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Abstract

Traffic congestion is a major challenge in the transport industry, affecting both the
economy and environment. Designing efficient and sustainable transport models
requires a multifaceted approach. One of these facets is extracting optimal trajectories
for each passenger type, a task well-addressed by the principles of optimal transport
theory. By leveraging optimal transport principles, we can model passenger flows in
networks to reduce congestion. However, recent research based on optimal transport
overlooks crucial factors such as environmental impacts, multilayer transport
network analysis, and fails to consider practical constraints such as road capacity
limitations.

In response to these gaps, this thesis introduces optimal transport-based methods
for modeling flows within multilayer transport networks, with a primary focus
on addressing congestion and optimizing traffic flow. Additionally, we extend the
application of optimal transport theory to tackle community detection problems
within networks. This broader scope allows us to not only enhance our understanding
of traffic dynamics but also explore diverse applications of optimal transport in
networks.

First, we propose efficient methods, based on optimal transport theory, for modeling
passenger flows within multilayer transport networks. Our approach generates both
distributed and single-trajectory flows for each passenger types, and shows how
these trajectories can alleviate traffic congestion and reduce CO2 emissions. Second,
to address the limitation of existing methods on realistic constraints in transport
network, we delve into a constrained framework. This framework accommodates
nonlinear and non-convex constraints within optimal transport problems, providing
a computationally efficient tool for minimizing congestion. As an application, we
consider real multilayer transport networks where each layer is associated with a
different transport mode, and show how the traffic distribution varies with relevant
quantities (such as transport regime, origin-destination pairs, imposed constraints,
etc.) across layers.

Lastly, we present an optimal transport-based approach for detecting communities in
networks. By incorporating the Ollivier-Ricci curvature, our model provides various
transport regimes that allow for better control of information flow between node
neighborhoods. The algorithm not only exhibits improved accuracy in identifying
communities, but also outperforms conventional OT-based methods, providing
deeper insights into geometric approaches to analyzing complex networks.



Overall, the methods presented in this thesis enhance our understanding of traffic
dynamics within multilayer transport networks, provides valuable insights that
contribute to sustainable transport systems. By addressing congestion through
optimal transport-based approaches, we pave the way for more efficient and envi-
ronmentally friendly transport systems. Furthermore, extending the application
of optimal transport to community detection problems highlights its versatility in
analyzing complex networks beyond transportation networks.

ix



Zusammenfassung

Verkehrsüberlastung ist eine große Herausforderung für die Verkehrsbranche, die
sowohl die Wirtschaft als auch die Umwelt beeinträchtigt. Die Entwicklung effi-
zienter und nachhaltiger Verkehrsmodelle erfordert einen vielschichtigen Ansatz.
Eine dieser Facetten ist die Extraktion optimaler Trajektorien für jeden Passagiertyp,
eine Aufgabe, die durch die Prinzipien der opti- malen Verkehrstheorie gut gelöst
wird. Durch die Nutzung der Grundsätze des optimalen Verkehrs können wir die
Passagierströme in Netzwerken modellieren, um Staus zu verringern. In der jüngsten
Forschung zu den Grundlagen des optimalen Verkehrs werden jedoch entscheidende
Faktoren wie die Auswirkungen auf die Umwelt und die Analyse mehrschichti-
ger Verkehrsnetze außer Acht gelassen, und praktische Einschränkungen wie die
begrenzte Straßenkapazität werden nicht berücksichtigt.

Als Antwort auf diese Lücken werden in dieser Arbeit Methoden zur Modellierung
von Verkehrsflüssen in mehrschichtigen Verkehrsnetzen vorgestellt. Diese basieren
auf optimalem Transport. Dabei liegt der Schwerpunkt auf der Bewältigung von
Verkehrsüberlastungen und der Optimierung des Verkehrsflusses. Darüber hinaus
erweitern wir die Anwendung der Theorie des optimalen Transports, um Pro-
bleme der Erkennung von Gemeinschaften in Netzwerken anzugehen. Durch diese
Erweiterung können wir nicht nur unser Verständnis der Verkehrsdynamik verbes-
sern, sondern auch neue Anwendungen des optimalen Transports in Netzwerken
erforschen.

Zunächst schlagen wir effiziente, auf der Theorie des optimalen Transports ba-
sierende Metho- den zur Modellierung von Passagierströmen in mehrschichtigen
Verkehrsnetzen vor. Unser Ansatz generiert sowohl verteilte als auch einzelne Tra-
jektorien für jeden Passagiertyp und zeigt, wie diese Trajektorien Verkehrsstaus
entschärfen und CO2-Emissionen reduzieren können. Zweitens: Um die Beschrän-
kung bestehender Methoden auf realistische Beschränkungen in Verkehrsnetzen
zu beheben, haben wir einen Rahmen mit Beschränkungen entwickelt. Dieser Rah-
men berücksichtigt nichtlineare und nichtkonvexe Beschränkungen in optimalen
Verkehrsproblemen und bietet ein rechnerisch effizientes Instrument zur Minimie-
rung von Staus. Als Anwendung betrachten wir reale mehrschichtige Transport-
netze, bei denen jede Schicht mit einem anderen Transportmodus verbunden ist,
und zeigen, wie die Verkehrsverteilung mit einigen Größen (wie z.B. Transportre-
gime, Start-Ziel-Paare, auferlegte Beschränkungen usw.) über die Schichten hinweg
variiert.

Schließlich stellen wir einen optimalen Transport-basierten Ansatz zur Erkennung



von Gemein- schaften in Netzen vor. Durch die Einbeziehung der Ollivier-Ricci-
Krümmung bietet unser Modell verschiedene Transportregime, die eine bessere
Kontrolle des Informationsflusses zwischen den Nach- barschaften der Knoten
ermöglichen. Der Algorithmus weist nicht nur eine verbesserte Genauigkeit bei
der Identifizierung von Gemeinschaften auf, sondern übertrifft auch herkömmliche
OT-basierte Methoden und bietet tiefere Einblicke in geometrische Ansätze zur
Analyse komplexer Netzwerke.

Insgesamt verbessern die in dieser Arbeit vorgestellten Methoden unser Verständnis
der Verkehrs- dynamik in mehrschichtigen Verkehrsnetzen und liefern wertvolle
Erkenntnisse, die zu nachhaltigen Verkehrssystemen beitragen. Indem wir Staus mit
Hilfe von auf optimalem Verkehr basierenden Ansätzen angehen, ebnen wir den Weg
für effizientere und umweltfreundlichere Verkehrssysteme. Darüber hinaus wird
durch die Ausweitung der Anwendung des optimalen Verkehrs auf Probleme der
Gemeinschaftserkennung seine Vielseitigkeit bei der Analyse komplexer Netzwerke
über das Verkehrsnetz hinaus deutlich.

xi
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Introduction 1

In this cumulative thesis, I present the summary of my Ph.D. study through the
presentation of four papers. Of these, three are first-author contributions (cited
as [36–38]) and one is a collaborative paper [48], all published during my study
with the Physics for Inference and Optimization group at the Max Planck Institute for
Intelligent Systems, Tübingen.

1.1 Overview and motivation

Traffic congestion is a growing problem around the world due to its impacts on the
economy (such as cost and less productivity) and the environment (such as carbon
emission). Traffic congestion is estimated to cost around e3.9 billion in Germany,
£9.5 billion in the UK, and $81 billion in the US [58], taking into account both
additional fuel consumption and hours lost due to congestion. Recent research still
lacks some important factors, such as i) solving this problem without considering the
environmental impact, ii) without using a real transport network, and iii) without
considering realistic constraints such as the use of roads with a limited capacity
of vehicles traveling at the same time. Given the challenges of congestion, it is
important to explore realistic strategies to alleviate this problem. The relevant
question remains: how can we simultaneously decrease costs, enhance efficiency,
and alleviate congestion within transport systems?

Designing reliable and efficient transport systems requires a multi-faceted approach.
One of these facets is to provide multimodal transport systems to reduce depen-
dence on one mode of transport. This multimodal system, depending on the city
infrastructure, can either have individual infrastructure (for example bus and tram
system with individual paths), or shared infrastructure (the bus and tram networks
having shared infrastructure at several points). Expanding infrastructure can al-
leviate congestion but this also incurs it own monetary and environmental costs
[59]. Another facet is to implements coordinated routing systems for individual
passengers [51], considering that passengers may not always choose the shortest
route but rather the most convenient one [61, 79]. While the implementation of
coordinated routing systems reduces congestion and environmental costs [22, 54,
77], it also leads to a corresponding increase in the average path length traveled by
passengers [76].

Several approaches have tackled the congestion problem by using various methods
to generate routes for each passenger. These methods include the shortest path



2 Chapter 1 Introduction

minimization [6, 47, 69, 70], diffusion processes [17, 18, 33, 34], assignment strategies
[32], adaptive dynamics [35, 63, 73] and other physics of complex systems approaches
[46, 64, 68, 78].

However, these approaches did not (sufficiently) describe some important scenarios,
such as i) the impact of multilayer networks on traffic and their potential for
optimizing congestion, ii) the potential for reducing environmental costs, and iii)
instances where transport flows on network edges (i.e., roads) are restricted by
capacity constraints, resembling real-world scenarios where roads have limited
capacity. To address these scenarios, we develop algorithm relying on the optimal
transport theory [41]. Optimal Transport (OT) has been used to model and optimize
various transport networks, including the network design [5, 63, 73] and traffic
flow [9, 10, 49]. These methods, suitable for both single-layer [50] and multilayer
transport networks [37], provide a principled and computationally efficient approach
to solving transport problems within network structures.

While previous algorithms aimed at alleviating congestion have made strides, there
remains a significant gap in understanding how an efficient tool such as optimal
transport, can be effectively employed to reduce congestion. The current body of
research lacks a comprehensive exploration of the interplay between multilayer
transport networks, optimal transport with realistic constraints, and environmental
factors. Bridging this gap is the main motivation behind this thesis, seeking to unravel
and showcase the connections that can minimize traffic congestion. More concretely,
this thesis addresses the following: i) we develop methods for extracting flows in
a multilayer transport network [36, 37] and how these methods ease congestions
and environmental costs, ii) we develop a principled physics-based approach to
impose constraints flexibly in optimal transport problems [38], and iii) beyond
transportation networks, we address community detection problem by developing
a dynamical OT method to group nodes based on the encoded information [48].

1.2 Outline

The remainder of the thesis is structured in four chapters as follows.

Chapter 2 lay the groundwork, providing the essential background and preliminaries.
Section 2.1 introduces graphs and how transport networks can be represented.
Section 2.2 describes the two main quantitues associated with network edges and
relevant for the proposed OT models. Section 2.3 describes the general adaptive
dynamics for multilayer networks, and the multilayer transport cost function is
describe in Section 2.4.
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Chapter 3 describes the real challenges and motivates why we address them.
Section 3.1 describes the complexities of multilayer transport network. Section 3.2
and Section 3.3 focuses on optimal transport-based approaches. Section 3.2 describes
the challenges of having a distributed trajectory for each passengers, and Section 3.3
discusses the lack of realistic constraints on the classical OT methods.

Chapter 4 is a central hub that summarizes the published papers, suggested reading
order and contribution. This section includes the following papers:

I A. A. Ibrahim, A. Lonardi, and C. D. Bacco. “Optimal transport in multilayer
networks for traffic flow optimization”. Algorithms 14.7 (2021). [37]

I A. A. Ibrahim, D. Leite, and C. De Bacco. “Sustainable optimal transport in
multilayer networks”. Physical Review E 105.6 (2022). [36]

I A. A. Ibrahim, M. Muehlebach, and C. De Bacco. “Optimal transport with
constraints: from mirror descent to classical mechanics”. Physical Review Letters

133 (2024). [38]
I D. Leite, D. Baptista, A. A. Ibrahim, E. Facca, and C. De Bacco. “Community

Detection in networks by Dynamical Optimal Transport Formulation”. Scientific

Reports 12 (2022). [48]

Chapter 5 discusses the findings of this thesis, based on the published articles, as
well as their impacts on the development of optimal transport.



2 Background

This chapter introduces the relevant concepts to provide the reader with the general
knowledge to understand the context, relevance and importance of the contributions
of each paper.

The following notations will be used throughout this chapter. The set of traffic
demands or masses is denoted as ( = {(>0 , C0)}, and |( | = " is the number of
masses. The Euclidean length of an edge 4 is represented with !4 .

2.1 Transport networks as Graphs

A single-layer network is a transport network that represents a single mode of
transport. It can represent a bus or metro network in a city. Single-layer networks
can be used to understand traffic dynamics, for example, [16, 49, 50, 59] used a
single-layer network to study traffic flow. A single-layer network can be defined as a
graph G(N, E), where N and E represent the set of nodes and edges in graph G. A
single-layer graph can be either directed or undirected. The information in graph G

can be encoded in an adjacency matrix � of N ×N dimensional, with entries:

�DE =

{
1 if there is edge between nodes D and E

0 otherwise .
(2.1)

If G is an undirected graph, the adjacency matrix can be defined as �DE = 1 if and
only if �ED = 1, that is, �DE = �ED = 1.

A multilayer graph on the other hand represents multiple modes of transport that
is combined into one framework. Unlike single-layer, representing a multilayer
network as a graph requires more parameters. A multilayer graph can be defined
as graph Ḡ({N
}
 , {E
}
 , {E
�}
�), where N
 and E
 represent the set of nodes
and edges in layer 
, and E
� is the set of edges connecting shared nodes between
layer 
 and �. There are two types of edges in a multilayer network; intralayer and
interlayer edges1. One can represent a multilayer network with two tensors; the
intralayer tensor, denoted with �


DE is the adjacency for intralayer edges. �

DE = 1

indicates there is a connection between nodes D and E in layer 
, and �

DE = 0

1 Intralyer are edges within a layer. Interlayer edges are edges connecting different layers. For example,
an inter-layer edge can be thought of as the stairs that connect the subway entrance to the train
station entrance.
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otherwise. Then the interlayer tensor, written as �
�
DE is the adjacency between layers,

where �

�
DE = 1 indicates connection between nodes D and E in layers 
 and �, and

�

�
DE = 0 otherwise. Fig. 2.1 depicts an example of a multilayer network where the

adjacency matrix of each layer is combined into a large framework referred to as the
Supra-adjacency matrix.

To determine the number of nodes and edges, the total set of nodes and edges in a
single-layer network are # = |N | and � = |E |, respectively, whereas in a multilayer
graph, there are # =

⋃

 |N
 | nodes and � = (

⋃

 E
)

⋃
(
⋃


� E
�) edges.

Figure 2.1: Example of multilayer graphs. (Left-Middle) represents the supra-adjacency for each
layer. (Right) A multilayer graph with N
 = 20 and

∑

 E
 = 119 edges.

Multilayer networks play a crucial role in traffic congestion by taking into account
the interactions between different layers, these networks offer the possibility of
fine-tuning traffic flows. This multilayer configuration not only improves the overall
efficiency of transport systems, but also contributes to a more balanced distribution
of traffic. Furthermore, a multilayer network approach goes beyond traditional
methods and provides a framework that is realistic and adaptable. This approach
will be instrumental in gaining a comprehensive understanding of the dynamics of
traffic congestion and, consequently, in formulating reliable methods to reduce it.
The adaptability of the multilayer framework ensures that interventions and policies
can be tailored to specific challenges, making it an invaluable tool in the quest for
sustainable and efficient transport systems.

2.2 Flux and Conductivity

We now describe two main quantities associated with network edges that would be
relevant for modeling with optimal transport:
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i) the passenger flux denoted as &0
4 , to represent the volume of passenger type 0

traversing a given edge 4, and
ii) conductivities denoted as �4 , these are proportional to the size of an edge 4.

The conductivity plays a crucial role in regulating the passenger flux passing
through an edge 4.

To express this mathematically, the flow of mass type 0 traveling along an edge
(D, E) can be defined as:

&0
D,E :=

�D,E

!D,E

(
?0D − ?0E

)
0 ∈ (, (D, E) ∈ � , (2.2)

where �D,E and !D,E denote the conductivity and length of edge 4 = (D, E), respec-
tively. The quantities ?0D and ?0E are the pressure potentials of mass of type 0 at nodes
D and E, respectively. The flow & in Eq. (2.2) can be written in matrix notation as:

& = � · !−1 · � · % , (2.3)

with � and ! denoting the diagonal matrices of conductivity and length, respectively.
Potential % is a ℝ#×" matrix and & ∈ ℝ

�×" ; � ∈ ℝ
#×� are the entries of the signed

network incidence matrix of undirected Ḡ:

�E4 =





1 if node E is the start of 4 ,

−1 if node E is the end of 4 ,

0 otherwise .

(2.4)

The quantities ! and matrix � are given by the input multilayer graph Ḡ. The main
goal is to determine the quantities � and %, that in turn determine the fluxes &, as
we show below.
Kirchhoff’s law can then be defined as follows:

�) · & = ( , (2.5)

where ( is a source matrix such that
∑

E (
0
E = 0. By substituting Eq. 2.3 into Eq.

2.5, the relationship between % and ( are established as follows:

�) ·
(
� · !−1 · � · %

)
= ( , (2.6)

and to determine the %, the solution is obtained as

% =
(
�) · � · !−1 · �

)†
· ( , (2.7)
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with † denoting the Moore-Penrose pseudoinverse. When the value of � is given
and % is obtained using Eq. (2.7), one can now compute the flux & with % and � as
follows:

& = � · !−1 · � ·
(
�) · � · !−1 · �

)†
· ( . (2.8)

Eq. (2.8) shows the relationship between & and �, indicating that one quantity can
influence another: large conductivity leads to higher flux of an edge, and vice versa
[73]. This mechanism has been widely used in various networks [4, 42, 63, 73]. An
example of a transport network with two traffic demands is depicted in Fig. 2.2.

Figure 2.2: An example of a multilayer transport network. Layer 1 with 300 nodes is highlighted in
blue and layer 2 with 60 nodes is highlighted in red. One passenger type is highlighted ( = {(>1 , C1)}.
The trajectory of passenger type; (>1 , C1) is indicated with arrow from the green triangle-shaped
(source) node to the triangle-shaped magenta (destination) node. The trajectory of (>1 , C1) uses edges
from both layers.

2.3 Adaptative Dynamics

Assuming that �4 relies on &4 , the adaptation equation for conductivity evolution
�4(t) is defined as:

3(�4)

3C
= ℎ(|&4 |) − �4 , (2.9)

with | · | denoting absolute value. The term ℎ(|&4 |) is a positive feedback mechanism
between flux and conductivity and describes a relationship where the behavior of �4

influences the flux &4 . The original model of Eq. (2.9), described in [73], considered
two functional forms ℎ(|&4 |); ℎ(|&4 |) = (|& |)G and ℎ(|&4 |) = |&4 |

G/(1 + � |&4 |
G),

with G > 0 and � is a constant. Instead, we consider a regularized ℎ(|&4 |) to
capture different transport regimes. Specifically, we define ℎ(|&4 |) = | |&4 | |

2

2
. We
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then re-define Eq. (2.9) more concretely, the adaptive dynamics is as follows:

3(�4)

3C
= �

�@4−2

4 | |&4 | |
2

2
− �4 ≡ �

�@4
4

∑
0(?

0
D − ?0E)

2

!2
4

− �4 , 4 ∈ �
 , 0 ∈ ( , (2.10)

where �@4 ∈ (0, 2) is a regularization parameter to study different transportation
scenarios, with @4 ≡ @4(
) takes value @4 = 
 for every 4 ∈ �
 and 
 ∈ �. We have
�@4 ∈ (0, 2) which plays a critical role in governing the desired optimal transport
dynamics within the system. When �@4 < 1, it imposes a penalty on traffic congestion
by favoring the distribution of paths across a greater number of edges. Conversely,
for �@4 > 1, the system encourages the consolidation of paths onto fewer highways.
In this context, when �@4 = 1, the transportation regime resembles that of the shortest
path, emphasizing the minimization of travel distance. Constant �@4 therefore serves
as a tuning parameter, allowing for the adjustment of the transportation behavior in
the network model, with different values influencing the trade-off between path
distribution, consolidation, and adherence to the shortest path paradigm.

The dynamics described in Eq. (2.10) can be demonstrated to accommodate a
Lyapunov function:

L�@4 :=
1

2

∑

0

∑

E

?0E(�)(0
E +

1

2�

∑

4

!4�
�
4 , 0 ∈ ", E ∈ #, 4 ∈ � , (2.11)

that combines the cost of operating the network (first term of Eq. (2.11)) and the cost
of building the infrastructure (second term of Eq. (2.11)) [38, 49]. Here we define
� = 2 − �@4 .

While Eq. (2.10) is designed for a multilayer network, one can equally adapt this to
a single layer network by replacing �@4 with a constant �, see [49, 50]. In general,
the adaptive dynamics Eq. (2.9) has been used in various areas [35, 39, 62, 63].
Specifically, [39] modified Eq. (2.9) by adding a control term to a fraction of edges in
the network, to improve the solution of the dynamics. Ref. [31] added a constrained
additive noise to the dynamics and showed that stochastic dynamics can boost
transport on a nonlinear network. Also, [38] generalizes Eq. (2.10) by imposing
arbitrary constraints on the dynamics.

2.4 Transport cost

Minimizing transport costs within our model is crucial as it increases efficiency,
promotes competitive advantage, reduces environmental impact and ultimately
contributes to a sustainable and realistic transport system. One efficient way is
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to adopt the regularized Monge–Kantorovich optimal transport [41], which have
proved to be efficient [3, 10, 27, 30, 40, 43, 44, 65].

Generalizing [15, 35, 39, 43, 50, 63], the total transport cost is defined as:

min
�∈ℝ�×" ,&∈ℝ�×"

{
1

2

∑

4∈�

F4!4

�4
| |&4 | |

2

2

}

, (2.12)

and the constraints:

∑

4∈�

!4�
�
4 = �� , (Material Cost) (2.13)

∑

4∈�

�E4&
0
4 = (0

E . (Local Kirchhoff) (2.14)

Here we have � = 2 − �@4 , � > 0 is a fixed constant and the parameter F4 ∈ [0, 1],
F4!4 is proportional to time needed to travel along edge 4. The quantity &4 is
defined per traffic demand 0 ∈ ", and requires in the optimization setup to adopt
2-norm | |&4 | |2 [49]. One can equally define the flux & for one traffic demand [3, 9].
The description of �@4 is the same as in Section 2.3. The cost constraint Eq. (2.13) is
the amount of material available to build the multilayer transport network, and Eq.
(2.14) ensures mass conservation.

The constrained optimization setup in Eq. (2.12) to (2.14), is equivalent to the
minimization problem:

�Γ(�@4 ) =
∑


∈�

∑

4∈�

F4!4 | |&4 | |
Γ(�@4 )

2
, (2.15)

where Γ(�@4 ) = 2�/(1 + �), and | | · | |2 is computed over "− entries of each &4 . The
overall transport cost in Eq. (2.15) is defined for a multilayer network. In analogous
to a single-layer network, the settings: F4 = 1 and �@4 as � in Eq. (2.15) gives the
same cost function as in [49].



3 Challenges

This chapter describes in detail the challenges this thesis tackles, grouped under three
themes; i) multilayer transport network, ii) paths distribution and iii) constrained
adaption dynamics.

3.1 Multilayer transport network

A multilayer network is a type of complex network in which multiple graphs or
layers are combined to form a single entity or framework. Multilayer networks have
been widely used to study different complex systems including; communication
networks [60, 81], ecological networks [57], community detection problems [14]
transport networks [1, 18, 24, 70, 71], epidemic spreading [12, 20, 66] and climate
science [23]. Multilayer networks, as studied in various works [2, 7, 8, 45], provide
a valuable approach to studying complex transport systems involving multiple
modes.

When analyzing a multilayer transport network, one of the challenges is the dynamic
interactions between the various transport layers and the unpredictable behavior of
passengers. In a real scenario, passengers switch between transport modes based
on personal preferences, traffic conditions, or unforeseen events like accidents or
road closures. The inherent complexity of passengers’ decision-making and mode-
switching behavior introduces an additional layer of complexity to the analysis of
traffic congestion in multimodal systems.

Developing an algorithm to generate optimal routes and addressing the challenges
of multilayer transport networks requires a robust approach. Some existing literature
[18, 32, 52, 70, 80] on multilayer networks described methods to extract passengers
trajectories. De Domenico et al [18] addresses the assessment of navigability in
multilayer networks, focusing on the impact of random failures. Using random
walks, the study provided insights into the design of effective search and navigability
strategies in a multilayer transport network. Morris and Barthelemy [52] introduced
a utility measure, named coupling1, to capture essential features in a multilayer
network. The study considers not only the topological aspects of a multilayer
network but also the distribution of sources and sinks and the method of route
allocation, using shortest-path minimization. Overall, the study shows that coupled

1 Coupling in a multi-layer transport network emphasizes the interconnected nature of different
transport modes and their mutual influence on each other.
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multilayer systems exhibit behavior that is highly dependent on the interplay
between coupling and randomness in the source-sink distribution. Solé-Ribalta et al

[70] addresses the problem of congestion in multilayer networks, focusing on the
complex connectivity of multilayer transport networks. The research analytically
proves that the structure of multilayer networks can induce congestion in transport
flows. Gao et al [32] introduced a flow assignment strategy tailored to multilayer
networks and the contribution of [80], which develops a recurrent algorithm designed
for communication networks.

