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Einleitung und Zusammenfassung in deutscher Sprache

Die Topologie hat ihren Ursprung im 18. Jahrhundert, als sich Euler mit dem Königsberger Brücken-
problem beschäftigte. Die Fragestellung war hierbei, ob es einen Weg gibt, der genau einmal über
jede der sieben Brücken führt. Für die Lösung des Problems waren Lage und Länge der Brücken
nicht von Bedeutung. Benötigt wurde lediglich die Information, welche Uferabschnitte über wel-
che Brücken miteinander verbunden sind. Euler fasste gemeinsame Uferabschnitte als Knoten auf,
die mittels Kanten (die den Brücken entsprechen) miteinander verbunden waren, und konnte so
das Problem lösen. Verglichen den klassischen Fragestellungen, die man damals aus der Geometrie
kannte, hatte das zu untersuchende Objekt eine deutlich vereinfachte Struktur. Die Tatsache, dass
in der Topologie weniger Struktur verlangt wird als beispielsweise in der Geometrie, erschwert je-
doch die Untersuchung und Klassifizierung topologischer Räume.
Abhilfe schaffen hier algebraische Methoden, die bei der Untersuchung topologischer Räume Anwen-
dung finden, um Struktur in das Chaos zu bringen. Die Grundidee der algebraischen Topologie ist
es, topologischen Räumen in geeigneter Weise algebraische Strukturen, wie beispielsweise Gruppen
zuzuordnen. Dabei soll sich möglichst viel Information über den betrachteten Raume auf verein-
fachter und zugänglicher Weise in der algebraischen Struktur wiederfinden.
In den meisten Fällen lässt die in der algebraischen Struktur codierte Information eine vollständige
Klassifizierung der zugrundeliegenden Räume nicht zu. Allerdings können so oftmals zumindest
manche topologische Räume voneinander unterschieden werden. Ein Beispiel hierfür sind die Ho-
motopiegruppen πk(X) eines topologischen Raumes X, k ∈ N0. Diese sind invariant unter dem
sogenannten Homotopietyp von X, was bedeutet, dass zwei Räume mit unterschiedlichen Homo-
topiegruppen nicht homotopieäquivalent sein können. Wenngleich die Homotopiegruppen nur in
Spezialfällen den Raum X bis auf Homotopieäquivalenz charakterisieren können, ist ihre Berech-
nung seit Jahrzehnten Bestandteil aktueller mathematischer Forschung. Die Tatsache, dass die
Homotopiegruppen πk(X) so schwer zu bestimmen sind, obwohl sie im Allgemeinen nur einen klei-
nen Teil der Information über den Homotopietyp des zugrundeliegenden Raumes X enthalten, zeigt
die Komplexität der Untersuchung topologische Räume auf.
Eine gängige Aufgabenstellung in der algebraischen Topologie ist auch die Rekonstruktion topo-
logischer Räume aus algebraischen Objekten. Bei den hierbei erhaltenen Räumen handelt es sich
im Allgemeinen um CW Komplexe, also Räume, die durch das Ankleben von Zellen steigender
Dimension konstruiert werden können. Die grundsätzliche Frage ist dann meist, wie aus den alge-
braische Daten die Information über Zellanzahl und Anklebeabbildungen gewonnen werden kann.
Ein prominentes Beispiel ist die Konstruktion sogenannter Eilenberg-MacLane Räume K(G,n). Zu
gegebenem n ≥ 1 und gegebener Gruppe (abelsch, falls n ≥ 2) lässt sich ein CW Komplex X
konstruieren, sodass πn(X) = G gilt und alle anderen Homotopiegruppen verschwinden. Hier ist X
dann sogar, bis auf Homotopieäquivalenz, eindeutig. Dies bedeutet, dass jeder andere Raum mit
ebendiesen Homotopiegruppen zum konstruierten X homotopieäquivalent ist. Das gilt im Allge-
meinen schon dann nicht mehr, wenn zwei oder mehr Homotopiegruppen nicht trivial sind. Auch
dann lässt sich ein Raum X konstruieren, der diese realisiert. Jedoch kann es noch viele andere
Räume mit passenden Homotopiegruppen geben, sodass man von einer anstelle von der Realisie-
rung sprechen muss.
Betrachtet man nun Räume, für die π1(X) verschwindet, und wechselt von den Gruppen πk(X)
zu den rationalen Vektorräumen πk(X)⊗ Q, verbessert sich die Lage deutlich. Zum einen sind die
sogenannten rationalen Homotopiegruppen πk(X)⊗Q deutlich leichter zu berechnen, zum anderen
gibt es für diesen Vorgang ein topologisches Pendant. Zu gegebenem X gibt es einen Raum XQ,
dessen Homotopiegruppen auf natürliche Weise den Vektorräumen πk(X) ⊗ Q entsprechen. Auf
topologischer Seite lässt sich so ein neuer, gröberer Äquivalenzbegriff formulieren, für den die ratio-
nalen Homotopiegruppen eine geeignete Invariante sind. Die Untersuchung topologischer Räume bis
auf ebendiesen Äquivalenzbegriff, auch rationaler Homotopietyp von X genannt, mittels geeigneter
algebraischer Methoden ist Mittelpunkt der rationalen Homotopietheorie.
Was die Klassen von topologischen Räumen betrifft, stellt der Übergang zum rationalen Homoto-
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pietyp eine Vereinfachung dar. Dennoch reichen die rationalen Homotopiegruppen für die Klas-
sifizierung topologischer Räume im Sinne der rationalen Homotopietheorie im Allgemeinen nicht
aus. Deutlich bessere Chancen hat man bei der Betrachtung von sogenannten minimalen Sullivan
Modellen. Darunter versteht man eine bestimmte Klasse freier kommutativ graduierter Differenzi-
alalgebren, sogenannte minimale Sullivan Algebren, die schon auf Kokettenlevel als Modell für die
rationale Kohomologie von X fungieren. Wie sich herausstellt, codieren minimale Sullivan Modelle
den rationalen Homotopietyp des zugrundeliegenden Raumes unter milden Voraussetzungen kom-
plett. Insbesondere gibt es zu gegebener minimaler Sullivan Algebra eine passende Realisierung, die
dann auch bis auf Äquivalenz eindeutig ist.
Vergleicht man nun diese Realisierung mit der oben angesprochenen Variante für Homotopiegrup-
pen und Eilenberg-MacLane Räume, so stellt man fest, dass der genaue Zusammenhang zwischen
algebraischen Daten und zellulärer Struktur des konstruierten Raumes unterwegs verloren geht. Die
Realisierung ist, wenngleich für die Theorie ausschlaggebend, nicht oder nur schwierig auf Beispie-
le anwendbar. Dies motiviert die Suche nach einer alternativen Konstruktion, die, verglichen mit
der schon bestehenden, eher von geometrischer Natur ist. Im Idealfall soll ein großer Teil der CW
Struktur des Raumes direkt aus den Eigenschaften der minimalen Sullivan Algebra herauszulesen
sein. Dies ist Ziel der vorliegenden Arbeit.

Im ersten Kapitel werden die algebraischen Grundlagen geschaffen. Die meisten algebraischen
Strukturen, die in der algebraischen Topologie auftreten, tragen eine Graduierung. Dies bedeutet
an so mancher Stelle kleine Änderungen für die vielleicht schon bekannten Welten der Algebren,
Koalgebren und Lie Algebren, weshalb die wichtigsten Grundlagen hier nochmals erklärt werden.
Darüber hinaus werden zentrale algebraische Objekte, wie (freie) kommutativ graduierte Differen-
zialalgebren und (freie) graduierte Lie Algebren eingeführt.
Das zweite Kapitel beschäftigt sich dann mit der topologischen Welt. Der Begriff der Lokalisierung,
das topologische Pendant zur Lokalisierung von Gruppen durch Tensorbildung mit Teilringen von
Q, wird definiert und die Existenz und Eindeutigkeit bewiesen. Besonderes Augenmerk wird dabei
auch auf der zellulären Lokalisierung liegen, da sie ein sehr anschauliches und geometrisches Bild
dieses (doch sehr komplexen) Vorgangs liefert. Schließlich wird erklärt, was man unter dem ratio-
nalen Homotopietyp eines topologischen Raumes versteht.
Damit wurde die Zielsetzung der rationalen Homotopietheorie, die Untersuchung von Räumen bis
auf rationalen Homotopietyp, klargestellt. Unter Verwendung der algebraischen Grundlagen wird
es dann im dritten Kapitel darum gehen, eine der wichtigsten algebraischen Hilfsmittel für ebendie-
se Untersuchung einzuführen. Minimale Sullivan Modelle werden definiert und ihre Existenz und
Eindeutigkeit bewiesen. Anhand von Beispielen wird klar werden, weshalb sie so ein hilfreiches
Werkzeug in der rationalen Homotopietheorie sind. Darüber hinaus wird die Realisierung von Sul-
livan Algebren thematisiert und dabei der eins zu eins Bezug zwischen einer bestimmten Klasse von
Räumen und minimalen Sullivan Algebren hergestellt.
Das vierte Kapitel beschreibt eine alternative Art von Modellen, die sogenannten freien Lie Modelle.
Deren Vorteil ist, dass sie eine deutlich zugänglichere Realisierung zulassen als Sullivan Algebren.
Anschließend wird eine wichtige Brücke zwischen der Welt der kommutativ graduierten Differenzi-
alalgebren und graduierten Differenzial Lie Algebren hergestellt.
Das letzte Kapitel beschreibt eine alternative Methodik der Realisierung von Sullivan Algebren
mit quadratischem Differenzial. Wir verwenden die Realisierung von freien graduierten Differenzial
Lie Algebren und transferieren diese in die Welt der kommutativ graduierten Differenzialalgebren.
Dabei wird es möglich sein, bestimmte algebraische Daten einer gegebenen minimalen Sullivan Al-
gebra durch die auftretenden Konstruktionen zu verfolgen, um schließlich Aussagen über Teile der
Zellstruktur des realisierenden Raumes machen zu können.
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Abstract

In classic homotopy theory, we often study those properties of topological spaces X and continuous
maps f between them which are only dependent of the homotopy type of X or the homotopy class
of f . The typical approach to this task in algebraic topology is to make use of algebra to bring
some structure into the chaos. In practice, this most commonly involves the definition of some
algebraic quantity associated with a topological space X or a continuous map f which is invariant
in the the homotopy type or homotopy class. While this almost never allows for a full classification
up to homotopy type, one at least gets algebraic invariants which allow to tell some spaces and
maps apart from each other. Among the most prominent examples are the singular homology and
cohomology groups Hk(X), Hk(X) and homotopy groups πk(X,x0), latter being homotopy classes
of maps (Sk, s0) → (X,x0). While homology groups are always abelian, the homotopy groups are
for k ≥ 2, which makes it possible to rationalize these groups in a purely algebraic sense. This
means switching to homology with rational coefficients Hk(X; Q) and the so called rational homo-
topy groups πk(X)⊗Z Q with induced maps πk(f)⊗Z idQ.
For finitely generated abelian groups, forming the tensor product with Q makes all torsion parts
vanish. Accompanied by this decrease of complexity and information is a notable increase in com-
putability. For example, while the homotopy groups of a sphere are mostly still a mystery, we
already know from Serre in 1951, see [23], that for n ≥ 1

πk(S
2n+1)⊗Z Q =

{
Q if k = 2n+ 1

0 else
and πk(S

2n)⊗Z Q =

{
Q if k = 2n, 4n− 1,

0 else.

Quillen introduced the concept of model categories in [19], emphasizing a redefinition of the homo-
topy category of topological spaces. Instead of the morphisms being homotopy classes of continuous
maps, the homotopy category of topological spaces following Quillen is obtained by localizing the
category of topological spaces by a class of morphisms, namely the weak homotopy equivalences.
The isomorphisms in this category are then exactly the weak homotopy equivalences. Motivated
by the simplicity of rational homotopy groups, Quillen localized the category of simply connected
spaces at the rational homotopy equivalences. These are morphisms inducing an isomorphism be-
tween rational homotopy groups. The result is the rational homotopy category Quillen considered
in his article [20] and he could show that it is equivalent to the homotopy category of a certain class
of differential graded Lie algebras.
It should be mentioned that in algebraic topology it is very rare to obtain a full classification of
topological spaces, even up to some notion of equivalence, through algebraic means. Thus, from the
perspective of algebraic topology, this result of Quillen is quite astonishing. However, one might
still argue at this point that the definition of the rational homotopy category seems somewhat ar-
tificial, as if it was chosen to fit the algebraic models and not the other way around. One does
not really get a feeling how this rational homotopy category looks like or what it means for two
spaces to be isomorphic in this category. Rational homotopy theory therefore really begins with
the discovery of Sullivan that rationalization has an underlying geometric construction. A rational
space is a topological space whose homotopy groups form a graded rational vector space, implying
that its homotopy and rational homotopy groups are naturally isomorphic. In [27], Sullivan shows
that any simply connected space X has a rationalization, that is a rational space XQ together with
a continuous map f : X → XQ inducing an isomorphism

π∗(f)⊗ idQ : π∗(X)⊗Z Q
∼=−−→ π∗(XQ)⊗Z Q ∼= π∗(XQ).

Moreover, a continuous map f : X → Y can be rationalized to a map fQ : XQ → YQ which is a
weak homotopy equivalence if and only if f induces an isomorphism between rational homotopy
groups. Two CW complexes are then rational homotopy equivalent if their rationalizations are
homotopy equivalent. Furthermore, the rational homotopy class of a map is the homotopy class of
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its rationalization. Rational homotopy theory is then the study of spaces and maps up to rational
homotopy type and rational homotopy class.
Regarding the algebraic models, Sullivan used a different approach. By a fundamental result due to
Serre and Whitehead, for a continuous map f : X → Y between simply connected spaces it holds

π∗(f)⊗Z Q is an isomorphism ⇐⇒ H∗(f ; Q) is an isomorphism.

Moreover, by the theory of Serre classes, the homotopy groups π∗(X) of a simply connected space
are a graded rational vector space if and only if the singular cohomology H∗(X,x0; Z) is. This allows
to translate the notions of a rational homotopy equivalence and rationalization into the world of
commutative graded algebras over Q. Inspired by differential forms on a manifold, Sullivan describes
a functor APL in [26] that assigns a rational commutative differential graded algebra APL(X) to a
given topological space X. It has the crucial property that the cohomology of APL(X) is naturally
isomorphic to H∗(X; Q), the singular cohomology of X with coefficients in Q. The advantage of
APL(X) in contrast to the classical singular cochain algebra C∗(X; Q) lies in the fact that it is com-
mutative, making it possible to define algebraic models of X on cochain level. A quasi-isomorphism
between commutative differential graded algebras is a morphism which induces an isomorphism be-
tween the corresponding homology algebras. One then calls two differential graded algebras weakly
equivalent if they are connected by a chain of quasi-isomorphisms. As it turns out, two simply
connected spaces with rational homology of finite type are rational homotopy equivalent if and only
if APL(X) and APL(Y ) are weakly equivalent, which outright translates the problem of classifying
those spaces up to rational homotopy type into the world of commutative differential graded alge-
bras.
The probably most favorable feature of Sullivan’s approach is the fact that the commutative dif-
ferential graded algebra APL(X) associated with a simply connected space X allows for a so called
(minimal) Sullivan model. That is a quasi-isomorphism

ϕ : (ΛV, d)
'−−→ APL(X),

where ΛV is a special free commutative graded algebra. Other than APL(X), the commutative
graded algebra (ΛV, d), also referred to as minimal Sullivan algebra, is often computable. In cases
where it can even be obtained from the cohomology algebra H∗(X; Q), the space X is called formal.
Moreover, it holds that the isomorphy type of (ΛV, d) is solely determined by the rational homotopy
type of X. In more detail, two simply connected spaces X and Y with rational cohomology of finite
type have the same rational homotopy type if and only if they have isomorphic minimal Sullivan
models. This establishes a one-to-one correspondence between the rational homotopy types of
simply connected spaces and isomorphism classes of minimal Sullivan algebras (ΛV, d), where on
both sides we restrict to rational cohomology of finite type. In view of this correspondence, it
is possible to realize minimal Sullivan algebras, meaning we can assign to (ΛV, d) a CW complex
|ΛV, d| such that (ΛV, d) is a minimal Sullivan model for |ΛV, d|. Moreover, any other space X to
which (ΛV, d) is a model for, has the rational homotopy type of |ΛV, d|.
On this occasion, it should be pointed out that the simple nature of a minimal Sullivan algebra
does not reflect in the CW structure of its realization. While being of central importance to the
theory, the realization functor as described by Sullivan and generally used in the literature on
rational homotopy theory does not allow an easy description of the obtained CW complex. Our
goal in this monograph is therefore to establish a realization for certain minimal Sullivan algebras
which has a more geometric flavour. More precisely, given a minimal Sullivan algebra (ΛV, d)
with V = V ≥2 of finite type and quadratic differential d = d1, we will construct a CW complex
X such that (ΛV, d1) is a minimal Sullivan model for X. In doing this, a considerable amount
of information on the cell structure of X, such as the number of cells in each dimension, the
description of a specific subspace or the classes of certain attaching maps can be directly read
off the minimal Sullivan algebra (ΛV, d1). To achieve this, we will make use of so-called cellular
Lie models. In the world of free differential graded Lie algebras, a more geometrically motivated
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realization already exists, and we will use certain functors to translate this realization into the
world of Sullivan algebras. To be more precise, associated with any differential graded Lie algebra
(L, d) is a differential graded algebra C∗(L, d) which, under mild assumptions, is a Sullivan algebra.
Furthermore, given a minimal Sullivan algebra as above, there exists a special homotopy Lie algebra
L such that (ΛV, d1) = C∗(L, 0). While L itself will most of the time not be free, we can find a free
Lie model, that is a morphism (LW , ∂)

'−−→ (L, 0) from a free differential graded Lie algebra which
induces an isomorphism on homology. Using functoriality, this is then carried over into a quasi-
isomorphism of differential graded algebras, thereby reversing arrows. Finally, for (LW , ∂) there
then exists an explicit description of a CW complex X such that there exists a quasi-isomorphism
C∗(LW , ∂)

'−−→ APL(X). The composition

(ΛV, d1) = C∗(L, 0)
'−−→ C∗(LW , ∂)

'−−→ APL(X)

then exhibits (ΛV, d1) as minimal Sullivan model of X. A close examination of this whilst tracing
algebraic information in (ΛV, d1) through the constructions that are involved allows us to deduce
some statements regarding the construction of X.
We can now give a formulation of the main results. Note that the notation will be explained during
the course of this monograph. Let (ΛV, d1) be a minimal Sullivan algebra with V = V ≥2 of finite
type. Choose a basis (vi)i∈I of ker(d1), then the homology H+(ΛV, d1) has a basis of the form
{[vi], βr}i∈I,r∈R.

Theorem. It holds that (ΛV, d1) is a minimal Sullivan model for a CW complex X for which:

(i) The number of cells in Xn corresponds to the dimension of Hn(ΛV, d1). More precisely, for
each i ∈ I a cell of dimension |vi| is attached to the base point, and for each r ∈ R a cell of
dimension |βr| may be attached non-trivially.

(ii) Let k1 + 1 = min{|βr| : r ∈ R} and R1 ⊆ R such that r ∈ R1 if and only if |βr| = k1 + 1.
Then X has a subspace

Y := ∨i∈IS|vi| ∪f
⋃̇

r∈R1

Bk1+1 ⊆ X,

where f is a family of Whitehead products of inclusions ιk : S|vk| ↪→ ∨i∈IS|vi|.

In particular, if R1 = R, no further cells are attached and we get Y = X. In this case, (ΛV, d1)
is the minimal Sullivan model of a wedge of spheres, with cells of dimension k1 + 1 attached by
Whitehead products in πk1(∨i∈IS|vi|).

In addition to that, in some cases, the products vk∧vl of two elements in (vi)i∈I contribute to cells
in X that are attached via Whitehead products of bracket length two. To begin with, complement
(vi)i∈I to a basis of V , denoting the additional basis elements by (wj)j∈J . Note that d1(wj) ∈ Λ2V
is generated by products of length two and that the products vk ∧ vl may belong to a suitable basis
of Λ2V . Thus d1(wj) has coordinates λjk,l with respect to vk ∧ vl.

Theorem. Denote by Y n ⊆ Xn the bouquet of spheres up to dimension n, one for each vi of degree
n or lower. Write j : Y n ↪→ Xn for the inclusion and αi for the classes represented by the inclusions
ιi : S|vi| ↪→ Y n. It holds:

(i) A basis element vk ∧vl ∈ (Λ2V )n+1 for which the coefficient λjk,l in d1(wj) is zero for all j ∈ J
implies that a cell Bn+1 is attached to Xn by the class

−(−1)|vk|π∗(j)([αl, αk]W ) ∈ πn(Xn).

Then [vk][vl] is an element in a basis of H+(ΛV, d1).
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(ii) Assume that, for m ≥ 2 distinct basis elements vk ∧ vl ∈ (Λ2V )n+1, there exists exactly one
j ∈ J such that the coefficients λjk,l in d1(wj) are non-zero, k, l ∈ I. Fix one element vp ∧ vq,
then for each of the remaining m − 1 elements vk ∧ vl a cell Bn+1 is attached to Xn by the
class

(−1)|vp|µjp,qπ∗(j)([αq, αp]W )− (−1)|vk|µjk,lπ∗(j)([αl, αk]W ) ∈ πn(Xn).

Then the m− 1 products [vk][vl] are elements in a basis of H+(ΛV, d1).

Moreover, if the products [vk][vl] above in combination with the elements ([vi])i∈I provide a full basis
of H+(ΛV, d1), this concludes the description of X.

This monograph is organized as follows. The first chapter gives an introduction to the world of
(differential) graded algebras, (differential) graded coalgebras and (differential) graded Lie algebras,
setting the foundation for the algebraic models that will appear in rational homotopy theory. In
particular, two very essential constructions will be introduced, namely that of a free commutative
graded algebra and that of a free graded Lie algebra. In the second chapter, we will define the
idea of localization that is due to Sullivan. This is where the topological side of rational homotopy
theory will be discussed, such that we know what world our algebraic models will be applied to. We
will introduce the geometric interpretation of localization (rationalization) and define the rational
homotopy type of a space. Moreover, we will discuss how given spaces can be localized cell by cell,
deepening the understanding of what localization means from a topological viewpoint. The third
chapter then gives an overview of the models used by Sullivan. We will describe what a (minimal)
Sullivan model is, how it can be obtained, and why they are such a powerful computational tool.
Moreover, we will briefly discuss the more general concept of relative Sullivan algebras, which are
especially useful in modelling fibrations. In the end of chapter three, we present the realization
of a Sullivan algebra as due to Sullivan, implying that under mild assumptions, the full rational
homotopy type of a space is encoded in its minimal Sullivan model. Along the way, we will specify
how certain information, such as the rational homotopy groups of the space and the Whitehead
product, can be obtained from the model. The fourth chapter then introduces (free) Lie models
of spaces. While it was Quillen who showed that differential graded Lie algebras provide good
models for the rational homotopy type, we will use a functor to translate them into the world of
commutative graded algebras such that we can make use of Sullivan’s APL construction. After a
description of the functors involved, we can address the realization of certain free differential graded
Lie algebras that we will make use of. With that, we are equipped to show the two main theorems
as stated above in chapter five before providing some examples, as well as a small outlook on what
might further be possible.
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1 Graded Algebra

If we take a look at the invariants that are mainly used in homotopy theory, an immediate observa-
tion is that they most often entail a grading. In addition to that, we will see that there commonly
exists an operation respecting the grading. So for example, the cohomology groups have the cup
product which stems from a comultiplication that can be defined on the homology groups, and
on the rational homotopy groups of a space the Whitehead product can be used to define a Lie
bracket. We will therefore begin by introducing notions of graded (co-)algebras and graded Lie alge-
bras. Moreover, since the algebraic models we will use later on will not be applied on (co-)homology
level but one step prior, we frequently work with objects that have a differential. Therefore, let us
start with the introduction of complexes.

1.1 Complexes

Throughout this section, let K be any commutative unitary ring. When we speak about modules or
linearity, we mean K-modules and K-linear maps. Tensor products are to be understood as tensor
products over K.

Definition 1.1.1. (Graded modules)
A graded module (V, (Vi)i∈Z) is a family (Vi) of modules, such that V = ⊕iVi. An element v ∈ Vi
is called a homogeneous element of degree i, and we write |v| = i. If Vi = 0 for all i /∈ I for some
I ⊆ Z, we say V is concentrated in degrees i ∈ I and identify V with ⊕i∈IVi.

We call a graded module V free if Vi is a free module for each i ∈ Z. In this case, we call the
disjoint union of bases of the modules Vi a homogeneous basis for V . Whenever K is a field, we
speak about a graded vector space. These are always free, given the axiom of choice.
We say a graded vector space has finite type if Vi is of finite dimension for all i ∈ Z. A vector space
V that is concentrated in finitely many degrees is finite dimensional if and only if it has finite type.
The dimension of V is the sum of the dimensions of the subspaces Vi.
We chose the denotation V to insinuate that in many cases of interest, we will in fact work with
graded vector spaces, or free modules at least.

Example 1.1.2.

(a) We can view K as a graded module concentrated in degree zero.

(b) For i ∈ Z let Si be any set. We can form the free K-module with basis Si that is defined as

Vi :=
⊕
s∈Si

K.

By identifying each s ∈ Si with the element whose s-th entry is the unity and all others being
zero, we can think of elements in Vi as being formal linear combinations

∑
s∈Si kss, where only

finitely many ks ∈ K are nonzero. Then V := ⊕iVi is a free graded module with basis S := ∪iSi.

Remark 1.1.3.

(a) We say V ′ ⊆ V is a (graded) submodule if there exist submodules V ′i ⊆ Vi such that V ′ = ⊕iV ′i .
For example, each module Vi can be regarded as a submodule of V associated with the family
(Vj) where Vj = 0 for j 6= i.

(b) The graded quotient module V/V ′ associated with a submodule V ′ is the module that is given
by the family (Vi/V

′
i ), so V/V ′ = ⊕i(Vi/V ′i ).

(c) We denote by V>k the graded submodule associated with the family (Vi)i>k and define V≥k,
V<k, V≤k analogously. In particular, V+ := V>0.
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Let j ∈ Z. A linear map f : V → W between graded modules such that f(Vi) ⊆ Wi+j for all
i ∈ Z is called a linear map of degree j. By a morphism between graded modules we mean a linear
map of degree zero. The restriction f |Vi will be denoted by fi, but we may occasionally drop the
indices when they are obvious from the context. This way, any linear map f on V defines a family
of linear maps (fi). Further, by the universal property of the direct sum it follows that any such
family defines a linear map on V . Therefore, it suffices to specify linear maps on homogeneous
elements of V . To emphasize the graded setting when needed, we sometimes use the notation V∗
for the direct sum and f∗ for linear maps on it.

Example 1.1.4. Associated with a pointed topological space (X,x0) are its homotopy groups
πk(X,x0), that are homotopy classes of maps f : (Sk, s0)→ (X,x0). While π0(X,x0) is simply the
set of path-components of X, for k ≥ 1 the map Sk → Sk ∨ Sk collapsing the equator Sk−1 ⊆ Sk

to a point may be used to define a group operation on πk(X,x0). For k ≥ 2 this has the property
that it is commutative. Moreover, any continuous map g : (X,x0) → (Y, y0) induces a morphism
πk(g) : πk(X,x0)→ πk(Y, y0) via πk(g)([f ]) = [g ◦ f ].
If X is path-connected, the groups πk(X,x0) are isomorphic for all choices of x0 ∈ X. In this
case one just writes πk(X) for the isomorphy class. Assuming X is actually a simply connected
space, the groups πk(X) are all abelian, as π0(X) = π1(X) = 0. Thus in this case, π∗(X) is a
graded Z-module and any map g : X → Y between simply connected spaces induces a morphism
π∗(g) : π∗(X)→ π∗(Y ).

Definition 1.1.5. A differential in a graded module is a linear map d : V → V of degree −1, with
d2 = 0. That is, d consists of a family of linear maps (di : Vi → Vi−1)i∈Z such that di ◦ di+1 = 0.
The pair (V, d) is then called a complex.

By a morphism between two complexes, we mean a linear map ϕ : (V, dV ) → (W,dW ) of degree
zero commuting with the differentials, i.e. ϕ ◦ dV = dW ◦ ϕ. Any two such morphisms ϕ,ψ
are called homotopic, if there exists a linear map h : (V, dV ) → (W,dW ) of degree 1 such that
ϕ−ψ = h◦dV +dW ◦h. This is then denoted by ϕ ∼ ψ and h is called a chain homotopy. Moreover,
if ϕ : (V, dV ) → (W,dW ) is a morphism such that there exists a second morphism ψ : (W,dW ) →
(V, dV ) with ψ ◦ ϕ ∼ idV and ϕ ◦ ψ ∼ idW , then ϕ is called a chain equivalence.

Remark 1.1.6. A submodule V ′ ⊆ V of a complex (V, d) is called a subcomplex if the restriction
d|V ′ is a differential in V ′, meaning di|V ′i is a map V ′i → V ′i−1 with di ◦ di+1 = 0 for all i ∈ Z. A
subcomplex allows the definition of a differential on the quotient module V/V ′ that is induced by
the differential in V , so d([v]) := [d(v)], where [v] denotes the equivalence class of a homogeneous
element v ∈ V . This is well-defined as d(V ′) ⊆ V ′ and a differential since d : V → V is one.

Example 1.1.7. Let V , W be graded modules. The direct sum and tensor product of V and W ,
when given the gradings

V ⊕W =
⊕
i∈Z

(Vi ⊕Wi)

V ⊗W =
⊕
k∈Z

( ⊕
i+j=k

(Vi ⊗Wj)

)
,

are again graded modules.
If f : V1 → V2, g : W1 →W2 are linear maps of degree j, k, we can define a linear map f ⊗ g : V1 ⊗
W1 → V2 ⊗W2 of degree j + k by

(f ⊗ g)(v ⊗ w) := (−1)k|v|f(v)⊗ g(w).

Suppose we are given differentials dV and dW respectively in V andW , then there exists a differential
d in V ⊗W , namely

d(v ⊗ w) := dV (v)⊗ w + (−1)|v|v ⊗ dW (w)
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where v ∈ V , w ∈ W are homogeneous elements. This means whenever (V, dV ), (W,dW ) are
complexes, so is (V ⊗W,d).

Example 1.1.8. Let Hom(V,W ) be the set of linear maps from V to W . There is a natural
grading on Hom(V,W ) that is given by the sets (Hom(V,W ))i consisting of all linear maps of
degree i. Together with the pointwise addition and scalar multiplication, each (Hom(V,W ))i itself
is a module, turning Hom(V,W ) into a graded module.
If f : V1 → V2, g : W1 → W2 are linear maps of degree j, k, we can define a linear map of degree
j + k by

Hom(f, g) :

{
Hom(V2,W1) → Hom(V1,W2)

ϕ 7→ (−1)j(k+|ϕ|)g ◦ ϕ ◦ f.

If (V, dV ), (W,dW ) are complexes, the linear map d : Hom(V,W )→ Hom(V,W ) defined by

d(ϕ) := dW ◦ ϕ− (−1)|ϕ|ϕ ◦ dV

for a homogeneous element ϕ ∈ Hom(V,W ) is a differential. This way, (Hom(V,W ), d) is again a
complex.

Note that the kernel and the image of linear maps again determine graded submodules. If f : V →
W is a linear map of degree j, then ker(f) ⊆ V and im(f) ⊆ W consist of the families (ker f)i :=
ker fi ⊆ Vi and (im f)i := im fi−j ⊆Wi.
Especially for a complex (V, d) this means im di+1 ⊆ ker di ⊆ Vi, as d2 = 0.

Definition 1.1.9. Let (V, d) be a complex. The graded quotient module

H(V, d) := ker d/ im d

is called the homology of V , or (V, d) to be more precise. An element in ker d is called a cycle,
whereas elements of im d are referred to as boundaries.
The corresponding family is given by the modules (Hi(V, d))i, where Hi(V, d) = ker di/ im di+1 is
called the i-th homology of V . In the following, we will frequently abbreviate the notation and just
write Hi(V ), dropping the differential.

Any morphism ϕ : (V, dV ) → (W,dW ) between complexes induces a linear map H(ϕ) : H(V ) →
H(W ) by settingH(ϕ)([v]) := [ϕ(v)], where v ∈ V is a cycle and the brackets denote the equivalence
class. If ϕ and ψ are homotopic, then they induce the same map H(ϕ) = H(ψ). We call ϕ a quasi-
isomorphism if the induced map H(ϕ) is an isomorphism. This will be denoted by ϕ : (V, dV )

'−−→
(W,dW ).

Remark 1.1.10.

(a) A complex (V, d) where V is concentrated in degrees i ∈ N0 is called a chain complex. The
corresponding homology may sometimes be denoted by H∗(V ) to stress the lower grading.

(b) A complex (V, d) where V is concentrated in degrees i ∈ Z \ N is called a cochain complex. In
this case, we use the notation

V i := V−i, di := d−i

to avoid negative degrees. This way, d is considered a linear map of degree 1 with respect to
upper degrees, di : V i → V i+1. The corresponding homology may sometimes be denoted by
H∗(V ) to stress the upper grading. Moreover, it usually will be referred to as cohomology.
Analogously, the elements of (ker d) are called cocycles and the elements of (im d) are the
coboundaries.
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Proposition 1.1.11. Given two complexes (V, dV ) and (W,dW ), consider the complexes (V ⊗W,d)
and (Hom(V,W ), d) defined in examples 1.1.7 and 1.1.8. When K is a field, it holds that the natural
linear maps

H(V, dV )⊗H(W,dW )→ H(V ⊗W,d), [v]⊗ [w] 7→ [v ⊗ w],

H(Hom(V,W ), d)→ Hom(H(V, dV ), H(W,dW )), [ϕ] 7→ H(ϕ)

are isomorphisms. We say that homology commutes with Hom(−,−) and −⊗−.

Proof. This follows from a more general result in [3] and the fact that Hom(−,−) is an exact functor
when K is a field.

Example 1.1.12. Let us consider a special case of example 1.1.7 where we assume (V, d) is a chain
complex and (W,d) = (K, 0) concentrated in degree zero. Then V ⊗K = ⊕i≥0Vi⊗K is again a chain
complex with differential d(v ⊗ λ) = d(v)⊗ λ. A linear map f : V1 → V2 between chain complexes
and g := idK induce the map

f ⊗ idK :

{
V1 ⊗ K → V2 ⊗ K

v ⊗ λ 7→ f(v)⊗ λ

which is a morphism of chain complexes that we will usually denote with f ⊗ K.

Example 1.1.13. Let us consider a special case of example 1.1.8 where we assume (V, d) is a chain
complex and (W,d) = (K, 0). Each element in (Hom(V,K))j is a linear map ϕ : V → K of degree
j ∈ Z, so a family (ϕi : Vi → Ki+j)i. These maps are trivial for i ≤ 0, and i 6= −j since V is a
chain complex and Ki+j = 0 for i+ j 6= 0. Thus ϕ is either trivial or can be identified with the only
nontrivial member of the family, ϕ−j , which is an element of degree j ≥ 0 with respect to upper
degrees. It follows that the homogeneous elements of degree j of the graded module Hom(V,K) are
exactly the linear maps Vj → K, so

(Hom(V,K))j = Hom(Vj ,K).

Now for a linear map f : V1 → V2 between chain complexes and g := idK consider the induced linear
map Hom(f, idK) : Hom(V2,K)→ Hom(V1,K) defined in example 1.1.8. By definition, it holds

Hom(f, idK)(ϕ) = (−1)|f ||ϕ|ϕ ◦ f

for any homogeneous element ϕ ∈ Hom(V2,K). Since this map only depends on f , we will denote
it by Hom(f,K). For the special case that f = d is the differential in V , we get Hom(d,K)(ϕ) =
−(−1)|ϕ|ϕ ◦ d which defines a differential in Hom(V,K), making it a cochain complex.
Note that this defines a contravariant functor between chain and cochain complexes. For a morphism
f : V1 → V2 between chain complexes the induced map simplifies to

Hom(f,K) :

{
Hom(V2,K) → Hom(V1,K)

ϕ 7→ ϕ ◦ f.

Hence Hom(f,K) is a map of degree zero and defines a morphism of cochain complexes.

Remark 1.1.14. In the case that K is a field, we will frequently use the shorter notation

V ∗ := Hom(V,K) and f∗ := Hom(f,K)

and refer to these objects as dual space or respectively dual map. In this case, it also follows that
H(V ∗, d∗) ∼= H(V, d)∗ via the mapping [ϕ] 7→ H(ϕ) due to proposition 1.1.11. Note that in this
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special case H(ϕ)([v]) = ϕ(v), but we will usually express this using a different notation. More
precisely, there is a natural pairing between V and its dual V ∗ given by

V ∗ × V → K, (ϕ, v) 7→ 〈ϕ; v〉 = ϕ(v).

This pairing is compatible with the corresponding differentials and can be handed down to give a
pairing between the cohomology of V ∗ and the homology of V via 〈[ϕ], [v]〉 := ϕ(v). Obviously, this
is bilinear and we get a map

H(V ∗, d∗)→ H(V, d)∗, [ϕ] 7→ 〈[ϕ];−〉,

which is exactly the isomorphism described in proposition 1.1.11.

Note that if V is a graded vector space of finite type, then we have Vi ∼= (Vi)
∗ for all i and

therefore V ∼= V ∗. A homogeneous basis of V then defines a homogeneous basis in V ∗ by the dual
pairing above, which we will call dual basis.

Preparation 1.1.15. Let X be a topological space and n,m ∈ N. Denote by ei, 0 ≤ i ≤ n,m− 1
the standard basis vectors in Rn+1 or Rm respectively. The standard n-simplex is defined as the
subset ∆n := {

∑n
i=0 λiei | 0 ≤ λi ≤ 1,

∑n
i=0 λi = 1} ⊆ Rn+1. For any sequence of elements

x0, . . . , xm ∈ Rn+1 there exists an associated linear map

〈x0, . . . , xm〉 :

{
∆m → Rn+1∑m

i=0 λiei 7→
∑m

i=0 λixi.

In particular, when each xi is an element of the standard basis of Rn+1, we get a map ∆m → ∆n.
Now, for each 0 ≤ i, j ≤ n+ 1 there exist inclusions

δi := 〈e0, . . . , ei−1, ei+1, . . . , en〉 : ∆n ↪→ ∆n+1

as well as projections

ρj := 〈e0, . . . , ej , ej , . . . , en〉 : ∆n+1 → ∆n.

Denote by

Sn(X) := {σ : ∆n → X | σ is continuous}

the set of singular n-simplices. Then there exist maps ∂i : Sn+1(X) → Sn(X), ∂i(σ) := σ ◦ δi
for all 0 ≤ i ≤ n + 1 and sj : Sn → Sn+1(X), sj(σ) := σ ◦ ρj for all 0 ≤ j ≤ n + 1. We set
S(X) := {Sn(X)}n≥0 and note that any continuous map f : X → Y between topological spaces
induces a family S(f) := (Sn(f))n≥0, where

Sn(f) : Sn(X)→ Sn(Y ), σ 7→ f ◦ σ.

Remark 1.1.16.

(a) Denote by Cn(X; K) the free K-module with basis Sn(X) as introduced in example 1.1.2. The
elements of Cn(X; K) can be written as formal linear combinations

∑
σ∈Sn(X) kσσ and any map

defined on the basis Sn(X) extends uniquely to a linear map on Cn(X; K). Therefore, the maps
that are given by dn(σ) :=

∑n
i=0(−1)i∂i(σ) for σ ∈ Sn(X) define a differential d on

C∗(X; K) := ⊕n≥0Cn(X; K).

The resulting chain complex (C∗(X; K), d) is called the singular chain complex of X with co-
efficients in K. Its homology H(C∗(X; K)) =: H∗(X; K) is the singular homology of X with
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coefficients in K.
Note that it would be an equivalent construction to consider the free Z-module Cn(X; Z) with
basis Sn(X) and then proceed by tensoring with K, so Cn(X; K) = Cn(X; Z)⊗Z K. This works
more generally, when K is not necessarily a ring but an abelian group. The universal coefficient
theorem then states the existence of a short exact sequence

0 −→ Hk(X; Z)⊗Z K −→ Hk(X; K) −→ Tor(Hk−1(X,Z),K) −→ 0.

In particular, if K is a field, the term Tor(Hk−1(X,Z),K) vanishes for all k ≥ 1, yielding an
isomorphism

H∗(X; Z)⊗Z K
∼=−−→ H∗(X; K), [z]⊗ λ 7→ [z ⊗ λ],

Thus, homology with field coefficients is the tensor product of homology with coefficients in Z
with said field and we may identify H∗(f ; K) = H∗(f ; Z)⊗ K.

(b) To the singular chain complex C∗(X; K) we may apply the contravariant functor HomK(−,M),
where M is any K-module. This results in a cochain complex

C∗(X;M) := HomK(C∗(X; K),M),

with grading Cn(X;M) = HomK(Cn(X; K),M) that is called the singular cochain complex of
X with coefficients in M . The differential is the signed dual of the differential in C∗(X; K)
and is defined by d(ϕ) = (−1)|ϕ|+1ϕ ◦ d. The corresponding cohomology is called the singular
cohomology of X with coefficients inM and denoted by H∗(X;M). Now if K is a principal ideal
domain, the universal coefficient theorem, this time for cohomology, states that there exists a
short exact sequence

0 −→ ExtK(Hk−1(X; K),M) −→ Hk(X;M) −→ HomK(Hk(X; K),M) −→ 0.

In particular, if K is a field, the term ExtK(Hk−1(X; K),M) vanishes for all k ≥ 1, yielding an
isomorphism

H : H∗(X;M)
∼=−−→ HomK(H∗(X; K),M), H([ϕ])([z]) := ϕ(z).

In particular, for M = K we get H∗(X; K) ∼= (H∗(X; K))∗. This implies that cohomology with
field coefficients is the dual of homology and we may identify H∗(f ; K) = (H∗(f ; K))∗.

More details on this can be found in most literature on algebraic topology, for example in [13].
Note also that these isomorphisms are a special case of proposition 1.1.11.

1.2 Graded Algebras

Throughout this section, let K be any commutative unitary ring. When we speak about modules or
linearity, we mean K-modules and K-linear maps. Tensor products are to be understood as tensor
products over K.

Definition 1.2.1. (Graded algebra)
A graded algebra is a graded module A together with a linear map of degree zero, A ⊗ A → A,
a⊗ b 7→ ab that is associative and has an identity element 1A ∈ A0. As the notation insinuates, we
will often refer to this map as a multiplication.
A morphism ϕ : A→ B between graded algebras is a morphism between graded modules that is an
algebra homomorphism, i.e. ϕ(ab) = ϕ(a)ϕ(b) for a, b ∈ A and ϕ(1A) = 1B.

Example 1.2.2. We can view K as a graded algebra concentrated in degree zero. Any morphism
ϕ : A→ K is called an augmentation.
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Remark 1.2.3.

(a) We call A′ ⊆ A a graded subalgebra if it is a graded submodule containing the identity element,
such that ab ∈ A′ for any a, b ∈ A′.

(b) A left ideal in a graded algebra A is a graded submodule I such that for all a ∈ A and b ∈ I it
holds ab ∈ I. Analogously, Right ideals are defined by requiring ba ∈ I. When we talk about
ideals, we mean a graded submodule that is both right and left ideal.

(c) For an ideal I ⊆ A we can equip the quotient A/I with the grading (Ai/Ii), turning it into a
graded algebra.

(d) If A is a graded algebra, then we call a graded module V a left A-module if there exists a linear
map A⊗ V → V , a⊗ v 7→ av which is associative and suffices 1v = v for each v ∈ V . A right
module is defined in the same way, and we say V is an A-Module if it is both right and left
module.
A map f : V → W between (left) A-modules is called a linear map of degree k, if |f | = k and
f(av) = (−1)|f ||a|af(v) holds for all a ∈ A, v ∈ V . The space of A-linear maps is denoted by
HomA(V,W ) and is a graded submodule of Hom(V,W ).

(e) Note that any morphism ϕ : A → B between graded algebras makes B into an A-Module by
using the multiplication in B and setting ab := ϕ(a)b and ba := bϕ(a) for a ∈ A, b ∈ B.

(f) Given a right A-module V and left A-moduleW of a graded algebra A, we can define the tensor
product to be the quotient space V ⊗AW := (V ⊗W )/L, where L is the submodule generated
by the set

{va⊗ w − v ⊗ aw | v ∈ V,w ∈W,a ∈ A}.

The equivalence class of an element v ⊗ w is denoted by v ⊗A w. Obviously this is again a
graded module, but in general it is not an A-module in any natural way.

Note that for a graded algebra A = ⊕iAi, each Ai is a submodule of A but not necessarily a
subalgebra. In fact, for homogeneous elements a ∈ Ai, b ∈ Aj it holds ab ∈ Ai+j , as |a⊗ b| = i+ j.
This means we can think of graded algebras as associative algebras with an unity element, allowing
for a grading which is respected by its multiplication.

Example 1.2.4. Let A, B be graded algebras. We can define a multiplication on the graded module
A⊗B making it a graded algebra, namely

(a1 ⊗ b1)(a2 ⊗ b2) := (−1)|b1||a2|(a1a2 ⊗ b1b2)

for homogeneous elements a1, a2 ∈ A and b1, b2 ∈ B.

Example 1.2.5. Assume ϕ : A → B to be a morphism of graded algebras and W to be a free A-
module, that is W ∼= A⊗ V where V is a free graded module. As an A-module, A is just generated
by the identity, so a basis of V naturally provides a basis for W . It then holds

B ⊗AW = B ⊗A (A⊗ V ) = B ⊗ V,

as B ⊗A A ∼= B via the map b⊗A a 7→ b, which has an inverse b 7→ b⊗A 1. Thus, B ⊗AW is a free
B-module with the same basis as V .

Example 1.2.6. Let V be a graded module, then Hom(V, V ) is a graded algebra, with multiplica-
tion given by the composition of maps. Similarly, if V is an A-module for a graded algebra A, then
HomA(V, V ) is a graded algebra.
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Example 1.2.7. Assume we are given linear maps f1, f2 ∈ Hom(V, V ) and g1, g2 ∈ Hom(W,W ),
then a simple calculation using the formula of example 1.1.7 shows

(f1 ⊗ g1) ◦ (f2 ⊗ g2) = (−1)|g1||f2|(f1 ◦ f2)⊗ (g1 ◦ g2).

In other words, the induced graded algebra structure on the tensor product Hom(V, V )⊗Hom(W,W )
in the sense of example 1.2.4 coincides with the multiplication on Hom(V ⊗W,V ⊗W ) that is the
composition of maps.

Definition 1.2.8. A linear map d : A→ A of degree k on a graded algebra A is called a derivation
of degree k if it holds

d(ab) = d(a)b+ (−1)k|a|ad(b)

for any two homogeneous elements a, b ∈ A. This is sometimes referred to as Leibniz rule. When
we speak of a derivation, we mean a derivation of degree −1 or 1, depending on whether lower or
upper degrees are used in the context.

Definition 1.2.9. We call a graded algebra A commutative in the graded sense if for any two
homogeneous elements a, b ∈ A it holds

ab = (−1)|a||b|ba.

The algebra A is then called commutative graded algebra or CGA for short.

Remark 1.2.10. When we assume K to be a field of characteristic zero, it follows that for a CGA
A it holds a2 = 0 whenever a ∈ A is a homogeneous element of odd degree. This is immediate from
the identity a2 = −a2 implied by the commutativity.

Example 1.2.11. The product structure defined in remark 1.2.4 makes A⊗B into a CGA if both
A and B are commutative graded algebras.
If A is graded commutative, then any left A-module V is automatically a right module and vice
versa. For example, a left-multiplication defines a right-multiplication through va = (−1)|v||a|av.
Suppose W is a second A-module. It follows then that in case of the underlying algebra being
commutative, the modules V ⊗AW and HomA(V,W ) are A-modules again, as

(af)(v) := af(v) = (−1)|a||f |f(av)

a(v ⊗A w) := av ⊗A w = (−1)|a||v|v ⊗A aw.

In particular, given morphisms A → B and A → C of commutative graded algebras, then the
product structure on B ⊗C induces a product structure on B ⊗A C making it into a commutative
graded algebra that is an A-module.

Definition 1.2.12. (Commutative differential graded algebra)
A differential graded algebra, or DGA for short, is a complex (A, d) where A is a graded algebra and
d is a differential in A that is also a derivation.
If the algebra A is also commutative in the graded sense, we call the pair (A, d) a commutative
differential graded algebra, or CDGA.

Note that the homology H(A, d) of a (C)DGA is itself a (commutative) graded algebra, with
the induced representative wise multiplication. We may thus speak of a homology algebra. A
morphism ϕ : (A, dA)→ (B, dB) of DGAs is a morphism of graded algebras that is also a morphism
of complexes. As before, we will call any such morphism a quasi-isomorphism if the induced map
between the homologies is an isomorphism, that is, an isomorphism between graded algebras.
Accordingly, the terms (commutative) chain algebra and (commutative) cochain algebra refer to a
(C)DGA with families (Ai)i≥0 and (Ai)i≥0 respectively. When we want to stress lower or upper
grading, we may occasionally write H∗(A, d) and H∗(A, d) for the homology.
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Example 1.2.13. There exists a product structure on the singular cochain complex C∗(X,K) that
is called the cup product. It is not commutative and makes C∗(X,K) a differential graded algebra,
or simply cochain algebra. As it turns out, the induced multiplication on the singular cohomology
algebra H∗(X; K) is commutative, making H∗(X; K) into a commutative graded algebra. For a
detailed description of the cup product on cochain level, see [15] and [6].

Example 1.2.14. When (A, d) is a DGA, we speak of a left (A, d)-module (V, d) when the corre-
sponding linear map A⊗ V → V respects the differential, meaning

d(av) = d(a)v + (−1)|a|ad(v).

A right (A, d)-module (W,d) is defined analogously. Now, there exists a differential in the corre-
sponding module V ⊗AW which is induced by the differential in V ⊗W (see example 1.1.7). This
naturally makes V ⊗AW a complex, which we simply denote by (V ⊗AW,d) or by (V, d)⊗(A,d)(W,d)
if we want to emphasize that we have a tensor product of (A, d)-modules.
For example, any morphism ϕ : (A, d) → (B, d) of DGAs makes (B, d) into an (A, d)-module in
the sense that we have already defined for graded algebras in remark 1.2.3, as ϕ commutes with
the differential. Assume now (A, dA) → (B, dB) and (A, dA) → (C, dC) are morphisms of CDGAs.
We know that in this case, B ⊗A C is a commutative graded algebra, and by the above it also has
a differential d. One can now check that this is also a derivation, meaning (B ⊗A C, d) is also a
CDGA.

Example 1.2.15. Let M be a smooth manifold and denote by ApDR(M) the set of p-forms on M .
Equipped with the exterior product, the space ADR(M) :=

⊕
p≥0A

p
DR(M) is a CGA. Thus, the de

Rham complex (ADR(M), d), where d is the exterior derivative, is an example of a CDGA - or more
precisely a commutative cochain algebra.

Definition 1.2.16. We call two commutative cochain algebras (A, dA), (B, dB) weakly equivalent
if there exists k ≥ 0 and a sequence of commutative cochain algebras (Ci, di)0≤i≤k together with
morphisms

(A, dA)
'−−→ (C0, d0)

'←−− . . . '−−→ (Ck, dk)
'←−− (B, dB)

that are quasi-isomorphisms. This sequence, together with the morphisms, is then called a weak
equivalence and we may simply write (A, dA) ' (B, dB).

Being weakly equivalent defines an equivalence relation on the set of commutative cochain alge-
bras.

1.3 Graded Coalgebras

Throughout this section, let K be any commutative unitary ring. When we speak about modules or
linearity, we mean K-modules and K-linear maps. Tensor products are to be understood as tensor
products over K.

Definition 1.3.1. For a graded module V we define its suspension sV to be the graded module
given by (sV )i = Vi−1. For v ∈ Vi−1 we denote the respective element of degree i by sv ∈ (sV )i.
Vice versa, we can define s−1V to be the graded module (s−1V )i = Vi+1, with s−1v ∈ (s−1V )i for
any v ∈ Vi+1. Spoken differently, sV is a copy of V with an upshift of grades, while s−1V is a copy
of V with a downshift of grades.

By the suspension of a complex (V, d), we mean the complex s(V, d) := (sV, d), where the differ-
ential is defined as d(sv) := −sd(v). It is clear that H(sV, d) = sH(V, d).
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Definition 1.3.2. A graded module C is called a graded coalgebra if there exist linear maps of
degree zero,

∆: C → C ⊗ C, ε : C → K

such that (∆⊗ id) ◦∆ = (id⊗∆) ◦∆ and (id⊗ε) ◦∆ = (ε⊗ id) ◦∆ = id. We then refer to ∆ as a
comultiplication and ε is an augmentation.
Further, we say C is co-commutative if the comultiplication ∆ is invariant under the involution
τ : C ⊗ C → C ⊗ C, a⊗ b 7→ (−1)|a||b|b⊗ a, that is τ ◦∆ = ∆.

Remark 1.3.3.

(a) By a morphism of graded coalgebras we mean a linear map of degree zero ϕ : C → D such that
(ϕ⊗ ϕ) ◦∆C = ∆D ◦ ϕ and εC = εD ◦ ϕ.

(b) When we can choose an element 1C ∈ C0 such that ε(1C) = 1 and ∆(1C) = 1C ⊗ 1C , we call C
a co-augmented graded coalgebra.

(c) In a co-augmented graded coalgebra, it holds for any element a ∈ ker(ε) that

∆a− (a⊗ 1 + 1⊗ a) ∈ ker(ε)⊗ ker(ε).

(d) A coderivation of degree k in a graded coalgebra C is a linear map f : C → C of degree k such
that ∆ ◦ f = (f ⊗ id + id⊗f) ◦∆ and ε ◦ f = 0. When we simply speak of a coderivation, we
mean a coderivation of degree −1.

Example 1.3.4. Let C = C0 be the free module with basis S concentrated in degree zero. Define
∆(s) := s⊗ s and ε(s) := 1 for all s ∈ S. The unique extensions of ∆ and ε on C ⊗C and C make
it a graded coalgebra that is co-commutative.

Definition 1.3.5. A graded coalgebra C together with a differential d that is also a coderivation
is called a differential graded coalgebra (C, d), or DGC for short.

Example 1.3.6. Given a graded coalgebra C we can always define a multiplication on the graded
module Hom(C,K) that turns it into a graded algebra. That is, for f, g ∈ Hom(C,K) we define
fg : C → K to be the map

(fg)(c) := (f ⊗ g)(∆(c)),

where as usual, we understand f ⊗ g as a map C ⊗ C → K making use of the multiplication in K.
It follows that the identity element is given by the map ε ∈ Hom(C,K).
Now assume (C, d) is in fact a differential graded coalgebra. Since d is a differential, we get an
induced differential Hom(d,K) on Hom(C,K) that we, abusing notation, again denote by d. Then
the fact that d is also a coderivation implies that this induced differential is a derivation.

Proof. By example 1.2.7 and the definition of the induced differential (see 1.1.13) we see that

d(fg)(c) = −(−1)|f |+|g|(fg) ◦ d(c) = −(−1)|f |+|g|(f ⊗ g) ◦∆ ◦ d(c)

= −(−1)|f |+|g|(f ⊗ g) ◦ (d⊗ id + id⊗d) ◦∆(c)

= −(−1)|f |((f ◦ d)⊗ g) ◦∆(c)− (−1)|f |+|g|(f ⊗ (g ◦ d)) ◦∆(c)

= −(−1)|f |(f ◦ d)g(c)− (−1)|f |+|g|f(g ◦ d)(c)

= (d(f)g + (−1)|f |fd(g))(c)

for all c ∈ C and all f, g ∈ Hom(C,K).
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In other words, a differential graded coalgebra (C, d) induces a differential graded algebra

(Hom(C,K),Hom(d,K))

that we will simply denote by (C∗, d∗) when K is a field. Note that for the involution τ and
f, g ∈ Hom(C,K) it holds (f ⊗ g) ◦ τ = (−1)|f ||g|g ⊗ f , since for a⊗ b ∈ C ⊗ C we get

(f ⊗ g) ◦ τ(a⊗ b) = (f ⊗ g)((−1)|a||b|b⊗ a) = (−1)|f ||g|f(b)g(a) = (−1)|f ||g|(g ⊗ f)(a⊗ b),

where we used that we may assume |f | = |b| and |g| = |a|. It follows that (Hom(C,K),Hom(d,K))
is commutative if C is co-commutative.

