
Superconducting Josephson
circuits for quantum hybrid

systems with mechanical
oscillators

Dissertation
der Mathematisch-Naturwissenschaftlichen Fakultät

der Eberhard Karls Universität Tübingen
zur Erlangung des Grades eines

Doktors der Naturwissenschaften
(Dr. rer. nat.)

vorgelegt von
Kevin-Daniel Uhl
aus Pfullendorf

Tübingen
2024



Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen
Fakultät der Eberhard Karls Universität Tübingen.

Tag der mündl. Qualifikation: 28.06.2024
Dekan: Prof. Dr. Thilo Stehle
1. Berichterstatter: Prof. Dr. Reinhold Kleiner
2. Berichterstatter: Assoc. Prof. Dr. Thilo Bauch



Abstract

Josephson microwave circuits play a crucial role in advancing supercon-
ducting technologies such as quantum computation and quantum sens-
ing. Current circuits predominantly utilize aluminum (Al) thin films or
Al-AlOx-Al trilayer tunnel junctions. However, there is increasing inter-
est in microwave circuits made from alternative materials, that provide
higher magnetic field tolerance and higher operation temperatures com-
pared to Al. Frequency-tunable cavities with weakly nonlinear Josephson
junctions made of niobium (Nb) or with the high-temperature cuprate
superconductor YBa2Cu3O7 (YBCO) would overcome these limitations.
However, obtaining microwave superconducting quantum interference de-
vice (SQUID) cavities with large-tunability made of these materials has
proven to be challenging.

To address this issue, a neon focused-ion-beam (Ne-FIB) is used to create
monolithic Nb three-dimensional (3D) nanoconstriction-type Josephson
junctions (cJJs), where the thickness of the cJJ compared to the supercon-
ducting leads is reduced. In a first series of experiments, which involves
a combination of direct-current and microwave measurement techniques,
the current-phase-relation (CPR) was determined. A forward-skewed sinu-
soidal CPR was observed. In a second experiment it was demonstrated,
that high-quality SQUID microwave circuits can be fabricated using these
novel 3D Ne-FIB cJJs. In the case of YBCO, near-ideal tunnel junctions
are obtained through helium focused-ion-beam irradiation. The resulting
microwave SQUID cavities from both materials demonstrate frequency
tunabilities, flux responsivities, and Kerr nonlinearities that are compara-
ble to those of aluminum devices. However, they offer a broader operation
parameter range in terms of temperature and magnetic field. These results
suggest that these resonators are promising candidates for hybrid quan-
tum systems involving magnons, spin ensembles, or mechanical oscillators,
especially for flux-mediated optomechanics.

In particular, flux-mediated optomechanics offers a platform for in-
creasing the performance in acceleration and force sensing, as well as for
exploring quantum physics in previously unexplored regimes with high
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masses and long coherence times. To approach this goal, a superconducting
lead-tin sphere with a diameter of 100 µm was levitated within a static
magnetic trap formed by an anti-Helmholtz configuration. The sphere’s
center-of-mass motion of the sphere is magnetically monitored using a
DC-SQUID and exhibits quality factors up to 2.6 ⋅ 107.

The results presented hold promise for applications in quantum sensing,
hybrid quantum systems and parametric amplifiers.
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Kurzfassung

Mikrowellenschaltungen mit Josephson Kontakten spielen eine entschei-
dende Rolle bei der Weiterentwicklung von Supraleitertechnologien wie
der Quanteninformationsverarbeitung und der Quantensensorik. Die meis-
ten Schaltkreise verwenden dünne Aluminium (Al)-Filme und Al-AlOx-Al
Trilagen-Josephson Kontakte. Jedoch besteht ein wachsendes Interesse an
Mikrowellenschaltungen aus anderen supraleitenden Materialien, die eine
höhere Magnetfeldtoleranz und höherer Betriebstemperatur im Vergleich zu
Al aufweisen. Mikrowellenresonatoren mit schwach nichtlinearen Josephson-
Kontakten aus Niob (Nb) oder dem Hochtemperatur-Kuprat-Supraleiter
YBa2Cu3O7 (YBCO) könnten diese Einschränkungen überwinden. Die
Herstellung von Mikrowellenresonatoren mit supraleitenden Quanteninter-
ferometern (SQUIDs, vom englischen: Superconducting Quantum Interfer-
ence Devices) aus diesen Materialien hat sich jedoch als herausfordernd
erwiesen.

Um dieses Problem anzugehen, wird im Rahmen dieser Arbeit ein
fokussierter Neon-Ionenstrahl (Ne-FIB, vom englischen: neon Focused-
Ion-Beam) zur Herstellung von monolithischen dreidimensionalen (3D)
Nb-Nanoeinschnürungen (cJJs, vom englischen: Constriction Josephson
Junctions) verwendet, bei denen die Dicke zwischen den supraleiten-
den Zuleitungen verringert ist. In einer ersten Versuchsreihe, die eine
Kombination aus Gleichstrom- und Mikrowellenmesstechniken beinhal-
tet, wurde die Strom-Phasen-Beziehung (CPR, vom englischen Current-
Phase-Relation) bestimmt. Dabei wurde eine vorwärts geneigte sinus-
förmige CPR beobachtet. Darüber hinaus wurde demonstriert, dass
hochwertige SQUID-Mikrowellenschaltungen mit diesen neuartigen 3D
Ne-FIB cJJs hergestellt werden können. Im Fall von YBCO werden na-
hezu ideale SIS-Tunnelkontakte durch Bestrahlung mit einem fokussierten
Helium-Ionenstrahl erhalten. Die resultierenden Mikrowellen-SQUID-
Resonatoren aus beiden Materialien zeigen Frequenz-Durchstimmbarkeiten,
Fluss-Responsivitäten und Kerr-Nichtlinearitäten, die mit denen von Alu-
miniumresonatoren vergleichbar sind. Jedoch bieten die neuartigen Res-
onatoren einen größeren Betriebsbereich in Bezug auf Temperatur und
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Magnetfeld. Diese Ergebnisse legen nahe, dass die Resonatoren vielver-
sprechende Kandidaten für Quaten-Hybridsysteme mit Magnonen, Spin-
Ensembles oder mechanischen Oszillatoren (flussvermittelte Optomechanik)
sind.

Insbesondere die flussvermittelte Optomechanik bietet eine vielver-
sprechende Plattform für hochempfindliche Detektion von Beschleunigung-
und Kraftmessung sowie für die Erforschung der Quantenphysik in bisher
unerforschten Bereichen mit großen Massen und langen Kohärenzzeiten.
Hierfür wurde im Rahmen dieser Arbeit eine schwebende supraleitende
Blei-Zinn-Kugel mit einem Durchmesser von 100 µm in einer statischen
Magnetfalle aufgrund des Meißner-Ochsenfeld-Effekts gefangen gehalten.
Dieser Ansatz bietet die Realisierung von nanometer und sogar mikrometer
großen Quantensysteme mit minimaler Dekohärenz. Die Schwerpunkts-
bewegung der Kugel wurde mit einem DC-SQUID magnetisch ausgelesen
und weist Gütefaktoren von bis zu 2.6 ⋅ 107 auf.

Die hier vorgestellten Resultate sind vielversprechend für Anwendungen
in der Quantensensorik, in hybriden Quantensystemen und parametrischen
Verstärkern.
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1 Introduction

During the last two decades the research on micro- and nano-mechanical
devices had a dramatic impact in the fields of both sensing and macroscopic
quantum physics. Impressive examples include nano-mechanical mass
sensors with single-atom resolution of several 10−27 kg [1] and force sensing
experiments with less than zepto-Newton sensitivity [2, 3]. At the same
time, an independent research effort has resulted in first demonstrations of
quantum states of motion of mechanical oscillators including cooling to the
quantum ground state of motion and single-phonon control [4–6]. The study
in quantum-engineering of mechanical detectors may influence physics in
the fields of ultrasensitive force sensing, testing fundamental physical
questions and performing hybrid quantum information processing. One
of the main goals is gravitational-wave detection to answer the unknown
mystery in dark matter, to study the intersection of gravity with quantum
physics and to explain the mass distribution of the universe [7]. Dealing
with this topic leads to extremely sensitive experiments. There, one of the
fundamental limitations are quantum fluctuations of the radiation-pressure
force, which imply the exchange between momentum of an object and
the electromagnetic field, thereby impacting the precision of displacement
measurements. This issue has gained particular significance in ultrasensitive
interferometers designed for gravitational-wave detectors such as LIGO,
VIRGO, and KAGRA.

With this interest, a lot of significant progressing work on the exploration
and understanding of the optomechanical interaction has been done in the
last decades [8]. Here, high-quality cavities are used as photon boxes to
confine the light field to a small mode volume. The most prominent and
simplest example of such systems, known as the Fabry-Perot cavity [9],
is formed by two mirrors placed parallel to each other. Optical light is
confined between those two mirrors to form an oscillating light field with
a specific frequency. If one of the mirrors acts as mechanical resonator,
its displacement will modulate the cavity length and therefore the reso-
nance frequency of the electromagnetic mode of the cavity. This concept
allows one to couple systems such as membranes [10], microspheres [11] or
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1 Introduction

atoms [12] to demonstrate radiation-pressure self-oscillations [13, 14] and
cavity cooling [15].

A complementary and powerful platform for optomechanics are super-
conducting circuits in the microwave regime [16]. Most of these systems
are based on devices focusing on a capacitive coupling between the super-
coducting cavity mode and mechanical motion. This was first theoretically
announced by Braginsky in 1967 [17] and experimentally realized by Cuth-
bertson in 1996 using an inductor-capacitor (𝐿𝐶) microwave cavity with
a movable plate capacitor [18]. The goal was to observe damping and
anti-damping of the mechanical motion [19]. The interaction between the
capacitive plate membrane and its mechanical motion induces a shift in
the resonance frequency of the microwave cavity, cf. Fig. 1.1(a). This
coupling is key for radiation-pressure cooling and parametric amplification
techniques [20]. In order to maximize the coupling, the gap between the
two capacitor plates has to be reduced to a minimum. So far the most
optimized devices have gaps of less then 50 nm with a zero-point motion of
a few femto-meters [21–23]. Nevertheless, this technological optimization
reaches its limitations in nanofabricated engineering and therefore poses
restrictions on the optomechanical coupling.

Especially for mechanical quantum ground state preparation and cooling
of motion, the coupling strength 𝑔 = √𝑛c𝑔0 between mechanical motion
and optical cavity is crucial. It is given by the cavity photon number 𝑛c and
single-photon coupling strength 𝑔0. The progress made in optomechanical
systems depended on an improvement of the parameter 𝑔 through a sub-
stantial increase in 𝑛c. This has enabled the community to experimentally
achieve not only the strong coupling regime with 𝑔 > 𝜅 [24, 25], where𝑔 surpasses the cavity decay rate 𝜅, but also the ultra-strong coupling
regime, where 𝑔 becomes comparable to both the cavity and mechanical
frequencies [26]. Despite these notable achievements, this approach comes
with various drawbacks. For instance, it results in heating of the mechani-
cal mode well beyond the temperature mode in the optical domain [27],
induces position-localization decoherence [28] and lastly results in an in-
crease of the cavity noise floor in the microwave operational range [29].
These sources of noise significantly limit the attainable cooling limit and
hinder the feasibility of preparing the mechanical quantum ground state.
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Figure 1.1: Schematic drawing of capacitive and inductive coupling in microwave
optomechanics. In (a), a scheme of optomechanical coupling via mechanical
capacitance is presented. The top plate (blue) of a parallel plate capacitor is
suspended to form a mechanical resonator. The gap 𝑑 between the two plates
varies due to the motion 𝑥 of the top plate. Therefore, the circuit capacitance𝐶(𝑥) and hence the resonance frequency of the 𝐿𝐶 circuit modulates. In (b), a
flux-mediated optomechanical coupling is illustrated. The mechanical oscillator (gray
beam) is part of the SQUID loop. The displacement 𝑥 (blue area) of the mechanical
resonator changes the total flux threading the SQUID (orange) in the presence of
an in-plane magnetic field 𝐵||. Since the SQUID serves as a flux-tunable nonlinear
element 𝐿SQUID(𝑥), its inductance is modulated by the oscillating mechanical beam.
Therefore the resonance frequency of the 𝐿𝐶 circuit modulates. Both microwave
cavities in (a) and (b) are capacitively side-coupled to a transmission line.
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1 Introduction

To overcome these constraints, one strategy is to enhance the single-
photon coupling strength 𝑔0 to get rid of an increase in the cavity photon
number. Ultimately, achieving the single-photon strong coupling regime,
where 𝑔0 surpasses both the cavity decay rate and the mechanical frequency,
would represent a significant advancement in preparing quantum states for
mechanical modes [8, 30, 31].

In summary, the minimization of the distance of movable plate capacitors
reaches its limitations in fabrication. This approach achieved a single-
photon coupling 𝑔0 ≈ 2𝜋 ⋅ 300 Hz so far. This value is two orders of
magnitude to low for reaching the single-photon strong coupling regime
comparing with common 𝜅 ≳ 2𝜋 ⋅ 10 kHz [32–34]. However, an alterna-
tive approach to capacitance modulation involves considering the circuit
inductance, which is modulated instead of the capacitance. A possible
way is to engineer a flux mediated optomechanical system, which relies
on a flux-tunable non-linear element, known as a Superconducting Quan-
tum Interference Device (SQUID) [35, 36]. SQUIDs are one of the most
sensitive magnetic field sensors that can detect changes in magnetic flux
density in the range of 10−15 T [37]. The SQUID acts as a sensitive flux
tunable inductor, whose inductance depends on the applied magnetic flux.
A SQUID consists of a superconducting loop with a certain inductance,
which is interrupted by either one or more Josephson junctions. Changing
the magnetic flux through the SQUID loop enables a modulation of the
resonance frequency of the SQUID cavity. This concept allows coupling
of mechanical motions, which changes the magnetic flux density through
the SQUID and therefore the SQUID cavity resonance frequency. Inspired
from this idea, several approaches have been realized. One example is an
optomechanical system featuring a cantilever with a magnetic tip that
magnetically modulates the resonance frequency [36]. Another approach
involves integrating the mechanical beam into the SQUID loop [38–40].

There is also a strong interest in levitating superconducting or magnetic
oscillators [41, 42]. So far, these systems have relied on optical methods for
readout and/or levitation [43–46]. However, utilizing photons for cooling
and manipulation introduces significant limitations in terms of photon
scattering and absorption, leading to position-localization decoherence and
raising the object’s bulk temperature [28]. An alternative approach involves
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a levitating mechanical resonator experimental setup that does not rely
on photons but instead utilizes magnetostatic fields. Here, the mechanical
oscillator is predicted to be well isolated from the environment, yielding
large mechanical quality factors, long coherence times and enables levitation
of large masses. A successful implementation of a magnetostatic levitating
superconducting object would offer the potential for unprecedentedly long
coherence times and sensing. In this context, a magnetic field gradient is
required to generate a magnetic trap for levitating the superconducting
sphere due to the Meissner effect. The superconducting shielding currents
produces a flux that passes through the SQUID and depends on the center-
of-mass position of the sphere. The initial steps to achieve this result are
detailed in publication 4. Those first steps will enable applications with
high performance in force sensing and for testing fundamental physical
questions.

On the contrary to optimizing mechanical motion, strong flux-mediated
coupling is required. Integrating the mechanical beam into the SQUID
loop provides a viable way to strengthen this interaction and potentially
enabling the system to enter the single-photon strong coupling regime,
cf. Fig. 1.1(b). To establish a flux-mediated optomechanical connection
between the mechanical beam and the LC circuit, an in-plane magnetic
field 𝐵|| is applied to induce a flux into the SQUID loop resulting from
the displacement of the mechanical resonator. The zero-point motion
with amplitude 𝑥zpf of the beam leads to a variation in the magnetic flux
passing through the SQUID and thereby induces changes in the SQUID
cavity resonance frequency 𝜔0. That offers the opportunity to scale the
single-photon coupling strength 𝑔0 ∼ (∂𝜔0/∂Φ)𝐵||𝑙𝑥zpf, where 𝑙 is the
length of the beam, ∂𝜔0/∂Φ the flux sensitivity of the SQUID cavity
and Φ the total flux in the SQUID, by applying high magnetic fields.
Nevertheless, such circuits are often made out of aluminium thin films,
which is a superconducting material with a critical magnetic field of only∼ 10 − 100 mT [47, 48]. One potential approach to satisfy the mentioned
requirements is to implement microwave circuits made out of materials
like niobium [49], niobium alloys [50, 51], or even a high-temperature
superconductor such as YBa2Cu3O7 (YBCO) [52], including high-field
compatible Josephson elements such as nano-constrictions. In previous
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1 Introduction

endeavors, it has been challenging to achieve constriction-junction SQUIDs
made from these materials with substantially large flux tunability, except
for YBCO [53, 54]. For YBCO, grooved constriction-junction SQUIDs have
been fabricated using argon milling [55, 56]. However, their microwave
SQUID cavity behavior has not been extensively studied so far and would
be interesting.

Despite the potential advantages of utilizing flux-mediated optomechani-
cal systems to enhance the single-photon coupling strength, SQUID cavities
have an inherent property that is often viewed as a disadvantage - the
Kerr non-linearity. This non-linearity affects the maximum number of
drive photons the cavity can accommodate before transitioning into a
non-linear behavior. In contrast to a linear microwave cavity coupled to a
mechanical element, the flux-mediated optomechanical system’s maximum
drive-enhanced coupling strength is constrained by the cavity non-linearity.
Considering that a significant multi-photon coupling strength is essential
for various applications such as quantum ground state cooling or quantum-
state transfer, the development of a system that boosts 𝑔0 without imposing
a low threshold on the number of photons would be highly valuable in the
field of optomechanics.

Moreover, there is also significant interest in SQUID cavities with com-
patibility in temperature, magnetic field and low non-linearity for hybrid-
systems involving spin ensembles [57, 58], and magnons [59–61], dispersive
magnetometry [62] and Josephson parametric amplifiers [63–65]. Spin
ensembles, such as nitrogen-vacancy (NV) centers in diamond [66] and
magnonic systems, such as yttrium iron garnet (YIG) crystals require high
magnetic fields for control [67, 68]. One advantage of these systems is their
experimentally accessible microwave and optical transitions that allows
for an optically induced polarization in the ground state. This broad ad-
dressability makes them highly attractive for use in hybrid systems, qubit
quantum states and quantum communication applications. Integrating
magnonic systems with optomechanical elements would further enhance
their versatility, facilitating quantum state transfer among different phys-
ical systems and enabling the study of exotic magnetic excitations and
quantum sensing [69–71]. Disversive SQUID techniques and Josephson
parametric amplifiers have been studied in a variety of different microwave
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circuit conficurations [72–75]. Typically these devices are made out of
aluminum. Extending their operation window in temperature range and
high magnetic field compatibility would enable novel experiments and
would push the boundaries of complex hybrid systems, such as macroscopic
magnetization of spin ensembles [76] or magnomechanics.

Therefore, one of the main efforts of this thesis was to design microwave
circuits for flux-mediated optomechanical systems made of niobium and
YBCO. Publication 1 and 2 deal with the realization of niobium SQUID
cavities based on neon focused-ion-beam (Ne-FIB) patterned monolithic 3D
nanobridge junctions. Constrictions in general are far less understood than
conventional Josephson tunnel junctions, despite their critical significance
in circuit designs. They combine a small junction area with high critical
current densities but without adding large capacitances or lossy materials.
The main characteristics of Josephson elements are their critical current
and potentially nontrivial current-phase-relation (CPR). Especially the
CPR, which describes the relation between the phase difference across
the constriction and the current flowing through it, is hard to predict
and has a huge impact on the cavity flux sensitivity [77–79]. In general,
the constriction junctions are formed by a thin, narrow superconducting
bridge, which is contacted by large superconducting electrodes. These
are 2D nanobridges, in which the bridge and electrodes have the same
thickness. However, these 2D junctions have CPRs which are only weakly
nonlinear and in some cases are almost linear [79]. This can lead to a
reduction of the flux sensitivity. A solution to these issues is to make a
variable-thickness (3D) constriction junction, in which the bridge is much
thinner in all direction than the electrodes. For better understanding of a
3D nanobridge junction and their properties, publication 1 presents a
full investigation on this topic. There, the microwave circuit allows simul-
taneous DC current-voltage access to a single constriction and microwave
characterization of the DC-current-biased cavity using microwave reflec-
tometry. This provides a useful method to comprehensively characterize
nonlinear elements integrated in microwave circuits and could be of interest
for hybrid quantum systems, parametric amplifiers and current sensors.

Publication 2 presents the implementation of Nb microwave SQUID
resonators featuring both 2D and 3D constrictions, along with the resulting
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1 Introduction

variations in frequency tunability, flux responsivities, and Kerr nonlineari-
ties. The devices are on par with comparable aluminum nanobridge devices,
but with the opportunity of a much larger operation parameter regime -
temperature and magnetic field. Additionally, the results demonstrate that
focused neon-ion-beam milling is a promising approach for constructing 3D
constriction junctions with adjustable junction parameters. Furthermore,
the microwave circuits show significant potential for implementing them
into applications of hybrid systems as e.g. spin ensembles and magnons [60]
or in flux-mediated optomechanical coupling.

To increase the possible parameter range for device operation, publica-
tion 3 presents the realization of a microwave SQUID cavity out of the
material YBCO, a material with a high critical temperature and a much
higher critical magnetic field tolerance, that goes up to several Tesla [80].
The SQUID is based on Josephson junctions direcly written with a he-
lium focused-ion-beam (He-FIB) using a He ion microscope (HIM). The
publication demonstrates that YBCO-HIM-SQUID microwave resonators
are promising candidates for quantum sensing and microwave technology
applications.

Publication 4 shows a promising platform for testing quantum physics
with mechanical motions of high masses. In this approach a levitated
superconducting sphere is trapped in a static magnetic anti-Helmholz
configuration. This prevents scattering and absorption of photons, com-
pared to optical systems, to lower the damping and heating rates [81].
The center-of-mass motion of the sphere is magnetically read out using a
DC-SQUID for first characterization steps.

To conclude, this thesis investigated an alternative approach of flux-
tunable resonators with different materials and Josephson junction fabrica-
tions. They show highly promising properties for optomechanical systems.
Additionally one possibility of mechanical system for such coupling is
presented.
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2 Summary of publications and contributions

2.1 Publication 1: Extracting the current-phase-
relation of a monolithic three-dimensional nano-
constriction using a DC-current-tunable
superconducting microwave cavity

In this publication, the properties of a niobium (Nb) monolithic three-
dimensional (3D) nanobridge, which is embedded in a microwave circuit
with direct current (DC) access, and the circuit itself are experimentally
investigated.

Josephson junctions (JJs) are widely used in microwave quantum ap-
plications, such as Josephson parametric amplifiers [65, 82], tunable mi-
crowave cavities for quantum hybrid systems [79, 83] as well as for DC
applications, such as for susceptometry [84] and Josephson voltage stan-
dards [85]. So far, most microwave devices have been constructed using
superconductor-insulator-superconductor (SIS) trilayer Josephson junc-
tions made of Al-AlOx-Al. However, there is an increasing interest in
implementing aluminum constriction-type Josephson junctions (cJJs) due
to their compatibility with high magnetic fields. Nevertheless, aluminum
(Al) itself has limited magnetic field compatibility of ∼ 10 − 100 mT [48].
A successful implementation of cJJs using Nb enables experiments at sig-
nificantly higher magnetic fields and temperatures. Nevertheless, achieving
accurate control over the current-phase-relation (CPR) of these constric-
tions proves challenging, as it is highly sensitive to material properties,
constriction dimensions, temperature and fabrication methods [86, 87].
In many cases, the CPR deviates significantly from the ideal sinusoidal
shape. Designing devices and technologies based on these non-sinusoidal
Josephson elements requires a deep understanding of the critical current
and the CPR.

In this publication, a superconducting microwave transmission line cavity
with an integrated Nb 3D nano-constriction is fabricated by patterning
the cJJ with a neon focused-ion-beam using a neon-ion-microscope (NIM).
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2 Summary of publications and contributions

Figure 2.1: A superconducting microwave cavity with DC access and integrated
niobium nano-constriction. (a) Optical micrograph of the 𝜆/2-transmission line
cavity. At the input port, the cavity is shunt-coupled by a large parallel-plate
shunt capacitance (Nb-SiNx-Nb) 𝐶s (blue) to a feedline (orange) for simultaneous
microwave driving and readout as well as DC access to the constriction. At the
far end, close to the connection to ground, a monolithic 3D niobium nano-cJJ is
patterned into the center conductor of the coplanar waveguide resonator. Bright
parts are 90 nm-thick niobium, dark parts are silicon substrate. (b) Zoom to the
end part of the resonator; (c) Electron microscopy image of the cJJ. (d) Circuit
equivalent of the transmission line cavity with the cJJ at the end. Figure adapted
from appended publication 1.
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2.1 Publication 1: Extracting the current-phase-relation of a monolithic
three-dimensional nano-constriction using a DC-current-tunable

superconducting microwave cavity

The design of the cavity allows simultaneous DC current-voltage access
additionally to a microwave characterization, cf. Fig. 2.1. At its input port,
the cavity is shunted to a coplanar waveguide feedline via a capacitance to
ground. This coupling scheme leaves the center conductor of the waveguide
uninterrupted and a bias current 𝐼b can pass along the waveguide centre. At
the far end of the transmission line cavity, the centre conductor has a narrow
part, into which the constriction is cut and where it is connected to the
ground forming a 𝜆/2-resonator. For the constriction, a narrow ∼ 25 nm
wide slot from both sides is cut into the narrow part with the NIM,
leaving only a ∼ 40 nm wide constriction. Simultaneously, the thickness
between the superconducting leads (film thickness ∼ 90 nm) is reduced to
a remaining thickness of ∼ 40 nm.

In contrast to comparable experiments where the junction fabrication is
performed simultaneously with the cavity [88, 89], this approach offers the
advantage of characterizing the same cavity both with and without the
constriction Josephson junction. This leads to a precise and comprehensive
characterisation of the monolithically patterned 3D nano-constriction prop-
erties. In combination with microwave reflectometry and DC biasing of the
device, it is possible to extract the CPR in two different experimental ways.
This allows one to cross check the theory and to highlight the accuracy of
the analysis.

One approach is to reconstruct the CPR by accurately determining the
constriction inductance 𝐿c. Extracting 𝐿c relies heavily on the resonance
frequency tunability of the cavity. Therefore, it is essential to use a
sufficiently low microwave probe power to keep the cavity within the linear
response regime. This allows the extraction of the resonance frequency𝜔0(𝐼b) for varying bias current 𝐼b. The resonance frequency shifts to lower
values by increasing 𝐼b until a switching current 𝐼sw = 39 µA is reached, cf.
Fig. 2.2(a). At this point, the zero-voltage state switches to a finite-voltage
state and the resonance vanishes abruptly. The total frequency range,
covered with the bias current tuning, is ∼ 13.5 MHz at 3.9 K. This behavior
is to be expected due to the nature of the superconducting nonlinear
inductance 𝐿c, which typically increases with increasing quasiparticle
density and a decrease in Cooper pair density, cf. Fig. 2.2(b). The
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Figure 2.2: Microwave cavity tunability with DC access. Panel (a) presents the
cavity tunability. As the bias current 𝐼b increases, the resonance frequency 𝜔0(𝐼b)
shifts to lower values until 𝐼sw ∼ 39 µA is reached. In (b) the frequency shift is
related to a change of the nonlinear constriction inductance 𝐿c(𝐼b). Symbols are
data, dashed line is calculated from theory expressions and fit values, solid line is a fit
using linear-plus-Josephson inductance model and the color-shaded area around the
data points in (b) corresponds to estimated errors. Figure adapted from appended
publication 1.

constriction inductance increases from around 12 pH at zero bias current
to around 15.8 pH.

Once the cJJ inductance 𝐿c is known for each bias current, the phase 𝛿
of the constriction can be reconstructed by integration using𝛿 = 2𝜋/Φ0 ∫𝐼b0 𝐿c𝑑𝐼′

b,
12
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Figure 2.3: Reconstructed CPR of the nano-constriction from junction induc-
tance. Integration from the cJJ inductance for each bias current point as yellow
circles. Data points for 𝐼b < 0 have been manually shifted by +2𝜋 in phase. De-
scribing 𝐿c as a linear-plus-Josephson inductance, the CPR can be modeled with a
total phase 𝛿 = 𝛿lin + 𝛿J, where 𝛿lin represents the phase across the linear part and𝛿J ideal Josephson part. The modelled result is shown as black dashed line. Figure
adapted from appended publication 1.

where Φ0 is the flux quantum, cf. Fig. 2.3. When integrated, the 3D cJJ
shows a predominantly linear dependence for 𝛿 ≤ 𝜋/4 and starts to bend
towards smaller slopes as 𝐼b increases until 𝐼b = 𝐼sw. Such a forward-
skewed CPR has been found in the literature for constriction junctions and
in particular made out of other materials [54, 78, 90]. This behavior can be
approximated using a theoretical description of the cJJ inductance. In this
model a combination of a linear inductance 𝐿lin and an ideal Josephson
element 𝐿J is used to describe 𝐿c. Previous studies have demonstrated that
the linear-plus-Josephson inductance model matches with high accuracy
[87, 90]. However, the experimentally observed CPR does not reach the
point where the slope approaches zero, which is typically the case when 𝐼b
is approximately equal to the critical current 𝐼0 of the junction.

13
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Figure 2.4: Higher order derivatives of the CPR shape impacting the Kerr
anharmonicity. Kerr constant 𝒦 for multiple bias currents show an increase in
magnitude with increasing 𝐼b. For comparision of the impact of the CPR, two
different theoretical lines based on nonlinear current-conservation calculations are
plotted. The black dashed line is generated using the second and third derivatives
of the experimentally determined CPR employing the linear-plus-sinusoidal model.
The blue solid line is based on an artificially crafted CPR that closely resembles
the one derived from the linear-plus-sinusoidal-inductance model for 𝐼b < 𝐼0. Both
CPRs are directly compared in the inset. The yellow circle marks the experimentally
observed switching current, and the uncertainty in the linear-plus-sinusoidal CPR is
represented by the gray shaded area. Figure adapted from appended publication 1.

The other approach to obtain information about the CPR and to cross
check the previous analysis, is to gain access to the derivatives of the
CPR by characterizing the Kerr nonlinearity 𝒦. The theoretical relation
between the CPR and 𝒦 is given by𝒦 = 𝑒22ℏ𝐶tot

𝑝3
c [𝑔4𝑔2 − 3𝑔23𝑔22 (1 − 𝑝c) − 53 𝑔23𝑔22 𝑝c] ,
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where the coefficients 𝑔𝑛 = ∂𝑛−1𝐼∂𝛿𝑛−1 ∣𝛿0 encode the derivatives of the CPR

and 𝑝c = 𝐿c(𝐼b)𝐿r+𝐿c(𝐼b) is the constriction inductance participation ratio to the
cavity inductance 𝐿r. This enables a second detailed analysis of the CPR.

Utilizing the CPR obtained from the linear-plus-sinusoidal model, the
theoretical Kerr constant can be easily calculated. The resulting value
demonstrates acceptable agreement with the data, cf. Fig. 2.4. However,
discrepancies emerge at the lowest and highest bias currents. To illustrate
the significant impact of variations in the CPR on the Kerr constant, an
artificial CPR based on an odd polynomial function has been constructed to
describe 𝒦. The result shows, that very small changes of the absolute values
of the CPR can lead to larger differences in the higher order derivatives of
the CPR.

Contributions

This work was done in cooperation with D. Hackenbeck, D. Kölle, R. Kleiner
and D. Bothner. For the publication, I had the leading role in device
design, device fabrication, numerical simulations and experimentation.
Additionally, I shared the leading role in data analysis and manuscript
composition.
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2.2 Publication 2: Niobium quantum interference
microwave circuits with monolithic
three-dimensional nanobridge Junctions

Publication 2 describes the realization and performance of three different
niobium SQUID microwave cavities with constriction Josephson junctions
(cJJs). The circuits differ in the constriction geometries, where a 2D
(thickness of leads and constriction is equal) circuit is compared with
different 3D (thickness of constriction is thinner than leads) cJJs.

SQUIDs in microwave applications have led to groundbreaking experi-
mental and technogical developments. They provide a Kerr nonlinearity
and a tunability of the resonance frequency by external magnetic field
which are magnificent for qubits, dispersive SQUID magnetometry or
photon-pressure systems [91–93]. So far, aluminum is used as state of
the art material with a critical magnetic field of 𝐵c ∼ 10 − 100 mT and a
critical temperature 𝑇c = 1.2 K [48]. The approach to realize microwave
circuits out of a superconductor with higher 𝐵c and 𝑇c such as niobium
with high-field compatible Josephson elements such as nano-constrictions
turned out to be highly difficult [53]. In most endeavors thus far, it has
been challenging to develop constriction-junction SQUIDs made of these
material with significant tunability. This difficulty persists in both direct
current (DC) operation mode and in the microwave domain [53, 94–96].

Here, the realization of three niobium SQUID microwave cavities based
on cJJs patterned by neon focused-ion-beam (Ne-FIB) is reported. The
microwave circuits consist of two interdigitated capacitors and a linear
inductor line combined in parallel, cf. Fig. 2.5. They are capacitively
sidecoupled to a coplanar waveguide transmission line. At the connection
point between the two capacitors and the inductor line of each circuit is
a square-shaped loop with hole size 6 × 6 µm2. This loop configuration
forms the SQUID after nano-pattering the constrictions. For all cJJs,
two narrow 20 nm wide slots are cut from both sides into the Nb strip
using the Ne-FIB. This forms an only 40 nm wide connection between
the superconducting lead in each loop arm of the SQUID. Leaving the
constriction thickness equal to the leads connected to them, corresponds
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Figure 2.5: A niobium-based quantum interference microwave circuit with
monolithic 3D nanobridge junctions. (a) False-colour optical micrograph of a
typical device. The two interdigitated capacitors are orange, circuit main inductance
is purple, the capacity sidecoupled to a coplanar waveguide transmission is green,
the SQUID loop is uncoloured and (a)-(c) the nanobridges are blue. (c) False-colour
scanning electron microscopy (SEM) image of the loop after constriction cutting, (d)
zoom of a 3D constriction after cutting, taken with a SEM tilt angle of 30°. In (a)-
(c) niobium is bright/coloured, silicon substrate dark grey. Panel (d) schematically
illustrates the nano-constriction fabrication. For the 2D constrictions, two narrow
slits are patterned into each of the SQUID arms by a focused neon ion beam; for
the 3D constrictions, the nanobridges are additionally thinned down from the top by
the neon beam. Adapted © 2024 American Physical Society..

to the type of constriction, which has been referred to 2D constriction.
Constrictions that are thinner than the superconducting leads are 3D
versions. Here the circuit film thickness can be kept larger compared to
the constrictions. Consequently, the 3D constriction exhibits a low critical
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current and can have a less skewed current-phase-relation and lower flux
noise [78, 90]. Additionally, the kinetic inductance of the circuit can be
kept small.

Following the evaluation of the design and fabrication process, the
performance of three SQUID cavities is presented in terms of frequency
tunability, flux responsivity, and screening parameters. One resonator
has 2D constrictions with a junction thickness of 90 nm, while two other
resonators have 3D constrictions with thicknesses of 30 nm (3D1) and 20 nm
(3D2) respectively. The film thickness of the cavity itself is consistent
across all circuits at 90 nm. To see the cavity characteristics, an external
magnetic field is applied perpendicular to the Nb thin film plane that
introduces magnetic flux Φext into the SQUIDs, cf. Fig. 2.6. As a result,
the resonance dip and therefor the resonance frequency shifts to lower
frequencies as the magnetic flux increases. Additionally, an oscillating
behaviour of the resonance frequency 𝜔0(Φext) with a periodicity of Φ0 ≈2.068 ⋅ 10−15 Tm2 due to the fluxoid quantization in the SQUID loop
was observed. Comparing the three different circuits, it turns out, that
the flux-tuning range gets larger and the screening parameter lower with
decreasing constriction thickness. For the 2D cJJs, a tuning range of the
order of ∼ 10 MHz was achieved. On top of that, the individual flux archs
show strong overlaps with a total observable width of ∼ 2Φ0. The 3D2
circuit instead has an tuning range on the order of ∼ 65 MHz and a flux
hysteresis not visible in the data. For the 3D1 device the tuning range is
somewhere in between. Quantitatively modeling the flux-tunable resonance
frequency involves 𝜔0(Φext) = 𝜔b√1 + 12𝐿 𝐿c ( ΦΦ0 ),
where 𝐿 is the cavity inductance, 𝐿c the constriction inductance and 𝜔b
the cavity resonance frequency without cJJs. The relation between the
total flux in the SQUID Φ and Φext normalized to the flux quantum Φ0 is
given by ΦΦ0 = ΦextΦ0 − 𝛽L2 sin (𝜋 ΦΦ0 ) ,
18
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Figure 2.6: Flux-tuning the resonance frequency of niobium quantum interfer-
ence circuits with 2D and 3D constriction junctions. (a) Circuit equivalent of
the SQUID with a linear loop inductance 𝐿loop/2 in each arm and a constriction
inductance 𝐿c. (b)-(d) show the resonance frequency 𝜔0 vs external flux Φext. With
increasing Φext, the resonance is shifting towards lower frequencies, indicating an
increase of the constriction inductance by flux, which is shown as a function of
flux in panel for the three different circuits with three different constrictions for
sample temperature 𝑇s = 2.5 K. (b): 2D constriction, thickness ∼ 90 nm. (c): 3D
constriction 3D1, thickness ∼ 30 nm. (d): 3D constriction 3D2, thickness ∼ 20 nm.
With decreasing thickness of the constriction, the tuning range gets larger and
screening parameter 𝛽L and flux hysteresis (overlap of adjacent flux archs) decrease.
Symbols are data and lines are fits from which 𝛽L is extracted. Adapted © 2024
American Physical Society..
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where 𝛽L = 2𝐼0𝐿SQΦ0
is the effective screening parameter, 𝐼0 is the critical current of the cJJ and𝐿SQ is the total SQUID inductance. Besides obtaining a small screening
parameter 𝛽L = 0.59 despite the large effective SQUID area ∼ 8.5×8.5 µm2,
circuit 3D2 also achieves a maximum flux responsivity ∂𝜔0/∂Φext ≈ 2𝜋 ⋅400 MHz/Φ0 comparable to similar aluminum constriction devices [97, 98].

An additionally interesting question in operating the Nb microwave
circuits is how the properties depend on the sample temperature 𝑇s. The
observation shows, that the resonance frequency at zero-flux shifts to
larger values and the tuning range of the resonance frequency grows with
increasing temperature. This indicates an increase in the cJJ inductance
and a decrease in the screening parameter. For the 2D device, the values for𝛽L vary between 0.6 and 1.6 and for the 3D samples between 0.4 and 0.8 for
temperatures 𝑇s = 2.4 − 2.8 K, which are close to the critical temperature
of the constrictions 𝑇cc = 3.3 − 4.0 K. This reduced transition temperature
compared to the critical temperature of the niobium film, which is 8.6 K,
has also been observed for elecron-beam-patterned niobium nanobridges
with comparable critical currents [99].

To complete the circuit characterization of the three different microwave
SQUID cavities, the behaviour of the Kerr constant 𝒦, also called Kerr
nonlinearity, needs to be investigated. The Kerr constant is equivalent to
the circuit resonance frequency shift per intracavity photon. To quantify𝒦, the cavities are measured using a two-tone scheme. Therefore a fixed-
frequency pump tone, slightly blue-detuned from the undriven cavity
resonance, is applied. The transmission response is recorded with a small
probe tone for various pump powers in order to get the pump-shifted
resonance frequency for determining the Kerr nonlinearity. For all circuits,𝒦 increases with increasing flux and the absolute values differ by several
orders of magnitude between the three devices. Despite this variation, the
nonlinearity remains relatively low compared to other similar aluminum
devices [97, 98], which is promising for applications such as photon-pressure
and dispersive SQUID magnetometry, cf. Fig. 2.7.
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Figure 2.7: The SQUID-cavity Kerr nonlinearity. The Kerr nonlinearity |𝒦| vs
external flux bias Φext/Φ0 determined by probing the transmission response with a
weak microwave signal, while a strong microwave pump tone with variable power
and fixed frequency is applied slightly blue-detuned at a temperature 𝑇s = 2.5 K.
Symbols are data and dashed lines are theoretical curves. © 2024 American Physical
Society.

Contributions

This work was done in cooperation with D. Hackenbeck, J. Peter, R.
Kleiner, D. Kölle and D. Bothner. For the publication, I had the leading
role in device design, device fabrication, numerical simulations and exper-
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imentation. Additionally, I shared the leading role in data analysis and
manuscript composition.
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2.3 Publication 3: A flux-tunable YBa2Cu3O7
quantum interference microwave circuit

This publication presents the realization and characteristics of a flux-
tunable YBa2Cu3O7 (YBCO) quantum interference microwave circuit with
Josephson junctions patternd by helium focused-ion-beam (He-FIB).

So far, the standard superconducting material for flux-tunable microwave
applications has been aluminum due to the high quality and controllability
of Al Josephson junctions (JJs). However, experiments in flux-mediated
optomechanics [100] and dispersive quantum magnetometry of individ-
ual magnetic nanoparticles prefer a high tolerance to external magnetic
fields [62, 79]. Microwave resonators fabricated on the high-temperature
superconductor like YBCO offer magnetic-field tolerances extending into
the Tesla regime and provide the advantage of operating at high tempera-
ture up to ∼ 80 K [101, 102]. Additionally the usual approaches regarding
JJs in Nb (see publication 1 and 2) [103], NbN [104] or hybrid JJs
based on graphene [105] show potential to be integrated into high-field
applications, but come with complications such as non-sinusoidal CPRs or
complex fabrication challenges.

Publication 3 presents the realization of a high-temperature supercon-
ducting quantum interference microwave cavity utilizing YBCO. The circuit
is an inductor-capacitor circuit, that combines two parallel interdigitated
capacitors with linear inductors, cf. Fig. 2.8. It is capacitively side-coupled
to a coplanar waveguide transmission for driving and readout. A large
square-shaped 11.5 × 11.5 µm2 SQUID loop is integrated into the centre of
the circuit. The two Josephson junctions are irradiated using a helium ion
microscope (HIM) with a line dose of 900 ions/nm for each JJ.

To obtain information about the frequency-tunability and the screening
parameter 𝛽L, the circuit has to be characterized similar to publication
2. First, a magnetic field perpendicular to the YBCO thin film plane
is applied to introduce an external magnetic flux Φext into the SQUID
at liquid helium temperature. An observed phenomenon is the shift of
the cavity resonance frequency 𝜔0(Φext) to lower values for increasing
magnetic flux Φext, cf. Fig. 2.9. Moreover, a modulation of 𝜔0 with a
periodicity of one flux quantum Φ0 is observed. The frequency tuning
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Figure 2.8: The YBCO SQUID cavity with He-FIB patterned Josephson junc-
tions. Optical micrograph of the flux-tunable cavity, consisting of two interdigitated
capacitors, a linear inductance and a SQUID loop with yellow indicated He-FIB
patterned JJs, cf. zoom inset. The circuit is capacitively coupled to a coplanar
waveguide feedline. YBCO is bright, the MgO substrate is dark. Adapted © 2023
American Institute of Physics.

range 𝜔max0 − 𝜔min0 ∼ 2𝜋 ⋅ 300 MHz is larger than in similar Dayem-bridge
SQUID-cavities reported for Nb (see publication 1 and 2) [53] or alu-
minum [97, 98]. Additionally, there is no hysteretic flux response observed,
and a small screening parameter 𝛽L = 0.33 is obtained despite our large
SQUID loop. This suggests that the He-FIB-JJs add no extra contribution
to 𝛽L compared to constriction junction CPRs with non-sinusoidal char-
acteristics [87, 106, 107]. Also it looks like that the performance is even
superior to the monolithic 3D constrictions in publication 2 in terms of
tunability, lower 𝛽L, nearly ideal sinusoidal CPR, and the potential for
application at higher magnetic fields and temperatures.
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Figure 2.9: Flux-tuning of the resonance frequency of a YBCO SQUID-cavity.
(a) Transmission response |𝑆21| of the YBCO-HIM-SQUID cavity at liquid helium
temperature for three different bias flux values. With increasing flux in the SQUID,
cf. inset schematic, the absorption resonance is shifting towards lower frequencies.
In panel (b) the resonance frequency 𝜔0(Φext) is plotted. It modulates periodically
with a periodicity of Φ0 and the SQUID-cavity has a screening parameter 𝛽L = 0.33.
Symbols are data, lines are fits and the star-shaped data points in (b) correspond to
curves in (a). © 2023 American Institute of Physics.

To determine the circuit Kerr nonlinearity 𝒦, which is crucial for
radiation-pressure experiments or parametric amplifiers, a two-tone char-
acterization is performed. For this purpose, a continuous pump tone with
slightly blue-detuned fixed-frequency and variable pump power is applied
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Figure 2.10: The SQUID-cavity Kerr nonlinearity. (a) Schematic drawing of
the two-tone experiment. A pump tone with power 𝑃p is applied slightly blue-
detuned to the cavity resonance frequency. The transmission response |𝑆21| of
the cavity is then measured using a low-power probe tone. As 𝑃p increases, and
consequently the intracavity photon number, the frequency shifts to lower values.
(b) Kerr nonlinearity 𝒦 for different flux values obtained due to the frequency shift
by intracavity pump photons. Symbols are data and the dashed line is a theoretical
curve. Adapted © 2023 American Institute of Physics.

to the cavity. The response 𝑆21 is measured using a low-power probe tone.
By increasing the intracircuit photon number through the pump tone,
the resonance frequency shifts towards lower frequencies and 𝒦 can be
obtained from this shift, cf. Fig. 2.10. The YBCO-SQUID cavity shows
values varying from −8 kHz at the zero flux (sweetspot) to −120 kHz,
which is sufficiently small to allow for high-power and high dynamic-range
applications.