Beyond these methods, efforts have been made to design efficient and principled
approaches, relying on optimal transport theory principles, to extract optimal routes
for multiple passengers on both single [4, 5, 10, 49] and multilayer [37] transport
networks.

In Section 4.1, we propose MultiOT; an efficient optimal transport-based method for
modeling optimal flows in multilayer networks. MultiOT addresses a broader scope
of transport cost minimization and involves a regularized formulation derived from
the Monge-Kantorovich optimal transport problems [41].

Section 3.2 and Section 3.3 will now focus on the challenges of optimal transport-
based approaches.

3.2 Paths distribution

Methods relying on the principles of optimal transport (OT) have been used to
model various aspects of transport networks, including the network design [5, 63,
73] and traffic flow [9, 10, 37, 49]. These researches have shown that OT-based
methods guarantee a principled and computationally efficient way of solving traffic
congestion problems on multilayer transport networks (also valid on single-layer).

In the standard OT methods, the flows can be generated either per passenger types
(traffic demand2) or for all traffic demands at once without distinguishing the
passenger types. Empirical results have shown that routes generated from the OT
method tend to generate distributed trajectories for passengers of the same type. This
approach achieves optimal distribution of passengers across the network ensuring
reduced traffic congestion, and may not pose a problem in a single transport mode.
However, in a multilayer scenario, distributing the trajectories of passengers of the
same type to different layers may no longer be optimal. To address the challenges

2 a traffic demand means one origin-destination pair or one passenger type. Passengers of the same
type are passengers with the same origin and destination. We have multiple passengers traveling
on the network.
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of path distribution in multilayer settings, there’s a need to develop an alternative
algorithm that mimics the Dĳkstra approach [21] but relies on OT principles.

Section 4.2 of this thesis propose MultiOTsp that interpolates between classical OT
and shortest-path minimization approaches. Similar to Dĳkstra, MultiOTsp generates
a single path for every passenger of the same type. The optimal trajectories of
MultiOTsp are significantly different from those obtained by Dĳkstra, which are
independent of the surrounding environment. Additionally, three relevant properties,
using a multilayer transport network, were discussed to critically investigate the
routes generated by MultiOTsp in comparison with MultiOT and Dĳkstra. These
properties include: the length of the generated paths, the amount of carbon generated
following these paths, the traffic encountered on these paths, and the overall transport
cost to navigate these routes.

3.3 Constrained dynamics

Over the last few decades, a wide range of transport systems have been successfully
modeled using optimal transport, from biological networks such as leaf veins and
blood vessels [63, 72] to engineering networks [50] such as urban transport or
communication networks. In this context, adaptive dynamics are used to describe
how conductivities, flow and pressure potentials evolve interdependently to form an
optimal network structure (see Section 2.3), and have been used to study a various
transport scenarios [15, 35, 43, 44, 63], and have been shown to explain with a high
degree of similarity to observed real networks [73]. Additionally this approach has
shown to be principled [26, 75] and computationally efficient [28, 56].

However, current approaches based on adaptative dynamics fall short on realistic
constraints, beyond the standard constraints such as conservation of mass and
positivity, as part of the general framework. As a result, the network generated
by these models can be unrealistic3 in practice without the inclusion of relevant
constraints, such as constraints on the global network infrastructure or imposing edge
capacity constraints. The main challenge preventing the natural incorporation of
constraints into the current OT framework is that first-order methods for constrained
optimization (e.g. projected gradient descent) are only effective when the feasible
set has a very simple structure, such as a low-dimensional hyperplane or Euclidean
norm ball, where projections can be evaluated in closed form.

3 Tendency for traffic to concentrate on a few edges, potentially deviating from a structurally feasible
distribution. For example, one can consider a monocentric destination for all passenger types. This
concentration could lead to suboptimal utilization of the transport network.
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Section 4.3 of this thesis addresses this flaw, by introducing a constrained dynamics
that imposes arbitrary constraints on the adaptive dynamics. In addition, we show
three examples where analytical solutions can be used to update the dynamics.



4 Published Work

This chapter summarizes the three first-author peer-reviewed articles and one
collaborative peer-reviewed article, I (co-)authored during my studies. The complete
articles are attached in the appendix section.

The articles in the appendix can be read in the order given below:

1.) A. A. Ibrahim, A. Lonardi, and C. D. Bacco. “Optimal transport in multilayer
networks for traffic flow optimization”. Algorithms 14.7 (2021). [37]

2.) A. A. Ibrahim, D. Leite, and C. De Bacco. “Sustainable optimal transport in
multilayer networks”. Physical Review E 105.6 (2022). [36]

3.) A. A. Ibrahim, M. Muehlebach, and C. De Bacco. “Optimal transport with
constraints: from mirror descent to classical mechanics”. Physical Review Letters

133 (2024). [38]
4.) D. Leite, D. Baptista, A. A. Ibrahim, E. Facca, and C. De Bacco. “Community

Detection in networks by Dynamical Optimal Transport Formulation”. Scientific

Reports 12 (2022). [48]

The first article introduced how to model and generate optimal routes in multilayer
networks. Some of these routes can be distributed for passengers of the same type.
The second paper proposed a single trajectory for each passenger type and also
established three concrete properties of these methods. The third article shows
how to impose arbitrary constraints on optimal transport problems in a principled
and flexible way. While the first three articles focus on solving transport problems,
the fourth article shows another application of optimal transport formulation, by
solving community detection problems.

Authors Contribution statement

To determine and evaluate my contribution in each published paper, I described my
role and summarized it with a descriptive terms, and in a tabular form. Specifically,
I categorize my contribution as either significant, major, medium or minor. To
clarify, significant denotes a contribution of paramount importance, major denote a
crucial involvement without which the submission might not have been possible,
medium denotes an important contribution that enhances the quality of the paper
and potentially affects its acceptance, and minor highlights an improvement made
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to the paper. This framework serves as a guide to express the varying degrees of
impact each co-author had on the published papers.

4.1 Optimal transport in multilayer networks for traffic

flow optimization

Abstract: Modeling traffic distribution and extracting optimal flows in multilayer
networks is of the utmost importance to design efficient, multi-modal network
infrastructures. Recent results based on optimal transport theory provide powerful
and computationally efficient methods to address this problem, but they are mainly
focused on modeling single-layer networks. Here, we adapt these results to study
how optimal flows are distributed on multilayer networks. We propose a model
where optimal flows on different layers contribute differently to the total cost to be
minimized. This is done using a parameter that varies with layers, which allows
to flexibly tune the sensitivity to the traffic congestion of the various layers. As an
application, we consider transportation networks, where each layer is associated
with a different transportation system, and show how the traffic distribution varies
as we tune this parameter across layers. We show an example of this result on the
real, 2-layer network of the city of Bordeaux with a bus and tram, where we find
that in certain regimes, the presence of the tram network significantly unburdens
the traffic on the road network. Our model paves the way for further analysis of
optimal flows and navigability strategies in real, multilayer networks.

Research contribution: The main takeaway from this study is that optimal trans-
port can be used to model passenger flows in a multilayer network. While optimal
transport is efficient for single-layer networks, this study adapts these principles to
multilayer scenarios. The model introduces a parameter that allows flexible tuning
of the sensitivity to traffic congestion across layers.

Author contribution: I led this project as the first author. Together with my PhD
advisor, we conceived this project’s idea. I participated in the writing of the codes,
and carried out extensive analysis of the results. I conducted all experimental work
and most of the scientific plots. In addition, I schedule regular meeting with the
co-authors. I contributed to the writing of the paper and responses to the reviewer’s
comments. Finally, I was responsible for submitting the paper to the journal and
preparing the arXiv version. Finally, I have prepared and uploaded the code to
GitHub, making it accessible to readers.

Remark 4.1 My contributions are summarized as follows:
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Ideas Implementation Experiment Analysis Writing

A.A.I. significant significant significant significant significant

Venue: Algorithms is a peer-reviewed journal published by MDPI since 2008.
Publications in this venue are open access and have high visibility. The journal focuses
on research related to algorithms and their applications. This interdisciplinary
journal welcomes new and innovative research ideas as well as special issues on
specific topics or areas.

4.2 Sustainable optimal transport in multilayer

networks

Abstract: Traffic congestion is one of the major challenges faced by the transporta-
tion industry. While this problem carries a high economic and environmental cost,
the need for an efficient design of optimal paths for passengers in multilayer network
infrastructures is imperative. We consider an approach based on optimal transport
theory to route passengers preferably along layers that are more carbon-efficient
than the road, e.g., rails. By analyzing the impact of this choice on performance,
we find that this approach reduces carbon emissions considerably compared to
shortest-path minimization. Similarly, we find that this approach distributes traffic
more homogeneously, thus alleviating the risk of traffic congestion. Our results shed
light on the impact of distributing traffic flexibly across layers guided by optimal
transport theory.

Research contribution: The main contributions of this study include an optimal
transport-based approach for extracting a single trajectory for each passenger in
multilayer transport networks; an interpolation method between optimal transport
and the shortest path minimization, and the demonstration that these optimal routes
lead to reduced traffic and CO2 emissions, resulting in reduced environmental
costs.

Author contribution: I led this project as the first author. Together with my PhD
advisor, we conceived this project’s idea. I participated in the writing of the codes,
and carried out analysis of the experimental results. I conducted all experimental
work and most of the scientific plots. In addition, I schedule regular meeting with the
co-authors. I contributed to the writing of the paper and responses to the reviewer’s
comments. Finally, I was responsible for submitting the paper to the journal and
preparing the arXiv version. Finally, I have prepared and uploaded the code to
GitHub, making it accessible to readers.
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Remark 4.2 My contributions are summarized as follows:
Ideas Implementation Experiment Analysis Writing

A.A.I. significant significant significant significant significant

Venue: Physical Review E (PRE) is a peer-reviewed and open access journal published
by the American Physical Society. Established in 1993, this physics journal accepts
research that make a significant contribution to a specific research area. It is one of
the leading journal in networks and (physics-based) algorithms. PRE is known for
high-quality publications both in traditional and emerging research areas.

4.3 Optimal transport with constraints: from mirror

descent to classical mechanics

Abstract: Finding optimal trajectories for multiple traffic demands in a congested
network is a challenging task. Optimal transport theory is a principled approach that
has been used successfully to study various transportation problems. Its usage is
limited by the lack of principled and flexible ways to incorporate realistic constraints.
We propose a principled physics-based approach to impose constraints flexibly
in such optimal transport problems. Constraints are included in mirror descent
dynamics using the principle of D’Alembert-Lagrange from classical mechanics.
This leads to a sparse, local and linear approximation of the feasible set leading in
many cases to closed-form updates.

Research contribution: Existing approaches based on adaptive dynamics are
limited by the fact that they do not incorporate constraints beyond standard
constraints such as conservation of mass and positivity constraints, as part of the
general framework. To address this flaw, we proposed a framework powerful enough
to handle nonlinear and non-convex constraints in optimal transport problems.

To the best of my knowledge, this is the first theoretical formulation that imposes
constraints on adaptation equations and follows a physics-based perspective on
including constraints by leveraging the principle of d’Alembert-Lagrange from
classical mechanics.

Author contribution: I led this project as the first author and was the only student
author involved in this project. Together with the co-authors, we conceived this
project’s idea. I participated in the writing of the codes, and carried out analysis
of the experimental results. I conducted all experimental work and most of the
scientific plots. In addition, I participated in regular meeting with the co-authors to
discuss the progress of the project. I contributed to the writing of the paper and
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responses to the reviewer’s comments. Finally, I was responsible for submitting the
paper to the journal and preparing the arXiv version. Finally, I have prepared and
uploaded the code to GitHub, making it accessible to readers.

Remark 4.3 My contributions are summarized as follows:
Ideas Implementation Experiment Analysis Writing

A.A.I. significant significant significant significant significant

Venue: Physical Review Letters (PRL) is a peer-reviewed, open-access journal pub-
lished by the American Physical Society. Founded in 1958, PRL is recognized
worldwide as the premier journal for physics letters. With rigorous acceptance
criteria, it selectively publishes papers that significantly advance research areas.
PRL publications are characterized by their conciseness, high quality and wide
visibility.

4.4 Community detection in networks by dynamical

optimal transport formulation

Abstract: Detecting communities in networks is important in various domains
of applications. While a variety of methods exist to perform this task, recent
efforts propose Optimal Transport (OT) principles combined with the geometric
notion of Ollivier–Ricci curvature to classify nodes into groups by comparing
the information encoded into nodes’ neighborhoods. We present an OT-based
approach that exploits recent advances in OT theory to allow tuning between
different transportation regimes. This allows for better control of the information
shared between nodes’ neighborhoods. As a result, our model can flexibly capture
different types of network structures and thus increase performance accuracy in
recovering communities, compared to standard OT-based formulations. We test
the performance of our algorithm on both synthetic and real networks, achieving
a comparable or better performance than other OT-based methods in the former
case, while finding communities that better represent node metadata in real data.
This pushes further our understanding of geometric approaches in their ability to
capture patterns in complex networks.

Research contribution: This study presents an optimal transport-based approach
for detecting communities in networks. By incorporating the Ollivier-Ricci curvature,
the model offers various transport regimes that provide better control over infor-
mation flow between node neighborhoods. The algorithm demonstrates improved
accuracy in recovering communities, outperforms standard OT-based methods in
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synthetic networks, and better represents node metadata in real data, advancing
our understanding of geometric approaches to analyzing complex networks.

Author contribution: I contributed to the idea formulation, participated in the
coding and implementation, obtained the metadata of real networks, and took
part in the results discussion. In addition, I participated in regular project meet-
ings. I contributed to the writing of the paper and responses to the reviewer’s
comments.

Remark 4.4 My contributions are summarized as follows:
Ideas Implementation Experiment Analysis Writing

A.A.I. medium significant medium major major

Venue: Scientific Reports, a prestigious publication within the Nature portfolio,
has been a pioneering force in the dissemination of cutting-edge research since its
launch in 2011. With a commitment to open access and strict peer review, the journal
provides a platform for scientists worldwide to present their original research across
a range of disciplines including the natural sciences. As a testament to its impact,
Scientific Reports is ranked the 5th most cited journal in the world.



5 Discussion and Conclusion

This chapter discusses the key challenges and how the published papers addresses
them. For specific and detailed results, readers can visit the published articles. I
summarized the published papers according to common themes.

Throughout this chapter, I denote with 
 and � the bus and tram layers, respec-
tively.

5.1 Optimal transport in multilayer networks

One effective strategy for alleviating congestion involves leveraging a multilayer
transport network [13, 74], which provides users with the flexibility to switch between
different modes of transportation during their travels. Our approach focuses on
extracting optimal trajectories for various types of passengers. While this approach
reduces congestion and environmental costs, the concept of passengers selfish
routing cannot be ignored [59]. As demonstrated in MultiOT [37], we adopted
optimal transport principles to extract optimal trajectory for each passenger type
in a multilayer network. We consider various traffic regimes using the parameter
0 < �@4 < 2, and how different settings of �@4 influence relevant outputs such
as the optimal routes for each passenger and network topology. In a multilayer
network with two layers 
 and �, we use �@4 ∈

{
�
 , ��

}
. This means one needs

to set layer-wise values to determine how the passenger should be routed in the
transport network. We study the behaviour of MultiOT on the bus and tram network
of the city of Bordeaux. Using the settings �
 < 0.5 and �� > 1.5, we observe that
about 17% of the total passenger flows are routed on the � (tram) layer in order
to reduce congestion on the 
 (bus) layer. These results also show that each traffic
regime has a different network topology. In particular, when paths are consolidated
along a few edges, the topology is significantly different from when paths are more
distributed along many edges.

The optimal trajectories generated from MultiOT are more distributed along many
edges for some passenger types. We then introduced MultiOTsp [36], a variant
of MultiOT that generates a single trajectory from source to destination for each
passenger type. We observe that the average path length traveled by passengers
following the trajectories generated by the OT-based methods (i.e., MultiOT and
MultiOTsp) is increased. This is because the OT-based methods are tuned to encourage
higher usage of the tram layer to decongest roads. In fact, we obtain that OT-based
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methods record up to 53% more rail usage than that obtained via shortest-path
optimization.
In addition, we observe how the parameter �@4 also influences the overall transport
cost and thus the resulting trajectories. The settings �
 , �� < 1 discourage traffic
congestion on both layers. In comparison to the Dĳkstra algorithm, setting �
 = �� =

0.5 in the optimal transport model leads to a higher transport cost, up to 50% more
than the cost obtained from Dĳkstra. However, the same experimental results (see
[36]) with �
 = 0.5 and �� = 1.9, i.e. when we encourage path consolidation in the
tram network, shows that the cost of navigating routes generated by the OT-based
model is 30% lower than that of Dĳkstra.

Overall, combining optimal transport and multilayer transport networks can be used
to alleviate traffic congestion. Depending on the desired goals of a network manager,
our model allows to arbitrarily tune the main model parameters to simulate the
desired transport regime and quantify how traffic congestion can be decreased on
roads and rail usage encouraged.

5.2 Sustainable optimal transport

To assess the sustainability of transport networks, the provision of alternative
transport modes is a relevant approach. As demonstrated in [36, 37], a multilayer
network can be used to alleviate traffic from a congested network. To measure the
environmental impacts, we assess the amount of carbon emission per passenger per
unit of length (pkm) on the routes generated by MultiOT, MultiOTsp and Dĳkstra.
Considering a two-layer network consisting of bus and tram layers, where a bus
emits on average 101.876/?:< [19] and a train emits 28.396/?:< [25], MultiOTsp

recorded the lowest carbon emissions, with 25% less emissions than a shortest-
path approach. MultiOTsp achieved its lowest carbon emission value when path
consolidation was not overly enforced, specifically at �� = 1.3. This highlights the
trade-off between minimizing the average path length of passengers and routing
more passengers on the tram layer.

Accounting for traffic on roads is another important sustainability metric, as it
directly reflects the efficiency and functionality of transport networks, affecting
factors such as fuel consumption and passenger satisfaction. We demonstrate in
[36–38] by measuring the Gini coefficient1, how traffic loads are distributed for OT
and shortest-path algorithms. Gini()4) ∈ [0, 1], where )4 is the edge-wise traffic
loads. A Gini close to 1 indicates a high degree of inequality in flow allocation

1 A coefficient that measures the inequality of a certain quantity, in this case we consider traffic
distribution on a transport network.
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along the edges, and a Gini close to 0 indicates a balanced flow along the edges.
For the various transport regimes considered, the exact value of Gini relies on the
distribution of traffic demands. From the experimental result, we observed that
MultiOT shows a more evenly distributed traffic pattern compared to the other
algorithms. Even when congestion levels increase with increasing values of ��, our
results show that MultiOT maintains lower Gini coefficients than Dĳkstra for all
values of �� considered. This phenomenon can be attributed to the tendency of
paths to concentrate on fewer edges on the bus layer that facilitate connections to the
tram layer. As a result, the Gini coefficient of MultiOTsp exceeds that of Dĳkstra as the
central edges of the bus layer become congested, especially as passengers move from
the tram network to city center destinations. Furthermore, we observed differences
in passenger distribution between the two OT-based variants in terms of their impact
on tram network utilization. While both variants show a tendency to distribute
passengers more along the tram network, thereby reducing road traffic, the Dĳkstra

uses the tram predominantly in the vicinity of central nodes. This means the OT
methods recorded higher tram usage compared to Dĳkstra. Also, MultiOT shows
a higher intensity of road use compared to MultiOTsp, but with less congestion
on the road edges. Conversely, MultiOTsp shows a distinct pattern where road
edges experience increased traffic near tram stations. Comparing the OT models,
the MultiOT balances traffic on edges better whereas the MultiOTsp achieved lower
value of carbon emission.

From the results of our OT models and their comparison with the traditional shortest
path algorithm, OT offers a promising way to design dynamic and sustainable
transport networks within multilayer infrastructures. Our analysis underlines the
crucial role of path configurations - whether single or multiple paths - and the
parameter �@4 in shaping the optimal sustainability metric. These findings pave
the way for tailored strategies aimed at maximizing efficiency while minimizing
environmental impact in transport planning.

5.3 Constrained optimal transport

The number of passengers passing through an edge in these OT methods described
in [36, 37] is unconstrained, as passenger flows tend to concentrate on a few edges,
especially when passenger paths are consolidated (i.e. �@4 > 1) and feature a
monocentric destination. This characteristic tends to limit the usage of OT methods
in real transport networks. We addressed this crucial flaw in [38] and showed that,
in addition to the standard2 constraints imposed by classical OT methods, one can

2 Classical optimal transport has standard constraints such as positivity constraint and conservation
of mass.
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also impose other realistic constraints on optimal transport problems in a principled
and flexible way. In particular, we show how arbitrary constraints can be introduced
into optimal transport problems in a computationally efficient way. Our constrained
approach is simple and intuitive as it involves adding an auxiliary force to the
dynamics. This allows to seamlessly incorporate constraints of various types, e.g.
nonlinear or non-convex, into the mirror descent dynamic. It yields a standard
quadratic program which can often be solved in closed form. The formalism can be
applied to different constraint functions, provided one can derive the gradient of
the constraint function. In our analysis, we considered different constraint functions
in [38] to mimic real scenarios.

The first constraint involves structural limit imposing edge capacity constraints
on the number of passengers traveling along any road (or edge) in the transport
network. In [38], we considered various sizes of edge capacities; small, medium
and large edge capacities. The experimental results indicated that imposing edge
capacity constraints on the transport network balances traffic more than the classical
OT method, such as the MultiOT. Setting the right edge capacity 2 plays a role in the
overall network structure. From the various sizes of edge capacities considered, we
observed that a lower edge capacity imposes a more restrictive constraint on the flow
of traffic, leading to a more balanced distribution along the edges of the network.
This equitable distribution is reflected in a lower Gini coefficient. We considered
homogeneous edge capacities for a single layer network in [38], but one can equally
consider heterogeneous capacities for a multilayer network, see Fig. 5.1 for example.
For a multilayer network, we define the edge capacity as 2@4 ∈

{
2
4 , 2

�
4

}
where 2
4 , 2

�
4

are the edge capacities for the layer 
, layer �, and 2
�
4 > 2
4 always, as depicted in

Fig. 5.1. Each layer has different edge capacities to mimic a real scenario where a
tram has more capacity than a bus. While a lower edge capacity value balances traffic
more, a high value of 2@4 reduces the path length of passengers (see Fig. 5.1(C-D)). In
particular, lower 2@4 values result in longer average total path lengths for passengers
traveling on the network. The relationship between edge capacity 2@4 and parameter
�@4 is integral to understanding and optimizing the performance of the network.

Next, we introduce a budget constraint that includes all the edges simultaneously,
reflecting a scenario where a network manager is faced with a fixed, limited
investment resources. Specifically, we reduced the initial network budget by 50%

(i.e., half of MultiOT) and observe that the resulting routes with enforced path
consolidation exhibit a more balance traffic without a significant increase in the total
path length of passengers, compared to those generated by MultiOT [38]. In the
budget constraint scenario, we do not impose capacities on individual edges, but
consider a global constraint of an overall network budget.

Overall, imposing additional constraints on classical OT models improves the
performance and gives a more realistic results. While we highlight two scenarios
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of real-world constraints that can be applied to adaptive dynamics, non-linear
constraint can be used as well (see [38] for another scenario).
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Figure 5.1: Example of a synthetic multilayer network. The edge capacity for each layer is selected as
the percentiles of the distribution of � over edges obtained in the unconstrained case (Unconstrained).
Panel (A) favors the usage of the tram layer (i.e., �� > 1 and (B) favors the usage of the bus layer
(i.e., �
 > 1). The edges belonging to the bus and tram layers are indicated in blue and red colors,
respectively. Panels (c) and (D) show the Gini coefficient of the traffic distribution on edges and
the ratio of averaged path length to that of Unconstrained, respectively. Markers and shadows are
averages and standard deviations over 10 network realizations, with 50 randomly selected origins
and destinations. Edge widths are proportional to the amount of passengers traveling through an
edge. Other settings: #
 = 200, #� = 50 Nodes.
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5.4 Application on community detection problem

While the OT models [36–38] and described in Sections 5.1 to 5.3 are developed for
transportation networks, we developed OT model named ORC-Nextrout [48] that
focus on the detection of communities in large networks. Community detection in
networks is another area of network science where optimal transport models can
be applied. In the context of community detection, ORC-Nextrout uses geometric
algorithms similar to the Ollivier-Ricci (ORC) [55] to compute curvature. Specifically,
edges with positive curvature are considered to belong to the same community,
and vice versa for negative curvature. The integration of optimal transport (OT)
and ORC in community detection was initially motivated by works such as [53, 67].
However, ORC-Nextrout advances this approach by generalizing it to consider two
regimes: branched [29, 65] and congested [11] in optimal transport problems. This
technique allows the regulation of information sharing between nodes within the
network.