Example 1.3.7. There exists a comultiplication on the free graded module C∗(X; K) with basis
S(X). For this, consider the Alexander-Whitney map Q : C∗(X × Y ; K) → C∗(X; K) ⊗ C∗(Y ; K)
induced by defining

Q(σ, τ) :=
n∑
k=0

σ ◦ 〈e0, . . . , ek〉 ⊗ τ ◦ 〈ek, . . . , en〉

on the singular n-simplices (σ, τ) : ∆n → X × Y . See preparation 1.1.15 for the notation. Next,
consider the diagonal map δ : X → X ×X, x 7→ (x, x). As any continuous map, it induces a linear
map C∗(X; K)→ C∗(X ×X; K) via C∗(δ,K)(σ) = δ ◦ σ, so we can define a map

∆ := Q ◦ C∗(δ) : C∗(X; K)→ C∗(X; K)⊗ C∗(X; K)

that is a comultiplication. A choice of a constant map cx0 : X → {x0} ⊆ X provides a suitable
augmentation ε := C∗(cx0 ; K) : C∗(X; K) → C∗({x0}; K) = K. Together with the differential d on
C∗(X; K) which is obtained from the maps ∂i on the simplicial set S(X) we get that the singular
chain complex (C∗(X; K), d) is in fact a differential graded coalgebra.
By applying the contravariant functor Hom(−,K) to (C∗(X; K), d) we obtain the singular cochain
complex (C∗(X; K), d) of X. Now, the multiplication induced on C∗(X; K) with regard to example
1.3.6 actually corresponds to the cup product that we mentioned earlier. Hence, we regain the same
algebra, that is the singular cochain algebra (C∗(X; K), d) of X. Again, for more details on this one
may check [15].

Example 1.3.8. There is a natural coalgebra structure on the free commutative graded algebra
ΛV associated with a free graded module V . The comultiplication is obtained by defining ∆(v) :=
v ⊗ 1 + 1⊗ v for all v ∈ V and extending this to a map ∆: ΛV → ΛV ⊗ ΛV . An augmentation is
given by ε(1) = 1 and ε|Λ+V = 0, since Λ0V = K it is co-augmented by choosing the unity 1 ∈ K.
One easily checks that τ ◦∆(v) = ∆(v) for all v ∈ V , thus τ ◦∆ = ∆ on ΛV , which means it is a
co-commutative graded coalgebra.

Construction 1.3.9. Let (C, d) a differential graded coalgebra which is co-augmented, and set
C := ker(ε) such that C = K⊕C. Then by remark 1.3.3, it holds ∆c− (c⊗ 1 + 1⊗ c) ∈ C ⊗C for
any c ∈ C. Thus, there exists a so called reduced comultiplication in C which is defined as

∆: C → C ⊗ C, ∆(c) := ∆c− (c⊗ 1 + 1⊗ c).

Note that (∆⊗ id) ◦∆ = (id⊗∆) ◦∆, so this is in fact a comultiplication in C.
Consider the tensor algebra T (s−1C) =: ΩC on the graded module s−1C. Obviously, this is a
graded algebra, with multiplication given by the tensor product. Let c ∈ C, then ∆(c) ∈ C ⊗ C is
a linear combination

∑
i ai ⊗ bi of elements with ai, bi ∈ C. Proceed to define linear maps

d0(s−1c) := −s−1d(c),

d1(s−1c) :=
∑
i

(−1)|ai|s−1ai ⊗ s−1bi.

Then d := d0 + d1 defines a differential in ΩC, thus making (ΩC, d) an augmented DGA. In the
following, we will refer to this construction as cobar construction. For further information, we refer
to the work of Adams [1] where the construction was originally introduced.
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1.4 Graded Lie Algebras

Throughout this section, let K be a field of characteristic zero. When we speak about vector spaces
or linearity, we mean K-vector spaces and K-linear maps. Tensor products are to be understood as
tensor products over K.

Definition 1.4.1. Let (L, (Li)i∈Z) be a graded vector space over K and let L⊗L→ L, x⊗y 7→ [x, y]
be a linear map of degree zero, such that

(a) [x, y] = −(−1)|x||y|[y, x] (anti-symmetry)

(b) [x, [y, z]] = [[x, y], z] + (−1)|x||y|[y, [x, z]] (Jacobi identity)

for all homogeneous elements x, y, z ∈ L. We call the pair (L, [ , ]) a graded Lie algebra and the
product [ , ] a Lie bracket on L.

A morphism of graded Lie algebras is a linear map ϕ : L→ E of degree zero between two graded
Lie algebras L,E that is Lie bracket preserving, i.e. ϕ([x, y]) = [ϕ(x), ϕ(y)] for all x, y ∈ L. Note
that for any graded Lie algebra L, the anti-symmetry condition immediately implies [x, x] = −[x, x]
and hence [x, x] = 0 for an element x of even degree. Note further that a graded Lie algebra in
general is not a graded algebra, since the Lie bracket will in general not be associative.

Remark 1.4.2.

(a) For two graded subspaces E,F of a graded Lie algebra L, we set

[E,F ] :=
{ k∑
i=1

λi[xi, yi] | k ∈ N, λi ∈ K, xi ∈ E, yi ∈ F
}

for the linear span of the products from elements of E and F . This is again a graded subspace
of L.

(b) A sub Lie algebra E ⊆ L is a graded subspace that is closed under the Lie bracket, that is
[E,E] ⊆ E. In similar fashion, a graded subspace I ⊆ L is called an ideal if [L, I] ⊆ I. In both
cases, the restriction of [ , ] to E, I yields a graded Lie algebra structure on E, I.

(c) Suppose L is a graded Lie algebra and I ⊆ L is an ideal. Then there exists a unique graded
Lie algebra structure on the quotient L/I such that the canonical projection L → L/I is a
morphism of graded Lie algebras.

(d) The subspace [L,L] ⊆ L is always an ideal and is called the derived sub Lie algebra. We say L
is abelian if [L,L] = 0, meaning the Lie bracket on L is trivial.

(e) The intersection E ∩ F of two sub Lie algebras E,F ⊆ L is again a sub Lie algebra. Similarly,
the intersection of two ideals is again an ideal in L.

(f) Let S ⊆ L be any subset. The sub Lie algebra generated by S is the intersection of all sub Lie
algebras of L containing S. It is by construction the smallest sub Lie algebra of L that contains
S. Similarly, we may define the sub ideal generated by S.

The so-called commutator bracket can make any given graded algebra A (which are associative
by our definition) into a graded Lie algebra. It is defined by

[x, y] := xy − (−1)|x||y|yx,

which immediately implies anti-symmetry. The Jacobi identity then follows by the associativity of
A, and the resulting Lie algebra (A, [ , ]) is abelian if and only if A is commutative.
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Example 1.4.3. Let A be a graded algebra and consider the graded space Hom(A,A). This is a
graded algebra with multiplication given by the composition of maps, so we can view it as a graded
Lie algebra using the commutator bracket. Now, the graded space Der(A) of derivations of A is
a subspace. A simple calculation shows that for any two derivations α, β ∈ Der(A), the element
[α, β] = α ◦ β − (−1)|α||β|β ◦ α is again a derivation. It follows that Der(A) is in fact a sub Lie
algebra of Hom(A,A).

Remark 1.4.4.

(a) By a derivation of degree k in a Lie algebra L we mean a linear map f : L → L of degree k
such that f([x, y]) = [f(x), y] − (−1)k|x|[x, f(y)]. As above, we get a graded sub Lie algebra
Der(L) ⊆ Hom(L,L) with the commutator bracket. When only speaking of a derivation, we
mean a derivation of degree −1.

(b) The product of two graded Lie algebras E and L is the direct sum E ⊕ L. The Lie bracket is
defined as

[(x1, y1), (x2, y2)] := ([x1, x2], [y1, y2]),

for x1, x2 ∈ E and y1, y2 ∈ L. Note that this immediately implies [(x, 0), (0, y)] = 0 for all
x ∈ E, y ∈ L.

(c) Assume we are given a commutative graded algebra A and a Lie algebra L. We can define a
Lie bracket on A⊗ L by setting [a⊗ x, b⊗ y] := (−1)|b||x|ab⊗ [x, y] for homogeneous elements
a, b ∈ A and x, y ∈ L. However, there seems to be no natural, or at least no obvious way to
define a Lie bracket on the tensor product of two Lie algebras L⊗ E.

Example 1.4.5. Consider the tensor algebra TV of a graded vector space V . This is a graded
algebra, so we can regard it as a graded Lie algebra by using the commutator bracket. Then the
space V ⊆ TV generates a sub Lie algebra, which we denote by LV . It is called the free graded Lie
algebra on V , due to reasons that will become clear soon.

Example 1.4.6. Let us investigate LV for the simplest case, that is V being a vector space with
a single generator v, V = Kv. If the degree of that generator is even, then [v, v] evaluates to zero
in TV and thus V , together with the trivial Lie bracket, is a sub Lie algebra of TV . Therefore, we
have LV = V . In case the degree of v is odd, we obtain the element [v, v] ∈ TV . Using the Jacobi
identity, the elements [v, [v, v]] and [[v, v], v] are trivial. Further, by anti-symmetry [[v, v], [v, v]] = 0
since [v, v] has even degree. It follows V ⊕ K[v, v] is a graded subspace of TV that is closed under
the Lie bracket and hence a sub Lie algebra. It is easily seen that it is the smallest sub Lie algebra
containing V and therefore

LV =

{
Kv if |v| = 2n,

Kv ⊕ K[v, v] if |v| = 2n+ 1.

Since LV only depends on a basis for V we may write L(vi) for LV when (vi) is a basis for V .

Now, it follows that as graded spaces LV = ⊕k≥1(LV ∩ T kV ), so it is sensible to describe the
subspaces LV ∩ T kV further. We say an element in LV is of bracket length k if it is a linear
combination of elements of the form [v1, . . . , [vk−1, vk] . . . ] with vi ∈ V . By the definition of the
commutator bracket, any such element is contained in T kV . The other way round, any element
in T kV that can be expressed in terms of the commutator bracket would necessarily have bracket
length k, and if it can not be written as a bracket at all it is not contained in LV by construction.
Therefore, the subspaces LV ∩ T kV =: L(k)

V contain exactly the elements of bracket length k, so LV
is the sum of its subspaces of bracket length k.
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Any graded algebra can be turned into a Lie algebra by equipping it with the commutator bracket.
The other way around however, a graded Lie algebra is in general not a graded algebra in our terms,
as the bracket is generally not associative. However, one can ask if there exists an algebra structure
on L such that the induced commutator bracket is exactly the Lie bracket [ , ] on L. As it turns
out, this is not possible in the general case. Nevertheless, we can always find a graded algebra with
said property that contains L as sub Lie algebra.

Construction 1.4.7. Let L be a graded Lie algebra. The tensor algebra TL is a graded algebra,
and we consider the ideal I ⊆ TL generated by the set

{x⊗ y − (−1)|x||y|y ⊗ x− [x, y] | x, y ∈ L}.

The quotient UL := TL/I is a graded algebra which is called the universal enveloping algebra of
L. It has the following properties:

(a) The linear map qL : L → UL obtained as the composition of the inclusion L ↪→ TL with the
projection TL → UL is a morphism of graded Lie algebras when UL is equipped with the
commutator bracket, as

qL([x, y]) = [x, y] + I = x⊗ y − (−1)|x||y|y ⊗ x+ I = [x+ I, y + I].

(b) The universal enveloping algebra, together with qL : L → UL, hast the following universal
property. Suppose A is a graded algebra and f : L→ A is a linear map of degree zero that is a
Lie algebra morphism when A is regarded as Lie algebra with the commutator bracket. Then
there exists a unique morphism F : UL→ A of graded algebras, such that F ◦ qL = f . Indeed,
since f induces a unique morphism Tf : TL → A of graded algebras, we get a commutative
diagram

L //

f
��

TL
Tf

ww

// UL

F
ssA

where the map F on the quotient is uniquely induced by Tf , since

f([x, y]) = [f(x), f(y)] = f(x)f(y)− (−1)|x||y|f(y)f(x),

Tf (x⊗ y − (−1)|x||y|y ⊗ x− [x, y]) = f(x)f(y)− (−1)|x||y|f(y)f(x)− f([x, y]) = 0.

(c) Finally, we can combine these observations to obtain the following. Let ϕ : L → E be a Lie
algebra morphism. Then the composition qE ◦ ϕ : L → UE is also a morphism of graded Lie
algebras, where again UE is endowed with the commutator bracket. It follows with f := qE ◦ϕ
and A := UE that there exists a unique morphism of graded algebras Φ: UL→ UE such that
Φ ◦ qL = qE ◦ ϕ, i.e. the diagram

L //

ϕ

��

TL // UL

Φ
��

E // TE // UE

commutes.

Remark 1.4.8. Assuming L is abelian, the ideal I is generated by elements x⊗ y− (−1)|x||y|y⊗x,
x, y ∈ L as the Lie bracket vanishes. Hence, we obtain the same ideal as in the definition of the free
commutative graded algebra associated with a graded vector space. In other words, if L is abelian,
then the universal enveloping algebra is just the free commutative graded algebra on L, UL = ΛL.
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This is not true in general, as the structure on UL becomes more complex when non-trivial Lie
brackets appear. However, when regarded simply as graded vector spaces, they coincide by the
following.

Theorem 1.4.9. Let L be any graded Lie algebra, then the linear map qL : L→ UL extends to an
isomorphism of graded vector spaces QL : ΛL

∼=−−→ UL.

Proof. This theorem is essentially due to Poincaré, Birkhoff and Witt. A detailed proof by Serre
can be found in [24].

We understand QL as an extension of qL in the usual sense that QL ◦ j = qL, where j : L→ ΛL
is the canonical injection. In particular, qL is an injective Lie algebra morphism. Therefore, by
identifying L with its image qL(L) ⊆ UL and equipping the latter with the commutator bracket,
we may henceforth assume L to be a graded sub Lie algebra of UL.

Example 1.4.10. Remember the free graded Lie algebra LV on a graded vector space V is a sub
Lie algebra of TV . Using construction 1.4.7, we can extend the inclusion LV ↪→ TV to a morphism
of graded algebras ULV → TV . Vice versa, the composition of inclusions V ↪→ LV ↪→ ULV as
graded subspaces extends to a graded algebra morphism TV → ULV by the universal property of
the tensor algebra. One can show that these are in fact inverse isomorphisms, so TV ∼= ULV as
graded algebras and therefore also (TV, [ , ]) ∼= (ULV , [ , ]) as graded Lie algebras with commutator
brackets.

Remark 1.4.11. We can now proceed to describe the universal property of a free graded algebra
LV on a graded vector space V , which is the reason for its naming. Suppose we are given a second
graded Lie algebra L and a linear map of degree zero ψ : V → L. Using the universal property of
TV , the composition qL ◦ ψ : V → L → UL extends to a unique algebra morphism Ψ: TV → UL.
Regarding both algebras as graded Lie algebras with commutator bracket, we get that Ψ is a Lie
algebra morphism. Since L ⊆ UL is a sub Lie algebra, the graded subspace Ψ−1(L) ⊆ TV is a
graded sub Lie algebra, too. As Ψ is an extension, we have V ⊆ Ψ−1(L) and hence LV ⊆ Ψ−1(L)
by definition. Thus, the restriction Ψ|LV : LV → L yields a morphism of graded Lie algebras that is
unique since Ψ is.

V
ψ //

��

L
qL // UL

LV

��

Ψ|LV

88

TV

Ψ

88

To summarize, any linear map of degree zero from a graded vector space V to a graded Lie algebra
L extends uniquely to a graded Lie algebra morphism LV → L.
Note that in a more category theoretical approach, one would use this universal property for the
definition of a free graded Lie algebra, then show its uniqueness up to isomorphy. What we have
done here then shows that the specific graded Lie algebra LV that we defined as sub Lie algebra of
TV , together with the inclusion V → LV , satisfies this universal property.

Having introduced the universal property of free graded Lie algebras, one might ask how we can
determine whether a given graded Lie algebra L is free or not. For this reason, we will now introduce
a criterion which, under mild assumptions, allows us to express L as a quotient of a free graded Lie
algebra. Moreover, given L is free, it allows for the description of a graded vector space V such that
L ∼= LV . For this, assume L is any graded Lie algebra. Let V ⊆ L be a graded subspace that is
complementary to the derived sub Lie algebra [L,L], meaning that L = V ⊕ [L,L] as subspaces of
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a graded vector space. We may use this newly established universal property of the free Lie algebra
to extend the inclusion V ↪→ L to a graded Lie algebra morphism

σ : LV → L.

The other way round, suppose we are provided with a free Lie algebra LV . Then [LV ,LV ] is the
graded subspace of elements with bracket length at least two, so we may choose V as complementary
subspace. We thus obtain LV = V ⊕ [LV ,LV ].

Proposition 1.4.12. If L is concentrated in positive degrees, it holds that the morphism σ is
surjective. Moreover, L is free if and only if σ is an isomorphism.

Proof. It holds σ(V ) = V in L and thus the image E := σ(LV ) is a sub Lie algebra of L that
contains V . Since σ is the extension of the inclusion V ↪→ L via the universal property, E is the
smallest such sub Lie algebra, i.e. the sub Lie algebra of L that is generated by V . We assumed
L = V ⊕ [L,L], so since V ⊆ E it holds L = E + [L,L]. Substituting L by this expression and
using the bilinearity of the bracket and the fact that [E,E] ⊆ E yields E+[L, [L,L]] = L. Through
iterating this process k times, we end up with

L = E + [L, [L, . . . [L,L] . . . ]].

Now remember that we assumed L = L≥1, which means each element in [L, . . . [L,L] . . . ] has a
degree of at least k+1. Letting k grow shows that each element eventually lies in E, in other words
E = L.

Remark 1.4.13. In a sense, proposition 1.4.12 above tells us how close L is to being free. For
L = L≥1 the surjection σ induces an isomorphism L ∼= LV / ker(σ) of graded Lie algebras. We
call the elements in ker(σ) the relations of L. Since LV = V ⊕ [LV ,LV ], we can deduce from
σ|V = idV and σ([LV ,LV ]) ⊆ [L,L] that ker(σ) ⊆ [LV ,LV ]. Thus, we can think of relations as
bracket expressions that, with the Lie bracket in LV , are non-trivial, but vanish when written with
the Lie bracket of L. Note however that in addition to these, brackets in L may evaluate to zero
due to the usual relations that any Lie algebra has, generated by anti-symmetry and the Jacobi
identity.

Example 1.4.14. As an easy example, consider the graded vector space L := Kv with a single
generator v of odd degree ≥ 1. Equipped with the trivial bracket, this is a graded Lie algebra. It is
however not free, since L(v) = Kv ⊕ K[v, v] by example 1.4.6. The element [v, v] is a relation of L.

In analogy to the world of graded algebras, the terminology of a derivation in graded Lie algebras
as defined in remark 1.4.4 suggests the following.

Definition 1.4.15. A differential graded Lie algebra (L, d), for short DGL, is a graded Lie algebra
L equipped with a differential d that is a derivation. When L = L≥0 we call (L, d) a chain Lie
algebra. If in addition L0 = 0, we say the chain Lie algebra (L, d) is connected.

Remark 1.4.16.

(a) A morphism of DGLs is a morphism of graded Lie algebras that commutes with the differential.

(b) Let (L, d) be a DGL. We can extend the differential uniquely to a derivation d in the tensor
algebra TL by simply taking the Leibniz rule as definition on the tensor product, as described
in example 1.1.7. Then again, d2 = 0 and d(I) ⊆ I, where I is the ideal generated by elements
x ⊗ y − (−1)|x||y|y ⊗ x − [x, y]. Thus, we get an induced differential on the quotient algebra
UL = TL/I, making it a DGA (UL, d). Note that the linear map qL becomes a DGL morphism
(L, d) → (UL, d), and (UL, d) together with qL has the obvious universal property. We call
(UL, d) the universal enveloping algebra of (L, d) and denoted it by U(L, d).
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(c) The homology H(L) of a DGL (L, d) naturally inherits the structure of a graded Lie algebra.
For if z, w ∈ L are cycles, then by the derivation property we get d([z, w]) = 0, so [z, w] is a
cycle. We then define [[z], [w]] to be the class of [z, w]. If ϕ is a morphism of differential graded
Lie algebras, then the induced map H(ϕ) is a morphism of graded Lie algebras. If H(ϕ) is an
isomorphism, we call ϕ a quasi-isomorphism.
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2 Rational Homotopy Type

After this introduction to the world of graded algebras, we will move on to address the process of
rationalization, or more generally, localization. For abelian groups G, this means switching to the
KP -module G ⊗Z KP , where KP is a subring of the rationals. This can also be applied to group
homomorphisms, where we just take the identity on the second factor. As we shall see, this forces
some, or in the case KP = Q even all torsion terms of G to vanish. To readily apply this to the
homotopy groups of a topological space X, we require π1(X) to be abelian. In fact, a non-trivial
fundamental group generally tends to make things more complicated in rational homotopy theory.
By restricting ourselves to simply connected spaces we circumvent this obstacle, but note that many
of the results presented here hold under more general assumptions. A detailed explanation of the
theory for the non-simply connected case can be found in [8]. A brief but nevertheless complete
overview is presented in [10].
The main focus of this chapter will be the description of an underlying geometric interpretation of
the process of localizing the homotopy groups, leading to the term of localization of a space which
is first introduced by Sullivan in [27]. At this, we first consider simply connected spaces whose
homotopy groups already are KP -modules. Given such space Y , there exists a natural isomorphism
π∗(Y ) ∼= π∗(Y )⊗Z KP , meaning no information is lost when switching to the tensor product. These
spaces can generally be quite weird and complicated, but we will see that any space X can be
associated with such a space Y such that π∗(X) ⊗Z KP ∼= π∗(Y ). The space Y will usually be
denoted by XP , or in the case that KP = Q by XQ, and is used to define the rational homotopy type
of X. Moreover, from cellular localization we will see that we can even build XP from X through
attaching cells, which gives the originally algebraic motivated definition of localization a genuine
topological meaning. Thus topologically, rationalization involves the modification of a space by cell
attachments such that the resulting space realizes the rational homotopy groups via its homotopy
groups. Furthermore, a given continuous map f : X → Y can be extended to a continuous map
fP : XP → YP between the localizations.
As working in the context of localization instead of rationalization does not necessarily make things
more complicated, we will proceed by introducing some of Sullivan’s ideas in their more general
context. However, note that for the most part of this monograph, we will most often stick to the
rational case. At the end of the section, some detail on the approach due to Quillen will also be
provided, which involves the definition of rational homotopy type over a chain of so-called rational
homotopy equivalences rather than using rationalizations. Along the way, we will give a very brief
summary of the category theoretical context to the subject.

2.1 P-Local Spaces

To specify the above, assume P to be a set of prime numbers in N. Further, consider the set

R(P ) := {n ∈ Z | gcd(n, p) = 1 for all p ∈ P}

of integers that are relatively prime to the elements of P . In this section, the ground ring will be
KP := {mn | m ∈ Z, n ∈ R(P )} ⊆ Q, associated with a set of primes P . For example, if P = ∅,
then R(P ) = Z and thus KP = Q.

Definition 2.1.1. Let (G,+) be any abelian group and R(P ) as above. If the map

ϕn : G→ G, g 7→ ng := g + · · ·+ g

is an isomorphism for all n ∈ R(P ), then G is called P -local.

Note that if G contains a torsion element with respect to some n ∈ R(P ), it can not be P -local.
Vice versa, given G is not P -local we find some 0 6= g ∈ G and n ∈ R(P ) such that ng = 0. Before
we continue, there are some important properties of P -local groups that we will use frequently in
the following.
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Remark 2.1.2.

(a) It is not difficult to see that G is P -local if and only if it is a KP -module, or in case of P = ∅,
a rational vector space. For if G is a KP -module, then in particular 1

ng is in G for each g ∈ G
and n ∈ R(P ), so each ϕn has an inverse ϕ−1

n . Vice versa, assuming that G is P -local, one can
check that kg := mϕ−1

n (g), where k = m
n ∈ KP , defines a suitable scalar multiplication.

(b) Note that whereas G itself might not be P -local, the group G ⊗Z KP always is. Each element
in G ⊗Z KP is a sum of terms of the form g ⊗ k, where k = m

n ∈ KP . By finding a common
denominator for the fractions, we can always reduce this representation to one with a single term.
One can then see that multiplication with 1

n is, like in the previous discussion, a suitable inverse
of ϕn, as R(P ) is closed under multiplication. Further note that any element g ⊗ k ∈ G⊗Z KP
is equal to mg ⊗ 1

n for suitable m ∈ Z, n ∈ R(P ). Thus, it suffices to consider elements of the
form g ⊗ 1

n . That being said, there is a natural homomorphism

G→ G⊗Z KP , g 7→ g ⊗ 1

that is called P -localization. Whenever G itself happens to be P -local, we see that this homo-
morphism has an inverse given by g ⊗ 1

n 7→ ϕ−1
n (g). It follows that G is P -local if and only if

the P -localization is an isomorphism.

(c) A morphism f : A→ B between abelian groups induces a homomorphism f ⊗Z KP : A⊗Z KP →
B ⊗Z KP that is supposed to be the identity in the second factor. This makes localization a
functor, and as such it is exact, i.e. it has the property of preserving exact sequences. Since this
is a property that only depends on the underlying module, one often refers to this by saying
the module is flat. Assume we are given a short exact sequence

A
f−−→ B

g−−→ C

of abelian groups. Consider the tensor product with KP and let b⊗ 1
n ∈ ker(g⊗ZKP ), so g(b)⊗ 1

n
is trivial in C ⊗Z KP . This can only be true if g(b) has some finite order m ∈ R(P ), as only
the left factor can vanish and a fraction in KP can only be expanded by such m. We deduce
that mg(b) = g(mb) is trivial and thus mb ∈ ker(g) = im(f). Hence, there exists a ∈ A with
f(a) = mb, meaning (f ⊗Z KP )(a ⊗ 1

mn) = mb ⊗ 1
mn = b ⊗ 1

n . On the other hand, g ⊗Z KP is
trivial on any element of the form f(a)⊗ 1

n , since g ◦ f = 0. This means

A⊗Z KP
f⊗ZKP−−−−−→ B ⊗Z KP

g⊗ZKP−−−−−→ C ⊗Z KP

is a short exact sequence, so KP is flat.

(d) Given an exact sequence

A −→ B −→ C −→ D −→ E

of abelian groups, where A,B,D and E are P -local, the same is true for C. This follows if we
map this sequence to itself using the map ϕn above for any n ∈ R(P ), then applying the five
lemma to the resulting commutative diagram.

Now that the terms of P -locality and P -localization have been elaborated for abelian groups,
we may use the homotopy group functor πk(−) to carry these notions over to the world of simply
connected topological spaces.

Definition 2.1.3. Let X be a simply connected topological space. It is called a P -local space,
whenever its homotopy groups πk(X) are P -local for all k ≥ 2. If KP = Q, then X is called a
rational space.
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We may rephrase this by saying that a simply connected space X is P -local if and only if its
homotopy groups are KP modules. Therefore, a rational space is a simply connected space whose
homotopy groups are rational vector spaces. The existence of P -local spaces is easily verified, as
any Eilenberg-MacLane space K(G,n) with G a KP -module is P -local. However, these spaces in
general have a rather complicated geometry and do not appear among the classical examples for
topological spaces. Actually, most mathematicians have never come across a rational space in their
entire lives, and we will present a first example shortly.
At this point, the restriction to simple connected spaces seems to be fairly excessive. While we
could extend definition 2.1.3 to spaces with an abelian fundamental group without second thought,
it will become clearer later on why it is beneficial to stick to the simply connected case. With
that being said, as suggested earlier, most of the definitions and results presented here can, with
some additional effort, be generalized to the broader class of nilpotent spaces. In fact, the following
example of a rational space is not simply connected, so it is not even a rational space by our
definition. Nevertheless, as its construction is one of the most vivid among rational spaces, we want
to use it as our first example.

Example 2.1.4. Let k ≥ 1. We begin by considering the maps

fk :

{
S1 → S1

e2πit 7→ e2πikt

that can be visualized by wrapping the sphere S1 around itself k times. We start with X1 := S1×I.
Denote by i, j : S1 → S1 × I the inclusions of the bottom and top sphere, so i(x) := (x, 0) and
j(x) := (x, 1) for all x ∈ S1. Set j1 = j and inductively let Xk := (S1 × I) ∪jk−1◦fk Xk−1, where
the inclusion jk is given by j followed by the canonical projection S1× I → Xk. The corresponding
pushout diagram is

S1
jk−1◦fk //

i
��

Xk−1

��
S1 × I // Xk,

and comes with an inclusion ik : Xk−1 ↪→ Xk that is just the canonical projection. Lastly, we finish
the construction by setting X := ∪k≥1Xk.
Our claim is now that X is a rational space. For this, first note that by construction, any space
Xk contains S1 as a strong deformation retraction. We can, for instance, collapse Xk to the top
sphere S1 × {1} that comes with the lastly attached S1 × I. Under this retraction, the inclusion jk
becomes the identity, so we can take [jk] as generator for π1(Xk) = π1(S1) = Z.
Now, the image of any continuous map Sn → X hast to lie in some Xk since Sn is compact. As
πn(Xk) = πn(S1) is trivial for n ≥ 2, we conclude that the higher homotopy groups of X vanish.
For the fundamental group, note that via inclusion ik : Xk−1 ↪→ Xk, the path jk−1 corresponds
to a k-fold circulating loop in Xk, so ik induces multiplication by k on the fundamental groups,
π1(ik)([jk−1]) = k[jk]. We can thus define

Φ: π1(X)→ Q, Φ([jk]) :=
1

k!
.

Again, the image of any continuous map S1 → X has to lie in some Xk, so it suffices to specify Φ
on the generators of each π1(Xk). This naturally extends to a group homomorphism: for l ≤ k the
class [jl] in π1(Xl) gets mapped to k!

l! [jk] in π1(Xk) under the inclusion Xl ↪→ Xk, which clarifies
the well-definedness and the preservation of the group structure, as

Φ([jl] + [jk]) = Φ(
k!

l!
[jk] + [jk]) = (

k!

l!
+ 1)Φ([jk]) =

1

l!
+

1

k!
.

Finally, an inverse Ψ: Q→ π1(X) is given by m
n 7→ (n− 1)!m[jn].
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Remark 2.1.5.

(a) The spaceX constructed above is not new to us, or more precisely its homotopy type is not, as it
is simply an Eilenberg-MacLane space K(Q, 1). However, the general construction of Eilenberg-
MacLane spaces involves the attachment of cells of increasing dimension to make sure higher
homotopy groups vanish, so it differs from the method used above.

(b) The sphere S1 is a subspace of X via the composition of inclusions i : S1 ↪→ X1 ⊆ X. It is
therefore worth to note that we constructed the CW complex X from S1 by attaching cells such
that π1(X) = Q, without changing the higher homotopy groups. This idea of rationalizing a
given space will be developed further shortly.

(c) Note that instead of attaching S1 × I via fk for any positive number k, we can restrict the
construction to elements of R(P ) for some set of prime numbers P . The resulting space will be
P -local, in fact it will be an Eilenberg-MacLane space K(KP , 1). We denote it by S1

P and call
it the P-local 1-sphere. The space X is denoted by S1

Q and called the rational 1-sphere.

The following construction is the higher dimensional equivalent of example 2.1.4, stated in a more
general context so that the resulting space is P -local and not necessarily rational. However, as we
shall see most of what follows works analogously, but this time the considered space will be simply
connected and thus actually fit into our definition of a P -local space.

Construction 2.1.6. Let P be a set of prime numbers and (kj)j∈N be an enumeration of the
elements of R(P ). For any k ≥ 0, take a n-sphere Snk and consider the bouquet

∨
k Snk . As usual,

πn(Snk) = Z, with the identity class [idSnk
] as a generator. Remember that

πn
(∨
k

Snk
) ∼= ⊕kZαk,

where the isomorphism is induced by the inclusions il : Snl ↪→
∨
k Snk and αl := [il] ∈ πn(

∨
k Snk).

We proceed by gluing a (n + 1)-disc Bn+1
j to the bouquet for any j ≥ 1, where the attaching map

fj : ∂Bn+1
j = Sn → Snj−1∨Snj is any representative of the class αj−1−kjαj ∈ πn(Snj−1∨Snj ) = Z⊕Z.

Finally, this defines a map f : ∪̇jSnj →
∨
k Snk and we set

SnP :=

( ∞∨
k=0

Snk

)
∪f
(⋃̇∞

j=1
Bn+1
j

)
.

For each r ≥ 1, denote by fr the restriction of f to
⋃̇r

j=1Snj and consider the subcomplex

Xr :=

( r∨
k=0

Snk

)
∪fr

(⋃̇r

j=1
Bn+1
j

)
,

which deformation retracts to the sphere Snr , as any two spheres Snj−1 and Snj are now joint by a
(n+ 1)-cell Bn+1

j . We deduce that πi(Xr) = 0 for i 6= n with generator [idSnr ] in degree n, and thus
the same is true for πi(SnP ) by the same compactness argument used in 2.1.4, as SnP is exactly the
union of the subcomplexes Xr. Note that the class of [fr], as with any attaching map, vanishes in
πn(Xr) and thus αr−1 − krαr = 0. It follows that the induced map of the inclusion Xr−1 ↪→ Xr

maps the class αr−1 to krαr, thus πn(SnP ) ∼= KP by the same isomorphism used in example 2.1.4.
Note that this isomorphism distinguishes the class of the inclusion of the initial sphere Sn0 as a
generator. Finally, for n ≥ 2 it follows that SnP is simply connected, and thus a P -local space.

There are further reasons for restricting to the simple connected case, one such is given by the
following result, which is due to Serre.
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Theorem 2.1.7. Let X be a simply connected topological space, x0 ∈ X and P any set of prime
numbers. Then it holds that π∗(X) is P -local if and only if H∗(X,x0; Z) is P -local.

Proof. From remark 2.1.2 it follows P -local groups define a Serre class. The claim is then originally
due to [22], but newer variants can be found in [4] and [7]. In the latter, the equivalence is extended
to include H∗(ΩX,x0; Z), where ΩX is the loop space of X.

Note that here, both π∗(X) and H∗(X,x0; Z) as direct sums of abelian groups are themselves
abelian groups, so definition 2.1.1 applies.

Remark 2.1.8.

(a) Obviously, by theorem 2.1.7 any Moore space M(KP , n) with n ≥ 2 would be an example
for a P -local space. Further, the construction of SnP as shown above can be stated in terms
of homology, making use of the fundamental classes [Snk ] instead of the classes αk = [ik] of
the inclusions. Using the Hurewicz isomorphism, we can easily switch between homotopy and
homology. Translated into the world of homology groups, this construction is sometimes called
infinite telescope or mapping telescope and is actually a common method to construct Moore
spaces.

(b) By theorem 2.1.7, in the definition of a rational, or more precisely P -local space, we can exchange
homotopy groups for homology groups. Moreover, since KP is a flat module, it is an immediate
consequence that Tor(G; KP ) vanishes for any abelian group G. Thus, when considering the
short exact sequence derived from the universal coefficient theorem

0 −→ Hk(X)⊗Z KP −→ Hk(X; KP ) −→ Tor(Hk(X); KP ) −→ 0

for a topological space X, we see that Hk(X)⊗Z KP ∼= Hk(X; KP ) holds for all k ≥ 1. Hence,
we arrive back at a familiar phrasing we already had for homotopy groups, namely a simple
connected space is P -local if and only if its homology groups in positive degree are KP -modules.

2.2 P-Localization

We have yet to explain how the notion of P -localization is transferred into the topological world.
For this, consider a continuous map f : X → Y between simply connected spaces. It induces a
morphism

πk(f)⊗Z KP : πk(X)⊗Z KP → πk(Y )⊗Z KP , [ϕ]⊗ λ 7→ [f ◦ ϕ]⊗ λ.

Now, provided that Y is P -local, we have πk(Y ) ∼= πk(Y ) ⊗Z KP via [ϕ] 7→ [ϕ] ⊗ 1, whose inverse
is given by multiplication [ϕ] ⊗ λ 7→ λ[ϕ]. Therefore in this case, πk(f) ⊗Z KP extends uniquely
to a map πk(X) ⊗Z KP → πk(Y ) which we again denote with πk(f) ⊗Z KP . As usual, we write
π∗(f)⊗Z KP for the induced map on the direct sum of the homotopy groups, so all in all it holds

π∗(f)⊗Z KP (α⊗ λ) = λπ∗(f)(α) ∈ π∗(Y )

for homogeneous α⊗ λ ∈ π∗(X)⊗Z KP .

Definition 2.2.1. Let f : X → XP be a continuous map between topological spaces and assume
XP is a P -local space. If f induces an isomorphism

π∗(f)⊗Z KP : π∗(X)⊗Z KP
∼=−−→ π∗(XP ),

we call it a P -localization. When KP = Q, then f is called a rationalization and we write f : X → XQ

instead.
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Remark 2.2.2.

(a) To put the definition above into the context of the P -localization of an abelian group, a P -
localization f : X → XP is a topological map realizing π∗(X) → π∗(X) ⊗Z KP , α 7→ α ⊗ 1 in
the sense that the diagram

π∗(X)
π∗(f) //

α 7→α⊗1
��

π∗(XP )

π∗(X)⊗Z KP //

π∗(f)⊗ZKP
∼=

44

π∗(XP )⊗Z KP

α⊗λ 7→λα

OO

commutes.

(b) Note that, unlike in the classical case, the topological meaning of an element in π∗(X) ⊗Z KP
is not directly clear. We may, and frequently will use P -localization

π∗(X)→ π∗(X)⊗Z KP , α 7→ α⊗ 1

to regard α as an element in π∗(X) ⊗Z KP . That is, by abuse of notation, when writing
α ∈ π∗(X)⊗Z KP we actually refer to the element α⊗ 1. This way, a representative f : Sn → X
of α in the usual way can be viewed as a representative of [f ] = α ∈ πn(X) ⊗Z KP . Note
however, that if g : Sn → X is continuous such that [g] =: β ∈ πn(X) is torsion with respect
to some k ∈ R(P ), we get (α + β) ⊗ 1 = α ⊗ 1, and thus f + g is a suitable representative of
α ∈ πn(X)⊗Z KP , although in general α 6= α+ β = [f + g] ∈ πn(X).
In case that X is P -local, we can represent all elements in π∗(X)⊗ZKP this way. For the general
case, when given a P -localization πn(X)⊗Z KP ∼= πn(XP ), one can pick a representative Sn →
XP provided by this isomorphism to give an arbitrary element in πn(X) ⊗Z KP a topological
interpretation.

(c) For a simply connected space X, the Hurewicz homomorphism h : πk(X) → Hk(X) induces a
P -local variant

h⊗ KP : πk(X)⊗Z KP → Hk(X)⊗Z KP ∼= Hk(X; KP )

that as usual is the identity in the second factor.

We have already seen a first example of a rationalization.

Example 2.2.3. The inclusion i : S1 ↪→ X1 ⊆ S1
Q from example 2.1.4 is a rationalization. We have

already established [i] ∈ π1(S1
Q) as a generator. Now π1(S1) ⊗Z KP is generated by [id] ⊗ 1 and

clearly, π1(i)⊗Z KP ([id]⊗ 1) = [i].

The following result due to Whitehead and Serre once again illustrates the convenience of restrict-
ing to the simple connected case. It lets us switch into the world of homology. Unlike homotopy,
where arguments tend to be abstract from time to time, homology frequently provides a more
tangible approach to things.

Theorem 2.2.4. Let f : X → Y be a map between simply connected spaces and P any set of prime
numbers. Then it holds that π∗(f)⊗Z KP : π∗(X)⊗Z KP → πk(Y )⊗Z KP is an isomorphism if and
only if H∗(f ; KP ) : H∗(X; KP )→ H∗(Y ; KP ) is an isomorphism.

Proof. This result is a consequence of the Whitehead theorem modulo a Serre class. Once again,
a proof can be found in [4] or in [7], where in the latter the equivalence is extended to include
H∗(Ωf ; KP ), with Ωf being the induced map between the loop spaces of X and Y .

Corollary 2.2.5. The inclusion i : Sn0 ↪→ SnP , n ≥ 1, of the sphere into the infinite telescope is a
P -localization.
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Proof. By the construction 2.1.6 of the P -local sphere [i] is a generator of πn(SnP ) = KP . The
Hurewicz map thus provides an isomorphism

πn(SnP ) ∼= Hn(SnP ; Z), [i] 7→ Hn(i)([Sn0 ]),

which implies that Hn(i) maps a generator [Sn0 ] ∈ Hn(Sn0 ) = Z to a generator (though not as a Z-
module) ofHn(SnP ; Z) = KP . It follows that i induces an isomorphismHn(i)⊗ZKP : Hn(Sn0 )⊗ZKP →
Hn(SnP ) ⊗Z KP . Due to the universal coefficient theorem and remark 2.1.2 we get the following
diagram

0 // Hn(Sn0 )⊗Z KP
∼= //

Hn(i)⊗ZKP
��

Hn(Sn0 ; KP ) //

Hn(i;KP )

��

0

0 // Hn(SnP )⊗Z KP
∼= // Hn(SnP ; KP ) // 0,

where the vertical homomorphisms are induced by the inclusion. The diagram commutes, as the
horizontal isomorphisms from the universal coefficient theorem map [z] ⊗ λ to [z ⊗ λ] and for the
induced map Hn(i; KP ) : Hn(Sn; KP ) → Hn(SnP ; KP ) it holds by definition Hn(i; KP )([z ⊗ λ]) =
[i(z)⊗λ]. Now, since Hn(i)⊗Z KP is an isomorphism, the same must be true for Hn(i; KP ). Lastly,
from the knowledge of the groups Hk(Sn0 ) and Hk(SnP ) we get

Hk(S
n
0 ; KP ) = Hk(S

n
P ; KP ) =

{
KP , k = 0, k = n

0, else,

which implies that H∗(i; KP ) is an isomorphism.

Remark 2.2.6. By theorem 2.2.4, a continuous map f : X → XP between simply connected spaces,
where XP is P -local, is a P -localization if and only if H∗(f ; KP ) is an isomorphism. This rephrases
the definition of P -localization in terms of homology.

The idea of topological localization through assigning P -localizations X → XP to a space X is
attributed to Sullivan. While the examples above show that P -local spaces are geometrically more
complicated, from the viewpoint of algebraic topology, it will provide a significant simplification, as
we shall see. First, we have to show the existence of P -localizations.

Theorem 2.2.7. Let X be a simply connected space and let P be any set of prime numbers. Then
there exists a P -localization X → XP .

There is an explicit construction of XP from X through attaching cells, such that the inclusion
X → XP is a P -localization, which is essentially a generalization of the construction of SnQ. We will
come back to this later when we introduce cellular localization. As the author has spent some time
with the study of Postnikov towers and obstruction theory, we can not resist providing a slightly
more elegant way to think of localizations of spaces. For this, remember that any connected CW
complex for which the action of π1(X) on πn(X) is trivial for all n ≥ 2, admits a Postnikov tower
of principal fibrations. This means each space Xn in the Postnikov tower is weakly homotopy
equivalent to the homotopy fibre of a map

kn−1 : Xn−1 → K(πn(X), n+ 1)

which only depends on the homotopy class [kn−1] ∈ [Xn−1,K(πn(X), n + 1)]. Due to Hurewicz,
[Xn−1,K(πn(X), n+1)] ∼= Hn+1(Xn−1, πn(X)) and the corresponding cohomology classes are called
k-invariants of X. Furthermore, remember that there exists a weak homotopy equivalence between
X and the inverse limit given by the Postnikov tower. The idea is now to localize the stages Xn

in a Postnikov tower of X and extend this weak homotopy equivalence to the inverse limit of the
localized stages. In the proof, we will make use of the following lemma, which will later be refined
for the case that KP = Q.
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Lemma 2.2.8. Let f : X → Y be a map between simply connected spaces and P any set of prime
numbers. Then for all k ≥ 0 it holds if Hk(f ; KP ) : Hk(X; KP ) → Hk(Y ; KP ) is an isomorphism,
then Hk(f ;A) : Hk(Y ;A)→ Hk(X;A) is an isomorphism for all KP -modules A.

Proof. The universal coefficient theorem for cohomology as stated in remark 1.1.16 provides an
isomorphism

H : Hk(Y ;A)
∼=−−→ HomKP (Hk(Y ; KP ), A).

A cocycle [ϕ] ∈ Hk(Y ;A) is represented by a homomorphism ϕ ∈ HomKP (Ck(Y ; KP ), A), and
H([ϕ]) is defined via H([ϕ])([z]) := ϕ(z) for any cocycle [z] ∈ Hk(Y ; KP ). Obviously, the same
holds for X, so this leaves us with a diagram

Hk(Y ;A)
H
∼=
//

Hk(f ;A)
��

HomKP (Hk(Y ; KP ), A)

HomKP
(Hk(f ;KP ),A)

��
Hk(X;A)

H
∼=
// HomKP (Hk(X; KP ), A).

Suppose [ϕ] ∈ Hk(Y ;A) and let [z] ∈ Hk(X; KP ) be arbitrary, then

HomKP (Hk(f ; KP ), A) ◦ H([ϕ])([z]) = H([ϕ]) ◦Hk(f ; KP )([z]) = H([ϕ])([Ck(f)(z)]) = ϕ(Ck(f)(z))

H ◦Hk(f ;A)([ϕ])([z]) = H([ϕ ◦ ck(f)])([z]) = ϕ ◦ Ck(f)(z) = ϕ(Ck(f)(z)),

where by Ck(f) we mean the induced morphism between chain complexes Ck(X; KP )→ Ck(Y ; KP ).
In other words, the diagram commutes. Assuming now that Hk(f ; KP ) is an isomorphism, by the
properties of HomKP (−, A) as a contravariant functor it follows that HomKP (Hk(f ; KP ), A) is an
isomorphism for any KP module A, implying Hk(f ;A) has to be an isomorphism as well.

Proof of theorem 2.2.7. By assumption, X omits a Postnikov tower of principal fibrations. We use
the abbreviation πk := πk(X) for the homotopy groups of X. Let Xn be the stages in a Postnikov
tower of X, so X2 is a K(π2, 2) and from there on Xn is inductively determined by Xn−1 and the
k-invariants. We will construct XP through sequentially localizing the stages Xn in the Postnikov
tower, providing P -localizations Xn → (Xn)P .
For k ≥ 2, there exist natural maps πk → πk ⊗ KP as seen earlier, with πk ⊗ KP always being P -
local. It is a well-known result used for example in the proof of the uniqueness of Eilenberg-MacLane
spaces that, given an abelian group A, n ≥ 2 and a homomorphism Φ: A→ A⊗ KP , there exists a
continuous map f : K(A,n)→ K(A⊗KP , n) realizing Φ, so πn(f) = Φ. For more details on this, see
for example [28]. Now obviously any Eilenberg-MacLane space of the form K(πk⊗KP , n) is P -local,
thus there exist P -localizations f2 : K(π2, 2) → K(π2 ⊗ KP , 2) and g2 : K(π3, 4) → K(π3 ⊗ KP , 4).
We can start by setting (X2)P := K(π2 ⊗ KP , 2) and get a diagram

X3
//

f3

��

X2
k2 //

f2

��

K(π3, 4)

g2

��
(X3)P // (X2)P

(k2)P // K(π3 ⊗ KP , 4)

where the missing dashed parts will be constructed in the following.
By replacing (X2)P with the mapping cylinder, we can assume ((X2)P , X2) to be a CW pair and f2

to be the inclusion. Now 2.2.4 implies the induced maps Hk(f2; KP ) : Hk(X2; KP )→ Hk((X2)P ; KP )
are isomorphisms, so by lemma 2.2.8 if follows that Hk(f2;A) : Hk((X2)P ;A) → Hk(X2;A) is an
isomorphism for any KP -module A. From the long exact cohomology sequence of ((X2)P , X2) it
follows that the relative groups Hk((X2)P , X2;A) ∼= Hk((X2)P ∪ CX2;A) are zero, meaning all
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obstruction classes vanish. For A := π3 ⊗ KP when k = 5, obstruction theory as for instance
presented in [28] then implies that the composition g2 ◦ k2 : X2 → K(π3 ⊗ KP , 4) can be extended
to a map (k2)P : (X2)P → K(π3 ⊗ KP , 4).
In order to proceed inductively, the diagram above should extend to the left as indicated, which
we will do using the next stage of the Postnikov tower. By turning k2 and (k2)P into fibrations,
we know that X3 is the homotopy fibre of k2 up to homotopy equivalence, and we define (X3)P to
be the homotopy fibre of (k2)P . From the long exact sequence associated with the fibration (k2)P
it follows that (X3)P is P -local. To see this, let n ∈ R(P ) and denote by ϕn the homomorphism
obtained by multiplication with n, as well as K := K(π3 ⊗ KP , 4). We get a commutative diagram

. . . // πk+1((X2)P ) //

ϕn

��

πk+1(K) //

ϕn

��

πk((X3)P ) //

ϕn

��

πk((X2)P ) //

ϕn

��

πk(K) //

ϕn

��

. . .

. . . // πk+1((X2)P ) // πk+1(K) // πk((X3)P ) // πk((X2)P ) // πk(K) // . . .

in which the first two and the last two vertical maps are isomorphisms, since the corresponding
groups are P -local. By the five-lemma, ϕn at πk((X3)P ) has to be an isomorphism as well.
What is left is to show that the natural map f3 : X3 → (X3)P induced by f2 through restricting to
the fibre, is a P -localization. This is again an application of the long exact sequence, this time for
both fibrations k2 and (k2)P , where for the long exact sequence of k2 we use the fact that −⊗KP is
an exact functor. Setting K := K(π3, 4) and KP := K(π3⊗KP , 4) we get the commutative diagram

. . . // πk+1(K)⊗ KP //

πk+1(g2)⊗KP
��

πk(X3)⊗ KP //

πk(f3)⊗KP
��

πk(X2)⊗ KP //

πk(f2)⊗KP
��

. . .

. . . // πk+1(KP ) // πk((X3)P ) // πk((X2)P ) // . . .

Now f2 and g2 are assumed to be P -localizations, so using the five-lemma again we get that πk(f3)⊗
KP has to be an isomorphism.
Repeating this argumentation inductively produces a sequence of fibrations (Xn)P → (Xn−1)P , and
each stage comes with a P -localizationXn → (Xn)P . We see that πk(lim←−n(Xn)P ) ∼= lim←−n πk((Xn)P ),
which can again be found in [28], so by using the fact that being P -local is preserved by the inverse
limit we see that XP := lim←−n(Xn)P is a P -local space.

...

��

...

��
X3

��

// (X3)P

��
X //

88

AA

X2
// (X2)P

Now there exists a unique morphism Φ: X → XP such that for each n the map X → Xn → (Xn)P
is equal to the composition qn ◦ Φ, where the maps qn : lim←−n(Xn)P → (Xn)P denote the natural
projections associated with the limit. But X → Xn induces an isomorphism on homotopy groups
up to level n, so we get induced isomorphisms πk(X)⊗KP → πk(Xn)⊗KP → πk((Xn)P ) for k ≤ n.
However, this means πk(qn ◦Φ)⊗ KP = πk(qn)⊗ KP ◦ πk(Φ)⊗ KP has to be an isomorphism for all
k ≤ n, so this is in particular true for πk(Φ)⊗KP : πk(X)⊗KP → πk(XP )⊗KP ∼= πk(XP ). Letting
n be arbitrary large, we see that Φ has to be a P -localization.

Note that by CW approximation, we can always assume XP to be a CW complex.
Having shown the existence of P -localizations X → XP for simply connected spaces, the question
arises whether XP is unique. The following shows that P -localization is a functor and provides an
affirmative answer to this question.
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Proposition 2.2.9. Assume f : X → Y is a continuous map between simply connected spaces and
X → XP , Y → YP are P -localizations, then there exists a map fP : XP → YP such that

X //

f
��

XP

fP
��

Y // YP

commutes. Moreover, whenever f ' g, then fP ' gP .

Proof. This will be an immediate consequence of theorem 2.3.9 that we will come to in a bit.

Remark 2.2.10. In particular, by choosing Y = X and f = idX , for a given P -localizationX → XP

the identity idXP makes the diagram commute, so (idX)P = idXP . Further, assume f : X → Y and
g : Y → Z are continuous maps between simply connected spaces and fix P -localizations for X, Y
and Z respectively. When fP and gP commute with f respectively g and the localizations, then
fP ◦ gP commutes with f ◦ g and the localizations of X and Z, so (f ◦ g)P = fP ◦ gP .
From these functorial properties, it follows if f : X → Y is a homotopy equivalence with homotopy
inverse g, then fP : XP → YP is a homotopy equivalence with homotopy inverse gP . Hence, the
homotopy type of XP is uniquely determined by the homotopy type of X.

2.3 Cellular Localization

We have already seen some first examples of P -local spaces and P -localizations and have proved
that the latter always exist for simply connected spaces. However, to fully grasp the geometric
structure of a P -localization, especially when looking at CW complexes, we have to localize cell by
cell. Just as CW complexes are formed by successively gluing disks of increasing dimension to an
existing skeleton, we can define a P -local analogue using P -local disks.

Definition 2.3.1. The space SnP is called the P -local n-sphere and the space Bn+1
P := SnP × I/SnP ×

{0} is called the P -local (n+ 1)-disk.
If P = ∅ and thus KP = Q, we call SnQ the rational n-sphere and accordingly Bn+1

Q the rational
(n+ 1)-disk.

By construction, SnP is a CW complex consisting of cells of the dimensions n and n + 1. As the
cone of such, the P -local (n + 1)-disk Bn+1

P is a CW complex with cells of dimension n to n + 2,
containing SnP as subcomplex. Moreover, due to the universal property of the quotient space the
inclusion Sn0 → SnP from construction 2.1.6 extends to Bn+1, providing an inclusion of CW pairs
(Bn+1,Sn)→ (Bn+1

P ,SnP ).

Preparation 2.3.2. Assume A is a simply connected topological space. For every n ≥ 1, let In be
an index set and consider a family (Bn+1

P,i ,S
n
P,i)i∈In of P -local disks together with their corresponding

spheres. Given cellular maps fn,i : SnP,i → X(n), we can inductively define

X(n+1) := X(n) ∪fn
(⋃̇

i∈In
Bn+1
P,i

)
,

where we start with X(1) := A and fn :
⋃̇
i∈InSnP,i → X(n) is induced by the universal property of

the disjoint union, so fn(x, i) = fn,i(x) for i ∈ In and x ∈ SnP,i.

Definition 2.3.3. A relative CWP complex is a pair (X,A) of topological spaces where A is simply
connected and X is a union of closed subspaces (X(n))n≥1, where each X(n) is constructed from A
as described above. When A = {pt}, we call X a CWP complex. Whenever P = ∅, we write CWQ

instead of CWP .
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Analogue to regular CW complexes, we call the space X(n) the n-skeleton of the CWP -structure
on (X,A). It contains all the P -local disks BkP with k ≤ n that are attached to X.

Remark 2.3.4. Remember that if f : Y → Z is a cellular map between CW complexes, the pushout
Y ∪f Z carries a cell structure as well. In our case, for each n ≥ 1, the map fn is cellular by
assumption and X(n+1) is the pushout of X(n) and a CW complex. It follows by induction that the
spaces X(n) carry an induced cell structure with respect to X(1) = A. Hence (X,A) is a relative
CW complex, with a regular skeleton denoted by Xn. Each X(n) is a subcomplex of X and the
cells it contains that are not in A have dimension n+ 1 or lower, which can be seen inductively, as
BnP \Sn−1

P contains only cells of dimension n and n+ 1. This also shows that X(n) contains all cells
of dimension n and lower, since afterwards only cells of dimension n+ 1 and higher are added. We
obtain

Xn ⊆ X(n) ⊆ Xn+1 for n ≥ 1,

relating the CW and CWP structure on (X,A).

Proposition 2.3.5. Assume (X,A) is a relative CWP complex, where A is P -local. Then X is a
P -local space. In particular, any CWP complex X is P -local.

