σ × R. Caveat, not every re-
lation is combined with any story, but only those relations belonging to the story. Due to this
asymmetry, we do not represent the pair story-relation as a tuple, (Si, Rj), but rather in a
functional way, Si(Rj).

Since the beaded categories, Si(Rj), are compound, we call Rj the ‘position component ’—
because it indicates the “position” of the categorized scenario in the story’s sequence (R1, R2, . . . ,

Rni
)—and we call Si the ‘story component ’ or just ‘story ’.

8.5.1 Story map, stories set, and categorization rule

Now, let us formalize the elements of a beaded categorization. Most of its elements are the same
as those of a bare categorization. First of all, a beaded categorization categorizes the same objects
a bare categorization does: motion scenarios. Second, once we have chosen a certain qualitative
categorization R, both types of categorizations, ‘bare’ (Stories-R) and ‘beaded’ (Motion-R),
have the same story map, σR, and, accordingly, the same stories set, ΣR.

On the other hand, the categorization rule differs between both categorization types. In the
bare categorizations, the story map, σR, is itself the categorization rule because the categories are
the stories. However, in the beaded categorizations, the categorization rule is a Cartesian product
of the story map σR, and the qualitative map ρ of the qualitative representation R (Eq. (7.4)),
i.e., fµ := σR × ρ (Eq. (8.18))—Remember that not all possible Cartesian combinations are
possible, but a story can only be concatenated to relations that are contained in the story.

fµ := σR × ρ : K −→ M ⊂ Σ×R
(~xk, ~vk; ~xl, ~vl) 7−→ Si(Rj)

(8.18)

Since the categorization rule, fµ, differs between bare and beaded categorizations, also the
categories set M differs. In the bare categorizations, the categories set equals the stories set,
i.e., M = Σ, but in the beaded categorizations the categories set is a subset of the Cartesian
product, i.e., M ⊂ Σ×R.

A method to create a beaded story-based categorization

We outline the steps that lead to a beaded story-based categorization, Motion-R. In the following
sections, we use later the here defined method to generate the novel motion categorizations
‘Motion-RCC’ and ‘Motion-OPRA1’.

1. We have a qualitative representation R (either spatial, D, or motion, M) with a catego-
rization rule ρ (Eq. (7.1)).

2. We determine the stories set associated with the representation, i.e., ΣR, and the story
map, σR, as we showed in Section 8.1.1—This step is equivalent to obtain the Stories-R
categorization.

3. We immediately create the categorization rule, fµ, if we combine both aforementioned maps,
σR and ρ, through the Cartesian product, i.e., fµ := σR × ρ (Eq. (8.18)). motion catego-

rization based on the categorization rule fµ, as presented in Equation (6.1), Accordingly, a
motion scenario (~xk, ~vk; ~xl, ~vl) is mapped both into a story Si and into a qualitative spatial
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relation Rj : The motion category of the scenario is defined as Si(Rj), i.e., the story Si, at
the spatial relation Rj .

4. The categories set, M, is effortless obtained from the stories set, Σ. We obtain each beaded

category by appending to every story Si = (R1, R2, . . . , Rni
) each of the story relations; so

we have Si(R1), Si(R2), . . . , Si(Rni
). The categories set is, hence, the collection of all such

beaded categories, M = ∪i=1...n ∪j=1...ni
Si(Rj).

8.6 Motion-R of Spatial Representations

We show now concrete examples of beaded story-based representations (Motion-R) obtained
from the qualitative spatial representations RCC and OPRA1. In other words, we expand
the Stories-RCC and Stories-OPRA1 representations of Section 8.2 into the representations
Motion-RCC and Motion-OPRA1.

8.6.1 Motion-RCC

Here, we apply the method for generating beaded motion categorizations to the spatial catego-
rization RCC; thus, we obtain ‘Motion-RCC’.

1. We have a spatial representation R = RCC, which provides a map δ that relates each
motion scenario (~xk, ~vk; ~xl, ~vl) with a spatial relation Rj .

2. We already obtained the RCC stories and the story map σ
RCC

in Section 8.2.1. Σ
RCC

=
Σ0 ∪ Σ1. Σ0 are the rigid stories and Σ1 are the non-rigid stories.

Σ0 = {(DC)
S01

, (EC)
S02

, (PO)
S03

, (TPP)
S04

, (NTPP)
S05

, (TPPI)
S06

, (NTPPI)
S07

, (EQ)
S08

}

Σ1 = {(DC)
S11

, (DC,EC,DC)
S12

, (DC,EC,PO,EC,DC)
S13

, (DC,EC,PO,TPP,PO,EC,DC)
S14

,

(DC,EC,PO,TPP,NTPP,TPP,PO,EC,DC)
S15

, (DC,EC,PO,TPPI,PO,EC,DC)
S16

,

(DC,EC,PO,TPPI,NTPPI,TPPI,PO,EC,DC)
S17

, (DC,EC,PO,EQ,PO,EC,DC)
S18

} (8.19)

3. The categorization function, fµ, is the Cartesian product of the RCC story map, σ
RCC

(Eqs. (8.2) to (8.5)), and the RCC spatial map, δ
RCC

(Eq. (8.1)): fµ := σ
RCC

× δ
RCC

4. The categories set is obtained by expanding the stories according to the elements of their
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(a) RCC: DC
Stories-RCC: S12

Motion-RCC: S12(DC
−
)

(b) RCC: EC
Stories-RCC: S12

Motion-RCC: S12(EC)

(c) RCC: DC
Stories-RCC: S12

Motion-RCC: S12(DC+)

Figure 8.8: RCC story S12 = (DC,EC,DC). Each relation in the story’s sequence is illustrated
with a motion scenario. In each motion scenario, the corresponding relations, i.e., categories,
of three qualitative representations, i.e., categorizations, (RCC, Stories-RCC, Motion-RCC) is
shown.

sequences as follows:

Motion-RCC = {

S01(DC);S02(EC);S03(PO);S04(TPP);S05(NTPP);S06(TPPI);S07(NTPPI);S08(EQ);

S11(DC);S12(DC−), S12(EC), S12(DC+);S13(DC−), S13(EC−), S13(PO), S13(EC+), S13(DC+);

S14(DC−), S14(EC−), S14(PO−), S14(TPP), S14(PO+), S14(EC+), S14(DC+);

S15(DC−), S15(EC−), S15(PO−), S15(TPP−), S15(NTPP), S15(TPP+),

S15(PO+), S15(EC+), S15(DC+);S16(DC−), S16(EC−), S16(PO−), S16(TPPI),

S16(PO+), S16(EC+), S16(DC+);S17(DC−), S17(EC−), S17(PO−), S17(TPPI−), S17(NTPPI),

S17(TPPI+), S17(PO+), S17(EC+), S17(DC+);S18(DC−), S18(EC−), S18(PO−), S18(EQ),

S18(PO+), S18(EC+), S18(DC+)}

(8.20)

For example, the relation S12(EC) indicates that the entities are moving in the story S12

at the moment of tangency, i.e., EC (Fig. 8.8b). If the spatial relation appears multiple
times in the story, such as DC in S12 (Fig. 8.8), we distinguish between each appearance:
we distinguish chronologically adding ‘−’ for the earlier appearance and ‘+’ for the latter.
S12(DC−) is the first DC (Fig. 8.8a), and S13(DC+), the last DC (Fig. 8.8c). In this work,
we have only observed for the representation RCC this effect that relations repeat in the
same story.

The total number of Motion-RCC stories is 16—as in Stories-RCC (Tab. 8.1). The total
number of Motion-RCC categories is 56, from which 8 are rigid categories. Therefore, we have
48 non-rigid categories: 9 are independent of the entities’ relative size; in 16 relations the first
entity is smaller, rk < rl; in 16 relations the first entity is larger, rk > rl; in 7 relations both
entities are equally large, rk = rl.
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8.6.2 Motion-OPRA1

Here, we apply the method for generating beaded motion categorizations to the spatial catego-
rization OPRA1; so, we obtain ‘Motion-OPRA1’.

1. We have a spatial representation R = OPRA1, which provides a map δ that relates each
motion scenario (~xk, ~vk; ~xl, ~vl) with a spatial relation Rj .

2. We already obtained the OPRA1 stories and the story map in Section 8.2.2. Σ
OPRA1

=
ΣC ∪ ΣB ∪ ΣT ∪ ΣP ∪ ΣE ∪ ΣR. The rigid stories are ΣE ∪ ΣR; the rest are non-rigid.

3. The categorization function, fµ, is the Cartesian product of the OPRA1 story map, σ
OPRA1

(Fig. 8.5), and the OPRA1 spatial map, δ
OPRA1

(Eqs. (8.6) and (8.7)): fµ := σ
OPRA1

× δ
OPRA1

4. The categories set is obtained by expanding the stories according to the elements of their
sequences as follows:

Motion-OPRA1 = {SC191(∠
3
1 ), SC191(∠

0
1 ), SC191(∠

1
1 ), SC191(∠

1
2 ), SC191(∠

1
3 );

SC291(∠
1
3 ), SC291(∠

0
3 ), SC291(∠

3
3 ), SC291(∠

3
2 ), SC291(∠

3
1 );

SC10(∠
3
1 ), SC10(∠3 ), SC10(∠

1
3 );SC20(∠

1
3 ), SC20(∠1 ), SC20(∠

3
1 );

SC11(∠
3
1 ), SC11(∠

3
0 ), SC11(∠

3
3 ), SC11(∠

2
3 ), SC11(∠

1
3 );

SC21(∠
1
3 ), SC21(∠

1
0 ), SC21(∠

1
1 ), SC21(∠

2
1 ), SC21(∠

3
1 );

SB191(∠
3
1 ), SB191(∠

0
1 ), SB191(∠

1
1 );SB291(∠

1
3 ), SB291(∠

0
3 ), SB291(∠

3
3 );

SB10(∠
3
0 ), SB10(∠3 ), SB10(∠

1
2 );SB20(∠

1
0 ), SB20(∠1 ), SB20(∠

3
2 );

SB11(∠
3
3 ), SB11(∠

2
3 ), SB11(∠

1
3 );SB21(∠

1
1 ), SB21(∠

2
1 ), SB21(∠

3
1 );

SB391(∠
1
1 ), SB391(∠

1
2 ), SB391(∠

1
3 );SB491(∠

3
3 ), SB491(∠

3
2 ), SB491(∠

3
1 ); (8.21)

SB30(∠
0
1 ), SB30(∠3 ), SB30(∠

2
3 );SB40(∠

0
3 ), SB40(∠1 ), SB40(∠

2
1 );

SB31(∠
3
1 ), SB31(∠

3
0 ), SB31(∠

3
3 );SB41(∠

1
3 ), SB41(∠

1
0 ), SB41(∠

1
1 );

ST91(∠
2
0 ), ST91(∠0 ), ST91(∠

0
2 );ST0(∠

0
0 ), ST0(∠2 ), ST0(∠

2
2 );

ST1(∠
0
2 ), ST1(∠0 ), ST1(∠

2
0 );SP2(∠

3
1 );SP92(∠

1
3 );SP3(∠

3
3 );SP1(∠

1
1 );

SE92(∠
2
0 );SE91(∠

1
3 );SE0(∠0 );SE1(∠

3
1 );SE2(∠

0
2 );

SR00(∠
0
0 );SR10(∠

0
1 );SR20(∠

0
2 );SR30(∠

0
3 );SR01(∠

1
0 );SR11(∠

1
1 );SR21(∠

1
2 );

SR31(∠
1
3 );SR12(∠

2
0 );SR12(∠

2
1 );SR22(∠

2
2 );SR32(∠

2
3 );SR03(∠

3
0 );SR13(∠

3
1 );

SR23(∠
3
2 );SR33(∠

3
3 );SR0(∠0 );SR1(∠1 );SR2(∠2 );SR3(∠3 )}

The total number of Motion-OPRA1 stories 50. The total number of Motion-OPRA1

relations is 100.

In Figure 8.9 we show examples of stories, SP3 and SC11, and corresponding motion cate-
gories of Motion-OPRA1; for example, SP3(∠

3
3 ) and SC11(∠

3
3 ).
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Figure 8.9: OPRA1 stories SP3 = (∠3
3 ) and SC11 = (∠3

1 , ∠
3
0 , ∠

3
3 , ∠

2
3 , ∠

1
3 ). For each scenario,

we show the corresponding Motion-OPRA1 category, i.e., relation, Si(Rj). Such category consists
of the OPRA1 story Si (e.g., SC11) and its OPRA1 relation Rj (e.g., ∠

2
3 ).

Source: Purcalla Arrufi and Kirsch (2018a)
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8.7 Motion-R of Motion Representations

We show now concrete examples of beaded story-based representations obtained from the qualita-
tive representation of motion QTCB21. In other words, we expand the bare story-based represen-
tation Stories-QTCB21 in Section 8.3 into the beaded story-based representation Motion-QTCB21.

8.7.1 Motion-QTCB21

The very same method we applied for Motion-RCC and Motion-OPRA1 in Sections 8.6.1 and 8.6.2
can be applied to Stories-QTCB21, and, thus, we obtain the beaded motion categorization
Motion-QTCB21. The categorization function of Motion-QTCB21, fµ, is the Cartesian prod-
uct of the QTCB21 story map, σQTCB21

, and the categorization rule of QTCB21, which we will
call ρQTCB21

(Eq. (6.10)). Accordingly, we obtain the Motion-QTCB21 relations. For example,
S191(−, 0), S191(0, 0), S191(+, 0), S391(−,−), S391(−, 0), S391(+,−), . . .

Although we will not examine Motion-QTCB21 in detail, it is important for us to mention this
beaded motion categorization because Motion-QTCB21 is generated from a motion categorization,
namely, QTCB21. In that way, we can substantiate our statement: we can both use spatial and
motion categorizations to create story-based categorizations with the same methods.

8.8 Formalization and Featural Variables

Here, we describe a Motion-R categorization using the formalism we defined in Chapter 6.
Namely, we break down its categorization rule, fµ, into the feature extraction function, Φ, and
the featural categorization function fΦ, i.e., fµ = fΦ ◦Φ. We express fΦ and Φ using the featural
functions in the component categorizations, Stories-R and R, because Motion-R is the Cartesian
product of such two categorizations.

The categorization function of Stories-R is the story map σR = σΦR
◦ΦσR

; the categorization
function of R is the qualitative map ρ = fΦρ

◦Φρ—In both cases we expressed the categorization
rule by means of the feature extraction and the featural categorization rule. Since Motion-R =
Stories-R × R, we have that the categorization rules are also concatenated fµ = σR × ρ. In
Equation (8.22), we combine the previous formulae, and use a basic property of composing
Cartesian product of functions.

fµ = σR × ρ = (σΦR
◦ΦσR

)× (fΦρ
◦Φρ) = (σΦR

× fΦρ
) ◦ (ΦσR

× Φρ) (8.22)

Now comparing the result of Equation (8.22) and our formalization, fµ = fΦ ◦Φ, we can isolate
the formulae for the feature extraction function Φ (Eq. (8.23a)), and the featural categorization

function fΦ (Eq. (8.23b)). We have thus obtained that each function, Φ and fΦ, is the Cartesian
product of the functions of the components, i.e., Stories-R and R.

Φ = ΦσR
× Φρ (8.23a)

fΦ = σΦR
× fΦρ

(8.23b)

The Cartesian product in the feature extraction function Φ (Eq. (8.23a)) tells that the featural
variables of a Motion-R categorization are the union of the featural variables of Stories-R and
R, i.e., F

Motion-R
= F

Stories-R
∪ F

R
.
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A. Motion-RCC Formalization

Motion-RCC is the concatenation of Stories-RCC and RCC. Concerning Stories-RCC, we thor-
oughly presented ΦσRCC

and σΦRCC
in Section 8.2.1 (Eqs. (8.3a) to (8.5))—The featural variables

are dmin and difV.

dmin(~xk, ~vk; ~xl, ~vl) = ‖~xl − ~xk‖|det(~xl − ~xk, ~vl − ~vk)|

difV(~xk, ~vk; ~xl, ~vl) =
‖~vl − ~vk‖

‖~vk‖+ ‖~vl‖

(8.3a)

(8.3b)

Concerning RCC, we presented δ
RCC

—the original spatial map of RCC—in Section 8.2.1.
There, we noted that its only featural variable was the distance between entities d(~xk, ~vk; ~xl, ~vl) =
‖~xk − ~xl‖. Even so, the featural categorization function of RCC used here (Eq. (8.25)) differs
slightly from the original one (Eq. (8.1)), because in Stories-RCC each spatial categorization
has a sign indicating its position in the story (Eq. (8.25b)). For instance, DC appears twice
in the story S12, and, hence, we add signs, DC− or DC+, to distinguish both appearances,
S12 = {DC−,EC,DC+} (see item 4, Sect. 8.2.1)

Concluding, for the spatial representation RCC, we have following feature extraction function,
Φ

RCC
, and featural categorization function fΦ

RCC
.

Φ
RCC

(~xk, ~vk; ~xl, ~vl) = d(~xk, ~vk; ~xl, ~vl) = ‖~xl − ~xk‖ (8.24)

fΦ
RCC

(d) :=







































DC∗ if d > d2
EC∗ if d = d2
PO∗ if d2 > d > d4

TPP∗ if d = d4
NTPP∗ if d4 > d

}

if rk ≤ rl

TPPI∗ if d = d4
NTPPI∗ if d4 > d

}

if rk > rl

(8.25a)

∗ :=







+ if d > dmin for the whole spatial relation
− if d < dmin for the whole spatial relation
∅ otherwise

(8.25b)

d2 = |rk + rl|, distance at spatial relation EC

d4 = |rk − rl|, distance at spatial relation TPP

Featural variables From the analysis above, we see that Motion-RCC has three featural
variables: dmin, difV, and d—The additional parameters, such as d2, d4, rk, and rl, are all
scenario-independent. Since the featural space is three-dimensional, we amply verify our claim
that dim(F) < dim(K) (Sect. 6.1.2); in fact, the featural space is dimensionally low enough that
it can be graphically visualized.

B. Motion-OPRA1 Formalization

Motion-OPRA1 is the concatenation of Stories-OPRA1 and OPRA1. Concerning Stories-OPRA1,
we presented non-rigid Φσ and σΦ in Section 8.2.2 (Fig. 8.5); the corresponding featural vari-
ables are αvv, α∆x∆v, uk, and ul. Concerning OPRA1, we presented δ

OPRA1

—the spatial map

of OPRA1—in Section 8.2.2 (Eqs. (8.6) and (8.7)); the corresponding categorical variables are
α∆xvk , αvl∆x, and difX.
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Featural variables Apparently, the total number of featural variables in Motion-OPRA1 is
seven (four in Stories-OPRA1 plus three in OPRA1), but we observe that the variable αvv is
combination of αvl∆x and α∆xvk (as we proved in Section 8.2.2). Therefore, since the variable αvv

is not independent, we have a total number of six featural variables, i.e., dim(F
Stories-OPRA1

) = 6.
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Chapter 9

Experimental Evidence of

Story-Based Categorization

The fact that it is not possible to uniquely determine cognitive

structures and processes poses a clear limitation on our ability

to understand the nature of human intelligence. The realization

of this fact has also led to a shift in my personal goals. I am less

interested in defending the exact assumptions of the theory and

am more interested in evolving some theory that can account for

important empirical phenomena.

J. R. Anderson (1976)

After we criticized in Section 2.4 how scanty is the experimental verification of cognitive plau-
sibility in spatial representations, one may expect that we experimentally verify the story-based
categorizations for cognitive plausibility—That is the purpose of this chapter.

This chapter bases on research we did in collaboration with Frank Papenmeier (Original
paper, Papenmeier, Purcalla Arrufi, and Kirsch 2023).

9.1 About Cognitive Plausibility

We say that a certain cognitive model is ‘cognitively plausible’ when it appropriately describes
human cognition, concretely, human knowledge representation or reasoning (Strube 1992). This
is a key concept in science: For some researchers, the very goal of Artificial Intelligence (AI) is to
create machines that work in a cognitively plausible manner, i.e., to create machines that think
like humans (See, Sweeney 2003). However, as Russell and Norvig (2014b, Sect. 1.2) advise, it is
much more effective that AI concentrates on creating machines that think—and act—rationally.
Creating cognitive plausible machines should be the endeavour of ‘cognitive modelling ’. Hence,
as we verify experimentally the story-based categorizations, we look at them from a cognitive
modelling perspective.

The concept ‘cognitive plausibility’ has some equivalent terms: ‘cognitive adequacy ’ (Strube
1992; Knauff et al. 1995; Klippel et al. 2008), ‘cognitive validity ’ (Cohn and Renz 2008, Sect.
13.5), ‘psychological validity ’ (Knauff et al. 2004). From now on, we use the term ‘cognitive
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plausibility’ even when we refer to authors that use an equivalent term. Importantly, we remark
that “cognitive plausibility” has a graded meaning; it expresses a broad range of nearness to
human cognition: from weakly to strongly plausible (Strube 1992, p. 165).

Cognitive plausibility comprises two different but complementary aspects: conceptual and
inferential cognitive plausibility (Knauff et al. 1995). ‘Conceptual cognitive plausibility ’ (short-
ened, ‘conceptual plausibility ’) enquires whether the categories (or classes) of a certain knowl-
edge representation correspond to categories in human conceptual knowledge. For example,
whether humans naturally categorize motion by means of the Stories-OPRA1 categories (i.e.,
SC11, SC191, SC21, . . . ). ‘Inferential cognitive plausibility ’ (shortened, ‘inferential plausibility ’)
enquires whether humans reason about qualitative relations similarly as qualitative reasoning
does (Sects. 4.1.4 and 4.3.1); for instance, by using the composition operation (see example with
story-based relations in Fig. 10.1)

In order to ascertain whether a qualitative representation is cognitively plausible we must re-
sort to experimentation with humans—As M. Knauff (1999, p. 263) simply states: “The question
whether an approach to [qualitative representations] can be claimed as cognitively [plausible] can
be answered only on psychological experiments”. In the following, we verify whether Stories-RCC
and Stories-OPRA1 are conceptually plausible by means of several experiments.

9.2 Experimental Principles

9.2.1 Pairwise Comparison

Our experimental method based on pairwise comparisons of stimuli. In each trial, we presented
the subject with three stimuli: one was the ‘reference stimulus’, and the other two were the
‘comparison stimuli ’; then, we asked the subject to choose the comparison stimulus that was
most similar to the reference stimulus (see trial set-ups in Fig. 9.1).

We chose a pairwise comparison task because of the nature of our stimuli: they are motion

scenes—And this is a key difference with most categorization experiments, which use motionless
stimuli. Indeed, motion limits the experimental methods we can use. For example, we find
inappropriate to use a typical free grouping task, in which all the stimuli are presented at once
and each subject groups them at will (e.g., Mast et al. 2014; Renz et al. 2000). If we present
to the subjects many motion scenes at once, we might overstrain their cognitive and perceptive
capacities—Not to mention that the simultaneous view of many motion scenes is dizzying (but
see, Yang et al. 2015).

Another reason for pairwise comparison is that our stimuli are simultaneously categorized
according to two different categorizations (Stories-RCC and Stories-OPRA1). However, in a free
grouping task, subjects tend to group according to just one categorization, namely, the most
salient—Human laziness restrains subcategorization. Although in a hierarchical free grouping

task (e.g., Burnett et al. 2005), it is possible to force the subjects to subcategorize, such grouping
task is more demanding.

At a theoretical level, the pairwise comparison is underpinned by the work of Luce (1959)
and Bradley and Terry (1952), the BTL model. By fitting the experimental data to this model,
we can relate the frequency of choice of each stimuli pair to a single scale measure called ‘utility

ratio’. This is useful because we can assimilate such utility ratio to the experimental similarity
between each comparison stimulus and the reference stimulus.

Comparison Stimuli, Modified Stimuli, and Reference Stimulus In some trials, we also
included the reference stimulus as a comparison stimulus; that is, sometimes, one comparison



9.2. EXPERIMENTAL PRINCIPLES 159

stimulus was identical to the reference stimulus. More concretely, we created two variants of
experimental set-ups: in one variant (named ‘a’), the comparison stimuli could only be ‘modified

stimuli ’ (see later, Sect. 9.5), that is, the stimuli obtained by modifying the reference stimulus;
in the other variant (named ‘b’), one of the comparison stimuli could be the identical to the
reference stimulus.

By including the reference stimuli in the comparison stimuli, we can verify whether the
categorical effects are altered when the proportion of similar stimuli to the reference stimulus
increases. Additionally, we can control more closely the experiment results, since the maximality
axiom (item II., Sect. 3.4.1.A) holds for similarity: the similarity of a stimulus to itself is higher
than to any other stimulus. For example, we can sort subjects out that do not predominantly
choose the reference object as most similar to itself; we might conclude such subjects are not
attentive to the stimuli or are performing the task carelessly.

9.2.2 Perception and Memory Tasks

The most straightforward way to present the one reference stimulus and the two comparison
stimuli is to display all three stimuli at once, as we do in our ‘perception’ set-up (Fig. 9.1a). In
such set-up, only perception is involved–there is no need to use memory. However, categorization
is mostly advantageous when we store things in memory because, then, we resort to the powerful
cognitive economy (Goldstone et al. 2012, p. 611; originally, Eleanor. Rosch 1978, p. 28). On
that account, we created an additional experimental set-up, the ‘memory ’ set-up in which the
subjects were forced to store the reference stimulus in short-term memory: we introduced a 1s
pause between the display of the reference stimulus and the comparison stimuli (Fig. 9.1b).

We expect a different behaviour of the subjects between the perception and memory ex-
periment. We know that the short-time memory has very limited storage resources for static
situations (e.g., Cowan 2001; Luck and Vogel 1997); how much more limited, then, for dynamic
situations (e.g., Papenmeier and Huff 2014). Therefore, we guess that, due to the cognitive load,
the memory experiment might show a reduced differentiation of the categories; it might happen
that only the most salient category be stored in memory, if any.

9.2.3 Experimental Hypothesis

We generated the modified stimuli, used as comparison stimuli, so that each had the same
feature-based similarity to the reference stimulus; in other words, the modified stimuli were
equidistant to the reference stimuli in the featural space. We achieved that by applying the
same amount of metric change to the modified stimuli with respect to the reference stimulus.
But we also generated them so that they had different Stories-RCC and Stories-OPRA1 cate-
gories with respect to the reference stimulus by placing them at the other side of the category
border (See later Sect. 9.3.3 for more detail). In that way, if the similarity is based solely on
the featural values—i.e., if these story-based categorizations are irrelevant to human cognition—
then, subjects should choose each modified stimulus as equally similar to the reference stimulus.
Otherwise, if subjects perceive these story-based categorizations to be relevant, they should con-
sistently choose the modified stimuli with the same Stories-RCC and Stories-OPRA1 categories
as the reference stimulus as most similar stimuli to the reference stimulus; conversely, subjects
should choose the stimuli with different categories than the reference stimulus as less similar.

In short, if a categorization effect takes place, we shall observe a significant discrepancy
between the feature-based similarities (which we set with the same metric value) and the experi-

mental similarities obtained via fitting to the BTL model. Such discrepancy should manifest in
that the experimental similarities of the modified stimuli to the reference stimulus differ amongst
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(a) Trial set-up for checking categorical plausibility in perception.
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(b) Trial set-up for checking categorical plausibility in memory.

Figure 9.1: We display the two trial set-ups. In the perception set-up (a), all three stimuli
(the reference and the two comparison stimuli) are presented at once and shown up to three
times (×3)—the reference stimulus is on top. In the memory set-up (b), the reference stimulus
is presented first, isolated, and, after a 1s pause, the two comparison stimuli are presented up to
two times (×2). In the separation pause between trials, we show a fixation cross.
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each other (at least for a single pair of comparison stimuli). On the contrary, if these exper-
imental similarities are practically equal—not significantly different from each other—then a
categorization effect cannot be established.

Hence, our null hypothesis is that the experimental similarities are equal, and, consequently
there is no story-based categorization effect in the subjects’ choices of the stimuli. After a
statistical analysis, we might choose to reject the hypothesis with a certain significance; in that
case, we would state with the corresponding significance that story-based categorizations affect
the subjects’ choices.

9.2.4 Processing of Experimental Data

We had four experimental sets that differed from another; therefore, we processed the data of
each experimental set independently of another (we describe the experimental sets below in Sec-
tion 9.5). Nonetheless, the processing of experimental data was analogous for each experimental
set, and we explain it in the following. We accompany the explanations with the Example 9.1:
The example simulates the results of one subject’s trial in the experimental set 1a (Sect. 9.5.1.A)
and its processing in R.

Once the subjects had completed the experiment trials, we had a raw data matrix Nij for
each experimental set. Each matrix entry (i, j) contains the number of times the subjects chose
stimulus i to be more similar than stimulus j to the reference stimulus r every time that the pair
of comparison stimuli {i, j} was presented. The total number of comparison stimuli, and, thus,
the matrix dimensions, varied amongst experimental sets.

For each experimental set, we had more than one reference stimulus (a total of 16) with its
corresponding modified stimuli (4 per reference stimulus). That is, we generated ‘stimuli sets’
formed by four modified stimuli and a single reference stimulus; and we compared stimuli only
within the stimuli sets (Sect. 9.3.3). However, the results of all 16 stimuli sets were added up into
the matrix Nij for each experimental set because the stimuli sets were equivalently generated
regarding their categorizations.

Thanks to an R statistical package for fitting and testing the BTL model (Wickelmaier 2020),
we could transform the raw data matrix Nij of choices into the utility ratio ui for every stimulus
i. The utility ratios of the BTL model explain the probability of choosing a stimulus i from a
certain stimuli set A = {i, j, . . . , z} as following

P (i, A) =
ui

∑

a∈A ua

(9.1)

The utility ratios u∗ in Equation (9.1) can be assimilated to a similarity according to the
Shepard’s (1957) and Luce’s (1963) stimulus-response choice model—compare Equation (9.1)
with Equation (3.8) which models the probability of choosing a category for a certain item. We
assimilated, thus, the ratio ui to the experimental similarity of the comparison stimulus i to
the reference stimulus r, i.e., S(i, r)exp ≡ ui. Accordingly, we call u the values, ‘experimental
similarities’ or ‘similarity ratios’. The u values are determined up to a factor, so we normalized
them in each experimental set: we set the same stimulus across experimental sets (the stimulus
A) to have ratio value 1. In that way, we eased comparing the u values between experimental
sets.

Finally, we obtained the confidence intervals of the experimental similarities—i.e., the confi-
dence intervals of the u values—and so we could examine which similarities differed from each
other in order to reject (or not) the null hypothesis (Sect. 9.2.3): whether the stimuli are equally
similar or not.



162 CHAPTER 9. EXPERIMENTAL EVIDENCE OF STORIES

A. Statistical significance

In our experiment, we perform two steps in which we had to assess the statistical significance.
Firstly, we fitted the experimental choices’ frequency Nr

ij to the similarity ratios u through the
BTL model; thus, we had to asses the goodness of such fitting. Second, we examine whether the
ratios u are statistically different in order to test our null hypothesis that the subjects’ choices
show no story-based categorical effect.

The goodness of the BTL fitting can be tested by means of a non-significant goodness of fit
χ2 test, which is provided by the same R package. A non-significant goodness of fit test works
oppositely than a significant goodness of fit test. In a non-significant goodness of fit test, we
accept the fitting more confidently the higher χ2 is. Therefore, we would reject the BTL model
fitting if the χ2 value is lower than a certain probability α, i.e., if χ2 < α.