The results obtained on four (4) real data (namely; Les Miserables, Dolphins,
American Football and Political books) show that the performance of ORC-Nextrout

depends on the structure of the ground truth and the transport regime. In some
cases (i.e., Les Miserables and Dolphins), the congested regime of ORC-Nextrout

achieved the highest accuracy, effectively recovering the communities, while in
other cases (i.e., American Football) the branched regime of ORC-Nextrout showed
superior performance. Overall, ORC-Nextrout outperformed other OT-based methods
as it provides the flexibility to tune between different regimes. In addition, we
observed that OT models, including ORC-Nextrout, tend to extract a larger number
of communities compared to those identified from node metadata, with many of the
additional communities consisting of a single node. This phenomenon suggests that
OT methods tends to identify densely connected community structures. In summary,
by adjusting between different regimes, ORC-Nextrout demonstrates superior or
comparable performance in recovering community structures consistent with node
metadata.

5.5 Conclusion

The methods presented in this thesis advances the fields of optimal transport
theory and network science. Firstly, we developed computationally efficient methods
based on optimal transport to extract passenger routes across multilayer transport
networks. This methods presented enhance our understanding of traffic dynamics
within multilayer transport networks, provides valuable insights that contribute to
sustainability efforts in the transport sector. In addition, we extended classical optimal
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transport methods to accommodate additional and realistic constraints in optimal
transport problems. These extensions are particularly relevant to reducing congestion
and minimizing the environmental impact of transport systems. Furthermore, our
research demonstrates the versatility of optimal transport formulations in solving
community detection problems within networks. By exploiting optimal transport
principles, we offer a dynamic approach to community detection that provides
valuable insights into network structures and functionalities.
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Abstract: Modeling traffic distribution and extracting optimal flows in multilayer networks is of the
utmost importance to design efficient, multi-modal network infrastructures. Recent results based on
optimal transport theory provide powerful and computationally efficient methods to address this
problem, but they are mainly focused on modeling single-layer networks. Here, we adapt these results
to study how optimal flows distribute on multilayer networks. We propose a model where optimal
flows on different layers contribute differently to the total cost to be minimized. This is done by
means of a parameter that varies with layers, which allows to flexibly tune the sensitivity to the traffic
congestion of the various layers. As an application, we consider transportation networks, where each
layer is associated to a different transportation system, and show how the traffic distribution varies as
we tune this parameter across layers. We show an example of this result on the real, 2-layer network
of the city of Bordeaux with a bus and tram, where we find that in certain regimes, the presence of
the tram network significantly unburdens the traffic on the road network. Our model paves the way
for further analysis of optimal flows and navigability strategies in real, multilayer networks.

Keywords: optimal transport; networks; multilayer networks; routing optimization

1. Introduction

Investigating how a network operates and assessing an optimal network design in
interconnected networks is a critical problem in several areas [1]. Examples of these
include economics [2], climate systems [3], epidemic spreading [4–6] and transportation
networks [7]. The main challenge of these problems is to account for the various types
of connections that nodes can use to travel through the network efficiently. For example,
in transportation networks, the main application considered here, passengers can travel
using various means of transport within the same journey. The different transportation
modes can operate in significantly different ways [8,9]. For instance, traveling along a rail
network (e.g., by tram or subway) is usually faster than along a road network (e.g., by
car or bus). The rail network is less sensitive to traffic congestion but the road network
has wider coverage and thus allows to reach more destinations. The question is how to
combine all these different features to design optimal networks and predict the optimal
trajectories of passengers.

Multilayer networks [1,10–12] are a powerful tool to study multi-modal transporta-
tion networks [13–15]. Transport in a multilayer network, where layers correspond to
transport modes, is often studied using diffusion or spreading processes [1,16–18]. Many
of these works use shortest-path minimization [14,19–21] as the main method to extract
the passengers’ trajectories. However, this can be a restrictive choice: on one side, this
assumes that different layers share the same cost function to be minimized; on the other
side, shortest-path minimization is not sensitive to traffic congestion and thus, may not
be realistic in certain scenarios. Empirical studies [22] have also indicated that passengers
may not necessarily choose the shortest paths.

Algorithms 2021, 14, 189. https://doi.org/10.3390/a14070189 https://www.mdpi.com/journal/algorithms
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Here, instead, we propose a model that considers more general transport cost min-
imization, based on a regularized version of the Monge–Kantorovich optimal transport
problem [23]. The regularization is obtained via a parameter β that allows to flexibly tune
the cost between settings where traffic is penalized or consolidated. Optimal transport is a
proven, powerful tool to model traffic in networks and optimal network design [24–39].
Recent works [30,40] extended this formalism to a multi-commodity case that properly
accounts for passengers with different origins and destinations. All these studies consider
the case of a single-layer network, i.e., one transportation mode. The existence of multiple
connections on different layers invites a generalization of these recent results of optimal
transport to cope with multilayer networks.

Here, we make this effort and propose a model that uses optimal transport theory to
design optimal multilayer networks and finds optimal path trajectories on them. We show
how such networks operate under various transport costs tuned by β on both synthetic
and real data. We see how the traffic evolves from being more homogeneous to a more
unbalanced traffic distribution when a second layer is present and the cost to travel through
it changes.

In summary, the goal of this work is to propose an efficient optimal transport-based
method for modeling optimal network flows in multilayer networks. Our model finds
optimal flows by naturally incorporating the different nature of transportation modes and is
computationally efficient. While here, we focus on transportation networks, our method is
applicable to a broader set of practical applications involving flows on multilayer networks.

What Makes Multilayer Networks Different Than Single-Layer in Transportation

Having given the broader context for our work, we now highlight the main features
of transport on multilayer networks. The presence of edges between layers (inter-layer
edges) makes a multilayer network fundamentally distinct from a standard single-layer
one, as these edges allow passengers to switch between transportation modes. However,
this is not the only difference. In fact, in a multilayer network, the various layers have
different characteristics. The main one is that the type of transportation cost varies across
layers. For example, the cost to build and maintain the infrastructure differs depending
on the transportation mode, with subway or rail tracks costing more than a road network.
Moreover, the cost assigned to traffic congestion is also different, as road networks are
more sensitive to traffic bottlenecks than rail ones. In addition, the power dissipated differs
depending on the means of transportation, as running a tram generally produces fewer
CO2 emissions than running a bus. All these different features impact the results of an
optimal transport problem, as the network features contributing to the cost function to be
optimized vary with layers, and thus also the optimal solution.

Finally, the network topologies themselves vary with layers [41], as a bus network has
many edges with short lengths, while a rail network tends to have fewer but longer edges.
In addition, the weights assigned to each edge differ based on the layer, which can induce
coupling between layers [42].

2. Materials and Methods

2.1. Multilayer Transportation Networks

In general, a multilayer network is represented as a graph G({Vα}α, {Eα}α, {Eαγ}α,γ),
where Vα and Eα are the set of nodes and edges in layer α, respectively, and Eαγ is the set of
edges between nodes in layer α and nodes in layer γ. Here, α = 1, . . . , L, where L is the
number of layers. We denote with Nα = |Vα| the number of nodes in layer α, and with
Eα = |Eα| the number of edges in layer α, Eαγ = |Eαγ| is the number of edges between
nodes in layer α and γ. Finally, we denote with V0 = ∪αVα the total set of nodes, with
E0 = (∪αEα) ∪ (∪αγEαγ) the total set of edges, and with N0 = |V0| and E0 = |E0|, their
cardinalities. We assume that edges have lengths le > 0, which determine the cost to travel
through them.
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Transportation networks are relevant examples of this type of structure, where nodes
are stations, edges are connections between stations and layers are transportation modes,
for instance, rails or bus routes. A convenient way to represent a multilayer network is
with two tensors [43]: (i) an intra-layer adjacency tensor A with entries Aα

uv = 1 if there is
an edge between nodes u and v in layer α, and 0 otherwise. We refer to this type of edge as
an intra-layer edge; (ii) an inter-layer adjacency tensor Â with entries Â

αγ
uv = 1 if there is an

edge between node u in layer α and node v in layer γ, and 0 otherwise. Without loss of
generality, in our applications, we have Â

αγ
uv = 0 if u 6= v, meaning that different layers are

connected solely by shared nodes. We refer to edges connecting nodes in different layers
as inter-layer edges. In the case of transportation networks, the main application studied
here, a station could have a bus stop, a train platform and a subway entrance, which allows
passengers to switch between communication modes within the same station. For example,
one can think of an inter-layer edge as the stairs connecting the subway entrance with
the entrance to the train station. Typically, inter-layer edges are, thus, much shorter than
intra-layer edges.

In the case of multilayer networks, we need to be careful with how stations connecting
multiple transportation modes are represented. In fact, if an entry station connects more
than one layer, we may not be able to distinguish in what layer a passenger enters. In other
words, if a node u belongs to more than one layer, i.e., a node uα exists for more than one
value of α, we may not be able to tell whether the passengers entering u entered from uα, uγ

or from any of the other instances of node u in the various layers. To alleviate this problem,
we build auxiliary super nodes u, which do not belong to any layer in particular but instead
connect the various instances of the same node in the various layers together. Specifically,
we remove all the inter-layer edges (uα, uγ) and replace them with auxiliary inter-super
edges (uα, u), connecting all the instances uα of node u with the super node u, as in a star
graph, so that the original edge (uα, uγ) is replaced by a two-edge path {(uα, u), (uγ, u)}.

This auxiliary structure allows the model to allocate in an optimal way the passengers
along the inter-super edges when they enter from a station with connections to more than
one layer, thereby avoiding the selection of arbitrary entrances a priori. This becomes
relevant in applications where the cost to travel along inter-layer edges is non trivial, for
instance, in situations where changing connection impacts the comfort of the passengers.

Moreover, the introduction of super nodes and edges facilitates how we represent
the multilayer network. In fact, by adding these auxiliary super nodes and inter-super
edges, we only need to consider an individual network adjacency matrix A, instead of two
separate tensors. This matrix has entries Auv = 1 if an edge exists between nodes u and v
and 0 otherwise, where a node u can be a node uα in layer α or a super node u. The set of
nodes is then V = V0 ∪ Vsuper, where Vsuper is the set of super nodes, and |Vsuper| = Nsuper

is their number, which corresponds to the number of nodes that belong to more than
one layer. Similarly, the new set of edges is E = (∪αEα) ∪ Esuper, where Esuper is the set
of inter-super edges. The final numbers of nodes and edges are N = |V| = N0 + Nsuper

and E = |E | ≥ E0. Notice that this construction is equivalent to assume that the network
has L + 1 layers, where the extra layer is made of inter-super edges Esuper and all nodes
incident to them (without loss of generality, we assume that all the inter-super edges are
treated equally). We denote it as the super layer and this corresponds to α = L + 1, so that
EL+1 ≡ Esuper. We show an example of this structure in Figure 1.

Finally, we consider a coupling between layers as in [42] that controls how the layers
are linked. Specifically, we multiply the lengths of each edge by a factor wα ∈ [0, 1] that
depends on what layer the edge belongs to. For convenience, we introduce qe ≡ qe(α)
taking values qe = α for each e ∈ Eα and with α = 1, . . . , L + 1. Using this, we define the
resulting length as `e := wqe le. This ensures that edges in different layers can be navigated
differently. If we interpret wα as the inverse of a velocity, then `e is proportional to the time
needed to travel along edge e, which can be seen as an “effective” length. When wα < 1
and wγ = 1, a passenger takes less time to travel along an edge of length le in α than one in
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γ. Typically, `e are small for inter-super edges. Nevertheless, one can tune the cost to travel
along them by tuning wL+1.

Figure 1. Example of multilayer structure. We show an example of a 2-layer network with N = 18
(N1 = 10, N2 = 4 and Nsuper = 4). (Left) adjacency matrix A, colors denote the layer type: blue is
layer 1, red is layer 2 and green is the super layer. (Right) the 2-layer network with layer 1 on the
bottom, layer 2 on top, and the super nodes in between.

2.2. The Model

We consider the formalism of optimal transport theory, and in particular, recent works
that map the setting of solving a standard optimization problem into that of solving a
dynamical system of equations [24–30,40]. Specifically, we model two main quantities
defined on network edges: (i) fluxes Fe of passengers traveling through an edge e; and
(ii) conductivities µe, which are quantities determining the flux passing through an edge
e. Intuitively, the conductivity µe of an edge can be seen as proportional to the size of
the edge e. To keep track of the different routes that passengers have, we consider multi-
commodity formalism as in [40], i.e., we distinguish passengers based on their entry station
a ∈ S , where S ⊆ V is the set of stations where passengers enter, and we denote with
M = |S| the number of passenger types. With this formalism, we have that the fluxes Fe

are M-dimensional vectors, where the entries Fa
e denote a number of passengers of type

a traveling on edge e. The important modeling choice is that the conductivities µe are
shared between passengers, thus they are scalar numbers contributing to the cost for all
passenger types traveling through e. This formalism can be equally applied to both edge
types: intra-layer and inter-super edges.

We assume that fluxes are determined by pressure potentials pa
u defined on nodes

as follows:
Fa

e :=
µe

`e
(pa

u − pa
v), e = (u, v) . (1)

We model the number of passengers entering a station a with a positive real number
ga. For notational convenience, we define a N × M dimensional matrix of entries ga

u such
that ga

u := 0 if u 6= a, and ga
u := ga if u = a. Similarly, we define with ha

u the number of
passengers of type a exiting at node u. Here, the only constraint is that ha

u = 0 if u = a to
avoid unrealistic situations where passengers entering in one station exit from the same
station. Finally, we define the N × M-dimensional source matrix with entries Sa

u = ga
u − ha

u,
which indicates the number of passengers of type a entering or exiting a station. Notice that
for each a ∈ S we have ∑u Sa

u = 0, meaning the system is isolated, i.e., all the passengers
of a certain type who enter the network also exit.

With this in mind, we enforce mass conservation by imposing Kirchhoff’s law on
nodes. To properly enforce this constraint, we need to consider all the edges, both intra-
layer and inter-layer edges. This can be compactly written by considering the multilayer
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network signed incidence matrix B with entries Bve = 1,−1, 0 if node v ∈ V is the start,
end of edge e ∈ E , or none of them, respectively. With this in mind, Kirchhoff’s law can be
written as follows:

∑
e

BveFa
e = Sa

v, ∀a ∈ S , ∀v ∈ V . (2)

Finally, we assume that the conductivities follow the following dynamics:

µ̇e = µ
βqe
e

∑a∈S (pa
u − pa

v)
2

`2
e

− µe, ∀e ∈ E , (3)

where qe encodes the type of edge, as defined in Section 2.1. The parameter 0 < βqe < 2
is important, as it determines the type of optimal transport problem that we aim to solve,
which we describe in more detail later. Interpreting the conductivities as quantities pro-
portional to the size of an edge, this dynamics enforces a feedback mechanism such that
the edge size increases if the flux through that edge increases, it decreases otherwise. This
feedback mechanism was observed in biological networks, such as the one made by slime
mold Physarum polycephalum [24,44], which adapts its body shape to optimally navigate the
space, searching for food.

The important property of this dynamics is that its stationary solutions minimize a
multilayer transport cost function:

Jβ =
L+1

∑
α=1

∑
e∈Eα

`e||Fe||
Γ(βα)
2 , (4)

where Γ(βα) = 2(2 − βα)/(3 − βα) for all α and the 2-norm is calculated over the M entries
of each Fe. This means that solving the systems of Equations (1)–(3) is equivalent to finding
the optimal trajectories of passengers in a multilayer network, where optimality is given
with respect to the cost in Equation (4). An extended discussion and a formal derivation of
this property can be found in [32,40].

The parameter βqe (taking value βα on layer α) regulates how the fluxes should
distribute in each of the layers. In fact, according to Equation (4), when βα > 1, the fluxes
are encouraged to consolidate into few edges of a layer α, being Γ(βα) < 1, and thus the
cost in Equation (4) is sub-linear. In the opposite scenario, when 0 < βα < 1, we have
that the fluxes are encouraged to distribute over more edges and with lower values in
order to keep traffic congestion low. Finally, when βα = 1, we obtain the shortest path-like
minimization. The consequence of having different βα in different layers is that the optimal
trajectories have different topologies in each of the layers. At the same time, layers are
coupled together, thus the final trajectories are a complex combination of the weights
wα and the βα. We give an example of optimal flows for various combinations of these
parameters in Figure 2.

2.3. The Algorithmic Implementation

The numerical implementation consists of initializing the µe > 0 at random. Then,
one iterates between (i) extracting the pressure potentials (or the fluxes) using Equations (1)
and (2), and (ii) using these to recompute the µe by means of Equation (3), which can be
solved numerically with finite difference discretization. The iteration is repeated until
convergence. In our experiments, we terminate a run of the algorithm when the difference

J
(t+1)
β − J

(t)
β between two successive updates is lower than a threshold (the superscript (t)

is the iteration step). The cost Jβ in Equation (4) is not strictly convex in general, hence
the solution of Algorithm 1 may converge to a local optima. One should then run the
algorithm several times, each time initializing to a different random initial realization of
µe > 0. A possible choice for a final optimal solution is the one that has lower Jβ. We give
the pseudocode for this in Algorithm 1; this is complemented with the block diagram in
Figure 3. Most of the computational effort required by Algorithm 1 is in the solution of
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M linear systems as in Equation (2). In our implementation, this is performed by a sparse
direct solver (UMFPACK), performing a LU decomposition of each column of the right
hand side of Equation (2), and having complexity scaling as O(M N2).

Figure 2. Example of optimal paths. We show an example of optimal paths obtained with: p = 0.2
and (top) w1 = 0.2, (bottom) w1 = 0.8. Values of β1, β2 are those reported on top of each network.
The statistics Gini1 and f2 are those defined in Section 3.1. The width of edges is proportional to the
optimal ||Fe||2. Blue and red edges are for layers 1 and 2, respectively. The two layers are plotted
individually on the rightmost column.

Start

Input: G(V , E), S, βa

Initialize µe :
µe ∼ Uni f (0, 1)

Is
convergence
achieved?

Return: optimal {Fe}

Solve Equation (2)
using Equation (1)

Solve Equation (3)

Stop

yes

no

Figure 3. Block diagram of Algorithm 1. We give a pictorial representation of the pseudocode in
Algorithm 1. Here, rectangular blocks are action blocks, corresponding to the update of a variable,
to an input initialization, or to the output of the fluxes at convergence. Conditional blocks are
diamond-shaped; elliptical blocks denote the start and stop points.
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Algorithm 1 Multilayer optimal transport.

1: Input: multilayer network G(V , E), source matrix S, βα

2: Initialize: {µe} (e.g., sampling as i.i.d. µe ∼ Uni f (0, 1))
3: while convergence not achieved do
4: use Equation (1) to solve Kirchhoff’s law as in Equation (2) → {pa

u}
5: solve the dynamics in Equation (3): {µt

e} → {µt+1
e }

6: end while
7: Return: fluxes {Fe} at convergence, computed using Equation (1)

The resulting {Fe} capture how passengers travel along the network via optimal
trajectories. The norms ||Fe||2 measure the total number of passengers along an edge e.

3. Results

3.1. Results on Synthetic Data

We show how the model works on synthetic data where each layer is planar, to mimic
realistic scenarios of transportation networks in space. We generate 2-layer networks and
the source matrix S as done in [42]. Specifically, we generate one layer by randomly placing
N nodes in the square [0, 1]× [0, 1] and then extract their Delaunay triangulation [45]. We
then select a subset of nodes and use this to build the second layer with an analogous
procedure. An example of this is given in Figure 2. After having constructed the network
topology, we assign entry and exit stations to each node in the network, starting from a
monocentric scenario where all passengers exit from a central station, regardless of their
origin. We then randomly re-assign with a probability p ∈ [0, 1] the exit station of each set
of passengers. When p = 0, all the passengers travel to the city center, while when p = 1,
the destinations are assigned completely at random.

We generate 20 networks with N1 = 100 and N2 = 10, so that layer 1 has, on average,
shorter edges than layer 2. For each sampled network, we take 50 random samples of
S. We consider p ∈ {0.2, 0.8} to study two opposite situations of having a majority or a
minority of the passengers directed to a common central node. Then, we fix w1 = 1 and
vary w2 ∈ {0.2, 0.8} to mimic a scenario where traveling on the second layer is faster.

Overall, with these combinations of parameters, we obtain 2-layer networks that
resemble a road–rail network. With this in mind, we run our model with the following com-
bination of parameters for the dynamics: (β1, β2) ∈ {(0.5, 1.1), (0.5, 1.3), (0.5, 1.5), (1, 1)}.
This is because we expect to penalize traffic congestion in a road network, hence β1 = 0.5. In-
stead, a rail network is less sensitive to traffic but it may cost more to build connections, thus
once should consolidate traffic along fewer edges, hence β2 > 1. The case (β1, β2) = (1, 1)
is used as a baseline for comparison with the shortest path-like optimization.

We measure how passengers distribute along the optimal trajectories to assess how
the network operates under various regimes of w and β. For this, we consider ||Fe||2 and
measure the distribution of this quantity along the edges to see how this varies across
parameters’ values and in each of the two layers. In addition, we calculate the current
flow edge betweenness centrality (FBC) [46], which captures how important an edge is
based on how many passengers travel through it. This is different than the standard
edge betweenness centrality [47] in that it considers random paths connecting two points,
instead of only the shortest paths. We argue that FBC is more appropriate in our case, as the
shortest paths may not be the optimal trajectories where passengers travel. We calculate
the weighted version of FBC, where the edge weight is ||Fe||2, so that the random paths are
more likely to follow edges with higher flux. We use the Gini coefficient Gini ∈ [0, 1] to
characterize the disparity in the flow assignment along edges. We consider the following
definition [48]:

Gini :=
1

2E2 x̄ ∑
r,q

|xr − xq| , (5)
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where r, q denote edges, x is the quantity that we want to measure this coefficient with, and
x̄ = ∑e xe/E is its average value. Here, we use xe = ||Fe||2 and xe = FBCe. When Gini is
close to one, most of the flow passes through few edges, whereas when Gini is small, the
flows are distributed evenly across the edges.

Looking at Figure 4, we see that Gini increases with β2 and thus the network usage
becomes more hierarchical, as expected in this case (we report here results for Gini w.r.t.
the flux, but similar results are observed for FBC, see Figure A1). The exact value of Gini
depends on the travel demand, as for p = 0.2, i.e., when the central node is a destination
in 80% of the journeys, Gini is higher than when p = 0.8. This is because with fewer
destinations, there are also fewer possible path trajectories, and thus more passengers
use the same part of the network. We can also see how Gini decreases for higher w2, i.e.,
when traveling by tram is not much faster than traveling on the road network. Finally, we
can notice the drop in Gini compared to the shortest path-like scenario β1 = β2 = 1. In
this case, the traffic distribution is the most hierarchical, suggesting that possible traffic
congestion can be avoided by setting lower values of β1.

Figure 4. Results on synthetic data. We show the Gini w.r.t. the optimal ||Fe||2 (y axis) vs. β2 (x axis)
for synthetic 2-layer networks generated as in Section 3.1. Blue and red markers denote p = 0.2, 0.8,
respectively, w1 = 1 in all cases, while w2 = 0.2 (left) and w2 = 0.8 (right); β1 = 0.5 in all cases,
except for the case where β2 = 1 for which β1 = 1. This case is the shortest path-like baseline.
Markers are averages over 20 network samples and 50 source matrix samples (for a total of 1000
individual samples).

Our model can be used to simulate traffic distributions under various conditions.
In fact, tuning p, {wα} and {βα}, one can simulate disparate scenarios. For instance, in
Figure 2 we show results for different parameters’ choices on a particular realization of a
2-layer synthetic network. Several conclusions can be drawn from this simple experiment.
For instance, the second layer, which ideally can represent a tram network, is only partially
used when β2 = 1.5. This value encourages traffic to consolidate on fewer main connections,
simulating the scenario where building the rail infrastructure is expensive. Our model
can guide a network manager to decide what edges should be prioritized when designing
the network. In this example, we can distinguish which set of edges are the most utilized.
These are mainly central edges, but the exact set can change depending on the other
parameters. For example, if the travel demand, tuned by p, switches from a monocentric to
a more heterogenous set of entry-exit stations, one of the main central edges changes from
connecting a periphery to the center, to connecting two locations in the periphery.