The combination of the huge operation temperature range, high critical
magnetic field, low Kerr nonlinearity and high flux tunability opens up
a significant parameter space for optomechanical, magnons experiments.
Additionally, in future devices, the flexibility in HIM ion dose can be used
to vary these parameters by several orders of magnitude.
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This work was done in cooperation with D. Hackenbeck, C. Füger, R.
Kleiner, D. Kölle and D. Bothner. For the publication, I had the leading
role in device design, device fabrication, numerical simulations and exper-
imentation. Additionally, I shared the leading role in data analysis and
manuscript composition.
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2.4 Publication 4: High-𝑄 magnetic levitation and
control of superconducting microspheres at
millikelvin temperatures

In publication 4, a cryogenic system for the detection and characterization
of the motion of a levitating superconducting microsphere in a static
magnetic trap is presented. The behaviour of the superconducting lead-tin
sphere with 100 µm diameter is observed using a DC-SQUID as well as an
optical readout scheme in a dilution refrigerator at 15 mK.

Levitating objects offer a promising platform for conducting quantum
experiments with macroscopic, micrometer-sized objects [108, 109], as
well as for developing ultrasensitive force sensors [110, 111] and studying
thermodynamics in the underdamped regime [112]. Most of these systems
are based on an optical system for read out or levitation [46]. This leads to
challenges related to heating and damping caused by photon absorption and
scattering [46]. In contrast, magnetostatically levitating superconducting
objects offers the potential for unachieved long coherence times and the
levitation of larger masses [28, 113–115]. A successful implementation will
have an immediate implication for testing fundamental physical questions,
e.g. at the intersection of gravity with quantum physics. At the same
time it will enable applications with unprecedented performance in the
domain of magnetic and force sensing, and information processing in hybrid
quantum systems.

In the setup, a superconducting sphere, made of a type-II supercon-
ductor 90-10 lead-tin alloy with 100 µm diameter, is levitating within a
static magnetic quadrupole field trap generated by a superconducting anti-
Helmholtz coil formation, cf. Fig. 2.11. The coil is elliptically wound to
ensure the center of mass (COM) motion is not degenerate and modes can
be classified into 𝑥-, 𝑦- and 𝑧-axis motions. This COM motion is detected
by inductively coupling the microsphere to a DC-SQUID current sensor
via a planar Nb gradiometric pickup coil. The particle oscillation induces
current in the pickup loop, which will be measured by the DC-SQUID.
For preparing the levitated sphere there is a small feedback coil below the
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Figure 2.11: Conceptual representation of the levitation experiment. Schematic
drawing of the levitation setup. The levitated sphere is magnetically trapped and
induces magnetic flux by motion into the superconducting pickup coil. At the
bottom, a feedback coil is shown, which is for adjusting the amplitudes of oscillation
and preparing the sphere for levitation. Black lines show the magnetic trapping
quadrupole field generated by an anti-Helmholtz coil pair (coils not shown). © 2023
American Physical Society.

trap centre to apply a magnetic feedback force to the levitated sphere for
adjusting the motion amplitude.

The particle’s COM frequencies are continuously tunable with a trap
current resulting in frequencies for the 𝑥- and 𝑦-modes between ∼ 50
and ∼ 100 Hz, and for the 𝑧-mode between ∼ 110 and ∼ 240 Hz, cf.
Fig. 2.12. In addition, the quality factor 𝑄sp was measured through ring-
down measurements, wherein the initial starting amplitude is established
by applying an appropriate feedback signal from the feedback coil before
characterization. The particle remains stably trapped for several hours
in a dilution refrigerator environment and we observe a 𝑄sp ∼ 2.6 ⋅ 107 at212 Hz for the 𝑧-mode. This high quality factor for the particle mass of5.6 µg sets the limits for force and acceleration sensing to 5 ⋅ 10−19 N/√

Hz
and 9 ⋅ 10−12 g/√

Hz, respectively. This sensitivity is only reached with
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Figure 2.12: The particle COM modes detected by a SQUID sensor. The three
sphere COM modes, 𝑥-, 𝑦-, 𝑧-mode, in the power spectral density (PSD) of the
SQUID signal. Insert shows the linear dependence of the COM frequencies on the
trap current of the anti-Helmholtz coil. © 2023 American Physical Society.

much smaller (larger) masses [116, 117]. However, there is much room for
experimental improvement. For instance, using a type-I superconducting
sphere would avoid dissipation caused by flux creep, which probably limits
the quality factor [118]. Additionally, positioning the pickup coil closer to
the sphere could significantly increase the magneto-mechanical coupling.
In the measurements, the coil was approximately 400 µm away from the
sphere.

However, the experiment shows a promising sensing capability in force
and acceleration. With these improvements, the system offers a promis-
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ing approach for bringing microgram objects into the quantum regime,
potentially enabling the probing of quantum effects of gravity.

Contributions

This work was done in collaboration with the group of M. Aspelmeyer at
the University of Vienna where the levitation measurement was performed.
I was responsible for designing the SQUID current sensor and gradiometric
pickup coil, conducting coupling simulations, and characterizing the sensor
along with the pickup coil prior to their installation in the actual experiment.
Additionally, I provided assistance in writing.
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In this thesis, monolithic 3D niobium constriction junctions patterned by
neon focused ion beam have been successfully realized in microwave devices
with and without DC access. The performance of these Nb cavities with
cJJs are on par with similar aluminium constriction devices regarding circuit
capabilities. Moreover, it is worth highlighting that the potential operating
temperature and magnetic field tolerance of these devices significantly
surpass those of aluminum circuits. This comes with the change in material
and the selected type of Josephson junctions for implementation. A
remarkable flexibility in dynamic ranges and performance in the Nb devices
was demonstrated, which shows considerable promise for applications,
including photon-pressure systems, flux-mediated optomechanics, and
dispersive SQUID magnetometry.

However, constriction junctions in general are far less understood than
conventional Josephson tunnel junctions. Especially the junction nonlin-
earity, which is related to the current-phase-relation has a major impact
on the circuit performance and can limit the device tunability. On the
other hand, the CPR is highly sensitive to material properties, constriction
dimensions and fabrication method. To adequately improve the circuit
design utilizing 3D Ne-FIB cJJs, it was imperative to explore the influence
of a single 3D constriction on the microwave circuit properties. A forward-
skewed sinusoidal CPR was observed. To validate the analysis, the CPR
was examined using two different experimental approaches. One approach
focused on precisely measuring the nonlinear inductance tuning, while
the other approach centered on studying the Kerr nonlinearity tuning of
the cJJ. Additionally, the superconducting-resistive switching current of
the constrictions was suppressed by about 20% compared to the critical
current. This CPR deviate significantly from the ideal sinusoidal shape
and has an impact on the cavity tunability, flux responsivity and screening
parameter, when integrated into SQUID devices.

In the second part, a high-𝑇c superconducting flux tunable microwave
circuit using YBCO with Josephson junctions fabricated by helium focused
ion beam was successfully realized. In this context, the sinusoidal-like
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CPR of the HIM-JJs in combination with the high magnetic field tolerance
and wide temperature range accessible for YBCO devices, present an
exciting opportunity for applications in dispersive SQUID magnetometry
and flux-mediated optomechanics.

The last part of the thesis presents the realization of an experimental
setup to perform quantum experiments with macroscopic and micrometer-
sized levitating superconducting objects. There, a microsphere is trapped at
the center of a magnetic quadrupole field, based on the Meißner–Ochsenfeld
effect. This setup offers comprehensive control over all modes of particle-
motion with a high quality factor > 107. These initial findings constitute
the first steps to control objects with large masses and long coherence
times in the quantum regime. The system also shows the potential for
flux-mediated optomechanics experiments and for sensing ultrasensitive
forces.

The comprehensive insights gained from the devices, experimental
methodologies, and circuit advancements detailed across the four pub-
lications offer promising ways for surpassing current limitations in circuit
materials, nonlinearity, fabrication techniques, and experimental levitation
control. The results show potentials toward innovative experiments in
coupling and sensing across diverse domains, including photons, phonons,
magnons, and gravitational forces.

Despite our progress, several open questions remain regarding circuit
characteristics, cJJ performance, and optomechanical coupling of levitation.
In terms of microwave SQUID cavities, exploring their properties in large,
in-plane magnetic fields up to the Tesla regime would be interesting for
all high-field applications. Unfortunately, the lack of a suitable experi-
mental setup hindered this exploration to be performed within this thesis.
Additionally, understanding the complete temperature dependence, from
millikelvin to the critical temperature of the materials and/or junction
properties, and also investigating the noise properties of the presented
devices in publication 1-3 for future experiments would be beneficial.

Regarding cJJ performance, one key question revolves around under-
standing the physical and/or technical origins of premature switching in
the constriction. This could be probed by measuring switching statistics
as a function of temperature, bias current sweep rates, and various noise
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sources. Further experiments could delve into the dependence of the CPR
on constriction thickness and ion dose. It would also be great to develop
strategies to make the CPR less skewed.

Exploring the coupling of mechanical, levitating oscillators to super-
conducting circuits represents another avenue of interest. While initial
steps have been taken, as described in publication 4, there is room for
improvement. The next step would be to increase the inductive-coupling
between the detector and the sphere, and the mechanical quality factor by
using a type-I superconductor. Especially, coupling such a system to a flux-
tunable microwave cavity, would enable probing quantum effects of gravity.
The first step in this direction is done in publication 5 (not presented
in this thesis), in which the first experimental realization of a levitating
flux-mediated optomechanical experiment is presented. Nevertheless, there
is still room for improvement in the flux-mediated optomechanical coupling.
In publication 5, an Al SQUID cavity is used, and due to the lack of
magnetic field tolerance of the material, a pickup loop is needed. The
discussed SQUID cavities of Nb and YBCO could boost the coupling rates
significantly, if the mechanical oscillator were integrated directly into the
system. Also, the low Kerr nonlinearity of the devices could allow for many
more pump/readout photons compared to the currently Al cavity. This
increases the coupling rate further. Future experiments also could focus
on enhanced optomechanical coupling aimed for cooling the mechanical
motion, achieving mechanical entanglement, and investigating gravitational
interaction between two levitating objects.
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Extracting the current-phase-relation of a monolithic three-dimensional

nano-constriction using a DC-current-tunable superconducting microwave cavity

Kevin Uhl,∗ Daniel Hackenbeck, Dieter Koelle, Reinhold Kleiner, and Daniel Bothner†

Physikalisches Institut, Center for Quantum Science (CQ) and LISA+,
Universität Tübingen, 72076 Tübingen, Germany

Superconducting circuits with nonlinear elements such as Josephson tunnel junctions or kinetic
inductance nanowires are the workhorse for microwave quantum and superconducting sensing tech-
nologies. For devices, which can be operated at high temperatures and large magnetic fields,
nano-constrictions as nonlinear elements are recently under intense investigation. Constrictions,
however, are far less understood than conventional Josephson tunnel junctions, and their current-
phase-relationships (CPRs) – although highly important for device design – are hard to predict.
Here, we present a niobium microwave cavity with a monolithically integrated, neon-ion-beam pat-
terned three-dimensional (3D) nano-constriction. By design, we obtain a DC-current-tunable mi-
crowave circuit and characterize how the bias-current-dependent constriction properties impact the
cavity resonance. Based on the results of these experiments, we reconstruct the CPR of the nano-
constriction. Finally, we discuss the Kerr nonlinearity of the device, a parameter important for many
high-dynamic-range applications and an experimental probe for the second and third derivatives of
the CPR. Our platform provides a useful method to comprehensively characterize nonlinear ele-
ments integrated in microwave circuits and could be of interest for current sensors, hybrid quantum
systems and parametric amplifiers. Our findings furthermore contribute to a better understanding
of nano-fabricated 3D constrictions.

INTRODUCTION

Josephson junctions (JJs) and nonlinear weak links
between two superconducting electrodes form an essen-
tial ingredient for a wide variety of groundbreaking tech-
nologies, such as superconducting quantum interference
devices (SQUIDs) [1, 2], voltage standards [3] or su-
perconducting microwave quantum circuits [4–6]. The
main characteristics of a superconducting nonlinear ele-
ment are its critical current I0 and its potentially non-
trivial current-phase-relation (CPR) I(δ), which relates
the phase difference δ across it to the current I flowing
through it [7, 8]. These two quantities also determine
both the inductance and the anharmonicity of a Joseph-
son microwave circuit, extremely important parame-
ters for engineering high-quality superconducting qubits
[9, 10] or Josephson parametric amplifiers [11–13]. For
standard superconductor-insulator-superconductor (SIS)
Josephson junctions, the CPR usually has the ideal si-
nusoidal form I = I0 sin δ and the only remaining design
parameter for particular applications is the critical cur-
rent. Other types of JJs, for example trilayer junctions
with normal-conducting (SNS) or ferromagnetic (SFS)
barriers as well as constriction-type junctions (cJJs) in
many cases exhibit a significant deviation of their CPR
from the ideal sinusoidal shape [8]. To properly design
devices and technologies based on these non-sinusoidal
Josephson elements, it is therefore of utmost importance
to gather knowledge about I0 and the CPR.
Lately, there has been growing interest in constric-

tion type Josephson junctions. Those cJJs have been

∗ kevin.uhl@pit.uni-tuebingen.de
† daniel.bothner@uni-tuebingen.de

already investigated in the early days of superconduct-
ing weak links [14], they have been implemented into DC-
SQUID magnetometers and nanoSQUIDs [15–20, 22] and
more recently into superconducting field-effect transis-
tors [23, 24] and superconducting microwave circuits [25–
27]. The latter – nano-constriction microwave circuits –
are used for dispersive magnetometry [28, 29], microwave
optomechanics [30, 31], photon-pressure devices [32, 33],
parametric amplifiers [34], current detectors [35], and
quantum bits [36]. Constrictions are interesting for these
applications, since they combine a small junction area
with high critical current densities but without adding
large capacitances or lossy materials. Hence, they are
ideal for experiments in large magnetic fields and for mi-
crowave circuits with small anharmonicity. On the other
hand, the exact constriction CPR depends quite strongly
on the material properties, the constriction dimensions as
well as the fabrication method [8, 14]. Therefore, a plat-
form for investigating simultaneously the transport char-
acteristics, the constriction CPR and the cJJ impact on
the microwave circuit properties such as frequency tun-
ability, Kerr anharmonicity and change of decay rates
would be ideal. Some experiments in that direction have
already been realized in the past [37–40], none of which
checking all the boxes on the wishlist though.

Here, we present a superconducting microwave cavity
with an integrated 3D niobium nano-constriction, which
has been monolithically cut into the cavity by using
the focused ion beam (FIB) of a neon (Ne) ion micro-
scope (NIM). Our particular choice of cavity layout al-
lows simultaneous DC current-voltage access to the cJJ
and microwave characterization of the DC-current-biased
cavity using microwave reflectometry [35, 41]. Com-
pared to similar experiments with different types of JJs
[35, 38, 40], the monolithic approach – in which the cJJ
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FIG. 1. A superconducting microwave cavity with integrated niobium nano-constriction and direct current access. (a) False-
color optical micrograph of the λ/2 transmission line cavity. At the input port, the cavity is shunt-coupled by a large parallel-plate
shunt capacitance Cs (Nb-Si3N4-Nb, colored in teal) to a Z0 = 50Ω feedline (center conductor colored in orange) for simultaneous
microwave (RF) and direct current (DC) probing of cavity and integrated nano-constriction. The cavity itself has a characteristic
impedance Z1 = 32Ω and a length of l1 ≈ 7200 µm (the zigzag lines indicate that most of the cavity length is omitted here). At the
far end (far from the input), close to the connection to ground, a monolithic 3D niobium nano-constriction-type Josephson junction
(cJJ) is patterned into the center conductor of the coplanar waveguide cavity by means of a focused neon ion beam. Bright and
colored parts are niobium, dark parts are silicon substrate. (b) Zoom to the end part of the resonator; (c) False-color scanning
electron microscopy image of the 3D cJJ. (d) Circuit equivalent of the cavity with the cJJ at the end, which is modelled as a parallel
combination of a loss channel (resistor Rc) and a reactive channel (inductance Lc), in total described by the impedance Zc; the
coplanar waveguide part of the cavity can be described by a lumped element series equivalent with an inductor Lr, a capacitor Cr,
and a resistor Rr, respectively. (e) Reflection response S11 of the cavity before (gray) and after (yellow) cutting the constriction,
measured at Ts = 3.9K. From the change in resonance frequency ωb → ω0 and linewidth κb → κ0 induced by the added constriction
impedance Zc, the cJJ elements Rc and Lc can be determined. Gray and yellow noisy lines are data, black smooth lines are fits.

is cut into the cavity at the very end of the fabrication
– has the advantage that one and the same cavity can
be characterized without and with the cJJ. From the
change of cavity resonance frequency and linewidth by
the current-biased cJJ, we reconstruct the constriction
CPR and observe that it considerably deviates from the
simple sinusoidal shape and that it gets more linear with
decreasing temperature. Finally, we measure the cavity
Kerr anharmonicity, and demonstrate that it is both in
good agreement with calculations based on the forward-
skewed CPR found beforehand and sufficiently small for
high-dynamic range applications. Our analysis also re-
veals, that very small deviations in the second and third
derivatives of the CPR can considerably impact the value
of the Kerr constant, even at zero bias current. Overall,
our results show that the cavity-integrated characteri-
zation of nonlinear superconducting inductances can be
used to reconstruct the CPR of familiar and novel weak

links, to deepen the understanding of Ne-FIB patterned
cJJs and that 3D niobium cJJs are promising for appli-
cations in superconducting microwave circuits, radiation-
pressure systems and current sensors.

RESULTS

The Device

Our device is presented in Fig. 1 and it is based on a
λ/2 (half wavelength) coplanar waveguide cavity, near-
shorted to ground at both ends. The cavity is pat-
terned from a 90 -nm-thick DC-magnetron-sputtered nio-
bium film on high-resistivity silicon substrate, it has a
characteristic impedance Z1 ≈ 32Ω and a total length
l1 ≈ 7200 µm. The niobium film has a critical tempera-
ture Tc ∼ 9.0K and a residual resistivity of ρ ∼ 7.3 µΩ·cm
at 10K. At its input port, the cavity is shunt-coupled to
a Z0 = 50Ω coplanar waveguide feedline for microwave
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driving and readout via a three-layer parallel plate ca-
pacitance Cs ≈ 17.5 pF to ground. Due to this particu-
lar coupling scheme, the center conductor remains unin-
terrupted and we can pass a DC bias current along the
waveguide from the feedline all the way through the cav-
ity [41]. At the far end of the cavity, the center conductor
has a narrower part, into which the cJJ is cut with a Ne-
FIB after a first round of basic cavity characterization
experiments. The cJJ has a length of ∼ 25 nm, a width
of ∼ 40 nm and a thickness of ∼ 40 nm, cf. Fig. 1(c). For
more details on the sample fabrication, cf. Supplemen-
tary Note I.
All experiments, before and after the junction cutting,

are performed in the vacuum chamber of a liquid he-
lium cryostat. For the measurements, the 10 × 10mm2

large chip containing the constriction-cavity is mounted
on and wirebonded to a microwave printed circuit board
(PCB), which is connected to a coaxial microwave cable.
Close to the sample, a bias-tee is connected to the coax-
ial cable to combine the DC and microwave inputs, and
a 10 dB directional coupler is added to split microwave
input and output signals. The microwave input line is
strongly attenuated to thermalize the input noise to the
sample temperature, and the output line is connected
to a cryogenic ∼ 35 dB HEMT (high-electron-mobility
transistor) amplifier. The DC cables are two cryogeni-
cally low-pass-filtered twisted pair copper wires. For a
stable temperature control between Tmin ≈ 2.5K and
Tmax ≈ 6K (range of the experiments presented here), a
vacuum pump is connected to the liquid helium container
of the cryostat and a feedback-loop-controlled heating re-
sistor is included in the vacuum sample chamber. More
details on the experimental setup and a corresponding
schematic can be found in Supplementary Note II.
As any Josephson element at temperatures of few

kelvin typically has a reactive and a resistive part to its
impedance, we model the cJJ as a parallel combination of
an inductor Lc and a resistor Rc similar to the two-fluid
model, cf. Fig. 1(d). We omit the additional junction
capacitance here as well as a possible quasiparticle in-
ductance in the resistive branch, since according to our
estimates both are negligible at the frequencies relevant
for this work. In order to model the cJJ-shorted trans-
mission line resonator with analytic expressions, we use a
lumped element equivalent of the resonator with resistor
Rr, inductor Lr and capacitor Cr, cf. Fig. 1(d), which is
a very good approximation near the resonance frequency
(cf. Supplementary Notes III and IV) and simplifies the
calculations.
For sufficiently low excitation powers to be safely in

the linear response regime, the resonance frequency of
the cavity after junction cutting is in good approximation
given by

ω0 =
ωb

1 +
L∗

c

2Lr

(1)

with the resonance frequency before the cutting ωb =
1/
√
LrCtot and Ctot = CrCs/ (Cr + Cs). The resonator

inductance is given by

Lr =
πZ1

2ω1
(2)

with the shunt-capacitor-less resonance frequency ω1 (cf.
Supplementary Note III). From Eqs. (1) and (2) it also
becomes clear why we chose Z1 to be smaller than the
usual 50Ω, since a smaller Lr increases the device sen-
sitivity to changes in L∗

c . The resonance linewidth after
constriction cutting is

κ0 ≈ κb + ω2
0R

∗
cCtot (3)

with the total linewidth before cutting κb. The two ef-
fective lumped elements R∗

c and L∗
c are related to the

actual junction resistance and inductance Rc and Lc, re-
spectively, via

R∗
c =

Rcω
2
0L

2
c

R2
c + ω2

0L
2
c

, L∗
c =

LcR
2
c

R2
c + ω2

0L
2
c

(4)

and after finding the values for R∗
c and L∗

c from the prop-
erties of the cavity, we invert these relations and obtain
the values for Rc and Lc.
To demonstrate the effect of cutting the cJJ into the

resonator and to analyze the unbiased constriction prop-
erties, we show in Fig. 1(e) the reflection response S11

around resonance of the cavity without and with the
junction, i.e., before and after constriction cutting. As
always in this work, the response was measured by means
of a vector network analyzer (VNA). Before cutting the
junction, the cavity has a resonance frequency ωb ≈ 2π ·
8.199GHz and a total linewidth of κb = 2π ·7.6MHz with
internal and external contributions κi,b = 2π · 1.3MHz
and κe,b = 2π · 6.3MHz, respectively. After the junc-
tion is cut into the cavity, the resonance frequency has
shifted to ω0 ≈ 2π · 8.152GHz and the linewidth to
κ0 ≈ 2π·15.6MHz. Here, the junction-induced decay rate
is κc = ω2

0R
∗
cCtot ≈ 2π · 8.0MHz. Using relations Eq. (4)

we obtain Lc = 11.9 pH and Rc = 7.4Ω. Note that we
only show the resonance lines for a single sample tem-
perature Ts = 3.9K here, but in Supplementary Notes
III and VII more data on the temperature dependence of
the junction-less cavity and the cavity with constriction
can be found.

Tuning the cavity with a DC current

As a next step, we investigate the impact of a DC bias
current Ib through the cJJ on the cavity properties ω0(Ib)
and κi(Ib), respectively. The experiment and the results
are presented in Fig. 2. Again, we show exemplarily the
data for a single sample temperature Ts = 3.9K, but
more analogous data for different temperatures are pre-
sented and discussed in Supplementary Note VII. First,
we measure the current-voltage characteristic (IVC) of
the cJJ without any microwave tone by sending a DC cur-
rent through the junction and tracking the corresponding
DC voltage. We observe switching from the zero-voltage-
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FIG. 2. Tuning microwave cavity and constriction inductance with a sub-critical DC current. (a) Schematic of the experiment.
A DC bias current Ib is sent through the feedline and the cavity center conductor to the cJJ and the corresponding (time-averaged)
voltage V is detected. For various DC currents, the resonator reflection S11 is measured with a vector network analyzer. For the
analysis, we split the constriction inductance Lc into a linear part Llin and a Josephson part LJ. All data in this figure were taken
at Ts = 3.9K. (b) shows a typical non-hysteretic current-voltage characteristic (IVC) of the constriction with a switching current
of Isw ∼ ±39 µA. The three stars mark the bias current values Ib = 0, Ib ∼ 0.8Isw and Ib ∼ 0.99Isw, for which we show the
corresponding cavity reflection response S11 in panel (c). With increasing DC current, the resonance frequency shifts to lower
values and the cavity linewidth increases. Colored noisy lines are data, black smooth lines are fits. From the fits to each reflection
measurement, the resonance frequency ω0(Ib) and the internal decay rate κi(Ib) are extracted, the results are shown in panels (d)
and (e), respectively. We attribute the frequency shift to a change of the nonlinear constriction inductance Lc(Ib) and the change in
linewidth to a current-dependent loss channel Rc(Ib). The values we extract for the current-dependent junction inductance Lc are
shown in panel (f). In (d)-(f), symbols are data, solid lines are fits, dashed lines are calculated from theory expressions and fit values,
and star symbols correspond to the resonances shown in (c). The color-shaded area around the data points in (f) corresponds to the
estimated error due to uncertainties of the constriction-free cavity parameters as discussed in Supplementary Note VII.

to a finite-voltage-state at a current of Isw ≈ 39µA in
both current directions. We also find a non-hysteretic
IVC indicating that the constriction is in the overdamped
regime, and we observe a considerable excess current of
Iex ∼ 23.7 µA, possibly related to self-heating or to An-
dreev reflections [42, 43]. Overall, the IVCs behave very
much as expected from earlier experiments and obser-
vations in niobium constrictions [18, 44]. The (differ-
ential) DC resistance that we determine from the slope
of the linear part of the voltage-branch is Rlin = 11Ω,
so slightly larger than the Rc ≈ 7.4Ω we got from the
microwave experiment. They are also not expected to
coincide, however, since heating effects for instance can
significantly impact the measured DC resistance.

To investigate the microwave properties of the current-
biased cavity in the sub-critical Ib regime, we then mea-
sure the reflection response S11 for varying bias currents
Ib < Isw and extract ω0(Ib) and κi(Ib) from fits to the
reflection data. The equations and fitting routines used
are detailed in Supplementary Notes V and VI. Here,
we use sufficiently low microwave probe powers to keep
the cavity in the linear response regime, which we en-
sure by staying far below the input powers needed to
observe nonlinearities in the resonance lineshape. With
increasing bias current, the resonance frequency is shift-
ing to lower values as observed also in earlier experiments
[35, 38] and expected from the nature of a superconduct-
ing nonlinear inductance, which usually increases with
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increasing bias current. The total frequency range that
we can cover with the bias-current-tuning is strongly
temperature-dependent (see Supplementary Note VII),
but for Ts = 3.9K it is ∼ 13.5MHz. The internal
linewidth on the other hand is increasing with increas-
ing bias current, from κi ∼ 2π · 8.9MHz at zero bias
current to κi ∼ 2π · 20.7MHz at Ib ∼ Isw. For currents
larger than the switching current the resonance vanishes
abruptly, as the losses in the constriction and the in-
ternal linewidth get so high that the resonance cannot
be discriminated from the background anymore. Both
effects the decrease in resonance frequency and the in-
crease in linewidth can ultimately be attributed to a
bias-current-dependent decrease of Cooper pair density
and an increase of quasiparticle density inside the cJJ.
A reduced Cooper pair density leads to an increase of
the kinetic supercurrent inductance Lc. Simultaneously,
it leads to a reduced value for Rc, i.e., more and more
of the microwave current is passing through the resistor
(quasiparticle current) instead of the inductor (Cooper
pair current).
By applying the same data extraction routine as di-

cussed in the context of Fig. 1, we can determine for
all bias currents the value of Lc, the result is plotted
in Fig. 2(f). The constriction inductance increases from
around 12 pH at zero bias current to around 15.8 pH at
Ib ∼ Isw. We perform a fit of the data by assuming that
the inductance of the constriction Lc can be described
by a series combination of a linear inductance Llin and
an ideal Josephson inductance LJ, an often surprisingly
accurate model for nano-constrictions, that has already
been discussed in Ref. [14] and more recently in Ref. [45].
The dependence of the total inductance on the bias cur-
rent in this case is given by

Lc(Ib) = Llin + LJ(Ib) (5)

= Llin +
LJ0

√

1− I2

b

I2

0

(6)

with the zero-bias-current Josephson inductance LJ0 =
Φ0/(2πI0) and the theoretical critical current I0. The
latter can be different from the experimental switching
current Isw, for instance due to thermal or quantum acti-
vated escape, phase diffusion or electronic noise coupling
into the device. And indeed, as indicated by the black fit
line in Fig. 2(f), this approach works very well with the fit
parameters Llin = 5.55 pH and I0 = 50.5 µA, which cor-
responds to LJ0 = 6.5 pH. From this fit it indeed seems
that the critical current I0 is significantly larger than the
experimental switching current Isw and we will discuss
this effect further for various sample temperatures in the
next sections and in Supplementary Note VII. Regarding
the extracted resistance Rc we do not have a clear micro-
scopic or intuitive physical model for the functional bias-
current dependence, but we can fit it with an even fourth
order polynomial for all temperatures, cf. also Supple-
mentary Note VII. Re-inserting the obtained fit curves for
Lc(Ib) and Rc(Ib) back into the equations for the reso-

nance frequency and linewidths leads to the black dashed
lines in panels (d) and (e), showing excellent agreement
with the data.

Extracting the constriction current-phase relation

Once we know the cJJ inductance for each bias current,
we can reconstruct the current-phase-relation (CPR) of
the constriction and in what follows we will describe the
relation between Lc and I(δ) in more detail. We have
treated the cJJ so far as a bias-current-dependent but
microwave-linear inductance, which was justified by the
low powers used in the experiment. But what exactly
does that mean and how is it related to the CPR of the
cJJ? In circuit theory, a linear inductance L is directly re-
lated to a harmonic potential, where the potential energy

is given by Epot =
Φ2

2L with the generalized flux through
the inductor Φ. A Josephson-like element now usually
has an anharmonic and 2π-periodic potential, e.g., a
cosine-shaped potential Epot = EJ (1− cos δ) in the case
of a standard junction, which is expressed in terms of the
phase difference across the junction δ = 2π Φ

Φ0

instead of

the flux and where EJ = Φ0I0
2π is the Josephson energy.

For a linear inductance, the potential can therefore be

expressed in terms of the phase as Epot =
Φ2

0

4π2

δ2

2L . At
the same time, such a quadratic term is also the first
dynamically relevant term in a Taylor expansion of a
nonlinear 2π-periodic potential around the equilibrium
phase δ0, which explains why for small phase oscillations
(=low microwave excitation powers) we can also treat the
nano-constriction as a linear inductance. In both cases,
the current-phase relation is given by

I(δ) =
2π

Φ0

∂Epot

∂δ
(7)

and the linear inductance of the element is expressed as

1

L
=

4π2

Φ2
0

∂2Epot

∂δ2

∣

∣

∣

∣

δ0

(8)

where the equilibrium phase is defined via I(δ0) = Ib.
Hence, there is a direct relation between the CPR and L,
which reads in terms of our device variables

Lc =
Φ0

2π

(

∂I

∂δ

∣

∣

∣

∣

δ0

)−1

. (9)

In other words, the constriction inductance is identical to
the reciprocal of the slope of the CPR at any bias point
and we can obtain the phase for any given bias current
by

δ =
2π

Φ0

∫ Ib

0

LcdI
′
b, (10)

given that we have tracked the inductance for all currents
up to Ib. Since of course we only have a finite number
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FIG. 3. Reconstructing the current-phase-relation of the nano-constriction from microwave data. (a) Schematic drawing of
a 2π-phase-periodic constriction potential Ec(δ), in which the superconducting phase particle can oscillate around its equilibrium
position δ0. We show the two exemplary cases δ0 = 0 for ib = Ib/I0 = 0 and δ0 > 0 for ib = 0.9, where I0 is the critical current. For
small oscillation amplitudes, the potential can be approximated by a parabola ∝ δ2/Lc(Ib). A bias current ib > 0 is equivalent to a
potential tilt, which reduces the curvature in the minimum. (b) The schematic current-phase-relation (CPR) can be obtained from the
potential by differentiation and the slope of the CPR at the equilibrium position of the particle is ∝ 1/Lc. Hence, from knowing the
inductance Lc for many bias currents Ib the CPR can be reconstructed by integration (see main text). We perform this integration
here for the dataset discussed in Fig. 2(f) and the result is plotted in (c) as yellow circles. Temperature is Ts = 3.9K and data points
extend to ±Isw. Data points for I < 0 have been manually shifted by +2π in phase. By describing Lc as a linear-plus-Josephson
inductance, the CPR I(δ) can be modeled with a total phase δ = δlin + δJ with the phase across the linear part δlin, the result is
shown as black dashed line and resembles a forward-skewed sinusoidal shape. Here δlin and δJ describe the individual phases across
each component, linear and sinusoidal part, respectively. For comparison an exemplary CPR based on the KO-1 model is shown as
gray fit line.

N of discrete current and inductance values, we have to
replace the integration by summation

δj =
2π

Φ0

N
∑

j

Lc,j∆Ij (11)

with j > 0 and ∆Ij = Ib,j − Ib,j−1. Figure 3 summarizes
and illustrates these ideas and the result of our CPR
reconstruction using this method for the data presented
and discussed already in Fig. 2.

What we find when performing this discrete integra-
tion is shown in Fig. 3(c): we obtain a rather linear
dependence I(δ) for δ ≤ π/4, which starts to bend to-
wards smaller slopes for higher currents and then sud-
denly stops at around δ ≈ π/2, when Ib = Isw. Very
clearly, this CPR deviates significantly from the sinu-
soidal shape of an ideal Josephson tunnel junction, which
would have a maximum and zero slope at δ = π/2. In
our data, we do not reach a point where the slope ap-
proaches zero, which is typically the case when Ib ∼ I0.
When we add the theoretical curve for the CPR of a se-
ries combination of Llin and an ideal Josephson element
LJ though, shown as dashed line, the picture seems to
match quite perfectly. The theoretical CPR is piecewise
calculated using

δ = (−1)n arcsin

(

I

I0

)

+
2π

Φ0
LlinI + nπ (12)

and inversely plotted for n ∈ {−1, 0, 1}. Note that we
used exactly the values for Llin and I0, that we obtained
from the fit in Fig. 2(f), and so the agreement is not a
complete surprise.

Such a forward-skewed CPR has has been found in
many papers for constriction junctions and generalized
weak links before [8, 14, 16, 25, 44, 45], in particu-
lar for niobium constrictions, but also for aluminum
and other materials. Similar CPRs are also predicted
by different theoretical models, such as for instance
the Kulik-Omelyanchuk (KO-1) model [14], Ginzburg-
Landau models [45] and others, for a review cf. Refs. [8,
14]. Of course, we cannot be completely certain how the
experimental CPR will continue beyond π/2, where we
do not have further experimental data points. However,
it has been demonstrated in previous studies that the
linear-plus-Josephson-inductance model matches numer-
ically calculated CPRs with high accuracy, see e.g. the
very recent work by Wang et al. on 3D niobium constric-
tions [45]. The forward-skewed CPRs of analytical mod-
els are furthermore indeed quite similar in shape, and for
a qualitative comparison we show a KO-1 fit of our data,
although strictly speaking we are most likely not in the
regime of validity of this theory with our device proper-
ties. According to Ref. [8], the KO-1 model is valid in the
regime where the length of the constriction lc ≪

√
ξ0le

and the transverse size wc ≪ lc. Both conditions are not
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FIG. 4. Change of the constriction properties with sample temperature. (a) The constriction inductance Lc(Ib) for several
different sample temperatures Ts. Lowest temperature is Tmin

s = 2.5K (cyan data, lowest Lc), highest temperature Tmax
s = 5.1K

(dark red data, highest Lc), increased in steps of ∆Ts = 0.2K. The inductance increases with both increasing bias current Ib and
with increasing temperature. Circles are data, lines are fits using Eq. (6), and colored shades around the data points correspond to
the error range analogous to the one in Fig. 3(f). By integrating the inductance Lc, the corresponding constriction CPR can be
reconstructed for each Ts. The result is plotted in (b), circles are data, dashed lines are theoretical CPRs with the two-inductor-model
and based on the fits of (a). With increasing temperature, the CPRs get less skewed and less linear in the regime δ ≤ π/2. For all
curves (except for the highest few temperatures) Isw ∼ 0.8I0, but the phase for which either of them is reached gets smaller with
increasing Ts. The CPR critical currents I0 are marked with triangles at the maximum of each dashed line. (c) Critical current I0
and switching current Isw vs temperature in the range Ts = 2.5K−5.1K. Circles and squares are Isw data obtained by microwave
and IV-measurements, respectively. Triangles are the theoretical critical currents I0, which we get from the fits of Lc. Solid lines in
(c) are fits with Eq. (13).

fulfilled in our device since the BCS coherence length is
ξ0 = 38nm for niobium, the electron mean free path in
our device is le ≈ 5.7 nm (cf. Supplementary Note VII)
and lc = 25nm, wc = 40nm. Nevertheless does the
KO-1 fit resemble both, the skewedness and the critical
current I0 in good approximation and at the same time
demonstrates that small deviations in the CPR are well
possible in the regime I ∼ I0 without compromising the
behaviour for I < Isw.

Since we have the possibility to vary the sample tem-
perature between Tmin

s ∼ 2.5K and Tmax
s > Tc ≈ 9K,

we will use this opportunity to study the temperature-
dependence of cavity and constriction properties and of
the resulting CPR in the next part.

Change of CPR with sample temperature

To this end, we repeat all the measurements and data
analyses discussed above for Ts = 3.9K for all temper-

atures 2.5K≤ Ts ≤ 5.1K in steps of ∆Ts = 0.2K. In
Supplementary Note VII a collection of all cavity reso-
nance frequencies and internal linewidths as function of
Ib and Ts is presented. Here, we want to focus on the
resulting constriction inductances Lc, the re-constructed
current-phase-relationships and the constriction currents
Isw and I0.

Our main findings are collected and presented in Fig. 4.
The constriction inductance Lc is increasing with both,
temperature and bias current, and over all tempera-
tures the minimum and maximum values are ∼ 6 pH and
36 pH, respectively. With decreasing temperature, the
inductance tunes faster with increasing Ib, a signature
for a decreasing I0. The relative tuning range however,
i.e., the ratio of maximum to minimum inductance for a
fixed Ts seems to be rather constant, except for the high-
est temperatures, where the range decreases somewhat.
For a further quantitative analysis and the extraction of
the CPRs, we again fit the measured inductances with
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our linear-plus-sinusoidal inductance model Eq. (6) and
it gives excellent agreement for all temperatures.

Then, we integrate the data points of Lc over the bias
current Ib for each Ts and plot the resulting CPRs in
panel (b) in direct comparison with the curves calculated
through the two-inductance model and the correspond-
ing fit. There are several important observations we can
make in this representation.

Firstly, the integrated CPRs are always in excellent
agreement with the calculated ones, there is no indica-
tion of deviations in the experimentally accessible regime.
This shows that the inductance model we applied to ob-
tain the fits is well-applicable over the complete temper-
ature and bias-current range.

Secondly, the CPR skewedness is getting reduced
with increasing temperature, an effect that has already
been observed earlier for superconducting junctions with
skewed CPRs [44] and which is also an intrinsic property
of theories like the KO-1 model for instance [8, 14]. One
way of intuitively interpreting this is that the constriction
inductance becomes more linear with decreasing temper-
ature and deviates stronger from that of an ideal tunnel
junction. Ultimately, it is defined by a competition of
different length scales such as the constriction dimen-
sions, the electron mean free path and the superconduct-
ing coherence length [8], some of which are temperature-
dependent. Importantly, however, we do not observe any
multi-valued CPRs as in many earlier studies on niobium
constrictions [16, 44], which is a signature of the high
quality of our devices [25]. Since for the lowest temper-
atures used here the CPR slope around δ = π is ap-
proaching very large values, it could, however, be that
for even lower temperatures the single-valuedness van-
ishes and that the critical current is maybe even shifted
to δI0 > π.

Finally, we observe that the switching current for all
temperatures except for the very highest ones is reached
at δ ∼ π/2 and that the ratio Isw/I0 does not show a
strong temperature dependence, cf. also panel (c) and
Supplementary Note VII. In fact, the ratio Isw/I0 stays
nearly constant for all temperatures at around 0.8±0.05,
except for the highest Ts = 5.1K, where the switching
happens even earlier, cf. also Supplementary Note VII.
Although we do not know the exact origin of the pre-
mature switching, we believe we can exclude several pos-
sible suspects due to the constant value of Isw/I0. If
the switching was triggered by an external noise source
with a constant noise amplitude or by thermal noise, the
suppression of the switching current would increase with
increasing Ts or remain constant in units of µA. Also,
the switching is not induced by the microwave probe sig-
nals, except maybe for the highest Ts. In panel (c) we
show both, the switching currents determined from the
IV characteristics in absence of any microwave signals
(circles) and the switching currents observed in the ex-
periment, in which we stepwise increase Ib and probe the
cavity for each value (squares). The results do not show
any remarkable difference. It is however, not unusual

that in experiments with superconducting nanowires and
constrictions the switching current is considerably lower
than the critical current. It has been attributed to phase
slips and phase diffusion in the past [46–49], which can
be thermally activated or by quantum tunneling, and
the level of suppression can depend on the bias current
sweep rate (here 22.5 nA/ms), on the thermalization and
heating details of the sample and on the current-phase-
relation of the system under consideration. To illumi-
nate and analyze this premature switching in more de-
tail, further experiments and systematic investigations
will be necessary, for instance through measuring switch-
ing statistics as function of bias-current sweep rate and
temperature.
To gain further insights from the data we do have, we

fit the temperature dependence of both Isw and I0 with
a function

Ix(Ts) = Ic,x

(

1− Ts

Tcc,x

)
3

2

(13)

where x = {0, sw}. Although not based on a specific
theory for constrictions, such a temperature-dependence
reproduces very well the experimentally observed be-
haviour, cf. panel (c) in Fig. 4. Here, the fit parame-
ters are the critical/switching current at zero tempera-
ture Ic,x, and the constriction critical temperature Tcc,x.
We find Tcc,0 = 5.96K and Tcc,sw = 5.98K, so the two
values are very close together, but quite different from
Tc ≈ 9.0K of the superconducting film. This demon-
strates that our device corresponds to a so-called SS’S
constriction, where the superconductor in the leads (S)
is different from the superconductor forming the constric-
tion itself (S’). The exact reason for both the reduction
of Tcc compared to Tc and the difference between sim-
ilar samples are currently not completely clear, but we
suspect neon ion implantation or the creation of a thin
normal-conducting surface layer to be the origin [50].

Characterizing the nonlinear CPR corrections

So far, we have operated in all experiments and analy-
ses with low microwave powers and assuming the con-
striction to be a linear microwave inductance. With
higher microwave powers, however, we can also gather in-
formation about higher-order corrections to the periodic
and non-parabolic constriction potential, and compare
these higher-order corrections with the ones obtained
from our CPR model. The picture is simple: when we
apply a microwave signal to the cavity, the phase parti-
cle in the anharmonic potential is oscillating around the
minimum, and the oscillation amplitude depends on mi-
crowave excitation power and frequency. For very small
oscillations, the particle only feels a parabolic term, for
higher powers the particle will experience the deviations,
cf. also Fig. 5(a). Experimentally, these deviations
will be observable by a dependence of the cavity reso-
nance frequency on intracavity microwave photon num-
ber, which originates from a change of the time-averaged
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FIG. 5. Higher order derivatives of the CPR shape the Kerr anharmonicity. (a) Schematic of a particle in a 2π-periodic
potential, which is oscillating with large amplitudes. For larger oscillation amplitudes than considered so far, the particle will
experience a deviation from the harmonic approximation and the next relevant contribution in a Taylor-expansion of the potential is
∝ δ4 for the case of Ib = 0 or both third order and forth order corrections ∝ δ3 and ∝ δ4 for Ib > 0, respectively. Shown is the
case for ib = 0.2. The Taylor-coefficients α and β are proportional to the second and third derivatives of the CPR, respectively. (b)
Reflection data S11 of the cavity for three different microwave probe tone powers Pin. Subsequent curves are offset by −0.2 each for
better visibility. For the larger powers, the resonance shifts to lower frequencies and deviates from the Lorentzian lineshape. We fit
the data using a nonlinear model (black lines), from which we obtain the Kerr constant K, which has contributions from both the
third order and the forth order correction terms, see Supplementary Note IV for details. The values of |K| = −K for multiple bias
currents are shown in panel (c), they increase in magnitude with increasing bias current from around K ≈ 2π · 18Hz for Ib = 0 to
K ≈ 2π · 190Hz for Ib ∼ ±Isw. Error bars consider a ±1 dB uncertainty in on-chip power of the microwave tone. For comparison we
plot two different theory lines based on nonlinear current-conservation calculations; the black dashed one takes as input the second
and third derivatives of the experimentally determined CPRs (linear-plus-sinusoidal model), the blue solid one is based on an artificially
created CPR, that resembles very closely the one based on the linear-plus-sinusoidal-inductance model for Ib < I0. Both CPRs are
shown in direct comparison in the inset. The switching current in the experiment is marked by a yellow circle, the uncertainty in the
linear-plus-sinusoidal CPR is shown as gray shade. Sample temperature for experimental data was Ts = 3.9K.

constriction inductance with higher powers. It has been
demonstrated, that both third order and fourth order
nonlinearities in the potential lead to a shift of the reso-
nance frequency proportional to intracavity photon num-
ber and that the shift of both terms can be condensed
into a single effective Kerr constant K [51]. The total
cavity frequency shift is then Knc with the intracavity
photon number nc.