Wickelmaier and Schmid (2004) suggest a value higher than α = 0.10 to accept the BTL
fitting. Nevertheless, we choose a typically reasonable value of α = 0.05 because our goal is not
to proof that the BTL model is a very good model to fit the results of our experiment, but rather
that it is a good enough model so that we can use its parameters (i.e., the similarity ratios) for
further data analysis.

Secondly, we test the null hypothesis that the similarity ratios u are equal, and, thus, that the
subjects’ similarity choices show no categorization effect. As said above, we can examine whether
u are equal by comparing their 95% confidence intervals (e.g., Fig. 9.7). Nonetheless, we chose a
more solid option: we apply a standard χ2-test of significance to reject the null hypothesis with
a usual rejection rule of χ2 < 0.05. If the null hypothesis were rejected, we would ascertain that
there is a story-based categorization effect on the subjects’ similarity choices.

Example 9.1 The matrix choicemat simulates the stimuli choices of a subject in Experiment
1a.

choicemat =









0 27 20 30

5 0 8 25

12 24 0 29

2 7 3 0









(9.2)

The total number of trials that the subject processed is
∑

i,j choicemat(i, j) = 4 ∗ 32 = 192.

Note that choicemat(i, j) + choicemat(j, i) = 32 ∀i, j: Each pair of stimuli (i, j) is pre-
sented 32 times to this subject. The entries of the matrix show how many times a stimulus of the
pair (i, j) was chosen over the other. For instance, choicemat(1 , 3 ) tell us that the stimulus 1

was chosen 20 times over the stimulus 3 , which means that the stimulus 3 was chosen 12 times
over the stimulus 1 , i.e., choicemat(3 , 1 ) = 12.

We fit the stimuli choices matrix, choicemat, according to the BTL model using the eba

R package. Accordingly, we obtain the similarity (or utility) ratios, and the non-significant
goodness of fit.

< btl_choicemat <- eba(choicemat)

< btl_choicemat

Elimination by aspects (EBA) models

Parameter estimates:

1 2 3 4

0.45443 0.09024 0.26964 0.02679

Goodness of fit (-2 log likelihood ratio):

G2(3) = 0.0726, p = 0.9949

Thus, the BTL model fits the choice matrix (Eq. (9.2)) very good according to the non-significant
goodness of fit, p = 0.9949 > 0.05. And the non-normalized utility ratios fitted by the model are
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u = [0.454, 0.090, 0.270, 0.027]. We normalize the stimuli, so that we set the value of one stimulus
to 1, for instance, the fourth one, u4 = 1.0. We obtain also the width of the 95% confidence
interval for each ratio.

> uscale(btlchoicemat,norm=4)

[1] 16.960392 3.368034 10.063525 1.000000

> ci <- 1.96 * sqrt(diag(cov.u(btl1,norm=4)))

[1] 4.1969331 1.6495302 3.6191012 0.6576307

We represent the normalized ratios with their confidence intervals in Figure 9.2. At first
glance, we can reject the null hypothesis that the ratios are equal, because no ratio u∗ is in the
confidence interval of the other. And, thus, in our example matrix choicemat, the stimuli are
distinguished, i.e., they have different similarity values. More formally, the eba package tests
against equality of utility ratios: In this case, we obtain χ2(3) = 91.5, p < 0.001, which is
consistent with the observed intervals.

1
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4

0 1 5 10 15 20 25

Utility ratios
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Figure 9.2: Utility ratios obtained by fitting the BTL model to the choice matrix choicemat

(Eq. (9.2)); we show the corresponding 95% confidence intervals. The utility ratios are normalized
so that the ratio of the fourth stimulus is 1.0.

9.3 Stimuli and Apparatus

We had following experimental environment. Each subject sat in a private space separated from
other participants by visual shields so that he could not see the other subjects or their tablets;
we tested 4 subjects simultaneously. Each subject sat in front of a Microsoft Surface Pro tablet
at about 57 cm in which the stimuli were presented. The subject chose the stimuli by pressing
the key ‘f’ (left stimulus) or ‘j’ (right stimulus) in the keyboard.
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9.3.1 Stimuli Appearance and Notation

Our stimuli were motion scenes. They were displayed in a 370 pixels square with black outline;
considering the resolution and distance to the tablet, the subjects saw each motion scene at a
square of 7.6 degrees of visual angle. The motion scenes had a frame rate of 60 frames per second
to ensure motion fluidity.

Each motion depicted two entities as two discs with different sizes and colours that moved at
uniform velocity. The larger disc had 4 times the radius of the smaller disc. We decided k to be
the smaller disc and l the larger, thus, in the experiment, we have rk < rl. Assigning the names
k and l to the entities determines the stories in each motion scene according to the definitions
in Chapter 8.

The larger disc was orangish coloured, surface RGB: 255, 119, 0, transparency 50%; edge
RGB: same as the surface, transparency 25%. The smaller disc was blueish coloured, surface
RGB: 3, 123, 252, transparency 20%; edge RGB: same as the surface, transparency 6%. The
colours are chosen to be neutral to interpretation, and they are colour-blind distinguishable.
Each disc had a black dot in the centre to ease the perception of its trajectory, and, thus, allow
an easier determination of the Stories-OPRA1 category.

Each scene lasted 3 seconds, and we set the instant of minimum distance between discs in
the middle of the motion scene, i.e., instant t=1.5s, in order to maximize similarity between
scenes. We also determined each scene to contain all spatial relations of the stories represented;
accordingly, all motion scenes began and ended with non-overlapping entities, ensuring a mini-
mum separation distance between the entities borders, namely, at least twice the radius of the
smaller disc, 2rk.

9.3.2 Stimuli Features

We modified our motion scenes according to three featural variables: dmin, αvv, and sgn(α∆x∆v).
The first variable, dmin, is one of the two featural variables of the Stories-RCC categorization
(Eq. (8.3)), and the only one we needed to set the RCC category of the motion scenes because
we had no scene with rigid stories. By means of the other two featural variables, αvv, and
sgn(α∆x∆v), we set the Stories-OPRA1 category of the motion scenes.

In Figure 9.3 we visualize the featural variables in the motion scenes. We already explained
such featural variables in Section 8.2; thus, here, we only deepen in the meaning of sgn(α∆x∆v),
which is the only feature with unobvious interpretation, even though its definition is plain
sgn(α∆x∆v) = sgn(det(∆~x,∆~v)). To visually compute the value of sgn(α∆x∆v), we must set
our reference frame on the entity b, and from that reference frame observe the motion of entity
o: if we see o move to our right (clockwise around us) then sgn(α∆x∆v) = −1, as in Fig. 9.3a; if
we see o move to our left (counter-clockwise around us) then sgn(α∆x∆v) = +1, as in Fig. 9.3b.

We concede, though, that sgn(α∆x∆v) is not one of the featural variables of OPRA1 (as
we defined them in Figure 8.5) but α∆x∆v. We had defined α∆x∆v for motion scenarios, but,
sadly, we could not use it as featural variable for motion scenes. The problem is that its value
is not constant during the whole scene and, therefore, the feature extraction function Φ cannot
be defined for α∆x∆v; it would be ambiguous. Although the value of α∆x∆v is not constant
in a scene, its sign, i.e., sgn(α∆x∆v), is. For that reason, we chose sgn(α∆x∆v), as featural
variable in the experiment, although it is a discrete variable, and in that sense does not fulfil the
density property that we desired for a featural variable (Sect. 6.1.2). Nevertheless, we deemed
sgn(α∆x∆v) the best choice because it is derived from the original variable; moreover, it was
constant for the stimuli in each trial.
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~vl

~vk

αvv

dmin

sgn(α∆x∆v)

k l

(a) Motion scene categorized as a Stories-RCC S11 story
(dmin > rk+rl) and a Stories-OPRA1 SC11 story (αvv <
0 and sgn(α∆x∆v) = −1).

dmin

~vk

~vl

αvv

sgn(α∆x∆v)

k l

(b) Motion scene categorized as a Stories-RCC S15 story
(dmin < |rk − rl|) and a Stories-OPRA1 SC21 story
(αvv > 0 and sgn(α∆x∆v) = +1).

Figure 9.3: Two motion scenes used in the experiment visualized here as a sequence of five
snapshots—The snapshots opacity increases with time: the most transparent snapshot is the
earliest and the most opaque is the latest. In each scene, we visualize the different featural
parameters: dmin is the minimum distance between entities, αvv is the angle between the enti-
ties velocities (~vk and ~vl), and sgn(α∆x∆v) can be understood as how entity l moves from the
viewpoint of entity k.

Source: Papenmeier, Purcalla Arrufi, and Kirsch (2023)

9.3.3 Stimuli Sets

According to our experimental principle (Sect. 9.2), in our trials we did not present a single stim-
ulus, but pairs of stimuli (the comparison stimuli) that were compared with a third stimulus (the
reference stimulus). The stimuli in a trial were generated by modifying the reference stimulus;
hence, we decided to structure the stimuli generation in stimuli sets which were created from the
reference stimulus.

Each ‘stimuli set ’ consisted of 5 stimuli: one ‘reference stimulus’, called E, and four ‘modified
stimuli ’, called A, B, C, and D. We created the modified stimuli by modifying the reference stim-
ulus E in a symmetrical manner, that is, changing the featural parameters by the same absolute
amount. In that way, the modified stimuli were equally similar to the reference stimulus, if we
compare stimuli according to the featural similarity. Furthermore, we ensured that the modified
stimuli presented all possible combinations of same–different Stories-RCC and Stories-OPRA1

categories, as shown in Table 9.1. In sum, each stimuli set dealt with only two Stories-RCC cat-
egories, the Stories-RCC category of the reference stimulus, i.e., the ‘reference category ’, and the
‘alternative category ’; analogously, it dealt with two Stories-OPRA1 categories. Therefore, each
stimuli set could be characterized by a tuple of the involved categories: (Stories-RCC reference,
Stories-OPRA1 reference; Stories-RCC alternative, Stories-OPRA1 alternative)

For example, in Figure 9.4 we have the reference categories S13 and SC21—the categories of
the reference stimulus, E—and we have the alternative categories S11 and SC191. We can see that
the modified stimuli are symmetrically distributed around the reference stimulus because their
featural parameters, αvv and dmin, are modified by the same amount. Moreover, the modified
stimuli represent all possible combination of same–different categories; the reference stimulus E

hat (S13, SC21) categories, and the modified stimuli are A (S13, SC21), B (S13, SC191), C (S11,
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Stimulus

Name

Motion Categories

As compared to the reference stimulus E

verbose notation example

Reference stimulus E S13, SC21

Modified stimuli

A
Same Stories-RCC,

Same Stories-OPRA1

RccOpra S13, SC21

B
Same Stories-RCC,

Different Stories-OPRA1

Rcc¬Opra S13, SC191

C
Different Stories-RCC,

Same Stories-OPRA1

¬RccOpra S11, SC21

D
Different Stories-RCC,

Different Stories-OPRA1

¬Rcc¬Opra S11, SC191

Table 9.1: A stimuli set. It consists of a reference stimulus and four symmetrically modified
stimuli that share all, some, or none of its categories. The stimuli set can be characterized as
(reference categories; alternative categories); thus, the example can be characterized as (S13,

SC21;S11, SC191)

S13 S11

S13 S11

SC191

SC21

dmin

αvv

E Reference

stimulus

A RccOpra

B Rcc¬Opra

C ¬RccOpra

D ¬Rcc¬Opra

Figure 9.4: A stimuli set in the featural space of features αvv and dmin. The feature sgn(α∆x∆v)
is not represented because it is the same for all stimuli. The modified stimuli A, B, C, and D are
generated by symmetric changes in the values of αvv and dmin of the reference stimulus, E; that is,
the featural distance between each stimulus and the reference stimulus is the same. The stimuli
fall, however, in different categorical regions of Stories-RCC (S13 and S11) and Stories-OPRA1

(SC21 and SC191).

Source: Papenmeier, Purcalla Arrufi, and Kirsch (2023)
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SC21), D (S11, SC21). Regarding the involved categories, this stimuli set can be denoted (S13,

SC21;S11, SC21).
Note that the categorization of a motion scene is invariant under rotations. That is, the

featural parameters determine the motion scene up to a rotation. For example, in the scenes in
Figure 9.4, the entity o moves along the positive x-axis direction, but we could rotate such scenes
arbitrarily. In the trials, in order to increase variety and eliminate spurious effects, we rotated
all scenes belonging to the same stimuli set by the same random angle; in that way categories,
features, and similarities remained unchanged in each set. The rotation angle is different between
stimuli sets and between subjects.

9.3.4 Tested categories

Due to time and budget limitations, we could not significantly test all possible combinations of
motion scenes containing Stories-RCC and Stories-OPRA1 stories, i.e., 16× 50 = 800 combina-
tions. Here we present the stories we chose and explain why we chose them.

One of the two critical requirements to generate a stimuli set is that we had to modify
the featural variables—This requirement limits the stories we can use for the sets. The stimuli
categories are defined by three featural variables: dmin, αvv, sgn(α∆x∆v). First of all, sgn(α∆x∆v)
is a discrete value, and our experiment works on the assumption that we can continuously modify
the featural variables. For this reason, we set it constant in each stories set, that is, we only
modified dmin and αvv. A first consequence is that the rigid stories had to be discarded—They
have αvv and dmin constant. Also, the Stories-OPRA1 stories with parallel velocities, ΣT and
ΣC , were discarded—They have αvv constant. The Stories-RCC stories S12, S14, and S18 were
discarded as well because they have constant dmin (See Fig. 9.5).

Additionally, we decided to discard stories that had a motionless entity, ΣB ; we deemed them
very particular cases of two entities motion. Thus far, we have the following stories left: S11, S13,
and S15 belonging to Stories-RCC (S17 does not apply because in the experiment rk < rl); and
the stories ΣC of Stories-OPRA1. Finally, we discarded the stories SC10 and SC20 of ΣC because
such stories are only compatible with the Stories-RCC story S15, and, therefore, we could not
create a whole stimuli set with them.

All in all, we have the following stories left:

• Stories-RCC: S11, S13, S15

• Stories-OPRA1: SC11, SC191, SC291, SC21

Even so, we did not create stimuli set with all possible combinations of such stories. In
Stories-OPRA1, we could only modify the feature αvv; consequently, we could only combine
the pairs {S11, S291} and {S191, S21}—As an example, we can transition from S11 to S191 only
by changing the value of sgn(α∆x∆v). In Stories-RCC, we restricted ourselves to generate sets
with neighbouring stories. In that way, we had a lower modification of the featural parameters,
and, thus, the reference and the modified stimuli have a greater similarity, which would make
an observed categorization effect in our experiment more meaningful. For instance, we did not
generate a stimuli set with reference Stories-RCC category S11 and with alternative category S15

because S15 is not neighbour of S11, but S13 is—For that purpose we disregarded the discarded
border categories S12 and S14 (see Fig. 9.5).

Summarizing, we generated stimuli set with following pairs of reference and alternative stim-
uli:

• Stories-RCC
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0.0 3.0
|rl − rk|

5.0
rl + rk

dmin (rk length units)

S15 S13 S11

S14 S12

Categories: Motion-RCC Stories
S11: no overlap

S12: tangential, no overlap

S13: partial overlap

S14: tangential, total overlap

S15: total overlap

Figure 9.5: Featural space of Stories-RCC for two circular entities k and l with radii rk =1 and
rl =4. The featural space contains only the variable dmin, and, thus, it is one-dimensional. The
stories are the motion categories. The regions of stories S11, S13, and S15 are one-dimensional,
while stories S12 and S14 are zero-dimensional, i.e., they are points with constant dmin value.

– S11 ↔ S13

– S13 ↔ S15

• Stories-OPRA1

– SC191 ↔ SC21

– SC11 ↔ SC291

A. Total number of stimuli

The total number of stimuli sets is (# of Stories-RCC category pairs) × (# of Stories-OPRA1

category pairs), that is, 4× 4 = 16 stimuli sets each consisting of 5 stimuli. Hence, we generate
a total of 16× 5 = 80 stimuli.

9.4 Appearance of the Stories

A. Stories-RCC Stories

• S11 DC; dmin > rk + rl

DC DC DC DC DC

• S13 DC,EC,PO,EC,DC; |rk + rl| > dmin > |rk − rl|

DC EC PO EC DC
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• S15 DC,EC,PO,TPP,NTPP,TPP,PO,EC,DC; |rk − rl| > dmin

DC PO NTPP PO DC

Source: Papenmeier, Purcalla Arrufi, and Kirsch (2023)

B. Stories-OPRA1 Stories
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Source: Papenmeier, Purcalla Arrufi, and Kirsch (ibid.)
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9.5 Experimental Sets

An ‘experimental set ’ is each of our experimental set-ups. We have a total of four experimental
sets, which originate from the combination of two independent aspects each with two possible
variants.

The first aspect considers whether the subjects had to use mostly perception or to use more
intensively short-time memory. One variant was called ‘perception’ and noted ‘1’; the other
variant was called ‘memory ’ and noted ‘2’ (Fig. 9.1). The second aspect is the inclusion of a
comparison stimulus that was identical to the reference stimulus. The variants were noted ‘a’,
when the identical stimulus was not included, and ‘b’ when the identical stimulus was included.
Accordingly, we have the following four combinations of experimental sets.

1. Perception sets: (Fig. 9.1a).

a. Set ‘1a’: perception set without identical stimulus.

b. Set ‘1b’: perception set with identical stimulus.

2. Memory sets: (Fig. 9.1b).

a. Set ‘2a’: memory set without identical stimulus.

b. Set ‘2b’: memory set with identical stimulus.

Preliminaries and Subjects’ Treatment

The following procedures were common to all experimental sets.

The subjects were treated in accordance with the APA standards of ethical treatment (APA
2017). At the very beginning, prior to participation, we ensured that the subjects participated in
only one of the experimental sets presented in this chapter, and the subjects provided informed
consent. Subsequently, they provided demographic details (age, sex, sightedness). Then, they
read the instructions about their task, namely, that they had to choose between two comparison
stimuli the stimulus that was more similar to a reference stimulus. We instructed the subjects
to choose the comparison stimulus by pressing the key ‘f’ (left comparison stimulus) or ‘j’ (right
comparison stimulus) on the keyboard of the tablet used.

Subjects were also informed that the comparison stimuli would be shown synchronously sev-
eral times successively (three times for perception experiments and two times for memory ex-
periments). Therefore, they would have enough time to reach a decision. But they were told
to answer as soon as they had reached a decision—They had not to wait for the stimuli to be
displayed several times.

Further, they were informed that following each trial, a fixation cross would be shown and
they could take a self-determined pause: the next trial should begin only when the subjects
pressed the space bar. After every 10% progress of trials completion, we let the subjects know
about their total completion progress in the experiment.

Before beginning the trials, the subjects started with a practice stimuli set and practised
by answering all possible stimuli combinations: they amounted to 6 =

(

4

2

)

practice trials in the
‘a’ variants of the experiments (where no comparison stimulus was identical to the reference
stimulus), and they amount to 10 =

(

5

2

)

practice trials in the ‘b’ variants of the experiments
(where one comparison stimulus could be identical to the reference stimulus)

At the end of the experiment, each subject received a reward for the participation in the
experiment: either monetary compensation (about 8AC) or course credit.
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9.5.1 Experiment 1: Perception

Figure 9.6: Layout of the stim-
uli in a perception set-up. Above,
the reference stimulus; below, the
comparison stimuli.
Source: Papenmeier, Purcalla Arrufi, and
Kirsch (ibid.)

In this set, we used the perception set-up (Fig. 9.1a): The
reference and comparison stimuli were presented at once
and synchronously in a pyramidal layout where the refer-
ence stimulus lay centred above the two comparison stim-
uli (Fig. 9.6).

The two variants of this experimental set, 1a and 1b,
differed on the presence of a stimulus identical to the ref-
erence stimulus in the comparison stimuli.

In experiment 1a, the comparison stimuli of each stim-
uli set were the four modified stimuli (Sect. 9.3.3). Conse-
quently, we had a total of 6 possible trials for each stimuli
set, which correspond to all possible pairs of the four mod-
ified stimuli, i.e.,

(

4
2

)

. Using the whole 16 stimuli sets, we
obtained a total of 96 = 16 × 6 trials. To increase statis-
tical significance, we had each subject perform twice the
96 trials, yielding a total of 192 = 96×2 trials per subject.
In both the first and second group of trials, we rotated the stimuli sets randomly rotated with
different values.

In experiment 1b, the comparison stimuli of each stimuli set were the four modified stimuli
plus a stimulus identical to the reference stimulus (Sect. 9.3.3). Consequently, we had a total of
10 possible trials for each stimuli set, which correspond to all possible pairs of the five stimuli in
the stimuli set, i.e.,

(

5
2

)

. Using all the 16 stimuli sets, we obtained a total of 160 = 16× 10 trials.
In this experimental set, we did not run twice the whole number of stimuli sets, 320 trials (!), to
prevent overstraining the subjects.

A. Experiment 1a

Subjects In this experiment participated 26 students from the University of Tübingen (22 fe-
male; age: 18–29 years; mean age: 23.19 years)

Results We obtained an acceptable fit of the subjects’ similarity choices to the similarity ratios
of the BTL model: the non-significance test yielded χ2(3) = 7.68, p = 0.053. We refuted the
equality of the similarity ratios between stimuli with following significance: χ2(3) = 111.69,
p < 0.001. Thus, the story-based categorization affected the subjects’ choices.

In Fig. 9.7a, we see that the similarity ratios of the stimuli were significantly different from
each other (95% confidence). We also see that the different story-based categorizations had a
cumulative effect: the more story-based categorizations a stimulus had in common with the ref-
erence stimulus the more similar to the reference stimulus such stimulus was perceived. However,
Stories-RCC and Stories-OPRA1 affected the perceived similarity with different intensity: the
stimuli that shared only a Stories-OPRA1 category showed a higher similarity than stimuli that
shared only a Stories-RCC category.

B. Experiment 1b

Subjects In this experiment participated 26 students from the University of Tübingen (21 fe-
male; age: 19–35 years; mean age: 24.04 years)
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Figure 9.7: Utility ratios according to the BTL model, i.e., experimental similarities of the
comparison stimuli with respect to the reference stimulus; the similarity of the fourth stimulus,
i.e., same OPRA1 and RCC, is normalized to 1. The whiskers display the 95% confidence interval
of the similarities. The comparison stimuli are sorted on the y9axis according to their common
categories with the reference stimulus. The difference between both sets is that in set 1b a
stimulus identical to the reference stimulus was also presented as a comparison stimulus.

Source: R code, F. Papenmeier; TikZ version J. Purcalla A.; licensed under CC BY 4.0

Results We obtained a very good fit of the subjects’ similarity choices to the similarity ratios
of the BTL model: the non-significance test yielded χ2(6) = 5.44, p = 0.489. We refuted the
equality of the similarity ratios between stimuli with following significance: χ2(4) = 1664.58,
p < 0.001. Thus, the story-based categorization affected the subjects’ choices.

In Fig. 9.7b, we see that the similarity ratios of the stimuli were significantly different from
each other (95% confidence), which means that the different story-based categorizations had a
cumulative effect: the more story-based categorizations a stimulus had in common with the ref-
erence stimulus the more similar to the reference stimulus such stimulus was perceived. However,
Stories-RCC and Stories-OPRA1 affected the perceived similarity with different intensity: the
stimuli that shared only a Stories-OPRA1 category showed a higher similarity than stimuli that
shared only a Stories-RCC category.

The subjects chose the identical stimulus to be extremely more similar to the reference stim-
ulus than they chose the stimulus with both equal categories to be.
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C. Discussion

Both perception experiments showed qualitatively the same results: story-based categorization
affected very significantly similarity choices, the similarity effects of the story-based categoriza-
tions were cumulative, and the Stories-OPRA1 categories affected much more similarity than the
Stories-RCC categories.

It seems also that similarity of motion scenes were not only informed by the common cate-
gories. If only categories mattered, subjects should have chosen the identical stimulus to be so
similar to the reference stimulus as they chose the stimulus with the same Stories-OPRA1 and
Stories-RCC category, i.e., stimulus A of the stimuli set (Tab. 9.1). However, the subjects chose
the identical stimulus to be extremely more similar to the reference stimulus than they chose
stimulus with both equal categories (Fig. 9.7b).

9.5.2 Experiment 2: Memory

Figure 9.8: Layout of the
comparison stimuli in a memory
set-up, side by side. The reference
stimulus is absent; it had been
shown in a previous screen.
Source: Papenmeier, Purcalla Arrufi, and
Kirsch (2023)

In this set, we used the memory set-up (Fig. 9.1b): The ref-
erence stimulus and the comparison stimuli were presented
separated by a pause of 1s; such pause should ensure that
short-time memory intervened. First, we presented the
reference stimulus at the center of the screen, and, after
the pause, we presented the comparison stimuli side by
side also centred (Fig. 9.8).

The two variants of this experimental set, 2a and 2b,
differed in the presence of an identical stimulus as com-
parison stimulus in an analogous way as the variants 1a
and 1b did. For that reason, both variants of the memory
experiment had the same numbers of trials as the variants
of the perception experiment: 192 trials and 160 trials,
respectively.

A. Experiment 2a

Subjects In this experiment participated 26 students from the University of Tübingen (19 fe-
male; age: 18–30 years; mean age: 24.08 years)

Results We obtained a good fit of the subjects’ similarity choices to the similarity ratios of the
BTL model: the non-significance test yielded χ2(3) = 5.43, p = 0.143. We refuted the equality
of the similarity ratios between stimuli with following significance: χ2(3) = 780.17, p < 0.001.
Thus, the story-based categorization affected the subjects’ choices.

If we analyse the similarity ratios individually (Fig. 9.9a), we see that the Stories-RCC cat-
egorization had a much lower similarity effect than Stories-OPRA1. In fact, stimuli with only
same Stories-RCC category were not significantly different (at 95% confidence) from stimuli
having totally different categories; however, stimuli having the same categories Stories-RCC
and Stories-OPRA1 are significantly more similar to the reference stimulus than those having
only same Stories-OPRA1 category. Thus, in the latter case, the Stories-RCC category and
Stories-OPRA1 acted cumulatively on similarity.
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B. Experiment 2b

Subjects In this experiment participated 26 students from the University of Tübingen (21 fe-
male; age: 19–31 years; mean age: 24.12 years)

Results We obtained a good fit of the subjects’ similarity choices to the similarity ratios of the
BTL model: the non-significance test yields χ2(6) = 6.79, p = 0.341. We refuted the equality
of the similarity ratios between stimuli with following significance: χ2(4) = 1515.97, p < 0.001.
Thus, the story-based categorization affected the subjects’ choices.

If we analyse the similarity ratios individually (Fig. 9.9b), we see that the Stories-RCC
categorization had no similarity effect whatsoever (at 95% confidence), while Stories-OPRA1

categorization had a pronounced similarity effect. Additionally, The subjects chose the identical
stimulus to be extremely more similar to the reference stimulus than they chose the stimulus
with both equal categories to be similar.

C. Discussion

We observe in both variants of the memory experiment that the story-based categorizations
affected the subjects’ choices; however, Stories-RCC had a very limited effect compared with the
perception experiments: only in one case of the experiment 2a, namely, in the stimulus with same
Stories-OPRA1 and same Stories-RCC, we saw that Stories-RCC categorization affected choice
significantly. Hence, the categorization Stories-OPRA1 was favoured over the categorization
Stories-RCC through the short-memory storage.

We also notice that, in the memory experiment, the identical stimulus produced the high-
est similarity response. Therefore, it is not categorization alone that informs similarity. In
Section 9.6, we hypothesize what additional factors may inform similarity.

9.6 General Discussion

In our experimental sets, we generally established that story-based categorizations significantly
influenced the similarity choice of motion scenes—An influence that could not be attributed to
metric variations as we ensured that the metric changes in the stimuli were of the same amount.
All experiments showed consistently that the Stories-OPRA1 categorization both influenced the
similarity choices and had a higher influence than the Stories-RCC categorization. Stories-RCC
influenced significantly similarity choices in all experimental sets but in set 2b, in which we did
not observe any significant effect of Stories-RCC categorization. In that sense, we can affirm
that the story-based categorization in our experiment, RCC and Motion-OPRA1, are cognitively
plausible—At least in a weak manner.

We also observe, for the most part, that the different categorizations had a cumulative effect.
The more categories the stimuli had in common, the higher the similarity. This cumulative effect
was very weak in the memory experiments (it manifested only in two similarities of set 2a),
though it was significantly established without exception in the perception experiments.

We argue that when memory intervened in the comparisons, the limited resources for storing
the stimuli compelled the subjects’ to favour the storage of one categorization. In fact, we believe
that the same would happen in the perception set, if too many categorizations were introduced;
in that case, the subjects should tend to consider only a restricted number of categorizations
according to their limited cognitive resources, and use only such restricted number for similarity
judgements.
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Figure 9.9: Utility scale value according to the BTL model, i.e., experimental similarities of the
comparison stimuli with respect to the reference stimulus; the similarity of the fourth stimulus,
i.e., same OPRA1 and RCC, is normalized to 1. The whiskers display the 95% confidence interval
of the values. The comparison stimuli are sorted on the y9axis according to their common
categories with the reference stimulus. The difference between both sets is that in set 2b a
stimulus identical to the reference stimulus was also presented as a comparison stimulus.

Source: R code, F. Papenmeier; TikZ version J. Purcalla A.; licensed under CC BY 4.0
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It is quite an open question, why the Stories-OPRA1 categorization had a higher influence on
similarity than Stories-RCC and not the opposite. On the one hand, it is possible that the featural
variable of Stories-OPRA1, αvv, was more salient to the subjects than the feature of Stories-RCC,
dmin. On the other hand, Stories-RCC feature is related to the overlapping, i.e., to the collision
of the entities, which we deem a central feature of motion—at least in daily life settings. This
might be a possible explanation: subjects might have not valued collision as the most essential
feature because we used coloured discs as entities instead of more natural entities. If we had
used entities with a more relevant meaning in real life—with a higher ecological validity—for
example, an arrow and a bird, subjects had possible favoured collision, i.e., Stories-RCC, over
trajectory angle, i.e., Stories-OPRA1.

In any case, we deem that the real cause of Stories-OPRA1’s higher saliency should be exper-
imentally determined or confirmed in future work under different—if possible more ecologically
valid—conditions.

Another well established experimental fact is that the identical stimuli had an extremely
higher similarity: we call it the ‘identity effect ’. This effect seems obvious, considering the
maximality axiom of similarity (item II., Sect. 3.4.1.A), which to our knowledge has consistently
been confirmed experimentally: the similarity of a stimulus to itself is higher than to any other
stimulus, i.e., S(A,A) ≥ S(A,B). Yet, it is not obvious the process by which the subjects
could evaluate such similarity between reference and identical stimulus; we can only affirm that
subjects perceived or stored more than the categories—Otherwise it would have been impossible
for them to distinguish the identical stimulus from the stimulus with same Stories-OPRA1 and
Stories-RCC categories.