3.2. Results on Real Data

We illustrate our model on a real 2-layer network of the city of Bordeaux, where the
two layers are the bus and tram, respectively. Data are taken from [49]. We simulate a
monocentric source matrix S, i.e., p = 0.0, to asses the scenario where all the passengers
travel to the city center; however, the results are similar for other values of p (not reported
here). Optimal paths are extracted using our model for β1 = 0.5, β2 = 1.5, w2 = 0.2 and
compared against the case where the tram network is absent. This can be simulated by
setting a high value of w2, so that the cost on the tram edges makes it extremely unlikely to
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use any tram connection (here, we use w2 = 100). We measure the total percentage flux
f2 = ∑e∈E2

||Fe||2/(∑e∈E1
||Fe||1 + ∑e∈E2

||Fe||2) passing through layer 2. Remarkably, in
this scenario, the tram network absorbs f2 = 17% of the total flow of passengers, even
though the tram network contains only E2 = 112 edges, compared to E1 = 2347 bus edges.
This allows to reduce significantly the traffic along the road network, as can be seen in
Figure 5, and the road edges, and, in particular, those parallel to the tram line and close to
the city center get thinner as more passengers use the tram. This also results in a higher
Gini1 = 0.26 (calculated on edges in layer 1 w.r.t. ||Fe||2), compared to the Gini1 = 0.23
when the tram is absent: as the passengers use the tram, they decrease traffic on many road
edges. While the traffic distribution on layer 1 gets more hierarchical (higher Gini1), this
does not necessarily lead to more traffic congestion. In fact, the total percentage flow f1
decreases, as we saw above. Additional plots can be seen in Figure A2.

Figure 5. Example of optimal paths in the city of Bordeaux for a bus and tram network. The paths
are obtained with (left) and without (right) the tram layer. Here, β1 = 0.5 in both cases, while
β2 = 1.5 in the second case. The width of the edges is proportional to the optimal ||Fe||2. The
reported Gini1 coefficient for the bus network (layer 1) is calculated using ||Fe||2. The total percentage
flux f2 = ∑e∈E2

||Fe||2/(∑e∈E1
||Fe||1 + ∑e∈E2

||Fe||2) = 0.17, distributed over E2 = 112 tram edges,
compared to E1 = 2347 bus edges.

4. Discussion

We have presented a model that extracts optimal flows on multilayer networks based
on optimal transport theory. Our models accounts for different contributions from different
layers to the total transport cost by means of a parameter βα. Our modeling choice is
relevant in scenarios where passengers can travel using different transport modalities on
an interconnected transportation network. We have shown how the optimal distribution
of passenger flows on network edges is influenced by different factors. In fact, a complex
combination of the parameter βα on each layer, the coupling between layers and the
distribution of the origin and destination pairs determine how heterogeneous the flow
distributions are inside the various layers. In particular, when βα < 1 in one layer and
βα > 1 in another layer, the network topologies are significantly different in the two layers,
as in one, the traffic is more balanced and distributed along many edges, while in the other,
the traffic is consolidated along a few main arteries. To show the potential of our model,
we considered an application to the 2-layer bus and tram network of Bordeaux, showing
how the presence of the tram changes the traffic distribution on the road network.

5. Conclusions

In this work, we proposed a model that uses optimal transport theory to find optimal
path trajectories on multilayer networks. By means of the regularization parameter βα,
we were able to take into account different contributions from the different layers for the
total transportation cost. We illustrated the model on both synthetic and real data and
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showed how the optimal distribution of passenger flows on network edges is influenced
by different parameters used for the construction of the model (i.e., w, p, βα).

In the absence of real data, we simulated the entry and exit destination of passengers.
However, if travel demands are known, for instance, using mobile data [50], it would be
interesting to investigate the distribution of traffic obtained with our model and compare
it with real usage data as done in [51]. We considered a cost assigned on edges where βα

tunes the impact of traffic on them, but one can generalize this to include penalties on
nodes based on their degrees, as considered in [52]. Our model can be used to extract
the main features of multilayer transportation networks [53] or to study the existence
of several congestion regimes in both synthetic and real data [21] and investigate how
this changes, varying βα. Finally, in our experiments, we fixed the weight of inter-super
nodes to be small. Potentially, one could suitably increase this to account for the cost of
changing transportation modes within a journey and use our model to see how optimal
trajectories change. This would be relevant in scenarios where the passengers’ comfort
contributes to the total transport cost. To facilitate future analysis, we provide an open
source implementation of our code at https://github.com/cdebacco/MultiOT (accessed
on 28 May 2021).
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Appendix A

Figure A1. Additional results on synthetic data. We show the Gini w.r.t. the optimal FBC (top)
and the total percentage flux f2 on layer 2 (bottom) vs. β2 (x axis), for synthetic 2-layer networks
generated as in Section 3.1; w2 = 0.2, 0.8 (left,right), β1 = 0.5 in all cases, except for the case where
β2 = 1, for which β1 = 1. This cases is a shortest path-like baseline. Markers are averages over 20
network samples and 50 source matrix samples.
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Figure A2. Additional example of optimal paths in the city of Bordeaux for a bus and tram network.
Here p = 0.0, w2 = 0.2, β1, β2 = (0.5, 1.1), (1.0, 1.0) (left,right). The width of the edges is proportional
to the optimal ||Fe||2. Gini1 is calculated w.r.t. to the flux on layer 1; f2 = ∑e∈E2

||Fe||2/(∑e∈E1
||Fe||1 +

∑e∈E2
||Fe||2).
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Traffic congestion is one of the major challenges faced by the transportation industry. While this problem
carries a high economic and environmental cost, the need for an efficient design of optimal paths for passengers
in multilayer network infrastructures is imperative. We consider an approach based on optimal transport theory
to route passengers preferably along layers that are more carbon-efficient than the road, e.g., rails. By analyzing
the impact of this choice on performance, we find that this approach reduces carbon emissions considerably
compared to shortest-path minimization. Similarly, we find that this approach distributes traffic more homoge-
neously, thus alleviating the risk of traffic congestion. Our results shed light on the impact of distributing traffic
flexibly across layers guided by optimal transport theory.

DOI: 10.1103/PhysRevE.105.064302

I. INTRODUCTION

Traffic congestion is a major problem in the transporta-
tion industry, with significant economic and environmental
repercussions. The impacts of the environmental cost, such
as carbon emissions and other air pollutants, on public health
can be sizable and need to be properly studied [1]. Com-
bining different transportation modalities, as in multilayer
networks, can mitigate congestion and thus improve urban
sustainability [2]. Modeling traffic congestion on multilayer
networks is crucial to investigate the efficiency and cost of
operating such infrastructures [3]. Addressing this problem
requires extracting what paths passengers take from source
to destination, information that can then be used to analyze
traffic patterns. Many route extraction methods are based on
shortest-path minimization [4–7] or assignment strategy [8].
However, the shortest path (i.e., selfish routing) might not
always be the optimal path in a congested network [9–11],
hence the need for coordinated traffic congestion. In addition,
empirical results have shown that passengers may not always
consider the shortest route [12,13]. While efforts have been
made to go beyond shortest-path minimization using the cav-
ity method or message-passing algorithms [10,14–17], these
approaches are only valid in single-layer networks. In mul-
tilayer networks, several works focus more on analyzing the
properties of passenger flows rather than proposing models
to extract trajectories. They consider random walks [4] or
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shortest-path optimization [5–7] to extract flows, thus neces-
sarily influencing the results of subsequent analysis based on
these strategies. Fewer models have been targeting transport
optimization in multilayer networks [3]. For instance, Ref. [8]
proposed a flow-assignment strategy on multilayer networks,
while Ref. [18] developed a recurrent algorithm for commu-
nication networks.

A principled and efficient approach for extracting optimal
paths of passengers in networks is optimal transport (OT)
theory [19–22]. This approach has been applied recently to
multilayer networks [23], where the key idea is to flexibly
tune between different cost functions in each of the different
layers, thus capturing the specificity of each type of infras-
tructure. For instance, a road network is more sensitive to
traffic congestion than a rail one, while the infrastructure
of a rail network may be more costly to build. Our work
builds from these ideas by adapting this model to study and
evaluate optimal paths on multilayer networks under different
scenarios. The goal of our work is to study the trajectories
of optimal paths and compare them with those extracted
from standard approaches relying on shortest-path minimiza-
tion to identify key properties that are better optimized if
one considers the multilayer character of the network. Our
main contribution is threefold: First, we consider an optimal
transport-based approach to extract optimal paths for passen-
gers in multilayer networks, contrary to standard approaches
based on shortest-path minimization. Second, we propose a
variant of this OT-based method that interpolates between
OT and shortest-path minimization. While the extracted paths
of the two OT-based models are longer than those obtained
by shortest-path minimization, the rail layer is used by more
passengers. Finally, we show that by using the optimal routes
extracted by OT-based algorithms, passengers are more likely
to encounter little or no traffic while emitting less CO2, lead-
ing to a reduced environmental cost. Our empirical results
on synthetic and real data show the need for approaches that
exploit the multilayer nature of multimodal transportation net-
works.

2470-0045/2022/105(6)/064302(8) 064302-1 Published by the American Physical Society
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α γ

FIG. 1. Multilayer structure with Nα = 15 and Nγ = 4. The net-
work edges are represented by continuous lines (magenta and brown)
and the two-edge path by dashed lines. The thicker magenta nodes
represent stations belonging to both layers.

II. OPTIMAL TRANSPORT FOR TRAFFIC DISTRIBUTION

IN MULTILAYER NETWORKS

We denote a multilayer network as a graph denoted as
G({Vα}α, {Eα}α, {Eαγ }αγ ), where Vα , Eα , and Eαγ denote the
set of nodes, edges in layer α, and interlayer edges between
layers α and γ ; α = 1, . . . , L, where L is the number of layers.
We denote the number of nodes and edges as N and E , and
we assume that edges have length le > 0, which determines
the cost of traveling through them. We consider the case of a
two-layer network, but all results are valid for a higher number
of layers. We denote the two layers as α, γ and consider a road
network for α and a rail network for γ , as explained in detail
in Sec. III. We show an example of this structure in Fig. 1.

We consider passengers traveling through the networks and
distinguish them by their origin and destination (traffic de-
mands) stations (oi, ti ), where oi, ti ∈ V = ∪αVα . We denote
as S = {(oi, ti )} the set of all origin-destination pairs, and
|S| = M denotes their number.

We briefly describe the model of [23] to find optimal
paths in multilayer networks using optimal transport theory.
It considers two main quantities on network edges: fluxes Fe

of passengers traveling through edge e, and conductivities μe

determining Fe passing through an edge e. To keep track of
the various routes that passengers have, a multicommodity
approach is considered [22,24] in which passengers are distin-
guished based on their entry station i ∈ S . With this approach,
the flux Fe is an M-dimensional vector, where entries F i

e

denote the flux of passengers of type i traveling on edge e.
We assume the fluxes are determined by pressure potentials
pi

u and pi
v

defined on nodes as follows:

F i
e :=

μe

le

(

pi
u − pi

v

)

, e = (u, v), (1)

where le is the length of edge e. Kirchhoff’s law is imposed on
network nodes to properly enforce mass conservation. Finally,
the dynamics assumes that the conductivity μe depends on
flux Fe as follows:

μ̇e = μ
βqe
e

∑

i∈S (pi
u − pi

v
)2

l2
e

− μe, ∀e ∈ E, (2)

FIG. 2. Example trajectories. We show the trajectory of one type
of passenger (black edges) whose origin and destination stations are
the green and magenta nodes, respectively. We also highlight the
total fluxes on edges, solutions of the OT problem including all other
passengers, for a total of M = 300. Blue and red edges denote road
(α) and rail (γ ) layers, respectively. Edge widths are proportional
to the amount of passengers traveling through an edge. The exact
width of the black edge has been either increased (for SP) or reduced
(for OT-based methods) in order to distinguish the flux of this type
of passengers from the overall trajectories. Origin-destination pairs
have been selected so that 80% of the passengers are directed towards
a central node; βα = 0.5 and βγ = 1.9.

where qe encodes the layer to which the edge e belongs.
The parameter 0 < βqe

< 2 determines the type of optimal
transport problem one aims to solve: 0 < βqe

< 1 discourage
traffic congestion, 1 < βqe

< 2 encourage path consolidation
into few highways, while βqe

= 1 is shortest-path-like. Inter-
preting the conductivities as quantities proportional to the size
of an edge, this dynamics enforces a feedback mechanism
such that the edge size increases if the flux through that edge
increases, and it decreases otherwise.

It can be shown [22,23] that the stationary solutions of
Eq. (2) minimize the multilayer transport cost function:

Jβ =

L
∑

α=1

∑

e∈Eα

le||Fe||
�(βα )
2 , (3)

where �(βα ) = 2(2 − βα )/(3 − βα ) for all α, and the 2-norm
is calculated over the M entries of each Fe. Intuitively, solv-
ing the system of Eqs. (1) and (2) and Kirchhoff’s law is
equivalent to finding the optimal trajectories of passengers in
a multilayer network, where optimality is given with respect
to the transport cost in Eq. (3). We refer to this OT-based
algorithm as MultiOT.

A. MultiOTsp: Interpolating between OT and

shortest-path minimization

The paths extracted by MultiOT will encourage path con-
solidation along with the rail network and traffic minimization
on the road network. Empirically, we observe that this model
tends to distribute passengers of the same type (i.e., the same
origin and destination) along various routes, as shown in
Fig. 2. While most of these passengers take the shortest among
these routes, some distribute on longer ones to prevent traffic
congestion. This suggests an alternative algorithm that inter-
polates between MultiOT and shortest-path minimization to
select only the main relevant routes for each origin-destination
pair among those extracted by MultiOT. This can be done
by inputting the solution of MultiOT for each passenger type
i into a weighted shortest-path algorithm with edge weights
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Algorithm 1 MultiOTsp

Input Graph G(V, E ,W ), set S of origin-destination pairs,
β = (β1, . . . , βL )

Output Fluxes {Fe}e

1: function MULTIOTSP(G,S, β)
2: {Fe}e ← MultiOT(G,S, β)
3: for i = 1, . . . , M do

4: {F i
e }e ← weighted Dijkstra (G,S, w) with we = le/|F

i
e |

5: end for

6: Fe = (F 1
e , . . . , F M

e ), ∀ e

7: end function

defined as

we =
le

|F i
e |

, (4)

where the fluxes Fe are those extracted from MultiOT. All the
passengers of type i are then routed along the output path.
We call this algorithm MultiOTsp and show a pseudocode
in Algorithm 1. The advantage of this weight function we is
that weakly used edges are consolidated on others that are
on the optimal path (according to OT) of many passengers.
These edges thus become more desirable when designing an
individual “consensus” OT-based path that takes into account
both path length and optimal fluxes. The paths selected by
MultiOTsp rely strongly on how the fluxes are selected in
the first place to determine the weights we. As the Fe are
calculated by considering all the passengers simultaneously
(using MultiOT), the final optimal trajectories of MultiOTsp
are significantly distinct from those obtained by shortest-path
minimization, which are independent from the surrounding
environment. We show an example of this in Fig. 2.

In the following, we study the trajectories of optimal paths
extracted by the three approaches: MultiOT, MultiOTsp, and
shortest-path minimization (SP). We use the implementation
in [25] for MultiOT, while for SP we use the Dijkstra algo-
rithm [26].

III. EMPIRICAL RESULTS

To investigate the relevant properties of the optimal paths
extracted by the different algorithms, we simulate a variety of
realistic traffic scenarios. Specifically, we generate a dataset
of synthetic two-layer planar networks, where α simulates a
road network and γ simulates a rail network (e.g., a tram).
The layer α is constructed first by randomly placing Nα nodes
in [0, 1] × [0, 1], and extracting its Delaunay triangulation
[27]. We then select among them a subset of Nγ nodes to
build the layer γ with an analogous procedure, thus ensuring
that the two layers are connected. In total, in this construction
the multilayer network has N = Nα nodes and resembles the
situation in which all the stations in the second layer also have
access to the road network. Notice that other constructions
are possible, but this choice does not impact the validity of
our model. In our simulations, we set Nα = 300 and Nγ = 60.
We extract 20 different networks and 100 random samples
of origin-destination pairs for each of them, for a total of
2000 realizations for each parameters’ configuration. With

FIG. 3. Average total path-length ratio. We show the ratio of the
average total path length to the one extracted from SP. We set p =

0.5, βα = 0.5, and vary 0 < βγ < 2. The results are averaged over
20 different network realizations with 100 randomly selected origin-
destination pairs for each network realization. The markers and error
bars are averages and standard deviations.

this, we aim at capturing different transportation scenarios
in the two layers, as rail networks are less subject to traffic
congestion but more costly to build, while we can state the
opposite for road networks. MultiOT (and thus MultiOTsp)
can capture these differences by suitably tuning β in each
layer: to discourage traffic congestion in the road layer, we
set βα = 0.5 and vary βγ in 0 < βγ < 2 to study various sce-
narios. In realistic scenarios, passengers have different origins
and destinations; see Fig. 2 for an example. As we may expect
in many urban scenarios that the most frequent destination
is located in the city center, we assign to each passenger
type its destination by default to be a central node. Then,
to explore alternative scenarios where destinations are more
heterogeneous, we consider a rewiring probability p = [0, 1]
to rewire its destination at random. Specifically, for each
passenger type, we rewire its destination to a random node
with probability p. Hence, p = 0.0 corresponds to having a
monocentric destination where all passengers move towards a
central node and p = 1.0 corresponds to selecting all passen-

FIG. 4. Coupling between layers. We show the coupling coeffi-
cient as defined in Eq. (5). All other settings remain the same as in
Fig. 3.
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FIG. 5. Carbon emission ratio. We show the ratio of the average
carbon emissions as defined in Eq. (6) to that obtained by SP. All
other settings remain the same as in Fig. 3.

gers’ destinations at random. We consider p = {0.2, 0.5, 0.8},
but we show results for p = 0.5, as the qualitative behavior

FIG. 6. Traffic distribution. Top: Gini coefficient of the traffic
on the road layer α. Bottom: optimal trajectories. Edge widths are
proportional to ||Fe||1 averaged over 10 samples of origin-destination
configurations; p = 0.5, βα = 0.5. When βγ > 1, OT-based methods
are consolidated into fewer edges in layer γ . The SP, on the other
hand, is not affected by this parameter, showing flows of passengers
on more edges compared to OT-based methods, which consolidate
into fewer edges. Blue and red edges correspond to road (α) and rail
(γ ) layers, respectively.

FIG. 7. Carbon emissions on the Bordeaux network. Ratio of the
average carbon emission over that of SP. Here, we set p = 0.2, thus
favoring monocentric destinations. The gray-dashed line shows the
minimum value obtained byMultiOTsp, corresponding to βγ = 1.3.
Inset: zoom-in of MultiOTsp values for 1.1 � βγ � 1.9.

is similar to that for the others; see Appendix. These settings
exhibit three important properties of the OT-based algorithms.

IV. LONGER LENGTHS BUT HIGHER RAIL

NETWORK USAGE

Shortest-path optimization is utilized to minimize the total
path length taken by passengers, hence we expect MultiOT
and MultiOTsp to underperform SP on this task. In fact, the
performance of OT-based algorithms is expected to decrease
as βγ increases, as shown in Fig. 3 by the average path length
〈 l 〉 = 1

M

∑

e∈E le||Fe||1 over the one obtained from a shortest-
path algorithm.

This is expected given that higher βγ encourages more
traffic to be routed towards the rail network at the cost of
increased distance to cover, as the rail network has fewer and
more distant nodes to reach than a road network. We then
measure how passengers are distributed in the two layers by
defining a coupling coefficient, a known concept to describe
how well two layers are linked [6]. We define

λ =
1

M

∑

i∈S

(
∑

e∈Eγ
|F i

e |
∑

e∈Eα∪Eγ
|F i

e |

)

, (5)

where the numerator inside the parentheses contains only
the flux in the rail layer so we can distinguish how many
passenger types effectively use that layer in their trajecto-
ries. This definition is valid for two-layer networks, such
as the empirical networks studied here. However, one can
appropriately generalize it for networks with more than two
layers. The usage of the rail layer increases monotonically
for both OT-based algorithms, as shown in Fig. 4, with Mul-
tiOTsp reaching higher usage values. This suggests that the
shortest-path routes selected from the possible paths output
by MultiOT are composed of a significant amount of rail
edges. This also shows that the raw solution output of Mul-
tiOT consider paths more distributed across the road layer, as
qualitatively observed in Fig. 2.
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FIG. 8. Traffic distribution on the Bordeaux network. We set p = 0.2 and βα = 0.5. Left: Gini coefficient calculated using the traffic on
the road network. Error bars (standard deviation) are smaller than marker size. Center-right: Traffic distribution for each of the algorithms with
βγ = 1.9. Red and blue edges denote tram and road layers, respectively. Node and edge sizes are proportional to the amount of passengers
traveling through them. The results are averaged over 100 samples of origin-destination pairs.

V. MULTILAYER OPTIMIZATION CAN DECREASE

CARBON CONSUMPTION

As more passengers take longer paths while being encour-
aged to use the rail network, they also consume less carbon
per unit of length. The question is whether the increased
length can be properly compensated by the decrease in carbon
consumption. We tested this on the same paths extracted to
plot Fig. 3 by measuring the average CO2 consumption per
passenger as

〈 CO2 〉 =
1

M

∑

e∈E

rqe
le||Fe||1, (6)

where rα is the carbon emission rate in layer α. This has a
dimension of unit of mass (e.g., g) per passenger per unit of
length (e.g., pkm). For instance, a bus on average generates
101.87 g/pkm [28] while a train generates 28.39 g/pkm [29].
Hence, defining rα as the rate of the road layer and consider-
ing buses traveling on it, we can set rγ = 28.39rα/101.87 =

0.28 rα . These values can be changed accordingly with more
specific values if a traffic manager has precise statistics of
vehicle types traveling on the network. By leveraging optimal
transport with a bias towards shortest paths, MultiOTsp is able
to decrease carbon consumption the most compared to SP,
measured by the ratio of its 〈 CO2 〉 over that produced by SP.
A minimum is reached for 1.1 � βγ � 1.5 where MultiOTsp

FIG. 9. Transport cost on the road layer α of the Bordeaux net-
work. The cost is defined as in Eq. (8); here p = 0.2.

produces 25% fewer emissions than a shortest-path routing
algorithm, as shown in Fig. 5. This important result is a
consequence of flexibly tuning the cost to be optimized in
each layer, as allowed by β in Eq. (3). In particular, βγ > 1
encourages paths to consolidate on the rail layer, while βα =

0.5 controls for traffic congestion on the road layer. The fact
that the minimum consumption of MultiOTsp has not been
realized at the highest value βγ = 1.9, where the paths are
consolidated into the fewest rail routes, further suggests that
there is a tradeoff between keeping the path lengths short
while directing more passengers towards the rail layer. In fact,
at βγ = 1.9, as the number of passengers redirected towards
the second layer increases, they also have to take longer
routes, thus emitting more carbon. A value of β = 1.3 results
in a nice tradeoff between these two competing behaviors in
terms of carbon emission. On the contrary, MultiOT shows a
monotonic decreasing behavior with a minimum reached at
β = 1.9, but still higher than that emitted by SP. This is a
consequence of the higher number of possible paths that pas-
sengers can take as routed by MultiOT, which are by default
longer than those obtained by MultiOTsp and use more edges
of the road layer. As a consequence, the longer length does
not seem to justify the higher usage of the rail layer.

VI. TRAFFIC CONGESTION

All the results of the previous section were interpreted with
the assumption that the flow of passengers is regular, even on
high-traffic edges. Instead, if we account for traffic slowing
down the flow on edges with a high density of travelers, those
vehicles emit more carbon while they keep their engines on
longer. The routes suggested by MultiOT are less sensitive to
this, hence we also expect a lower carbon emission than that
shown in Fig. 5 when accounting for traffic. We thus measure
traffic load on edges as

Te =
1

n
||Fe||1, (7)

where n is the total number of passengers and measures the
Gini coefficient Gini (Te) ∈ [0, 1] as a global network met-
ric of inequality of how traffic is distributed on the network
[30], with a Gini close to 1 meaning high inequality in flow
assignment along edges. As the road layer is the one more
sensitive to potential traffic bottlenecks, we consider only the
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traffic on road edges and denote with Gini (T (α)
e ) the Gini co-

efficient calculated using only e ∈ Eα . As expected, MultiOT
has more balanced traffic than the other two algorithms, as
shown in Fig. 6. While congestion increases with βγ , even at
the maximum β = 1.9 the Gini coefficient is lower than that of
SP. The reason for this increase is that paths consolidate more
on those fewer road edges that allow a connection to the rail
layer, as can be seen on the example optimal routes in Fig. 6,
a behavior also observed in previous studies [31,32]. This is
exacerbated in MultiOTsp, as one can notice that central road
edges are overly trafficked when many passengers exit the rail
to reach the final destination in the center. This also causes
the Gini coefficient of MultiOTsp to be higher than that of SP.
In other words, few central edges cause most of the traffic for
MultiOTsp. This can be partially alleviated by increasing p to-
wards 1 as fewer destinations are directed towards the network
center, although this may become an unrealistic assumption in
urban scenarios. Alternatively, one can simply add rail stations
in the center, so that passengers do not have to commute one
extra mile to reach their final destination, a scenario that we
explore below in the case of a real network.