We determine the effective Kerr constant by measur-

ing the power-dependence of the resonance line up to the
regime where the nonlinearities kick in. In this regime,
the cavity lineshape begins to deform towards the famous
shark-fin resonance of Duffing oscillators, i.e., it becomes
asymmetric and the minimum moves towards lower fre-
quencies, cf. Fig. 5(b) and Supplementary Note VIII.
We also observe a small nonlinear damping effect, i.e.,
both the amplitude of S11 in the minimum and the total
linewidth increase with microwave power, most likely due
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to an increase of the time-averaged quasiparticle density.
We fit the experimentally obtained dataset based on the
solution of the nonlinear cavity equation of motion [52]

α̇ =

[

i
(

ω0 +K|α|2
)

− κ0 + κnl|α|2
2

]

α+ i
√
κeSin (14)

where α is the complex cavity field amplitude, which is
normalized such that |α|2 = nc is the intracavity pho-
ton number. The microwave input field Sin is normal-
ized such that |Sin|2 = Pin/(h̄ω) with the on-chip input
power Pin, the probe frequency ω and the reduced Planck
constant h̄. As main fit parameter we obtain the Kerr
constant K for each bias current Ib. More details on the
fitting procedure, the free and fixed parameters during
the fit, and on the error estimates can be found in Sup-
plementary Note VIII.

The obtained Kerr anharmonicity K increases strongly
with increasing bias current Ib, from ∼ 2π ·18Hz at Ib =
0 to ∼ 2π · 190Hz at Ib <∼ ±Isw, cf. Fig. 5(c). The
theoretical relation between the CPR and the K is given
by

K =
e2

2h̄Ctot
p3c

[

g4
g2

− 3g23
g22

(1− pc)−
5

3

g23
g22

pc

]

(15)

where the coefficients

gn =
∂n−1I

∂δn−1

∣

∣

∣

∣

δ0

(16)

encode the (n−1)-th derivatives of the CPR with respect
to phase at the equilibrium phase δ0, and

pc =
Lc(Ib)

Lr + Lc(Ib)
(17)

is the constriction inductance participation ratio, cf. also
Supplementary Note IV for the derivation. Using the
CPR, which we obtained from the linear-plus-sinusoidal
model, we can easily calculate the theoretical Kerr con-
stant now and the result is in acceptable agreement with
the data. There are, however, also some deviations at the
lowest and at the highest bias currents, the theoretical
line is underestimating the Kerr constant at low currents
and overestimating it at high currents. Cetainly, there
are some simple possible explanations for these devia-
tions such as uncertainties in on-chip microwave power
(error bars account for ±1 dB), and fitting errors in ex-
ternal and internal cavity linewidths. But there is also
another, more interesting possibility: very small differ-
ences between the CPR fit-curve and the actual CPR.
To demonstrate how tiny differences in the CPR can

have a large impact on the Kerr constant, we have there-
fore constructed an artificial CPR Iar(δ) based on an
odd polynomial function (details in Supplementary Note
VIII). We then do a simultaneous fit of this new CPR to
both the experimental CPR data and to the experimental
Kerr data. The result is shown as blue lines in Fig. 5(c)
and shows excellent agreement with both datasets. The

relative deviation [Iar(δ)− I(δ)] /I(δ) between this con-
structed CPR and the linear-plus-sinusoidal CPR I(δ) is
smaller than 1% in the complete range covered by our
experiment (Ib <∼ 40 µA, δ <∼ π/2). It also falls com-
pletely into the error range of the experimental CPR
(gray-shaded area) for all phases except for a small re-
gion around I0. So even for nearly identical CPRs and
very similar critical currents, the tiny details of the shape
of the CPR, encoded in the gn coefficients, can have
a strong impact on the actual experimental nonlinear-
ities. Most strikingly, and in stark contrast to per-
fectly sinusoidal CPR Josephson junctions, is there no
unique relation between the junction inductance and the
Kerr constant anymore, as can be seen from the values
at Ib = 0. Both CPRs have identical first derivatives
(=inductances) there, but Kerr constants that differ by
>∼∼ 20% due to the third derivatives being different.
Regarding possible applications, such small nonlinear-

ities are well-suited for high dynamic range devices such
as parametric amplifiers [11, 12, 34], current detectors
[35] or photon-pressure systems [32, 53]. If desired, the
Kerr constant could also be made much larger by simple
adjustments, for instance by either making the constric-
tion critical current smaller by milling it thinner [27], or
by changing the circuit layout to a lumped element ver-
sion with a very different Lr. One could even imagine to
charaterize the cJJ just as we did here and then remove
the cavity and circuitry around the cJJ again to replace
it with a tailored target layout, optimized for exactly the
existing junction.

DISCUSSION

In conclusion, we have reported a superconducting
half-wavelength microwave cavity with bias-current ac-
cess, that has enabled us to comprehensively charac-
terize the properties of a monolithically patterned 3D
nano-constriction. To this end we used a combination
of microwave reflectometry and DC biasing of the de-
vice. We demonstrated that we can tune both res-
onance frequency and cavity linewidth by biasing the
nano-constriction with small currents in the µA regime,
a property potentially very useful for current detec-
tors, parametric amplifiers or photon-pressure systems.
From the analysis of the bias-current- and temperature-
dependent constriction-cavity properties, we were able
to extract the constriction inductance and to reconstruct
the constriction current-phase-relation for a wide range
of temperatures. We found a forward-skewed sinusoidal
function, which is characteristic for nano-constrictions,
and observed that the skewedness decreases with in-
creasing temperature. Furthermore, we found that the
superconducting-resistive switching current of the con-
strictions is suppressed by about 20% compared to the
critical current and that the critical temperature of the
constriction is considerably reduced compared to the bare
niobium film.
On one hand our approach of measuring the CPR of
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a nonlinear superconducting inductance with DC-plus-
microwave excitation has the disadvantage that we are
limited to phases below the switching phase and cannot
observe its behaviour in the regime of negative induc-
tance (negative slope of the CPR). This is possible in
DC-SQUID experiments for instance [45, 54–56]. On the
other hand, however, can we directly compare and ana-
lyze switching current and critical current, and our ap-
proach allows us to characterize how the integration of
the constriction into a microwave cavity impacts the cir-
cuit properties, in both cases biased and unbiased. Our
approach furthermore enables us to extract a value for
the sub-switching constriction resistance, and by charac-
terizing the Kerr constant we finally gain access to the
derivatives of the CPR, something which is only possible
in DC experiments by differentiating the resulting CPR

dataset by hand. Here, we could demonstrate by measur-
ing and modeling the Kerr anharmonicity of the cavity,
that very small changes of the absolute values of the CPR
can lead to large differences in the higher order potential
corrections though.
Interesting open questions are how exactly the con-

striction and cavity properties will behave at lower tem-
peratures in the mK regime, and what the physical
and/or technical origin is for the premature switching
of the constriction. The latter could be investigated by
measuring switching statistics as a function of tempera-
ture, bias current sweep rates and in presence of various
noise sources. Further experiments could also be dedi-
cated to investigate the origin of the suppression of Tcc

compared to Tc and to the question if and how the CPR
depends on constriction thickness and ion dose.
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I. SUPPLEMENTARY NOTE I: DEVICE FABRICATION

• Step 1: Microwave cavity patterning.

The fabrication starts with sputtering 90 -nm-thick niobium (Nb) on top of a high-resistivity (ρ > 10 kΩ·m)
intrinsic two inch silicon wafer. The thickness of the wafer is ∼ 500 µm. Then, the complete wafer is covered
with ma-P 1205 photoresist by spin-coating (resist thickness ∼ 600 nm) and structured by means of maskless
scanning laser photolithography (λLaser = 365 nm). After development of the resist in ma-D 331/S for 25 s, the
Nb film is dry etched by means of reactive ion etching using SF6. For cleaning, the wafer gets finally rinsed in
multiple subsequent baths of acetone and isopropanol.

• Step 2: Dielectric layer for the shunt capacitor.

As a second step, we again perform maskless scanning laser photolithography to define the areas on the chip,
which will be covered with the dielectric for the parallel plate input shunt capacitor of the cavity. After resist de-
velopment identical to step 1, the wafer with the patterned resist structures is placed inside the vacuum chamber
of a plasma-enhanced chemical vapour deposition (PECVD) system and is covered with 150 nm of silicon-nitride
(Si3N4). Afterwards an ultrasonic-assisted lift-off procedure is performed in acetone, which removes the resist
and all the Si3N4 except for the ellipsoidal plates on the parallel plate shunt capacitors, cf. Fig. 1 of the main
paper. Finally, the wafer is rinsed in multiple baths of acetone and isopropanol again.

• Step 3: Superconducting shunt capacitor top plate.

The third step is fully equivalent to step 2, but instead of PECVD-grown Si3N4, a 70 nm thick layer of niobium
is deposited by magnetron sputtering. After liftoff in acetone, this second Nb layer is only covering the dielectric
ellipse of the shunt capacitor and is removed at all other locations. To avoid getting shorts between the first
and second niobium layers at the edge of the capacitor, the ellipsoid of the niobium top-layer is smaller than
the corresponding Si3N4 ellipsoid by about 10 µm along all edges.

• Step 4: Dicing and mounting for pre-characterization.

At the end of the cavity fabrication, the wafer gets diced into individual 10 × 10mm2 chips, and one chip
at a time is mounted on a printed circuit board (PCB), where it is wirebonded to microwave feedlines and
ground, and packaged in a radiation-tight copper housing. After mounting into the measurement setup, the
pre-characterization of the device is performed.

• Step 5: 3D constriction fabrication.

Each pre-characterized standing wave cavity contains a narrow part at its far end, where the constriction
junction is placed after pre-characterization. To cut the constriction into the ∼ 3 µm wide bridge, the sample
is removed from the PCB and sample box again and mounted into a neon ion microscope (NIM). The NIM
allows one to perform high-precision milling with a nano-scaled spot-size focused neon beam (Ne-FIB). The 3D
constriction patterning is performed by cutting two ∼ 25 nm narrow slot-shaped rectangles from both sides into
the bridge, and by additionally and simultaneously milling the constriction from the top with a third rectangle,
but with a lower dose. The dose for the cut-through rectangles was chosen to be 18000 ions/nm2 and on top of
the constriction the dose was 6500 ions/nm2. For this dose and an accelerating voltage of 20 kV, we expect a
remaining constriction thickness of ∼ 40 nm.

• Step 6: Dicing and mounting.

After the Ne-FIB cutting process the sample is mounted in the same way as in Step 4.

II. SUPPLEMENTARY NOTE II: MEASUREMENT SETUP

A schematic illustration of the measurement setup is shown in Supplementary Fig. 1. Both the junction-less cavity
and the cavity with constriction, here generically labeled as device under test (DUT), are characterized in an evacuated
sample space located at the end of a cryostat dipstick, which is introduced into a liquid helium bath. The cryostat is
surrounded by a double-layer room-temperature mu-metal shield to provide magnetic shielding for the whole sample
space. The DUT inside the copper housing is attached to an L-shaped copper mounting bracket, which is screwed to
one of two circular mounting plates inside the evacuated sample volume.
The DUT is connected to a single coaxial cable for input and output of the microwave (measured in reflection) and

the direct current (DC) signals (combined via bias-tee). The microwave input and output signals, however, are sent
and received through two separate coaxial lines, that are only combined via a directional coupler close to the device,
in order to measure the reflection S11 as transmission S21 by a vector network analyzer (VNA). This way, the input
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1 2

Supplementary Figure 1. Schematic of the measurement setup. Detailed information is given in the text.

signal can be strongly attenuated without any signal loss on the output line. The input line is attenuated by 30 dB in
order to balance the thermal radiation from room temperature to the cryostat temperature. The directional coupler
adds another 10 dB of input attenuation, as the input signal enters through the coupled port and the reflected signal
propagates straight through it. Including the cables, attenuators, couplers and all other components, we estimate
the total attenuation between the VNA output and the device to be ∼ 53 ± 1 dB. The attenuators are mounted in
close proximity to the sample in the sample vacuum space and we assume them to have a temperature Tatt ≈ Ts,
where Ts is the temperature of the sample. For amplification of the weak microwave signal used here, a cryogenic
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high electron mobility transistor (HEMT) amplifier and a room temperature amplifier are mounted to the output
line. The cryogenic HEMT is placed close to the DUT in order to minimize signal losses in between the sample and
the amplifier chain.

In order to inject the DC current into the cavity and to measure the voltage in a near-ideal four-terminal configura-
tion, a microwave bias-tee is added to the coaxial microwave lines just before the microwave signal reaches the device.
The DC port of the bias-tee and the ground are connected to two pairs of twisted copper wires by solder joints, one
pair for the current and the other pair to measure the corresponding voltage. Both twisted pairs are low pass filtered
close to the microwave bias-tee with a cutoff frequency of ∼ 1.5 kHz in order to prevent noise in the kHz to MHz range
from entering the device. In order to minimize the low-frequency current and voltage noise entering the device through
other channels, a ground-DC block is added in front of the bias-tee, which in combination with the bias-tee and the
usage of non-conducting pieces and screws interrupts all galvanic connections between the cryostat/microwave lines
and the sample box including the sample. By these measures, we completely separate the cryostat/dipstick ground
from the sample ground (the latter being highlighted with the empty triangular ground symbols in Supplementary
Fig. 1). The DC electronics are controlled via a National Instruments DAC/ADC measurement card, the current
source has a floating ground and the voltage V is preamplified by a room-temperature low-noise amplifier with a gain
of 104.
A temperature diode is attached to the sample housing/the mounting bracket in close proximity to the actual

sample and both are coupled to the liquid helium bath via the copper mounting bracket and through a small amount
of helium exchange gas. For controlling the sample temperature Ts, the diode is glued with varnish to the DUT
copper housing and a manganin heating resistor (made of a twisted pair wire to avoid stray magnetic fields) is placed
nearby. Both the temperature diode (4 wires) and the heating resistor (2 wires) are also connected via twisted pairs of
copper wire to a temperature controller. For cooling the device to temperatures below that of liquid helium (4.2K),
we pump at the helium dewar of the cryostat and reach down to Ts,min

<∼ 2.4K. To achieve high-stability temperature
control (∆Ts < 1mK) in the most relevant range for this work 2.4K<∼ Ts

<∼ 6.5K, we use the helium pumping and
additionally heat the sample with the heating resistor, whose power is controlled via a PID feedback loop by the
temperature controller.

III. SUPPLEMENTARY NOTE III: THE CAVITY MODEL WITHOUT CONSTRICTIONS

A. Bare transmission line resonator

Our device is based on a short-ended half wavelength coplanar waveguide cavity with a characteristic impedance
Z1 = 32Ω and a length of l1 = 7200µm. The complex propagation constant along the transmission line resonator
is given by γ = α + iβ with the attenuation constant α and the phase constant β = ω/vϕ. Here ω is the angular

frequency of the propagating wave on the line and vϕ = 1/
√
L′C ′ is the phase velocity, where C ′ is the capacitance

per unit length and L′ is the total inductance per unit length. Note that L′ has both a geometric contribution L′
g

and a kinetic contribution L′
k with L′ = L′

g + L′
k. We can deduce the resonance frequency of the fundamental mode

(without shunt capacitor and before junction cutting) as ω1 = πvϕ/l1.
For the input impedance of a short-ended and lossy transmission line at a distance l1 from its shorted end, we have

ZTL
in = Z1

tanhαl1 + i tanβl1
1 + i tanβl1 tanhαl1

(S1)

which for small losses αl1 ≪ 1 and close to its fundamental mode resonance ω ≈ ω1 can be Taylor-approximated as

ZTL
in ≈ Z1αl1 + iZ1π

∆1

ω1
(S2)

where ∆1 = ω − ω1. When we compare this with the Taylor-approximated input impedance of a series RLC circuit

ZRLC
in ≈ Rr + 2iLr∆1 (S3)

we recognize that they actually look identical for

Rr = Z1αl1, Lr =
Z1π

2ω1
=

L′l1
2

, Cr =
2

πω1Z1
=

2C ′l1
π2

. (S4)

From the lumped element equivalents, we can also now give expressions for the internal linewidth κi,1 and the internal
quality factor Qi,1 = ω1/κi,1 of the resonator. They are given as

κi,1 =
Rr

Lr
=

2ω1αl1
π

, Qi,1 =
π

2αl1
. (S5)



18

B. Shunt-coupled transmission line resonator

When we couple the short-ended transmission line cavity to a microwave feedline with characteristic impedance Z0

by means of a shunt capacitor to ground Cs as in our device, we need to consider a change in total capacitance as well
as a splitting of the linewidth and quality factor into internal and external contributions. To do this, we first consider
the input impedance of the shunt-capacitor-and-feedline parallel combination as seen from the cavity, which is

Ze =

(

1

Z0
+ iωCs

)−1

=
Z0

1 + iωCsZ0
. (S6)

We can split this into its real and imaginary part and then write it as a combination of an effective frequency-dependent
series combination of a resistor R∗ and capacitor C∗

Ze =
Z0

1 + ω2C2
sZ

2
0

+
1

iω

ω2CsZ
2
0

1 + ω2C2
sZ

2
0

= R∗ +
1

iωC∗
. (S7)

Next, we perform two approximations by using ω ≈ ωb and ω2
bC

2
sZ

2
0 ≫ 1 and get

R∗ ≈ 1

ω2
bC

2
sZ0

, C∗ ≈ Cs (S8)

which allows us to find the total capacitance

Ctot =
CrCs

Cr + Cs
, (S9)

the new resonance frequency

ωb =
1√

LrCtot

, (S10)

the coupled resistance

Rb = Rr +R∗, (S11)

and finally the total linewidth, which we can split into internal and external contibutions

κb = ω2
bRbCtot

= ω2
bRrCtot + ω2

bR
∗Ctot

=
ω2
bRrCrCs

Cr + Cs
+

Cr

Z0Cs(Cr + Cs)

= κi,b + κe,b. (S12)

The linewidths are related to the corresponding quality factors via Qi,b = ωb/κi,b and Qe,b = ωb/κe,b.

C. Circuit parameters and measurements

The parameters we need for our circuit are the total capacitance Ctot and the total inductance Lr = Lg+Lk, which
has a geometric and a kinetic contribution. What makes things more complicated on one hand but also experimentally
accessible on the other hand is that the kinetic contributions are dependent on the niobium London penetration depth
λL, which is a function of sample temperature Ts.
We start our parameter extraction procedure by calculating the geometric inductance per unit length

L′
g =

µ0

4

K(k′1)

K(k1)
, (S13)

where µ0 is the vacuum permittivity, K(k) is the complete elliptic integral of the first kind and

k1 =
S1

S1 + 2W1
, k′1 = 1− k21. (S14)
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here, the width of the coplanar waveguide center conductor is S1 = 50 µm and the gap between ground and center
conductor is W1 = 5 µm. As result we obtain L′

g = 261 nH/m, a value that we also obtain with less than 1% deviation
by numerical simulations. In addition to the geometric inductance we need to take the kinetic inductance into account.
The relation between λL and the kinetic inductance per unit length is given by [S1]

L′
k = µ0g

λeff

S1
, (S15)

where dNb is the film thickness, g is a geometrical, dimensionless factor taking into account the details of the trans-
mission line cavity by [S1, S2]

g =
1

2 [k′1K(k1)]
2

[

− ln(
dNb

4S1
)− k1 ln(

dNb

4(S1 + 2W1)
) + 2

S1 +W1

S1 + 2W1
ln(

W1

S1 +W1
)

]

(S16)

and the effective penetration depth λeff of a thin film dNb
<∼ λL is [S3]

λeff = λL coth
dNb

λL
. (S17)

Then the total inductance per unit length is

L′ = L′
g + µ0g

λL coth
dNb

λL

S1
. (S18)

In the experiment, we do not vary directly λL but the sample temperatur Ts, the relation between the two is given by

λL(Ts) =
λ0

√

1−
(

Ts

Tc

)4
(S19)

where λ0 is the zero-temperature penetration depth and Tc is the critical temperature. We measure the cavity
resonance frequency ωb(Ts) and fit the experimentally obtained data with

ωb(Ts) =
1

√

CtotLr(Ts)

=
1

√

√

√

√Ctot
l1
2

[

L′
g +

µ0g
S1

λ0
√

1−( Ts

Tc
)
4
coth

[

dNb

λ0

√

1−
(

Ts

Tc

)4
]]

(S20)

with the geometrical parameters S1 = 50 µm, W1 = 5µm, dNb = 90nm, g = 3.8, l1 = 7200 nm and L′
g = 261 nH·m−1

as constants and with Ctot = 367 fF, λ0 = 141 nm and Tc = 9.0K as fit parameters. The result is shown in
Supplementary Fig. 2(a).

The next relevant parameter is the effective shunt capacitance Cs, which we obtain from measurement of the external
linewidth κe,b = 2π · 6.3MHz and the knowledge of Z0 = 50Ω and Ctot. By using Eqs. (S9) and (S12) we obtain
for the coupling shunt capacitance Cs = 17.5 pF and Cr = 375 fF for the cavity capacitance at Ts = 3.9K. We can
compare this with the theoretical value for Ctheo

r = 388 fF, where we used

C ′ = 4ϵ0ϵeff
K(k1)

K(k′1)
(S21)

with ϵeff = (ϵSi + 1)/2 and ϵSi = 11.5, and find reasonable agreement. Similarly, we get for the shunt capacitance
Ctheo

s = 12.4 pF, which we obtain by calculating Ctheo
s1 = ϵ0ϵSiNA1/dSiN = 24.9 pF and Ctheo

s2 = ϵ0ϵSiNA2/dSiN =
24.9 pF. Here, we used ϵSiN = 7, A1 = 0.06mm2, A2 = 0.06mm2 and dSiN = 150 nm. The two capacitances Ctheo

s1

and Ctheo
s2 are the capacitances between center conductor and top shunt electrode and between top shunt electrode

and the ground planes, respectively, which in series result in Ctheo
s = Ctheo

s1 Ctheo
s2 /(Ctheo

s1 + Ctheo
s2 ). Again, we find

acceptable agreement, and possible deviations originate most likely from variations in dSiN and ϵSiN, but possibly also
from inductive contributions in the shunt capacitor plates or from the feedline input impedance deviating from Z0

due to cable resonances and parasitic reflections.
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Supplementary Figure 2. Temperature dependence of cavity parameters before junction cutting. In (a) we show the cavity
resonance frequency ωb vs sample temperature Ts. The shift in frequency with increasing temperature occurs due to a change of the
total circuit inductance Lr(Ts) = Lg +Lk(Ts). Circles are data, line is a fit using Eq. (S20) and with Tc = 9.0K, Ctot = 367 fF and
λ0 = 141 nm as fit parameters. In panel (b), the total circuit linewidth κb/2π vs Ts is shown. The linewidth increases with increasing
temperature, indicating growing losses by thermal quasiparticles in the superconductor. Circles are data, line is a fit using Eq. (S25)
with κ0,b = 2π · 6.2MHz and Aκ = 4.1 · 10−15 s3/m3 as fit parameter.

In addition to the resonance frequency, we also extract the total resonance linewidth κb as a function of temperature,
data are shown in Supplementary Fig. 2(b). At the elevated temperatures we are operating here Ts

>∼ Tc/4, the internal
decay rate will be dominated by quasiparticle losses. From the two-fluid model, the effective surface resistance of a
superconductor with the corresponding correction factor for thin films and around the cavity resonance frequency is
given by [S3]

Rs,eff =
1

2
ω2
bµ

2
0λ

3
Lσn

nn

n



coth

(

dNb

λL

)

+
dNb/λL

sinh2
(

dNb

λL

)



 , (S22)

where σn is the normal state conductivity, nn is the quasiparticle density and n = nn + ns is the total electron
density with ns being the superconducting charge carrier density (twice the Cooper pair density). The temperature
dependence of the quasiparticle density is given by

nn(Ts)

n
=

(

Ts

Tc

)4

. (S23)

Since the quasiparticle loss channel is equivalent to the kinetic inductance channel in terms of current density distribu-
tion, the resulting circuit model lumped element resistance Rr ∝ Rs,eff is expected to be in series with Lr. Combining
this result with Eq. (S12) we get

κi,b(Ts) = ω2
b(Ts)Rr(Ts)Ctot

= Aκω
4
b(Ts)λ

3
L(Ts)

(

Ts

Tc

)4


coth

(

dNb

λL(Ts)

)

+
dNb/λL(Ts)

sinh2
(

dNb

λL(Ts)

)



 (S24)

with the fit parameter Aκ that contains geometry, material properties and other temperature-independent contribu-
tions. Since we are not certain that we can reliably discriminate between κi,b and κe,b due to cable resonances and
impedance mismatches in the setup leading to Fano interferences, we fit the temperature dependence of the total
linewidth using

κb(Ts) = κ0,b + κi,b(Ts) (S25)

with κ0,b as second fit parameter. The agreement between the experimental data and the fit line is very good, cf.
Supplementary Fig. 2(b), with considerable deviations only appearing for Ts

>∼ 6.5K. Note also that the fit value
κ0,b = 2π · 6.2MHz is very close to κe,b = 2π · 6.3MHz obtained at Ts = 3.9K.
Supplementary Table I summarizes all relevant cavity parameters before constriction cutting again in a single spot.



21

Supplementary Table I. Circuit parameters before cutting the nanobridge junction. The geometric inductance Lg is obtained
using Lg = L′

gl1/2. From a fit to the temperature-dependence of ωb we obtain the zero-temperature penetration depth λ0, the
critical temperature Tc and the total capacitance Ctot. Additionally we get the kinetic inductance Lk = L′

kl1/2 and therefore the
circuit inductance Lr = Lg + Lk. From the measured external linewidth κe,b we subsequently find the coupling capacitance Cs and
the circuit capacitance Cr. For completeness we also give κi,b. All experimental values are given for Ts = 3.9K.

l1 (nm) Lg (pH) Lk (pH) Lr (pH) Cr (fF) Cs (pF) Ctot (fF) λ0 (nm) Tc (K) ωb

2π
(GHz)

κe,b

2π
(MHz)

κi,b

2π
(MHz)

7200 939.4 87.4 1026.8 375 17.5 367 141 9 8.199 6.3 1.3

IV. SUPPLEMENTARY NOTE IV: THE CAVITY MODEL WITH CONSTRICTIONS

A. The nano-constriction: Potential, current-phase-relation and inductance

We model the constriction similar to an ideal Josephson junction by assuming a 2π-periodic current-phase-relation
(CPR) I(δ) and a 2π-periodic corresponding potential energy Ec(δ). The relation between the two can be established
by

Ec(δ) =

∫ t

0

I(δ)V (t′)dt′. (S26)

With the voltage

V (t) =
Φ0

2π
δ̇ (S27)

this can be written as

Ec(δ) =
Φ0

2π

∫

I(δ)dδ, (S28)

i.e., the CPR is essentially the derivative of the potential energy

I(δ) =
2π

Φ0

∂Ec

∂δ
. (S29)

We can Taylor-expand the total potential up to fourth order around the equilibrium phase δ0 and get

E(δ) = Ec(δ0) +
∂Ec

∂δ

∣

∣

∣

∣

δ0

δ +
1

2

∂2Ec

∂δ2

∣

∣

∣

∣

δ0

δ2 +
1

6

∂3Ec

∂δ3

∣

∣

∣

∣

δ0

δ3 +
1
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∂4Ec

∂δ4

∣

∣

∣

∣

δ0

δ4 − Φ0Ib
2π

δ (S30)

where we also included a tilt of the potential Ec by the bias current Ib and where δ (kept the same for simplicity)
is the new dynamical variable around the equilibrium phase δ0. For very small δ, we can drop the third and fourth
order terms as well as the constant offset and get

E(δ) ≈ ∂Ec

∂δ

∣

∣

∣

∣

δ0

δ +
1

2

∂2Ec

∂δ2

∣

∣

∣

∣

δ0

δ2 − Φ0Ib
2π

δ. (S31)

From here we find the equilibrium position δ0 from the condition ∂E/∂δ = 0, i.e., by

∂Ec

∂δ

∣

∣

∣

∣

δ0

=
Φ0Ib
2π

(S32)

or

I(δ0) = Ib. (S33)

Using the generalized flux Φ = Φ0

2π δ, we can write the last remaining term in the potential as an inductive energy

Ec(Φ) ≈
Φ2

2Lc
(S34)
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with the constriction inductance

Lc =
Φ2

0

4π2

(

∂2Ec

∂δ2

∣

∣

∣

∣

δ0

)−1

. (S35)

In the next subsection, we will discuss how to model the overall cavity when including this inductance as well as a
corresponding resistor, then how to reconstruct the CPR from the meaurement of Lc for different Ib, and finally we
will discuss the consequences of the higher order terms to the high-power dynamics of the resonator.

B. Shunt-coupled transmission line resonator with nano-constriction

We observe that cutting the constrictions into the circuit leads to a shift of the resonance frequency and to a
broadening of the resonance linewidth. Similar to the two-fluid model and following our considerations in the previous
subsection, we therefore model the circuit elements introduced by the junction for low powers as a constriction
inductance Lc in parallel with a constriction resistance Rc. We note that we omit any additional capacitance,
as according to our simulations the impedance of a possible constriction capacitance is negligible compared to its
inductance impedance. For the parallel combination of Rc and Lc near the relevant frequency ω0, we get the input
impedance

Zc =
iωLcRc

Rc + iωLc

≈ Rcω
2
0L

2
c

R2
c + ω2

0L
2
c

+ iω
LcR

2
c

R2
c + ω2

0L
2
c

= R∗
c + iωL∗

c . (S36)

Unfortunately, we cannot do any approximation here, as a priori we cannot assume anything for the ratio ω0Lc/Rc.
However, adding these new series elements to the circuit, we get the final resonator elements

Rtot = Rr +R∗ +R∗
c (S37)

Ltot = Lr + L∗
c (S38)

Ctot =
CrCs

Cr + Cs
. (S39)

and we can express the final resonance frequency as

ω0 =
1

√

Ctot (Lr + L∗
c)

≈ ωb

1 +
L∗

c

2Lr

(S40)

where the approximation is valid for L∗
c ≪ Lr, a condition safely fulfilled in our device.

For the linewidth we find

κ0 = ω2
0RtotCtot

= ω2
0RrCtot + ω2

0R
∗
cCtot + ω2

0R
∗Ctot

= κi + κe. (S41)

where

κi = ω2
0RrCtot + ω2

0R
∗
cCtot (S42)

contains also the junction contribution from Rc.
An alternative route to finding expressions for ω0 and κi starts with equalizing the input impedances of the trans-

mission line resonator at the point of the constriction and the input impedance of the cJJ

Z1αl1 + iZ1 tanβl1 = −R∗
c − iωL∗

c (S43)
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where the minus signs on the right hand side stem from the opposite current directions in the two parts. When we
use our expressions for Rr and Lr and Taylor-expand the tangent function around the first mode, we obtain

Rr + i
2Lrω1

π
(βl1 − π) = −R∗

c − iωL∗
c . (S44)

Now we use β = ω/vϕ and look for a complex-valued solution for ω, that we call ω̃0 = ω0 + iκi

2 . We get

ω̃0 =
ω1

1 +
L∗

c

2Lr

+ i
Rr +R∗

c

2Lr + L∗
c

. (S45)

This is equivalent to

ω0 =
ω1

1 +
L∗

c

2Lr

(S46)

κi =
Rr +R∗

c

Lr + L∗
c/2

(S47)

which is slightly different from our earlier obtained lumped element expression, since we did not take the shunt
capacitance into account and that it leads to a shift from ω1 to ωb already. If we replace the constriction-less
resonance frequency ω1 by ωb though, we get for the resonance frequency the above result

ω0 =
ωb

1 +
L∗

c

2Lr

. (S48)

The deviation in κi is given by the ratio (Lr + L∗
c)/(Lr + L∗

c/2), which is one the order of ωb/ω0
<∼ 1.01.

C. Getting the CPR from the constriction inductance

Based on our above considerations, we can use that the second derivative of the potential is the first derivative of
the CPR

∂2Ec

∂δ2
=

Φ0

2π

∂I

∂δ
(S49)

and insert this into our equation for the constriction inductance

Lc =
Φ0

2π

(

∂I

∂δ

∣

∣

∣

∣

δ0

)−1

. (S50)

So once we know the constriction inductance Lc for each bias current and corresponding equilibrium phase, we can
invert this relation to get

δ =
2π

Φ0

∫ Ib

0

LcdI + δoff . (S51)

We assume the offset phase δoff = 0. In practice, we have a finite number of points and do

δj =
2π

Φ0

N
∑

j

Lc,j∆I. (S52)

instead with j > 0, N the total number of bias-current values and ∆I = Ib,j − Ib,j−1. Finally, we can plot pairwise
values for (δj , Ib,j), i.e., the experimentally determined CPR.
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D. Kerr anharmonicity of the circuit

So far, we have neglected the third and forth order terms of the Taylor series of Ec. We will now derive the resulting
Kerr constant K in two different ways. In one derivation, we will not make any assumptions about the shape of the
CPR, except that it is 2π-periodic and single-valued. In the second derivation further below, we will assume the
constriction to be a series combination of a linear inductance and an ideal Josephson inductance with a sinusoidal
CPR. Both derivations lead to the same K here.

In the first derivation, we start by assuming that the potential can be described by a prefactor EJ multiplied by a
2π-periodic function. Then, we can write the Taylor series as

E(δ)

EJ
= g̃0 + g̃1δ +

1

2
g̃2δ

2 +
1

6
g̃3δ

3 +
1

24
g̃4δ

4 − Φ0Ib
2πEJ

δ (S53)

where the coefficients are given by

g̃n =
1

EJ

∂nEc

∂δn

∣

∣

∣

∣

δ0

. (S54)

Of course, we can also write the coefficients for n > 0 as

g̃n =
Φ0

2πEJ

∂n−1I

∂δn−1

∣

∣

∣

∣

δ0

, (S55)

which gives a much more direct relation to the CPR. The minimum phase is determined by g̃1 = Φ0Ib
2πEJ

or just by

I(δ0) = Ib. We can also obtain δ0 experimentally as described above for the reconstruction of the CPR, when we just
integrate up to Ib.
Taking also into account the additional linear inductance of the cavity Lr and following Ref. [S4] now, we find that

we need to define a total phase variable δtot, that describes the phase across the series combination of Lr and the

constriction. With the linear inductive energy EL =
Φ2

0

4π2Lr

, the total inductive energy is given by

Etot(δtot, δ) =
1

2
EL (δtot − δ)

2
+ Ec(δ)−

Φ0Ib
2π

δtot. (S56)

From the condition ∂Etot/∂δ = 0 we find the current-conservation condition [S4]

0 = EL (δ − δtot) +
∂Ec

∂δ
(S57)

which defines δ as a function of δtot, i.e., δ[δtot]. This function allows us to calculate the derivative now

∂δ

∂δtot
=

EL

EL + ∂2Ec

∂δ2

(S58)

as well as the corresponding higher order derivatives ∂2δ/∂δ2tot and ∂3δ/∂δ3tot.
Similarly to above, we now Taylor-expand the total potential as

Etot(δtot)

EJ
= G̃0 + G̃1δtot +

1

2
G̃2δ

2
tot +

1

6
G̃3δ

3
tot +

1

24
G̃4δ

4
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Φ0Ib
2πEJ

δtot (S59)

where the new coefficients (for n ≥ 2) are given by

G̃2 =
EL

EJ

(

1− ∂δ

∂δtot

)

(S60)

G̃3 = −EL

EJ

∂2δ

∂δ2tot
(S61)

G̃4 = −EL

EJ

∂3δ

∂δ3tot
(S62)

After some algebra and using

pc =
Lc

Lr + Lc
(S63)
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we find that the coefficients can be expressed as

G̃2 = pcg̃2 (S64)

G̃3 = p3c g̃3 (S65)

G̃4 = p4c

[

g̃4 −
3g̃23
g̃2

(1− pc)

]

(S66)

and that the Kerr constant in the end is given by [S4]

K =
e2

2h̄Ctot
p3c

[

g̃4
g̃2

− 3g̃23
g̃22

(1− pc)−
5

3

g̃23
g̃22

pc

]

. (S67)

In order to make the very close connection to the system CPR obvious again, we define new coefficients in terms of
the CPR I(δ) as

g2 =
∂I

∂δ
(S68)

g3 =
∂2I

∂δ2
(S69)

g4 =
∂3I

∂δ3
. (S70)

These are connected to the previous coefficients by gn = 2πEJg̃n/Φ0 and lead to the Kerr constant

K =
e2

2h̄Ctot
p3c

[

g4
g2

− 3g23
g22

(1− pc)−
5

3

g23
g22

pc

]

. (S71)

In the second variant we split the constriction inductance into a linear part Llin and the Josephson part LJ. As
phase variables we consider the phase δJ across the Josephson part LJ with a sinusoidal CPR I = I0 sin δJ and the
total phase δtot. The total linear inductance is the given by L′

r = Lr + Llin. The equilibrium phase is given by

δJ,0 = arcsin
Ib
I0

(S72)

and the Josephson energy by EJ = Φ0I0
2π . With the modified coefficients

cn =
1

EJ

∂nEcos

∂δnJ

∣

∣

∣

∣

δJ,0

(S73)

and Ecos = EJ(1− cos δJ) we follow the same derivation steps as above and find the Kerr constant as

K =
e2

2h̄Ctot
p3J

[

c4
c2

− 3c23
c22

(1− pJ)−
5

3

c23
c22

pJ

]

(S74)

where

pJ =
LJ

L′
r + LJ

, LJ =
Φ0

2πI0 cos δJ,0
. (S75)

V. SUPPLEMENTARY NOTE V: CIRCUIT RESPONSE MODEL

A. Equation of motion and general considerations

We model the classical intracavity field α of the constriction cavity with effective Kerr nonlinearity and nonlinear
damping using the equation of motion [S5]

α̇ =

[

i(ωc +K|α|2)− κ+ κnl|α|2
2

]

α+ i
√
κeSin. (S76)
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Here, ωc is the cavity resonance frequency (= ωb before cutting and = ω0 after), K is the Kerr nonlinearity (frequency
shift per photon), κ is the bare total linewidth (= κb before cutting and = κ0 after), κnl is the nonlinear damping
constant, κe is the external linewidth (= κe,b before cutting) and Sin is the input field. The intracavity field is
normalized such that |α|2 = nc corresponds to the intracavity photon number nc and |Sin|2 to the input photon flux
(photons per second) on the coplanar waveguide feedline. We do not explicitly take into account the third order
nonlinearity here, but the nonlinear frequency shift that results from its existence is contained in K as described
above.
The solution of this equation of motion depends significantly on the input power. The ideal reflection response

function, however, will always be of the form

Sideal
11 = −1− i

√
κe

α

Sin
(S77)

with the solution of interest α.

B. The linear single-tone regime

In the linear single-tone regime, valid for low microwave-probing powers, we set K = κnl = 0. Then, we can solve
the remaining equation by Fourier transform and obtain

α =
i
√
κe

κ
2 + i(ω − ωc)

Sin. (S78)

The ideal reflection response is then given by

Sideal
11 = −1 +

2κe

κ+ 2i(ω − ωc)
. (S79)

C. The nonlinear single-tone regime

In the nonlinear single-tone regime, we have to solve the full equation of motion and start by setting the input field
to Sin = S0e

iϕeiωt with real-valued S0. For the intracavity field, we make the Ansatz α(t) = α0e
iωt with real-valued

α0. The phase delay between input and response is fully encoded in ϕ. Then the equation of motion reads

iωα0 =

[

i
(

ωc +Kα2
0

)

− κ+ κnlα
2
0

2

]

α0 + i
√
κeS0e

iϕ (S80)

which after multiplication with its complex conjugate yields the characteristic polynomial for the intracircuit photon
number nc = α2

0

n3
c

[

K2 +
κ2
nl

4

]

+ n2
c

[κκnl

2
− 2K∆

]

+ nc

[

∆2 +
κ2

4

]

− κeS
2
0 = 0. (S81)

Here ∆ = ω − ωc is the detuning between the microwave input tone and the bare cavity resonance. The real-valued
roots of this polynomial correspond to the physical solutions for the amplitude α0, the highest and lowest amplitudes
are the stable states in the case of three real-valued roots.

For the complete complex reflection, we also need the phase ϕ, which we obtain via

ϕ = atan2

(

−κ+ κnlnc

2
, ∆−Knc

)

(S82)

Having both parts of the complex field solution at hand, we can also calculate the reflection

Sideal
11,nl = −1− i

√
κe

α

Sin

= −1− i
√
κe

α0

S0
e−iϕ. (S83)

We use this equation to fit the nonlinear response curves in the higher-power regime, from which we determine the
Kerr nonlinearity, cf. Fig. 5 of the main paper and Supplementary Note VIII.
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Supplementary Figure 3. Background correction and fitting routine. (a) Reflection |S11| vs probe frequency of the constriction
cavity for a current bias value Ib = 0. The absorption resonance dip around 8.15GHz is clearly visible, the measurement temperature
is Ts = 3.9K. (b) Identical to (a), but at an elevated temperature Ts = 8.1K. What we detect here is the experimental background

Sbg,exp
11 , slightly modified by temperature-dependent signal propagation on the chip and in the coldest parts of the microwave cables.

We measure not only the amplitude, but also the phase of S11 and Sbg,exp
11 . (c) shows the magnitude of S11/S

bg,exp
11 , the background

is nearly a flat line, but not yet at |S11| = 1 as expected for an ideal reflection. (d) shows the imaginary part of the background-divided
reflection vs the real part. Noisy light blue lines in (c) and (d) are data, black smooth lines are a fit with Eq. (S84). (e) and (f)
show the final background-corrected data, where also the remaining background from the fit is divided off and the resonance circle
is corrected by the Fano rotation θ. Noisy blue lines in (e) and (f) are data, black smooth lines are the fits.

VI. SUPPLEMENTARY NOTE VI: S-PARAMETER BACKGROUND CORRECTION AND FITTING

A. The real-world reflection function and fit-based background correction

Due to impedance imperfections in both, the input and output lines, the ideal response is modified by cable
resonances and interferences within the setup [S6, S7]. Origin of these imperfections are connectors, attenuators,
wirebonds, transitions to or from the PCB etc. in the signal lines. In addition, the cabling has a frequency-dependent
attenuation. To take all these modifications into account, we model the final reflection parameter Sreal

11 by

Sreal
11 =

(

a0 + a1ω + a2ω
2
) [

−1 + f(ω)eiθ
]

ei(ϕ0+ϕ1ω) (S84)
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when the ideal response would be given by

Sideal
11 = −1 + f(ω). (S85)

The real-valued numbers a0, a1, a2, ϕ0, ϕ1 describe a frequency dependent modification of the background reflection,
and the phase factor θ takes into account possible interferences such as parasitic reflection just before the device or
interferences from e.g. imperfect isolation in the directional coupler.

Our standard fitting routine begins with removing the actual resonance signal from the measured S11, leaving us
with a gapped background reflection, which we fit using

Sbg
11 =

(

a0 + a1ω + a2ω
2
)

ei(ϕ0+ϕ1ω). (S86)

Subsequently, we remove this background function from all measurement traces by complex division. The resonance
circle rotation angle θ is then rotated off additionally. The result of both corrections is what we present as background-
corrected data or reflection/response data in all figures. For the power dependence measurements, we determine the
background from the measurement in the linear regime and perform a background correction based on that single
linear response line for all powers.

B. Data-based background correction

As the cavity in our experiment has a rather large linewidth of tens of MHz and as the background reflection
often cannot be described over such a large frequency span with a simple second order polynomial as suggested by
Eq. (S84), we perform a two-step background correction to obtain as clean S-parameters as possible. The procedure
is exemplarily shown for one resonance of the constriction cavity in Supplementary Fig. 3.

In the first step, we record for each measurement (e.g. the one in panel (a)) also the resonance-less reflection
function as shown in panel (b). The resonance-less S11 is obtained by increasing the sample temperature to about
Ts = 8.1K, where the resonance frequency is out of the measurement window and κi is so large that the resonance is
not impacting the data anymore. The elevated temperature leads to a slight upshift of the overall background, but
since its frequency-dependence is not modified and since we perform a second-step-correction, this is not impacting

the final result. Then we perform a complex division of the full S11 signal by the bare background signal Sbg,exp
11 , the

result is a resonance with a nearly flat background as shown in (c), the complex-valued version can be seen in (d).
Subsequently, we perform a fit using Eq. (S84) from which we obtain a second background function as well as a Fano
rotation angle θ. We divide off the fit-background, again by complex division, and finally rotate the resonance circle
by θ around its anchor point. The final result including the corresponding fits can be seen in panels (e) and (f). For
the circuits with constrictions, we perform this data processing with all S11 spectra used for the data analysis and
all shown resonances have been treated this way. For the data before constriction cutting, we do only the fit-based
background-correction.