In the perception stimuli, a possible explanation to the identity effect is that subjects used pri-
marily the category matching to evaluate similarity, and in case the common categories between
stimuli were equal, the metric comparison was enabled. However, in the memory experiments a
question arises: if some metric information was stored why did not the subjects used that infor-
mation to distinguish the stimuli with different Stories-RCC categories from the ones with same
Stories-RCC categories? One possible answer is that metric information was limitedly stored,
and, hence, the subjects stored only metric information related to αvv, the featural parameter of
Stories-OPRA1, but did not store the featural value dmin, which determines the Stories-RCC cat-
egories. Here, we find also the need to deeply research under which criteria the subjects restrict
the stored metric information and decide what information to store. In this work, it seems that
subjects stored preferentially the metric information of Stories-OPRA1 instead of Stories-RCC,
but further work to corroborate this fact seems necessary.



Chapter 10

Story-Based Categorizations as

Qualitative Calculi

An ordinary categorization, because of being a set of categories, is just endowed with the set
operations, i.e., union, intersection, inclusion (See examples, Sect. 3.6). However, the story-based
categorizations possess a richer list of operations (such as converse or composition) because they
are not alone categorizations but also ‘qualitative calculi’ (Sect. 4.1.3).

In the previous chapters, we already indicated that the story-based categorizations are quali-
tative calculi by using alternatively the term ‘motion categorization’ along with the term ‘motion
representation’. ‘Motion representation’ is a loose term for structures that range from qualitative
calculi, in its strictest sense, to constructs that only resemble them. Until now, we intentionally
disregarded most of the properties of story-based categorizations related to qualitative calculi:
we researched stories simply as categories. In that respect, we spoke of story-based categoriza-
tions, and inspected the categorical properties of stories: their features, borders, and cognitive
plausibility.

Conversely, in this chapter, we look at the story-based categorizations as ‘qualitative calculi’,
and which extra properties they have. Now we speak of story-based qualitative calculi—or qual-
itative representations—and of qualitative relations, instead of story-based categorizations and
categories; although both terminologies refer to the same reality seen from different perspectives.

In the initial sections of this chapter, we give a comprehensive description of ‘qualitative
calculus’ for our purposes, outlining its basic characteristics and mentioning some additional
properties. Subsequently, we relate qualitative calculi to general categorization models, and in
particular to our categorization model. Lastly, we demonstrate that story-based categorizations
are qualitative calculi.

10.1 Qualitative Calculus: Definition and Types

Since we want to prove that story-based categorization are qualitative calculi and which extra
properties they have, we offer here a more detailed definition of qualitative calculus than in
Section 4.3. In the following, we characterize a qualitative calculus of binary relations, i.e.,
involving only two entities, by particularizing the general definition of Dylla et al. (2017, Def.
3.3), which is originally formulated for n-ary relations.

177
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We slightly tweak Dylla et al.’s (2017) definition of qualitative calculus to reduce unnecessary
formalism load. We tighten the requirements on two operations needed in a calculus: converse
and composition. Dylla et al. require that a calculus have at least abstract converse and compo-
sition, and, subsequently, define their weak counterparts by tightening the requirements on the
former, however, in this work, we require from start that qualitative calculi have at least weak
converse and composition operations.

Interestingly, Dylla et al. (2017, A:11) emphasize that, to their knowledge, no spatial calculus
in the literature has only abstract converse and composition, but all have at least weak ones.
Consequently, the abstract definitions bare negligible practical relevance. In fact, for every
qualitative calculus after Dylla et al.’s (2017) definition, the weak operations can be readily
defined (See later, Eqs. (10.2) and (10.4)).

10.1.1 Defining a Qualitative Calculus: Relations

A qualitative calculus requires a continuum domain (or ‘universe’), U , in which the entities are
described quantitatively. In the case of motion categorization, each entity is described in the
universe U = X × V, that is, the entity’s position X and velocity V; for instance, (~xk, ~vk) ∈ U =
X × V (See Sect. 1.2).

A chief goal of a qualitative calculus is to qualitatively describe in the universe U not single
entities, but groups of n entities. To that end, a qualitative calculus uses mathematical ‘relations’,
denoted as Ri; these are subsets of the universe where the n entitities are described, i.e., Ri ⊂ Un.
In the concrete case of two entities—the only we consider here—the relations Ri are binary, i.e.,
subsets of U × U , or, equivalently elements of the power set 2U×U .

Note that the space X ×V, let us call it ‘single-motion’ space, has the space (X ×V)×(X ×V)
as binary relation space. This binary relation space corresponds to the kinematic space, K, which
contains the motion scenarios, (~xk, ~vk; ~xl, ~vl) (see def. in Sect. 6.1.1). Thus, we anticipate how
relevant qualitative calculi are in our motion categorization modelling. Later, in Section 10.2,
we show the full picture.

Abstract partition scheme: Base relations Concerning the relations, a qualitative calculus
must have, by definition, ‘base relations’. The base relations, Ri, should form a finite set of
relations, R, and fulfil following: First, they are jointly exhaustive, i.e., U × U =

⋃
R∈R R;

second, they are pairwise disjoint, i.e., Ri ∩Rj = ∅ ∀Ri, Rj ∈ R | i 6= j. In consequence, ‘base
relations’ are jointly exhaustive and pairwise disjoint (JEPD), which means that they constitute
a partition of U × U . A universe U that has base relations is called ‘abstract partition scheme’
(2013), which is the substrate of any qualitative calculus.

An abstract partition scheme is also a fundamental construct in categorization. As we will
see below (Sect. 10.2), the categorization formalism that we defined in this work is based on
an abstract partition scheme. Accordingly, the finest categories of our categorization model are
equivalent to the base relations of an abstract partition scheme.

Composite relations In an abstract partition scheme, we can easily create more relations,
e.g., R′, by union of base relations. For example, R′ = {(u, v) ∈

⋃
Ri∈R′ Ri | R′ ⊂ R}, or,

simplifying notation, R′ =
⋃

Ri∈R′⊂R Ri. Such relations are called ‘composite relations’, and

form the set 2R. In sum, the ‘composite relations’ are all possible unions of base relations.
Analogous to a base of a vector space, any composite relation, R′ ∈ 2R, is uniquely determined
as a union of the base relations, R ∈ R. In a qualitative calculus, because it is also an abstract
partition scheme, we can, as well, generate the composite relations. In sum, a qualitative calculus
is sufficiently characterized by the universe U , and the base relations, R; hence, we note it (U ,R).
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The composite relations are often referred to as relations that represent incomplete or coarse
information (or knowledge) because the real state of the entities can always be finer represented
by means of a base relation (e.g., Freksa 1992a; Scivos and Nebel 2001, Sect. 2). For example,
when two entities verify the composite relation R′ = Ri ∪Rj , we can express it as a disjunction,
i.e., the entities verify Ri or Rj . The information is incomplete, because we know that the entities
can verify only one of both relations, either Ri or Rj ; however, we lack enough information to
decide it.

Oddly, according to this disjunction technique, the more coarse the information of certain
state is, the greater the number of conjunctions we have to use. So that, as Freksa (1992a, p. 4)
in his seminal paper noted, we run into a paradox: “[T]he less we know, the more complex the
representation of what we know becomes. What is known is represented in terms of disjunctions
of ‘what could be the case’” (simple quotes added).

10.1.2 Converse and Composition

On top of the properties of an abstract partition scheme, a qualitative calculus must have two
operations: converse (also known as inverse) and composition. These operations heavily char-
acterize qualitative calculi. The behaviour of converse and composition determines the differ-
ent types of qualitative calculi—sometimes these operations can be strongly defined, sometimes
weakly—The stronger the operations can be defined, the higher the computing power of the
reasoning algorithms that can be used in a qualitative calculus. ‘Reasoning ’, besides providing a
qualitative description, is another chief goal of qualitative calculi. It consists on finding initially
unknown relations in a scenario with more than two entities or check the consistency of the
current relations (See Sect. 4.1.4).

Converse Every relation R in a (binary) qualitative calculus must also have a converse {R}`,
which is simply the qualitative relation of the permuted entities, in our case k ↔ l.

{R}` = {(v, u) | (u, v) ∈ R} (10.1a)

Adapted to motion scenarios:

{R}` = {(~xl, ~vl; ~xk, ~vk) | (~xk, ~vk; ~xl, ~vl) ∈ R} (10.1b)

Notably, the relation {R}` needs not be a composite relation, i.e., it can happen that {R}` 6∈
2R. This is inconvenient because we expect that, in a qualitative calculus, the relations set, 2R,
be closed under the calculus operations: Every converse relation should be a composite relation,
i.e., it should be express as union of base relations {R}` =

⋃
Ri∈R′⊂R Ri. We can correct this

inconvenience by redefining the converse relation as the minimal composite relation that contains
the converse as defined in Equation (10.1). We use the symbol R` for this newly defined converse;
which is called ‘weak converse’ (We use a definition like Moratz and Wallgrün 2012, p. 6; See
also, Dylla et al. 2017, Eq. 8).

R` :=
⋂

R∈2R

R⊃{R}`

R (10.2)

It is evident that R` ⊃ {R}`, and that R` is minimal. In the ideal case of equality, i.e.,

R` = {R}`, we say that R` is a ‘strong converse’ (ibid., Eq. 8, 9). For the great majority of
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the qualitative calculi, the converse is strong (, Fig. 7), and, thus, Equations (10.1) and (10.2)
are equivalent.

Composition As mentioned in Section 4.3.1, the composition of relations yields the transitive
relation. As an illustration, if (u, v) ∈ RA and (v, w) ∈ RB , the transitive relation RC is the
one of the entities (u,w). RC is obtained through the composition of RA and RB , formally,
RC = RA{◦}RB .

RA{◦}RB = {(u,w) | ∃v ∈ U : (u, v) ∈ RA, (v, w) ∈ RB} (10.3a)

Adapted to motion scenarios:

RA{◦}RB = {(~xk, ~vk; ~xl, ~vl) | (~xk, ~vk; ~xm, ~vm) ∈ RA, (~xm, ~vm; ~xl, ~vl) ∈ RB} (10.3b)

Again, we have the inconvenience that the composition relation, as defined in Equation (10.3),
need not be a composite relation, i.e., it can happen that RA{◦}RB 6∈ 2R. We can correct this
inconvenience by redefining the composition relation as the minimal composite relation that
contains the composition as defined in Equation (10.3). We use the symbol RA ◦ RB for this
newly defined composition; which is called ‘weak composition’ (ibid., Eq. 8).

RA ◦RB :=
⋂

R∈2R

R⊃(RA{◦}RB)

R (10.4)

It is evident that RA ◦ RB ⊃ RA{◦}RB , and that it is minimal. In the case of equality, i.e.,
RA ◦RB = RA{◦}RB , we say that RA ◦RB is a ‘strong composition’ (ibid., Eq. 10, 11). Most of
the qualitative calculi have a strong composition (ibid., Fig. 7), but exceptions are, e.g., QTCC

and OPRAn, which, interestingly, are qualitative representations used to qualitatively describe
motion.

Qualitative Calculus Summarizing, a ‘qualitative calculus’ is an abstract partition scheme
with the operations of weak converse and weak composition. More restrictive additions onto this
definition make up the different types of calculi.

Importantly, the very critical property of a qualitative calculus is to be an abstract partition
scheme, because based on the scheme we can always define a weak converse and composition by
means of Equations (10.2) and (10.4).

10.1.3 Types of Qualitative Calculi

The different types of qualitative calculi originate through adding properties to the fundamental
definition. There is not a proper term to allude to all types of calculi that originate through
adding different properties; yet, we have terms for the most important sets of properties. For
example, the qualitative calculi fulfilling most desirable properties form ‘relation algebras’; this
is, for example, the case of RCC (here, we do not define the algebras, see Dylla et al. (ibid.)
for a detailed description). If all properties of a relation algebra are fulfilled, except that the
composition is not associative, then we have a ‘semi-associative relation algebra’; this is the case
of OPRAn.

Another types of qualitative calculi with less desirable properties are the ‘associative boolean
algebras’, ‘semi-associative boolean algebras with converse involution’ (e.g., QTCC), and the
poorest case ‘weakly associative boolean algebra’.
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10.2 Categorization Formalisms as Qualitative Calculi

Once qualitative calculi are defined, it is enlightening to compare the elements of a qualitative
calculus with the models of categorization (Ch. 3), and, particularly, with our categorization
formalism (Ch. 6).

To begin with, we draw a link between Dylla et al.’s (2013) abstract partition scheme and our
categorization formalism (Sect. 6.1.1). When we formalized motion categorization, we started
with a kinematic space K in which the motion state of our entities is quantitatively described as
a motion scenario (~xk, ~vk; ~xl, ~vl) ∈ K. Note that the kinematic space, K, can be identified with
the space U ×U of binary relations of the universe U . Indeed, as we said above, the motion state
of a single entity is represented in the single-motion space U = X × V; therefore, we can verify
that U × U = (X × V)× (X × V) = K.

Further, we defined the categorization M constituted of categories Mi, i.e., M = {M1,M2,

. . . ,Mm}. Remarkably, such categorization is an abstract partition scheme of the kinematic space,
K. The categorization rule fµ defines the categories Mi as relations in U × U = K: we showed
in Equation (6.3) that each Mi corresponds to a subset Ki of K, namely, Ki = fµ

−1(Mi)—We
called such subsets categorical regions. Moreover, in our categorization formalism, we required
that the categories Mi—actually, their associated categorical regions Ki—be jointly exhaustive
and partially disjoint (See Eqs. 6.4). Therefore, in Section 6.1.1, we formalized categorization,
specifically, motion categorization, as an abstract partition scheme in which the categories, Mi ∈
M, (or his associated categorical regions) are equivalent to base relations. Thus, we axiomatized
a motion categorization as the abstract partition scheme (U ,R) = (X × V,M).

The equivalence between our categorization formalism and an abstract partition scheme in-
duced an equivalence of terms. Following terms are interchangeable when dealing with story-based
categorizations (See also Tab. 4.1):

• ‘motion categories’, ‘qualitative relations’, and ‘categorical regions’

• ‘motion categorization’, ‘qualitative representation’, ‘qualitative calculus’

Incomplete information In our discussion of motion categorizations (all throughout Part III),
we did not tackle the issue of ‘incomplete information’ when categorizing motions. When
we defined a categorization M as a set of jointly exhaustive and partially disjoint categories,
{Mi}i=1,...,m, we did not consider the possibility of creating new motion categories as disjunc-
tions of old motion categories, e.g., M ′ = Mi∪Mj ; that is, a motion scenario belongs to category
M ′ when it belongs to category Mi or to category Mj .

To correct this omission, we show here, in the frame of qualitative calculi, how story-based
categorizations deal with incomplete information. The calculi provide the native tool of relational
disjunction to express incomplete information, and we can readily apply it to the story-based
categorizations. For example, in Stories-OPRA1, we can define the composite category SC1 =
SC191 ∪ SC10 ∪ SC11, which has a plain understandable meaning: “all motion scenarios where
both entities move and the first entity (k) approaches the trajectory of the second entity (l)
coming from the left”. We mentioned in Section 3.6, how the union, i.e., disjunction of categories
seems a cognitively plausible process; we gave the example of the concept citrus which can be
understood as the union of all citrus fruits.
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10.3 Story-Based Categorizations are Qualitative Calculi

Here, we will prove that a story-based motion categorization is a qualitative calculus. The
first step is to show that a story-based motion categorization is an abstract partition scheme
(Sect. 10.1.1), i.e., that such categorization can be seen as a universe U having base relations.
As a particular case, it suffices to see that the categories of a story-based categorization are base
relations. Since we have defined two types of story-based categorizations—the bare (Stories-R)
and the beaded (Motion-R) categorizations (Ch. 9, p. 157)—we need two proofs.

Remember that the bare story-based representations are motion categorizations in which we
identify the stories, {Si}i=1,...,n, with the motion categories. In the field of the qualitative calculi,
we might understand such stories as the base relations of a story-based representation: We will
prove this in the current section.
The beaded story-based categorizations are motion categorizations in which each motion category
is a pair formed by a story, Si, and some of its constituting relations, Rj ; that is, a category
is written as Si(Rj) where Rj ∈ Si. It is clear from the definition that the beaded categories
are a refinement of the bare categories: each story Si is subdivided by means of its constituting
qualitative relations Rj ∈ Si. In this section, we will also prove that the beaded categories, i.e.,
Si(Rj), are the base relations of a story-based representation.

In any case, both categorizations use as foundation the stories generated by a qualitative
calculus R; therefore, a key step in our proofs is to show that the stories of any story-based
categorization, ΣR, constitute a finite set of base relations, i.e., jointly exhaustive and partially
disjoint relations in the kinematic space K = (X × V) × (X × V) (Lemmas 10.3.1 and 10.3.2).
Once we have shown this, it is straightforward to show that both types of motion categorizations
are qualitative calculi.

Lemma 10.3.1 Stories are partially disjoint (PD) The stories S ∈ ΣR of a story-based
categorization, considered as qualitative relations in the kinematic space K, are partially disjoint.

Proof. Any story of a story-based categorization is a qualitative relation in the kinematic space
K. Indeed, we can see that each story is linked to a region of K by applying the story map σR.
This map links the stories S ∈ ΣR and the kinematic space K: σR

−1(Si) = Ki ⊂ K (Eq. (7.13)).
Since any function f verifies f−1(A ∩B) = f−1(A) ∩ f−1(B) (Monk 1969, p. 40), and the story
map, σR, is a function, the story map verifies following

σR
−1(SA ∩ SB) = σR

−1(SA) ∩ σR
−1(SB) (10.5)

The stories are single, i.e., atomic, elements of the stories set ΣR, then, obviously, SA ∩SB =
∅ ∀SA 6=SB ∈ΣR. Now setting this equality in Equation (10.5), we obtain that

σR
−1(∅) = σR

−1(SA) ∩ σR
−1(SB) ∀SA 6= SB

Now considering that for a function f , f−1(∅) = ∅, then we have following.

σR
−1(SA) ∩ σR

−1(SB) = ∅ ∀SA 6= SB (10.6)

And this last equation reflects exactly the condition that the stories, as qualitative relations
of the kinematic space, are pairwise disjoint.

Lemma 10.3.2 Stories are jointly exhaustive (JE) The stories S ∈ ΣR of a story-based
categorization, considered as qualitative relations in the kinematic space K, are jointly exhaustive.
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Proof. If the stories in ΣR were not jointly exhaustive, we could find a motion scenario K ∈ K
that does not belong to any story S ∈ ΣR. However, by definition, the domain of the story
map σR, which assigns the stories to the motion scenarios, Si = σR(K), is the whole kinematic
space K (Eq. (7.13)): each motion scenario is mapped into a story, or conversely, the story
set is generated by finding all possible stories in the kinematic space (see the algorithm for
ΣR generation, Sect. 8.1.1). Hence, any motion scenario K must necessarily belong to a story
S ∈ ΣR, and, consequently, the stories are jointly exhaustive.

Corollary 10.3.2.1 Stories are jointly exhaustive and partially disjoint (JEPD) The
stories S ∈ ΣR of a story-based categorization, considered as qualitative relations in the kinematic
space K, are jointly exhaustive and partially disjoint.

Proof. It follows from Lemmas 10.3.1 and 10.3.2.

Lemma 10.3.3 Stories form an abstract partition scheme In the vast majority of calculi
R, the generated stories, i.e., ΣR, form an abstract partition scheme of the kinematic space K.

Proof. We have already seen (Cor. 10.3.2.1) that in every qualitative representation, R, the
generated stories, ΣR, are jointly exhaustive and partially disjoint in K because of the properties
of the story map σR. Thus, we just need to prove that this set is finite. Unfortunately, we cannot
generally prove it for each and every representation, as it fully depends on the geometry of the
representation. In fact, we can easily create qualitative representations with a peculiar geometry,
in which infinite stories arise; for example, with a relation consisting of infinite disconnected
regions. We can though prove that for the vast majority—possible all—of currently available
qualitative representations, the stories set Σ is finite (See proofs in App. A.2.1). Summarizing,
for the vast majority of calculi R, the stories in ΣR form a set of base relations of K, and,
therefore, they are an abstract partition scheme of K.

Proposition 10.3.1 Bare story-based categorization are qualitative calculi In the vast
majority of calculi R, the generated stories, i.e., ΣR, are a qualitative calculus in the kinematic
space K. Thus, the bare story-based categorizations Stories-R = (σR,ΣR) are a qualitative
calculus (i.e., a qualitative representation) in K.

Proof. In Lemma 10.3.3, we saw that the stories, ΣR, form an abstract partition scheme of the
kinematic space K (in the vast majority of calculi R). In consequence, we can upgrade the
stories, ΣR, into a qualitative calculus if we add the operations of (weak) converse (Eq. (10.4))
and composition (Eq. (10.2)), which can always be defined upon a set of base relations.

Proposition 10.3.2 Beaded story-based categorization are qualitative calculi In the
vast majority of calculi R, the generated beaded categories of Motion-R categorization, i.e.,
MR = {Si(Rj) | Si ∈ ΣR, Rj ∈ Si}, are a set of base relations in the kinematic space K. As a
consequence, in such calculi R, the beaded story-based categorizations Stories-R = (σR × ρ,MR)
are a qualitative calculi (i.e., a qualitative representation) in K.

Proof. First, we prove that the beaded stories, Motion-R, are an abstract partition scheme in
an analogous way we proved in Lemma 10.3.3 that bare stories are an abstract partition scheme.
The proof of Lemma 10.3.3 required, initially, that the stories be jointly exhaustive and partially
disjoint (JEPD). We saw that the JEPD property based on two properties of σR: that it is
a function (used in Lem. 10.3.1), and that its domain is the whole kinematic space (used in
Lem. 10.3.2). These properties are also verified by (σR × ρ) and, therefore, the beaded stories
are also JEPD in the kinematic space K. Additionally, in Lemma 10.3.3, required that the stories
be a finite set. Now, we have to prove that the beaded stories are a finite set. We prove that by
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means of Propositions A.2.1 and A.2.2: in the vast majority of calculi R the stories and their
elements are finite. Accordingly, the beaded stories, Motion-R, must be a finite set in the vast
majority of calculi R.

Second, analogously to Proposition 10.3.1, we can upgrade the beaded stories, Motion-R, into
a qualitative calculus by adding the operations of (weak) converse (Eq. (10.4)) and composition
(Eq. (10.2)).

Corollary 10.3.2.1 Beaded story-based categorizations are refinements of bare story-based
categorizations When we look at stories as relations in the kinematic space K, then every
story Si ∈ Stories-R, i.e., every bare story-based relation, is partitioned by the beaded story-based
relations, Si(R) ∈ Motion-R. Equivalently, ∀Si ∈ ΣR fµ

−1(Si) =
⋃

R∈Si
fµ

−1(Si(R)) and

fµ
−1(Si(Rj)) ∩ fµ

−1(Si(Rj)), where fµ = σR × ρ is the categorization function in Stories-R.

Proof. Note that, according to the categorization rule fµ = σR × ρ in beaded story-based cat-
egorizations, if a motion scenario belongs to a certain bare story-based category, K ∈ Si,
then it belongs also to a certain beaded story-based category K ∈ Si(Rj), i.e., fµ

−1(Si) ⊂⋃
R∈Si

fµ
−1(Si(R)). Conversely, if a scenario belongs to a certain beaded story-based cate-

gory, i.e., K ∈ Si(Rj), then the scenario must belong to the story component, i.e., K ∈ Si,
i.e., fµ

−1(Si) ⊃
⋃

R∈Si
fµ

−1(Si(R)). Therefore, we have proved that ∀Si ∈ ΣR fµ
−1(Si) =⋃

R∈Si
fµ

−1(Si(R)). That the beaded relations are disjoint was proved in Proposition 10.3.2.

By abusing notation, we simplify the expressions in Corollary 10.3.2.1 as those in Equa-
tion (10.7) because it is clear that we are not working in ΣR, where stories are atomic, but in
the kinematic space, where the stories are equivalent to kinematic regions K.

∀Si ∈ ΣR





Si =
⋃

R∈Si

Si(R)

Si(Rj) ∩ Si(Rk) = ∅ ∀j 6= k

(10.7a)

(10.7b)

Being a refinement is equivalent to say that a beaded categorization is a partition of the bare
categorization. Corollary 10.3.2.1 means that the beaded categorizations add a higher granularity
(higher definition) to the bare categorizations. In fact, the beaded categorization provides extra
information about the temporal evolution of the entities.

Thus far, we have proved that for the vast majority of qualitative calculi R, the generated
story-based representations, bare Stories-R = (K,ΣR) and beaded Motion-R = (K,MR), are
qualitative calculi. Additionally, we proved that the the Motion-R calculi correspond to the
Stories-R calculi with higher granularity. These results open the door for the generation and
application (Ch. 11) of this new family of qualitative calculi.

When we proved that story-based categorizations are qualitative calculi (Props. 10.3.1 and 10.3.2),
we only assumed the existence of the converse and composition operations as defined in Eqs. (10.2)
to (10.4). In the next sections, we present methods to compute, or help to compute, such op-
erations using only, as extra information, the respective tables of the generating representation
R. We can compute the converse exactly, but, regarding the composition, we can only com-
pute an upper set bound—which we call narrative composition—we cannot directly compute the
composition.

10.4 Converse Relations in Story-Based Categorizations

We begin by showing how to compute the converse of a beaded relation Si(Rj) because, in order

to compute its converse, i.e., Si(Rj)
`

, we have to compute the converse of the bare relation, i.e.,
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Si
`.

As the motion relation Si(Rj) relates the pair (k, l), computing the converse, Si(Rj)
`

, means
to find the motion relation for the permuted pair, (l, k) (Sect. 4.3.1). By definition, the terms Si

and Rj stand independently, as a Cartesian product, in the relations notation; thus, Si(Rj)
`
=

Si
`(Rj

`), and we can compute the converse of each term just using the converse of the generating
spatial relation R:

• Rj
` is provided by the generating representation. For example, DC` = DC, TPP` =

TPPI, (∠3
1 )

`
= ∠

1
3 , or (∠2 )

`
= ∠2

• Si
` is, by definition, equivalent to compute the converse on any term of the story Si =

(R1, . . . , Rn) as sequence of relations, that is,

Si
` = (R1

`, . . . , Rn
`) (10.8)

Note, that the sequence of converses (R1
`, . . . , Rn

`) certainly correspond to a story Sj

belonging to the stories set, i.e., Sj ∈ Σ, because the stories with permuted entities were
computed as part of the standard stories. For that reason, the converse of story-based rep-
resentations is a strong converse, and we had no need to use the weak definition (Eq. (10.2)).

For example, in Motion-RCC, the story S14 corresponds to the temporal sequence (DC,EC,
PO,TPP,PO,EC,DC), thus S14

` = (DC`,EC`,PO`,TPP`,PO`,EC`,DC`) = (DC,
EC,PO,TPPI,PO,EC,DC) = S16; consequently, S14

` = S16. Another example, the story
S13 corresponds to the temporal sequence (DC,EC,PO,EC,DC), thus S13

` = (DC`,EC`,

PO`,EC`,DC`) = (DC,EC,PO,EC,DC), which is the same story S13; consequently,
S13

` = S13.
In Motion-OPRA1 the story SC10 (See Table 8.2), corresponds to the temporal sequence
(∠3

1 , ∠3 , ∠1
3 ); thus the converse is computed by the same procedure above: SC10

` =

((∠3
1 )

`
, (∠3 )

`
, (∠1

3 ))
`
) = (∠1

3 , ∠1 , ∠3
1 ) = SC20

Thus, finally, we obtain examples of converse for beaded relations: in Motion-RCC, S12(EC+)
`
=

S12(EC+), S14(TPP)
`
= S16(TPPI); in Motion-OPRA1 SC10(∠

3
1 )

`
= SC20(∠

1
3 ), or, SC10(∠3 )

`
=

SC20(∠1 ).

10.5 Composition in Story-Based Categorizations

The composition of qualitative relations involves three entities k, l, and m. If we know the
relation between the pair (k, l), say, RA, and the relation between the pair (l,m), say, RB , what

would be, then, the possible relation(s) for the pair (k,m)? Such relation or relations R̃C =
{RC1

, . . . , RCN
} is called the ‘composition’ of RA and RB (See examples; spatial representations

Sect. 4.3.1, motion representations Sect. 10.6). The composition is expressed symbolically as the

operation ‘◦’, R̃C = RA ◦ RB . In the case of beaded story-based relations we write ˜SC(RC) =

SA(RA) ◦ SB(RB), which can be explicitly written as a set of beaded relations, i.e., ˜SC(RC) =

{SC1
(RC1

), . . . , SCN
(RCN

)}. We write the wide tilde ˜ to denote the result of the composition,

and, thus, ˜SC(RC) refers to a set (a disjunction) of relations. In contrast, without tilde, only a
single relation SC(RC) is meant.

The result of the composition is seldom a single relation, ˜SC(RC) = {SC1
(RC1

)}. For exam-
ple, in RCC, if the entities (k, l) fulfil the relation PO, and (l,m) fulfil TPP, then (k,m) may fulfil
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one of these relations: PO, TPP, or NTPP. We express it as, PO ◦ TPP = {PO,TPP,NTPP}.
The full table of RCC composition values are displayed in Randell, Cohn, et al. 1992, and an
algorithm to find the composition in OPRA1 is presented in Mossakowski and Moratz 2012.

Finding the composition is an arduous task that must be tailored to every representation.
Though we do not exactly solve the composition for story-based relations, we take a step towards
the computation of the composition by limiting its possible results. Indeed, we build an operation
with story-based relations, the ‘narrative composition’: SA(RA) O SB(RB), for beaded relations,
and SA O SB , for the bare relations. The narrative composition yields a small superset of the
standard composition, but usually does not coincide with it (i.e., SA(RA) ◦SB(RB) ( SA(RA) O

SB(RB), and SA ◦ SB ( SA O SB).

10.5.1 Defining the Narrative Composition: SA(RA) O SB(RB)

In this section, we describe how we end up with the narrative composition of beaded story-based
relations, SA(RA) O SB(RB). However, the narrative composition of bare story-based relations,
SA O SB , will be presented in Section 10.6.3 by generalizing SA(RA) O SB(RB).

The narrative composition is the result of gathering necessary conditions that the standard
composition, SA(RA) ◦ SB(RB), must fulfil. Unfortunately, these conditions are not sufficient,
i.e., the narrative composition often adds extra relations to the standard composition (as shown
in the example of Section 10.6.2). Nevertheless, the narrative composition provides a good first
approach to the standard composition.

For a start, we approach ˜SC(RC) = SA(RA) ◦ SB(RB) by separately considering its story

component S̃C and its position component R̃C . It is obvious that every relation belonging to the
position component of the composition relation must belong to the composition of the position
components of the composed relations, i.e., ∀RC ∈ R̃C ⇒ RC ∈ RA ◦ RB , because the position
component contains information about a single instant, and, thus, it works as a standard spatial
relation. Nonetheless, remember that the result of our composition are not two separate sets, the

position components R̃C and the story components S̃C , but a set of beaded relations ˜SC(RC):
We must consider the interplay between position, RC , and story components, SC .