Proof. As X1 ⊆ X(1) = A, we see that any cell in X \ A is of dimension greater than 1. We con-
clude from cellular approximation that (X,A) is 1-connected. Thus X is simply connected, since
we assumed the same to be true for A. Hence, we may apply theorem 2.1.7 and use tools from
homology theory.
As Bn+1

P deformation retracts to a point, its homology vanishes on positive level. We deduce
from the long exact sequence of relative homology groups and the calculation of Hk(SnP ; Z) that
the singular homology of (Bn+1

P ,SnP ) with coefficients in Z equals KP concentrated in degree n +
1. Now, as mentioned above, X(n+1) is a (relative) CW complex with subcomplex X(n). In
other words, (X(n+1), X(n)) is a CW pair, so in particular the quotient map (X(n+1), X(n)) →
(X(n+1)/X(n), X(n)/X(n)) induces an isomorphism between homology groups due to the excision
theorem. Finally, X(n+1) is obtained by gluing the cones Bn+1

P,i to X(n) along the bottom SnP,i. Thus,
by collapsing X(n) to a point we are left with a wedge of suspensions ∨i∈InS(SnP,i) and we get

Hk(X
(n+1), X(n); Z) = Hk(X

(n+1)/X(n), X(n)/X(n); Z)

= Hk(∨i∈InS(SnP,i); Z) = ⊕i∈InHk−1(SnP,i; Z)

for all k ≥ 1, i.e. H∗(X(n+1), X(n); Z) is P -local. Now remember that we assumed A = X(1) to be
P -local, so suppose by induction that X(n) is P -local. Consider the long exact homology sequence
for the pair (X(n+1), X(n)) at

Hk+1(X(n+1), X(n))→ Hk(X
(n))→ Hk(X

(n+1))→ Hk(X
(n+1), X(n))→ Hk−1(X(n)).

As follows from the computation of H∗(X(n+1), X(n); Z), we have an isomorphism Hk(X
(n)) ∼=

Hk(X
(n+1)) for k ≤ n− 1 and k ≥ n+ 2. For k = n and k = n+ 1 we may use the fact that, aside

from Hk(X
(n+1)), we know that all homology groups in the exact sequence above are P -local. By

remark 2.1.2, it follows that Hk(X
(n+1)) is P -local, which closes the induction step. Finally, for any

CW complex the inclusion Xn ↪→ X induces an isomorphism between homology groups on levels
k ≤ n− 1, so the same is true for X(n) ↪→ X since Xn ⊆ X(n). All in all, this shows that Hk(X; Z)
is P -local for k ≥ 1. Since H0(X,x0; Z) is trivial for any x0 ∈ X, we conclude that H∗(X,x0; Z)
and therefore X is P -local.

We have now seen how P -local CW complexes are built. Next, we will discuss how a given CW
complex can be localized cell by cell.
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Construction 2.3.6. We begin by considering a relative CW complex (X,A) where X0 = X1 = A
is assumed to be P -local and simply connected. Again, since X is obtained from A by attaching cells
of dimension greater than one, it follows thatX is simply connected. However, it need not be P -local.
Our goal is now to construct from (X,A) a relative CWP complex (XP , A) together with an inclusion
ϕ : (X,A) ↪→ (XP , A) that induces an isomorphism between homology groups with coefficients in
KP , therefore being a P -localization. We will achieve this by induction over n, successively replacing
n-cells of (X,A) with P -local n-cells such that ϕ restricts to a map ϕn : Xn → (XP )(n).
Starting with n = 1, we have X1 = A and ϕ1 : A → A the identity. Next, suppose inductively we
have (XP )(n) and ϕn already constructed. Let

⋃̇
iB
n+1
i be a collection of all (n + 1)-cells in the

relative CW complex (X,A) and let gn be an attaching map for this collection. Then

Xn+1 = Xn ∪gn
(⋃̇

i
Bn+1
i

)
.

Denote by gi,n : Sni → Xn the attaching map for a single cell Bn+1
i . We will now extend the

composition ϕn ◦ gi,n : Sni → (XP )(n) to a cellular map hi,n : SnP,i → (XP )(n). For this, let i be fixed
and remember that

SnP :=

( ∞∨
k=0

Snk

)
∪f
(⋃̇∞

j=1
Bn+1
j

)
,

with attaching maps fj,n of Bn+1
j being represented by αj−1 − kjαj . Here, αj is the class of the

inclusion of the j-th sphere in πn(
∨∞
k=0 Snk) and kj ∈ R(P ). Now, since πn((XP )(n)) is a KP -module,

we find a representative gk : Snk → (XP )(n) such that

[gk] =
1∏k

j=1 kj
[ϕn ◦ gi,n]

for each k ≥ 1. For k = 0, we set g0 := ϕn ◦ gi,n and thereby identify Sni with the initial sphere Sn0 .
This defines

h′i,n :=
∞∨
k=0

gk :
∞∨
k=0

Snk → (XP )(n)

extending ϕn ◦ gi,n to the bouquet of spheres. For some r ≥ 1 it now follows that the composition
h′i,n ◦ fr,n is nullhomotopic, as

[h′i,n ◦ fr,n] = π∗(h
′
i,n)([fr,n]) = π∗(h

′
i,n)(αr−1)− krπ∗(h′i,n)(αr) = [h′i,n ◦ ir−1]− kr[h′i,n ◦ ir]

=
1∏r−1

j=1 kj
[ϕn ◦ gi,n]− kr∏r

j=1 kj
[ϕn ◦ gi,n] = 0.

Therefore, h′i,n extends over the cell Bn+1
r that is attached via fr,n. Since this is true for all r ≥ 1, we

may extend it to all of SnP,i and denote the resulting map by hn,i. The corresponding commutative
diagram reads

Sni

gn,i

��

//
∨∞
k=0 Snk

h′i,n ((

// SnP,i

hi,n
��

Xn
ϕn

// (XP )(n).

We do this for all n-cells of (X,A) and then attach cells Bn+1
P,i to (XP )(n) using the maps hi,n to

obtain (XP )(n+1). By denoting the induced map on the disjoint union
⋃̇
iS
n
P,i of P -local spheres by

hn this reads

(XP )(n+1) := (XP )(n) ∪hn
(⋃̇

i
Bn+1
P,i

)
.
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Finally, to define ϕn+1 : Xn+1 → (XP )(n+1) extending ϕn, consider the inclusions Bn+1
i ↪→ Bn+1

P,i .
These define a map ψn :

⋃̇
iB
n+1
i →

⋃̇
iB
n+1
P,i and we set

ϕn+1 := ϕn ∪ ψn : Xn ∪gn
(⋃̇

i
Bn+1
i

)
→ (XP )(n) ∪hn

(⋃̇
i
Bn+1
P,i

)
,

completing the induction step and therefore the construction of ϕ : (X,A)→ (XP , A).

Lemma 2.3.7. The map ϕ : (X,A)→ (XP , A) from construction 2.3.6 is a P -localization.

Proof. It follows at once from proposition 2.3.5 that XP is P -local. Therefore, to argue that ϕ is
a P -localization, by theorem 2.2.4 it suffices to show that H∗(ϕ; KP ) : H∗(X; KP )→ H∗(XP ; KP ) is
an isomorphism. Assume by induction that ϕn induces an isomorphism between homology groups
with coefficients in KP . We may use the same arguments as in proposition 2.3.5 to show that

H∗(X
n+1, Xn; KP ) ∼= H∗(∨iSSni ; KP ), H∗((XP )(n+1), (XP )(n); KP ) ∼= H∗(∨iSSnP,i; KP ),

where the isomorphisms are induced by the quotient maps. Plugging this into the long exact
homology sequences of the CW pairs (Xn+1, Xn) and ((XP )(n+1), (XP )(n)) this reads

. . . // H∗(X
n; KP ) //

H∗(ϕn;KP ) ∼=
��

H∗(X
n+1; KP ) //

H∗(ϕn+1;KP )
��

H∗(∨iSSni ; KP ) //

∼=
��

. . .

. . . // H∗((XP )(n); KP ) // H∗((XP )(n+1); KP ) // H∗(∨iSSnP,i; KP ) // . . . ,

where the right-hand isomorphism is induced by the inclusions (Bn+1
i ,Sni ) → (Bn+1

P,i ,S
n
P,i). Note

that this diagram commutes by definition of ϕn+1, which restricts to ϕn on Xn and is extended
over the (n+1)-cells using the natural inclusion written above. Applying once more the five lemma,
we see that H∗(ϕn+1; KP ) is an isomorphism.

Remark 2.3.8. This concludes the P -localization of CW complexes. The benefits of this approach,
when compared to localization via the Postnikov tower, is that the obtained P -localization X ↪→ XP

is an inclusion of a subcomplex. Moreover, the cell structure of X directly determines the cell
structure of XP in the sense that any attaching map Sn → Xn gets replaced by a P -local version
SnP → (XP )(n). Thus, the construction above does a better job in comparing the geometry of X and
XP . That being said, in most cases an explicit description of XP will not be necessary, since we will
soon begin to employ algebraic tools. As we shall see then, the complicated nature of P -localization
should not worry us, for it allows the use of rather convenient algebraic models.

Next, we will extend the results of construction 2.3.6 to the case of arbitrary simply connected
spaces through the use of CW approximation. As the P -localizations that we have constructed are
inclusions, the question of the functoriality of P -localization as stated in proposition 2.2.9 results
in finding an extension to XP for any continuous map on X.

Theorem 2.3.9. Each simply connected space X can be localized through the attachment of P -local
cells. That is:

(i) There exists a relative CW complex (XP , X) such that the inclusion X ↪→ XP is a P -
localization.

(ii) If f : X → Y is a continuous map between simply connected spaces and Y is P -local, then
there exists F : XP → Y such that F |X = f .

(iii) Any homotopy f ' g extends to a homotopy F ' G. Hence (XP , X) is unique up to homotopy
equivalence relative X.
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Note that this in particular implies the statements from theorem 2.2.7 and proposition 2.2.9. For
the latter, assuming Y is not P -local and we are given f : X → Y , we may just apply theorem
2.3.9 to the composition X → Y → YP of f with any P -localization of Y . Finally, the asserted
uniqueness of (XP , X) follows at once from the theorem if we consider the commutative diagram

X
f // XP

F ′




X

f ′
// X ′P .

F

II

Here, both f : X ↪→ XP and f ′ : X ↪→ X ′P are assumed to be P -localizations of X, and F extends
f with respect to X ′P , while F

′ extends f ′ with respect to XP . However, a suitable extension for f
with respect to XP is idXP , while for f

′ with respect to X ′P it is idX′P . It follows that F
′ ◦F ' idXP

and F ◦ F ′ ' idX′P .

Proof of theorem 2.3.9. (i) In order to apply construction 2.3.6, we begin by making use of CW
approximation. Let ψ : Z → X be a weak homotopy equivalence, where Z is a CW complex. Since
X is simply connected, we may assume that Z0 = Z1 consists of a single 0-cell. Then the non-
relative version of construction 2.3.6 yields an inclusion ϕ : Z ↪→ ZP that is a P -localization. Now
consider Z × I and glue Z × {0} to X using ψ, as well as Z × {1} to ZP using ϕ. We obtain

XP := X ∪ψ (Z × I) ∪ϕ ZP ,

where we may assume ψ and ϕ to be cellular maps. It follows that XP is simply connected since X
is and that (XP , X) is a relative CW complex with cells of dimension two and higher. Now, from
the excision theorem, it follows that

H∗(XP , ZP ; Z) ∼= H∗(X ∪ψ (Z × I), Z × {1}; Z).

The space X ∪ψ (Z × I) that remains is exactly the mapping cylinder Mψ of ψ. This deformation
retracts to X via some retraction r : Mψ → X and contains Z as subspace with inclusion i : Z ×
{1} ↪→ Mψ. As such, it holds ψ = r ◦ i, and since H∗(ψ; Z) is an isomorphism the same holds for
H∗(i; Z). Consequentially, the long exact homology sequence implies that H∗(Mψ, Z × {1}; Z) = 0
and thus H∗(XP , ZP ; Z) = 0. Then again, the long exact homology sequence of (XP , ZP ) implies
H∗(XP , x0; Z) ∼= H∗(ZP , z0; Z), so XP is P -local since ZP is.
Finally, it once more follows from excision that

H∗(XP , X; KP ) ∼= H∗(ZP , Z; KP ) = 0,

where the second equality is due to the long exact homology sequence and fact that the inclusion
ϕ : Z ↪→ ZP is a P -localization, therefore inducing an isomorphism on homology with coefficients
in KP . The long exact homology sequence for (XP , X) with coefficients in KP then shows that the
inclusion X ↪→ XP is a P -localization.
(ii) Glue XP to Y along X using f to obtain Y ∪fXP . This contains Y as subspace, so (Y ∪fXP , Y )
is a relative CW complex, and Y is P -local. We may thus apply construction 2.3.6 to obtain a P -
localization (Y ∪f XP , Y ) → ((Y ∪f XP )P , Y ). Now, similar to the above, by using excision we
obtain

H(Y ∪f XP , Y ; KP ) ∼= H∗(XP , X; KP ) = 0,

where again the latter equality holds due to X ↪→ XP being a P -localization. As follows from the
long exact homology sequence, the inclusion Y ↪→ Y ∪f XP induces an isomorphism on homology
groups with coefficients in KP . Therefore, the composition

τ : Y ↪→ Y ∪f XP ↪→ (Y ∪f XP )P
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of this inclusion with the P -localization mentioned above also induces an isomorphism on homology
groups. By theorem 2.2.4, π∗(τ) ⊗ KP is an isomorphism, and thus even π∗(τ) is an isomorphism
since both Y and (Y ∪f XP )P are P -local. Hence τ and in particular the inclusion Y ↪→ Y ∪f XP

is a weak homotopy equivalence. This implies the existence of a retraction r : Y ∪f XP → Y which,
together with the canonical projection XP → Y ∪f XP , provides F as claimed.
(iii) The last claim follows at once from the fact that the inclusion

(XP × {0}) ∪ (X × I) ∪ (XP × {1}) ↪→ XP × I

is a P -localization. Therefore, the map composed of F on XP ×{0}, the homotopy f ' g on X × I
and G on XP × {1} extends to a homotopy F ' G on XP × I.

2.4 Rational Homotopy Type

The preceding chapters show that the more integers R(P ) ⊆ Z contains, the more complicated the
construction of a P -localization X → XP gets. As for the groups π∗(XP ) = π∗(X) ⊗ KP , things
tend to get easier, since the closer KP is to being Q, the more torsion is ignored when compared to
π∗(X). This trend, where increased chaos on the topological side leads to a simplification on the
algebraic side (and vice versa), can be observed on multiple occasions throughout homotopy theory.
While rational homotopy theory makes heavy use of this circumstance, the complicated geometry of
P -local spaces should not be something to worry about. According to the usual practice in algebraic
topology, rather than a space itself one is oftentimes more interested in a class of spaces, which is
what we will come to now. When given such a class, one can then still hope to find a representative
with relatively easy geometry.
Henceforth, we will focus solely on the special case P = ∅ and KP = Q. This immediately provides
another benefit, since with field coefficients cohomology is just the dual of homology by the universal
coefficient theorem. Let again f : X → Y be a map between simply connected spaces. We can extend
the Whitehead-Serre theorem 2.2.4, which now states that the following conditions

1. π∗(f)⊗ Q is an isomorphism

2. H∗(f ; Q) is an isomorphism

3. H∗(f ; Q) is an isomorphism

are equivalent.

Definition 2.4.1. A continuous map f : X → Y between simply connected spaces is called a
rational homotopy equivalence if one and hence all of the above conditions are satisfied.

Remark 2.4.2. Obviously, any rationalization X → XQ is a rational homotopy equivalence, and
a rational homotopy equivalence X → Y is a rationalization if and only if Y is a rational space.
Furthermore, a weak homotopy equivalence X → Y is always a rational homotopy equivalence, and
the other implication only holds if both X and Y are rational spaces. This is evident from the
commutative diagram

π∗(X)
π∗(f) //

α 7→α⊗1 ∼=
��

π∗(Y )

π∗(X)⊗Z Q //

π∗(f)⊗ZQ
55

π∗(Y )⊗Z Q.

∼= α⊗λ 7→λα

OO

in which the vertical maps are isomorphisms if and only if X and Y are rational spaces.
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Looking back at remark 2.2.10, we have seen that a homotopy equivalence f : X → Y induces
a homotopy equivalence fQ : XQ → YQ between localizations. Now as follows from remark 2.4.2
above, with the notably weaker assumption of f : X → Y being a rational homotopy equivalence,
by applying the functor π∗(−)⊗ Q to the commutative diagram from proposition 2.2.9 we see that
the induced map fQ : XQ → YQ is a weak homotopy equivalence. Using CW approximation, we
may even suppose XQ and YQ to be CW complexes, which means they are homotopy equivalent by
Whitehead’s theorem. This shows that from the viewpoint of classical homotopy theory, two distinct
spaces X and Y might share the same rationalization. In rational homotopy theory, however, two
such spaces will share a common class which we shall define now.

Definition 2.4.3. We say two simply connected spaces X, Y have the same rational homotopy type
if there exists n ∈ N0 and simply connected spaces Z(k), 0 ≤ k ≤ n together with a chain

X ←− Z(0) −→ · · · ←− Z(n) −→ Y

of rational homotopy equivalences. We indicate this by writing X 'Q Y .

Remark 2.4.4. This defines an equivalence relation on the simply connected spaces, so by the
rational homotopy type of a simply connected space X we mean the class of all spaces Y such that
X 'Q Y . Roughly speaking, two spaces of the same rational homotopy type resemble each other
in the sense that they share those very properties which are conveyed under rational homotopy
equivalence. Therefore, rational homotopy theory consists in the study of the characteristics of
spaces and maps that are invariant under rational homotopy equivalence, meaning they only depend
on the rational homotopy type.

Remember that in the weak homotopy category, or more commonly called the standard homotopy
category, two spaces are isomorphic if they are connected by a chain X ← · · · → Y of weak
homotopy equivalences. Denote the existence of such chain by writing X 'w Y . For example, any
CW approximation is a chain of weak homotopy equivalences, so CW approximation assigns to a
space a CW complex of the same weak homotopy type.
Switching back to rational homotopy theory, a rationalization X → XQ of a simply connected
space X is obviously a chain of rational homotopy equivalences, so X 'Q XQ. In other words, a
rationalization assigns to a space a rational space with the same rational homotopy type. Let Y be
a second simply connected space with rationalization Y → YQ and assume that XQ 'w YQ. As any
weak homotopy equivalence is a rational homotopy equivalence, a chain XQ ← · · · → YQ of weak
homotopy equivalences is automatically a chain of rational homotopy equivalences. Put together
with the rationalizations, we obtain a chain X → XQ ← · · · → YQ ← Y of rational homotopy
equivalences, so X 'Q Y .
The other way around, assume X and Y are connected by a chain of rational homotopy equivalences
described in definition 2.4.3. From the functoriality of rationalization as stated in proposition 2.2.9
it follows that the rationalizations of the appearing spaces in the chain have to be weakly homotopy
equivalent. More precisely, we get a commutative diagram

X

��

Z(0)oo //

��

. . . Z(k)oo //

��

Y

��
XQ Z(0)Q
oo // . . . Z(k)Q

oo // YQ

in which each map is a rational homotopy equivalence. Applying remark 2.4.2 to the bottom row
then yields XQ 'w YQ. All in all, this shows the following.

Proposition 2.4.5. The rational homotopy type of a simply connected space X corresponds to the
weak homotopy type of XQ.
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So far, we have ignored most of the category theoretical aspects of rational homotopy theory.
While it provides helpful and important tools, for our purpose a more concrete approach to the
subject is suitable, as we will generally be interested in the detailed structure of objects and not
only their universal properties. In doing so we sacrifice some generality, but are able to work with
explicit constructions, which will make future examples and assertions more accessible. Therefore,
we will only occasionally use category theory where it contributes insight to the big picture, without
claiming to be completely accurate while doing so. The following is one of these cases.

Remark 2.4.6.

(a) Following Quillen, the localization of a category at a collection of morphisms involves the
process of uniformly making these morphisms into isomorphisms. So, for example, the standard
homotopy category as mentioned above is obtained through localising the category of topological
spaces at the continuous maps that are weak homotopy equivalences. To put it simply, the
existence of a weak homotopy equivalence f : X → Y is not a symmetric relation, but we can say
X and Y have the same weak homotopy type if they are equivalent under the equivalence relation
generated by weak homotopy equivalence. In other words, X and Y are weakly homotopy
equivalent if they are connected by a chain of weak homotopy equivalences. In definition 2.4.3
we imitate this procedure, this time localizing at the broader class of morphisms that induce
an isomorphism between rational homotopy groups.

(b) With the help of CW approximation and Whitehead’s theorem one can show that two spaces are
weakly equivalent if and only if their respective CW approximations are homotopy equivalent.
This means that the standard homotopy category is equivalent to the subcategory of the classical
homotopy category that is provided by CW complexes. By incorporating proposition 2.4.5 into
this argumentation, we see that the rational homotopy category can be interpreted as the
subcategory composed of those CW complexes that are rational spaces.
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3 Models via Sullivan

So far, we have established what we wish to study in rational homotopy theory, which is the rational
homotopy type of spaces and the rational homotopy class of maps. Moving on, in this chapter we
will introduce powerful algebraic models that will help us to do so. Essentially, we will be able to
fully classify the rational homotopy type and rational homotopy class of a broad class of spaces
and maps through purely algebraic means. This is achieved by so-called minimal Sullivan models,
which were originally introduced by Sullivan in [26]. We will show the existence and uniqueness
of these models for simply connected spaces, and briefly introduce the more general concept of
relative Sullivan algebras. These are used in models of continuous maps and play a central role in
the models of fibrations. Moreover, we will learn how information on a simply connected space can
be read from its minimal Sullivan model, such as the rational homotopy groups and the Whitehead
product on them. Moreover, in the last section the realization functor will be presented, essentially
establishing a bijection between isomorphy classes of minimal rational Sullivan algebras of finite
type and simply connected spaces with rational cohomology of finite type. Along the way, it will
become clear from the definition that the realization functor, while undoubtedly delivering powerful
results, provides a quite complicated CW complex in the rational homotopy class that the minimal
Sullivan model belongs to. This motivates the hunt for an alternative, more geometric realization,
which is the motivation for this monograph.
This section is inspired by the brilliant explanation of the subject provided by Félix, Halperin and
Thomas in [7]. Many of the results that we present here can be found in this book, and we will
refer to it in some occasions when the proof is too tedious and not really needed for our purpose.
We recommend the newer book of Félix, Halperin and Thomas, [8] to everyone who is bothered by
the simply connectedness assumption or wants to learn about the theory in a more general setting.
Standard literature on the subject is also [9], in which a large variety of examples and applications
can be found, as well as [11].

3.1 Free Commutative Cochain Algebra

In general, the cochain algebras that appear naturally in algebraic topology are quite complex. To
study them further, we are often forced to replace them by simpler cochain algebras. For this, the
most promising candidates would be free algebras, allowing for a facilitating universal property.
While there exists a free graded algebra associated with a graded vector space V , the tensor algebra
TV , it is in general not commutative. However, we can make it commutative, which will lead us to
the free commutative graded algebra denoted by ΛV which is fundamental to the algebraic models
used by Sullivan. In the following, K is a commutative unitary ring, and tensor products as well as
linearity are to be understood over K unless stated otherwise.

Example 3.1.1. Let V be a free graded module. We define its tensor algebra to be the graded
module

TV =
⊕
k≥0

T kV = K⊕ V ⊕ (V ⊗ V )⊕ (V ⊗ V ⊗ V )⊕ . . .

Naturally, the tensor algebra is always a graded module, even if the underlying module is not.
However, we will consider TV with the grading that is induced by the grading of V : if v1, . . . , vk
are homogeneous elements of V , then the element v1 ⊗ · · · ⊗ vk ∈ T kV is an element of degree∑k

i=1 |vi| and word length k. This grading makes the tensor product of two elements v, w ∈ TV a
multiplication, turning TV into a graded algebra with vw := v ⊗ w.

Now obviously, V = T 1V is a graded submodule of TV . Let i : V ↪→ TV be the canonical
inclusion. Given a morphism f : V → A of graded modules, where A is a graded algebra, there
exists a unique extension F : TV → A that is a morphism of graded algebras. It is given by
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F (v1 ⊗ · · · ⊗ vk) = f(v1) . . . f(vk) and makes the diagram

V
f //

i
��

A

TV
F

77

commute. This is the universal property of TV and i. Furthermore, given any linear map d : V →
TV of degree k, we can extend this to a unique derivation d : TV → TV of degree k. This is by
induction on the word length, thereby defining d in accord with the Leibniz rule.

Example 3.1.2. For a free graded module V consider the ideal I on the tensor algebra TV that is
generated by the set

{v ⊗ w − (−1)|v||w|w ⊗ v | v, w ∈ V are homogeneous}.

We then call the quotient ΛV := TV/I the free commutative graded algebra on V .

Remark 3.1.3.

(a) For v = v1⊗· · ·⊗vk and w = w1⊗· · ·⊗wn ∈ TV we write [v] = v1∧· · ·∧vk and [w] = w1∧· · ·∧wn
for the corresponding equivalence classes in ΛV . Multiplication is defined representative wise,
so

(v1 ∧ · · · ∧ vk)(w1 ∧ · · · ∧ wn) = [v][w] := [vw] = [v1 ⊗ · · · ⊗ vk ⊗ w1 ⊗ · · · ⊗ wn]

= v1 ∧ · · · ∧ vk ∧ w1 ∧ · · · ∧ wn.

This makes ΛV a commutative graded algebra. Roughly speaking, we made the tensor algebra
commutative by killing the relations that posed an obstruction to commutativity.

(b) We denote by ΛkV the subspace that is generated by elements of the form v1 ∧ · · · ∧ vk,
where vi ∈ V is homogeneous for all 1 ≤ i ≤ k. It follows that ΛV =

⊕
k≥0 ΛkV , which

provides a grading on ΛV that is independent of the grading on V . However, as with TV , we
usually consider ΛV with the grading that is induced by the grading of V . That is, elements
v1 ∧ · · · ∧ vk ∈ ΛkV have degree

∑k
i=1 |vi| and word length k.

(c) Assume V is a free module and (vi)i∈I , where I is some index set, is a homogeneous basis of V .
Then the set

{vi1 ⊗ · · · ⊗ vin | n ∈ N, ik ∈ I}

provides a homogeneous basis for TV . The corresponding equivalence classes in turn define a
set of homogeneous generators of ΛV . In these cases we can thus write T (vi) and Λ(vi) for TV
and ΛV respectively.
For example, if V is generated by a single element v and K is a field of characteristic zero, a
basis of ΛV is given by {1, v} if |v| is odd and {1, v, v2, v3, . . . } if |v| is even.

Any morphism f : V → A of graded modules, where A is a commutative graded algebra, extends
to a unique morphism of graded algebras F : ΛV → A. This follows from the universal properties
of TV and the quotient. If F ′ : TV → A extends f on TV , we get

F ′(v ⊗ w − (−1)|v||w|w ⊗ v) = f(v)f(w)− (−1)|v||w|f(w)f(v) = 0

and thus F ′(I) = 0. So F ′ in turn induces F : ΛV → A on the quotient. Finally, let j : V → ΛV
denote the canonical injection that is the composition of the inclusion i : V ↪→ TV with the canonical
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projection π : TV → ΛV . Thus, we get a commutative diagram

V
f //

i
��

j

��

A

TV

π
��

F ′
77

ΛV.

F

??

The uniqueness of F is an immediate consequence of the universal property of the tensor algebra,
since F ′ is unique and π is surjective. We call this the universal property of (ΛV, j).

Remark 3.1.4. Note that from there on, a standard argument shows that this universal property
determines (ΛV, j) up to isomorphy. Namely, if there exists a second commutative graded algebra
A′ and a morphism j′ : V → A′ satisfying the universal property, we get a commutative diagram

V

j
��

j′ // A′

Jtt
ΛV,

J ′
33

where J extends j and J ′ extends j′. It follows j = J ◦ J ′ ◦ j and j′ = J ′ ◦ J ◦ j′, meaning J ◦ J ′
extends j over itself, while J ′ ◦J extends j′ over itself. However, so do the corresponding identities,
and since the induced morphisms in the universal property are unique, we get J ◦ J ′ = idΛV and
J ′ ◦ J = idA′ .

Proposition 3.1.5. Suppose V ,W are free graded modules. Then there exists a unique isomorphism
Λ(V ⊕W ) ∼= ΛV ⊗ ΛW that is an isomorphism between CGAs. Moreover, if precomposed with the
canonical injections V → Λ(V ⊕W ), W → Λ(V ⊕W ) this yields the corresponding identity on V
or W .

Proof. Besides the inclusion j : V ⊕W ↪→ Λ(V ⊕W ) we may consider the morphism

j′ : V ⊕W → ΛV ⊗ ΛW, (v, w) 7→ v ⊗ 1 + 1⊗ w.

If we show that (ΛV ⊗ ΛW, j′) too suffices the universal property of (Λ(V ⊕W ), j), remark 3.1.4
above yields the asserted isomorphism J ′. Thus, suppose f : V ⊕W → A is a morphism of graded
modules, where A is a commutative graded algebra. The restrictions f |V : V → A and f |W : W → A
given by f |V (v) := f(v, 0) and f |W (w) := f(0, w) induce unique morphisms FV : ΛV → A and
FW : ΛW → A by the universal properties of ΛV and ΛW . Through these, we may define

F := FV ⊗ FW : ΛV ⊗ ΛW → A, F (a⊗ b) = FV (a)FW (b).

It follows that F (v ⊗ 1 + 1 ⊗ w) = f |V (v) + f |W (w) = f(v, w) and thus F ◦ j′ = f . For the
uniqueness of F , assume G : ΛV ⊗ ΛW → A is a morphism such that f = G ◦ j′. If we define
morphisms GV : ΛV → A, GV (a) := G(a ⊗ 1) and GW : ΛW → A, GW (b) := G(1 ⊗ b) it follows
that

GV ⊗GW (a⊗ b) = G(a⊗ 1)G(1⊗ b) = G((a⊗ 1)(1⊗ b)) = G(a⊗ b).

Finally, it holds

GV (v) = G(v ⊗ 1) = G ◦ j′(v, 0) = f(v, 0) = f |V (v)

GW (w) = G(1⊗ w) = G ◦ j′(0, w) = f(0, w) = f |W (w),

so GV and GW extend f |V and respectively f |W over the natural inclusions V ↪→ ΛV , W ↪→ ΛW .
It follows that GV = FV and GW = FW by the uniqueness in the universal properties of ΛV and
ΛW .

37



The free commutative graded algebra ΛV associated with a graded module V is relevant in the
world of CDGAs, too. More specifically, it is fairly easy to construct a differential d on ΛV , making
it a CDGA of the form (ΛV, d). These play a major role in Sullivan’s approach to rational homotopy
theory and will occur frequently in the following.

Remark 3.1.6.

(a) A linear map d : V → ΛV of degree k extends to a unique derivation d : ΛV → ΛV of degree k.
As in the case of TV , this is done by inductively extending d on ΛkV , making it apply to the
Leibniz rule. Thus, any linear map V → ΛV of degree 1 defines a unique derivation, where it
suffices to specify the map on a homogeneous basis of V .

(b) Let f : ΛV → A be a morphism of commutative graded algebras and consider derivations dV ,
dA in ΛV and A respectively. If f ◦ dV = dA ◦ f holds for elements in V , then by the universal
property the maps commute on all of ΛV . Similarly, if d : ΛV → ΛV is a derivation of degree
k with d2|V = 0, then d2 = 0 on all of ΛV .

It follows that in the case of a free commutative graded algebra ΛV , it suffices to specify a linear
map d of degree 1 on a basis of V so that d2 = 0. Any such map then extends to a derivation
d : ΛV → ΛV with d2 = 0 on all of ΛV , resulting in a CDGA (ΛV, d).

Remark 3.1.7. In particular, a linear map d : V ⊕W → Λ(V ⊕W ) of degree 1 with d2 = 0 extends
over j : V ⊕W ↪→ Λ(V ⊕W ) and induces a differential d on Λ(V ⊕W ). Moreover, the inclusions

V ↪→ V ⊕W ↪→ Λ(V ⊕W ) and W ↪→ V ⊕W ↪→ Λ(V ⊕W )

extend to inclusions ΛV ↪→ Λ(V ⊕ W ) and ΛW ↪→ Λ(V ⊕ W ). Assuming d restricts to maps
d|V : V → ΛV and d|W : W → ΛW , these define differentials dV and dW in ΛV and ΛW respec-
tively. It follows that the isomorphism J ′ induced by j′ in proposition 3.1.5 is an isomorphism of
commutative cochain algebras (Λ(V ⊕W ), d) ∼= (ΛV ⊗ ΛW,dV ⊗ dW ), since

dV ⊗ dW (j′(v, w)) = dV (v)⊗ 1 + 1⊗ dW (w) = J ′(d(v, 0) + d(0, w)) = J ′(d(v, w)).

Example 3.1.8. Consider for any n ∈ N0 the free commutative graded algebra

(AP )n := Λ(t0, . . . , tn, dt0, . . . , dtn)

with basis elements ti of degree zero and dti of degree one. With regard to proposition 3.1.5, we
get (AP )n = Λ(V0 ⊕ V1) = ΛV0 ⊗ΛV1, where V0 and V1 indicate the free modules generated by the
elements ti and dti respectively. Note that ΛV0 is the polynomial ring over K in n+ 1 variables, so
we get (AP )n = K[t0, . . . , tn]⊗ ΛV1. In particular, for n = 0 we get

(AP )0 = Λ(t, dt) =

{ k∑
i=0

αit
i +

l∑
j=0

βjt
jdt | k, l ∈ N, αi, βj ∈ K

}
.

We can define a linear map d : (AP )n → (AP )n of degree 1 by setting d(ti) := dti and d(dti) := 0
for all 0 ≤ i ≤ n, which extends to a unique derivation on (AP )n, making ((AP )n, d) a commutative
cochain algebra.

Remark 3.1.9. This free commutative graded algebra will play a rather central role in the upcoming
constructions. Therefore, just to get a better feeling for the object, let us do a quick calculation
of its cohomology in the case that K is a field of characteristic zero. Start with Λ(t, dt) and note
that for any k ≥ 1, we see by induction and the Leibniz rule that d(tk) = ktk−1dt. Hence, for the
differential of an arbitrary element of degree zero it holds

d

( n∑
k=0

αkt
k

)
=

n∑
k=1

kαkt
k−1dt.
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As K has characteristic zero, this equals zero if and only if αk = 0 for k ≥ 1, so α0 ∈ K may be
arbitrary. Hence, we obtain H0(Λ(t, dt)) = K as the kernel of the differential.
On elements of degree one the differential always vanishes, as dt2 = 0. However, it holds

d

( n∑
k=0

βk
k + 1

tk+1

)
=

n∑
k=0

βkt
kdt,

thus any element of degree one is the image of an element of degree zero under the differential and
hence a coboundary. It followsH1(Λ(t, dt)) = 0. In degrees higher than one the cohomology vanishes
trivially, since there are no elements of degree greater than one. This shows H∗(Λ(t, dt)) = K, where
we consider K as differential graded algebra concentrated in degree zero, with trivial differential.
Lastly, we extend this calculation to general n, using the isomorphism (AP )n ∼= ⊗Λni=0Λ(ti, dti)
from proposition 3.1.5. Since homology respects the tensor product, see proposition 1.1.11, this
immediately yields H∗((AP )n) = K.

3.2 Polynomial Differential Forms

On the singular cochain complex CS∗(X; K) of a topological spaceX there exists a product structure
which, on the level of the singular cohomology ofX, is called the cup product. While the cup product
makes H∗(X; K) a commutative graded algebra, the initial product structure on cochain level is
generally not commutative. This means that we are likely to run into trouble when attempting
to replace CS∗(X; K) by a simpler cochain complex whose homology coincides with the singular
cohomology of X. For such model would not be commutative, whereas we require its homology to
be a commutative graded algebra. As it turns out, if we assume K to be a field of characteristic zero,
there is a commutative alternative to CS∗(X; K). Inspired by the de Rham complex ADR(M) of a
smooth manifold, which happens to be commutative and for which H(ADR(M)) ∼= H∗(X; R) holds,
in [26] Sullivan introduced a functor which, given some space X, returns a commutative cochain
algebra APL(X; K) for which a natural isomorphism

H(APL(X; K)) ∼= H∗(X; K)

exists. While APL(X; K) itself still is quite complicated, we will see soon that it allows for well-
behaved algebraic models.
This section begins with a short introduction of simplicial objects and a quick reminder of the
singular (co)chain complex and will then proceed with the construction of APL(X; K).

Definition 3.2.1. (Simplicial objects)
A simplicial object K is a sequence of objects (Kn)n≥0 in a specific category, together with mor-
phisms

∂i : Kn+1 → Kn, 0 ≤ i ≤ n+ 1,

sj : Kn → Kn+1, 0 ≤ j ≤ n

in the corresponding category such that it holds:

∂i ◦ ∂j = ∂j−1 ◦ ∂i, for i < j,

sj ◦ sj = sj+1 ◦ si, for i ≤ j,

∂i ◦ sj =


sj−1 ◦ ∂i, for i < j,

id, for i = j, or i = j + 1,

sj ◦ ∂i−1, for i > j + 1.

We will sometimes refer to these as face and degeneracy maps.
A simplicial morphism ϕ : K → L between two simplicial objects (of the same category) is a
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sequence of morphisms ϕn : Kn → Ln commuting with the face and degeneracy maps. We write
HomSIM(K,L) for the space consisting of all simplicial morphisms between K and L.

. . . // Kn

sKj //oo

ϕn

��

Kn+1
//

∂Ki

oo

ϕn+1

��

. . .oo

. . . // Ln
sLj //oo Ln+1

//

∂Li

oo . . .oo

In the following, we will call a simplicial object in the category of sets a simplicial set. Similarly,
a simplicial cochain complex is a simplicial object in the category of cochain complexes. Therefore,
a simplicial cochain complex is a family (Vn, dn)n≥0 of cochain complexes, so each Vn = (V k

n )k≥0 is
a graded module with differential dn = (dkn)k≥0, dkn : V k

n → V k+1
n . As usual, the grading on each

module Vn will be indicated by uppercase letters. The corresponding face and degeneracy maps
∂i : Vn+1 → Vn, sj : Vn → Vn+1 each consist of families of linear maps (∂ki )k≥0, ∂ki : V k

n+1 → V k
n and

(skj )k≥0, skj : V k
n → V k

n+1 commuting with the differentials.
A family of cochain algebras (An, dn)n≥0 together with the face and degeneracy maps that are alge-
bra homomorphisms is called a simplicial cochain algebra. Hence, when talking about a simplicial
cochain complex, or a simplicial cochain algebra (An)n≥0 one should have in mind the following
commutative diagram

A0
0

d0
0
��

// A0
1

d0
1
��

s0j //oo A0
2

d0
2
��

//

∂0
i

oo . . .oo

A1
0

d1
0��

// A1
1

d1
1��

s1j //oo A1
2

d1
2��

//

∂1
i

oo . . .oo

...
...

...

A simplicial morphism between two simplicial cochain complexes can then be visualized as a map
between two such grids, such that in any square the occurring maps commute.

Remark 3.2.2. Note that each line in the diagram above itself defines a simplicial object: for a
simplicial cochain algebra A and fixed k ≥ 0, the family Ak := (Akn)n≥0 with the corresponding face
and degeneracy maps is again a simplicial object in the category of modules.

Example 3.2.3. Remember that for n ≥ 0 the set of singular n-simplices as introduced in prepara-
tion 1.1.15. One can show that the face and degeneracy maps ∂i : Sn+1(X)→ Sn(X), ∂i(σ) := σ◦δi
and sj : Sn → Sn+1(X), sj(σ) := σ ◦ ρj suffice the identities in the definition of a simplicial ob-
ject, making S(X) := {Sn(X)}n≥0 a simplicial set. Moreover, a continuous map f : X → Y induces
S(f) : S(X)→ S(Y ) such that S is a functor from the category of topological spaces to the category
of simplicial sets.

Henceforth, we assume K to be a field of characteristic zero.

Example 3.2.4. Let n ∈ N0 and consider the commutative cochain algebra (AP , d)n from example
3.1.8. Let In be the ideal that is generated by the two elements

∑n
i=0 ti − 1 and

∑n
i=0 dti. As

d(In) ⊆ In we get an induced derivation on the quotient space

(APL)n := Λ(t0, . . . , tn, dt0, . . . , dtn)/In

which we will simply denote by d and for which d(ti) = dti and d(dti) = 0 holds, as before. This
makes (APL)n into a CDGA for each n ≥ 0. We then define for 0 ≤ i ≤ n + 1 and 0 ≤ j ≤ n the
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maps ∂i : (APL)n+1 → (APL)n, sj : (APL)n → (APL)n+1 as morphisms between DGAs given by

∂i(tk) :=


tk for k < i,

0 for k = i,

tk−1 for k > i,

sj(tk) :=


tk for k < j,

tk + tk+1 for j = k,

tk+1 for k > j.

Note that it suffices to define the maps on the basis elements tk, as any morphism of DGAs commutes
with the differential by definition, and they are compatible with the ideal.
This turns APL := {(APL)n}n≥0 into a simplicial cochain algebra.

Remark 3.2.5. (APL)n is free commutative, which can be seen by the fact that the inclusions of
the basis elements ti and dti for i ≥ 1 extend to an isomorphism of commutative cochain algebras

(AP )n−1 = (Λ(t1, . . . , tn, dt1, . . . , dtn), d)
∼=−−→ (APL)n.

The inverse is obtained by the morphism that maps t0 7→ −(
∑n

i=1 ti − 1) and dt0 7→ −
∑n

i=1 dti as
well as ti 7→ ti and dti 7→ dti for i ≥ 1, then passing on to the quotient.

If we assume K ⊆ R, with reference to example 3.1.8 we obtain

(APL)0
n = K[t0, . . . , tn]/(

∑
ti − 1).

This means the elements of (APL)n of degree zero can be viewed as the subalgebra of the smooth
functions C∞(∆n) generated by the restrictions ti of the coordinate functions of Rn+1. This allows
to identify (APL)n as a sub cochain algebra of the de Rham algebra (ADR)(∆n). Hence, we call
elements of (APL)kn the polynomial degree k differential forms on ∆n with coefficients in K.

Remark 3.2.6. To investigate APL a little bit, note that it holds (APL)0 = K and H((APL)n) = K
for each n ≥ 0, concentrated in degree zero. While the first claim is immediate from the definition,
the second follows from remark 3.1.9 and the isomorphism above.

In order to use APL to define a functor from the category of topological spaces to the category of
cochain algebras, we will now introduce a more general construction that provides us with a cochain
algebra whenever we specify a simplicial set and a simplicial cochain algebra.

Construction 3.2.7. Suppose we are given a simplicial set K := (Kn)n≥0 and a simplicial cochain
algebra A := (An)n≥0. Then the family

A(K) := {Ak(K)}k≥0

consisting of the spaces Ak(K) := HomSIM(K,Ak) is a cochain algebra. A homogeneous element
ϕ ∈ Ak(K) is a family of maps ϕn : Kn → Akn commuting with the face and degeneracy maps, i.e.

ϕn−1 ◦ ∂Ki (σ) = ∂Ai ◦ ϕn(σ) and ϕn+1 ◦ sKj (σ) = sAj ◦ ϕn(σ)

for each σ ∈ Kn. In the following, the subscription on ϕn will be dropped.
The vector space structure is defined as follows:

1. For ϕ,ψ ∈ Ak(K) and λ ∈ K, we set (ϕ+ ψ)(σ) := ϕ(σ) + ψ(σ) and (λϕ)(σ) := λϕ(σ). This
way, the addition and scalar multiplication in A induce an graded vector space structure on
A(K).

2. Similarly, for two elements ϕ ∈ Ak(K) and ψ ∈ Ap(K), a multiplication is defined by
(ϕψ)(σ) := ϕ(σ)ψ(σ).
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3. A differential in A(K) is given by the differential in A. Let ϕ ∈ Ak(K) and

dk := (dkn)n≥0 : Ak → Ak+1

the family of maps that is defined by the differentials dkn : Akn → Ak+1
n . Then d(ϕ) := dk ◦ ϕ

defines a differential in A(K).

4. Moreover, whenever f : A→ B is a morphism of simplicial cochain algebras, then there is an
induced morphism f(K) : A(K)→ B(K) of DGAs that is f(K)(ϕ) := f ◦ ϕ.

5. Further, a map g : K → L that is a morphism of simplicial sets induces a morphism

A(g) :

{
A(L) → A(K)

ϕ 7→ ϕ ◦ g

of cochain algebras.

This makesA(K) into a cochain algebra. Note that by definition it holds thatA(K) is a commutative
cochain algebra whenever the multiplication that is given on each An is graded commutative. When
we want to stress the underlying coefficient field K, we will write A(K; K) instead of A(K), and
usually drop the differential in the notation.
Observe that this construction also works for simplicial cochain complexes A and will in this case
provide a cochain complex A(K).

Remark 3.2.8.

(a) The construction of A(K) provides both a covariant functor in A and a contravariant functor
in K. Given a topological space X, we write A(X) as abbreviation for A(S(X)) and analo-
gously A(f) : A(Y )→ A(X) instead of A(S(f)) when f : X → Y is a continuous map between
topological spaces. Thus, for a fixed simplicial cochain algebra A, we have now established a
functor from the category of topological spaces to the category of (C)DGAs that is just the
composition of A and S (and, by abuse of language, is again denoted by A).

(b) As an important special case of this construction, consider the simplicial cochain algebra APL
and any topological space X. The obtained commutative cochain algebra APL(X) is called the
algebra of polynomial differential forms on X with coefficients in K. A homogeneous element
ϕ ∈ AkPL(X) is a simplicial map assigning each singular n-simplex of X a polynomial k-form
on ∆n, where n ≥ 0.

(c) It can be shown that an inclusion X ↪→ Y induces a surjection APL(Y )→ APL(X). Thus, for
any pair (Y,X) there exists a short exact sequence

0 −→ APL(Y,X) −→ APL(Y ) −→ APL(X) −→ 0.

Example 3.2.9. For X = {pt} it follows that APL(X) = (APL)0 = K.

The commutative cochain algebra APL(X; K) plays a major role in rational homotopy theory. Its
importance originates from the following statement.

Theorem 3.2.10. Let X be a topological space and C∗(X; K) the associated singular cochain algebra
with coefficients in K. There exists a natural chain of quasi-isomorphisms of cochain algebras

C∗(X; K)
'−−→ D(X)

'←−− APL(X; K),

where D(X) is a third natural cochain algebra. This induces a natural isomorphism H∗(X; K) ∼=
H(APL(X; K)) and we may identify H∗(f ; K) = H(APL(f ; K)) for any continuous map f .
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Proof. A detailed proof of this statement can be found in chapter 10 of [7].

This allows us to replace C∗(X) by the cochain algebra APL(X), whose advantage is that it is
commutative. That being said, APL(X) is in general quite complicated, so we will frequently make
use of simpler commutative cochain algebras that work as models. To do so, remember that two
simply connected spaces X and Y share the same rational homotopy type if they are connected by
a chain

X ← Z(0)→ · · · ← Z(n)→ Y

of rational homotopy equivalences, that are continuous maps inducing an isomorphism on cohomol-
ogy with coefficients in Q. Now, when we apply the functor APL(−), we get a chain

APL(X)
'−→ APL(Z(0))

'←− . . . '−→ APL(Z(n))
'←− APL(Y )

of commutative cochain algebras, with the morphisms being quasi-isomorphisms due to theorem
3.2.10. This implies that APL(X) and APL(Y ) are weakly equivalent, as defined in 1.2.16. In other
words, X 'Q Y implies APL(X; Q) ' APL(Y ; Q), so the weak equivalence class of APL(X; Q) is
invariant under the rational homotopy type of X. This motivates the approach of replacing APL(X)
by a simpler, weakly equivalent commutative cochain algebra.

Definition 3.2.11. A commutative model for a topological space X is a commutative cochain
algebra (A, d) together with a weak equivalence

(A, d)
'−−→ . . .

'←−− APL(X; K).

Example 3.2.12. For a smooth manifold M , consider the associated commutative cochain algebra
ADR(M) that is the de Rham complex. Then APL(M ; R) and ADR(M) are weakly equivalent.
Thus, ADR(M) is a commutative model for M and we obtain natural isomorphisms

H∗(M ; R) ∼= H(APL(M ; R)) ∼= H(ADR(M)).

3.3 Sullivan Models

As we have seen at the end of the preceding chapter, the weak equivalence class of APL(X; Q) is
an invariant for the rational homotopy type of the simply connected space X. That is, if X 'Q Y ,
then APL(X; Q) ' APL(Y ; Q). Thus, it would suffice to find commutative models for APL(X; Q)
and APL(Y ; Q) which are not weakly equivalent in order to distinguish the rational homotopy types
of X and Y . Motivated by this, we will now study commutative cochain algebras themselves in
order to find a model as simple as possible, which leads us to the introduction of Sullivan models.
Through the application of APL(−), we can then use these as models for simply connected spaces.
What makes Sullivan models so powerful is that they contain most, in many cases even all the
information on the rational homotopy type of X, while still being very computable.

Definition 3.3.1. A commutative cochain algebra (A, d) is called a Sullivan algebra if it is a free
commutative graded algebra, meaning (A, d) = (ΛV, d) for some vector space V , such that

(a) V = V +,

(b) V =
⋃∞
k=0 V (k) for an increasing sequence of graded subspaces V (0) ⊆ V (1) ⊆ . . . ,

(c) d|V (0) = 0 and d(V (k)) ⊆ ΛV (k − 1) for all k ≥ 1.
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Definition 3.3.2. Let X be a path connected topological space and (A, dA) a commutative cochain
algebra. A Sullivan model for (A, dA) is a Sullivan algebra (ΛV, dV ) that comes with a quasi-
isomorphism

m : (ΛV, dV )
'−−→ (A, dA).

By a Sullivan model for X, we mean a Sullivan model for APL(X; K). A Sullivan algebra or Sullivan
model is called minimal if

im(d) ⊆ Λ≥2V

holds, where Λ≥2V := ⊕k≥2ΛkV .

Note that we may frequently drop the subscript on differentials, simply denoting them by d. It
will then be clear from the context which cochain algebra they belong to.

Example 3.3.3.

(a) The cochain algebra (Λ(v1, v2, v3), d), where |vi| = 1 and d(v1) = v2 ∧ v3, d(v2) = v1 ∧ v3 and
d(v3) = v1 ∧ v2 is not a Sullivan algebra, as there does not exist a sequence of subspaces V (k)
satisfying property (c). If there was, we would necessarily have a cocycle of degree 1.

(b) In contrast, any cochain algebra (ΛV, d) with V = V ≥2 and im(d) ⊆ Λ≥2V is automatically a
minimal Sullivan algebra. An increasing sequence is defined by V (k) := V ≤k. For a homoge-
neous element v ∈ V ≤k, the element d(v) is a linear combination of homogeneous basis elements
of the form v1 ∧ · · · ∧ vl with

∑
j |vj | = |v|+ 1 ≤ k+ 1. The minimality condition implies l ≥ 2,

so in fact |vj | ≤ k − 1 for all 1 ≤ j ≤ l. This means d(v) ∈ ΛV ≤k−1.

(c) The other way around, for a minimal Sullivan algebra (ΛV, d) with H1(ΛV, d) = 0 it always
holds that V = V ≥2. Let V =

⋃
k≥0 V (k) and note that V 1(0) = 0 since otherwise d|V (0) = 0

would imply that H1(ΛV, d) does not vanish. Inductively assume V 1(k − 1) = 0, then the
condition d(V (k)) ⊆ Λ≥2V (k − 1) implies d|V 1(k) = 0. However, since the Sullivan algebra is
minimal, there are no coboundaries of word length one, so in particular no element in V 1(k) is
a coboundary. Once again, H1(ΛV, d) = 0 implies that V 1(k) = 0, thus by induction V 1 = 0.

Remark 3.3.4.

(a) Remember that by the universal property of the free commutative graded algebra, it suffices to
define the differential d : ΛV → ΛV and morphisms ϕ : ΛV → A on the vector space V . The
image of an element v1 ∧ · · · ∧ vk ∈ ΛkV of word length k is then determined by the product of
the elements ϕ(vi) or, in case of the differential, by the Leibniz rule of d. Since ΛV = ⊕k≥0ΛkV ,
we then know ϕ or respectively d on all of ΛV .

(b) Let v ∈ V . Then d(v) ∈ ΛV is a linear combination of elements v1 ∧ · · · ∧ vk, where the word
length k may vary. We can decompose d|V into a sum of maps di : V → Λi+1V , i ≥ 0, where
each di(v) only contains the elements of the linear combination of word length i + 1. Then
d|V = d0 + d1 + d2 + . . . and di raises word length by i. Using the universal property, each di
extends to a derivation on ΛV that we again denote by di and the sum d = d0 + d1 + d2 + . . .
decomposes the differential on all of ΛV . The derivation d0 is then called the linear part and
d1 is called the quadratic part of the differential d. In this context, the minimality condition of
a Sullivan algebra exactly means that d0 = 0.

(c) Suppose (ΛV, d) is a minimal Sullivan algebra, so d = d1 + d2 + . . . . Then d2
1 raises word

length by exactly 2 and d2 − d2
1 raises word length by at least 3. However, d2 = 0, so we get

a contradiction unless d2
1 = 0. This implies d1 is a differential, and thus (ΛV, d1) is again a

minimal Sullivan algebra.
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Proposition 3.3.5. Let (A, dA) be a commutative cochain algebra. If H0(A) = K, then there exists
a Sullivan model

m : (ΛV, dV )
'−−→ (A, dA).

Proof. We will inductively construct graded vector spaces Vk, k ≥ 0 such that V := ⊕kVk has the
desired properties. By the universal property, it suffices to define d and m on the graded vector
space V . We will start by setting d = 0 on V0 and then extend d inductively by defining it on each
Vk. In doing so, we will see that it actually holds

d(Vk) ⊆ Λ(⊕k−1
i=0 Vi).

To begin with, note that H+(A) is itself a graded vector space concentrated in positive degrees.
Hence, we can just define V0 to be a copy of H+(A), which we will do in a way that V0

∼= H+(A)
is induced by a map m0 : V0 → A. More precisely, for a homogeneous basis (αi)i∈I of H+(A) let
(vi)i∈I be a replication of this basis, so we want to give each vi the same degree αi has. Then V0 is
set to be the graded vector space that is generated by this basis (vi)i∈I . Now for each αi ∈ H+(A)
choose a representative, meaning a cocycle ai ∈ A+ such that [ai] = αi. To define the map m0, let
m0(vi) := ai on the basis and then take the unique linear extension on V0, which is then a linear
map of degree zero between graded vector spaces. Finally, we can consider m0 as morphism between
complexes, m0 : (V0, 0)→ (A+, d) and by construction it holds that H(m0) : H(V0) = V0 → H+(A)
is an isomorphism.
Now, whereas V0 = V ≥1

0 , meaning in particular V 0
0 = 0, we have (ΛV0)0 = K. This is due to the

fact that for any element v ∈ ΛkV0 with k ≥ 1 it holds |v| > 0. Using the unique property of free
commutative graded algebras, we can again extend m0 to get a morphism between commutative
cochain algebras,

m0 : (ΛV0, 0)→ (A, d).

The induced map H(m0) is both injective and surjective in degree 0, as m0(1K) = 1A ∈ A0 and
H0(A) = K by assumption. Surely it is also surjective in positive degrees, as the restriction to V0 is
even an isomorphism V0

∼= H+(A). Hence, we get a surjection

H(m0) : H(ΛV0) = ΛV0 → H(A).

In fact, this is the only point in the proof where the assumption H0(A) = K is needed.
For the inductive step, assume m0 is already extended to a morphism mk : (ΛV (k), d)→ (A, d) for
some k ≥ 0, where we set

V (k) :=

k⊕
i=0

Vi.