VII. SUPPLEMENTARY NOTE VII: ADDITIONAL DATA AND ANALYSES

A. Properties of the superconducting niobium film

For analyzing the characteristics of the niobium film additionally from transport data, the complete feedline-plus-
cavity resistance Rs is tracked via a DC 4-point measurement, while slowly changing the sample temperature Ts

between room temperature and ∼ 5K. The resistance Rs = Vs/Is is obtained by sending a current Is = 1 µA and by
measuring the corresponding voltage Vs. For the 4-point measurement, two wirebonds are attached to the microwave
launcher of the cavity feedline and two are attached to the ground plane near the end of the cavity, where also the
constriction is placed. One pair is sending the current and the second pair is detecting the voltage. The experiment
is conducted in a separate dipstick with a stepper motor, that is slowly immersing the sample into liquid helium.

Supplementary Fig. 4 shows a schematic of the DC measurement and the resulting resistance Rs(Ts). We find a
sudden and large drop of Rs at the critical temperature of the niobium film Tc,4p = 9.08± 0.04K, which is in a good
agreement with the result obtained from the microwave data in Supplementary Note III C. The remaining resistance
for Ts < Tc,4p is attributed to the residual resistance of the constriction, which has a considerably reduced transition
temperature Tcc. The fact that there is not a second sharp step in the resistance at Ts ≈ Tcc indicates that there might
be a wider Tcc-distribution in and around the constriction, possibly induced by ion implantation or surface damage.
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Supplementary Figure 4. Temperature dependence of film resistance. (a) Schematic of the experiment; top: false-color optical
images, bottom: circuit equivalent. By implementing a four-probe measurement we measure the voltage Vs across the whole feedline-
cavity center conductor when sending a current Is = 1 µA for varying sample temperature Ts. The feedline has a length l0 and a
cross-section A0 = S0dNb; the cavity has the length l1 and the cross-section A1 = S1dNb. The circuit is slowly moving into a helium
bath for changing the temperature and measuring the voltage after every 0.005 s. (b) Resistance Rs = Vs/Is vs temperature Ts. We
obtain a critical temperature Tc,4p = 9.08± 0.04K, a resistance Rs(10K) = 297.6Ω at 10K, a resistance Rc,4p(8.9K) = 12.8Ω and
a residual film resistivity ρ = 7.3 µΩ·cm, see main text for more details. Inset shows a zoom-in to temperatures around and below
the superconducting transition.

To evaluate the film properties further, we calculate the resistance drop at Tc,4p as RNb = Rs(Ts = 10K) − Rs(Ts =
8.9K) ≈ 284.8Ω. The residual resistivity of the film at Ts = 10K (without constriction) is then determined by

ρ =
dNbRNb
(

l1
S1

+ l0
S0

) , (S87)

where l1 = 7200 µm and S1 = 50 µm are length and center conductor width, respectively, of the cavity, and where
l0 = 4416µm and S0 = 20 µm are the corresponding values of the feedline. We obtain ρ = 7.3 µΩ·cm. In addition,
we estimate the electron mean free path le = 5.7 nm using the material constant ρle = 3.72 · 10−6

µΩ·cm2 [S8]. This
shows, that our films are well-described by the so-called dirty limit, where le ≪ ξ0 with the BCS coherence length
ξ0 = 38nm.

B. Impact of junction cutting to a reference cavity and constriction parameter uncertainty

In main paper Fig. 1(e), we present the resonances of the transmission line cavity before and after cutting the nano-
constrictions and discuss their impact on the cavity at Ts = 3.9K. In fact, for all our data regarding the constriction
inductance and current-phase-relation, the knowledge of the cavity parameters before cutting ωb, κb, Lr, Cr is crucial.
The reliable determination of the junction properties therefore requires that the niobium film itself or the bare cavity
are not impacted by the ion-beam-cutting procedure and by exposing the chip to air, nitrogen atmosphere and room-
temperature vacuum for some time (on the order of hours to days). Otherwise for instance the kinetic inductance
might change between the two measurements, which would impact the apparent junction properties extracted from
the comparison of ωb, κb and ω0, κ0.
In order to estimate the impact of the additional nano-patterning step to the unirradiated parts of the niobium film

as precisely as possible, we add a λ/4 reference resonator with higher resonance frequency than the constriction-cavity
to the same feedline, cf. Supplementary Fig 5(a). The coupler of the hanger-type λ/4-cavity can also be seen in the
optical image in the top left part of Supplementary Fig. 4. The reference cavity is capacitively side-coupled with
κref
e,x

<∼ 2π · 0.9MHz (x stands for ’b’ or ’0’, i.e., indicates whether before and after cutting) to the transmission line
and it is shorted to ground at the opposite end, forming a λ/4 transmission line cavity. Similar to the constriction-
cavity, we characterize the reference cavity before and after constriction cutting, although it does not contain any
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Supplementary Figure 5. Side-coupled λ/4 reference-resonator properties before and after the neon-ion-beam process. (a)
Circuit equivalent of the complete feedline and cavities, including the side-coupled λ/4 reference cavity and the transmission line
cavity with cJJ at the end. The reflection of both cavities is measured with a vector network analyzer. (b) shows the resonance
frequency ωref

x of the λ/4 reference cavity before and after cJJ cutting (into the cJJ cavity only) vs temperature. Green circles are
before cutting and orange after. In panel (c) the internal linewidth of the λ/4 reference cavity κref

i,x/2π vs temperature is shown. Color

of datapoints is equivalent to (b). In (d) we show the normalized change of the resonance frequency |ωerr| = |(ωref
0 − ωref

b )/ωref
b |

and of the internal linewidth |κi,err| = |(κref
i − κref

i,b)/κ
ref
i,b | vs temperature in the range of 2.5K≤ Ts ≤ 5.6K.

constrictions. Except for the Ne ion irradiation, it has experienced the same environments as the constriction-cavity
and we can estimate the uncertainty in constriction-cavity parameters from its property changes.
In Supplementary Fig. 5(b)-(d) we discuss how resonance frequency and internal linewidth of the reference cavity

changed between the two measurements for several temperatures. The resonance frequency has shifted by ∆ωref =
ωref
0 − ωref

b
<∼ −2π · 1.1MHz to lower frequencies. The total linewidth and therefore the internal linewidth has

decreased by ∆κref
i = κref

i − κref
b,i

<∼ −2π · 0.6MHz. The knowledge of these slight changes allows us to estimate an
analog inaccuracy for the resonance frequency and linewidth of the cJJ cavity before cutting. To do so, we introduce
the normalized deviation of the frequency as |ωerr| = |(ωref

0 −ωref
b )/ωref

b | ≤ 0.19 · 10−3 and of the internal linewidth as
|κi,err| = |(κref

i − κref
i,b )/κ

ref
i,b | ≤ 0.17. Although the exact numbers depend on the temperature, we take the maximum

value as upper threshold for all temperatures and integrate it into our analysis of the constriction properties. To be
more precise, we assume, that the parameters before cutting are given by

ωb,err = ωb (1± |ωerr|) (S88)

κi,b,err = κi,b (1± |κi,err|) (S89)

and carry these errors through the data analysis and parameter extraction. This leads to the shaded areas around
the constriction inductance shown in main paper Fig. 2(e) and main paper Fig. 4(a), and to the areas around the
resistances shown in Supplementary Fig. 7. It also leads to the error bars in the inductancess and resistances in
Supplementary Figs. 6 and 7. The error is furthermore included in all experimental CPRs, but too small to be visible.

C. Bias current-tuning curves of ω0 and constriction inductance Lc for all sample temperatures

In main paper Fig. 2 we show the bias current-tuning curve of the resonance frequency ω0(Ib) for the sample
temperature Ts = 3.9K. For completeness and for additional analyses of the constriction temperature-dependence,
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Supplementary Figure 6. Bias-current tunability of resonance frequency ω0 and analysis of constriction inductances vs Ts.

(a) shows the cavity resonance frequency vs bias current ω0(Ib) for temperatures 2.5− 5.1K. Temperature increases from top curve
to bottom curve in steps of 0.2K. In (b) we show the resonance frequency at zero bias current vs temperature Ts. For (a) and
(b), symbols are data and dashed lines are calculated using Eq. (S94) in combination with fit curves of the constriction inductances
Lc(Ib), LJ(Ts) and Llin(Ts). In panel (c) we show Lc for zero bias current (Ib = 0) vs sample temperature. Symbols are data, the
dashed theory line is calculated from the individual fits of Llin(Ts) and I0(Ts). (d) Linear constriction inductance contribution Llin as
obtained from the Lc(Ib)-tuning curve fits vs sample temperature Ts. Symbols are data, the solid black line is a fit using Eq. (S92)
(e) shows the participation ratio of the linear inductance Llin to the total constriction inductance Lc vs reduced temperature Ts/Tcc,
demonstrating that with increasing temperature the linear contribution gets less significant, i.e., that the CPR gets less skewed.
Symbols are data, the dashed line is calculated from the individual fits of Llin(Ts) and I0(Ts).

we present in Supplementary Fig. 6(a) and (b) the bias-current tuning-curves for all measured temperatures and the
temperature-dependence of the resonance frequency at zero bias current, respectively.

The resonance frequency at Ib = 0 decreases with increasing Ts, most dominantly due to the increasing constriction
inductance. At the same time, the bias-current tuning range ωmax

0 −ωmin
0 increases with Ts until 4.7K is reached, and

decreases again for even higher Ts. The trend for increasing tuning range with increasing Ts originates from a larger
participation ratio of the constriction inductance with increasing temperature, which is closely related to Tcc < Tc.
In other words, the constriction inductance grows faster with absolute temperature than the total inductance of the
remaining cavity. The observation that for the highest temperatures the tuning range decreases again is related to the
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constriction switching current being more suppressed compared to I0 when its temperature approaches Tcc, possibly
induced by thermal current noise.
For a more quantitative discussion of the constriction inductance, we extract Lc and the constriction resistance Rc

(which will be discussed in the next subsection) by using the coupled Eqs. (S40) and (S41) and as also described in
the main paper. We model the bias-current-dependence by

Lc(Ib) = Llin + LJ

= Llin +
LJ0

cos δJ

= Llin +
Φ0

2π
√

I20 − I2b
, (S90)

i.e., by the total inductance being a series combination of an ideal Josephson inductance LJ with a sinusoidal current-
phase-relation (CPR) and a linear inductance Llin. Here, δJ is the phase difference across the Josephson element,
LJ0 = Φ0 · (2πI0)−1 with Φ0 ≈ 2.068 · 10−15 Tm2 the flux quantum and I0 the critical current of the junction.

For all temperatures the experimental data can be fitted with high reliability using that simple model, cf. panel
(a) in main paper Fig. 4. From the fits to the Lc(Ib) data for all temperatures we obtain as fit parameters the values
for Llin(Ts) as well as I0(Ts). The latter is already discussed in the main paper (cf. main paper Fig. 4(c)) and can be
well described by

I0(Ts) = Ic,0

(

1− Ts

Tcc

)3/2

(S91)

in the temperature range relevant here, despite the fact that most likely there is a Tcc-distribution present instead of a
single sharp value. The fit parameters are the critical current at zero temperature Ic,0 = 252µA and the constriction
critical temperature Tcc = 6.0K. The values for Llin(Ts) increase with temperature from about 3 pH at the lowest
Ts to around 9 pH at the highest Ts. Since the linear contribution is likely a predominantly kinetic inductance (the
geometric inductance of a constriction is very small), we model its temperature dependence by

Llin(Ts) = Loff +
Llin,0

1−
(

Ts

Tcc

)4 , (S92)

where Llin,0 is the inductance at zero temperature, Tcc is the constriction critical temperature and Loff a possible
temperature-independent offset. Although the data points suggest a more complicated temperature dependence,
possibly due to a Tcc distribution in the constriction or to cavity-linewidth fitting errors, the overall trend is described
acceptably by this simple model with the fit parameters Loff = −1.0 pH and Llin,0 = 4.8 pH. The negative offset
is small and most likely does not have a physical meaning. Using the two fits for I0(Ts) and Llin(Ts), we can also
calculate the expected curves for ω0(Ts), Lc(Ts), and Llin(Ts)/Lc(Ts), cf. dashed lines in panels (b), (c), and (e),
respectively. The latter, Llin/Lc, shows a clear trend for a decrease with increasing temperature, indicating again that
the CPR gets less skewed with increasing Ts, cf. also main paper Fig. 4. The calculation of Lc(Ib, Ts) and ω0(Ib, Ts)
is done via

Lc(Ib, Ts) = Llin(Ts) +
Φ0

2π
√

I0(Ts)2 − I2b
(S93)

and

ω0(Ib, Ts) =
ωb(Ts)

√

1 + Lc(Ib,Ts)
2Lr(Ts)

=
1

CtotLr(Ts)

1
√

1 + Llin(Ts) +
LJ0√

I0(Ts)2−I2

b

1
2Lr(Ts)

(S94)

where in the latter we used the approximation RJ ≫ ωbLJ, i.e., Lc ≈ L∗
c .

D. Internal linewidth κi and resistance Rc vs bias current and temperature

In main paper Fig. 4(a) we show the bias current-tuning curves of the cJJ inductance Lc for varying sample
temperature Ts. For the determination of Lc we use the coupled Eqs. (S40) and (S41). Therefore, we obtain also
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Supplementary Figure 7. Internal linewidth κi and resistance Rc for varying bias current and sample temperatures. (a) Internal
linewidth κi vs bias current Ib for all measurement temperatures Ts in the range from 2.5K to 5.1K. Points are data and dashed lines
are calculated theory lines using Eq. (S96). In panel (b) the constriction resistance Rc vs bias current for three different temperatures
Ts = (2.5, 3.9, 5.1)K is shown. Points are data and the solid black lines are fits using Eq. (S95). In (c) we show Rc at zero bias
current vs temperature Ts. Points are data. The unvertainties in (a)-(c), shown as shaded areas and error bars, respectively, are
related to the uncertainties in κi,b and ωb, cf. Supplementary Note VII B.

the constriction resistance Rc from the microwave behaviour by considering the internal linewidth κi. The internal
linewidth for all Ib and Ts is shown in Supplementary Fig. 7(a). The device shows a strong dependence of κi on both
Ib and Ts, and increases with both. The linewidth tuning range follows similar trends as the resonance frequency
equivalent and grows with increasing temperature. At the lowest temperature, the circuit has a linewidth tuning
range of ∼ 3MHz, which increases up to ∼ 65MHz for highest Ts. We believe the increase of internal loss rate with
both bias current and temperature is related to a locally reduced superconducting energy gap and therefore to an
increased quasiparticle density in the constriction, mainly due to a reduced critical temperature compared to the rest
of the niobium film. It will be interesting to analyze the losses at much lower temperatures in future experiments,
since currently we do not have a solid model to understand the temperature and bias current dependence of κi.
How does this dependence translate to the constriction resistance Rc(Ib, Ts) now? Some examples for its bias-

current-dependence Rc(Ib) are shown in Supplementary Fig. 7(b), the values change by about 3 − 4Ω, interestingly
nearly independent of temperature. The temperature only modifies moderately the zero-bias-current value of Rc and
the bias current required for a certain change. In panel (c) we show the the slight variations of Rc at zero bias current
as a function of temperature, all values are between 10Ω and 7.5Ω with more of an oscillating behaviour than a strong
trend towards decreasing or increasing. The values are close to the resistances Rdc measured in the IV-characteristics
and have a deviation of (Rdc −Rc)/Rdc ∼ 0.02− 0.38.
As an easy approach to obtain a function for κi(Ib), we fit the resistance with a polynomial

Rc(Ib) = R0 +R1I
2
b +R2I

4
b (S95)

with R0, R1 and R2 as fit parameter. The bias-current-dependent internal linewidth can then be written as

κi(Ib) = κb,i +
Rc(Ib)ω

2
bLc(Ib)

2

Rc(Ib)2 + ω2
bLc(Ib)2

Ctot





ωb

1 + Lc(Ib)Rc(Ib)2

Rc(Ib)2+ω2

b
Lc(Ib)2

1
2Lr





2

, (S96)
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where Lc(Ib) is the constriction inductance, ωb is the frequency before cutting, Ctot is the total cavity capacitance
and Lr is the linear inductance of the cavity without the constriction. The curves we obtain from this agree very well
with the experimental data, cf. dashed lines in Supplementary Fig. 7. The inaccuracy in Rc is due to the inaccuracy
of κi,b obtained from analyzing the reference cavity before and after cutting with NIM as described in Supplementary
Note VIIB.

E. The ratio Isw/I0 and comparison with SQUID circuits

To (piecewise) calculate the theoretical curves for the linear-plus-sinusoidal CPRs as shown in main paper Figs. 3
and 4, we use the total phase δ as function of the current I ≤ I0

δ = δJ + δlin

= (−1)n arcsin

(

I

I0

)

+
2π

Φ0
LlinI + nπ. (S97)

and plot the result inverted as I(δ). The corresponding curves for all measurement temperatures relevant in this
paper are shown in main paper Fig. 4 and again in Supplementary Fig. 8(a) for further discussions. Note that there
are also other ways for plotting the CPR, for instance as numerical derivative of the potential Ec(δ), which leads to
exactly the same curves. The measured switching current Isw from the IV-characteristics and from the corresponding
bias-current-tuning of the resonance frequency deviate both considerably from the (expected) critical current I0, that
we obtain from the fit of Lc(Ib). In Supplementary Fig. 8(a), we added as circles the switching current measured
in the microwave experiment and as tringles we highlight the points of I = I0. In panel (b) we plot the ratio
Isw/I0 for both IV-switching-currents and microwave-switching-currents. The two values are very similar, although
for the highest temperature there seems to be a deviation and the microwave-switching currents are somewhat lower,
possibly due to microwave-activated escape of the phase particle from the potential minimum. For the ratio Isw/I0
we find values in the range ∼ 0.65 − 0.84 in the reduced-temperature range 0.42 < Ts/Tcc < 0.86. Except for the
value obtained at the highest temperature in the microwave experiment, there is not a clear trend towards increasing
or decreasing values and the ratio is nearly constant and oscillating around ∼ 0.8. This indicates that most likely
constant-amplitude current noise or a thermal current noise (whose amplitude increases with Ts) cannot be responsible
for the observation of premature switching. Due to this observation we believe that noise by the HEMT, thermal
cavity noise, and environmental noise (e.g. 50Hz noise) are not the culprits.

Interestingly, however, we realized that an almost identical deviation is observable when analyzing the data in Ref.
[S9]. In that work, we have investigated microwave circuits with integrated superconducting quantum interference
devices (SQUIDs) and with no DC bias-current access. The SQUIDs there are also based on niobium and on neon-ion-
beam-patterned nano-constrictions, they even have the same film thickness of ∼ 90 nm. Regarding the constrictions,
we have investigated three different types in Ref. [S9]. One of the three is a 2D cJJ with thickness equal to the
leads (90 nm), and the other two are 3D versions, where the constrictions are thinner than the superconducting leads,
similar to the constrictions studied in the present work. The 3D cJJs only differ in the thickness ∼ 30 nm (3D1) and
∼ 20 nm (3D2). All three types had a length of ∼ 20 nm and a width of ∼ 40 nm, i.e., they are very comparable to
the one described here. By applying an external magnetic field to the circuits, that introduces magnetic flux into the
SQUIDs, the flux-tunability of the resonance frequencies was studied. From a careful analysis of the resulting data,
we determined the circulating ring current Iloop in the SQUID, the switching ring-current Iswloop, where the number
of flux quanta in the loop is jumping, and the theoretical critical current I0 of a single cJJ in the SQUID. We find
that Iswloop/I0 for all three SQUID devices lie in the same range as for the single-cJJ device of the current paper.
For the 2D-SQUID device, the values seem rather constant at lower Ts with a tendency to decrease for the higher
temperatures. For the 3D-SQUIDs the trend suggests that the ratio is actually increasing with temperature, which
would in agreement with the data from the current system. In any case does this similarity in values, but also in trends
for the 3D-cJJs, support the idea that the premature switching has an origin in the intrisic constriction properties
rather in external source. It would be highly unlikely that an external noise source would couple equally into both
systems.

We believe that the suppressed critical current of the constrictions and therefore the premature switching into the
normal state is related to phase slips, and very similar IswI0 values have been reported by both experiments and
theoretical works in the past [S10–S14]. To illuminate the current switching in detail, however, further experiments,
e.g. measuring switching statistics for varying current sweep rates and experiments at lower temperatures, will be
necessary.
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Supplementary Figure 8. Discussion of Isw/I0 and a comparison with the same quantity from SQUID circuits. (a) CPRs for
all measurement temperatures Ts, calculated via Llin and expected critical current I0, for details cf. text. Increasing Ts corresponds
to decreasing I0 and decreasing forward-skewedness of the CPR, which can be seen from the maximum of the curves I0 (triangular
symbols) shifting to smaller phases. Circles are the switching current Isw measured by using microwave reflectometry. (b) Ratio of
measured switching current to CPR critical current Isw/I0 using the data from ω0(Ib) (circles) and from IV-characteristics (squares).
In panel (c) we show data of I loopsw /I0, obtained from experiments with niobium SQUID microwave circuits [S9], where I loopsw is the
maximum circulating ring current in the SQUID loop. The ring current is induced by applying external magnetic flux. Switching loop
currents are observed through flux hysteresis jumps of the circuit resonance frequencies, and the I0 are obtained similarly to here by
a linear-plus-sinusoidal inductance model and by fitting the measured resonance-frequency shifts with magnetic field. There are data
for three different types of cJJs. The cJJ types are a 2D (thickness ∼ 90 nm equal for the leads and cJJ) and two 3D (constriction
thinner than the superconducting leads) versions (thicknesses ∼ 30 nm for 3D1 and ∼ 20 nm for 3D2). Interestingly, I loopsw /I0 for
all three devices lies in the same range as for the device of the present work, although the trends with reduced temperature slightly
differ.

VIII. SUPPLEMENTARY NOTE VIII: ADDITIONAL DATA AND THEORY FOR THE EXTRACTION

OF THE KERR CONSTANT

A. Observation of cavity response nonlinearities and fits in the weakly nonlinear regime

In Supplementary Fig. 9, we show reflection data and corresponding fits of the cavity response around the onset of
nonlinearities in (a) and data only for even higher powers in (b). For the determination of the Kerr anharmonicity
K, we use the reflection data in the weakly nonlinear regime shown in (a), since the data for the higher powers shown
in (b) are beyond the validity of our simple nonlinear model. They show features that cannot be reproduced by our
theory.

In the weakly nonlinear regime, the resonance minimum shifts slightly to lower values with increasing microwave
input power, the total linewidth increases and the resonance shape becomes slightly asymmetric towards the shape
of a Duffing resonance. After a background correction, we use Eqs. (S80)-(S83) to fit the data in two steps. In the
first step, we fit all curves simultaneously with a single K, a single κ0 and a single κnl as fit parameters. For κe and
ω0 we use a constant average value, which we obtained from multiple resonances below the nonlinear regime, and for
P av
in we use the on-chip input power calculated from the VNA output power and the cable attenuation. This first

fit gives already a very good agreement with the data. We use a second round of fitting afterwards to improve the
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Supplementary Figure 9. Cavity resonances in the nonlinear regime. (a) Cavity reflection |S11| in the weakly nonlinear regime.
We define the weakly nonlinear regime as the power range in which the data can be well-described by our model. Input power
increases in steps of 1 dB; top curve: lowest power, bottom curve: highest power. Subsequent datasets are offset by −0.4 dB each for
clarity, colored points are data, black smooth lines are fits. (b) Cavity reflection |S11| for input powers beyond the weakly nonlinear
regime. Data only (no fits), since our model is not able to capture the resonance shapes anymore. Temperature for both panels is
Ts = 3.9K and bias current is Ib = 0. In (a) and (b) the vertical dotted line shows the resonance frequency in the linear regime

fits of panel (a), in which we allow each individual resonance dataset to have its own κnl. The result of this second
round is shown as lines overlaid to the data in Supplementary Fig. 9(a). Strictly speaking this approach is somehow
in contradiction to the model itself, since if the model was completely valid, we would only get a single κnl for all
curves. However, due to the large total cavity linewidth we believe that the background correction is prone to having
small frequency-dependent uncertainties, the external linewidth is also not a constant over the complete resonance
line since it is frequency-dependent, and there might be other contributions to the nonlinearity of κ and κe present
at low powers, e.g. due to nonlinear dielectric losses and two-level systems in the shunt capacitor. The resulting
κnl and the injected κe are shown in Supplementary Fig. 10. We emphasize, that this second round of fitting is not
really necessary and not changing the value of K, its purpose is merely to demonstrate that the resonances can be
well-explained by a single Kerr constant and power-dependent decay rates, although the exact power-dependence of
the decay rates is somewhat obscured when each line gets its own κnl.
To calculate the possible deviation of the fit parameters due to uncertainties in the on-chip input power, we repeat

this procedure for Pmin
in = P av

in − 1 dB and Pmax
in = P av

in +1dB. The resulting values for K+ and K− represent the tips
of the error bars in main paper Fig. 5. We repeat the same routine for each bias current and obtain the values for
K (as well as K+ and K−) plotted in main paper Fig. 5. For higher input powers, cf. data in panel (b), we observe
that the resonances deviate strongly from Duffing resonances. For this reason we exclude the higher powers from the
extraction of K.
To double-check the results for K, that we obtained by this full-model fitting, we also implement a more common

and simple routine for finding K. We know that within our model the microwave probe tone with frequency ω is on
the shifted resonance frequency ω′

0 of the cavity when ∆ = Knc,max with ∆ = ω − ω0. The resonance intracavity
photon number nc,max is the maximum photon number achieved with a constant input power during the frequency
sweep at ω′

0. Equation (S80) then becomes

κeff

2
α0,max = i

√
κeS0e

iϕ (S98)

with κeff = κ0 + κnlnc,max. To calculate nc,max, we then get the magnitude squared of this equation, re-sort some
factors and arrive at

nc,max =
4P av

in

h̄ω

κe

κ2
eff

. (S99)

The only unknown in this relation is then the effective decay rate κeff , but we can easily find its value by the reflection
response S11 at this particular frequency. It can be calculated from (valid in the effective undercoupled regime
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Supplementary Figure 10. The nonlinear damping and external linewidth of the Kerr fitting. (a) Nonlinear damping parameter
κnl for 5 different bias-currents (color-coded) and plotted vs the maximum intracavity photon number on resonance, as obtained from
the second round of fitting, cf. text. (b) the external linewidth κe vs bias-current Ib used for the nonlinear fits and obtained as average
value from multiple resonances in the linear regime. The bias-current-dependence originates most likely from a frequency-dependence
κw(ω) and could be explained by parasitic reflections in the setup or by fitting errors due to Fano resonances. The star symbols
correspond to the 5 bias currents, that are also displayed in (a).

κe < κeff/2)

|S11| = 1− 2κe

κeff
. (S100)

without the knowledge of κnl or nc,max.
We obtain both δω0 = ω′

0 −ω0 and κe/κeff from the data by fitting the resonance minimum with a simple parabola
as shown exemplarily in the inset of Supplementary Fig. 11(a). The shifted resonance frequency ω′

0 is just given by
the frequency coordinate of the parabola minimum and the corresponding |S11| by the corresponding y-axis value of
the minimum. Finally we calculate nc,max.

We repeat this procedure for all powers at a fixed bias current, and then perform a linear fit of δω0 = Knc,max with
K as fit parameter. Doing the same for all bias-currents then gives us the anharmonicity as a function of current.
To consider a ±1 dB uncertainty in input power, which then translates to an error in the intracavity photon number

and finally to an error in anharmonicity, we repeat the same procedure for P
min/max
in = P av

in ± 1 dB. In Supplementary
Fig. 11 we show the result of these fits in comparison with the results obtained from the full response fit explained
above. The short conclusion is that the two approaches lead to nearly identical values for K.

B. Construction of an artificial CPR

To construct the artificial CPR used in main paper Fig. 5 for the calculation of the alternative Kerr constant and
shown in the inset of panel (c), we use the Ansatz of an odd polynomial function

Iar(δ) =
∑

n>0

α2n−1δ
2n−1 (S101)

and the validity of the function is δ ∈ [−π, π[. Outside of the intervall, the function will then be just set to be
periodically repeating. After trying for a bit by hand, we found that restricting ourselves to a few term is sufficient
to model CPR and Kerr simultaneously and we use

Iar(δ) = α1δ + α3δ
3 + α7δ

7 + α15δ
15 (S102)

For the first coefficient, we use the actual slope

α1 =
Φ0

2π(LJ0 + Llin)
(S103)

to ensure that the zero bias-current inductance is not changed by a modified CPR. The second and third coefficients
α3 and α7 are used as fit parameters, and the final coefficient α15 is set to be

α15 = −α1π + α3π
3 + α7π

7

π15
(S104)
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Supplementary Figure 11. Comparing full-model Kerr anharmonicity with the one obtained by a linear-fit approach. (a)
Frequency shift δω0 = ω′

0 − ω0 of the cavity as function of intracavity photon number at the power-shifted resonance frequency ω′
0.

Data are shown for five values of the bias current (color-coded). Circles are obtained from fitting the nonlinear resonances with the
full response model for S11(ω) and naturally lie on a straight line due to the underlying model. Crosses are the result of measuring
just the position of the nonlinear resonance minima and calculating from that the corresponding intracavity photon number nc,max

by hand, cf. text for details and inset for a parabolic fit around one of the resonance minima. Error bars to the crosses consider
±1 dB uncertainty in input power, error shades are the anaologous quantity for the full response model. Brown solid lines are linear
fits δω0 = Knc,max with K as single fit parameter. The values for the extracted K are plotted in (b) as |K| = −K. Circles are the
values of the full response model, crosses from the linear fit, star shaped symbols in the full response data correspond to th ebias
currents discussed in (a). Error bars belong to the circles and correspond to the color shades in (a), error shade in gray belongs to
the crosses and corresponds to the error bars in (a). The dashed line is the theoretical curve based on the linear-plus-sinusoidal model
for the CPR. All values lie within the error range of the experiment.

to ensure that Iar(π) = 0, i.e., that the CPR goes to zero at δ = π We use this function to fit simultaneously the
CPR and the Kerr data. Most likely there are even better fitting polynomial curves, when allowing more or different
terms, but this one is sufficient to demonstrate the principle.
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Nonlinear microwave circuits are key elements for many groundbreaking research directions and tech-

nologies, such as quantum computation and quantum sensing. The majority of microwave circuits with

Josephson nonlinearities to date are based on aluminum thin films; therefore, they are severely restricted in

their operation range regarding temperatures and external magnetic fields. Here, we present the realization

of superconducting niobium microwave resonators with integrated, three-dimensional (3D) nanobridge-

based superconducting quantum interference devices. The 3D nanobridges (constriction weak links) are

monolithically patterned into prefabricated microwave LC circuits using neon focused-ion-beam milling,

and the resulting quantum interference circuits show frequency tunabilities, flux responsivities, and Kerr

nonlinearities on par with comparable aluminum nanobridge devices, but with the perspective of a much

larger operation parameter regime. Our results demonstrate that neon focused-ion-beam milling is a

promising method for fabricating 3D constriction junctions with flexible parameters and reveal great

potential for application of the resulting microwave circuits in hybrid systems with, e.g., magnons and

spin ensembles or in flux-mediated optomechanics.

DOI: 10.1103/PhysRevApplied.21.024051

I. INTRODUCTION

Superconducting microwave circuits with integrated

Josephson junctions (JJs) and superconducting quantum

interference devices (SQUIDs) have led to groundbreak-

ing experimental and technological developments in recent

decades. Both single JJs and SQUIDs constitute a flexi-

ble and designable Josephson or Kerr nonlinearity, while

a SQUID additionally provides in situ tunability of the

resonance frequency by external magnetic flux. Circuits

with large nonlinearities originating from the Josephson

element form artificial atoms and qubits [1,2], which have

been used for spectacular experiments in circuit quantum

electrodynamics [3] and quantum information processing

[4]. Frequency-tunable devices with a small nonlinearity

are highly relevant for quantum-limited Josephson para-

metric amplifiers [5–7], tunable microwave cavities for

hybrid systems with spin ensembles and magnons, disper-

sive SQUID magnetometry [8,9], photon-pressure systems

[10–13], and microwave optomechanics [14–17].

In many of these currently active research fields,

such as flux-mediated optomechanics, hybrid quantum

devices with magnonic oscillators and dispersive SQUID

*kevin.uhl@pit.uni-tuebingen.de
†daniel.bothner@uni-tuebingen.de

magnetometry, it is highly desirable to have frequency-

tunable microwave circuits with small nonlinearity, high

magnetic field tolerance, and (in some cases) a critical

temperature significantly above that of aluminum. The

vast majority of frequency-tunable and nonlinear circuits,

however, use Josephson junctions and SQUIDs made of

aluminum thin films [18,19], a superconducting material

with a critical magnetic field of only Bc ∼ 10–100 mT

and a critical temperature Tc ≈ 1.2–1.5 K for convenient

film thicknesses � 100 nm [20]. For much thinner films

or material variations such as granular aluminum, the crit-

ical fields and temperatures can be considerably higher

[20–22], but at the expense of a very high kinetic induc-

tance, a property often detrimental to high-performance

SQUID operation. An approach that could fulfil the afore-

mentioned wish list is the implementation of microwave

circuits made of niobium [23], niobium alloys [24,25], or

even a high-Tc superconductor such as YBCO [26–28]

with high critical current density and high-field-compatible

Josephson elements such as nanoconstrictions [29–31].

In most efforts so far, however, it has proven difficult

to obtain large-tunability constriction-junction SQUIDs

made of these materials, both in the direct-current (dc)

operation mode and in the microwave domain [30,32–35].

Here, we report the realization of niobium supercon-

ducting quantum interference microwave circuits based on

2331-7019/24/21(2)/024051(19) 024051-1 © 2024 American Physical Society
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neon focused-ion-beam (Ne-FIB) patterned monolithic 3D

nanobridge junctions. Although the SQUIDs in our devices

have a large effective area of about 72 µm2, we achieve

smaller screening parameters than previous 2D niobium

nanobridge SQUID circuits with much smaller loops [30].

A small screening parameter is an important prerequisite

for stable flux tunability of the circuit resonance frequency

and large flux responsivities [36]. In addition, we char-

acterize our nanobridge quantum interference circuits at

varying temperatures in the regime 2.4 < Ts < 3.4 K and

demonstrate that they have a small Kerr nonlinearity of

|K|/2π � 10 kHz, ideal for large dynamic range appli-

cations. Our devices and results show great potential for

dispersive SQUID magnetometry, hybrid systems with

spin ensembles, magnons or cold atoms, and flux-mediated

optomechanics.

II. DEVICES

Our devices are lumped-element microwave circuits,

patterned from a dNb = 90-nm-thick layer of dc magnetron

sputtered niobium on top of a high-resistivity silicon sub-

strate with thickness dSi = 500 µm. The niobium film has

a transition temperature Tc ≈ 8.6 K and a zero-temperature

penetration depth λ0 ≈ 155 nm (see Note II within the

Supplemental Material [37]), and comparable films show

residual normal-state resistivities of ρNb ∼ 8–10 µ� cm at

10 K. The circuits consist of two interdigitated capacitors

(IDCs) combined in parallel and several linear inductors,

and they are capacitively side coupled to a Z0 ≈ 50 �

coplanar waveguide transmission line by means of a cou-

pling capacitance Cc for driving and readout. One of the

devices and its circuit equivalent are shown in Figs. 1(a)

and 1(b), respectively. The width of all lines (fingers and

inductor wires) and the gaps in between two adjacent IDC

fingers is W = 3 µm. At the connection point between the

capacitors and the inductor wires, a square-shaped loop

with an effective area of about 8.5 × 8.5 µm2 (hole size

6 × 6 µm2) is embedded into the circuit, which forms

the SQUID once the nanoconstrictions are introduced; see

Figs. 1(c) and 1(d).

After patterning the circuit itself by means of opti-

cal lithography and reactive ion etching using SF6, the

nanoconstrictions are fabricated into the center of the two

loop arms using a neon focused ion beam. For the sim-

plest constrictions, we cut a narrow 20-nm-wide slot from

both sides into each of the two loop arms, leaving only a

40-nm-wide constriction in the center of each arm. This

type of constriction (thickness equal for the leads and

the constriction) has been referred to as 2D constriction

and has been implemented for both dc and microwave

SQUIDs in the past [30,32,33]. It has also been demon-

strated, however, that 3D versions, i.e., constrictions that

are thinner than the superconducting leads connected to

them, can have superior properties such as less skewed

current-phase relations, smaller critical currents, and lower

flux noise [9,32,38,39]. Furthermore, implementing 3D

constrictions, although usually very challenging to fabri-

cate, allows one to keep the circuit film thickness large, i.e.,

the circuit and loop kinetic inductance small, while at the

same time getting a critical junction current I0 ∼ 10 µA, a

highly desirable range for simultaneously achieving a large

frequency tunability and a small circuit nonlinearity.

For implementation of the 3D versions, we therefore

modify our ion beam scan pattern in a way that the con-

striction is thinned down during the cutting procedure [see

Fig. 1(e)]; more details can be found in Appendix A.

Such a monolithic and so far unexplored Ne-FIB-based

approach for the generation of 3D nanobridges circum-

vents some of the challenges and possible problems of

previously implemented multilayer deposition processes,

such as guaranteeing good galvanic contact between the

layers or dealing with thin additional edges at the bot-

tom of the microwave structures [38,39], two problems

that get increasingly challenging with decreasing constric-

tion thickness. Single-layer processes using electron-beam

lithography (EBL) and reactive ion etching or lift-off on

the other hand cannot be used for the fabrication of 3D

bridges. Ne FIB furthermore allows one to retrim prepat-

terned nanoconstrictions with relative ease compared to

EBL due to the limited multilayer alignment accuracy of

typical EBL machines and the inevitable resist involved.

FIB techniques can finally be used on very uneven sam-

ples, something hard to implement with classical lithogra-

phy techniques. In principle, our fabrication method for 3D

constrictions can also be implemented using other mate-

rials such as aluminum, lead, titanium, or niobium alloys,

and it will be interesting to study the properties of such cir-

cuits nanopatterned by Ne FIB and to compare them with

those obtained using established techniques.

In addition to the manufacturing advantages, our

approach offers the unique opportunity to characterize one

and the same microwave circuit both without and with

the junctions, i.e., one can experimentally determine the

impact of the junctions on the circuit properties. In reverse,

we can also extract with high reliability the properties of

the constrictions themselves, such as the critical currents

as a function of temperature or the linear contribution to

the total junction inductance, which is closely related to

the constriction current-phase relation. We perform these

analyses in more detail below and in the Supplemental

Material [37].

We combine several LC circuits on a single coplanar

waveguide feedline, more specifically four circuits with a

SQUID and three circuits without a SQUID for reference.

The base circuits only differ in the number of fingers in

the IDCs and in the corresponding resonance frequencies

between 3 and 7 GHz. We present data for three of the

SQUID resonators with three different constriction types;

one resonator has 2D constrictions (junction thickness
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(a)

(b)

(f)

(c) (d)

(e)

versus

FIG. 1. A niobium-based quantum interference microwave circuit with monolithic three-dimensional nanobridge junctions. (a)

False-color optical micrograph and (b) equivalent circuit of a typical device. The main circuit inductance (purple) is modeled by a

linear inductor L − Lloop/4 and the two interdigitated capacitors (IDCs; orange) have a total capacitance of C. Each of the two IDCs

has Nidc (here Nidc = 46) fingers with a length of l = 250 µm and a width of W = 3 µm. In the center of the circuit is a loop structure

for the SQUID. The square-shaped loop has a total loop inductance Lloop ≈ 17 pH and the nanobridges (blue) have a constriction

inductance Lc (only �= 0 after junction patterning). The resonant circuit is capacitively coupled to a coplanar waveguide transmission

line with a characteristic impedance of Z0 ≈ 50 � by means of a coupling capacitance Cc (coupling elements green). (c) False-color

scanning electron microscopy (SEM) image of the loop after constriction cutting; (d) enlarged view of a 3D constriction after cutting,

taken with a SEM tilt angle of 30◦. In (a), (c), and (d) niobium is bright gray and colored. The silicon substrate is dark gray. Panel

(e) schematically illustrates the nanoconstriction fabrication. For the 2D constrictions, two narrow slits are patterned into each of the

SQUID arms by a neon focused ion beam; for the 3D constrictions, the nanobridges are additionally thinned down from the top by

the neon beam. (f) Transmission |S21| of one of the circuits (device 3D1) at Ts = 2.5 K before (gray) and after (blue) the constriction

cutting; black lines are fits to the data. Before the junction cutting, the circuit has a resonance frequency ωb and a linewidth κb; after

the cutting the circuit has a resonance frequency ω0 and a linewidth κ0. Values can be found in the main text. From the shift of the

resonance frequency induced by the cutting, we determine the total additional inductance of the constrictions Lc/2.

dJJ = 90 nm) and two resonators have 3D constrictions

with dJJ ≈ 30 nm (3D1) and with dJJ ≈ 20 nm (3D2)

(thicknesses are estimated from the neon ion dose). The

chip is 10 × 10 mm2 large and is mounted onto a printed

circuit board (PCB), to which both the ground planes and

the coplanar waveguide feedlines are connected through

wirebonds. The chip and PCB are placed in a radiation-

tight copper housing and the package—including a magnet

coil fixed to the box—is mounted inside the vacuum cham-

ber of a dipstick that can be inserted into a liquid helium

cryostat. The cryostat allows for high-stability temperature

control in the range 2.4 < T < 7.5 K by a combination of

pumping on the liquid helium container and a feedback

loop using a temperature diode and a heating resistor in the

vacuum compartment where the sample is mounted. The

sample box including the magnet is additionally placed

into a cryoperm magnetic shield and the whole cryostat

is packed into a double-layer room-temperature mu-metal

shield. The microwave input line is strongly attenuated by

30 dB to equilibrate the incoming noise to the sample tem-

perature and the output line is connected to a cryogenic

high-electron-mobility-transistor amplifier. More details

on the experimental setup are given in Appendix B and

Note I within the Supplemental Material [37].

III. IMPACT OF JUNCTION CUTTING

As first step in our device characterization, we measure

the transmission coefficient S21 with a vector network ana-

lyzer (VNA) once before the constriction patterning and

once after. For all data presented here, below, and in the

Supplemental Material [37], the VNA probe tone power
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is chosen to be sufficiently weak, such that all nanocon-

striction circuits are always in the linear response regime.

This corresponds to intracircuit probe photon numbers

n2D
pr < 70, n3D1

pr < 10 and n3D2
pr < 2 for all VNA measure-

ments. In Fig. 1(f), the transmission |S21| at 2.5 K for

device 3D1 is shown in direct comparison for both cases.

From the fits, we obtain the resonance frequencies ωb =
2π · 4.308 GHz (no constrictions) and ω0 = 2π · 4.197

GHz (with constrictions) and therefore we can calculate

the single-constriction inductance from the constriction-

induced frequency shift via

ω0 =
ωb√

1 + Lc/(2L)
. (1)

Here and for all further analyses in this work, we assume

two identical constrictions in each SQUID. Using L =
568 pH, as obtained from a combination of measuring

the temperature dependence of the resonance frequency

and numerical simulations with the software package 3D-

MLSI [40] (see Note II within the Supplemental Material

[37] for all device parameters), we get L3D1
c = 61 pH for

device 3D1.

Additionally, we extract the internal (subscript “i”) and

external (subscript “e”) linewidths from the fit before and

after nanobridge patterning and obtain κi,b = 2π · 73 kHz,

κe,b = 2π · 1.2 MHz without and κi = 2π · 6.5 MHz, κe =
2π · 1.4 MHz with the constriction junctions. Here κb =
κi,b + κe,b and κ0 = κi + κe.

The slight increase in the external linewidth could be

caused by parasitic reflections in the microwave feedlines

and/or cables and by the resulting partial standing wave

pattern, which will lead to the input impedance of the feed-

line at the location of the resonator being different from

50 � in a possibly frequency-dependent fashion. Other

possible causes are parasitic signal paths, e.g., around the

chip [41], leading to frequency-dependent Fano interfer-

ences and fitting errors as described in Ref. [42]. Both

effects could be different before and after the Ne-FIB step

due to the chip being wirebonded for a second time after

the constriction nanopatterning.

The considerable increase in the internal linewidth on

the other hand indicates that cutting the junction has intro-

duced an additional loss channel and we believe that it

is related to an increased quasiparticle density inside the

constriction. First, it has been observed that ion-milled

constrictions have a reduced critical temperature com-

pared to the rest of the niobium film [43–46], which

locally decreases the superconducting gap and increases

the intrinsic thermal quasiparticle density; see also the later

discussion of the temperature dependence of the devices.

Based on this reduced gap, the local quasiparticle density

could even be further increased, since the constriction with

the reduced gap might act as a potential well or trap for

thermal quasiparticles from the leads, similar to what has

been observed in aluminum constrictions or vortex cores

[47,48]. We note that the increase in losses could also be

partly related to generating some normal-conducting nio-

bium at the surface or at the edges of the constriction by

the neon ions. To illuminate the exact loss mechanisms in

detail, however, further and dedicated experiments will be

necessary in the future.

By performing completely analogous experiments

and data analyses for the 2D and 3D2 circuits (see

Appendix D), we extract the corresponding constriction

inductances to be L2D
c = 8 pH and L3D2

c = 103 pH. More

details regarding the three circuits and their basic parame-

ters, L, C, Lloop, Cc, and κi/e, can be found in Note II within

the Supplemental Material [37].