When we look at the story components, i.e., the stories, SA and SB , things become unexpect-
edly intricate. Foremost, we express the bare stories SA and SB as sequences of relations Ri ∈ R,
that is, SA = (RA1

, RA2
, . . . , RAi

, . . . , RAn
) and SB = (RB1

, RB2
, . . . , RBj

, . . . , RBm
). It is clear

that each element RCk
of a composition story SC = (RC1

, RC2
, . . . , RCk

, . . . , RCo
) ∈ S̃C = SA◦SB

is obtained by composition of relations constituting the composed stories, i.e., by RAi
◦RBj

(See
Eq. (10.10a)). However, it is not obvious which relations RAi

∈ SA are composed with which re-
lations RBj

∈ SB , and in which order they are composed to obtain each relation RCk
∈ SC . This

is the main goal of the ‘narrative composition’ SA(RA) OSB(RB): to create feasible sequences of

composed relations RAi
∈ SA and RBj

∈ SB that yield the composition stories SC ∈ S̃C .

We show how far from trivial the composition SA(RA)◦SB(RB) is by means of a Motion-RCC

example. If we want to compute the composition ˜SC(RC) = S11(DC) ◦ S11(DC), where S11 =
(DC), then DC◦DC yields simply {(DC), (EC), (PO), (TPP), (NTPP), (TPPI), (NTPPI), (EQ)},
which are only one-element sequences. This is utterly unsatisfactory: we obtain sequences that
are not feasible stories, such as (EC), and, even worse, longer sequences can never be obtained
this way; for example, the sequence SC = S13 = (DC,EC,PO,EC,DC), which is also a possible
composition story of S11 ◦ S11.

The composition of the story components, SA and SB , based on their constituting relations
RAi

∈ SA and RBj
∈ SB is so peculiar because their constituting relations often occur in a time
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interval (t1, t2) and not in a single time instant t0 alone. As a contrast, the composition of RAi

and RBj
in the generating representations R is defined for single time instants, or, equivalently,

for static scenarios. This incompatibility between both compositions is overcome by the narrative
composition SA(RA) O SB(RB).

Narrative composition of beaded Stories: SA(RA) O SB(RB) In the following, we define
the narrative composition of beaded stories, SA(RA) O SB(RB), as an enumeration of necessary
conditions that each story SC belonging to the standard composition, SA(RA) ◦ SB(RB), must
fulfil. In that way, we ensure that the narrative composition contains the standard composition,
i.e.,

SA(RA) ◦ SB(RB) ⊂ SA(RA) O SB(RB) (10.9)

We denote each composition story SC ∈ SA(RA) ◦ SB(RB) as the sequence of relations
{RC1

, . . . , RCi
, . . . , RCm

}; we denote the first composed story SA as {RA1
, . . . , RAi

, . . . , RAn
},

and the second composed story SB as {RB1
, . . . , RBi

, . . . , RBo
}.

I. Each element of a composition story, RCi
∈ SC , must belong to the standard composition

of two elements of the composed stories, SA and SB .

∀RCi
∈ SC ∃RAj

∈ SA and ∃RBk
∈ SB | RCi

∈ RAj
◦RBk

(10.10a)

II. The first element of the composition story, RC1
, must belong to the composition of the

first elements of the composed stories, and the last element of the composition story, RCm
,

must necessarily belong to the last elements of the composed stories.

SC = {RC1
, . . . , RCi

, . . . , RCn
} ⇒ RC1

∈ RA1
◦RB1

and RCm
∈ RAn

◦RBo
(10.10b)

III. At least one element of the composition story, RCi
, must belong to the composition of the

position components of the composed beaded stories.

∃RCi
∈ SC | RCi

∈ RA ◦RB (10.10c)

IV. Successive elements of the composition story, SC , must belong to the composition of suc-
cessive or to the same elements of the composed stories, SA and SB .

∀RCi
, RCi+1

∈ SC ∃j, k, l,m | RCi
= RAj

◦RBk
;RCi+1

= RAl
◦RBm

where j ≤ l ≤ j + 1 and k ≤ m ≤ k + 1 (10.10d)

Hence, the ‘narrative composition’ of beaded stories, SA(RA) O SB(RB), is the set of beaded
stories SC(RC) that fulfil the conditions in Items I. to IV.. We did not rigorously proved these
conditions as they can be intuitively verified.

10.5.2 Computing the Narrative Composition

In this section, we provide a more friendly method to compute the narrative composition than just
giving the conditions it fulfils: below, we express Items I. to IV. as an algorithm. Furthermore, we
define some concepts—the substrings composition, composition path, and narrative composition
matrix—that simplify the execution of the algorithm.
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Algorithm for narrative composition SA(RA) O SB(RB)

0. Initially, the narrative composition is empty; it contains no relation, ˜SC(RC) = ∅

1. We begin with the composition of the first relations in each story, i.e., with RA1
◦RB1

, and
we build all possible sequences of relations of this composition that are prefixes, i.e., that
are beginning substrings, of stories in ΣR (the empty sequence ‘( )’ is not allowed). We call
this ‘set of prefixes’ P .

2. We choose a composition of relations that is neighbour of the previous composition used.
More concretely, if the previous composition was RAi

◦ RBj
, we choose RAi

◦ RBj+1
, or

RAi+1
◦ RBj

, or RAi+1
◦ RBj+1

. Let us say we choose RAi
◦ RBj+1

. We build all possible
prefixes of stories in ΣR obtained by concatenating the substrings of P and all possible
substrings of stories generated with the relations resulting of the chosen composition, e.g.,
RAi

◦ RBj+1
, (we fuse the repeated relations on subsequent positions). We redefine the

prefix set, P , as this new set of prefixes.

3. We iterate step 2 until we arrive at the composition of the end relations in SA and SB ,
i.e., until we arrive at RAn

◦ RBo
. And we also build all possible prefixes of stories in ΣR

obtained by concatenating the sequences of P and all possible stories substrings generated
with the relations of RAn

◦RBo
. We redefine P as this new set of prefixes.

As we iterate step 2, one of the compositions we choose has to be RA ◦ RB , since we are
computing SA(RA) O SB(RB).

4. The elements of P that form stories SC ∈ ΣR are joined with their respective position

components, RC , obtained by the composition of RA ◦RB and added to the set ˜SC(RC)

5. We repeat steps 1 to 4 until we have chosen all possible paths of neighbouring compositions
beginning at the start composition, RA1

◦ RB1
, and finishing at the end composition,

RAn
◦ RBo

. In that way, the narrative composition ˜SC(RC) contains, at last, all possible

relations SC(RC) fulfilling the conditions in Items I. to IV.. In other words, ˜SC(RC) is the
narrative composition SA(RA) O SB(RB).

We realize that the algorithm above bases chiefly in two combinatorial operations: the gen-
eration of story prefixes (see items 1 to 3) and the generation of composition paths (see item 5).
Accordingly, in the following, we devise tools that simplify the computation of these operations:
we define the ‘substring composition’ which simplifies the generation of prefixes, and we define
the ‘narrative composition matrix ’ which facilitates the generation of composition paths.

Substrings composition: RA O RB We define the ‘substring composition’, RA O RB of two
relations RA and RB belonging to R as all possible substrings of stories in ΣR that contain
exclusively relations that belong to the standard composition RA ◦RB .

Alternatively, we can define RA O RB as all possible substrings of stories in ΣR that can be
formed exclusively with relations belonging to RA ◦RB .

Note that we have one operator, the composition ‘O’, with two different definitions depending
on the nature its operands: when it acts upon the relations in R, Rj ∈ R, it is the ‘substrings
composition’; when it acts upon story-based relations—Si ∈ Stories-R or Si(Rj) ∈ Motion-R—it
is the ‘narrative composition’.

We find it appropriate to overload the operator ‘O’ because we use the substrings composition
RA O RB as a building block for the narrative composition SA(RA) O SB(RB).
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Example 10.1 (Substrings composition) The standard composition of DC and EC yields five
possible relations: DC◦EC = {DC,EC,PO,TPPI,NTPPI}. Consequently, DCOEC is formed by
all the combinations of relations in {DC,EC,PO,TPPI,NTPPI} that form substrings of stories
in Σ

RCC
, i.e., DCOEC = {(DC), (EC), . . . , (DC,EC,DC), . . . , (EC,PO,EC), . . . , (EC,PO,TPPI,

PO), . . . }. Indeed, for example, (DC) is substring of story S11 (See Tab. 8.1)—in fact, it is the
full story—(EC, PO, EC) is substring of S13, and so on. However, a sequence such as (EC,TPPI,
EC), though it is a combination of relations from the composition DC ◦ EC, does not belong to
the narrative composition DC O EC, because it is not the substring of any story in Σ

RCC
.

The computation of the narrative composition—or at least its formulation—is greatly sim-
plified by using the substrings composition. For example, in step 2, the expression “all possible
substrings of stories generated with the relations of the chosen composition, e.g., RAi

◦ RBj+1
”

can be reformulated as simply as “RAi
ORBj+1

”. For that reason, henceforth, we will mainly refer
to the substring composition instead to the standard composition, RAi

◦RBj+1
.

Composition path A ‘composition path’ is a sequence of substrings compositions as defined
in steps 2 and 3. A sequence that begins with RA1

O RB1
; ends with RAn

O RBo
; and after each

element RAi
O RBj

follows either RAi+1
O RBj

, or RAi
O RBj+1

, or RAi+1
O RBj+1

. Moreover,
since a composition path stems from computing a narrative composition SA(RA) O SB(RB), the
narrative composition of the position components, RA O RB , must be present in the path.

In Equation (10.11), we represent a composition path in a most general way. The narrative
composition of the position components RA and RB stands out grey-boxed. In Example 10.2,
we generate three concrete examples of composition paths.

(RA1
O RB1

, . . . , RAi
O RBj

, . . . , RA O RB , . . . , RAn
O RBo

) (10.11)

Notably, a composition path, such as in Equation (10.11), represents not a single story, but a
set of stories: the set of all stories belonging to ΣR that are formed by combinatorial concatena-
tion of a substring of each RAi

O RBj
.

Example 10.2 (Composition paths) Suppose we want to compute the narrative composition
SA(RA1

)OSB(RB3
), where the stories are SA = (RA1

, RA2
, RA3

) and SB = (RB1
, RB2

, RB3
, RB4

,

RB5
). Then some possible composition paths are shown in Equations (10.12a) to (10.12c). The

grey boxes contain the narrative composition of the position components RA1
O RB3

.

(RA1
O RB1

, RA1
O RB2

, RA1
O RB3

, RA1
O RB4

, (10.12a)

RA1
O RB5

, RA2
O RB5

, RA3
O RB5

)

(RA1
O RB1

, RA1
O RB2

, RA1
O RB3

, RA2
O RB4

, (10.12b)

RA3
O RB5

)

(RA1
O RB1

, RA1
O RB2

, RA1
O RB3

, RA2
O RB3

, (10.12c)

RA2
O RB4

, RA3
O RB4

, RA3
O RB5

)

Finding all composition paths is the last step (item 5) in our way to obtain the narrative

composition ˜SC(RC) = SA(RA) O SB(RB). Actually, each composition path produces relations

SC(RC) belonging to the narrative composition ˜SC(RC), so that the union of all the SC(RC)
relations in the composition paths yields the narrative composition.



190 CHAPTER 10. STORY-BASED CATEGORIZATIONS AS QUALITATIVE CALCULI

Narrative composition matrix Even if finding all composition paths is no dire computa-
tional challenge, we can make this task easier by using a tabular representation: the ‘narrative
composition matrix’.

The ‘narrative composition matrix ’ of a narrative composition, e.g., SA(RA1
) O SB(RB3

), is
the two-dimensional matrix formed by all possible substring compositions of the relations that
constitute the story components, i.e., it is formed by all RAi

ORBj
so that RAi

∈ SA, RBj
∈ SB .

On this matrix, the composition paths can be clearly visualized. For example, in Table 10.1,
we represent the composition matrix SA(RA1

) O SB(RB3
) along with the composition paths of

Equation (10.12).
The conditions that each composition path must fulfil, as we stated them in the definition,

can be reformulated as drawing rules for paths in the composition matrix:

i. Every path begins in the upper left corner and ends in the lower right corner (yellow
coloured cells in Tables 10.1 and 10.2)

ii. Every path can only be generated by moving from every cell either rightwards, downwards
or diagonally rightwards downwards.

iii. Every path must pass through the cell containing the narrative composition of the position
components, i.e., RA O RB ; (orange coloured cell in Tables 10.1 and 10.2). For example,
for the narrative composition SA(RA1

) O SB(RB3
), in Table 10.1, it is RA1

O RB3
.

SA(RA1
)

O

SB(RB3
)

RB1
RB2

RB3
RB4

RB5

RA1
RA1

O RB1
RA1

O RB2
RA1

O RB3
RA1

O RB4
RA1

O RB5

RA2
RA2

O RB1
RA2

O RB2
RA2

O RB3
RA2

O RB4
RA2

O RB5

RA3
RA3

O RB1
RA3

O RB2
RA3

O RB3
RA3

O RB4
RA3

O RB5

Table 10.1: Narrative composition matrix of the beaded motion relations SA(RA1
) and

SB(RB3
). The corresponding stories are SA = (RA1

, RA2
, RA3

) and SB = (RB1
, RB2

, RB3
,

RB4
, RB5

). We show the three examples of valid paths in Equation (10.12): The green path
corresponds to (RA1

ORB1
, RA1

ORB2
, RA1

ORB3
, RA1

ORB4
, RA1

ORB5
, RA2

ORB5
, RA3

ORB5
)

(Eq. (10.12a)); the blue path to (RA1
O RB1

, RA1
O RB2

, RA1
O RB3

, RA2
O RB4

, RA3
O RB5

)
(Eq. (10.12b)); and the black corresponds to (RA1

O RB1
, RA1

O RB2
, RA1

O RB3
, RA2

O RB3
,

RA2
O RB4

, RA3
O RB4

, RA3
O RB5

) (Eq. (10.12c)). According to Items i. to iii. the paths must
go through the coloured cells.

Source: Purcalla Arrufi and Kirsch (2018b)

Additional constraints in the composition paths We can reduce the large combinations
of possible composition paths to compute the narrative composition, if it happens that some
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S12(DC−)
O

S13(PO)
DC− EC− PO EC+ DC+

DC− DC− O DC− DC− O EC− DC− O PO DC− O EC+ DC− O DC+

EC EC O DC− EC O EC− EC O PO EC O EC+ EC O DC+

DC+ DC+ O DC− DC+ O EC− DC+ O PO DC+ O EC+ DC+ O DC+

Table 10.2: This table exemplifies a real Motion-RCC case of the general case in Table 10.1. We
compose narratively the motion relations S12(DC−) and S13(PO); where the stories components
are S12 = (DC−,EC,DC+), S13 = (DC−,EC−,PO,EC+,DC+). The difference are the grey
cells—they correspond to punctual relations—therefore, we cannot directly step from grey cell
into grey cell; this makes the black path an invalid path in this representation. However, the
narrative compositions given by the blue and green are perfectly valid.

Source: Purcalla Arrufi and Kirsch (2018b)

relations RAi
or RBj

of the composed stories, SA and SB , occur only in a single time instant t0—
We call them ‘punctual relations’. A decisive property is that each punctual relation, e.g., RAi

,
can only belong to a single substring composition, e.g., RAi

ORBj
. Indeed, if a punctual relation

would appear consecutively in two substring compositions, e.g., . . . , RAi
ORBj

, RAi
ORBj+1

, . . .,
then it would necessarily last more than a single time instant.

We can add this new constraint to the rules for creating paths in the narrative composition
matrix (items i. to iii.):

iv. (dominance constraint) In every path, a punctual relation cannot appear in two consecutive
substring compositions.

As an example, consider the narrative composition matrix in test Table 10.2. It involves
two relations in Motion-RCC, namely, S12(DC−) and S13(PO). Now, remarkably, in the RCC
stories, the relations EC, TPP, and TPPI are punctual relations when the involved entities are
strictly convex (e.g., circles but not squares), as we assumed in this work (Sect. 8.2.1). Thus,
a path in the narrative composition matrix cannot have two consecutive substring compositions
with the EC relation; for instance, the black path in Table 10.2, ( DC− O DC− ,DC− O EC−,

DC− O PO ,EC OPO,EC OEC+,DC+ OEC+, DC+ O DC+ ), is unfeasible because the punctual
relation EC appears twice consecutively, namely, in ‘. . . ,EC O PO,EC O EC+, . . .’. This is not
the only consecutive appearance of the relation EC, it appears again twice consecutively in
‘. . . ,EC O EC+,DC+ O EC+, . . .’.

We can visually apply this constraint by grey-colouring the rows and columns of the narrative
composition matrix (as in Tab. 10.2) and enforcing that paths do not go along the grey rows and
columns. That is, a path can contain grey cells but not consecutively.

We set apart this rule, iv., from the other ones, i.–iii., because the information about the
time intervals of each relation Ri ∈ R is not always available. In fact, as we saw in Section 7.4,
information about time intervals of relations is equivalent to information about their dominance
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properties—For that reason we call Item iv. ‘dominance constraint’. Certainly, only relations
that are position states in the dominance sense can—but they do not have to—be a punctual
state. Moreover, the geometry of the entities determines which position states are punctual, so
that, for example, in RCC the relation EC is punctual for certain geometries of the entities, e.g.,
strictly convex regions, but for others it is not.

Interestingly, according to our definitions of the entities in Section 8.2, RCC and OPRA1

both have punctual relations; what is more, all position states are punctual relations. These
‘punctual relations’ are EC, TPP, and EQ, in RCC; and, in OPRA1, every relation ∠

y
x that

contains 0 or 2 (e.g., ∠
3
0 , ∠

2
2 , or ∠0 ).

10.6 Examples of Narrative and Standard Composition in

Story-Based Representations

In this Section we present two full examples of narrative composition in the story-based relations
of Motion-OPRA1. Subsequently, we check the narrative results to obtain the standard compo-
sition between such relations; these examples show the peculiarity that both compositions are
equal. We apply the algorithm in Section 10.5.2 assisted by the narrative composition matrix to
obtain the composition paths.

10.6.1 Compositions SC21(∠
3

1
) O ST91(∠

2

0
) and SC21(∠

3

1
) ◦ ST91(∠

2

0
)

We aim to compute the narrative composition SC21(∠
3
1 )OST91(∠

2
0 ) (See Figs. 10.1a and 10.1b).

Firstly, we express the stories as sequence of spatial relations: SC21 = (∠1
3 , ∠

1
0 , ∠

1
1 , ∠

2
1 , ∠

3
1 )

and ST91 = (∠2
0 , ∠0 , ∠0

2 ). Secondly, we compute the narrative composition of stories by means
of the narrative composition matrix (Table 10.3).

The only possible composition path in the matrix that passes through the composed position
components, i.e., ∠

3
1 O ∠

2
0 (blue cell), is the blue path (See Tab. 10.3a). By resolving the

substring compositions (Tab. 10.3b), we obtain all temporal sequences of relations generated by
the blue path, for example, (∠1

0 , ∠
1
1 , ∠

1
2 , ∠

2
1 , ∠

3
0 , ∠

3
1 , ∠

3
3 ), and (∠1

1 , ∠
2
1 , ∠

3
1 ). Only two of

all generated sequences are Motion-OPRA1 stories (see Table 8.2): SC21 and SB21 = (∠1
1 , ∠

2
1 ,

∠
3
1 ). The relation of ∠

3
1 ◦ ∠

2
0 that is part of the respective resultant stories corresponds to the

position components of the resultant relation. Accordingly, we obtain the narrative composition

SC21(∠
3
1 ) O ST91(∠

2
0 ) = {SC21(∠

3
1 ), SB21(∠

3
1 )}

If we look at the resultant relations of the narrative composition, we see that all are feasible.
Particularly, SB21 is feasible even though the second entity in the relation is motionless, i.e.,
~vm = 0, because the composed story ST91 is possible for ~vm = 0. Therefore, finally, both the
standard and narrative composition coincide,

SC21(∠
3
1 )◦ST91(∠

2
0 ) = {SC21(∠

3
1 ), SB21(∠

3
1 )} ⊆ SC21(∠

3
1 )OST91(∠

2
0 ) = {SC21(∠

3
1 ), SB21(∠

3
1 )}

10.6.2 Compositions SC21(∠
1

3
) O ST91(∠

0

2
) and SC21(∠

1

3
) ◦ ST91(∠

0

2
)

Proceeding as in Section 10.6.1, we compute the narrative composition SC21(∠
1
3 ) O ST91(∠

0
2 )

using the narrative composition matrix (Table 10.3). In this case, the only possible path in the
matrix that passes through the composed position components, i.e., ∠

1
3 O ∠

0
2 (red cell), is the

red path.
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Motion

Relation
Entities Story Sequence

Verbalization

of the

Composition

(a) SC21(∠
3
1 ) k, l

k

l

k

l k
l

k

l kl

SC21(∠
1
3 ) SC21(∠

1
0 ) SC21(∠

1
1 ) SC21(∠

2
1 ) SC21(∠

3
1 )

The entity l

came from the
right of k and
crossed first.
The entity k

crossed later.

(b) ST91(∠
2
0 ) l, m

m l ml ml

ST91(∠
2
0 ) ST91(∠0 ) ST91(∠

0
2 )

The entity l

goes after m

on the same
trajectory path,
and it will
overtake m.

(c) SC21(∠
3
1 ) k, m

k

m

k

m

k

m

k

m
k

m

SC21(∠
1
3 ) SC21(∠

1
0 ) SC21(∠

1
1 ) SC21(∠

2
1 ) SC21(∠

3
1 )

Based on the
current motion
relations in (a)
and (b), i.e.,
composing (a)
and (b), we
conclude that
the entity m

came from the
right of k and
crossed first.
The entity k

crossed later.

Figure 10.1: We both visualize and verbally describe the computation of the composition
SC21(∠

3
1 ) ◦ ST91(∠

2
0 ) (relations in row (a) and row (b), respectively) which yields only the

relation SC21(∠
3
1 ) (row (c)).

Source: heavily modified from Purcalla Arrufi and Kirsch (2018b); licensed under CC BY 4.0

If we analyse all possible sequences of relations that the red path generates by narrative
composition, we obtain only four stories, which correspond to four beaded motion relations:

SC21(∠
1
3 ) O ST91(∠

0
2 ) = {SC291(∠

1
3 ), SC20(∠

1
3 ), SC21(∠

1
3 ), SB291(∠

1
3 )}

Analogous as in Section 10.6.1, we see that all relations are feasible. Particularly, the relation
SB291(∠

1
3 ) is feasible even though the second entity in the relation is motionless, i.e., ~vm = 0,

because the composed story ST91 is possible for ~vm = 0. Therefore, finally, both the standard
and narrative composition coincide,

SC21(∠
1
3 )◦ST91(∠

0
2 ) = {SC291(∠

1
3 ), SC20(∠

1
3 ), SC21(∠

1
3 ), SB291(∠

1
3 )} ⊆ SC21(∠

1
3 )OST91(∠

0
2 )
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SC21 O ST91 ∠
2
0 ∠0 ∠

0
2

∠
1
3 ∠

1
3 O ∠

2
0 ∠

1
3 O ∠0 ∠

1
3 O ∠

0
2

∠
1
0 ∠

1
0 O ∠

2
0 ∠

1
0 O ∠0 ∠

1
0 O ∠

0
2

∠
1
1 ∠

1
1 O ∠

2
0 ∠

1
1 O ∠0 ∠

1
1 O ∠

0
2

∠
2
1 ∠

2
1 O ∠

2
0 ∠

1
1 O ∠0 ∠

1
1 O ∠

0
2

∠
3
1 ∠

3
1 O ∠

2
0 ∠

3
1 O ∠0 ∠

3
1 O ∠

0
2

(a) Narrative composition matrix of the stories SC21 =
(∠1

3
, ∠1

0
, ∠1

1
, ∠2

1
, ∠3

1
) and ST91 = (∠2

0
, ∠0 , ∠0

2
).

SC21 O ST91 ∠
2
0 ∠0 ∠

0
2

∠
1
3 ∠

1
{0,1,3} ∠

1
3 ∠

1
{1,2,3}

∠
1
0 ∠

1
1 ∠

1
0 ∠

1
3

∠
1
1 ∠

1
{1,2,3} ∠

1
1 ∠

1
{0,1,3}

∠
2
1 ∠

2
1 ∠

2
1 ∠

{0,2}
{1,3} , ∠

1

∠
3
1 ∠

3
{0,1,3} ∠

3
1 ∠

3
{1,2,3}

(b) We have computed the standard composition of relations
in each cell of Table (a) (See the algorithm for OPRA1 com-
position in Mossakowski and Moratz 2012). The substring
composition on each cell is the combination of the relations
in the cell.

Table 10.3: In these narrative composition matrices, we compute two examples of compositions:
SC21(∠

3
1 ) OST91(∠

2
0 ), blue path passing through ∠

3
1 O ∠

2
0 ; and SC21(∠

1
3 ) OST91(∠

0
2 ), red path

passing through ∠
1
3 O ∠

0
2 .

We can use the same matrix for both compositions, because the story components of the relations,
i.e., SC21 and ST91, are the same. The start and end cell for both examples are the same, they
are yellow coloured. The cell of the current position component is coloured according to the
path.

Source: Purcalla Arrufi and Kirsch (2018b)
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10.6.3 The Narrative Composition SA O SB

We define the narrative composition for bare relations, i.e., only stories, SA O SB , in Equa-
tion (10.13). We base the definition on the narrative compositions beaded stories, i.e., SA(RA),
and SB(RB).

Definition 10.6.1 Narrative Composition of Bare Relations SAOSB The bare narrative
composition is defined as the union of all stories obtained in the beaded narrative composition.

SA O SB = {SC | SC(RCi
) ∈

⋃

∀RA∈SA

∀RB∈SB

SA(RA) O SB(RB)} (10.13)

Proposition 10.6.1 The narrative composition of bare stories SA O SB is an upper bound of

the composition of bare stories SA ◦ SB.

SA ◦ SB ⊂ SA O SB

Proof. When looking at the stories as relations, we can express each bare story as the union of all
the beaded stories that have the bare story as story component, i.e., S =

⋃

R∈S

S(R) (Eq. (10.7a)).

And by slightly working on the expression we obtain the result to prove.

SA ◦ SB

S =
⋃

R∈S

S(R)

(Eq. (10.7a))
=

(

⋃

RA∈SA

SA(RA)

)

◦

(

⋃

RB∈SB

SB(RB)

)

↓
Because of the distributivity property of the binary
qualitative calculi arising from the definition of com-
position (Eq. (10.3a))
(R1 ∪R2) ◦R3 = (R1 ◦R3) ∪ (R2 ◦R3)
R3 ◦ (R1 ∪R2) = (R3 ◦R1) ∪ (R3 ◦R2)

SA ◦ SB =
⋃

∀RA∈SA

∀RB∈SB

SA(RA) ◦ SB(RB)

↓ ∀SA(RA), SB(RB)

SA(RA) ◦ SB(RB) ⊂ SA(RA) O SB(RB) (Eq. (10.9))

SA ◦ SB ⊂
⋃

∀RA∈SA

∀RB∈SB

SA(RA) O SB(RB)

By Def.

Eq. (10.13)
= SA O SB





Chapter 11

Additional Applications

and Properties

of Story-Based Categorizations

Throughout our work, and more specifically in Chapters 6 to 10, we have presented the foun-
dations and basic uses of the story-based categorizations. In this chapter, we present additional
properties and applications that are not so fundamental, but are derived from the first ones.

Any categorization is worthless in itself, unless it proves to have useful or attractive properties.
Indeed, a categorization, as we understand it in its most basic sense, is just a partition of a certain
space of states. Specifically, a motion categorization partitions a kinematic space (Sect. 6.1.1),
leading to at least an uncountable variety of motion categories, an infinite number of categories
higher than the cardinality of R. There must be a very strong reason for choosing certain
categorizations over the rest in the overwhelming landscape of motion categorizations. We believe
that the properties we present here are such a reason.

Some properties and applications we present here are not thoroughly developed—they are
sketched or just mentioned—they should be fully implemented in further work. Thus, in this
chapter, we present also a great deal of future work on story-based categorization.

11.1 Creating a Variety of Categorization Criteria

In Section 2.2, we provided a glimpse into the variety of criteria in motion categorization; this is
analogous to the variety of categorizations in natural objects (See Sect. 3.4.4). As with natural
objects, the relevance of a categorization is linked to its purpose: without knowing the purpose,
we cannot say beforehand which categorization is most relevant. Therefore, we believe that it is
essential for a categorization model or method to possess the capacity to handle a wide range of
categorizations: A categorization model should be highly adaptable, able to generate a variety
of categorizations criteria—The greater the variety of categorizations in a method the higher
number of purposes that a method can serve.

Following, we itemize three methods to create a fulsome variety of motion categorizations
using the tools presented in previous chapters. Afterwards, in Sections 11.1.1 to 11.1.3, we
illustrate these methods with the six scenarios in Figure 11.1; four of these scenarios were already
presented as a categorization challenge in Chapter 2.

197
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Figure 11.1: These are six motion scenarios to illustrate the variety of motion categorizations.
The first four motion scenarios (A, B, C, D) were introduced in Figure 2.1; here, we add scenarios
E and F, which are, respectively, the scenarios A and B reflected about the y-axis.

Source: derivative of Purcalla Arrufi and Kirsch (2018a)
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• We can create different story-based motion categorizations by using different generating

representations. For instance, using two different generating representations, RCC and
OPRA1, we can create four different story-based categorizations: Stories-RCC, Stories-OPRA1,
Motion-RCC, and Motion-OPRA1; each of them providing different categories for motion
scenarios.

• We can create different story-based motion categorizations by combining them through
Cartesian product. For instance, starting with Motion-RCC, Motion-OPRA1, and Motion-QTCB21,
we can generate Motion-RCC×Motion-OPRA1, or Motion-RCC×Motion-QTCB21, or also,
Motion-RCC × Motion-OPRA1 × Motion-QTCB21, and so on.

• We can also create different motion categorizations by combining the features of the story-based
categorizations. This method relies on our categorization model (Ch. 6). Instead of dealing
with the story-based categorizations as a whole, we deal with their features. For example,
we can pick one feature of Motion-RCC, e.g., dmin, and one feature of Motion-OPRA1, e.g.,
αvv, and build a new motion categorization {dmin, αvv} that categorizes by means of these
two features.

11.1.1 Variety based on the generating spatial representation

Here we exemplify how choosing a different qualitative representation (RCC or OPRA1) as a
generator of the story-based categorization yields a variety of categorizations.

Using Motion-RCC In that way, the scenarios of Figure 11.1 are categorized as follows: the
scenarios A, C, D, E belong to the relation S11(DC−), and, thus, we group them in a category
(A, C,D, E). The scenarios B and F belong to the relation S13(DC−), and, thus, we group them
in a category (B, F). Motion-RCC partitions the scenarios in two categories.

These categories originate through the feature dmin, i.e., the degree of maximum overlap in
the trajectory. Hence, we can interpret these categories as (A, C,D, E) being the category of
scenarios that currently are and remain disconnected in the future, i.e., they do not evolve into
collision; while (B, F) is the category of scenarios that currently are disconnected, but the entities
evolve into a partial collision (unless velocity is modified). We summarize this result in a table
to easily compare with the results in Sections 11.1.2 and 11.1.3.

Motion-RCC

Relation
Verbal interpretation

Belonging

scenarios

S11(DC−) Entities are and remain disconnected in the

future.

A, C, D, E

S13(DC−) Entities are currently disconnected, but

evolve into a partial collision.