VII. REAL MULTILAYER NETWORK

Next, we examine these properties on a real two-layer net-
work of the city of Bordeaux [33], where α and γ represent the
bus and tram networks, respectively. Similar to the synthetic
network, we compare the performances of OT-based algo-
rithms with SP on this network. We set p = 0.2 to consider
the situation in which the majority of passengers are directed
towards the city center, a central node coinciding with a tram
station, and we extract 100 realizations of origin-destination
pairs.

The tram in this city travels through its own reserved lanes,
independently from other vehicles. Hence, although the two
layers are physically located next to each other, there is no
mixing of fluxes from the two layers on edges. This may differ
in other real situations. While in principle our model is best
suited for independent usage of the space by the various layers
(e.g., road and subway or the case studied here), the results
shown here may still apply if we assume that the physical
presence of the tram only marginally impacts the traffic in
the road layer, compared to other vehicles. Specifically, the
combination of high enough capacity (number of passengers
that can fit into a tram) and lower frequency of trams than
other vehicles on the road may allow us to assume indepen-
dence between the tram and road layer. In fact, while the
tram may have many passengers traveling at any given time
along an edge, these are all entering inside the same wagons.
Thus, the space occupied by the tram is limited by its physical
shape. Instead, the same amount of passengers would need to
distribute in many different cars, thus occupying much more
space, potentially creating congestion. In general, in situations
in which trams have reserved lanes that cars cannot enter, our
treatment applies without any further assumption.

We find that MultiOTsp produces 25% fewer carbon emis-
sions than SP for 1.1 � βγ � 1.5, as shown in Fig. 7, similar
to what is observed on synthetic networks. MultiOT has a
minimum at βγ = 1.9, but the emissions are higher than SP.
We argue that also in this case this is due to the assumption

FIG. 10. Additional results on synthetic data for varying p. The
results are averages and standard deviations over 20 different net-
work realizations with 100 independent samples of origin-destination
pairs on each network realization. Other parameters used here are
βα = 0.5, Nα = 300, Nγ = 60.
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that the flow of vehicles is smoothly moving, with no traffic
congestion causing velocity to decrease, and thus causing
emissions to increase nearby traffic bottlenecks. To assess
this hypothesis, we investigate the distribution of fluxes on
the road layer by measuring the traffic Te on edges in layer
α. We find that indeed MultiOT has path trajectories more
homogeneously distributed across the road layer as measured
by the Gini coefficient plotted in Fig. 8 along with an example
solution, potentially lowering the number of traffic jams. As
we can see from an example solution in the same figure, the
two OT-based variants distribute passengers in higher amounts
along the tram network, thus lowering the road’s usage, while
SP makes use of the tram mainly in the vicinity of the central
node. We can further notice how MultiOT uses the road with
higher intensity than MultiOTsp, but the road edges have less
traffic than those obtained by SP. As for MultiOTsp, the road
edges with the most traffic are those near tram stations, like
those in the upper left corner in the figure.

To better quantify the potential impact of traffic congestion
as a proxy for the potential increase in CO2 emission, we
consider a measure of transport cost used before in similar
problems [14,15] and defined as

Jα =
∑

e∈Eα

le||Fe||
2
1, (8)

where the exponent 2 discourage traffic. This should not be
confused with the definition of Eq. (3), which is the one used
to extract the optimal paths in our model, i.e., to solve the OT
problem. Specifically, Eq. (3) uses different β for edges in dif-
ferent layers. In particular, it allows us to encourage both path
consolidation in one layer and path distribution in another.
Instead, Eq. (8) only discourage traffic, as the exponent is
greater than 1. In addition, Eq. (3) considers the norm-2 of the
passengers’ flows, while Eq. (8) considers norm-1. While the
latter is more intuitive, as it is the total number of passengers
traveling along an edge, the former admits rigorous theoretical
guarantees for OT to converge to an optimal solution. This
does not apply to a cost function using norm-1; see Ref. [24]
for a detailed discussion.

As seen in Fig. 9, both OT-based algorithms outperform SP
as βγ increases, meaning that passengers traveling on paths
generated by the OT-based algorithms will generally record
less road traffic congestion compared with the paths extracted
by SP. Assuming that velocity decreases along congested
edges, we conjecture that this would result in MultiOT having
lower carbon emissions than SP.

VIII. DISCUSSION AND CONCLUSION

Designing and extracting optimal passenger flows in a
transportation network is crucial for reducing traffic conges-
tion and environmental costs. Methods based on shortest-path
optimization are optimal in terms of reducing the average
shortest-path length to reach destination, but they may fail
in terms of other relevant transportation metrics. In addition,
passengers do not always follow the shortest route [12], hence

the need for alternative approaches to extract path trajectories
and investigate their properties in multilayer networks. We
present two models based on optimal transport theory that
can flexibly tune the amount of traffic routed in the different
layers to encourage usage of rail networks while reducing
traffic on the road. As a result, optimal trajectories extracted
with these methods significantly decrease the amount of car-
bon emissions compared to shortest-path minimization, while
also being more robust to traffic congestions. In particular,
we found that MultiOTsp, by interpolating between optimal
transport and shortest-path minimization, can achieve the
lowest amount of carbon emissions under the hypothesis of
smooth flow of passengers in a network. Instead, MultiOT,
based purely on optimal transport, distributes paths more
homogeneously, thus being potentially more robust against
increased carbon emissions when accounting for passengers’
flow slowing down along traffic bottlenecks. This can be
tested quantitatively in real scenarios by having access to
empirical data of different velocities during traffic congestion,
along with detailed velocity limits imposed by regulations in
different parts of the network. One could potentially compare
the theoretical results with the empirical ones observed from
real data as in [34].

In general, we show that models based on optimal transport
can be used to design optimal routes for passengers in a mul-
tilayer network, and we investigate scenarios beyond those
obtained by using standard shortest-path algorithms. In this
work, we assumed fixed origin-destination pairs, but one can
further generalize this analysis by considering dynamical traf-
fic demands that change in time. This would require suitably
adapting the models studied in this work to account for this,
for instance borrowing ideas from [35–39]. Similarly, we did
not explore here the possibility of traffic diversions due to road
blockages or changing conditions in the network structure
[40–43]. Studying the robustness of the methods investigated
in this work to these scenarios would be an interesting subject
for future work. Finally, it would be interesting to investigate
more complex scenarios with more than two layers, possibly
on a larger scale than that of a unique urban scenario. To
facilitate future analysis, we provide an open source imple-
mentation of our code at [25].
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APPENDIX: ADDITIONAL RESULTS VARYING p

We set p = {0.2, 0.5, 0.8} to capture different traffic de-
mand scenarios, where p = 0.2 and 0.8 correspond to having
the majority and minority of the passengers with a monocen-
tric destination. We show in Fig. 10 the performance of the
algorithms in terms of the same metrics investigated in the
body of the manuscript. All displayed results have the same
settings described in Sec. III.
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Finding optimal trajectories for multiple traffic demands in a congested network is a challenging task.

Optimal transport theory is a principled approach that has been used successfully to study various

transportation problems. Its usage is limited by the lack of principled and flexible ways to incorporate

realistic constraints. We propose a principled physics-based approach to impose constraints flexibly in

optimal transport problems. Constraints are included in mirror descent dynamics using the D’Alembert-

Lagrange principle from classical mechanics. This results in a sparse, local and linear approximation of the

feasible set leading in many cases to closed-form updates.
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Introduction—Optimal transport in networks has impor-

tant applications in different disciplines, in particular in

urban transportation networks [1]. Congestion not only

increases travel time for users and decreases productivity,

but it also drives air pollution. Reducing congestion

and making transportation more efficient are also a core

objective for EU policies, as highlighted throughout the

EU Transport White Paper and the Strategic Plan 2020-

2024 [2,3].

The design of efficient transportation networks is a

complex task that requires a multifaceted solution. One

of these facets is the problem of finding optimal routes for

passengers. This is a well-studied problem in operations

research [4] where minimum-cost optimization is often

considered to model discrete flows and can be solved using

classical techniques from linear programming. In our

Letter, we consider the continuous case, where flows are

real-valued quantities. A variety of approaches have been

suggested to model transport in networks using techniques

from physics of complex systems [5,6]. Path optimality and

congestion control have been studied in discrete settings

[7–9] or using the cavity method [10,11]. These usually

rely on ad hoc algorithmic updates that depend on the

specific type of constraints. The computational complexity

of the ad hoc updates is greatly influenced by the

constraints. Other approaches have been proposed to

investigate navigation in complex systems [12–18], where

the focus lies on investigating the properties of flows, rather

than their optimization, as we consider here. In addition,

these models often assume that passengers follow their

shortest paths, an assumption, which may not be satisfied in

practice. Adaptation dynamics [19–21] have been proposed

to model biological distribution networks. However, these

methods fall short of describing realistic scenarios where

transport flows are limited by constraints.

In the following we cast the problem of designing

efficient transportation networks under the broader frame-

work of optimal transport theory (OT) [22]. This has been

used to model and optimize various aspects of transport

networks such as network design [19,21,23,24] and traffic

flows [25–29]. These approaches guarantee a principled

and computationally efficient way of solving transportation

problems on networks. In addition, they model traffic

congestion with a single tuning parameter that enables a

transition between opposite traffic regimes, where traffic

congestion can either be consolidated or discouraged. In

standard OT methods, beyond few obvious constraints

(e.g., conservation of mass), the amount of flow passing

through an edge of the transportation network is uncon-

strained. As a result, traffic tends to concentrate on path

trajectories that may be structurally unfeasible, which

severely limits the applicability of OT models in real-world

situations, where, for example, roads have a limited

capacity of vehicles traveling at the same time. This Letter

proposes an approach to avoid this crucial flaw of OT

models by imposing constraints. Applying this approach

significantly impacts the overall network topology induced

by the optimal flows, as the resulting path trajectories have

different path lengths and traffic distribution than those

obtained from unconstrained scenarios.

Our approach has not only a solid foundation via the

principle of D’Alembert-Lagrange from classical mechanics

[30], but also leads to algorithms that are computationally
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efficient and have a low implementation complexity. The key

idea is to consider mirror descent dynamics of an OT

problem, where constraints are included on a velocity level.

This leads to a sparse, local and linear approximation of the

feasible set which, in many cases, allows for a closed-form

update rule, even in situations where the feasible set is

nonconvex.

The model—In analogy with electrical grids or hydraulic

networks, we model mass flow on a transportation network

using conductivities and flows on network edges. We

consider a multicommodity scenario [26,31], where mass

of different type i ¼ 1;…;M can move along different

trajectories. The flow Fi
e of mass of type i along an edge

e ¼ ðu; vÞ can be described by Fi
e ¼ μeðp

i
u − pi

vÞ=le,
where pi

u is a pressure potential at node u for passenger

of type i, le is the length of the edge e, and μe its

conductivity. This latter quantity can be seen as propor-

tional to the size of an edge, and is the main variable of

interest in determining optimal trajectories. Once the

conductivity is known, the pressure differences can then

be calculated from Kirchhoff’s law, which in turn deter-

mines the flows Fi
e, see Supplemental Material (SM) [32],

which includes Refs. [33–36]. In the absence of constraints,

the optimal conductivities are the stationary solutions of the

dynamics μ̇ ¼ f, where

fe ¼ μ
β
e

P

iðp
i
u − pi

vÞ
2

l2e

− μe ≡ μ
β−2
e jFej

2 − μe; ð1Þ

with Fe ¼ ðF1
e;…; FM

e Þ and j · j denotes the Euclidean

norm. Intuitively, this equation describes a positive feed-

back mechanism where conductivities increase for larger

fluxes and decrease for negligible ones [19]. It can be

shown that the dynamics in Eq. (1) admits a Lyapunov

function Lβ which can be interpreted as a combination of

the cost to operate the network and that of building the

infrastructure [26], see SM [32]. Moreover, we have that

f ¼ −S∇Lβ, where S is a diagonal matrix with diagonal

entries Se ¼ 2μ
β
e=le and Eq. (1) can therefore be seen as a

mirror descent for the cost function Lβ [37]. This scaling in

S has the advantage of ensuring good behavior of the

resulting numerical methods. One can also reinterpret

Eq. (1) as a classical gradient descent by applying a

suitable transformation [38], we do not explore this here.

Variants of these dynamics have been proposed to model

distributions over networks [20,21,27,39,40]. The constant

β∈ ð0; 2Þ regulates the desired transportation regime. The

setting β < 1 penalizes traffic congestion by distributing

paths on more edges, β > 1 encourages path consolidation

into fewer highways, and β ¼ 1 is shortest pathlike.

In addition to imposing Kirchhoff’s law on nodes to

ensure mass conservation, solving these dynamics outputs

otherwise unconstrained optimal μe and Fe (see SM [32]).

While this may be enough in ideal cases, in more realistic

scenarios it is important to further constrain the solution.

For instance, structural constraints may limit the maximum

amount of flow that an edge can carry, or a budget

constraint may be used to limit the infrastructure cost

for building the network. Hence, the dynamics μ̇ ¼ f must

be altered to account for these additional constraints.

There are many ways in which constraints can be added.

A popular approach is to add constraints on a so-called

position level, which leads to gradient inclusions in

continuous time [ [41], Ch 3.4], and projected gradient

descent in discrete time. Unfortunately, the scope of

projected gradients is limited, due to the fact that projec-

tions can only be efficiently evaluated for constraints that

have a particular structure (such as a low-dimensional

hyperplane, the probability simplex, or a Euclidean norm

ball). When the feasible set is nonconvex and/or fails to

have a simple structure, evaluating projections is a com-

putationally daunting task. This motivates our formulation

(see also Ref. [42]), which includes constraints on a

velocity level and yields a sparse local and linear

approximation of the feasible set. As a consequence, the

updates for μ can often still be evaluated in closed form (or

there is an efficient way of computing them numerically)

even though the underlying feasible set is nonconvex

or fails to have a simple structure. We will highlight

explicit examples of such situations in the remainder of

this Letter.

We define C ≔ fμ∈R
E
≥0jgðμÞ ≥ 0g as the set of feasible

conductivities μ ¼ ðμ1;…; μEÞ, with g a constraint function
that we assume continuously differentiable and E is the

number of network edges. Interpreting μ as a “position”

variable we can equivalently express the constraints in C in

terms of a “velocity” variable by imposing μ̇ðtÞ∈Vα(μðtÞ),
where Vα(μðtÞ) is the set of feasible velocities and α ≥ 0 is

a constant typically referred to as a “restitution” parameter

or “slackness,” see Appendix for details.

For μðtÞ ∉ C and an active constraint i, the constraint

μ̇ðtÞ∈Vα(μðtÞ) is equivalent to dgi(μðtÞ)=dt≥−αgi(μðtÞ),
which ensures that potential constraint violations decay at

the rate α > 0. The situation is visualized in Fig. 1(a).

In order to account for the velocity constraint μ̇∈VαðμÞ
we augment the dynamics μ̇ ¼ f with a reaction force R

FIG. 1. (a) Visualization of the set C and the set of feasible

velocities Vαðμ1Þ and Vαðμ2Þ at points μ1 and μ2, respectively.

Point μ1 lies on the boundary of C, while μ2 is infeasible; α is a

restitution parameter. (b) When the vector field f is pushing away

from C, a force −R∈NVα
ðμ̇Þ is added to the dynamics to ensure

μ̇∈VαðμÞ.
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that forces the solution to remain within the desired

constraints:

μ̇ ¼ f þ R; with − R∈NVαðμÞðμ̇Þ; ð2Þ

where NVαðμÞðμ̇Þ denotes the normal cone of the set VαðμÞ

at μ̇. Because of the scaling of the gradient with S, the
normal cone is defined with respect to the inner product

ha; bi ¼ aTS−1b, where a; b∈R
E are arbitrary vectors.

This has the important effect of guaranteeing that Lβ (of the

unconstrained dynamics) is still a Lyapunov function also

in the constrained setting and that Lβ(μðtÞ) is monoton-

ically decreasing along the trajectories of Eq. (2). A

detailed derivation is included in the SM [32].

The addition of R ensures that even if f pushes μ away

from C, as shown in Fig. 1(b), the force R, which is

orthogonal to the set VαðμÞ, annihilates the component of f
that would lead to a constraint violation and ensures that

μ̇∈VαðμÞ. As discussed above, we can therefore conclude

that μð0Þ∈C⇒ μðtÞ∈C for all t ≥ 0 and μð0Þ ∉ C⇒
μðtÞ → C for t → ∞.

In addition, we infer from Fig. 1 that the resulting μ̇ in

Eq. (2) is nothing but the projection of f onto the set VαðμÞ
and as a result, we can rewrite μ̇ in the following way:

μ̇ ≔ argmin
v∈VαðμÞ

1

2
hv − f; v − fi; ð3Þ

which can also be equivalently reformulated as the quad-

ratic program (QP)

μ̇ ≔ argmin
v∈VαðμÞ

1

2
ðv − fÞTS−1ðv − fÞ: ð4Þ

This reformulation is not only useful for numerical

computations, but also highlights that the velocity μ̇ is

chosen, at each point in time, to match the unconstrained f.
Figure 1(a) visualizes the set C and the set of feasible

velocities Vαðμ1Þ and Vαðμ2Þ at points μ1 and μ2, respec-

tively. Point μ1 lies on the boundary of C, while μ2 is

infeasible. We note that the cone Vαðμ2Þ includes an offset,
which is controlled by the restitution parameter α; this

ensures that any v∈Vαðμ2Þ leads to a decrease in constraint
violation. Figure 1(b) shows that when the vector field f is

pushing away from C, a force −R∈NVα
ðμ̇Þ is added to the

dynamics. The force R annihilates the component of f that

would lead to a constraint violation and ensures μ̇∈VαðμÞ,
where μ̇ is chosen as close as possible to f. This can also be
interpreted as Gauss’s principle of least constraint. It is

important to note that VαðμÞ is a polyhedral set that only

includes the constraints Iμ, a subset of the original con-

straints gðμÞ ≥ 0. The set VαðμÞ represents therefore a

sparse, local, and linear approximation of the feasible set.

The solution μ̇ of Eq. (3) can then be used to update the

conductivity with a discrete-time algorithm:

μtþ1 ¼ μt þ τμ̇; ð5Þ

where τ > 0 is the step size.

This general formalism can be applied to a variety of

scenarios, provided one can compute∇g, which determines

the set VαðμÞ. We can then solve Eq. (4) by using numerical

solvers tailored to the QP, which then yields the update

Eq. (5). Additional details about the computational com-

plexity for solving Eq. (5) are described in the SM [32].

However, in important special cases, the optimization

Eq. (5) can be solved in closed form, as we illustrate

below with three relevant examples.

Capacity constraints—In cases of structural constraints

that strictly limit the amount of mass that can travel along

any given edge, one can consider capacities ce ≥ 0 on

edges and set constraints as geðμÞ ¼ ce − μe. The velocity

constraint v∈VαðμÞ in Eq. (3) reads as ve ≤ αgeðμeÞ, for
e∈ Iμ, which is strictly negative, since α > 0 (SM [32]). As

previously discussed, α > 0 is a restitution parameter that

dictates the rate at which constraint violations decay. In

discrete time, one should choose α > 0 such that ατ ≤ 1 to

guarantee convergence (see Ref. [42]). We can then solve

Eq. (3) in closed form for edges violating the constraint

obtaining ve ¼ minfαðce − μeÞ; feg. In summary, for each

edge e, we have

μ̇e ¼

�

αðce − μeÞ; if fe ≥ αðce − μeÞ and μe ≥ ce;

fe otherwise:
ð6Þ

Figure 2 shows the path topologies with capacity

constraints on synthetic data, compared against the uncon-

strained case. We generate random planar networks as the

Delaunay triangulation [43] ofN ¼ 300 points in the plane.

We measure the Gini coefficient GiniðTÞ calculated on the

traffic on edges, defined as the E-dimensional vector T with

entries Te ¼
P

i jF
i
ej=n, where n is the number of pas-

sengers. The coefficient has value in [0, 1] and it determines

how traffic is distributed along network edges, with

GiniðTÞ ¼ 0, 1 meaning equally balanced or highly unbal-

anced traffic on few edges, respectively. The choice of the

edge capacity ce influences this value, with lower ce
imposing stricter constraint and thus encouraging traffic

to distribute more equally along the edge, i.e., lower Gini,

as shown in Fig. 2(a). Conversely, this implies longer routes

for passengers, as measured by an increasing average total

path length hli ¼
P

e;i lejF
i
ej=n compared to the uncon-

strained solution, as shown in Fig. 2(b).

Budget constraint—As a second example, we consider a

global constraint that involves all the edges at once, a

budget constraint gbðμÞ ¼ b −
P

e μe. This is relevant

when a network manager has a fixed limited amount of

resources b > 0 to invest. We note that, while the Lyapunov

function Lβ contains a similar budget term—the cost to

build the infrastructure—this cost is not regarded as a

constraint in standard approaches [20,26] but as part of the
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energy consumption, and the budget b is not a Lagrange

multiplier but a measurable constant. Furthermore, unlike

the previous case where including a positivity constraint

μe ≥ 0 is optional (but it can in principle be imposed as

well, see SM [32]), here we need to include that explicitly.

In the standard OT formalism positivity is ensured, pro-

vided μe is initialized as a positive quantity. Adding

constraint may not preserve positivity anymore during

the updates, this is the case for the budget constraint, as

we observed empirically. Positivity is enforced by adding

gpðμÞ ¼ μ ≥ 0, i.e., μe ≥ 0 ∀ e.

In this budget constraint setting, the conductivities violate

the constraint whenever
P

e μe > b. We derive a closed-

form solution as μ̇e ¼ fe − Seλb, if fe − Seλb ≥ −αμe, and

μ̇e ¼ −αμe otherwise, where λb ∈R, a Lagrange multiplier

for the budget constraint, can be numerically determined via

fixed-point iteration (SM [32]).

Combining linear and nonlinear constraints—All the

previous examples considered linear constraints, where it is

simple to derive analytical solutions. In general, constraints

can be more complicated and thus require numerical

methods to solve the constrained QP in Eq. (3). In this

scenario, we consider a nonlinear budget constraint of the

form gδðμÞ ¼ b −
P

e μ
δ
e ≥ 0, where δ > 0 is a nonlinearity

parameter. Setting δ ¼ 1 gives a linear budget constraint as

the one discussed earlier. A nonlinear example is a volume-

preserving constraint where δ ¼ 1=2, this is relevant for

biological processes such as leaf venation and vascular

systems [21,44]. This nonlinear budget induces the velocity

constraint
P

e δμ
δ−1
e ve ≤ αgδðμÞ. In addition, we also

consider a capacity constraint as in the first scenario

studied above. Overall, three functions are required:

(i) gδðμÞ to impose nonlinear budget constraint; (ii) geðμÞ
to impose edge capacity, and (iii) gpðμÞ to ensure positivity.
We derive the closed-form solution as

μ̇e¼

8

>

>

<

>

>

:

αðce−μeÞ if fe−Seλδhe≥αðce−μeÞ; μe≥ce

−αμe if fe−Seλδhe≤−αμe; μe≤0

fe−Seλδhe otherwise;

ð7Þ

where he ¼ δμδ−1e and λδ > 0. The value of λδ can

be determined numerically using fixed-point iteration

(SM [32]). The value αðce − μeÞ ensures there is no

violation on the edge capacity, −αμe imposes positivity

constraint, and fe − Seλδhe captures budget violation.

Overall, this scenario ensures that the velocity μ̇e has an

upper bound of αðce − μeÞ and lower bound of −αμe. The

choice of δ impacts the topological properties of the

resulting network, e.g., the total path length. In the

numerical experiments, we set the nonlinearity parameter

as δ∈ ð0; 1Þ.
Grenoble network—We examine the topology of various

constrained solutions on the road network of the city of

Grenoble [45], see Fig. 3(a). This has 640 nodes and 740

edges. As a relevant example, we set the central bus station

as the destination node and select the remaining 639 nodes

as origins, but our method still applies to other choices of

origin-destination pairs, e.g., peripheral nodes connecting

to other peripheral nodes or to various hubs. This can be

specified inside Kirchhoff’s law, see SM [32].

Routes generated from the nonlinear constraint scenario

balance traffic more than the unconstrained case and result

in longer routes, see Figs. 3(b) and 3(c). Adding a budget

constraint for β > 1 results in more distributed traffic

(lower Gini) without increasing much the total path length,

compared to the unconstrained case. This could be used for

instance to allocate to roads infrastructural works aimed at

maintenance or upgrade when having a restricted budget.