IV. FLUX TUNING

In order to learn more about the nature of the constric-

tions and how our SQUID circuits perform in terms of

frequency tunability, flux responsivity, and the screening

parameter, we apply an external magnetic field to the cir-

cuits that introduces magnetic flux �ext into the SQUIDs.

The constriction inductance Lc we obtained above is

not necessarily a purely nonlinear Josephson inductance,

but might have a linear contribution as well. In many

cases, nanoconstrictions have been found to have forward-

skewed sinusoidal current-phase relationships (CPRs) [33,

38,49–51] and such a skewed sine function can also be

modeled approximately as a series combination of an ideal

Josephson inductance LJ with sinusoidal CPR and a lin-

ear inductance Llin [49], i.e., Lc = LJ + Llin; see Fig. 2(a).

Here, the ideal Josephson inductance would be given by

LJ = LJ0/ cos ϕ, where ϕ is the phase difference across the

junction, LJ0 = �0(2π I0)
−1, and I0 is the critical current

of the junction. The Josephson phase ϕ of each junction

in a symmetric SQUID without bias current is related to

the total flux � in the loop via ϕ = π�/�0. To change

the magnetic flux through the loop, we sweep a dc cur-

rent through the magnet coil attached to the backside

of the chip housing, which generates a nearly homoge-

neous out-of-plane magnetic field at the position of the

SQUIDs.

Figure 2(b) shows the circuit response |S21| of the 3D1

SQUID circuit for several bias fluxes �ext. We observe

that the resonance dip moves to lower frequencies, i.e.,

that the resonance frequency is shifted downwards with

flux, and that the depth of the dip decreases while the

linewidth increases, at least as long as �ext < �0/2 with

the flux quantum �0 ≈ 2.068 × 10−15 Tm2. Over larger

flux ranges, we in fact observe an oscillating behavior

of the resonance frequency ω0(�ext) with a periodic-

ity of �0, reflecting fluxoid quantization in the SQUID

loop; see Fig. 2(c). Very much as suggested by previous

reports [36,38] and as intuitively expected, we observe

that the resonance frequency tuning range (difference
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(a)

(c)

(b)

FIG. 2. Flux tuning the resonance frequency of niobium quantum interference circuits with 2D and 3D constriction junctions. (a)

Circuit equivalent of the SQUID with a linear loop inductance Lloop/2 in each arm and a constriction inductance Lc, modeled by a linear

contribution Llin and a sinusoidal Josephson contribution LJ. We apply an external magnetic field Bext perpendicular to the SQUID loop

to change the inductances LJ(�ext) with the externally applied magnetic flux �ext and with it the resonance frequency of the circuit.

(b) Transmission response |S21| of the 3D1 constriction SQUID circuit for three different external fluxes �ext and Ts = 2.5 K. With

increasing �ext, the resonance shifts towards lower frequencies, indicating an increase in the constriction inductance by flux. Colored

noisy lines are data and black smooth lines are fits. The flux values are �ext/�0 = 0, 0.4, 0.5. From the fits, we extract the resonance

frequency ω0(�ext), which is shown as a function of flux in panel (c) for the three different circuits with three different constrictions.

Insets show sketches of the junction type. Symbols are data and lines are fits from which we extract the screening parameter βL.

Left: 2D constriction with a thickness of about 90 nm. Middle: 3D constriction 3D1 with a thickness of about 30 nm; star-shaped

data points correspond to the data sets in (b). Right: 3D constriction 3D2 with a thickness of about 20 nm. With decreasing thickness

of the constriction, the tuning range gets larger and the screening parameter βL and flux hysteresis (overlap of adjacent flux arches)

decrease.

between the maximum and minimum resonance frequen-

cies) gets larger with decreasing constriction thickness. For

the 2D junctions [left plot in Fig. 2(c)], the total resonance

frequency tuning range that we can achieve is only about

10 MHz and the individual flux arches strongly overlap

with a total observable width of each arch of about 2�0.

For the 3D2 device [right plot in Fig. 2(c)], the tuning

range is about 65 MHz and a flux hysteresis (two possi-

ble resonance frequencies for a single flux value as in the

2D circuit) is not observable in the data. The 3D1 circuit is

somewhere in between, just as it is positioned in Fig. 2(c).

To quantitatively model the flux dependence of the reso-

nance frequency and gather information about LJ and Llin,

we consider a flux-dependent resonance frequency

ω0(�ext) =
ωb

√

1 +
1

2L

(

Llin +
LJ0

cos
(

π �
�0

)

)

. (2)

The relation between the total flux in the SQUID � and the

external flux �ext is given by

�

�0

=
�ext

�0

−
βL

2
sin

(

π
�

�0

)

, (3)

where

βL =
2I0(Lloop + 2Llin)

�0

=
Lloop + 2Llin

πLJ0

(4)

is the effective SQUID screening parameter. The result of

fitting the flux dependence of the resonance frequency with

Eqs. (2) and (3) is shown as lines in Fig. 2(c) and shows

good agreement with the experimental data for all three

circuits.

The fit parameters we obtain for the single-junction

sweetspot inductance LJ0, the single-junction critical cur-

rent I0, the linear inductance contribution Llin, and the

screening parameter βL are summarized in Table I. Inter-

estingly, the extracted inductances do not show the some-

what expected tendency that Llin/LJ0, representing the

024051-5



KEVIN UHL et al. PHYS. REV. APPLIED 21, 024051 (2024)

TABLE I. Nanobridge and SQUID parameters for the three cir-

cuits. Parameters are the same as those for the flux-tuning curve

fits of Fig. 2(c) at Ts = 2.5 K.

Circuit I0 (µA) LJ0 (pH) Llin (pH) βL

2D 65 5 3 1.49

3D1 10 33 28 0.69

3D2 6 58 45 0.59

skewedness of the CPR, decreases with dJJ and I0. As

a consequence of the low critical current in the 3D2

device, however, we obtain a small screening parameter

βL = 0.59 despite our large SQUID loop and a maxi-

mum flux responsivity ∂ω0/∂�ext ≈ 2π · 400 MHz/�0,

on par with similar aluminum constriction devices [52,53]

and highly promising for applications in photon-pressure

systems and flux-mediated optomechanics. The screen-

ing parameters in the optimized aluminum-constriction

circuits in Refs. [52,53] for 50–100-µm2-large SQUIDs

have been obtained as βL = 0.7 and βL = 1.1, respec-

tively, and the flux responsivities used in these experiments

have been between ∂ω0/∂�ext ≈ 2π · 250 MHz/�0 and

∂ω0/∂�ext ≈ 2π · 520 MHz/�0. Therefore, it is now pos-

sible to work with comparable circuits, responsivities,

and screening parameters as before, but at a considerably

higher temperature (here Ts ∼ 2.5 K) and presumably at

much larger magnetic in-plane fields. Note also that the

flux responsivities strongly depend on the linear induc-

tance of the circuit L, which is highly designable and is

currently about 500 pH. With a different circuit layout such

as that in, e.g., Ref. [54] and an even thicker film, L could

be reduced by up to one order of magnitude, thereby also

increasing the tuning range and the flux responsivity by a

factor of about 5 compared to now.

Regarding the increase in the linewidth with flux, which

is visible in the data of Fig. 2(b), we believe that it is

related to a reduction in the superconducting gap with

increasing current in the constriction [50], and the cor-

responding increase in local quasiparticle density, both

by the reduction of the gap itself, but also by trapping

more quasiparticles from the leads. Most likely, there are

additional contributions due to internal and external low-

frequency flux noise and thermal photon occupation of

a nonlinear resonator [19], which at Ts = 2.5–3.5 K is

nth ∼ 10–20 photons for an 4–5 GHz mode based on the

Bose distribution nth = (e�ω0/kBTs − 1)−1.

V. TEMPERATURE DEPENDENCE

An interesting question when characterizing and oper-

ating superconducting microwave devices and SQUIDs at

a temperature several tens of percent of the critical tem-

perature Tc is how the properties depend on the sample

temperature Ts in that regime and if we can extrapolate to

the properties at lower temperatures from that. The most

(a)

(b)

(c)

FIG. 3. Temperature dependence of the circuit and SQUID. (a)

Flux-tuning curve ω0(�ext) of device 3D1 for several different

sample temperatures Ts = 2.4–2.8 K in steps of 0.1 K. Top curve:

lowest temperature. Bottom curve: highest temperature. Circles

are data and lines are fits to Eqs. (2) and (3). From the fits we

extract the critical current of the constriction I0 and the screening

parameter βL; the obtained values for both are shown as circles

in (b) and (c), respectively. (b) Critical current I0 versus the sam-

ple temperature Ts for all three constriction SQUID cavities as

extracted from the corresponding flux-tuning curves. Symbols

are data and lines are fits. From the theoretical fit curves (see

the main text), we can extrapolate to the critical current at mil-

likelvin temperatures and obtain the critical temperatures of the

constrictions T2D
cc = 3.96 K, T3D1

cc = 3.47 K, and T3D2
cc = 3.31 K.

In combination with the temperature dependencies of Lloop and

Llin, we can calculate theoretical lines for βL(Ts), as shown in

panel (c), for all three circuits in comparison to the experimental

data. Inset shows an enlarged view of the data for the 3D samples.

relevant parameters we are going to consider here are the

cavity resonance frequency ω0(Ts), the constriction critical

current I0(Ts), and the SQUID screening parameter βL(Ts)

for all three circuits.

The main results are summarized in Fig. 3. We repeat

the experiment of flux tuning presented in the previous

section for different sample temperatures Ts. From the

transmission curves S21 for varying external flux we extract
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ω0(Ts, �ext) [see Fig. 3(a) for a corresponding dataset of

sample 3D1]. Corresponding datasets for 2D and 3D2 can

be found in Appendix D. For each temperature Ts, we

also measured ωb(Ts), so we have a reference resonance

frequency from before neon irradiation; see also Note II

within the Supplemental Material [37] for the temperature

dependence of the constrictionless 3D1.

We observe in the resonance frequency tuning curves

that with decreasing temperature the zero-flux resonance

frequency gets shifted to larger values, a clear indication

for a reduction of the kinetic inductance both in the con-

strictions and in the rest of the circuit. Furthermore, we

find that the tuning range of the resonance frequency grows

with increasing temperature, indicating that the constric-

tion inductance increases faster than the remaining circuit

inductance, and we observe that the screening parameter

βL decreases, since LJ0 is increasing faster with Ts than the

effective loop inductance Lloop + 2Llin.

For a quantification of these effects, we fit the flux-

tuning data again with the same equations and procedure

as described in the previous section. As a result, we obtain

for each sample LJ0(Ts) and Llin(Ts) (see Note V within

the Supplemental Material [37]), and from the former

we calculate I0(Ts) = �0[2πLJ0(Ts)]
−1. The critical cur-

rents obtained from this are shown for all three circuits in

Fig. 3(b). We model the data with the theoretical Bardeen

expression for the critical current of a constriction [44,55]

I0(Ts) = Ic

[

1 −
(

Ts

Tcc

)2]3/2

, (5)

and find as fitting parameters the critical current at zero

temperature Ic as well as the constriction critical tem-

perature Tcc. As we have already speculated above, the

critical temperature Tcc of the constrictions is considerably

reduced compared to the niobium film to values between

T2D
cc = 3.96 K and T3D2

cc = 3.31 K according to these fits.

Interestingly, similar Tcc values have also been observed

for electron-beam-patterned niobium nanobridges with

comparable critical currents [44]; therefore, the reduced

transition temperature might not actually be related to an

impact of the neon ions. Since according to this fit our data

are taken at Ts > 0.5Tcc, we find that the critical currents

still increase by a factor of 2 in the 2D constrictions and by

about a factor of 3 in the 3D constrictions when approach-

ing Ts → 0 and with respect to the smallest experimental

temperature Tmin
s = 2.4 K.

It is also interesting to discuss the temperature depen-

dence of βL and its projected values in the millikelvin

regime, although this is a bit speculative due to the lim-

ited range of data available. The experimental data shown

in Fig. 4(c) for all three circuits have been obtained from

the flux-tuning fits. For the 2D sample, the values for

βL are found to be between 0.6 and 1.6 in the measured

regime and, for the 3D samples, between 0.4 and 0.8. To

model the temperature dependence, we take into account

the fit curves for I0(Ts) as shown in panel (b), the tem-

perature dependence of the loop inductance Lloop(Ts) as

discussed in Note II within the Supplemental Material [37],

and the temperature dependence of Llin(Ts) that we obtain

by a fit of the experimentally obtained values (see Note

V within the Supplemental Material [37]). We find curves

that coincide very well with the experimental data in the

measured range of Ts and that predict screening parameters

for Ts → 0 saturating around 3.1 for the 2D constrictions

and around 1.8 and 1.9 for the 3D SQUIDs. All these val-

ues are still smaller than or comparable to the millikelvin

screening parameter βL > 3.4 given in Ref. [30] for 2D

niobium constrictions, despite the fact that our SQUID

areas are almost a factor 20 larger.

It seems that the nonsinusoidal CPR of the constric-

tions is currently the main limiting factor for βL in the

3D samples, while in the 2D sample 2L2D
lin ≈ 6 pH and the

screening parameter is limited by the actual Lloop. It will be

interesting to see in future experiments in the millikelvin

temperature regime if these predictions are valid or if so-

far neglected effects will emerge and lead to a different

behavior than expected. With lower-temperature experi-

mental possibilities, it will also be interesting to further

reduce the thickness and critical current of the 3D junc-

tions, which in the current setup with Tmin
s ≈ 2.4 K was

not possible, as can be seen from the very limited temper-

ature range already accessible in the existing 3D devices

with Tcc < 3.5 K.

VI. KERR NONLINEARITY OF THE CIRCUITS

As a final experiment, we determine a very important

parameter of Josephson-based microwave circuits—their

Kerr constant K, also called the anharmonicity or Kerr

nonlinearity, which is equivalent to the circuit resonance

frequency shift per intracavity photon. For many appli-

cations, a small Kerr nonlinearity is highly desired, as it

increases the dynamic range or maximum intracavity pho-

ton number of the device. This is important, for instance, in

parametric amplifiers [5–7,56] and in cavity-based detec-

tion techniques such as dispersive SQUID readout [8,9,

54], SQUID optomechanics [15,57], and photon-pressure

sensing [11,12], where the signal of interest is propor-

tional to the intracavity photon number nc and therefore

profits from high-power detection tones. The origin of

the nonlinearity in our SQUID circuits is the nonlinear

inductance of the nanoconstrictions. In order to access K

experimentally, we implement a two-tone protocol, (see,

e.g., Refs. [56,58]), and measure the equivalent of the ac

Stark shift in the driven circuits. The first microwave tone

of the two-tone scheme is a fixed-frequency pump tone

with variable power Pp and a frequency ωp slightly blue

detuned from the undriven cavity resonance ωp = ω0 + ∆p

with ∆p ∼ κ . For each pump power, we then measure the
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(a) (b)

(c)

(d)

FIG. 4. Two-tone characterization of the SQUID-circuit Kerr nonlinearity. (a) The SQUID circuit transmission response S21 is

probed with a weak microwave signal, while a strong microwave pump tone with fixed frequency ωp and variable power Pp is applied

slightly blue detuned from the cavity resonance ωp − ω0 = ∆p ∼ κ . With increasing Pp, the dressed circuit resonance frequency shifts

towards lower frequencies and the linewidth increases. Five datasets for five different Pp are shown; subsequent datasets are offset by

−0.25 for clarity. From fits (black lines) to the data (blue noisy lines) we calculate the resonance frequency shift δω0 = ω0(Pp) − ω0(0)

and the linewidth κp. The results are shown in panels (b) and (c) for different �ext, temperature Ts = 2.5 K, and sample 3D1. Circles are

data and lines are fits. Star symbols are data points that correspond to the five datasets shown in panel (a). From the fits, we determine

the Kerr nonlinearityK(�ext). We perform this characterization for all three circuits; the result is shown in panel (c) versus the external

flux bias �ext/�0. Symbols are data and dashed lines are theoretical curves based on the flux-tuning curve and Eq. (9), but without

free parameters. Dotted red lines are theoretical curves without the correction factor arising from βL �= 0. Cross symbols in the data of

3D1 correspond to the extracted values from the datasets shown in panels (b) and (c). Error bars take into account uncertainties in the

intracavity photon number nc; see Note VI within the Supplemental Material [37].

pump-dressed device transmission S21 with a small probe

tone; see Fig. 4(a).

What we find qualitatively in this experiment is that,

with increasing pump power, the dressed circuit resonance

frequency shifts towards lower frequencies and that the

internal linewidth of the mode increases; see Fig. 4(a).

For a quantitative analysis, we fit each pump-dressed reso-

nance with a linear cavity response for S21 (see Appendix C

and Note IV within the Supplemental Material [37]), from

which we extract the pump-shifted resonance frequency ω′
0

and the pump-broadened total linewidth κp.

To model the circuit and the results and to extract K,

we use the equation of motion for the complex intracavity

field α:

α̇ =
[

i(ω0 +K|α|2) −
κ0 + κnl|α|2

2

]

α + i

√

κe

2
Sin (6)

with a nonlinear damping parameter κnl, the total input

field Sin, and a normalization such that |α|2 = nc is the

total intracircuit photon number. In the linearized two-tone

regime (pump power 	 probe power; see Appendix C

for details), for the pump-broadened linewidth and the

pump-induced frequency shift δω0 = ω0 − ω′
0, we find the

relations

κp = κ0 + 2κnlnc, (7)

δω0 = ∆p −

√

(∆p −Knc)(∆p − 3Knc) −
κ2

nln
2
c

4
. (8)

Subsequently, we use the δω0 and κp as obtained from the

measurements to determine the intracavity photon num-

ber nc for each Pp without any knowledge of K; see

Appendix C, in particular Eq. (C25). In Figs. 4(b) and 4(c),

the extracted values δω0 and κp are shown for various bias

flux values and plotted versus the intracircuit pump photon

number nc in device 3D1 at a sample temperature Ts = 2.5

K. Both quantities show a nearly linear dependence on the

pump photon number as implemented by our model and

the corresponding slope depends in turn on the bias flux
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�ext. We fit the data using Eqs. (7) and (8) and obtain

K(�ext) for all three devices.

For all circuits, the nonlinearity shown in Fig. 4(d)

increases with increasing flux, but the absolute values dif-

fer by several orders of magnitude. While the 2D circuit

has a Kerr constant of about only 1 Hz, the 3D circuits

possess nonlinearities of 102 to 103 Hz in 3D1 and up to

103 to 104 Hz in 3D2. All nonlinearities can still be con-

sidered small though and are in particular several orders

of magnitude smaller than the cavity linewidths K 
 κ0.

We also observe very good agreement with the theoretical

expression for the Kerr nonlinearity

K = −
e2

2�Ctot

(

LJ

2L + Llin + LJ

)3[

1 + 3� tan2

(

π
�

�0

)]

(9)

with electron charge e, total circuit capacitance Ctot =
C + Cc, reduced Planck constant �, and � = (Llin +
Lloop/2)/(Llin + Lloop/2 + LJ). Note that we apply the

method of nonlinear current conservation discussed in

Ref. [56] to obtain this theoretical expression; see

Appendix E. The unusual tan2 term in the square brackets

of Eq. (9) is, however, not stemming from an asymmetry

or a hidden third-order nonlinearity, it is a correction factor

for perfectly symmetric SQUIDs with screening parameter

βL > 0. How necessary it is to consider this extra term is

revealed by the difference to the simple participation ratio

expression [Eq. (9) with � = 0], which is also shown in

Fig. 4(d) as dotted lines and that, for large flux bias values,

differs from the exact result and the data by up to a fac-

tor of about 4. The excellent agreement between the data

and the theory curves also supports our initial assumption

of (nearly) identical constrictions in each SQUID, since a

junction asymmetry would lead to the flux-tuning curves of

either the resonance frequency or the Kerr anharmonicity

to deviate from the theory assuming symmetric SQUIDs.

VII. DISCUSSION

In summary, we have reported niobium-based super-

conducting quantum interference microwave circuits with

integrated, monolithically fabricated 2D and 3D nanocon-

striction SQUIDs. The successful implementation of 3D

constrictions nanopatterned with a Ne FIB constitutes a

promising addition to the notoriously difficult patterning

methods of such devices, and can also be applied to other

materials such as aluminum or niobium alloys in the future.

Our experimental results revealed that the tuning range and

the flux responsivity of the circuits increase with decreas-

ing constriction thickness and critical current. Strikingly,

our circuits can be operated at temperatures up to about

4 K though, nearly an order-of-magnitude enhancement

over comparable aluminum realizations. The critical cur-

rents we obtained strongly depend on constriction type

and thickness as well as on sample temperature, and we

found values between I0,min ∼ 4 µA and I0,max ∼ 80 µA

in the investigated temperature range. We believe that in

the future we can even achieve critical currents as low

as 1 µA, possibly even in the millikelvin regime. We

have also extracted and modeled the Kerr anharmonic-

ity of all circuits and found values between 0.5 Hz for

the 2D circuits and 10 kHz for the 3D circuit with the

lowest critical current junctions. The overall characteris-

tics of the circuits make them highly promising candidates

for quantum circuit and quantum sensing applications,

in particular when a high dynamic range and high mag-

netic fields will be important such as in spin-qubit cir-

cuit quantum electrodynamics, hybrid quantum devices

with magnonic oscillators, dispersive magnetometry, or

flux-mediated optomechanics.

Depending on the exact requirements of each hybrid

system and experiment, the parameters of the embedding

circuits can be easily adjusted in the future to obtain

much larger (or smaller) frequency tuning ranges, larger

(or smaller) flux responsivities, and larger (or smaller)

Kerr nonlinearities. A good example for how strongly the

embedding circuit impacts these properties is given in

Ref. [54], where two very different resulting circuits are

obtained from identical aluminum constriction SQUIDs by

just choosing very different values for C and L. One of

the circuits can be flux tuned by about 2 GHz, while the

other has a tuning range of about 90 MHz. Using simi-

lar approaches and combining them with the possibility to

adjust the SQUID size, the desired critical currents, and

the operation temperature by at least one order of magni-

tude opens a very large parameter space for the design of

nonlinearities, flux tunabilities, and responsivities.

The most interesting open questions to be investigated

in future experiments are the circuit characteristics at tem-

peratures in the millikelvin regime and in large magnetic

fields, the exact origin of the microwave losses in the

nanoconstriction circuits, and possibilities to reduce them,

as well as a theoretical and experimental investigation of

the noise characteristics in such devices. Finally, it will be

interesting to investigate possibilities to further reduce the

critical currents and the screening parameters, by poten-

tially further reducing the size of the nanoconstrictions in

all three dimensions.

All data presented in this paper and the corresponding

processing scripts used during the analysis are publicly

available online [59].
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APPENDIX A: DEVICE FABRICATION

In this appendix, the sample fabrication is described step

by step, and a schematic representation of the nanocon-

striction fabrication based on Ne-FIB milling is shown in

Fig. 5.

Step 1: microwave cavity patterning. The fabrication starts

with sputtering 90-nm niobium (Nb) on top of a high-

resistivity (ρ > 10 k� m) intrinsic 2-in. silicon wafer.

The wafer thickness is 500 µm. Then, the complete

wafer is covered with a 600-nm-thick layer of ma-P

1205 photoresist by spin coating and structured by

means of maskless scanning laser photolithography

(λLaser = 365 nm). After development of the resist in

ma-D 331/S for 40 s, the patterned side of the wafer

is etched by means of reactive ion etching using SF6.

For cleaning, the wafer is finally rinsed in multiple

subsequent baths of acetone and isopropanol.

Step 2: dicing and mounting for precharacterization. At

the end of the microwave cavity fabrication, the

wafer is diced into individual 10 × 10 mm2 chips.

These chips are individually mounted onto a PCB,

where they are wirebonded to microwave feedlines

and ground, and the complete set of chip and PCB is

packaged into a radiation-tight copper housing. After

mounting into the measurement setup, the precharac-

terization of the device is performed.

Step 3: 2D and 3D constriction fabrications. Each prechar-

acterized LC circuit contains a square-shaped Nb loop

structure with inner dimensions of 6 × 6 µm2 and

a conductor strip width of 3 µm; see Fig. 1. Two

nanoconstrictions are patterned into the opposite sides

of the loops using the focused ion beam of a neon

ion microscope (NIM). The NIM allows for high-

precision milling with a nanoscaled spot-size Ne FIB.

For the 2D constrictions, two approximately 20-nm-

narrow slot-shaped rectangles are ion milled simul-

taneously from both sides into each loop strip with

a dose of 20 000 ions/nm2 and an accelerating volt-

age of 20 kV. Simultaneous here means that the neon

beam is scanned in a pattern that alternates repeatedly

between the left and the right slots. In between the

two slots, a milling gap of 40 nm is left untouched,

where the 2D constriction is formed. The 3D con-

striction patterning is performed in the same way, but

additionally and again simultaneously to the slot rect-

angles the constriction is milled from the top with a

third rectangle, but with a lower ion dose. The exact

value of the constriction dose defines its remaining

thickness. For the 3D1 and 3D2 samples, the doses

were 7500 and 8500 ions/nm2, respectively.

Step 4: device mounting. After the Ne-FIB cutting process

the sample is mounted in the same way as in step 2.

APPENDIX B: MEASUREMENT SETUP

Both the junctionless circuits and the SQUID cavities,

here generically labeled as the devices under test (DUTs),

are characterized in an evacuated sample space located at

the end of a cryostat dipstick, which is introduced into

(a) (b)

FIG. 5. Schematic niobium nanoconstriction fabrication using a neon focused ion beam. (a) Niobium (Nb) strip on a silicon substrate

prepared for cutting a nanoconstriction into it. (b) Fabrication of the two different constriction types discussed in this study using a neon

ion microscope (NIM): left, 2D constriction; right, 3D constriction. The NIM has an atomically sharp beam source (tip) maintained at

a high voltage of 20 kV. Neon gas around the tip gets ionized and the ions are accelerated and focused through several electromagnetic

lenses to form a Ne FIB with a nanoscaled spot size (about 0.5 nm). For the 2D constrictions, the strip is patterned by cutting two

narrow slots from both sides into the strip. Therefore, the nanobridge has the same height as the remaining niobium leads. For the 3D

constrictions, the constriction is also milled and thinned down from the top simultaneously with the slot cutting, just with a smaller ion

dose.
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1 2

Low-noise

amplifier
Low-pass

filter

FIG. 6. Schematic of the measurement setup. In the drawing, the isolation vacuum shield in between the helium container and the

outer world is omitted. Detailed information is given in the text.

a liquid helium cryostat. The cryostat is covered by a

double-layer room-temperature mu-metal shield to pro-

vide magnetic shielding for the whole sample space. A

schematic illustration of the measurement setup is shown

in Fig. 6. The DUT inside the copper housing is attached

to a copper mounting bracket and a magnet coil for the

application of a magnetic field perpendicular to the chip

surface Bext. The magnet coil is connected to a low-noise

current source at room temperature with a twisted pair of

copper wires. The magnet wires are low-pass filtered at

cryogenic temperature with a cutoff frequency at about 3

kHz. Additionally, the DUT is connected to two coaxial
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lines for input and output of the microwave signals. A tem-

perature diode is attached to the sample housing in close

proximity to the sample and both are coupled to the liquid

helium bath via the copper mounting bracket and through

helium exchange gas. For controlling the sample tempera-

ture Ts, the diode is glued with varnish to the DUT copper

housing and a manganin heating resistor (made of a twisted

wire pair to avoid stray magnetic fields) is placed nearby.

Both the temperature diode (four wires) and the heating

resistor (two wires) are also connected via twisted pairs of

copper wire to a temperature controller.

The SQUID cavities are designed in a side-coupled

geometry. Therefore, the input and output signals are sent

and received through two separate coaxial lines in order

to measure the transmission spectrum S21 of the DUT

by a VNA. The input line is attenuated by −30 dB in

order to balance the thermal radiation from room tem-

perature to the cryostat temperature. The attenuators are

mounted in close proximity to the sample in the sample

vacuum space and we assume that they have a temperature

Tatt ≈ Ts. For amplification of the weak microwave signal

used here, a cryogenic high-electron-mobility-transistor

(HEMT) amplifier and a room-temperature amplifier are

mounted in the output line. The cryogenic HEMT is placed

close to the DUT in order to minimize signal losses in

between the sample and the amplifier chain.

For the two-tone experiment, an additional fixed-

frequency microwave pump tone with frequency ωp and

power Pp is sent to the DUT. This pump tone is gener-

ated by a microwave generator and combined via a 10-dB

directional coupler with the VNA signal before entering

the cryostat. In the experiment the VNA and microwave

generator are both referenced to the 10-MHz clock of the

generator.

For cooling the device to temperatures below that of liq-

uid helium THe = 4.2 K, we pump at the helium dewar of

the cryostat and reach down to Ts,min � 2.4 K with the cur-

rent setup. To achieve high-stability (�Ts < 1 mK) tem-

perature control in the most relevant range for this work,

2.4 � Ts � 3.5 K, we use the helium pumping and addi-

tionally heat the sample with the heating resistor whose

power is controlled via a proportional–integral–derivative

feedback loop by the temperature controller.

APPENDIX C: CIRCUIT RESPONSE MODEL

1. Equation of motion and general considerations

We model the classical intracavity field α of the SQUID

circuits with Kerr nonlinearity and nonlinear damping

using the equation of motion [28,60]

α̇ =
[

i(ωc +K|α|2) −
κ + κnl|α|2

2

]

α + i

√

κe

2
Sin. (C1)

Here, ωc is the cavity resonance frequency (= ωb before

cutting and = ω0 after), K is the Kerr nonlinearity (fre-

quency shift per photon), κ is the bare total linewidth (= κb

before cutting and = κ0 after), κnl is the nonlinear damp-

ing constant, κe is the external linewidth (= κe,b before

cutting), and Sin is the input field. The intracavity field is

normalized such that |α|2 = nc corresponds to the intra-

cavity photon number nc and |Sin|2 to the input photon flux

(photons per second) on the coplanar waveguide feedline.

The solution of this equation of motion significantly

depends on the pump power and the number of tones sent

to the cavity. The ideal transmission response function,

however, will always be of the form

Sideal
21 = 1 + i

√

κe

2

α

Sin

(C2)

with the solution of interest α.

2. The linear single-tone regime

In the linear single-tone regime, we set K = κnl = 0.

Then, we can solve the remaining equation by Fourier

transformation and obtain

α =
i
√

κe/2

κ/2 + i(ω − ωc)
Sin. (C3)

The ideal transmission response of a capacitively side-

coupled and linear LC circuit is then given by

Sideal
21 = 1 −

κe

κ + 2i(ω − ωc)
. (C4)

3. The nonlinear single-tone regime

In the nonlinear single-tone regime, we have to solve the

full equation of motion and start by setting the input field

to Sin,st = S0eiφpeiωt with real valued S0. For the intracavity

field, we make the ansatz α(t) = α0eiωt with real valued α0.

The phase delay between input and response is encoded in

φp. Then the equation of motion reads

iωα0 =
[

i(ωc +Kα2
0) −

κ + κnlα
2
0

2

]

α0 + i

√

κe

2
S0eiφp ,

(C5)

which after multiplication with its complex conjugate

yields the characteristic polynomial for the intracircuit

photon number nc = α2
0 :

n3
c

[

K
2 +

κ2
nl

4

]

+ n2
c

[

κκnl

2
− 2K∆

]

+ nc

[

∆2 +
κ2

4

]

−
κe

2
S2

0 = 0. (C6)

Here ∆ = ω − ωc is the detuning between the microwave

input tone and the bare cavity resonance. The real-valued
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roots of this polynomial correspond to the physical solu-

tions for the amplitude α0; the highest and lowest ampli-

tudes are the stable states in the case of three real-valued

roots.

For the complete complex transmission, we also need

the phase φp, which we obtain via

φp = atan2

(

−
κ + κnlnc

2
, ∆ −Knc

)

. (C7)

Having both parts of the complex field solution at hand, we

can also calculate the transmission

Sideal
21,nl = 1 + i

√

κe

2

α0

S0

e−iφp . (C8)

Note that we do not use these equations for any data analy-

sis in this manuscript, but we include them for pedagogical

reasons, since they facilitate understanding the two-tone

regime.

4. The linearized two-tone regime

In the two-tone experiments, we apply a strong pump

tone with fixed frequency ωp and fixed power Pp and

probe the cavity response with a weak additional scanning

tone; the total input is then Sin,tt = S0eiφpeiωpt + Spr(t)e
iωpt.

The probe input amplitude Spr(t) is time dependent and

complex valued. As an ansatz for the intracavity field,

we choose α(t) = α0eiωpt + αpr(t)e
iωpt with a complex and

time dependent αpr(t) and obtain the equation of motion

iωpα0 + iωpαpr + α̇pr

= i[ωc +K(α2
0 + α0(αpr + α∗

pr) + |αpr|2)]α0

+ i[ωc +K(α2
0 + α0(αpr + α∗

pr) + |αpr|2)]αpr

−
[

κ

2
+

κnl

2
(α2

0 + α0(αpr + α∗
pr) + |αpr|2)

]

α0

−
[

κ

2
+

κnl

2
(α2

0 + α0(αpr + α∗
pr) + |αpr|2)

]

αpr

+ i

√

κe

2
S0eiφp + i

√

κe

2
Spr. (C9)

Now we perform the linearization, i.e., we drop all terms

not linear in the small quantity αpr and get

iωpα0 + iωpαpr + α̇pr

=
[

i(ωc +Knc) −
κ + κnlnc

2

]

α0

+
[

i(ωc + 2Knc) −
κ + 2κnlnc

2

]

αpr

+
[

iK −
κnl

2

]

ncα
∗
pr + i

√

κe

2
S0eiφp + i

√

κe

2
Spr.

(C10)

The time-independent terms are identical to Eq. (C6) of the

nonlinear single-tone experiment and allow one to deter-

mine α0 and nc via the characteristic polynomial now. The

remaining equation can be Fourier transformed to give

αpr

χpr

=
[

iK −
κnl

2

]

ncαpr + i

√

κe

2
Spr, (C11)

where

χpr =
1

(κ + 2κnlnc)/2 + i(∆p − 2Knc + Ω)
(C12)

with αpr = α∗
pr(−�), the detuning between the pump and

bare cavity resonance ∆p = ωp − ωc, and the probe fre-

quency with respect to the pump Ω = ω − ωp.

Using the equivalent equation for αpr with Spr = 0, we

get

αpr = iχg

√

κe

2
Spr (C13)

with

χg =
χpr

1 − [K2 + κ2
nl/4]n2

cχprχpr

, (C14)

and, for the two-tone transmission parameter,

Sideal
21,tt = 1 −

κe

2
χg. (C15)

5. The pumped Kerr modes

To find the resonance frequencies of the susceptibility

χg, we solve the complex frequency for which χ−1
g = 0.

The condition is

1 −
[

K
2 +

κ2
nl

4

]

n2
cχprχpr = 0, (C16)

which is solved by

ω̃1,2 = ωp + i
κ + 2κnlnc

2

±
√

(∆p −Knc)(∆p − 3Knc) − κ2
nln

2
c/4. (C17)

The real part corresponds to the resonance frequency

ω1,2 = Re(ω̃1,2) and the imaginary part corresponds to half
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the mode linewidth κ1,2 = 2 Im(ω̃1,2). So, in the regime

where the argument of the square root is > 0 (always

true for our experimental parameters), the system has two

resonances

ω1,2 = ωp ±

√

(∆p −Knc)(∆p − 3Knc) −
κ2

nln
2
c

4
, (C18)

split symmetrically around the pump frequency. In the

experiment and with the parameters we are using, we

observe only one of the two modes though, the one at ω2 =
ω′

0. The shift of this mode with respect to its unpumped

frequency ω0 is given by

δω0 = ∆p −

√

(∆p −Knc)(∆p − 3Knc) −
κ2

nln
2
c

4
. (C19)

When we measure the pumped resonance, we also extract

the pumped linewidth

κp = κ0 + 2κnlnc, (C20)

and so the only free parameter when fitting the resonance

frequency shift versus pump photon number (see the next

subsection) using Eq. (C19) is the Kerr constant K. For

brevity, we also introduce the short version

κ1 = κnlnc. (C21)

6. The intracircuit pump photon number

One might expect that we need to know the value of

K to calculate the intracircuit pump photon number from

the pump-induced frequency shift and linewidth broad-

ening. This is not the case though, which allows us to

first determine nc and subsequently fit the frequency shift

δω0 as a function of nc to extract K from the data. We

start by setting Knc = x and then solving the characteris-

tic polynomial equation (C6) for x. We get (assuming that

nc > 0)

x1/2 = ∆p ±

√

κe

2

nin

nc

−
κ2

eff

4
, (C22)

where nin = S2
0 and κeff = κ0 + κ1. The solution we are

interested in is x2. Substituting this into Eq. (C19), the

frequency relative to the drive

δ =

√

(∆p − x2)(∆p − 3x2) −
κ2

1

4
(C23)

leads to

δ2 =

√

κe

2

nin

nc

−
κ2

eff

4

(

3

√

κe

2

nin

nc

−
κ2

eff

4
− 2∆p

)

−
κ2

1

4
.

(C24)

We can solve this equation for nc, finding that

nc =
2Pp

�ωp

κe

κ2
eff + 4∆̃2

(C25)

with the effective detuning

∆̃2 =
2

9

[

∆2
p + ∆p

√

∆2
p + 3δ2

κ +
3

2
δ2
κ

]

(C26)

and

δ2
κ = δ2 +

κ2
1

4
. (C27)

APPENDIX D: ADDITIONAL DATA

1. Impact of junction cutting in devices 2D and 3D2

In Fig. 1(f), we present the resonances of device 3D1

before and after cutting the nanoconstrictions at Ts = 2.5

K. From the resonance frequencies before and after cutting,

ωb and ω0, respectively, we determine the inductance of a

single constriction Lc in the device via

Lc = 2L

(

ω2
b

ω2
0

− 1

)

; (D1)

see Notes II and III within the Supplemental Material [37].

In Fig. 7 we show the analogous data for the other two

devices of this work, circuits 2D and 3D2.

The resonance frequency of device 2D has shifted

by the cutting from ωb = 2π · 3.995 GHz to ω0 = 2π ·
3.981 GHz, which corresponds to a constriction induc-

tance L2D
c ≈ 8.4 pH. The total linewidth has increased

from κb = 2π · 1.5 MHz to κ0 = 2π · 2.4 MHz. In device

3D2 the impact of the shift was much larger: the res-

onance frequency shifted from ωb = 2π · 5.047 GHz to

ω0 = 2π · 4.811 GHz, which corresponds to L3D2
c ≈ 103

pH. The linewidth increased from κb = 2π · 2.3 MHz to

κ0 = 2π · 24.2 MHz. The observation that the increase in

the linewidths κ is stronger for a larger constriction induc-

tance is not surprising. As we have shown in Fig. 3, the

critical temperature of the constrictions is more suppressed

for thinner constrictions, and so at the fixed temperature

2.5 K the thinner constrictions presumably have a higher

thermal quasiparticle density and at the same time a higher

microwave current density. At this point we cannot exclude

that there are also other mechanisms at play such as nor-

mal conducting contributions at the surfaces or edges of

the constrictions that might increase with neon ion milling

time, but the overall trend is understandable quite intu-

itively from the critical temperature suppression. In Note V

within the Supplemental Material [37], we also discuss the

dependence of the linewidths on the magnetic flux through

the SQUIDs.
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(a) (b)

FIG. 7. Impact of constriction cutting in the 2D and 3D2 circuits. (a) Transmission |S21| versus the probe frequency of circuit 2D

before junction cutting (right, gray noisy line) and after junction cutting at the flux sweetspot (left, blue noisy line). (b) Equivalent to

(a), but for the 3D2 circuit. Both panels: noisy lines are data and black smooth lines are fits. Measurement temperature Ts = 2.5 K. The

resonance frequency and linewidth are ωb and κb before cutting and ω0 and κ0 after cutting. From the shift, we determine the additional

inductance in the circuit Lc/2 (two constrictions in parallel). Values for ωb, κb, ω0, κ0 can be found in the text.

2. Flux-tuning curves versus the sample temperature

in devices 2D and 3D2

In Fig. 3(a) we show flux-tuning curves of the reso-

nance frequency ω0(�ext) for varying sample temperature

Ts in circuit 3D1 and derive from those the critical currents

I0(Ts) and the screening parameters βL(Ts). Since we also

show I0(Ts) and βL(Ts) for the 2D and 3D2 devices, we

present in Figs. 8(a) and 8(b) the corresponding flux-tuning

curves for completeness. For both devices, the sweetspot

frequency at �ext = 0 decreases with increasing Ts due to

the increasing constriction inductance. At the same time

the flux-tuning arches get narrower due to a decreasing

screening parameter βL and an increasing inductance par-

ticipation ratio Lc/L, and the flux-tuning range ωmax
0 –ωmin

0

increases for the same reasons. At the highest tempera-

tures, circuit 2D has a tuning range of about 13 MHz and

circuit 3D2 of about 150 MHz. From the fits to the data, we

extract the screening parameter βL and the linear constric-

tion contribution Llin and calculate the critical current I0.

The screening parameter βL and the critical current I0 are

shown in Figs. 3(b) and 3(c); the linear inductance contri-

butions Llin for all three circuits are shown and discussed

in Note V within the Supplemental Material [37].

Since the linear inductances in the circuit have a kinetic

contribution, the temperature-dependent resonance fre-

quency at the flux sweetspot can be written as

ω0(Ts) =
1

√
Ctot[(L(Ts) + LJ0(Ts) + Llin(Ts)]

, (D2)

where LJ0 = �0[2π I0(Ts)]
−1. In Fig. 8(c), we show the

resonance frequency at the sweetspot of all three devices.

APPENDIX E: CALCULATION OF THE KERR

NONLINEARITY

For the calculation of the Kerr nonlinearity K, we fol-

low the method described in Ref. [56] and start with

the effective one-dimensional potential for the SQUID, in

which each SQUID arm is considered individually (see

also Ref. [28]):

U = 1
2
Earm(ϕleft − ϕ1)

2 + 1
2
Earm(ϕright − ϕ2)

2

− EJ cos ϕ1 − EJ cos ϕ2. (E1)

Here ϕ1, ϕ2 are the phase differences of the two Josephson

junctions, ϕleft and ϕright are the total phase differences of

the left half and the right half of the SQUID loop including

the JJs, and the energies are given by

EJ =
�0I0

2π
, Earm =

�2
0

4π2Larm

(E2)

with Larm = Lloop/2 + Llin. From fluxoid quantization in

the SQUID, it follows that

ϕright − ϕleft = ϕext, (E3)

where ϕext = 2π�ext/�0 is the phase introduced by the

external flux. For a visualization of all variables used in

this appendix, see Fig. 9.

Then, the potential can be written as a function of a

single phase variable ϕs = ϕleft as

U[ϕs] = 1
2
Earm(ϕs − ϕ1[ϕs])

2

+ 1
2
Earm(ϕs − ϕ2[ϕs] − ϕext)

2

− EJ cos ϕ1[ϕs] − EJ cos ϕ2[ϕs], (E4)
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(a) (c)

(b)

FIG. 8. Temperature dependence of the flux-tuning curves and the sweetspot resonance frequencies. (a) Resonance frequency

versus the external bias flux ω0(�ext) in device 2D; symbols are data and lines are fits. Data have been taken at temperatures

Ts = (2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.2, 3.4) K (in order from top to bottom). (b) Equivalent of (a), but for device 3D2. Temper-

atures are Ts = (2.4, 2.5, 2.6, 2.7) K. Data are partly incomplete due to hysteretic jumps (device 2D) and due to insufficient flux

data (�ext/�0 > 0.65 in device 3D2). (c) Resonance frequency of all three circuits at the sweetspot frequency (�ext = 0) versus the

temperature Ts. Symbols are data and the dashed lines are calculated theory lines using Eq. (D2).

and as boundary conditions we have the current conserva-

tion relations [56]

ϕs = ϕ1 + ζ sin ϕ1, (E5)

ϕs = ϕ2 + ζ sin ϕ2 − ϕext, (E6)

where ζ = Earm/EJ = LJ0/Larm.

In order to find the Kerr nonlinearity, we have to Taylor

expand the potential up to fourth order, i.e.,

U(ϕs)

EJ

= c0 + c1(ϕs − ϕs,min) +
c2

2
(ϕs − ϕs,min)

2

+
c3

6
(ϕs − ϕs,min)

3 +
c4

24
(ϕs − ϕs,min)

4, (E7)

where the coefficients are determined by the nth derivative

of the potential evaluated at the phase at the potential well

minimum ϕs,min:

cn =
1

EJ

∂nU

∂ϕn
s

∣

∣

∣

∣

ϕs,min

. (E8)

To find the value for ϕs,min, we demand that in the mini-

mum we have c1 = 0 and, as a result, we get

ϕs,min = 1
2
(ϕ1,min + ϕ2,min − ϕext). (E9)

In the potential minimum, however, i.e., without any phase

excitation, we also have

sin ϕ1,min = − sin ϕ2,min =⇒ ϕ1,min = −ϕ2,min,

(E10)

since the same SQUID circulating current J = −I0 sin ϕ1 =
I0 sin ϕ2 is flowing through both JJs in opposite directions.