B, F

Using Motion-OPRA1 In that way, the scenarios of Figure 11.1 are categorized as follows:
the scenarios A, B, C belong to the relation SC191(∠

3
1 ), and, thus, form a category (A, B, C).

The scenario D belongs to the relation SC11(∠
3
1 ), and, thus, forms its own category (D). Finally,

the scenarios E and F belong to the relation SC291(∠
1
3 ), and, accordingly, they form a category

(E, F). Motion-OPRA1 partitions the scenarios in three categories.
These categories originate through the features α∆x∆v and αvv. Hence, this categorization

distinguishes which entity crosses first, and from which side—left or right—the entity k ap-
proaches l. In category (A, B, C), entity k crosses before l and approaches l from the right. In
(D), k crosses after l and approaches it from the right. In (E, F), k crosses before l and approaches
it from the left (unless velocity is modified). Again, we summarize the result in a table:
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Motion-OPRA1

Relation
Verbal interpretation

Belonging

scenarios

SC191(∠
3
1 ) Entity k approaches l from the right and will

cross before it.

A, B, C

SC11(∠
3
1 ) Entity k approaches l from the right and will

cross after it.

D

SC291(∠
1
3 ) Entity k approaches l from the left and will

cross before it.

E, F

Let us estimate the total number of story-based categorizations that we can create in this way.
In the literature, we find about 60 qualitative representations, if we count only the main subtypes
(Dylla et al. 2017). Since for each representation R we can create Stories-R and Motion-R, then
we can obtain a total of about 120 (= 60 × 2) story-based motion representations. In this
work, we have only studied four of them, i.e., Stories-RCC, Stories-OPRA1, Motion-RCC, and
Motion-OPRA1.

Remarkably, if we consider all possible variations of qualitative representations in Dylla et
al.’s (2017) survey, we can obtain an infinite (countable) number of story-based representations.
Some qualitative representations have variations that are indexed by a natural value, i.e., n =
1, 2, . . . Such index corresponds to their dimensions or granularity; for example, OPRAn, STARn,
or PCn (Tab. 4.2). Accordingly, we have infinite of those representations, one for each index value,
and for each of them we can generate two different story-based representations, Stories-R and
Motion-R, for instance, Stories-OPRAn and Motion-OPRAn.

11.1.2 Variety based on combining whole categorizations

Another possibility for creating new motion categorizations is to combine them by the Cartesian
product (Sect. 5.4). Thus, we can create the extended motion representation ‘Motion-RCC ×
Motion-OPRA1’, the Cartesian product of Motion-RCC and Motion-OPRA1.

As we explained in Section 5.4, the resulting categories of the Cartesian product are refinement
of the original categories, i.e., the original categories we presented in Section 11.1.1 are partitioned
in smaller categories.

In the example (Fig. 11.1) the Cartesian product would yield the following categories:

Motion-RCC × Motion-OPRA1

Relation
Verbal interpretation

Belonging

scenarios

(S11(DC−),SC191(∠
3
1 )) Entities are and remain disconnected in the fu-

ture. Entity k approaches l from the right and

will cross before it.

A,C

(S13(DC−),SC191(∠
3
1 )) Entities are currently disconnected, but evolve

into a partial collision. Entity k approaches l

from the right and will cross before it.

B

(S11(DC−),SC11(∠
3
1 )) Entities are and remain disconnected in the fu-

ture. Entity k approaches l from the right and

will cross after it.

D

(S11(DC−),SC291(∠
1
3 )) Entities are and remain disconnected in the fu-

ture. Entity k approaches l from the left and

will cross before it.

E

(S13(DC−),SC291(∠
1
3 )) Entities are currently disconnected, but evolve

into a partial collision. Entity k approaches l

from the left and will cross before it.

F

These categories originate by considering at the same time features of both Motion-RCC
and Motion-OPRA1, i.e., dmin, α∆x∆v, and αvv. That is, we distinguish the scenarios regarding
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whether the entities collide (and how), which entity crosses first, and from which side entity k

approaches entity l.

11.1.3 Feature-based Generation of Categorizations

The methods used above (Sects. 11.1.1 and 11.1.2) to generate a variety of categorizations are
only part of the story1. We can work out a more general method—possibly, the most general
one—by regarding features instead of entire categorizations. Instead of combining the entire cat-
egorizations (e.g., Motion-RCC and Motion-OPRA1), we combine the features of the story-based
categorizations, i.e., the featural variables.

For instance, we saw in Chapter 8 that Motion-RCC has three featural variables, dmin, difV,
and d; we also saw that Motion-OPRA1 has six featural variables αvv, α∆x∆v, uk, ul, difX, αvl∆x:
This makes up a total of nine variables—but note that the feature difX is implied by d; that
means, they are not equivalent, but whenever they appear together, difX is superfluous. Anyway,
we can create whatever motion categorization by combining these nine features; For example,
we can combine both dmin and αvv, or even regard one feature alone, such as αvv.

We use the six motion scenarios of Figure 11.1 as test examples. For a start, we review the
methods we used above, which regard the story-based categorizations as a whole. Accordingly,
we obtained 3 possible categorizations:

1. Categorizing with Motion-RCC, we obtain the category (A,C, D, E), i.e., the relation S11;
and category (B,F), i.e., the relation S13.

2. Categorizing with Motion-OPRA1, we obtain the category (A,B, C), i.e., the relation SC191;
the category (D), i.e., the relation SC11; and the category (E, F), i.e., the relation SC291.

3. Categorizing with Motion-RCC × Motion-OPRA1, we obtain the categories (A, C), (B),
(D), (E), and (F); which are the refinement of the first two categorizations.

Now we apply the categorization by features to the motion scenarios in Figure 11.1. From
all possible features combinations we explain two as examples:

a. We take two features: {dmin, αvv} as defined by Stories-RCC and Stories-OPRA1 in
Eq. (8.5) and Fig. 8.5. Based on such features, we obtain following categorization:

Features
Verbal interpretation

Belonging

scenariosdmin αvv

dmin > d2 αvv < 0° Entities are and remain disconnected in the future. Entity

k approaches l from the right.

A, C, D

dmin > d2 αvv > 0° Entities are and remain disconnected in the future. Entity

k approaches l from the left.

E

d2 > dmin > d4 αvv < 0° Entities are currently disconnected, but evolve into a partial

collision. Entity k approaches l from the right.

B

d2 > dmin > d4 αvv > 0° Entities are and remain disconnected in the future. Entity

k approaches l from the left.

F

The value d2 is the distance at which the entities are tangent, i.e., the relation is EC.

The value d4 is the distance at which the entities are tangent with overlap, i.e., the relation is TPP.

b. We take one feature {αvv}, the minimal categorization amount of features. This feature
has very few categorical regions: it has only four categories which are constituted by two

1pun intended
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angular regions, αvv > 0° and αvv < 0°, and their boundaries αvv = 0°, αvv = 180°.
Accordingly, the scenarios in Eq. (8.5) and Fig. 8.5 form two categories—the boundaries
are empty because, in our example, there are no scenarios with parallel or antiparallel
velocities:

Features
Verbal interpretation

Belonging

scenariosαvv

αvv < 0° Entity k approaches l from the right. A, B, C, D
αvv = 0° Entities move parallel. ∅

αvv > 0° Entity k approaches l from the left. E, F
αvv = 180° Entities move antiparallel ∅

We see that the new categories generated by combining selected story-based features in
Items a. and b. are different of those generated by combining entire story-based categorizations
in Items 1 to 3. We can generate a higher number of categorizations through all possible combina-
tions of features than through combinations of entire story-based categorizations. What is more,
the categorizations created by combining entire categorizations are a particular case of those cre-
ated by combining features. Certainly, categorizing with Motion-RCC alone (item 1) is equivalent
to categorize with the features {dmin, difV, d}; categorizing with Motion-OPRA1 alone (item 2) is
equivalent to categorize with the features {αvv, α∆x∆v, uk, ul, difX, αvl∆x}, and categorizing with
Motion-RCC×Motion-OPRA1 (item 3) is equivalent to categorize with the whole features, i.e.,
{αvv, α∆x∆v, uk, ul, αvl∆x; dmin, difV, d}. In sum, we have validated the feature-based generation
of motion categorizations as a most general method.

We must give an essential caveat when creating motion categorizations by combining features:
Use at least one motion feature! This caveat applies only when we deal with features of Motion-R
categorizations (i.e., beaded categorizations) because a Motion-R categorization is a combination
of both a motion categorization Stories-R and its generating categorization R. Consequently,
some features of Motion-R belong to Stories-R and some others to R. The problem arises when
R is a spatial categorization, such as RCC, and we choose only features from R: in that case
the categorization created from those chosen features is not a motion categorization, it is just a
spatial categorization.

For example, Motion-RCC has three featural variables, dmin, difV, and d; the variables dmin

and difV stem from Stories-RCC, while the variable d stems from RCC. Therefore, we cannot
choose d as unique featural variable, because the generated categorization {d} is a spatial cat-
egorization. We need at least one motion feature, e.g., difV. The categorization generated by
{difV, d} is indeed a motion categorization.

We achieve an extraordinary variety of motion categorizations by combining features. As
an illustration, we take Motion-RCC and Motion-OPRA1, which have a total of nine featural
variables: three of them (d, difX, αvl∆x) stem from the generating spatial representation, i.e.,
they cannot appear alone in a categorization; moreover, difX is implied by d. This amounts to
186 (=(26 − 1)(2 · 3)) different motion categorizations.

Concluding, our modelling of motion categorization (Ch. 6) reveals that the categories origi-
nate ultimately from scenarios sharing common features (i.e., featural variables). Any story-based
categorization is a bundle of features, which, according to their different values, form the cat-
egories. We can pick, as we need, features from different story-based categorizations in order
to build new categorizations; in that case, we see that the possible number of categorizations
grows exponentially ∼2|Features|. For example, if we are interested on collisions, we would pick
the feature dmin, which determines the degree of overlap of entities at crossing; if we also want to
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discriminate which entity crosses first, we would pick a combination of the features α∆x∆v and
αvv. In that way, we obtain categorizations tailored to the features that are relevant for us.

The creation of categorizations through combination of features is a recurrent topic in the
literature, and the basis for the generation of stimuli in categorization experiments (e.g., Tversky
and Gati 1982, pp. 130–142; Nosofsky 1986, p. 43). The novelty here is that we do not elaborate
or devise the features ourselves, but we extract the features from the generated story-based
categorizations in what we call a top-down categorization model (Fig. 6.1).

11.2 High Dimensional Categorizations of Motion

As we mentioned in Section 1.2, the story-based method is applicable in any spatial dimensions,
particularly, in three or more dimensions, where very little research has been done (Sect. 5.2).

To obtain a motion categorization that operates in more than two dimensions, we simply
resort to a spatial representation that also operates in more than two dimensions. We find nine
such representations in Dylla et al.’s (2017) survey (Table 4.2): 9(+)-Int, Block Algebra, Lines
of Sight, Occlusion Calculus, 3D-Orientation Model, RCC, Point Calculus, Region Occlusion
Calculus, Visibility Relations.

For example, if we wanted a motion representation with n-dimensional block entities in
a n-dimensional space, we would take the Block Algebra, BAn and create Stories-BAn and
Motion-BAn, which are story-based motion representations that describe the motion of n-dimensional
block entities in a n-dimensional space. Another representations that we can use to generate high
dimensional story-based representations are the Point Calculus (PCn), which represents points
in n-dimensions, and thus generating Stories-PC3 and Motion-PC3 we obtain motion represen-
tations for points in three dimensions.

We choose RCC to fully illustrate a three-dimensional story-based representation. RCC can
be trivially extended to three-dimensional regions: we call it RCC-3d; the RCC qualitative
relations (Fig. 7.2) that we presented for discs in two dimensions—DC, EC, PO, TPP, NTPP,
EQ, TPPI, NTPPI—are the same for 3-balls in three dimensions (Zlatanova 2000). Consequently,
the bare (Stories-RCC-3d) and the beaded relations (Motion-RCC-3d) in three dimensions are
the same as those in two dimensions (Eq. (8.20)), but with a three-dimensional meaning.

Motion-RCC-3d = {

S01(DC), S02(EC), S03(PO), S04(TPP), S05(NTPP),

S06(TPPI), S07(NTPPI), S08(EQ),

S11(DC), S12(DC−), S12(EC), S12(DC+),

S13(DC−), S13(EC−), S13(PO), S13(EC+), S13(DC+), (11.1)

S14(DC−), S14(EC−), S14(PO−), S14(TPP),

S14(PO+), S14(EC+), S14(DC+),

S15(DC−), S15(EC−), S15(PO−), S15(TPP−), S15(NTPP),

S15(TPP+), S15(PO+), S15(EC+), S15(DC+)

S16(DC−), S16(EC−), S16(PO−), S16(TPPI),

S16(PO+), S16(EC+), S16(DC+),

S17(DC−), S17(EC−), S17(PO−), S17(TPPI−), S17(NTPPI),

S17(TPPI+), S17(PO+), S17(EC+), S17(DC+),

S18(DC−), S18(EC−), S18(PO−), S18(EQ),
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S18(PO+), S18(EC+), S18(DC+)}

As an example, S13(DC−) corresponds to the scenario where two spheres are disconnected,
but they move towards one another, so that their uniform trajectory goes through a partial
overlapping (PO), i.e., a partial inclusion of the spheres.

11.3 Categorization of Motionless Entities

Story-based categorizations of motion categorize motion scenarios when entities—one or both
entities—are motionless, in contrast to some motion categorizations (Sect. 5.2). As examples,
see Figure 11.2, and also Figure 11.4, where the trajectory of entity k with respect to l is described
by Motion-RCC, although k is motionless. There is also no need of resorting to orientation vectors
as in OPRA1 or QRPC.

Accordingly, these representations are not only valid for dynamic environments, but also valid
for static ones. For example, if a robot navigates through an empty office (a static environment

because no object moves but the robot), and suddenly a person appears walking on the robot’s
way (now a dynamic environment), there is no need to switch representation: The story-based
representation allows for further motion description and control of the robot.

k

l

vk

vl

k

l
vl

vk=0

Figure 11.2: Two motion scenarios, both having the same category, i.e., S14(DC−), in the mo-
tion representation Motion-RCC. The fact that in the second scenario the entity k is motionless
is no hindrance for a scenario categorization.

Source: Purcalla Arrufi and Kirsch (2018a)

11.4 Qualitative Description of General Trajectories

A property of the story-based representations of motion—and of any categorization of motion
scenarios—is the ability to qualitatively describe any kind of two-entities trajectories, that is,
pairs of trajectories. This is mainly used in recognition of trajectories (i.e., motion patterns):
Trajectories that are encoded through qualitative relations can be easily categorized as a certain
type of motion, e.g., an ‘avoidance manoeuvre’, and, therefore, facilitates the development of
interactive navigation routines (e.g., Delafontaine et al. 2011; Hanheide et al. 2012).

Qualitative representations for motion scenarios describe the trajectories of two entities as a
finite sequence of qualitative relations (Van De Weghe et al. 2005; 2006). In story-based motion
representations, we must differentiate though between two sorts of sequences: First, the stories,
which are sequences of relations that belong to the generating representation R; such sequences
are created upon (hypothetical) time evolution of scenarios under uniform motion, e.g., the
Stories-RCC story S12 = (DC−,EC,DC+) is a sequence of RCC relations. Second, the sequences

of stories; such sequences describe the pairs of trajectories, e.g., the trajectories of entities
l (trajectory T2) and n (motionless) in Figure 11.3, is described as a sequence of Stories-RCC
relations, namely, T2 = [S15, S14, S13, S12, S11]. Note that we use different delimiters: parenthesis
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‘(. . .)’ for any sequence that defines a story, and square brackets ‘[. . .]’ for any sequences that
defines a trajectories pair.

We exemplify how the story-based representations describe pairs of trajectories by using the
four entities in Figure 11.3: k, l, m, and n. Note that k, l, and m, move in trajectories T1, T2,
and T3, respectively, while we leave n motionless, i.e., its trajectory is just a point. We create
three pairs of trajectories, (k, n), (l, n), and (m,n) that we describe below. All three pairs of
trajectories in our example involve the motionless particle n because it is much easier both for
visualizing and for computing the motion relations; in any case, the generality of our conclusions
is preserved for any kind of motion trajectories.

In order to describe the pairs of trajectories, we employ the spatial qualitative representation
RCC, and its generated story-based motion representations Stories-RCC, and Motion-RCC. The
trajectory descriptions are the temporal sequences of the relations that occur along the trajectory.
In Figure 11.4, we show in detail how two pairs of trajectories, (k, n) and (l, n), are described by
means of Motion-RCC.

(k, n): the trajectories of entities k (trajectory T1) and n (motionless) is described as follows,

RCC: [DC]

Stories-RCC: [S11]

Motion-RCC: [S11(DC)]

(l, n): the trajectories of entities l (trajectory T2) and n (motionless) is described as follows,

RCC: [DC]

Stories-RCC: [S15, S14, S13, S12, S11]

Motion-RCC: [S15(DC−), S14(DC−), S13(DC−), S12(DC), S11(DC)]

(m,n): the trajectories of entities m (trajectory T3) and n (motionless) is described as follows,

RCC: [DC,EC,PO,TPP,NTPP,TPP,PO,EC,DC]

Stories-RCC: [S15, S14, S13, S12, S11]

Motion-RCC: [S15(DC−), S15(EC−), S15(PO−), S15(TPP−), S15(NTPP), S15(TPP+), S15(PO+),
S15(EC+), S15(DC+), S14(DC+), S13(DC+), S12(DC+), S11(DC)]

Since we deal with RCC related representations, we will focus on how the representations
describe the trajectories concerning the collision risk. First of all, we see that RCC does not
distinguish the trajectories of entities k (T1) and l (T2) with respect to n: RCC describes both
pairs trajectories, (k, n) and (l, n) ,with the same sequence, [DC]. However, the RCC story-based
representations, Stories-RCC and Motion-RCC, describe the two-entities trajectories differently:
in (k, n) a single relation, S11 and S11(DC), shows that the entity k passes n by, and there is no

collision risk throughout the whole trajectory; while in (l, n) the first relation of the descriptive
sequence is S15 and S15(DC−), which shows that along the trajectories does exist a collision risk.

Second, we see that Stories-RCC fails to differentiate between actual collisions, as seen with
entities (m,n), i.e., T3, and collision risks without actual collisions, as seen with entities (l, n),
i.e., T2. Both pairs of trajectories (m,n) and (l, n) are described by Stories-RCC as the same
sequence [S15, S14, S13, S12, S11]. This arises because each story is defined as the sequence of a
scenario in uniform motion that extends in the unbounded time interval (−∞,∞) (Sect. 7.5.2).
Consequently, when a collision story, e.g., S15, appears in the description of a trajectory we
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kk
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Figure 11.3: We show four entities with their respective trajectories: k moves along T1, l along
T2, m along T3, and n is motionless, i.e., it is at a fixed point. In Section 11.4, we describe three
pairs of trajectories, namely, (k, n), (l, n), and (m,n).

Source: derivative of Purcalla Arrufi and Kirsch (2018a)

cannot tell whether the trajectory is following a possible collision in the past, or heading towards
a future collision. However, the beaded relations resolve this ambiguity: the relation S15(DC−)
in a trajectory sequence, as in (m,n), means that the entities are heading towards a future
collision, whereas the relation S15(DC+) means that the entities might have had a collision in
the past.

Wrapping up, a spatial representation alone, such as RCC, can describe two-entities tra-
jectories as sequences of relations, but it fails to distinguish certain trajectories because their
relations lack predictive power; for example, pairs of trajectories, (k, n) and (l, n) have the same
RCC description, namely, [DC]. In contrast, the story-based representations can distinguish the
trajectories that a spatial representation cannot; for example, Stories-RCC distinguishes the tra-
jectories pairs (k, n) and (l, n): the first one is collision free without any collision threat, which
is indicated by S11 as the unique relation, and the second one has a collision threat, which is
indicated by the presence of relation S15.

Nevertheless, the bare story-based representations, such as Stories-RCC, have severe short-
comings. A bare story-based representation cannot unambiguously record a collision that occurs
along the trajectory; we illustrate this with an example: the trajectories pair that has experi-
enced a collision, (m,n), has the same Stories-RCC sequence as the trajectories pair that has
only experienced a collision threat, (l, n). In fact, the bare story-based representation fails to dis-
tinguish ‘prediction’ and ‘reality’: the relation S15 in the trajectory description indicates either
a collision threat, as in (l, n), or a collision that has occurred along the trajectory, as in (m,n).

All considered, the beaded story-based representations, such as Motion-RCC, overcome the
shortcomings of both spatial representations, such as RCC, and bare story-based representations,
such as Stories-RCC, when it comes to describe pairs of trajectories. First, their relations have a
full-fledged predictive power. As an illustration, in Figure 11.3, Motion-RCC signals a collision
threat at the beginning of the trajectories pair (k, n), it encodes the threat as the relation
S15(DC−), while Stories-RCC shows merely S15, which is ambiguous as to whether it is only
a threat or an actual collision. Second, the beaded categorizations register the relevant events
that occurred along the trajectories pair, such as an actual collision in the pair (m,n), which is
encoded by Motion-RCC in each of the relations between S15(EC−) and S15(EC+).
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Figure 11.4: The pairs of trajectories (k, n) and (l, n) of Fig. 11.3 are described here in detail
according to Motion-RCC: we show the sections of the trajectories where the relations occur.
(k, n) is described as [S11(DC)]; thus, it has only one relation. (l, n) is described as [S15(DC−),
S14(DC−), S13(DC−), S12(DC), S11(DC)]; the relations S14(DC−) and S12(DC−) occur at single
trajectory points marked with a dashed line.

Source: derivative of Purcalla Arrufi and Kirsch (2018a)

11.5 Decision-Making and Control

Beyond describing trajectories qualitatively, the story-based representations of motion can be
used for decision-making and control of trajectories. In truth, any qualitative representation
can, if we employ conceptual neighbourhood diagrams (general analysis, Dylla and Wallgrün
2007; examples, Dylla et al. 2007; Bellotto et al. 2013).

As we explained in Section 4.1.4, decision-making differs from reasoning. ‘Decision-making ’
refers to finding the actions to steer an entity, whose motion with respect to other entities
is described qualitatively, while ‘reasoning ’ refers to finding the missing qualitative relations
in a scenario with several entities, or checking the consistency of the given relations; moreover,
reasoning it is founded on the operations of qualitative calculi, namely, converse and composition
(Sect. 10.1.2). If we want to make decisions about the trajectory of moving entities, such as
avoid collision, we have to determine which control actions implement such desired decision. On
this account, ‘decision-making’ and ‘control’ are two sides of the same coin; thus, we will use
predominantly the term ‘control’ to refer to any of them.

The conceptual neighbourhood diagram (Sect. 7.3) is the basis for control of entities in a
motion scenario. Due to the nature of story-based representations (Ch. 7), their conceptual
neighbourhood diagram provides two important tools: it shows how the scenario evolves in time
if the velocities remain unchanged, and it shows how acceleration affects the motion state of the
entities, i.e., into which state we transition when we change velocity. For example, by visual
inspection, we realize that the only state that does not “naturally” evolve into a collision (i.e.,
that has no arrow leading to a collision state) is the state S11(DC−).

As an illustration, in Figure 11.5, we display the conceptual neighbourhood diagram of a
story-based representation, namely, Motion-RCC (Fig. 11.5a). We use the diagram to plan the
control actions that lead to the avoidance manoeuvre of two entities (Fig. 11.5b).

At the onset of the motion in Figure 11.5b, entity k is in a collision-threatened motion
state with respect to the motionless entity l; this is registered as the relation S15(DC−) (bold
green ellipse) in the conceptual neighbourhood diagram (Fig. 11.5a). We make the decision to
manoeuvre into a collision free motion state, namely, S11(DC) (bold green rectangle). We seek
then a path in the diagram from the start state, S15(DC−), to the goal state, S11(DC), because
the two entities’ manoeuvre is qualitatively described as a path connecting the start state with
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(a) Fragment of the conceptual neighbourhood diagram of Motion-RCC; by means of arrows, we show the
transitions between motion states, i.e., between motion relations. In the transitions, we set as constraints
that the entities must perform continuous velocity changes, and they are not allowed to stop; otherwise,
all transitions would be possible. The simple arrows, , show the transitions that are possible when
velocities remain unchanged (i.e., transitions with preserved story). The double arrows, , show the
transitions between states that entail velocity changes, i.e., at least one entity must accelerate (i.e., the
story changes). The green dashed arrows, , display an example of trajectory control. Departing from
a collision-threatened state, S15(DC

−
) (green ellipse), these arrows describe the path of collision-free

transitions leading to a state with collision-free evolution, S11(DC) (green rectangle).

Source: derivative of Purcalla Arrufi and Kirsch (2018a)
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(b) An example of the trajectory control implemented in Figure 11.5a. The entity k avoids collision
with entity l, which is motionless; that is, the trajectory description evolves from relation S15(DC

−
) to

relation S11(DC) according to Motion-RCC. The control action, the acceleration ~ak, is determined by
the transitions in the conceptual neighbourhood diagram.

Figure 11.5: An example of decision-making and control of motion scenarios. In the figure (a),
we perform the decision-making and determine the control; in the figure (b), we show how the
result of the figure (a) is implemented in a motion scenario.
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the goal state. Since infinitely many paths connect our start and goal state, we have to impose
further conditions; in fact, a necessary condition to avoid collision is that no state in the path
is a collision state. Accordingly, the only possible solution is the path [S15(DC−), S14(DC−),
S13(DC−), S12(DC−), S11(DC)] (dashed arrows ), which is materialized as the avoidance
trajectory of entity k in Figure 11.5b. Notably, this path also fulfils the optimal condition of
being the shortest path between the states.

The actions needed to reach the goal state, S11(DC), are given by the transitions in the
solution path. In our diagram, we have only distinguished between two types of transitions:
those which are possible without changing velocity (simple arrows, ), and those for which
acceleration is need (double arrows, ). In consequence, we see that our solution trajectory
requires of a permanent acceleration: that is what we observe in the trajectory of entity k

(Fig. 11.5b), a permanent normal acceleration ~ak.
The transitions in the conceptual neighbourhood diagram can be more precisely specified as

we did: for example, we can specify which accelerations (tangential or normal) render the tran-
sition possible, the lowest upper bounds for those accelerations, and, analogously for velocities.

To conclude, we summarize the control properties of the conceptual neighbourhood diagram
of the story-based qualitative relations:

i. We can predict how a motion scenario evolves, i.e., which are the future motion states, if
velocities remain unchanged. This is indicated by the simple arrows, .

ii. We can plan motions by setting the start and goal states; even for complex motions we
might set an arbitrary number of middle goal states.

iii. We can obtain the required control decisions that bring the motion scenario from a certain
start state into a certain goal state by finding the path in the conceptual neighbourhood
diagram. As there are, usually, many paths connecting two scenarios, we must set con-
ditions on the chosen path; for instance, absence of collisions, minimum path length, or
avoiding normal accelerations, i.e., changes in direction.

iv. The allowed transitions that can only be obtained by acceleration are indicated by double
arrows, . In these transitions, we can specify the type of acceleration required, either
normal or tangential, and also their lowest upper bounds.

11.6 Motion Categorization for Multiple Entities

‘Multiple entities’ refers to scenarios with more than two entities. In this section, we show how
to generalize the story-based categorizations, which are defined in a two entities scenario, so that
they categorize scenarios with multiple entities.

First of all, we define the qualitative relations that describe a scenario with three entities. As
with the motion scenarios, we begin with a qualitative representation R that relates two entities,
for example, through the qualitative relation Rkl. Based on this binary relation, the qualitative
relation describing a scenario with three entities (k, l, and m) is the tuple of all possible binary
relations of the three entities, which amount to three relations, that is, (Rkl, Rkm, Rlm). We call
3R this ‘three-entities representation’ based on the binary representation R.

As an illustration, in Figure 11.6, we display many scenarios consisting of three entities (k,
l, and m) which are described by 3OPRA1relations. For instance, the first scenario of Fig. 11.6a
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of k and m, and ∠
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0 the OPRA1 relation of l and m.

Secondly, in the same fashion that we created the story-based representations Stories-R
and Motion-R, based on a qualitative representation R (Ch. 8), we can create the story-based
representations Stories-3R and Motion-3R based on the qualitative representation 3R which
relates three entities in a motion scenario. Indeed, we can find the stories of three-entities
scenarios; in other words, we can find the complete temporal sequence of relations in uniform
motion for any motion scenario of three entities.

As an example, in Figure 11.6, we picture two stories each of three entities: SM , in Figure (a)
and SU in Figure (b)—We display only three relations belonging to each story, not the full
sequence of relations. These stories belong to the representation Stories-3OPRA1, whose full
stories set Σ

3OPRA1

we leave for future work. Hence, according to Stories-3OPRA1, all scenarios

of Figure (a) are categorized as SM , and all scenarios of Figure (b) as SU . If we now consider
Motion-3OPRA1, we categorize each scenario with a beaded relation, Si(Rj); for instance, the
leftmost scenarios in Figures 11.6a and 11.6b are respectively categorized as SM (∠1

3 , ∠
1
1 , ∠

2
0 )

and SU (∠
1
3 , ∠

1
1 , ∠

2
0 ) according to Motion-3OPRA1: they have the same 3OPRA1 relation, (∠1

3 ,

∠
1
1 , ∠

2
0 ), but different story Stories-3OPRA1.

11.7 Inspirational Cognitive and Mathematical Properties

In the sections above, we have described properties of story-based categorizations that are im-
mediately relevant to their application. For instance, the property in Section 11.2 is crucial if
we want to use story-based categorizations in aircraft navigation: they can operate in a three-
dimensional space.

In this section, we present properties that take our understanding of the story-based catego-
rizations to a higher theoretical level than immediate applications. In this sense, the properties
are much more thought-provoking ideas that we hope will stimulate further research.

11.7.1 Not just categories, but rather a process

As Cohen and Lefebvre (2005, p. 13) observe, scientists are becoming more interested in the

process of categorization than in the categories themselves. The story-based method for creating
qualitative representations of motion joins this trend, because it is more than just a “method”
for obtaining categories: it describes a process by which an agent might categorize motion (We
generalize the process to a ‘cognitive agent’, avoiding the terms ‘human’ and ‘animal’). The
method, which is outlined in Sect. 8.5, can be translated into following plausible cognitive process
with its corresponding assumptions.

Assumptions:

a. When perceiving an instantaneous motion (i.e., a motion scenario), an agent integrates
it into a verisimilar trajectory: the agent extrapolates the present into a probable past
and a expected future.

b. A probable condition that an agent uses to extrapolate instantaneous motion into a
trajectory is the uniform motion, that is, a trajectory in which no acceleration has
acted or will act on the entities.

c. Spatial categorizations determine motion categorizations. Depending on the context,
or the goal, the agent chooses certain spatial categorization(s). An agent stores a



11.7. INSPIRATIONAL COGNITIVE AND MATHEMATICAL PROPERTIES 211

0

1 3

2

 l

0

1
3

2 k

0

1 3

2

 m
0

1 3

2

 l

0

1
3

2 k

0

1 3

2

 m

< <<

0

1 3

 m

2

0

1 3

2

 l

k

1

02

3

(∠1
3 , ∠

1
1 , ∠

2
0 ) (∠0

3 , ∠
2
1 , ∠

2
0 ) (∠3

3 , ∠
3
1 , ∠

2
0 )

(a) A story of three entities that we call SM . In this story, entity k moves through between l and m, while l follows
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(b) A story of three entities that we call SU . In this story, entity k passes behind l and m, while l follows after m at con-
stant distance. We picture some relations of this story and its corresponding scenarios: (∠1
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Figure 11.6: Two stories, SM in Figure (a) and SU Figure (b), each with three moving entities,
k, l, and m. Each motion scenario is categorized according to the qualitative representation for
three entities 3OPRA1: the spatial relation for each scenario is given by a 3-tuple containing its
three binary OPRA1 qualitative relations, (Rkl, Rkm, Rlm).