Then ker(H(mk)) ⊆ H(ΛV (k)) is a graded subspace with some basis (βj)j∈J . Choose cocycles
zj ∈ ΛV (k) such that [zj ] = βj for each j ∈ J . By construction H(mk) is injective in degree 0, so
|zj | ≥ 1. As before, let (vj)j∈J be a copy of this basis, where this time we set |vj | := |zj | − 1 for
the degree of each vj . We can then consider the graded vector space Vk+1 that is generated by this
copy.
In order to extend d and mk on ΛV (k+1), by the universal property, it suffices to define both maps
on V (k + 1). Since they are already defined on V (k), we only need to construct them on Vk+1,
wherefore it is enough to specify both of them on the basis elements vj .
We start with d and set d(vj) := zj . This extends to a linear map of degree 1 on Vk+1 with
d(Vk+1) ⊆ ΛV (k). It holds d2(vj) = d(zj) = 0 since zj is a cocycle. Hence d2 = 0 on Vk+1, and with
that on V (k + 1) by the induction hypothesis. This extends to a unique differential on ΛV (k + 1)
that is also a derivation by the properties states in remark 3.1.6.
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Now for mk, we want to obtain an extension mk+1 on V (k + 1). By choice of the zj , we get
0 = H(mk)(βj) = [mk(zj)], so mk(zj) is a coboundary. Hence, for each j ∈ J there exists aj ∈ A
such that mk(zj) = d(aj). By setting mk+1(vj) := aj , it follows that

mk+1(d(vj)) = mk+1(zj) = d(aj) = d(mk+1(vj)).

Thus d and mk+1 commute on Vk+1 and they do so on V (k) by induction hypothesis, hence we get
mk+1 ◦ d = d ◦mk+1 on all of V (k + 1) = V (k) ⊕ Vk+1. Using the universal property as seen in
remark 3.1.6, we get a morphism between commutative cochain algebras,

mk+1 : (ΛV (k + 1), d)→ (A, d).

With this we have inductively constructed m : (ΛV, d) → (A, d), where V = ⊕k≥0Vk. Here, m is
the extension of the map on V that is given by mk on Vk for each k ≥ 0. Since the induced map
of the restriction m|ΛV0 = m0 is surjective, H(m) is surjective as well. For injectivity, assume
H(m)([z]) = 0 for some z ∈ ΛV . There exists k ≥ 0 such that z ∈ ΛV (k), so m(z) = mk(z) and
hence H(mk)([z]) = 0. By construction, we find v ∈ Vk+1 such that d(v) = z, meaning z is a
coboundary in ΛV (k + 1). It follows that [z] = 0 in H(ΛV (k + 1)) which implies the same is true
for H(ΛV ). All in all, H(m) is an isomorphism, and m is a quasi-isomorphism as claimed.
It remains to show that (ΛV, d) is a Sullivan algebra. Note that the properties (b) and (c) of
definition 3.3.1 hold by construction and the definition of V (k). It remains to show that V is
concentrated in positive degrees, which follows if the same holds for all Vk, k ≥ 0. We have already
seen that this is true for V0, so inductively assume that Vi vanishes in degree zero for all 0 ≤ i ≤ k.
Then for a homogeneous element v ∈ ΛV (k) with |v| = 1 it holds that v has word length 1, since
there are no elements of degree zero. This means v ∈ V (k)1 = ⊕i≤kV 1

i , which is the subspace of
ΛV (k) containing elements of word length 1. We may thus write v as sum

v = v0 + · · ·+ vk, vi ∈ V 1
i .

Assume now v is a cocycle, so [v] ∈ H1(ΛV (k)) and d(v) = 0. It follows that d(vk) = d(e)
for an element e ∈ V (k − 1), so in particular [d(vk)] = 0 in H(ΛV (k − 1)). This contradicts
the construction of Vk, which is generated by elements vj such that [d(vj)] = [zj ] is a basis of
ker(H(mk)) ⊆ H(ΛV (k − 1)). We arrive at vk = 0. Repeating this argument, we obtain vi = 0 for
1 ≤ i ≤ k, so we find v = v0. It holds

H(mk)([v]) = H(mk)([v0]) = H(m0)([v0]) = [m0(v0)]

which is zero if and only if v = v0 = 0 in V0, as m0 defines an isomorphism V0
∼= H+(A). This

means ker(H(mk)) does not contain non-trivial elements of degree 1 and is thus concentrated in
degrees ≥ 2. From the construction we can then deduce that Vk+1 is concentrated in degrees ≥ 1,
concluding the induction.

Remark 3.3.6. In particular, each path connected space X has a Sullivan model, since

H0(APL(X; K)) = H0(X; K) = K

holds.

Example 3.3.7. Let k ≥ 1 and consider the sphere Sk. Recall that a choice of a generator
[Sk] ∈ Hk(Sk; Z) = Z is called a fundamental class of Sk. A unique element

ω ∈ Hk(APL(Sk); K) ∼= Hk(Sk; K) ∼= Hom(Hk(S
k; Z),K)

is defined by setting ω([Sk]) := 1, where the second isomorphism is due to the universal coefficient
theorem and the fact that K is a field. As Hn(Sk; Z) is trivial for n ≥ 1, n 6= k, it follows that {1, ω}
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defines a basis of H(APL(Sk)). We choose a cocycle ϕ ∈ AkPL(Sk) representing ω and distinguish
between two cases.
Assume first k is odd and let V be the graded vector space generated by a single element v of degree
k. Then {1, v} is a basis of ΛV = Λ(v). A linear map m : V → APL(Sk) of degree zero is defined
by setting m(v) := ϕ and extends uniquely to a morphism

m : (Λ(v), 0)
'−−→ APL(Sk)

of commutative cochain algebras. This is a quasi-isomorphism, as the induced map is mapping the
basis {1, v} of H(Λ(v), 0) = (Λ(v), 0) onto the basis {1, ω} of H(APL(Sk)).
Suppose otherwise k is even. In this case, the map above does not induce an isomorphism, as a
basis of Λ(v) is given by {1, v, v2, . . . }. However, in this case we can conclude that ϕ2 has to be
a coboundary, as it represents an element in H2k(APL(Sk)) = 0. Thus, we find ψ ∈ APL(Sk)
such that d(ψ) = ϕ2. Now take a second element w of degree 2k − 1 and define a differential on
Λ(v, w) by d(v) := 0 and d(w) := v2. Finally, set m(w) := ψ. Since m(d(v)) = 0 = d(ϕ) and
m(d(w)) = d(ψ) = d(m(w)), we may again extend m to a unique morphism

m : (Λ(v, w), d)
'−−→ APL(Sk)

of commutative cochain algebras. We will now check that this is a quasi-isomorphism. To show
that a basis of H(Λ(v, w), d) is again given by {1, [v]}, observe first that there are no powers of w
in Λ(v, w), since its degree is odd. In fact, the only non-trivial elements arise in degree nk through
vn and in degree (n + 1)k − 1 through w ∧ vn−1, where n ≥ 1. Since the differential at (Λ(v, w))k

is trivial, we get Hk(Λ(v, w)) = (Λ(v, w))k, which is generated by the class of v. Now, inductively
we see that d(vn−1) = 0 for n ≥ 1, which implies d(w ∧ vn−1) = vn+1. We conclude that

d :

{
(Λ(v, w))(n+1)k−1 → (Λ(v, w))(n+1)k

w ∧ vn−1 7→ vn+1

is an isomorphism, meaning the groups H(n+1)k−1(Λ(v, w)) and H(n+1)k(Λ(v, w)) are trivial for
every n ≥ 1. This shows m is a quasi-isomorphism.

Remark 3.3.8. Note that both commutative cochain algebras from example 3.3.7 are indeed Sul-
livan algebras. In the first case this is trivial and in the second case it follows easily by denoting
the vector space V (0) to be the subspace generated by v and setting V (1) = V . Moreover, in both
cases the stated Sullivan algebra is minimal, so the construction provides a Sullivan minimal model
for the sphere Sk.

The Sullivan model constructed in the proof of proposition 3.3.5 need not be minimal. The
advantage of minimal Sullivan models is that they satisfy a certain uniqueness property, as we shall
soon see. While one can show the existence of minimal Sullivan models for commutative cochain
algebras (A, dA) with H0(A) = K, the general proof requires some knowledge of relative Sullivan
algebras. However, under the additional assumption that H1(A) vanishes, there exists a rather
nice construction of a minimal Sullivan model, which we shall present now. Besides, this additional
assumption does not pose a restriction in our case, since we will be interested in simply connected
spaces.

Construction 3.3.9. Suppose (A, d) is a commutative cochain algebra with H0(A) = K and
H1(A) = 0.

• For every generator of H2(A), choose a representing cocycle in A2. Let V 2 be the vector space
generated by basis elements of degree 2, one for each such cocycle in A2. Further, denote by
m2 the map sending the basis elements of V 2 to the corresponding cocycles and extend it to
a morphism m2 : (ΛV 2, 0)→ (A, d) of cochain algebras. Note that the induced map

H2(m2) : H2(ΛV 2) = V 2 ∼=−−→ H2(A)
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is an isomorphism. By default, the mapH1(m2) is an isomorphism as well, sinceH1(ΛV 2) = 0
by construction and H1(A) = 0 by assumption. Also, H3(m2) is trivially injective, since ΛV 2

does not contain any elements of degree 3 (or any odd degree, in fact).

• By induction, we may assume mk : (ΛV ≤k, d) → (A, d) to already be constructed, such that
Hn(mk) is an isomorphism for n ≤ k and injective for n = k + 1.
Supposing Hk+1(mk) is not surjective, for each generator in coker(Hk+1(mk)) ⊆ Hk+1(A),
choose a representing cocycle ai ∈ Ak+1, where i is in some index set I. Moreover, choose
cocycles zj ∈ (ΛV ≤k)k+2 such that the corresponding cohomology classes provide a generator
for ker(Hk+2(mk)) ⊆ Hk+2(ΛV ≤k) and denote the corresponding index set by J . It holds

Hk+1(A) = im(Hk+1(mk))⊕
⊕
i∈I

K · [ai], ker(Hk+2(mk)) =
⊕
j∈J

K · [zj ].

Since [mk(zj)] is trivial, for each j ∈ J there exist bj ∈ Ak+1 such that mk(zj) = d(bj). Let
vi, wj be basis elements with |vi| = |wj | = k + 1, and denote by V k+1 the vector space with
basis {vi, wj | i ∈ I, j ∈ J}.
Note that in order to extend d and mk from ΛV ≤k to ΛV ≤k+1, it suffices to specify both
maps on V k+1, so d : V k+1 → (ΛV ≤k) ⊆ (ΛV ≤k+1) and mk+1 : V k+1 → A. As usual, since
both maps are by induction already defined on V ≤k, we obtain d and mk+1 on V ≤k+1. This
induces a derivation on ΛV ≤k+1 and a corresponding morphism ΛV ≤k+1 → A, that (by abuse
of notation) will again be named d and mk+1 respectively. With that said, we set

d(vi) := 0, d(wj) := zj and mk+1(vi) = ai, mk+1(wj) = bj .

By construction, d2 = 0 on V k+1, as d(wj) = zj is a cocycle, and on ΛV ≤k this holds
by induction hypothesis. Thus d2 = 0 on ΛV ≤k+1. To see that mk+1 commutes with the
differential, observe it holds mk+1 ◦ d(vi) = 0 = d(ai) = d ◦ mk+1(vi), as ai is a cocycle in
A. Also, mk+1 ◦ d(wj) = mk+1(zj) = d(bj) = d ◦mk+1(wj), meaning the following diagram
commutes:

V k+1 d //

mk+1

��

(ΛV ≤k)k+2 d //

mk+1=mk
��

(ΛV ≤k)k+3

Ak+1 d // Ak+2.

Thus mk+1 ◦ d = d ◦mk+1 on V k+1, so the same holds by construction on V ≤k+1. Employing
once again the universal property, we see that mk+1 ◦ d = d ◦mk+1 on all of ΛV ≤k+1.

Proposition 3.3.10. Let (A, d) be a commutative cochain algebra such that H0(A) = K and
H1(A) = 0 and assume m : (ΛV, d)→ (A, d) to be the morphism constructed above. It holds

(i) m : (ΛV, d)
'−−→ (A, d) is a Sullivan minimal model.

(ii) For r := min{r ≥ 1 | Hr(A) 6= 0} it holds V i = 0 for all 1 ≤ i < r and thus Hr(ΛV ) = V r.
Moreover, the induced map Hr(m) is an isomorphism V r ∼= Hr(A).

(iii) Supposing H∗(A) has finite type, it follows V has finite type, too.

Proof. To verify (i), it remains to show that (ΛV, d) is a minimal Sullivan algebra and m is a quasi-
isomorphism.
For the first fact set V (k) := V ≤k and observe that d(V k+1) ⊆ ΛV ≤k, so d is a map V (≤ k + 1)→
ΛV (k). Notice it holds V = V ≥2. Now, an element v ∈ (ΛV ≤k)k+2 can be written as sum of
elements v1 ∧ · · · ∧ vl, where

∑
|vi| = k + 2 and 2 ≤ |vi| ≤ k. Hence for degree reasons, any of

the summands has word length l ≥ 2, so v ∈ Λ+V ≤k · Λ+V ≤k. By construction, the differential d
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is a linear map of degree 1b and thus maps to (ΛV ≤k)k+2 if restricted to V k+1. We conclude that
(ΛV, d) is in fact a Sullivan minimal model.
To prove the second fact, we will show by induction that

H i(mk) is

{
an isomorphism for i ≤ k and
injective for i = k + 1,

whenever k ≥ 2, which implies m induces an isomorphism on every level. The assertion is true for
k = 2, so suppose it to be true for some k. By induction, H i(mk) is surjective for i ≤ k, hence the
same holds for the map induced by the extension, H i(mk+1). Further, by construction, Hk+1(mk+1)
is surjective.
It remains so show H i(mk+1) is injective for all i ≤ k + 2. Let [z] ∈ ker(H i(mk+1)), so z is a
cocycle in (ΛV ≤k+1)i. Now, for i ≤ k this immediately implies z ∈ ΛV ≤k for degree reasons. In
case i = k + 2 the same is true, with similar argumentation. Consider z1 ∧ · · · ∧ zl for some l ≥ 1
and homogeneous elements zj ∈ V ≤k+1. Then 2 ≤ |zj | ≤ k+ 1, and

∑l
j=1 |zj | = k+ 2. This implies

l ≥ 2 and thus |zj | ≤ k for all 1 ≤ j ≤ l. Since mk+1|ΛV ≤k = mk, we deduce that [z] ∈ ker(H i(mk))
in both cases. Using the induction hypothesis, we get [z] = 0 for i ≤ k. If i = k+2, the construction
implies that z is a coboundary, hence [z] = 0 as well.
The case i = k+ 1 needs a little extra argument. In the presentation of z ∈ ΛV ≤k+1 we may isolate
elements of word length 1 so that z = u+ u′ with u ∈ ΛV ≤k and u′ ∈ V k+1. Writing u′ in turn as
linear combination of the basis elements as noted in construction 3.3.9, we obtain

z = u+
∑
i∈I

αivi +
∑
j∈J

βjwj , αi, βj ∈ K, u ∈ ΛV ≤k.

As d(z) = 0 and d(vi) = 0, this leads to the equation
∑

j βjzj = −d(u), where d(wj) = zj ∈
(ΛV ≤k)k+2 as in construction 3.3.9. This means the linear combination is a coboundary, so∑

j βj [zj ] = 0. Since these elements are linear independent in Hk+2(ΛV ≤k) by construction, we
conclude βj = 0 for all j. This in turn implies d(u) = 0, so u is a cocycle and defines a class
[u] ∈ Hk+1(ΛV ≤k). We observe

0 = Hk+1(mk+1)([z]) = [mk+1(z)] = [mk(u)] +
∑
i∈I

αi[mk+1(vi)] = Hk+1(mk)([u]) +
∑
i∈I

αi[ai],

which by the definition of the ai can only be true if both terms of the sum are zero. We deduce
that αi = 0 for each i and [u] ∈ ker(Hk+1(mk)). The first observation implies u = z, so with the
second one it follows [z] ∈ ker(Hk+1(mk)). By induction, this means [z] = 0.
The verification of (ii) is obvious from the construction. For (iii), note that V 2 = H2(A) is of
finite dimension. By induction, we may assume V i to have finite dimension for all i ≤ k. Then
ΛV ≤k has finite type. This means ker(Hk+2(mk)) ⊆ Hk+2(ΛV ≤k) is finite dimensional. Hence, the
construction implies that the basis of V k+1 is finite since Hk+1(A) has finite dimension.

Corollary 3.3.11. Assume X is a simply connected topological space such that Hk(X; Q) has finite
dimension for all k ≥ 1. Then X has a Sullivan minimal model

m : (ΛV, d)
'−−→ APL(X)

such that V = V ≥2 and dim(V k) <∞ for all k.

Remark 3.3.12. With few extra arguments, one can show that the statement above is also true
when the assumption is formulated in terms of homology instead of cohomology. Hence, in particu-
lar, any simply connected finite CW complex has a minimal model such that V 0 = V 1 = 0 and V k

is finite dimensional for all k ≥ 2.
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Example 3.3.13. Let us describe a minimal Sullivan model for X := S2 ∨ S2. Remember that

H∗(S2 ∨ S2; K) = Ke1 ⊕ Ke2,

with e1, e2 being dual to the generators of H2(S2; K). This follows from the fact that the homology
of a wedge sum is the direct sum of homologies and with coefficients in a field, cohomology is the
dual of homology. As in example 3.3.7, we choose cocycles ϕ1, ϕ2 ∈ A2

PL(S2 ∨ S2) representing
e1 and e2 and start the construction of our model with two elements v1, v2 of degree 2, defining
m(vi) := ϕi. In (Λ(v1, v2), 0), we get non-trivial products of degree 4 which we have to kill by
introducing generators w,w1, w2 of degree 3 for which we set

d(w) := e1 ∧ e2, d(w1) := e2
1, d(w2) := e2

2.

However, this leads to unwanted cocycles e1 ∧ w − w1 ∧ e2 and e2 ∧ w − w2 ∧ e1 of degree 5 that
in turn must be killed by the introduction of generators of degree 4. Continuing in this fashion, we
obtain a minimal Sullivan model of the form

m : (Λ(v1, v2, w, w1, w2, . . . ), d)
'−−→ APL(S2 ∨ S2),

with m(vi) := ϕi and zero on all other generators. In particular, the minimal Sullivan model of
S2 ∨ S2 has generators in each degree n ≥ 2.

The example above can be generalized to wedges of spheres of arbitrary dimension, where one has
to make the adjustment that in the case of a sphere of odd dimension, the self-products e2

i vanish.
As one might have recognized, in the examples 3.3.7 and 3.3.13 we could calculate the minimal
Sullivan model solely from the cohomology algebra of the spaces. Caution is advised, however,
since it is not always this easy to obtain minimal models for a given space.

Definition 3.3.14. A commutative cochain algebra (A, d) for which H0(A) = K holds is called
formal if it is weakly equivalent to the commutative cochain algebra (H(A), 0). We call a path
connected space X formal if APL(X; Q) is formal as cochain algebra.

As we shall soon see, weakly equivalent commutative cochain algebras share a common minimal
Sullivan model. Since the assumption H0(A) = K ensures the existence of a minimal Sullivan model,
it then follows that (A, d) or respectively X are formal if and only if their minimal Sullivan models
are a direct consequence of cohomology.

Example 3.3.15. Examples 3.3.7 and 3.3.13 exhibit Sn and S2 ∨ S2 as formal spaces. More
generally, given X and Y are simply connected formal spaces, then X × Y is formal. Furthermore,
under the additional assumption that X and Y have rational homology of finite type, the wedge
product X ∨ Y is formal. The first claim follows from example 3.5.1 in a later chapter, but is also
proven in [9]. For the second, the reader may take a look at [18].

To be a little more precise, we have to distinguish between intrinsic formality and formality per
se. A commutative graded algebra H is intrinsic formal if any commutative cochain algebra (A, d)
with H(A) ∼= H is formal. We may then call X intrinsic formal if its cohomology algebra is. So for
example, the spheres are intrinsic formal. This also becomes evident by the fact that we did not need
the knowledge on the formality of Sn to calculate its minimal Sullivan model, all that was needed
was the cohomology algebra. For more detail on formality, article [25] provides a comprehensive
survey on the matter. Moreover, in [12], Halperin and Stasheff establish an obstruction theory for
formality. Another prominent result is the formality of Kähler manifolds, which can be found in [5].

50



3.4 Homotopy on Sullivan Algebras

So far, given a commutative cochain algebra (A, d) with H0(A) = K and H1(A) = 0, we have
established the existence of a minimal Sullivan model (ΛV, d)

'−−→ (A, d). Remember, the incentive
in looking at these models is that we wish to consider the much simpler free commutative cochain
algebra (ΛV, d) instead of the generally quite complicated (A, d). In order for this to be feasible,
the model should be unique in some sense. We shall see in this chapter that in fact a minimal
model determines the weak equivalence class of (A, d) and therefore the rational homotopy class of
a space X. In order to achieve this, we will discuss how morphisms between commutative cochain
algebras are modelled. To begin with, we will introduce a notion homotopy for morphisms on
Sullivan algebras that is carried over from the topological world.

Preparation 3.4.1. Consider the free commutative graded algebra Λ(t, dt) introduced in example
3.1.8, with |t| = 0, |dt| = 1 and d(t) = dt. For i ∈ {0, 1} define morphisms

εi : Λ(t, dt)→ K, εi(t) := i

of commutative cochain algebras, where K is concentrated in degree zero and has trivial differen-
tial. Note that this automatically implies εi(dt) = 0, since we require the morphisms to commute
with the differentials. Given a commutative cochain algebra (A, dA), we may then define maps
(id ·εi) : (A, dA)⊗ Λ(t, dt)→ (A, dA) for which holds

(id ·ε0)(a⊗ tk) =

{
a if k = 0,
0 else

and (id ·ε1)(a⊗ tk) = a,

while (id ·εi)(a⊗ dt) = 0 for both i = 0 and i = 1.

Definition 3.4.2. We say two morphisms ϕ,ψ : (ΛV, dV ) → (A, dA) between a Sullivan algebra
(ΛV, dV ) and a commutative cochain algebra (A, dA) are homotopic if there exists a morphism of
commutative cochain algebras

H : (ΛV, dV )→ (A, dA)⊗ Λ(t, dt)

such that (id ·ε0) ◦H = ϕ and (id ·ε1) ◦H = ψ. The map H is then called a homotopy from ϕ to ψ
and we write ϕ ' ψ.

It is true, although not trivial that being homotopic defines an equivalence relation on the set
of morphisms of the form ϕ : (ΛV, d) → (A, dA) from a Sullivan algebra to an arbitrary commu-
tative cochain algebra. One usually denotes the set of equivalence classes of such morphisms by
[(ΛV, d), (A, dA)] and write [ϕ] for the homotopy class of ϕ.

Example 3.4.3. Consider the special case that (ΛV, d) is minimal, dA = 0 and the so-called
constant morphism ϕ : (ΛV, d) → (A, 0) that is given by ϕ|V = 0. Then for every morphism
ϕ′ : (ΛV, d)→ (A, 0) with ϕ′ ' ϕ, it actually holds ϕ′ = ϕ. In other words, any nullhomotopic map
to (A, 0) is constant.

We begin by noting that homotopic maps induce the same map on cohomology.

Lemma 3.4.4. Let (A, dA) be any commutative cochain algebra and (ΛV, dV ) be a Sullivan algebra.
If ϕ0 ' ϕ1 : (ΛV, dV )→ (A, dA), then H(ϕ0) = H(ϕ1).

Proof. Assume H : (ΛV, dV )→ (A, dA)⊗Λ(t, dt) is a homotopy from ϕ0 to ϕ1. Define a morphism
h : (A, dA)⊗ Λ(t, dt)→ (A, dA) of degree −1 by

h(a⊗ tk) := 0, h(a⊗ tkdt) :=
(−1)|a|

k + 1
a.
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Let z ∈ ΛV and assume H(z) = a⊗ b for some a ∈ A, b ∈ Λ(t, dt). We may write b as linear combi-
nation

∑
k≥0 αkt

k + βkt
kdt with coefficients αk, βk ∈ K. Its differential is given by

∑
k≥1 kαkt

k−1dt
and thus a quick calculation shows that

d ◦H(z) = dA(a)⊗ (
∑
k≥0

αkt
k + βkt

kdt) + (−1)|a|a⊗
∑
k≥1

kαkt
k−1dt,

h ◦ d ◦H(z) =
∑
k≥0

(−1)|a|+1 βk
k + 1

dA(a) +
∑
k≥1

(−1)2|a|αka,

where d is the differential in (A, dA)⊗ Λ(t, dt). On the other hand, from the definition of h we get
h ◦H(z) =

∑
k≥0(−1)|a| βkk+1a. It follows that

(dA ◦ h ◦H + h ◦H ◦ dV )(z) = dA ◦ h ◦H(z) + h ◦ d ◦H(z)

=
∑
k≥0

(−1)|a|
βk
k + 1

dA(a) +
∑
k≥0

(−1)|a|+1 βk
k + 1

dA(a) +
∑
k≥1

(−1)2|a|αka

= a(
∑
k≥0

αk − α0) = (idA ·ε1)(H(z))− (idA ·ε0)(H(z))

= (ϕ1 − ϕ0)(z).

Thus, h ◦H is a chain homotopy between ϕ0 and ϕ1, meaning H(ϕ0) = H(ϕ1) as claimed.

Of major importance throughout this section is the following result, which allows us to lift over
quasi-isomorphisms up to homotopy.

Proposition 3.4.5. Assume (A, dA), (B, dB) are commutative cochain algebras and ψ : (A, dA)→
(B, dB) is a quasi-isomorphism. Further, suppose that (ΛV, d) is a Sullivan algebra and ϕ : (ΛV, d)→
(B, dB) is a morphism between commutative cochain algebras. Then there exists a morphism
ϕ̃ : (ΛV, d) → (A, dA) which is unique up to homotopy, such that ψ ◦ ϕ̃ ' ϕ. This means the
diagram

(A, dA)

ψ'
��

(ΛV, d)
ϕ //

ϕ̃
66

(B, dB)

is homotopy commutative.

Remark 3.4.6. Just as in the case of topological maps, homotopy of maps ϕ0, ϕ1 : (ΛV, dV ) →
(A, dA) is compatible with the composition of maps. Supposing Φ is a homotopy realizing ϕ0 ' ϕ1

and φ : (ΛW,dW )→ (ΛV, dV ) is a morphism between Sullivan algebras, it holds ϕ0 ◦ φ ' ϕ1 ◦ φ via
Φ ◦ φ. This allows to define the map

φ∗ : [(ΛV, dV ), (A, dA)]→ [(ΛW,dW ), (A, dA)], φ∗([ϕ]) := [ϕ ◦ φ].

Moreover, suppose ψ : (A, dA) → (B, dB) is a morphism between commutative cochain algebras.
Then (ψ⊗ idΛ(t,dt)) ◦Φ is a homotopy between ψ ◦ϕ0 and ψ ◦ϕ1. This gives raise to a well-defined
map

ψ∗ : [(ΛV, dV ), (A, dA)]→ [(ΛV, dV ), (B, dB)], ψ∗([ϕ]) := [ψ ◦ ϕ].

In regard to this, proposition 3.4.5 states that this map is actually an isomorphism if ψ is a quasi-
isomorphism.
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To show the existence of such lift ϕ̃, we will begin with a straightforward proof under the additional
assumption that the quasi-isomorphism is surjective. From then on, we will approach the general
case using a simple construction which allows us to factor arbitrary morphisms between commutative
cochain algebras as a quasi-isomorphism followed by a surjection.

Lemma 3.4.7. In the situation of proposition 3.4.5, assume the quasi-isomorphism ψ is surjective.
Then there exists a morphism ϕ̃ : (ΛV, d)→ (A, dA), such that ψ ◦ ϕ̃ = ϕ. Thus, the above diagram
is even commutative and we say ϕ̃ is a lift of ϕ through ψ.

Proof. Let {V (k)}k≥0 be a increasing sequence of subspaces in V . For each basis element vi in V (0)
the set ψ−1(ϕ(vi)) is non-empty, so we can define the image of ϕ̃(vi) to be any point in this set.
Since d = 0 in V (0), this automatically extends to the desired morphism. We may thus inductively
assume that ϕ̃ is already defined in V (k). Let Vk+1 be a subspace such that V (k+1) = V (k)⊕Vk+1

and denote by (wj) a basis of Vk+1. The induction step is completed when we extend ϕ̃ on the
elements wj in such a way that it commutes with the differentials and ψ ◦ ϕ̃(wj) = ϕ(wj) holds.
Since d(wj) ∈ ΛV (k), the map ϕ̃ ◦ d is already defined on Vk+1 and it holds

dA(ϕ̃(d(wj))) = ϕ̃(d2(wj)) = 0,

(ψ ◦ ϕ̃)(d(wj)) = ϕ(d(wj)) = dB(ϕ(wj)).

The first equation shows ϕ̃(d(wj)) is a cocycle in A, therefore defining a class [ϕ̃(d(wj))] in H(A).
the second equation shows H(ψ)([ϕ̃(d(wj))]) = [dB(ϕ(wj))] = 0, which implies [ϕ̃(d(wj))] = 0 since
ψ is a quasi-isomorphism. It follows that ϕ̃(d(wj)) is a coboundary, meaning there exists aj ∈ A
such that dA(aj) = ϕ̃(d(wj)). Then the element ϕ(wj) − ψ(aj) is a cocycle. As we assumed ψ to
be surjective, thus we find zj ∈ A such that ψ(zj) = ϕ(wj)− ψ(aj). Let us for now assume that zj
is a cocycle. Then

ψ(zj + aj) = ϕ(wj) and dA(zj + aj) = dA(aj) = ϕ̃(d(wj)).

We may thus conclude the induction by setting ϕ̃(wj) := zj + aj .
Now, in case that zj is not a cocycle, we find z′j ∈ A with dA(z′j) = 0 and [ψ(z′j)] = H(ψ)([z′j ]) =
[ϕ(wj) − ψ(aj)], since H(ψ) is an isomorphism. It follows that [ψ(zj)] = [ψ(z′j)], which implies
[ψ(zj)− ψ(z′j)] = 0. We thus find b ∈ B such that dB(b) = ψ(zj)− ψ(z′j), and once again for b we
find a ∈ A for which ψ(a) = b. This implies ψ(dA(a)) = dB(ψ(a)) = dB(b) = ψ(zj)−ψ(z′j), so that
ψ(zj) = ψ(z′j + dA(a)). Therefore, we may replace zj by the cocycle z′j + dA(a).

In order to extend this result to arbitrary quasi-isomorphisms, we can employ a little trick. For
this, let W = (W i)i≥0 be a graded vector space and sW its suspension, that is a copy of W with
degree increased by one. This defines a linear map W → sW of degree 1 which we may extend to a
map d on W ⊕ sW where we set d|sW := 0, implying that d2 = 0. Thus d extends to a differential

d : Λ(W ⊕ sW )→ Λ(W ⊕ sW ),

yielding a commutative cochain algebra that we will denote by E(W ). This is automatically a
Sullivan algebra whenever W 0 = 0.
Note that this construction contains the commutative cochain algebra (AP )n as a special case.
Therefore, similar to remark 3.1.9 one shows that H(E(W )) = K using the fact that K is a field
of characteristic zero. Due to this, commutative cochain algebras of the form E(W ) are sometimes
called contractible.

Preparation 3.4.8. Let (A, d), (B, d) be commutative cochain algebras and consider the inclusion

ι : (A, d)→ (A, d)⊗ E(B), a 7→ a⊗ 1.

From the natural isomorphisms H((A, d) ⊗ E(B)) ∼= H(A, d) ⊗H(E(B)) ∼= H(A, d) given by the
map [a ⊗ 1] 7→ [a], it follows immediately that ι is a quasi-isomorphism. Moreover, there exists a
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unique surjective morphism σ : E(B) → (B, d), extending the identity on B. For elements b ∈ B,
we obviously set σ(b) = b. Now by definition, for any sb ∈ sB it holds d(b) = sb, thus we define
σ(sb) := d(σ(b)) = d(b) in order for σ to commute with the differentials. As usual, this extends to
a morphism σ : E(B) = (Λ(B ⊕ sB), d)→ (B, d) with σ|B = idB, as claimed. Therefore, any given
morphism ϕ : (A, d)→ (B, d) of commutative cochain algebras factors through (A, d)⊗ E(B) via

(A, d)
ι−−→
'

(A, d)⊗ E(B)
ϕ·σ−−→ (B, d).

Since σ is surjective and ϕ(1A) = 1B, the map ϕ · σ is surjective, too.

Proof of proposition 3.4.5. By the above, the quasi-isomorphism ψ : (A, dA)→ (B, dB) factors over
the inclusion ι : (A, d)→ (A, d)⊗E(B) and the surjective quasi-isomorphism ψ ·σ : (A, d)⊗E(B)→
(B, d). Remember that E(B) = Λ(B ⊕ sB) and continue by defining a morphism ε : E(B) → K
through setting ε|B := 0, so it vanishes anywhere except for K. From the definition of E(B) it
immediately follows that ε is a quasi-isomorphism. Now, the morphism idA ·ε : (A, d) ⊗ E(B) →
(A, d) is surjective and a left inverse of ι. We claim now that for any morphism φ : (ΛV, d) →
(A, d)⊗E(B) it holds ι ◦ (idA ·ε) ◦ φ ' id(A,d)⊗E(B) ◦φ. Indeed, ι ◦ (idA ·ε) vanishes on elements in
(A, d) ⊗ Λ+(B ⊕ sB) by the definition of ε and it holds ι ◦ (idA ·ε)(a ⊗ 1) = a ⊗ 1. Consider the
morphism η : E(B)→ E(B)⊗Λ(t, dt) given by η(b) := b⊗t for all b ∈ B and note that η(1) = 1⊗1.
Then it holds

(id(A,d)⊗E(B) ·ε0) ◦ (id(A,d)⊗η)(a⊗ 1) = a⊗ 1, (id(A,d)⊗E(B) ·ε0) ◦ (id(A,d)⊗η)(a⊗ b) = 0,

(id(A,d)⊗E(B) ·ε1) ◦ (id(A,d)⊗η)(a⊗ 1) = a⊗ 1, (id(A,d)⊗E(B) ·ε1) ◦ (id(A,d)⊗η)(a⊗ b) = a⊗ b.

This shows that H := (id(A,d)⊗η) ◦φ is the desired homotopy. Using lemma 3.4.7 to lift ϕ over the
surjective quasi-isomorphism ψ · σ, we obtain the commutative diagram

(A, d)
ι ..

(A, d)⊗ E(B)
id ·ε

mm

ψ·σ'
��

(ΛV, d)

ϕ′
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ϕ̃

OO

ϕ
// (C, d).

Here, ϕ̃ := id ·ε ◦ ϕ′ and thus ι ◦ ϕ̃ ' ϕ′. It now holds

ϕ = ψ · σ ◦ ϕ′ ' ψ · σ ◦ ι ◦ ϕ̃ = ψ ◦ ϕ̃.

For a proof of the uniqueness, we refer to [7] chapter 12 .

Definition 3.4.9. Consider a morphism ϕ : (ΛV, dV ) → (ΛW,dW ) between Sullivan algebras. For
every v ∈ V , the element ϕ(v) ∈ ΛW is a linear combination of elements w1 ∧ · · · ∧wk ∈ ΛkW with
variable word length k ≥ 1. Denote by Q(ϕ)(v) the elements with word length 1, implying that
ϕ(v)−Q(ϕ)(v) ∈ Λ≥2W . This defines a map

Q(ϕ) : V →W

that we will call the linear part of the morphism ϕ.

If ψ : (ΛW,dW ) → (ΛZ, dZ) is a second morphism of Sullivan algebras, then Q(ψ ◦ ϕ) = Q(ψ) ◦
Q(ϕ) as ψ(Λ≥2W ) ⊆ Λ≥2Z. It follows that Q(ϕ) commutes with the linear part d0 = Q(d) of the
differential, i.e. Q(ϕ) ◦ (dV )0 = (dW )0 ◦Q(ϕ).

Remark 3.4.10. If d = d0 + d1 + . . . is the decomposition of a differential in a Sullivan algebra,
it holds that d2

0 is the only component in d2 that does not raise the word length. Thus d2 = 0
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implies d2
0 = 0. Therefore, if ϕ : (ΛV, d) → (ΛW,d) is a morphism between Sullivan algebras, then

the linear part is a morphism

Q(ϕ) : (V, d0)→ (W,d0)

of complexes. As such, it induces H(Q(ϕ)) : H(V, d0) → H(W,d0), a linear map between graded
vector spaces. It is a non-trivial observation that ϕ is a quasi-isomorphism if and only if H(Q(ϕ))
is an isomorphism. We will prove a similar statement in the near future, but will have to refer
to [7] for a full proof of this equivalence. However, it is worth to mention that this in particular
implies that a quasi-isomorphism (ΛV, d)

'−−→ (ΛW,d) between minimal Sullivan algebra yields an
isomorphism V ∼= W , since d0 = 0 in this case.

Proposition 3.4.11. Let (ΛV, d), (ΛW,d) be minimal Sullivan algebras.

(i) If H1(ΛV, d) = 0, then ϕ0 ' ϕ1 : (ΛV, d)→ (ΛW,d) implies Q(ϕ0) = Q(ϕ1).

(ii) If H1(ΛV, d) = 0 = H1(ΛW,d), then any quasi isomorphism ϕ : (ΛV, d)
'−−→ (ΛW,d) is in fact

an isomorphism (ΛV, d) ∼= (ΛW,d).

Proof. (i) Let H : (ΛV, d)→ (ΛW,d)⊗Λ(t, dt) be a homotopy from ϕ0 to ϕ1. We showed in example
3.3.3 that for minimal Sullivan algebras, H1(ΛV ) = 0 implies V 1 to vanish, thus V = V ≥2. Since
Λ(t, dt) does not contain elements of degree ≥ 2, this implies that H(V ) ⊆ Λ+W ⊗ Λ(t, dt). As
H is an algebra morphism it follows H(Λ≥2V ) ⊆ Λ≥2W ⊗ Λ(t, dt), thus we get an induced map of
cochain complexes

H : Λ+V/Λ≥2V −→ (Λ+W/Λ≥2W )⊗ Λ(t, dt).

Now, the minimality condition implies that the induced differentials are trivial, such that we may
identify Λ+V/Λ≥2V = (V, 0) and Λ+W/Λ≥2W = (W, 0). It follows that H : (V, 0) → (W, 0) ⊗
Λ(t, dt) is a homotopy from Q(ϕ0) = (id ·ε0) ◦H to Q(ϕ1) = (id ·ε1) ◦H. Then lemma 3.4.4 implies
that Q(ϕ0) = Q(ϕ1) as claimed.
(ii) Apply proposition 3.4.5 to lift the identity on (ΛW,d) over ϕ to obtain ϕ̃ : (ΛW,d) → (ΛV, d)
such that ϕ ◦ ϕ̃ ' idΛW . Part (i) now yields Q(ϕ) ◦ Q(ϕ̃) = idW , so Q(ϕ) is surjective. Hence,
for any w ∈ W k there exists v ∈ V k such that Q(ϕ)(v) = w. This implies ϕ(v) = w + w′, where
w′ ∈ Λ≥2W . We have |w′| = k and W 0 = 0, so due to degree reasons w′ ∈ ΛW≤k−1. It follows
W k ⊆ im(ϕ)+ΛW≤k−1 for any k ≥ 1. In fact, evenW 1 = 0 sinceH1(ΛW,d) = 0, thus for k = 1 this
yields W≤2 = W 2 ⊆ im(ϕ). Assume by induction that W≤k−1 ⊆ im(ϕ). Then ΛW≤k−1 ⊆ im(ϕ),
since ϕ respects the product structure. We have established that W k ⊆ im(ϕ) + ΛW≤k−1, which
now implies that W k and thus W≤k is contained in the image of ϕ, concluding the induction.
Finally, W≤k ⊆ im(ϕ) in turn implies ΛW≤k, where k may be arbitrary large. This shows that
ϕ is surjective, meaning we may apply lemma 3.4.7 to even chose ϕ̃ such that ϕ ◦ ϕ̃ = idΛW . In
particular, this means that ϕ̃ is injective. It follows ϕ ◦ ϕ̃ ◦ ϕ = ϕ, so ϕ̃ ◦ ϕ lifts ϕ over itself.
But so does the identity on ΛV , thus by the uniqueness of the lift in proposition 3.4.5 we conclude
ϕ̃ ◦ϕ ' idΛV . From there on, we reuse the arguments from above, starting with Q(ϕ̃) ◦Q(ϕ) = idV
due to part (i), which means that Q(ϕ̃) and therefore ϕ̃ is surjective. It follows ϕ̃ is an isomorphism,
and because of ϕ◦ ϕ̃ = idΛW its inverse is exactly ϕ, which in conclusion is also an isomorphism.

With all this work put in, we can finally show the uniqueness of minimal Sullivan models for
commutative cochain algebras. As mentioned before, the assumption H1(A) = 0 can actually be
dropped, but it does not restrict us too much.

Theorem 3.4.12. Any commutative cochain algebra (A, d) with H0(A) = K and H1(A) = 0 has
a minimal Sullivan model m : (ΛV, d)

'−−→ (A, d) which is unique up to isomorphy. That is, if
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m′ : (ΛW,d)
'−−→ (A, d) is a quasi-isomorphism and (ΛW,d) a minimal Sullivan algebra, then there

exists an isomorphism ϕ : (ΛV, d)→ (ΛW,d) such that m ' m′ ◦ ϕ.

(ΛW,d)

m′

'
((

(ΛV, d)
m
'

//

ϕ∼=

OO

(A, d)

Proof. Let m : (ΛV, d)
'−−→ (A, d) and m′ : (ΛW,d)

'−−→ (A, d) be minimal Sullivan models. Using
proposition 3.4.5 we obtain a lift ϕ : (ΛV, d) → (ΛW,d) of m over m′, i.e. m ' m′ ◦ ϕ. By lemma
3.4.4 this implies H∗(m) = H∗(m′) ◦ H∗(ϕ), so ϕ is a quasi-isomorphism. Now note that due to
the assumption H1(A, d) = 0 we get H1(ΛV ) = 0 = H1(ΛW ), thus ϕ is an isomorphism by part
(ii) of proposition 3.4.11.

Previously for commutative cochain algebras we defined the notion of weak equivalence (A, dA) '
(B, dB), which is the case whenever both algebras are connected by a chain of quasi-isomorphisms
of commutative cochain algebras. Let us now put Sullivan models into this context.

Remark 3.4.13. Assuming (A, dA), (B, dB) have a common Sullivan model, the chain

(A, dA)
'←−− (ΛV, d)

'−−→ (B, d)

automatically defines a weak equivalence. The other way around, consider a chain of commutative
cochain algebras (Ci, di) realizing the weak equivalence and assume mA : (ΛV, dV ) → (A, d) is a
Sullivan model for A. We get a diagram

(ΛV, dV )

mA
��

m0

((
mk

++

mB

,,
(A, dA)

' // (C0, d0) . . .
'oo ' // (Ck, dk) (B, dB),

'oo

where each mi is either a direct composition of quasi-isomorphisms, or exists as a lift over a quasi-
isomorphism due to proposition 3.4.5. In the latter case, lemma 3.4.4 implies that it is a quasi-
isomorphism. We summarize that (A, dA) and (B, dB) are weakly equivalent if and only if they
share a common Sullivan model.

Note that there may be multiple Sullivan models for a commutative cochain algebra. The remark
above states that in case we find a Sullivan algebra that works as a model for (A, d) and (B, d),
they are weakly equivalent and vice versa. Here, the uniqueness of minimal Sullivan models is a
key advantage. Namely, remark 3.4.13 says that (A, d) ' (B, d) if and only if the minimal Sullivan
models of (A, d) and (B, d) are isomorphic. Thus, the question whether or not two commutative
cochain algebras are weakly equivalent reduces to the calculation of their respective minimal Sullivan
models.
Spoken differently, there is a one-to-one correspondence between isomorphy classes of minimal
Sullivan algebras on the one side, and weak equivalence classes of commutative cochain algebras on
the other. On both sides, we restrict to the case H0(−) = K and H1(−) = 0. Let us now transfer
these results into the world of topology.

Remark 3.4.14. Assume X, Y are simply connected topological spaces with the same rational ho-
motopy type. Applying APL to a chain of rational homotopy equivalences yields that APL(X; Q),
APL(Y ; Q) are weakly equivalent. This in turn implies the minimal models of X and Y are iso-
morphic. In other words, the isomorphy class of the minimal Sullivan model of a simply connected
space is invariant under its rational homotopy type.
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So far, we have only talked about models for commutative cochain algebras or topological spaces.
Proposition 3.4.5 now allows us to assign to morphisms between these commutative cochain algebras
a representative between their respective models. As usual, this then extends to continuous maps
using APL(−). Let (A, d), (B, d) be commutative cochain algebras with H0(A) = H0(B) = K and
choose Sullivan models

mA : (ΛV, dV )
'−−→ (A, dA), mB : (ΛW,dW )

'−−→ (B, dB).

For any morphism α : (A, dA)→ (B, dB) we may now apply proposition 3.4.5 for the cases ψ := mB

and ϕ := α ◦mA to obtain a unique homotopy class in [(ΛV, dV ), (ΛW,dW )] represented by a map
ϕ̃, such that mB ◦ ϕ̃ ' α ◦mA.

Definition 3.4.15. Given any morphism α : (A, dA) → (B, dB) of commutative cochain alge-
bras and Sullivan models mA : (ΛV, dV )

'−−→ (A, dA), mB : (ΛW,dW )
'−−→ (B, dB), a morphism

ϕ : (ΛV, dV ) → (ΛW,dW ) allowing for a homotopy mB ◦ ϕ ' α ◦mA is called a Sullivan represen-
tative for α. A Sullivan representative for a continuous map f : X → Y is a Sullivan representative
for APL(f).

(A, dA)
α // (B, dB) APL(X; K) APL(Y ; K)

APL(f)oo

(ΛV, dV )

'

OO

ϕ // (ΛW,dW )

'

OO

(ΛV, dV )

'

OO

(ΛW,dW )

'

OO

ϕfoo

If α ' β : (ΛV, dV ) → (B, dB) are homotopic, it immediately follows that any Sullivan represen-
tative of α is a Sullivan representative of β and vice versa, hence they have to be homotopic by
uniqueness of the lift in proposition 3.4.5. However, a similar result for continuous maps f, g : X → Y
is not as trivial, since it is not directly clear how APL(f) and APL(g) relate whenever f ' g. For-
tunately, the functor APL(−) does a good job in translating between the two homotopy concepts
as the following proposition states. That being said, note that in reality the situation is actually
reversed. Homotopy on Sullivan algebras in fact stems from topological homotopy, which is carried
over to the world of commutative cochain algebras under APL(−).

Proposition 3.4.16. Let X,Y be topological spaces and f, g : X → Y be continuous maps. Further,
suppose ψ : (ΛV, d) → APL(Y ) is a morphism of commutative cochain algebras, where (ΛV, d) is a
Sullivan algebra. Then f ' g implies APL(f) ◦ ψ ' APL(g) ◦ ψ.

Proof. Remember an element in A0
PL(I) is a map S∗(I) → A0

PL compatible with the face and
degeneracy maps. Let ϕ ∈ A0

PL(I) such that ϕ(c0
n) = 0 and ϕ(c1

n) = 1 for all n ≥ 0, where
cin : ∆n → {i} ⊆ I for i ∈ {0, 1}. Under the morphism Λ(t, dt) → APL(I) of commutative cochain
algebras that is given by t 7→ ϕ, we may view Λ(t, dt) as sub cochain algebra of APL(I). Next,
consider the inclusions

j0 : X → X × I, j0(x) := (x, 0) and j1 : X → X × I, j1(x) := (x, 1),

as well as the projections pI : X × I → I and pX : X × I → X. Then pI ◦ ji is the constant map
X → {i} ⊆ I and pX ◦ ji = idX . Consider now the morphisms

APL(pX) ·APL(pI) : APL(X)⊗ Λ(t, dt) −→ APL(X × I)

(APL(j0), APL(j1)) : APL(X × I) −→ APL(X)×APL(X),

where we restrict APL(pI) : APL(I)→ APL(X × I) to the sub cochain algebra Λ(t, dt) and identify
ϕ with t. We claim that

(APL(j0), APL(j1)) ◦ (APL(pX) ·APL(pI)) = (idAPL(X) ·ε0, idAPL(X) ·ε1).
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A quick calculation of APL(pI ◦ ji) : Λ(t, dt)→ APL(X) yields

APL(pI ◦ ji)(t)(σ) = ϕ(pI ◦ ji ◦ σ) = ϕ(cin) = i

for any singular n-simplex σ ∈ Sn(X), and thus APL(pI ◦ji)(t) = i. We conclude that APL(pI ◦ji) =
εi on Λ(t, dt). Moreover, APL(pX ◦ ji) = APL(idX) = idAPL(X). Put together, this shows

(APL(j0), APL(j1)) ◦ (APL(pX) ·APL(pI))

= (APL(pX ◦ j0) ·APL(pI ◦ j0), APL(pX ◦ j1) ·APL(pI ◦ j1))

= (idAPL(X) ·ε0, idAPL(X) ·ε1)

as claimed. Finally, let f, g, ψ be as in the proposition and assumeH : X×I → Y is a homotopy from
f to g. The morphism APL(pX) · APL(pI) is a quasi-isomorphism, as H∗(APL(pX)) = H∗(pX ; K)
is an isomorphism and the commutative cochain algebra Λ(t, dt) is contractible. We may thus lift
APL(H) ◦ ψ : (ΛV, d) → APL(X × I) over APL(pX) · APL(pI) to obtain ϕ̃ : (ΛV, d) → APL(X) ⊗
Λ(t, dt). This means that in the diagram

APL(X)⊗ Λ(t, dt)
(id ·ε0,id ·ε1)

**
APL(pX)·APL(pI)

��

APL(X)×APL(X)

(ΛV, d)

ϕ̃

77

ψ
// APL(Y )

APL(H)
// APL(X × I)

(APL(j0),APL(j1))

44

the right-hand triangle commutes, whereas the left-hand triangle is homotopy commutative. This
yields

(id ·ε0, id ·ε1) ◦ ϕ̃ ' (APL(j0), APL(j1)) ◦APL(H) ◦ ψ = (APL(f) ◦ ψ,APL(g) ◦ ψ),

as H ◦ j0 = f and H ◦ j1 = g. Since (id ·ε0) ◦ ϕ̃ ' (id ·ε1) ◦ ϕ̃ via ϕ̃ itself, the assertion follows.

Assume now we are given continuous maps f, g : X → Y with f ' g. LetmX : (ΛV, d)→ APL(X)
and mY : (ΛW,d)→ APL(Y ) be Sullivan models. We find Sullivan representatives

ϕf , ϕg : (ΛW,d)→ (ΛV, d),

where ϕf lifts APL(f) ◦mY over mX and ϕg lifts APL(g) ◦mY over mX . Proposition 3.4.16 now
implies APL(f)◦mY ' APL(g)◦mY , thus ϕf ' ϕg by the uniqueness of the lift. It follows that Sul-
livan representatives of homotopic maps are homotopic morphisms, or in other words, the homotopy
class of f determines a unique homotopy class in [(ΛV, d), (ΛW,d)] of suitable Sullivan representa-
tives. Therefore, when provided an element α ∈ [X,Y ], we may write ϕα for any representative of
this class.

3.5 Sullivan Models of Pushouts and Fibrations

In this section, we want to examine in which sense geometric constructions can be algebraically
modelled, such that it is possible to directly compute models without requiring additional informa-
tion. The pushout X ∪f Y is obtained by attaching X to the space Y along A ⊆ X via f : A→ Y .
One may then ask whether it is possible to compute a commutative model for the pushout from the
algebraic data associated with i : A ↪→ X and f , which are the corresponding Sullivan representa-
tives. Similarly, given a fibration p : E → B, the weak homotopy type of the homotopy fibre F is
determined by p. Therefore, it seems natural to ask when and how a Sullivan model of F can be
obtained from APL(p).
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Rather than working out every detail, in the following we intend to provide a compact and brief
overview over the useful and important methods and constructions. Our goal is then to use these
in a later chapter to show a fundamental result in rational homotopy theory, that is the existence
of an isomorphism

V ∼= HomZ(π∗(X),K),

where (ΛV, d)
'−−→ APL(X) is a minimal Sullivan model. As usual, we work over a field K of

characteristic zero.

Example 3.5.1. As an introductory example, consider Sullivan models mX : (ΛVX , d)→ APL(X)
and mY : (ΛVY , d) → APL(Y ) of two simply connected spaces, where we assume X or Y to have
rational homology of finite type. Denote by pX : X × Y → X and pY : X × Y → Y the projections,
then the morphism

APL(pX) ·APL(py) : APL(X)⊗APL(Y )→ APL(X × Y )

induces the isomorphism H∗(pX ; K) ·H∗(pY ; K) : H∗(X; K) ⊗H∗(Y ; K) → H∗(X ⊗ Y ; K) on coho-
mology and is thus a quasi-isomorphism. We may therefore define a quasi-isomorphism

(APL(pX) ·APL(py)) ◦ (mX ⊗mY ) : (ΛVX , d)⊗ (ΛVY , d)
'−−→ APL(X × Y ),

which, together with the fact that the tensor product of Sullivan algebras is again a Sullivan algebra,
exhibits (ΛVX , d)⊗ (ΛVY , d) as Sullivan model for X × Y .

Preparation 3.5.2. Suppose (X,A) is a pair of topological spaces and f : A→ Y is a continuous
map. Then the pushout X ∪f Y fits into the commutative diagram at the left, while by applying
the functor APL(−) we get a diagram as shown on the right.

A
f //

i

��

Y

π|Y
��

APL
$$ APL(A) APL(Y )

APL(f)
oo

X
π|X // X ∪f Y APL(X)

APL(i)

OO

APL(X ∪f Y )
APL(π|X)

oo

APL(π|Y )

OO

Here π : X+Y → X ∪f Y denotes the canonical projection. By the unique property of the pullback
APL(X)×APL(A)APL(Y ) of the morphisms APL(f) and APL(i), there must be an induced morphism

Φ: APL(X ∪f Y )→ APL(X)×APL(A) APL(Y ),

depending solely on APL(π|X) and APL(π|Y ).
Now suppose thatH∗(X,A; K) ∼= H∗(X∪fY, Y ; K) induced by π|X . Since K is a field of characteristic
zero, the cohomology with coefficients in K is the dual of homology. Thus, the map π|X : (X,A)→
(X ∪f Y, Y ) induces an isomorphism between cohomology groups, which can be identified with the
induced map of APL(π|X) : APL(X ∪f Y, Y )→ APL(X,A) which hence is a quasi-isomorphism. It
follows from the diagram

0 // APL(X ∪f Y, Y )

'
��

// APL(X ∪f Y )

��

// APL(Y )

=

��

// 0

0 // APL(X,A) // APL(X)×APL(A) APL(Y ) // APL(Y ) // 0

that the map in the middle hast to be a quasi-isomorphism as well. This means the pullback
APL(X)×APL(A) APL(Y ) is a commutative model for the pushout X ∪f Y .
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We will now investigate how this relationship translates when we pass on to Sullivan mod-
els. For this, assume X, A and Y are path-connected and assume mX : (ΛV, dV ) → APL(X),
mA : (ΛU, dU ) → APL(A) and mY : (ΛW,dW ) → APL(Y ) are Sullivan models. Further, suppose
ϕ : (ΛV, dV )→ (ΛU, dU ) and ψ : (ΛW,dW )→ (ΛU, dU ) are Sullivan representatives for i and f . The
situation can be summarized by the following homotopy commutative diagram:

(ΛV, dV )

mX
��

ϕ // (ΛU, dU )

mA
��

(ΛW,dW )

mY
��

ψoo

APL(X)
APL(i) // APL(A) APL(Y )

APL(f)oo

Denote by (ΛV ×ΛU ΛW,d) and APL(X)×APL(A)APL(Y ) the corresponding pullbacks. The vertical
maps are quasi-isomorphisms and the injectivity of i implies that APL(i) is surjective. By a more
general result on commutative cochain algebras it follows that if one of the maps ϕ, ψ is surjective,
the pullbacks above are weakly equivalent.

Proposition 3.5.3. Assume H∗(π|X ; K) : H∗(X,A; K) → H∗(X ∪f Y, Y ; K) is an isomorphism
(which for example holds when (X,A) is a CW pair), and that one of the Sullivan representatives
ϕ, ψ is surjective. Then the pullback (ΛV ×ΛU ΛW,d) is a commutative model for X ∪f Y .

Proof. By the above, the pullbacks (ΛV ×ΛU ΛW,d) and APL(X) ×APL(A) APL(Y ) are connected
by a chain of quasi-isomorphisms. If in addition π|X induces an isomorphism, we can extend the
chain by a link and obtain

(ΛV ×ΛU ΛW,d)
'−−→ . . .