Then, using Eq. (E9), we can conclude that

ϕs,min = −
ϕext

2
, (E11)

and using Eq. (E5), we arrive at

ϕ1,min + ζ sin ϕ1,min +
ϕext

2
= 0, (E12)

which is completely equivalent to

�

�0

=
�ext

�0

−
βL

2
sin

(

π
�

�0

)

(E13)

with screening parameter βL, total flux in the SQUID

�, and using the relation ϕ1,min = −π(�)/�0. For the
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FIG. 9. Schematic SQUID circuit with definitions of all vari-

ables used for the calculation of the Kerr constant. Circuit

equivalent of the SQUID with a linear loop inductance Lloop/2

in each arm and a constriction modeled by a linear inductance

Llin and a sinusoidal Josephson contribution LJ. In each arm the

energy EJ + Earm is stored, where EJ is the Josephson energy and

Earm is the energy stored in the linear contribution. Nodes 1 and 2

subdivide the loop into a left half and right half with total phase

differences ϕleft and ϕright between the nodes. The single phase

variable ϕs is identical to ϕleft. The Josephson contributions of the

arms have phase differences ϕ1 and ϕ2, respectively. By applying

an external magnetic field Bext perpendicular to the SQUID loop,

an external phase ϕext is introduced by the external flux �ext.

derivatives, we get

∂U

∂ϕs

= Earm(2ϕs − ϕ1[ϕs] − ϕ2[ϕs] + ϕext), (E14)

∂2U

∂ϕ2
s

= Earm

(

2 −
∂ϕ1

∂ϕs

−
∂ϕ2

∂ϕs

)

, (E15)

∂3U

∂ϕ3
s

= −Earm

(

∂2ϕ1

∂ϕ2
s

+
∂2ϕ2

∂ϕ2
s

)

, (E16)

∂4U

∂ϕ4
s

= −Earm

(

∂3ϕ1

∂ϕ3
s

+
∂3ϕ2

∂ϕ3
s

)

, (E17)

and we can obtain the phase derivatives from Eqs. (E5)

and (E6) as

∂ϕs

∂ϕ1

= 1 + ζ cos ϕ1, (E18)

∂ϕs

∂ϕ2

= 1 + ζ cos ϕ2, (E19)

which can be inverted as

∂ϕ1

∂ϕs

=
1

1 + ζ cos ϕ1

, (E20)

∂ϕ2

∂ϕs

=
1

1 + ζ cos ϕ2

. (E21)

The consecutive derivatives are, for j = 1, 2,

∂2ϕj

∂ϕ2
s

=
ζ sin ϕj

(1 + ζ cos ϕj )3
, (E22)

∂3ϕj

∂ϕ3
s

=
ζ cos ϕj (1 + ζ cos ϕj ) + 3ζ 2 sin2 ϕj

(1 + ζ cos ϕj )5
, (E23)

which we can finally use to express our Taylor coefficients

with ϕ0 = −ϕ1,min = π(�)/�0 as

c2 =
2 cos ϕ0

1 + ζ cos ϕ0

, (E24)

c3 = 0, (E25)

c4 = −2
cos ϕ0(1 + ζ cos ϕ0) + 3ζ sin2 ϕ0

(1 + ζ cos ϕ0)5
. (E26)

The SQUID inductance and Kerr nonlinearity of the

SQUID, when shunted with Ctot, are now given by [56]

Ls =
LJ0

c2

=
1

2
(LJ + Larm) (E27)

and

Ks =
e2

2�Ctot

c4

c2

= −
e2

2�Ctot

(

LJ

Larm + LJ

)3[

1 + 3
Larm

Larm + LJ

tan2 ϕ0

]

,

(E28)

where LJ = LJ0/ cos ϕ0, e is the elementary charge, and �

is the reduced Planck number.

When we add a linear inductance L − Lloop/4 in series,

we get the modified parameters [56]

c̃2 = pc2, (E29)

Ltot =
Ls

p
, (E30)

c̃4 = p4c4, (E31)

K = p3
K, (E32)

where p is the inductance participation ratio

p =
Ls

L − Lloop/4 + Ls

. (E33)

Then, we finally have the explicit expression for the circuit

Kerr nonlinearity

K = −
e2

2�Ctot

(

LJ

2L + Llin + LJ

)3[

1 + 3
Larm

Larm + LJ

tan2 ϕ0

]

.

(E34)
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Note: Parts of this Supplemental Material (Notes II-IV) overlap with and are based on similar considerations
presented in the Supplementary Material of Ref. [28] by (almost) the same authors.

I. SUPPLEMENTAL NOTE I: POWER CALIBRATION

Supplemental Figure 1. Frequency dependence of the input line attenuation. The attenuation is obtained by measuring 200
independent traces in the shown frequency range using the VNA and at Ts = 2.5K. For each frequency point, the signal-to-noise ratio
is determined as the mean-to-standard-deviation-ratio out of the 200 traces. In combination with the frequency-dependent HEMT
noise temperature, the sample temperature and an estimated 1 dB loss between the sample and the HEMT, we obtain the shown
∼ −39± 1 dB of attenuation between the VNA output and the sample. The frequency range contains the resonance frequencies of
the three SQUID cavities 2D, 3D1 and 3D2 presented in the main manuscript and that of an additional cavity 2DL not discussed
here. The resonance of 3D2 is not visible without raw data processing here, cf. also Supplemental Note IV.

We use the input noise of the cryogenic HEMT amplifier in combination with the knowledge of the sample temperature
(more precisely the temperature of the 20 dB attenuator, which is the one closer to the sample) as a calibration method
for the attenuation between the VNA output and the superconducting chip. This allows us to estimate the resulting
input power on the on-chip feedline based on the set VNA output power. For each frequency point in the relevant
frequency range ∆ωatt

2π = 3.8−5.2GHz the signal-to-noise ratio is determined from finding the mean and the standard
deviation of 200 VNA traces. The total thermal noise power referenced to the input of the HEMT is given by

PHEMT = 10 log

(

kB [THEMT + Ts]

1mW

)

+ 10 log

(

fIFBW

Hz

)

(S1)

where kB is the Boltzmann constant, THEMT(ω) = 7.46K− 3
7π

ω
GHz K is the noise temperature of the amplifier according

to the specification datasheet in the frequency window ∆ωatt, and fIFBW is the measurement intermediate frequency
bandwidth (IFBW). We also estimate the loss between sample and HEMT to be ∼ 1 dB. In combination, we get the
frequency-dependent input line attenuation as shown in Supplemental Fig. 1. Note that the frequency range ∆ωatt

contains four resonance dips, three belonging to the SQUID cavities 2D, 3D1 and 3D2 presented in the main manuscript
and one additional SQUID cavity 2DL with long 2D nano-constrictions that is not discussed here (ω0 ≈ 2π ·4.52GHz).
The resonance of 3D2 is not easily visible without a raw data processing, cf. Supplemental Note IV.

II. SUPPLEMENTAL NOTE II: THE CIRCUITS WITHOUT CONSTRICTIONS

A. The lumped element circuit equivalent without the constrictions

In the main manuscript, we discuss data from three distinct microwave circuits, one with 2D nanobridges and two
devices with 3D nanobridges. The basic design of the circuits comprises two interdigitated capacitors with multiple
linear inductors, that are combined into a single one in our model for the sake of simplicity. The interdigitated
capacitors in all circuits have a finger length of 250µm, and a finger and gap width of 3 µm. Only the number of
fingers Nidc differs between the circuits. Note that the finger number Nidc here refers to the total number of fingers
in an IDC, not to the fingers per electrode. We also remark that such a circuit has actually more than one mode, but
we are only focusing on the fundamental mode here, i.e., the one with the lowest resonance frequency.
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We model the circuit (before the constriction cutting) by a parallel RLC circuit with the inductance L, the capacitance
C and the resistance R. The inductance has both a geometric contribution Lg and a kinetic contribution Lk with
L = Lg+Lk, as it is common for superconducting thin film circuits. The parallel RLC circuit is coupled via a coupling
capacitance Cc to the microwave feedline, which is a coplanar waveguide with characteristic impedance Z0 ≈ 50Ω.
The total inductance L contains also the contribution from the SQUID loop self inductance Lloop and so the circuit
inductance without the loop would be given by L− Lloop/4, for a schematic of the circuit (including the constriction
inductances Lc) see main paper Fig. 1(b). The circuit resonance frequency before introducing the constrictions is
given by

ωb =
1

√

L(C + Cc)
(S2)

and the internal and external linewidths are

κi,b =
1

R(C + Cc)
, κe,b =

ω2
bC

2
cZ0

2(C + Cc)
(S3)

which are related to the corresponding quality factors via Qi,b = ωb/κi,b and Qe,b = ωb/κe,b.

B. Circuit parameters from simulations and measurements

The parameters we need for our circuits are the capacitances C and Cc, which in sum give Ctot = C + Cc. On the
inductive side, we need the total inductance L and the loop inductance Lloop. The inductances, however, are both the
sum of a geometric contribution and a kinetic contribution and for the case of the total inductance we get L = Lg+Lk

(analogously of course for the loop inductance). What makes things even more complicated on one hand but also
experimentally accessible on the other hand is that the kinetic contributions are dependent on the niobium London
penetration depth λL, which is a function of sample temperature Ts.
We start our parameter extraction procedure by calculating the total linear inductance L(λL) = Lg+Lk(λL) with the
software package 3D-MLSI [40] for the range 90 nm≤ λL ≤ 250 nm as this is typically the regime of the penetration
depth of our sputtered dNb = 90nm thick niobium films. The relation between the penetration depth and the kinetic
inductance is given by [61]

Lk = µ0gλeff (S4)

where µ0 is the vacuum permittivity, g is a geometrical dimensionless factor taking into account the details of the
superconducting structures and the effective penetration depth λeff of a thin film dNb ≲ λL is [61]

λeff = λL coth
dNb

λL
. (S5)

Then the total inductance is

L = Lg + µ0gλL coth
dNb

λL
(S6)

which we use to fit the numerically obtained L(λL) with g and Lg as fit parameters, cf. Supplemental Fig. 2(a).
In the experiment, we do not vary directly λL but the sample temperatur Ts, the relation between the two is given by

λL(Ts) =
λ0

√

1−
(

Ts

Tc

)4
(S7)

where λ0 is the zero-temperature penetration depth and Tc is the critical temperature. We measure the cavity
resonance frequency ωb(Ts) and hence fit the experimentally obtained data with

ωb(Ts) =
1

√

CtotL(Ts)

=
1

√

√

√

√Ctot

[

Lg + µ0g
λ0

√

1−( Ts

Tc
)
4
coth

[

dNb

λ0

√

1−
(

Ts

Tc

)4
]]

(S8)
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Supplemental Figure 2. Temperature dependence before junction cutting. In (a) we show the total inductance L(λL) of the
cavity vs the London penetration depth λL. The red circles are data obtained from 3D-MLSI simulations using different λL and the
line is a fit using Eq. (S6) with Lg = 511 pH and g = 156 as fit parameter. In panel (b), the cavity resonance frequency ωb is shown
vs sample temperature Ts. The shift in frequency with increasing temperature occurs due to a change of the total circuit inductance
L(Ts) = Lg + Lk(Ts). Circles are data, line is a fit using Eq. (S8) and with Tc = 8.6K, Ctot = 2.404 pF and λ0 = 153 nm as fit
parameters. All data correspond to the circuit 3D1.

with Lg and g as fixed parameters obtained as described above, µ0 = 4π · 10−7 H/m, dNb = 90nm, and Ctot, λ0 and
Tc as fit parameters.
Once we know λ0, we can also calculate the loop inductance

Lloop(Ts) = Lloop,g + µ0gloopλeff(Ts) (S9)

for all measurement temperatures. Using 3D-MLSI the same way as for L of the cavity, we obtain Lloop,g = 12.8 pH
and gloop = 12. For Ts = 2.5K this means Lloop = 17pH.
The next relevant parameter is the coupling capacitance Cc, which we obtain from the measurement of the external
linewidth κe,b, the knowledge of Z0 ≈ 50Ω, ωb and Ctot = C + Cc by using Eq. (S3). Finally, we can also obtain
C = Ctot − Cc. To cross-check the values we obtain by this procedure, we also calculate the capacitances (I) by
using the analytical expression derived in Ref. [62] as well as (II) by doing Comsol Multiphysics simulations. We
find moderate deviations of < 10% between the experimental values (based on the inductance simulation) and the
analytical expression and of < 20% between the experimental values and the Comsol simulations. Since both, the
analytical and the Comsol results overestimate the capacitance we obtain by the procedure described here, we think
that over-etching into the Si substrate when doing the SF6-etch of the Nb (especially in between the fingers), as well
as a finger width slightly smaller than 3 µm, can be identified as the source of these deviations. Supplemental Table I
summarizes all relevant parameters of the three circuits, the temperature-dependent quantities ωb, κe,b and κi,b are
given at Ts = 2.5K.

Supplemental Table I. Simulated and experimental parameters of the three circuits before cutting the nanobridge junctions.
The finger number Nidc refers to the total number of fingers in each IDC. The geometric inductance Lg and the kinetic
geometry factor g are obtained from simulations with 3D-MLSI [40]. From a fit to the temperature-dependence of ωb we obtain
the zero-temperature penetration depth λ0, the critical temperature Tc and the total capacitance Ctot. From the measured
external linwidth κe,b we subsequently find the coupling capacitance Cc and the circuit capacitance C. For completeness we
also give κi,b. All experimental values are given for Ts = 2.5K.

Resonator Nidc Lg (pH) g λ0 (nm) Tc (K) Ctot (pF) C (pF) Cc (fF)
ωb

2π
(GHz)

κe,b

2π
(MHz)

κi,b

2π
(kHz)

2D 100 535 164 157 8.6 2.652 2.613 38 3.994 1.4 89

3D1 92 511 156 153 8.6 2.404 2.373 31 4.308 1.2 73

3D2 76 462 141 153 8.6 1.936 1.903 33 5.047 2.2 120

In addition to the resonance frequency, we also extract the total resonance linewidth κb as a function of temperature,
data for circuit 3D1 are shown in Supplemental Fig. 3. At the elevated temperatures we are operating here Ts ≳ 0.3Tc,
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Supplemental Figure 3. Temperature dependence of linewidth indicates quasiparticle losses. Total circuit linewidth κb/2π vs
sample temperature Ts before cutting the nano-constrictions. The linewidth increases with increasing temperature, indicating growing
losses by thermal quasiparticles in the superconductor. Circles are data for device 3D1, line is a fit using Eqs. (S13, S14) with Aκ as
single fit parameter.

the internal decay rate will be dominated by quasiparticle losses. From the two-fluid model, the effective surface
resistance of a superconductor with the corresponding correction factor for thin films and around the cavity resonance
frequency is given by [61]

Rs,eff =
1

2
ω2
bµ

2
0λ

3
Lσn

nn

n



coth

(

dNb

λL

)

+
dNb/λL

sinh2
(

dNb

λL

)



 , (S10)

where σn is the normal state conductivity, nn is the quasiparticle density and n = nn + ns is the total electron
density with ns being the superconducting charge carrier density (twice the Cooper pair density). The temperature
dependence of the quasiparticle density is given by

nn(Ts)

n
=

(

Ts

Tc

)4

. (S11)

Since the quasiparticle loss channel is equivalent to the inductive channel, the resulting circuit model lumped element
resistance R′ ∝ Rs,eff is expected to be in series with L. We can, however, transform this into the parallel resistor R
via

R =
R′2 + ω2

bL
2

R′
≈

ω2
bL

2

R′
(S12)

where we used ω2
bL

2 ≫ R′2.
Combining this result with Eq. (S3) we get

κi,b(Ts) = ω2
b(Ts)R

′(Ts)Ctot

= Aκω
4
b(Ts)λ

3
L(Ts)

(

Ts

Tc

)4


coth

(

dNb

λL(Ts)

)

+
dNb/λL(Ts)

sinh2
(

dNb

λL(Ts)

)



 (S13)

with the fit parameter Aκ that contains geometry, material properties and other temperature-independent contribu-
tions.
Since we are not certain that we can reliably discriminate between κi,b and κe,b due to cable resonances and impedance
mismatches in the setup leading to Fano interferences, we fit the temperature dependence of the total linewidth using

κb(Ts) = κe,b + κi,b(Ts) (S14)

with κe,b being a constant value we obtain for Ts = 2.5K. The theoretical variation of κe,b for large temperatures
would only be ∼ 140 kHz and is therefore negligible compared to the total linewidth. The agreement between the
experimental data and the fit line is very good, cf. Supplemental Fig. 3, and we obtain nearly identical curves and
agreemeents for all three resonators discussed in this work.
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III. SUPPLEMENTAL NOTE III: THE CIRCUITS WITH CONSTRICTIONS

A. The lumped element circuit equivalent with the constrictions

We observe that cutting the constrictions into the circuit leads to a shift of the resonance frequency and to a broadening
of the resonance linewidth. In agreement with the two-fluid model, we therefore model the circuit elements introduced
by the junction as a constriction inductance Lc in parallel with a constriction resistance Rc. The inductance in turn
we split into a series combination of a nonlinear Josephson part LJ and a linear contribution Llin, cf. Fig. 1(b) of
the main paper. This combination leads to a forward-skewed sinusoidal current-phase relation (CPR), where the
skewedness is related to the ratio LJ0/Llin with LJ0 = Φ0

2πI0
, Φ0 ≈ 2.068 · 10−15 Tm2 and the critical constriction

current I0. Such a skewed CPR is typical for constriction-type Josephson junctions (cJJ) [33, 49]. We note that we
omit any additional capacitance, as according to our simulations the impedance of a possible constriction capacitance
is negligible compared to its inductance impedance.
Hence, the input impedance of a single constriction around the cavity resonance frequency ω ≈ ω0 is given by

1

Zc
=

1

Rc
+

1

iω0Lc
, (S15)

which leads to the total SQUID input impedance

ZS =
1

2

iω0LcRc

Rc + iω0Lc
+ iω0

Lloop

4
. (S16)

The originally purely inductive circuit branch then has the input impedance

ZL = iω0L+
1

2

iω0LcRc

Rc + iω0Lc
. (S17)

If we want to work with a low level of approximation, we transform this impedance into a series impedance of a single
inductor L+ and a resistor R+ by

R+ + iω0L+ =
1

2

ω2
0L

2
cRc

R2
c + ω2

0L
2
c

+ iω0

(

L+
1

2
Lc

R2
c

R2
c + ω2

0L
2
c

)

. (S18)

As a next step and in order to easily integrate this impedance branch into the formalism used here, we now transform
it into a parallel combination of an inductance L∗ and a resistance R∗

1

R∗
+

1

iω0L∗
=

1

R+ + iω0L+
(S19)

from which we find

R∗ =
R2

+ + ω2
0L

2
+

R+
, L∗ =

R2
+ + ω2

0L
2
+

ω2
0L+

. (S20)

We approximate this using R2
+ ≪ ω2

0L
2
+ as

R∗ ≈
ω2
0L

2
+

R+
, L∗ ≈ L+. (S21)

The total linewidth is now given as

κi =
1

C + Cc

1

R
+

1

C + Cc

1

R∗
(S22)

= κi,b + κc (S23)

≈ κc (S24)

and the resonance frequency as

ω0 =
1

√

(C + Cc)L∗

. (S25)
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From measuring ω0 and κc we can then determine Rc and Lc.
For the work presented here, we can even work with a stronger approximation and still only have about 1%−2% error
(obtained from comparing with exact results) in the extracted values, mainly for large flux biases Φext/Φ0 ∼ ±0.5.
Considering additionally R2

c ≫ ω2
0L

2
c we find the expressions

R∗ ≈ 2

(

L+ Lc

2

)2

L2
c

Rc, L∗ = L+
Lc

2
. (S26)

With these, we can write for the internal linewidth and the resonance frequency

κi =
ω2
0L

2
c

2L+ Lc

1

Rc
, ω0 =

1
√

(C + Cc)
(

L+ Lc

2

)

. (S27)

IV. SUPPLEMENTAL NOTE IV: S-PARAMETER BACKGROUND CORRECTION AND FITTING

A. The real transmission function and fit-based background correction

Due to impedance imperfections in both, the input and output lines, the ideal transmission response is modified by
cable resonances and interferences within the setup [41, 42]. Origin of these imperfections are connectors, attenuators,
wirebonds, transitions to or from the PCB etc. in the signal lines. In addition, the cabling has a frequency-dependent
attenuation. To take all these modifications into account, we assume that the final transmission parameter Sreal

21 can
be described by

Sreal
21 =

(

a0 + a1ω + a2ω
2
) [

1− f(ω)eiθ
]

ei(ϕ0+ϕ1ω) (S28)

when the ideal response would be given by

Sideal
11 = 1− f(ω). (S29)

The real-valued numbers a0, a1, a2, ϕ0, ϕ1 describe a frequency dependent modification of the background transmission,
and the phase factor θ takes into account possible interferences such as parasitic signals bypassing the transmission
along the device itself, for instance around the chip. The exact form of f(ω) depends on the experiment performed
(single-tone, two-tone etc).
Our standard fitting routine begins with removing the actual resonance signal from the transmission, leaving us with
a gapped background transmission, which we fit using

Sbg
21 =

(

a0 + a1ω + a2ω
2
)

ei(ϕ0+ϕ1ω). (S30)

Subsequently, we remove this background function from all measurement traces by complex division. The resonance
circle rotation angle θ is then rotated off additionally. The result of both corrections is what we present as background-
corrected data or transmission/response data in all figures. For the power dependence measurements, we determine
the background from the measurement in the linear regime and perform a background correction based on that single
linear response line for all powers.

B. Data-based background correction

As the circuits in our experiments have a rather large linewidth between several MHz and tens of MHz and as the
background transmission cannot be described over such a large frequency span with a simple second order polynomial
as suggested by Eq. (S28), we perform a two-step background correction to obtain as clean S-parameters as possible.
The procedure is exemplarily shown for one resonance of device 3D1 in Supplemental Fig. 4.
In the first step, we record for each measurement (e.g. the one in panel (a)) also the resonance-less transmission
function as shown in panel (b). The resonance-less S21 is obtained by increasing the sample temperature to about
Ts = 3.7K, where the resonance frequency is out of the measurement window and κi is so large that the resonance is
not impacting the data anymore. Then we perform a complex division of the full S21 signal by the bare background

signal Sbg,exp
21 , the result is a resonance with a nearly flat background as shown in (c), the complex-valued version can

be seen in (d). Subsequently, we perform a fit using Eq. (S28) from which we obtain a second background function
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Supplemental Figure 4. Background correction and fitting routine. (a) Transmission |S21| vs probe frequency of the SQUID
circuit 3D1 for a flux bias value close to the flux sweetspot. The absorption resonance dip around 4.197GHz is clearly visible, the
measurement temperature is Ts = 2.5K. (b) Identical to (a), but at an elevated temperature Ts = 3.7K. What we detect here is

the experimental background Sbg,exp
21 , slightly modified by temperature-dependent transmission over the chip and the coldest parts

of the microwave cables. We measure not only the amplitude, but also the phase of S21 and Sbg,exp
21 . (c) Magnitude of S21/S

bg,exp
21

vs probe frequency, the background is nearly a flat line, but not yet at |S21| = 1 as expected for an ideal transmission. (d) Imaginary
part of the background-divided transmission vs the real part. Noisy light blue lines in (c) and (d) are data, black smooth lines are a
fit with Eq. (S28). (e) and (f) show the final background-corrected data, where also the remaining background from the fit is divided
off and the resonance circle is corrected by the Fano rotation θ. Noisy blue lines in (e) and (f) are data, black smooth lines are the
fit curves.

as well as a Fano rotation angle θ. We divide off the fit-background, again by complex division, and finally rotate the
resonance circle by θ around its anchor point. The final result including the corresponding fits can be seen in panels
(e) and (f). For the circuits with constrictions, we perform this data processing with all S21 spectra used for the data
analysis, and all shown resonances have been treated this way. For the data before constriction cutting, we do only
the fit-based background correction.
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V. SUPPLEMENTAL NOTE V: FURTHER DATA AND ANALYSES

A. The linear inductance contribution Llin for all three devices

The linear inductance contribution Llin to the total constriction inductance Lc, which is necessary to model our results,
is in agreement with many reports regarding the current-phase-relation (CPR) of niobium constriction junctions.
Essentially all experiments to date found a forward-skewed sinusoidal CPR for this type of junctions, and such a
CPR is very similar to the CPR of a series combination of a linear inductance and an ideal Josephson inductance
[49]. In order to take this linear inductance and its temperature dependence into account for an extrapolation of the
SQUID and circuit properties to lower temperatures, we analyze and model the data of Llin we have from the limited
range of Ts. In Supplemental Fig. 5 all extracted values for Llin are shown. For all three devices Llin increases with
temperature and the absolute values span between a few pH in device 2D and several 10 pH in devices 3D1 and 3D2,
the values increase with increasing LJ0. Since the linear contribution is a kinetic inductance (the geometric inductance
of a constriction is negligibly small), we model its temperature dependence as

Llin(Ts) = Loff +
Llin,0

1−
(

Ts

Tcc

)4 , (S31)

where Llin,0 is the kinetic inductance at zero temperature, Tcc is the constriction critical temperature, and with Loff

we allow for a possible temperature-independent offset. The result is shown in Supplemental Fig. 5 as solid lines. We
note, that due to the small temperature range we could measure, the model and theory lines are somewhat speculative
and need to be tested in the future by further experiments at lower temperatures. We believe, however, that it is still
useful to extrapolate to lower temperatures by making reasonable assumptions about the temperature-dependence of
I0, Lc and βL, mainly based on theory and earlier results on similar systems. In panel (b), we show Llin/Lc and see a
clear trend for a decrease with increasing temperature, which also is in good agreement with previous reports on the
CPR of constriction junctions, since a decreasing Llin/Lc indicates a reduced skewedness as also found experimentally
for higher temperatures. Theory lines in (b) are just directly calculated using the fit lines for I0(Ts) of main paper
Fig. 3(b) and that of Supplemental Fig. 5(a).
It is worth mentioning that it seems that for low temperatures Ts/Tcc ≲ 0.9 the relative linear contribution in the
3D devices is larger than in the 2D device. The reason behind this observation is currently unclear, but it might be
related to a damage of the Nb in the 3D constrictions by the neon ion beam, which for instance leads to a smaller
superconducting coherence length and therefore deteriorating the constriction quality.

Supplemental Figure 5. Linear contribution Llin to the constriction inductance Lc for all three devices. (a) Linear constriction
inductance contribution Llin as obtained from the flux-tuning curve fits vs sample temperature Ts for all three devices. Symbols
are data, lines are fits. The linear inductance increases with decreasing constriction thickness, i.e., with increasing LJ0, and with
temperature. (b) Participation ratio of the linear inductance Llin to the total constriction inductance Lc vs reduced temperature
Ts/Tcc, demonstrating that with increasing temperature the linear contribution gets less significant. Symbols are data, dashed lines
are calculated from the individual fits of Llin(Ts) and I0(Ts).
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B. The inferred current-phase-relation for all three constriction types

In order to visualize the current-phase-relation (CPR) of the three constriction types, which is consistent with our
experimental findings and our data analyses, we infer a CPR from the model of an ideal Josephson inductance LJ0 in
series with a linear contribution Llin for our three circuits and the temperatures we present in the other parts of the
manuscript. To (piecewise) calculate and plot the CPRs, we use for the total phase φtot as function of the current
I ≤ I0

φtot = φJ + φlin

= (−1)n arcsin

(

I

I0

)

+
2π

Φ0
LlinI + nπ. (S32)

The result is shown in Supplemental Fig. 6. All three constriction types show the expected forward-skewed CPRs and
the skewedness decreases with increasing temperature, which can be seen from the maximum of the curves shifting to
smaller phases, when Ts is increased.

Supplemental Figure 6. Inferred current-phase-relations (CPRs) of all constrictions and all presented temperatures.
CPRs for all three devices at all measurement temperatures Ts, calculated via Llin and I0, details cf. text. (a) circuit
2D at Ts = (2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.2, 3.4)K, (b) circuit 3D1 at Ts = (2.4, 2.5, 2.6, 2.7, 2.8)K and (c) circuit 3D2 at
Ts = (2.4, 2.5, 2.6, 2.7)K. Increasing Ts corresponds to decreasing maximum supercurrent I0 in all panels. All constrictions show the
expected forward-skewed CPRs and the skewedness decreases with increasing temperature, which can be seen from the maximum of
the curves shifting to smaller phases, when Ts is increased.

C. Flux responsivity ∂ω0/∂Φext for all devices vs temperature

Next, we determine the flux responsivity of the three SQUID circuits. The flux responsivity is the derivative of
the resonance frequency with respect to external flux ∂ω0/∂Φext, usually given in Hz/Φ0. This responsivity is an
extremely relevant parameter for instance for flux-mediated optomechanics and magnetomechanics [14–16, 57] or for
photon-pressure circuits [10–12, 53], since it determines by how much the resonance frequency is fluctuating (in first
order) for a given amount of flux fluctuations in the SQUID. In turn, this determines the single-photon coupling rates
to the mechanical oscillator for example. In Supplemental Fig. 7 we plot the derivative of the flux-tuning fit curves
(cf. main paper) for all three devices and at all recorded temperatures. Not surprisingly, and as expected already from
main paper Figs. 3 and 8, we observe that the responsivities increase with increasing temperature and increase with
decreasing constriction thickness. For the 2D device, we find maximum responsivities of about ≳ 80MHz/Φ0 for the
highest temperatures, while for the 3D2 circuit we get up to ≳ 1GHz/Φ0. Even for the lower temperatures, we get still
several hundred MHz/Φ0 for the 3D circuits. The numbers are highly promising for many applications of these circuits,
since many other devices based on aluminum and implemented in recent experiments have still smaller responsivities,
but already led to very high radiation-pressure coupling rates to mechanical oscillators or radio-frequency circuits in
the MHz domain [52, 53].

D. Internal linewidth κi for all devices vs temperature and flux

For several applications such as radiation-pressure experiments, parametric amplifiers or dispersive SQUID magne-
tometry, it is of interest to analyze how the external flux bias affects the losses in the circuit. Therefore, we extract
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Supplemental Figure 7. Flux responsivity of all three circuits for varying sample temperatures. Magnitude of the flux responsivity
∂ω0/∂Φext vs external flux bias Φext for (a) circuit 2D, (b) circuit 3D1 and (c) circuit 3D2. The values are obtained by numerically
calculating the derivative of the flux-tuning fit curves for all devices and all temperatures. The sample temperature Ts is color-coded
into the lines, from dark blue Ts = 2.4K to red Ts = 3.2K. A list of the exact temperatures can be found in the caption of
Supplemental Fig. 6.

Supplemental Figure 8. Internal linewidth κi for all three ciruits for varying sample temperatures. Internal linewidth κi vs
external flux bias Φext/Φ0 for (a) circuit 2D, (b) circuit 3D1 and (c) circuit 3D2 at all measurement temperatures Ts. All circuits
show an increase of κi with increasing flux |Φext/Φ0| and with increasing sample temperature Ts. Temperatures are equal to the
ones in Supplemental Fig. 7. Panel (d) shows κi at the sweetspot (Φext/Φ0 = 0) vs sample temperature Ts.

the internal linewidth κi for all three circuits for different flux bias points Φext/Φ0 and temperatures Ts, cf. Supple-
mental Fig. 8(a)-(c). All three devices show a strong dependence of κi as function of Φext/Φ0 and show an increase
in their linewidth range κmax

i −κmin
i with increasing temperature. At the lowest temperature, circuit 2D has a tuning

range of ∼ 5MHz, which increases up to ∼ 23MHz for highest sample temperature. For circuit 3D1 it increases
from ∼ 10MHz to ∼ 40MHz and for circuit 3D2 from ∼ 28MHz to ∼ 88MHz. We believe the increase of internal
loss rate with both flux and temperature is related to a locally reduced superconducting energy gap and therefore
an increased quasiparticle density in the constriction, mainly due to a reduced critical temperature compared to the
rest of the niobium film. This effect will be enhanced by the external flux bias, since the circulating current through
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the constrictions is further reducing the gap and increasing the quasiparticle density. In Supplemental Fig. 8(d) we
show the increase of κi at the sweetspot (Φext/Φ0 = 0) as function of temperature related to the losses by thermal
quasiparticles in the constriction. It is obvious that the linewidth trends towards smaller values for lower temperatures
in all devices. It will be interesting to analyze the losses at much lower temperatures in future experiments, since
currently we do not have a solid model to understand the temperature and flux dependence of κi and therefore also
cannot make predictions for if and how the losses will saturate in the mK regime.
We show in Supplemental Note VIA, that the external linewidth is only weakly dependent on Φext/Φ0 compared
to κi and this effect is most likely due to a slightly different input impedance of the feedline for different resonance
frequencies. The effect is small compared to the change of internal decay rate though.

VI. SUPPLEMENTAL NOTE VI: ERROR BARS

A. Error bars for the determination of the Kerr constant K

The circuit Kerr nonlinearity K is an important number for high-dynamic-range applications such as parametric
amplifiers, radiation-pressure experiments or dispersive SQUID magnetometry. To reliably determine the value of K
from the pump-induced frequency shift, a good estimate of the intracircuit photon number nc is essential. As discussed
in hte main paper appendix, we use Eq. (34) for calculating nc, but two of the parameters going into that calculation
might come with uncertainties and errors, the on-chip input power Pp and the external linewidth κe. Therefore we
also perform an error estimation for K based on estimated inaccuracies of these two parameters.

Supplemental Figure 9. Error bar calculation using the uncertainties in κe and Pp. (a) Experimentally determined external
linewidth κe/2π of circuit 3D1 vs circuit resonance frequency ω0/2π at Ts = 2.5K. Circles are data, line is a polynomial fit. We
describe our procedure for finding κe and its uncertainty here exemplarily for a flux bias point Φext/Φ0 = 0.14. This particular data
point is displayed as a star. The pump tone is applied blue-detuned from the resonance frequency at ωp as indicated by the black
vertical arrow here. In this case we do not have an experimental value for κe at the pump frequency and therefore use the closest
available one indicated by the light blue arrow. If we have a value sitting exactly at the pump frequency we use that one. Since κe is
a function of frequency but our fitting routine is assuming a frequency-independent κe, we estimate the uncertainty of κe to be given
by the maximum and minimum of all κe-values in a window of width κ0 around ωp or around the point we chose for κe, respectively.
The window for the particular point chosen here is indicated by the vertical black double-arrow and the corresponding vertical dotted
lines. We call the resulting max/min values κ+

e and κ−

e , respectively. Additionally, we take into account a possible uncertainty in the
on-chip pump power by ±1 dB. As a result, we can find the standard nc, the maximally possible n+

c as well as the minimally possible
n−

c . For all three cases, we plot the frequency shift δω0 at the star-marked point vs intracavity photon number in panel (b). Circles
are experimentally obtained data. We perform three individual fits, shown as lines here. The max/min values obtained for K from
these fits plus their fitting errors are plotted as error bars in main paper Fig. 4(d).

For the overall data analysis of the two-tone experiment and to obtain K, we perform first raw data processing of
the transmission response S21 for each pump power as described in Supplemental Note IV. Additionally, we cut out
the visible strong pump tone with fixed frequency ωp from all measurements. As a next step, we extract ω0, κe and
κ0 for all flux bias values by our usual fitting routine, which also means that we have (a rough) knowledge of the
frequency-dependence of κe. Then, we fit κe as a function of ω0 for the whole flux-tuning-range with a fourth order
polynomial, cf. Supplemetary Fig. 9(a). Since we observe that κe is frequency dependent even over a frequency span
of κ0, we find the maximum and minimum possible value κ+

e and κ−

e for each pump power point as discussed in
Supplemental Fig. 9(a) and process these two values as higher and lower errors for nc.
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We estimate the input power on the on-chip feedline by the generator output power and a total input attenuation as
described in Supplemental Note I. Additionally a 10 dB directional coupler and a 1 dB microwave cable are added to
the pump tone to perform the two-tone experiment. As uncertainty of the attenuation and as consequence also of the
input power we assume ±1 dB.
Using Eq. (34) (see main paper appendix) and the inaccuracies we get a highest and a lowest possible intracavity
photon number n+

c and n−

c , respectively, for each pump frequency and pump power point, cf. Supplemetary Fig. 9(b),
where the measured frequency shift δω0 is plotted vs all three photon numbers (lowest, standard, highest). Finally,
we perform a fit for all three cases using Eq. (28) to determine K, K+ and K−. Note that |K−| > |K| > |K+|. The
error bars in K resulting from the fit with n+

c , n
−

c and nc are then given by |K−|− |K| and |K|− |K+| plus their direct
errors obtained by the fit.
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ABSTRACT

Josephson microwave circuits are essential for the currently flourishing research on superconducting technologies, such as quantum
computation, quantum sensing, and microwave signal processing. To increase the possible parameter space for device operation with respect
to the current standards, many materials for superconducting circuits are under active investigation. Here, we present the realization of a
frequency-tunable, weakly nonlinear Josephson microwave circuit made of the high-temperature cuprate superconductor YBa2Cu3O7

(YBCO), a material with a high critical temperature and a very high critical magnetic field. An in situ frequency-tunability of �300MHz is
achieved by integrating a superconducting quantum interference device (SQUID) into the circuit based on Josephson junctions directly writ-
ten with a helium ion microscope (HIM). Our results demonstrate that YBCO-HIM-SQUID microwave resonators are promising candidates
for quantum sensing and microwave technology applications.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0146524

Superconducting microwave circuits with integrated Josephson
junctions (JJs) and superconducting quantum interference devices
(SQUIDs) are central components in many recent groundbreaking
experimental developments.1–7 This is because JJs allow for the circuit
integration of a highly flexible Kerr nonlinearity, and a SQUID pro-
vides additional in situ frequency-tunability by magnetic flux, which
also enables high-precision flux detection. Circuits with large Kerr
nonlinearities constitute artificial atoms and qubits1,2 used for micro-
wave quantum optics, circuit quantum electrodynamics (QED),3 and
quantum computation.4 Small nonlinearities are implemented for
Josephson parametric amplifiers,5–8 tunable microwave cavities for
quantum hybrid systems,9 for microwave SQUID magnetometry,10,11

and for (generalized) radiation-pressure systems.12–16 So far, the stan-
dard superconducting material of choice for most of these devices and
technologies, in particular for the Josephson elements, has been alumi-
num17 due to the high quality and controllability of Al JJs.

Recently, other materials are under intense investigation, for both
the base circuit and the integrated JJs, which do not necessarily have to
consist of one and the same material. One important objective of these
studies is to implement superconducting Josephson circuits with a
high tolerance to external magnetic fields, since this allows for instance
for spin-qubit circuit QED,18,19 advances in flux-mediated optome-
chanics,15,16 dispersive quantummagnetometry10,11 of individual mag-
netic nanoparticles, and potentially even topological quantum

computing.20,21 Microwave resonators without JJs and based on nio-
bium alloys,22–24 on granular aluminum,25 and on YBa2C3O7

26

(YBCO) can provide magnetic-field tolerances up to the Tesla regime.
Regarding the JJs, it has been demonstrated that constriction JJs in nio-
bium27,28 and NbN29 and hybrid JJs based on graphene,30 carbon
nanotubes,31,32 or semiconductors33,34 have shown potential to be inte-
grated into high-field Josephson microwave circuits. Most of these
approaches, however, come with complications, such as non-
sinusoidal current-phase relationships in constrictions35–37 or impose
complex fabrication challenges with limited junction reproducibility.

In this Letter, we report the realization of a superconducting
quantum interference microwave circuit based solely on YBCO. In
addition to having an extremely large critical magnetic field, YBCO
circuits can also be operated at high temperatures, and they have a
large superconducting gap and allow for the implementation of ideal
Josephson tunnel junctions. Our starting point is an inductor–capaci-
tor (LC) circuit that combines two parallel interdigitated capacitors
(IDCs) with linear inductors, cf. Fig. 1. The total capacitance of the
IDCs is C � 520 fF, and the total inductance without the Josephson
junctions is L � 586 pH. The circuit is coupled to a coplanar wave-
guide feedline with a characteristic impedance of Z0 � 54X by means
of a coupling capacitance Cc � 18 fF for driving and readout. The
value for C was obtained through finite element simulations using
Comsol Multiphysics, and the inductance L was calculated from
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Ctot ¼ C þ Cc and the measured circuit resonance frequency, cf. also
supplementary material, Note III. A square-shaped 11:5� 11:5lm2

large loop (inner hole dimensions) for the SQUID is integrated into
the center of the circuit with a loop self-inductance Lloop ¼ 71 pH
obtained from simulations,38 cf. supplementary material, Note III.
Directly at the loop, the circuit is shorted to the ground plane to avoid
charging during the later irradiation with Heþ ions.

As material for our circuits, we chose a commercially purchased
S-type YBCO film from Ceraco with a thickness of tY ¼ 50 nm, depos-
ited via reactive coevaporation and without a buffer layer on a
tMgO ¼ 500lm thick MgO substrate. For protection of the YBCO
film, the wafer was additionally covered in situ with a tAu ¼ 40 nm
film of gold. According to the accompanying datasheet, the critical
temperature of the film is Tc ¼ 89K. For the device fabrication, we
first remove the gold by wet-etching and then perform optical lithog-
raphy with a laser writer to define the circuit and waveguide structures.
Subsequently, we wet-etch the YBCO with phosphoric acid and finally
remove the remaining photoresist with acetone/isopropanol, more
details on the fabrication can be found in the supplementary material,
Note I.

The finished 10� 10mm2 large chip is mounted into a
radiation-tight copper housing and wire-bonded to a printed circuit
board (PCB), which connects the on-chip coplanar waveguide to coax-
ial cables. For the application of an out-of-plane magnetic field, a

magnet coil is attached to the bottom of the copper housing on its
outer wall and the whole configuration is attached to the tip of a
microwave dipstick for measurements in a liquid helium dewar. The
dipstick contains 30 dB of attenuation on the coaxial input line for
equilibrating the thermal noise on the line to Ts ¼ 4:2K and a cryo-
genic high-electron mobility transistor (HEMT) amplifier on the out-
put line. The sample including the magnet, the amplifier, and the
attenuators is covered with a cylindrical cryoperm magnetic shield
when inserted into the liquid helium bath, where all the presented
measurements were taken, cf. also supplementary material, Note II.

After a first characterization in liquid helium, we de-mount the
chip again and perform the helium ion microscope (HIM) irradiation
as described in Refs. 39 and 40 and supplementary material, Note I for
the direct writing of two Josephson junctions into the circuit SQUID
loop. The line dose was DHe ¼ 900 ions/nm, the ion energy
EHe ¼ 30 keV, and the beam current IHe ¼ 840 fA. After the JJ writ-
ing, the chip is re-mounted into the PCB, the Cu housing and the
dewar dipstick and the characterization is continued. As very first
observation, we find that the resonance frequency of the circuit has
shifted from xb ¼ 2p� 8:965GHz before the JJ writing to
x0 ¼ 2p� 8:64GHz after the JJ writing, cf. Fig. 1(c). From the fre-
quency shift and the relation

x0 ¼
xb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
L0J0
2L

r ; (1)

we find the zero-flux inductance of a single junction to be
L0J0 � 90 pH, which would correspond to a critical current
I00 ¼ U0 � ð2pL0J0Þ

�1 � 3:6 lA. From the flux-dependence discussed
below in the context of Fig. 2, however, it turns out that we can best
describe the data with I0 ¼ 4:0lA, i.e., LJ0 ¼ U0 � ð2pI0Þ

�1 ¼ 82 pH,
and a small but finite additional linear inductance Llin � 7:2 pH per
junction that was generated by the HIM irradiation. We believe that
this indicates a slightly non-sinusoidal current-phase relationship,41

a degradation of the YBCO properties next to the actual JJ barrier
by the writing process, a small critical current asymmetry between
the two junctions, or a combination of all three effects.

The total cavity decay rate has approximately doubled after HIM
irradiation, and we have j0 � 2jb, where jb ¼ 2p� 21:2MHz is the
linewidth before the HIM exposure and j0 ¼ 2p� 40MHz after the
HIM exposure. The reason for the large linewidth both before and
after the HIM-JJ introduction is currently unclear, but we suspect that
it is a combination of incompletely etched gold/YBCO, damage of the
YBCO next to the JJs by the helium beam, internal and external flux
noise, and thermal noise in a nonlinear oscillator. Interestingly, the
ratio of internal (i) to external (e) linewidths is nearly unmodified
though ðji=jeÞb � ðji=jeÞ0, indicating that we might additionally be
dealing with cable resonances and the Fano effect, rendering the sepa-
ration of internal and external losses somewhat unreliable.42

When we apply a magnetic field perpendicular to the circuit, we
introduce an external magnetic fluxUext into the SQUID. Figure 2 sum-
marizes our observations for what happens to the circuit resonance fre-
quency x0ðUextÞ in this experiment. We find that x0ðUextÞ is shifting
toward lower values for increasing flux, eventually modulating periodi-

cally with a periodicity of one flux quantum U0 � 2:068� 10�15 Tm2.