Source: Purcalla Arrufi and Kirsch (2018a)

trajectory as a sequence of spatial categories or relations—This last statement is
consistent with the results of our experiment

Process:

1. After perceiving a motion scenario, an agent automatically integrates it into the cor-
responding trajectory extrapolated by uniform motion: past, present and future.
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2. The extrapolated trajectory is translated into a ‘story’, that is, into a sequence(s) of
spatial relations, i.e., into a story, according to the relevant spatial representation(s)
for the task at hand.

3. The original motion scenario (item 1) is categorized by means of the story (item 2).

11.7.2 Acquisition of New Concepts and Explainability

We have provided methods to build motion categorizations, Stories-R and Motion-R, based on
sequences of relations in R, i.e., based on the stories. Now, we realize that the stories capture
concepts of motion; for example, ‘collision’, ‘parallelism’, ‘crossing precedence’, ‘by-passing’,
. . . The fact that stories capture these concepts is remarkable in the measure that those concepts
were not present in the original spatial relations.

For example, the stories of Motion-RCC correspond to diverse degrees of collision: S11 corre-
sponds to no collision; S12 to tangential collisions; S13 to partial collisions; S14 and S15 to total
collisions.

In Motion-OPRA1 the number of concepts is higher. We see that each subset of stories Σ∗

corresponds to a simple motion concept.

• ΣC correspond to stories of both entities moving and crossing

• ΣB correspond to stories where one entity is still and the other crossing.

• ΣT corresponds to superposed trajectories.

• ΣP corresponds to parallel trajectories (not superposed)

• ΣE corresponds to trajectories of two entities moving in alignment and maintaining distance
from one another.

• ΣR are still stories: both entities are still.

Within each subset Σ∗ we find a further variety of concepts; for instance, the crossing stories
ΣC are subcategorized according to which entity crosses first, i.e., reaches the crossing point first:
in SC∗91, k crosses first, and, in SC∗1, l crosses first. Remarkably, the concepts are intimately
related to the features; even more, each concept in motion categorization can be defined as a set
of features (For instance the, Σ∗ sets in Figure 11.7 ): as extreme case a single feature is already
a concept, e.g., αvv = 180° equates to ‘antiparallel’.

Explainability is a consequence of stories relating to concepts of motion. The story-based
categorizations provide categories that can be understood by a ‘human expert’. As opposed to
artificial intelligence methods, such as neural networks, where the categorization criteria used
are often opaque.

Natural Language Interface Another consequence of stories relating to concepts is that they
can be effectively linked to language, and, consequently, story-based representations can serve as
an interface to natural language communication. In other words, we can formulate as story-based
relations the intermediate step between a command or information in natural language (such as
“follow the other vehicle at a constant distance”) and its implementation in low level navigation
commands (such as “keep the angle between your velocity vector and the relative position of the
vehicle at zero and keep the norm of its relative position constant”): These commands can be
expressed compactly in Motion-OPRA1 as “mantain the relation SE92(∠

2
0 ).”
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Kinematic space
K

Non-rigid stories

Crossing stories

ΣB

either ~vk = ~0
or ~vl = ~0

ΣC

~vk 6= ~0
and ~vl 6= ~0

~vk ∦ ~vl

Parallel Stories

ΣP

trajectories
are not superposed

ΣT

trajectories
are superposed

~vk ‖ ~vl

~vk 6= ~vl

Rigid stories

ΣR

~vk = ~0,
~vl = ~0

ΣE

~vk 6= ~0,
~vl 6= ~0

~vk = ~vl

Figure 11.7: A hierarchical taxonomy of Stories-OPRA1. The taxonomy stops at the Σ∗

categories. Each edge contains the criterium that refines a higher category into a lower; for
instance, we refine the ‘non-rigid stories’ into the ‘crossing stories’ when we consider the subset
of non-rigid stories with non-parallel velocities, i.e., ~vk ∦ ~vl.

11.7.3 Hierarchical Taxonomy

In Section 3.6, we mentioned how humans organize categories hierarchically. Accordingly, if
story-based categorizations are cognitively plausible they should be able to display also a hierar-
chical structure in which the lowest, most detailed level is constituted by either the bare, Si, or
the beaded, Si(Rj), categories; the highest level is the kinematic space K; and the middle levels
are variable, depending on many factors, such as purpose or expertise.

We implicitly presented a hierarchical taxonomy of the categorization Stories-OPRA1 in
Figure 8.5 when we displayed the featural story map of Stories-OPRA1 as a tree: each hierarchical
level corresponded to a new feature until we reached the lowest level, the stories. We began with
the feature αvv, that is, the largest supercategories were the four sets having values αvv < 0°,
αvv = 0°, αvv > 0°, and αvv = 180°. Next, we subdivided those supercategories by iteratively
adding α∆x∆v, v̂k, and v̂l until we reached the Stories-OPRA1 stories.

Here, in Figure 11.7, we present a more real-life taxonomy. At each hierarchical level, common
knowledge features (e.g., parallelism or motionlessness) refine the supercategories in subcategories
until we reach the Σ∗ sets. We might further refine the Σ∗ sets until we reach the stories,
Si. Notably, the features we use to create this taxonomy can be formulated in terms of the
Stories-OPRA1 features. For example, ~vk = ~vl is equivalent to αvv = 0° and uk = ul; or ~vk ∦ ~vl
is equivalent to αvv 6= 0° and αvv 6= 180°.

With this example of hierarchical taxonomy, we show how story-based categorizations inte-
grate in the landscape of human categorization. In addition, we want to motivate future work
on story-based representations because the precise structure of the middle categories in such a
hierarchy should be the object of experimental research. Also, an interesting research question
is which level in the hierarchy is the basic level (Sect. 3.6.2) for motion categorization.

11.7.4 Cognitive Plausibility

The results of our experiment (Ch. 9) are our main support argument for the cognitive plausibility
of story-based representations. Here, though, we present further arguments supporting cognitive
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plausibility of story-based representations.

A. Relation to Optical Invariants

An important step in cognition is to extract information from the sensory input. If we consider
the visual stimuli of a moving human, it is known that we use optical invariants (Fajen and
Phillips 2013, p. 74), i.e., “optical variables whose values remain invariant whenever the actor is
in a state that if maintained, will bring about a successful outcome”. For example, if the relative
angle between a human’s direction and the direction of a moving entity remains constant, the
human will—if nothing changes—collide with the moving entity.

Optical variables provide, therefore, information about the current future (D. N. Lee et al.
2009), that is, what will eventually happen if one’s current state (deceleration, running speed)
remains constant.

In a similar vein, story-based relations are founded in invariants. Certainly, each story is
uniquely characterized by the values of the featural variables; such values are constant through-
out a story. Since the motion categories are directly built upon the stories, we conclude that
our featural variables are the invariants in story-based categorization. Exactly as the optical
invariants in visual perception, the featural variables remain constant in time and determine the
state of the entities, i.e., their motion category, thus, providing information about the current
future.

For example, consider these three motion scenarios described by three different Motion-OPRA1

relations: SC191(∠
3
1 ), SC10(∠

3
1 ), SP12(∠

3
1 ). All three motion relations describe two entities

whose spatial OPRA1 relation is ∠
3
1 , but the story components of the motion relation, i.e.,

SC191, SC10, and SP12, show clearly that the evolution in each case is different. The story com-
ponents are distinguished by the featural variables (Tab. 8.2), which are constant in time, and
give information about the future evolution of the corresponding motion scenarios:

• Regarding the featural variable αvv, we see that

– SC191 and SC10 evolve into an acute crossing motion, αvv < 0.

– SP12 is a parallel motion, αvv = 0.

• Regarding the featural variable α∆x∆v, we see that for punctual entities

– SC10 leads to a collision state, α∆x∆v = 0.

– SC191, α∆x∆v > 0, is collision free and entity k crosses first.

– SP12, is collision free α∆x∆v 6= 0, and we cannot determine which entity crosses first
(obviously, also, because they move parallel).

B. Motion Encoding and Anticipatory Behaviour

From a cognitive viewpoint, we can see the story-based representations of motion as a way to
encode sensory information of two entities instantaneously moving. In that sense, we would
expect these encodings to validate the principle of anticipatory behaviour and the need to rep-
resent interaction goals; in the words of M. V. Butz and E. F. Kutter: “[. . .] the brain does not
represent space for its own sake, but rather the internal representations develop to be able to
convert sensory information in such a way that motor behaviour can be executed effectively.”
(Butz and Kutter (2017, Sect. 10.2.1))

Certainly, as argued in Section A, the story-based representations encode a motion scenario
with information about the current future, which facilitate such anticipatory behaviour. What



11.7. INSPIRATIONAL COGNITIVE AND MATHEMATICAL PROPERTIES 215

is more, we can determine the anticipatory behaviour, so that we lead the entities into the
desired goal state: as we saw in Section 11.5, the Motion-R story-based representations allow
for trajectory control.

11.7.5 Qualitative Generalization of the Derivative:

A Qualitative Velocity

In this section, we want to bring near the story-based categorizations to the classical discipline
of differential geometry and its description of trajectories. We relate our qualitative concepts
in the story-based categorizations with the quantitative concepts of trajectories in differential
geometry.

Our purpose is to make the qualitative concepts more accessible to scientist with a strong
“quantitative basis of knowledge”, e.g., engineers, physicists. Eventually, in case our analogy can
be extended to further quantitative concepts, researchers could achieve new results in qualitative
motion categorization.

We draw an analogy between the stories Si, in qualitative spaces, and the directed tangent
line of a trajectory, in quantitative spaces. Taking the analogy further: we identify a beaded
story-based relation, Si(Rj), in a qualitative space, with the current position and current velocity

of the trajectory, ~vk(t) =
dγ
dt
(t), in a quantitative space.

The analogy can be fully visualized if the second entity, l, is motionless, as in our example
(Fig. 11.8). In case that the second entity moves with velocity ~vl, we should apply a velocity
shift, −~vl, to the whole motion scenario, and so we would have an equivalent scenario in which
l velocity is ~0.

In kinematics, the ‘tangent line’ of trajectory γ(t) of an entity k is the line defined by the

derivative ~vk(t0) = dγ
dt
(t)

∣

∣

∣

t=t0
and the current position ~xk(t0) = γ(t0). The ‘directed tangent

line’ is the tangent line oriented as the velocity vector ~vk(t0).
For example, in Figure 11.8b, we see the trajectory γ(t) with a directed tangent line, L, at

the current position of entity k; the line L has arrows that show its direction. Now, if we had
the directed tangent line L but without the current position of k, our best assumption for the
position of k would be that it lies “somewhere” on the directed tangent line L and moves along the
line direction. This is analogous to the information provided by a story Si = {R1, R2, . . . , Rn}:
if we say that a motion scenario belongs to story Si, we know that the entities belong to one
of the story relations, i.e., R1 to Rn, and that the motion evolves from Rj into Rj+1 ∀j 6= n

(Rn, the last one, is a steady state), but we do not know exactly which relation currently takes
place. In that sense, the categorization by stories is analogous to describe quantitative motion
by means of directed tangent lines.

From a quantitative standpoint, if we additionally provide the current position ~xk(t0) besides
the tangent line L and the velocity vector, then we have a complete quantitative information
about the motion of entity k at the current instant, t0. An analogous qualitative step would be to
provide the current qualitative relation Rj of the story Si that entity k and entity l (motionless)
fulfil at the current instant t0. Thus, the beaded relation Si(Rj) in a certain instant t0 is the
qualitative analogous to the current position ~xk(t0) and current directed tangent line L of the
motion trajectory of entity k, where Si is analogous to the current directed tangent line, and Rj

is analogous to the current position.
Summarizing, in the qualitative space of story-based representations, the story Si plays the

role that the velocity, i.e., the derivative of the trajectory, plays in a quantitative space, while
the relation Rj plays the role of a position.
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(a) A two entities motion. Entity k moves along trajectory χ(t), and entity l remains motionless. We single out an
instant in the trajectory where the Motion-RCC relation is S12(EC). In light grey, we show the relations that make up
S12, namely, DC, EC, DC.
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(b) A two entities motion. Entity k moves along trajectory γ(t), and entity l remains motionless. We single out an
instant in the trajectory where the Motion-RCC relation is S13(DC

−
). In light grey, we show the relations that make

up S13, namely, DC, EC, PO, EC, DC.

Source: Purcalla Arrufi and Kirsch (2018a)

Figure 11.8: We display two pictures, (a) and (b), containing two motions of the entities pairs
k and l. The entity k moves along trajectories χ(t) and γ(t), respectively, while entity l remains
motionless. In each trajectory, we single out a certain instant by colouring entity k darker and
displaying its current velocity vector ~vk, its current Motion-RCC relation Si(Rj), and its current
tangent line L. The tangent line L help us visualize the story at the chosen instant: we show in
lighter gray the sequences of relations that make up the story.
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Chapter 12

Addressed Challenges and

Shortcomings

Complementary to our contributions (Sect. 1.3), we have explained what makes motion cate-
gorization difficult (Ch. 2), and what aspects of current motion categorizations (as qualitative
representations of motion) are deficient (Sect. 5.2). Here we show how the story-based repre-
sentations tackle those challenges and overcome those shortcomings. We are confident that this
provides a great insight into how to solve the motion categorization problem and how to create
new qualitative representations of motion.

12.1 Tackled Challenges in Motion Categorization

In Chapter 2, we presented the challenges that the categorization of motion pose. Here, we check
how the story-based categorizations perform in those challenges.

12.1.1 Avoiding High Dimensional Spaces

In Sect. 2.1, we explained how awkward is to deal with moving entities because their states
are represented in very high-dimensional spaces (e.g., R8 or R

18), namely the kinematic spaces
(Sect. 6.1.1), which contain the position and velocity vectors of the entities. Blessedly, the
story-based method to obtain the categorizations (Chs. 7 and 8) works in the spatial coordinate
space of the entities. The stories are obtained and represented in the position space (R2 or
R

3) without needing to add extra coordinates, which makes easier for humans both mental and
graphical representation.

In Sect. 5.5.2, we find a linguistic cognitive argument endorsing our story-based method of
creating motion categorizations that we expound as follows. Representing the motion state of
an entity in a high dimensional space where the velocities are coordinates amounts to represent
motion using the tools of space. A coordinates space is just that, ‘a space’. If according to Sec-
tion 5.5.2 our cognitive treatment of space and motion is noticeably different, we are discouraged
to use coordinate spaces to represent motion, i.e., velocities. We certainly avoid a high dimen-
sional treatment of motion, and rely essentially on the spatial representations of the entities:
Motion is represented as a sequence of spatial relations, that is, as a story.
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12.1.2 Providing a Variety of Categorization Criteria

In Section 2.2, we set the requirement that any model of motion categorizations should be able to
generate a variety of categorizations criteria. In Section 11.1, we addressed this requirement by
showing three methods to create a manifold of motion categorizations: i. We can create different
motion categorizations by choosing different generating representations R from which we obtain
Stories-R and Motion-R; ii. We can create different motion categorizations by Cartesian product
of motion categorizations, that is, M = M1×M2×· · ·×Mn; iii. We can create different motion
categorizations by combining features of the story-based categorizations, M = ϕ1×ϕ2×· · ·×ϕn.

The above methods provide a combinatoric growth of the possible story-based representa-
tions of motion, as we show by taking as generating representations the about 60 qualitative
representations of Dylla et al.’s (2017).

With the first method (item i.), we can obtain about 120 (= 60 × 2) story-based represen-
tations, besides the naturally indexed representations, such as OPRAn, which yield an infinity
of story-based representations, e.g., Motion-OPRAn for n = 1, 2, . . . Further, using the second
method (item ii.), we make Cartesian product combinations of the story-based representations
obtained with the first method. In that case, provided that each generating representation is
independent of the rest, we would obtain at least about 260 new motion representations—For
the sake of simplicity we have only considered the Motion-R representations. Finally, using the
third method (item iii.), we can combine the features of each story-based representation obtained
with the first method. In that case, if the total number of independent features is |Features|,
then we can generate about 2|Features| which is (260)NF where NF is the average number of in-
dependent features per representation. Whether NF ≥ 1 or not depends on the properties of
the features: For motion categorization in a certain dimension, do we have a limited number of
motion features? Does every story-based representation Motion-R (or Stories-R) have at least
one independent feature? These are profound questions that spark interesting lines of future
research. Anyway, the number of motion categorizations obtained by the above methods seems
overwhelming.

12.1.3 Overcoming a Loose Cognitive Structure

We pointed out in Section 2.3 how different is the spatial and the motion categorization in
humans. While humans categorize systematically the space by partitioning it, humans do not
systematically partition the motion space; in fact, it is questionable that the ‘motion space’ is
part of human cognition, i.e., it is not cognitively plausible. This is intimately related to the
first challenge (Sect. 12.1.1), the high dimensionality of motion spaces: if motion spaces have
such a high dimensionality both a mental representation and, even more, a systematic partition
is discouraged, and only certain motions (certain regions of the motion space) are singled out,
or cognitively considered—for such regions alone we have verbs that describe motion. Therefore,
motion categorization in humans is sparse, or cognitively loose.

We overcame this sparseness in human motion categorization in one respect: we exhaustively
categorized the space of motion scenarios, K, by means of the story-based method (Ch. 7). In-
deed, we showed in Section 10.3 that the story-based categorizations partition the space of motion
scenarios. There is a caveat: we restricted our categorization to motion scenarios. Nevertheless,
once restricted to motion scenarios, the categorization was exhaustive.

For the categorization of fully general motions, we suggested the use of sequences of story-based
relations (Sect. 11.4), as most natural method. Thus, at the end, we deliver a method to partition
the motion space of two moving entities, although this was not our main purpose.
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12.1.4 Relieving Disciplinary Fragmentation and Tension

In this work, we tried hard to relieve the disciplinary fragmentation, and, hence, the tension, in
the research of spatial and motion categorization which we exposed in Section 2.4. We believe we
have contributed to bridge the understanding of motion categorization between the AI disciplines
dealing with qualitative representations and psychology-related disciplines.

As first contribution, we detailed the terminology in psychology for categorizations (Ch. 3)
and the comparable terminology in AI (Ch. 4); and we related both terminologies (e.g., Tab. 4.1)
all throughout Chapters 3 to 6.

More than simply terminology, we studied the qualitative representations as categorizations
from the standpoint of psychology: in Section 6.4, we sought the categorization model that best
describes a qualitative representation of motion. A crucial step in relating qualitative repre-
sentation to psychological models was to formalize it according to our categorization formalism
(Ch. 6); our formalism is customized for qualitative representations, but described both from a
psychological and an AI perspective (Sect. 6.2).

Moreover, in our endeavour to bridge different fields of cognition, we have also digressed
into the field of linguistics (Sections 4.1.2 and 5.5). Our main purpose was to underpin some
statements and cognitive peculiarities about motion and spatial categorizations. As a result, we
could relate categorization elements between linguistics and AI (e.g., Tab. 5.1).

As second contribution, we have tested experimentally how our story-based categorizations,
which are AI inspired, are cognitively plausible, i.e., how they inform human cognition (Ch. 9).
Our results show a patent significant influence of the story-based categorizations in human cate-
gorization of motion scenes. This opens the door for the application of story-based categorizations
in psychology or any field in human cognition. By publishing our results (Papenmeier et al. 2023),
we expect to draw the attention of cognitive scientists in fields other than AI to the story-based
representations and more generally to qualitative representations.

12.2 Overcome Shortcomings in Motion Representations

The challenges in Section 12.1 concern motion categorization in general, and motion scenarios
categorization in particular. Nonetheless, we used the qualitative representations to tackle all
those challenges. Here, we review how we also dealt with the shortcomings that qualitative
representations of motion exhibit (Sect. 5.2).

12.2.1 Boosting Number of Motion Representations

We discerned an unusually sparse work on qualitative representations of motion, as compared
to the vast research in spatial qualitative representations. We solved this spareness by offering
several methods that create a variety of qualitative motion representations: These methods are
those expounded in Section 12.1.2, which, at the same time, generate a variety of categorization
criteria. It is clear that we obtain a variety of categorization criteria by, among other things,
creating a variety of qualitative representations of motion that provide such criteria.

The first method (item i.) creates story-based representations, and so achieves a considerable
amount of novel qualitative motion representations that the other methods (items ii. and iii.)
amplify exponentially, because they are applicable to any qualitative representation—even only
categorization—of motion

As an illustration, we compare the variety of qualitative representations of motion generated
in Section 12.1.2 with the qualitative representations of motion in the literature (See our survey,
Sect. 5.1). In the literature, we found only three genuine qualitative representations of motion
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QTC, QRPC, and RCC-d. If we consider all types of QTC variants, we count less than ten
motion representations; even if we add the orientation representations, namely, Dipole Calculus,
DIA, and OPRA as motion representations, we achieve less than 15 motion representations. In
contrast, we can generate 120 story-based motion representations using the current (spatial or
motion) representations in the literature: a factor greater than ×8.

12.2.2 Three-dimensional and Beyond

Most motion representations have limited dimensionality in two different senses: the entities
involved are mainly one-dimensional, and they move in a one- or two-dimensional space. We
solved this shortcoming by taking spatial representations with higher dimensionality and creating
the corresponding story-based motion representations, in which entities are both high dimensional
entities in a high dimensional space.

In Section 11.2, we listed the qualitative spatial representations that operate in three or more
dimensions—A total of nine representations, some even indexed by dimension, such as PCn or
BAn. So, we can use them to create the corresponding Stories-R and Motion-R representa-
tions that operate, as well, in three or more dimensions. As an example, we easily created the
story-based categorization Motion-RCC-3d (Eq. (11.1)), which is the story-based representation
generated by RCC-3d.

12.2.3 Categorizing motionless entities

For entities without intrinsic orientation, such as simple points or circles, some motion representations—
and every directional spatial representation—are ill-defined when one or both entities are mo-
tionless; because these representations use the direction of the velocity vector as orientation, and
the zero vector, ~0, has no defined direction (See Sect. 8.2.2.A).

Most story-based representations are independent of the entities’ orientation, in fact, only
the story-based representations that are generated from a directional representation, such as
OPRA or DIA, rely on the intrinsic orientation of entities; therefore, the rest of story-based
representations can be smoothly applied to motionless entities. For example, in Figure 11.8,
we used Motion-RCC to describe the trajectories of an entities pair in which one entity, l, is
motionless throughout the trajectory.

12.2.4 Helping to Compute the Composition

As we remarked in Sections 4.1.4 and 5.2, one of the most laborious task in a qualitative repre-
sentation is to find the composition table, or, at least, to provide effective algorithms to compute
it. For that reason, some spatial representations and most motion representations either ignore
composition or deal rather shallowly with it. On the contrary, we have worked out a method
that helps to compute the composition in any story-based categorization (Sect. 10.5). Although,
admittedly, the method does not exactly yield the composition, but a superset of relations con-
taining the composition: what we call the ‘narrative composition’; a further refining step is
required to discard the relations that belong narrative composition and do not belong to the
standard composition.
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Summary and Conclusion

At this point, we have already explained and demonstrated all the contributions mentioned at
the introduction, in Section 1.3. Thus, we conclude this work by hinting at future work in this
field of story-based categorizations: first, very concrete research topics, that, because of time, we
could not develop in this work; second, the general long term research lines in this area.

Epilogue: Future Work

After we have shown and explained how story-based representations work, and we have detailed
their most attractive advantages, we hope that scientists will be strongly motivated to use them.
Based on their properties, we are confident that story-based representations are a solid foundation
to process motion machinally, specifically, to implement human-computer interaction routines
and achieve a human-aware navigation of robots.

Both human-aware navigation and standard autonomous navigation already benefit from
navigation algorithms based on qualitative representations. An extra asset of story-based rep-
resentation, is that, due to its huge variety of motion features, they can be much more finely
tailored to each navigation situation.

Abundantly throughout this work, we have remarked open research lines as “future work”.
Amongst all, we deem that the most promising ones are following. In first place, an exhaustive
elaboration of the Stories-R and Motion-R for all available spatial representations, and an anal-
ysis of their motion features, discerning which are most relevant in which situations. Secondly,
to determine the precise relation of the story-based representation to human cognition; at the
moment, we have proved a rather general statement: story-based representations are cognitively
plausible (in the weakest sense). Deeper research is needed to know which story-based motion
features are most salient to humans, and to which extent humans categorize, i.e., encode, the
motion information of a motion scenario or a uniform trajectory as story-based relations; in other
words, to determine how strong is their cognitive plausibility. We also believe that the psycholog-
ical attributes of story-based categorization should be comprehensively researched: specify the
mathematical form of the similarity function in the featural spaces, quantify the gradation effects
in category membership and border categories, identify the taxonomical hierarchies and their ba-
sic levels. Finally, a very exciting topic, is to relate the story-based representations to natural
language: can we, and how do we verbalize story-based relations in natural language?—There is
still enough to do!

We expect to see soon the first real applications of story-based representations in navigation,
and that research groups other than ours take further the theoretical and experimental studies
in story-based representations.
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Appendix A

Mathematical Formulae and Proofs

A.1 Multiplicativity measure

Proposition A.1.1 We have two finite qualitative motion representations, namely, MA, hav-
ing |MA| relations, and MB, having |MB | relations that partition the same kinematic space, K.
Then, the number of relations in the product representation MA × MB, i.e., |MA × MB |, is
bounded according to following inequality.

max(MA,MB) ≤ |MA ×MB | ≤ |MA| · |MB | (A.1)

Proof.

lower bound From the definition of product representation, MA×MB , we will proof that both inequal-
ities |MA| ≤ |MA ×MB | and |MB | ≤ |MA ×MB | apply. If so, it immediately implies
that max(MA,MB) ≤ |MA ×MB |.

Indeed, for every relation, i.e., category, Mi ∈ MA we find a corresponding motion state
Ki ∈ K that is categorized in such category, i.e., Mi = fµ MA

(Ki). Now, each of those
motion states Ki is categorized as a motion relation (Mi, ∗) in the product representation
MA×MB ; and none of these relations are equal, i.e., (Mi, ∗) 6= (Mj , ∗) ∀i 6= j. Thus, for
every relation Mi of MA, we find at least one relation, (Mi, ∗) in the product representation
MA ×MB ; which implies that the total number of relations in the product representation
must be at least equal to the number of representations in MA, that is |MA| ≤ |MA×MB |.
Analoguously, we proof the inequality for MB .

upper bound The motion relations of the product representation MA ×MB have the form (MA
i ,MB

j )

where MA
i ∈ MA and MB

j ∈ MB . The maximum number of product relations occurs
when every combinations of relations of MA and MB is realizable. In this case, we have
a total of |MA| · |MB | relations.

Proposition A.1.2 We can define following function µ : MA × MB → R for any motion
representation with more than one relation*, i.e., |MA|, |MB | > 1.
*Note that representations with a single element have no categorizing effect, since any motion state has the same

only category. Therefore, we justifiably disregard them.

µ (MA,MB) =

|MA×MB |
max(|MA|,|MB |) − 1

min(|MA|,|MB |) − 1
(A.2)
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This function has following properties:

1. It is symmetric. µ (MA,MB) = µ (MB ,MA)

2. Its image is [0, 1]

i. µ (MA,MB) = 0 ⇔ |MA ×MB | = max(MA,MB)

ii. µ (MA,MB) = 1 ⇔ |MA ×MB | = |MA| · |MB |

3. Given three motion representations MA, MB1
, and MB2

, so that |MB1
| = |MB2

|. Then
µ is strictly monotone on |MA ×MBi

|

i. µ (MA,MB1
) < µ (MA,MB2

) ⇔ |MA ×MB1
| < |MA ×MB2

|
ii. µ (MA,MB1

) = µ (MA,MB2
) ⇔ |MA ×MB1

| = |MA ×MB2
|

Proof. We take as start point Equation (A.1).

max(|MA|, |MB |) ≤ |MA ×MB | ≤ |MA| · |MB |

↓ −max(|MA|, |MB |)

0 ≤ |MA ×MB | −max(|MA|, |MB |) ≤ |MA| · |MB | −max(MA,MB)

↓ |MA| · |MB | = max(|MA|, |MB |)min(|MA|, |MB |)

0 ≤ |MA ×MB | −max(|MA|, |MB |) ≤ max(|MA|, |MB |)
(
min(|MA|, |MB |)− 1

)

↓ · 1/(max(|MA|, |MB |)
(
min(|MA|, |MB |)− 1

)

0 ≤
|MA×MB |

max(|MA|,|MB |) − 1

min(|MA|,|MB |) − 1
︸ ︷︷ ︸

:=µ(MA,MB)

≤ 1

a. The symmetry of µ (X,Y ) (proposition’s item 1) is direct consequence of the symmetry of
|X × Y |, max(|X|, |Y |), and min(|X|, |Y |).

b. In the transformation above, we have not only proved Item 2 of the proposition, but we
have also simultaneously proved the equalities in Items i. and ii..

c. The strict monotonicity of µ (MA,MB) with respect to |MA × MB | keeping |MA| and
|MB | constant is evident in the definition of µ.

A.2 General Properties of Temporal Sequences of Relations

A.2.1 Finitude of Stories based on Convex Relations

Proposition A.2.1 In a qualitative representation (U ,R) whose base relations have convex
borders, and each relation Ri is formed by a finite number of disconnected regions ni, the number
of transitions in a story must be finite, and consequently the number of base relations constituting
a story must be finite, and also the number of stories must be finite. More concretely:
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a. The maximum number of qualitative relations constituting a story is

1 + 2

|R|
∑

i=1

ni

Proof. Each story is created by a uniform motion, that is, it is created by a straight line in the
universe space U . If the borders of the base relations are convex, any straight line can only
cross the borders at a maximum of two points (‘in’ and ‘out’ points). Since each relation Ri is
formed by a finite number of disconnected regions, which we call ni, a straight line can at most
perform 2ni border crossings for each relation Ri. And, thus, adding for all relations, we obtain

a maximum of 2
∑|R|

i=1 ni transitions in a story. Finally, the total number of relations in a story
are the number of transitions plus one. So, we end up with the formula.

Further, if the number of relations in a story has an upper bound, and we have a finite number
of relations, then we can only generate a finite number of stories.

A particular case of Proposition A.2.1 is when each relation in a representation is constituted
by a convex region. We treat this case in the following Proposition. In such case, we can give
bounds for the length and number of stories.

Proposition A.2.2 In a qualitative representation (U ,R) whose base relations are convex, the
base relations constituting a story cannot be repeated, i.e., ∀Ri, Rj ∈ S = (R1, . . . , Rn) | i 6= j
then Ri 6= Rj.

This implies following:

a. The maximum number of base relations constituting a story is the total number of base
relations, i.e., |R|.

b. The maximum number of stories, i.e., the absolute upper bound of |Σ|, is given by the
following formula of which we gave also simplified upper and lower bounds.

|R||R|! ≥
|R|−1
∑

i=1

|R|!
(|R| − i)!