'←−− APL(X)×APL(A) APL(Y )
'←−− APL(X ∪f Y )

as claimed.

We will return to this later in proposition 3.6.13, which provides a simpler commutative model
when the pushout X ∪f Y is the attachment of a cell. Still, even in this special case, the question
regarding the calculation of a Sullivan model for X ∪f Y remains unanswered.
Until now, we used Sullivan algebras (ΛV, d) as models for commutative cochain algebra (A, d)
up to weak equivalence. In this section, we want to generalize this idea by providing models
for morphisms (B, d) → (A, d) of commutative cochain algebras. This will be achieved by using
commutative cochain algebras of the form (B ⊗ ΛV, d) that are called relative Sullivan algebras.
The importance of these algebras lies in the fact that they provide good models for fibrations.

Definition 3.5.4. A relative Sullivan algebra is a commutative cochain algebra (B⊗ΛV, d), where
V is a vector space and (B, d) is a commutative cochain algebra such that

(a) V = V +,

(b) V = ∪∞k=0V (k) for an increasing sequence of graded subspaces V (0) ⊆ V (1) ⊆ . . . ,

(c) d(V (0)) ⊆ B and d(V (k)) ⊆ B ⊗ ΛV (k − 1) for all k ≥ 1,

(d) (B, d) is a sub cochain algebra of (B⊗ΛV, d) via B = B⊗1, d = d⊗id, and it holds H0(B) = K.

The algebra (B, d) is referred to as base algebra of (B ⊗ ΛV ).

We will frequently use the identities B = B⊗1 and ΛV = 1⊗ΛV to regard these graded algebras
as subalgebras of (B⊗ΛV ). However, whereas (B, d) is a sub cochain algebra, the same is in general
not true for (ΛV, d). In other words, the differential of a relative Sullivan algebra does generally not
preserve (ΛV ).
Note that for (B, d) = (K, 0), the corresponding relative Sullivan algebra is simply a Sullivan algebra.
In this sense, relative Sullivan algebras are a generalization of Sullivan algebras.
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Definition 3.5.5. Let f : X → Y be a continuous map, and ϕ : (B, d) → (A, d) a morphism of
commutative cochain algebras. A Sullivan model for ϕ is a relative Sullivan algebra (B ⊗ ΛV, d)
that comes with a quasi-isomorphism

m : (B ⊗ ΛV, d)
'−−→ (A, d)

such that m|B = ϕ. By a Sullivan model for f we mean a Sullivan model for APL(f). A Sullivan
model is called minimal if the associated relative Sullivan algebra (B⊗ΛV, d) is minimal, that is, if

im(d) ⊆ B+ ⊗ ΛV +B ⊗ Λ≥2V

holds, where Λ≥2V = ⊕k≥2ΛkV .

Note that a Sullivan (minimal) model of the morphism K → (A, d), 1 7→ 1, provides a Sullivan
(minimal) model for (A, d). In this sense, the models for morphisms generalize the concept of models
for commutative cochain algebras respectively spaces.

Remark 3.5.6.

(a) Regard K as (B, d)-module via a morphism ε : (B, d) → K. Any relative Sullivan algebra
(B ⊗ ΛV, d) is by definition a free (B, d)-module. If we consider the associated tensor product,
as in example 1.2.5 we see that

K⊗(B,d) (B ⊗ ΛV, d) = (ΛV, d)

is actually a quotient Sullivan algebra that depends on ε. Here, we renamed the differential
to indicate that whereas the resulting free commutative algebra is the same, the differential
changed to a differential in ΛV (and is not the initial differential restricted to ΛV , which in
general is not a complex in the first place).

(b) To generalize the above, assume ψ : (B, d)→ (B′, d′) is any morphism of commutative cochain
algebras with H0(B′) = 0. The cochain algebra

(B′, d′)⊗(B,d) (B ⊗ ΛV, d) = (B′ ⊗ ΛV, d)

is a relative Sullivan algebra with base algebra (B′, d′) and is called the pushout of (B ⊗ΛV, d)
along ψ. The associated commutative diagram is

(B, d) //

ψ
��

(B ⊗ ΛV, d)

ψ⊗id
��

(B′, d′) // (B′ ⊗ ΛV, d),

where the horizontal maps are the natural injections of sub cochain algebras. It follows that
ψ⊗ id commutes with the differentials and thus is a morphism. One can then show that if ψ is
a quasi-isomorphism, the same is true for ψ ⊗ id.

The notion of homotopy between maps from a Sullivan algebra analogously generalizes to the
relative case.

Definition 3.5.7. Suppose ϕ,ψ : (B ⊗ ΛV, d) → (A, d) are morphisms of commutative cochain
algebras, where (B ⊗ ΛV, d) is a relative Sullivan algebra. Further, suppose ϕ|B = ψ|B : (B, d) →
(A, d). We say ϕ and ψ are homotopic relative B if there exists a morphism of commutative cochain
algebras

Ψ: (B ⊗ ΛV, d)→ (A, d)⊗ Λ(t, dt)

such that (id ·ε0) ◦Ψ = ϕ, (id ·ε1) ◦Ψ = ψ and Ψ(b) = ϕ(b)⊗ 1 = ψ(b)⊗ 1 for all b ∈ B. The map
Ψ is then called a relative homotopy from ϕ to ψ, and we denote this by writing ϕ ' ψ rel B.
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Remark 3.5.8. As before, homotopic relative B is an equivalence relation in the set of possible
morphisms. Further, if ϕ ' ψ rel B, then the induced maps on homology level coincide, H(ϕ) =
H(ψ).

The question of existence and uniqueness of minimal Sullivan models for morphisms is summarized
in the following theorem. Note that the conditions are now weaker as they were when we considered
Sullivan models of commutative cochain algebras, or respectively spaces. As minimal Sullivan
models for morphisms are the more general concept, this theorem is stronger than many of the
results we introduced before.

Theorem 3.5.9. Let ϕ : (B, d)→ (A, d) be a morphism of commutative cochain algebras. Suppose
H0(B) = K = H0(A) and H1(ϕ) is injective. Then the morphism ϕ has a minimal Sullivan model

m : (B ⊗ ΛV, d)
'−−→ (A, d).

Assuming m′ : (B ⊗ ΛV ′, d)
'−−→ (A, d) is another minimal Sullivan model for ϕ, then there exists

an isomorphism

α : (B ⊗ ΛV, d)
'−−→ (B ⊗ ΛV ′, d)

such that α|B = idB and m′ ◦ α ' m rel B.

Proof. This is proven in chapter 14 of [7].

Corollary 3.5.10. Any commutative cochain algebra (A, d) with H0(A) = K has a unique minimal
Sullivan model. In particular, any path connected topological space X has a unique minimal Sullivan
model.

Remember that for a continuous map f : X → Y , the homotopy type of the corresponding
homotopy fibre F is determined by the homotopy class of f . We will now see that, in a similar
fashion, a Sullivan model for F can be computed from the morphism APL(f) : APL(Y )→ APL(X)
under the assumption that Y is a simply connected space with rational homology of finite type.

Preparation 3.5.11. Consider a Serre fibration p : X → Y of path connected spaces, with path
connected fibres. Let y0 ∈ Y and denote by j : F ↪→ X the inclusion of the fibre F := p−1(y0) and
by π : F → {y0} the projection. Then the functor APL(−) converts the associated commutative
diagram on the left to the one on the right,

F
j //

π

��

X

p

��

APL
$$ APL(F ) APL(X)

APL(j)oo

{y0} i
// Y K

APL(π)

OO

APL(Y )ε
oo

APL(p)

OO

where the augmentation APL(i) is denoted by ε.
We assumed F to be path connected, so from the long exact sequence of the fibration it follows
that π1(p) : π1(X) → π1(Y ) is surjective. From the Hurewicz theorem it follows that H1(p; Z) is
surjective as well, as the diagram

π1(X)
hX //

π1(p)

��

H1(X; Z)

H1(p;Z)

��
π1(Y )

hY
// H1(Y ; Z)
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commutes and the Hurewicz homomorphisms hX and hY are surjective since X and Y are path
connected. Since we are dealing with field coefficients, it follows that H1(p; K) too is surjective, and
thus its dual map H1(p; K) = H1(APL(f ; K)) is injective. In particular, the assumptions in theorem
3.5.9 are satisfied, meaning there exists a (minimal) Sullivan model for p,

m : (APL(Y )⊗ ΛV, d)
'−−→ APL(X).

Going by remark 3.5.6, the augmentation ε defines a Sullivan algebra K⊗APL(Y ) (APL(Y )⊗ΛV, d) =

(ΛV, d) that is the pushout of (APL(Y )⊗ΛV, d) under ε. This means we can extend the commutative
diagram to

APL(F ) APL(X)
APL(j)oo

K

yy

APL(π)

OO

APL(Y )

((

ε
oo

APL(p)

OO

(ΛV, d)

m

55

(APL(Y )⊗ ΛV, d).

m

kk

ε·id
oo

The bottom square is just the commutative diagram as seen in remark 3.5.6 associated with the
pushout. Note that the map ε⊗ id changes to multiplication since B′ = K and we identify K⊗ΛV =
ΛV .
Next, note that (ΛV, d) is actually obtained as a quotient of APL(Y )⊗ ΛV ,

K⊗APL(Y ) (APL(Y )⊗ ΛV ) = (K⊗ (APL(Y )⊗ ΛV ))/ ∼= (APL(Y )⊗ ΛV )/ ∼ .

Further, ε · id is surjective since ε is an algebra morphism and APL(j) ◦m(ker(ε) ⊗ ΛV ) = 0. To
verify the second claim, let a ∈ APL(Y ) such that ε(a) = 0 in K. As the inner square and right-hand
triangle of the diagram commutes, we get

0 = APL(π) ◦ ε(a) = APL(j) ◦APL(p)(a) = APL(j) ◦m(a⊗ 1).

Hence APL(j) ◦m factors over ε · id. It follows that there exists a unique morphism m : (ΛV, d)→
APL(F ), making the outer diagram commute.

Theorem 3.5.12. Let p : X → Y be a Serre fibration as above. Assume Y is simply connected and
one of the graded vector spaces H∗(Y ; K), H∗(F ; K) has finite type. Then

m : (ΛV, d)→ APL(F )

is a quasi-isomorphism.

Proof. This is proven in chapter 15 of [7].

Note that, as (ΛV, d) is a Sullivan algebra, this provides a Sullivan model for the fibre F . Re-
member that any continuous map f : X → Y can be turned into a fibration. Assume X is path
connected and Y is simply connected. Then H1(Y ; K) = 0, so H1(APL(f)) is injective and f has a
Sullivan model as above. Supposing now that at least one of the graded spaces H∗(X; K), H∗(Y ; K)
has finite type, we conclude from 3.5.12 that (ΛV, d) is a Sullivan model for the homotopy fibre of
f .

Remark 3.5.13. In the considerations above, it might be useful to replace APL(Y ) by a Sullivan
algebra, using a model mY : (ΛVY , d)

'−−→ APL(Y ). Suppose the conditions of theorem 3.5.12 are
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satisfied. As Y is simply connected, V 0
Y = 0, so (ΛVY )0 = K, which means there is a unique

augmentation ε that is the identity in degree zero. Consider the following commutative diagram

APL(Y )
APL(p) // APL(X)

APL(j) // APL(F )

(ΛVY , d)
i //

mY '

OO

(ΛVY ⊗ ΛV, d)
ε·id //

m

OO

(ΛV, d),

m

OO

in which we assume (ΛVY ⊗ΛV, d) to be a relative Sullivan algebra with base algebra (ΛVY , d) and
i to be the inclusion of the base. Assume further that m : (ΛVY ⊗ΛV, d)→ APL(X) is a morphism
which restricts to APL(p) ◦mY in (ΛVY , d). Then, as before, APL(j) ◦m factors over ε · id to yield
the morphism m.

1. Suppose first m : (ΛVY ⊗ ΛV, d) → APL(X) is a quasi-isomorphism, and hence a relative
Sullivan model for APL(p) ◦mY . In this case, we can deduce two things: (ΛVY ⊗ ΛV, d) is a
Sullivan algebra and m is a quasi-isomorphism. It follows that both m and m provide Sullivan
models for X and F respectively.
Note that we may choose (ΛVY ⊗ ΛV, d) to be minimal as a relative Sullivan algebra. Then
(ΛV, d) will be a minimal Sullivan algebra and thus m is a minimal Sullivan model of F .
However, (ΛVY ⊗ΛV, d) will in general not be minimal as a Sullivan algebra, so m might not
be a minimal Sullivan model for X.

2. Suppose otherwise that m is a quasi-isomorphism, and hence a Sullivan model for F . Then it
follows that m is a quasi-isomorphism, and thus with the above a Sullivan model for X.

Example 3.5.14. To give an example how powerful of a tool this is, let us calculate the model of
an Eilenberg-MacLane space X of type (G,n), n ≥ 1 where we assume G to be abelian if n = 1.
By the Hurewicz theorem, Hk(X; Z) = 0 for 0 ≤ k ≤ n − 1 and there exists an isomorphism
G = πn(X)

∼=−−→ Hn(X; Z). Applying the functor −⊗Z Q turns this into an isomorphism G⊗Q
∼=−−→

Hn(X; Q). Thus, the dual map

Hn(X; Q) = HomQ(Hn(X; Q),Q)
∼=−−→ HomQ(G⊗ Q,Q) = Hom(G,Q)

is an isomorphism, too. Let V n := Hom(G,Q) and assume now that G⊗ Q is finite dimensional as
a Q-vector space. We will see by induction that a minimal Sullivan model of X is given by

m : (ΛV n, 0)
'−−→ APL(X),

where m is a morphism realizing the isomorphism V n ∼= Hn(X; Q) above.
To begin the induction, let n = 1 and choose g1, . . . , gr representing a basis of G ⊗ Q, by which
we mean the elements gi ⊗ 1 are a basis for G ⊗ Q. This defines a homomorphism α : Zr → G via
α(z1, . . . , zr) = z1g1 + · · ·+zrgr. It is a classical result that this can be realized, meaning there exist
Eilenberg-MacLane spaces K(Zr, 2) and K(G, 2) as well as a map f : K(Zr, 2)→ K(G, 2) inducing
α, that is, π2(f) = α. Now α ⊗ Q maps the canonical basis of Zr ⊗ Q to a basis of G ⊗ Q. Hence
π∗(f) ⊗ Q is an isomorphism. From the Whitehead-Serre theorem it follows that H∗(Ωf ; Q) and
thus H∗(Ωf ; Q) is an isomorphism, where Ωf is the induced map between the loop spaces.
We know that in general ΩK(G,n) = K(G,n− 1), so in particular Ωf : K(Zr, 1)→ K(G, 1). Now
X is a (G, 1)-space and thus has the weak homotopy type of K(G, 1) = ΩK(G, 2). Further, Πk≤rS1

is a K(Zr, 1). As weak homotopy equivalences induce isomorphisms between cohomology groups,
we deduce that

H∗(Πk≤rS
1; Q) ∼= H∗(K(Zr, 1); Q) ∼= H∗(K(G, 1); Q) ∼= H∗(X; Q),

induced by a chain of rational homotopy equivalences. In particular, X and Πk≤rS1 have isomorphic
minimal Sullivan models.
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By example 3.5.1 minimal models respect products, so we see that a minimal Sullivan model of X is
given by (Λ(e1, . . . , er), 0) with |ei| = 1. Clearly, Λ(e1, . . . , er) = ΛV 1 if we set V 1 := Hom(G,Q) =
(G⊗ Q)∗, as the latter is a Q-vector space of dimension r.
Let n ≥ 2 and assume the claim is true for n − 1. if X is an Eilenberg-MacLane space of type
(G,n), then ΩX has type (G,n− 1). We may use the induction hypothesis and assume ΩX has a
model of the form (ΛUn−1, 0) with Un−1 ∼= Hom(G,Q) which is finite dimensional by assumption.
It follows that (H∗(ΩX; Q))∗ = H∗(ΩX; Q) ∼= ΛUn−1 has finite type, so H∗(ΩX; Q) has finite type.
Thus, when looking at the path-loop fibration

ΩX → PX → X

of X, the conditions of theorem 3.5.12 apply. Choose a minimal Sullivan model (ΛVX , d) for X.
Note that Hk(X; Q) = 0 for 1 ≤ k ≤ n−1 again due to Hurewicz and the duality between homology
and cohomology, so V k

X = 0 for 1 ≤ k ≤ n−1. Since (ΛVX , d) is minimal and n ≥ 2, we can conclude
that d = 0 in V n

X . We now have the situation as described in the second part of remark 3.5.13,
namely

APL(X) // APL(PX) // APL(ΩX)

(ΛVX , d)

' mX

OO

// (ΛVX ⊗ ΛUn−1, d)

m

OO

// (ΛUn−1, 0).

' mΩX

OO

It follows that m is a quasi-isomorphism, which in turn shows that H∗(ΛVX ⊗ ΛUn−1, d) = Q.
This distinguishes (ΛVX ⊗ ΛUn−1, d) as contractible Sullivan algebra, so d : Un−1 → VX is an
isomorphism, and VX is concentrated in degree n.

3.6 Whitehead Product and Duality

We have spent quite some effort on the computation of Sullivan models, but have yet to make
specific why they are of central importance to rational homotopy theory. So far, we know that they
are invariant under the rational homotopy type. In this section, we will learn that they contain
another important invariant in rational homotopy theory, the rational homotopy groups. For simply
connected spaces X with rational homotopy of finite type, the vector space V in a minimal Sullivan
model is the dual of the rational vector space π∗(X)⊗Q. Since we assumed finite type, this means
we obtain the rational homotopy groups directly from V . Moreover, minimal Sullivan models
are also interesting from the viewpoint of classic homotopy theory. While all information on the
torsion part of the groups is lost when we switch from π∗(X) to π∗(X)⊗ Q, the rational homotopy
groups contain information on the non-finite part of the homotopy groups. We can thus detect
non-trivial elements in the homotopy groups of a space, directly from the minimal Sullivan model.
Given homotopy groups are in general hard to compute, this makes Sullivan models a strong tool
throughout algebraic topology. Furthermore, as we shall see, the differential in a minimal Sullivan
model contains information regarding a Lie algebra structure on the homotopy groups. The so-
called Whitehead product on rational homotopy groups can be obtained from the quadratic part of
the differential via the duality of V and π∗(X)⊗ Q.

Preparation 3.6.1. We will begin by defining said Whitehead product, which is a map

[ , ]W : πk(X)× πn(X)→ πk+n−1(X)

on the homotopy groups of a path connected space X. First, for each k ≥ 1 consider the continuous
map ak : (Ik, ∂Ik) → (Sk, sk0) which collapses the boundary of the cube Ik to a point, yielding the
sphere Sk. It defines a continuous map

ak × an : (Ik+n, ∂Ik+n, y1)→ (Sk × Sn,Sk ∨ Sn, s0)
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on the product spaces, where we choose y1 := (1, 1, . . . , 1) and s0 = (sk0, s
n
0 ). The restriction to

∂Ik+n ∼= Sk+n−1 then defines a continuous map ak,n : (Sk+n−1, y0) → (Sk ∨ Sn, s0), where y0 =
1√
k+n

y1. The corresponding homotopy class [ak,n] ∈ πk+n−1(Sk ∨ Sn, s0) is called universal (k, n)-
Whitehead product.

Definition 3.6.2. Let α ∈ πk(X,x0) and β ∈ πn(X,x0) be represented by maps a : (Sk, sk0) →
(X,x0) and b : (Sn, sn0 )→ (X,x0). Then the composition

(a ∨ b) ◦ ak,n =: [a, b]W : (Sk+n−1, y0)→ (Sk ∨ Sn, s0)→ (X,x0)

represents an element [α, β]W := [[a, b]W ] ∈ πk+n−1(X,x0) that is called the Whitehead product of
α and β.

The Whitehead product extends naturally to a bilinear map

(πk(X)⊗ K)× (πn(X)⊗ K)→ (πk+n−1(X)⊗ K),

where [α⊗ λ, β ⊗ µ]W = [α, β]W ⊗ λµ. Remember that for a simply connected space X the tensor
product π∗(X)⊗K is always a K-vector space. We may thus write α⊗λ = λ(α⊗1), where an element
of the form α ⊗ 1 was simply denoted by α ∈ π∗(X) ⊗ K. For such elements α, β ∈ π∗(X) ⊗ K we
can choose representatives a, b. The image under the Whitehead product is then again an element
[α, β]W ∈ π∗(X)⊗ K, and it is represented by [a, b]W .

Preparation 3.6.3. Let f : (Y, y0) → (X,x0) be a continuous map between simply connected
spaces and choose minimal Sullivan models

mY : (ΛW,dW )→ APL(Y ), mX : (ΛV, dV )→ APL(X).

For f there exists a corresponding Sullivan representative ϕf : (ΛV, dV )→ (ΛW,dW ) whose homo-
topy class only depends on the choice of the minimal Sullivan models and the homotopy class [f ]
of f . By proposition 3.4.11, the linear part of all Sullivan representatives of f coincides, so Q(ϕf )
does not depend on the choice of the representative ϕf . This justifies to define the linear part of f
by

Q(f) := Q(ϕf ) : V →W.

In particular, it holds Q(f0) = Q(f1) whenever f0 ' f1, since then ϕf0 ' ϕf1 . Further, if g : Z → Y
is continuous, then Q(f ◦ g) = Q(g) ◦ Q(f) as the composition ϕg ◦ ϕf of Sullivan representatives
is a Sullivan representative for the composition f ◦ g. In the following, this will be used to define a
natural pairing between V and π∗(X).

Construction 3.6.4. Recall from example 3.3.7 that minimal models for the sphere Sk are given by
mk : (Λ(e), 0)→ APL(Sk), |e| = k if k is odd and mk : (Λ(e, e′), d)→ APL(Sk), |e| = k, |e′| = 2k−1
with d(e′) := e2 if k is even. In both cases, mk was defined by setting mk(e) to be a cocycle in
AkPL(Sk) which represents the unique element in Hk(APL(Sk); K) ∼= Hom(Hk(Sk; Z),K) that maps
the fundamental class to 1. In other words, Hk(mk)[e] is defined to be the unique basis element
dual to [Sk] via the pairing described in remark 1.1.14.
Let α ∈ πk(X) and choose a representative a : (Sk, s0) → (X,x0) and suppose mX : (ΛV, dV ) →
APL(X) is a minimal Sullivan model. Then Q(a) is only non-trivial on level k and, if k is even, on
2k − 1. We get a map

Q(a)|V k : V k → K · e

that depends only on α and the choice of mX . Now for v ∈ V k we define 〈v;α〉 to be the unique
element λ ∈ K such that λ · e = Q(a)(v). This can be naturally extended for v ∈ V and α ∈ π∗(X)
by setting 〈v;α〉 = 0 if |v| 6= |α| to define a pairing

〈−;−〉 : V × π∗(X)→ K.
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Now, if f : (Y, y0) → (X,x0) is a continuous map and β ∈ πk(Y ) is represented by b : (Sk, s0) →
(Y, y0), it holds Q(f ◦b) = Q(b)◦Q(f). Thus Q(b)(Q(f)(v)) and Q(f ◦b)(v) share the same prefactor
λ ∈ K. As πk(f)(β) is represented by f ◦ b, it follows that for each v ∈ V and β ∈ π∗(Y ) we get the
identity

〈v;π∗(f)(β)〉 = 〈Q(f)(v);β〉.

Lemma 3.6.5. The pairing 〈−;−〉 : V × π∗(X)→ K is bilinear, that is K-linear in V and Z-linear
in π∗(X).

Proof. Linearity in V is immediate, as the map Q(a) is K-linear for any map a representing an
element α ∈ π∗(X). Let k ∈ N and denote by i0, i1 : Sk ↪→ Sk ∨ Sk the inclusion of the top and
bottom sphere. Then [i0] + [i1] is represented by the composition i0 ∨ i1 ◦ c, where c : Sk → Sk ∨ Sk

collapses the sphere at the equator, and i0 ∨ i1 is the induced map on the wedge Sk ∨ Sk (which, in
this case, is just the identity).
As cohomology is the dual of homology with field coefficients, Hk(Sk ∨ Sk; K) ∼= (Hk(Sk ∨ Sk; K))∗.
Remember that the images of the fundamental class under the induced maps of the inclusions,
Hk(i0)([Sk]) and Hk(i1)([Sk]), form a basis for Hk(Sk ∨ Sk; K) = K ⊕ K. Denote by ω0, ω1 ∈
Hk(Sk ∨ Sk; K) the corresponding dual basis. Then similar to the minimal model of Sk, we need
generators e0, e1 of degree k and define a morphism m by mapping these to a representing cocycle
of ω0, ω1 such that Hk(m)([e0]) = ω0, Hk(m)([e1]) = ω1. The corresponding minimal model for
Sk ∨ Sk is the of the form

m : (Λ(e0, e1, . . . ), d)
'−−→ APL(Sk ∨ Sk),

where we will not need to worry about the other generators, as these occur in degrees higher than k.
This has also been done in example 3.3.13 for the case k = 2. Next, suppose ϕ0 : (Λ(e0, e1, . . . ), d)→
(Λ(e, . . . ), d) is a Sullivan representative of i0, where e is the generator of degree k in the minimal
model mk for Sk as described in construction 3.6.4 above. We arrive at a homotopy commutative
diagram

APL(Sk ∨ Sk)
APL(i0) // APL(Sk) H∗(Sk ∨ Sk; K)

H∗(i0) // H∗(Sk; K)

(Λ(e0, e1, . . . ), d)
ϕ0 //

m

OO

(Λ(e, . . . ), d)

mk

OO

H(Λ(e0, e1, . . . ))
H(ϕ0) //

H(m) ∼=

OO

H(Λ(e, . . . )),

H(mk)∼=

OO

which translates to the commutative diagram on the left, which allows us to identify H(ϕ0) with
H∗(i0). By the definition of the dual basis ω0, ω1 it holds

Hk(i0)(ω0)([Sk]) = ω0 ◦Hk(i0)([Sk]) = 1

Hk(i0)(ω1)([Sk]) = ω1 ◦Hk(i0)([Sk]) = 0,

so Hk(i0)(ω0) provides a basis ω ∈ Hk(Sk; K) that is dual to the basis [Sk] of Hk(Sk; K), and
Hk(i0)(ω1) vanishes. As Hk(mk)([e]) = ω and Hk(m)([ei]) = ωi by definition, we deduce from this
that Hk(ϕ0)[e0] = [e] and Hk(ϕ0)[e1] = 0.
As there are no elements of degree k − 1, there are no coboundaries on level k, so we conclude
that ϕ0(e0) = e and ϕ0(e1) = 0. These images already have word length 1, so the corresponding
linear part is the same and we get Q(i0)(e0) = e and Q(i0)(e1) = 0. In the same way, we see that
Q(i1)(e0) = 0 and Q(i1)(e1) = e, as well as Q(c)(ei) = e for i ∈ {0, 1}.
Assume now α0, α1 ∈ πk(X) are represented by maps a0, a1. Then α0 + α1 is represented by
a0 + a1 = a0 ∨ a1 ◦ c. Let V be the vector space associated with a minimal Sullivan model for X
and consider Q(a0 ∨ a1) : V k → K · e0⊕K · e1. For v ∈ V k, write Q(a0 ∨ a1)(v) = λ0e0 + λ1e1. Then

Q(a0 ∨ a1 ◦ i0)(v) = Q(i0) ◦Q(a0 ∨ a1)(v) = λ0e,

Q(a0 ∨ a1 ◦ i1)(v) = Q(i1) ◦Q(a0 ∨ a1)(v) = λ1e,

Q(a0 ∨ a1 ◦ c)(v) = Q(c) ◦Q(a0 ∨ a1)(v) = (λ0 + λ1)e.
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Now, as a0 ∨ a1 ◦ i0 = a0 and a0 ∨ a1 ◦ i1 = a1 and a0 ∨ a1 ◦ c = a0 + a1 it follows 〈v;α0 + α1〉 =
λ0 + λ1 = 〈v;α0〉+ 〈v;α1〉 as claimed.

Hence, there is an induced natural linear map

νX : V → HomZ(π∗(X),K), v 7→ 〈v;−〉.

By the identity from construction 3.6.4 it then holds νX ◦ Q(f) = HomZ(π∗(f),K) ◦ νY , so this is
in fact a natural transformation.

Theorem 3.6.6. If X is simply connected and H∗(X; K) has finite type, then

νX : VX → HomZ(π∗(X),K)

is an isomorphism.

Before we turn our attention towards the proof, let us point out what can be derived from this.
A canonical isomorphism HomZ(π∗(X),K) ∼= HomK(π∗(X) ⊗ K,K) = (π∗(X) ⊗ K)∗ is given by
ϕ 7→ ϕ ⊗ K. Thus, an application of theorem 3.6.6 for K = Q yields that the dual space of the
rational homotopy groups can be read off the minimal Sullivan model. We assumed H∗(X; Q) to
be of finite type, so by corollary 3.3.11, VX and thus (π∗(X) ⊗ Q)∗ has finite type. As any finite
dimensional vector space is naturally isomorphic to its dual space, we finally obtain the isomorphy
class of rational homotopy groups from the minimal Sullivan model. Even more, the isomorphism
of theorem 3.6.6 allows us to identify some topological maps with algebraic equivalents.

Remark 3.6.7. Consider two simply connected spaces X and Y with rational homology of finite
type. Choose minimal Sullivan models

mX : (ΛVX , dX)
'−−→ APL(X), mY : (ΛVY , dY )

'−−→ APL(Y ),

for X and Y and remember that for a continuous map f : X → Y there exists a Sullivan repre-
sentative ϕf : (ΛVY , dY ) → (ΛVX , dX) such that APL(f) ◦ mY ' mX ◦ ϕf . As usual, denote by
Q(f) : VY → VX the induced linear part. The linear maps

νX : VX → HomZ(π∗(X),K), νY : VY → HomZ(π∗(Y ),K)

are isomorphisms by theorem 3.6.6. In the construction 3.6.4 we argued that νX and νY are natural
transformations. This implies that the diagram

VX
νX
∼=
// HomZ(π∗(X),K)

VY
νY
∼=
//

Q(j)

OO

HomZ(π∗(Y ),K).

HomZ(π∗(f),K)

OO

commutes. Therefore, using the canonical identification HomZ(π∗(f),K) = (π∗(f) ⊗ K)∗, we may
identify Q(f) with the dual of π∗(f)⊗ K.

Let m : (ΛV, d)
'−−→ APL(X) be a minimal Sullivan model for a simply connected space X. Then

by minimality, we have im(d) ⊆ Λ≥2V , which means that the projection ΛV → V ⊕K = ΛV/Λ≥2V is
a morphism of complexes (ΛV, d)→ (V ⊕K, 0). As such, it induces a linear map ζ : H+(ΛV, d)→ V .

Remark 3.6.8. Note that the Hurewicz homomorphism hK : π∗(X)⊗K→ H(X; K) = H(X; Z)⊗K
dualizes to a map h∗K : H∗(X; K)→ Hom(π∗(X),K). For a minimal Sullivan modelm and ζ as above,
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consider the isomorphism ν : V → Hom(π∗(X),K). Let n ≥ 1 and fix α ∈ πn(X) represented by
some continuous map a. The minimal Sullivan models for X and Sn yield a commutative diagram

Hn(ΛV, d)

id
��

H∗(a;K)◦H(m)// Hn(Sn; K)

∼=
��

Hn(ΛV, d)
Q(a)◦ζ // Ke.

For a fundamental class [Sn] we get Hn(Sn; K) = K[Sn], and the isomorphism on the right reads
[Sn] 7→ e. Thus, for any [z] ∈ Hn(ΛV, d), if H∗(a; K) ◦ H(m)([z]) = λ[Sn], then Q(a) ◦ ζ([z]) =
λe = 〈ζ([z]);α〉e. By identifying H∗(a; K) = (H∗(a; K))∗, we get H∗(a; K)◦H(m)([z]) = H(m)([z])◦
H∗(a; K) : Hn(Sn; K)→ K and thus

ν(ζ([z]))(α) = 〈ζ([z]);α〉 = H(m)([z]) ◦H∗(a; K)([Sn])

= H(m)([z]) ◦ hK([α]) = h∗K(H(m)([z]))(α).

In other words, the diagram

H+(ΛV, d)
H(m)

∼=
//

ζ

��

H∗(X; K)

h∗K
��

V
ν
∼=

// Hom(π∗(X),K)

commutes, which exhibits ζ as the dual of hK.

Proof of 3.6.6. Let n := min{k ≥ 0 | πk(X) 6= 0} and note that by assumption n ≥ 2. Then
πn(X) ∼= Hn(X; Z) and Hk(X; Z) = 0 for 1 ≤ k < n by the Hurewicz theorem. Since K is a
field, as usual, we have an isomorphism H∗(X; K) ∼= H∗(X; Z)⊗ K and H∗(X; K) ∼= (H∗(X; K),K)∗

mentioned in remark 1.1.14. This gives Hk(X; K) = 0, which by proposition 3.3.10 implies V k
X = 0

for k < n. Moreover, since (ΛVX , d) is minimal and n ≥ 2, it follows that d = 0 in V n
X , so

Hn(ΛVX) = (ΛVX)n = V n
X and we get an isomorphism H(mX) : V n

X

∼=−−→ Hn(X; K). Finally, there
exists an isomorphism

h∗K : Hn(X; K) = HomK(Hn(X; K),K)
∼=−−→ HomK(πn(X)⊗ K,K) = Hom(πn(X),K)

that we already used in example 3.5.14. It is essentially the dual of the Hurewicz homomor-
phism, which is an isomorphism on this level. In particular, the composition h∗K ◦H(mX) : V n

X →
Hom(πn(X),K) is an isomorphism, and by a more general calculation in remark 3.6.8 this isomor-
phism exactly is νX .
This takes care of levels k ≤ n. For the remaining cases, assume f : X → Y is a weak homotopy
equivalence. Then H∗(f ; K) is an isomorphism, and hence any Sullivan representative ϕf is a quasi-
isomorphism. As such, remark 3.4.10 tells us that H(Q(f)) = Q(f) : VY → VX is an isomorphism.
Further, by the Whitehead-Serre theorem, π∗(f) ⊗ K and therefore its dual Hom(π∗(f),K) is an
isomorphism. By naturality, the diagram in remark 3.6.7 commutes, implying that if νY is an
isomorphism then so is νX . This means that by CW approximation, we may assume X is a CW
complex.
Let g : X → K(πn(X), n) := K be a continuous map such that πn(g) is the identity. We may turn
g into a fibration, that is replacing g by a fibration pg : Xg → K with a space Xg containing X such
that the inclusion X ↪→ Xg is a homotopy equivalence, see for instance [28] or [13]. Hence, there
exists a fibration p : X → K with fibre F such that πn(p) is an isomorphism. By example 3.5.14,
the minimal model of K is of the form

mK : (ΛV n, 0)
'−−→ APL(K) with V n ∼= Hom(πn(X),K).
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In particular, H∗(K; K) has finite type, so theorem 3.5.12 implies a minimal Sullivan model for
p determines a model of the form (ΛVF , d)

'−−→ APL(F ) for F . The corresponding commutative
diagram as in remark 3.5.13 reads

APL(K)
APL(p) // APL(X)

APL(j) // APL(F )

(ΛV n, 0)

' mK

OO

i // (ΛV n ⊗ ΛVF , d)

' m

OO

ε·id // (ΛVF , d).

' mF

OO

where j : F ↪→ X is the inclusion and m is a Sullivan model for APL(p) ◦mK . Now, by the long
exact sequence of the fibration p and the fact that πn(p) is an isomorphism, we get πk(F ) = 0 for
all 1 ≤ k ≤ n. Thus, applying once again proposition 3.3.10, for the minimal model of F it holds
V k
F = 0 for all 1 ≤ k ≤ n. It follows that the Sullivan algebra (ΛV n ⊗ ΛVF , d) is minimal.

Next, note that we can lift mX : (ΛVX , d)
'−−→ APL(X) along m to a quasi-isomorphism

ϕ : (ΛVX , d)→ (ΛV n ⊗ ΛVF , d) such that m ◦ ϕ ' mX .

Then proposition 3.4.11 distinguishes ϕ as an isomorphism. Now, by proposition 3.3.10, ΛVX has
finite type since H∗(X; K) does. The isomorphism ϕ then ensures that ΛVF has finite type, and
thus so does H∗(F ; K).
As mF ◦ (ε · id) ◦ ϕ = APL(j) ◦ m ◦ ϕ ' APL(j) ◦ mX , it follows that (ε · id) ◦ ϕ is a Sullivan
representative for APL(j), i.e. for j. Thus, Q(j) = Q((ε · id) ◦ ϕ) = Q(ε · id) ◦ Q(ϕ). Especially,
in degree n+ 1 this means Qn+1(j) is an isomorphism, but the long exact sequence of the fibration
ensures that πn+1(j) too is an isomorphism. By naturality it holds

νn+1
X ◦Qn+1(j) = Hom(πn+1(j),K) ◦ νn+1

F .

However, note that min{k ≥ 0 | πk(F ) 6= 0} = n + 1 and therefore νn+1
F is an isomorphism by

the arguments in the beginning of the proof. It follows that νn+1
X is an isomorphism. Inductively

repeating this process, starting again with a fibration g, we eventually see that νX is an isomorphism
as well.

Example 3.6.9. Remember the minimal model for Sn is given by (Λ(e), 0) if n is odd and
(Λ(e, e′), d(e′) = e2) if n is even, |e| = n. By theorem 3.6.6 we obtain

πn(S2k+1)⊗ Q =

{
Q, n = 2k + 1

0, else
πn(S2k)⊗ Q =

{
Q, n = 2k, 4k − 1

0, else.

It follows immediately from the homotopy commutative diagram associated with the Sullivan repre-
sentative for id : Sn → Sn that Q(id)(e) = e in both cases, n even and odd. Thus 〈e; [id]〉 = 1 for the
class [id] ∈ πn(Sn). By theorem 3.6.6 it follows that 〈e;−〉 generates (πn(Sn)⊗ Q)∗ for n = 2k + 1
or n = 2k respectively. Thus, in both cases 0 6= [id] in πn(Sn)⊗ Q.

To specify a non-trivial element in π4k−1(S2k)⊗ Q, some extra work is needed. Fortunately, the
minimal Sullivan model of X does not only provide us with the rational homotopy groups, but also
gives us information on some structures of the groups. More precisely, we obtain the Whitehead
product from the quadratic part of the differential of the minimal Sullivan algebra.
To see this, assume mX : (ΛV, d)→ APL(X) to be a Sullivan minimal model of a simply connected
space X. We can define a trilinear map

〈 ; , 〉 : Λ2V × π∗(X)× π∗(X)→ K,

〈v ∧ w;α, β〉 := 〈v;β〉〈w;α〉+ (−1)|w||α|〈w;β〉〈v;α〉

using the dual pairing of V and π∗(X), where v, w ∈ V and α, β ∈ π∗(X) are homogeneous.
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Proposition 3.6.10. Let v ∈ V , α ∈ πk(X) and β ∈ πn(X) and denote by d1 the quadratic part of
the differential of (ΛV, d). Then it holds

〈d1(v);α, β〉 = (−1)k+n−1〈v; [α, β]W 〉.

In other words, the Whitehead product is dual to the quadratic part of the differential.

Proof. For a proof of this statement, we refer to chapter 13 in [7].

Example 3.6.11. As usual, let (Λ(e, e′), d(e′) = e2) be the minimal Sullivan model of S2n. We
have already seen that for α := [id] ∈ π2k(S2k) it holds 〈e;α〉 = 1. We may thus deduce by the
formula of proposition 3.6.10 that

〈e′; [α, α]W 〉 = −〈e2, α, α〉 = −2.

Since 〈e′;−〉 generates (π4k−1(S2k)⊗Q)∗, we get that 0 6= [α, α]W in π4k−1(S2k)⊗Q. In particular,
[α, α]W ∈ π4k−1(S2k) is not a torsion element.

Example 3.6.12. From the computation of a minimal Sullivan model of S2∨S2 in example 3.3.13,
it follows using theorem 3.6.6 that πn(S2∨S2)⊗Q is non-trivial for all n ≥ 2. Therefore, πn(S2∨S2)
contains elements of infinite order for each n ≥ 2. In particular,

πn(S2 ∨ S2) 6= 0 for all n ≥ 2.

This means that for all n ≥ 2, there are homotopical non-trivial maps f : Sn → S2 ∨ S2.

The dual pairing can also be used to improve the statement in proposition 3.5.3, concerning
commutative models for the pushout X ∪f Y . Assume X is simply connected and

mX : (ΛV, d)
'−−→ APL(X)

is a minimal Sullivan model for X. Given a continuous map f : Sn → X, we can attach a (n+1)-cell
to X to obtain the pushout X ∪f Bn+1. It is well known that the homotopy type of this pushout
only depends on the class [f ] =: α ∈ πn(X), so one usually writes X ∪α Bn+1.

Proposition 3.6.13. Consider the cochain algebra (ΛV ⊕ Kuα, dα) given by

(i) |uα| = n+ 1

(ii) dα(uα) = 0 and dα(v) = d(v) + 〈v;α〉uα for all v ∈ V

(iii) the relations uα · v = 0 = u2
α for all v ∈ Λ+V ,

where ΛV is assumed to be a subalgebra. It holds that (ΛV ⊕ Kuα, dα) is a commutative model for
X ∪α Bn+1.

Proof. Just like before, a proof of this statement can be found in chapter 13 of [7].

Remark 3.6.14.

(a) Note that the cochain algebra (ΛV ⊕Kuα, dα) in general is not a minimal model for X ∪αBn+1.
In fact, ΛV ⊕ Kuα is only a free commutative graded algebra in the case that V = 0 and n is
odd.

(b) By the definition of the pairing, we get dα(v) = d(v) whenever |v| 6= n. This also implies that
dα(z) = d(z) for all z ∈ Λ≥2V by the derivation property of dα.

While proposition 3.6.13 is quite useful in numerous occasions, it does not solve the problem of
calculating a minimal model for the pushout. Moreover, there does not seem to be a general way
how Sullivan models for X ∪α Bn+1 and X can be related. This makes a geometric interpretation
of these models rather difficult.
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3.7 Spatial Realization

The functor APL(−) provides a link between topological spaces and commutative cochain algebras
that we have used many times. Now, we want to do the reverse and introduce a functor |−| assigning
each commutative cochain algebra a topological space, or to be more precise a CW complex. We
will also see that when K = Q, this functor serves as a cohomology-inverse to APL(−) in the sense
that if (ΛV, d) is a simply connected rational Sullivan algebra of finite type, then there exists a
quasi-isomorphism (ΛV, d)

'−−→ APL(|ΛV, d|). The goal of this section is to provide a description
of this realization, alongside with an overview of the results that are achieved with it. We abstain
from trying to prove all of these, and advise the wary reader to check chapter 17 of [7].
The construction of | − | is via the composition of two functors, namely

1. Sullivan’s simplicial realization functor 〈−〉 : commutative cochain algebras → simplicial sets

2. Milnor’s realization functor | − | : simplicial sets → CW complexes.

We begin by introducing the latter.

Construction 3.7.1. Let K be a simplicial set, with face and degeneracy maps ∂i and sj . Recall
the standard n-simplex ∆n as well as the linear maps δi : ∆n → ∆n+1, ρj : ∆n+1 → ∆n defined in
preparation 1.1.15. Equip each Kn with the discrete topology. We define the Milnor realization of
K to be the quotient space

|K| :=
(⋃̇

n
Kn ×∆n

)
/ ∼ .

The equivalence relation ∼ is thereby generated by

(∂i(σ), x) ∼ (σ, δi(x)), σ ∈ Kn+1, x ∈ ∆n

(sj(σ), x) ∼ (σ, ρj(x)), σ ∈ Kn, x ∈ ∆n+1.

Remark 3.7.2. This construction is functorial in the following sense: given a morphism f : K → L
between simplicial sets, fn : Kn → Ln, then we can consider the maps fn× id : Kn×∆n → Ln×∆n.
Since each Kn and Ln has the discrete topology, these are continuous. Denote the equivalence
class of (σ, x) ∈ Kn ×∆n by [σ, x]. Then there exists a continuous map |f | : |K| → |L| defined by
|f |([σ, x]) = [(fn × id)(σ, x)] = [fn(σ), x].

Recall that a simplex σ ∈ Kn is called degenerate if σ = sj(τ) for some j and some τ ∈ Kn−1. If
σ is not degenerate, we call it non-degenerate and denote the subset of non-degenerate n-simplices
by NKn. Further, we say an element x ∈ ∆n is in the interior if it is not in the image of the maps
δi. Thus, if we let ∂∆n := ∪iδi(∆n−1) then the interior is given by ∆n \ ∂∆n =: ∆̊n. We want to
show that the topological space |K| in fact admits a cell structure. For this, let n ≥ 0 and consider
the subsimplicial set K(n) given by

K(n)k :=

{
Kk, if k ≤ n
{sj(τ) | 0 ≤ j ≤ n− 1, τ ∈ K(n)k−1}, if k > n.

This is called the n-skeleton of K. Then N(K(n)k) = NKk when k ≤ n and N(K(n)k) = ∅ if
k > n. Further, denote by qK :

⋃̇
nKn ×∆n → |K| the canonical projection.

Proposition 3.7.3. For each simplicial set K it holds that |K| is a CW complex with n-skeleton
|K(n)|. The n-cells are given by the non-degenerate n-simplices σ ∈ NKn, with attaching maps
and characteristic maps the respective restrictions qK |{σ}×∂∆n and qK |{σ}×∆n. Here, we identify
∂∆n = Sn−1 and ∆n = Bn.

The proof is due to the following central lemma.
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Lemma 3.7.4. The restriction q̃K :
⋃̇
nNKn × ∆̊n → |K| of the quotient map is a bijection.

Proof. A detailed proof of this statement can be found in chapter 3 of [16].

Note that this way, for any subsimplicial set L ⊆ K it follows that |L| ⊆ |K|. To quickly verify
this, let σ ∈ Ln be degenerate as element in K, so we find τ ∈ Kn−1 such that σ = sj(τ). But
then τ = ∂j ◦ sj(τ) = ∂j(σ) ∈ Ln−1, since ∂j ◦ sj = id and ∂j restricts to L. It follows that σ is
degenerate as element in L, thus NLn ⊆ NKn for each n. By lemma 3.7.4, this implies |L| ⊆ |K|.
In particular, we get |K(n)| ⊆ |K| for the n skeleton K(n).
Note that q̃K restricts to bijections q̃K(n) :

⋃̇n

k=0NKk × ∆̊k → |K(n)|. Hence, we are given an
injection jn−1 : |K(n− 1)| ↪→ |K(n)| by the composition

|K(n− 1)|
(q̃K(n−1))

−1

−−−−−−−−→
⋃̇n−1

k=0
NKk × ∆̊k ↪→

⋃̇n−1

k=0
NKk × ∆̊k +NKn × ∆̊n q̃K(n)−−−→ |K(n)|.

In particular, we get a continuous map jn−1 + q̃K(n) : |K(n− 1)|+NKn ×∆n → |K(n)|.

Proof of proposition 3.7.3. Suppose by induction that |K(n − 1)| is a CW complex of dimension
n−1. Fix σ ∈ Kn and let y ∈ ∂∆n, then y = δi(x) for some x ∈ ∆n−1. By the equivalence relation,
[∂i(σ), x] = [σ, δi(x)] and ∂i(σ) ∈ Kn−1 = K(n−1)n−1, so qK(σ, y) = qK(n−1)(∂i(σ), x) ∈ |K(n−1)|.
It follows that we can restrict qK to a continuous map qσ : {σ}×∂∆n → |K(n− 1)|. Treating NKn

as an index set (equipped with the discrete topology) we obtain a continuous map

(qσ) : NKn × ∂∆n → |K(n− 1)|

that we can use to attach n-cells ∆̊n to |K(n−1)| for each σ ∈ NKn. This produces a n-dimensional
CW complex |K(n − 1)| ∪(qσ) (NKn ×∆n) together with a natural projection pn−1 : |K(n − 1)| +
(NKn × ∆n) → |K(n − 1)| ∪(qσ) (NKn × ∆n). Let x ∈ |K(n − 1)| and (σ, y) ∈ NKn × ∆n and
suppose x ∼ (σ, y), then x = qσ(σ, y) and thus

jn−1(x) = q̃K(n) ◦ (q̃K(n−1))
−1(qσ(σ, y)) = q̃K(n)(σ, y)

by the definition of jn−1. It follows that jn−1 + q̃K(n) factors over pn−1 to yield a continuous map
q(n) : |K(n− 1)| ∪(qσ) (NKn ×∆n)→ |K(n)| fitting into a commutative diagram

|K(n− 1)|+ (NKn ×∆n)
pn−1 //

jn−1+q̃K(n)
,,

|K(n− 1)| ∪(qσ) (NKn ×∆n)

q(n)

��
|K(n)|.

Vice versa, jn−1 + q̃K(n) is surely surjective and it is injective on elements (σ, x) with x ∈ ∆̊n. Thus,
let y, y′ ∈ ∂∆n and suppose q̃K(n)(σ, y) = q̃K(n)(σ, y

′). Then obviously qσ(σ, y) = qσ(σ, y′) = x for
some x ∈ |K(n− 1)| and thus p(σ, y) = p(σ, y′). From this it follows that q(n) is injective and thus
a bijection.
Suppose now B ⊆ |K(n)| is compact, then (jn−1+q̃K(n))

−1(B) is compact. It follows that q(n)−1(B)
is compact, and thus that q(n) is a homeomorphism. Hence, |K(n)| is a CW complex of dimension
n. Finally, using the maps q(n), we can define a homeomorphism from a CW complex with the
desired properties to |K|.

Remark 3.7.5. In the past, we have established a somewhat converse functor S(−), assigning a
simplicial set to each topological space. Starting with a simplicial set K, then S(|K|) is again a
simplicial set containing K as a subsimplicial set through the inclusion

ξK : K → S(|K|), σ 7→ qσ,
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where qσ is the restriction of qK to {σ} ×∆n. This induces a DGC morphism C∗(ξK) : C∗(K) →
C∗(|K|). Moving on to the homologies of C∗(K) and C∗(|K|) one can show that the map ξK induces
an isomorphism H(ξK) : H(C∗(K); K)

∼=−−→ H∗(|K|; K).
On the other hand, starting with a topological space X, the realization |S(X)| of S(X) is always a
CW approximation to X. This is due to the continuous evaluation map

ev :
⋃̇

n
Sn(X)×∆n → X, (σ, t) 7→ σ(t)

which factors over the projection qS(X) :
⋃̇
nSn(X)×∆n → |S(X)| to give a continuous map

sX : |S(X)| → X

that is a weak homotopy equivalence. From the definition, one gets s|K| ◦ |ξK | = id|K|.

Proposition 3.7.6. The map induced map sX : |S(X)| → X is a weak homotopy equivalence. In
other words, it is a CW approximation to X.
Further, if K is a simplicial set such that |K| is simply connected, then |ξK | : |K| → |S(|K|)| is a
homotopy equivalence.

Proof. The first claim is shown in chapter 3 of [16]. For the second one, we refer to chapter 17 of
[7].

Remark 3.7.7. Moreover, one can show that the realization respects products, i.e. there exists a
natural homeomorphism |K × L|

∼=−−→ |K| × |L|.

Construction 3.7.8. Suppose (A, d) is a commutative cochain algebra. Recall that for two sim-
plicial sets K, L the space of simplicial morphisms K → L was denoted by HomSIM (K,L). Sim-
ilarly, given DGAs (A, d), (B, d), denote the space of DGA-morphisms by HomDGA(A,B). Let
ϕ ∈ HomDGA(A,B) and define a simplicial set 〈A, d〉 and a simplicial morphism 〈ϕ〉 : 〈B, d〉 → 〈A, d〉
by

(a) 〈A, d〉n := HomDGA(A, (APL)n),

(b) for σ ∈ 〈A, d〉n, let ∂i(σ) := ∂i ◦ σ and sj(σ) := sj ◦ σ, where ∂i and sj are the face and
degeneracy maps of the simplicial cochain algebra APL,

(c) for σ ∈ 〈B, d〉, set 〈ϕ〉(σ) := σ ◦ ϕ.

This makes 〈−〉 a contravariant functor from the category of commutative cochain algebras to the
category of simplicial sets.

Remark 3.7.9. Consider a simplicial set K and any commutative cochain algebra (A, d). Remem-
ber that APL(K) = HomSIM (K,APL). Thus, there is a natural bijection

HomDGA(A,APL(K))
∼=−−→ HomSIM (K, 〈A, d〉), ϕ→ f,

where f : K → 〈A, d〉 is defined by f(σ)(a) := ϕ(a)(σ), a ∈ A, σ ∈ Kn. In this regard, APL(−) and
〈−〉 are adjoint functors. In particular, if we specify K = 〈A, d〉 and let f be the identity on 〈A, d〉
we get a canonical morphism of DGAs,

ηA : (A, d)→ APL(〈A, d〉), ηA(a)(σ) = σ(a),

a ∈ A, σ ∈ 〈A, d〉n.

Definition 3.7.10. The spatial realization of a commutative cochain algebra (A, d) is the CW
complex |A, d| := |〈A, d〉|. In the same fashion, the spatial realization of a morphism ϕ : (A, d) →
(B, d) is the continuous map |ϕ| := |〈ϕ〉|.
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Remark 3.7.11.

(a) The Sullivan realization functor has the property that 〈(A, d) ⊗ (B, d)〉 ∼= 〈A, d〉 × 〈B, d〉. It
follows for the spatial realization functor that

|(A, d)⊗ (B, d)| ∼= |A, d| × |B, d|.

(b) For a Sullivan algebra (ΛV, d) it holds V = V +, so there exists a unique augmentation
ε : (ΛV, d) → K, that is the identity in K and trivial on positive degrees. Thus 〈ΛV, d〉 has
a unique 0-simplex which in turn gives a unique 0-cell in |ΛV, d|. We will use this as base point
and denote it by ε.

(c) Suppose now ϕ ' ψ : (ΛV, d) → (ΛW,d) as morphisms between Sullivan algebras by some
homotopy H : (ΛV, d) → (ΛW,d) ⊗ Λ(t, dt). Then the realization is a map |H| : |ΛW,d| ×
|Λ(t, dt)| → |ΛV, d|. The augmentations εi define 0-cells in |Λ(t, dt)|, while the identity defines
a 1-cell joining these. It follows that |H| induces a homotopy such that

|ϕ| ' |ψ| : |ΛW,d| → |ΛV, d|

as continuous maps between CW complexes.

We now turn our attention towards the realization of a Sullivan algebra (ΛV, d). As described in
remark 3.7.11, there exists a unique augmentation ε : (ΛV, d)→ K which defines a 0-cell in |ΛV, d|,
so (|ΛV, d|, ε) is a pointed space. The map ξ〈ΛV,d〉 : 〈ΛV, d〉 → S(|ΛV, d|) is a quasi-isomorphism and
injective. Hence in particular, APL(ξ〈ΛV,d〉) is a quasi-isomorphism and surjective. We may use this
and lemma 3.4.7 to lift η(ΛV,d) : (ΛV, d) → APL(〈ΛV, d〉) over APL(ξ〈ΛV,d〉) to obtain a morphism
m(ΛV,d) : (ΛV, d)→ APL(|ΛV, d|) such that

APL(|ΛV, d|)

APL(ξ〈ΛV,d〉)'
��

(ΛV, d) η(ΛV,d)

//

m(ΛV,d)

55

APL(〈ΛV, d〉)

commutes. Now let α ∈ πn(|ΛV, d|) be represented by a map a : (Sn, s0) → (|ΛV, d|, ε). We may
use the bilinear map from construction 3.6.4, 〈−;−〉 : V × π∗(|ΛV, d|) → K and obtain an induced
homomorphism

µn : πn(|ΛV, d|)→ HomK(V n,K), µn(α)(v) := (−1)n〈v;α〉.

Theorem 3.7.12. Let (ΛV, d) be a Sullivan algebra such that H1(ΛV, d) = 0. If H(ΛV, d) has finite
type, it holds

(i) |ΛV, d| is simply connected and µn : πn(|ΛV, d|)
∼=−−→ HomK(V n,K) is an isomorphism, n ≥ 2,

(ii) when K = Q the map m(ΛV,d) : (ΛV, d)
'−−→ APL(|ΛV, d|) is a quasi-morphism, hence a Sullivan

model for |ΛV, d|.

Proof. See chapter 17 of [7].