The tuning range of xmax
0 � xmin

0 � 2p� 300MHz that we observe
here is a factor of two to three larger than in many similarly weakly

FIG. 1. A YBCO quantum interference microwave circuit with helium-ion-patterned
Josephson junctions. (a) Circuit equivalent and (b) false-color optical micrograph of
a typical device. The circuit main inductance is modeled by a linear inductor L, the
two interdigitated capacitors (IDCs) by a total capacitance C. The center of the cir-
cuit is a loop structure for the SQUID, cf. zoom inset. The square-shaped
11:5� 11:5 lm2 loop has a total loop inductance Lloop, and the Josephson junc-
tions (JJs) have an inductance L0J (only 6¼ 0 after junction writing). The circuit is
capacitively coupled to a coplanar waveguide feedline (center conductor width
S � 37:5 lm, gap-to-ground W � 15lm) with a calculated characteristic imped-
ance Z0 � 54X by means of a coupling capacitance Cc. In (b), YBCO is bright,
the MgO substrate is dark. (c) Transmission jS21j of the circuit at Ts ¼ 4:2 K before
and after the junction writing, black lines are fits to the data. Before introducing the
JJs, the circuit has a resonance frequency xb and a linewidth jb, after the cutting
x0 and j0, respectively. Values can be found in the main text.
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nonlinear Dayem-bridge SQUID-circuits reported for aluminum43,44 or
niobium.28 Also, we do not observe a hysteretic flux response,28,45

which in combination with the large tuning range indicates that the

screening parameter bL ¼
2I0ðLloopþ2LlinÞ

U0
¼

Lloopþ2Llin
pLJ0

is considerably

smaller than 1.
The origin of the resonance frequency shift is a change in the JJ

inductance with total flux U in the SQUID,

LJðUÞ ¼
LJ0

cos p
U

U0

� � ; (2)

where the relation between the external and the total flux is given by

U

U0
¼

Uext

U0
�
bL
2
sin p

U

U0

� �

: (3)

In order to model the resonance frequency shift with external
flux and to extract a numerical value for bL, we fit a single-period flux
tuning curve with

x0 Uextð Þ ¼
xb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
LJðUÞ þ Llin

2L

r : (4)

As fit parameters, we get Llin and I0 as mentioned above, and we
obtain bL � 0:33, which corresponds to Lloop þ 2Llin � 85 pH. This
bL is much smaller than what has been reported for many aluminum
and niobium quantum interference circuits with I0 � 10 lA and simi-
lar or smaller SQUID loop sizes, mostly because many of these have
used nano-constrictions for the JJs,28,43,44,46 which are known to have
a non-sinusoidal current-phase relationship that effectively adds much
more linear inductance Llin to the loop than what we observe here. We
also note that in principle we can fit the dataset without Llin if we leave
bL a completely free parameter and obtain the alternative parameters
Ialt0 ¼ 3:7lA, baltL ¼ 0:35, and Laltloop ¼ 99 pH, which would, however,
mean that the loop inductance is considerably larger than expected
from our simulations, cf. supplementary material, Note III. Additional
data on two more SQUID circuits with even lower critical currents,
lower screening parameters, and a flux tuning range up to � 2GHz
can be found in the supplementary material, Note VIII.

As last important experiment, we determine the circuit Kerr non-
linearity K, since this is an extremely relevant number for high-
dynamic-range applications,47 such as parametric amplifiers,
radiation-pressure experiments, or dispersive SQUID magnetometry.
K is also called anharmonicity, and it is equivalent to the resonance-
frequency-shift per excitation (here, per microwave photon) in a non-
linear oscillator. To do so, we perform a two-tone characterization of
the transmission response, i.e., we continuously pump the circuit with
a fixed-frequency high-power pump tone, that is slightly blue-detuned
from the cavity resonance at xp � x0 þ j and then take a S21 trace of
the pumped cavity with a low-power microwave probe signal, cf. Fig.
3. We repeat this measurement for various pump powers and bias flux
values. With the increase in intracircuit photon number from the
pump tone nc, the resonance frequency gets shifted toward lower fre-
quencies, similar to the Stark effect in quantum optics. In the regime
of our experiment, the frequency shift dx0 ¼ x0

0 � x0 is given by

dx0 ¼ Dp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dp �Knc
� �

Dp � 3Knc
� �

�
j21
4

r

; (5)

where Dp ¼ xp � x0 and, therefore, we obtain K from a correspond-
ing fit of the shift as a function of nc, cf. Fig. 3. The small correction
factor j21=4 with j1 ¼ ðjp � j0Þ=2 (j0 is the linewidth without
pump, jp is the linewidth with pump) reflects a linear increase in the
total linewidth with pump power, cf. supplementary material, Notes
IV and VI.

We perform this experiment for different bias flux values and,
therefore, obtain KðUextÞ=2p with values varying from �8 kHz at the
flux sweetspot (integer flux quanta) to �120 kHz near the resonance
frequency minima at Uext=U0 � 0:5. A comparison of the experimen-
tal data with the theoretical curve

K ¼ �
e2

2�hC

LJ

2Lþ Llin þ LJ

� �3

1þ 3K tan2 p
U

U0

� �� �

; (6)

where K ¼ ðLlin þ Lloop=4Þ=ðLlin þ Lloop=4þ LJÞ reveals good agree-
ment, cf. Fig. 3(c). We believe that the deviations between experimen-
tal data and theory line originate from possible JJ asymmetries and
from insufficient accuracy in the knowledge of the intracircuit pump
photon numbers nc. Details on the theoretical model, the data analysis,
and how we determine intracircuit photon numbers can be found in
the supplementary material, Notes III–IX.

FIG. 2. Flux-tuning the resonance frequency of a YBCO quantum interference cir-
cuit. (a) Transmission response jS21j of the YBCO-HIM-SQUID circuit for three dif-
ferent Uext=U0 ¼ 0:0; 0:4; 0:5. With increasing flux in the SQUID, cf. inset
schematic, the absorption resonance is shifting toward lower frequencies; colored
noisy lines are data, and black smooth lines are fits. From the fits, we extract the
resonance frequency x0ðUextÞ, which is shown as a function of flux in panel (b).
The resonance frequency is modulated periodically with a periodicity of U0. Circles
are data, lines are fits from which we determine the screening parameter
bL ¼ 0:33. Star-shaped data points in (b) correspond to curves in (a).
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In conclusion, we have reported a superconducting quantum
interference circuit based on YBa2Cu3O7 with integrated Josephson
junctions directly written with a helium-ion-microscope. The single-
junction critical current of I0 � 4lA allowed for a small screening
parameter bL � 0:33 and I0 could be varied by several orders of mag-
nitude in future devices just by adjusting the HIM ion dose to the
desired value.39,40 The Kerr nonlinearity in our devices was found to
be�8 kHz to�120 kHz, i.e., sufficiently small to allow for high-power
and high-dynamic-range applications.

One important future direction is to understand and to improve
the large ji in our devices, even without the HIM-JJs, as other YBCO
resonators with similar thickness (but different YBCO specifications)
have shown much smaller decay rates.26,48 It will also be interesting to
investigate the properties of the resonators in large magnetic in-plane
fields up to the Tesla regime, for which we unfortunately currently do
not have a suitable experimental setup. As both YBCO resonators and
YBCO-SQUIDs have been demonstrated to be resilient to magnetic
fields up to the Tesla regime,26,49 we have no reason to doubt that also
the combination of the two will have excellent field-compatibility.
Finally, it will be useful to investigate the temperature dependence and
the noise properties of the presented devices in future experiments.

See the supplementary material for the details on the sample fab-
rication and the experimental setup, and a thorough discussion of the
theoretical background and formal derivations required for this manu-
script and its analyses. We furthermore present there supporting data
and simulation results regarding the circuit before junction writing,
and we discuss our raw data processing and error bar calculations.

Finally, we include also data for two more YBCO HIM-JJ-SQUID cav-
ities, which are not discussed in the main manuscript.
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I. SUPPLEMENTARY NOTE I: DEVICE FABRICATION

• Step 1: Gold patterning.

From the company Ceraco we purchased a two inch MgO wafer (thickness 500 µm) covered with a layer of 50 nm
S-type YBCO. The whole wafer additionally was covered by Ceraco in-situ with an evaporated 40 nm layer
of gold for protection of the YBCO. On the complete wafer, we then perform a first optical lithography step
to define gold marker structures for the later HIM writing of the Josephson junctions. The purpose of these
markers is to focus the He+ ion beam as sharp as possible at the metal edges. The lithography is performed
using a 600 nm thick layer of ma-P 1205 photoresist and a maskless laser writer (wavelength λ = 365 nm, dose
D = 180mJ/cm2). After development of the exposed sample in the developer maD331/s for 30 seconds, the
wafer is inserted into a bath of 50:50 TechniEtchTM ACI2 and H2O for 30 seconds to remove the gold from the
whole wafer surface except for the markers. The wet-etching is stopped by rinsing the sample in ultraclean water.
We make sure that all remaining gold is sufficiently far away from the resonators patterned later (minimum
distance ∼ 100 µm), such that its presence is not impacting the resonance frequency or the quality factor of the
circuits. To finalize this step, the remaining resist is washed of by rinsing the wafer in several subsequent baths
of acetone and isopropyl alcohol (IPA).

• Step 2: Microwave cavity patterning.

As second step, we perform another optical lithography with equal parameters as the one in step 1 to define the
microwave cavity and waveguides structures of the YBCO film. Instead of TechniEtch solution, however, we
use phosphoric acid with a concentration of 0.1% for 340 s for the YBCO wet-etching. The etching is stopped
by rinsing with ultraclean water and finished by cleaning off the remaining photoresist using Acetone and IPA
again.

• Step 3: Dicing and mounting for pre-characterization.

At the end of step 2, we spin-coat the wafer with photoresist for protection and dice it into individual 10 ×
10mm2 large chips for further processing. After cleaning with acetone and IPA, the chip is mounted into a
printed circuit board (PCB), where it gets wire-bonded to microwave feedlines and ground and packaged into
a radiation-tight copper housing. Then the package is mounted into the measurement setup, and the cryogenic
pre-characterization of the resonators is performed.

• Step 4: HIM-JJ fabrication.

After the first characterization in liquid Helium, the chip is unmounted from the PCB again and mounted into a
helium ion microscope (HIM). There, the Josephson junctions are written into the SQUID loops of three different
microwave circuits with doses DHe,1 = 800 ions/nm, DHe,2 = 900 ions/nm and DHe,3 = 1000 ions/nm. For the
junction writing, the circular He-ion-beam with a spot-diameter of 0.5 nm, an ion energy EHe of 30 keV and a
beam current of 840 fA irradiates pixel-by-pixel a single line along each JJ with a time-per-pixel of t1 = 38 µs,
t2 = 43µs, t3 = 48µs and a pixel-to-pixel distance of 0.25 nm.

• Step 5: Device mounting.

After the HIM writing process the sample is mounted in the same way as in step 3.

II. SUPPLEMENTARY NOTE II: MEASUREMENT SETUP

Both the junction-less circuits and the SQUID cavities, here generically named device under test (DUT), are char-
acterized in a microwave dipstick, which is introduced into a liquid helium transport dewar. The sample space is
covered by a long cryoperm magnetic shield cylinder, which is open at one side but filled with liquid He completely in
the dewar during the measurements. A schematic illustration of the measurement setup is shown in Supplementary
Fig. 1. The DUT inside the radiation-tight copper housing is attached to a copper mounting bracket and a magnet
coil for the application of a magnetic field perpendicular to the chip surface Bext. The magnet coil is connected to a
low noise current source at room temperature with a twisted pair of copper wires. Additionally the DUT is connected
to two coaxial lines for input and output of the microwave signals.
The SQUID cavities are designed in a side-coupled configuration, cf. also main paper Fig. 1. Therefore the input and
output signals are sent and received through two separate coaxial lines in order to measure the transmission spectrum
S21 of the DUT by means of a vector network analyzer (VNA). The input line is attenuated by −30 dB in order to
balance the thermal radiation from room temperature to the temperature of liquid helium. For amplification of the
weak microwave signals used here, a cryogenic high electron mobility transistor (HEMT) amplifier is mounted to the
output line. This cryogenic HEMT is placed close to the DUT in order to minimize signal losses between the sample
and the amplifier.
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1 2

Supplementary Figure 1. Schematic of the measurement setup. Detailed information is given in the text.

For the two-tone experiment an additional fixed-frequency microwave pump tone with frequency ωp and power Pp

is sent to the DUT. This pump tone is generated by a microwave generator and combined via a 10 dB directional
coupler with the VNA signal before both enter the crygenic environment on a single coaxial line. In the experiment
the VNA and microwave generator are both referenced to the 10MHz clock of the generator.
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III. SUPPLEMENTARY NOTE III: THE CIRCUIT MODEL

A. The circuit equivalent without the JJs

The basic design of the circuit comprises two interdigitated capacitors with multiple linear inductors, that are combined
into a single one in our model for the sake of simplicity. The interdigitated capacitors in the circuit have a finger
length of 100 µm, a finger width of ∼ 1.5 µm and gap width of 4.5 µm, and a total finger number Nidc in each capacitor.
For the circuit discussed in the main manuscript Nidc = 68.
We model the circuit (before the junction writing) by a parallel RLC circuit with the inductance L, the capacitance
C and the resistance R. Note that the inductance has both a geometric contribution Lg and a kinetic contribution
Lk with L = Lg + Lk, as it is common for superconducting thin film circuits. The parallel RLC circuit is coupled
via a coupling capacitance Cc to the on-chip microwave feedline, which is a coplanar waveguide with characteristic
impedance Z0 ≈ 50Ω. The total inductance L contains also a contribution from the SQUID loop, which we denote
as Lloop and so the circuit inductance without the loop would be given by L − Lloop/8, since half of the loop is not
contributing to the microwave mode. For a schematic of the circuit and a corresponding optical micrograph see main
paper Fig. 1. The circuit resonance frequency before writing the Josephson junctions (JJs) is given by

ωb =
1

√

L(C + Cc)
(S1)

and the internal and external linewidths are

κi,b =
1

R(C + Cc)
, κe,b =

ω2
bC

2
cZ0

2(C + Cc)
(S2)

which are related to the corresponding quality factors via Qi,b = ωb/κi,b and Qe,b = ωb/κe,b.

B. Circuit parameters from simulation and measurements

We simulate the circuit capacitance with Comsol Multiphysics and obtain for the circuit presented in the main
manuscript C = 520 fF. The remaining parameters we obtain from the experiments and the data analysis. From
a simultaneous consideration of κe,b and ωb we can find the coupling capacitance Cc ≈ 18 fF and the total linear
inductance L = 586 pH. The total inductance L = Lg + Lk, however, is the sum of a geometric contribution Lg and
a kinetic contribution Lk, and an analogous consideration holds for the loop inductance Lloop,g + Lloop,k. Formally,

Supplementary Figure 2. Determination of the penetration depth λL and the loop inductance Lloop. In (a) we show the total
inductance L(λL) of the cavity 2 vs the London penetration depth λL. The red circles are obtained from 3D-MLSI simulations using
different λL and the line is a fit using Eq. (S5) with Lg = 332 pH and g = 210 as fit parameter. Comparing the experimentally
obtained total inductance L = 586 pH of the cavity, we get a corresponding London penetration depth λL = 217 nm as is highlighted
with arrows and a star. In panel (b), the total loop inductance Lloop is shown vs λL. The red circles are also data obtained from
3D-MLSI simulations using different λL and the line is a fit using Eg. (S6) with Lloop,g = 29 pH and gloop = 35 as fit parameter.
Once we know λL for our cavity from (a), we can determine Lloop = 71 pH, just as highlighted with the arrows and a star.

the kinetic inductance of the circuit can be written as [2]

Lk = µ0gλeff (S3)
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where µ0 is the vacuum permeability, g is a dimensionless geometrical factor taking into account details of the
superconducting structures and λeff is the effective penetration depth, related to the London penetration depth λL

and the YBCO film thickness tY via

λeff = λL coth
tY
λL

. (S4)

In order to find values for g and λL and to afterwards estimate also the loop self-inductance Lloop, we calculate the total
linear inductance L(λL) = Lg +Lk(λL) using the software package 3D-MLSI [1] for the range 120 nm ≤ λL ≤ 300 nm
as this is typically the regime of the penetration depth of our tY = 50nm thick YBCO film. The total inductance is
then

L = Lg + µ0gλL coth
tY
λL

(S5)

which we use to fit the numerically obtained L(λL) with g and Lg as fit parameters, cf. Supplementary Fig. 2(a). By
comparing the experimentally obtained inductance with the numerically obtained L(λL), we find the corresponding
London penetration depth λL = 217 nm of our YBCO film, which is in good agreement with values reported in
literature [3]. Once we know λL, we can also determine the loop inductance from the analogously obtained simulation
dataset

Lloop = Lloop,g + µ0gloopλL coth
tY
λL

. (S6)

using 3D-MLSI the same way as for L(λL). As final result for λL = 217 nm, we obtain Lloop,g = 29pH, gloop = 35
and Lloop = 71pH, cf. Supplementary Fig. 2(b).
We perform a similar analysis for all three circuits that we have characterized and find that the exact parameters
slightly vary between the devices, but overall are in good agreement with each other. Supplementary Tab. I summarizes
all relevant parameters of the three different circuits, into which we have written HIM-JJs with the three different ion
doses mentioned in Supplementary Note I. The cavity discussed in the main manuscript is circuit 2. Cavities 1 and 3
are briefly discussed in Supplementary Note VIII.

Supplementary Table I. Simulated and experimental parameters of the three circuits before writing the Josephson junctions.
The finger number Nidc refers to the total number of fingers of each capacitance. The capacitance C is obtained via simulation
with Comsol Multiphysics. From the measured κe,b and ωb we get the coupling capacitance Cc and the total inductance L
of each cavity. By cross-checking the experimentally obtained inductance with simulations of 3D-MLSI, cf. Supplementary
Fig. 2, we get the London penetration depth λL and the loop inductance Lloop. For completeness we also give κi,b as obtained
from the experiment.

Cavity no. Nidc C (fF) Cc (fF) g Lg (pH) L (pH) Lloop (pH) λL (nm) ωb

2π
(GHz)

κe,b

2π
(MHz)

κi,b

2π
(MHz)

1 72 549 24 218 345 644 77 232 8.285 11.5 12.5

2 68 520 18 210 332 586 71 217 8.964 7.8 13.4

3 64 491 34 203 320 537 66 205 9.482 32.7 13.0

C. The circuit equivalent with the JJs

Writing the junctions into the circuit leads to a shift of the resonance frequency due to the additional inductance of
the Josephson junctions. We model the total additional inductance via two parallel Josephson inductances

LJ =
Φ0

2πI0 cos
(

π Φ
Φ0

) , (S7)

each in series with an additional linear inductance Llin, that was generated by the writing process. This linear
contribution could either originate from a change of the YBCO properties in vicinity of the JJs due to stray radiation
or from a slightly non-sinusoidal current-phase-relation of the JJs. We note that we omit any additional capacitance, as
according to our simulations the impedance of the JJ capacitance is negligible compared to its inductance impedance.
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Hence, the new resonance frequency after JJ writing and for zero bias-flux is given by

ω0 =
1

√

(C + Cc)
(

L+ Llin+LJ0

2

)

=
1

√

(C + Cc)
(

L+
L′

J0

2

)

=
ωb

√

1 +
L′

J0

2L

. (S8)

From measuring ω0 we can then determine L′

J0 = Llin + LJ0 with LJ0 = Φ0/(2πI0). The relevant equations for the
case of Φext ̸= 0 and how the external flux is related to the total flux in the SQUID Φ are presented in the main
manuscript, cf. also Supplementary Note IX.

IV. SUPPLEMENTARY NOTE IV: NONLINEAR CAVITY MODEL AND THE TRANSMISSION S21

A. Equation of motion and general S21

Wemodel the classical intracavity field α of the quantum interference circuits with Kerr nonlinearity using the equation
of motion

α̇ =

[

i(ωc +K|α|2)−
κ+ κnl|α|

2

2

]

α+ i

√

κe

2
Sin. (S9)

Here, ωc is the cavity resonance frequency (= ωb before cutting and = ω0 after), K is the Kerr nonlinearity (frequency
shift per photon), κ is the total linewidth (= κb before JJ writing and = κ0 after), κe is the external linewidth and
Sin is the input field. We also include a possible nonlinear damping term κnl|α|

2, that we need since we observe a
power-dependent total linewidth in the two-tone experiment. The intracavity field is normalized such that |α|2 = nc

corresponds to the intracavity photon number nc and |Sin|
2 to the input photon flux (photons per second).

The solution of this equation of motion depends significantly on the drive power and the number of tones sent to the
cavity. The ideal transmission response function, however, will always be of the form

Sideal
21 = 1 + i

√

κe

2

α

Sin
(S10)

with the solution of interest α.

B. The linear single-tone regime

In the linear single-tone regime, we set K = 0 and κnl = 0. Then, we can solve the remaining equation by Fourier
transform and obtain

α =
i
√

κe

2
κ
2 + i(ω − ωc)

Sin. (S11)

The ideal transmission response of a capacitively side-coupled and linear LC circuit is then given by

Sideal
21 = 1−

κe

κ+ 2i(ω − ωc)
. (S12)

We use this equation to fit all the data with a linear cavity response, also the ones in the two-tone experiment.

C. The nonlinear single-tone regime

In the nonlinear single-tone regime (which we are not considering experimentally here), we have to solve the full
equation and start by setting the input tone to Sin = S0e

iωt with real-valued S0. For the intracavity field, we make
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the Ansatz α(t) = α0e
−iφpeiωt with real-valued α0 and the phase delay between probe and response of ϕp. Then the

equation of motion reads

iωα0 =

[

i
(

ωc +Kα2
0

)

−
κ+ κnlα

2
0

2

]

α0 + i

√

κe

2
S0e

iφp (S13)

which after multiplication with its complex conjugate yields the characteristic polynomial for the intracircuit photon
number nc = α2

0

[

K2 +
κ2
nl

4

]

n3
c +

[κκnl

2
− 2K∆

]

n2
c +

[

∆2 +
κ2

4

]

nc −
κe

2
S2
0 = 0. (S14)

Here ∆ = ω − ωc is the detuning between the microwave input tone and the bare cavity resonance. The real-valued
roots of this polynomial correspond to the physical solutions for the amplitude α0 now, the highest and lowest
amplitudes are the stable states in the case of three real-valued roots.
For the complete complex transmission, we also need the phase ϕp, which we obtain via

ϕp = atan2

(

−
κ+ κnlnc

2
,∆−Knc

)

. (S15)

Having both parts of the complex field solution at hand, we can also calculate the transmission

Sideal
21,nl = 1 + i

√

κe

2

α

Sin

= 1 + i

√

κe

2

α0

S0
e−iφp . (S16)

Although we do not use these equations anywhere in our analysis, we present them as the nonlinear single-tone
treatment is very helpful to understand the two-tone formalism in the next subsection.

D. The linearized two-tone regime

In the two-tone experiment, we apply a strong pump tone with fixed frequency ωp and fixed power Pp and probe the
cavity response with a weak additional scanning tone, the total input then is Sin = S0e

iφpeiωpt + Spre
iωpt. Here, we

injected the phase shift between the intracircuit drive field and the drive tone already into the drive itself from the
beginning to keep the intracavity field α0 real-valued. The probe input amplitude Spr is a complex-valued quantity
too. As Ansatz for the intracavity field we choose α(t) = α0e

iωpt + αpr(t)e
iωpt with a complex and time-dependent

αpr(t) and obtain the equation of motion

iωpα0 + iωpαpr + α̇pr = i
[

ωc +K
(

α2
0 + α0(αpr + α∗

pr) + |αpr|
2
)]

α0

+i
[

ωc +K
(

α2
0 + α0(αpr + α∗

pr) + |αpr|
2
)]

αpr

−
[κ

2
+

κnl

2

(

α2
0 + α0(αpr + α∗

pr) + |αpr|
2
)

]

α0

−
[κ

2
+

κnl

2

(

α2
0 + α0(αpr + α∗

pr) + |αpr|
2
)

]

αpr

+i

√

κe

2
S0e

iφp + i

√

κe

2
Spr. (S17)

Now we perform the linearization, i.e., we drop all terms not linear in the small quantity αpr and get

iωpα0 + iωpαpr + α̇pr =

[

i (ωc +Knc)−
κ+ κnlnc

2

]

α0

+

[

i (ωc + 2Knc)−
κ+ 2κnlnc

2

]

αpr

+
[

iK −
κnl

2

]

ncα
∗

pr + i

√

κe

2
S0e

iφp + i

√

κe

2
Spr. (S18)
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The time-independent terms are identical to the Eq. (S14) of the nonlinear single-tone formalism and allow to deter-
mine α0 and nc via the characteristic polynomial. The remaining equation can be Fourier transformed to give

αpr

χpr
=

[

iK −
κnl

2

]

ncαpr + i

√

κe

2
Spr (S19)

where

χpr =
1

κ+2κnlnc

2 + i (∆p − 2Knc +Ω)
(S20)

with ∆p = ωp − ωc, Ω = ω − ωp and αpr = α∗

pr(−Ω).

Using the equivalent equation for αpr with Spr = 0, we get

αpr = iχg

√

κe

2
Spr (S21)

with

χg =
χpr

1−
[

K2 +
κ2
nl

4

]

n2
cχprχpr

(S22)

and for the two-tone transmission parameter

Sideal
21,tt = 1−

κe

2
χg. (S23)

As demonstrated elsewhere [4, 5], this is a response with two linearly appearing modes, which can also be approximated
by two standard modes, of which we only consider one in what follows, the so-called signal-mode.

E. The pumped Kerr-modes

To find the resonance frequency of the quasi-modes with susceptibility χg, we solve the complex frequency for which
χ−1
g = 0. The condition is

1−

[

K2 +
κ2
nl

4

]

n2
cχprχpr = 0 (S24)

which is solved by

ω̃1,2 = ωp + i
κ+ 2κnlnc

2
±

√

(∆p −Knc) (∆p − 3Knc)−
κ2
nl

4
n2
c . (S25)

The real part corresponds to the resonance frequency ω1,2 = Re (ω̃1,2) and the imaginary part corresponds to half the
mode linewidth κ1,2 = 2 Im (ω̃1,2). So, with respect to the pump frequency ωp, the system has two resonances

ω1,2 = ωp ±

√

(∆p −Knc) (∆p − 3Knc)−
κ2
nl

4
n2
c , (S26)

which are split symmetrically around ωp. Note that we only consider the lower frequency mode with ω2 here and call
it ω′

0, i.e.,

ω′

0 = ωp −

√

(∆p −Knc) (∆p − 3Knc)−
κ2
nl

4
n2
c , (S27)

or

δω0 = ∆p −

√

(∆p −Knc) (∆p − 3Knc)−
κ2
nl

4
n2
c . (S28)
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When we call the pumped and experimentally detected linewidth κp = κ0 + 2κnlnc (we use explicitly κ0 again now
as we only need this after writing the JJs), we can also find half of the experimentally observed change in linewidth
by the pump

κ1 =
κp − κ0

2
= κnlnc (S29)

and then write

δω0 = ∆p −

√

(∆p −Knc) (∆p − 3Knc)−
κ2
1

4
. (S30)

F. The intracircuit pump photon number

We calculate the intracircuit pump photon number nc without the knowledge of the value of K using

nc =
2Pp

ℏωp

κe

κ2
eff + 4∆̃2

(S31)

with

∆̃2 =
2

9

[

∆2
p +∆p

√

∆2
p + 3δ2κ +

3

2
δ2κ

]

. (S32)

Here

δ2κ = δ2 +
κ2
1

4
(S33)

where δ = ωp − ω′

0 is the driven frequency relative to the pump.
The relation Eq. (S31) for the intracircuit photon number can be obtained from combining Eq. (S14) and Eq. (S30)
and solving for nc. Explicitly, we start by setting x = Knc and solve the polynomial for x1/2. We find (assuming
nc ̸= 0)

x1/2 = ∆p ±

√

κe

2

nin

nc
−

κ2
eff

4
(S34)

where nin =
Pp

ℏωp
= S2

0 is the incoming photon flux and κeff = κ0 + κ1. Injecting this into the frequency relative to

the drive

δ =

√

(∆p − x2) (∆p − 3x2)−
κ2
1

4
(S35)

leads to

δ2 =

√

κe

2

nin

nc
−

κ2
eff

4



3

√

κe

2

nin

nc
−

κ2
eff

4
− 2∆p



 , (S36)

which in turn we can solve for nc to obtain Eq. (S31).

G. The real transmission function

Due to impedance imperfections in both, the input and output lines, the ideal transmission response is modified by
cable resonances and interferences within the setup [6, 7]. Origin of these imperfections are connectors, attenuators,
wirebonds, transitions to or from the PCB etc. in the signal lines. In addition, the cabling has a frequency-dependent
attenuation. To take all these modifications into account, we assume that the final transmission parameter Sreal

21 can
be described by

Sreal
21 =

(

a0 + a1ω + a2ω
2
) [

1− f(ω)eiθ
]

ei(φ0+φ1ω) (S37)
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Supplementary Figure 3. Background correction and fitting routine. (a) Transmission |S21| vs probe frequency of the SQUID
circuit discussed in the main paper for a flux bias value close to the flux sweetspot. The absorption resonance dip around 8.6GHz
is clearly visible. (b) Identical to (a), but with a strong pump tone applied (not visible), which has shifted the resonance dip to

frequencies < 8.3GHz, i.e. out of the measurement window. What we detect here is the experimental background Sbg,exp
21 . We

of course measure not only the amplitude, but also the phase of S21 and Sbg,exp
21 . (c) shows the magnitude of S21/S

bg,exp
21 , the

background is nearly a flat line, but not yet at |S21| = 1 as expected for an ideal transmission. (d) shows the imaginary part of
the background-divided transmission vs the real part. Noisy red lines in (c) and (d) are data, black smooth lines are a fit with
Eq. (S37). (e) and (f) show the final background-corrected data, where also the remaining background from the fit is divided off and
the resonance circle is corrected by the Fano rotation θ. Noisy orange lines in (e) and (f) are data, black smooth lines are a fit.

when the ideal response would be given by

Sideal
11 = 1− f(ω). (S38)

The real-valued numbers a0, a1, a2, ϕ0, ϕ1 describe a frequency dependent modification of the background transmission,
and the phase factor θ takes into account possible interferences such as parasitic signals bypassing the transmission
along the device itself, for instance around the chip [6]. The exact form of f(ω) depends on the experiment performed
as described above, but for all our data is of the form κe

κ+2i(ω−ωc)
.

Our standard fitting routine begins with removing the actual resonance signal from the transmission, leaving us with
a gapped background transmission, which we fit using

Sbg
21 =

(

a0 + a1ω + a2ω
2
)

ei(φ0+φ1ω). (S39)

Subsequently, we remove this background function from all measurement traces by complex division. The resonance
circle rotation angle θ is then rotated off additionally.
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V. SUPPLEMENTARY NOTE V: RAW DATA PROCESSING AND BACKGROUND REMOVAL

As the circuits in our experiments have a rather large linewidth of several 10MHz and as the background transmission
cannot be described over such a large frequency span with a simple polynomial as suggested by Eq. (S37), we perform
a two-step background correction to obtain as clean S-parameters as possible. The procedure is exemplarily shown
for one resonance in Supplementary Fig. 3. In the first step, we record for each measurement (e.g. the one in panel
(a)) also the resonance-less transmission function as shown in panel (b). In this specific case it is measured with
a very large pump power in the two-tone setting where the resonance is shifted to very low frequencies. Then we

perform a complex division of the full S21 signal by the bare background signal Sbg,exp
21 , the result is a resonance with

a nearly flat background as shown in (c), the complex-valued version can be seen in (d). Subsequently, we perform
a fit using Eq. (S37) from which we obtain a second background function as well as a Fano rotation angle θ. We
divide off the fit-background again by complex division and finally rotate the resonance circle by θ around its anchor
point. The final result including the corresponding fits can be seen in panels (e) and (f). Except for the resonances
before junction writing in main paper Fig. 1 and Supplementary Fig. 5, we perform this data processing with all S21

spectra used for the data analysis and all shown resonances have been treated this way. The reason why the S21

measurements before JJ writing are not fully background-corrected is that their nonlinearity is not large enough to
shift them away by a pump tone.

VI. SUPPLEMENTARY NOTE VI: PUMP-DEPENDENT CIRCUIT LINEWIDTH

Supplementary Figure 4. Pump-power dependent linewidth of circuit 2. Total linewidth κ/2π vs intracavity photon number nc

for several different flux bias values Φext/Φ0. Circles are data, lines are linear fits. The values for κ have been extracted from fits to
the resonance in the two-tone experiment, the intracavity photon numbers have been calculated using Eq. (S31).

In our theoretical considerations in Supplementary Note IV and the calculation of the pump photon number, we have
included a specific nonlinear damping term, i.e., a linewidth that grows linearly with intracavity pump photon number.
To justify this approach, we show in Supplementary Fig. 5 the extracted total linewidth data that correspond to the
experiment described in main paper Fig. 3. It can clearly be seen, that the total linewidth is in good approximation
increasing linearly with the intracavity photon number, i.e., that it is described by

κ = κ0 + 2κnlnc (S40)

where both κ0 and κnl are a function of flux. Currently it is unclear to us what causes the flux dependence of κ0 and
of κnl and what the origins and limitations of both are. We plan to investigate these questions in future experiments.

VII. SUPPLEMENTARY NOTE VII: ERROR BAR CALCULATION FOR MAIN PAPER FIG. 3(C)

The circuit Kerr nonlinearity K is an important number for high-dynamic-range applications such as radiation-pressure
experiments, parametric amplifiers or dispersive SQUID magnetometry. To reliably determine the value of K from
the pump-induced frequency shift, a good estimate of the intracircuit photon number nc is essential. As discussed
above, we use Eq. (S31) for calculating nc, but two of the parameters going into that calculation might come with
uncertainties and errors, the external linewidth κe and the on-chip input power Pp. Therefore we also perform an
error estimation for K based on estimated inaccuracies of these two parameters.
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Supplementary Figure 5. Error bar calculation for K from uncertainty in κe and Pp. (a) Experimentally determined external
linewidth κe/2π of circuit 2 vs circuit resonance frequency ω0/2π. Circles are data, line is a polynomial fit. We describe our procedure
for finding κe and its uncertainty here exemplarily for a flux bias point Φext/Φ0 = 0.1. This particular data point is displayed as a
star. The pump tone is applied blue-detuned from the resonance frequency at ωp as indicated by the black vertical arrow here. In
this case we do not have an experimental value for κe at the pump frequency and therefore use the closest available one indicated
by the orange arrow. If we have a value sitting exactly at the pump frequency we use that one. Since κe is a function of frequency
but our fitting routine is assuming a frequency-independent κe, we estimate the uncertainty of κe to be given by the maximum and
minimum of all κe-values in a window κ0 around ωp or the point we chose for κe, respectively. The window for the particular point
chosen here is indicated by the vertical black double-arrow and the corresponding vertical dotted lines. We call the resulting max/min
values κe+ and κ−

e , respectively. Additionally, we take into account a possible uncertainty in the on-chip pump power by ±1 dB. As
a result, we can find the standard nc, the maximally possible n+

c as well as the minimally possible n−

c . For all three cases, we plot
the frequency shift δω0 at the star-marked point vs intracavity photon number in panel (b). Circles are experimentally obtained data.
We perform three individual fits, shown as lines here. The max/min values obtained for K from these fits plus their fitting errors are
plotted as error bars in main paper Fig. 3(c).

For the overall data analysis of the two-tone experiment and to obtain K, we perform first raw data processing of
the transmission response S21 for each pump power as described in Supplementary Note V. Additionally, we cut out
the visible strong pump tone with fixed frequency ωp from all measurements. As next step, we extract ω0, κe and
κ0 for all flux bias values by our usual fitting routine, which also means that we have (a rough) knowledge of the
frequency-dependence of κe. Then, we fit κe as a function of ω0 for the whole flux-tuning-range with a fourth order
polynomial, cf. Supplemetary Fig. 5(a). Since we observe that κe is considerably frequency-dependent even over a
frequency span of κ0, we find the maximum and minimum possible value κ+

e and κ−

e for each pump power point as
discussed in Supplementary Fig. 5(a) and process these two values as higher and lower errors for nc.
To obtain a value for Pp, we estimate the input power on the on-chip feedline by the generator output power and a
total input attenuation of −55 dB (cables with attenuators and directional coupler 10), based on direct attenuation
measurements at room temperature. As uncertainty of the attenuation and as consequence also of the input power
we assume ±1 dB.
Using Eq. (S31) and the inaccuracies we get a highest and lowest intracavity photon number n+

c and n−

c , respectively,
for each pump frequency and pump power point, cf. Supplemetary Fig. 5(b), where the measured frequency shift δω0

is plotted vs all three photon numbers (lowest, standard, highest). Finally, we perform a fit for all three cases using
Eq. (S30) to determine K, K+ and K−. Note that |K−| > |K| > |K+|. The error bars in K resulting out of the fit of
n+
c , n

−

c and nc are then given by |K−| − |K| and |K| − |K+| plus their direct errors obtained by the fit.

VIII. SUPPLEMENTARY NOTE VIII: ADDITIONAL DATA ON TWO FURTHER SQUID CIRCUITS

In total, we have fabricated and characterized three different HIM-SQUID circuits, although in the main paper we
only present the experimental results for one of them (SQUID 2). The main reason for choosing that one is that the
flux tuning curves of the other two are overlapping and therefore the data analysis gets considerably more complicated
(think for instance about the two-tone experiment with two cavities close to each other and the calculation of the
corresponding intracircuit photon numbers). However, we still present the main junction-writing and flux-tuning
results for the other two circuits (SQUID 1 and SQUID 3) in Supplementary Fig. 6. The Josephson junctions in the
other two SQUID cavities have even lower critical currents and the SQUIDs lower screening parameters than SQUID
circuit 2 and circuit 3 even has a maximum tuning range of more than 2GHz, i.e. ≳ ω0/4, which once more shows
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Supplementary Figure 6. Basic characterization of two further YBCO-HIM-SQUID circuits. (a) Normalized and color-coded
transmission S21 in dB vs external bias flux in SQUID number three Φext,3/Φ0 and vs probe frequency ω/2π. The resonance
absorption dips are clearly visible as purple-shaded (dark) features, that oscillate periodically with flux. SQUID circuit 3 has a
sweetspot resonance frequency ∼ 8.2GHz and modulates in total by more than 2GHz. SQUID circuit 1 has a sweetspot frequency
of ∼ 7.9GHz and modulates by about ∼ 450MHz. Note that the flux axis for SQUID circuit 1 (not shown) is slightly different from
circuit 3, most likely since the flux focussing factors differ due to different superconducting embeddings on the chip. At the very
top of the figure (∼ 8.3GHz), there are also signatures of SQUID circuit 2 visible, which is the circuit discussed in the main paper;
the lowest tuning point of that circuit appears here as small purple features. Dashed lines correspond to approximate flux tuning
curves obtained by theory, the effective screening parameters are given as numbers below the theory lines. (b) Absorption resonance
of SQUID circuit 3 before and after JJ writing with the HIM. Noisy gray and orange lines are data, smooth black lines are fits. From
the shift, we determine an effective single-junction inductance of L′

J0,3 ≈ 379 pH, which corresponds to a critical current of ∼ 0.9 µA.
(c) Absorption resonance of SQUID circuit 1 before and after JJ writing with the HIM. Noisy gray and purple lines are data, smooth
black lines are fits. From the shift, we determine an effective single-junction inductance of L′

J0,1 ≈ 133 pH, which corresponds to a
critical current of ∼ 2.5 µA. Note, that the theoretical flux tuning curves in panel (a) have been obtained by using all other parameters
L,C,Cc, I0 from simulations/experiments and the only parameter adjusted was βL.
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the enormous potential of HIM-SQUID circuits based on YBCO.

IX. SUPPLEMENTARY NOTE IX: CALCULATION OF THE KERR NONLINEARITY

For the calculation of the Kerr nonlinearity K we follow the method desrcibed in Ref. [8] and start with the effective
one-dimensional potential for the top half of the SQUID, i.e., the half that is connected to the remainder of the
microwave circuit

U =
1

2
Earm (φleft − φ1)

2
+

1

2
Earm (φright − φ2)

2
− EJ cosφ1 − EJ cosφ2. (S41)

Here φ1, φ2 are the phase differences of the two Josephson junctions, φleft and φright are the total phase differences of
the upper left quarter and the upper right quarter of the SQUID loop including the JJs, and the energies are given
by

EJ =
Φ0I0
2π

, Earm =
Φ2

0

4π2Larm
(S42)

with Larm =
Lloop

4 + Llin. From fluxoid quantization in the SQUID it follows that

φright − φleft = φext − φbottom (S43)

where φbottom is the phase across the bottom half of the SQUID loop without junctions and shorted to ground,
and φext = 2πΦext

Φ0
is the phase introduced by the external flux. For simplicity of our calculations we assume

φbottom = const. and write φext − φbottom = φ′

ext. Then, the potential can be written as function of a single phase-
variable φs = φleft as

U [φs] =
1

2
Earm (φs − φ1[φs])

2
+

1

2
Earm (φs − φ2[φs] + φ′

ext)
2
− EJ cosφ1[φs]− EJ cosφ2[φs] (S44)

and as boundary conditions we have the current conservation relations [8]

φs = φ1 + ζ sinφ1 (S45)

φs = φ2 + ζ sinφ2 − φ′

ext (S46)

where ζ = Earm/EJ = LJ0/Larm.
In order to find the Kerr nonlinearity, we have to Taylor-expand the potential up to forth order

U(φs)

EJ
= c0 + c1 (φs − φmin) +

c2
2
(φs − φmin)

2
+

c3
6
(φs − φmin)

3
+

c4
24

(φs − φmin)
4
+ ... (S47)

where the coefficients are determined by the n-th derivative of the potential evaluated at the phase at the potential
well minimum φmin

cn =
1

EJ

∂nU

∂φn
s

∣

∣

∣

∣

ϕmin

(S48)

To find the value for φmin, we demand that in the minimum we have c1 = 0 and as result we get

φmin =
1

2
(φ1,min + φ2,min − φ′

ext) . (S49)

In the potential minimum, however, i.e., without any phase excitation, we also have

sinφ1,min = − sinφ2,min → φ1,min = −φ2,min (S50)

since the same SQUID circulating current J = −I0 sinφ1 = I0 sinφ2 is flowing through both JJs with opposite
direction. Then, using Eq. (S49) we can follow

φmin = −
φ′

ext

2
(S51)
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and using Eq. (S45) we arrive at

φ1,min + ζ sinφ1,min +
φ′

ext

2
= 0 (S52)

which is completely equivalent to

Φ

Φ0
=

Φext

Φ0
−

βL

2
sin

(

π
Φ

Φ0

)

(S53)

with the screening parameter βL, the total flux in the SQUID Φ and when using the relation φ1,min = −π Φ
Φ0

as well

as φbotton = 2πLbottomJ/Φ0 with Lbottom = Lloop/2.
For the derivatives, we get

∂U

∂φs
= Earm (2φs − φ1[φs]− φ2[φs] + φ′

ext) (S54)

∂2U

∂φ2
s

= Earm

(

2−
∂φ1

∂φs
−

∂φ2

∂φs

)

(S55)

∂3U

∂φ3
s

= −Earm

(

∂2φ1

∂φ2
s

+
∂2φ2

∂φ2
s

)

(S56)

∂4U

∂φ4
s

= −Earm

(

∂3φ1

∂φ3
s

+
∂3φ2

∂φ3
s

)

(S57)

and the phase derivatives we can obtain from Eqs. (S45, S46) as

∂φs

∂φ1
= 1 + ζ cosφ1 (S58)

∂φs

∂φ2
= 1 + ζ cosφ2 (S59)

which can be inverted as

∂φ1

∂φs
=

1

1 + ζ cosφ1
(S60)

∂φ2

∂φs
=

1

1 + ζ cosφ2
. (S61)

The consecutive derivatives are for j = 1, 2

∂2φj

∂φ2
s

=
ζ sinφj

(1 + ζ cosφj)
3 (S62)

∂3φj

∂φ3
s

=
ζ cosφj (1 + ζ cosφj) + 3ζ2 sin2 φj

(1 + ζ cosφj)
5 (S63)

which we can finally use to express our Taylor coefficients with φ0 = −φ1,min = π Φ
Φ0

as

c2 =
2 cosφ0

1 + ζ cosφ0
(S64)

c3 = 0 (S65)

c4 = −2
cosφ0 (1 + ζ cosφ0) + 3ζ sin2 φ0

(1 + ζ cosφ0)
5 (S66)

The SQUID inductance and Kerr nonlinearity of the SQUID, when shunted with Ctot are now given by [8]

Ls =
LJ0

c2

=
1

2
(LJ + Larm) (S67)
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and

Ks =
e2

2ℏCtot

c4
c2

= −
e2

2ℏCtot

(

LJ

Larm + LJ

)3 [

1 + 3
Larm

Larm + LJ
tan2 φ0

]

(S68)

where LJ = LJ0/ cosφ0, e is the elementary charge and ℏ the reduced Planck number.
When we add a linear inductance L− Lloop/8 in series, we get the modified parameters [8]

c̃2 = pc2 (S69)

Ltot =
Ls

p
(S70)

c̃4 = p4c4 (S71)

K = p3K (S72)

where p is the inductance participation ratio

p =
Ls

L− Lloop/8 + Ls
. (S73)

Then, we have finally the explicit expression for the circuit Kerr nonlinearity

K = −
e2

2ℏCtot

(

LJ

2L+ Llin + LJ

)3 [

1 + 3
Larm

Larm + LJ
tan2 φ0

]

(S74)

which we use in main paper Fig. 3.
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We report the levitation of a superconducting lead-tin sphere with 100 μm diameter (corresponding to a

mass of 5.6 μg) in a static magnetic trap formed by two coils in an anti-Helmholtz configuration, with

adjustable resonance frequencies up to 240 Hz. The center-of-mass motion of the sphere is monitored

magnetically using a dc superconducting quantum interference device as well as optically and exhibits

quality factors of up to 2.6 × 107. We also demonstrate 3D magnetic feedback control of the motion of the

sphere. The setup is housed in a dilution refrigerator operating at 15 mK. By implementing a cryogenic

vibration isolation system, we can attenuate environmental vibrations at 200 Hz by approximately 7 orders

of magnitude. The combination of low temperature, large mass, and high quality factor provides a

promising platform for testing quantum physics in previously unexplored regimes with high mass and long

coherence times.