= eΓ(|R|+ 1, 1)− (|R|! + 1) ≥ |R|!

Proof. We give an intuitive proof based on geometrical principles. First of all, a story describes,
by means of base qualitative relations, the trajectory in the kinematic space, K, generated by the
temporal evolution of a motion scenario, (~xk, ~vk; ~xl, ~vl), in uniform motion. Second, by definition,
the base relations are a finite partition of the kinematic space and according to the preposition
the base relations are convex. Since the uniform motion trajectory of the motion scenario in
the kinematic space is a straight line, and the base relations form a finite convex partition, we
deduce that each base relation can occur maximum once on the trajectory of the motion scenario:
a straight line intersects with a convex region at most in one simple segment, a point, or null.
Consequently, the base relations that the lineal trajectory crosses can appear only once in the
story sequence.

Arguably, most qualitative representations have base relations with convex borders (e.g.,
RCC). Furthermore, in many of them the base relations are themselves convex (e.g., OPRAn

and QTC). Hence, the finitude of stories has an extreme wide reach in qualitative relations.
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A.2.2 Finitude of Stories based on Extreme Relations

Definition A.2.1 Extreme Relations The extreme relations are those relations of a story
that remain unchanged when t → −∞ or t → +∞. That is, a relation Ra is extreme in t → −∞,
if and only if ∃ta, so that in the time interval (−∞, ta) the relation between entities is Ra.
Analogously, a relation Rb is extreme in t → +∞ if and only if ∃tb, so that in the time interval
(tb,+∞) the relation between entities is Rb.

Lemma A.2.1 Existence of extreme relations for two entities in uniform motion

Two regular enough1 entities that move in uniform motion and are described by a qualitative
representation based on overlapping, intersection, or orientation, have a story with extreme re-
lations both for t → −∞ and t → +∞.

Proof. We name the entities k and l and they have constant velocities ~vk and ~vl.

1. In the case ~vk = ~vl the relation between both entities, Ri, remains constant — this relation
is the whole story —, therefore, trivially, Ri is the extreme relation for both t → −∞ and
t → +∞.

2. In the case ~vk 6= ~vl we distinguish two subcases regarding what feature the representation
bases on: overlapping-intersection of entities, or relative orientation.

a. Representations based on overlapping-intersection of finite entities have either one or
two qualitative relations for the case of ‘no overlapping-intersection’, e.g., the relation
DC in RCC (Fig. 7.2); the relation disjoint in 9-Int (Egenhofer 1991); or the relations
‘<’ and ‘>’ in Allen’s Algebra (Allen 1983). The mentioned relations must be the
extreme relations for each representation, because the distance between two entities
that move at different velocities tends to infinity for t → ±∞; and consequently the
entities do not overlap-intersect any more.

b. Representations based on relative orientation between entities use the connecting unit

vector between them, i.e., k̂l(t) = ~xl(t)−~xk(t)
‖~xl(t)−~xk(t)‖

, for which in uniform motion, i.e.,

~xk(t) = ~vkt+ ~xk0 and ~xl(t) = ~vlt+ ~xl0, we obtain both limits :

k̂l(t) =
(~vl − ~vk)t+ (~xl − ~xk)

√

‖~vl − ~vk‖2t2 + 2(~vl − ~vk))((~xl − ~xk) + ‖~xl − ~xk‖2

lim
t→+∞

k̂l(t) =
~vl − ~vk
‖~vl − ~vk‖

(A.3a) lim
t→−∞

k̂l(t) = − lim
t→+∞

k̂l(t) (A.3b)

Because both limits for the connecting vector exist, the extreme relations of any story
exist; they are the relations neighbouring each limit.

Lemma A.2.2 Finitude of the Temporal Sequences of Relations in Finite Time In-

tervals In uniform motion, for regular enough1 entities, a temporal sequence of relations in a
finite time interval is also finite.

Proof. A qualitative representation partitions the phase space of two regular enough finite entities
in a finite number of regions, i.e., the qualitative relations. Therefore by moving in uniform
motion in a finite time interval the system goes through a finite number of such regions, i.e., the
resultant temporal sequence of relations must be finite.
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Proposition A.2.3 Finitude of the Stories We can reasonably show that for two regular
enough1 entities the stories are finite in length.

We build the proof on two properties: first, stories in uniform motion have extreme relations
(Lem. A.2.1); second, temporal sequences of relations in uniform motion are finite over a finite
time interval (Lem. A.2.2).

Proof. According to Lemma A.2.1 two regular enough entities in uniform motion have extreme
relations. That is, we can find two time instants ta and tb, with ta < tb, so that in the time
interval (−∞, ta) the entities’ relation remains constant—we call it Ra—and in the time interval
(tb,+∞) the entities’ relation remains constant, we call it Rb.

Now, According to Lemma A.2.2, these regular enough entities moving in uniform motion
have a finite temporal sequence of relations in the interval [ta, tb], say (R1, . . . , Rn).

Consequently the story of the two entities, i.e., the temporal sequence of relations in the
interval (−∞, ta)

⋃
[ta, tb]

⋃
(tb,∞), would be finite, as it is obtained by concatenating the two

extreme relations and the temporal sequence: (Ra, R1, . . . , Rn, Rb). In case any extreme relation
coincides with its border relation, i.e., Ra = R1 or Rb = Rn, we merge the repeated ones.

Lemma A.2.3 The longest story The stories set is finite, if and only if it exists a longest
story, i.e., a story that has more or equal relations than any other.

Proposition A.2.4 Finitude of the Stories Set The set of stories in uniform motion, i.e.,
the stories set, is finite.

Proof. We cannot rigorously prove that the stories set is finite, but Lemma A.2.3 gives an equiv-
alent condition that help us to see that the number of possible stories must be finite in most
qualitative representations: if we prove that there is a story with more or an equal number of
relations than any other, then the stories set must be finite. This is the case in RCC (Tab. 8.1),
where the longest story is S14.

A.3 Generation of QTCB Stories

A.4 Kinematics of the 2-D Uniform Motion of two Entities

A.4.1 Basic kinematic formulae

The position formulae of two entities moving in uniform motion are determined by their velocities,
~vk and ~vl (which are time independent), and by the position known in a certain instant t0, ~xk(t0)
and ~xl(t0):

~xk(t) = ~xk(t0) + ~vk(t− t0) (A.4)

~xl(t) = ~xl(t0) + ~vl(t− t0) (A.5)

and, substracting the first to the last one, (A.5) − (A.4)

∆~x(t) = ∆~x(t0) + ∆~v(t− t0) (A.6)

1Enough regular entities are those finite in size with a finite number of features, i.e., a finite number of vertices,

edges, concavities, holes, . . .
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Note that following definitions apply for the whole Appendix A.4

∆~x := ~xl − ~xk (A.7)

∆~v := ~vl − ~vk (A.8)

A.4.2 Distance between entities

Proposition A.4.1 The distance d
(
~xk(t), ~xl(t)

)
= ‖∆~x(t)‖ between two entities k and l moving

in uniform motion is given by

d2
(
~xk(t), ~xl(t)

)
= ‖∆~x(t0)‖2 + ‖∆~v‖2(t− t0)

2 + 2∆~x(t0)∆~v(t− t0) (A.9)

Proof.

d2
(
~xk(t), ~xl(t)

)
= ‖~xl(t)− ~xk(t)‖2

Eqs. (A.4) and (A.5)
= ‖

(
~xl(t0)− ~xk(t0)

)
+ (~vl − ~vk)(t− t0)‖2

‖~u+ ~v‖2 = ‖~u‖2 + ‖~v‖2 + 2~u · ~v ↓
d2
(
~xk(t), ~xl(t)

)
= ‖~xl(t0)− ~xk(t0)‖2 + ‖~vl − ~vk‖2(t− t0)

2 + 2
(
~xl(t0)− ~xk(t0)

)
(~vl − ~vk)(t− t0)

Corollary A.4.1.1 The time tmin at the minimum distance between entities is following:

tmin = −∆~x(t0)∆~v

‖∆~v‖2 + t0

or, equivalently,

tmin = −‖∆~x(t0)‖
‖∆~v‖ cos(∆~x(t0),∆~v) + t0

(A.10)

Proof. We find the vertex of the quadratic equation of d2(t) in Equation (A.9). Since f(x) = x2

for non-negative values such as d(t) is increasing monotone, the minimum in d2(t) is the minimum
in d(t).

d2
(
~xk(t), ~xl(t)

)
=

c
︷ ︸︸ ︷

‖∆~x‖2 +
a

︷ ︸︸ ︷

‖∆~v‖2(t− t0)
2 +

b
︷ ︸︸ ︷

2∆~x∆~v(t− t0)

tmin =
−b

2a
+ t0 is the t value at the minimum of the parabola

Corollary A.4.1.2 The minimum reached distance between entities is following:

dmin = ‖∆~x(t0)‖|sin(∆~x(t0),∆~v)| ∀t0 (A.11)

Proof. We use, as in Cor. A.4.1.1, the parabolic equation in Equation (A.9). We know that the

value at the vertex is d2min = c− b2

4a and, thus, substituting we obtain following:

d2min = ‖∆~x(t0)‖2 − �4
(
∆~x(t0)∆~v

)2

�4‖∆~v‖2
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↓ ~a~b = ‖a‖‖b‖ cos(~a,~b)

d2min = ‖∆~x(t0)‖2 −
‖∆~x(t0)‖2����‖∆~v‖2 cos2(∆~x(t0)∆~v)

����‖∆~v‖2

d2min = ‖∆~x(t0)‖2
(
1− cos2(∆~x(t0)∆~v)

)

d2min = ‖∆~x(t0)‖2 sin2(∆~x(t0)∆~v)

Taking the root at both sides ↓ √
x2 = |x| and |d| = d

d2min = ‖∆~x(t0)‖|sin(∆~x(t0)∆~v)|

A.4.3 Angle between ∆~x(t) and ∆~v

Proposition A.4.2 In uniform motion, the angle between ∆~x(t) = ~xl(t) − ~xk(t) and ∆~v =
~vl − ~vk at any time t has the same sign as the angle between ∆~x(t0) and ∆~x(t1), where t0 < t1.

Proof. We will assume without loss of generality that ∆~x(t) = ~xl(t)−~xk(t) is computed at t = 0
(we can always shift the times to that end). Since the motion is uniform, ∆~v is time independent,
and, additionally, we have following formula for the entities’ positions:

~xk(t0) = ~xk + ~vkt0 ~xl(t0) = ~xl + ~vlt0 (A.12)

~xk(t1) = ~xk(t0) + ~vk(t1 − t0) ~xl(t1) = ~xl(t0) + ~vl(t1 − t0) (A.13)

The entities in uniform motion move on a plane. For that reason, the sign of the angle
between vectors equals the sign of the cross product. The cross product has positive sign when
is parallel to ~z and has negative sign when is parallel to −~z; ~z is any vector that is perpendicular
to the plane and positive oriented to the plane base.

Now we compute the position increments between t0 and t1:

∆~x(t0) = ~xl(t0)− ~xk(t0)
Eq. (A.12)

= ∆~x+∆~vt0 (A.14)

∆~x(t1) = ~xl(t1)− ~xk(t1)
Eq. (A.13)

= ∆~x(t0) + ∆~v(t1 − t0) (A.15)

On computing the cross product, we see that ∆~x(t0) × ∆~x(t1) (Eqs. (A.14) and (A.15))
is parallel to the cross product ∆~x × ∆~v. Therefore, both vector pairs, (∆~x(t0),∆~x(t1)) and
(∆~x,∆~v) have the same angle sign.
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∆~x(t0)×∆~x(t1) = ∆~x(t0)×
(

����:0
∆~x(t0) + ∆~v(t1 − t0)

)

∆~x(t0)×∆~x(t1) = (t1 − t0)∆~x(t0)×∆~v
Eq. (A.14)

= (t1 − t0)
(
∆~x+��*0

∆~v t0
)
×∆~v

∆~x(t0)×∆~x(t1) = (t1 − t0)
︸ ︷︷ ︸

>0

∆~x×∆~v

Note that neither t1 nor t0 need be greater than 0.

Corollary A.4.2.1 The sign of sin(∆~x(t),∆~v) is constant for each uniform motion.

Proposition A.4.3

∆~x(t) ·∆~v = ∆~x(t0) ·∆~v + ‖∆~v‖2(t− t0) (A.16)

Proof.

∆~x(t) ·∆~v
Eq. (A.6)

= (∆~x(t0) + ∆~v(t− t0)) ·∆~v

Corollary A.4.3.1 At the point of maximum approach (i.e., minimum distance), the vector
∆~x and ∆~v are perpendicular.

∆~x(tmin) ·∆~v = 0 (A.17)

Proof with scalar product. We seek the zeros of ∆~x(t) ·∆~v, i.e., the t = t⊥ that ∆~x(t⊥) ·∆~v = 0.

∆~x(t⊥) ·∆~v = 0

↓ Eq. (A.16)

∆~x(t0) ·∆~v + ‖∆~v‖2(t⊥ − t0) = 0

t⊥ = −∆~x(t0) ·∆~v

‖∆~v‖2 + t0

Comparing with Equation (A.10), we see that t⊥ = tmin.

Proof with dmin. Starting with Equation (A.11), we take t0 = tmin:

dmin =

=dmin
︷ ︸︸ ︷

‖∆~x(tmin)‖|sin(∆~x(tmin),∆~v)|
1 = |sin(∆~x(tmin),∆~v)|

Consequently, cos(∆~x(tmin),∆~v) = 0
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Corollary A.4.3.2 A compact form of Equation (A.16) is achieved at t0 = tmin:

∆~x(t) ·∆~v = ‖∆~v‖2(t− tmin) (A.18)

Proof.

∆~x(t) ·∆~v =
�������:

0 (Eq. (A.17))

∆~x(tmin) ·∆~v + ‖∆~v‖2(t− tmin) (A.19)

Corollary A.4.3.3

∆~x(t) ·∆~v < 0 ∀t < tmin (A.20)

∆~x(t) ·∆~v > 0 ∀t > tmin (A.21)

Proof. According to Equation (A.18) ∆~x(t) · ∆~v is strictly monotone increasing and the only
zero value is atained at t = tmin

Corollary A.4.3.4 The distance between entities ‖∆~x(t)‖ can be expressed at tmin in following
simplified form:

‖∆~x(t)‖ =
√

d2min + ‖∆~v‖2(t− tmin)2 (A.22)

Proof. We substitute t0 = tmin in Equation (A.9) and use Equation (A.17).

A.4.4 Crossing precedence

Definition A.4.1 Precedence Vector For two moving entities k and l with trajectories ~xk(t)
and ~xl(t), and velocities ~vk(t) and ~vl(t), we define the ‘precedence vector’ as

~M(t) = ∆~x(t)×∆~v(t) = (~xl(t)− ~xk(t))× (~vl(t)− ~vk(t)) (A.23)

If the velocities are constant, the precedence vector can discern the ‘crossing precedence’, that
is, the first entity to go through the crossing point.

Note that ~M can be interpreted as twice the ‘areal velocity ’ of l with respect to k since
d ~A
dt (t) = (~r(t)× ~v(t))/2.

Proposition A.4.4 For any moving entities k and l with constant velocities ~vk and ~vl, the
precedence vector ~M(t) (Def. A.4.1) is time independent.

We can give three different proofs for this fact.

Proof 1: Areal velocity. ~M is proportional to the areal velocity d ~A
dt (t) of l motion seen from k

reference system (as k be motionless). The areal velocity is conserved when no forces act upon

the “moving” entity l, also ~M is conserved.

Proof 2: Kinematic equations.

~M(t) = ∆~x(t)×∆~v
Eqs. (A.4) and (A.5)

=
(
∆~x(t0) +��*0

∆~v (t− t0)
)
×∆~v

~M(t) = ∆~x(t0)×∆~v ∀t0



236 APPENDIX A. MATHEMATICAL FORMULAE AND PROOFS

Proof 3: Time derivative. It follows directly from taking time derivative of ~M(t).

~̇M(t) = (~̇xl(t)− ~̇xk(t))× (~vl(t)− ~vk(t))
︸ ︷︷ ︸

= ~0
Product of vector by itself,

~v(t) := ~̇x(t)

+ (~xl(t)− ~xk(t))× (~̇vl(t)− ~̇vk(t))
︸ ︷︷ ︸

= ~0
Velocities are constant,

~̇v(t) = ~0

= ~0

Corollary A.4.4.1 If ~M(t) = ∆~x(t)×∆~v(t) is time independent in uniform motion, then its
value is the same ∀ t. Thus, since the velocities are constant, we have following expression:

~M = ∆~x(t0)×∆~v = ∆~x(t)×∆~v ∀ t (A.24)

Corollary A.4.4.2 In uniform motion, the norm of the precedence vector is M(t) := ‖ ~M(t)‖ =
‖∆~v‖dmin.

Proof.

‖ ~M(t)‖ Eq. (A.24)
= ‖∆~x(t0)×∆~v‖

↓ ‖~a×~b‖ = ‖a‖‖b‖|sin(~a,~b)|

‖ ~M‖ = ‖∆~x(t0)‖‖∆~v‖|sin(∆~x(t0),∆~v)| Cor. A.4.1.2
= ‖∆~v‖dmin

Proposition A.4.5 Crossing Precedence If two crossing entities k and l move each at
constant velocity ~vk and ~vl, then the precedence vector ~M(t) is time independent and takes
following values depending of which entity goes first through the crossing point C.

~M =







−α(~vk × ~vl), α > 0 if k crosses first, i.e., arrives first at the crossing point

~0
if k and l cross simultaneously, arrive at the same

time at the crossing point
β(~vk × ~vl), β > 0 if l crosses first, i.e., arrives first at the crossing point

(A.25)

Proof. We will split the proof into three cases depending on which entity arrives first at the
crossing point C (which has coordinates ~C). Since for constant velocities the precedence vector
~M(t) is time independent (Prop. A.4.4), it suffices to compute it at some instant t∗, i.e., ~M =
~M(t∗). In each case below we will choose t∗, so that the computations are simplified.

Case A.4.5.1 (k arrives first at C). We compute ~M(t∗) at instant t∗ = tk, when k is at C,

i.e., ~xk(tk) = ~C. At this instant, k is aligned with l’s velocity (as l is heading to C), then,
the difference of positions (l’s minus k’s) is negatively proportional to l’s velocity, i.e.,

~xl(tk)− ~xk(tk) = ~xl(tk)− ~C = −α~vl where α > 0. (A.26)

Substituting Equation (A.26) in (A.23) we get

~M(tk) = −α~vl × (~vl − ~vk) = α(~vl × ~vk) = −α(~vk × ~vl)
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Case A.4.5.2 (k and l superpose—arrive simultaneously—at C). We compute ~M(t∗) at
instant t∗ = tc, when k and l meet at C. At this instant k and l have the same position,
i.e., ~C, therefore, ~xl(tc)− ~xk(tc) = ~0. Now, substituting it in Equation (A.23) we get

~M(tc) = ~0× (~vl − ~vk) = ~0

Case A.4.5.3 (l arrives first at C). The argument is the same as in Case A.4.5.1, but swapping
k and l. Accordingly, we have that the difference of positions (l’s minus k’s) when l is at

the crossing point, ~C, is positively proportional to k’s velocity:

~xl(tl)− ~xk(tl) = ~C − ~xk(tl) = β~vk where β > 0. (A.27)

And substituting (A.27) in Equation (A.23) we get

~M(tl) = β~vk × (~vl − ~vk) = β(~vk × ~vl)

Corollary A.4.5.1 The sign of T = ~M · (~vk×~vl) determines the crossing precedence. If T < 0
then k crosses first; if T = 0 then k and l cross simultaneously; if T > 0 l crosses first.

Definition A.4.2 Crossing Delay For two moving entities k and l with trajectories ~xk(t)
and ~xl(t), and velocities ~vk(t) and ~vl(t), we define a scalar, the ‘crossing delay’, as

τ(t) = ~M(t) · ~vk(t)× ~vl(t)

‖~vk(t)× ~vl(t)‖2
(A.28)

where ~M(t) = ∆~x(t)×∆~v(t) is the precedence vector (Eq. (A.23)).

Proposition A.4.6 If two entities k and l, crossing at point C (position ~C), move each at
constant velocity ~vk and ~vl, then the crossing delay τ (Def. A.4.2) is time independent and yields
the signed time difference between the arrivals of k and l to C. Thus, it yields k’s crossing delay
related to l:

τ = tk − tl where tk and tl fulfil ~xk(tk) = ~xl(tl) = ~C (A.29)

Proof. Since velocities are constant, we take the precedence vector ~M from Equation (A.25) and
substitute it into the definition of crossing delay τ(t) (Eq. (A.28)). We get straight away that τ
is time independent:

τ = ~M · ~vk × ~vl
‖~vk × ~vl‖2

=







−α if k arrives first at C

0 if k and l superpose at C

β if l arrives first at C

where α and β are the positive constants in Equation (A.25)

(A.30)

Now we interpret the meanings of α and β.
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α. If we look at Equation (A.26), we see that α is the difference between the instant of l’s
arrival to C, i.e., tl, and k’s arrival to C, i.e., tk. Indeed, taking norms on Eq. (A.26), we

have α = ‖~C − ~xl(tk)‖/‖~vl‖. That is, α is the quotient between l’s distance to crossing
point C (when k is at it) and l’s velocity. Formally,

α = tl − tk where tk and tl fulfil ~xk(tk) = ~xl(tl) = ~C (A.31)

β. An analogous reasoning, but using Equation (A.27), shows that β is the difference between
the instant of k’s arrival and l’s arrival to C. Formally,

β = tk − tl where tk and tl fulfil ~xk(tk) = ~xl(tl) = ~C (A.32)

Substituting Equations (A.31) and (A.32) into Equation (A.30), and applying that when k and
l superpose they reach C at the same time tk = tl, we get Equation (A.29).

Corollary A.4.6.1 From the Propositions A.4.5 and A.4.6, we obtain for uniform motion that

~M = τ(~vk × ~vl) (A.33)

Proposition A.4.7 The crossing delay can be computed using the equation:

τ =
‖∆~x‖‖∆~v‖ sin (∆~x,∆~v)

‖~vk‖‖~vl‖ sin (~vk, ~vl)
(A.34)

or, equivalently,

τ =
dmin‖∆~v‖

‖~vk‖‖~vl‖|sin(~vk, ~vl)|
sgn (sin(∆~x,∆~v) sin(~vk, ~vl)) (A.35)

Proof. We have two equalities for ~M , namely, Equations (A.24) and (A.33), and we bring them
together.

τ(~vk × ~vl) = ∆~x(t0)×∆~v

↓ · (~vk × ~vl)

τ‖~vk × ~vl‖2 = (~vk × ~vl) · (∆~x(t0)×∆~v) (A.36)

Without loss of generality, we assume that the positive defined vector normal to the plain where
the entities move is ẑ. In that case, the cross products are proportional to ẑ:

~vk × ~vl = ‖~vk‖‖~vl‖ sin(~vk, ~vl)ẑ
∆~x(t0)×∆~v = ‖∆~x(t0)‖‖∆~v‖ sin(∆~x(t0),∆~v)ẑ

We substitute the expressions of the cross products in the previous equation, and, by isolating
τ , we obtain Equation (A.34)

τ‖~vk‖�2‖~vl‖�2 sin�2(~vk, ~vl) = ���‖~vk‖��‖~vl‖�����sin(~vk, ~vl) Âz · ‖∆~x(t0)‖‖∆~v‖ sin(∆~x(t0),∆~v)Âz

τ =
‖∆~x‖‖∆~v‖ sin (∆~x,∆~v)

‖~vk‖‖~vl‖ sin (~vk, ~vl)

↓ Eq. (A.11)

τ =
dmin‖∆~v‖

‖~vk‖‖~vl‖|sin(~vk, ~vl)|
sgn (sin(∆~x,∆~v) sin(~vk, ~vl))
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Corollary A.4.7.1 The sign of the crossing delay τ is the multiplication of the signs of
∠(∆~x,∆~v) and ∠(~vk, ~vl)

sgn(τ) = sgn(∠(∆~x,∆~v)) sgn(∠(~vk, ~vl)) (A.37)

Proposition A.4.8 Crossing Delay for Parallel Trajectories The crossing delay, τ
(Eq. (A.28)), is undetermined for parallel velocities, i.e., ~vk ‖ ~vl, excepting the case of iden-
tical velocities ~vk = ~vl, in which we obtain following limit.

τ = − (~xk − ~xl) · v̂k
‖~vk‖

(A.38)

Proof. Entity k has velocity ~vk = ‖~vk‖v̂k, and entity l has velocity ~vl(α)= ‖~vl‖(cosαv̂k+sinαv̂⊥k ),
where v̂⊥k fulfils v̂k · v̂⊥k =0 and v̂k × v̂⊥k = ẑ, being ẑ the unit vector of the positive oriented
coordinate system {x̂, ŷ, ẑ}. The entities k and l move on the plane {x̂, ŷ}, however the third
coordinate ẑ is useful for computations. Note that the definition of ~vl(α) is a fully general velocity
definition; nevertheless, we use α in order to obtain the limit limα→0 ~vl(α)= ‖~vl‖v̂k in which k
and l have parallel velocities.

Our onset equation is the definition of the crossing delay (Eq. (A.28)), in which we have also

substituted the definition of ~M(t) (Eq. (A.23)).

τ(α) =

(A)
︷ ︸︸ ︷

(∆~x(t;α)×∆~v(α)) ·

(B)
︷ ︸︸ ︷

~vk × ~vl(α)

‖~vk × ~vl(α)‖2
︸ ︷︷ ︸

(C)

(A.39)

(A) Here we compute the expression (−∆~x(t;α)×−∆~v(α)), which is equivalent to (∆~x(t;α)×∆~v(α)).

We compute first the expression −∆~x(t;α):

~xk(t) = ~xk(0) + ‖~vk‖v̂kt
−
~xl(t;α) = ~xl(0) + ‖~vl‖(cosαv̂kt+ ‖~vl‖ sinαv̂⊥k t)

~xk(t)− ~xl(t;α) = ~xk(0)− ~xl(0) + (‖~vk‖ − ‖~vl‖ cosα)v̂kt− ‖~vl‖ sinαv̂⊥k t (A.40)

Second, we compute −∆~v(α):

~vk − ~vl(α) = ‖~vk‖v̂k − ‖~vl‖
(
cosαv̂k + sinαv̂⊥k

)

= (‖~vk‖ − ‖~vl‖ cosα)v̂k − ‖~vl‖ sinαv̂⊥k (A.41)

We can now perform the cross product between Equation (A.40) and Equation (A.41) to
obtain:

−∆~x(t;α)×−∆~v(α) = (‖~vk‖ − ‖~vl‖ cosα)(~xk(0)− ~xl(0))× v̂k−
‖~vl‖ sinα(~xk(0)− ~xl(0))× v̂⊥k (A.42)

(B) Expressing ~vl(α) as shown above ‖~vl‖(cosαv̂k +sinαv̂⊥k ), we can obtain following compact
result for the cross product ~vk × ~vl(α):

~vk × ~vl(α) = ‖~vk‖‖~vl‖ sinαẑ (A.43)
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(C) Based on the previous item the norm of the scalar product ‖~vk × ~vl(α)‖ is following:

‖~vk × ~vl(α)‖ = ‖~vk‖‖~vl‖|sinα| (A.44)

Now we introduce the results for each expression in Items (A) to (C) into the corresponding
expressions of onset Equation (A.39). This yields the following intermediate result:

τ(α) =
(‖~vk‖ − ‖~vl‖ cosα)(~xk(0)− ~xl(0))× v̂k − ‖~vl‖ sinα(~xk(0)− ~xl(0))× v̂⊥k

‖~vk‖‖~vl‖|sinα|
·

sinα

|sinα| ẑ (A.45)

Now, simplifying, and considering that ∀α sinα
|sinα|2 =

1
sinα

and sin2 α
|sinα|2 =1 also for limα→0, and

defining ∆~x(0) = ~xk(0)− ~xl(0) we obtain following:

τ(α) =

[(‖~vk‖ − ‖~vl‖ cosα
‖~vk‖‖~vl‖ sinα

)

∆~x(0)× v̂k − ∆~x(0)

‖~vk‖
× v̂⊥k

]

· ẑ (A.46)

Finally, we express ∆~x(0) in the orthonormal base {v̂k, v̂⊥k }:

∆~x(0) = ∆~x(0)v̂k v̂k +∆~x(0)v̂⊥

k

v̂⊥k (A.47)

And substitute Equation (A.47) into Equation (A.46), we obtain the very final expression of the
crossing delay τ(α).

τ(α) =
‖~vk‖ − ‖~vl‖ cosα
‖~vk‖‖~vl‖ sinα

∆~x(0)v̂⊥

k

− 1

‖~vk‖
∆~x(0)v̂k (A.48)

First note that, as expected, the crossing delay τ(α) is a scalar. Second, that it is time indepen-
dent, as it should be according to Proposition A.4.6. Now, if we search the limit limα→0 τ(α) in
Equation (A.48), it is easy to obtain the final result:

i. if ‖~vk‖= ‖~vl‖, the limit exists and is following:

lim
α→0

τ(α) = −∆~x(0)v̂k
‖~vk‖

(A.49)

ii. if ‖~vk‖ 6= ‖~vl‖, the limit does not exist. We have limα→0+ =sgn(‖~vk‖−‖~vl‖)∞ and limα→0− =
− sgn(‖~vk‖ − ‖~vl‖)∞

A.5 Similarity

Proposition A.5.1 Triangle Inequality in Similarity Metric Models Given a metric
model of similarity, that is, a model where the similarity is computed using a distance d(A,B)

through S(A,B) = e−d
α

(A,B), 0 ≤ α ≤ 1, then the triangular inequality in the distance, d(A,B)+
d(B,C) ≥ d(A,C) ∀items A,B,C, implies following multiplicative inequality in the similarities

S(A,C) ≥ S(A,B) S(B,C) ∀items A,B,C
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Proof. if d(A,B) + d(B,C) ≥ d(A,C), then, because ∀α > 0, e−xα

is a decreasing function, we
have

e−[d(A,B)+d(B,C)]
α

≤ e−d
α

(A,C) = S(A,C) (A.50)

Now, for 0 ≤ α ≤ 1 and x, y ≥ 0, we have that xα + yα ≥ (x+ y)α. It follows that

S(A,B) S(B,C) = e−d
α

(A,B)e−d
α

(B,C) = e
−
[

d
α

(A,B)+d
α

(B,C)
]

≤ e−[d(A,B)+d(B,C)]
α

(A.51)

Consequently, from Equations (A.50) and (A.51) we obtain

S(A,B) S(B,C) = e−d
α

(A,B)e−d
α

(B,C) ≤ e−d
α

(A,C) = S(A,C)

Corollary A.5.1.1 For α ≥ 1 and x, y ≥ 0, we have (x + y)α ≥ xα + yα and, therefore,
inequality in Equation (A.51) is reversed

e−[d(A,B)+d(B,C)]
α

≤ e
−
[

d
α

(A,B)+d
α

(B,C)
]

= S(A,B) S(B,C)

And consequently for α ≥ 1 no inequality for S(A,B), S(B,C), and S(A,C) can be derived using
Equation (A.50).
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Experiment Data

B.1 Stimuli Traces

Group

Nr.