The first step in proving this statement is to show that the realization |Λ(v), 0| with |v| =: n ≥ 2
is an Eilenberg-MacLane space K(K, n), which is done through the calculation of the homotopy
groups rather than an explicit construction. In particular, assuming K = Q and n is odd, the
realization |Λ(v), 0| does not yield the sphere Sn but a rational representative with has the same
rational homotopy type. This means |Λ(v), 0| is weakly homotopy equivalent to SnQ, and thus even
homotopy equivalent since both are CW complexes. More generally, the first part of theorem
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3.7.12 states that |ΛV, d| is always a rational space, which suggests a rather complicated geometry.
Therefore, while the spatial realization undoubtedly is of high significance in rational homotopy
theory, it is difficult to obtain information on the explicit CW structure of |ΛV, d|, limiting its use
for computations.

Remark 3.7.13.

(a) In the situation of theorem 3.7.12, the Sullivan model m(ΛV,d) : (ΛV, d)
'−−→ APL(|ΛV, d|) is

called a canonical Sullivan model for |ΛV, d|.

(b) Now suppose X is a simply connected CW complex with rational homology of finite type and
assume mX : (ΛW,d)

'−−→ APL(X) is a minimal Sullivan model. The adjoint formula from
remark 3.7.9 for K = S(X) and (A, d) = (ΛW,d) gives a natural simplicial map

γX : S(X)→ 〈ΛW,d〉

that is adjoint to mX .
Moreover, the map sX : |S(X)| → X is a homotopy equivalence and thus has a homotopy inverse
which is unique up to homotopy. Denote the homotopy inverse of sX by tX : X → |S(X)| and
let

hX := |γX | ◦ tX : X → |ΛW,d|.

It then holds: if K = Q, this map is a rational homotopy equivalence, and hence a rationalization
of X since |ΛW,d| is a rational space by theorem 3.7.12.

It is a direct consequence of theorem 3.7.12 that any simply connected Sullivan algebra with
rational coefficients and finite type is a Sullivan model of a CW complex. In a similar manner,
any Sullivan representative ϕf : (ΛV, d) → (ΛW,d) of a continuous map f : Y → X can again be
realized as a map |ϕf | : |ΛV, d| → |ΛW,d| between CW complexes. Its relation to the original map
f is explained in the following statement.

Theorem 3.7.14. Let f : Y → X be a continuous map and assume (ΛV, d)→ APL(X), (ΛW,d)→
APL(Y ) are minimal Sullivan models. Further, let ϕf : (ΛV, d)→ (ΛW,d) be a Sullivan representa-
tive of f . Then

Y
f //

hY
��

X

hX
��

|ΛW,d|
|ϕf |

// |ΛV, d|

is homotopy commutative.

Proof. See chapter 17 of [7].

Now, f ' g implies that ϕf ' ϕg, since Sullivan representatives of homotopic maps are homotopic
morphisms. By remark 3.7.11 this implies |ϕf | ' |ϕg| as continuous maps. Similarly, when ψ1 ' ψ2,
then ϕ|ψ1| ' ϕ|ψ2|. As promised, if we restrict to rational homology of finite type, we arrive at the
one-to-one correspondences:

• Rational homotopy types of simply connected spaces and isomorphy classes of minimal Sullivan
algebras over Q with V = V ≥2. The bijections are provided by X 7→ (ΛVX , d) and (ΛV, d) 7→
|ΛV, d| on level of the representatives.

• Homotopy classes of continuous maps between rational spaces and homotopy classes of mor-
phisms of Sullivan algebras over Q. The bijections are provided by f 7→ ϕf and ψ 7→ |ψ| on
level of the representatives.
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4 Models via Quillen

Prior to the one-to-one correspondence between isomorphy classes of minimal Sullivan algebras and
simply connected spaces that we established in the previous chapter, Quillen showed in [20] that
the rational homotopy category of simply connected spaces is equivalent to the homotopy category
of a class of differential graded Lie algebras. Considering this, it should be possible to find a
transgression between these two algebraic models, that is a functor from the world of differential
graded Lie algebras to the world of differential graded algebras. We will achieve this by first
describing a functor from differential graded Lie algebras to differential graded coalgebras and then
using the fact that duality transfers this into a differential graded algebra. The description of this
functor that we denote by C(−) will play a large role in the following section, and makes it possible
to define Lie models for spaces using Sullivan’s functor APL(−). Moreover, we will introduce free
Lie models of spaces that will play a major role in the future. That is, for free chain Lie algebras
(LV , d), connected and of finite type, there exists an explicit description of a CW complex X for
which (LV , d) is a Lie model. For example, the number of cells in Xn is determined by the dimension
of Vn. One then calls (LV , d) a cellular Lie model. Moreover, we will see that given a differential
graded algebra (L, d), we can construct a free Lie model. That is a free differential graded algebra,
together with a quasi-isomorphism of differential graded algebras, similar to Sullivan models being
a model for arbitrary commutative cochain algebras.
We begin this section by introducing a certain type of graded Lie algebras, the so called homotopy
Lie algebras. We will then move on to the construction of C∗(−) and free Lie models. This will
then be applied to provide models for spaces. Lastly, the realization of free graded Lie algebras will
be discussed. As in the previous section, many of the elaborations presented here can be found in
[7], sometimes in greater and sometimes in lesser detail.

4.1 Homotopy Lie Algebras and Duality

Suppose X is a simply connected space. Remember that there exists an isomorphism ∂ : π∗(X)
∼=−−→

π∗−1(ΩX), which is the connecting homomorphism of the long exact sequence of path space fibration
PX → X of X. Using ∂ and the Whitehead product [ , ]W : πk(X)× πn(X)→ πk+n−1(X), we can
define

[α, β] := −(−1)|α|∂([∂−1(α), ∂−1(β)]W )

on elements α ∈ πk−1(ΩX), β ∈ πn−1(ΩX) which then defines a bracket on the graded vector space
LX := π∗(ΩX)⊗ K. It is a well known result due to Milnor and Moore in [17] that this is in fact a
Lie bracket, making LX into a graded Lie algebra concentrated in degrees ≥ 0.
Assume further that f : X → Y is a continuous map between simply connected spaces. Then the
induced map π∗(Ωf) ⊗ K preserves the Lie brackets, i.e. is a morphism of graded Lie algebras, so
this construction is in fact functorial.

Remark 4.1.1. Note that ∂ allows us to identify the graded vector space π∗(X)⊗K with π∗(ΩX)⊗K
by a downshift of grades. More precisely, we may identify π∗(X) ⊗ K with the suspension sLX of
LX = π∗(ΩX)⊗ K through setting sα := −(−1)|α|∂−1(α) for each homogeneous element α ∈ LX .

Definition 4.1.2. The graded Lie algebra LX := (π∗(ΩX) ⊗ K, [ , ]) is called the homotopy Lie
algebra of X with coefficients in K. If K = Q we call it the rational homotopy Lie algebra of X.

So far, we have defined the free graded Lie algebra LW associated with a graded vector space W
and the homotopy Lie algebra LX of a simple connected space X. There is also a natural way to
obtain a Lie algebra when provided a minimal Sullivan algebra (ΛV, d), which will be introduced in
the following.
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Remark 4.1.3. Let L be a graded Lie algebra and remember that ΛL = ⊕k≥0ΛkL, where ΛkL is
generated by elements of the form x1∧· · ·∧xk with xi ∈ L homogeneous. Now ΛL is a commutative
graded algebra, thus for any σ ∈ Sk it holds x1 ∧ · · · ∧ xk = ±xσ(1) ∧ · · · ∧ xσ(k), where the sign
depends on σ and the grades |xi|, 1 ≤ i ≤ k. In the following, denote by εσ the sign corresponding
to σ such that the above equation holds, where we suppress the dependency on the grades of the
elements xi in the notation. In other words, for fix x1∧ · · ·∧xk ∈ ΛL, given any σ ∈ Sk there exists
εσ ∈ {±1} such that

x1 ∧ · · · ∧ xk = εσxσ(1) ∧ · · · ∧ xσ(k).

As one can check easily, this implies that ετ◦σ = ετεσ for τ, σ ∈ Sk and fix x1 ∧ · · · ∧ xk ∈ ΛL.

Preparation 4.1.4. Assume V is a graded vector space. Denote its desuspended dual space by

L := s−1 Hom(V,K)

such that sL is just the dual space of V . Remember, homogeneous elements of degree k in sL are
linear maps V k → K. Define a pairing by setting

〈 ; 〉 : V × sL→ K, 〈v; sx〉 := (−1)|v|sx(v),

on the homogeneous elements v ∈ V , extended trivially whenever v and sx have different degree.
Using the notation of remark 4.1.3 we can define a (k + 1)−linear map ΛkV × sL × · · · × sL → K
by setting

〈v1 ∧ · · · ∧ vk; sxk, . . . , sx1〉 :=
∑
σ∈Sk

εσ〈vσ(1); sx1〉 . . . 〈vσ(k); sxk〉.

Indeed, the linearity is not the problem here. In the first argument, linearity holds by definition, as
we have only defined the map on homogeneous basis elements and proceed to the linear extension.
In the remaining arguments, the linearity is immediate due to the pairing. A little more subtle is
the well-definedness of the map in the first argument, which is the reason we need the factors εσ
for. Fix any τ ∈ Sk, then it holds

〈v1 ∧ · · · ∧ vk; sxk, . . . , sx1〉 =
∑
σ∈Sk

εσ〈vσ(1); sx1〉 . . . 〈vσ(k); sxk〉

=
∑
σ∈Sk

εσ◦τ 〈vσ◦τ(1); sx1〉 . . . 〈vσ◦τ(k); sxk〉

= ετ 〈vτ(1) ∧ · · · ∧ vτ(k); sxk, . . . , sx1〉

where the second step is just a rearrangement of the sum.
Now, assuming finite type and making use of the duality of V and sL, we get a dual basis on sL with
respect to the pairing 〈 ; 〉. That is, assuming (vi)i∈I is a basis for V , a unique basis (sxj)j∈I of sL
is defined by setting 〈vi; sxj〉 = δij on the basis of V . By desuspending, we get the corresponding
elements xj in L. As the elements (sxj)j∈I form a basis of sL, the set (xj)j∈I is a basis for L. In
the future, we will refer to these bases of V and L as dual bases.

While this duality can be defined for any graded vector space, we will now see that in the case V
is the graded vector space of a minimal Sullivan algebra, we can define a Lie bracket on L that is
induced by the quadratic part of the differential.

Construction 4.1.5. Let (ΛV, d) be a minimal Sullivan algebra. Remember we can write the
differential as sum d = d0 + d1 + d2 + . . . where di increases word length by i. By minimality,
d0 = 0. Further, remember we called d1 the quadratic part of the differential. As seen in 3.3.4,
(ΛV, d1) is itself a minimal Sullivan algebra, that is, d2

1 = 0. As in preparation 4.1.4, define sL to
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be the dual space of V with pairing 〈 ; 〉.
Now, for x, y ∈ L we may define s[x, y] ∈ sL to be the linear map

(−1)|v|s[x, y](v) = 〈v; s[x, y]〉 := (−1)|y|+1〈d1(v); sx, sy〉

for arbitrary v ∈ V . This yields a map [ , ] : L× L→ L that we will now see is a Lie bracket.

Proposition 4.1.6. The map defined in construction 4.1.5 is a Lie bracket on L, so (L, [ , ]) is a
graded Lie algebra.

Proof. Indeed, the bracket is bilinear, which is a direct consequence of the trilinearity of the map
〈 ; , 〉 : Λ2 × sL× sL→ K. Hence, we may identify it with the induced map on the tensor product
L⊗L. Now, by definition, the element 〈v; s[x, y]〉 can only be non-zero if |v| = |sx|+ |sy|− 1. Thus
s[x, y] is a linear map of degree |sx|+ |sy| − 1, and by downshifting we get |[x, y]| = |x|+ |y|. For
the anti-symmetry condition, d1(v) is a linear combination of elements v1 ∧ v2 of word length two.
Since v1 ∧ v2 = εv2 ∧ v1 with ε = (−1)|v1||v2|, we obtain

〈v1 ∧ v2; sx, sy〉 = 〈v1; sy〉〈v2; sx〉+ ε〈v2; sy〉〈v1; sx〉 = ε2〈v2; sx〉〈v1; sy〉+ ε〈v1; sx〉〈v2; sy〉
= ε(〈v1; sx〉〈v2; sy〉+ ε〈v2; sx〉〈v1; sy〉) = ε〈v1 ∧ v2; sy, sx〉.

Note that we may assume |v1| = |sy|, |v2| = |sx| or |v1| = |sx|, |v2| = |sy| since the pairing
vanishes otherwise. It follows that |v1||v2| = |sx||sy| and thus ε = (−1)(|x|+1)(|y|+1). This means
that 〈d1(v); sx, sy〉 = (−1)(|x|+1)(|y|+1)〈d1(v); sy, sx〉 for all v ∈ V , x, y ∈ L and thus

〈v; s[x, y]〉 = (−1)|y|+1〈d1(v); sx, sy〉 = (−1)|y|+1(−1)(|x|+1)(|y|+1)〈d1(v); sy, sx〉
= (−1)|y|+1(−1)(|x|+1)|y|(−1)|x|+1〈d1(v); sy, sx〉 = −(−1)|x||y|〈v; s[y, x]〉

This immediately implies [x, y] = −(−1)|x||y|[y, x] as claimed.
A similar, yet more tedious computation shows

〈d2
1(v); sx, sy, sz〉 = (−1)|y|〈v; s[x, [y, z]]− s[[x, y], z]− (−1)|x||y|s[y, [x, z]]〉.

Since d2
1 = 0, we see the Jacoby identity holds on the suspended elements and hence on L.

Definition 4.1.7. The graded Lie algebra (L, [ , ]) is called the homotopy Lie algebra of (ΛV, d).

Remark 4.1.8. Not only can we assign a graded Lie algebra to each minimal Sullivan algebra, it
also holds that for a morphism ϕ : (ΛV, d)→ (ΛW,d) between minimal Sullivan algebras there exists
a corresponding Lie algebra morphism ψ : E → L, where E and L are the homotopy Lie algebras
of ΛW respectively ΛV . This makes the construction of the homotopy Lie algebra a contravariant
functor.

For more details on this, remember that Q(ϕ) : V → W is the linear part of the morphism
ϕ. Since W ⊆ ΛW , we can view Q(ϕ) as linear map to ΛW . By the universal property of the
free commutative graded algebra, this again induces a morphism ΛQ(ϕ) : ΛV → ΛW of graded
algebras (which in general will be different from ϕ). Note that in particular, ΛQ(ϕ) does not
increase the word length of elements. Now, let v ∈ V , so ΛQ(ϕ)(v) = Q(ϕ)(v) has word length one.
Thus, ΛQ(ϕ) ◦ d1(v) and d1 ◦ ΛQ(ϕ)(v) have word length two. By the definition of Q(ϕ), it holds
ϕ(v)−Q(ϕ)(v) ∈ Λ≥2W , so we get

d1 ◦ ϕ(v)− d1 ◦ ΛQ(ϕ)(v) ∈ Λ≥3W, ϕ ◦ d1(v)− ΛQ(ϕ) ◦ d1(v) ∈ Λ≥3W.

Hence the sum (d1 ◦ϕ−ϕ ◦ d1)(v) + (ΛQ(ϕ) ◦ d1− d1 ◦ΛQ(ϕ))(v) too has a word length of at least
three, where the first part is the trivial map since ϕ commutes with d, so the same is true for d1.
However, we have already noted that the latter part of the sum has word length two, so we conclude
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(ΛQ(ϕ) ◦ d1 − d1 ◦ ΛQ(ϕ))(v) = 0 for all v ∈ V . In other words, ΛQ(ϕ) : (ΛV, d1)→ (ΛW,d1) is a
DGA morphism between minimal Sullivan algebras.
Using this we can define

ψ : E → L, x 7→ ψ(x),

dual to Q(ϕ), that is if x ∈ E then ψ(x) is the linear map on V that is given by

〈v; sψ(x)〉 := 〈Q(ϕ)(v); sx〉.

Proposition 4.1.9. The map ψ : E → L is a morphism of graded Lie algebras.

Proof. Observe first that on elements v1 ∧ v2 ∈ Λ2V it holds

〈ΛQ(ϕ)(v1 ∧ v2); sx, sy〉 = 〈Q(ϕ)(v1); sy〉〈Q(ϕ)(v2); sx〉+ (−1)|v1||v2|〈Q(ϕ)(v2); sy〉〈Q(ϕ)(v1); sx〉
= 〈v1; sψ(y)〉〈v2; sψ(x)〉+ (−1)|v1||v2|〈v2; sψ(y)〉〈v1; sψ(x)〉
= 〈v1 ∧ v2; sψ(x), sψ(y)〉

for any x, y ∈ L.
Further, ψ is a linear map of degree zero, since Q(ϕ) is. Let v ∈ V . Piecing everything together we
have

〈v; sψ([x, y])〉 = 〈Q(ϕ)(v); s[x, y]〉 = (−1)|y|+1〈d1 ◦Q(ϕ)(v); sx, sy〉
= (−1)|y|+1〈ΛQ(ϕ) ◦ d1(v); sx, sy〉 = (−1)|y|+1〈d1(v); sψ(x), sψ(y)〉
= 〈v; s[ψ(x), ψ(y)]〉

and thus ψ([x, y]) = [ψ(x), ψ(y)] as claimed.

It is only natural to wonder if and how the homotopy Lie algebras L of (ΛV, d) and LX of X are
related in the case that (ΛV, d) is the minimal Sullivan algebra of X,

m : (ΛV, d)
'−−→ APL(X).

An affirmative answer to this question is already suggested when we take a look at the appearing
brackets: The Lie bracket in L is derived from d1, whereas the Lie bracket in LX is being defined
using the Whitehead product. Now remember that by proposition 3.6.10 if (ΛV, d) is the minimal
Sullivan algebra of X then the Whitehead product in π∗(X) is dual to d1 in the sense that

〈d1(v);α, β〉 = −(−1)k+n〈v; [α, β]W 〉,

for v ∈ V , α ∈ πk(X) and β ∈ πn(X), where we used the pairing between V and π∗(X) from
construction 3.6.4. Remember also that due to this pairing, there is a map µ : π∗(X) ⊗ K →
Hom(V,K) = sL that is given by µ(α)(v) = (−1)|α|〈v;α〉. Finally, recall that sLX = π∗(X) ⊗ K
with sα = −(−1)|α|∂−1(α). Hence,

µ : sLX → sL

may be used to define a map LX → L by desuspending.

Theorem 4.1.10. Let σ : LX → L be the linear map that is given by sσ(α) = µ(sα) for α ∈ LX .
Then σ is an isomorphism of graded Lie algebras.
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Proof. We have already seen that the pairing 〈 ; 〉 between V and π∗(X) is non-degenerate, so µ
and as such σ are isomorphisms of graded vector spaces. What remains to show is that σ is Lie
bracket preserving. Let α, β ∈ LX and observe that by the definition of the suspension sLX and
the bracket in LX we get

s[α, β] = −(−1)|α|+|β|∂−1([α, β]) = −(−1)|α|+|β|∂−1(−(−1)|α|∂([∂−1(α), ∂−1(β)]W ))

= (−1)|β|[∂−1(α), ∂−1(β)]W = (−1)|β|[−(−1)|α|sα,−(−1)|β|sβ]W = (−1)|α|[sα, sβ]W .

Due to the duality of d1 and [ , ]W we get

〈v; [sα, sβ]W 〉 = (−1)|α|+|β|+1〈d1(v); sα, sβ〉

for any v ∈ V . This implies 〈d1(v); sα, sβ〉 = (−1)|β|+1〈v; s[α, β]〉.
By the definition of σ, the equality σ([α, β]) = [σ(α), σ(β)] that we have to show reads

µ(s[α, β])(v) = s[σ(α), σ(β)](v)

for any v ∈ V . This in turn reformulates to

(−1)|s[α,β]|〈v; s[α, β]〉 = (−1)|v|〈v; s[σ(α), σ(β)]〉

by the definition of µ and the dual pairing of V and sL. We may assume that |v| = |s[α, β]| =
|α|+ |β|+ 1, as otherwise the equality is trivial. Hence, we can drop the prefactors on both sides.
Now, for the left-hand side

〈v; s[α, β]〉 = (−1)|β|+1〈d1(v); sα, sβ〉

as we have seen already. On the right-hand side, we obtain

〈v; s[σ(α), σ(β)]〉 = (−1)|β|+1〈d1(v); sσ(α), sσ(β)〉 = (−1)|β|+1〈d1(v);µ(sα), µ(sβ)〉

by the definition of the Lie bracket in L and σ. Note that in the upper equality we have a map
Λ2V ×π∗(X)×π∗(X) based on the pairing V ×π∗(X) as defined in 3.6.4, while in the lower equality
the map is Λ2 × sL × sL induced from the pairing V × sL as seen in preparation 4.1.4. However,
by the nature of µ, this pairing is again based on the pairing V × π∗(X), so all that is left to do
is to go into the definitions and see that both sides are in fact equal. As always, d1(v) is a linear
combination of elements v1 ∧ v2 ∈ Λ2V with |v1| + |v2| = |v| + 1, so it suffices to verify equality
on those. Note that we can further assume that |v1| = |β| + 1, |v2| = |α| + 1 or |v1| = |α| + 1,
|v2| = |β|+ 1 holds, otherwise the appearing terms will vanish. It follows

〈v1 ∧ v2; sα, sβ〉 = 〈v1; sβ〉〈v2; sα〉+ (−1)|v2|(|α|+1)〈v2; sβ〉〈v1; sα〉
= 〈v1;µ(sβ)〉〈v2;µ(sα)〉+ (−1)|v1||v2|〈v2;µ(sβ)〉〈v1;µ(sα)〉
= 〈v1 ∧ v2;µ(sα), µ(sβ)〉

where we used the fact that 〈v;µ(sγ)〉 = (−1)|v|+|γ|+1〈v; sγ〉 = 〈v; sγ〉 if |v| = |sγ| = |γ|+ 1 or zero
otherwise.

4.2 The Quillen and Cartan-Eilenberg-Chevalley Construction

In the following, two important functorial constructions are introduced that allow to switch between
the worlds of differential graded Lie algebras and differential graded coalgebras. Only the ideas
behind these constructions and how they relate will be provided, as the primary focus will be on
the applications and examples they make possible.
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Construction 4.2.1. Quillen described a functorial way to construct a free DGL when provided
a co-augmented DGC (C, d) which is also co-commutative. Remember that through the cobar
construction 1.3.9 we obtain a DGA ΩC = T (s−1C) with differential d = d0 + d1, which were maps
d0 : s−1C → s−1C and d1 : s−1C → s−1C ⊗ s−1C. Now, since C is assumed to be co-commutative,
we can express d1 in terms of the commutator bracket on ΩC, namely ∆(c) =

∑
i ai ⊗ bi =∑

i(−1)|ai||bi|bi ⊗ ai for c ∈ C. Thus d1 becomes

d1(s−1c) =
1

2

∑
i

(−1)|ai|(s−1ai ⊗ s−1bi − (−1)(|ai|−1)(|bi|−1)s−1bi ⊗ s−1ai)

=
1

2

∑
i

(−1)|ai|[s−1ai, s
−1bi].

This shows d1(s−1C) ⊆ Ls−1C and thus the same is true for d. Furthermore, d1 is a derivation on
ΩC as graded Lie algebra with commutator bracket, and so is d. We conclude that d is a differential
in the free graded Lie algebra Ls−1C , i.e. (Ls−1C , d) is a DGL. Note that by example 1.4.10 the
universal enveloping algebra is given by the tensor algebra on s−1C, that is, ULs−1C = ΩC. The
functoriality of the construction follows by the universal property of the free graded Lie algebra,
for if ϕ : (C, dC) → (D, dD) is a DGC morphism, then εc = εD ◦ ϕ and thus ϕ(C) ⊆ D. Denoting
the induced map s−1C → s−1D by ϕ as well, we see ϕ(s−1C) ⊆ s−1D ⊆ Ls−1D. Now use the
universal property stated in remark 1.4.11 to extend this to a morphism Ls−1C → Ls−1D of graded
Lie algebras. Finally, observe that this morphism commutes with d0 since ϕ commutes with the
differentials dC , dD and it commutes with d1 since it preserves the Lie bracket. Hence, we get a
DGL morphism.

Definition 4.2.2. The DGL (Ls−1C , d) is called the Quillen construction on the co-commutative,
co-augmented DGC (C, d). To emphasize the functoriality, the construction will be denoted by
L(C, d).

Construction 4.2.3. The other way around, there exists a functor which assigns a DGC C∗(L, dL)
to a provided DGL (L, dL). We begin with the free commutative graded algebra ΛsL, which is a
co-commutative graded coalgebra by example 1.3.8. For an element sx1 ∧ · · · ∧ sxk ∈ ΛksL and
1 ≤ i, j ≤ k let ni :=

∑
l<i |sxl|. Given 1 ≤ i < j ≤ k, let nij be a natural number such that

(−1)nij = εσ,

sx1 ∧ · · · ∧ sxk = εσsxσ(1) ∧ sxσ(2) ∧ · · · ∧ sxσ(k),

where we fix σ ∈ Sk to be the permutation for which holds

σ(1) = i, σ(2) = j, and σ(l) =


l + 2, l < i

l + 1, i < l < j

l, l > j.

We define the following linear maps

d0(sx1 ∧ · · · ∧ sxk) :=

k∑
i=0

(−1)nisx1 ∧ · · · ∧ sdL(xi) ∧ · · · ∧ sxk,

d1(sx1 ∧ · · · ∧ sxk) :=
∑

1≤i<j≤k
(−1)|xi|+1(−1)nijs[xσ(1), xσ(2)] ∧ sxσ(3) ∧ · · · ∧ sxσ(k)

and observe they extend to coderivations in ΛsL. Hence, d := d0 + d1 is a coderivation in ΛsL
and one can show that it satisfies d2 = 0, implying (ΛsL, d) is a DGC. The functoriality of this
construction is due to the fact that a DGL morphism ψ : (E, dE)→ (L, dL) induces a DGCmorphism
Λψ : ΛsE → ΛsL by setting ψ(sx) := sψ(x).
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Definition 4.2.4. The DGC (ΛsL, d) is called the Cartan-Eilenberg-Chevalley construction on the
differential graded Lie algebra (L, dL). To emphasize the functoriality, the construction will be
denoted by C∗(L, dL).

Remark 4.2.5. It was Quillen who altered the original construction of Cartan, Eilenberg and
Chevalley to fit the case of differential graded Lie algebras in [20]. Moreover, he showed that
this construction preserves quasi-isomorphisms. That is, assuming ψ : (E, d) → (L, dL) is a quasi-
isomorphism of differential graded Lie algebras, then

C∗(ψ) : C∗(E, dE)→ C∗(L, dL)

is a quasi-isomorphism of differential graded coalgebras. If in fact E and L are concentrated in
positive degrees, one can show the converse implication holds as well.

Theorem 4.2.6. Suppose (L, dL) is a connected chain Lie algebra, i.e. L = (Li)i≥1, and (C, dC)
is a co-commutative differential graded coalgebra with C = K ⊕i≥2 Ci. Then there exist natural
quasi-isomorphisms

ϕ : (C, dC)
'−−→ C∗(L(C, dC)) and ψ : L(C∗(L, dL))

'−−→ (L, dL)

of differential graded coalgebras or, respectively, differential graded Lie algebras.

Proof. We do not rely on this result, but wanted to include it since it provides fruitful insight to
the theory. For proof, we advise the reader to check appendix B of [20] or chapter 22 of [7].

As usual, constructions and definitions on chain complexes can be transferred to the world of
cochain complexes by applying the Hom(−,K) functor. We can hence make use of the Quillen and
Cartan-Eilenberg-Chevalley constructions to build a bridge between DGLs and CDGAs, or more
specific connected chain Lie algebras and commutative cochain algebras.

Remark 4.2.7. Consider a DGL (L, dL) and with it the associated DGC C∗(L, dL). By example
1.3.6,

C∗(L, dL) := Hom(C∗(L, dL),K)

is a differential graded algebra. Now, since C∗(L, dL) is co-commutative, the DGA C∗(L, dL) is
commutative. Furthermore, in case that (L, dL) is a connected chain Lie algebra, it follows by
construction that C∗(L, dL) is a cochain algebra. Thus, we find ourselves back in a well-known
world in which strong machinery like that of Sullivan models already has been established.

These constructions, while powerful, involve a multitude of different steps and sub constructions,
making them quite complicated and limiting their practical use. However, in case that (L, dL) is
a connected chain Lie algebra with L of finite type, we will now provide a simpler description of
C∗(L, dL) that exhibits it as a Sullivan algebra.

Preparation 4.2.8. We begin by noting that C∗(L) = (ΛsL)∗ by definition. Now there is a
natural surjection ϕ : ΛsL→ sL which is the identity on elements of word length one and otherwise
zero. It dualizes to an injection ϕ∗ : (sL)∗ ↪→ C∗(L) which extends to a morphism of graded algebras
Λϕ∗ : Λ(sL)∗ → C∗(L) that, as we will see now, is an isomorphism. Set V := (sL)∗ with dual pairing
〈 ; 〉 : V × sL→ K, 〈v; sx〉 := v(sx). Then, for any v ∈ V it immediately holds ϕ∗(v)(sx) = 〈v; sx〉
for all sx ∈ sL, whereas ϕ∗(v) is trivial on Λ≥2sL by definition. We may thus abuse language and
identify v with its image ϕ∗(v) in C∗(L) = (ΛsL)∗.
Our goal is to identify elements v1 ∧ · · · ∧ vk ∈ ΛkV with their image in C∗(L) under Λϕ∗. Let
v, w ∈ V and consider the element Λϕ∗(v ∧ w) = ϕ∗(v)ϕ∗(w) ∈ C∗(L). The comultiplication ∆ in
C∗(L) is the unique algebra morphism ΛsL → ΛsL ⊗ ΛsL obtained by ∆(sx) = sx ⊗ 1 + 1 ⊗ sx,
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where the multiplication on ΛsL ⊗ ΛsL is the usual multiplication on the tensor product of two
graded algebras. Thus,

∆(sx ∧ sy) = (sx⊗ 1 + 1⊗ sx)(sy ⊗ 1 + 1⊗ sy)

= sx ∧ sy ⊗ 1 + sx⊗ sy + (−1)|sx||sy|sy ⊗ sx+ 1⊗ sx ∧ sy

for sx, sy ∈ sL. In combination with the definition of the multiplication in C∗(L) this yields

Λϕ∗(v ∧ w)(sx ∧ sy) = (ϕ∗(v)⊗ ϕ∗(w))(∆(sx ∧ sy))

= 〈v; sx〉〈w; sy〉+ (−1)|sx||sy|〈v; sy〉〈w; sx〉.

for any sx∧sy ∈ Λ2sL, which we define to be 〈v∧w; sx∧sy〉. Then 〈v∧w;−〉 := Λϕ∗(v∧w) ∈ C∗(L)
vanishes on the subspace Λ≥3 by definition of ϕ∗. Further, we also see that 〈v∧w;−〉|sL = 0, since L
is connected and hence V 0 vanishes. Hence we may naturally identify 〈v∧w;−〉 ∈ (Λ2sL)∗ ⊆ C∗(L),
and the same argumentation shows that v1∧· · ·∧vk ∈ ΛkV defines an element in (ΛksL)∗ for k ≥ 1
and vi ∈ V . We now claim that for vi ∈ V , sxi ∈ sL and any k ∈ N

〈v1 ∧ · · · ∧ vk; sx1 ∧ · · · ∧ sxk〉 =
∑
σ∈Sk

εσ〈v1; sxσ(1)〉 . . . 〈vk; sxσ(k)〉,

where we proceed to write 〈v1 ∧ · · · ∧ vk;−〉 := Λϕ∗(v1 ∧ · · · ∧ vk). Here, εσ is defined as usual,
depending on σ and the degrees of the elements sxi ∈ sL. Indeed, assume the claim to be true for
k and observe it holds

∆(sx1 ∧ · · · ∧ sxm) =

m∑
n=0

1

n!

1

(m− n)!

∑
σ∈Sm

εσsxσ(1) ∧ · · · ∧ sxσ(n) ⊗ sxσ(n+1) ∧ · · · ∧ sxσ(m)

for any m ≥ 1. Then by this formula and the induction hypothesis we get for v := v1 ∧ · · · ∧ vk+1

and sx := sx1 ∧ · · · ∧ sxk+1

Λϕ∗(v)(sx) = (ϕ∗(v1)⊗ Λϕ∗(v2 ∧ · · · ∧ vk+1))(∆(sx1 ∧ · · · ∧ sxk+1))

=
1

k!

∑
σ∈Sk+1

εσ〈v1; sxσ(1)〉〈v2 ∧ · · · ∧ vk+1; sxσ(2) ∧ · · · ∧ sxσ(k+1)〉

=
1

k!

∑
σ∈Sk+1

εσ〈v1; sxσ(1)〉
∑
τ∈Sk

ετ 〈v2; sxτ◦σ(2)〉 . . . 〈vk+1; sxτ◦σ(k+1)〉

=
1

k!

∑
τ∈Sk

∑
σ∈Sk+1

ετεσ〈v1; sxσ(1)〉〈v2; sxτ◦σ(2)〉 . . . 〈vk+1; sxτ◦σ(k+1)〉

=
∑

σ∈Sk+1

εσ〈v1; sxσ(1)〉 . . . 〈vk+1; sxσ(k+1)〉.

Assume now (sxi)i∈N is a Basis for sL and let (vi)i∈N be the dual basis, that is 〈vj ; sxi〉 = δij . By
the evaluation formula above, we immediately see that 〈vnii ; sxnii 〉 = ni! where ni ≥ 2 only if |vi| is
even. It follows

〈vn1
1 ∧ · · · ∧ v

nk
k ; sxn1

1 ∧ · · · ∧ sx
nk
k 〉 = n1! . . . nk!

whereas any other element in ΛsL that is not a scalar multiple evaluates to zero. Remember that
we assumed L to have finite type, so ΛsL is finite dimensional in each degree. Since elements of the
form sxn1

1 ∧ · · · ∧ sx
nk
k provide a basis of ΛsL, this shows 〈vn1

1 ∧ · · · ∧ v
nk
k ;−〉 = Λϕ∗(vn1

1 ∧ · · · ∧ v
nk
k )

is a basis for (ΛsL)∗ = C∗(L). In other words, Λϕ∗ is an isomorphism.

This identifies C∗(L, dL) as cochain algebra of the form (ΛV, d), where the differential d remains
unchanged. Observe V = V ≥2, since L = L≥1 and V = (sL)∗. This automatically exhibits (ΛV, d)
as Sullivan algebra with V (0) := V ∩ ker(d) and V (k) := V ∩ d−1(ΛV (k − 1)) for k ≥ 1.
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Proposition 4.2.9.

(i) Suppose (L, dL) is a connected chain Lie algebra of finite type. Then C∗(L, dL) ∼= (ΛV, d) is a
Sullivan algebra, where V = (sL)∗ and d = d0 +d1. Here, d0 is defined by dL and d1 is defined
by the Lie bracket in L via the dual pairing form preparation 4.2.8,

〈d0(v); sx〉 = (−1)|v|〈v; sdL(x)〉, 〈d1(v); sx ∧ sy〉 = (−1)|y|+1〈v; s[x, y]〉.

(ii) Suppose (ΛV, d) is a Sullivan algebra with d = d0 + d1 and V = V ≥2 has finite type. Then
(ΛV, d) ∼= C∗(L, dL) for a unique connected chain Lie algebra (L, dL) with sL = V ∗. Here,
dL is defined by d0 and the Lie bracket is defined by d1 via the dual pairing from preparation
4.1.4,

〈v; sdL(x)〉 = (−1)|v|〈d0(v); sx〉, 〈v; s[x, y]〉 = (−1)|y|+1〈d1(v); sx, sy〉.

Proof. The first claim is immediate from preparation 4.2.8, since the differential d in ΛV is by
definition the dual of the differential d′ = d′0 + d′1 in C∗(L, dL). So by the definition of the dual
differential d = Hom(d′,K) and the definition of the differential d′ in C∗(L, dL) we obtain

〈d0(v); sx〉 = d0(v)(sx) = −(−1)|v|v(d′0(sx)) = (−1)|v|v(sdL(x)) = (−1)|v|〈v; sdL(x)〉,
〈d1(v); sx ∧ sy〉 = −(−1)|v|v(d′1(sx ∧ sy)) = (−1)|v|v((−1)|x|s[x, y]) = (−1)|y|+1〈v; s[x, y]〉,

where in the last step we assumed |v| = |sx|+ |sy| − 1, as otherwise the pairing vanishes.
For the second claim, associated with (ΛV, d1) we obtain the homotopy Lie algebra (L, [ , ]) where L
was the desuspension of V ∗ and whose Lie bracket was exactly defined by the above formula, using
the fact that d2

1 = 0. For the differential dL, observe that d2 = 0 implies that d0 ◦ d1 + d1 ◦ d0 = 0
and d2

0 = 0, since they rise word length by one respectively zero. From the first identity it follows
that dL is a Lie derivation, as

〈v; sdL([x, y]) = (−1)|v|〈d0(v); s[x, y]〉 = (−1)|v|(−1)|y|+1〈d1 ◦ d0(v); sx, sy〉
= (−1)|v|+1(−1)|y|+1〈d0 ◦ d1(v); sx, sy〉
= (−1)|y|+1〈d1(v); sdL(x), sy〉+ (−1)|v|+1〈d1(v); sx, sdL(y)〉
= 〈v; s[dL(x), y]〉+ (−1)|x|〈v; s[x, dL(y)]〉,

where we used the fact that |v| = |x| + |y| in the last step. The second to last step is due to the
fact that 〈d0(w); sx, sy〉 = 〈w; sx, sdL(y)〉 + (−1)|w|〈w; sdL(x), sy〉 for any w ∈ Λ2V , which follows
by the definition of the pairing and the derivation property of d0. Finally, we can directly deduce
that dL is a differential from the fact that d2

0 = 0, so (L, dL) is a connected chain Lie algebra.

Remark 4.2.10. Given any minimal Sullivan algebra (ΛV, d) where V = V ≥2 has finite type,
remember (ΛV, d1) is itself a minimal Sullivan algebra. The connected chain Lie algebra L that we
obtain from (ΛV, d1) through the identity

C∗(L, 0) = (ΛV, d1)

as described in proposition 4.2.9 is exactly the homotopy Lie algebra of (ΛV, d). Vice versa, if L
is the homotopy Lie algebra of some Sullivan algebra (ΛV, d) and we view it as a DGL with zero
differential, then the corresponding cochain algebra C∗(L, 0) is exactly the minimal Sullivan algebra
(ΛV, d1). This is due to the fact that V has finite type, so each V i is a reflexive vector space. We
thus get a natural isomorphism j : V → (V ∗)∗ = (sL)∗, which is given by j(v)(sx) = 〈v; sx〉 with
pairing defined as in preparation 4.2.8. Hence, we may again identify v with 〈v;−〉 and, this way,
identify C∗(L, 0) with (ΛV, d1).
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Remark 4.2.11. Note that the expressions in proposition 4.2.9 exactly mean that d0 is the sus-
pended dual of dL and, the other way around, dL is the desuspended dual of d0. That is, given
(L, dL) and V := (sL)∗, the suspended dual is the differential d∗L : V → V given by

〈d∗L(v); sx〉 = (−1)|v|〈v;−dL(sx)〉 = (−1)|v|〈v; sdL(x)〉 = 〈d0(v); sx〉,

which shows d0 = d
∗
L. Vice versa, given (ΛV, d) and sL := V ∗, we see that for the dual d∗0 : sL→ sL

it holds

〈v; d∗0(sx)〉 = (−1)|sx|〈d0(v); sx〉 = 〈v;−sdL(x)〉 = 〈v; dL(sx)〉,

and therefore dL = d∗0.

Example 4.2.12. We have seen in 1.4.6 that the free Lie algebra L(v) on a single generator is given
by

L(v) =

{
Kv if |v| = 2n,

Kv ⊕ K[v, v] if |v| = 2n+ 1,

for some n ≥ 1. By proposition 4.2.9, in the first case C∗(L(v), 0) is just the Sullivan algebra in one
generator e dual to v, meaning e is the unique linear map on Kv that is given by 〈v; e〉 = 1. The
differential in C∗(L) is trivial, as the bracket and differential in L(v) vanish. Since the vector space
generating C∗(L) is the suspended dual of L, we arrive at |e| = 2n + 1. In the second case, the
bracket is not trivial and we get an element [v, v] of degree 4n+2. We again denote the element dual
to v by e, this time |e| = 2n+2, and get a second generator e′ which is dual to [v, v], so |e′| = 4n+3.
Then d1(e′) is the element defined by 〈d1(e′); sv∧sv〉 = 〈e′; s[v, v]〉 = 1, as sv∧sv is the only element
in ΛsL(v) of degree 4n+4. However, it holds 〈e2; sv∧sv〉 = 〈e; sv〉2+(−1)|sv||sv|〈e; sv〉2 = 2 and thus
2d1(e′) = e2. We may then switch to 2e′ as generator, naming it e′ again, to arrive at d1(e′) = e2.
As before, d0 = 0 since there is no differential in L(v), and so d = d1. To summarize, we get

C∗(L(v), 0) =

{
(Λ(e), 0) with |e| = 2n+ 1,

(Λ(e, e′), d(e′) = e2) with |e| = 2n+ 2.

Suppose now (E, dE) is an arbitrary, connected chain Lie algebra of finite type and let (ΛV, dV )
be the minimal Sullivan algebra from the minimal Sullivan model

m : (ΛV, dV )
'−−→ C∗(E, dE)

of the Sullivan algebra C∗(E, dE) = (ΛW,d0 +d1) with W = (sE)∗ by proposition 4.2.9. As before,
let L be the homotopy Lie algebra of (ΛV, dV ). The linear part of m is the map

Q(m) : V →W,

which commutes with the linear part of the differentials. Since (ΛV, dV ) is minimal, the linear
part of dV vanishes and we are left with d0 ◦ Q(m) = 0. In other words, Q(m) as a morphism
of complexes (V, 0) → (W,d0) and hence induces H(Q(m)) : V → H(W,d0). Finally, it holds
H(W,d0) = H((sE)∗, d

∗
E) = sH(E, dE)∗ and V ∗ = sL, which means H(Q(m)) dualizes to a map

H(Q(m))∗ : sH(E, dE)→ sL.

Proposition 4.2.13. The map Q(m) induces an isomorphism H(Q(m)) : V
∼=−−→ H(W,d0) of graded

vector spaces, which desuspends to a dual isomorphism

s−1H(Q(m))∗ : H(E, dE)
∼=−−→ L

of graded Lie algebras.
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Proof. We begin by noting that as mentioned in remark 3.4.10, it holds that H(Q(m)) is an isomor-
phism, thus s−1H(Q(m))∗ surely is an isomorphism of graded vector spaces. Now, by comparison
of word length, the fact that (d0 + d1)2 = 0 implies d0 ◦ d1 = −d1 ◦ d0. The sign can be corrected
by setting d′1(w) := (−1)|w|d1(w) for w ∈ W and denoting the resulting derivative on ΛW again
by d1. Note that this does not change the isomorphy type of (ΛW,d0 + d1) and we end up with
d0 ◦ d1 = d1 ◦ d0. In other words, d1 : (ΛW,d0)→ (ΛW,d0) induces

H(d1) : H(ΛW,d0)→ H(ΛW,d0).

Consider C∗(H(E), 0) = (ΛsH(E)∗, d′1), where the differential d′1 is defined by the Lie bracket in
H(E). The natural isomorphism H(W ) = H(sE∗) ∼= sH(E)∗ given by [w] 7→ H(w) identifies H(d1)
with d′1. Thus C∗(H(E), 0) = (ΛH(W,d0), H(d1)), which exhibits H(E) as homotopy Lie algebra
of (ΛH(W,d0), H(d1)).
To show that homotopy Lie algebras are a functorial construction, in proposition 4.1.9 we argued
that a morphism ΛQ(ϕ) : (ΛV, d1) → (ΛW,d1) induces a morphism of graded Lie algebras ψ =
s−1Q(ϕ)∗ : E → L between the homotopy Lie algebras. The same then applies to

ΛH(Q(m)) : (ΛV, (dV )1)→ (ΛH(W,d0), H(d1))

and shows that s−1H(Q(m))∗ : H(E)→ L is a morphism of graded Lie algebras.

Remark 4.2.14. Proposition 4.2.13 states that, for a connected chain Lie algebra of finite type, the
minimal Sullivan model via C∗(−) contains the homology Lie algebra in the form of the homotopy
Lie algebra of the model. Moreover, it shows that if we replace C∗(E, dE) = (ΛW,d0 + d1) by
a minimal Sullivan algebra (ΛV, dV ), we get rid of d0 and obtain (dV )1 = H(d1). However, the
differential dV may now have arbitrary many terms (dV )i of higher order, raising word length by
i ≥ 1.

We have covered how to translate from connected chain Lie algebras to commutative cochain
algebras. For the sake of completeness, let us briefly discuss the other way round. By utilizing L on
the dual of a commutative cochain algebra, we obtain a transition from the commutative cochain
algebras to connected chain Lie algebras.

Remark 4.2.15. Suppose we have a commutative cochain algebra (A, d) of finite type with A0 = K
and A1 = 0. Set (C, dC) := Hom(A,K) as defined in general for complexes, i.e. dC(ϕ) = −(−1)|ϕ|ϕ◦
d and (C, dC) is a chain complex. Note that the dual of the multiplication is given by the map
∆: C → C⊗C, ∆(ϕ)(a⊗b) := ab, ϕ ∈ C, a, b ∈ A. This is in fact a comultiplication, making (C, dC)
a co-commutative differential graded coalgebra. Hence, we may apply the Quillen construction and
denote the obtained free DGL by

L(A,d) := L(C, dC) = L(Hom(A,K)).

We observe L(A,d) is a free connected chain Lie algebra of finite type by the assumptions made for
(A, d). Finally, applying the Hom(−,K) functor to the quasi-isomorphism from theorem 4.2.6, we
obtain a quasi-isomorphism of commutative cochain algebras C∗(L(A,d))

'−−→ (A, d) which is in fact
a Sullivan model for (A, d) by proposition 4.2.9.

Example 4.2.16. Assume (ΛV, d) is a minimal Sullivan algebra, where the underlying graded
vector space is of finite type and V = V ≥2. Then by remark 4.2.15 L(ΛV,d) is a free connected
chain Lie algebra of finite type, and C∗(L(ΛV,d)) is a Sullivan algebra with differential d0 + d1 by
proposition 4.2.9. Further, we get a quasi-isomorphism η : C∗(L(ΛV,d))

'−−→ (ΛV, d), so if (ΛV, d) is a
Sullivan model of some space then so is C∗(L(ΛV,d)). Note, however, that in general C∗(L(ΛV,d)) will
not be minimal, as d0 is defined by the dual of the differential d in ΛV due to the cobar construction
1.3.9.
Since (ΛV, d) is a Sullivan algebra, we find a lift ϕ : (ΛV, d)→ C∗(L(ΛV,d)) of the identity on ΛV over
η by proposition 3.4.5. Since η◦ϕ ' id as morphisms on Sullivan algebras, we haveH(η)◦H(ϕ) = id,
exhibiting ϕ as quasi-isomorphism. Thus, (ΛV, d) is a minimal Sullivan model for C∗(L(ΛV,d)).
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4.3 Free Lie Models

As with Sullivan algebras and connected cochain algebras, a major advantage of free graded Lie
algebras is that they provide models for arbitrary connected chain Lie algebras. Note here that LV
is a connected chain Lie algebra if and only if V = V+.

Definition 4.3.1. Let (L, dL) be a connected chain Lie algebra. A free model of (L, dL) is a
quasi-isomorphism

m : (LV , d)
'−−→ (L, d),

where V = V+ is a graded vector space.

The existence of free models for connected chain Lie algebras is an immediate consequence of
theorem 4.2.6, since L(C∗(L, dL)) is a free connected chain Lie algebra and hence

ψ : L(C∗(L, dL))
'−−→ (L, dL)

is a natural free model of (L, dL). For our purpose, however, it will be essential to have a more
detailed description of free Lie models.

Construction 4.3.2. A more constructive approach to obtain a free model involves the extension
of a given morphism ψ : (LW , d) → (L, dL) to a free model of the form m : (LW⊕V , d)

'−−→ (L, dL).
For this, assume m is already constructed on LW⊕V≤k for k ≥ 0 such that Hr(m) is an isomorphism
for r < k and is surjective for r = k.

• Suppose Hk+1(m) is not surjective and let (βj)j∈J be a basis of coker(Hk+1(m)), where J is
some index set. For each βj , choose a representing cycle zj ∈ L. Let V 1

k+1 be the vector space
generated by elements (wj)j∈J with |wj | = k + 1 and define d(wj) := 0, m(wj) := zj .

• Suppose further Hk(m) is not injective and let (αi)i∈I be a basis of ker(Hk(m)), where I is
some index set. For each αi, choose a representing cycle xi ∈ LW⊕V≤k . Since [m(xi)] = 0, we
find yi ∈ L of degree k+ 1 such that dL(yi) = m(xi). Let V 2

k+1 be the vector space generated
by elements (vi)i∈I with |vi| = k + 1 and define d(vi) := xi, m(vi) := yi.

Note that this also contains the first step of the construction when we specify m = ψ and k = 0.
Finally, set Vk+1 := V 1

k+1⊕V 2
k+1. We can use this construction to inductively extend m to a map on

LV⊕W . The arguments for the induction beginning and the induction step are the same, so assume
m has been extended to a map m : LW⊕V≤k → L. The construction above defines m on Vk+1, thus
we get m : W ⊕ V≤k+1 → L. We may then use the universal property of the free graded algebra to
extend m to a map on LW⊕V≤k+1

. The corresponding commutative diagram is

W ⊕ V≤k //

��

W ⊕ V≤k+1
m //

��

L

LW⊕V≤k // LW⊕V≤k+1

66

where the maps in the left square are the inclusions. This shows the newly defined map on LW⊕V≤k+1

is indeed an extension on the previous map on LW⊕V≤k . In a similar manner, extend d to a differ-
ential in LW⊕V≤k+1

and observe it commutes with m by construction. Iterating this procedure and
defining V := ⊕Vk yields a quasi-isomorphism m : (LW⊕V , d) → (L, dL) together with a commuta-
tive diagram

(LW⊕V , d)
m
'

// (L, dL)

(LW , d)

ff

ψ

99

where again the unlabeled arrow is the inclusion.
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Remark 4.3.3.

(a) Just as with Sullivan algebras, the differential d in a free connected chain Lie algebra (LV , d)

decomposes to a sum di : V → L(i+1)
V , where L(i+1)

V is the space containing the elements of
bracket length i+ 1. The map d0 : V → V is then defined by the condition d(v)− d0(v) ∈ L(≥2)

V

and is a differential in V , as d2
0 = 0. It is called the linear part of the differential.

(b) Analogously, for a morphism ϕ : (LV , d)→ (LW , d) of free connected chain Lie algebras, define
the linear part of ϕ to be the chain complex morphism

ϕ0 : (V, d0)→ (W,d0)

for which ϕ(v)− ϕ0(v) ∈ L(≥2)
W for all v ∈ V .

(c) Let (LV , d) be a free differential graded Lie algebra. Remember that LV = V ⊕ [LV ,LV ], where
[LV ,LV ] = L(≥2)

V is the subspace of elements with bracket length at least two. Clearly [LV ,LV ]
is an ideal preserved by the differential, and the linear part d0 of the differential is obtained by
factoring out the parts of d that lie in [LV ,LV ]. Hence, dividing by [LV ,LV ] yields a surjective
chain complex morphism

η : (LV , d)→ (V, d0).

Similarly to the case of Sullivan algebras, for the uniqueness of the free Lie model, additional
assumptions regarding the differential have to be made. Remember that a Sullivan model is called
minimal if the linear part of the differential vanishes. Analogously, we make the following definition.

Definition 4.3.4. A free connected chain Lie algebra (LV , d) with d0 = 0 is called minimal. A
quasi-isomorphism

m : (LV , d)
'−−→ (L, dL)

of connected chain Lie algebras, where (LV , d) is minimal, is called a minimal free model of (L, dL).

Theorem 4.3.5. Every connected chain Lie algebra (L, dL) has a minimal free Lie model

m : (LV , d)
'−−→ (L, dL)

that is unique up to isomorphism.

Proof. The existence of a free Lie model (LW , d)
'−−→ (L, dL) is proven in construction 4.3.2 above.

We will outline the main ideas on how this can be improved to a minimal free Lie model. First,
decompose W as direct sum of subspaces V ⊕ U ⊕ d0(U) such that d0|V = 0. Denote by I ⊆ LW
the ideal that is generated by U and d0(U), then I is preserved by d and we obtain the quotient
connected chain Lie algebra (LW /I, d). One can check that the quotient map on the one hand
defines an isomorphism LW /I ∼= LV and on the other may be used to lift the identity on LV to a
quasi-isomorphism (LV , d)

'−−→ (LW , d). The composition with (LW , d)
'−−→ (L, dL) then exhibits

(LV , d) as minimal free Lie model of X. For a more detailed explanation and for the uniqueness
part, the reader may check chapter 22 of [7].

Example 4.3.6. Based on the situation of example 4.2.16, given a minimal Sullivan model (ΛV, d),
assume m : (LW , ∂)

'−−→ L(ΛV,d) is a minimal free Lie model. As mentioned in remark 4.2.5 that
means C∗(m) is a quasi-isomorphism, and hence the same is true for its dual C∗(m) : C∗(L(ΛV,d))→
C∗(LW , ∂). Precomposing this with the quasi-isomorphism ϕ from example 4.2.16 we get a quasi-
isomorphism

ψ : (ΛV, d)
'−−→ C∗(LW , ∂).

In other words, if (LW , ∂) is a minimal free Lie model of L(ΛV,d), then (ΛV, d) is a minimal Sullivan
model of C∗(LW , ∂).
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Now, given a free differential graded Lie algebra (LV , d), one can suspend the linear part d0 to
yield a differential d in sV by defining d(sv) := −sd0(v).

Proposition 4.3.7. There exists a natural quasi-isomorphism of complexes

θ : C∗(LV , d)
'−−→ (sV ⊕ K, d)

that is the composition ΛsLV → sLV ⊕ K → sV ⊕ K of the division by Λ≥2sLV followed by the
division by s[LV ,LV ].

Proof. This is proven in chapter 22 of [7].

Remark 4.3.8. In particular, this yields an isomorphism

H(θ) : H(C∗(LV , d))
∼=−−→ H(sV ⊕ K, d) = sH(V, d0)⊕ K

which dualizes to an isomorphism

H(θ)∗ : sH(V, d0)∗ ⊕ K
∼=−−→ H(C∗(LV , d))

of graded vector spaces. Moreover, assuming that ϕ : (ΛW,d)
'−−→ C∗(LV , d) is a minimal Sullivan

model, the composition of H(ϕ) with the inverse of H(θ)∗ yields an isomorphism

Φ := (H(θ)∗)−1 ◦H(ϕ) : H+(ΛW,d)
∼=−−→ sH(V, d0)∗

of graded vector spaces. Now, precomposing θ with the inclusion sLV ↪→ ΛsLV exactly yields the
surjection sη : sLV → sV . Moreover, we have the canonical projections ΛW → ΛW/Λ≥2W = W⊕K
and C∗(LV ) = ΛsL∗V → ΛsL∗V /Λ

≥2sL∗V , where the second projection can be identified as the dual
of the inclusion sLV ↪→ ΛsLV . It follows that the induced linear maps ζ and ζ ′ on homology fit
into the commutative diagram

H+(ΛW,d)

Φ
∼=

**H(ϕ)

∼=
//

ζ

��

H+(C∗(LV , d))

ζ′

��

sH(V, d0)∗
H(θ)∗

∼=
oo

sH(η)∗tt
W

H(Q(ϕ))

∼=
// sH(LV , d)∗

where H(Q(ϕ)) is an isomorphism as mentioned in remark 3.4.10.

In the special case that (LV , d) is minimal free connected chain Lie algebra, we have that (LV )0 = 0
and d0 = 0. This means the induced isomorphisms H(θ) and H(θ)∗ read

H(C∗(LV , d)) ∼= sV ⊕ K and sV ∗ ⊕ K ∼= H(C∗(LV , d)).

and Φ becomes an isomorphism H+(ΛW,d)
∼=−−→ sV ∗.