Discussion—Distributing flows in a transportation net-

work is challenging. Approaches based on optimal trans-

port theory are promising, but they are limited by the lack

of a mechanism to incorporate realistic constraints. We

show how to impose arbitrary constraints on OT problems

in a principled and flexible way. The constraints are lifted

from a position to a velocity level and are included in the

corresponding mirror descent dynamics. This results in a

scalable algorithm that solves constrained OT problems in a

computationally efficient manner. The algorithm relies on a

sparse local approximation of the feasible set at each

iteration. Thus, closed-form updates can often be derived,

even if the underlying feasible set is nonconvex or non-

linear. Otherwise, one can resort to efficient numerical

methods to solve at most a quadratic program. Our physics-

based approach is a change of paradigm with regard to how

FIG. 2. Capacity constraint on synthetic networks. (a) Gini

coefficient of the traffic distribution on edges. The edge capacity

ce ¼ c is selected as a percentile of the distribution of μ over

edges obtained in the unconstrained case (Unconstrained).

(b) Ratio of average total path length to that of Unconstrained,

hlif. Markers and shadows are averages and standard deviations

over 20 network realizations, with 100 randomly selected origins.

All passengers have the same central destination (square magenta

marker). (c) Example trajectory of one passenger type (green

color), whose origin is the green triangle marker. Edge widths are

proportional to the amount of passengers traveling through an

edge; β ¼ 1.8.
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OT problems are modeled and solved numerically. This

calls for a generalization of transportation problems in

wider scenarios, e.g., in networks with multiple transport

modes [28], with real-time traffic demands [46], or with

noise-induced resonances [47].
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Appendix A: Details about setting the constraints—We

define C ≔ fμ∈R
E
≥0jgðμÞ ≥ 0g as the set of feasible

conductivities μ ¼ ðμ1;…; μEÞ, with g a constraint

function that we assume continuously differentiable

and E is the number of network edges. We focus on

those edges where constraints are not satisfied, and

denote the set of active constraints for a given μ as

Iμ ≔ fi∈ZjgiðμÞ ≤ 0g. Interpreting μ as a “position”

variable, a constraint to ensure μðtÞ∈C, ∀ t ≥ 0, can be

equivalently formulated as a constraint on its velocity

μ̇ðtÞ∈TC(μðtÞ), ∀ t ≥ 0, with μð0Þ∈C, where TCðμÞ
denotes the tangent cone of the feasible set at μ, see

Ref. [49]. However, it will be convenient to slightly

extend the notion of tangent cone to also account for

infeasible initial conditions (this is particularly important

for the discretization), which is achieved by imposing

μ̇ðtÞ∈Vα(μðtÞ), where VαðμÞ ≔ fv ∈ R
Ej∇giðμÞ

Tv ≥

−αgiðμÞ; i ∈ Iμg, and α ≥ 0 is a constant typically

referred to as a “restitution” parameter or “slackness.”

We note that VαðμÞ generalizes the notion of the tangent

cone, since for μ∈C, VαðμÞ ¼ TCðμÞ. We assume

mild regularity conditions (constraint qualification). A

sufficient condition is, for example, the existence of

v∈R
E such that ∇giðμÞ

Tv > 0 for all i∈ Iμ.

For μðtÞ ∉ C, the constraint μ̇ðtÞ∈Vα(μðtÞ) is equiv-

alent to dgi(μðtÞ)=dt ≥ −αgi(μðtÞ), i∈ IμðtÞ, which ensures

that potential constraint violations decay at the rate α > 0.

Appendix B: Details about our method—From a

variational optimization perspective, our approach is

related to successive linear and sequential quadratic

programming [50–52]. The underlying idea of these

methods is to linearize the objective function and the

constraints about the current iterate and to solve a local

linear and/or quadratic program. Our Letter improves

upon these ideas and tailors these to optimal transport

problems in the following way: (i) we linearize a subset

of constraints at every iteration, which means that the

subproblem Equation (3) typically includes very few

constraints and can be solved efficiently; (ii) we introduce

a non-Euclidean inner product that is adapted to optimal

transport problems and is used to show that Lβ is a

Lyapunov function; (iii) we provide closed-form updates

in various problem instances that are practically relevant.
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DETAILED MATHEMATICAL DERIVATIONS OF OPTIMAL TRANSPORT WITH CONSTRAINTS

Here we present in more details the mathematical derivations of the results presented in the main text. Specifically,
we consider the three examples of constraints described in the main manuscript: capacity on edges, budget, and a
third constraint that combines a linear capacity constraint and a non-linear budget constraint.

In the following we denote as E the set of network edges and E = ∣E∣ is the number of edges.

Capacity constraint

The first case considered is that of a local and linear constraint where we assign a capacity on individual edges
such that conductivities cannot be larger than the prescribed capacity. This is relevant in situations where struc-
tural constraints prevent a large amount of mass to travel on individual network edges without compromising the
infrastructure. Mathematically, we define for each e ∈ E the constraint as:

gce(µ) = ce − µe , (S1)

where ce is the capacity imposed on edge e. This is a parameter that a user can enter as input and can be different for
each edge. In the numerical experiments in the main manuscript we assume ce to be equal for all edges for simplicity,
but the theory here is not impacted by this choice.
By considering a vectorial representation of the constraint where gc(µ) ∈ R

E is the vector with entries gce(µ), this
definition also implies that we have a constant derivative ∇µe

gce(µ) = −1 < 0. The constraint v ∈ V³(µ) required to
solve the minimization in Eq. (3) implies:

∇gc(µ)
T v ≥ −³gc(µ) Ô⇒ −v ≥ −³(c − µ) Ô⇒ v ≤ ³(c − µ) . (S2)

Solving the quadratic program minimization is simple in this case. For an edge that violates the constraint there
are two possibilities: either i) µ´−2

e ∣Fe∣
2
− µe ≥ ³(ce − µe) or ii) µ´−2

e ∣Fe∣
2
− µe ≤ ³(ce − µe). In case i) we obtain

that ve = ³ (ce − µe); while in ii) we have ve = (µ
´−2
e ∣Fe∣

2
− µe) = fe. However, case i) results in a reduction of the

constraint violation, as we have µ
(t+1)
e = µ

(t)
e +Ä ve = µ

(t)
e +Ä ³ (ce−µe), where Ä > 0 is the algorithmic step size. Hence,

µ
(t+1)
e − ce ≤ (1 − ³Ä) (µ

(t)
e − ce), which means that the constraint violation µ

(t)
e − ce decreases at the exponential rate

³ > 0. Thus, ³ controls how quickly the constraint violations decay. It controls the trade-off between reducing the
objective function (encouraged by small ³) and converging to the feasible set (encouraged by larger ³) [1]. In discrete
time, ³Ä should be chosen so that 0 < ³Ä < 1 to guarantee convergence. Hence, solving the quadratic program for the
setting of capacity constraints gives v = min{³gc(µ), f}. In summary, for e such that µe ≥ ce (constraint violated),
we have:

µ̇e =

⎧⎪⎪
⎨
⎪⎪⎩

³ (ce − µe) if fe ≥ ³ (ce − µe)

fe if fe < ³ (ce − µe) .
(S3)

The algorithmic update is then µ
(t+1)
e = µ

(t)
e + ³Ä µ̇e, with 0 ≤ ³Ä ≤ 1 and µ̇e as in Eq. (S3).

Note that in the analytical result of Eq. (S3) we did not impose any additional positivity constraint µe ≥ 0. This
was not necessary in our empirical results, as we never found it violated, provided one initializes µe ≥ 0 at the

∗ AAI : abdullahi.ibrahim@tuebingen.mpg.de
† MM : michaelm@tuebingen.mpg.de
‡ CDB : caterina.debacco@tuebingen.mpg.de



2

first iteration. We will show the importance of this additional constraint in subsequent sections when considering
constraints other than the capacity. To impose a positivity constraint, we need to enforce an additional constraint of
the form gp(µ) = µ ≥ 0. In the velocity space, this translates to v ≥ −³µ. Element-wise, the solution will be of the
form ve = max{fe,−³µe} , ∀e ∈ E such that µe ≤ 0. The analytical solution in addition to positivity constraint is
summarized as:

µ̇e =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
³ (ce − µe) if fe ≥ ³ (ce − µe)
−³µe otherwise

(S4)

for all e ∈ E such that µe ≤ 0.

Budget constraint

Here we illustrate our formalism to fix the global network budget b. Formally, we have:

gb(µ) = b − ∑
e∈E

µe . (S5)

In words, the conductivities µ = (µ1, . . . , µE) violate the constraint whenever their sum is greater than the input
budget b > 0. As this involves all the conductivities at once, we need to solve Eq. (3) in vectorial form, i.e., for an
input array v = (v1, . . . , vE) of dimension E. We also have ∇g(µ) = (∂g/∂µ1, . . . , ∂g/∂µE), hence

∇gb(µ)T v = ∑
e∈E

∂gb(µ)
∂µe

ve = ∑
e∈E

(−1 ⋅ ve) = −∑
e∈E

ve ≥ −³gb(µ) Ô⇒ ∑
e∈E

ve ≤ ³gb(µ) . (S6)

This means that some ve are allowed to be positive, as long as their contribution is compensated by other negative
ones, such that their overall sum is lower than ³gb(µ). Notice that beyond this budget constraint we need to guarantee
the fundamental constraint that conductivities have to be positive quantities. Formally, this can be enforced by adding
the following additional constraint:

gp(µ) = µ ≥ 0 . (S7)

In the velocity domain this translates into ∇gp(µ)T v = v ≥ −³µ; element-wise, this means ve ≥ −³µe, ∀e ∈ E such
that µe ≤ 0.

To derive the closed-form solution in this budget constraint case, we thus minimize

argmin
ve

{1
2
∑
e∈E

S−1e (ve − fe)2} , (S8)

subject to the following two constraints:

∑
e∈E

ve ≤ ³(b − ∑
e∈E

µe) , if b ≤ ∑
e∈E

µe (S9)

ve ≥ −³µe, ∀e ∈ E such thatµe ≤ 0 . (S10)

To derive the closed-form solution in this case, we can add a Lagrange multiplier for the budget constraint and
solve an auxiliary constraint minimization problem with a modified cost function defined as:

L(v, ¼b) = 1

2
∑
e∈E

S−1e (ve − fe)2 + ¼b (∑
e∈E

ve − ³(b − ∑
e∈E

µe)) . (S11)

We then want to solve:

min
v∶ve≥³µe,∀e∈E∶µe≤0

max
¼b≥0

L(v, ¼b) . (S12)

Defining 1⃗E = (1, . . . ,1) the E-dimensional vector with entries all equal to 1 and using a vectorial representation
(where 1⃗TEv = 3e∈E ve), this is equivalent to solve:

argmin
v∶ve≥³µe,∀e∈E∶µe≤0

{1
2
∣S−1/2(v − f)∣2 + ¼b1⃗

T
Ev − ³¼b gb(µ)} , (S13)
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where ¼b denotes the optimal multiplier. Equivalently, the above problem can be reformulated as

argmin
v∶ve≥³µe,∀e∈E∶µe≤0

{1
2
∣S−1/2(v − f + S¼b1⃗E)∣2} = argmin

v∶ve≥³µe,∀e∈E∶µe≤0

{1
2
∣v − f + S¼b1⃗E ∣2} . (S14)

For an edge such that µe ≤ 0, this has the following closed-form solution:

µ̇e =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
fe − Se¼b if fe − Se¼b ≥ −³µe

−³µe if fe − Se¼b < −³µe .

(S15)

Estimation of λb

Imposing the budget constraint, and defining Ip(¼b) = {e ∈ E ∣ fe − Se¼b < −³µe andµe ≤ 0} as the set of edges that
violate the positivity constraint (both in position and velocity), we obtain that the condition 3e∈E8Ip(¼b)(fe− Se¼b)−
³ 3e∈Ip(¼b) µe ≤ ³gb(µ) must be satisfied to ensure Eq. (S9). This inequality determines the value ¼b. In addition we
can make the following case distinction (complementary slackness) ¼b = 0 ⇐⇒ 3e∈E8Ip(0) fe − ³3e∈Ip(0) µe ≤ ³gb(µ)
and ¼b > 0 ⇐⇒ 3e∈E8Ip(¼b)(fe−Se¼b)−³3e∈Ip(¼b) µe = ³gb(µ). In the former case the solution v to Eq. (S8) is given
by Eq. (S15) with ¼b = 0. In the latter case we compute ¼b with a fixed-point method and define:

kb(¼b) = 3e∈E8Ip(¼b) fe − ³ 3e∈Ip(¼b) µe − ³ (b −3e∈E µe)
3e∈E8Ip(¼b) Se

. (S16)

The multiplier ¼b is then computed as ¼
(a+1)
b = kb(¼(a)b ), where initial value of ¼

(0)
b can be chosen for instance as

¼
(0)
b =mine∶µe≤0andfe+³µe≥0

{fe + ³µe}.

Combination of linear and non-linear constraints

We now consider a more complex scenario where we combine the capacity constraint with a non-linear generalization
of the budget constraint. Specifically, we consider three functions for the constraints, a local capacity constraint
gc(µ) ∶ RE

→ R
E , a local positivity constraint gp(µ) ∶ RE

→ R
E and a global budget constraint g¶(µ) ∶ RE

→ R
1.

These functions are defined as:

ge(µ) = c − µ (S17)

gp(µ) = µ (S18)

g¶(µ) = b − ∑
e∈E

µ¶
e , (S19)

where b > 0 and ¶ > 0 are a budget and a scaling parameter, respectively. We recover the linear budget constraint for
¶ = 1.
The constraint on v that result from the capacity constraint in Eq. (S17) required to solve Eq. (3) have been derived in
Section “Capacity constraint”. The function gp(µ) imposes the positivity constraint, which means that each individual
edge has to have µe ≥ 0. The constraint gp(µ) induces the following velocity constraint

∇gpe
(µ)T ve ≥ −³ µe Ô⇒ ve ≥ −³µe , (S20)

for all e ∈ E such that µe ≤ 0.
Similarly, we solve the non-linear budget constraint as follows

∇g¶(µ)T v ≥ −³ (b − ∑
e∈E

µ¶
e) Ô⇒ ∑

e∈E

¶µ¶−1
e ve ≤ ³ (b − ∑

e∈E

µ¶
e) , (S21)

as long as b ≤ 3e∈E µ¶
e. To derive the closed-form solution in this case, we minimize

min
ve
{1
2
∑
e∈E

S−1e (ve − fe)2} , (S22)
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subject to the following three constraints:

∑
e∈E

¶µ¶−1
e ve ≤ ³(b − ∑

e∈E

µ¶
e) , if b ≤ ∑

e∈E

µ¶
e (S23)

ve ≥ −³µe, ∀e ∈ E such that µe ≤ 0 , (S24)

ve ≤ ³ (ce − µe), ∀e ∈ E such that µe ≥ ce . (S25)

To derive the closed-form solution in this case, we can add a Lagrange multiplier for the non-linear constraint and
solve an auxiliary constraint minimization problem with a modified cost function defined as:

Ln(v, ¼¶) = 1

2
∑
e∈E

S−1e (ve − fe)2 + ¼¶ (∑
e∈E

¶µ¶−1
e ve − ³(b − ∑

e∈E

µ¶
e)) , (S26)

where ¼¶ ≥ 0. We then want to solve:

min
v∶

ve≤³ (ce−µe),∀e∈E∶µe≥ce
ve≥−³µe,∀e∈E∶µe≤0

max
¼δ≥0

Ln(v, ¼¶) . (S27)

Defining h = ¶ (µ¶−1
1 , . . . , µ¶−1

E ) and using a vectorial representation (where hT v = 3e∈E ¶µ¶−1
e ve), this is equivalent to

solving

argmin
v∶

ve≤³ (ce−µe),∀e∈E∶µe≥ce
ve≥−³µe,∀e∈E∶µe≤0

{1
2
∣S−1/2(v − f)∣2 + ¼¶h

T v − ³¼¶ g¶(µ)} , (S28)

where ¼¶ ≥ 0 denotes the optimal Lagrange multiplier. Equivalently, by completing the square and ignoring terms
that do not depend on v, the above problem can be re-written as

argmin
v∶

ve≤³ (ce−µe),∀e∈E∶µe≥ce
ve≥−³µe,∀e∈E∶µe≤0

{1
2
∣S−1/2(v − f + S¼¶h)∣2} = argmin

v∶
ve≤³ (ce−µe),∀e∈E∶µe≥ce

ve≥−³µe,∀e∈E∶µe≤0

{1
2
∣v − f + S¼¶h∣2} . (S29)

The analytical solution to Eq. (S29) is given by

µ̇e =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

³ (ce − µe) if fe−Se¼¶ he ≥ ³ (ce − µe) , ce ≤ µe ,

−³µe if fe−Se¼¶ he < −³µe, µe ≤ 0 ,

fe − Se¼¶ he otherwise .

(S30)

The analytical solution µ̇e is bounded, and a typical plot of µt
e with respect to f t

e is shown in Fig. S1. We note that
the value of µt

e is also dependent on ¶ and b, which determine ¼¶ as discussed in the next section.
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FIG. S1. This plot shows µ̇t
e as a function of f t

e (typical situation, the function also depends on δ and b). The solution is
expected to move at most by α (ce − µe) and at least by αµe.

Computation of λδ

By imposing the non-linear budget constraint, and defining Ip(¼¶) = {e ∈ E ∣ fe − Se¼¶ he < −³µe, andµe ≤ 0} the set
of edges that violate the positivity constraint, and Ic(¼¶) = {e ∈ E ∣ fe − Se ¼¶ he ≥ ³ (ce − µe), ce ≤ µe} the set of edges
that violate the capacity constraint. We obtain that 3e∈E8Ipc(¼δ)(fe − Se¼¶)−³ 3e∈Ic(¼δ) (ce − µe)−³ 3e∈Ip(¼δ) µe ≤

³g¶(µ), must be satisfied for the minimizer in Eq. (S22), where Ipc(¼¶) = Ip(¼¶) ∩ Ic(¼¶). We again make a case
distinction on ¼¶ ≥ 0. If 3e∈E8Ipc(0) fe − ³3e∈Ic(0)(ce − µe) − ³3e∈Ip(0) µe ≤ ³g¶(µ) holds, ¼¶ = 0. Otherwise ¼¶ > 0
and 3e∈E8Ipc(¼δ)(fe − Se¼¶) − ³3e∈Ic(¼δ)(ce − µe) − ³3e∈Ip(¼δ) µe = ³g¶(µ), which is solved by fixed-point iteration.
To that extent we introduce

k¶(¼¶) = 3e∈E8Ipc(¼δ) fe − ³ 3e∈Ic(¼δ)(ce − µe) − ³ 3e∈Ip(¼δ) µe − ³ (b −3e∈E µ¶
e)

3e∈E8Ipc(¼δ) Se

, (S31)

and iterate ¼¶ as follows ¼
(a+1)
¶ = k¶(¼(a)¶ ) until convergence.

The guess for an initial value is ¼(0) − ¶ =mine∶µe≤0andfe+³µe≥0
{fe + ³µe}.

CONSTRAINED OT ADMITS LYAPUNOV FUNCTION

This section shows that the Lyapunov function of the unconstrained case is still valid when adding the auxiliary
force R that imposes the constraints.
The Lyapunov function for the dynamics µ̇ in the unconstrained case is the one given in [2]:

L´ =
1

2
∑
j∈M

∑
v∈N

pjv(µ) qjv + 1

2(2 − ´) ∑e∈E ℓeµ
2−´
e , (S32)

where N denote the set of nodes and qj ∈ N denote the inflow-outflow rate of each passenger type j such that

3v q
j
v = 0.

To prove that the Lyapunov function is well-defined, we show the following expressions i) L´ ≥ 0, ii) L̇´ ≤ 0 and iii)

L̇´ = 0 if and only if µ is a stationary point for the dynamics.
The first (energy dissipation) and second (transport cost) terms of Eq. (S32) are non-negative, hence L´ satisfies the
inequality L´ ≥ 0.
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Now we prove claim ii), i.e. L̇´ ≤ 0. First, notice that

L̇´ = ∇L
T
´ µ̇ (S33)

= −⟨f, µ̇ð (S34)

= −⟨µ̇, µ̇ð + ⟨R, µ̇ð , (S35)

where in Eq. (S34) we used ∂L´/∂µe = −
ℓe

2µ
β
e

fe [2] and in Eq. (S35) we used µ̇ = f +R.

The inequality −⟨µ̇, µ̇ð = −µ̇T S−1 µ̇ ≤ 0 is valid because it results in a non-positive sum of squares. Thus, the remaining
task is to prove that ⟨R, µ̇ð ≤ 0. The stationarity condition of Eq. (3) can be expressed as:

(S−1(µ̇ − f))T (v − µ̇) ≥ 0 , ∀v ∈ V³(µ) , (S36)

where the first factor is the gradient of the cost in Eq. (3) with respect to v, the second factor is the variation of v
and the positivity is due to µ̇ being the minimizer. Using µ̇ = f +R, we get ⟨R,v − µ̇ð ≥ 0 for all v ∈ V³(µ).
Now, if µ ∈ C (µ is feasible), then V³(µ) is a (convex) cone and therefore 0 ∈ V³(µ). Hence, we can choose v = 0 in
the previous expression, yielding ⟨R,−µ̇ð ≥ 0 Ô⇒ ⟨R, µ̇ð ≤ 0. Hence L̇´ ≤ 0.

To prove claim iii), we have established ⟨R, µ̇ð ≤ 0 and assuming that µ(t) > 0, we deduce the following:

L̇´ = 0 ⇐⇒ ⟨µ̇, µ̇ð = 0, ⟨R, µ̇ð = 0 , (S37)

⇐⇒ µ̇ = 0 , (S38)

where µ̇ = 0 means 0 = −S∇L´ +R, with −R ∈ NVα(µ)(0). Additionally, we have established µ(t) ∈ C, ∀t and therefore
V³(µ) = TC(µ). As a result:

µ̇ = 0 ⇐⇒ −S∇L´ ∈ NTC(µ)(0) , (S39)

⇐⇒ ⟨−S∇L´ , vð ≤ 0, ∀v ∈ TC(µ) , (S40)

⇐⇒ ∇L´(µ)T v ≥ 0, ∀v ∈ TC(µ) . (S41)

This means that µ corresponds to a stationary point, specifically a local minimum. (Note that we have used the
simplifying assumption that µ > 0 in the above argument.)

ALGORITHMIC IMPLEMENTATION

This section presents the algorithmic implementation of the constrained OT method in Eq. (3).
We denote as I the set of indices denoting the constraints, so that each constraint function is written as gi(µ), with
i ∈ I. Furthermore, Kirchhoff’s law is defined as:

∑
e∈E

BveF
j
e = ∑

e∈E

Bve

µe (pju − pjv)
ℓe

= qjv , j = 1, . . . ,M ; e = (u, v) , (S42)

where pju is the pressure potential of type j on node u; Bve is the network incidence matrix with entries Bve = 1,−1,0
if node v is the start, end of edge e, or neither of these, respectively; and qjv is the amount of mass of type j entering
or exiting at node v. The quantities qjv are fixed and given by the problem formulation. Similarly, both the lengths{ℓe}e∈E and the matrix B are fixed as determined by the input graph G(V,E). Hence, the quantities that need to be
evaluated are the conductivities {µe}e∈E and the pressure potentials {pju}u∈V , ∀j = 1, . . . ,M , which in turn determine

the fluxes vectors {Fe}e∈E . Given the µ, we can obtain the pressure potentials as pjv = 3u(Lj)†vuqju, where Lj are
elements of the µj/ℓ-weighted graph Laplacian, and † denotes the Moore-Penrose inverse.

The algorithmic implementation of the constrained OT method is described in Algorithm 1.
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Algorithm 1 Constrained OT Method

1: Input: Graph G(V,E), M , β, ατ ∈ (0,1], g, {qjv}v∈V,j=1,...,M

2: Initialize: t← 0, µt (e.g. sampling as i.i.d. µt
e ∼ Unif(0,1))

3: while convergence not achieved do

4: {pju}u∈V,j=1,...,M ← solve Kirchhoff’s law (Eq. (S42)) for {pju} given µt and {qjv}v∈V,j=1,...,M

5: f t
← compute the gradients

6: Iµt ← {},wt
← {}

7: for i in I do

8: if gi(µ) ≤ 0 then

9: Iµt ← Iµt ∪ {i}
10: wt

← wt
∪ {∇gi(µt)}

11: end if

12: end for

13: µ̇t
← solve the dynamics in Eq. (4) as follows ▷ (Note: The objective and constraints are of (max) size ∣E∣).