Reference

stimulus
Transformed stimuli

E A

RccOpra

B

Rcc¬Opra

C

¬RccOpra

D

¬Rcc¬Opra

001

S15 SC21

mr-co mo-bp

dmin = 2.75
αvv = 16.04°

sgn(α∆~x∆~v) = +1
τ = 0.17 s

~xk = (−1.38, 2.94)
~vk = (15.9,−4.56)
~xl = (1.38,−2.94)
~vl = (15.9,−0)

S15 SC21

mr-co mo-bp

dmin = 1.50
αvv = 48.13°

sgn(α∆~x∆~v) = +1
τ = 0.14 s

~xk = (−0.75, 3.16)
~vk = (11,−12.3)
~xl = (0.75,−3.16)

~vl = (11,−0)

S15 SC191

mr-co mo-op

dmin = 1.50
αvv = −16.04°

sgn(α∆~x∆~v) = +1
τ = −0.09 s

~xk = (0.75,−3.16)
~vk = (15.9, 4.56)
~xl = (−0.75, 3.16)
~vl = (15.9,−0)

S13 SC21

mr-po mo-bp

dmin = 4.00
αvv = 48.13°

sgn(α∆~x∆~v) = +1
τ = 0.36 s

~xk = (−2, 2.56)
~vk = (11,−12.3)
~xl = (2,−2.56)
~vl = (11,−0)

S13 SC191

mr-po mo-op

dmin = 4.00
αvv = −16.04°

sgn(α∆~x∆~v) = +1
τ = −0.25 s

~xk = (2,−2.56)
~vk = (15.9, 4.56)
~xl = (−2, 2.56)
~vl = (15.9,−0)

002

243
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S13 SC21

mr-po mo-bp

dmin = 3.50
αvv = 16.04°

sgn(α∆~x∆~v) = +1
τ = 0.23 s

~xk = (−1.75, 3.02)
~vk = (15.2,−4.36)
~xl = (1.75,−3.02)

~vl = (15.2, 0)

S13 SC21

mr-po mo-bp

dmin = 4.50
αvv = 48.13°

sgn(α∆~x∆~v) = +1
τ = 0.43 s

~xk = (−2.25, 2.67)
~vk = (10.5,−11.7)
~xl = (2.25,−2.67)
~vl = (10.5,−0)

S13 SC191

mr-po mo-op

dmin = 4.50
αvv = −16.04°

sgn(α∆~x∆~v) = +1
τ = −0.30 s

~xk = (2.25,−2.67)
~vk = (15.2, 4.36)
~xl = (−2.25, 2.67)

~vl = (15.2, 0)

S15 SC21

mr-co mo-bp

dmin = 2.50
αvv = 48.13°

sgn(α∆~x∆~v) = +1
τ = 0.24 s

~xk = (−1.25, 3.26)
~vk = (10.5,−11.7)
~xl = (1.25,−3.26)

~vl = (10.5, 0)

S15 SC191

mr-co mo-op

dmin = 2.50
αvv = −16.04°

sgn(α∆~x∆~v) = +1
τ = −0.16 s

~xk = (1.25,−3.26)
~vk = (15.2, 4.36)
~xl = (−1.25, 3.26)
~vl = (15.2,−0)

003

S11 SC21

mr-no mo-bp

dmin = 5.25
αvv = 16.04°

sgn(α∆~x∆~v) = +1
τ = 0.39 s

~xk = (−2.62, 3.35)
~vk = (13.3,−3.83)
~xl = (2.62,−3.35)

~vl = (13.3, 0)

S11 SC21

mr-no mo-bp

dmin = 6.50
αvv = 48.13°

sgn(α∆~x∆~v) = +1
τ = 0.70 s

~xk = (−3.25, 2.75)
~vk = (9.25,−10.3)
~xl = (3.25,−2.75)

~vl = (9.25, 0)

S11 SC191

mr-no mo-op

dmin = 6.50
αvv = −16.04°

sgn(α∆~x∆~v) = +1
τ = −0.49 s

~xk = (3.25,−2.75)
~vk = (13.3, 3.83)
~xl = (−3.25, 2.75)

~vl = (13.3, 0)

S13 SC21

mr-po mo-bp

dmin = 4.00
αvv = 48.13°

sgn(α∆~x∆~v) = +1
τ = 0.43 s

~xk = (−2, 3.76)
~vk = (9.25,−10.3)
~xl = (2,−3.76)
~vl = (9.25,−0)

S13 SC191

mr-po mo-op

dmin = 4.00
αvv = −16.04°

sgn(α∆~x∆~v) = +1
τ = −0.30 s

~xk = (2,−3.76)
~vk = (13.3, 3.83)
~xl = (−2, 3.76)
~vl = (13.3,−0)

004

S13 SC21

mr-po mo-bp

dmin = 4.50
αvv = 16.04°

sgn(α∆~x∆~v) = +1
τ = 0.32 s

~xk = (−2.25, 2.69)
~vk = (14.1,−4.04)
~xl = (2.25,−2.69)

~vl = (14.1, 0)

S13 SC21

mr-po mo-bp

dmin = 3.50
αvv = 48.13°

sgn(α∆~x∆~v) = +1
τ = 0.36 s

~xk = (−1.75, 3.04)
~vk = (9.76,−10.9)
~xl = (1.75,−3.04)

~vl = (9.76, 0)

S13 SC191

mr-po mo-op

dmin = 3.50
αvv = −16.04°

sgn(α∆~x∆~v) = +1
τ = −0.25 s

~xk = (1.75,−3.04)
~vk = (14.1, 4.04)
~xl = (−1.75, 3.04)
~vl = (14.1,−0)

S11 SC21

mr-no mo-bp

dmin = 5.50
αvv = 48.13°

sgn(α∆~x∆~v) = +1
τ = 0.56 s

~xk = (−2.75, 2.18)
~vk = (9.76,−10.9)
~xl = (2.75,−2.18)

~vl = (9.76, 0)

S11 SC191

mr-no mo-op

dmin = 5.50
αvv = −16.04°

sgn(α∆~x∆~v) = +1
τ = −0.39 s

~xk = (2.75,−2.18)
~vk = (14.1, 4.04)
~xl = (−2.75, 2.18)
~vl = (14.1,−0)

005
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S15 SC291

mr-co mo-bn

dmin = 2.75
αvv = 16.04°

sgn(α∆~x∆~v) = −1
τ = −0.17 s

~xk = (1.38, 2.94)
~vk = (15.9,−4.56)
~xl = (−1.38,−2.94)

~vl = (15.9, 0)

S15 SC291

mr-co mo-bn

dmin = 1.50
αvv = 48.13°

sgn(α∆~x∆~v) = −1
τ = −0.14 s

~xk = (0.75, 3.16)
~vk = (11,−12.3)

~xl = (−0.75,−3.16)
~vl = (11,−0)

S15 SC11

mr-co mo-on

dmin = 1.50
αvv = −16.04°

sgn(α∆~x∆~v) = −1
τ = 0.09 s

~xk = (−0.75,−3.16)
~vk = (15.9, 4.56)
~xl = (0.75, 3.16)
~vl = (15.9, 0)

S13 SC291

mr-po mo-bn

dmin = 4.00
αvv = 48.13°

sgn(α∆~x∆~v) = −1
τ = −0.36 s

~xk = (2, 2.56)
~vk = (11,−12.3)
~xl = (−2,−2.56)
~vl = (11,−0)

S13 SC11

mr-po mo-on

dmin = 4.00
αvv = −16.04°

sgn(α∆~x∆~v) = −1
τ = 0.25 s

~xk = (−2,−2.56)
~vk = (15.9, 4.56)
~xl = (2, 2.56)
~vl = (15.9, 0)

006

S13 SC291

mr-po mo-bn

dmin = 3.50
αvv = 16.04°

sgn(α∆~x∆~v) = −1
τ = −0.23 s

~xk = (1.75, 3.02)
~vk = (15.2,−4.36)
~xl = (−1.75,−3.02)

~vl = (15.2, 0)

S13 SC291

mr-po mo-bn

dmin = 4.50
αvv = 48.13°

sgn(α∆~x∆~v) = −1
τ = −0.43 s

~xk = (2.25, 2.67)
~vk = (10.5,−11.7)
~xl = (−2.25,−2.67)

~vl = (10.5, 0)

S13 SC11

mr-po mo-on

dmin = 4.50
αvv = −16.04°

sgn(α∆~x∆~v) = −1
τ = 0.30 s

~xk = (−2.25,−2.67)
~vk = (15.2, 4.36)
~xl = (2.25, 2.67)
~vl = (15.2,−0)

S15 SC291

mr-co mo-bn

dmin = 2.50
αvv = 48.13°

sgn(α∆~x∆~v) = −1
τ = −0.24 s

~xk = (1.25, 3.26)
~vk = (10.5,−11.7)
~xl = (−1.25,−3.26)

~vl = (10.5, 0)

S15 SC11

mr-co mo-on

dmin = 2.50
αvv = −16.04°

sgn(α∆~x∆~v) = −1
τ = 0.16 s

~xk = (−1.25,−3.26)
~vk = (15.2, 4.36)
~xl = (1.25, 3.26)
~vl = (15.2, 0)

007

S11 SC291

mr-no mo-bn

dmin = 5.25
αvv = 16.04°

sgn(α∆~x∆~v) = −1
τ = −0.39 s

~xk = (2.62, 3.35)
~vk = (13.3,−3.83)
~xl = (−2.62,−3.35)

~vl = (13.3, 0)

S11 SC291

mr-no mo-bn

dmin = 6.50
αvv = 48.13°

sgn(α∆~x∆~v) = −1
τ = −0.70 s

~xk = (3.25, 2.75)
~vk = (9.25,−10.3)
~xl = (−3.25,−2.75)

~vl = (9.25, 0)

S11 SC11

mr-no mo-on

dmin = 6.50
αvv = −16.04°

sgn(α∆~x∆~v) = −1
τ = 0.49 s

~xk = (−3.25,−2.75)
~vk = (13.3, 3.83)
~xl = (3.25, 2.75)
~vl = (13.3, 0)

S13 SC291

mr-po mo-bn

dmin = 4.00
αvv = 48.13°

sgn(α∆~x∆~v) = −1
τ = −0.43 s

~xk = (2, 3.76)
~vk = (9.25,−10.3)
~xl = (−2,−3.76)
~vl = (9.25,−0)

S13 SC11

mr-po mo-on

dmin = 4.00
αvv = −16.04°

sgn(α∆~x∆~v) = −1
τ = 0.30 s

~xk = (−2,−3.76)
~vk = (13.3, 3.83)
~xl = (2, 3.76)
~vl = (13.3, 0)

008
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S13 SC291

mr-po mo-bn

dmin = 4.50
αvv = 16.04°

sgn(α∆~x∆~v) = −1
τ = −0.32 s

~xk = (2.25, 2.69)
~vk = (14.1,−4.04)
~xl = (−2.25,−2.69)

~vl = (14.1, 0)

S13 SC291

mr-po mo-bn

dmin = 3.50
αvv = 48.13°

sgn(α∆~x∆~v) = −1
τ = −0.36 s

~xk = (1.75, 3.04)
~vk = (9.76,−10.9)
~xl = (−1.75,−3.04)

~vl = (9.76, 0)

S13 SC11

mr-po mo-on

dmin = 3.50
αvv = −16.04°

sgn(α∆~x∆~v) = −1
τ = 0.25 s

~xk = (−1.75,−3.04)
~vk = (14.1, 4.04)
~xl = (1.75, 3.04)
~vl = (14.1, 0)

S11 SC291

mr-no mo-bn

dmin = 5.50
αvv = 48.13°

sgn(α∆~x∆~v) = −1
τ = −0.56 s

~xk = (2.75, 2.18)
~vk = (9.76,−10.9)
~xl = (−2.75,−2.18)

~vl = (9.76,−0)

S11 SC11

mr-no mo-on

dmin = 5.50
αvv = −16.04°

sgn(α∆~x∆~v) = −1
τ = 0.39 s

~xk = (−2.75,−2.18)
~vk = (14.1, 4.04)
~xl = (2.75, 2.18)
~vl = (14.1, 0)

009

S15 SC191

mr-co mo-op

dmin = 2.75
αvv = −16.04°

sgn(α∆~x∆~v) = +1
τ = −0.17 s

~xk = (1.38,−2.94)
~vk = (15.9, 4.56)
~xl = (−1.38, 2.94)
~vl = (15.9,−0)

S15 SC191

mr-co mo-op

dmin = 1.50
αvv = −48.13°

sgn(α∆~x∆~v) = +1
τ = −0.14 s

~xk = (0.75,−3.16)
~vk = (11, 12.3)

~xl = (−0.75, 3.16)
~vl = (11, 0)

S15 SC21

mr-co mo-bp

dmin = 1.50
αvv = 16.04°

sgn(α∆~x∆~v) = +1
τ = 0.09 s

~xk = (−0.75, 3.16)
~vk = (15.9,−4.56)
~xl = (0.75,−3.16)

~vl = (15.9, 0)

S13 SC191

mr-po mo-op

dmin = 4.00
αvv = −48.13°

sgn(α∆~x∆~v) = +1
τ = −0.36 s

~xk = (2,−2.56)
~vk = (11, 12.3)
~xl = (−2, 2.56)
~vl = (11, 0)

S13 SC21

mr-po mo-bp

dmin = 4.00
αvv = 16.04°

sgn(α∆~x∆~v) = +1
τ = 0.25 s

~xk = (−2, 2.56)
~vk = (15.9,−4.56)
~xl = (2,−2.56)
~vl = (15.9,−0)

010

S13 SC191

mr-po mo-op

dmin = 3.50
αvv = −16.04°

sgn(α∆~x∆~v) = +1
τ = −0.23 s

~xk = (1.75,−3.02)
~vk = (15.2, 4.36)
~xl = (−1.75, 3.02)
~vl = (15.2,−0)

S13 SC191

mr-po mo-op

dmin = 4.50
αvv = −48.13°

sgn(α∆~x∆~v) = +1
τ = −0.43 s

~xk = (2.25,−2.67)
~vk = (10.5, 11.7)
~xl = (−2.25, 2.67)
~vl = (10.5,−0)

S13 SC21

mr-po mo-bp

dmin = 4.50
αvv = 16.04°

sgn(α∆~x∆~v) = +1
τ = 0.30 s

~xk = (−2.25, 2.67)
~vk = (15.2,−4.36)
~xl = (2.25,−2.67)

~vl = (15.2, 0)

S15 SC191

mr-co mo-op

dmin = 2.50
αvv = −48.13°

sgn(α∆~x∆~v) = +1
τ = −0.24 s

~xk = (1.25,−3.26)
~vk = (10.5, 11.7)
~xl = (−1.25, 3.26)
~vl = (10.5,−0)

S15 SC21

mr-co mo-bp

dmin = 2.50
αvv = 16.04°

sgn(α∆~x∆~v) = +1
τ = 0.16 s

~xk = (−1.25, 3.26)
~vk = (15.2,−4.36)
~xl = (1.25,−3.26)
~vl = (15.2,−0)

011
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S11 SC191

mr-no mo-op

dmin = 5.25
αvv = −16.04°

sgn(α∆~x∆~v) = +1
τ = −0.39 s

~xk = (2.62,−3.35)
~vk = (13.3, 3.83)
~xl = (−2.62, 3.35)
~vl = (13.3,−0)

S11 SC191

mr-no mo-op

dmin = 6.50
αvv = −48.13°

sgn(α∆~x∆~v) = +1
τ = −0.70 s

~xk = (3.25,−2.75)
~vk = (9.25, 10.3)
~xl = (−3.25, 2.75)

~vl = (9.25, 0)

S11 SC21

mr-no mo-bp

dmin = 6.50
αvv = 16.04°

sgn(α∆~x∆~v) = +1
τ = 0.49 s

~xk = (−3.25, 2.75)
~vk = (13.3,−3.83)
~xl = (3.25,−2.75)
~vl = (13.3,−0)

S13 SC191

mr-po mo-op

dmin = 4.00
αvv = −48.13°

sgn(α∆~x∆~v) = +1
τ = −0.43 s

~xk = (2,−3.76)
~vk = (9.25, 10.3)
~xl = (−2, 3.76)
~vl = (9.25, 0)

S13 SC21

mr-po mo-bp

dmin = 4.00
αvv = 16.04°

sgn(α∆~x∆~v) = +1
τ = 0.30 s

~xk = (−2, 3.76)
~vk = (13.3,−3.83)
~xl = (2,−3.76)
~vl = (13.3,−0)

012

S13 SC191

mr-po mo-op

dmin = 4.50
αvv = −16.04°

sgn(α∆~x∆~v) = +1
τ = −0.32 s

~xk = (2.25,−2.69)
~vk = (14.1, 4.04)
~xl = (−2.25, 2.69)
~vl = (14.1,−0)

S13 SC191

mr-po mo-op

dmin = 3.50
αvv = −48.13°

sgn(α∆~x∆~v) = +1
τ = −0.36 s

~xk = (1.75,−3.04)
~vk = (9.76, 10.9)
~xl = (−1.75, 3.04)

~vl = (9.76, 0)

S13 SC21

mr-po mo-bp

dmin = 3.50
αvv = 16.04°

sgn(α∆~x∆~v) = +1
τ = 0.25 s

~xk = (−1.75, 3.04)
~vk = (14.1,−4.04)
~xl = (1.75,−3.04)
~vl = (14.1,−0)

S11 SC191

mr-no mo-op

dmin = 5.50
αvv = −48.13°

sgn(α∆~x∆~v) = +1
τ = −0.56 s

~xk = (2.75,−2.18)
~vk = (9.76, 10.9)
~xl = (−2.75, 2.18)

~vl = (9.76, 0)

S11 SC21

mr-no mo-bp

dmin = 5.50
αvv = 16.04°

sgn(α∆~x∆~v) = +1
τ = 0.39 s

~xk = (−2.75, 2.18)
~vk = (14.1,−4.04)
~xl = (2.75,−2.18)
~vl = (14.1,−0)

013

S15 SC11

mr-co mo-on

dmin = 2.75
αvv = −16.04°

sgn(α∆~x∆~v) = −1
τ = 0.17 s

~xk = (−1.38,−2.94)
~vk = (15.9, 4.56)
~xl = (1.38, 2.94)
~vl = (15.9, 0)

S15 SC11

mr-co mo-on

dmin = 1.50
αvv = −48.13°

sgn(α∆~x∆~v) = −1
τ = 0.14 s

~xk = (−0.75,−3.16)
~vk = (11, 12.3)
~xl = (0.75, 3.16)

~vl = (11, 0)

S15 SC291

mr-co mo-bn

dmin = 1.50
αvv = 16.04°

sgn(α∆~x∆~v) = −1
τ = −0.09 s

~xk = (0.75, 3.16)
~vk = (15.9,−4.56)
~xl = (−0.75,−3.16)

~vl = (15.9, 0)

S13 SC11

mr-po mo-on

dmin = 4.00
αvv = −48.13°

sgn(α∆~x∆~v) = −1
τ = 0.36 s

~xk = (−2,−2.56)
~vk = (11, 12.3)
~xl = (2, 2.56)
~vl = (11, 0)

S13 SC291

mr-po mo-bn

dmin = 4.00
αvv = 16.04°

sgn(α∆~x∆~v) = −1
τ = −0.25 s

~xk = (2, 2.56)
~vk = (15.9,−4.56)
~xl = (−2,−2.56)
~vl = (15.9, 0)

014
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S13 SC11

mr-po mo-on

dmin = 3.50
αvv = −16.04°

sgn(α∆~x∆~v) = −1
τ = 0.23 s

~xk = (−1.75,−3.02)
~vk = (15.2, 4.36)
~xl = (1.75, 3.02)
~vl = (15.2,−0)

S13 SC11

mr-po mo-on

dmin = 4.50
αvv = −48.13°

sgn(α∆~x∆~v) = −1
τ = 0.43 s

~xk = (−2.25,−2.67)
~vk = (10.5, 11.7)
~xl = (2.25, 2.67)
~vl = (10.5, 0)

S13 SC291

mr-po mo-bn

dmin = 4.50
αvv = 16.04°

sgn(α∆~x∆~v) = −1
τ = −0.30 s

~xk = (2.25, 2.67)
~vk = (15.2,−4.36)
~xl = (−2.25,−2.67)

~vl = (15.2,−0)

S15 SC11

mr-co mo-on

dmin = 2.50
αvv = −48.13°

sgn(α∆~x∆~v) = −1
τ = 0.24 s

~xk = (−1.25,−3.26)
~vk = (10.5, 11.7)
~xl = (1.25, 3.26)
~vl = (10.5,−0)

S15 SC291

mr-co mo-bn

dmin = 2.50
αvv = 16.04°

sgn(α∆~x∆~v) = −1
τ = −0.16 s

~xk = (1.25, 3.26)
~vk = (15.2,−4.36)
~xl = (−1.25,−3.26)

~vl = (15.2, 0)

015

S11 SC11

mr-no mo-on

dmin = 5.25
αvv = −16.04°

sgn(α∆~x∆~v) = −1
τ = 0.39 s

~xk = (−2.62,−3.35)
~vk = (13.3, 3.83)
~xl = (2.62, 3.35)
~vl = (13.3,−0)

S11 SC11

mr-no mo-on

dmin = 6.50
αvv = −48.13°

sgn(α∆~x∆~v) = −1
τ = 0.70 s

~xk = (−3.25,−2.75)
~vk = (9.25, 10.3)
~xl = (3.25, 2.75)
~vl = (9.25, 0)

S11 SC291

mr-no mo-bn

dmin = 6.50
αvv = 16.04°

sgn(α∆~x∆~v) = −1
τ = −0.49 s

~xk = (3.25, 2.75)
~vk = (13.3,−3.83)
~xl = (−3.25,−2.75)

~vl = (13.3,−0)

S13 SC11

mr-po mo-on

dmin = 4.00
αvv = −48.13°

sgn(α∆~x∆~v) = −1
τ = 0.43 s

~xk = (−2,−3.76)
~vk = (9.25, 10.3)
~xl = (2, 3.76)
~vl = (9.25, 0)

S13 SC291

mr-po mo-bn

dmin = 4.00
αvv = 16.04°

sgn(α∆~x∆~v) = −1
τ = −0.30 s

~xk = (2, 3.76)
~vk = (13.3,−3.83)
~xl = (−2,−3.76)
~vl = (13.3, 0)

016

S13 SC11

mr-po mo-on

dmin = 4.50
αvv = −16.04°

sgn(α∆~x∆~v) = −1
τ = 0.32 s

~xk = (−2.25,−2.69)
~vk = (14.1, 4.04)
~xl = (2.25, 2.69)
~vl = (14.1,−0)

S13 SC11

mr-po mo-on

dmin = 3.50
αvv = −48.13°

sgn(α∆~x∆~v) = −1
τ = 0.36 s

~xk = (−1.75,−3.04)
~vk = (9.76, 10.9)
~xl = (1.75, 3.04)
~vl = (9.76,−0)

S13 SC291

mr-po mo-bn

dmin = 3.50
αvv = 16.04°

sgn(α∆~x∆~v) = −1
τ = −0.25 s

~xk = (1.75, 3.04)
~vk = (14.1,−4.04)
~xl = (−1.75,−3.04)

~vl = (14.1, 0)

S11 SC11

mr-no mo-on

dmin = 5.50
αvv = −48.13°

sgn(α∆~x∆~v) = −1
τ = 0.56 s

~xk = (−2.75,−2.18)
~vk = (9.76, 10.9)
~xl = (2.75, 2.18)
~vl = (9.76,−0)

S11 SC291

mr-no mo-bn

dmin = 5.50
αvv = 16.04°

sgn(α∆~x∆~v) = −1
τ = −0.39 s

~xk = (2.75, 2.18)
~vk = (14.1,−4.04)
~xl = (−2.75,−2.18)

~vl = (14.1, 0)
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abstract partition scheme, 178
alignable differences, 49
alternative category, 165
antiparallel, 142
areal velocity, 235
associative boolean algebras, 180
attention weights, 44
attributes, 94

back crossing, 142
base relations, 67, 178
basic level, 59
beaded story-based categorizations, 146
beaded categories, 145
binary attributes, 38
binary features, 43
bottom-up, modelling method, 90
boundary models, of categorization, 54

cardinal features, 43
categorical region, 89
categories set, 19, 88
categorization, 36
categorization rule, 36, 89
category, 35, 36
central tendency, 38
centrality, 38
characteristic, feature, 94
classical model, 36
closed class, 82
closest-topological-relationship-graph, 113
clustering, categorization method, 51
cognitive adequacy, 157
cognitive economy, 23
cognitive linguistics, 80
cognitive modelling, 157
cognitive plausibility, 62
cognitive validity, 157

cognitively plausible, 157
common features, in nominal models, 48
common taxonomic, categories, 38
comparison stimuli, 158
complementary category, 50
composite relations, 67, 178
composition, 63, 68, 185
composition operator, 68
composition path, 189
composition table, 64
concept, 35
conceptual cognitive plausibility, 158
conceptual neighbourhood diagram, 112
conceptual neighbourhood diagrams, 63
conceptual plausibility, 158
conceptually meaningful borders, 54
consistent, spatial information, 63
constraint satisfaction techniques, 63
context model, of categoriz., 50
continuity network, 113
continuous attributes, 37
continuous transformations, 107
contrast model, of categorization, 48
converse, in qualitative calculi, 179, 180
converse, of a spatial relation, 62, 63, 68
corner inequality, 46
crossing angle, 142
crossing delay, 142
crossing precedence, 235

decision-making, with qualit. relat., 207
defining, feature, 94
diagnostic, feature, 52, 94
differentiation, between categories, 59
dimensional model, of categorization, 44
direct transition, between relations, 111
directed tangent line, 215

249
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disciplinary fragmentation, 30
discrete dissimilarity, 102
disjunction operation, 67
dissimilarity function, 41
distinctive features, 48
distinctiveness, of categories, 59
dominance diagrams, 113
dominance theory, 113
dominance topology, 115

embedded, cognitive approach, 25
exemplar model, of categoriz., 50
exemplar, category element, 50
experimental set, 170
experimental similarities, 161
extensional, definition of categorization, 89

familiarity, of a category member, 38
family resemblance, 39, 100
featural categorization rule, 92
featural coordinates, 93
featural distance, 44
featural framework, 94
featural story map, 132
featural variables, 91
feature(-al) space, 24, 44, 91
features, 91, 94
features extraction function, 91
figure, in a spatial relation, 62, 80
finite sequences, of relations, 110
frequency, of a category member, 38
front crossing, 142

generalization, of categories, 58
generalized context model, of categoriz., 50,

51
genuine, qualitatitve motion repres., 72
geometric model, of categorization, 43, 44
gestalt principles of organization, 125
Gestalt psychology, 125
good continuation, grouping law, 125
grammatical terms, 82
granularity, of a qualit. repres., 66
ground, in a spatial relation, 62, 80
grouping laws, 125

hierarchical taxonomy, of categories, 56
hybrid motion representation, 78

ideal, typical member, 38

identity effect, 176
indirect transition, between relations, 111
inferences, in category hierarchies, 58
inferential cognitive plausibility, 158
inferential plausibility, 158
infinite sequences, of relations, 110
informativeness, of categories, 58
integral dimensions, features, 44
intensional, definition of categorization, 89
inverse, in qualitative calculi, 179
inverse, of a spatial relation, 62, 63, 68
is-a, relation, 56
item dominance, 37

judgement function, 44

kinematic coordinates, 89
kinematic space, 89
kinematic variables, 89

law of common fate, 125
length, of a relations seq., 110
levels of abstraction, of categories, 58
lexical terms, 82
linearly separable domain, 51
located object, 62

MDS, multidimensional scaling, 52
meaningful borders, 55
measure of multiplicativity, for qual. repr.,

77
membership, of a category, 38
memory, experimental set-up, 159, 170
mental space, 45
metaphysics, 60
metric model, of categorization, 43, 44
mixture model, of categorization, 52
modified stimuli, 159, 165
motion categorization, 89
motion representation, 177
motion scenarios, 18, 105
motion state, 88, 115
Motion-OPRA1, 149
Motion-RCC, 147
Motion-R, 127, 146
Motion-RCC×Motion-OPRA1, 200
multidimensional scaling, categorization

model, 43
multidimensional scaling, technique, 41, 52
multiple entities, motion categorization, 209
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multiplicative similarity, 45
multiplicative, representations, 76

narrative composition, 21, 186, 187
narrative composition matrix, 188, 190
neural networks, 94
nominal features, 43
non-alignable differences, 49
non-linearly separable domain, 52
non-motion non-position state, 115

ontology, 58, 60
open classes, 82
or, operation, 67
ordinal features, 43
ordinal scale, 41

parallel, 142
partition, of a qualitat. repres., 67
path representation, 72
perception, experimental set-up, 159, 170
position component, 146
position scenario, 105
position space, 105, 106
position state, 115
prepositions, 62
primary object, 62
probabilistic model, of categorization, 50
product representation, 74
prototype, 50
prototype model, of categorization, 37, 50
prototypical items, 37
prototypicality, 37
proximity, similarity or dissimilarity, 41
psychological distance, 44
psychological space, 44
psychological validity, 157
punctual relations, 191, 192

qualitative calculus, 180
qualitative map, 107
qualitative motion representations, 71
qualitative relation, 35
qualitative representation, 35
qualitative spatial calculi, 63
qualitative spatial relation, 63, 67, 106
qualitative spatial representation, 63, 105
qualitative trajectory, 108
qualitative transformation, 108

ranking, of similar items, 42
rating, of similar items, 42
RCC, 64
realizable, temporal sequence, 112
reasoning, with qualitat. relations, 63, 179,

207
reference category, 165
reference object, 62
reference stimulus, 158, 165
Region Connection Calculus, RCC, 64
regular space, dominance, 115
relation algebras, 180
relation(s), qualitative, 67, 178
relations, 61
relative speed, 142
rigid regions, 19
rigid story, 125

self-density, 93
semantic space, 45
semi-associative boolean algebras with

converse involution, 180
semi-associative relation algebra, 180
separable dimensions, features, 44
set of prefixes, for narrative compos., 188
side axis limit, 142
sign symbol function, 96
similarity, 41
similarity function, 40
similarity ratios, 161
single-motion space, 178
singleton story, 125
spatial categories, 61
spatial categorizations, 61, 63
spatial map, 105, 106
spatial relation(s), 61, 63, 67
spatial, categorization model, 43
specialization, of categories, 58
specificity, of categories, 58
stimuli set(s), 161, 165
stories, 80
stories set, 120
Stories-OPRA1, 128
Stories-RCC, 128
Stories-R, 127, 128
story, 120, 146
story component, 146
story map, 119
story-based, 121
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story-based categorizations, 21
story-based representations, 80
strong composition, 180
strong converse, 179
subcategories, 56
substring composition, 188
supercategory, 56

tangent line, 215
taxonomy, of categories, 56
temporal sequence of qualitative relations,

107
three-entities representation, 209

top-down, modelling method, 90
transition graph, 113
typical, catgory item, 37
typicality, 37

universal law of generalization, 44
universe, of a qualitative calculus, 178
unrealizable, temporal sequence, 112
utility ratio, 158

weak composition, 180
weak converse, 179
weakly associative boolean algebra, 180
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