4.4 Lie Models of Spaces

One might already guess how this theory can be applied to obtain models for topological spaces, since
the functors APL(−) and C∗(−) connect the world of topological spaces and, respectively, connected
chain Lie algebras with the world of commutative cochain algebras. So as before, this category will
be the playground for Lie models, and many strategies and statements from the theory of Sullivan
models can be used. However, while we do switch to the category of DGAs for the definition of a
Lie model, the underlying Lie algebra as such does contain itself useful and accessible information
on the space it is modelling. For example, we will see that the homology Lie algebra of the DGL
that provides a model for some space X is naturally isomorphic to the homotopy Lie algebra of X,
and free chain Lie algebras allow for a direct description of a fitting CW complex they provide a
model for.
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Definition 4.4.1.

(a) A Lie model for a simply connected space X with rational homology of finite type is a connected
chain Lie algebra (L, dL) together with a DGA quasi-isomorphism

m : C∗(L, dL)
'−−→ APL(X).

In case L = LV is a free graded Lie algebra, we speak of a free model for X. If (L, dL) is minimal
as a DGL, we say the model is minimal.

(b) Assume f : X → Y is a continuous map between simply connected spaces with rational homol-
ogy of finite type, and m : C∗(L, dL)

'−−→ APL(X), n : C∗(E, dE)
'−−→ APL(Y ) are Lie models.

Then a Lie representative of f is a DGL morphism

ϕ : (L, dL)→ (E, dE)

such that m ◦ C∗(ϕ) ' APL(f) ◦ n.

Example 4.4.2. For the free Lie algebra in one generator L(v), we have seen that C∗(L(v)) =
(Λ(e), 0) if |v| = 2n and C∗(L(v)) = (Λ(e, e′), d(e′) = e2) if |v| = 2n+ 1, where |e| = |v|+ 1. Thus,
in both cases we get the minimal Sullivan algebras from the model of the sphere S|v|+1, so we may
use the usual quasi-isomorphism and obtain a minimal free Lie model

C∗(L(v))
'−−→ APL(Sk+1), with k = |v|.

Remark 4.4.3. As the preceding example shows, Lie models can be obtained by finding a connected
chain Lie algebra (L, dL) such that C∗(L, dL) is the Sullivan algebra in a Sullivan model of X. This
is due to proposition 4.2.9 which exhibits C∗(L, dL) as Sullivan algebra. However, the corresponding
candidates must be Sullivan models of the form (ΛV, d = d0 + d1). In the special case that X has a
minimal model of the form (ΛV, d1), remark 4.2.10 exhibits the homotopy Lie algebra of the minimal
model and hence the homotopy Lie algebra of X as Lie model for X.
Note that the other way round, a Lie model for X automatically provides a Sullivan model of
the form (ΛV, d = d0 + d1) for X, as C∗(L, dL) is of this form by proposition 4.2.9. However, as
discussed in remark 4.2.14, the differential of the minimal Sullivan model of X can have arbitrary
many higher terms.
Furthermore, from the definition one sees that a morphism ϕ is a Lie representative of f if and only
if C∗(ϕ) is a Sullivan representative.

Remark 4.4.4. Suppose X has a commutative model (A, d) of finite type with A0 = K and
A1 = 0. The Quillen construction yields a free connected chain Lie algebra L(A,d) of finite type.
As mentioned in remark 4.2.15 there exists a natural quasi-isomorphism C∗(L(A,d))

'−−→ (A, d) that
provides a Sullivan model for (A, d). Now, since (A, d) and APL(X) are weakly equivalent, this
means C∗(L(A,d)) is also a Sullivan model for X. Remember, a corresponding quasi-isomorphism
C∗(L(A,d))

'−−→ APL(X) was obtained by lifting through the chain of quasi-isomorphisms connecting
(A, d) and APL(X).
Moreover, assume the connected chain Lie algebra (L, dL) in a Lie model for X is linked to a second
connected chain Lie algebra (E, dE) by a chain of DGL quasi-isomorphisms. Then C∗(−) preserves
quasi-isomorphisms, so the Sullivan algebras C∗(L, dL) and C∗(E, dE) are weakly equivalent. Lifting
through the chain of DGA quasi-isomorphisms and composition with the quasi-isomorphism from
the Lie model (L, dL) yields a quasi-isomorphism C∗(E, dE)

'−−→ APL(X). Therefore, (E, dE) is a
Lie model for X.

Proposition 4.4.5. Assume X, Y are simply connected topological spaces with rational homology
of finite type. Further, assume (L, dL) is a connected chain Lie algebra of finite type. It holds:
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(i) X has a minimal free Lie model (LV , d) that is unique up to isomorphism. Every continuous
map f : X → Y has a Lie representative.

(ii) If K = Q, then (L, dL) is the Lie model of a simply connected CW complex that is unique up
to rational homotopy equivalence.

Proof. We will only show the existence part of the first assertion, to provide a feeling for how
these statements can be derived from the theory of Sullivan models. For a complete proof of the
statement, see chapter 24 in [7]. Let m : (ΛV, d)

'−−→ APL(X) be a minimal Sullivan model for X.
By the assumptions made for X we deduce that V = V ≥2 of finite type. Then by remark 4.2.15
we obtain a natural quasi-isomorphism η : C∗(L(ΛV,d))

'−−→ (ΛV, d) of Sullivan algebras. Hence, the
composition m ◦ η is a quasi-isomorphism and exhibits L(ΛV,d) as free Lie model of X. While this
need not be minimal, by the same arguments used in the proof of theorem 4.3.5 there exists a
free minimal chain Lie algebra (LV , d) that is connected and of finite type, together with a quasi-
isomorphism L(ΛV,d)

'−−→ (LV , d) of DGLs. Applying the functor C∗(−) then shows that (LV , d) is
in fact a minimal free Lie model for X.

Let X be a simply connected space with rational homology of finite type, and let (E, dE) be the
DGL from a Lie model for X. Then a minimal Sullivan model (ΛV, d)

'−−→ C∗(E, dE) for C∗(E, dE)
automatically provides a minimal Sullivan model for X, since the composition

(ΛV, d)
'−−→ C∗(E, dE)

'−−→ APL(X)

is a quasi-isomorphism.
The other way around, assume (ΛVX , d) to be the minimal Sullivan algebra from the Sullivan
model of X and let (E, dE) as before. Then, by lifting the minimal Sullivan model over the quasi-
isomorphism from the Lie model, we obtain a quasi-isomorphism (ΛVX , d)

'−−→ C∗(E, dE) and thus
a minimal Sullivan model for C∗(E, dE). The homotopy commutative diagram is

C∗(E, dE)

'
��

(ΛVX , d)

'
55

'
// APL(X).

In this sense, the minimal Sullivan models for X and for the Lie model of X are the same, and we
may write V = VX in the following.

Remark 4.4.6. Associated with X and respectively (ΛVX , d), we obtain the homotopy Lie algebras
LX and L, where LX = π∗(ΩX)⊗K with a bracket defined by the Whitehead product and sL = V ∗X
with a bracket defined by d1. In theorem 4.1.10 we showed that these are actually isomorphic as Lie
algebras. We may now apply proposition 4.2.13 to observe that H(E, dE) ∼= L, thus the composition
yields an isomorphism

σE : H(E, dE) ∼= L ∼= LX = π∗(ΩX)⊗ K

as graded Lie algebras. That is, if [ , ] is the inherited Lie bracket onH(E, dE), it holds σE([z1, z2]) =
(−1)|z1|+1∂([∂−1(σE(z1)), ∂−1(σE(z2))]W ) for all z1, z2 ∈ H(E) due to the definition of the bracket
in LX . Finally, remember that we identified sLX = π∗(X) ⊗ K through the suspension sα =
−(−1)|α|∂−1(α), with ∂ being the connecting homomorphism from the long exact sequence of the
path space fibration of X. Thus, by suspending the isomorphism above, we obtain an isomorphism

τE : sH(E, dE)
∼=−−→ π∗(X)⊗ K.
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Now, since σE is Lie bracket preserving, this means for τE on the suspended bracket elements that

τE(s[z1, z2]) = sσE([z1, z2]) = s[σE(z1), σE(z2)] = −(−1)|z1|+|z2|∂−1([σE(z1), σE(z2)])

= −(−1)|z1|+|z2|∂−1((−1)|z1|+1∂([∂−1(σE(z1)), ∂−1(σE(z2))]W )

= (−1)|z2|[−(−1)|z1|sσE(z1),−(−1)|z2|sσE(z2)]W

= (−1)|z1|[τE(sz1), τE(sz2)]W ,

where we made use of the definition of the suspension in sLX and the bracket in LX . We see that
a Lie model for X does not only carry the information on rational homotopy groups, but also, like
Sullivan algebras, allows a description of the Whitehead product.

While the preceding discussion is true for arbitrary Lie models (E, dE), free Lie models can yield
some advantages. Remember that a minimal Sullivan model contains the information on homotopy
groups in its underlying vector space. As we shall see now, with any minimal free Lie model (LV , d)
of X, we may read off the homology of X directly from the vector space V . Moreover, dual to the
case of Sullivan models, a free Lie model contains the Hurewicz homomorphism.

Preparation 4.4.7. Suppose therefore m : C∗(LV , d)
'−−→ APL(X) is a free Lie model. Then, since

Hom(−,K) commutes with homology, the isomorphismH(m) : H(C∗(LV , d))
∼=−−→ H∗(X; K) dualizes

to an isomorphism

(H(m))∗ : H∗(X; K)
∼=−−→ H(C∗(LV , d)).

By proposition 4.3.7 there exists a quasi-isomorphism θ : C∗(LV , d)
'−−→ (sV ⊕ K, d). Here d was

defined by d(sv) = −sd0(v), with d0 being the linear part of the differential d. Hence H(sV ⊕K, d) =

sH(V, d0)⊕K. Altogether this yields an isomorphism H(θ)◦ (H(m))∗ : H∗(X; K)
∼=−−→ sH(V, d0)⊕K

whose inverse we will denote by

Ψ: sH(V, d0)⊕ K
∼=−−→ H∗(X; K).

It simplifies to H∗(X; K) ∼= sV ⊕ K when (LV , d) is a minimal free differential graded Lie algebra
and as such d0 = 0. Moreover, remember there exists a linear map η : (LV , d) → (V, d0) which is
obtained through division by [LV ,LV ].

Proposition 4.4.8. Assume (LV , d) is a free model for X and let τ : sH(LV , d)
∼=−−→ π∗(X)⊗ K be

the isomorphism from remark 4.4.6. Further, let η and Ψ be the linear maps described in preparation
4.4.7 and let hK : π∗(X)⊗ K→ H+(X; K) be the Hurewicz homomorphism. Then the diagram

sH(LV , d)
τ
∼=

//

sH(η)
��

π∗(X)⊗ K

hK

��
sH(V, d0)

Ψ
∼=

// H+(X; K)

commutes, allowing to identify hK with sH(η).

Proof. We use the same argument as in remark 4.3.8. The composition of the quasi-isomorphism

θ : C∗(LV , d)
'−−→ (sV ⊕ K, d)

with the inclusion j : sLV ↪→ C∗(LV ) precisely gives sη. The diagram thus reads

sH(LV , d)
τ
∼=

//

H(j)

��
sH(η)

$$

π∗(X)⊗ K

hK

��
H(C∗(LV , d))

(H(m)∗)−1

∼=
//

H(θ)
��

H+(X; K)

sH(V, d0)

Ψ

∼=
55
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where the lower triangle commutes by definition. Thus, it remains to show that the square com-
mutes, but it is the dual to the commutative diagram in remark 3.6.8.

In the situation of preparation 4.4.7, a minimal Sullivan model ϕ : (ΛW,d)
'−−→ C∗(LV , d) au-

tomatically provides a minimal Sullivan model for X. We may thus combine the statements of
remarks 3.6.8 and 4.3.8 to obtain a commutative diagram

H∗(X,K)

h∗K
��

H+(ΛW,d)

ζ

��

H(m◦ϕ)

∼=
oo Φ

∼=
// sH(V, d0)∗

sH(η)∗

��
Hom(π∗(X),K) W

ν
∼=

oo H(Q(ϕ))

∼=
// sH(LV , d)∗

which is the exact dual of the commutative diagram in the proposition above.

4.5 Cellular Lie Models

Assume X is a simply connected topological space with rational homology of finite type. Let I be
an index set and suppose fi : (Snii , s0)→ (X,x0) is a continuous map for each i ∈ I, where ni ≥ 1.
We set f := (fi)i∈I and attach cells (Bni+1

i )i∈I to X via f to form the adjunction space

Y := X ∪f
(⋃̇

i∈I
Bni+1
i

)
.

We will now see that a free Lie model for X can be extended to a free Lie model for Y using the
classes of the attaching maps. It is worth to mention that a comparable strategy does not exist for
Sullivan models, since the best we can achieve so far is the construction of a commutative model
for Y as introduced in proposition 3.6.13. This will unlock a way of constructing a CW complex X
for any given free rational and connected chain Lie algebra (LV , d) of finite type, such that (LV , d)
provides a free Lie model for X. Thereby, it will be clear for each cell what algebraic data relating
(LV , d) is responsible for its attachment, giving this construction a much more geometric flavour
than the spatial realization of Sullivan algebras.

Preparation 4.5.1. Let

mX : C∗(LV , d)
'−−→ APL(X)

be a free Lie model for X. Associated with it is the isomorphism

τ : sH(LV , d)
∼=−−→ π∗(X)⊗ K.

Now for every class αi := [fi] ∈ πni(X) there exists the class sβi ∈ sH(LV , d) such that τ(sβi) = αi.
Note that this is an abuse of notation, since the expression αi ∈ πni(X) ⊗ Q actually refers to the
canonical image αi ⊗ 1 of αi in πni(X)⊗ Q. Especially, if αi is torsion, then 0 = αi ∈ πni(X)⊗ Q.
For every such class βi, choose a representing cocycle zi ∈ LV such that [zi] = βi. Note that any
zi has degree ni − 1. For every i ∈ I, introduce a generator wi with |wi| := ni and denote by
W the graded vector space with basis (wi)i∈I . Extend the differential on LV to LV⊕W by setting
d(wi) := zi.

Theorem 4.5.2. There exists a quasi-isomorphism mY : C∗(LV⊕W , d)
'−−→ APL(Y ) and thus the

chain Lie algebra (LV⊕W , d) is a Lie model for Y . Furthermore, there exists a homotopy commuta-
tive diagram

C∗(LV )

mX
��

C∗(LV⊕W )
C∗(λ)oo

mY
��

APL(X) APL(Y )
APL(j)

oo

where j : X ↪→ Y and λ : LV ↪→ LV⊕W denote the corresponding inclusions.
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Proof. Only a sketch of the proof will be provided, roughly summarizing the main ideas. Let
(ΛVX , d)

'−−→ APL(X) be a minimal Sullivan model and remember that the minimal Sullivan models
of APL(X) and C∗(LV ) coincide, so we get a quasi-isomorphism (ΛVX , d)

'−−→ C∗(LV , d). Denote
by U the graded vector space with basis (ui)i∈I , where |ui| := ni + 1. Then, due to proposition
3.6.13 the cochain algebra A := (ΛVX ⊕ U, dA) defined by

dA(v) = d(v) +
∑
i∈I
〈v;αi〉, dA(ui) = 0

and uia := 0 for all i ∈ I, a ∈ A+ with ΛVX being a subalgebra, is a commutative model for Y . The
argumentation in remark 4.4.4 yields a quasi-isomorphism C∗(LA)

'−−→ APL(Y ), identifying C∗(LA)
as Sullivan model for Y and thus (LA, d) as Lie model for Y . From there on, one can construct a
DGL quasi-isomorphism (LA, d)

'−−→ (LV⊕W , d), see chapter 24 of [7]. The composition

C∗(LV⊕W , d)
'−−→ C∗(LA, d)

'−−→ APL(Y )

is then a quasi-isomorphism of cochain algebras and exhibits (LV⊕W , d) as Lie model for Y .

Construction 4.5.3. Assume now K = Q and suppose we are given:

• A connected CW complex X which has only finitely many cells in each dimension and no cells
of dimension one. This means X can be obtained from a point by attaching cells in dimensions
≥ 2, whereby only finitely many cells are attached for each dimension. Thus, theorem 4.5.2
can be applied to obtain a free Lie model for X.
To do so, we will proceed inductively over the dimension of the cells. A 0-cell {x0} has a trivial
free Lie model L = 0 since C∗(0) = Q and APL({x0}) = Q. Nevertheless, we will carry out
the argumentation for the attachment of 2-cells as well before proceeding with the induction
step. By assumption, X1 = X0 = {x0}, so let fi : S1

i → {x0} be the attaching maps of the
2-cells of X, where one may replace 2 by the minimal n ≥ 2 such that Xn 6= X0 in case X
has no cells of dimension 2. By assumption, i ∈ I1 for some finite index set I1 counting the
2-cells of X. Proceed by introducing vi with |vi| := 1 for each attaching map fi and denote
by V1 to be the graded vector space with basis (vi)i∈I1 , concentrated in degree 1. Since {x0}
has a trivial model, the corresponding homology vanishes and we set d(vi) = 0. Then the free
connected chain Lie algebra (LV1 , 0) is a free model for X2 by theorem 4.5.2.
Assume now by induction that Xn has a free Lie model of the form (LV<n , d) and that
we are provided with a family of attaching maps (fi : Sni → Xn)i∈In for the (n + 1)-cells
of X. As before, In is some finite index set, and we are provided with the isomorphism
τ : sH(LV<n , d)

∼=−−→ π∗(X
n) ⊗ Q. Choose zi ∈ LV<n such that s[zi] = τ−1([fi]) and denote

by Vn the graded vector space concentrated in degree n with basis (vi)i∈In , |vi| := n. Then
V<n+1 := V<n ⊕ Vn and we can extend d to a differential on LV<n+1 through d(vi) := zi. By
theorem 4.5.2, (LV<n+1 , d) is a free Lie model for Xn+1.
All in all, we obtain a free Lie model (LV , d) of X such that each (LV<n , d) provides a model
for Xn. It is called the cellular Lie model for X. Note that for the basis elements vi of V n it
holds s[d(vi)] = τ−1([fi]), where n ≥ 1 and i ∈ In.

• A free connected chain Lie algebra (LV , d) of finite type. Using once again theorem 4.5.2 we
are able to construct a CW complex X such that (LV , d) provides a cellular Lie model for X.
Since LV is connected, we see that V = V+, so LV<1 is trivial and thus provides a Lie model
for {x0} = X0 = X1. Further, V is of finite type, since LV is. Thus, we may choose a basis
(vi)i∈I1 of V1, where I1 is a finite index set. Now for each i ∈ I1 let fi : S1

i → X1 = {x0} be
the constant map and attach a 2-cell B2

i to X1 using fi to obtain

X2 := X1 ∪(fi)

(⋃̇
i∈I1

B2
i

)
= ∨i∈I1S2

i .
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Now by degree reasons, d(vi) = 0 for all i ∈ I1 and π1(X1) = 0. Thus by theorem 4.5.2,
(LV1 = LV<2 , 0) is a Lie model for X2.
Suppose by induction thatXn is already constructed such that (LV<n , d) is a cellular Lie model
for Xn. Again, this means there exists an isomorphism τ : sH(LV<n , d)

∼=−−→ π∗(X
n) ⊗ Q. A

choice for a basis of Vn is a finite family (vi)i∈In . Now the elements d(vi) are cycles of degree n−
1, and thus we get elements s[d(vi)] ∈ sH(LV<n , d) of degree n. Then τ(s[d(vi)]) ∈ πn(Xn)⊗Q,
so by linearity, we may choose vi such that τ(s[d(vi)]) = αi ⊗ 1 for some αi ∈ πn(Xn). Thus,
there exist continuous maps fi : Sni → Xn such that [fi] = τ(s[d(vn,i)]). Finally, for each
i ∈ In attach a (n+ 1)-cell Bn+1

i to Xn using fi to obtain

Xn+1 := Xn ∪(fi)

(⋃̇
i∈In

Bn+1
i

)
.

By construction and using again theorem 4.5.2 it follows that (LV<n+1 , d) is a cellular Lie
model for Xn+1. Proceeding inductively we arrive at X = ∪k≥0X

k. Further, there exists the
homotopy commutative diagram

C∗(LV , d)

ss
ww ''

++. . . C∗(LV<n , d)

'
��

oo C∗(LV<n+1 , d)

'
��

oo . . .oo

. . . APL(Xn)oo APL(Xn+1)oo . . .oo

in which the horizontal maps are induced by the corresponding inclusions and the vertical
arrows denote the quasi-isomorphisms from the cellular Lie models. The maps C∗(LV , d) →
C∗(LV<k , d) are also induced by the inclusions and are isomorphisms in degrees lower than
k + 1. This induces a quasi-isomorphism C∗(LV , d)

'−−→ APL(X) which exhibits (LV , d) as
cellular Lie model for X.

The description of a cellular Lie model becomes considerably more difficult when we allow X to
contain 1-cells. Nevertheless, some work has been done in trying to extend the above to the case
of arbitrary CW complexes. In [14], the authors describe a free Lie model for the interval, together
with a geometric interpretation of the construction. From there on, identifying the endpoints and
describing a corresponding implementation in the algebraic model, a Lie model for the circle is
provided.
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5 Realization of Minimal Sullivan Algebras with Quadratic
Differential

Suppose (ΛV, d = d1) is a minimal Sullivan algebra of finite type with V = V ≥2. Then, as mentioned
in remark 4.2.10, it holds C∗(L, 0) = (ΛV, d1), where L is the homotopy Lie algebra of (ΛV, d1).
Since V = V ≥2 of finite type, it holds L is a connected chain Lie algebra of finite type. Consequently,
there exists a free Lie model m : (LW , ∂)

'−−→ (L, 0) for (L, 0). As follows from the construction of
free Lie models, the free connected chain Lie algebra LW is of finite type, since L is. This means
there exists a CW complex X such that (LW , ∂) is a cellular Lie model for X and we get a quasi-
isomorphism ϕ : C∗(LW , ∂)

'−−→ APL(X). Therefore, the composition

ϕ ◦ C∗(m) : (ΛV, d1) = C∗(L, 0)
'−−→ C∗(LW , ∂)

'−−→ APL(X)

of DGA quasi-isomorphisms implies that (ΛV, d1) is a minimal Sullivan model for X.
In the following, we will use three constructions:

• construction 4.1.5, which describes how L is obtained from (ΛV, d1),

• the constructive method on how to obtain (LW , ∂) from (L, 0) as carried out in 4.3.2,

• the construction of a space X for which (LW , ∂) is a cellular Lie model, as seen in 4.5.3.

All in all, this will provide us with a constructive description of a space X for which (ΛV, d1) is a
minimal Sullivan model. The goal is then to investigate this construction, trying to form a direct
connection between algebraic information in (ΛV, d1) and geometric structures of X. In the best
case one could hope to formulate some sort of dictionary, translating between algebra and geometry,
which allows us to directly read off the cell structure of the realization X after having identified a
sufficient amount of algebraic information in (ΛV, d1). In general, this seems to be too ambitious.
However, we can describe a part of this dictionary, which will allow us to make statements regarding
the amount of cells in each dimension or the description of the initial steps in the construction of
X. Finally, both will be a direct consequence of accessible information in (ΛV, d1).
In the following, we will recall the above-mentioned constructions before applying them to some
examples. However, instead of presenting the topics in a general context again, the formulation of
some statements might be adjusted to the cases we need. The proofs of our main theorems will be
conducted during the course of this chapter. On the way, it will become clear how the information
translates from algebra to topology, and we will be able to observe where the difficulties arise when
it comes to computing things. To bypass these and to make things easier, we will make some
assumptions, but we will also try to provide an insight into what might still be possible in a more
general context.

5.1 Translating from a Sullivan to a Lie Algebra

We start with a minimal Sullivan algebra (ΛV, d1) of finite type with V = V ≥2. Throughout this
section, this will be the general condition we impose on all Sullivan algebras that we want to realize.
The homotopy Lie algebra of such a minimal Sullivan algebra is the Lie algebra L which satisfies
the equality

C∗(L, 0) ∼= (ΛV, d1).

More precisely, L is given by sL = V ∗ and the bracket [ , ] is defined by d1 through the identity

〈v; s[x, y]〉 = (−1)|y|+1〈d1(v); sx, sy〉

for all v ∈ V .
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Preparation 5.1.1. Let (vi)i∈I be a basis of ker(d1) ⊆ V and choose a subspace W ⊆ V such that
V = ker(d1) ⊕W . Then any basis (wj)j∈J of W complements the family (vi)i∈I to a basis of V
and it holds d1(vi) = 0 and d1(wj) 6= 0 for all i ∈ I, j ∈ J . We may assume the elements vi, wj
to be homogeneous and consider the corresponding dual basis in sL. That is, there exist elements
(sxi)i∈I and (syj)j∈J in sL such that 〈vi; sxi〉 = 1 = 〈wj ; syj〉, but they vanish on all other elements
of the basis of V . As before, we denote by A ⊆ L a subspace complementary to [L,L], such that
L = A⊕ [L,L] and hence sL = sA⊕ s[L,L]. However, we will see that the choice of a basis for V
already specifies a suitable space A.
We will frequently write up for basis elements of V when we do not want to distinguish whether the
elements are part of (vi)i∈I or (wj)j∈J . The corresponding dual basis element in sL will be denoted
by szp.

We may assume that the chosen basis of V is well-ordered, so in particular the index sets I and
J are well-ordered. In the following, we will take the ordinal sum I + J as order for the basis on V ,
that is the topological sum I + J with the convention that i ≤ j if i ∈ I and j ∈ J . Orders within
each index set I and J respectively stay unchanged. A basis of Λ2V is then given by the set

{vi1 ∧ vi2 , vi ∧ wj , wj1 ∧ wj2 | i1, i2, i ∈ I, j1, j2, j ∈ J, i1 ≤ i2, j1 ≤ j2},

where i1 = i2 or j1 = j2 is only possible if |vi1 | respectively |wj1 | is even. In particular, for an
element u ∈ V we can write

d1(u) =
∑
i1,i2

λi1,i2vi1 ∧ vi2 +
∑
i,j

κi,jvi ∧ wj +
∑
j1,j2

µj1,j2wj1 ∧ wj2 ,

where the restrictions on the pairs i1, i2 and j1, j2 will not be mentioned explicitly for the sake of
neatness. When the distinction of basis elements is to be ignored, this simplifies to

d1(u) =
∑
p,q

λp,qup ∧ uq

with p, q ∈ I + J , p ≤ q and p = q only if |up| is even.
Naturally, we define the order of the dual basis in L to be given by the ordinal sum I + J , too.
Furthermore, for a bracket [zl, zk] of basis elements, we agree to consider the case that k ≤ l. By
anti-symmetry, the corresponding statements for k > l follow immediately, possibly after a change
of sign. Using the Jacobi identity, this can be extended to brackets of higher length, where the
innermost elements are defined to have the smallest order.

Remark 5.1.2. We can now express the differential d1 in terms of linear combinations of a desig-
nated basis of Λ2V . This representation of d1 will allow us to examine the brackets in L. Therefore,
we first need to evaluate the basis elements up∧uq using the pairing Λ2V ×sL×sL from preparation
4.1.4. It immediately follows from the definition of the pairing that

〈up ∧ uq; szl, szk〉 =


1, if k = p < q = l

2, if k = p = q = l,

0 else.

Lemma 5.1.3. For any j ∈ J , use the basis (up ∧ uq)p,q of Λ2V to write

d1(wj) =
∑
p,q

λjp,qup ∧ uq

with unique coefficients λjp,q ∈ Q. Then for any two indexes k, l ∈ I + J , k ≤ l we can express the
bracket of the two corresponding basis elements zl, zk ∈ L through the coefficients λjk,l that appear
in d1(wj) in front of the product uk ∧ ul for each j ∈ J , namely

[zl, zk] =

{
(−1)|uk|

∑
j λ

j
k,lyj , if k 6= l

2
∑

j λ
j
k,kyj if k = l.
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In particular, [zl, zk] = 0 if and only if λjk,l = 0 for all j ∈ J .

Proof. Let x, y ∈ L and write s[x, y] =
∑

i λisxi +
∑

j µjsyj . Then d1(vi) = 0 by definition implies
λi = 〈vi; s[x, y]〉 = 0 for all i ∈ I. It follows that any suspended bracket s[x, y] is generated by the
elements (syj)j∈J and vanishes on cocycles. Therefore, write s[zl, zk] =

∑
j µjsyj and consider any

basis element wj . Express the element 0 6= d1(wj) in terms of the basis of Λ2V that is provided by
the basis (up)p∈I+J of V as described above. Then use the identity in remark 5.1.2 to verify

µj = 〈wj ; s[zl, zk]〉 = (−1)|zk|+1〈d1(wj); szl, szk〉 =

{
(−1)|uk|λjk,l if k 6= l,

2λjk,k if k = l.

Let us now observe how the basis elements xi and yj correlate to a fitting subspace A ⊆ L such
that L = A⊕ [L,L].

Remark 5.1.4. The space s[L,L] is generated by elements s[x, y] with x, y ∈ L. By lemma 5.1.3,
any such element is in turn a linear combination of (syj)j∈J , which implies that [L,L] lies in the
subspace of L generated by (yj)j∈J . On the other hand, for wj there exists some coefficient λjk,l 6= 0
such that

µs[zl, zk] = λjk,lsyj +
∑
r 6=j

λrk,lsyr, and thus yj =
µ

λjk,l
[zl, zk]−

∑
r 6=j

λrk,l

λjk,l
yr,

with µ being (−1)|uk| or 1
2 . Thus, for any choice of A such that L = A ⊕ [L,L] it follows that

yj /∈ A For all j ∈ J , which by linear independence essentially implies that yj ∈ [L,L]. In other
words, [L,L] is the subspace generated by (yj)j∈J and we may assume A to be the complementary
subspace generated by (xi)i∈I .

We obtain a simpler expression of the brackets [zl, zk] when we put the following restriction on
d1. Suppose that for a fixed basis element uk ∧ ul, the corresponding coefficients λjk,l in d1(wj) are
only non-zero for exactly one index j ∈ J . Then lemma 5.1.3 states that [zl, zk] = (−1)|uk|λjk,lyj or
respectively [zk, zk] = 2λjk,kyj . In particular, if this is true for every basis element of Λ2V , then each
yj ∈ [L,L] equals, up to a scalar to multiple, to just one bracket of basis elements (zp)p∈I+J . A
minimal Sullivan algebra (ΛV, d1) whose differential satisfies this additional property will be called
separated, as this exactly means that the representations of the elements d1(wj) all use separate
basis elements of Λ2V . The following statement summarizes what we have done so far.

Proposition 5.1.5. Let (ΛV, d1) be a minimal Sullivan algebra of finite type with V = V ≥2 and
basis as described. Let L = A⊕ [L,L] be the homotopy Lie algebra of (ΛV, d1) with A as before. It
holds:

(i) A basis element vi corresponds to a basis element xi in A ⊆ L.

(ii) A basis element uk ∧ ul ∈ Λ2V for which the coefficient λjk,l in d1(wj) is zero for all j ∈ J
implies that [zl, zk] = 0.

(iii) A basis element uk ∧ ul ∈ Λ2V for which the coefficient λjk,l in d1(wj) is non-zero for exactly
one j ∈ J implies that

[zl, zk] =

{
(−1)|uk|λjk,lyj , if k 6= l,

2λjk,kyj , if k=l.

Proof. The first claim follows from the proof of lemma 5.1.3. The remaining statements are an
immediate consequence of the preceding discussion and the statements of lemma 5.1.3.
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Remark 5.1.6. Instead of just expressing a bracket [zl, zk] in terms of the basis (yj)j∈J , we will
more frequently express the basis elements yj in terms of brackets, especially when we can do so
with a single bracket. Therefore, assume we are given a separated minimal Sullivan algebra. To
abbreviate notation, we combine the appearing factors and write yj = µjk,l[zl, zk]. Clearly, we have

µjk,l =
(−1)|uk|

λjk,l
for k 6= l and µjk,k =

1

2λjk,k
,

but we will henceforth not distinguish between the cases k = l and k 6= l. Note however that
normally, j will be a fix index and k, l ∈ I + J may be variable, but the restrictions from the
indexing of the basis of Λ2V , such as k ≤ l, apply. Note further that this allows us to express yj
as a bracket in L, but there will be multiple such bracket expressions in case that various basis
elements of Λ2V share the same index j ∈ J . More precisely, whenever we find j ∈ J such that for
uk ∧ ul and up ∧ uq it holds λjk,l 6= 0 and λjp,q 6= 0 for a separated minimal Sullivan algebra, we have
that µjk,l[zl, zk] = yj = µjp,q[zq, zp], relating these brackets.

The differential d1 defines the Lie bracket in L. Thus, in some sense, a more complicated d1

provides more brackets in L, making it closer to being free. Of special interest to us are brackets in
the elements xi ∈ A that evaluate to zero in L, although they would not vanish if L was free. They
will lead to the introduction of generators in a free Lie model of L, which we will come to in a bit.
For now, remember that such brackets were called relations of L and lie in the kernel of a natural
surjection LA → L, see remark 1.4.13. The second and third statement of proposition 5.1.5 provide
criteria for what behaviour of d1 may lead to the absence of bracket expressions. To clarify what
we mean, let us now discuss some examples.

Example 5.1.7. We start with the easiest minimal Sullivan algebra, (Λ(v), 0) with |v| odd. The
corresponding homotopy Lie algebra is generated by a single element x that has even degree, and
[x, x] = 0 in L. This is also true in the free graded Lie algebra L(x) generated by x, due to degree
reasons. Hence, in this case, L = L(x) is a free graded Lie algebra.
The case that |v| is even is at the first glance similar. Again, L is generated by an element x, and
the Lie bracket is trivial since the differential in (Λ(v), 0) is. This time however, |x| is odd, meaning
the bracket [x, x] is a relation and L is not free.

Example 5.1.8. Consider the minimal Sullivan algebra (Λ(v, w), d1(w) = v2), where |v| ≥ 2 is
even. Then L has the basis {x, y}, where |x| is odd. Using proposition 5.1.5 for the products v ∧w
and v2 we find that [y, x] = 0 and [x, x] = 2y in L. In particular, the bracket [x, x] is now non-trivial
and thus not a relation in L. Note further that while one might suspect [y, x] to be a relation in
L, in reality it holds [y, x] = 1

2 [[x, x], x] = 0, which already vanishes due to the Jacobi identity.
Therefore, we get L = L(x) = Qx⊕ Q[x, x], which is free as a graded Lie algebra.

Example 5.1.9. For a minimal Sullivan algebra (Λ(v1, v2), 0) with |v1|, |v2| ≥ 2 it immediately
follows that [x2, x1] = 0, since the differential is trivial. Further, also [x1, x1] = [x2, x2] = 0, but we
have to distinguish whether this is due to degree reasons (which is the case if |v1| or |v2| are odd,
so the products v2

1 or v2
2 vanish too) or not. In the latter case, the brackets provide relations in L.

Example 5.1.10. Assume we are given a vector space V = V ≥2 of finite type with basis (vi)i∈I .
Write ki := |vi| for i ∈ I. Then the corresponding homotopy Lie algebra is the graded vector space
L generated by elements xi, |xi| = ki − 1, with all brackets being trivial. As a graded Lie algebra,
excluding the case that V has only one generator of odd degree, L is far from being free. However,
if we consecutively add generators wj in order to kill all cocycles of word length two, we obtain a
minimal Sullivan algebra of the form (Λ(v1, . . . , w1, . . . ), d1). It is the minimal Sullivan model of
the CDGA (H, 0), where H0 = Q and H+ = ⊕iQ[vi]. Its homotopy Lie algebra L is generated by
elements xi, yj and it holds L = A⊕ [L,L], with A being generated by the elements xi.
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So far, the examples were mainly dealing with minimal Sullivan algebras that are well-known to
us, so it was already clear which class of spaces they belong to. In the following, we will take a look
at some cases where this is less obvious and see if we can find a realization during the course of this
section.

Example 5.1.11. Suppose |v1|, |v2| are odd and consider the minimal Sullivan algebra given by
(Λ(v1, v2, w), d1(w) = v1 ∧ v2). The corresponding homotopy Lie algebra has basis {x1, x2, y} with
|xi| even and proposition 5.1.5 implies that [x1, x2] = y, so we have L = 〈x1, x2, [x1, x2]〉Q, the
graded Q-vector space generated by these elements. In comparison to example 5.1.9, while now
[x2, x1] 6= 0, we have the relations [x1, [x1, x2]] and [x2, [x1, x2]] and L is not free.
Suppose next we add two generators w1, w2 with d1(wi) = vi ∧ w, so the minimal Sullivan algebra
we are looking at is (Λ(v1, v2, w, w1, w2), d1). A basis for L is now {x1, x2, y, y1, y2}, where

y = −[x2, x1] = [x1, x2], y1 = −[y, x1] = [x1, [x1, x2]], y2 = −[y, x2] = [x2, [x1, x2]],

so L = 〈x1, x2, [x1, x2], [x1, [x1, x2]], [x2, [x1, x2]]〉Q. The first relations that appear here are of bracket
length four. One can repeat this process, expanding d1 and creating brackets in L until it becomes
L(x1,x2), the free Lie algebra in two generators.

Example 5.1.12. Assume we are given a minimal Sullivan algebra (Λ(v1, v2, w), d1(w) = v1 ∧ v2)
with |v1|, |v2| being even. Again, proposition 5.1.5 yields y = [x2, x1] and the homotopy Lie algebra
is L = 〈x1, x2, [x1, x2]〉Q with |xi| odd. However, this time we have already relations of bracket
length two, namely the expressions [x1, x1], [x2, x2] which would be non-zero in the free graded Lie
algebra L(x1,x2).
Now, given two additional generators w1, w2 with d1(w1) := v2

1 and d1(w2) := v2
2, we arrive at the

minimal Sullivan algebra (Λ(v1, v2, w, w1, w2), d1). We see that [x1, x1] = 1
2y1 and [x2, x2] = 1

2y2, so
these brackets now exist in L. On the other hand, there are no brackets of length ≥ 3 in L, which
poses relations. However, it can be quite difficult to distinguish relations of bracket length ≥ 3 from
brackets that vanish due to the Jacobi identity.
To clarify, we add another two generators w′1, w′2 by setting

d1(w′1) := v1 ∧ w − v2 ∧ w1, d1(w′2) := v2 ∧ w − v1 ∧ w2.

For the dual basis elements y′1, y′2 in L it then holds [y, x1] = y′1 = [y1, x2] and [y, x2] = y′2 = [y2, x1].
This means we now have some non-vanishing brackets of length three, but by our calculations they
are related through the following identities

[[x2, x1], x1]− 1

2
[[x1, x1], x2] = 0, [[x2, x1], x2]− 1

2
[[x2, x2], x1] = 0

that are essentially due to the Jacobi identity in L or, equivalently, the condition d2
1 = 0 in (ΛV, d1).

These examples illustrate that, in some sense, the more complicated the differential d1 of the
Sullivan algebra is, the closer is the homotopy Lie algebra L to being free. Moreover, examples
5.1.11 and 5.1.12 show that it is difficult to determine a criterion that, without explicitly calculating
L from (ΛV, d1), tells us exactly which brackets are relations in L. This essentially boils down to
the fact that providing a basis for free graded Lie algebras is anything but easy, as on elements of
bracket length ≥ 3 the Jacobi identity makes things complicated. We will come across this problem
again soon, when we want to determine a free Lie model for a given homotopy Lie algebra L.

Example 5.1.13. Finally, consider the separable minimal Sullivan algebra (Λ(v1, v2, v3, w), d1) with
|v1| = |v3|, |vi| ≥ 2 and d1(w) = v1 ∧ v2 + v2 ∧ v3. It follows that [x3, x1] = 0 and (−1)|v1|[x2, x1] =
y = (−1)|v2|[x3, x2] in L.
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5.2 A Free Model for the Homotopy Lie Algebra

Assume L is a connected chain Lie algebra and A ⊆ L is any subspace such that L = A ⊕ [L,L].
Using the universal property of the free graded Lie algebra, the inclusion A ↪→ L extends to a
morphism σ : LA → L. In proposition 1.4.12 we showed that σ is surjective and called elements in
ker(σ) relations of L. We may apply this to the case that L is the homotopy Lie algebra of (ΛV, d1)
where we, as before, specify A to be the space generated by the elements xi, i ∈ I. View σ as
surjective DGL morphism

ψ : (LA, 0)→ (L, 0),

which can now be improved to a quasi-isomorphism by sequentially erasing the kernel of the induced
map H(ψ) in each level. For this, assume by induction ψ : (LA⊕B≤k , ∂) → (L, 0) to be already
constructed such that Hl(ψ) is an isomorphism for l < k. Choose a basis (γi) of ker(Hk(ψ)) and
define Bk+1 to be the vector space generated by elements (bi), with |bi| := k+ 1. Extend ∂ through
setting ∂(bi) := zi, where zi ∈ LA⊕B≤k is a cycle representing γi. Finally, as the differential in
L is zero, we may extend ψ on Bk+1 by setting ψ(bi) := 0. A more detailed description of this
construction is provided in 4.3.2. We arrive at a free Lie model of the form

ψ : (LA⊕B, ∂)
'−−→ (L, 0)

which implies the existence of a DGA quasi-isomorphism

C∗(ψ) : (ΛV, d1) = C∗(L, 0)
'−−→ C∗(LA⊕B, ∂).

A space X for which (LA⊕B, ∂) is a cellular Lie model will then be a space which has (ΛV, d1) as its
minimal Sullivan model. However, before we come to this, we will first make a connection between
(ΛV, d1) and the vector space A ⊕ B together with ∂, since these essentially provide a description
of X.

Lemma 5.2.1. The free Lie algebra (LA⊕B, ∂) constructed above is a minimal free connected chain
Lie algebra.

Proof. Only the minimality remains to show. Write ∂ = ∂0 + ∂1 + . . . , where ∂i : A ⊕ B → L(i+1)
A⊕B

raises bracket length by i. In particular,

∂0 : A⊕B → L(1)
A⊕B = A⊕B,

and we claim that ∂0 = 0. It is clear that ∂|A = 0, so let b ∈ Bk+1 be some generator. Write
∂(b) = x+ y with x ∈ A⊕Bk and y ∈ L(≥2)

A⊕B≤k−1
, as |y| = k. It follows that

∂(x+ y) = 0 and Hk(ψ)([x+ y]) = 0.

Since the differential in L is zero, this implies ψ(x) = −ψ(y), but ψ|A = idA and ψ|B = 0. Thus
ψ(x) ∈ A and ψ(y) ∈ L(≥2)

A⊕B, as ψ is a DGL morphism. It follows that ψ(x) = 0 = ψ(y), so in
particular x ∈ Bk. Now, if x 6= 0, then by the prior construction step, ∂(x) = z represents a non-
trivial element in ker(Hk−1(ψ)) ⊆ Hk−1(LA⊕B≤k−1

, ∂), but now ∂(x) = −∂(y) implies that [z] = 0,
since y ∈ LA⊕B≤k−1

.

What follows is the existence of a quasi-isomorphism

θ : C∗(LA⊕B, ∂)
'−−→ (sA⊕ sB ⊕ Q, 0)

of complexes by proposition 4.3.7. Together with ψ as above, it yields an isomorphism

Φ := (H(θ)∗)−1 ◦H(C∗(ψ)) : H+(ΛV, d1)
∼=−−→ sA∗ ⊕ sB∗
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of graded vector spaces. We have already shown that the elements vi ∈ V are in one-to-one
correspondence to the generators xi ∈ A via the duality of V and sL = V ∗. We retrieve this
correspondence in the isomorphism above, in the following sense. To begin with, note that the
elements ([vi])i∈I in H+(ΛV, d1) are linear independent, since the differential is minimal. However,
the same does not hold for the products [vk ∧ vl] = [vk][vl], but we will come back to this later. It
follows that we may complete ([vi])i∈I to a basis {[vi], βr} of H+(ΛV, d1), where r ∈ R for a suitable
index set R. Note that due to V = V ≥2, it holds |βr| ≥ 4.

Lemma 5.2.2. The family (Φ([vi]))i∈I is a basis for sA∗, while (Φ(βr))r∈R is a basis for sB∗.

Proof. The space sA is generated by elements sxk, k ∈ I with 〈vi; sxk〉 = δik and 〈wj ; sxk〉 = 0.
Since ψ|A is the identity and ψ|B = 0, we get

〈vi;C∗(ψ)(sxk)〉 = δik and 〈vi;C∗(ψ)(sb)〉 = 0,

which means that H(C∗(ψ))([vi]) = [sxi]
∗ ∈ H(ΛsLA⊕B)∗. On the other hand, θ(sxi) = sxi, since

sxi has bracket length one. It follows that H(θ)([sxi]) = sxi. Denote by sx∗i ∈ sA∗ the dual basis
of sxi, then H(θ)∗(sxi) = [sxi]

∗ and thus Φ([vi]) = sx∗i .

While it is not new that a basis (vi)i∈I of ker(d1) provides a basis for A via the dual basis of
sL = V ∗, this now shows that a choice for the remaining basis elements βr ∈ H+(ΛV, d1) can be
related to generators of B. In particular, since all appearing graded vector spaces are of finite type,
the number of elements βr of a fixed degree |βr| = k + 1 tell us how many generators Bk has, i.e.
how many generators will be added in the (k − 1)-th step of the construction. What remains is to
specify this relationship and to calculate the differential of generators in B.

Proposition 5.2.3. Let (ΛV, d1) with basis {vi, wj} as before, where i ∈ I and j ∈ J . The classes
[vi] may be complemented to a vector space basis {[vi], βr}i∈I,r∈R of H+(ΛV, d1). Let L be the
homotopy Lie algebra of (ΛV, d1) and (LA⊕B, ∂) the free DGL of the constructed free minimal model
for (L, 0). Then it holds:

(i) There exists a basis (xi)i∈I of A, where |xi| = |vi| − 1 and a basis (br)r∈R of B with |br| =
|βr| − 1. In particular, since A and B are of finite type, this determines their dimension in
each grade.

(ii) Let k1 + 1 = min{|βr| : r ∈ R}, then B = B≥k1 and for all b ∈ Bk1 it holds that ∂(b) ∈ [A,A].

Proof. The first claim is an immediate consequence of the isomorphism Φ from lemma 5.2.2. It
also implies that for k1 as defined, we find B = B≥k1 . For the second claim, let us take a closer
look at the initial step of the construction of (LA⊕B, ∂). For the morphism ψ : (LA, 0) → (L, 0) it
necessarily holds that

min{k ∈ N | ker(ψk) 6= 0} = k1 − 1,

since otherwise, B would have generators of degree lower than k1. Then ker(ψk1−1) ⊆ [LA,LA]k1−1

are the lowest-degree relations of L, for which we pick a basis (zi). By definition, Bk1 is then
generated by elements (bi) with |bi| := k1 and a differential is defined on (LA⊕Bk1

) by ∂(a) := 0
for all a ∈ A and ∂(bi) = zi. Now, since zi ∈ [LA,LA]k1−1, it is generated by elements [x, y] with
x, y ∈ LA = A ⊕ [LA,LA]. If x or y are not in A, we may again express them as a bracket, until
eventually zi is a linear combination of elements of the form

[a1, . . . , [am−1, am] . . . ]

of varying bracket length m and fixed degree k1 − 1, where a1, . . . , am ∈ A. It follows that ∂(bi) ∈
[A,A].
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Remark 5.2.4. Remember that if (LA⊕B, ∂) is a cellular Lie model for X, the cells in X correspond
to a basis of A ⊕ B, while the attaching maps are determined by the class of their differential.
While the differential on xi ∈ A is trivial, it can be complicated for elements in B. Proposition
5.2.3 associates the cells in X with a basis of H+(ΛV, d1) and makes a first attempt in expressing
the differential of elements in B. We will see later on that the property ∂(b) ∈ [A,A] is beneficial
for a further description of the related attaching maps. One should note however that for elements
in B>k1 , this statement is in general not true. While the differential is still a linear combination
of brackets, these brackets can now contain elements from B of lower degree, which will make it
difficult to calculate the associated attaching map.

In the remainder of this section, we will see that in some cases, the differential of elements in B be
calculated directly from (ΛV, d1). That being said, we will also see that in general, the calculation of
∂(b) straight from the minimal Sullivan algebra (ΛV, d1) has its limits, especially for the generators
b ∈ B of higher degree.
When we look back at the construction of (LA⊕B, ∂), the differentials of the generators in B were
used to kill unwanted cocycles in ker(H(ψ)). For the initial construction step, we related the first
generators of B that were added to the lowest-degree relations of L. In a general construction step
however, it proves to be difficult, if even possible, to obtain a full expression of ker(Hk(ψ)) in terms
of ker(σk), the relations of degree k in L. Nevertheless, the following discussion shows it is quite
easy to see that relations naturally yield elements in the kernel of H(ψ).

Remark 5.2.5. Let us see how the connection between generators of B and relations in L can be
improved. By construction, for each k ≥ 1 we obtain a commutative diagram

(LA⊕B≤k , ∂)
ψ // (L, 0)

(LA, 0)

::

λ

ff

where λ is induced by the inclusion A ↪→ A⊕B≤k of graded vector spaces. On homology level, this
in turn induces

H(LA⊕B≤k , ∂)
H(ψ) // L

LA

σ

??

H(λ)

ff

which implies H(λ)(ker(σ)) ⊆ ker(H(ψ)). Therefore,

Hk(λ) : ker(σk)→ ker(Hk(ψ))

is well-defined.

Remember that L ∼= LA/ ker(σ) and that the kernel J := ker(σ) ⊆ [LA,LA] is an ideal. As such,
it holds [J,LA] ⊆ J , so we can write J = R ⊕ [J,LA] for a suitable subspace R ⊆ J . A basis (ri)
of R is a minimal set of the generators for J , hence we refer to the elements ri as generators of the
relations. As before, let k ≥ 1 and suppose LA⊕B≤k is already constructed.

Remark 5.2.6. The elements Hk(λ)(ri) are linear independent, and thus can be complemented to
form a basis of ker(Hk(ψ)). In fact, we show that H(λ) only vanishes on [J,LA].
Let y ∈ ker(σk) ⊆ [LA,LA] be non-trivial and assumeHk(λ)(y) = 0. This means we find x ∈ LA⊕B≤k
with |x| = k+1 and ∂(x) = λ(y). The only elements in LA⊕B≤k of degree k+1 that have word length
one lie in Ak+1 and are thus cycles, so we may deduce that x ∈ [LA⊕B≤k ,LA⊕B≤k ]. This means x is
generated by elements [z1, z2], with zi ∈ LA⊕B≤k and ∂([z1, z2]) = [∂(z1), z2] − (−1)|z1|[z1, ∂(z2)] ∈
[LA,LA]. But the elements ∂(z1), ∂(z2) ∈ LA lie in the kernel of σ, so we have ∂([z1, z2]) ∈ [J,LA]
and therefore y ∈ [J,LA]. It follows that ker(H(λ)) ⊆ [J,LA], and thus ker(H(λ)) = [J,LA].
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In other words, we may regard the space of the generators for the relations of Lk as a subspace of
ker(Hk(ψ)). In particular, for each such element ri ∈ ker(σk) there exists a corresponding element
γi in a basis of ker(Hk(ψ)), for which in turn a generator bi ∈ Bk+1 is introduced to kill it.
That being said, in most cases calculating the elements ri for given L is a futile effort, since finding
a vector space basis for graded Lie algebras can be quite complicated. Later, we will provide an
outlook how the situation changes for the better if we restrict to odd generators in the Sullivan
algebra (ΛV, d1), which implies that the homotopy Lie algebra L is concentrated in even degrees.
For now, however, we have to restrict ourselves to elements of bracket length two, which simplifies
things by a lot.

Example 5.2.7. Let (xi)i∈I be an ordered basis of A and pick two elements xi, xj from this basis.
We assume that i ≤ j and that |xi| is odd if i = j, such that [xj , xi] is non-trivial in the free
Lie algebra LA. Suppose [xj , xi] = 0 in L, meaning [xj , xi] ∈ ker(σ), and (LA⊕B≤k , ∂) is already
constructed, where k := |xi| + |xj |. Then [xj , xi] is a generator for the relations in L, and thus
[[xj ], [xi]] provides a basis element of ker(Hk(ψ)). By construction, a generator b ∈ Bk+1 will be
added such that ∂(b) = [xj , xi].
Note that for basis elements y /∈ A, the same argumentation can not be applied, as they can be
brackets themselves. For example, there are some cases where y = [x, x], with x ∈ A being some
basis element. Then [x, y] = 0 in L, but this relation is due to the Jacobi identity, and thus does not
provide a generator for the relations. We have seen this already in example 5.1.8. For that reason,
the bracket [x, y] does not add a generator to B.
Furthermore, a relation [xj , xi] implies that elements of the form [x, [xj , xi]] with x ∈ A are re-
lations as well. However, they do not provide generators for the relations. In fact, we see that
∂((−1)|x|+1[x, b]) = [x, [xj , xi]] in (LA⊕B≤k+1

, ∂), since ∂|LA = 0. Thus, the cycle [x, [xj , xi]] is
already killed in (LA⊕B≤k+1

, ∂), without the need of an additional generator.

As already hinted, when we restrict ourselves to graded Lie algebras L concentrated in even
degrees, the detection of relations becomes much easier. For now, let us translate the above into
the language of Sullivan algebras.

Remark 5.2.8.

(a) Remember that in the situation that L is the homotopy Lie algebra of (ΛV, d1), the elements
xi ∈ L from the dual basis of vi ∈ V generate a space A such that L = A ⊕ [L,L]. As we
have seen, a product uk ∧ ul with vanishing coefficients λjk,l with regard to d1(wj) causes the
corresponding bracket [zl, zk] to vanish. Now, in the special case that uk = vk and ul = vl, we
have that zk = xk and zl = xl are basis elements in A. But then [xl, xk] = 0 is a generator
for the relations, so we need to introduce b ∈ B with ∂(b) = [xl, xk] and |b| = |xk|+ |xl|+ 1 =
|vk|+ |vl| − 1 = |wj |.

(b) Similarly, fix j ∈ J and suppose that

d1(wj) =
∑
k,l

λjk,lvk ∧ vl

for a number of m ≥ 2 distinct basis elements vk ∧ vl ∈ Λ2V , and that λj
′

k,l = 0 for all
j 6= j′ ∈ J , which is always the case if the considered Sullivan algebra is separated. Note that
then, in particular, the elements vk ∧ vl have the same degree. Then yj = µjk,l[xl, xk] due to
proposition 5.1.5 and with the prefactors defined in remark 5.1.6. In particular, for any two
distinct elements vk ∧ vl 6= vp ∧ vq in this basis of Λ2V we obtain

µjk,l[xl, xk]− µ
j
p,q[xq, xp] = 0.
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There are
(
m
2

)
such pairs, of which at most m − 1 are linear independent and thus provide

generators for the relations. These can for instance be obtained by fixing one index, say (p, q),
and let (k, l) vary over the remainder of the index set. Note that in fact,

µjk,l[xl, xk]− µ
j
k′,l′ [xl′ , xk′ ] = µjk,l[xl, xk]− µ

j
p,q[xq, xp]− (µjk′,l′ [xl′ , xk′ ]− µ

j
p,q[xq, xp])

for an element µjk,l[xl, xk]− µ
j
k′,l′ [xl′ , xk′ ]. This leads to the addition of m− 1 generators in B,

with differentials given by

∂(b) = µjk,l[xl, xk]− µ
j
p,q[xq, xp].

The arguments above can not be applied for arbitrary products uk ∧ ul, since in these cases the
corresponding brackets need not be generators for the relations.

Proposition 5.2.9. We can describe certain steps in the construction of (LA⊕B, ∂) in greater detail.

(i) A basis element vk ∧ vl ∈ Λ2V for which the coefficient λjk,l in d1(wj) is zero for all j ∈ J
implies that there exists a generator b ∈ B|vk|+|vl|−1 with ∂(b) = [xl, xk].

(ii) Assume that, for m ≥ 2 distinct basis elements vk ∧ vl ∈ Λ2V , there exists exactly one j ∈ J
such that the coefficients λjk,l in d1(wj) are non-zero, k, l ∈ I. Fix one element vp ∧ vq, then
for each of the remaining m− 1 elements vk ∧ vl a generator b ∈ B|wj | is introduced such that

∂(b) = µjk,l[xl, xk]− µ
j
p,q[xq, xp].

Proof. This is proven in remark 5.2.8 above.