µ̇
t
← SOLVE

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

argminv∈Vα(µt) { 1

2
∣S−1/2(v − f)∣2}

subject to ∶
wT

t v ≥ −α{gi(µt)}i∈I
µt

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
.

14: Update the dynamics: µt+1
← µt

+ τ µ̇t, t← t + 1
15: end while

16: Output: Fluxes {Fe}e∈E and conductivities {µe}e∈E at convergence

To determine convergence we use the result in [2] that the stationary solution of the dynamics minimizes the
transport cost:

J´ = ∑
e∈E

ℓe∣Fe∣Γ , (S43)

where Γ = 2(2 − ´)/(3 − ´).

COMPUTATIONAL COMPLEXITY

The computational complexity of solving the OT-constrained problems described in the main manuscript depends
on a variety of factors, in particular on the choices of the transportation regime ´ and on the specific constraints
selected. Both of these factors can make it harder to search the solution space. Giving a precise theoretical charac-
terization of the overall complexity is challenging, but we can discuss the complexity of individuals steps.

The complexity of the unconstrained problem is dominated by the cost of solving Kirchhoff’s law. In our implemen-
tation, we carry out this operation by means of a sparse direct solver (UMFPACK, Unsymmetric MultiFrontal sparse
LU Factorization [3]) that performs a LU decomposition for each column of the matrix version of the right-hand side
of Eq. (S42). The total computational complexity of this process scales as O(Mnnnz), where nnnz is the number
of non-zero entries of the Laplacian Lj . This computational complexity could in principle be further reduced using
multigrid methods [4]; we do not explore this here.

The constrained case requires further solving the quadratic program, which, if solved via an interior point method,
roughly takes O(E3.5) elementary operations (there are E decision variables and at most E constraints, where E is
the number of edges) [5]. We note however, that this is a conservative estimate and that interior point methods are
in practice often much faster than their worst-case complexity estimate. In case of capacity constraints, the solution
of the quadratic program can be carried out in O(E) steps in the worst-case, when all constraints are active. In
addition, in case of the (nonlinear) budget and capacity constraints each fixed-point iteration has complexity O(E),
and in our experiments we required less than ten fixed-point iterations for convergence.

In addition to these theoretical considerations, we show results from numerical experiments to assess how various
configurations scale with the network sizes N and E. Specifically, we investigate the running (in seconds) of four
methods, namely the Unconstrained, Capacity contraint, Budget constraint, and Non-linear constraint, on network of
varying sizes (generated synthetically as in the other experiments presented in this paper) and for two regimes of ´,
as shown in Fig. S2. The methods were implemented with Algorithm 1.
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We observe that Non-linear constraint is the type of constraint that is the slowest to run, possibly because of solving
numerically the auxiliary optimization problem, which can be done analytically in the other cases.

FIG. S2. Running time as a function of N and E. We show two scenarios of β, i.e., penalizes traffic congestion (β < 1) and
encourages path consolidation (β > 1). Markers and error bar are averages and standard deviations over 10 network realizations.
Other settings: δ = 1/2, ce = 75, and b = 1

2
∑e µe, where µe is that of Unconstrained.

ADDITIONAL EXPERIMENTAL RESULTS

Synthetic network generation and OD pairs

We generated a planar network to mimic a real transport network. To construct this network, we positioned N = 300
nodes randomly within a unit square domain (i.e., [0,1] × [0,1]) area, and its Delaunay triangulation is extracted.
As a last step, we ensure only edges within a specified distances are retained. This layout forms our initial network
structure, resembling a planar graph.
To set the traffic demands (i.e., origin-destination pair) we rewire all origin-destination pairs to a central destination.
However, our method applies to any other choice of traffic demands as origin-destination pairs. Specifically, we can:

• rewire each origin to a random and unique destination (i.e., heterogeneous destinations),

• also route a ratio of these origins to a common central destination (i.e., say 45% has a monocentric destination),
whereas the remaining ratio of origins (55%) have heterogeneous and random destinations.

These scenarios do not require any modification to the structure of the proposed algorithm, and can be accounted for
when computing the pressure potentials with Kirchhoff’s law (see [6] for examples).

Additional results on real and synthetic networks

This section provides more results to support the ones presented in the main paper.

We measure the Gini coefficient and average path length on the synthetic network, shown in Fig. S3, and that
of Grenoble network in Fig. S4. Fig. S5 shows the toplogies for ´ = 0.6 and ´ = 1.0, in addition to Fig. 3 of main
paper. We illustrate (as addition to Fig. 3 of main paper) the edge-wise differences between the algorithms and the
unconstrained case in Fig. S6.
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FIG. S3. Results over varying β on synthetic networks. (A) Gini coefficient of the traffic distribution on edges. (B) Ratio of
average total path length to that of the unconstrained OT method, denoted as ⟨lðf . Markers and shadows are averages and
standard deviations over 20 network realizations, with 100 randomly selected origins for each network realization. All passengers
have the same central destination. Settings: N = 300, δ = 1/2, ce = 70, b = 1

2
∑e µe, where µe is that of unconstrained.

FIG. S4. Results on Grenoble bus network. (A) Gini coefficient of the traffic distribution on the network edges. The edge
capacity ce is the percentile of µ from f , and varied between low, medium and high capacities. Varying ce helps to understand
how the size of highway impacts the traffic. Setting a low capacity optimizes traffic better than high values. (B) The ratio of
average total path length to that of the unconstrained OT method. These results are averaged over 100 randomly selected origin-
destination pairs. The origin-destination pairs have been selected so that all the passenger types have a central destination.
Markers and shadows indicates average and standard deviation, respectively.
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FIG. S5. Constrained OT on Grenoble road network. (A-B) Path trajectories of the Grenoble road network for the uncon-
strained OT (Unconstrained), using a budget constraint (Budget); a capacity constraint and a non-linear budget (Non-linear).
Other settings are the same as in Fig. 3.
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FIG. S6. Edge-wise difference only plots on Grenoble bus network. We compute the difference of traffic on edges as T c
e − T

u
e

where T c
e and Tu

e denote the traffic for constrained and unconstrained methods, respectively. Other settings are the same as in
Fig. 3.
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Community detection in networks 
by dynamical optimal transport 
formulation
Daniela Leite1,3*, Diego Baptista1,3, Abdullahi A. Ibrahim1, Enrico Facca2 & 
Caterina De Bacco1

Detecting communities in networks is important in various domains of applications. While a variety of 
methods exist to perform this task, recent e昀؀orts propose Optimal Transport (OT) principles combined 
with the geometric notion of Ollivier–Ricci curvature to classify nodes into groups by rigorously 
comparing the information encoded into nodes’ neighborhoods. We present an OT-based approach 
that exploits recent advances in OT theory to allow tuning between di昀؀erent transportation regimes. 
This allows for better control of the information shared between nodes’ neighborhoods. As a result, 
our model can 昀؀exibly capture di昀؀erent types of network structures and thus increase performance 
accuracy in recovering communities, compared to standard OT-based formulations. We test the 
performance of our algorithm on both synthetic and real networks, achieving a comparable or better 
performance than other OT-based methods in the former case, while 昀؀nding communities that better 
represent node metadata in real data. This pushes further our understanding of geometric approaches 
in their ability to capture patterns in complex networks.

Complex networks are ubiquitous, hence modeling interactions between pairs of individuals is a relevant problem 
in many  disciplines1,2. Among the variety of analyses that can be performed on them, community  detection3–6 
is a popular application that involves �nding groups (or communities) of nodes that share similar properties. 
�e detected communities may reveal important structural properties of the underlying system. Community 
detection has been used in diverse areas including, discovering potential friends on social  networks7, evaluating 
social  networks8, personalized recommendation of item to  user9, detecting potential terrorist activities on social 
 platforms10, fraud detection in  �nance11, study epidemic spreading  process12 and so on.

Several algorithms have been proposed to tackle this problem which utilize di�erent approaches, such as 
statistical  inference13,14, graph  modularity15, statistical  physics16, information  theory17 and multifractal topo-
logical  analysis18. Here, instead, we adopt a recent approach connecting community detection with geometry, 
where communities are detected using geometric methods like the Ollivier–Ricci curvature (ORC) and we 
exploit a dynamical approach of optimal transport theory to calculate this e�ciently and �exibly across various 
transportation regimes.

In Riemannian geometry, the sign of the curvature quanti�es how geodesic paths converge or diverge. In 
networks, the ORC plays a similar role: edges with negative curvature are tra�c bottlenecks, whereas positively 
curved ones allow mass to �ow more easily along the network. De�ning communities as structures that allow 
robust transport of information, we could cluster edges based on their curvature: those with positive curvature 
can be clustered together, while those with negative curvature may be seen as “bridges” connecting di�erent com-
munities. �e idea of using Ricci curvature to �nd communities on networks was �rst proposed by Jost and Liu 19 
and then further explored in subsequent  works20–23. Our work follows a similar approach as  in22,23 to calculate 
the OR curvature, but generalizes it for the cases of  branched24,25 and  congested26 optimal transport problems, 
building from recent  results27,28. Speci�cally, our algorithm allows to e�ciently tune the sensitivity to detecting 
communities in a network, through a parameter that controls the �ow of information shared between nodes. We 
perform a comprehensive comparison between the proposed algorithm and existing ones on synthetic and real 
data. Our algorithm, named ORC-Nextrout, detects communities in synthetic networks with similar or higher 
accuracy compared to other OT-based methods in the regime where inference is not trivial, i.e. the inference 
problem is neither too easy nor too di�cult to solve, and thus communities are only partially retrieved. �is is 
also observed in a variety of real networks, where the ability to tune between di�erent transportation regimes 
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1Max Planck Institute for Intelligent Systems, Cyber Valley, 72076 Tübingen, Germany. 2Univ. Lille, Inria, CNRS, 
UMR 8524 - Laboratoire Paul Painlevé, 59000 Lille, France. 3These authors contributed equally: Daniela Leite and 
Diego Baptista. *email: daniela.leite@tuebingen.mpg.de



2

Vol:.(1234567890)

Scienti昀؀c Reports |        (2022) 12:16811  | https://doi.org/10.1038/s41598-022-20986-y

www.nature.com/scientificreports/

allows �nding at least one result that outperforms other methods, including approaches based on statistical 
inference and modularity.

Related work. �e idea of exploring the geometrical properties of a graph, and in particular curvature, has 
been explored in di�erent branches of network science, ranging from  biological29 to  communication30 networks. 
Intuitively, the Ricci curvature can be seen as the amount of volume through which a geodesic ball in a curved 
Riemannian manifold deviates to the standard ball in Euclidean  spaces31. When de�ned in graphs, it indicates 
whether edges (those with positive values for the curvature) connect nodes inside a cluster, or if they rather bond 
di�erent clusters together (those with negative values for the curvature).

Previous  works32–35 extended the idea of the OR curvature.  In32, the authors introduced the concept of “resist-
ance curvature” for both nodes and edges. Taking inspiration from electrical circuits, this approach assigns a 
resistance being applied by the whole network from a current that �ows between any two edges and correlates 
this to known concepts of OR discrete curvature. �e resistance curvature provides a natural way to de�ne the 
Ricci �ow.  In33 the authors proposed a dynamical version of the OR curvature, where a continuous-time di�usion 
process is de�ned for every node, at di�erent time scales. In this context, the dynamical perspective is used to 
frame probability masses at nodes in terms of di�usion processes, e.g. those deployed in random walks. In our 
work instead, the dynamics enters to solve e�ciently the underlying optimization problem required to compute 
the OR curvature. Regardless of the choice of the distribution that characterizes mass on nodes, this quantity 
is then used to de�ne the curvature of the edges of the graph. Previous works have typically de�ned the OR 
curvature in terms of the 1-Wasserstein distance. In contrast, we take a more general approach and explore the 
usage of the β-Wasserstein, where β ∈ (0, 2] , to account for a variety of OT problems, ranging from branched 
to congested transportation.

Other discrete graph curvature approaches include the Ollivier–Ricci (OR) curvature based on the Optimal 
Transport theory introduced by Ollivier,36,37 and Forman–Ricci curvature introduced by  Forman38. While the 
graph Laplacian-based Forman curvature is computationally fast and less geometrical, we focus on the OT-based 
approach due to its more geometric nature. Some applications of the Ollivier–Ricci curvature include network 
 alignment39 and community  detection22,23,40.

On the other hand, community detection in networks is a fundamental area of network science, with a 
wide range of approaches proposed for this  task3,4,41. �ese include methods based on statistical mechanical 
 models16,17,42, probabilistic generative  models13,43–45, nonnegative matrix  factorization46, spectral  methods47,48, 
multifractal topological  analysis18 and modularity  optimization15,49,50. In contrast, our work is inspired by recent 
OT-based  methods22,23 for community detection. �ese methods consider the OR curvature to sequentially 
identify and prune negatively curved edges from a network to identify communities. While our approach also 
considers OR curvature to prune edges, it controls the �ow of information exchanged between nodes by means of 
a tra�c-penalization parameter, making the edge pruning completely dynamic. �is is detailed in “β-Wasserstein 
community detection algorithm” section.

β-Wasserstein community detection algorithm
In this section, we describe how our approach solves the community detection problem. As previously stated, we 
rely on optimal transport principles to �nd the communities. To solve the optimal transport problem applied in 
our analysis we use the discrete Dynamic Monge-Kantorovich model (DMK), as proposed by Facca et al.51,52 to 
solve transportation problems on networks.

We denote a weighted undirected graph as G = (V ,E,W) , where V, E, W are the set of nodes, edges, and 
weights, respectively. We use the information of the neighborhood of a node i, N(i) = {j ∈ V |(i, j) ∈ E}, to 
decide whether a node belongs to a given community. We do this by comparing a distribution de�ned on N(i) 
with those de�ned on other nodes close to i. �ere are several choices that can be made for this. For instance, 
one could frame this in the context of di�usion processes on networks and relate the distribution to random 
walkers traveling along the network with a certain jump  probability33. Here we follow previous  work39 and assign 
it as mα

i
 , where mα

i
(k) := α if k = i and mα

i
(k) := (1 − α)/|N(i)| if k ∈N(i) . Intuitively, the distribution m 

assigns a unit of mass to i and its connections: α controls how much weight node i should have, and once this is 
assigned, its neighbors receive the remaining mass in an even way. We use α = 0 in all the experiments reported 
in this manuscript, i.e. the mass is equally distributed on the neighbors. �is corresponds to a one-step transition 
probability for a random walker in the context of di�usion processes.

�e next step is to compare the distribution mα

i
 of node i to that of its neighbors. Consider an edge (i, j) ∈ E 

and mj , the distribution de�ned on node j, neighbor of i. We assume that if i and j belong to the same community, 
then both nodes may have several neighbors in common and, therefore, mi and mj should be similar. Note that 
this is valid for both assortative and disassortative community structures. In the former case, nodes are more 
likely to interact within the same community, while in the latter case we have the opposite, nodes are more likely 
to interact across  communities2,4. When there is a consistent community pattern for all groups (e.g. all communi-
ties are assortative), this idea of comparing the distributions mα

i
 may be appropriate to detect communities. On 

the contrary, it may be di�cult to perform this task in networks with mixed connectivity patterns, where some 
communities are assortative and others are disassortative. �is makes it di�cult to detect communities as edges 
within an assortative community are shortened, likewise edges between a node in a disassortative and a node in 
an assortative one. �is may confuse the algorithm, as both types of edges are shortened. A careful treatment of 
these cases is an interesting direction for future work.

To estimate the similarity between mi and mj we use OT principles. Speci�cally, we compute the cost of trans-
forming one distribution into the other. �is is related to the cost of moving the mass from one neighborhood 
to the other, and it is assumed to be the weighted shortest-path distance between nodes belonging to N(i) and 
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N(j) . A schematic representation of the algorithm can be seen in Fig. 1. �e OT problem is solved in an auxiliary 
graph, the complete bipartite network Bij = (Vij ,Eij ,ωij) where Vij := (Vi ,Vj) := (N(i) ∪ {i},N(j) ∪ {j}) , Eij 
is made of all the possible edges between Vi and Vj . �e weights of the edges are given by the weighted shortest 
path distance d between two nodes measured on the input network G.

�e similarity between mi and mj is the Wasserstein cost W(mi ,mj ,ωij) of the solution of the transportation 
problem. In its standard version, this number is the inner product between the solution Q, a vector of �ows 
de�ned on edges, and the cost ωij . In our case, since the DMK model allows to control the �ow of information 
through a hyperparameter β ∈ (0, 2] , we de�ne the β-Wasserstein cost, Wβ(mi ,mj ,ωij) , as the inner product 
of the solution Q = Q(β) of the DMK model and the cost ωij . For β = 1 we compute the 1−Wasserstein dis-
tance between mi and mj , while for β  = 1 the in�uence of β in the solution of the transportation problem can 
be seen in Fig. 2. When β < 1, more edges of B tend to be used to transport the mass, thus we observe con-
gested  transportation26. When β > 1 fewer edges are used, hence we observe branched transportation, and the 

Figure 1.  Le�: an example graph G where edges have unitary weights. Center: the edge (1, 5) (bold black line) 
is selected to de�ne the OT problem between m1,m5 ; neighborhoods of nodes 1 and 5 are highlighted with 
blue and red edges and are used to build the corresponding distributions m1,m5 . Right: �e complete bipartite 
graph B15 where the OT problem is de�ned. �e color intensity of the edges represents the distance between the 
associated nodes on the graph G, as shown by the color bar. m1 and m5 are both de�ned for α = 0, i.e. no mass is 
le� in 1 and 5.

Figure 2.  Visualization of how β impacts intra-community and inter-community edge weights. (a) Examples 
of intra-community (top panel) and inter-community (bottom panel) structures between nodes 6 and 7, and 
nodes 5 and 15, respectively. (b) �e weight of edge (6, 7) decreases when 0 < β < 0.6 , while for 0.5 < β < 2.0 
it reaches a minimum, and then slightly increases again. Similar but opposite pattern is observed for the edge 
(5, 15). (c) �e β-Wasserstein cost: for intra-community edges, β > 1 consolidates tra�c in the network as the 
Wasserstein cost stabilizes, making it minimum for the extreme value β = 2 , whereas it is maximized in the 
case of the inter-community edge. (d, e) Example cost graphs B67 (top) and B515 (bottom) with �uxes solution of 
the OT problem (edge thickness is proportional to the amount of �ux) in the regimes of small (d) and high (e) 
values of β.
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β-Wasserstein cost coincides with a branched transport  distance25,53. �e idea of tuning β to interpolate between 
various transportation regimes has been used in several works and engineering  applications27,54–59.

Calculating the Wasserstein cost is necessary to determine our main quantity of interest, the discrete 
Ollivier–Ricci curvature, de�ned as

where dij is the weighted shortest path distance between i and j as measured in G. Intuitively, if i and j are in the 
same communities, several k ∈ Vi and ℓ ∈ Vj will be also directly connected. �us, the Wasserstein distance 
between mi and mj will be shorter than dij , yielding a positive κβ(i, j) . Instead, when i and j are in di�erent com-
munities, their respective neighbors will be unlikely connected, hence dij <Wβ(mi ,mj ,ωij) , yielding a negative 
κβ(i, j).

�e Ricci �ow algorithm on a network is de�ned by iteratively updating the weights of the graph G22,23. �ese 
are updated by combining the curvature and shortest path distance  information36. We rede�ne these updates 
using our proposal for the Ollivier–Ricci curvature:

where w
(t+1)
ij  is the weight of edge (i, j) at time t, w

(0)
ij = d

(0)
ij , and d

(t)
ij  is the shortest path distance between nodes 

i and j at iteration t. At every time step t, the weights are normalized by their total sum.
�e algorithm ORC-Nextrout dynamically changes the weights of the graph G to isolate communities: intra-

community edges will be shortened, while inter-community ones will be enlarged. �ese changes are reached 
a�er a di�erent number of iterations of the whole routine depending on the input data. To �nd the communities, 
we apply a network surgery criterion on the edges based on the stabilization of the modularity of the network, 
as proposed by Ni et al.22. Notice that our algorithm does not need prior information about the number of 
communities: edges will be enlarged or shortened depending on the optimal transport principles, agnostic to 
community labeling. �e computational complexity of the algorithm is dominated by that of solving the DMK 
model, which takes O(|E|2.36) (estimated numerically) and by computing weighted shortest path distances dij , 
which costs O(|V |2 log |V | + |V ||E|)60. A pseudo-code of the implementation is shown in Algorithm 1.

Results on community detection problems
Synthetic networks. To investigate the accuracy of our model in detecting communities, we consider syn-
thetic networks generated using the Lancichinetti–Fortunato–Radicchi (LFR)  benchmark61 and the Stochastic 
Block Model (SBM)62. Both models provide community labels used as ground-truth information during the clas-
si�cation tasks.

Lancichinetti–Fortunato–Radicchi benchmark: this benchmark generates undirected unweighted networks 
G with disjoint communities. It samples node degrees and community sizes from power law distributions, see 
Fig. 4 for an example. One of its advantages is that it generates networks with heterogeneous distributions of 
degrees and community sizes. �e main parameters in input are the number of nodes N,  two exponents τ1 and 
τ2 for the power law distributions of the node degree and community size respectively, the expected degree d 
of the nodes, the maximum number of communities on the network Kmax and a fraction µ of inter-community 
edges incident to each node. To test the performance of our algorithm, we use the set of LFR networks used and 
provided by the authors  of22. We set τ1 = 2, τ2 = 1, d = 20, Kmax = 50 and µ ∈ [0.05, 0.75].

Stochastic Block Model: this model probabilistically generates networks with non-overlapping communities. 
One speci�es the number of nodes N and the number of communities K, together with the expected degree d 
of a node and a ratio r ∈ [0, 1] . Networks are generated by connecting nodes with a probability r ∗ pintra if they 
belong to di�erent communities; pintra if they are part of the same community, where pintra = d × K/N . Notice 
that the smaller the ratio r is, the fewer inter-community connections would exist, which leads to networks with 
a more distinct community structure.

We set N = 500 , K = 3 , d = 15 and r ∈ [0.01, 0.5] and generate 10 random networks per value of r.

(1)κβ(i, j) := 1 −

Wβ(mi ,mj ,ωij)

dij
,

(2)w
(t+1)
ij := d

(t)
ij − κ

(t)
β (i, j) · d

(t)
ij ,
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Results. To evaluate the performance of our method in recovering the communities, we use the Adjusted 
Rand Index (ARI)63. ARI compares the community partition obtained with the ground truth clustering. It takes 
values ranging from 0 to 1, where ARI = 0 is equivalent to random community assignment, and ARI = 1 denotes 
perfect matching with the ground truth communities, hence the higher this value, the better the recovery of 
communities. A more detailed presentation of this metric is given in the Supplementary Information.

We test our algorithm for di�erent types of information spreading in our OT-based model, as controlled by 
the parameter β , using the so�ware developed  in64 (available at https:// gitlab. com/ enrico_ facca/ dmk_ solver). 
We used β = 1 , i.e., standard Wasserstein distance; β ∈ {0.1, 0.5} for congested transportation, enforcing broad 
spreading across neighbors; and β ∈ {1.5, 2} to favor branching schemes, where fewer edges are used to decide 
which community a node should belong to. For OT-based algorithms where we update the weights in Eq. (2) for 
15 times ( MaxIterNum = 15 in Algorithm 1). Since in some cases the ARI score does not consistently increase 
with the number of iterations, we show results only for the iteration that maximizes the score.

�e results in Fig. 3 show the performance on both LFR and SBM benchmarks with OT-based methods, our 
method for various β and one based on the Sinkhorn algorithms (OTDSinkhorn)65,66. Our main goal is to assess 
the impact of tuning between di�erent transportation regimes (as done by β ) in terms of community detection 
via OT principles. Nevertheless, to better contextualize the performance of OT-based algorithms in the wide 
spectrum of community detection methods, we also include comparisons with algorithms that are not OT-based. 
Namely, we consider a probabilistic model with latent variables (MT)13, two modularity-based algorithms, Label 
 Propagation14 and  Louvain50, and with a �ow-based algorithm,  Infomap17. Our algorithm outperforms OTD-
Sinkhorn for various values of β in an intermediate regime where OT-based inference is not trivial, i.e. detecting 
communities is neither too easy nor too di�cult. �is occurs in both the LFR and SBM benchmark, as shown 
in Fig. 3. For lower and higher values of the parameters, performance is similar and close to the two extremes of 
ARI = 0 and 1. OT-based methods have a similar sharp decay in performance from the regime where inference 
is easy to the more di�cult one, as also observed  in22. �e other community detection methods have smoother 
decay, but with lower performance in the regime where OT-based approaches strive, except for Label Propaga-
tion and MT, which are more robust in this sense. In the intermediate regime where inference is not trivial (i.e. 
along the sharp decay of OT-based methods), we observe that di�erent values of β give higher performance than 
OTDSinkhorn in most cases. For SBM the highest performance is consistently achieved for high β = 2 , while for 
LFR the best β varies with µ . A qualitative example where ORC-Nextrout is performing better than OTDSink-
horn, in an instance of LFR of this intermediate regime, is shown in Fig. 4. Note that in this case, ORC-Nextrout 
perfectly recovers the 21 communities described by the ground-truth network, whereas OTDSinkhorn merges 
three of the central communities into one group, therefore recovering only 19 groups.