DOI: 10.1103/PhysRevLett.131.043603

Diamagnets and superconductors partially expel mag-

netic fields, allowing stable levitation in field minima [1].

A prominent application of magnetically levitated systems

is the use as ultraprecise acceleration sensors, most notably

in the superconducting gravimeter [2], which relies on the

levitation of centimeter-sized hollow superconducting

spheres in a stable magnetic field generated by super-

conducting coils in persistent current mode. More recently,

several proposals [3,4] have highlighted the potential of

magnetic levitation for tests of quantum physics with

macroscopic, micrometer-sized objects.

Successfully preparing a magnetically levitated particle

in a quantum state requires a magnetic trap with low

damping, low heating rates, and the ability to control the

mechanical motion. Some of these features are already

present in recent demonstrations of magnetically levitated

systems, such as the levitation of permanent magnets above

a superconducting surface [5,6] and the levitation of

diamagnets in the field of permanent magnets at cryogenic

temperatures [7] or room temperature [8]. However, as of

yet, no system has combined these features. Furthermore,

as typical levitation frequencies for these systems range

from subhertz to kilohertz, the heating rate is dominated by

environmental vibrations.

One of the most promising avenues toward the quantum

regime is the levitation of a type-I (or zero-field-cooled

type-II) superconductor in a magnetic field produced by

persistent currents, as this avoids dissipation due to

hysteresis and eddy currents, which is inherent to levitation

schemes involving ferromagnets or flux-pinned type-II

superconductors [9,10]. Using persistent currents should

result in an extremely stable trap, as both the drift and noise

can be kept extremely low [2,11,12]. Working at milli-

kelvin temperatures also naturally enables coupling to

nonlinear quantum systems such as superconducting qubits

[3], and miniaturizing the trap architecture [13–15] might

lead to fully on-chip coupled quantum systems [16]. In

comparison with optical levitation, which has already been

established as a means for studying massive objects in the

quantum regime [17–19], magnetostatic levitation has the

potential to access a new parameter regime of even larger

mass [20,21] and longer coherence times [3,16]: While the

size of optically levitated particles is, in practice, limited by
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the available laser power to the micrometer scale [22],

magnetic levitation can support train-scale objects [23], and

due to the static nature of the fields, there is no heating from

photon absorption.

A first step toward a fully superconducting platform was

presented in [24], where a lead particle was levitated in the

magnetic field of a superconducting coil. This approach,

however, was limited in performance by the presence of

cryogenic exchange gas at 4 K and environmental vibra-

tions. Here, we report an experiment that provides orders of

magnitude improvements in both damping and vibration

isolation. We demonstrate the levitation of a superconduct-

ing sphere in the magnetic field generated by a super-

conducting coil. We detect the center of mass (c.m.) motion

of the particle magnetically by inductive coupling to a

superconducting quantum interference device (SQUID) via

a pickup coil (cf. Fig. 1) and demonstrate feedback control

of all three c.m. translational degrees of freedom by real-

time processing of the SQUID signal. We find that the

motion of the particle has a low damping rate, correspond-

ing to quality factors of up to 2.6 × 107. We also implement

a custom vibration isolation system to reduce heating from

environmental vibrations. Finally, we discuss the limita-

tions of our current setup and the improvements that are

necessary for ground state cooling.

Trapping.—The energy of an object of volume V with

permeability μ in an applied magnetic field B0 in free space

can be approximated by −1=2Vðμ − μ0ÞB2

0
[1], where μ0 is

the permeability of free space. Because ∇2B2

0
≥ 0, stable

levitation is possible in a field minimum for μ < μ0, i.e., for

diamagnets. A superconducting sphere can act as a perfect

diamagnet (μ ¼ 0), because it reacts to a change in the

applied magnetic field by forming screening currents on its

surface, counteracting the applied field and keeping the

interior of the sphere field free.

For a sphere trapped in the field of an anti-Helmholtz

coil, the resulting potential close to the field minimum is

harmonic and two of the c.m. modes are degenerate [3,20];

to lift the degeneracy we use elliptical coils [25]. The z

direction is along the coil axis, which coincides with the

vertical direction, while x and y are perpendicular to z, with
x along the major axis of the coils. We use numerical

simulations [25] to model the magnetic field created by

such an arrangement and confirm that the magnetic field

near the center between the coils is well described by

ðbxx; byy; bzzÞ, where the field gradients bi are propor-

tional to the trap current with jbxj < jbyj < jbzj and

bz ¼ −ðbx þ byÞ. This field shape constitutes a three-

dimensional harmonic trap for a levitated superconducting

sphere with the c.m. frequencies [25]

fi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3

8π2μ0ρ

s
jbij; ð1Þ

where ρ is the density of the sphere.

Our setup is housed in a dilution refrigerator (BlueforsBF-

LD400) with a loaded base temperature of approximately

15 mK. The microspheres are commercial (EasySpheres)

solder balls with diameter 100ð6Þ μm, made of a 90-10 lead-

tin alloy with density ρ ¼ 10.9 × 103 kg=m3. Lead-tin is a

type-II superconductor with a critical temperature of approx-

imately 7 K [37]. A single sphere is initially placed in a

3D-printed polylactide bowl glued to the lower trap coil, such

that it rests around 1 mm below the trap center. The bowl

helps to prevent accidental loss of the sphere during assembly

and between measurement runs. After cooling down the

system to millikelvin temperatures, lift-off is achieved by

increasing the coil current until the upward magnetic force

on the sphere is stronger than the downward gravitational

and adhesive forces. The trap coils are surrounded by an

aluminum shield with small openings for optical access and

wires, which screens the sphere from magnetic field fluctua-

tions when the aluminum is superconducting. To suppress

field fluctuations from the trapping coils and feedback

coil, we use a low pass filter and attenuation stages,

respectively [25].

Readout.—A planar Niobium thin film gradiometric

pickup coil consisting of two square loops positioned

approximately 400 μm above the trap center is used to

magnetically probe the particle motion. Each loop is

145 μm × 145 μm and the separation between the loops

is 3 μm. As the particle moves, it induces a current in the

pickup loop [25], which is connected with Nb wires to the

input coil of a SQUID current sensor [38]. The SQUID has

an intrinsic flux noise level of S
1=2
Φ ¼ 0.8 μΦ0=

ffiffiffiffiffiffi
Hz

p
, where

Φ0 ≈ 2.1 × 10−15 Wb is the flux quantum. When the

SQUID is incorporated into the setup, and the pickup loop

is connected, the noise rises to S
1=2
Φ ≈ 10 μΦ0=

ffiffiffiffiffiffi
Hz

p
. We

believe this is due to external field fluctuations inductively

coupling into the wires connecting the pickup loop and the

SQUID. With a commercial SQUID (Supracon CSblue),

that was used for some of the measurements, the noise floor

in the setup further increased by an order of magnitude.

FIG. 1. Conceptual representation of the experiment showing

the levitated sphere, the pickup coil, and the feedback coil. The

trap field is depicted by its field lines.
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To calibrate the SQUID signal, we optically record the
motion of the sphere by illuminating it and imaging its
shadow on a camera, while simultaneously recording the
motion with the SQUID [25]. The coupling strengths (flux

induced in the SQUID per sphere displacement) for the
different motional modes depend on the position of the
pickup loop in relation to the sphere as well as the trap

gradients, i.e., mechanical frequencies. The highest mea-
sured coupling strength was approximately 13 × 103 Φ0=m

for the z mode and 3 × 103 Φ0=m for the x and y modes.

Together with a flux noise floor of 10 μΦ0=
ffiffiffiffiffiffi
Hz

p
these

coupling strengths correspond to a displacement sensitivity

of approximately 1 nm=
ffiffiffiffiffiffi
Hz

p
for the z mode. During these

measurements the separation between pickup loop and
sphere was approximately 400 μm.We estimate that, with a

smaller separation and an optimized pickup loop geometry,
an improvement of 4 orders of magnitude is possible [25].
Mechanical frequencies.—The c.m. frequencies of the

particle are visible in the power spectral density (PSD) of

the SQUID signal, as shown in Fig. 2. The c.m. frequencies
depend linearly on the magnetic field gradient of the trap
[see Eq. (1)] and, thus, the current in the trap coils, as

shown in the inset. The highest frequency reached in the
present setup is 240 Hz (corresponding to bz ≈ 150 T=m),
limited by the maximum current output of the low-noise

current source. We can trap at lower frequencies, down to
fz ≈ 20 Hz, where the lower limit stems from the gravity-
induced shift of the trapping position and our trap geom-

etry. However, at low trapping frequencies, the sphere is
strongly excited by environmental vibrations.

We can apply a magnetic feedback force on the levitated

sphere by processing the SQUID signal on an FPGA

(STEMlab 125-14) and applying a feedback current to a

small coil with approximately 20 windings positioned

approximately 1 mm below the trap center [25]. As

measurement noise prevents us from resolving the equi-

librium c.m. motion of the particle, we use feedback here

only as a means to quickly adjust the amplitudes and

prepare other measurements (cf. Fig. 3, inset).

Quality factor.—We measure the quality factor by

performing ringdown measurements, where the initial

starting amplitude is set by applying an appropriate feed-

back signal before the start of the measurement. We do see

occasional jumps in the damping rate (cf. Fig. 3), which we

attribute to the detaching and attaching of flux lines to a

pinning center. Unpinned flux lines can move within the

superconductor (flux creep), a mechanism that is known to

cause damping in the levitation of flux-pinned super-

conductors or magnets [10,39]. Although we do not apply

a magnetic field during the cooldown, there is a nonzero

background field, and hence, we expect some frozen-in

flux to be present in the levitated sphere. As a consequence,

the measured quality factors vary with time and between

measurement runs, but they are generally between 1 × 107

and 2.5 × 107 for the z mode and about half as high for

the x and y modes. The highest quality factor we have

measured is 2.6 × 107 at 212 Hz, corresponding to a

dissipation rate of 5 × 10−5 s−1, and likely still limited

by flux creep inside the particle. We also consider other

possible contributions to the damping [25], but find that the

FIG. 2. The PSD of the SQUID signal displays three peaks

which correspond to the c.m. modes of the particle. The motion of

the particle is excited to approximately one micrometer rms

displacement in this figure—measurement noise prevents us from

resolving the equilibrium motion of the particle. The inset shows

the linear dependence of the c.m. frequencies on the trap current.

The solid lines are zero-intercept linear fits.

FIG. 3. Ringdown measurement of the z mode. The upper right

inset shows a linear plot for the latter part of the data, starting at

t ¼ 2.5 h. The red line is a fit to an exponential decay. The spikes

correspond to a brief loss of the SQUID lock, they were removed

for the amplitude plot. The lower left inset shows a ringdown

while direct feedback is applied (note that the x axis scale is in

seconds).

PHYSICAL REVIEW LETTERS 131, 043603 (2023)

043603-3



expected contributions cannot explain the measured values.

In future experiments, we plan to use a particle made of a

type-I superconductor such as monocrystalline lead, which

will expel all magnetic flux via the Meissner effect and

prevent flux creep.

Sensing.—A massive system acting as a harmonic

oscillator can be used for force and acceleration sensing,

with the sensitivities depending on the mass m and the

dissipation rate γ of the oscillator. In equilibrium with

a thermal bath at temperature T0, the thermal force noise

is given by
ffiffiffiffiffiffiffiffi
SthFF

p
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4kBT0mγ
p

[40], where kB is

Boltzmann’s constant. The dissipation rate γ is related to

the quality factor Q and the angular mechanical resonance

frequency ω0 by γ ¼ ω0=Q. The corresponding acceler-

ation sensitivity is
ffiffiffiffiffiffiffiffi
SthFF

p
=m. For a particle of mass

m ≈ 5.6 μg, assuming it is in thermal equilibrium with

its surroundings in the dilution refrigerator at 15 mK,

this sets the limits for force and acceleration sensing at

5 × 10−19 N=
ffiffiffiffiffiffi
Hz

p
and 9 × 10−12 g=

ffiffiffiffiffiffi
Hz

p
, using our high-

est measured quality factor Q ¼ 2.6 × 107 at 212 Hz.

Our current experimental sensitivities are approximately

1 order of magnitude above the thermal noise, limited by

drifts in the trap current and measurement noise [25].

Cryogenic vibration isolation.—Vibrations of the cryo-

stat accelerate the trapping coils and, thus, the trap center,

effecting a force onto the levitated sphere. Denoting the

vibrational PSD by Sϵϵ, the displacement PSD of our sphere

becomes jχðωÞj2m2ω4

0
SϵϵðωÞ, where χ denotes the

mechanical susceptibility. From independent accelerometer

measurements on the cryostat, we estimate
ffiffiffiffiffiffi
Sϵϵ

p
≈ 1 ×

10−10 m=
ffiffiffiffiffiffi
Hz

p
at 200 Hz, which would result in a peak

height of 2.6 × 10−3 m=
ffiffiffiffiffiffi
Hz

p
and a root-mean-square

displacement of 9 μm, corresponding to an effective

temperature of 6 × 1010 K. To mitigate the effects of

vibrations, we implement a passive cryogenic vibration

isolation system: the aluminum shield containing the trap is

hung from the 4 K stage of the dilution refrigerator via

38 μm-thick stainless steel wires and two intermediate

stages. The system acts like a triple pendulum, offering

isolation from horizontal (x and y) vibrations, while the

elasticity of the wires provides isolation from vertical (z)
vibrations. To prevent coupling of external vibrations into

the experimental setup via electrical wires and the copper

braids used for thermalization, we connect these wires and

braids to an additional vibration isolation platform, as

represented in Fig. 4. Vibrations of the experimental system

could also be induced by fluctuating magnetic fields acting

on the aluminum shield. To prevent this, we surround the

setup by a second aluminum shield which is rigidly

mounted to the cryostat. We typically operate at vertical

(z) trap frequencies above 200 Hz and initially found that

the vibration isolation system attenuates vibrations at these

frequencies by approximately 5 orders of magnitude. We

have further improved the system by optimizing the mass

and wire length for each stage, leading to an attenuation of

almost 7 orders of magnitude at 200 Hz. Theoretically,

vibrations along the horizontal axis as well as librational

fluctuations around the axes are suppressed even more, but

in practice, we expect vibrations from the vertical axis to

couple into all degrees of freedom [41]. More details on the

vibration isolation platform are provided in [25].

Prospects for ground state cooling.—Now, we discuss

the potential of this system to reach the ground state, which

would be a first step toward accessing the quantum regime.

SQUID noise can be separated into flux noise Sϕϕ and

noise in the circulating current SJJ, which may be partially

correlated [42] and fulfill
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SϕϕSJJ − S2ϕJ

q
≥ ℏ [43,44]. The

flux noise results in the measurement noise ðSϕϕ=η2Þ, while
the current noise corresponds to a back action η2SJJ, where
η is the coupling strength. Applying direct feedback with

optimum gain and assuming vanishing correlations

between flux and current noise, one can estimate the final

phonon occupation [25] as

n̄ ¼ 1

ℏη2
ðkBT0mγfLSÞ þ

1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SϕϕSJJ

p

ℏ
− 1

�
;

where fLS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSϕϕ=SJJÞ

p
depends on the working point of

the SQUID and is typically on the order of the SQUID

FIG. 4. Sketch of the setup including the vibration isolation

system (not to scale). The light source is turned on only for

calibration measurements. The UV-IR cutoff filters on the

millikelvin stage prevent ambient radiation from heating the

levitated sphere. Thermal connections are made with oxygen free

high conductivity (OFHC) copper braids.
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inductance LS. The first term describes heating from

coupling to an effective thermal reservoir with temperature

T0, while the second term is the backaction limit under

continuous feedback. We can reach a coupling strength of

η ≈ 5.5 × 107 Φ0=m [25], so assuming T0 ≈ 15 mK and a

typical SQUID inductance of LS ≈ 15 pH, we need γ ≈ 1 ×

10−6 s−1 to keep the former negligible. Ground state cooling

then requires
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SϕϕSJJ

p
< 3ℏ. In addition to feedback cool-

ingwith a SQUID,wewill investigate other potential avenues

for ground state cooling such as coupling the levitated

sphere to a flux qubit or a microwave cavity [3,45–47].

Discussion and outlook.—We built a platform based on

the diamagnetic levitation of a superconductor in a mag-

netostatic trap in a dilution refrigerator at 15 mK and

demonstrate quality factors exceeding 1 × 107 for the three

c.m. modes of a 5.6 μg oscillator. The high quality factors

result in excellent sensing capabilities, with achievable

force (acceleration) sensitivities that are, otherwise, only

reached with much smaller (larger) masses [2,48]. We also

demonstrated simultaneous feedback cooling of all c.m.

modes using either direct or parametric feedback. While we

have focused, here, on a 100 μm-sized sphere, the setup

allows for particles from submicron size to millimeter size

to be levitated [20]. We have identified improvements to

mitigate technical issues: First, we plan to use a type-I

superconducting sphere to avoid trapped flux and dissipa-

tion caused by flux creep, which we expect is limiting our

quality factor. Second, we can improve the magnetome-

chanical coupling by 4 orders of magnitude by better

positioning of the pickup coil and by using a pickup coil

with multiple windings matched to the input coil of the

SQUID. Together with an optimized SQUID shielded from

environmental noise (such that our readout is limited by the

intrinsic SQUID noise), this would result in an improve-

ment of the measurement noise floor by 6 orders of

magnitude [25]. Third, we plan to implement a persistent

current switch to improve the trap current stability. With

these improvements, our system offers a promising

approach for bringing microgram objects to the quantum

regime, which opens a potential avenue for quantum-

limited acceleration sensing or even probing quantum effects

of gravity [49–52].

The data of this study are available at the Zenodo

repository [53].
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We provide more information on: (i)The field distribution of the magnetic trap, the resulting
trap frequencies and the derivation of the coupling strength. (ii)Effects of current fluctuations and
drifts on the measured spectral density. (iii)Limits to the force sensitivity due to measurement noise
and current drifts. (iv)Feedback control of the levitated particle. (v)The vibration isolation system.
(vi)Possible contributions to the damping. (vii)Calibration of the SQUID signal. (viii)Optimizations
and requirements for ground state cooling.

DERIVATION OF THE MAGNETIC TRAP’S

PROPERTIES

Trapping field

We performed numerical simulations in comsol mul-

tiphysics to predict the field configuration generated
by the arrangement of our trapping coils. The de-
sign of the coils and the simulated magnetic field den-
sity are shown in Fig. 1a,b. The field gradients for
a trap current of 2.5A are obtained as (bx, by, bz) =
(57, 90, 147)T/m, which would correspond to frequencies
of (92, 144, 236)Hz. Comparing this to the measured val-
ues of (109, 127, 236)Hz we can see that the agreement
between the numerical and measured z-mode frequency
is excellent, but that the simulations predict a much
stronger split for the x- and y-mode than what we see
in the experiment. This is likely due to the fact that the
spooling process resulted in coils that were more circu-
lar than the design (cf. Fig. 1c). For a perfectly circular
coil the x- and y-mode frequencies are degenerate [1], so
a smaller frequency split is to be expected. Close to the
center the field is very well approximated by a quadrupole
field: Within a cubic volume of 200 µm×200 µm×200 µm
the maximum relative root-mean-square deviation, de-
fined as |Bsim−(bxx, byy, bzz)|/|Bsim|, is less than 0.1%.

Mechanical frequencies

In this section we build on the calculations in [1] to ana-
lytically calculate the magnetic field distribution for a su-

perconducting sphere in an axially-asymmetric magnetic
quadrupole field. We consider a superconducting sphere
at the origin of the coordinate system and displaced from
the center the quadrupole field by x0 = (x0, y0, z0). The
applied field then reads

B0 = (bx(x+ x0), by(y + y0), bz(z + z0)) .

As our sphere’s radius R is much larger than the expected
penetration depth λ [2], we can use the approximation
λ/R → 0, i.e. we assume B = 0 inside the sphere and
Br = 0 on the sphere’s surface [1], where Br denotes the
radial component of the field. As there are no currents
outside the sphere, there exists a scalar potential Φ s.t.
B = B0 −∇Φ and

Φ =

∞
∑

n=0

r−(n+1)
n
∑

m=−n

an,mY m
n ,

where r =
√

x2 + y2 + z2 and the Y m
n are spherical har-

monics. The coefficients an,m are determined by the
boundary condition B0,r = (∇Φ)r on the sphere’s sur-
face as

a1,0 =− bz
√

π/3 R3z0,

a1,−1 =−
√

π/6 R3(bxx0 + ibyy0),

a1,1 =
√

π/6 R3(bxx0 − ibyy0),

a2,0 =− bz
√

4π/45 R5,

a2,−2 = (by − bx)
√

2π/135 R5,

a2,2 = a2,−2,
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FIG. 1. (a,b)Numerical simulations of the magnetic field
density created by coaxial elliptical coils with counter-
propagating currents. (c)Photograph of the top surface of
a single trap coil. On the right side the wafer with the pickup
loops is visible (not in its final position).

all other coefficients are zero. From this field distribution
we obtain the force on the sphere as

F = − 3V

2µ0

(

b2xx0, b
2
yy0, b

2
zz0
)

,

where V is the volume of the sphere. The magnetic field
thus creates a harmonic trapping potential for a super-
conducting sphere, with trapping frequencies described
by

fi =

√

3

8π2µ0ρ
|bi|.

Coupling strength

The linear coupling strength with respect to a pickup
loop that is described by a closed path γ is defined as
νi = ∂iΦγ , where Φγ is the flux through the area enclosed
by the pickup loop and i ∈ {x0, y0, z0}. We can express
this as

νi =

∫

γ

dγ ∂iA, (1)

where A denotes the magnetic vector potential, defined
by ∇ × A = B and ∇A = 0. While the resulting ex-
pressions are generally bulky, they can be easily eval-
uated using a computer algebra system, we use Wol-

fram Mathematica. We measure the current that is
induced in the pickup loop using a SQUID current sen-
sor, i.e. the pickup loop is connected to an input coil
on the same wafer as the SQUID and inductively cou-
pled to the SQUID. The coupling strength with respect
to the SQUID is thus obtained as ηi = νiM/L, where L
is the inductance of the circuit formed by pickup loop,
input coil of the current sensor, and the connecting wires,
while M is the mutual inductance between input coil and
SQUID. In our case M/L ≈ 0.02. In Fig. 2 we plot the
dependence of the coupling strength on the vertical sep-
aration between trap center and pickup loop, when the
x- and y-position of the pickup loop relative to the trap
center (as shown in the inset) is approximately the same
as what we estimate for our setup (from pictures taken
at room temperature, cf. Fig. 1c). The horizontal dot-
ted lines correspond to the measured coupling strengths,
while the vertical dotted line corresponds to the verti-
cal separation extracted from camera images (approx.
400 µm) of the levitated sphere.

Trap displacement due to gravity

The rest position of the sphere is slightly displaced
from the field minimum due to gravity. In our case the
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xy

250um

200um

FIG. 2. Dependence of the coupling strength on the vertical
separation between trap center and pickup loop, when the
separation along x and y is as shown in the inset - these are
the values we estimate for our setup. The vertical separation
in our setup is approximately 400 µm. The dotted horizontal
lines correspond to the measured coupling strengths.

setup is aligned such that the direction of gravity coin-
cides with the z-axis. The expected displacement is thus

zg = −g/(2π fz)
2,

where g ≈ 9.81m/s2. In general this displacement needs
to be taken into account when calculating the coupling
strength, but for larger trapping frequencies it becomes
negligible. We usually operate at fz > 200Hz, for which
zg < 6 µm.

CURRENT FLUCTUATIONS

Since the sphere’s motional frequencies depend linearly
on the trap current, current fluctuations result in fre-
quency fluctuations, and thus can cause heating as well
as broadening of the mechanical spectral peaks. We sta-
bilize the trap current both passively and actively, as
described in the following. We implement a first-order
low-pass RL-filter by adding a short copper wire (resis-
tance RC) in parallel to the trap coils (inductance LC).
We characterize the filter’s cut-off frequency by measur-
ing its step response in an empty trap (Fig. 3). The cutoff
frequency is RC/LC ≈ 0.036 s−1, which results in an at-
tenuation of approximately −180 dB at 200Hz, while the
added thermal current noise from the copper wire is only
on the order of 1× 10−11 A/

√
Hz.

We actively stabilize the filtered trap current by mon-
itoring the mean current source output using a digital
ammeter and updating the current source output based
on an estimation of the trap current. This lessens current

FIG. 3. Step response of the filter measured using the
SQUID. The solid line is a fit of the filter’s step response
1− exp(−RC/LC t).

drifts and the associated resonance broadening, as seen
by comparing Fig. 4(a) with (b). Even with active cur-
rent stabilization we observe drifts of the particle’s reso-
nance frequency shown in Fig. 4(d), which we attribute
to low-frequency noise in the ammeter reading.

FIG. 4. (a) Typical motional resonance without active cur-
rent stabilization. (b) Typical motional resonance with active
current stabilization. (c) Comparison of PSDs for different
measurement lengths T with trap current feedback on. For
short T the linewidth is determined by the spectral resolu-
tion 1/T and spectral leakage, while for longer T there is still
linewidth broadening due to drifts in frequency. The solid
line in (b) and (c) is a Lorentzian with the linewidth set by
a ringdown measurement. (d) The resonance frequency drifts
by around 5mHz over three hours.
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SENSING

Taking into account measurement noise, we can calcu-
late the force sensitivity as

√

SFF =
√

4kBT0mγ + |χ|−2Snn,

where
√
Snn ≈ 1×10−9 m/

√
Hz is the measurement noise

and χ(ω) = 1/[m(ω2
0 − ω2 − iγω)] denotes the mechan-

ical susceptibility. In our case, using Q = 2.6 × 107 at
212Hz and assuming T0 = 15mK, this would result in a
force sensitivity of

√
SFF = 6.3× 10−19 N/

√
Hz on reso-

nance, close to the thermal limit of 4.9 × 10−19 N/
√
Hz,

and a noise equivalent temperature of Tn = T0 +
|χ(ω0)|−2Snn/(4kBmγ) = 24mK (cf. Fig. 5). However,

FIG. 5. (a)Force sensitivity limits due to thermal noise and
measurement noise. The parameters used for the plot are
Q = 2.6× 107 and f0 = 212Hz.

due to the stochastic frequency fluctuations described in
the last section the susceptibility is stochastic as well.
We briefly sketch how this reduces our sensitivity: Note
that a measurement with frequency drifts can be approx-
imated as a series of shorter measurements at different,
but constant, resonance frequencies. For a finite mea-
surement duration T the measured force power spectral
density at resonance is approximately

4kBT0mγ + Snn

∆f
∫

∆f
df |χ(f)|2 ,

where the integration runs over the bin width ∆f = 1
T

of the bin containing the resonance. Our force sensi-

tivity thus becomes
√
SFF =

√

4kBT0mγ + |χ|−2
avgSnn

with |χ|2avg = 1
∆f

∫

∆f
df |χ(f)|2. For ∆f > γ

2π , we get
|χ(f0)|

2

|χ|2avg
∝ ∆f

γ
. In our case this boosts the measurement

noise above the thermal noise and, for a typical mea-
surement, our force sensitivity worsens by at least an
order of magnitude, corresponding to an noise equivalent
temperature of at least 2.5K. Both improving the cou-
pling, which corresponds to an effective decrease of the
measurement noise, and improving the stability of the
resonance frequency will allow us to perform measure-
ments limited by thermal noise. We show below that we
can increase the coupling by almost four orders of magni-
tude. Regarding the latter, we note that persistent cur-
rent coils have reached a relative current stability better
than 2× 10−11/h [3].

FEEDBACK

We can apply a magnetic feedback force on the lev-
itated sphere by processing the SQUID signal and ap-
plying a feedback current to a small coil with approxi-
mately 20 windings positioned approximately 1mm be-
low the trap center. The feedback current generates an
additional magnetic field, thereby shifting the field min-
imum of the trapping field and enabling us to apply
direct feedback. The gradient of the trapping field is
changed as well, such that we also have the possibility
to apply parametric feedback at twice the particle’s res-
onance frequencies. Since the COM modes are separated
in frequency, we can apply feedback to all modes simul-
taneously. When we apply direct feedback, we pass the
SQUID signal to a FPGA (STEMlab 125-14), which, for
each of the mechanical frequencies, applies a bandpass-
filter, gain and phase shift [4]. The resulting signals are
then recombined on the FPGA and fed back to the feed-
back coil. When we apply parametric feedback at twice
the mechanical frequencies we additionally use a phase-
locked loop and a clock divider on a second FPGA. As
described in the last section, our current noise floor corre-
sponds to a noise equivalent temperature that is higher
than the base temperature of our dilution refrigerator.
This noise equivalent temperature also sets the limit for
feedback cooling. Due to the large ambient noise reduc-
tion provided by our vibration isolation, magnetic shield-
ing and trap current filter, the equilibrium temperature
of the particle is below the noise equivalent temperature,
meaning that even without applied feedback the parti-
cle’s motion undergoes exponential decay until it is not
detectable anymore. We thus cannot cool the particle’s
modes below their equilibrium temperature and use feed-
back currently only as a way to quickly adjust the am-
plitudes and prepare other measurements.
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CHARACTERIZATION OF THE VIBRATION

ISOLATION SYSTEM

Our vibration isolation system consists of several cylin-
drical plates connected by straight wires, with the top
plate mounted to the 4K-platform of the dilution refrig-
erator and the bottom plate mounted to the aluminum
can containing the magnetic trap. Electrical and ther-
mal connections going to the setup are loosely coiled up
and guided to the setup via a separate vibration isola-
tion stage hung from the Mixing Chamber platform (cf.
Fig. 6). We first characterized a single stage at room
temperature, by exciting it mechanically and recording
its motion with a camera. We find that the horizon-
tal and vertical resonance frequencies are fh = 1.1Hz
and fv = 18.7Hz, respectively, while the librational reso-
nance frequencies are fl,1 = 0.6Hz (around vertical axis),
fl,2 = 8.7Hz and fl,3 = 9.0Hz (around horizontal axes).
We are thus limited by vertical vibrations, which in gen-
eral couple to the other degrees of freedom as well [5].
We then assembled the setup as shown in Fig. 6, with
the bottom plate mounted to an accelerometer (instead
of the setup) used to measure acceleration along the ver-
tical axis. The mass of the bottom plate (including the
accelerometer) was 0.29 kg in this assembly. The in-
termediate stages are each supported by three wires of
equal length, while the bottom stage is supported by a
single wire. The wires are made from type 304 stain-
less steel with a diameter of D = 38 µm and a yield
load of 0.37 kg, as specified by the manufacturer (Fort
Wayne Metals). The wires are connected to the stages
with clamping connections. The vertical spring constant
for the i-th stage is given by kv,i = (NiY D2π)/(4Li),

s.t. fv,i = 1/(2π)
√

kv,i/mi is the resonance frequency
of a single stage. Here Y is the Young’s modulus, Ni

the number of supporting wires, Li the wire length and
mi the mass of the stage. The normal mode frequencies
fn,i of the assembled system are obtained by solving the
characteristic equation of the system [5], resulting in the
transfer function

3
∏

i=1

f2
v,i

|f2
n,i − f2| . (2)

In Fig. 7 we compare the vibrations measured without vi-
bration isolation (with the accelerometer mounted to the
Mixing Chamber stage of the dilution fridge) and with
vibration isolation. The highest normal mode frequency
is approximately 30Hz, above which the measured ac-
celerations quickly drop below the sensitivity of the ac-
celerometer, when it is mounted to the vibration isolation
system. At lower frequencies the measured transfer func-
tion corresponds very well to the analytical values and
we use the analytic expression to extrapolate the attenu-
ation at higher frequencies, resulting in an attenuation of
1× 10−5 at 100Hz and 1.5× 10−7 at 200Hz. The peaks

FIG. 6. Model of the vibration isolation system.

at higher frequencies correspond to the electromagnetic
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FIG. 7. Characterization of the vibration isolation. The dash-
dotted black line is the sensitivity of the accelerometer, as
specified by the manufacturer. The solid orange and blue lines
correspond to the measured acceleration with and without the
vibration isolation, respectively, while the solid yellow line is
data recorded with a 1MW resistor connected to the SMA
port inside the fridge. The dashed pink line is the analytic
transfer function (Eq. 2), while the dashed green line is the
measured transfer function, i.e. the ratio of the measured
accelerations. The horizontal lines correspond to the normal
mode resonance frequencies.

background in the lab, which is verified by an indepen-
dent measurement in which the accelerometer is replaced
by an 1MW resistor inside the fridge. This measurement
reproduces the peaks at precisely the same frequencies
as in the accelerometer measurement, although with a
lower magnitude - this we attribute to the additional
(unshielded) wiring going from the SMA port to the ac-
celerometer, which can act as an antenna. In an initial
approach we used different masses and wire lengths, such
that the attenuation was approximately 5 orders of mag-
nitude at 200Hz.

QUALITY FACTOR

In this section we estimate contributions to the dissi-
pation due to gas damping and eddy currents. We also
consider dissipation in the SQUID and flux creep in the
pickup loop, which we rule out experimentally.
Collisions with background gas result in an additional

damping of [6]

γP = β
P

ρRv̄th
,

where β ≈ 1.8 and v̄th is the mean thermal velocity of the
molecules. We do not have a direct measure of the pres-
sure at the trap location, but we can use the measured
pressure at the room temperature side of the vacuum
can, P ≈ 1× 10−6 mbar, to set an upper limit for the ex-
pected damping. Assuming the background gas consists
mostly of Helium, we get γP ≈ 3× 10−7 s−1, two orders
of magnitude below the measured damping rates.
We avoid eddy current damping by not placing any

normal conductors within the inner shield. Eddy cur-
rents can still be induced in conductors outside the shield,
either via openings in the shield or via the pickup cir-
cuit, part of which is placed outside the shield. In the
first case, we can estimate possible eddy current losses
by imagining a conductive loop with resistance Ro and
inductance Lo placed around the openings in the shield.
The dissipation in mode i ∈ {x0, y0, z0} then takes a
maximum value for Ro = 2πfiLo, corresponding to a
damping

γi =
(∂iφ)

2

2πmfiLo

.

Here φ denotes the flux in the loop induced by the os-
cillation of the sphere, which can be calculated from
Eq. 1. Using the dimensions of our windows and esti-
mating Lo > 10 nH for a similarly sized conductive loop,
we get γi < 1× 10−9 s−1 for all modes.
We now consider eddy current damping mediated by

the pickup circuit or damping due to flux creep in the
pickup circuit, as well as dissipation in the SQUID due
to a real part in the SQUID input impedance [7]. This
implies γi ∝ ν2i , while in the experiment the damping
is approximately equal for all three COM modes. In
addition, during initial measurements the pickup loop
was positioned farther from the trap center and coupling
strengths were approximately one order of magnitude
lower than the ones reported here, but we did not see
any change in the quality factor.

CALIBRATION

Our optical readout scheme is shown schematically in
Fig. 8. The light source (Leica CLS150) produces a beam

Camera

Dilution refrigerator

FIG. 8. Sketch of the optical setup.

of light, which is further collimated by small windows
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in the cryostat and the magnetic shields. After passing
through the cryostat, the light is focused by a teleob-
jective into the camera (DFK 33UX287). Any object
in the light path thus appears as a shadow on a bright
background, corresponding to the projection of the ob-
ject onto the image sensor. We use a frame rate of 596fps
and 0.5ms exposure time to record the videos and then
process them as follows. Each frame is first converted to
grayscale, smoothed with Gaussian blurring, thresholded
and then analyzed using the particle tracking software
Trackpy [8]. This results in datasets for the horizon-
tal and vertical (as defined by the camera’s orientation)
position of the sphere. The camera is aligned such that
the vertical axis is along the trap coil axis and the direc-
tion of the particle’s z-motion, while the particle’s motion
along x and y is projected onto the camera’s horizontal
axis. The trap coils are aligned such that the elliptic
axes are at around 45◦ to the optical axis, so both the x
and y motion can be imaged. To get separate trajecto-
ries for each mode we implement a digital bandpass filter
around the respective resonance frequency. Calibration
of the sphere’s displacement relies on knowledge of the
optical system’s magnification, which we determine using
knowledge of the sphere’s size (100(6) µm, as specified by
the manufacturer). Including the uncertainty from the
alignment of the trap coils with respect to the optical
axis in addition to the ±6% uncertainty from the size of
the sphere, we estimate a total uncertainty of ±13% for
the calibrated COM displacement.

The light source is turned on only for calibration mea-
surements, as the illumination heats the particle and lim-
its the levitation time to approximately one hour. Fur-
ther, optical band-pass filters (approximately 400 nm –
650 nm) on the millikelvin stage reduce ambient light
reaching the particle and heating it. Without the fil-
ters (and the light source turned off) levitation times are
limited to around four hours, while we have not yet found
a limit (>30 h) using the filters.

OPTIMIZATIONS AND GROUND STATE

COOLING

In this section we provide more detail on how to im-
plement the improvements that are necessary to per-
form feedback cooling to the ground state. We will con-
sider only cooling of the z-mode, cooling of the other
modes and 3D-cooling can be characterized and opti-
mized in an analogous manner. We first show that the
coupling strength can be increased by almost four or-
ders of magnitude, s.t. the measurement noise (in units
of m/

√
Hz) with a state-of-the-art SQUID decreases to

1 × 10−15 m/
√
Hz. We then take into account the back

action from the SQUID due to the circulating current
and determine the standard quantum limit (SQL) of our
system. We proceed to evaluate the requirements for

z

n

h

M
J

IB

LP

LW

LI LB V

FIG. 9. Schematic of the readout circuit. The working point
of the SQUID is set by the bias current IB and the bias flux
coupled into the SQUID via LB . For appropriate bias values
and small changes in flux (in FLL mode this is assured by ap-
plying feedback over LB), the voltage drop V is proportional
to the flux in this SQUID loop.

ground state cooling as well as contributions to heating
from vibrations and frequency fluctuations.

Coupling strength

We can increase the coupling strength by better posi-
tioning of the pickup loop relative to the superconduct-
ing sphere and by increasing the number of turns of the
pickup loop, thus matching its inductance to that of the
input coil. For the calculation, we will assume a planar
pickup loop with circular windings, positioned coaxial
with the z-axis. Then Eq. 1 leads to

ν1 =πbzR
2
P

(

R2

R2
P + Z2

P

)

3

2

×
(

1− R2

R2
P + Z2

P

(

1− 5Z2
P

R2
P + Z2

P

))

(3)

for the coupling strength w.r.t. a single turn of the pickup
loop with radius RP and z-position ZP . The coupling
strength to a multi-turn pickup loop can be written as a
sum of terms of this form, ν =

∑

i ν1(RP,i, ZP,i), and the
coupling strength to the SQUID (cf. Fig. 9) is obtained
as

η = ν
k
√
LILS

LP + LI + LW

.

Here LP , LI and LS are the inductances of pickup coil,
SQUID input coil and SQUID, respectively. We have
used that the the mutual inductance M between input
coil and SQUID can be written as M = k

√
LILS with

|k| < 1. LW denotes the stray inductance of the pickup
circuit and is in our case dominated by the wires con-
necting the pickup coil to the SQUID, LW ≈ 100nH.
A relevant figure of merit for the measurement noise

of the SQUID is the so-called energy resolution SEE =
Sφφ

2LS
, with state-of-the-art SQUIDs reaching values on the
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order of h̄ [9, 10]. In terms of position resolution this can
be written as

Snn =
Sφφ

η2
=

2SEE

k2
(LP + LI + LW )2

ν2LI

. (4)

In order to get a realistic estimate for this we will use the
SQUID parameters presented in [10], i.e. LS = 15pH,

LI = 0.53 µH, M = 2.3 nH and
Sφφ

2k2LS
= 5.5h̄. For the

pickup coil we assume a wire width of 0.3 µm and a dis-
tance between the wires of 0.45 µm, which is also the
resolution of the input coil of our existing SQUID. We
use the modified Wheeler formula [11] to determine LP ,
s.t. we get a fully analytical expression for Snn. We also
restrict us to ZP ≥ R. Given these parameters, as well as
bz = 147T/m, we minimize Snn with respect to RP , ZP

and N , where RP now denotes the inner radius of the
pickup coil and N is the number of turns. This results in
η ≈ 5.5× 107 φ0/m and Snn ≈ 1× 10−15 m for ZP = R,
RP � R and N ≈ 87. We note that the scaling of the
coupling (Eq. 3) means that the measurement noise can
be further decreased by working with higher gradients or
using larger particles (a scale-independent expression for
the coupling is easily obtained by measuring distance in
units of R, magnetic fields in units of bzR and thus the
coupling in units of bzR

2).

The standard quantum limit

Equation 4 for the readout signal measured with the
SQUID is valid only when the back-action stemming from
the circulating SQUID current onto the levitating parti-
cle is negligible. This is a reasonable assumption given
the weak coupling in our current setup, but for increased
coupling strength the back-action should be considered.
All relevant parameters are stated for the SQUID cou-
pled to the input circuit and can be different than the
parameters of the uncoupled SQUID, depending on the
capacitive coupling at the Josephson frequency [7]. The
readout noise is set by the flux noise, while the back-
action noise is determined by fluctuations of the circu-
lating current J . For a shunted SQUID the origin of
both flux and current fluctuations is current noise in the
shunt resistors and the quantum limit that arises from

zero-point-fluctuations is
√

SφφSJJ − S2
φJ ≥ h̄ [12, 13].

We will assume in the following that correlations between
flux and current noise are negligible, SφJ ≈ 0 [13, 14].

A current J around the SQUID loop will effect a force
−ηJ on the levitated sphere and thus the measured dis-
placement PSD of the sphere becomes

Sm
zz =

Sφφ

η2
+ |χ|2(Sth

FF + η2SJJ).

The product of measurement noise and back-action
force noise thus fulfills the Heisenberg-like inequality

Sφφ

η2 η2SJJ ≥ h̄2 and Sm
zz is minimized for η2 = 1

|χ|

√

Sφφ

SJJ
,

such that

Sm
zz = 2|χ|

√

SφφSJJ + |χ|2Sth
FF .

For
√

SφφSJJ = h̄ this corresponds to the standard quan-
tum limit.

Feedback cooling

We now assume we provide direct feedback s.t. the
effective damping of the oscillator becomes γ +Γ, where
Γ is the cold damping added by the feedback [15] and
χ̃(ω) = 1/[m(ω2

0 − ω2 − i(γ + Γ)ω)] is the effective sus-
ceptibility. The measurement noise will also enter the
feedback system, resulting in an additional force, and
the displacement power spectral density becomes

Szz = |χ̃|2
(

Sth
FF + η2SJJ + (mωΓ)2

Sφφ

η2

)

.

For Γ = η2

mω0L̃S
� γ this corresponds a mean phonon

number

n̄ =
1

h̄η2

(

kBT0mγL̃S

)

+
1

2

(

√

SφφSJJ

h̄
− 1

)

,

where we have introduced the shorthand L̃S =
√

Sφφ

SJJ
.

Close to the optimum working point L̃S ≈ LS [14]. Us-
ing η = 5.5× 107 Φ0/m as well as assuming T0 = 15mK,
m = 5.6 µg and LS = 15pH, we need γ ≈ 1 × 10−6 s−1

to keep the left term negligible. Ground state cooling
then requires

√

SφφSJJ < 3h̄. While current noise in
SQUIDs is challenging to measure [16], a DC-SQUID
with

√

SφφSJJ ≈ 10h̄ has been reported [17]. Fur-

ther, for L̃S ≈ LS we would expect
√

SφφSJJ ≈ 2SEE .
The lowest energy resolution reported up to date is
SEE ≈ 1.7h̄ [9], so ground state cooling by continuous
feedback will require a state-of-the-art SQUID.

Heating

We now consider fluctuations of the trap center with
spectral density Sεε as well as fractional fluctuations of
the spring constant with spectral density Sδδ. We note
that the heating rate ΓδE due to frequency fluctuations
is proportional to the energy E of the oscillator. The
average energy of the oscillator is then described by

˙〈E〉 = (Γδ − γ)〈E〉+ kBT0γ + Q̇ε,

where Q̇ε is the heating rate due to fluctuations of the
trap center. For Γδ < γ this results in an effective tem-
perature of

Teff =
kBT0γ + Q̇ε

kB(γ − Γδ)
.
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The heating rates are given by [18]

Q̇ε =
1

4
mω4

0Sεε(ω0),

and

Γδ =
1

4
ω2
0Sδδ(2ω0).

Using the values from the preceding paragraph, ground
state cooling requires approximately

√

Sδδ(2ω0) < 1 ×
10−7/

√
Hz and

√

Sεε(ω0) < 1 × 10−19 m/
√
Hz (corre-

sponding to Teff < 20mK). Regarding the former we
note that relative fluctuations on the order of one part
per billion can be reached in superconducting coils [19],
while the latter requires further improvements to our vi-
bration isolation system. Suspending the system from
the top plate of the cryostat would allow us to add two
more stages and achieve the required vibration suppres-
sion.
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