Remark 5.2.10. To put these statements into the context of proposition 5.2.3, consider the prod-
ucts [vk ∧ vl] = [vk][vl] ∈ H+(ΛV, d1). By assumption, there exist only a finite amount of these
in each degree. Again, we will first fix one element vk ∧ vl from a basis of Λ2V and assume that
λjk,l = 0 for all j ∈ J . This is equivalent to

0 6= [vk][vl] /∈ H+(ΛV, d1) \ Q([vk][vl]),

meaning [vk][vl] is not a linear combination of the remaining elements in H+(ΛV, d1). In particular,
there exists a basis of H+(ΛV, d1) containing [vk][vl]. This element thus corresponds to a generator
b ∈ B, and by remark 5.2.8 it holds ∂(b) = [xl, xk].
Similarly, suppose m ≥ 2 distinct basis elements vk ∧ vl ∈ Λ2V appear solely in the basis expression
of d1(wj) for exactly one j ∈ J and fix one element vp ∧ vq. This can be equivalently expressed by
the linear dependence

λjp,q[vq][vq] =
∑
k,l

λjk,l[vk][vl],

where the m− 1 products [vk][vl] on the right-hand side are linear independent. These then corre-
spond to m − 1 generators in B, and by remark 5.2.8 their differentials calculate as µjk,l[xl, xk] −
µjp,q[xq, xp].

As we can see, the differential d1 determines how the products [vk][vl] are related and thus to what
extent they can occur in a basis of H+(ΛV, d1). In turn, the elements βr in a basis of H+(ΛV, d1)
that are not generated by ([vi])i∈I specify the amount of generators of B in each degree. In a way,
proposition 5.2.9 states that the differential of generators in B which correspond to products [vk][vl]
appearing in a basis of H+(ΛV, d1) in the sense of proposition 5.2.9 can be calculated. Prior to this,
we only knew that the differential of the lowest-degree generators in B lies in [A,A].
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Example 5.2.11. The homotopy Lie algebra of the minimal Sullivan algebra (Λ(v), 0) with |v| odd
is the free graded Lie algebra in one generator, L = L(x) with |x| = |v| − 1. For the case that |v| is
even, however, we get v2 ∈ Λ2V but no differential, so [x, x] = 0 in L which defines a relation. We
therefore introduce a generator b1 ∈ B with ∂(b1) = [x, x], as stated in proposition 5.2.9. However,
the construction of the free Lie model for L is far from being finished with (L(x,b1), ∂). For example
[x, b1] now is a cycle, so we need another generator b2 ∈ B with ∂(b2) = [x, b1], which in turn results
in the formation of new cycles.
Moreover, H+(Λ(v), 0) = Λ(v) is generated by products vn of degree n|v|, thus by proposition 5.2.3
we know that B is generated by (bn)n≥1 with |bn| = (n+ 1)|v| − 1. We get a free Lie model of the
form ψ : (LQx⊕B, ∂)

'−−→ L for which ψ(x) = x and ψ|B = 0. We can generalize the calculation of
the differential to ∂(bn+1) = [x, bn] for n ≥ 2, as follows from

∂([x, bn]) = [x, [x, bn−1]] = 0

by the Jacobi identity. The class [[x, bn]] then generates ker(H(n+2)|v|−2(ψ)), which leads to the
introduction of bn+2 with degree (n+ 2)|v| − 1 and differential [x, bn]. Note however that we have
only established a formalism for the differential of b1 and had to calculate the differentials of the
other generators bn manually.

Example 5.2.12. For the minimal Sullivan algebra (Λ(v, w), d1(w) = v2), where |v| ≥ 2 is even,
we have already seen in example 5.1.8 that L = L(x) is a free graded Lie algebra.

Example 5.2.13. For a minimal Sullivan algebra (Λ(v1, v2), 0) with |v1|, |v2| ≥ 2 it immediately
follows that x1, x2 ∈ A and b ∈ B with ∂(b) = [x2, x1] for the product v1∧v2, since the differential is
trivial. This concludes the construction of the free Lie model if both v1 and v2 have odd degree. If |vi|
is even such that 0 6= v2

i ∈ Λ2V , we get two additional generators bi ∈ B for these products such that
∂(bi) = [xi, xi]. Further, similar to the previous example, in this case generators of increasing degree
will be needed in the construction of (LA⊕B, ∂). This can be averted by introducing generators wi
with d1(wi) = v2

i , such that [xi, xi] 6= 0 in L. The cohomology of the resulting Sullivan algebra
(Λ(v1, v2, w1, w2), d1) is generated by {[v1], [v2], [v1][v2]} in positive degrees, thus we arrive at the
free Lie algebra (LA⊕B, ∂) with A generated by x1, x2 and B having a single generator b with
∂(b) = [x2, x1], just as in the odd case before. Finally, for the remaining case that |v1| is odd and
|v2| is even, the minimal Sullivan algebra (Λ(v1, v2, w2), d1(w2) = v2

2) leads to the same free graded
Lie algebra.

Example 5.2.14. In example 5.1.10 we introduced a minimal Sullivan algebra of the form

(ΛV, d1) := (Λ(v1, . . . , w1, . . . ), d1)

with homology H+(ΛV, d1) = ⊕iQ[vi]. For the homotopy Lie algebra L = A ⊕ [L,L], proposition
5.2.3 directly implies that L = LA with A generated by (xi)i.

The following examples show that a lot of the information regarding the construction of (LA⊕B, ∂)
from (ΛV, d1) is not covered by proposition 5.2.9. While there are cases in which we can obtain the
free Lie model manually, in a general setting we fail to give an exact description.

Example 5.2.15. Consider the minimal Sullivan algebra (Λ(v1, v2, w), d1(w) = v1 ∧ v2), which
yields the homotopy Lie algebra L = 〈x1, x2, [x1, x2]〉Q from example 5.1.11, with |vi| odd and
therefore |xi| even. Then A is generated by x1, x2 and the only non-trivial bracket shall be [x1, x2].
In particular, since [x1, [x1, x2]] and [x2, [x1, x2]] do not vanish in LA, there will be two elements
b1 and b2 added in the construction of B with ∂(b1) = [x1, [x1, x2]] and ∂(b2) = [x2, [x1, x2]].
However, this for example leads to [x1, b2] − [x2, b1] being a cycle due to the Jacobi identity, and
this element lies in the kernel of H(ψ). So we need to add another generator b3 to B and define
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∂(b3) := [x1, b2]− [x2, b1].
This actually completes the construction, as follows from proposition 5.2.3 and the fact that

{[v1], [v2], [v1 ∧ w], [v2 ∧ w], [v1 ∧ v2 ∧ w]}

is a basis for H+(Λ(v1, v2, w), d1). We get a free Lie model

ψ : (LA⊕B, ∂)→ (L, 0), ψ(xi) = xi, ψ(br) = 0,

where A is generated by x1, x2 and B is generated by b1, b2, b3 and with differentials as provided
above.

Note that here, the cycles [x1, [x1, x2]] and [x2, [x1, x2]] are essentially due to the cocycles v1 ∧w
and v2 ∧w, but as we have pointed out before, it is not generally true that the brackets [x1, y] and
[x2, y] provide generators for the relations. We may apply proposition 5.1.5 to read off [x1, y] = 0
and [x2, y] = 0 from the Sullivan model, but have to check if they provide generators for the relations
by hand. We will revisit and expand this example later.

Example 5.2.16. When looking at (Λ(v1, v2, w), d1(w) = v1 ∧ v2) with |v1|, |v2| being even, as
usual, things get more complicated. We employ proposition 5.2.9 and see that x1, x2 ∈ A and
b1, b2 ∈ B with ∂(bi) = [xi, xi]. This actually takes care of the brackets [x1, [x1, x2]] and [x2, [x1, x2]]
as well, since we do have the identities

[x1, [x1, x2]] = −1

2
[x2, [x1, x1]] and [x2, [x1, x2]] = −1

2
[x1, [x2, x2]],

leading to ∂(−1
2 [x2, b1]) = [x1, [x1, x2]] and ∂(−1

2 [x1, b2]) = [x2, [x1, x2]]. In similar fashion to
example 5.2.11 we can continue the calculation by hand and see that for each n ≥ 1 we get generators
b1n, b

2
n ∈ B with

∂(b1n+1) = [x1, b
1
n] and ∂(b2n+1) = [x2, b

2
n],

where b11 := b1 and b21 := b2. These correspond to the basis {[v1]n, [v2]n | n ≥ 1} of the cohomology
algebra H+(Λ(v1, v2, w), d1) using proposition 5.2.3.
Through adding two generators w1, w2 with d1(w1) := v2

1 and d1(w2) := v2
2 we end up with

(Λ(v1, v2, w, w1, w2), d1). We can no longer make use of proposition 5.2.9, but we see that the
homotopy Lie algebra no longer has relations of bracket length two. On the other hand, we now
need generators b ∈ B to kill cycles of bracket length three. For example, the cocycles

v1 ∧ w − v2 ∧ w1 and v2 ∧ w − v1 ∧ w2

define non-trivial, linear independent elements in the cohomology of the Sullivan algebra and thus
lead to two generators in B of degree 2(|v1| − 1) + |v2| and 2(|v2| − 1) + |v1|.

Example 5.2.17. Finally, in the minimal Sullivan algebra (Λ(v1, v2, v3, w), d1) with |v1| = |v3|,
|vi| ≥ 2 and d1(w) = v1 ∧ v2 + v2 ∧ v3, the product v1 ∧ v3 of cocycles yields b with ∂(b) = [x3, x1].
The pair (v1 ∧ v2, v2 ∧ v3) is responsible for b′ with ∂(b′) = (−1)|v1|[x2, x1]− (−1)|v2|[x3, x2]. Here,
|b| = 2|v1| − 1 and |b′| = |v1|+ |v2| − 1.

These examples show that along the process, we might need to add generators to B which are
not directly traceable back to a generating relation in L. They are added due to unwanted cycles
that appear in the free Lie model along its construction and are difficult to link to the underlying
minimal Sullivan model. For instance, in example 5.2.15 a generator b3 is added due to the cycle
[x1, b2] − [x2, b1], which appears due to the symmetry and Jacobi relations. We have linked this
generator to the class of the element v1 ∧ v2 ∧ w = d1(w) ∧ w, which is essentially a cocycle due
to symmetry and the condition d2

1 = 0. These two directly correlate to the symmetry and Jacobi-
identity in the homotopy Lie algebra L. However, how we might directly read off the differential

∂(b3) = [x1, b2]− [x2, b1]

directly from the Sullivan algebra is unclear at this point.
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5.3 Calculating Attaching Maps via Whitehead Products

Let us briefly recall where we are. Starting with a minimal Sullivan algebra (ΛV, d1) and a choice
of a basis (vi)i∈I for ker(d1), we complemented this to a basis of V , denoting the additional basis
elements by wj , j ∈ J . This defines a unique basis on the homotopy Lie algebra L of the minimal
Sullivan algebra, the dual basis. We denoted by sxi ∈ sL those elements in this basis which vanish
everywhere except on vi. The elements (xi)i∈I then generate a subspace A ⊆ L for which it holds
L = A⊕ [L,L]. With that, there exists a surjection LA → L which can be used to obtain a free Lie
model (LA⊕B, ∂)→ (L, 0) of L. Moreover, we have discussed how certain algebraic data in (ΛV, d1)
is responsible for generators in A and B. What is left is the transgression into the world of CW
complexes.
For this, remember that we can describe a CW complex X such that (LA⊕B, ∂) is a Lie model for
X. Here, for n ≥ 1

• the (n+ 1)-cells Bn+1
i are in one-to-one correspondence to a basis (ci) of An ⊕Bn,

• (LA≤n⊕B≤n , ∂) is a Lie model for Xn+1,

• the class γi ∈ πn(Xn) of the attaching map of a cell Bn+1
i is given by the homology class

[∂(ci)]) ∈ H(LA<n⊕B<n , ∂) under the isomorphism τ ,

• X0 is the space consisting of one point x0.

By the isomorphism Φ: H+(ΛV, d1)
∼=−−→ sA∗ ⊕ sB∗ and the finite type assumption, a basis of

Hn+1(ΛV, d1) translates into a basis of An ⊕Bn. We get the following consequence.

Proposition 5.3.1. A minimal Sullivan algebra (ΛV, d1) with V = V ≥2 of finite type provides a
minimal Sullivan model for a CW complex X for which the number of cells in Xn is equal to the
dimension of Hn(ΛV, d1).

Proof. As for any vector space of finite type, we get A∗ ∼= A and B∗ ∼= B, thus Φ provides
isomorphisms Hn+1(ΛV, d1) ∼= An⊕Bn. Since the cellular Lie model establishes a direct connection
between the cells of dimension n+ 1 and a basis of An ⊕Bn, the claim follows.

Remark 5.3.2. We can specify this a little. The elements vi of degree |vi| =: ki+1 correspond to xi
in a basis of A with |xi| = ki. Since ∂|A = 0, it follows that the attaching map of the corresponding
cell Bki+1 is trivial, resulting in a sphere Ski+1 that is attached to Xki at the base point. We can
deduce inductively that, given a fix n ≥ 1, the skeleton Xn+1 has a subspace

Y n+1 :=
∨
i∈In

Ski+1
i ⊆ Xn+1,

where by In ⊆ I we mean the index set that belongs to the elements vi with |vi| ≤ n + 1. Note
that, in particular, (LA≤n , 0) is a cellular Lie model for Y n+1.
As for the elements βr ∈ H+(ΛV, d1) that correspond to a basis of B, the situation is more compli-
cated. For these, we have established a few things.

(a) When k1 + 1 = min{|βr| : r ∈ R}, then B = B≥k1 and ∂(b) ∈ [A,A] for all b ∈ Bk1 .

(b) Assume vk ∧ vl is a product in the basis of Λ2V for which the associated coefficient λjk,l in the
basis representation of d1(wj) vanishes for all j ∈ J . Then vk∧vl corresponds to a basis element
b ∈ B|vk|+|vl|−1 with ∂(b) = [xl, xk] ∈ [A,A]. Moreover, [vk][vl] is not a linear combination of
elements in H+(ΛV, d1) \ Q([vk][vl]).

(c) If d1(wj) =
∑

k,l λ
j
k,lvk ∧ vl and if λj

′

k,l = 0 for all j 6= j′ ∈ J , then fixing one element vp ∧ vq,
we get a generator b ∈ B|wj | with ∂(b) = µjk,l[xl, xk] − µ

j
p,q[xq, xp] ∈ [A,A] for each remaining

element vk ∧ vl in the above linear combination. Moreover, [vp][vq] is a linear combination of
the remaining products [vk][vl], whereas these are linear independent.
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According to the cellular Lie model, for each b of a basis of Bn a cell is attached by a representative
of the class

τ(s[∂(b)]) ∈ πn(Xn)⊗ Q.

Here, we have to choose b such that τ(s[∂(b)]) can be represented by a map Sn → Xn. Moreover,
since the cases above share the fact that ∂(b) ∈ [A,A], our goal now is to evaluate τ on cycles in
s[A,A].

The following arguments actually work for any free chain Lie algebra (LA⊕B, ∂) of finite type,
where ∂(ai) = 0, (ai) being a basis of A. We can therefore apply this to our case, with specific basis
(xi)i∈I provided by V . Let X denote the CW complex that has (LA⊕B, ∂) as cellular Lie model,
the skeleton Xn+1 being modelled by (LA≤n⊕B≤n , ∂). The space Y n+1 ⊆ Xn+1 is then a bouquet of
spheres Ski+1

i , one for each element ai, ki := |ai|. As noted before, (LA≤n , 0) is a cellular Lie model
for Y n+1.

Lemma 5.3.3. Let n ≥ 1 and denote by λ : LA≤n → LA≤n⊕B≤n and j : Y n+1 → Xn+1 the inclusions.
Further, let

τ : sH(LA≤n⊕B≤n , ∂)
∼=−−→ π∗(X

n+1)⊗ Q

τ ′ : sH(LA≤n , 0) = sLA≤n
∼=−−→ π∗(Y

n+1)⊗ Q

be the isomorphisms associated with the Lie models. Then τ ◦ sH(λ) = (π∗(j) ⊗ Q) ◦ τ ′, meaning
the following diagram commutes:

π∗(X
n+1)⊗ Q sH(LA≤n⊕B≤n , ∂)

τ
∼=

oo

π∗(Y
n+1)⊗ Q

π∗(j)⊗Q

OO

sLA≤n
τ ′

∼=
oo

sH(λ)

OO

Proof. The Lie models yield quasi-isomorphisms

m : C∗(LA≤n⊕B≤n , ∂)
'−−→ APL(Xn+1),

m′ : C∗(LA≤n , 0)
'−−→ APL(Y n+1).

Remember that the minimal Sullivan model for a space is a minimal Sullivan model for the Lie
model of the space and vice versa. Thus, denoting by (ΛVXn+1 , d) and (ΛVY n+1 , d) the corresponding
minimal Sullivan models, we can extend the homotopy commutative diagram from theorem 4.5.2
to obtain

C∗(LA≤n , 0)

m′ '
��

C∗(LA≤n⊕B≤n , ∂)

m'
��

C∗(λ)oo

(ΛVY n+1 , d)
' //

ϕ′

'

11

APL(Y n+1) APL(Xn+1)
APL(j)oo (ΛVXn+1 , d)

'oo

ϕ

'
ll

ϕj

ll

where ϕ and ϕ′ are lifts and ϕj is a Sullivan representative of j. It follows that C∗(λ) ◦ϕ ' ϕ′ ◦ϕj .
Now, due to proposition 4.2.9, C∗(LA≤n , 0) is the Sullivan algebra (Λ(sLA≤n)∗, d = d0 + d1). Since
d0 is dual to the derivative in LA≤n which is zero, it too vanishes. It follows that C∗(LA≤n , 0) is a
minimal Sullivan algebra and we may apply proposition 3.4.11 to deduce that

Q(C∗(λ)) ◦Q(ϕ) = Q(C∗(λ) ◦ ϕ) = Q(ϕ′ ◦ ϕj) = Q(ϕ′) ◦Q(j),
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where as usual we write Q(j) for Q(ϕj). This yields the following commutative diagram

(π∗(X
n+1)⊗ Q)∗

(π∗(j)⊗Q)∗

��

VXn+1

Q(j)

��

∼=
νXn+1

oo Q(ϕ) // (sLA≤n⊕B≤n)∗

Q(C∗(λ))

��
(π∗(Y

n+1)⊗ Q)∗ VY n+1

∼=
νY n+1

oo Q(ϕ′) // (sLA≤n)∗,

where the left-hand square is due to remark 3.6.7 with the horizontal isomorphisms being induced
by the dual pairings VXn+1 × π∗(Xn+1) and VY n+1 × π∗(Y n+1). Now, as the linear part of a CDGA
morphism commutes with the linear part of the differential, we may view the right-hand square as
a commutative diagram of complexes, the differential in VXn+1 and VY n+1 being trivial due to the
minimality of the Sullivan models. The induced maps between homology groups commute, so we
have

H(Q(C∗(λ))) ◦H(Q(ϕ)) = H(Q(ϕ′)) ◦Q(j).

Now by proposition 4.2.13, the maps H(Q(ϕ)) and H(Q(ϕ′)) dualize to isomorphisms

H(Q(ϕ))∗ : sH(LA≤n⊕B≤n , ∂)
∼=−−→ sLXn+1 ,

H(Q(ϕ′))∗ : sH(LA≤n , 0)
∼=−−→ sLY n+1 ,

where LXn+1 and LY n+1 denote the homotopy Lie algebras associated with the minimal Sullivan
algebras (ΛVXn+1 , d) and (ΛVY n+1 , d). Hence, by dualizing the diagram above, we get the following
commutative diagram

π∗(X
n+1)⊗ Q

∼=
µ

// sLXn+1 sH(LA≤n⊕B≤n , ∂)
H(Q(ϕ))∗

∼=
oo

π∗(Y
n+1)⊗ Q

π∗(j)⊗Q

OO

∼=
µ′

// sLY n+1

Q(j)∗

OO

sH(LA≤n , 0).
H(Q(ϕ′))∗

∼=
oo

H(Q(C∗(λ)))∗

OO

The isomorphisms µ and µ′ are the same as in theorem 4.1.10 and by definition coincide, up to sign,
with the dual isomorphisms (νXn+1)∗ and (νY n+1)∗. Finally, remember that τ = µ−1 ◦ H(Q(ϕ))∗

and τ ′ = µ′−1 ◦ H(Q(ϕ′))∗, which are exactly the horizontal parts of the diagram from right
to left. Finally, for the morphism H(Q(C∗(λ)))∗, use the isomorphism described in proposition
4.2.9 to identify C∗(λ) = (C∗(λ))∗ = (Λλ)∗ with Λλ

∗. It follows that Q(C∗(λ)) = λ
∗ and thus

H(Q(C∗(λ)))∗ = H(λ) = sH(λ), as λ(sx) = sλ(x) for all x ∈ LA≤n .

Preparation 5.3.4. Let us proceed by investigating the isomorphism τ ′ a little bit further. We
know by theorem 4.5.2 that (LA≤n , 0) is a cellular Lie model for Y n+1, which implies that there
is a one-to-one correspondence between basis elements ai ∈ A≤n of degree ki and spheres Ski+1

i in
Y n+1. However, we have yet to specify this correspondence, which we will do now.
Again, τ ′ is a composition of two isomorphisms sLA≤n ∼= sLY n+1 and sLY n+1

∼= π∗(Y
n+1)⊗Q. The

first one is provided by a minimal Sullivan model for C∗(LA≤n , 0) and the second one comes from the
duality of VY n+1 and π∗(Y n+1)⊗Q which is induced by a minimal Sullivan model for Y n+1. In both
cases, the isomorphism only depends on the unique isomorphy class of the model. Now remember
that C∗(LA≤n , 0) = (Λ(sLA≤n)∗, d1) is itself a minimal Sullivan algebra. We may therefore choose
ϕ′ in the proof of lemma 5.3.3 to be the identity. This means the Lie model m′ is also a minimal
Sullivan model

m′ : (ΛVY n+1 , d1)
'−−→ APL(Y n+1)
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for the space Y n+1. It follows that the first part of τ ′, the isomorphism H(Q(ϕ′))∗, is the iden-
tity on sLY n+1 = sLA≤n . For the second part, as Y n+1 is a bouquet of spheres, note that
H∗(Y n+1; Q) = ⊕iH∗(Ski+1

i ; Q) generated by the elements [Ski+1
i ]∗ dual to the fundamental classes.

We may therefore choose m′ to be the minimal Sullivan model that sends the basis element in VY n+1

that is provided by ai to the corresponding representatives of [Ski+1
i ]∗. That means, supposing LA≤n

is provided, a basis element ai ∈ A≤n defines a dual basis element vi ∈ VY n+1 with d(vi) = 0. Vice
versa, if we start with VY n+1 , a basis (vi)i∈I of ker(d1) as discussed yields a dual basis (xi)i∈I of A≤n.
Then, for every such basis element vi ∈ VY n+1 with |vi| =: ki + 1, choose a corresponding generator
[Ski+1
i ]∗ ∈ ⊕iH∗(Ski+1

i ; Q) and take m′ to be the morphism for which H(m′)([vi]) = [Ski+1
i ]∗.

Remember that following the notation of remark 2.2.2, we may understand appearing homotopy
classes as elements in the classical or rational homotopy groups, depending on the context.

Proposition 5.3.5. For each basis element ai ∈ A≤n, let |ai| := ki ≤ n and denote by [ai] the
corresponding class in (LA≤n⊕B≤n , ∂). Let ιi : Ski+1

i ↪→ Y n+1 be the inclusion of the corresponding
sphere, with class αi := [ιi]. It then holds τ(s[ai]) = π∗(j)(αi).

Proof. By lemma 5.3.3, it remains to show that τ ′(sai) = αi. We already identified τ ′ with the
inverse of the dual isomorphism

(νY n+1)∗ : π∗(Y
n+1)⊗ Q

∼=−−→ (VY n+1)∗ = sLA≤n , α 7→ 〈−;α〉,

with the dual pairing from construction 3.6.4. This definition extends to elements α ⊗ λ using
linearity. Remember that 〈v;αi〉 ∈ Q for v ∈ V ki+1

Y n+1 was defined to be the prefactor of Q(ιi)(v) =
Q(ϕιi)(v) ∈ Qe, where e is the generator of degree ki + 1 from the minimal Sullivan model of the
sphere Ski+1

i and ϕιi is a Sullivan representative of ιi. The corresponding homotopy commutative
diagram is

APL(Ski+1
i ) APL(Y n+1)

APL(ιi)oo

(Λ(e, . . . ), d)

'

OO

(ΛVY n+1 , d).
ϕιioo

' m′

OO

with m′ as in preparation 5.3.4 above. As usual, we identify the morphisms H(APL(ιi)) = H∗(ιi,Q)
and cohomologies H(APL(Y n+1)) = H∗(Y n+1; Q) = ⊕iH∗(Ski+1

i ; Q). Then H∗(ιi,Q) is the identity
on H∗(Ski+1

i ; Q) and vanishes on the other terms. We chose m′ such that for each basis element vj
that is a cocycle, m′(vj) represents the generator [S

kj+1
j ]∗ ofH∗(Skj+1

j ; Q). It follows that ϕιi(vi) = e

and ϕιi(vj) = 0 for j 6= i, which implies that 〈vj ;αi〉 = δij . In other words, αi ∈ πki+1(Y n+1) ⊗ Q
is the unique basis element dual to vi ∈ V ki+1

Y n+1 , and therefore (νY n+1)∗(αi) = sai or respectively
τ ′(sai) = [ιi].

Corollary 5.3.6. For basis elements a1, . . . , ak ∈ A≤n it holds

τ(s[[ak, . . . [a2, a1] . . . ]]) = (−1)|ak|...|a2|π∗(j)([αk, . . . , [α2, α1]W . . . ]W ),

where αi is the class of the inclusion ιi : Ski+1
i ↪→ Y n+1 and, as before, j : Y n+1 ↪→ Xn+1

Proof. Assume first that k = 2. Since a1, a2 ∈ A are cycles, it holds [[a2, a1]] = [[a2], [a1]] ∈
H(LA⊕B, ∂). From remark 4.4.6 we see that τ(s[[a2], [a1]]) = (−1)|a2|[τ(s[a2]), τ(s[a1])]W , and by
proposition 5.3.5 we see that τ(s[ai]) = j∗(αi) = [j ◦ ιi]. Finally,

[j ◦ ι2, j ◦ ι1]W = (j ◦ ι2) ∨ (j ◦ ι1) ◦ ak2+1,k1+1 = j ◦ (ι2 ∨ ι1) ◦ ak2+1,k1+1

= j ◦ [ι2, ι1]W

implies that [[j ◦ ι2], [j ◦ ι1]] = π∗(j)([α2, α1]). By induction, this easily extends to the general case
k ≥ 2.
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Let us return to the minimal Sullivan algebra (ΛV, d1). In the beginning of this section, we
specified some conditions which lead to basis elements b ∈ B with differential ∂(b) ∈ s[A,A].
Corollary 5.3.6 now allows us to express the attaching maps of the respective cells of X in terms of
the Whitehead product.

Theorem 5.3.7. Let (ΛV, d1) as before, with basis {vi, wj}i∈I,j∈J and let {[vi], βr}i∈I,r∈R be a basis
of H+(ΛV, d1). Then (ΛV, d1) is a minimal Sullivan model for a CW complex X, for which holds:

(i) The number of cells in Xn corresponds to the dimension of Hn(ΛV, d1). More precisely, for
each i ∈ I a cell of dimension |vi| is attached to the base point, and for each r ∈ R a cell of
dimension |βr| may be attached non-trivially.

(ii) Let k1 + 1 = min{|βr| : r ∈ R} and R1 ⊆ R such that r ∈ R1 if |βr| = k1 + 1. Then X has a
subspace

Y := ∨i∈IS|vi| ∪f
⋃̇

r∈R1

Bk1+1 ⊆ X,

where f is a family of Whitehead products of inclusions ιk : S|vk| ↪→ ∨i∈IS|vi|.

In particular, if R1 = R, no further cells are attached and we get Y = X. In this case, (ΛV, d1)
is the minimal Sullivan model of a wedge of spheres, with cells of dimension k1 + 1 attached by
Whitehead products in πk1(∨i∈IS|vi|).

Proof. As follows from the cellular Lie model, the cells in Xn are in one-to-one correspondence to a
basis of An−1⊕Bn−1. By proposition 5.2.3, there exists a basis (xi)i∈I of A with |xi| = |vi| − 1 and
a basis (br)r∈R of B with |br| = |βr| − 1. This proves the first claim, since ∂|A = 0 yields ∂(xi) = 0
for all i ∈ I and zero is represented by the constant map.
For the second claim, we again employ proposition 5.2.3 to obtain a basis (br)r∈R1 of Bk1 , for whose
elements ∂(br) ∈ [A,A] holds. As A is generated by (xi)i∈I , each ∂(br) is a linear combination of
elements of the form

[xi1 , . . . , [xik−1
, xik ] . . . ],

where k ≥ 2. By corollary 5.3.6, these evaluate to Whitehead brackets in the classes of the respective
inclusions.

In many cases, even for degrees higher than k1 + 1 the attaching maps of some cells can be
expressed in terms of the Whitehead product. Moreover, in some cases, we can directly calculate
these expressions from the minimal Sullivan algebra (ΛV, d1).

Theorem 5.3.8. Let X be the CW complex constructed from (ΛV, d1) and fix n ≥ 1. As before,
Y n ⊆ Xn denotes the bouquet of spheres up to dimension n, with j : Y n ↪→ Xn and classes αi
represented by the inclusions ιi : S|vi| ↪→ Y n. It holds:

(i) A basis element vk ∧vl ∈ (Λ2V )n+1 for which the coefficient λjk,l in d1(wj) is zero for all j ∈ J
implies that a cell Bn+1 is attached to Xn by the class

−(−1)|vk|π∗(j)([αl, αk]W ) ∈ πn(Xn).

Then [vk][vl] is an element in a basis of H+(ΛV, d1).

(ii) Assume that, for m ≥ 2 distinct basis elements vk ∧ vl ∈ (Λ2V )n+1, there exists exactly one
j ∈ J such that the coefficients λjk,l in d1(wj) are non-zero, k, l ∈ I. Fix one element vp ∧ vq,
then for each of the remaining m − 1 elements vk ∧ vl a cell Bn+1 is attached to Xn by the
class

(−1)|vp|µjp,qπ∗(j)([αq, αp]W )− (−1)|vk|µjk,lπ∗(j)([αl, αk]W ) ∈ πn(Xn).

Then the m− 1 products [vk][vl] are elements in a basis of H+(ΛV, d1).
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Moreover, if the products [vk][vl] above in combination with the elements ([vi])i∈I provide a full basis
of H+(ΛV, d1), this concludes the description of X.

Proof. In both cases, proposition 5.2.9 implies the existence of generators in B and provides a
calculation of their differentials. Using corollary 5.3.6 we evaluate

τ(s[[xl, xk]]) = −(−1)|vk|π∗(j)([αl, αk]W ),

as claimed. Finally, remark 5.2.10 explains the resulting linear independence of products [vk][vl],
such that they can be integrated into a basis of H+(ΛV, d1). As the dimension of Hn(ΛV, d1)
equals to the number of cells in Xn, no further cells are attached if this amounts to a full basis of
H+(ΛV, d1).

Example 5.3.9. Let us start again with the Sullivan algebra (Λ(v), 0) in a single generator v. In
case |v| = 2n + 1 is odd, there are no products due to degree reasons, and thus Y is a space with
a base point and an attached (2n+ 1)-cell, hence Y = S2n+1. Then H+(Λ(v), 0) = Qv implies that
there are no other cells and therefore Y = X. Note that we could also read this off the homotopy
Lie algebra, which is already the free graded Lie algebra in one generator of degree 2n, and is a
cellular Lie model for S2n+1.
Suppose otherwise, |v| = 2n is even. Again, we start with a sphere S2n, but this time v2 6= 0. Since
d1 = 0, theorem 5.3.8 states that we then need to attach a 4n-cell to S2n using a representative fn
of the class

[fn] := −[[idS2n ], [idS2n ]]W ∈ π4n−1(S2n)

For the case n = 1, it holds [[idS2n ], [idS2n ]]W = 2η ∈ π3(S2), where η is the class of the Hopf map
S3 → S2 which is a generator of π3(S2) = Z. In particular, [f1] 6= 0 in π3(S2)⊗ Q. Remember that
CP 2 is obtained by attaching a 4-cell to CP 1 = S2 via η. So what we are doing here is the rational
analogue of this construction, as multiplication with two is an isomorphism in π∗(S2

Q). Nevertheless,
the construction of X is far from finished, as theorem 5.3.7 states that there is a n-cell in X for every
product vn. In example 5.2.11 it was shown that the free Lie model has generators x and (bn)n≥1

with ∂(bn+1) = [x, bn] and ∂(b1) = [x, x]. However, we lack the tools to calculate the corresponding
attaching maps for all generators but b1, since we have not evaluated τ on cycles [[x, bn]].
It should be mentioned that in the case of |v| = 2 it is already well known that (Λ(v), 0) is the
Sullivan minimal model of CP∞, as it is an Eilenberg-MacLane space K(Z, 2). This was also carried
out in example 3.5.14.

Example 5.3.10. Take (Λ(v, w), d(w) = v2) with |v| = 2n, |w| = 4n − 1. We again get Y = S2n

for the generator v, but the product v2 is in the image of d1. Since the remaining basis element w
is a coboundary, theorem 5.3.8 does not make any statements regarding the attachment of further
cells. In this case too, theorem 5.3.7 yields that X = Y .

Example 5.3.11. Let (Λ(v1, v2, . . . ), d1) with |v1| = k, |v2| = n, where we distinguish between
even and odd grades, and a generator wi with d1(wi) = v2

i exists if and only if |vi| is even. This
summarizes the cases discussed in example 5.2.13, and it follows that {[v1], [v2], [v1][v2]} is a basis
for the cohomology. Without loss of generality, we may assume k ≤ n, such that Xn = Sk ∨ Sn.
Due to the product v1 ∧ v2, a cell Bk+n will be attached to Sk ∨ Sn using the Whitehead product
[α1, α2]W ∈ πk+n−1(Xn), where α1 = [ik] and α2 = [in] and ik, in are the inclusions of the k- and
n-spheres. Since the representative [ik, in]W = ak,n is the universal (k, n)-Whitehead product, we
obtain Xn ∪ak,n Bk+n = Sk × Sn. Again, a look at the basis of the cohomology algebra above
shows that this finishes the construction of X, so (Λ(v1, v2, . . . ), d1) is the minimal Sullivan model
of Sk × Sn. Note that we obtain the same result by calculating the tensor product of the minimal
Sullivan models of the spheres Sk and Sn, since the model behaves well with product spaces.
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Example 5.3.12. Remember the minimal Sullivan algebra (Λ(v1, . . . , w1, . . . ), d1) of finite type,
|vi| := ki, that is the minimal Sullivan model of (H, 0) with H0 = Q and H+ = ⊕iQ[vi] introduced
in example 5.1.10. By example 5.2.14 its homotopy Lie algebra is LA, where A is generated by (xi)i,
so (Λ(v1, . . . , w1, . . . ), d1) is the minimal Sullivan model of a wedge of spheres ∨iSki .

As in the previous sections, we can apply these constructions to minimal Sullivan algebras for
which finding a suitable representative in the corresponding rational homotopy class is not so obvi-
ous.

Example 5.3.13. Consider (Λ(v1, v2, w), d1(w) = v1 ∧ v2), where we first restrict ourselves to the
easier case that |v1| = k and |v2| = n are odd. We again start our construction with the bouquet
Sk ∨ Sn, but in this case, theorem 5.3.8 makes no statement concerning the attachment of further
cells. However, in example 5.2.15, we showed that a free Lie model for the homotopy Lie algebra L is
given by (LA⊕B, ∂), with A being generated by x1, x2 and B by b1, b2, b3. Using corollary 5.3.6, the
classes of the attaching maps f1, f2 of the cells belonging to b1 and b2 evaluate to [α1, [α1, α2]W ]W
and [α2, [α1, α2]W ]W , with α1 = [i1] and α2 = [i2] the classes of the inclusions of the spheres. This
leads to

Y := (Sk ∨ Sn) ∪f (B3k−1∪̇B3n−1).

Unfortunately, we can not explicitly calculate the class of the attaching map of the cell in X that
corresponds to b3 ∈ B, we just know it is some class in π2(n+k)−2(Y ), for which we choose a
representative g. All in all, this brings us to

X = Y ∪g B2(n+k)−1

and we may conclude that (Λ(v1, v2, w), d1) is the minimal Sullivan model of X. A different argu-
mentation for this example is included in chapter 15 of [7].

Example 5.3.14. Switching to the case that the elements vi in the minimal Sullivan algebra
(Λ(v1, v2, w), d1(w) = v1∧v2) have even degree, we have calculated the corresponding free Lie model
in example 5.2.16. We get a cell for each of the generators [v1]n and [v2]n of H∗(Λ(v1, v2, w), d1),
but we can only calculate the attaching maps for n ≤ 2. That is, two cells B2|vi| will be attached to
S|v1| ∨ S|v2| by the classes [αi, αi]W .

Example 5.3.15. Returning to the second part of example 5.2.16, we considered a minimal Sullivan
algebra (Λ(v1, v2, w, w1, w2), d1) with v1, v2 of even degree and differential d1(w) = v1∧v2, d1(w1) =
v2

1, d1(w2) = v2
2. Let us specify |v1| = |v2| = 2 and describe a corresponding CW complex without

reference to previous examples. The cohomology algebra in positive degrees has basis

[v1], [v2], [v1 ∧ w − v2 ∧ w1], [v2 ∧ w − v1 ∧ w2], [v1 ∧ v2 ∧ w − v2
2 ∧ w1].

By theorem 5.3.7, the construction of X starts with S2
1 ∨S2

2 to which we attach two cells B5
1,B

5
2 via

Whitehead products in π4(S2
1 ∨ S2

2). We can not directly calculate them from our theorem, but we
see hands on that the homotopy Lie algebra L has the relations [x1, [x2, x2]] and [x2, [x1, x1]]. Again,
with αi being the class of the inclusion S2

i ↪→ S2
1 ∨ S2

2, the attaching maps are [α1, [α2, α2]W ]W and
[α2, [α1, α1]W ]W . Lastly, for the remaining basis element of H+(ΛV, d1) we obtain a cell B7 attached
by some map

f : S6 → S2
1 ∨ S2

2 ∪
⋃̇

i∈{1,2}
B5
i .

Example 5.3.16. Lastly, let us consider the minimal Sullivan algebra (Λ(v1, v2, v3, w), d1) with
|v1| = |v3|, |vi| ≥ 2 and d1(w) = v1∧v2 +v2∧v3. We obtain the skeleton Y = S|v1|∨S|v2|∨S|v3| and
attach two cells, B2|v1| for the product v1 ∧ v3 and B|v1|+|v2| = B|w|+1 for the pair (v1 ∧ v2, v2 ∧ v3).
the attaching maps are −(−1)|v1|[α3, α1]W and [α3, α2]W − [α2, α1]W .
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As a final remark, note that spaces allowing for minimal Sullivan models of the form (ΛV, d1)
are sometimes called coformal spaces in literature. This is essentially equivalent to having a Lie
model (L, 0), where L ∼= LX is the homotopy Lie algebra, since C∗(L, 0) = (ΛV, d1). Thus, the
rational homotopy type of a coformal space is a formal equivalence of its homotopy Lie algebra
LX = π∗(ΩX) ⊗ Q. One may note the similarities to the definition of a formal space, and in fact,
these notions are dual to each other. In [2] it is shown that spaces which are both formal and
coformal can be characterized in terms of Koszul algebras.
By our results, a coformal space with rational cohomology of finite type can, up to rational homotopy
type, be thought of as a wedge of spheres to which the first cells are attached to by Whitehead
products. Moreover, the dimension of the cohomology in each grade tells us the amount of cells in
each dimension.

5.4 Outlook: Minimal Sullivan Algebras with Odd Generators

We already showed in theorem 5.3.7 that any realization X obtained as explained in the very
beginning of this chapter has a subspace of the form Y := ∨iS|vi|, to with cells are attached via
Whitehead brackets in π∗(Y )⊗Q. We could calculate some of these brackets directly from (ΛV, d1),
but in many examples we had to do the calculation manually. In this outlook, we want to describe
a formalism that allows a wider variety of brackets, such as the ones appearing in example 5.3.13, to
be obtained directly from (ΛV, d1) In order to do so, we have to make some additional assumptions
concerning the grade of V .
As has become clear in the preceding examples, the situation is always easier when the vector space
V of a Sullivan algebra (ΛV, d1) is concentrated in odd degrees. Therefore, it is not too surprising
that we can improve the results a little bit at the cost of the additional requirement that V is
concentrated in odd degrees. In essence, the immediate advantage is that the homotopy Lie algebra
L of such V is then concentrated in even degrees, such that anti-symmetry and Jacobi identity reads

[x, y] = −[y, x] and [x, [y, z]] = [[x, y], z] + [y, [x, z]] for x, y, z ∈ L,

allowing L to be regarded as a Lie algebra in the non-graded sense. As we shall see, this makes it
possible to provide a relatively straightforward description of a basis for the free Lie algebra LA,
where A ⊆ L such that L = A ⊕ [L,L]. This will make it easier to find elements of a basis for
ker(σ), where σ : LA → L is the associated surjection. For each such, in turn a generator of B is
added in the first step of the construction of (LA⊕B, ∂).

Preparation 5.4.1. Let W be any Q-vector space with basis T . By a tree we mean a formal
expression on T that is recursively defined by the following:

• each element t ∈ T is a tree,

• if t1, t2 are trees, then so is t = (t1, t2).

We denote the set of all trees by M(T ) and observe that the bracket (, ) defines a binary operation
on M(T ). Note that the naming is not arbitrary, as M(T ) is just the set of bracketed words in
the elements of T , or in other words the free magma on the set T . Each element in M(T ) can be
depicted by a binary, rooted tree whose leaves are elements of T .
Note that for an arbitrary element t ∈M(T ) it either holds t ∈ T or t = (t1, t2). In the latter case,
we call t1, t2 the left, right immediate subtree of t. The elements in T are called leaves. A tree is
therefore a bracketed expression in its leaves. By |t| we denote the length of the tree t, which is
the bracket length with respect to (, ). Note that there exists a natural map g : M(T )→ LT = LW
defined by g(t) = t if t ∈ T and g(t) = [g(t1), g(t2)] if t = (t1, t2). In other words, g(t) ∈ LW is
obtained by replacing the brackets (, ) in the expression t with the Lie bracketing [ , ]. Given the
elements in T are graded, W is a graded Q vector space and therefore, LW is a graded free Lie
algebra.
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Example 5.4.2. For T = {t1, t2}, a tree t ∈ M(T ) is given by ((t1, t2), (t2, (t1, t2))). It has
length |t| = 5, right immediate subtree (t1, t2) and left immediate subtree (t2, (t1, t2)). Moreover,
g(t) = [[t1, t2], [t2, [t1, t2]]] ∈ LW , where W = Qt1 ⊕ Qt2 and t1, t2 is given any non-negative degree.
We may visualize t as

•

•

t1 t2

•

t2 •

t1 t2.

As one might already have guessed, we will later set W := A and T := (xi)i∈I . For now, let us
stay in this general setting for a little while longer. The goal is to describe a subset H ⊆M(T ) such
that g(H) is a basis of LW . In the following, assume that T has been given a total order. We say a
total order < on M(T ) is compatible with the tree length if for s, t ∈M(T ) we have s < t whenever
|s| < |t|. Note that such order exists.

Definition 5.4.3. (Hall sets)
Consider any total order onM(T ) that is compatible with the tree length. A subset H ⊆M(T ) can
be recursively defined as follows. We start by including all trees of length one, such that T ⊆ H.
For a tree t ∈M(T ) of length greater than one, t = (t1, t2), it then holds t ∈ H if

(a) t1, t2 ∈ H with t1 < t2 and

(b) either t2 ∈ T or t2 = (t21, t
2
2) with t21 ≤ t1,

where t21, t22 are the left and right immediate subtrees of t2. The set H constructed this way is called
Hall set, the elements t ∈ H will be referred to as Hall trees.

Remark 5.4.4. Note that if t = (t1, t2) ∈ H with t2 ∈ T we necessarily have t1 ∈ T , since t1 < t2
and the order is compatible with the tree length. It should be pointed out that there is more than
one way to introduce Hall sets. In some texts, for example, the order is reversed, which leads to
Hall trees that are mirrored versions of the trees that we will be looking at. For the description of a
basis of free Lie algebras, other definitions of Hall sets work as well. One should be aware, however,
that the obtained basis elements can change depending on the definition used.

Note that the tree length defines a canonical grading onM(T ) and therefore H. This is preserved
by the map g : M(T )→ LW , when we regard the grading on LW defined by the bracket length. For
any n ≥ 1, we denote the subspace of H consisting of trees of length n by Hn.

Example 5.4.5. Starting with T = {t1, t2}, the Hall trees up to length five are given by

H1 : t1, t2

H2 : (t1, t2)

H3 : (t1, (t1, t2)), (t2, (t1, t2))

H4 : (t1, (t1, (t1, t2))), (t2, (t1, (t1, t2))), (t2, (t2, (t1, t2)))

H5 : (t1, (t1, (t1, (t1, t2)))), (t2, (t1, (t1, (t1, t2)))), (t2, (t2, (t1, (t1, t2)))),

(t2, (t2, (t2, (t1, t2)))), ((t1, t2), (t1, (t1, t2))), ((t1, t2), (t2, (t1, t2))).

These can be pictured in the sense of example 5.4.2. In fact, the tree there belongs to H5.
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As we can see, the definition of a Hall set H ⊆ M(T ) allows a systematical description of each
of its trees t ∈ H. However, it is the following result to which Hall sets owe their importance. It
states that the problem of finding a basis for the free Lie algebra LW essentially reduces to finding
a Hall set H ⊆M(T ). In this way, Hall trees provide an algorithm to determine a basis of free Lie
algebras.

Proposition 5.4.6. Let H ⊆M(T ) be a Hall set. The elements g(t), t ∈ H form a Q-vector space
basis of LW .

Proof. For the proof of this statement, we refer to [21].

Remark 5.4.7. This allows to find bases of free graded Lie algebras in even generators. In case
that there is a similar statement for general LW , the following could be improved in the sense that
the restriction on the grade of V could be dropped.

Assume now that (ΛV, d1) is a minimal Sullivan algebra, with V = V ≥2 of finite type, basis
(vi, wj)i,j as before and homotopy Lie algebra L. As usual, let L = A ⊕ [L,L] with xi ∈ A and
yj ∈ [L,L]. Our goal is now to describe a way in which we can express the basis elements yj in
terms of brackets of the xi. We will then compare these brackets with a Hall basis of LA in order to
detect generators for the relations in L. More precisely, each Hall basis element of LA that evaluates
to zero in L provides a generating relation in L. As we already know, these in turn are responsible
for the addition of generators in a first step of the construction of a free Lie model for L.
Note however that the bracket expressions we obtain for the elements yj may differ from the Hall
basis elements g(t). Nevertheless, as elements in LA they might still be the same, since we can
rearrange brackets using the symmetry and Jacobi relations. Furthermore, in case of the coefficients
λjp,q in d1(wj) being non-trivial for multiple basis elements up ∧ uq ∈ Λ2V , we will obtain multiple
expressions of yj as seen in proposition 5.1.5. Thus, there may be further calculations necessary
in order to spot generators for the relations of L. Still, a basis provided by Hall sets makes these
computations more tangible and, for instance, tells us the amount of basis elements for each bracket
length.

Remark 5.4.8. Let (ΛV, d1) and L as above and consider TV := (vi)i∈I . Now, using d1, each
element wj provides possibly multiple trees in M(TV ) in the following way. Write d1(wj) =∑

p,q λ
j
p,qup ∧ uq with unique coefficients λjp,q 6= 0 using the basis (up ∧ uq) of Λ2V . Write down the

bracket (up, uq) for each basis element up ∧ uq appearing in the linear combination. In case that
up, uq ∈ TV , the product is of the form vp ∧ vq and we have that (vp, vq) ∈ M(TV ) is a tree. If
not, up or uq are elements of the family (wj)j∈J . By our convention, p ≤ q with index set I + J ,
thus we arrive at either up ∈ TV and uq ∈ (wj)j∈J or both up, uq ∈ (wj)j∈J . Without loss of
generality, assume up = vp and uq = wq, where p ∈ I and q ∈ J . Repeat the process, expressing
d1(wq) =

∑
p′,q′ λ

q
p′,q′up′ ∧ uq′ , leading to brackets (vp, (up′ , uq′)). If we continue in this fashion,

eventually all elements in the bracket are in TV . This way, each element wj provides possibly many
trees in M(TV ). If in each step, the appearing linear combinations consist of only one element, we
get a single tree from wj .

Example 5.4.9.

(a) Consider again the minimal Sullivan algebra (Λ(v1, v2, w), d1(w) = v1 ∧ v2) with |vi| odd. We
directly obtain the tree (v1, v2) ∈M(v1, v2) from w using d1.

(b) Let us pursue this example a little bit further. First, observe that v1∧w and v2∧w are cocycles,
so we may introduce generators w1, w2 with d1(wi) = vi∧w to arrive at (Λ(v1, v2, w, w1, w2), d1).
Translating this into trees with leaves {v1, v2}, for w1 and w2 we first get (v1, w) and (v2, w),
then continue by replacing w to obtain (v1, (v1, v2)), (v2, (v1, v2)) ∈ M(v1, v2). Note that these
are in particular Hall trees. The pictures are
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v1 v2

w1

v1 w

v1 v2

w2

v2 w

v1 v2.

(c) We continue in this fashion, introducing generators w1,1, w2,2, w1,2 with

d1(w1,1) = v1 ∧ w1, d1(w2,2) = v2 ∧ w2, d1(w1,2) = v1 ∧ w2 − v2 ∧ w1.

The elements w1,1 and w2,2 lead to the Hall trees (v1, (v1, (v1, v2))) and (v2, (v2, (v1, v2))) re-
spectively, for w1,2 we have to choose between the two summands, leading to two choices of
trees, namely (v1, (v2, (v1, v2))) and (v2, (v1, (v1, v2))). Only the latter is a Hall tree.

(d) Lastly, let us add two more generators w′1 and w′2 by setting

d1(w′1) = w ∧ w1 − v2 ∧ w1,1, d1(w′2) = w ∧ w2 − v1 ∧ w2,2.

For each element w′1, w′2 we again get two trees. Starting with w′1, the first summand gives
((v1, v2), (v1, (v1, v2))) , and for the second one we get the Hall tree (v2, (v1, (v1, (v1, v2)))) of
length five. The element w′2 provides a second Hall tree ((v1, v2), (v2, (v1, v2))) of length five
and another tree (v1, (v2, (v2, (v1, v2)))) for the second summand in its differential.

We now switch to the set T = (xi)i∈I . There exists an obvious bijectionM(TV )→M(T ) induced
by the one-to-one correspondence of the elements vi and xi, TV ∼= T (we just renamed the leaves).
Thus, any tree obtained from wj as described above in remark 5.4.8 can be viewed as an element
in M(T ). Remember, there exists a natural map g : M(T ) → L(xi)i∈I = LA, which replaces the
parenthesis with Lie brackets.

Proposition 5.4.10. For each element wj, let tj ∈ M(TV ) be any tree obtained by successively
replacing the basis elements that are not coboundaries with products that appear in the linear com-
bination of their image under d1, as described in remark 5.4.8, then renaming the leaves. It holds
that µjg(tj) = yj for some µj 6= 0.

Proof. Write d1(wj) =
∑

p,q λ
j
p,qup ∧ uq. By proposition 5.1.5 it follows yj = µjp,q[zp, zq] for all p, q

appearing in the sum, where µjp,q 6= 0. Now tj = (up, uq) for some p, q, where we further replace
up or uq if they have a non-vanishing differential. Thereby it holds up = vp if and only if zp = xp
(and the same holds for uq, zq), so whenever we replace up or uq by some other bracket (up′ , uq′),
we may apply proposition 5.1.5 again to replace zp respectively zq by the bracket µpp′,q′ [zp′ , zq′ ] or
µqp′,q′ [zp′ , zq′ ] respectively.

We have now established a way how to express the basis elements yj in brackets of the xi.
Furthermore, we have learned of a way to describe a specific basis of a free Lie algebra. Applied
to our case, this means we can now more easily spot missing brackets in the homotopy Lie algebra
L. To be more clear, we have a way to describe the first construction step of the free Lie algebra
model (LA⊕B, ∂) of L. Remember that ψ : (LA, 0)→ (L, 0) is a surjection that should be improved
to a DGL quasi-isomorphism by sequentially killing the kernel. By the definition of ψ its kernel are
exactly the missing brackets, so a basis for ker(ψ) is provided by the Hall trees that are missing in
L. While doing this, we worked over the grading of the Lie algebras, which in general is different
from the grading given by the bracket length. However, using Hall trees, we can describe some steps
in this construction more precisely.
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• Let k1 such that B = b≥k1 with notation from theorem 5.3.7. This means the first appearing
relations of L are of degree k1 − 1 and ∂(b) ∈ [A,A] for all b ∈ Bk1 . We thus find Hall trees
t ∈ H such that ψ(g(t)) = 0. By proposition 5.4.6, the elements g(t) provide a basis for
ker(ψk1−1).

• In the construction of (LA⊕B, ∂) this means that for each such t a generator b will be added
such that ∂(b) = g(t). It follows that each such t belongs to a cell in the realization X of
(ΛV, d1) that is attached to the bouquet by a Whitehead bracket. This bracket is directly
determined by t.

Note that in addition to the minimal grade k1 − 1 of the relations, we can also argue over the
minimal bracket length. That is, let n ≥ 2 be the least bracket length of the relations of L. Then
all t ∈ Hn with ψ(g(t)) = 0 contribute to the addition of generators in B, since the differential ∂
can only increase the bracket length.

Example 5.4.11. (Continuation of example 5.4.9)

(a) Let (Λ(v1, v2, w), d1(w) = v1 ∧ v2) with |vi| odd. The only tree we obtain is (v1, v2), so for the
basis element y dual to w it holds y = µ[x1, x2]. It follows that in L the Hall bases of H3,
[x1, [x1, x2]], [x2, [x1, x2]] are missing. This leads to the attachment of two cells B2|v1|+|v2|−1

1 ,
B2|v2|+|v1|−1

2 by the classes [α1, [α1, α2]W ]W and [α2, [α1, α2]W ]W to Y = S|v1| ∨ S|v2|. We have
already established this in example 5.3.13.

(b) For (Λ(v1, v2, w, w1, w2), d1) the elements w1, w2 evaluate to the Hall trees (v1, (v1, v2)) and
(v2, (v1, v2)), so the dual basis elements yj essentially belong to a Hall basis,

y1 = µ1[x1, [x1, x2]], y2 = µ2[x2, [x1, x2]].

In turn, now all brackets g(t) for t ∈ H4 vanish in L, which leads to three cells being attached
to Y via Whitehead brackets

[α1, [α1, [α1, α2]W ]W ]W , [α2, [α1, [α1, α2]W ]W ]W , [α2, [α2, [α1, α2]W ]W ]W .

(c) The case of (Λ(v1, v2, w, w1, w2, w1,1, w2,2, w1,2), d1) is similar to the one above, with H5 instead
of H4. Note that for w1,2 the two trees lead to the bracket expressions

y1,2 = µ[x1, [x2, [x1, x2]]] = µ[x2, [x1, [x1, x2]]],

in accordance to the Jacobi identity. Only the latter is a Hall tree.

(d) Lastly, let us examine (Λ(v1, v2, w, w1, w2, w1,1, w2,2, w1,2, w
′
1, w

′
2), d1). We have already trans-

lated the information on the basis elements into trees using d1. We obtain all Hall trees up to
bracket length four, and two of bracket length five. Comparing this to example 5.4.5, we see
that four basis elements of H5 are missing, so we know that there will be four cells attached
to Y using Whitehead brackets that we can read off the missing Hall trees. One such is for
example [[α1, α2]W , [α1, [α1, α2]W ]W ]W .

Remark 5.4.12. Note that the condition of V being concentrated in even degrees is only necessary
if one wants to work with Hall trees. The general strategy of translating the elements wj into trees,
providing (possibly multiple) bracket expressions of the yj ∈ L works this way for any Sullivan
algebra (ΛV, d1). What makes the general case more complicated is the location of missing basis
elements in L when compared to LA.
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