�ese results suggest that practitioners may choose the β that gives the best performance in detecting com-
munities, e.g. the one that maximizes ARI or other relevant metrics depending on the application at hand. We 
show examples of this on real data below.

Analysis of real networks. Next, we evaluate our model on various real  datasets67 containing node meta-
data that can be used to assess community recovery. While failing to recover communities that align well with 
node metadata should not be automatically interpreted as a model’s  failure68 (e.g. the inferred communities and 
the chosen node metadata may capture di�erent aspect of the data), having a reference community structure to 

(a) LFR (b) SBM

Figure 3.  Results on LFR and SBM synthetic data. Performance in detecting ground-truth communities is 
measured by the ARI score. Markers and shadows are the averages and standard deviations over 10 network 
realisations with the same value of the parameter used in generation. Markers’ shape denote di�erent 
algorithms. (a) LFR graph with N = 500 nodes and di�erent values of K ranging from (17, 22). (b) SBM 
with N = 500 nodes, K = 3 communities and average degree d = 15 . �e parameter r is the ratio of inter-
community with intra-community edges. �e inset on each plot zooms in the central parts of the plots.



6

Vol:.(1234567890)

Scienti昀؀c Reports |        (2022) 12:16811  | https://doi.org/10.1038/s41598-022-20986-y

www.nature.com/scientificreports/

compare against allows one to inspect quantitatively di�erence between models. �ese real networks di�er on 
structural features like number of nodes, average degree, number of communities, and other standard network 
properties as detailed in Table 1. Speci�cally, we consider (i) a network of co-appearances of characters in the 
novel Les Misérables69 (Les Miserables). Edges are built between characters that encounter each other. (ii) A 
network of 62 bottlenose dolphins in a community living o� Doubtful Sound, in New  Zealand70 (Dolphins). �e 
nodes represent dolphins, and the edges indicate frequent associations between them. �is network is clustered 
into four groups, conjectured as clustered from one population and three sub-populations based on the inter-
actions between dolphins of di�erent sex and  ages71. �e dolphins were observed between 1994 and 2001. (iii) 
A network of Division I matches of American Football during a regular season in the fall of  200049 (American 
football). Nodes represent teams, and edges are games between teams. Teams can be clustered according to their 
football college conference memberships. (iv) A network of books on US politics published around the 2004 
presidential election and sold by an online  bookseller72 (Political books). Nodes represent the books, and the 
edges between books are frequent co-purchasing of books by the same buyers. Books are clustered based on their 
political spectrum as neural, liberal, or conservative.

OT-based algorithms outperform other community detection algorithms in detecting communities aligned 
with node metadata for two of the four studied datasets, as shown in Fig. 5. In particular, ORC-Nextrout has 
the highest accuracy performance considering the best performing β in these cases. �e impact of tuning this 
parameter is noticeable from these plots, as the best-performing value varies across datasets. In Les Miserables 
and Dolphins networks, β < 1 has better performance, while in American Football the best performing value 
is for β > 1 . Performance is similar across OT-based methods in the Political books network. In Fig. 6 we show 
the communities detected by the best-performing ORC-Nextrout version together with OTDSinkhorn and Info-
map in Les Miserables and Political books (see Supplementary Material for the remaining datasets). Focusing 
on Les Miserables, we see how ORC-Nextrout successfully detects three characters in the green communities, 
in particular a highly connected node in the center of the �gure (in dark green). Notice that these are placed 
in the same community (pink or black) by OTDSinkhorn. �us ORC-Nextrout achieves a higher ARI than 
OTDSinkhorn. Both OT-based approaches retrieve well communities exhibiting clustering patterns with many 
connections within the community. Instead, they both divide the communities with a hub and spokes structure 
due to the lack of common connections within the group.

�e communities detected in both datasets highlight the tendency of OT-based methods to extract a larger 
number of communities than those observed from node metadata. Among these extra communities, some are 
made of a few nodes (e.g. the light-blue and violet), while others are made of one isolated node each (highlighted 

Figure 4.  Example of community structure on a synthetic LFR network. �e rightmost panel shows the 
ground-truth community structures to be predicted in an LFR network generated using µ = 0.35 . �is network 
is one sample of the synthetic data used in Fig. 3. Square-shaped markers denote nodes that are assigned to 
communities di�erent from those in ground-truth. In the middle and last panels, ORC-Nextrout with β = 2 
perfectly retrieves the 21 communities, while OTDSinkhorn predicts only 19 communities with an ARI score 
of 0.73, wrongly assigning ground-truth dark green and light brown (square-shaped) nodes to the light blue 
community.

Table 1.  Real networks description. We report statistics for the real networks used in our experiments. N and 
E denote the number of nodes and edges, respectively. K is the number of communities in the ground truth 
data. AvgDeg, AvgBtw and AvgClust are the average degree, betweenness centrality and average clustering 
coe�cient, respectively.

Dataset N E K AvgDeg AvgBtw AvgClust

Les Miserables 77 254 11 6.6 0.0219 0.5731

Dolphins 62 159 4 5.1 0.0393 0.2590

American football 115 613 12 10.7 0.0133 0.4032

Political books 105 441 3 8.4 0.0202 0.4875
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in black). �is is related to the fact that OT-based methods perform particularly well for networks with inter-
nally densely connected community structures, but may be weaker for community structures that are sparsely 
 connected23. One could potentially assign these nodes to larger communities, for instance, by preferential attach-
ment as done  in23, thus in practice reducing the number of communities. Devising a principled method or 
criterion to do this automatically is an interesting topic for future work. �is tendency is further corroborated 
by the fact that OT-based algorithms recover robustly the two communities that are mostly assortative (blue and 
brown in the �gure) in the Political books network, while they struggle to recover the disassortative community 
depicted in the center (violet). �is community has several connections with nodes in the other two communities 
and has been separated into smaller groups by OT-based approaches, as described above. �is also highlights the 

Figure 5.  Results on real data. Performance in terms of recovering communities using metadata information is 
calculated in terms of the ARI score. ORC-Nextrout shows competing results against all methods with di�erent 
optimal β across datasets.

(a) Les Miserables

(b) Political books

Figure 6.  Communities in real networks. We show the communities inferred for Les Miserables (a) and 
Political books (b) by ORC-Nextrout ( β = 0.5, 0.1 for top and bottom rows respectively), OTDSinkhorn and 
Infomap and compare against those extracted using node attributes (GT). �e visualization layout is given by 
the Fruchterman-Reingold force-directed  algorithm73, therefore, groups of well-connected nodes are located close 
to each other. Dark nodes represent individual nodes who are assigned to isolated communities by OT-based 
methods. Square-shaped markers denote nodes assigned to communities di�erent from those obtained from 
node metadata.
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need for methods that are robust against situations where mixed connectivity patterns arise, i.e. a combination 
of assortative and disassortative communities coexisting in a network.

Two tests on semi-synthetic networks. To further investigate the di�erent performance gaps between 
the various approaches, we expand the comparison between the OT-based methods and Infomap on two semi-
synthetic scenarios generated from Les-Miserables (Fig. 6a) and Dolphins datasets, where the largest ARI dif-
ferences were observed. Speci�cally, we add random noise to the existing set of connections to understand if 
the performance gap can also be observed in more challenging scenarios. We add noise to the real data in two 
di�erent ways (more details can be found in the Supplementary Material): 

1. Flipping entries: from a given network, we generate a new one by �ipping R entries of its adjacency matrix A 
uniformly at random. �is means that if Aij = 1 , this is changed to Aij = 0 , and vice versa. �e �ipping of 
an entry Aij occurs with probability p = 0.1.

2. Removing intra-community edges: from a given network, we build a new one with the same inter-community 
structure but modi�ed intra-community one by removing R within-community edges uniformly at random, 
based on the ground truth communities. To avoid generating disconnected networks, we only sample edges 
that are not connected to any leaves.

Both of these procedures make inference harder, but they act di�erently. �e �rst process is meant to add random 
noise independently of the community structure (�ips are made uniformly at random), while the second aims 
at targeting the community structure by weakening the assortative structure. We choose R to be r × |V |2 for the 
�rst test and r × |E| for the second, where we vary r ∈ [0, 1] to study the impact of these parameters on inferring 
the communities as measured by the ARI score. We generate 20 samples for each of these two mechanisms built 
using the Les-Miserables dataset ( |V | = 77 , |E| = 254 ) shown in Fig. 6a.

We show the results obtained in the test of removing intra-community edges as scatter plots in Fig. 7. We 
use these plots to compare the algorithms on trial-by-trial community detection tasks: a point on each plot 
is an instance of a semi-synthetic network with (x, y) coordinates being the ARI scores of ORC-Nextrout (y) 
and either OTDSinkhorn or Infomap (x). If y > x , then ORC-Nextrout outperforms the other method in this 
particular dataset (blue markers), and vice versa if x < y . We then compute the percentage of times that ORC-
Nextrout outperforms the other (as indicated in the legend). We �nd that ORC-Nextrout outperforms both 
OTDSinkhorn and Infomap clearly and consistently across di�erent values of r ranging from r = 0.01 (R ≈ 3) 
to r = 0.07 (R ≈ 20) . In at least 70% of the cases, ORC-Nextrout gives more accurate results than the other two 
algorithms. �is suggests that ORC-Nextrout is more robust against perturbations of the community structure. 

Figure 7.  Removing intra-community edges test on Les Miserables data. Markers correspond to 20 instances 
of semi-synthetic networks generated from real data. �eir (x, y) coordinates are ARI scores of the indicated 
method on the axes. Colors are given by the best performing algorithm, e.g. if x > y , the color of the associated 
method to x is chosen. �e legend shows the percentage of times that the corresponding method outperforms 
the other. �e parameter r describes the proportion of entries for the adjacency matrix A that have been 
changed. �is increases from le� to right.
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Similar patterns are seen in the case where edges are removed at random and in semi-synthetic networks gener-
ated from the Dolphins dataset, see Supplementary Material.

Conclusion
Community detection on networks is a relevant and challenging open area of research. Several methods have 
been proposed to tackle this issue, with no “best algorithm” that �ts well for every type of data. We focused here 
on a recent line of work that exploits principles from Optimal Transport theory combined with the geometric 
concept of Ollivier-Ricci curvature applied to discrete graphs. Our method is �exible in that it tunes between 
di�erent transportation regimes to extract the information necessary to compute the OR curvature on edges. On 
synthetic data, our model is able to identify communities more robustly than other OT-based methods based 
on the standard Wasserstein distance in the regime where inference is not trivial. On real data, our model shows 
better or comparable performance in recovering community structure aligned with node metadata compared 
to other approaches, thanks to the ability to tune the parameter β.

A relevant advantage of OT-based methods is that the number of communities is automatically learned from 
data, contrarily to other approaches that need this as an input parameter. In this respect, our model has the 
tendency to overestimate this number, similarly to other OT-based methods. Understanding how to properly 
incorporate small-size communities into larger ones in a principled and automatic way is an interesting topic 
for future work. Similarly, it would be interesting to quantify the extent to which various β capture di�erent 
network topologies. To address this, one could, for instance, use methods to calculate the structural distance 
between  networks74 and correlate this against the values of the best performing β . Similarly, as our approach 
allows obtaining di�erent sets of weights on edges, depending on β , it would be interesting to investigate how 
di�erent values of this parameter impact network properties that are governed by the weight distribution, such 
as multi-fractality75.

�ere are a number of directions in which this model could be extended. Nodes can be connected in more 
than one way, as in multilayer networks. Our model could be extended by considering a di�erent β for each edge 
type, as done  in59,76. Similarly, real networks are o�en rich in additional information, e.g. attributes on nodes. 
It would be interesting to incorporate a priori additional information to inform community  detection43,77. �is 
information can potentially be used to mitigate the problem of overestimation of the number of communities, 
as explained above. Finally, we have focused here on the �exibility of solving various transportation problems 
to provide di�erent computations of the OR curvature. Di�erent results could also be obtained by choosing dif-
ferent input mass distributions on nodes’ neighborhoods, as done  in33. It would be interesting to combine these 
two approaches to reveal further insights of the role that the OR curvature plays in detecting communities in 
networks.

Methods
Optimal transport formulation. Consider the probability distributions q that take pairs of vertices and 
also satisfy the constraints 

∑
i qij = mj ,

∑
j qij = mi . In other words, these are the joint distributions whose 

marginals are mi and mj . We call these distributions transport plans between mi and mj . �e Optimal Transport 
problem we are interested in is that of �nding a transport plan q∗ that minimizes the quantity 

∑
i∼j qijdij , where 

i ∼ j means that the nodes i and j are neighbors and dij is the cost of transporting mass from i to j, e.g. the dis-
tance between these two nodes. �e quantity Wβ(mi ,mj , d) :=

∑
i,j q

∗

ij dij , de�ned for this optimal q∗ , is the 
Wasserstein distance between mi and mj.

The dynamical Monge–Kantorovich model. It was recently  proved51,52 that solutions of the optimal 
transport problem previously stated can be found by turning that problem into a system of di�erential equations. 
�is section is dedicated to describe this dynamical formulation.

Let G = (V ,E,W) be a weighted graph, with N the number of nodes and E the number of edges in G. Let 
B be the signed incidence matrix of G. Let f + and f − be two N-dimensional discrete distributions such that ∑

i∈V fi = 0 for f = f +
− f − ; let µ(t) ∈ R

E and u(t) ∈ R
N be two time-dependent functions de�ned on edges 

and nodes, respectively. �e discrete Dynamical Monge-Kantorovich model can be written as:

where | · | is the absolute value element-wise. Equation (3) corresponds to Kirchho� ’s law, Eq. (4) is the discrete 
dynamics with β a tra�c rate controlling the di�erent routing optimization mechanisms; Eq. (5) is the initial 
distribution for the edge conductivities.

For β = 1 the dynamical system described by Eqs. (3)–(5) is known to reach a steady state, i.e., the 
updates of µe and ue converge to stationary functions µ∗ and u∗ as t increases. �e �ux function q de�ned as 
q∗
e := µ∗

e |u
∗
i − u∗

j |/we is the solution of the optimal transport problem presented in the previous section. Notice 

(3)fi =

∑

e

Bie
µe(t)

we

∑

j
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(4)µ′

e(t) =


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that µ and u depend on the chosen tra�c rate β , and thus, so does q = q(β) . �erefore, we can introduce a 
generalized version of the distance W:

We then rede�ne the proposed Ollivier-Ricci curvature as:

Probability distributions on neighborhoods. ORC-Nextrout takes in input a graph and a forcing term. 
While the graph encapsulates the neighborhood information provided by the nodes i and j, the forcing function 
is related to the distributions that one needs to transport. Analogously to what was proposed  by22, we de�ne this 
graph to be the weighted complete bipartite Bij = (Vij ,Eij ,ωij) . �e weights in ωij change iteratively based on 
the curvature. Notice that a bipartite graph must satisfy N(i) ∩N(j) = ∅, which does not hold true if i and j 
have common neighbors (this is always the case since i ∈N(j) ). Nonetheless, this condition does not have great 
repercussions in the solution of the optimal transport problem since the weights corresponding to these edges 
(of the form (i, i)) are equal to 0. As for the forcing function, we de�ne it to be f := f +

− f −
= mi − mj.

Other methods. To evaluate the performance of ORC-Nextrout, we compare with some of the well-estab-
lished community detection algorithms including:  Infomap17,  MULTITENSOR13 (MT), discrete Ricci  �ow22 
(OTDSinkhorn), Label  propagation14 and  Louvain50. We brie�y describe each of these algorithms as follows;

• �e Discrete Ricci �ow (here addressed as OTDSinkhorn)22 is an iterative node clustering algorithm that 
deforms edge weights as time progresses, by shrinking sparsely traveled links and stretching heavily traveled 
edges. �ese edge weights are iteratively updated based on neighborhood transportation Wasserstein costs, 
similarly to what is proposed in this manuscript. A�er a prede�ned number of iterations, heavily traveled 
links are removed from the graph. Communities are then obtained as the connected components of this 
modi�ed network.

• MULTITENSOR (MT)13 is an algorithm to �nd communities in multilayer networks. It is a probabilistic 
model with latent variables regulating community structure and runs with a complexity of O(EK) with assor-
tative structure (as we consider here), where K is the number of communities. �is model assumes that the 
nodes inside the communities can belong to multiple groups (mixed-membership). In this implementation 
we use their validity for single layer networks (a particular case of a multilayer network).

• Infomap17 employs information theoretic approach for community detection. �is method uses the map equa-
tion to attend patterns of �ow on a network. �is �ow is simulated using random walkers’ traversed paths. 
Based on the theoretic description of these paths, nodes with quick information �ow are then clustered into 
the same groups. �e algorithm runs in O(E). In the experiments, we �x the number of random initialization 
of the random walkers to be equal to 10. �e inferred partition is then the one minimizing the entropy.

• Label propagation14 assigns each node to the same community as the majority of its neighbors. Its working 
principle start by initializing each node with a distinct label and converges when every node has same label 
as the majority of its neighboring node. �e algorithm has a complexity scaling as O(E).

• Louvain50 is a fast algorithm used to �nd communities on networks by maximizing the modularity of the 
associated partitions. It consists of two phases. First, it assigns every node on the network into a di�erent 
community. �en, it aggregates nodes and neighbors based on gains of modularity. �is last step is repeated 
until no further improvement can be achieved.

Data availability
�e real datasets analyzed during the current study are available at http:// www- perso nal. umich. edu/ ~mejn/ netda 
ta/. �e synthetic data generated are available from the corresponding author upon request.

Code availability
Open source codes and executables are available at https:// github. com/ Danie lalei te/ ORC- Nextr out. https:// gitlab. 
com/ enrico_ facca/ dmk_ solver.
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Supplementary Note 1: Real networks

This section presents additional plots for real networks on communities detected by some algorithms studied in this paper.

Supplementary Fig. 1a and Supplementary Fig. 1b exhibit the detected communities for American football and Political books,

respectively. For each dataset we compare three algorithms with the ground truth, and with ORC-Nextrout having a single setting

of β .

(a) American Football

GT
12 communities

ORC-Nextrout
17 communities

OTDSinkhorn
17 communities

Infomap
12 communities

(b) Dolphins

GT
4 communities

ORC-Nextrout
13 communities

OTDSinkhorn
12 communities

Infomap
6 communities

Supplementary Figure 1. Communities in real networks. We show the communities for American football (a) and Dolphins (b) inferred by

ORC-Nextrout (β = 2.0,1.5 for top and bottom rows respectively), OTDSinkhorn and Infomap and compare against those extracted using

node attributes (GT). Dark nodes represent individual nodes who are assigned to isolated communities by OT-based methods. Square-shaped

markers denote nodes assigned to communities different than those obtained from node metadata.

Supplementary Note 2: ARI score

We dedicate this section to present the main score used in the experiments described in this manuscript.

The Rand Index1 (RI) is a measure of the similarity between two sets of clusters. Let S = {x1,x2, ...,xn} be a set of n different

elements, and let X = {X1,X2, ..,Xm}, X̂ = {X̂1, X̂2, .., X̂p}, be two partitions of S into m and p subsets, respectively. Intuitively,



X can thought of as the "correct" separation of S into classes, while X̂ would be a "prediction" of it. We would like to understand

the quality of the prediction X̂ in terms of the ground truth community information X . Consider

• T P (true positive) is the number of times that a pair of elements (xi,x j) belonging to the same class Xk gets assigned to

the same class X̂l .

• T N (true negative) is the number of times that a pair of elements (xi,x j) belonging to different classses in X gets

assigned to different classes in X̂ .

• FP (false positive) is the number of times that a pair of elements (xi,x j) belonging to same class Xk is (falsely) assigned

to different classes X̂l and X̂m.

• FN (false negative) is the number of times that a pair of elements (xi,x j) belonging to different classes Xk and Xl is

(falsely) assigned to the same class X̂m.

One can think of the the words positive and negative referring to whether two elements in S belong to the same or to different

classes, respectively. The words true and false would then judge the performance of the prediction: if it maches the nature of

the elements under inspection, then the word true is associated to it; negative, otherwise.

The Rand Index is then computed using the formula:

RI(X , X̂) =
T P+T N

T P+FP+FN +T N
.

The Adjusted Rand Index (ARI) is the corrected for chance version of the RI:

ARI(X , X̂) =
RI −E[RI]

1−E[RI]
,

where E[RI] is the expected value of the RI under the assumptions that the partitions X and X̂ are sampled from the generalized

hypergeometric distribution. Closed forms for the terms shown in the ARI formula can be computed. See1 for a more detailed

presentation of the RI and ARI scores.

Supplementary Note 3: Two tests on random networks generated from real structures

Algorithm and adjacency matrix

The pseudo-code of the random processes defined on Section Two tests on semi-synthetic networks of the manuscript is shown

in the Algorithms 1 and 2.

Algorithm 1 Flipping entries of the adjacency matrix

Input: G = (V,E,W ), flipping proportion r ∈ [0,1], flipping probability p ∈ [0,1]
Output: G′ = (V,E ′)
Build adjacency matrix of G: A

Make a copy of A: A′

Compute number of nodes in G: N

for t ∈ range(r ∗N2) do

for i ∈ range(N) do

for j ∈ range(i+1,N) do

Assume Pi j(A[i][ j]) = p

Sample A′[i][ j] from P

end for

end for

end for

Symmetrize A′

Build G′ using the connections between nodes described by A′.

We show two examples of the outputs of these algorithms on Supplementary Figure 2 together with the adjacency matrix

that was used to originally build them. Notice that the matrix in panel (b) is different from that in panel (a) both in terms of

intra and inter-community blocks, whereas that in (c) only differs along the within-community entries. This indicates that the

first method alters the overall configuration of the edges in the network by adding random noise, whereas the second changes

the original network only by reducing the intra-community relationships.
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Algorithm 2 Removing intra-community edges

Input: G = (V,E,W ), removal proportion r ∈ [0,1],
Output: G′ = (V,E ′)
Build list of edges of G: E(G)
Make a copy of E: E ′(G)
Compute number of edges in G: M

Remove from E ′(G) all the edges e = (i, j) such that either i or j is a leaf in G

Remove r ∗M elements from E ′(G) uniformly at random

Define G′ using V and E ′(G)

inter. edge

no edge

1

2

3

4

(a) Original adjacency matrix

inter. edge

no edge

1

2

3

4

(b) Flipping entries

inter. edge

no edge

1

2

3

4

(c) Removing intra-community edges

Supplementary Figure 2. Adjacency matrices for original and perturbed Dolphins network. We show the adjacency matrix of (a) the original

dataset, (ii) a perturbed network built from the previous one by flipping entries at random and (c) a perturbed graph obtained by removing

intra-community edges. We used r = 0.05 and r = 0.15 to generate the matrices shown in (b) and (c), respectively. Nodes are grouped by

communities to highlight the block structure. Gray lines denote the boundaries of these blocks. Diagonal blocks represent the communities.

Off-diagonal blocks show connections between communities. Colored entries are in agreement with those of community layout shown in

Supplementary Fig. 1b. Inter-community connections are highlighted in gray.

Results
We show results obtained on the Les-Miserables dataset for the test where we flip at random the entries of the adjacency matrix

A (see Supplementary Figure 4). In this case, ORC-Nextrout outperforms Infomap only in the case where r = 0.005, i.e. when

5% of elements of A are changed. As r increases, Infomap increases its accuracy. On the other hand, ORC-Nextrout shows a

better performance than OTDSinkhorn consistently across values of r.

Lastly, in Supplementary Figure 4. we show the results obtained for both tests on the Dolphins dataset. It can be seen that

ORC-Nextrout outperforms OTDSinkhorn consistently across values of r in both cases. On the other hand, Infomap has a higher

accuracy in both tests, as expected given the results shown in Figure 5 of the main manuscript.
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Supplementary Figure 3. Flipping-entries test on Les Miserables data. Markers correspond to 20 instances of semi-synthetic networks

generated from real data. Their (x,y) coordinates are the ARI scores of the method indicated on axes. Colors are given by the best performing

algorithm, e.g. if x > y, the color of the method associated to x is chosen. The legend shows the percentage of times that the corresponding

method outperforms the other. The parameter r describes the proportion of entries of the adjacency matrix A that have been changed. This

increases from left to right.
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Supplementary Figure 4. Flipping-entries test on Dolphins data. Markers’ description is similar as in Supplementary Figure 3.
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Supplementary Figure 5. Removing intra-community edges test on Dolphins data. Markers’ description is similar as in Supplementary

Figure 3.
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